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Introductio n n 

AA crucial step in understanding any physical system is a study of its symmetries. In theories of 
fieldsfields or particles, the properties that distinguish different kinds of particles, such as mass, spin, 
electricc charge, isospin and color, are linked to the way these particles' fields or wave func-
tionss transform under various symmetry operations. These symmetry operations can be quite 
diversee in nature; one may think of spacetime symmetries, such as Lorentz boosts, translations, 
rotations,, reflections and time reversal, but also of many types of gauge transformations and of 
chargee conjugation. Despite this diversity, it has been possible to give an efficient mathematical 
descriptionn of all these symmetries in terms of groups. As a consequence, group theory has be-
comee one of the standard tools of the theoretical physicist. Nevertheless, even the applicability 
off  group theory has its limits and one does encounter situations, especially in low dimensional 
systems,, where different methods are required to efficiently describe all symmetries. In such 
cases,, a generalization of group theory, the theory of Hopf algebras, or quantum groups, may 
comee to the rescue. 

Hopff  symmetry does not just generalize group symmetry, it also unifies the description of 
symmetryy with the description of the exchange properties of particles. In other words, the Hopf 
symmetryy in a system tells us not only what the natural quantum numbers of the particles are and 
howw these quantum numbers behave under fusion, but it also describes the non-local part of the 
interactions.. Thus, Hopf symmetry comes into its own especially in the description of particles 
withh non-trivial exchange properties, that is, particles which are not bosons or fermions. Such 
"anyons""  do not seem to occur as elementary particles in our (3+l)-dimensional world, but they 
featuree naturally in many models of lower dimensional systems. 

Amongg physical phenomena which are believed to involve anyonic excitations, the frac-
tionall  quantum Hall effect is probably the best understood. A fractional quantum Hall state 
formss when electrons caught at the interface between a semiconductor and an insulator are 
cooledd to very low temperatures (~ lOmK) and subjected to a strong magnetic field (~ 20T). 
Underr these conditions, there is a Hall effect which differs spectacularly from the classical Hall 
effect.. The Hall resistance does not rise linearly with the applied J?-field, but instead exhibits 
plateaus.. At these plateaus, the conductance takes values which are integer [1] and fractional 
[2]]  multiples of the fundamental unit £ (see figure 1). At each plateau, the diagonal elements 
off  the conductance tensor vanish; the current is perpendicular to the applied voltage. The elec-
tronss form a fluid state which has localized excitations. These are called quasiparticles when 
theyy correspond to a local peak in the electron density and quasiholes when they correspond to 
aa local dip. Quantum Hall quasiparticles and quasiholes exhibit many exotic properties. For 
example,, their charge is typically a fraction of the charge of an electron. Also they are believed 
too be neither bosons nor fermions. Their exchanges are governed by the braid group and are 
evenn predicted to be non-Abelian in some cases. We may thus safely say that the states of mat-
terr at the quantum Hall plateaus are crying out for a quantum group theoretic treatment. We 



Introductionn and Outline 

fiel dd (T) 

Figuree 1: Plot of the Hall resistance for a typical sample. Taken from [3] 

describee such a treatment in chapter 2. We argue that the fusion and braiding properties of the 
excitationss may always be elegantly described by means of a quantum group and we show this 
explicitlyy for a series of states proposed by Read and Rezayi. For this series, we also use the 
Hopff  symmetry to give a complete description of the non-Abelian braiding of the quasiholes. 

Inn chapter 3, we turn to an issue which succeeds the discovery of any new symmetry, namely 
thee determination of the generic types of physical behavior which may arise as that symmetry 
iss broken spontaneously. This issue is of central importance in areas of physics ranging from 
crystallographyy to string theory. For symmetries described by groups it is a textbook subject, 
butt for symmetries described by Hopf algebras, no theory of symmetry breaking has to date 
beenn available. We propose a theory of Hopf symmetry breaking that deals efficiently with 
symmetriess described by finite-dimensional Hopf algebras (these include all symmetries de-
scribedd by finite groups) and we explore its physical consequences. We apply our theory to 
discretee gauge theories: planar gauge theories whose gauge symmetry has been broken down 
too a discrete group through the Higgs effect. These theories are probably the simplest of all 
gaugee theories. Nevertheless, they have a rich spectrum of fundamental and topological excit-
ations,, which exhibit non-trivial fusion and Aharonov-Bohm interactions (braiding). They also 
havee a Hopf symmetry which describes the particle spectrum, fusion and braiding completely 
andd which deals with fundamental and topological excitations on equal footing. Thus, these 
theoriess provide a unique opportunity to study questions that involve an interplay between fun-
damentall  and topological excitations, such as the problem of confinement of electric charges 
duee to a condensation of topological fluxes. We study what happens when the Hopf symmetry 
iss broken by the formation of a condensate and find Higgs and confinement phenomena similar 
too those in continuous gauge theories in 3+1 dimensions. We hope that the approach to the 
studyy of these phenomena that we develop here may in the long run also prove useful in more 
realisticc models, both of elementary particles and of excitations in condensed matter systems. 

Thee structure of this thesis is as follows. In chapter 1, we give a brief review of some aspects 
off  Hopf algebra theory that are relevant to us, emphasizing the relationship to two-dimensional 
physics.. Chapters 2 and 3 both use the material in chapter 1 to some extent, but they can be 
readd independently of each other. Also, both chapter 2 and chapter 3 start with introductory 
materiall  of their own, which gives an overview of the relevant physics and mathematics. In 
particular,, section 2.2 gives a short introduction to the bulk theory of the quantum Hall effect 
andd section 3.2 introduces discrete gauge theories. A summary in Dutch can be found at the end 
off  this thesis. 
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Chapterr  1 

Hopff  symmetry in planar  physics 

Inn this chapter, we will explain what Hopf algebras are, how they generalize groups, and why 
theyy are suitable for the description of particles, especially in two space dimensions. We also 
establishh notation and collect some formulae for reference. For much more information on Hopf 
algebrass and quantum groups, one may consult for example [4, 5,6, 7, 8]. 

1.11 Definitions and philosophy 
Definitionn 1 A Hopf algebra is an associative algebra A with multiplication p, and unit 1, 
thatthat has extra structures e, S and A called counit, antipode and coproduct.The coproduct or 
comultiplicationn A is an algebra map from A to A <S> A with the following property, called 
coassociativity: coassociativity: 

(AA <g> id)A = (id ® A) A. (1.1) 

Here,Here, id is the identity map on A. The counit e of A is an algebra map from A to C, or equival-
ently,ently, a one-dimensional representation of A, which satisfies 

(ee <g) id)A = (id <g> e)A = id. (1.2) 

Finally,Finally, the antipode SofA is a linear map from A to A which satisfies 

p(Sp(S <g> id)A(a) = /x(id <g> S)A(a) = e(a)l (1.3) 

forfor each a E A 

Somee types of Hopf algebras are also called quantum groups, but there is no agreement on 
exactlyy which types. We will use the term quantum group to refer to quasitriangular Hopf 
algebrass (see definition 4) 

Ourr basic philosophy will be that the one particle Hilbert space for each particle in a physical 
theoryy must carry an irreducible representation (irrep) of the Hopf algebra which describes 
thee symmetry that is present in that theory. The spectrum of particles in an .A-theory thus 
correspondss to the spectrum of irreps of the Hopf algebra A. The defining properties of a Hopf 
algebraa are such that its spectrum of irreps has some properties that mimic those off  the particle 
spectrumm of a physical theory. 

Givenn two representations n1, n2 of A, one can define a tensor product representation IT1 ®-n2 

byy the formula 
7T11 <g> 7T2 : X - > (7T1 ® 7 T 2 ) ( A ( x ) ) . ( 1 . 4) 
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Chapterr 1. Hopf symmetry in planar physics 

Thus,, A provides us with a way of describing the action of A on multi-particle states. The 
decompositionn of the tensor product representations denned by means of A gives the fusion 
ruless of the theory. From this it should be clear that, in physical applications, it is very desirable 
thatt all „4-modules are fully reducible. For finite dimensional Hopf algebras, this property 
iss equivalent to semisimplicity. The coassociativity of A ensures that this tensor product is 
associative,, so that the order in which particles are fused together does not matter. A graphical 
representationn of the coassociativity of A is given in figure 1.1 

Ï))  iy 
vv V 

Figuree 1.1: Graphical representation of the coassociativity relation (1.1). The left and right hand pictures rep-
resentt the linear operators (A <g> id)A and (id <g> A)A which map A into .A®3. The diagrams should be read from 
thee bottom up; start with one tensor factor, "split" it into two using A, then split one of those two again using A. 
Wee see that the order in which particles are fused does not matter. 
Inn calculations that involve the coproduct, one often uses Sweedler notation: 

A(o)) = 2^a(i)®a(2)- (1-5) 

Inn this notation, coassociativity can be expressed as 

53(o(i))(i)) ® (a(i))(2) ® 0(2) = Yl aW ® (a(2))(i) ® (°(2))(2)- (1-6) 

Thee counit can be seen as the trivial or vacuum representation of A. It follows from (1.2) 
thatt we have 

e<g>7rr = 7T®e = 7r (1.7) 

forr any representation n of A. Thus, if we assume that the vacuum (or an .A-neutral particle) 
transformss in the representation e of A, then we get the fusion properties that one would expect. 

Iff  we are given a representation w of A, then the antipode makes it possible to define the 
representationn w conjugate to % by the formula 

jr(a )) = w\S{a)), (1.8) 

wheree the t denotes matrix transposition. To see that this is indeed a representation of A, 
notee that it follows from (1.3) that S is an antihomomorphism, that is S(ab) = S(b)S(a) for 
anyy a, b G A. The properties (1.3) also ensure that the tensor product representations n ® jf 
andd ff ® n contain the trivial representation e in their decomposition. Thus, a particle which 
carriess the representation n and its antiparticle, which carries the representation n may indeed 
annihilate. . 

Wee now recall the notion of a Hopf subalgebra and of the dual of a Hopf algebra, as they 
wil ll  turn out to be important in our discussion of Hopf symmetry breaking. 

Definitionn 2 For any Hopf algebra A we may define a Hopf subalgebra to be a subalgebra B 
ofof A which satisfies 

11 e B, S(B) C B, A(B) <zB®B (1.9) 

ThisThis implies that B is itself a Hopf algebra, with "the same" structures as A 
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1.2.. Braiding and spin 

Definitionn 3 For any finite dimensional Hopf algebra A the dual Hopf algebra is the vector 
spacespace A* of linear Junctionals from A to C with Hopf algebra structures l*,n*,A*,e*  and S* 
defineddefined by: 

l* * aa M- e(a) p,*(fu f2)- a i-+ ƒi ® f2 o A(o) 
ƒƒ ^ ƒ(!) A*(/) : (01,02)̂  ƒ (Max, oa)) 
oo ^ /(5(a)) 

(1.10) ) 

Were,, a, ai, o2 are arbitrary elements of A and ƒ, fi,f2 are arbitrary elements of A". 

Itt is often possible to define duals for infinite dimensional Hopf algebras analogously, but the 
technicall  details (how to complete the dual tensor product, etc.) vary from case to case. 

1.22 Braiding and spin 

Thee particle exchanges in a system of n identical particles are governed by the fundamental 
groupp of the configuration space for this system [9]. In 3+1 or more dimensions, this funda-
mentall  group is the permutation group Sn, but in 2+1 dimensions, it is the braid group Bn. The 
elementss of this group (the braids) are all the topologically inequivalent ways in which one may 
connectt n points in a plain to the corresponding n points in a parallel plain using n strings. Mul-
tiplicationn is given by concatenation of braids. Figure 1.2 illustrates how a braid corresponds to 
aa path through configuration space. 

Figuree 1.2: On the left: a closed path in configuration space. Particles are indicated by black dots. They move 
alongg the arrows, so that the original particle positions are once again occupied after the movement. 
OnOn the right: the corresponding braid. The direction of the movement on the left corresponds to the downward 
directionn on the right. 

BBnn is generated by n — 1 elementary exchanges T\,..., T„  subject to the relations 

TiTjTiTj = TjTi ( | J - j | > 2) 

TjTi+iTiTjTi+iTi  = Ti+lTjXi+1-

Braidd diagrams for the generators and relations are givenn in figure 1.3. 

(1.11) ) 

L L 7 7 r r T T 

Figuree 1.3: Braid diagrams for the generators n and r2 of thee Braid group B3 and for the single relation between 
them:: r i r 2r i = TIT\TI. 

Thee permutation group Sn is the quotient of Bn that is obtained when we add the relations 

(n)(n)22 = e. (1.12) 

11 1 



Chapterr 1. Hopf symmetry in planar physics 

Supposee that we have two particles that carry the ^-representation 7r, with module Vn. The 
totall  internal state of the system can then be represented by a state \s) in the tensor product 
KK ® Vn. If we exchange the particles, how does the state of die system change? Usually, we 
wouldd describe the exchange simply by interchanging the tensor factors in die state | s}.  We call 
miss exchange of die factors in die tensor product a. An exchange of two adjacent particles in a 
systemm of N identical particles may men be described by the action of a on the corresponding 
factorss of die iV-fold tensor product. For example, in a 4-particle system, the exchange of 
thee second and diird particles is accomplished by the operation 1 <g> a <g> 1. Such exchanges 
generatee a representation of die permutation group SN and are dius adequate for systems in 3+1 
orr more dimensions. However, in 2+1 dimensions, we need a more general exchange recipe 
iff  we want to have braid group representations mat are not permutation group representations. 
Suchh a recipe is included in the Hopf algebraic framework when the Hopf algebra in question 
iss quasitriangular. 

Definitionn 4 A Hopf algebra A is quasitriangular if there is an invertible element R £ A® A 
whichwhich has the properties 

AAopop{a)R{a)R = RA{a) (Va e A) (1.13) 

(A®id)(i2 )) - R13RM (1.14) 

(id®A)(#)) = RizRn- (1.15) 

Here,Here, Aop is the comultiplication, followed by an exchange of the tensor factors in A <8> A 
andand Rij is an abbreviation for the action of R on the factors i and j of A®3, so for example 
R\2R\2 = R ® 1. The element R is called the universal iJ-matrix of A. 

Too exchange two adjacent particles, we now let R act before a in die appropriate tensor factors. 
Forr example, in a system of three particles, all of which carry the representation n of A the 
exchangee of die first and second particles will be effected by (a o (w ® n)(R)) <8> 1. Note mat, in 
anyy tensor product of two representations, me universal i?-matrix does indeed act as a matrix, 
butt die matrix in question depends on die representations. 

Thee defining properties of the i?-matrix make sure mat exchanging particles by means of 
aRaR makes physical sense. The properties (1.14) and (1.15) guarantee diat braiding two particles 
aroundd a third one and then fusing diem togetiier gives the same result as fusing die two particles 
firstfirst and then braiding the result around die third one (see figure 1.4). The property (1.13) 
ensuress mat die exchanges commute with die action of die quantum group. Hence, it also 
makess sure mat the tensor products TZ\ <g> ir2 and 7r2 ® TTI of representations 7Ti and w2 of A are 
isomorphic,, witii the isomorphism from die module of TTI <g> 7r2 to mat of n2 <8> ir\  given by die 
exchangee map a o (m ® n2){R). Using either (1.13) and (1.14) or (1.13) and (1.15), one may 
alsoo prove that 

R12R13R23R12R13R23 — ^23^13^12- (1-16) 

Thiss is die so called quantum Yang-Baxter equation. It implies that, in any representation of A, 
wee have the identity 

{o-R®l){l<8>aR)(aR<S)l){o-R®l){l<8>aR)(aR<S)l) = (1 ®<rR){aR® 1)(1 ® aR) (1.17) 

fromm which we see that, for a system of n identical particles that carry a representation of A, 
mee exchanges of adjacent particles, as performed using aR, satisfy die relations (1.11) of die 
braidd group. Hence, since R is invertible, tiiey generate a representation of this group. Since die 

12 2 



1.2.. Braiding and spin 

Figuree 1.4: Fusion and braiding commute. The diagrams should again be read from the bottom up. Each 
crossingg represents the action of an .R-matrix and each splitting the action of a coproduct. This way we get 
equalitiess between maps from A92 to _4®3. For the left equality, we get A cg> id o R = R13R23 o (A <g> id). This 
followss easily from the equation (1.14) which is assumed to hold for elements of A83. Similarly, the equality 
depictedd on the right follows from (1.15). 

exchangess commute with the action of the quantum group A, it follows that the system carries 
aa representation of A x Bn. 

Whenn the particles do not all carry the same quantum group representation, and are hence 
nott identical, the i?-matrix no longer gives us a representation of the braid group on the Hu-
bertt space of the system, because the exchanges now act between different vector spaces; the 
flipflip  operator a sends V„ t ® Vm into Vn2 <g> Vni. This is not a problem, because exchanges of 
non-identicall  particles are not symmetries of the system. What we do still get from the R-
matrixx is a representation of a so called colored braid group, which consists of the braids for 
whichh the final position of any particle is the original position of a particle of the same kind (or 
"color").. The action of this colored braid group on the Hubert space of the theory describes 
thee topological interactions between the different kinds of particles in the theory. In connection 
withh this, one should note that the coloring restriction leaves plenty of room for non-trivial and 
evenn non-Abelian monodromies between distinguishable particles. The colored braidings will 
stilll  commute with the quantum group action and they may still be generated by elementary 
exchangess of adjacent particles, although some of these exchanges will no longer have a clear 
physicall  meaning and should be called half-monodromies rather than braidings. We will be a 
bitt sloppy about this in the sequel, but we hope that this will not cause confusion. 

AA description of the spin of the particles in a two dimensional theory can also be incorpor-
atedd into a Hopf algebraic treatment when the Hopf algebra that describes the system is a ribbon 
Hopff  algebra. 

Definitionn 5 A ribbon Hopf algebra is a quasitriangular Hopf algebra {A, R) with an invertible 
centralcentral element c that satisfies the equations 

êê = uS{u), 5(c) = c, e(c) = 1 

A(c)A(c) = {R21R12)-
1(c®c), (1.18) 

wherewhere u = /j(S ® id)(i?2i). The element c is called the ribbon element 

Thee action of the ribbon element on the physical Hilbert space is interpreted as the action of 
aa rotation of the system over 2n in the clockwise direction. In particular, the action of c on 
ann irrep of A describes the effect of rotating the particle that carries this irrep. Because c is 
central,, the action of c on an irrep may always be described by a scalar factor, which is called 
thee spin factor of the irrep and of the corresponding particle. The equations that c has to satisfy 
makee sure that the spin of the vacuum is trivial, that the spin of a particle and its antiparticle 
aree equal and that rotating a system of two particles over an angle of 27r may be accomplished 
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Chapterr 1. Hopf symmetry in planar physics 

bothh by acting with c on the two-particle system (making use of A) and by braiding the two 
particless around each other and then rotating them separately. This last property is illustrated in 
figurefigure 1.5 

Figuree 1.5: The relation between twisting and braiding. A twist in a ribbon represents muliplication by c in 
thee corresponding tensor factor. Reading from bottom to top, we see that the diagrams represent the equality 
R21R12R21R12 ° A = ( c ® c ) o Ao c - 1 between maps from A to A &> A. This follows easily from the relation 
( i ^ i -Rn ) - 11 = &(c)(c ® c )_1 for elements of A ® A. The term "ribbon Hopf algebra" is inspired by such 
pictures. . 

1.33 Hopf algebras and groups 

Iff  the excitation spectrum and fusion properties of a physical system can be described by means 
off  a group H, then they can also be described by means of a Hopf algebra. When the group 
HH is finite, the corresponding Hopf algebra is its group algebra CH. This is the vector space 
generatedd by the elements of H, with the multiplication induced by the multiplication of H. 
Thee unit of this algebra is just the unit e of H. The comultiplication, antipode and counit of CH 
aree given on the basis of group elements h e H by the formulae 

A{h)A{h) = h®h S(h) = *{h) = h-1 e(h) = l (1.19) 

andd one may check easily that the defining properties of a Hopf algebra are satisfied. Repres-
entationss of CH are in one to one correspondence to representations of H, the tensor product 
definedd by (1.4) is just the ordinary tensor product of group representations and from the for-
mulaee for e and S, we see that the trivial representation and the conjugate of a representation 
aree also defined in the usual way. CH is quasitriangular with the trivial iï-matrix e ® e and in 
fact,, it is a ribbon Hopf algebra, with the trivial ribbon element c = e. 

Too a group with infinitely many elements one may usually associate several different Hopf 
algebras.. For Lie groups, one usually takes the universal enveloping algebra of the Lie algebra 
off  the group. This is the free algebra generated by the unit element 1 and a basis of the Lie 
algebra,, modulo the relations given by the Lie bracket. For the Lie algebra sl(2), for instance, 
wee get the algebra U(sl(2)) generated by 1 and the three elements H, L+ and L~, subject to the 
relations s 

[ff.L* ]]  = £ 

[L+,L-\[L+,L-\  = H. (1.20) 
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1.3.. Hopf algebras and groups 

Thee difference with 5/(2) itself is that elements like H2L+ are also in this algebra. The cop-
roduct,, counit and antipode are given by 

A(H)) = 1®H + H®1 

)) = 1 <g> L*  + L*  ® 1 

A(l )) = 1®1 

6(1)) = 1, e(H)=0, ) = 0 
5(1)) = 1, S{H) = -H, S{L ) = -L  (1.21) 

andd we see that these structures are just the infinitesimal versions of the structures we gave for 
groupp elements. The representations of the enveloping algebra are given by the representations 
off  the corresponding Lie algebra and the tensor product and conjugation defined by (1.4) and 
(1.8)) correspond to the usual tensor product and conjugation for representations of Lie algebras. 
Also,, universal enveloping algebras are ribbon Hopf algebras with trivial i?-matrix 1 (g> 1 and 
triviall  ribbon element 1. 

Iff  one wants to associate a Hopf algebra to a real Lie group, it is often useful to take the 
universall  enveloping algebra of the complexification of its Lie algebra, supplemented with a star 
structure.. This is an antilinear algebra anti-automorphism * which squares to the unit. Using 
thiss star, one may then define a unitary representation or *-representation of the algebra as a 
representationn IT which satisfies 

\tx\tx : w(*(x)) = 7r(x)f, (1.22) 

wheree the dagger indicates Hermitian conjugation. One may prove that every -
tationn decomposes orthogonally into irreps, by noting that the orthogonal complement of a 
*-submodulee of the representation's module is itself a *-submodule. U(sl(2)) has two star 
structures,, one for each real form of SL(2, C). We will only use the star structure that corres-
pondss to 57/(2), which is given by 

)) = LT, *{H)  = H. (1.23) 

Thiss star has the property 
\/x\/x : (*  <g> *)A(x ) - A(*(x)) , (1.24) 

fromm which it follows that every tensor product of *-representations is itself a *-representation 
withh respect to the standard inner product on the tensor product space. As a consequence, the 
decompositionn of tensor products of *-irreps is orthogonal. 

AA typical characteristic of Hopf algebras associated to groups is that they are cocommutat-
ive,ive, that is, Aop = A. One may check from the formulae above that this is indeed the case for 
groupp algebras and universal enveloping algebras. A well known theorem in Hopf algebra the-
oryy (see for example [4], section 5.6 for a proof and references) asserts that any cocommutative 
Hopff  algebra over die complex numbers, defined with the ordinary (algebraic) tensor product, is 
inn fact isomorphic to a crossed product of a group algebra and a universal enveloping algebra. In 
otherr words, any such Hopf algebra corresponds to a crossed product of a Lie group and a finite 
group.. We may also associate commutative Hopf algebras with groups, via their duals, which 
aree cocommutative. Hence, the name "quantum group" is usually reserved for Hopf algebras 
whichh are neither commutative nor non-cocommutative. 
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1.44 Introductio n to Uq(sl(2)) 

Afterr the previous section, we should obviously provide at least one example of a non-commuta-
tivee and non-cocommutative quasitriangular Hopf algebra. The standard non-trivial example of 
suchh an algebra is a deformation of the universal enveloping algebra of sl(2) which depends 
onn a parameter q and is denoted Uq(sl(2)). In this section, we give a review of some of the 
representationn theory of this algebra. The material presented here serves as a basis for our 
discussionn in chapter 2 of the braid group representations associated with Uq(sl(2)) at roots of 
unity. . 

1.4.11 The algebra and its unitary representations 

UUqq(sl(2))(sl(2)) can be viewed1 as the algebra generated by a unit 1 and the three elements H, L+ and 
L~.L~. These satisfy the relations 

[H,^][H,^]  =

wheree q may be set to any non-zero complex value. One may check that these relations reduce 
too those of the Lie algebra sl(2) when q goes to one. Hence, Ui(sl(2)) is just the universal en-
velopingg algebra U(sl(2)) (cf. (1.20)) and we say that Uq{sl{2)) is a g-deformation of U(sl(2)). 
Thee coproduct of Uq(sl(2)) is given by 

A(H) A(H) 

) ) 
A(l ) ) 

== 1 ® H + H ® 1 
== L^ttq  ̂ + q-W 

==  1®1 (1.26) ) 

andd we see from the coproduct of L*1 that Uq(sl(2)) is not cocommutative, except of course if 
qq — 1. The Hopf structure is completed by the counit and the antipode: 

€(1)) = 1, e(H) = 0,
5(1)) = 1, S(H) = -H, S{L ) = -q^L * r  a2 7> 

Iff  q is not a root of unity, the representation theory of Uq(sl(2)) is very similar to that of 
U(sl(2)).U(sl(2)). For each non-negative j € |Z there is an irreducible highest weight representation 
off  dimension d = 2j + 1. We will denote this representation by irA, where A = d — 1 = 2j 
iss the highest weight. The modules Vh of these representations have an orthonormal basis that 
consistss of kets j j , m), with m = — j , —j + 1 , . . ., j and the generating elements H, L+ and L~ 
actt on this basis as follows 

H\H\ j,m) = 2m\ j , m) 

L^j,™.)L^j,™.) = m + lJ, . (1.28) 

Here,, the ^-number [m\q is defined as 

7m/22 _ Q-m/2 

,1/22 _ 0 - l / 2 M « = l l / 22 1-1/2- f1'29) 

'Wee write "viewed" rather than "defined", because we are skipping some subtleties which occur in the defini-
tion.. These subtleties are not very important for our purposes. For full details, one may consult [7] 
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Thesee g-numbers enter the formulae for the representations through the commutation relation of 
LL++  and L~, the right hand side of which can be written [Hj q. The g-number [m\q approaches 
mm when q goes to one and hence we see mat the representations given above reduce to the usual 
U(sl(2))U(sl(2)) representations for q = 1. 

Wee will be interested in Uq(sl(2)) with a star-structure defined as in (1.23), i.e. 

)) = LT, *(H) = H. (1.30) ) 

UUqq(sl(2))(sl(2)) with this star structure is also called Uq(su(2)). Let us check when the representations 
definedd above are unitary with respect to this star. First note from (1.28) that we always have 
7rA(i/)tt = irA(H) and TT^ I ^ ) *  = (7rA)t(LT), where the t denotes matrix transposition. Hence, 
7rAA is unitary when the matrix elements of V  ̂ are real, i.e. when the square root in (1.28) is real 
forr all admissible values of m. This will be the case if q is real and positive and also if q — e'* 
withh 0 e M, |0| < 2^+ï' s m ce f° r m e se values of q the ^-numbers in the square root are real 
andd positive. Thus we see that, for real q, all the representations above are *-representations, 
whilee for q — é^, the representations 7T2-*  with \<f>\  < ^ j are *-representations. 

Moree generally, many aspects of the representation theory of Uq(sl(2)) depend on the prop-
ertiess of g-numbers. Two simple examples of g-number identities which are useful in represent-
ationn theoretic calculations and which hold for all q e C are 

qqn/2n/2lm\lm\qq + q-^\n\q 

[n[n  + m\q[n — m\q 

== [m + n\q 

(1.31) ) 

1.4.22 Tensor  products and Clebsch-Gordan coefficients 

Usingg the coproduct (1.26), one may define tensor products of Uq(si(2))-representations in the 
usuall  way (cf. (1.4)). Tensor product decompositions and even Clebsch-Gordan coefficients for 
tensorr products of unitary representations of Uq(sl(2)} may then be calculated similarly as for 
U(sl(2)).U(sl(2)). The highest weight state | j , j) of each the irreducible representations in the tensor 
productt may be found by solving the equations L+ \ j, j) =0 and H\j,j) = 2j\j,j). The other 
statess are produced by repeatedly acting with L~. In the calculations, the following formula for 
thee coproduct of (L~)n is a great help: 

A ( ( L - nn = (A(L-))» = £ n n 
m m 

/ £ - l \ mm -(n-tn)/f/4 (L~-)(L~-)nn--mmqqm/4m/4. . (1-32) ) 

Thee g-binomial n n 
m m 

inn mis formula is defined by 

n n 
m m 

NJ J 
[m\[m\qq\[n\[n  - m\q\ 

,, with [n\q\ := JJ|_mJ< (1.33) ) 

Whenn q is not a root of unity, the tensor product representation TTA <g> 7rA' has the same decom-
positionn into irreps as for q = 1, i.e. 

A+A' ' 
T A 0 7 r A ' == Q ^ 

A"=|A-A' | | 
(1-34) ) 
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Chapterr 1. Hopf symmetry in planar physics 

wheree A" increases in steps of 2. It follows from this decomposition that the irreps of Uq(sl(2)) 
aree all self-conjugate. 

Explicitt Clebsch-Gordan coefficients may be calculated for any tensor product of irredu-
cibles,, using (1.32) and (1.28). One writes 

II 3, m > = £ £ Ji i 
mi i 

32 32 
m2 2 

3 3 
m m 

\ji,m\ji,mll)\J2,m)\J2,m22) ) (1.35) ) 

forr the vector with if-eigenvalue 2m in the irrep 7r2j in the decomposition of the tensor product 
7r2jll ® 7r2j2. The above formula is only meant to introduce the notation for the g-Clebsch-Gordan 
coefficients.. Several general formulae for these coefficients are proved in [10] and [11] and 
collectedd in [12]. We will not give these explicit (complicated) formulae here, but we do give 
thee coefficients for the case j2 — \, as an illustration and because this case is of special interest 
too us later. For j \ > 0, one has j = ji  \ and 

IjiIji  + ih + l-p) = <f IAyJ[*3\ + 1 -Pj,/|2j"i + 1J, \3iJi-p)\ hi) 

\h-hji-k-p)\h-hji-k-p) = 

+Q+Q (p(p--2h2h~~mmyJ\pUViyJ\pUVi + l\q | i l , j 1 - p + i > | i , _ i ) 

«(p-!W0/4V^LPP + iJ«L2ji + i j , l i i , i i - P - i > l è , | ) 

- q ^ ^ ^ h - p ^ hh + ll, 1 ^ , ^ - p )! I , - j ) . (1.36)-

Thee coefficient for j \ = 0 is the same as for U(sl(2)). In making a decomposition such as 
thee one above, one has the freedom to multiply all the states in any given summand irrep by 
aa constant phase factor. Here, the phases are chosen in such a way that, when q goes to one, 
thee coefficients reduce to the usual Clebsch-Gordan coefficients for U(sl{2)). One may check 
directlyy (for example using (1.31)) that, when q is a positive real number, the tensor product 
vectorss on the right hand side are orthonormal. One may also see it as a consequence of the fact 
thatt star an coproduct commute (i.e. (1.24) is satisfied) when q is real and positive. This implies 
thatt tensor product decompositions of *-irreps are always orthogonal for q € -R+, a fact which 
iss reflected in the following identity for the g-Clebsch-Gordan coefficients: 

E E 3\3\ 32 3 
mimi fi2 w 

3\3\ 32 3 
m\m\ m? m' j\j ; '"Tn,m ' ' (1.37) ) 

Althoughh tensor product decomposition is orthogonal with respect to the standard inner product 
onlyy when q is real and positive, this equation holds by analytic continuation for all q where the 
summandss are not singular. 

Anotherr useful identity (taken from ([12])), which relates the coefficients for the tensor 
productt 7r2jl ® 7r2j2 with those for the opposite tensor product, is 

Jii  32 3 
TTliTTli  «"12 Ï71 

—— (—Wh+h-i (-1) ) 3232 3\ 3 (1.38) ) 

Inn particular, this allows one to write down the Clebsch-Gordan coefficients for ir1 ® 7r2j using 
formulaa (1.36). 
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1.5.. Some Features of 2D CFT 

1.4.33 i?-matrix and braiding 

Thee universal i?-matrix for Uq(sl(2)) is given by 

—̂ii  \n\„\ n=00 L J 

39) ) 

Wee see that, when q approaches one, only the n — 0 term in (1.39) contributes and we get 
RR = 1 ® 1, as expected. 

Thee action of the universal i2-matrix on the module VAl <8> VA of the tensor product repres-
entationn 7rAl ® 7rA is given by 

^ ^ 

X g I (m 2 n-m1n+2ml mJ)(11 _ ? - l ) n | ^ ^  + n ) | j 2 , m 2 _ n ) } 

(1.40) ) 
wheree the sum extends over all n for which die kets on the right hand side are well defined. 
Usingg this formula, one may easily find the exchange matrix oR in any tensor product module. 
Forr example, in thee tensor product is1 ® n1 of two two-dimensional modules, we have 

aRaR11'' 11 := q-V* 

qVqV22 0 
00 0 
00 1 
00 0 

00 0 \ 
11 0 

qql/2l/2 _ q-l/2 0 

00 qW J 

(1.41) ) 

Notee that, if q ^ 1, this is not a unitary matrix, which is not good if it is supposed to represent 
aa symmetry transformation on a physical system. Still, we could hope to make crR unitary by 
choosingg a suitable inner product on the module Vl®Vl. This will certainly not succeed unless 
|g|| = 1. To see this, note that the eigenvalues of R1,1 are ql^A (with multiplicity 3) and —q~3^ 
andd these will only have norm 1 (as required for the eigenvalues of a unitary transformation) if 
qq does. From this, one may already guess that the most interesting values of q for applications 
too (2+l)-dimensional physics are the roots of unity that we have avoided up to now. A treatment 
off  Uq(sl(2)) at roots of unity is given in chapter 2. 

1.55 Some Features of 2D CFT 
Whilee group symmetries may be described in terms of Hopf algebras, die converse is not ne-
cessarilyy true; mere are physical systems whose symmetry algebra is a non-commutative and 
non-cocommutativee Hopf algebra. Examples of (2+1) dimensional systems with a quantum 
groupp symmetry are the discrete gauge theories of chapter 3 and the Hall states of chapter 2, 
butt also (2+l)-dimensional gravity [13,14]. Systems which can be described by means of two-
dimensionall  conformal field theory (CFT) also provide a large class of examples. Therefore, we 
wil ll  devote this section to a brief and sketchy description of some features of two-dimensional 
CFT,, particularly the ones which are relevant to the connection with quantum groups. For a 
thoroughh introduction to conformal field theory and references, see [15]. 

AA conformal field theory is a field theory whose action is invariant under die conformal 
group.. The conformal group is not really a group, but ramer die monoid of all locally well-
definedd conformal (i.e. angle-preserving) transformations of spacetime, with multiplication 

19 9 



Chapterr 1. Hopf symmetry in planar physics 

givenn by composition. Nevertheless, infinitesimal conformal transformations give a well defined 
Liee algebra. In three or more spacetime dimensions, the conformal group is basically the Poin-
caree group with dilations and the spacetime inversion x* i-> x^/\x\2 thrown in. In two dimen-
sions,, it is customary to introduce complex coordinates z — (x0 + ixi) and z = (x0 - ix{) and 
thenn the conformal group corresponds to the set of all complex-differentiable maps from (part 
of)) the complex plain into itself. This set is clearly infinite dimensional and as a consequence, 
conformall  symmetry is especially powerful in two dimensions. 

Twoo dimensional CFTs play an important role in the description of the critical behaviour 
off  planar systems in (classical) statistical physics and they are also ubiquitous in string theory, 
wheree the fields live on the string's ((l+l)-dimensional) worldsheet. We will not pursue either 
off  these applications, but rather use CFT as a kind of machine to produce wave functions for 
((2+l)-dimensional)) quantum Hall systems (see chapter 2). 

Onee may show that in any non-trivial unitary two dimensional CFT, the conformal symmetry 
hass to be anomalous. Thus, die symmetry of the theory is not described by the Lie algebra of 
thee conformal group, but rather by a central extension of this algebra. This extension is spanned 
byy elements Ln (n e Z) and the central element C and its non-trivial brackets are given by 

Q Q 
[L„ ,, Lm]  = (n - m)Ln+m + — (n3 - n)6n+mfi. (1.42) 

Inn a physical CFT, the action of C on the Hubert space is just multiplication with a constant 
reall  factor c, which is called the central charge and which is determined by the anomaly. If 
wee forget about the generator C and replace it with c in the equation above, then the resulting 
algebraa is called the Virasoro algebra (note that this is not a Lie algebra). Any two dimensional 
CFTT has at least the Virasoro algebra as a symmetry algebra, but there are CFTs that have extra 
symmetriess (such as gauge symmetries) and these possess larger symmetry algebras that include 
thee Virasoro algebra. Such algebras are called chiral algebras. If one treats the coordinates z 
andd z as independent complex variables, then the full symmetry algebra of a CFT is actually the 
tensorr product of two copies of a chiral algebra A; one copy for holomorphic transformations 
off  z and one for antiholomorphic transformations of z. These copies of A are called the left and 
thee right algebra (hence the name "chiral algebra"). The right algebra is usually denoted by A 
andd its modes are denoted by Ln. 

Thee fields of a CFT fall into highest weight representations of the left and right algebra. The 
fieldsfields that correspond to the highest weight vector of such a representation are called primary 
fields,fields, while the other fields are called descendant fields, or simply descendants. In a rational 
conformall  field theory, that is, a CFT with c € Q, there can only be finitely many primary 
fieldss $j. These primary fields are characterized by their conformal weights hi and h  ̂ These 
aree the L0 and L0 eigenvalues of the highest weight state of the corresponding chiral algebra 
representation.. (Left) chiral primaries are primary fields $; which transform trivially under the 
rightright algebra A. This is equivalent to having hi = 0. In many applications, it is assumed that 
primaryy fields may be factorized into left and right chiral primaries. These two halves of the 
theoryy may then be considered separately when calculating correlation functions. 

AA very important tool in calculating correlations functions for the fields of a CFT is the op-
eratorproducteratorproduct expansion (OPE). Given two chiral primaries $*, $ j, we may use the conformal 
symmetryy to write the following formula for their product. 

*é(*i)*,-t>, )) = $ > £d ( 2i - z2)
h"-h*- h** k4. (1.43) 

k k 
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Thiss formula holds as z\ approaches z2. The index d labels descendants which may possibly 
occurr on the right hand side and the a^f are structure constants. The requirement that the 
operatorr algebra defined in this way is associative is very restrictive and in some cases it enables 
onee to calculate die spectrum of conformal weights and all correlation functions of a theory with 
aa given chiral algebra exactly. 

Fromm the OPE of two primary fields, one may define their fusion rules. One writes 

**xx *; = £#£**, (1.44) 
k k 

wheree N- counts the number of times that the field $*  or its descendants appear in the OPE 
off  $j and $ƒ. One may now define a chiral correlator as the vacuum expectation value of a 
radiallyy ordered product of chiral primary fields, written as follows 

<fc(*l(*l).. .. *„(*.))) . (1.45) 

Here,, the TZ indicates radial ordering, defined by 

**i(*i)*.(* )) = {  t^ll-H 'dt N > \Z2\ (1.46) 
«vv *t y $„(z2m(*i ) if N > kil -

Chirall  correlators are in principle completely determined by the fusion rules and the conformal 
weightss of the fields involved. In particular, the correlator will clearly be zero if the fields 
$ i , . . . , $„„  cannot fuse to the vacuum sector. In practice, chiral correlators are very difficult 
too calculate and closed expressions are known only in some very special cases. Also, the cor-
relatorr above is typically not single valued in the coordinates (zu ..., zn); when one of these 
coordinatess is taken around another and their labels are subsequently exchanged, the correlator 
mayy pick up a phase or it may even transform into a different function of (z\,..., zn) which 
iss linearly independent of the original function. In general, such coordinate exchanges gen-
eratee a finite dimensional representation of the braid group Bn. A special basis for the finite 
dimensionall  space of functions of (z i , . . ., zn) on which this braid group acts, is given by the 
conformalconformal blocks of the correlator. There is one of these blocks for every fusion channel through 
whichh die fields $ i , . . ., $n may fuse to the vacuum sector. If there is only one such channel, 
thenn the conformal block is proportional to me correlator itself and the braid group represent-
ationn that is associated with it will be Abelian. However, if there are m blocks, then the braid 
groupp representation is m-dimensional and it can be non-Abelian. 

Somee aspects of the description of CFT mat we have given are very reminiscent of quantum 
groupp theory. In particular, for each CFT, mere is a finite set of objects (the primaries) which 
havee fusion rules and representations of the braid group associated witii them. On the other 
hand,, there are also some differences. The fusion of primary fields is not defined through tensor 
productt decomposition of chiral algebra representations, but through the operator product. 
Braidingg is defined dirough analytic continuation, rather than by algebraic means. Neverthe-
less,, given a CFT, one could hope to find a quantum group whose finite dimensional irreps 
aree in one to one correspondence with the primary fields and whose fusion and braiding, as 
definedd through the coproduct and the .ft-matrix, are the same as those of me corresponding 
CFTT primaries. If this could be achieved, it would yield a much simpler description of fusion 
andd braiding and it would also be a very strong indication that the CFT in question has tiiis Hopf 
algebraa as a symmetry. 
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Ass it turns out, the class of quantum groups that we have described in this chapter is not 
largee enough to reproduce the fusion and braiding of all CFTs. One may see this already by 
thee example of the simplest non trivial unitary CFT, the c = \ CFT which describes the critical 
pointt of the two-dimensional Ising model. This model has three chiral primary fields, 1,̂  and 
aa with conformal weights h\ = 0, h  ̂ = \ and ha = ^ . The fusion rules for the trivial field 1 
aree as one would expect and the fusion rules for a and V> are given by 

^ x VV = l ( 147) 

Iff  l,ip and a are to correspond to the finite dimensional irreps of a Hopf algebra, then we must 
bee able to assign integer dimensions di, d  ̂and da to them which are consistent with the fusion 
rules.. From 1 x 1 = 1, we see that d\ = 1 and it then follows from ip x if;  = 1 that d$ — 1. 
However,, using a xa = 1 + rp, this leads to the conclusion that da must equal \/2, which is not 
ann integer... 

Nevertheless,, there is a class of quantum group-like algebras that generalizes the class of 
quasitriangularr Hopf algebras presented here and that will reproduce the fusion rules of the 
Isingg model and in fact, the fusion rules of all CFTs. We will present much more information 
aboutt this in sections 2.4 and 2.5. 
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Chapterr  2 

Quantumm groups and non-Abelian 
braidin gg in quantum Hall states 

Wavee functions describing quasiholes and electrons in non-Abelian quantum Hall states are 
welll  known to correspond to conformal blocks of certain coset conformal field theories. In 
thiss chapter we explicitly analyze the algebraic structure underlying the braiding properties 
off  these conformal blocks. We treat the electrons and the quasihole excitations as localized 
particless carrying charges related to a quantum group that is determined explicitly for the cases 
off  interest. The quantum group description naturally allows one to analyze the braid group 
representationss carried by the multi-particle wave functions. As an application, we construct 
thee non-Abelian braid group representations which govern the exchange of quasiholes in the 
fractionall  quantum Hall effect states that have been proposed by N. Read and E. Rezayi [16], 
recoveringg the results of C. Nayak and F. Wilczek [17] for the Pfaffian state as a special case. 

2.11 Introductio n 

Inn a (2+l)-dimensional setting, quantum mechanics leaves room for particles with exchange 
propertiess other than those of bosons and fermions and the exchanges of n such particles are 
governedd by a representation of the braid group Bn. These representations may be Abelian, or, 
moree excitingly, non-Abelian. Quasihole excitations of fractional quantum Hall plateaus have 
alreadyy provided us with examples of the former possibility and may possibly reveal the latter 
ass well. Several (series of) candidate non-Abelian states have been proposed in the literature. 
Exampless are the Pfaffian state [18], the spin singlet states of Ardonne and Schoutens [19], the 
statess proposed in [20], which exhibit spin-charge separation, and the parafermionic generaliz-
ationss of the Pfaffian state proposed by Read and Rezayi [16]. It is the last series of states that 
wee will focus on, although the methods we use will also be applicable to the other cases. 

Itt has been suggested that the Read-Rezayi states should give a good description of quantum 
Halll  plateaus which occur at several filling  fractions [21, 22, 16]. In particular, the Pfaffian is 
thoughtt to describe the plateau observed [23,24,25] at filling  fraction v=\. Numerical support 
forr these claims has been provided in [26,16,27], where it was shown that some of the RR-states 
(amongg which the Pfaffian state) have large overlaps with the exact ground states for electrons 
withh Coulomb interactions at the same filling  fractions. Also, a link has recently been made 
betweenn fractional quantum Hall systems and rotating Bose-Einstein condensates [28, 29] and 
thee Read-Rezayi states are thought to be relevant to the description of such condensates when 
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thee rotation frequency is sufficiently high [30]. Many aspects of the Read-Rezayi states have 
alreadyy been well-studied. For example, one may show (see [18, 16, 31]) that they are exact 
groundd states of certain ultra-local Hamiltonians with k+1-body interactions, which gives hope 
thatt they will indeed represent new universality classes of two dimensional physical systems. 
Also,, the zero modes of these Hamiltonians have been counted and in some cases explicit 
basess for the spaces of these zero modes have been obtained [31, 32]. Finally, there is recent 
workk which explains how the RR-states may be obtained as projections of Abelian theories 
[33,, 34, 35]. Still, before the appearance of die paper [36] on which most of this chapter is 
based,, the braiding of the quasiholes had been described explicitly only for the Pfaffian state 
[17]. . 

Onee of our general aims here is to analyze some of the properties of Hall systems, not 
byy studying the explicit form of the wave functions but rather by exploiting the underlying 
algebraicc structure, which in turn derives from the associated conformal field theories. This 
allowss us for example to give an explicit description of the braid group representations that 
governn the exchange properties of the quasiholes for all of the RR-states. In order to do this, we 
firstfirst describe the electrons and quasiholes of the RR-states as particles mat carry a representation 
off  a certain quantum group. That such a description is possible is a logical consequence of the 
welll  known relation between quantum groups and conformal field theories and in fact, we expect 
thatt a similar description is possible for all the non-Abelian quantum Hall states that have been 
proposed.. We believe that the quantum group description of quantum Hall states will prove 
aa useful complement to the existing conformal field theory and wave function methods, both 
technically,, because it makes braiding calculations much easier, and conceptually. The reason 
thatt braiding calculations are so much simplified, is mat the quantum group picture allows 
onee to deal with quasiholes and electrons without dealing with their exact spatial coordinates. 
Exchangingg two particles becomes a purely algebraic operation, simple enough to be carried 
outt explicitly for large numbers of particles. 

Thee material is organized as follows. In section 2.2, we give a very brief introduction to 
thee bulk theory of the quantum Hall effect. In particular, we motivate the use of conformal 
fieldfield theory in the construction of trial wave functions for fractional quantum Hall states in an 
elementaryy way. In section 2.3, we review the description of the Read-Rezayi states in terms 
off  conformal blocks of parafermionic conformal field theories. We also count the number of 
independentt states with a fixed number of quasiholes in fixed positions and we review the results 
off  Nayak and Wilczek for the braiding of the quasiholes of the Pfaffian state. In section 2.4, 
wee give motivation for the use of quantum groups in the description of non-Abelian quantum 
Halll  states and provide the necessary background. In particular we describe die braid group 
representationss that describe the exchanges in a system of localized particles with a hidden 
quantumm group symmetry. In section 2.5, we recall the connection between quantum groups and 
conformall  field theories and we obtain the quantum groups which can be used to describe me 
braidingg of the parafermion CFTs which are important for the Read-Rezayi states. In section 2.6 
wee describe the RR-states as systems of point particles with a hidden quantum group symmetry 
andd give the explicit form of the associated braid group representations. We also check that me 
resultss of Nayak and Wilczek for the case of me Pfaffian are recovered. A discussion of the 
results,, including questions for future research can be found in section 2.7. 
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2.22 Hall states and CFT 
Thiss section gives a very brief introduction to some aspects of the quantum Hall effect, espe-
ciallyy to the way conformal field theory enters into the description of the bulk properties of 
quantumm Hall states. For a much fuller introduction, one may for instance consult the books 
[37,, 38, 39] 

2.2.11 The integer  effect 

Ass was mentioned in the introduction, the most striking characteristic of the quantum Hall effect 
iss the occurrence of plateaus in the conductance at values v^, where v is an integer or a simple 
fraction.. The integer quantum Hall effect {y e N) may be understood in terms of a system of 
non-interactingg electrons in a magnetic field, which scatter on impurities. In order to introduce 
somee of the basic concepts in the quantum Hall literature, it is useful to first have a brief look at 
thee system without even the impurities. This is the problem of free particles of charge - e and 
masss m in two dimensions, under the influence of a magnetic field B = (0,0, B). It was solved 
byy Landau in 1930 (see for instance [40] for a treatment). In terms of a dimensionless complex 
coordinatee z = (x + iy)/£, where I — y/hcfJeB) is the magnetic length, the one-particle 
Hamiltoniann is given by 

HH = {-i  V - eA)2 = ^Fuc{4dzdz + zdz - zd2 - ^zz). (2.1) 

Heree CJC = ^ is the cyclotron frequency. Also, here and in the sequel, we work in symmetric 
orr central gauge, which means that 

AA = ( ^ x , - - y , 0 ). (2.2) 

Forr simplicity, we have neglected the spin of the electrons. In many Hall systems, this is actually 
aa good way to proceed, since only one spin direction occurs, due to the large Zeeman splitting. 
AA basis of eigenstates of the Hamiltonian is given by 

VWifs)) = (a, - | ) m ( ^ - Z)ne-'*'*  = e^Adfd:e-^\ (2.3) 

Thee corresponding energy levels are called Landau levels, they are independent of m and hence 
infinitelyy degenerate, 

EEnn = hajc{n + - ) . (2.4) 

Thee first Landau level is of particular importance to us, as it is the only level that plays a role 
inn the physics at very high magnetic fields. From (2.3), we see that the wave functions in this 
Landauu level are exactly all functions which are a product of the Gaussian factor e_2* /4 and a 
holomorphicc function.. The action of the angular momentum operator on these states takes a very 
simplee form; it just multiplies each term z

me~zS/4, by a factor mh. The main effect of confining 
thee particles to a finite region in the plane (the sample) is that the Landau levels are no longer 
infinitelyy degenerate. Wave functions of exceedingly high angular momentum would place their 
electronn outside the sample. Effectively, each single-particle state takes a surface area j§ = £2 

soo that the Landau levels now contain eBA/hc states each, where A is the surface area of the 
sample.. The number of states in a Landau level thus equals the number of fundamental flux 
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quantaa ^ that pierce the sample. These results are really independent of the sample geometry, 
butt for convenience, we will always take the sample to be circular and centered at the origin. 

Thee quotient of the number of electrons in the sample by the number of states in a Landau 
levell  is called the filling  factor or filling  fraction. In a system of free electrons, it is just the 
numberr of filled Landau levels, hence the term. It is seen experimentally that the conductance 
plateauu at conductance v  ̂ occurs at filling  fraction v. Hence, one speaks of the plateau at 
fillingfilling  fraction v} 

Integerr filling  "fractions" are special, since a system at integer filling  fraction has a gap 
off  hüüc to the next unoccupied single electron state. This suggests that scattering of electrons 
shouldd be inhibited at these filling  fractions and hence provides an explanation for the dips in 
thee longitudinal resistance of the system at these values of v. To explain the fact that there is a 
plateauu in the resistance around integer filling  fractions, one has to go beyond free electrons and 
introducee impurities. These impurities localize some of the states in each Landau level and shift 
theirr energies away from the quantized values (2.4). The states which remain extended also 
don'tt have their energies shifted by much. Now the crucial idea is that, at low temperatures, 
onlyy the extended states contribute to the transport of electric charge across the system. Thus, 
whenn the B-field is varied and the Fermi level of the system sweeps through the energy levels, 
thee conductivity remains constant as long as the Fermi level is in a band of localized states and 
changess rapidly as it moves through a band of extended states. In other words, the plateaus 
correspondd to bands of localized states between the Landau levels. 

Off  course, in the model with impurities there is no longer a real gap, but there is still a 
gapp between the bands of extended states, a mobility gap. Another aspect of the addition of 
impuritiess seems more problematic at first. The number of extended states in the system depends 
onn the number and nature of the impurities and therefore it would seem that the conductance 
wouldd also depend on these. However an argument of Laughlin's [41] which was later refined 
byy Halperin [42], shows that the contribution of each band of extended states to the conductance 
iss actually independent of the number of states in that band. 

2.2.22 The fractional effect 

Thee explanation of the integer quantum Hall effect which we have so sparsely sketched above 
doess not provide an understanding of the fractional quantum Hall effect; there seems no reason 
whyy there should be a gap or a mobility gap at fractional v. In order to understand the fractional 
effect,, one has to take the interactions between the electrons into account. Crucial stepping 
stoness in the theory of the fractional effect were Laughlin's variational wave functions for a 
systemm of N electrons on a disc [43]. In terms of the complex coordinates Zk for the electrons, 
thee ground state wave functions he proposed are 

*%{z*%{zuu ...,zN) = H(Zi - Zjf^
1 c-(*£««*) (2.5) 

wheree m is an integer. One may arrive at these wave functions in the following way. First, one 
restrictss to the space of functions of the Jastrow form: 

*(*!,...,**)=nrt*-**)  (2-6) 
i<j i<j 

lltititetitite that the "location" of a plateau is much less accurately determined than the conductance at the plateau, 
soo that when people speak of "the plateau at v = | ", this is a reference to the value of the conductance, rather than 
too the filling  fraction. 
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Thee choice of this form for the variational wave function is really where the repulsive interac-
tionss between the electrons are included; any ƒ with ƒ (0) = 0 will tend to keep the particles 
apart.. After the assumption of the Jastrow form, the wave functions (2.5) are determined by 
threee physical requirements. 

1.. The wave function must be totally antisymmetric, since the electrons are fermions. Hence 
ƒƒ must be odd. 

2.. In order to minimize energy, the wave function must be built up from single electron 
wavee functions in the lowest Landau level. That is, it must be holomorphic up to a factor 
off  e~"/4 for each electron. This requirement is reasonable if the energy scale for the 
interactionn is small compared to huc 

3.. The ground state must be an eigenstate of total angular momentum. This means that the 
holomorphicc function multiplying the Gaussian factors must be a homogeneous polyno-
miall  in the zk. Since angular momentum commutes with the Hamiltonian, this condition 
iss certainly satisfied if the ground state is non-degenerate (i.e. if there is a gap). 

Thee wave functions (2.5) are the only wave functions of the Jastrow form which satisfy these 
threee requirements. Therefore, this argumentation predicts a discrete series of ground states, 
correspondingg to different fillin g fractions. 

Byy employing a plasma analogy, that is, by reinterpreting the probability density for the 
wavee function $™ as the Boltzmann weight for a plasma of mutually repelling particles of 
chargee m Laughlin found that $m represents a liquid state of constant density at filling  fraction 
vv = 2ï£+ï- F°r small numbers of electrons (~ 10), one may also, by numerical methods, 
checkk that W™ has very good overlap with the exact ground state of the system at v = ^ ^ . 
AA simple way to find the filling  fraction straight from the expression (2.5) is the following. 
Sincee the electrons fill  the sample, the highest occupied single particle angular momentum state 
wil ll  always be the highest state in the first Landau level. On the other hand, we may read off 
thee maximal angular momentum for a single particle from (2.5); it is just the maximal power 
off  any single z  ̂ which is (2m + 1)(N — 1). This means that the first Landau level contains 
~~ (2m+1) N states, while there are only N electrons and hence the filling  fraction is v = ^n-

Thee Hall system at v — ^ ^ has gapped quasihole and quasiparticle excitations, which 
carryy a single flux quantum and which have charge 2 ^1  This fractional charge has been 
confirmedd by shot noise measurements in [44,45,46], but was already expected much earlier on 
theoreticall  grounds. We will concentrate on the quasiholes. A trial wave function for the system 
withh n quasihole excitations at locations wi,... ,wn is obtained from (2.5) by adiabatically 
insertingg a flux quantum at each of these positions. This leads to the expression 

nn JV 

»=ii  3=1 

Wee see that the electrons are all kept away from the quasiholes by the factors Zj — Wi and in 
fact,, one may show that, at the locations u>i, there are dips in the electron density of typical size 
givenn by the magnetic length. One way to see that the quasiholes must have charge 5^3 is to 
notee that, if 2m + 1 quasiholes are inserted at the same location w, then the fluid has a hole 
thee size of an electron at w, which at constant positive background charge density corresponds 
too a charge +e. The quasiholes also have braid statistics. When two quasiholes are taken to 
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eachh other's position, this leads to a factor of  e
i*/( 2m+1) m die wave function, as may be shown 

byy a Berry phase calculation [47]. At this point, mere does not seem to be direct experimental 
evidencee for or against the braiding properties of the quasiholes, but all models of the quantum 
Halll  effect predict them and they are generally held to be correct. 

Sincee the advent of the Laughlin states, much progress has been made in the theory of the 
fractionall  quantum Hall effect. We cannot hope to give a fair representation of this here, but 
wee will mention some salient points. An important step forward, both conceptually and in 
termss of explaining observed phenomena, was the introduction of composite fermions by Jain 
[48].. The idea is basically that the interaction between electrons can be taken into account by 
assumingg that each electron "grabs" an even number of flux quanta, which subsequently become 
"invisible""  to the other electrons. The composite fermions which are constructed this way can 
thenn be viewed as free charged particles, which once again fill  up Landau levels, but in a reduced 
(orr enhanced) external magnetic field. Adding disorder, we obtain the usual picture of the 
integerr Hall effect, but now at non-integer filling  fraction. To calculate the filling  fractions which 
mayy arise in this way, assume we have Ne electrons and Nf flux quanta, that is B = Nf*f. Then 
vv = \Ne/Nf\. However, the composite fermions see only e flux quanta, since e 

fluxflux quanta have been "grabbed". Thus, the composite fermions have an effective filling  fraction 
v*v*  — \Ne/(Nf  2mNe)\. This is assumed to be an integer. Expressing v in terms of v* and m, 
onee gets 

"" = T (2'8) 

Thee plus sign is obtained when the grabbed flux quanta are parallel to the external magnetic 
field.field. Note that the filling  fractions v — ^ ^ are reproduced for v* = 1, i.e. one filled Landau 
levell  of composite fermions. Also note that the denominators of all the obtained fillin g fractions 
aree odd. A different series of filling  fractions (also with odd denominators) is obtained through 
aa scheme proposed by Haldane and Halperin [49, 50] in which successive Hall plateaus are 
builtt up by the condensation of quasihole or quasiparticle excitations into a Laughlin-like state. 
Thee methods of chapter 3 could, after sufficient generalization, be used to study such quasihole 
orr quasiparticle liquids. Unfortunately for us, however, it seems that the Haldane-Halperin 
hierarchyy scheme is not very relevant to experimental situations, since even for the most stable 
observedd fractions, it can take many "layers" of quasihole liquids to reproduce the right fillin g 
fractions.. The Jain hierarchy on the other hand reproduces the most stable states for low values 
off  v* and m. 

Anotherr important feat in the theory of quantum Hall systems was the construction of field 
theoriess which describe the states at the plateaus of the Jain hierarchy (early references are 
[51,, 52]). Such a construction starts from a field theory description of the integer effect at 
fillingfilling  v* and then replaces the gauge field A which represents the external magnetic field by 
thee sum of A and a new gauge field a, whose dynamics are governed by a Chem-Simons term, 

cc = YPh^a^ap- (2-9) 
Thee a-field couples to the electron's field tfirough the covariant derivative D  ̂= dfl—e(Atl+atl). 
Sincee the Chern-Simons term is topological (does not depend on the metric), the a-field does not 
representt any propagating degrees of freedom (no new particles are introduced). Nevertheless, 
thee coupling of a to the electron's field has an important effect. It forces the densities of electric 
chargee and magnetic (V x a) flux to be proportional, in such a way that each electron grabs 2p 
fluxflux quanta. This way, Jain's picture of composite fermions is implemented. The field theories 
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constructedd this way reproduce all features of fractional Hall states that we have described 
inn this section at the semiclassical level. In the mean time, more complicated field theories, 
whichh describe plateaus at different filling  fractions, have also appeared (refs ?). However, the 
Lagrangianss of all these theories feature generalizations of the Chern-Simons term presented 
above.. One may even argue that Chern-Simons terms should always appear in the description 
off  the low-energy degrees of freedom of quantum Hall plateaus, since they are the most relevant 
termss (at large scales) that one can write down for a gauge field in 2+1 dimensions. 

2.2.33 CFT and tria l wave functions 

Thee Laughlin-Jain picture of the fractional quantum Hall effect explains many of the plateaus 
observedd at fractional u, but not all. Most notably, two plateaus observed at v = § and v = | 
[24,, 53] do not fit  into the hierarchy, because their filling  factors have even denominator. A 
logicall  first step in the study of the states of matter at these and other "exotic" plateaus is the 
constructionn of trial wave functions for the ground state and for the states with localized bulk 
excitations.. In a seminal paper [18], Moore and Read argued that such trial wave functions 
couldd be conveniently constructed using conformal field theory correlators. The basic recipe 
iss as follows. Take a conformal field theory with chiral primary fields fa and associate one of 
thesee to the electron and another to the quasihole. Now write down the following correlator 

*JV>> := / <M*«,) J] M«>i) f [ M*j))  (2-10) 

Here,, fah is the chiral field associated to the quasihole and fa is the chiral field associated to 
thee electron. The field <f>bg represents a positive background charge which is needed to make the 
correlatorr non-vanishing and which is conveniently inserted at infinity. The conformal blocks 
off  this correlator, multiplied by the usual Gaussian factors e~Zji^4, are trial wave functions 
forr a system with N electrons with complex coordinates Zj, which has n quasihole excitations 
insertedd at positions w2. One may also consider states with several types of quasiholes and 
electrons,, for example spin up and spin down electrons. To find trial wave functions for such 
states,, one simply introduces a field for each type of electron or quasihole. 

Lett us give a simple argument as to why it is reasonable to construct trial wave functions in 
thiss way. Remember that Laughlin's ground state wave functions followed uniquely from four 
requirements:: It should be of the Jastrow form, totally antisymmetric in the electron coordinates, 
ann eigenstate of angular momentum and built up from lowest Landau level wave functions. If 
wee want to find more general trial wave functions, it makes most sense to relax only the first 
off  these requirements; we will no longer to require the wave function to be of the Jastrow 
form.. Nevertheless, we still want it to keep pairs of particles well separated, thus implementing 
thee repulsive interactions. The conformal blocks above automatically have this property, if the 
operatorr that represents the electron is chosen appropriately. In fact, from the operator product 
expansionn (1.43), we see that the blocks will behave as 

(zi-Zjf*-™*(zi-Zjf*-™*  (2.11) 
2Inn the original scheme proposed by Moore and Read, the background charge was not located at infinity, but 

homogeneouslyy spread over "spacetime" (the sample). This had the advantage that the Gaussian factors could be 
absorbedd in the correlator, but it is inconvenient for calculational purposes. 

29 9 



Chapterr 2. Braiding in Hall states 

whenn two electrons approach one another. Here he is the conformal weight of the electron 
operatorr and hf is the conformal weight of the fusion product of two electron operators. If the 
electronn operator is chosen so that hf > 2he, then we see that the electrons are indeed kept 
apart.. Now let us look at the other three requirements on the ground state wave function. 

1.. To make the wave function totally antisymmetric, the difference hf - 2he must be an 
oddd integer, fixing the eigenvalue for electron exchange to —1. If the electron operator 
iss also chosen to be a simple current, that is, a field whose fusion with any primary is 
oncee again a single primary, then the spaces of conformal blocks for the correlators with 
onlyy electron operators (no quasiholes) are all one-dimensional and we get a single fully 
antisymmetricc wave function for any given number of electrons. 

2.. The requirement that the wave function is built up from single electron wave functions 
inn the lowest Landau level is automatically satisfied, since the conformal blocks are by 
definitionn holomorphic functions. 

3.. It follows from the conformal Ward identity (see for example [15], section 5.2.2) that the 
wavee function is also an eigenstate of angular momentum. 

Thee last point needs some clarification. The angular momentum operator M is given by 

MM = Y^zidZi-zid-Zi (2.12) 
i i 

andd it follows from the fact that N̂>0 is holomorphic in the Zj that we have 

MVMVNfiNfie-^e-^ZkZk** kk = (j2zidZiVNA e" £***** . (2.13) 

Onn the other hand, one of the conformal Ward identities for *JV,O is 

Zoo&ooo + J2 Zid*  ) ^ = " ^ + Nh*)*Nfl'  <2-14) 

wheree h(,g and he are the conformal weights of the operators (f>bg and <j> e. Now we know that 
thee N fields <f> e at the locations Zj fuse together to the conjugate 4>%g of 4>bg when we bring the 
ZjZj together in one point ZQ. We are men left with a two point correlator, which is fixed by 
conformall  invariance, 

(KM^W)(KM^W) ~ (*» - zo)-™»*. (2.15) 

Thiss also describes the behavior of ^JV,O as a function of z  ̂ when we take z  ̂ to infinity and 
confinee the Zj to the sample. Hence, on the sample, ĵv.o is an eigenfunction of z^d  ̂ with 
eigenvaluee -2hf,g. But this implies that it is also an eigenfunction of J2i ZidZi with eigenvalue 
hbhbgg — Nhe. It follows that 

M ^ o e - ^2 * * **  = (h  ̂ - Nhe)VNfie-^Zkïk. (2.16) 

Inn view of the supposed repulsive nature of the interactions between the electrons, excitations 
overr the ground state given by tyNfi should correspond to localized dips (or peaks) in the elec-
tronn density. The insertion of operators (f>qh at points Wi is a nice way of creating such dips, since 
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itt conserves three out of the four properties we required of the ground state; the electrons are 
stilll  well-separated and the wave function is still totally antisymmetric in the electron's coordin-
atess and holomorphic (up to the Gaussians). Unsurprisingly, states with localized excitations 
createdd in this way are typically not eigenstates of the total angular momentum. From the op-
eratorr product expansion 1.43, we read off that, when an electron coordinate zt approaches the 
locationn Wj of a quasihole, ^N,n has the following behavior: 

**»(* )) ~ (zi - wj)
hf-h'-h" h. (2.17) 

Here,, h/ denotes the conformal weight of the fusion product óf <j> e and ipqh and if we want the 
wavee function to be single valued in the electron's coordinates then it is clear that we should 
choosee 4>qh so that hf — he — hqh is an integer (we say that 0C and <pqh are mutually local). 
Moreover,, if there is to be a dip in the electron density at Wj then this integer should be positive 
andd if the energy associated with this dip should be as small as possible then it is logical to 
require e 

hj-he-hj-he- hqh = 1. (2.18) 

Wee have given a completely elementary motivation for the use of conformal field theory in the 
constructionn of trial wave functions and at the same time found some requirements on the CFTs 
thatt can be used for this purpose. For more information on such requirements, one may see for 
instancee [54]. Clearly, the arguments in this section can also be applied to systems of bosonic 
particles,, such as the rotating Bose-Einstein condensates of [29,28, 30]. For such systems, one 
shouldd of course require the wave function to be totally symmetric, rather than antisymmetric. 
Thee motivation for the use of CFT that we have given here is quite different from the original 
motivationn given in [18]. There, the starting point was a deep connection, found by Witten [55], 
betweenn conformal field theory an Chern-Simons theory. Witten showed that the Hilbert space 
off  a Chern-Simons theory defined on a Riemann surface £ with n punctures (plus time) can be 
identifiedd with the space of conformal blocks associated to a CFT-correlator of n fields inserted 
att these punctures. The punctures in the CS-theory may be interpreted as the worldlines of 
particless moving through the Chern-Simons medium and the idea is that fusion and braiding 
off  these particles corresponds to fusion and braiding of vertex operators in the associated CFT. 
Assumingg mat each Hall plateau has a description in terms of CS-theory, it is thus natural 
too conjecture that the wave functions for the electrons at any plateau may be obtained as the 
conformall  blocks of correlators in some CFT. 

Ass an example of me use of CFT, we reconstruct Laughlin's wave functions \f ̂  n- Consider 
thee theory of a chiral boson on a circle of radius \j2vn + 1. This is a CFT, whose chiral primary 
fieldsfields may be written e

ip4>/^m+1
t w n e re  ̂ ls m e f̂ u m at describes the boson. The conformal 

weightt of the field e*p*/V2m+i j s r a ĵ  m e fusion is given by 

eeip4>/V2m+lip4>/V2m+l x eiq<l>/V2m+l _ eHp+q)<t>/y/2m+l Q \<)\ 

Noww we associate the operator e
ly/2m+1(t' with the electron and the operator e*^^ 2m+1 with the 

quasiholee and we calculate 

lim^^oo ( e - ( ( ^ D ^ / v « ( ,o o ) n«=i eiHV2^n{Wi) n^=i c<vaSTO(̂  

~~ I W * - *;)2m+1 ILjt e - «H) IW«* - ^)1 / (2m+1), 
reproducingg the Laughlin wave functions. The factors (wi — tyJ)

1/(2m+l) above are in principle 
justt constants which can be absorbed in the normalization, but as they stand, they conveni-
entlyy reproduce the statistics of the quasiholes by analytic continuation. Similarly, any trial 
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wavee function obtained from a CFT in the way we have described comes with a braid group 
representationn defined by analytic continuation. It is stressed by Nayak and Wilczek [17] that 
thee braiding of quasiholes should in principle always be obtained from a Berry phase calcula-
tion.. However, with these authors, we will assume that the braiding that is given by analytic 
continuationn coincides with the braiding which would be obtained from such a calculation3. 

Ann interesting possibility, suggested in [18], is to construct trial states using a quasihole 
operatorr <f> qh for which the fusion (j)qh x 4>qh has multiple channels. In this case, the spaces of 
conformall  blocks corresponding to the correlators ^N,n will increase in dimension as quasiholes 
aree added, introducing the possibility of non-Abelian braiding between the quasiholes. Using 
thee operators a and xj) of the Ising model (see section 1.5), Moore and Read constructed a trial 
wavee function which is now the leading candidate for the description of the plateau at v = | 
[25]]  and which does indeed exhibit non-Abelian braiding [17]. This state is now called the 
Pfaffiann or Moore-Read state and it is the simplest of the Read-Rezayi series of states, which is 
describedd in section 2.3. 

2.33 The CFT description of the Read-Rezayi states 

2.3.11 The Parafermionic CFT 

Thee Read-Rezayi states are constructed using a conformal field theory in the way we have 
describedd in section 2.2.3. The CFT in question is the tensor product of the theory of a chiral 
bosonn on a circle with the Zjt -parafermionic theory of Zamolodchikov and Fateev [57, 58]. 
Beforee we write down any explicit expression for the RR-states, we recall some well known 
factss about the parafermionic CFT. The Z*-parafermionic CFT has central charge c = 2f i j ^ 
andd may be described completely in terms of a chiral algebra generated by the modes of k 
parafermionicc currents (see [57,58] and also [59] for some more recent work in this vein). For 
kk = 2, the central charge is \, the parafermions are just ordinary fermions and we have the 
Isingg model (cf. section 1.5). For general k, the theory has two different coset descriptions 
andd it is these descriptions that we will use here. The cosets involved are sl(2)k/U(l)k and 
sl(k)sl(k)ll x sl(k)1/sl(k)2. The first of these descriptions was used extensively already in [57, 
58],, to determine fusion rules, characters and partition functions for the parafermions. The 
treatmentt of the parafermions in most of the literature on the RR-states has been influenced by 
thiss description. The second coset was introduced by Bais, Bouwknegt, Surridge and Schoutens 
inn [60, 61] and used in [62] to construct a Coulomb gas representation of the theory which led 
too alternative character formulae [63]. This coset description has recently also been used in the 
workk of Cappelli, Georgiev and Todorov on the RR-states [34]. In the rest of this section, we 
wil ll  give a quick description of both pictures and indicate how they are connected. 

Thee coset 3(2)fc/t7(l)fc-

Forr the coset sl(2)k/U(l)k, we have more information about the primary fields than usual. In 

particular,, it is known that one can decompose certain fields of the parent s/(2) WZW-theory as 
aa product of a coset primary field and a U{\) primary field (see formula (2.26) below). In order 

3I tt seems to be difficult to check this equality for braidings that involve more than two particles. Results for 
two-particlee braidings are given in [56]. 
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2.3.. The CFT description of the Read-Rezayi states 

too describe this decomposition, it is convenient to start with a short description of the fields and 
fusionn rules of the sl(2) theory before moving on to the parafermions (for much more detail on 
WZW-theories,, see for example [15]). Note that when we speak of primary fields in the sequel, 
wee will always mean chiral primary fields. 

Recalll  that the spectrum generating algebra of the si(2)k model is the affine Lie algebra sl(2) 
att level k. The Virasoro algebra is embedded in the enveloping algebra of the affine algebra 
throughh the Sugawara construction.When discussing primary fields of the sl(2)k model, we 
needd to distinguish between primary fields of the affine algebra (affine primaries) and primary 
fieldsfields of the Virasoro algebra (Virasoro primaries). Each affine primary field is necessarily also 
aa Virasoro primary, but not vice versa. In fact, one can always find infinitely many Virasoro 
primariess among the affine descendants of an affine primary. 

Lett us be more explicit. If 9 is the highest root of a simple Lie algebra g, then the affine 
primariess of the <?*-model are labeled by the dominant integral weights A of g for which (A, 9) < 
kk For g = sl(2) this just means 0 < A < k. We will call the sl(2)k primary fields GA. The 
conformall  dimension h\ of GA is given by 

Thee fusion rules of the GA are 

min{A+A',2fc-A-A' } } 

GGAAxGxGAA'='=  0 GA". (2.22) 
A"=|A-A' | | 

Theree is an affine descendant field of GA for each of the states in the 5/(2) module with highest 
weightt A. Among these descendants, there are infinitely many Virasoro primaries, which we 
mayy name GA. The field GA is by definition the field of lowest conformal dimension among 
thee affine descendants of GA which carry s/(2)-weight A. Naturally, we have GA = GA. Also, 
wee have to demand that (A - A) = 0 (mod 2), otherwise the weight A will not appear in the 
representationn with highest weight A. One may check (see for instance [15]) that all the GA. 
definedd this way are indeed Virasoro primary. Their conformal weights are given by 

AA A(A + 2) , _ 
^ = 4 Ö t T 2yy + n ^ ' (2-23) 

wheree «A,A is the lowest grade at which the weight A appears in the affine Lie algebra represent-
ationn of highest weight A. If A is a weight in the (ordinary) Lie algebra representation of highest 
weightt A, then TIA.A will be zero and we will have h\ = hA. The fusion rules of the GA are 
easilyy obtained from (2.22) and the sum rule for weights in operator products. They are 

min{A+A',2fc-A-A' } } 

Gi*GGi*GAA:=:=  © GAl„.  (2.24) 
A"=|A-A' | | 

Noww we turn to the Zfe-parafermionic theory, as described by the coset sl(2)k/U(l)k. As usual 
forr cosets, the Virasoro primary fields of the parafermion CFT may be labeled by a highest 
weightt A of the horizontal algebra of the parent theory (s/(2)) and by a similar weight VX of 
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thee embedded theory (U( 1)), which is obtained by a projection matrix V from a weight A of the 
parentt theory. These weights moreover have to satisfy a branching condition, which ensures that 
thee representation V\ of the embedded algebra can occur as a summand in the decomposition 
off  the representation A of the parent algebra into representations of the embedded algebra. If we 
denotee by M the root lattice of the horizontal algebra of the parent algebra, then this branching 
conditionn is 

V\-V\£V\-V\£ VM. (2.25) 

Inn the case of sl(2)k/U(l)k, the projection matrix is trivial and the branching rule just says that 
thee difference of the weights A and A has to be an element of the root lattice of sl(2) i.e. the 
differencee of A and A has to be an even number. Thus, the parafermion theory has Virasoro 
primariess $A labeled by a highest weight 0 < A < k of sl(2) and a weight A of sl(2) for which 
wee have A - A = 0 (mod 2). 

Sincee the parafermion fields <&A are now labeled in the same way as the Virasoro primary 
fieldsfields GA of the sl(2)k theory, one might hope that there is a simple relation between these 
fields.fields. In fact, it was pointed out already in [57] that each of the fields GA may be written as the 
productt of a field <£>A from the parafermion theory and a vertex operator of the U(l)k theory, 
whichh is just the theory of a free boson on a circle of radius y/2k. This was further clarified in 
[58],, using the results of [64]. One has 

GAA = $Je
i A * / V ^ . (2.26) 

Fromm this relation, one immediately reads off that the field $A must have conformal weight 

(ft')) A given by 
, ^ A _ . AA A2 A(A + 2) A2 

{h{h )A " h" ~ Tk ~ 4(F^j"" Tk + nA>x- (2l27) 

Ass in other coset theories, the labeling of the fields $A as we introduced it above is redundant. 
Firstt of all, the £7(1) label A is usually taken to be defined modulo 2fc, since the (extended) U(l)k 

characterss \\ and Xx+2k, that correspond to the vertex operators e
iA( * /v^ and e

i(x+2kW^'j are 
equall  (see for example [15]). Because of this and because of the fusion rules (2.29) below, the 
labell  A is called the Zu charge of the field $A . 4 Also, in order to get proper behavior of the 
fields'fields' characters under modular transformations, one has to identify fields whose labels are sent 
ontoo each other by an external automorphism of the parent algebra [65]. In the case at hand, 
thiss means that we have to identify $A with $*"£. Collecting, we get the field identifications 

* AA = * A + 2* 

*JJ = *tl  (2.28) 

Usingg these identifications, we can choose a labeling of the primaries such that A is a weight in 
thee representation A of 5/(2), i.e. -A < A < A. In fact, we may require -A < A < A and if we 
doo this then every set of labels corresponds uniquely to a Virasoro primary. Thus, the number 
off  Virasoro primaries is ^k(k + 1) (note: there are only k primaries of the full parafermion 
algebra:: the fields $£). 

4Notee that in the original parafermion theory of [57], there was a Zk x Zfc symmetry. The Zfc x Zk charge (1,1) 
off  the field $£(z)$£(z) was given by I = j (A + A), I = | (A - A), so that clearly in this theory, one needed 
AA + A to be even. Here, we will not require this and thus allow chiral fields like $J. 
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Onee may check that the conformal weights given in (2.27) are equal for identified fields. 
Also,, note that the grade riA,A in (2.27) is zero if the labels (A, A) are in the range chosen above. 
Usingg the factorization (2.26) and the field identifications, we may now also write down the 
fusionn rules for the parafermion fields. They are 

min{A+A',2fc-A-A' } } 

* A * * # == © *KA " (2-29) 
A"=|A-A' | | 

Inn other words, they are the same as the fusion rules for the C?A, except that the labels on the 
rightright hand side have to be brought back into the set chosen above, using the field identifications 
(2.28). . 

Thee coset sl{kjl x sl{kjl/sl{k)2 

Thee coset sl(k)1 x «/(fcjj/s/ffc^ is a special case of the general class considered in [60, 61]. 
Itss current algebra is a so called W-algebra and much is known about such algebras. In the 
quantumm Hall application however, the parafermion analysis seems to be more directly relevant 
andd applicable [34]. Nevertheless we expect that our discussion of the braid group represent-
ationss that feature in the parafermionic models (see section 2.6), will readily extend to all the 
W-theories.. ^ _^ 

Thee Virasoro primaries of slfó)! x sl(k)1/sl(k)2. may be labeled by an sl(k)1 x sl(k)1 

weightt (or, equivalently, two sl(k)x weights) and an sl(k)2 weight. Let us call the sl(k)x weights 
^ii  and fi2 and me sl(k)2 weight //, then we can write $£uf* 2. The weights /zi, /J2 and \i once 
againn have to satisfy the branching condition (2.25). In this case, the projection V maps {\LX, //2) 
ontoo /ii + /z2 and it maps the root lattice of sl(k) x sl(k) onto the root lattice of sl(k). Hence 
wee have the following requirement 

Mii  + M2 - A*  e Msl{k), (2.30) 

wheree Msl(k) is the root lattice of sl(k). In other words, the weights /̂ i + /z2 and fx should be in 
thee same conjugacy class (for details on this concept see for example [66, 15]). In terms of the 
Dynkinn labels of the weights, this means that one has 

fc-i fc-i 

J2J2 tilti*  + $ - **Ü>) = ° mod k- (2-31) 

Noww denote by e*  the sl(k) weight whose Dynkin labels e?' are given by eV" = Sij (These 
correspondd to the fundamental representations of sl(k)). Then /ii is either zero or equal to one 
off  the ei, since it is a level one weight. The same goes for /i2. For the level two weight /x, 
theree are three possibilities. It can be zero, equal to one of the e*  or equal to the sum of two 
off  the ei (which may be the same). If we define eo = 0, then we may simplify this description 
andd say that ^1 and fj,2 will equal one of the e{ and // will equal the sum of two of the e< (where 
ii  e {0, . . ., k-1}) The branching rule above then states that only triples (/ii , fi2, fa) of the form 
(e/,, em+n^i mod k, em -I- e„) are admissible. This leaves \k2{k + 1) admissible triples. However, 

theree are also field identifications, induced by the external automorphisms of sl(k)1 x sl(k)v 

Thesee identifications take the form 
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forss € {1 , . . . , fc — 1}. The sums in the indices on the right hand side have to be taken modulo 
k.k. Using these identifications, we can choose to set either fi\ or JJ,2 to zero. Say we set Hi to 
zero.. Then we are left with the triples (0, em+n modk>em + en). Clearly, /12 is now uniquely 
determinedd by fi and we may choose to label the fields by the sl(k)2 weight only: $M. Every 
sl(k)sl(k)22 weight is admissible and we are left with as many Virasoro primary fields as there are 

sl(k)sl(k)22 weights: ^k(k + 1). This is just a reduction of the number of fields before identification 
byy a factor of A;, as was to be expected. Also, we get the same number of fields that we got in 
thee other coset description of the parafermionic CFT. 

Thee fractional part of the conformal weight of the field $£1>'ia can be calculated directly 
fromm the coset description; it is the same as the fractional part of the difference between die 
conformall  weight of the field with labels (pi, ^2) in the parent theory and the conformal weight 
off  the field with label ft in the embedded theory. One may show that this recipe always yields 
thee same fractional part, independently of the labels ^1,^2,̂  that are chosen to represent a 
certainn field (i.e. labels that are identified through (2.32) yield the same fractional part). Let us 
lookk at the field <&em+en, with m < n. A particularly convenient choice of labels for this field, 
madee in [34], is (efc_n, em, efc+m_n). The conformal dimension of the WZW-field labeled by the 
weightt em is given by 

{e{emm,e,emm + 2p) = m{k-m)(k + 1) 
2(p+k)2(p+k) 2k(k + p) 

hp(ehp(emm)) = — n l _ i ^— = n i n i _x , (2.33) 

wheree p is the Weyl-vector of sl(k) and p is the level (here, we have p=l or p=2). From this, 
wee find 

m(km(k -n) (n — m)(k + m — n) 
ni{eni{ekk--nn)) + /ïi(em) - fi2{ek+m_n) = 1- fe 

__ (k + m — n)(k + m — n + 2) (m + n — k)2 

== 4(Jfc + 2) ijfe 

(2.34) ) 

Thee middle expression is the one given in [34] and from the last expression, we see that it is 
equall  to the weight of the field <&%  with A = k + m — n and A = m + n — k (cf. formula (2.27)). 
Thus,, we have the correspondence 

* S S :**  = . <=  $A = ^ e ^ + e j ^^ , (2-35) 

whichh is further supported by the fact that these fields have the same fusion rules.5 In fact, the 
$MM fusion rules are the same as the fusion rules for the corresponding si(k)2 representations and 

thesee are the same as the fusion rules of the sl(2)k/U(l)k coset as a consequence of level-rank 
dualityy (see [15] and references therein). One may also find the equality of the fusion rules 
directlyy by looking at the fusion rules of the field <&}  = 3>ei with an arbitrary field. These fusion 
ruless are easily seen to be the same and since the field <S>J generates all the fields in the theory 
byy repeated fusion, it follows that the fusion rules of all the fields that are identified through 
(2.35)) are the same in both cosets. 

5Notee that we could also identify the field $e„,+e„  with the field **^^_JJ, which is the conjugate of the field 
$£^ I f c-- It >s impossible to decide between these identifications on die level of conformal weights and fusion 
rules. . 
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2.3.22 Definition of the Read-Rezayi states 

Thee CFT which is used to define the Rezayi states is the tensor product of the parafermionic 
CFTT and the theory of a chiral boson which is also used in the reconstruction of the Laughlin 
statess (see section 2.2.3). The chiral primary fields of this tensor product theory are just products 
off  a primary of the parafermionic theory and a primary of the bosonic theory. Let us give the 
operatorss corresponding to the electron and the quasihole. The electron operator is the product 
off  the operator $% = d>2ei from the parafermionic theory with the operator e*v t £ from 
thee bosonic theory. Here M is an odd integer and we have denoted the bosonic field by £, 
too avoid confusion with the bosonic field <f>  in the factorization formula (2.26). Similarly, the 
quasiholee operator is the product of the operator $\ = $Cl with the bosonic vertex operator 

-j-£ -j-£ 

ev*<fcj*+2)) when k = 2, the parafermionic parts of the electron and quasihole operators are 
justt the operators if) and a (respectively) from me Ising model (cf. section 1.5). Extending this 
notationn to general k, we may write 

ii f 

electronn = ipev * *
*£ £ 

quasiholee = aeV*(lM+s). (2.36) 
Thesee combinations of bosonic and parafermionic fields satisfy all the requirements given in 
sectionn 2.2.3. In fact, if the parafermionic factors are given, then the bosonic factors are fixed 
byy these requirements. The bosonic factor for the electron follows by requiring that electrons 
aree mutually local (that is, the OPE of two electron operators does not have a branch cut). This 
makess sure that the wave functions defined below are single valued in the electrons' coordinates. 
Thee extra requirement that M must be odd is needed to make the wave function antisymmetric 
inn the electrons' coordinates. The exponent of the bosonic factor for the quasihole is fixed up 
too integer times Jkf̂ +2C by the requirement that the quasihole and the electron are mutually 
local.. It is fixed uniquely if we require (2.18) 

Thee linear space of RR-states Vfo which have N electrons with coordinates ZI,...ZN and 
nn quasiholes located at positions w\,... wn is now generated by the conformal blocks of a cor-
relatorr of N electron fields and n quasihole fields inserted at these positions and supplemented 
byy a positive background charge, which ensures overall charge neutrality [16]. This correl-
atorr may be factorized into parafermionic and bosonic correlators, the latter of which may be 
evaluatedd explicitly, after which one obtains 

*5r,n(*ii"->*Arttt>i ,, ) = (<r(w1)...a(wn)1>(zl)...tl;{zN)) 

xx n^-^) M+2/fefin^-^) i / f c 
i<ji<j  t= l j'= l 

xx Y[(wi - w^^^Fgizu .. . , zN, wu ... wn). (2.37) 
%<i %<i 

Here,, the Zi and tu, are complex coordinates which parametrize the sample. Fg is a factor which 
dependss on the geometry of the sample. If the sample is a disc, then this factor just implements 
thee usual Gaussian factors which confine the electrons to the disc6. 

6A ss before, it depends on the treatment of the background charge if the factor  Fg comes directly from the 
conformall  block. If one treats the background charge the way we did in section 2.2.3, men the factor  Fg has to be 
addedd by hand. 
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Thee filling  fractions of the Read-Rezayi states may be read off as the quotient of the highest 
factorr of any single Zj by TV, in the limit of large TV. Noting that the contribution of the parafer-

;.. For k = 2 and M = 1, the above mionicc factor is negligible for large TV, one finds v =  k., 
wavee function reduces to the Pfaffian or Moore-Read state [18] with TV electrons and n quasi-
holes.. This state has v = \. Adding two completely filled Landau levels, one with spin up and 
onee with spin down electrons, we arrive at a filling  fraction of |, which is the experimentally 
relevantt value. 

2.3.33 Fusion of quasiholes and the Bratteli diagram 

Itt is interesting to know the number of independent states which the formula (2.37) encodes, 
i.e.. the number of independent states with TV electrons that have n quasiholes at fixed positions 
wi,...wi,... ,wn. This interest is twofold. First of all, we want to know which combinations (TV, n) 
aree allowed. Second, the number of independent states is also the dimension of the braid group 
representationn that governs the exchanges of electrons and quasiholes. Hence a necessary con-
ditionn for non-Abelian braiding is that it be larger than one. A basis for the space of states that 
wee are looking for is given by the states we obtain if we replace the parafermion correlator in 
(2.37)) by its respective conformal blocks. The number of such blocks is equal to to the number 
off  fusion channels that make the correlator in (2.37) non-vanishing. Hence, the number we are 
lookingg for is just the number of ways in which TV electron fields tp and n quasihole a fields 
mayy fuse into the vacuum. 

Noww the fusion of the rp fields is very simple; it just corresponds to addition of the Z^ 
charges.. Hence the TV electron fields fuse into the «ÊSJJV

 = ^2eN sector. The fusion rules of 
thee sigma fields, as given in equation (2.29), are a bit more complicated, but they have a nice 
graphicall  description in termss of a Bratteli diagram (see figures 2.1,2.2): 

Figuree 2 .1: fusion diagram for the field <r. The diagram must be thought extended indefinitely in the A-direction 
andd up to A = k in the A-direction (the case k = 3 is as drawn here). On each line, we have drawn the Young 
diagramm of the sl(2) representation that resides on that line. 

Thesee diagrams must be read as follows. Each starting point or end point of an arrow has 
coordinatess (A, A) and represents the $^ sector of the parafermion CFT. Note that this means 
thatt coordinates related by the identifications (2.28) represent the same sector. In figure 2.2, one 
mayy see this explicitly for k = 3. Here, we have at each node of the diagram inserted the Young 
diagramm for the sl(3)2 weight of the field which resides there. The correspondence between the 
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mm ffl 
// \ / \ / \ 

BB o p g 
// \ / \ / \ / 
 F B D 

// \ / \ _ / \ / \ 
JJ 1 I I I  I 1 I I I 

00 1 2 3 4 A - > 

Figuree 2.2: The same diagram as in figure 2.1, but this time each site in the diagram is labeled by the Young 
diagramm for the sl(k = 3)2 weight of the field that resides there. The dot represents the empty diagram. Again, 
generalizationn to arbitrary k is straightforward. Note that in this picture, the weights label the fields unambiguously, 
whereass in figure 2.1, one still has to take the field identifications (2.28) into account 

fieldsfields of the parafermionic theory and such weights or diagrams is one to one and we see that 
thee same diagram appears in different places. The fusion rules of the sigma field are encoded 
inn the arrows; we start in the lower left corner, that is, in the ${| sector, which is the vacuum 
sectorr of the theory. Then we take the operator product expansion with the field a = $|, which 
naturally,, following the arrow, lands us in the $ J sector. Once more taking the OPE with a, we 
endd up, following the arrows, in the $| or in the $° sector. In this way, each path of length n 
throughh the diagram represents a fusion channel for n cr-fields. 

Too make the parafermionic correlator in the wave function (2.37) non-vanishing, the parafer-
mionicc parts of all the quasihole and electron fields need to fuse into the vacuum sector. Now 
sincee the electron fields ip(zi),..., ~4>{z^) in the correlator fuse to $%, it follows that the 
quasiholee fields er(wi),..., o{zn) have to fuse to the field <&12JV

 = *̂-2JV- The number of 
wayss to do this is just the number of paths of length n through the diagram of figure 2.1 
whichh end up at a point whose coordinates (A, A) satisfy either (A, A) = (0, —2Ar mod 2k) 
orr (A, A) = (k,k — 2N mod 2k). Clearly, for fixed N, such paths occur only for values of n 
whichh are a multiple of k apart, so quasiholes can only be created in multiples of k at a time 
(maybee with the exception of the first few quasiholes if N is not a multiple of k). Note that, 
althoughh the same fields (or sectors) occur at different heights in the diagram, the same field 
neverr occurs more than once at given A and hence different paths are never identified by the 
fieldfield identifications. Thus, the number of fusion channels for the parafermion CFTs is the same 
ass that for the corresponding WZW-theories. 

2.3.44 Counting the independent n-quasihole states 

Lett us denote the number of paths through the Bratteli diagram which end up at the point (A, n) 
byy D(A, n). Also, let us define D(A, n) = 0 if there is no point with coordinates (A, n). The 
numberr of independent n-quasihole states encoded by (2.37) is then D(0, n) in case 2N + n = 
00 ( mod 2k), D(k, n) in case 2N + n = k ( mod 2k), and zero otherwise. It should be obvious 
fromm looking at the Bratteli diagram that the D(A, n) satisfy the following recursion relation: 

D(A,D(A, n) = D{A - l,n - 1) + D{A + l,n - 1). (2.38) 

39 9 



Chapterr 2. Braiding in Hall states 

Usingg this relation and the fact that D(l , 1) equals one, D(A, n) can be easily calculated in each 
particularr case. At least for low k, the recursion relation can also be used to prove simple closed 
expressionss for the D(A, n). In particular, we find for k — 2, k — 3 and k = 4 

DD22{0,2n){0,2n) = £>2( l ,2n- l) = 2n _1 

D3(0,2n)) = L>3(l,2n- 1) = Fib(2n - 2) 

£>3(2,2n)) = £>3(3,2n + l) = Fib(2n - 1) 

£>4(0,2n)) = D4(l,2n-1) = —— 

D4(2,2n)) = 3""1 

DDAA(3,2n(3,2n + l) = D4(4,2n + 2)=3 ~ 1. (2.39) 

Inn these equations, we have written Df. instead of D for clarity and we have used the notation 
Fib(n)) to denote the nth Fibonacci number, defined by 

Fib(O)) - Fib(l) = l 

Fib(nn + 1) = Fib(n) + Fib(n - 1). (2.40) 

Itt is also not that difficult to find and prove a closed formula for infinite k. We have 

A»(A,n)) = | ( ^ ) (« + A = 0 (mod 2)). (2,41) 

Off  course this formula is valid for all k as long as n + A < 2k. 
Too get formulae for other values of k it is more convenient to rewrite the recursion relation 

(2.38)) in matrix form. We consider the D(A, n) at a fixed n together as a fc-vector and write the 
stepp from n to n + 1 as multiplication with a(A; + l) x (fc + 1) matrix Mk. that is, we have 

£>(0,n+l)) \ 
==  Mk\ : I , (2.42) 

D{k,nD{k,n + 1) J 

wheree M*. is given by 
(Affe)yy = 6iJ+1 + Si+1J. (2.43) 

Thee asymptotic behavior of the D(A, n) for large n will be related to the largest eigenvalue of 
thee matrix M*. The eigenvalues of the Mi are just the zeros of their characteristic polynomials 
F*.. For these, we can easily deduce a recursion relation and "initial conditions": 

p2(A)) = A 2~l 

^s(A)) = A 3-2A 

PPi+1i+1 (X)(X) = XPi(X)-Pi.1{X), (2.44) 

butt these are just the defining relations for the Chebyshev polynomials, whose zeros are given 
byy (see for example [67]) 

Ak,„„  = 2 c o s ( ( ^ ) . (2.45) 
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Sincee we know all the eigenvalues of Mk, we can now in principle solve for the eigenvectors 
andd using the solution, give explicit formulae for the Dk(A,n) for any k. We will however 
contentt ourselves with giving the asymptotic behavior of the Dk{A, n) at large n. The largest 
eigenvaluess (in absolute value) of the matrix Mk are clearly A0 and \k = -A0. Hence, the 
asymptoticc behavior of the Dk(A, n) is given by 

DDkk(A,(A, n) ~ ( 2 cos I —^-- J J (A + n even) 

DDkk(A,n)(A,n) = 0 (A + rcodd). (2.46) 

Thiss conforms with the closed formulae we gave for k = 2,3,4. 

2.3.55 Braiding for  k = 2 

Inn the previous section, we have calculated the dimensions of the braid group representations 
thatt govern the exchanges of the electrons and the quasiholes of the RR-states. We have seen 
thatt these dimensions increase with the number of quasiholes, which is an indication for non-
Abeliann braiding. However, this indication is not conclusive evidence. To be sure, one needs to 
calculatee the actual matrices that describe the braiding of the tr-fields in the conformal block in 
formulaa (2.37) above. Nayak and Wilczek [17] have done this calculation for the case k = 2 (the 
Pfaffiann state). The method they used was basically to compute the conformal block for four 
quasiholee fields explicitly and then to extend the resulting braid group representation to a braid 
groupp representation for any even number of quasiholes7. For general k, it is quite difficult to 
calculatee conformal blocks for four, let alone for arbitrary numbers of quasiholes. Fortunately 
itt turns out that we can circumvent this problem by using the known duality between conformal 
fieldfield theory and quantum groups and using this, we will give a nice description of the braiding 
forr arbitrary k. However, we will first briefly recall the results of Nayak and Wilczek for k = 2, 
forr later reference. 

Thee braid group representation for n = 2m quasiholes has dimension 2m _1 (cf. (2.39)). 
Nayakk and Wilczek describe this space as a subspace of a tensor product of m two dimensional 
spaces.. Each of the two dimensional spaces has basis vectors {| + } , | — )}  and the physical sub-
spacee of the tensor product is the space generated by the vectors whose overall sign is positive 
(soo for m — 2, | ) is physical, but | + — ) is not). On the tensor product space, there is 
aa spinor representation of SO(2m) x U(l). The U(l) acts as a multiplicative factor, while the 
generatorss u  ̂ of the SO{2m) may be written in terms of the Pauli matrices a». We have 

(2.47) ) 

with h 
7i i 
72 2 

73 3 

74 4 

aaHH = 4*[7i.7j] » 

== C"i ® <73 ® . . . ® <T3 

== 02 ® 0"3 ®  ® 03 

== 1 ® 01 ® 03 <8>.. - ® 03 

== 1 0 02 ® 03 ®  ® 03 (2-48) ) 

72mm = 1 ® -  ® 1 ® 02 
7Notee that the four point blocks in the case k = 2 are just the four point blocks for the chiral Ising model, 

whichh have, within a different context, been known for a long time (see for instance [68] for explicit expressions). 
Thee same is true for the corresponding braid group representations. However, the embedding of the resulting braid 
groupp representation into a rotation group, as given by Nayak and Wilczek (see below) seems to be new. 
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Heree the states | +}  and | - ) are the spin up and spin down states for the Pauli matrices. 
Noww let T{ represent the exchange of quasihole i and quasihole i + 1, then the action of the 

braidd group (cf. (1.11)) on the rc-quasihole space is embedded in the action of SO(2n) x [7(1) 
ass follows: 

TiTi=é^S=é^Saiai^.^. (2.49) 

Thee SO(2m) generators <r^+i which appear in this equation are given by 

0-1,22 = 5 tT3 ® 1 ® . . . ® 1 

02,33 = I C2 ® 02 ® 1 ® -  ® 1 C2 50) 
0-3,44 = | l ® f f 3 ® l ® - . . ® l 

0-4,55 = | 1 ® 0-2 ® 0"2 ® 1 ®  ® 1J etc. 

Soo we see that, for odd i, r» acts only on the i th tensor factor, whereas for even i, TÏ acts only on 
thee (i - l) t h and i th tensor factors. Moreover, the 2 x 2-matrix which describes the action for 
evenn i and the 4 x 4-matrix which describes it for odd i do not vary with i. Explicitly, they are 
givenn by 

72i+l l 
11 0 \ 
00 i J 

1 1 
r2ii = -

f f 

\ \ 

11 + i 
0 0 
0 0 

- 11 + i 

0 0 
11 + i 
1-i 1-i 

0 0 

0 0 
1 - i i 
11 + i 

0 0 

- 11 + i \ 
0 0 
0 0 

11 + i / 

(2.51) ) 

2.44 The quantum group picture 
Inn this extensive section, we give a description of the braiding for a system of n particles with a 
hiddenn quantum group symmetry. We expect that the braiding properties of a quantum Hall state 
withh n quasiholes are conveniently described in terms of such a system. In the first subsection, 
wee motivate the quantum group theoretic approach and mention some general features. In the 
remainingg subsections, we work these ideas out in detail for the quantum group Uq(sl(2)). In 
particular,, we give a fairly detailed description of the relevant representation theory of Uq (si (2)) 
forr q a root of unity, which culminates in an explicit description of the associated braid group 
representations.. We are well aware of the fact that most of the material treated in this section 
iss not new, but since it came from quite a variety of sources, it seemed useful to give a self-
containedd treatment here. 

2.4.11 Using a quantum group rather  than the full CFT 

Onee may always describe a quantum system in terms of its explicit wave functions, but it can 
bee extremely profitable to exploit its operatorr algebra, in particular itss symmetries. These allow 
onee to extract many of the physical features without reference to the explicit realization in 
termss of wave functions. Quite similarly one could in the present context remark that there is 
ann aspect of the description of the Read-Rezayi states that is less than satisfactory: one has to 
usee the full machinery of a (conformal) field theory to calculate wave functions or even just 
braidingg properties for a finite number of quasiholes and electrons. There are many questions 
onee may want to answer for which this seems like overkill: for example one would hope to be 
ablee to describe the braiding of finitely many particles by means of a theory with only finitely 
manyy degrees of freedom. Indeed, there is such an alternative description and we pursue it 
here.. It is well known that conformal field theories possess a hidden quantum group symmetry 
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(seee section 2.5 for details and references). What we propose is to describe the electrons and 
quasiholess of a quantum Hall state that would usually be described by a certain CFT as localized 
particless that carry representations of the quantum group that is associated with this CFT. Such 
aa description has several advantages. 

 It avoids the introduction of a field theory to describe a system with only a finite number 
off  particle degrees of freedom. 

 It provides a conceptual understanding of a phenomenon which emerges in the usual CFT 
description.. This is the fact that, while a state with a low number of indistinguishable 
quasiholess can be described with a one component wave function, a system with a higher 
numberr of these quasiholes may need a wave function with several components. Clearly, 
itt should only be possible to distinguish between these components by making a meas-
urementt that involves several holes (otherwise the holes would not be indistinguishable). 
Hence,, there should be operators in the many hole Hubert space that distinguish states 
thatt cannot be distinguished by operators that act only on the state of one of the particles. 
Thee quantum group picture provides these in a natural way. They are the operators that 
correspondd to the global quantum group charges of groups of quasiholes. Even though all 
individuall  quasiholes have the same quantum group charge, a group of n such holes can 
occurr in different representations leading to distinguishable n-hole states. As a simple ex-
ample,, suppose that the quasiholes carried the two dimensional representation of SU(2) 
(orr of U(sl(2))). In that case a two quasihole state could be either in the singlet or in the 
triplett representation and the singlet states could be distinguished from the triplet states 
byy measuring me global charge. 

 The quantum group picture allows for an elegant description of the braiding properties of 
thee ra-quasihole states; all braiding properties are encoded into a single algebraic object: 
thee quantum group's il-matrix (cf. section 1.4.3). Starting from the /2-matrix, braiding 
calculationss can be done in a purely algebraic way and often a detailed picture of the braid 
groupp representation mat governs the exchanges of particles can be constructed. In a CFT 
description,, the information contained in the .R-matrix of the quantum group would be 
muchh less manifest. In fact, to extract it from this description of the system, one would 
havee to calculate the braiding and fusion matrices starting from the conformal blocks of 
thee CFT, which is usually quite hard. 

Off  course the description we propose also has its disadvantages when compared to the CFT 
description.. For instance, it seems much harder to describe dynamical aspects of the quantum 
Halll  states in this framework. Still, we like to emphasize that the quantum group picture we 
proposee is a useful complementary way of dunking about non-Abelian quantum Hall states. 

2.4.22 Return U>Uq(sl(2)); representations at roots of unity 

Inn section 1.4, we have given an introduction to the representation theory of the quantum group 
UUqq(sl(2))(sl(2)) for the case that q is not a root of unity. When q is a root of unity, the properties of 
mostt of the representations defined by the formulae (1.28) in section 1.4 change quite drastic-
ally.. Specifically, at q =  e

2* ,r/(fc+2)t the representations n2j with j > 1 will no longer be 
irreducible.. This can be traced back to the fact that for q =  e

2™/(k+2)t one has the identity 

[k[k  + 2\q = 0. (2.52) 
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Becausee of this, (L+)k+2 and (L~)k+2 are mapped to zero in all the representations defined by 
(1.28).. Of course, in the representations with j <  k4^, this was already the case and for these 
representations,, nothing essential changes. In particular, they are still irreducible. However, 
inn the representations with j > , there will now be extra highest and lowest weight states, 
whichh are annihilated by L+ resp. L~. For example, the state (L+)k+1\j, —j ) in the module 
VV2j2j of the representation n2', (j >  k-^2-) will now be an extra highest weight state, since 
(L(L++ ))k+2k+2 = 0 in this representation. The descendants of this highest weight state (that is, the 
statess which can be obtained from it by applying powers of L~) now span an invariant subspace 
WW of V2\ so 7T2-7 is no longer irreducible. Figure 2.3 illustrates this situation in a simple case. 
Althoughh the module 7T2-7 is now reducible, it can not be written as a direct sum of irreducibles. 

•• • . • ; . • .. • * . • i » • ' , • * . • •* • ; , • * . • 

100 (L~)k+1\h) (i+)* +1IO \h) 

Figuree 2.3: Diagram of an indecomposable representation as defined by (1.28). The dots represent the basis 
statess | j , m ), in particular, we have written | h) for the highest weight state and | /) for the lowest weight state. 
Thee arrows —> and <— indicate the action of L+ and L~ resp. 

Onee says that it is indecomposable. This indecomposability is directly related to the fact that 
7r2jj is not a ^-representation. For a *-representation, the orthogonal complement of an invariant 
submodulee of the representation module is itself invariant and this guarantees that any finite 
dimensionall  representation has an orthogonal decomposition into irreducibles. The fact that 7r2j 

doess not have a decomposition into irreducibles shows that it is not just non unitary, but even 
nonn unitarisable. That is, it is impossible to choose an inner product such that 7r2j is unitary 
withh respect to it. 

Summarizing,, for q =  e
2™l(k+2) j We are left with only k + 2 irreducibles out of the infinitude 

thatt we would usually get from (1.28)8. These are the unitary representations 7r2j with j < 
^Y^YLL.. The other representations defined by (1.28) are no longer irreducible. They have become 
indecomposable,, and therefore they are non unitarisable. 

2.4.33 Tensor products 

Tensorr  product decomposition at roots of unity 

Inn section 1.4.2, we described the tensor product of representations of Uq(sl(2)) for the case 
thatt q is not a root of unity. In that case, many of the usual properties of tensor products at q = 1 
couldd be recovered. For example, the tensor product of two irreps could be decomposed into 
aa direct sum of irreps (see (1.34)). When q is a root of unity, say q =  e

l2l'^k+2\ the situation 
iss quite different. In this case, tensor products of two irreps will not split into a direct sum of 
irreps,, but will contain indecomposable summands. This is not in itself surprising, because the 
representationss 7rA with A > k + 1 that would occur in the usual decomposition (1.34) become 
indecomposablee for q =  e

l27r/(fc+2). However, what really happens is a bit more complicated. 

8Notee that these irreps are by no means all the irreps at q =  e*
2"7(fc+2), i n fact, there are more irreps of 

dimensionss 1 , . . ., k + 1 (how many more depends on the precise definition of Uq(sl(2)), see e.g. [7, 69]) and 
theree is a family of inequivalent representations of dimension k + 2, parameterized by a complex number z. 
However,, these representations will not concern us here. 

44 4 



2.4.. The quantum group picture 

Ass an example, let us look at the decomposition of the tensor product of the spin \ and the 
spinn i module. As usual, the tensor product space may be decomposed into eigenspaces of the 
operatorr H. These eigenspaces will be one dimensional for the extremal eigenvalues H = k +1 
andd H = — (k + 1) and two dimensional for the other eigenvalues. If q were not a root of unity, 
thenn we would have two highest weight states in the tensor product module. The H = k + 1 
statee | , i )| |, | }  and the H = k - 1 state | *=l , *fl ) g i v en in (1.36). At g = e ^ / ^2 ' , 
thee coefficients of this second state diverge, but if we multiply the state by \_k + 2J,, then this 
noo longer happens and we still have two good highest weight states. However, we have a third 
candidatee highest weight state, which is the H = k - 1 state one gets when one lets (L+)k+1 act 
onn the lowest weight state 1^,-^)1^,-1) (remember (L+)k+2 gives zero for this value 
off  q). This new highest weight state is just proportional to the state | , *=i ) given in (1.36). 
Comparingg this state with the other highest weight state at H = k -1, we see that although they 
wouldd be linearly independent for any arbitrary q, they are actually proportional to each other 
forr q = e

27r!/(*+2) i t follows that the irreducible spin ^-module has become a submodule of 
thee module generated by the highest weight state at H = k + 1. Also, since we have only one 
highestt weight state in the H = k — 1 eigenspace and since this space is two-dimensional, there 
mustt also be a non-highest weight state in this eigenspace. The two dimensional if-eigenspaces 
off  the tensor product module will then be spanned by a descendant of the highest weight state at 
HH = k - 1 and a descendant of the non-highest weight state at H = k - 1. We see thus that, at 
qq =  e2W(*+2); t ne modules irk+2 and 7r*  have disappeared from the decomposition of ir1 ® Ttk+1 

andd instead there is one indecomposable module, which has the module 7rfc as an irreducible 
submodule. . 

Thiss general picture extends to all tensor products of irreps; in general, all the modules 7rA 

withh A > k and all the corresponding modules 7r2*_A will disappear from the decomposition 
(1.34)) and instead, there will be indecomposable modules with the modules ir2k~h as irreducible 
submodule.. The structure of these indecomposable modules is analogous to the structure of the 
modulee we described above and is illustrated in figure 2.4. For more detail on tensor product 
decompositionn when q is a root of unity, one can consult for example [70, 69, 7]. 

Figuree 2.4: Diagram of an indecomposable representation which can occur in the tensor product of two 
fq(s/(2))-irrepss at q = ^'/(k+z). The dots represent the basis states in the module, the arrows -4 and <-
indicatee the action of L+ and L~ resp. The split arrows are meant to indicate that the descendants of the state | 4>) 
aree mapped onto linear combinations of descendants of\ijj)  and (L+)k+1 \ I) 

Clearly,, the indecomposable representations which occur in the tensor products are non 
unitarisable;; this follows from the indecomposability, but one can also see easily that any "inner 
product""  that would make these representations unitary would give the states in the irreducible 
submodulee zero norm. 

Truncatedd tensor  products 

Thee indecomposable representations that turn up in tensor product decompositions at roots of 
unityy are non-physical. Thus, one needs to define a new "tensor product" <g> in which the in-
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decomposablee modules are somehow projected out. However, one cannot just take the old tensor 
productt and project out the indecomposable modules, since the the tensor product obtained in 
thiss way would not be associative. One would have for example (7cl®Trk)<ê>nk+1 = 2nk+1 and 
7T1(è(7rfe(êi7rfc+1)) = {0}  for odd k. (For even fc, there are similar problems). Also, the fusion rule 
7rAA  <g> 7rfe+1 = {0}  (A even) is clearly unphysical; after adding a particle in the representation 
7T*+11 we would be left with a zero-dimensional Hilbert space! These problems can be solved 
bothh at once by projecting out not just the indecomposable modules, but also any modules of 
typee 7rfc+1 that may occur. The resulting tensor product is called the truncated tensor product. 

Thee truncated tensor product decomposition at q =  e
i2*/( k+2) is given by the following 

formula,, which is identical to the formula (2.22) for the fusion rules of sl(2)k chiral primaries: 
min{A+A',2fc-A-A' } } 

7TA<8>7rA'== 0 7TA". (2.53) 
A"=|A-A' | | 

Fromm this formula, one may check easily that the truncated tensor product is indeed associative, 
thatt is, the tensor product modules (7rAl<g)7rA2)(ê7rA3 and 7rAl<g>(7rA2<g)7rA3) are isomorphic. Note 
howeverr that these two modules are different subspaces of the ordinary tensor product, so we 
mightt say that the truncated tensor product is associative at the level of t/,(s/(2))-modules, but 
nott associative at the level of states. 

Ass an illustration, let us take a closer look at the truncated tensor product of the two-
dimensionall  irrep TT1 with the unitary irreps 7r°, TT1, . . ., irh. For this case, the truncated tensor 
productt decomposition is given by 

TT^TT11 = T r ^ e ^ -1 (Ae{ i , . . . , fc- i } ) 
TT^TT11 = TT*" 1. ( 2 .54) 

Ass one can see, the only difference with the ordinary tensor product occurs in the last line. The 
decompositionn on the level of states can be read off from (1.36). Using this formula, we can 
alsoo give an example of the non-associativity at the level of states that we were talking about: At 
kk = l(orq = e27ri/3), the truncated tensor products Vi = (n1^1)®!?1 and Vi = ir1®^1®^1) 
aree both isomorphic to n1 as t79(sZ(2))-modules, but any state in Vi may be written as 

(<r1/4ll  h-i)\li)-  «1/4l U )l i -è )) H U > + "' I  è. -\» > <2-55> 
whilee any state in V2 may be written as 

( ) 9 i l è , è > + A l è . - è > ) ( 9 "1 / 4 l i - i > l i 5 > - « 1 / 4 l 5 . 5 > l 5 . - i > )-- (2'56> 

Fromm this, we see that a vector in V\ can only equal a vector in V2 if it is zero. Hence, Vi and 
V22 are different subspaces of x1 ® n1 <8> TT1-

Thee non-associativity of the truncated tensor product might seem like a problem at first sight, 
becausee we want to have a unique three-particle Hilbert space, but this problem disappears if 
wee can find a canonical t/9(5Z(2))-isomorphism between the two three-particle spaces which 
preservess the inner product. We will say more about this in section (2.4.6). 

Beforee ending this section, let us write down two useful identities for truncated tensor de-
compositionn which are related to the external automorphism of sl(2)k that we discussed in 
relationn to the field identifications (2.28). If we define 

AA := k - A, (2.57) 
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thenn we have 

min{A+A',2*-A-A' }}  min{A+A',2*-A-A' } 

A®A'' = 0 A" and A®A'= 0 A". (2.58) 
A"=|A-A' || A"=|A-A' | 

Here,, we have written A instead of 7rA to avoid overloading the notation. These identities tell 
uss that the truncated fusion rules of Uq(sl(2)) do not allow us to make a distinction between a 
particlee that carries the representation A and a particle that carries the representation A. 

2.4.44 Quantum trace and quantum dimensions 

Usingg the coproduct and the antipode, one may define the adjoint action of a quantum group A 
onn the space of linear operators on an ,4-module V by 

(a-0)\v)(a-0)\v) = £ a( 1 ) O S ( a( 2 ) ) H . (2.59) 

Heree we have used Sweedler notation for the coproduct. From the fact that S is an antihomo-
morphism,, one can see that (2.59) defines a representation of A, while using the property (1.3), 
onee can see that A acts trivially on operators that commute with the action of A on V. 

Thee action of Uq(sl(2)) on an operator O is given explicitly by 

HÖHÖ = [H,Ö] 

L  0 = ifÖq-W-q-^MÖL*, (2.60) 

whichh reduces to the usual commutator for q —y 1. 
Onee can define a kind of trace on operators, which has the property that it transforms trivially 

underr Uq(sl(2)) when the operator is transformed. For q =  1, the ordinary trace has this 
property,, since Tr([a, Ö]) = 0 = e(a)Tr(0) for all a 6 sl(2) and for arbitrary Ö. However, 
forr q T̂  1, we have to use a modified trace to get this property. This trace is usually called the 
quantumm trace and we will denote it Trq. Of course, the quantum trace is supposed to preserve 
somee nice properties of the ordinary trace. Most importantly, the trace of a tensor product of 
operatorss should be the product of the traces of the tensor factors, that is 

Tr,(Öii  <8> Ö2) = Tr^OOT^Öa)- (2.61) 

AA quantum trace with this property can be defined for a large class of quantum groups (see cf. 
[7]).. For Uq(sl{2)), it is given by 

TrTrqq(Ö)(Ö) = Tr(qH/2Ö). (2.62) 

Onee may verify readily mat Tr,(a  Ö) = e(a)Tr<,(0). The fact that (2.61) is satisfied follows 
fromm the comultiplication A(qH/2) = qH/2 <g> qHt2. 

Usingg the quantum trace, one may define the quantum dimension dim,(7r) of a represent-
ationn of Uq{sl(2)) as the quantum trace of the unit operator in that representation. For the 
representationss 7rA, this yields d i m , ^) = [A + l j , = [dim(7rA)J9. In particular, the quantum 
dimensionn of 7rfc+1 is zero. The quantum dimensions of all the indecomposable modules of di-
mensionn 2k + 4 that appeared in the (untruncated) tensor products of the 7rA are also zero, since 
thesee modules were a (non-direct) sum of two modules of dimensions k+2 - d and k+2+d and 
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wee have [k + 2 — d\q + [k + 2 + d\q = [d\q + [-d\q = 0. Since the quantum dimensions of the 
moduless TT1, . . ., 7rfc are non zero, we see that we might also have defined the truncated tensor 
productt of two modules in this set as the ordinary tensor product with the modules of quantum 
dimensionn zero projected out. With this definition, the truncated tensor product is automatically 
associativee and the module irk+1 does not need separate treatment. 

Thee quantum dimensions of an irrep of a quantum group are not just useful in defining the 
truncatedd tensor product, they also have a physical meaning. The quantum dimension of an irrep 
cann be seen as the effective number of internal degrees of freedom associated with a particle 
tatt carries that irrep. More precisely, the dimension of the n-fold truncated tensor product of 
ann irrep with quantum dimension dq is proportional to (dq)

n at large n. In connection with 
this,, one should note that the number 2 cos ( j ^ ) which plays the same role for the number of 
n-quasiholee states (cf. (2.46)) can be written as [2\q, where q =  e

2i*/( k+2). Of course, quantum 
dimensionss are usually not integers. This brings us back to a point mentioned in section 1.5, 
wheree we mentioned that the only "dimension" that could be associated the field a of the Ising 
modell  was y/2. Truncated tensor products allow for such non-integer dimensions and in fact, 
forr k = 2, we have [2\q = y/2. 

Quantumm traces may also be used to construct knot invariants (see for example [71],[7] and 
referencess therein). For Uq(sl(2)), one of the knot invariants which can be constructed mis way 
iss the famous Jones polynomial [72]. 

2.4.55 Braidings for  two particles 

Whenn we use the truncated tensor product, the process of braiding is a bit more complicated 
thann in our discussion in section 1.4. The i?-matrix (1.39) still describes the braiding of two 
particles9,, but if we go to three or more particles, then we can get problems. For example, 
threee particles in the representation 7rA may be described by a state in the truncated tensor 
productt space (VA®VA)<Ê>VA and we can exchange the two leftmost particles by means of 
er(7rA<g>7rA)(i?)) ® 1, which gives us a state in (VA®VA)®VA, as it should. However, if we 
wantt to exchange the two rightmost particles, then we can leave the space (VA<g>VA)®VA if we 
justt apply 1 <8> cr(7rA(gi7rA)(i2). One may see this explicitly in the example we gave in formula 
(2.55);; exchanging the last two particles in this state by means of the exchange matrix given 
inn (1.41), we get a state which can clearly not be written in the same form and hence does not 
belongg to (V1®V1)®V1. If we use the other bracketing of the truncated tensor product (i.e. 
VA®(VA<g>VA)),, then we can exchange the last two particles in the expected way, but then the 
problemm occurs in the exchange of the first two. In this way, we can always expect problems 
whenn we try to exchange two particles over a bracket. Thus, we will not get a representation of 
thee braid group on the truncated tensor product, unless we modify the way in which we exchange 
particles.. We will explain the modification that is needed in some detail in section 2.4.6. In the 
meann time, we give a description of the braidings for two particles. 

Lett us look at the braiding in a tensor product of two irreps 7rAl and 7rA2. We can decompose 
thiss tensor product into irreps as in equation (1.34) or (2.53). From these formulae, we see that 
anyy irrep can occur at most once in this decomposition; we say that the tensor product decom-
positionn is multiplicity-free. It follows from this, using Schur's lemma, that any map from the 

9Notee that the fl-matrix (1.39) is not well defined if q =  en*/(*+*),  smce me .̂factorial [n\q\ which appears 
inn the (L+)n) ® (L~)n) terra becomes zero for n > k + 2. This problem can be resolved by adding the relations 
(L(L++ ))k+2k+2 = (L~)k+2 = 0 to the algebra for this value of q. To us, this subtlety is not very important, since these 
relationss already hold in the unitary representations we are interested in. 
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tensorr product module VAl ® VAa to the tensor product module VA*  ® VA l that commutes with 
thee quantum group action on these modules, is a constant on each of the irreducible summands 
off  VAl ® VA*. The exchange matrix aR = a(nAl ® nA2){R) is such a map. Hence, we can 
choosee bases for VAl ® VAa and VA s ® VAl such that the action of oR is described by a diagonal 
matrixx with respect to these bases. Of course, the basis vectors in each case are just the basis 
vectorss | £, m) of each irreducible summand TTA and the action of aR on these wil l depend on 
Ai ,, A2 and A and not on m. Explicitly, one has 

a(na(nMM ®TTA 2 ) ( JR)|V A = ( - i ) ^+^- ï 9 ï ( cA- cA 1-cA a) ) (2.63) 

wheree cAi = 4̂  (\f + 1) is the value of the undeformed Casimir for the representation irAi. This 
cann be derived from the formula (1.40) for the elements of the i?-matrix, using the formulae for 
thee Clebsch-Gordan coefficients given in [12], For the case A2 = 2, one may also check it from 
(1.36),, using (1.38). Note that the eigenvalues of aR are all roots of unity when q is a root of 
unity.. Therefore, if we use the inner products on the tensor product spaces that makes the bases 
describedd above orthonormal, men aR is a unitary operator. 

2.4.66 <?-6.7-symbols and their  properties 

Inn this section, we introduce 6j-symbols and truncated 6j-symbols for Uq{sl{2)). In the first 
subsection,, we deal with the g-6i-symbols which are associated to the ordinary tensor product of 
£/g(s/(2))-irreps.. In the second subsection, we restrict to the case where q is a root of unity and 
introducee the 6j'-symbols for the truncated tensor product. We also describe how these truncated 
6j-symbolss allow one to deal with the non-associativity of the truncated tensor product. 

öj-symbolss for  the ordinar y tensor  product 

Iff  we take a tensor product of three Uq(sl(2)) modules ?rAl , ixA2 and TTAS , then there are two dif-
ferentt ways to decompose this tensor product into irreducibles. We may either first decompose 
thee product irAl ® 7rA2 and then the resulting modules nA' ® 7rA3, or we may first decompose the 
productt 7rAa ® 7rAs and then the resulting modules irAl ® 7rA". These two procedures yield two 
differentt natural bases for the vector space VAl ® VA*  ® VAs. In each case, the basis vectors 
aree labeled by their ^-eigenvalue, the label of their overall fusion channel and the label of their 
intermediatee fusion channel (which is the representation into which irAl and nA2 fuse in the first 
casee and the representation into which 7rAa and 7rAa fuse in the second case). Let us call the 
vectorss in the first basis eJJ^J-J and the vectors in the second basis /££?,%  Here, j i , j 2 and j 3 

correspondd to Ai , A2 and A3, m and m' give the ^-eigenvalues, j and j ' give the overall fusion 
channelss and j i 2 and j2z represent the intermediate fusion channels. The vectors ejl,h-,3

r  ̂ and 

fh?j'%'fh?j'%' m ay ^ w r i t t e n in terms of the standard (product) basis for the tensor product by means 
off  the Clebsch-Gordan coefficients. We have 

lii»mi>|J2,m2)|i3i»»3> > 
-U U 

i.i. Iii,mi)|j 2,m2)|j3,m3),(2.64) 

J U 2 J 3 3 

fJU2,J3 fJU2,J3 
JJha,j,m ha,j,m 

== E 
m ii  yro2 )T 

== E 

3i 3i 
mi mi 

32 32 
m2 2 

3\2 3\2 
mi2 2 

TTXl,T7l2,ÏTl 33 "-

3232 33 323 
m22 m3 m23 

312312 33 
m\2m\2 m.3 

3i3i 323 
™>l™>l  "123 
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wheree mi2 = mi+m2 and ra23 = m2 + m3. The vectors in the e-basis may also be expressed 
inn terms of the /-basis vectors and this expression takes the following form: 

323,3%™' 323,3%™' 

3232 Jl2 

j j 
(2.65) ) 

Thee coefficients represented by the curly brackets are called the 6,7-symbols of Uq(sl{2)). By 
definition,, these g-6j-symbols equal the 6jf'-symbols for SU(2) when q equals one. The 6j-
symboll  in the formula above will clearly be zero unless the representation j12 occurs in the 
tensorr product of the representations j i and j 2 , the representation j occurs in the tensor product 
off  the representations ji2 and j 3 , etcetera. It follows that the 6j-symbol will be zero unless its 
argumentss satisfy the following requirements: 

Ij ll  -J2I <jl2  <3l+J2, 

\h~\h~ k\ < J23 < J2+h, 

\ju-h\\ju-h\ < J <3i2 + h, 
\jl\jl  -J2Z\ <3 <jl+J23, 

hh + h + ju e 
hh + h + 323 e 
J12J12 + h + 3 G 2 
jiji  + 323 + j É 2 (2.66) ) 

Iff  these requirements are met, then the 6j-symbol may be written in terms of Clebsch-Gordan 
coefficients;; using (2.64) and the relations (1.37), one easily finds that 

ƒƒ jl  32 312 1 _ ™2,* 
\\ 33 3 323 ƒ 

3i3i 32 3n 
mimi m2 T7ii2 

3\23\2 33 3 
m\m\22 J7i3 m 

3232 33 323 
mii  m2 m23 

3131 323 3 
m\m\ m23 m 

(2-67) ) 

Fromm this formula, one may obtain explicit formulae for the 6j-symbols. We will not do the 
(long)) computations here, but just give one of the possible explicit answers, as given in [12] 
(seee also [73]). 

ff  h h 312 Ï 
11 h 3 323 ƒ 

y/[2jy/[2j l2l2 + l\q[2j 23 + l\q A(jl , J2, J12)AC/12, J3,3)A(J2, J3,323)A(j'i , J23, j) ( 2 - 6 8) 

X VV ƒ (-i)'l»+U,i 
hh -J12 J g! [«-J12 - h -J'J g! L z~ J2 - J3 - J23 J g! [.Z-jl  ~J33 - J J g' 

11 \ 
Ul+J2+j3+j-2j9!l>l+il2+J3+J23-2j</!Lj2+J12+j+J23-3j4!! J ' 

where e 

A(a,, 6, c) :— (2.69) ) 
[-a[-a  + b + c\q\[a-b + c\qlla + b-c\q\ 

[a[a  + b + c+l\q\ 

Thee sum in (2.68) is taken over all z for which all the g-factorials in the summands are well-
defined. . 

Thee g-Gj-symbols are invariant under many symmetries (described in [12, 73]) which are 
analoguess of the symmetries of the 6j-symbols of SU{2) (see [74]). For us, the most important 
off  these are the so called classical symmetries. These symmetries can be treated slightly more 
elegantlyy if one works with the g-Racah coefficients instead of the g-6j-symbols. The Racah 
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coefficientss are just the 6j-symbols with a different normalization; they are given by the formula 
forr the 6j-symbols above with the first square root factor left out. Invariance under the classical 
symmetriess means that the Racah coefficients remain unchanged under permutations of the 
columnss and under exchanging the upper and lower entry in two columns simultaneously. In 
effect,, this means that we have the following identities for the 67-symbols 

Jl l 
J3 3 

j \ \ 
3$ 3$ 

32 32 

3 3 

k k 
3 3 

312 312 

323 323 

3n 3n 
323 323 

\\ = ƒ j2 h 3u \ = / L2J12+1J < L2jaI+TT7 ƒ 3i 312 32 \ 
ƒƒ I J h 323 ƒ V K»+lJ,L2,-+lj, \ j3 j23 j ƒ 

\\ = ƒ Jl 3 323 1 
ƒƒ 1 33 32 312 ƒ 

(2.70) ) 

andd all the identities generated by these. The other symmetries of the 67-symbols are analogues 
off  the Regge and reflection symmetries. 

Whenn q e R+, the bases for the three-fold tensor product given in (2.64) are orthonormal 
andd hence the basis transformation between these bases is unitary. As a consequence, the Qj-
symbolss satisfy the following orthogonality relation (see cf. [12]) 

W**  h jl2){ j} h j?)=6. ,. (2.71) 
j£j£ I 33 34 323 ƒ 1 33 34 J23 J J23J23 

Here,, we have used the fact that the 6,7-symbols are real for q e R+. When q is not a positive real 
number,, the above relation for the 6j-symbols remains valid by analytic continuation, as long as 
thee summands are not singular, but it does not tell us that the matrix for the basis transformation 
wee mentioned is orthogonal unless all the 6j-symbols that appear are real. For \q\ = 1, these 
6j'-symbolss wil l be real as long as | arg(g)| is small enough to make sure that all the g-numbers 
thatt appear in these 6,7-symbols are positive. This wil l be the case(cf. formula(2.68)) when 

|arg(g)(( < m in { - : , ) 
Ji»» J1+J2+J12 + 1 32+J3+J23+1 3l2+J3+J4 + l,jl+J23+J4 + l 

(2.72) ) 
wheree the minimum is over all j12 that appear in (2.71). Hence we see that also for \q\ = 1, 
jj  arg(g)| small enough, the matrix of the coordinate transformation from the e to the ƒ basis of 
thee charge j subspace of the space V2jl ® V2h ® V2h is real-orthogonal. 

Thee fact that the transformation from the e to the ƒ basis is orthogonal for |g| = 1, | arg(g)| 
smalll  enough, can be used in the construction of an interesting ^-deformed inner product on the 
AT-foldd tensor product of irreducible £/,(s/(2))-modules. The definition of this inner product 
iss simple: we declare the set of basis vectors for the iV-fol d tensor product that is obtained 
byy iterative tensoring of irreps from the right, using the Clebsch-Gordan formula (1.35), to be 
orthonormal.. This inner product clearly makes the tensor product decomposition orthogonal. 
Also,, for the case N = 2, it coincides with the inner product we mentioned at the end of 
sectionn 2.4.5 and which makes the braiding unitary. However, the definition of the inner product 
whichh we have just given is not very satisfying, since we might as well have defined a similar 
innerr product by declaring a basis obtained by tensoring from the left or by tensoring sometimes 
fromm the right and sometimes from the left to be orthonormal. Fortunately, iterative use of (2.71) 
showss that all the candidate orthonormal bases are sent onto each other by orthogonal matrices, 
soo that declaring one of these bases orthonormal is equivalent to declaring another orthonormal. 
Off  course, all this is only true when | arg(g)| is small enough. For any fixed N, a value of q 
whosee argument is small enough may be found, but on the other hand for any fixed value of 
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II  a-rgf?)!. ^ will  n ot be difficult to construct tensor product representations in which the inner 
productt does depend on the order of the tensoring. In fact, we can expect this to happen as soon 
ass the decomposition of the tensor product module contains non-unitary irreps (if this does not 
happen,, then the tensor product representation itself is actually *-representation). As we will 
see,, this problem disappears when we work with truncated tensor products. 

Truncatedd 6j-symbols 

Whenn q is a root of unity (q = e7ri/(fe+2)), we can define truncated 6j-symbols, related to the 
truncatedd tensor product. For these to be non-zero, the conditions (2.66) have to be changed in 
suchh a way that they require that j'12 be not just in tile tensor product, but even in the truncated 
tensorr product of  j \ and j 2 , etcetera. This means that the upper bounds jx + 32,  + J23 
inn (2.66) are sharpened to min{jx + j 2 , k - j \ - j 2 } , , mm{j i + j 2 Z , k - ji  - j2z}- When 
thee arguments satisfy these sharpened conditions, the truncated 6j-symbols are still given by 
thee formula (2.68). The truncated öj-symbols defined in this way give a canonical isomorph-
ismm between the truncated tensor product modules (V2jl®V2i2)è>V2J3 and V2jl®(V2J2®V2js). 
Thiss isomorphism also intertwines the ^-deformed inner products which are defined by declar-
ingg the natural bases of the truncated tensor product spaces orthogonal (compare the discussion 
att the end of the previous subsection). To see this, note first of all that the truncated 6j-symbols 
aree real (this follows easily from (2.68)). Also, it is known that the truncated 6j-symbols satisfy 
ann analogue of the orthogonality relations (2.71). We have 

y \ hh h j « l f Ji h 3u \ s ( 2 ? 3) 
4^^ I J3 34 323 J I J3 34 323 J J23'23 

wheree the sum is now restricted to the j i 2 that are allowed by the truncated tensor product. It 
followss that the matrix of the mapping between (V2^0V2J2)e>V2J3 and V2jlê(V2J2êV2J3) is 
real-orthogonall  and hence that the mapping preserves the inner product. 

Thee proof of the relations (2.73) uses the usual orthogonality relations (2.71) and also a 
symmetryy of the truncated 6j -symbols which does not have an analogue at q = 1 (the truncated 
6j-symbolss also still satisfy the usual symmetries which are present at q — 1). This symmetry 
iss part of a set of symmetries mentioned already in [12]. If we define j :=  fe + 1 — j ' , then 
thee symmetries in this set can all be generated from the untruncated symmetries (such as the 
classicall  symmetries (2.70)) and the identity 

ƒƒ Jl 32 jl2\_/_lya+j n-j-ji a+2j l + l]jl  h 3\2 1 (2 74) 
11 h 3 323 ƒ \ h 3 323 f ' 

Inn particular, we get from this that 

ff  3i h J12 1 _ ^_1\j2+j3-ji-i+2j 12+i f 3\ h 3\2 1 (2.75) 
\\ h 3 323 ƒ I h 3 323 ƒ ' 

Too prove the truncated orthogonality relations (2.73), we now start from the the untruncated 
orthogonalityy relations (2.71). We split the sum in (2.71) into three parts as in 

j i2=max{|j i- j 2| , | j3-J4|}}  ^- ,Jl2=max{|ji-J2|,|J3-j4|} 

.. ^ k - j i - j ' 2 , y^niin{ji+j2,j3+J4 } 

(2.76) ) 
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Noww if min{ji+j2 , J3+J4. k-ji - j 2 , * - h ~ U) equals jx+j 2 or J3 + J4 , then all the 6.7-syinbols 
inn the last two summations are zero, because their arguments don't satisfy the conditions (2.66). 
Iff  mm{ji + j2,j3 +J4,k- ji  — j2,k- j 3 — j4} equals k — ji - j 2 , then the second summation 
onn the right hand side is empty and the third is zero because the j i 2 and Jü terms cancel each 
otherr using (2.75) (if there is a middle term in the summation then this also vanishes using 
(2.75)).. Finally, if min{j i + j2,h + 34, k - jx -j2,k- j3 - j4]  equals k - j3 - j 4 , then one 
cann use the explicit formula (2.68) for the 6j-symbols to show that all the terms of the middle 
summationn vanish, while (2.75) still makes sure that die last summation vanishes because of 
pairwisee cancellation of terms. In any case, the summation on the left, which is die summation 
inn (2.71), equals the first summation on the right, which is the summation in (2.73) and this 
showss the validity of the truncated orthogonality relations. 

Thus,, using the isomorphism given by the truncated öj-symbols, we can identify the spaces 
(V(V2jl2jl®V®V2J22J2)<8)V)<8)V2h2h and V2jle(V2* 2eV2J!i) and their inner products, so that we have a well-
definedd three-particle Hubert space. The isomorphism may also be used to define braiding 
transformationss on truncated tensor products. Recall from section 2.4.5 that we could use the 
.ft-matrixx to define braiding of two particles, but that there were difficulties if we wanted to 
braidd particles "over a single bracket" in a multi-particle Hubert space. These difficulties can 
noww be resolved using the mappings given by the truncated 6j-symbols. For example, if we 
wantt to exchange the two rightmost particles in me representation (ir2j®ir 2j)®ir 2J, then we can 
firstfirst use the oj'-symbols to map the representation space onto that for n2j®(n2J<3)n2i), then use 
thee i2-matrix to exchange die particles and finally use die inverse of me mapping given by the 
6j-symbolss to get back to die representation space of (7r2j<i>7r2j)(ê7r2j. Similarly, any braiding 
inn a multiple truncated tensor product may now be achieved by using the 6j-symbols to move 
mee brackets around before and after die actual braiding. 

Nextt to die symmetries (2.75), die truncated 6,7-symbols have another set of symmetries 
matt do not have an analogue at q = 1. These symmetries are related to the identities (2.58) for 
mee truncated fusion rules. For me case of even k, tiiey were noted already in [75]. They are 
generatedd by die following identities 

jj  3\ h jl2 1 _ /_ 1\fc+ji+i3+ji2+j23 ƒ 3\ h JU 1 = tftk+ju+ja+j  { Ji h J12 1 
II  J3 3 hz ƒ \ h 2 J'23 ƒ \ h 3 323 ƒ' 

(2.77) ) 
Here,, we have defined j :=  \—j, in accordance witii me definition of A in (2.57). Of course 
alll  the identities related to tfiese by me classical, Regge and reflection symmetries are also 
symmetries.. The above identities may be proved in the following way. First notice that the 
replacementss of spins are made in a way mat is consistent with me truncated tensor product 
decomposition.. Hence, me arguments of die 6,7-symbol on me left satisfy the truncated version 
off  die conditions (2.66) exacdy if die arguments in the other two öj-symbols do. This means 
wee can fill  in formula (2.68) in all three cases. To show mat the results are equal, one needs an 
identityy which holds for g-factorials at q =  e

2'r«/(*:+2)> We have 

L * + i _ a J q !! = ! *  + !!*! . (2.78) 

Usingg this identity, it is easy to show that the A-factors are equal for all three 6j-symbols in 
(2.77).. For the middle 6.7-symbol in (2.77), we can now see that the sum over z in (2.68) is equal 
too that for the untransformed 6j-symbol by making the substitution z -> z + k - (jx +  j 3 + 
J12J12 + J23) and using me g-factorial identity above twice. The proof for me rightmost 6j-symbol 
inn (2.77) is similar, but uses me substitution z -> — z + k + j3 + j' + j i 2 . 
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2.4.77 Weak quasitriangular quasi-Hopf algebras 

Thee whole procedure of truncating the tensor product so that it is no longer associative and 
thenn denning braiding by identification mappings may be elegantly formalized and brought to 
thee level of the algebra, at the cost of making the connection with non-truncated Uq(sl(2)) 
somewhatt less apparent. This has been done in [76] and the resulting structure is called a weak 
quasitriangularr quasi-Hopf algebra, or a weak quasi quantum group. Let us call this Q. Some 
importantt features of the resulting picture are the following. The coproduct is modified in such 
aa way that it has the truncation built in. As a result, one no longer has A(l ) = 1 <g> 1 and one 
alsoo loses coassociativity. A so-called coassociator is introduced to compensate for this loss. 
Thiss coassociator is an element <j>  = £f cc (j>\  ® <t>\  ® <j>\  of Q®3 which is not invertible in Q, but 
whichh has a quasi-inverse called 0_1 which is the inverse in all the representations that one is 
interestedd in and which has the following important property for all a e Q: 

0(AA  ® l)A(a) = (1 <g> A)A(a)0. (2.79) 

Thiss ensures that the representations (7r2jl®7r2j'2)®7r2-'3 and 7r2j'1<g)(7r2:'2®7r2-'3) are isomorphic, 
withh the isomorphism given by iT2jl®n2J2é>n2h((f>). Of course, this isomorphism is just the 
onee given by the truncated 6j-symbols. Clearly, one would like to be able to go from one 
bracketingg of a multiple tensor product to another, using 0, in such a way that it does not matter 
whichh individual steps are taken on the way. This will be the case if the diagram in figure 2.4.7 
commutes. . 

(V 2«« ® V2™) ® (V 2"  ® V 2" ) 

((V 2""  ® V2j2) ® V2")  ® V 2"  V2>i ® (V 2"  ® (V 2« ® V 2") ) 

(V2-»» ®(V 2"  ®V 2" ) ) ® V2-"  _ V2-» ® ((V2'i  ® V 2" ) ® V 2" ) 

Figuree 2.5: This diagram shows two ways of going from one bracketing of a fourfold tensor product to another. 
Thee arrows denote the canonical isomorphisms given by the coassociator (or the truncated 6j-symbols). The 
diagramm wil l commute if the condition (2.80) on the coassociator is satisfied. 

Too make this diagram commute, we need to impose the following condition on the coasso-
ciatorr [77]: 

(11 <g) 1 ® A)(0)(A ® 1 ® l)((/>) = (1 <g> <f>)(l  <8> A ® l)((f>){4>  ® 1). (2.80) 

Inn terms of 6j-symbols, this condition becomes 

ff  ji2 h ii23 1 f 3\ h 3n 1 _ 
11 H j J34 J 1 J34 j J234 J 

y --  f  h 32 Jl 2 1  f  j l  J2 3 J12 3 1  f  J 2 ji  ^2 3 
J' 233 1  J 3 J12 3 J2 3 J  1  J 4 j J23 4 J  \  J 4 J23 4 J3 4 

(2.81 ) ) 
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Thiss condition will clearly be satisfied for non-truncated 6.7-symbols, since the sides of the 
equationn just correspond to two ways of doing the same basis transformation in that case. For 
non-truncatedd 6j-symbols the coordinate transformations change to mappings that really do 
something,, but one may show mat the equation above still holds. 

Whenn there is a non-trivial coassociator, the conditions (1.14) and (1.15), which guaranteed 
thee compatibility of fusion and braiding, change to 

(AA ® l)(R) = <hl2Rl3<f>U2^23<l>l23 

(11 ® A)(R) = tói^is&siiWm (2-82) 

andd these in turn imply the following quasi-Yang-Baxter equation [77], which is the analogue 
off  (1.16): 

#120132-^130^2^2301233 = 0321-^230231^130213^12- (2.83) 

Thiss relation ensures that the recipe that we gave for performing braidings does indeed give a 
representationn of the braid group. 

2.4.88 Braiding and 6j-symbols 
Inn this section, we will give a systematic description of the braid group representations that are 
associatedd with (truncated) tensor products of Uq(sl(2)) representations. Let us look at a tensor 
productt of n quantum group irreps 7rAl ,..., 7rAn. In such a tensor product, there are a number of 
naturall  bases which reflect the structure of the tensor product. More precisely, there is one such 
basiss for each way in which the tensor product can be built up by adding subsequent factors. 
Wee have already described the situation for three tensor factors in detail in section 2.4.6. In 
thiss case, there were two of these natural bases and the transformation that related these was 
describedd by the 6j-symbols. In the case of n factors, we will choose to work with the natural 
basiss one gets by adding subsequent tensor factors on the right, i.e. the basis induced by the 
followingg "bracketing" of the tensor product: 

7TAll ® 7TA2 ® . . . ® 7TA" = (. . . . (7TAl ® 7TAï) <g> 7rA3) . . . ® TTAn~l) ® 7TA"). (2.84) 

Thee elements of this basis can be labeled by their overall H eigenvalue m, their overall fusion 
channell  j n and and n — 1 intermediate fusion channels j \ , . . . , j n_i- We may thus write these 
basiss elements as ef^'"j m̂, where we have defined Ji = fy. Clearly, j i = J\ and ji  is one 
off  the summands in ji-\®Ji  for i > 1. If there is no cause for confusion, we will suppress 
thee upper indices and write ej1?...Jnim. It is easy to show that the set of ejlr„.j nfjn for which 
alll  the j ' s are held fixed, forms a basis for an irrep of Uq{sl(2)) of type ir2jn, i.e. the action 
onn this set corresponds to the action given in formula (1.28). Hence, it follows that the tensor 
productt representation becomes a *-representation if we take the inner product which makes 
thee eJ1(...jmm orthonormal and if each of the possible 7r2jn is itself a *-representation. Note that 
iff  we are working with a truncated tensor product, then there will be a different truncated tensor 
productt space for each bracketing, because of the non-associativity of this tensor product. The 
basess we have described here men provide canonical bases for the different subspaces of the 
ordinaryy tensor product that one gets from the different bracketings. 

Thee basis of ejlt_jnim is very suited to a description of the braiding. Suppose we want 
too exchange particles i and i + 1, i.e. we want to calculate the action of the exchange T* on 
eeh,~h,~ Jn,m- We can do this in three steps: 
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1.. Move particle i completely to the left, using right-over-left exchanges. Since the repres-
entationss 7rAl ,..., ir^-1 fuse together to the representation ÏT2^-1 and since the fusion of 
thiss TT2^1 with 7rA' gives ir2ji, this operation gives us just a constant factor. We have 

Jl,...,JJl,...,Jnn . (_-\\ji-Ji-ji-lA(c ii_1+Cj-cj)fJi,Jl,...,Jn (J R*\ 
cj i,...,j„, mm ^ k xf H Jji,-Jn,m  K^.OJ) 

Heree we have defined Cj = j(j  + 1), in accordance with the definition of c\ above. 
Also,, the vector ff^'^J'n'^

n is an element of the natural basis for the tensor product that 
onee gets by first tensoring together 7rAl ,..., 7rAi-', adding successive factors on the right, 
thenn tensoring on irAi from the left and finally tensoring on the remaining factors from 
thee right. To get the result (2.85), one uses (2.63) and, repeatedly, (1.14) and (1.15) or, 
forr truncated tensor products, (2.82). 

2.. Now change the bracketing, using the 6j-symbols, so that we end up in a basis in which 
thee representations nKi and 7rAl ,... ,7rAi l no longer fuse to a fixed representation, but 
thee representations ?rAl ,..., 7rAi l and 7rAi+1 do. The new basis is the natural basis for 
thee tensor product which one gets by first tensoring together 7rAl ,..., 7rAi-\ adding suc-
cessivee factors on the right, then tensoring on 7rAt+1 from the right, then tensoring on nAi 

fromm the left and finally tensoring on the remaining factors from the right. In the new 
basis,, the label jt (which gave the overall quantum group charge of particles 1 to i) is 
replacedd by a new label ƒ, which gives the overall quantum group charge of particles 
1,2,...,, i — l , i + l . All the other labels are as before. If we denote the elements of the 
neww basis by gf^f'f? m, then the /-basis can be written in terms of the #'s as 

yyn, n, 

4,..,*,.̂ ^  - i - 1 Ji+i *+i ƒ ƒ ̂ w--*." '  (2' 86) 

y y 
wheree we have used the fact that the representations carried by the particles 1,...,« — 1 
fusee to TT2 *̂-1 and that these particles can thus be treated as one particle that carries the 
representationn TT2^'1 . 

3.. Now we move particle i to the right, using left-over-right exchanges, until it has reached 
thee position to the right of particle i + 1. At the end of this process, we have effectively 
onlyy produced a left-over-right exchange of the particles i and i + 1, as we wanted. In 
thee g basis, the process of exchanging particle i past particles 1, . . ., i — 1 and i + 1 is 
describedd once again by a simple phase factor (compare the first step of the calculation), 
sincee the representations on particles l , . . . ,z — 1, i + 1 fuse to 7r2j' and this fuses with 
7r2Jii into the fixed fusion channel 7r2^i+I. We get 

Ji,Jl,-,JnJi,Jl,-,Jn , (1\j'+Ji-ji+lA(Cj il~Cil~Cj.)Jl,...,Ji+l,Ji,...,Jn (2R1\ 
i»Jl,...j',...Jn," ll  V I  y cJl,...J',...,jn,m ' V^-«' ; 

wheree ef1''"!'-, *+1,- „ " is an element of the basis we started with. 
Jl>—JJ viJni" 1 

Wee may now write down the action of the elementary exchange 7v on the e-basis as the 
cumulativee effect of these three steps. We have 

**  j l i - j ' i i —,Jn>W* 

^^jj ''KK ' q \ Ji+i  ji+i  ƒ ƒ J W . - . * . .™
(2.88) ) 
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Usingg equation (2.73), one may check easily that the matrix that describes this transformation 
iss unitary if q is a root of unity, which is the case we are interested in. Hence, if we take 
thee inner product which makes the eju_jntTn orthonormal, then the braid group representation 
whichh governs the exchanges of particles with E/,(s/(2))-charges is unitary, as it should be. If 
eitherr Jt = Ji+ i or jj_i = ji+ i, then it follows from the classical symmetries (2.70) that the 
matrixx for rt is also symmetric. 

2.4.99 Hidden quantum group symmetry 

Wee will say that a quantum mechanical system has a hidden quantum group symmetry if there 
iss an action of a quantum group A on the Hubert space of the theory which has the prop-
ertyy that it commutes with all the observables of the theory. For a system of particles which 
carryy £7g(sZ(2) ̂ representations, this means in particular that the H-eigenvalues associated to 
thee particles will not be observable, while on the other hand, one can allow observables which 
makee it possible to determine the Uq(sl(2))-representation associated to each of the particles. In 
otherr words, the total "quantum spin" of each particle would be measurable, but the components 
off  this quantum spin would not be measurable. The above definition of hidden quantum group 
symmetryy is just what we have distilled from various sources in the literature that mention hid-
denn quantum group symmetries (see section 2.5 for references). Note however that there does 
nott seem to be a completely standard definition of this concept. Let us say more about what the 
abovee definition means within our context. Suppose we have a system of n particles that carry 
representationss nAl,..., TTA" of a quantum group A. In that case the whole system will be in a 
statee in the tensor product space VAl <8>... ® VA". If this tensor product may be decomposed 
intoo irreducibles then the decomposition will take the form 

VVAlAl ® ... ® VAn = 0 U Ân ® VA. (2.89) 
A A 

Here,, Ufclt An *S a v e c t or space whose dimension equals the multiplicity of the irrep VA of 
AA in the tensor product. When no confusion seems possible, we will just write UA. If the A-
symmetryy of this system is a hidden symmetry, then it follows that all the observable operators 
actt only on the spaces UA without mixing these. That is, every observable O should take me 
form m 

ÖÖ = ^2ÖA®IVA, (2.90) 
A A 

wheree each ÖA is an operator acting on UA and Iv\ is the identity operator on VA. Since all the 
observabless have this structure, the state of the system can be uniquely characterized by a list 
off  vectors, one for each of the spaces UA. Usually, the overall quantum group charge(s) of the 
systemm will be well-defined. In other words, the state of the system will be described by a vector 
inn one of the summands in the decomposition (2.89). In fact, there may be superselection rules 
whichh prevent superposition of states from different summands in (2.89). If the system as a 
wholee is in me quantum group representation 7rA, then the state of the system may be described 
byy a vector in the space UA. Now note that the braid group representation on the tensor product 
VVAlAl ® ... ® VAn which comes from the action of the H-matrix of A induces an action of the 
braidd group on each of the UA. This follows from the fact that the action of the braid group 
elements,, like the action of any observable, commutes with the action of A. Any operator mat 
representss a braid group element will thus be of the general form given above for observables. 
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Thus,, if one wants to describe only the monodromy or braid group representation that governs 
thee statistics of the system at a fixed number of particles with given overall quantum group 
chargee A, one can restrict oneself to the space UA. It should be clear from the previous section 
whatt form such a representation would take for a system of n particles with a hidden Uq(sl(2)) 
symmetry.. In this case we have the canonical basis of thee ef^'" m̂ f° r m e t e n s or product of the 
nn representations of Uq(sl(2)). Of these, we need only retain die ones whose overall charge j n 

iss equal to the fixed total charge of the system, say j n — j . These vectors may then be written 
ass tensor products, 

wheree ef^';; ƒ" now denotes a vector in the space UK The braid group representation on Ui 

mayy now be read off immediately from the formula (2.88) which gave the braiding for the full 
tensorr product of t/9(s/(2))-representations. The matrix elements between the ef^'"'j^m which 
aree given in this formula can be used in unchanged form for the vectors e^"fn, since they 
alreadyy did not depend on m and did not mix different j n . A similar treatment of braid group 
representationss for systems with hidden quantum group symmetry is possible in any situation 
inn which öj-symbols may be defined for the quantum group representations involved. This is 
thee case if the tensor products of these representations have a multiplicity free decomposition 
intoo irreducibles. 

2.4.100 Braiding of identical particles and fusion diagrams 

Inn me previous subsections, we have described the braiding for a system of n particles with 
aa hidden L/g(s/(2))-symmetry. Let us now look at the special case in which me particles are 
identical.. This case is of interest for the description of the braiding of identical quasiholes in 
mee RR-states. When me particles are identical, they all carry the same quantum group repres-
entationn 7r2J and hence die upper indices on the elements ef^'"fn of the canonical basis for me 
spacee Uj are all equal to J. Fixing J, we may thus forget about die upper indices and write 
justt ejjv..jn. As in the previous section, we also fix  j n = j . Now die n-tuple ( j i , . . . , jn) may be 
seenn as a path of length n tiirough the space of representation labels of Uq(sl(2)), which starts 
att the trivial representation jo = 0 and ends at j . Of course, not all pams tiirough the space of 
representationn labels will correspond to an element of the canonical basis. A path will represent 
aa basis vector precisely if die representation at position m of die patii may always be found in 
mee tensor product of me representation at position m - 1 with the representation -K2J . This 
meanss precisely that the patii lies on die fusion (or Bratteli) diagram for the representation ir2J. 
Thus,, the patiis of length n on me Fusion diagram of me representation n2J may be taken as a 
basiss for die braid group representation mat describes exchanges in a system of n particles that 
carryy the quantum group representation ir2J. From equation (2.88), one may now easily read 
offf  mat die braid group generator rm will only mix paths that are identical everywhere except at 
positionn m. 

Ass an example let us look at the case of n particles in the 2-dimensional representation of 
UUqq (si (2)). The fusion diagram for this representation is just the diagram drawn in figure 2.1. Let 
pp = (pW,... ,pW) = ((Aj1*, 1), , (Ap

n), n)) be a path on this diagram which starts at (0,0), 
thenn goes through p^\p^2\ etcetera and which ends at me point p  ̂ — (Ap,n) = (A,n). 
Thenn mere is either no path which differs from p only at its mth vertex or diere is exactiy one 
suchh path. If there is such a path, we will call it <rm(p). Let us write down die action of die 
exchangee rm on a path p. We start witii the cases in which p does not have a partner patii. Using 
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equationn (2.88), we see that such paths just get a phase factor. There are four cases: 

A(m-1)) = 2j < A M  < A(™+1)  ̂ Tmp = ql/*p 

A (m- i ) = 2 i >AM>Af + 1>> =*  rmp = q^p 
A (m-i)) = A(m+i) = 0 ) A M  = 1  ̂ TmP = -q-*l*p 

A(m-i)) = A(m+i) = jk, A{,m} = fc - 1 => rmp = - g ~3 / V (2.92) 

Thesee equations may be summarized by saying that the path p gets a factor of q1/A if it does not 
changee direction at its mth vertex, whereas it gets a factor —g-3/4 if it does change direction 
(whichh can only happen at the boundary of the diagram). In obtaining the equations, we used 
thee following values for the 6j-symbols involved: 

== i {|, i . i: |}-{U.{:|}-{|:|} } 
{{ ii  k fc^i  ^ 

ïï I  *il \ = " L  <2 9 3> 
22 2 2 J 

Wee are now left with the case in which p does have a partner path cr(p). In this case, we will 
certainlyy have A<T'> = AJT+1) = A<™^ = AjjJ1» = 2j and, exchanging p with ,(p) if 
needed,, we can also make sure that Aj,m) > A^^j , so that A{,m) = 2j + 1, AJJJ = 2j - 1. The 
relevantt öj'-symbols for this casee are given by 

ll  I J J+l J 

II  5 J J - 1 J L2J + 1J, 

andd combining this with the phase factors in (2.88), we see that, in the linear space with basis 
{p,{p, a(p)}, the exchange rm is represented by the matrix 

I2JJ + 1J, 
- 1 1 

q-V*q-V*  / -n-W1 

mm""  \d\q \ -VLd+iJ^- iJ , ^ ) '  ( } 

wheree we have defined d := 2j»+1. This matrix for rm is obviously symmetric. It is also unitary, 
ass can be easily seen, using the fact that \d + \\q\d — l\q equals [d\^ — 1. We will denote the 
braidd group representation on the paths which start from (0,0) and end at (A, n) by p£ and the 
correspondingg modules by U„. 

Ann induction argument taken from [78] shows that the p£ are all irreducible and that they 
aree non-isomorphic for different A. The representation p\ of the trivial group Bx is irreducible 
becausee it is one dimensional and A = 1 is the only possibility at n = 1. Now suppose that, 
forr all A and all n < m, all p^ are irreducible and non-isomorphic for different A. Then the 
representationss p  ̂ are irreducible and mutually non-isomorphic for all A. To see this look at 
UmUm and suppose for convenience that A does not equal 0 or k. U  ̂has a unique decomposition 
intoo Bm-i-invariant submodules which is clearly given by U* = U^l\ © #£-i ( j u st forget the 
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lastt step in the paths). Because the p^-i are non-isomorphic for different values of A (by the 
inductionn hypothesis), it follows immediately that the /?£, are also non-isomorphic for differ-
entt values of A; their modules have different decompositions into irreducible Sm_i-modules. 
Moreover,, since p£,l\ and fi^\ are irreducible and non-isomorphic, it follows that the only 
possiblee proper i?m_i-invariant submodules of U  ̂ are U^l\ and U^t\. However, these will 
clearlyy be mixed by the exchange rm_i, so that U  ̂ has no proper Bm-invariant subspaces. 
Hencee pA is irreducible. Of course if A equals 0 or A; then the argument becomes even simpler 
andd we need not repeat it. 

2.55 Conformal field theory and quantum groups 
Inn this section, we review the correspondence between conformal field theory and quantum 
groups.. In section 2.5.1, we give a short general description of this correspondence, illus-
tratedd with the example of Uq(sl(2)) versus the sl(2)k WZW-theory. In the next section, we 
goo on to describe the quantum group Uq(sl(m)) and its relation to the sl(m)k WZW-theory. In 
sectionn 2.5.3, we describe representations of the braid group Bn which factor over the Hecke al-
gebraa Hntg. These are important in the description of the braiding of a system of n particles with 
hiddenn ?ƒ«,($/(m))-symmetry. In section 2.5.4, we describe a quantum group for the chiral bo-
son.. Finally, in section 2.5.5, we indicate quantum groups which correspond to the parafermion 
theoryy that is used in the description of the Read-Rezayi states. 

2.5.11 The CFT-QG relation 

Thee relation between quantum groups and conformal field theories has been much studied over 
thee years and it is believed that every conformal field theory has associated to it some quantum 
groupp (or generalization thereof) with the following properties: 

 Each chiral primary field of the CFT (or equivalently: each irreducible representation of 
thee chiral algebra) corresponds to an irreducible representation of the quantum group. 

 The fusion algebra of the CFT is identical to the representation ring of the quantum group, 
i.e.. fusion of chiral primaries corresponds to taking the tensor product of quantum group 
irreps. . 

 The braiding of the chiral primary fields in conformal blocks corresponds to the braiding 
inn the tensor product of quantum group representations, as described by means of an 
.R-matrixx and, if needed, a coassociator. 

Thee points above can be illustrated by the case of the sl(2)k WZW-theory, whose associated 
quantumm group is Uq(sl(2)) at q = e*+*. For this value of q, the unitary irreducible represent-
ationss 7rA of Uq(sl(2)) that have positive quantum dimension are indeed in one to one corres-
pondencee with the affine primary fields GA of the WZW-theory. Moreover, comparing equations 
(2.22)) and (2.53), we see that the fusion rules for the WZW-fields are the same as the decom-
positionn rules for tensor products of f79(sf(2))-representations. We described the braid group 
representationss associated to the fundamental representation of Uq(sl(2)) in section 2.4.10. The 
braidingg of the corresponding conformal blocks of the WZW-theory was calculated by Tsuchiya 
andd Kanie [79, 80] and this braiding is indeed the same as that described in section 2.4.10, up 
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too a renormalization of the blocks. In connection with this, the ^-6j-symbols may be identified 
withh the fusion matrix of the sl(2)k conformal field theory as defined by Moore and Seiberg 
[81,, 82]. The pentagon equation for this fusion matrix then corresponds to the equation (2.81) 
(seee also figure 2.4.7) and the hexagon equation is just the quasi-Yang-Baxter equation (2.83), 
writtenn in terms of 6j-symbols by means of (2.88). 

Notee that it is essential in the above, that the truncated tensor product of f79(s/(2))-represen-
tationss is used, rather than the ordinary one. In other words, we may say that it is essential 
thatt one uses a weak quasi-quantum group rather than an ordinary quantum group. This is not a 
veryy special situation; the fusion rules of many CFTs cannot be reproduced by those of ordinary 
quantumm groups (or quantum groups with an ordinary tensor product). On the other hand, there 
iss mathematical work [8, 83] in which it is shown that, given a CFT, one may always find weak 
quasii  quantum groups that will reproduce its fusion and braiding properties. This does not 
meann that it is known for all conformal field theories how the quantum group generators can be 
representedd in terms of operators in the conformal field theory. In fact, no general construction 
forr these operators seems to be known, although several proposals have been made for CFTs 
thatt have a Coulomb gas description [84, 85, 86]. Through this work, much is known about the 
quantumm groups for the WZW-models. In particular, it is well known that for any semisimple 
Liee algebra g, the gu WZW-model and the quantum group Uq(g) at q = e2ni/t-k+  ̂ are related in 
thee way we have described above (here g is the dual Coxeter number of g). In the following, we 
shalll  be especially interested in the case g = sl(m), because of the close relation between the 
parafermionn theory that describes the RR-states and the sl(2)k and sl(k)2 WZW-theories. 

Beforee we go on, let us cite a few general references on the relation between CFTs and 
quantumm groups. Books that include information on this are for example [71, 87] and a review 
articlee is [68]. An early description of the correspondence between Uq(sl(2)) and the sl(2)k 

WZW-theoryy can be found in [88], 

2.5.22 Uq{sl{m)) and the sl(m)k WZW-theory 

Inn this subsection, we recall some facts about the quantum group Uq(sl(m)) that is associated 
withh the sl(m)k WZW-theory. Uq(sl(m)) is a g-deformation of the universal enveloping algebra 
U(sl(m))U(sl(m)) of sl(m). Such a ^-deformation can be constructed for any simple Lie algebra g. If 
wee denote the simple roots of g by a,, then we can associate to each of these three generators 
Hi,Lf,Hi,Lf, Lj and these will generate Uq{g) as an algebra, subject to the relations 

[H[H ii,H,Hjj]=Q ]=Q 
[H[H ii,Lf],Lf]  = jiLf 

[Lt,Lj][Lt,Lj]  = 6ij[H i\q 

[Lt,Lf}[Lt,Lf}  = { 

00 if Aij = 0 or i = j 
l - A y y 

Y*Y* (_1)*g(a(,ai)S(«-Mij-l)/2 1 ~ Ai 
-nn L 

S S 
* = 0 0 

{Lfy-{Lfy-AiAi>->- aaLf{Lf)Lf{Lf) 88 otherwise. 

(2.96) ) 
Here,, A is the Cartan matrix of g. When q = 1, these relations reduce to the relations for the 
Chevalley-Serree basis of U(g) and when g = $1(2), they reduce to the relations we gave in 
sectionn 2.4.2. If q is not a root of unity, the irreducible representations of Uq(g) are labeled 
byy dominant integral weights of g and one may give formulae for the action of the generators 
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whichh are similar to those given in (1.28). When q is a root of unity, one finds again that all 
thesee representations remain well-defined, but many are no longer irreducible and in particular 
theree are indecomposable representations. 

Thee coproduct A, counit e and antipode S are given by 

A(Hi)A(Hi) = l<S>Hi + Hi<8)l 
A(L?)) = Lf®qHilA + q~HilA®Lt 

e(l)) = 1, e(Lf) = e(Hi) = 0 

S{HS{Htt)) = -Hit S{Lt) = -q^2Ltq-pl2. (2.97) 

Here,, p is the Weyl-vector of g, which is equal to half the sum of the positive roots, or equival-
ently,, to the sum of the fundamental weights. One may check easily that this comultiplication, 
counitt and antipode satisfy the conditions given in section 2.4.2. As usual, one can define the 
tensorr product of representations through the formula (1.4) and as in the case of Uq(sl(2)), this 
tensorr product will usually not be fully decomposable if q is a root of unity. However, it is once 
moree possible to define a truncated tensor product which involves only a finite set of unitary 
irreduciblee representations and which is fully decomposable. If q = e2w,/(*+$)t where g is the 
duall  Coxeter number of g, then the irreducible representations involved are each labeled by a 
dominantt integral weight A such that (A, B) < k, where 6 is the highest root of g. Hence, 
theyy are in one to one correspondence with the affine primary fields of the % WZW-theory. 
Moreover,, as in the case of sl(2), the decomposition rules of the truncated tensor product are 
identicall  to the fusion rules of the WZW-primaries. One may also define a quantum trace and 
aa corresponding quantum dimension and one may then go from the ordinary to the truncated 
tensorr product by projecting out modules of zero quantum dimension. 

Thee tf-matrix is also known (see for example chapter eight of [7] for details and references), 
butt it is in general not so easy to obtain the exchange matrices in any given tensor product of 
representationss from it. The reason for this is that, to calculate the action of the .R-matrix on a 
tensorr product of representations, one needs formulae for the action of the elements of Uq(g) 
associatedd to the roots of g on both representations in the tensor product. Although it is quite 
easyy to obtain formulae similar to (1.28) for the action of the raising and lowering operators 
L„„  associated with the simple roots a*,, the same does not go for the action of the raising and 
loweringg operators that correspond to non-simple roots. Nevertheless, the exchange matrices 
havee been calculated in special cases, one of which is important to us. This is the case of the 
tensorr product of the fundamental m-dimensional representation of Uq(sl(m)) with itself (see 
[7]]  for a detailed calculation). Let us denote this fundamental representation by 7rei, where ex 

denotess the highest weight of the representation as in section 2.3.1. We may then write 

<r(7rejj <g> 7rei ){R) = q  ̂ I q1/2 JT E» <g> £« + £ Etj <8> Ej{ + {q1  ̂ - <T1/2) ] T Ejj <g> En , 
\\ *= i # j  »<J / 

(2.98) ) 
wheree E  ̂ denotes the matrix whose (i, j) entry is one and whose other entries are zero. One 

mayy check easily that this formula gives back the matrix (1.41) in the case of sl(2). 
Inn the following, we want to describe the braid group representation mat is associated with 

ann n-fold truncated tensor product 7r®n. Since tensor products that involve 7rei are multiplicity 
free,, we can apply the methods described in sections 2.4.8 and onwards. That is, we may define 
6j'-symbolss for the tensor products involved and describe the braiding by formula (2.88) and 
finallyfinally  graphically, in terms of paths on the fusion diagram of the representation 7rei. In fact, we 
cann already say quite a lot about the braiding just from the fusion diagram, without a detailed 
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knowledgee of the 6j-symbols. So let us describe this fusion diagram. For q =  e
2™/(k+9)^ each 

vertexx of the fusion diagram may be labeled the number of fundamental representations that 
havee been tensored up to that point, together with a dominant integral weight of sl(m) which 
satisfiess the requirement (A, 6) < k. We may equivalently represent this weight by its Young 
diagramm and if we do this, then the requirement that (A, 0) < k translates to the restriction 
thatt the diagrams should not have more than k columns. Fusion diagrams of this kind have 
alreadyy been drawn in figures 2.1 and 2.2. Instead of using the particle number and the Young 
diagramm for the overall Uq(sl(m))-chaige, one may also use just a Young diagram to represent 
eachh vertex. This Young diagram is then the diagram which reduces to the Young diagram for 
£/g(,s/(m))-chargee if columns of m boxes are removed and whose number of boxes is equal to 
thee number of representations tensored up to that vertex. As an example, we show a diagram 
forr Uq(sl{3)) in figure 2.6. 

11 §" P 

W W 

Figuree 2.6: The Bratteli diagram for the fundamental representation of Uq(sl(3)) at q = e2'*/ 5. This is in fact 
thee same diagram as that shown in figure 2.2, but this time each site in the diagram is uniquely labeled by a Young 
diagramm only. The diagrams in figure 2.2 may be recovered by removing columns of 3 boxes. 

Thee connections between the different vertices are of course determined by the fusion rules 
forr the fundamental representation. These can be elegantly described in terms of Young dia-
grams.. The truncated tensor product of the fundamental representation with the representation 
thatt has Young diagram Y decomposes into the sum of the representations whose Young dia-
gramss have at most m columns and may be formed by adding one box to Y and removing any 
columnss of length m that result. If one keeps the columns of length m then one obtains the 
Youngg diagrams which label the vertices of the Bratteli diagram. The restriction on the number 
off  columns then applies only to the number of columns of length less than m. 

Thee representation of Bn that describes exchanges for a system of n particles with Uq(sl(m)) 
symmetryy may now be described in terms of these Bratteli diagrams. In fact, given the overall 
[/9(sZ(m))-chargee of the system, we may find the Young diagram Y with n boxes which gives 
thiss overall charge and then the Braid group representation space is just the space of paths on 
thee diagram which start at the empty diagram and end at Y. Moreover, each of the exchanges 
T;; will only mix paths that are the same everywhere except possibly at the i th vertex. Note that 
suchh paths occur at most in pairs, since there are no more than two orders in which one can place 
thee two boxes that are added in going from vertex i — 1 to vertex z + 1 (if the boxes are added 
inn the same row, for example, then there is only one admissible order and thus only one path). 
Thee paths which are mixed transform into each other by means of unitary matrices and since 
thee diagrams all become periodic after a while, one needs only to find a finite number of such 
matricess (see also section 2.6.2 for this). To find these matrices exactly, one should calculate 
thee 6j-symbols of Uq(sl(m)). However, we will not do this here, but instead take a short cut by 
usingg the fact that all the braid group representations we need are related to representations of 
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thee Hecke algebra Hn,q, whose representation theory has been well studied. 

2.5.33 The Hecke algebra Hn,q 

Inn thiss paragraph, we give a short description of an algebra which plays an important role in our 
understandingg of the braiding of t/9(s/(m))-representations: the Hecke algebra Hniq. We will 
alsoo describe the irreps of this algebra that are relevant to us. 

HHnn,,qq may be defined as the complex algebra with generators 1, gu <?2,..., gn-i, subject to 
thee relations 

9i9j9i9j = 9j9i {\*-J\  >2) 
9i9i+i9i9i9i+i9i  = 9i+i9i9i+i 

9l9l = {q-Vf + q. (2-99) 

Fromm these relations, we see that Hnq is a g-deformation of the group algebra CSn of the 
symmetricc group, to which it reduces at g = 1. The reason that the Hecke algebra comes into 
playy in the braiding of Uq(sl(2)) representations is that the exchange matrix for the fundamental 
representationn of Uq(sl(m)), given in (2.98), satisfies the following extra relation next to the 
braidingg relation given in (1,17): 

{oR{oRee^Y^Y = (q^r - q
=^1)aFe''ei + q-1/m(l ® 1). (2.100) 

Ass a consequence of this relation, the braid group representation that can be constructed from 
thee i?-matrix also gives a representation of the Hecke algebra Hn,q. This representation is given 
byy the prescription 

9i9i^q^(R^)^q^(R^)iM1iM1 (2.101) 

andd one may easily verify that the defining properties of the J?-matrix and (2.100) guarantee 
thatt the relations (2.99) for the g> are satisfied. 

Thee representations of the Hecke algebra which are induced by Uq(sl(m)) in this way all 
factorr over a quotient of the Hecke algebra, the so called m-row quotient. This is because the 
exchangee matrix (2.98) satisfies even further relations apart from the ones already given. For 
example,, the 2-row quotient of the Hecke algebra (which is also called the Temperley-Lieb-
Joness algebra) can be defined by adding the following relations to those given in (2.99): 

11 + 9i + 9i+i  + 9i9i+i  + 9i+i9i  + 9i9i+\9i = 0 (2.102) 

andd one may check that the matrix qz/A i?ei,ei for Uq(sl(2)) satisfies the corresponding equa-
tion.. Note that the situation we are describing already occurs in the q = 1 case. In that case, 
wee are describing representations of CSn in which the m + 1-row antisymmetrizer vanishes (as 
itt should do for exchanges in a tensor product of m-dimensional spaces). The Young tableaus 
forr these representations thus have at most m rows. The equation above indeed just says that 
thee 3-row antisymmetrizer vanishes, if one identifies the generators Oi of the permutation group 
withh the elements —& of the Hecke algebra at q — 1. We have kept this minus sign for bet-
terr compatibility with the literature on Hecke algebra representations (for example [78]). The 
relationss that need to be added to the Hecke algebra relations to obtain the general m-row quo-
tientt may be written similarly as above; they are just the equations that say that the m -I- 1-row 
antisymmetrizerss vanish, with each Oi replaced by -& . 
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Thee representation theory of the Hecke algebra is analogous to that of the group algebra of 
thee symmetric group as long as q is not a root of unity, but when q is a root of unity (and q # 1), 
theree are complications, similar to those that arise in the representation theory of Uq(sl(m)). In 
particular,, the representation ring of Hniq is no longer semisimple for these values of q. The 
samee is true for the representation ring of the m-row quotients. However, one may restrict one-
selff  to representations that factor over a certain subquotient of the m-row quotient and these 
representationss do form a semisimple ring. We will now give a quick description of the irredu-
ciblee representations of HnA dXq =  e

2,ri/(.k+2)t that factor over this semisimple quotient. These 
representationss (among many others) have been constructed by Wenzl [78] and, independently, 
byy Ocneanu [89]. Another relevant early reference is [90]. They are g-deformations of Young's 
orthogonall  representations of the symmetric group (see for example [91]). Each one of the 
representationss we are interested in is characterized by a Young diagram Y that has at most m 
rowss and at most A; columns of length less than m. The module of the representation charac-
terizedd by Y is the module generated by all paths on the Bratteli diagram of the fundamental 
representationn of Uq(sl(m)) that start at the empty diagram and end at Y. Thus, we do indeed 
gett the same representation modules mat we described in section 2.5.2. Also, the action of the 
elementaryy exchanges is of the kind we described in section 2.5.2; gt does not mix padis that 
differr in any place other than at their zth vertex. Using the work of Wenzl and Ocneanu, we 
mayy now write down the matrices through which gt acts on the spaces of paths that do differ 
onlyy at this vertex. Let us denote the Young diagram at me iih vertex of the path p as Yp\ so 
thatt p = (Yp,Yp ',..., Vp = Y). Then two paths p and p1 can only be mapped into each 
otherr by gt if one has Yjn' = Y^' for all n ^ i. As we have already remarked, the spaces 
off  paths that are mapped into each other by gt are at most two dimensional, since the last two 
boxess that are added in going from the Young diagram at vertex i — 1 to that at vertex i + 1 can 
bee added in at most two different orders. Suppose mat there are indeed two admissible orders. 
Thesee two orders then correspond to two paths p and p' that form a basis for the space that we 
aree interested in. One may define me distance between the two boxes involved as me number of 
hopss from box to box that one has to make if one walks from the first to the second box along 
mee right hand side of the Young diagram lp . One may also define a signed version of this 
distance,, which we will denote dp>i. Suppose that the first box is added in row rx and column cx 

off  me Young diagram Ypl' and that the second is added in row r2 and column c2 of the Young 
diagramm Ypl+  \ then this signed distance is given by 

dp,idp,i = r2 - n + d - c2. (2.103) 

Clearly,, this is equal to the ordinary distance if the first box is located higher up and more to the 
rightright than the second. In the opposite case the formula above gives minus the distance. Using 
thiss signed distance, we may now write the action of the exchange gt on the path p as 

Hencee if dpti > 0 (which may be achieved by exchanging p and p1 if necessary), then the matrix 
forr the action of the exchange gt on the basis {p, p'} is given by 

qq11'' 22 f n-^/2 

9i9i = -
14 4 
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andd one may check easily that this matrix is symmetric and unitary. 
Thee action of the exchange g{ on a path p that does not have a partner path, i.e. for which 

theree is no other path p' ^ p such that Y^n) = Y^n) for all n ^ i, is just multiplication by a 
phasee factor. This phase factor equals q if dPyi = - 1 , which means that the two boxes were 
addedd in the same row, and it equals - 1 if dPti = 1, which means the boxes were added to the 
samee column, or if dPti = k + 1, which happens at the "edges" of the fusion diagrams. 

Clearly,, the representations we have just described are the right ones for the description of 
thee braiding of particles with a hidden £/g(s/(m))-symmetry. For a system of n particles with 
overalll  quantum group charge A, we need the representation labeled by the Young diagram that 
consistss of n boxes and which reduces to the Young diagram of the charge A on removal of 
alll  columns with m boxes. With this correspondence, one may indeed check that the formulae 
givenn in this section are the same as the ones we gave for Uq(sl(2)) in section 2.4.10, up to 
thee phase factor in (2.101). Using the explicit form of the exchange matrices, it is not difficult 
too prove some nice mathematical properties of the representations above. For example, Wenzl 
hass proved [78] that they are irreducible and that representations labeled by different Young 
diagramss are non-isomorphic. The argument used in the proof is essentially the same as the one 
wee described at the end of section 2.4.10 for the case of Uq(sl(2)). 

2.5.44 A quantum group for  the chiral boson 
Inn this section, we will indicate how a quantum group may reproduce the fusion and braiding 
off  the CFT that describes a chiral boson on a circle of radius y/2p, where p e Z. This CFT has 
2p2p chiral primary fields, which are the vertex operators ut = eilW^, for I <E {-p + 1,... ,p}. 
Thee vertex operator vx has conformal weight ^ and the fusion is very simple, one has 

vvhh x vh = uh+h mod 2p. (2.106) 

Al ll  conformal blocks of primaries may be calculated explicitly, giving 

K ( * I ) , " . , « 4 . M > = n ^ - ^ - ) M j / ( 2 p ) -- (2-io?) 

Itt follows that the braiding of these blocks is Abelian; the half-monodromy which takes a uh 

aroundd a vh gives the block a factor of e
xlll2*K 2p\ 

Wee would like to reproduce the above data through a quantum group, that is we would like to 
findd a quantum group which has 2p irreducible representations whose fusion rules and braiding 
aree identical to those of the boson vertex operators. It turns out that this cannot be achieved by 
aa quantum group whose coassociator is trivial. This can be most easily seen in the case p = 1. 
Inn this case, we would need a quantum group with two representations 7r0 and  satisfying 

7Too ® 7T0 = 7T0 

7T00 ® 7Ti = 7Ti 

7Ti®7Tii  - 7T0. (2.108) 

Noww if we look at the threefold tensor product xt ® -KX ® iru then we know on the one hand 
thatt braiding the left -KX over the other two must give two factors of ei,r/2 yielding a total factor 
off  e

i7r = - 1 . On the other hand, the braiding factor Fb is also given by the following formula 
(whichh is only valid if the coassociator is trivial) 

FFbb = TTi ® TTi ® 7Ti((l ® A){R)) = TTi ® 1T0{R). (2.109) 
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Heree we have used the information that the two rightmost representations must fuse to nQ. We 
aree thus really just exchanging the left ITI over a n0 and this should give a factor of +1, which 
yieldss a contradiction. To describe the chiral boson, we should thus either use a quantum group 
withh a non-trivial coassociator or relax the demands on the correspondence between quantum 
groupp and CFT. A good candidate for a non-coassociative quantum group would be Uq(sl(2p)) 
att q = e2tir/3 (or k = 1). This weak quasi-quantum group does have 2p representations with 
thee right fusion rules and the braiding for the fundamental representation does reproduce that 
forr the vertex operator uit up to a trivial scalar factor in every exchange. However, checking 
thee correctness of the braiding for all the other representations of Uq(sl(m)) seems to be rather 
complicatedd and therefore we will choose a different approach. 

Iff  we relax the demands on our quantum group such that more than one quantum group 
representationn may correspond to the same charge sector in the CFT, then we can reproduce 
thee braiding of the chiral boson CFT by a very simple finite dimensional coassociative quantum 
group.. As a Hopf algebra this quantum group is the group algebra of the cyclic group l^v. A 
convenientt basis for this algebra is given by the primitive idempotents e0, e i , . . ., e4p_i which 
projectt on the isotypical components of the representations of Z4p in the group algebra. In 
formulae:: the e{  are elements that satisfy 

eeiieeii = Sijei (2.110) 

andd the full set 7r0,..., 7r2m-i of irreps of Z|p is given by 

*i{e*i{e jj)) = Sii. (2.111) 

Thee coproduct reads 

A(ejA(ej)) = ^ e» ® e3-i mod 4p (2.112) 
i i 

andd one may easily check that this leads to the fusion rules 

JT<< ® ̂  = ir i+i  mod 4p- (2.113) 

Counitt and antipode are given by 

e(ct)) = Mei) = <fo, S[ei) = e4p_i. (2.114) 

Soo far, we have just described the group algebra of Z^ in terms of the e*. Now let us introduce an 
.R-matrix.. One may easily check that the most general i2-matrix which satisfies the requirements 
(1.13),(M4)) and (1.15) is of the form 

RR = ^qiiei®ej, (2.115) 

wheree q is a 4pth root of unity. If we take q = 1, then this is just the identity on CZ4p ® CZ4p 

andd the braiding is trivial. On the other hand, if q  ̂ 1 then we have non-trivial braiding and the 
braidingg factor we get when taking a 7r< around a TTJ will be q{K 

Lett us call the quantum group we have just described CZ4pi9. The correspondence between 
thiss simple quantum group and the chiral boson CFT can now be made as follows. The chiral 
sectorr corresponding to v\ is represented by the two quantum group representations n-j and 7r/+2p-
Off  these, the 7T/ with 0 < I < 2p represent the primary fields and their even conformal descend-
ants,, while the Tvt with 2p < I < 4p represent all the odd descendants. The fusion rules of the 
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quantumm group are then consistent with those of the CFT. In particular, it is impossible to distin-
guishh particles represented by the representations ir l and 7r'+2p by means of the tensor product 
decompositionn rules for these representations, just as it is impossible to distinguish the primary 
fieldfield ui from one of its descendants by means of the CFTs fusion rules. The braiding is also 
correct,, if we choose q = ei,r/(2p). The braiding factors we get for two different representatives 
off  the same CFT-sector may now differ by a minus sign, but this is in fact just what we want. 
Too clarify this, let us look once more at the example we gave for the case p = 1. For this case, 
thee vacuum sector will now be represented by the representation n0 and also by the represent-
ationn 7T2, but if we exchange a TTI with a 7r0 then we get a factor of 1, while if we exchange 
aa 7Ti with a 7r2, we get factor of - 1 . We already know that if we have three vx fields and we 
exchangee the first over the last two, we will get a factor of - 1 . This is due to the fact that the 
correlatorr (2.107) will have a single zero at any point where two vx -fields are brought together. 
Iff  one would just place a vQ at this point there would be no such zero and hence also no braiding 
factor.. Hence we can think of TT0 as representing the vacuum sector, while we can thinkk of ir2 as 
representingg a charge-neutral bound state of two î i fields. 

2.5.55 Quantum groups for  the parafermions 

Inn this section, we shall describe quantum groups for the Zfc-parafermion conformal field theory 
thatt is used in the description of the RR-states. Since there are two different coset descriptions 
off  this CFT (cf sections 2.3.1 and 2.3.1), one can also expect to get two different quantum group 
theoreticc descriptions. 

Thee quantum group for  sl(2)k/U(l)k 

Lett us start with the coset sl(2)k/U(l)k. For this coset, we have the factorisation formula (2.26), 
whichh describes a Virasoro primary field of the sl(2)k theory as a product of a parafermion field 
andd a vertex operator for a chiral boson that lives on a circle of radius y/2k. We already used this 
formulaa to explain the conformal weights and fusion rules of the parafermions and clearly, it 
cann also be used to calculate braidings. To see this, look at the following equality of correlators 
whichh follows from (2.29): 

<G£(*x),, , GfcCO) = « ' ( 2 i ) , -  -M:M) ( e ^ i ) ,  - , c ^ W >  (2-116) 

Thee braiding on the left hand side of this equation is just a braiding of s/(2)fc-fields and the 
matricess which describe this are known to be the same matrices that describe the braiding of 
UUqq{sl(2)){sl(2)) representations at q = e

2iw/(k+2) (the labels A; do not play a role in the braiding). The 
braidingg on the right hand side will be described by matrices which are products of a matrix for 
braidingg the parafermions and a known scalar factor for braiding the boson's vertex operators. 
Thus,, we may obtain the braiding matrices for the parafermion fields by just bringing the scalar 
factorr obtained from the bosonic correlator to the left. 

Thee braiding matrices which are obtained from this recipe are the same braiding matrices 
thatt one gets for the quantum group A^  ̂ := Uqi{sl{2)) ® CZ4M,, where qx = e2^^k+2^ 
andd q2 = e"i7r/2fe. The irreducible representations of this quantum group are tensor products of 
UUqiqi{sl{2))-kreps{sl{2))-kreps and CZ4fei92-irreps and hence they are labeled by an s/(2)-weight 0 < A < k 
andd an integer 0 < A < 4fc. We will write these representations as 7r£. The representation 7r£ 
wil ll  represent the $£ mod 2fc-sector of the parafermion CFT. As in the case of the chiral boson we 

68 8 



2.5.. Conformal field theory and quantum groups 

thuss have more than one quantum group representation that corresponds to the same sector of the 
CFT.. In fact, we now have four quantum group representations for every sector of the CFT, since 
nott only have we doubled the period of the label A (as we did for the boson), but we have also not 
takenn the second of the field identifications (2.28) into account. Looking at this identification, 
wee see that the labels (A, A) and (k - A, A - k), mat should be identified, usually stand for 
quantumm group representations of different dimensions (A + 1 and k — A + 1 respectively), 
althoughh their quantum dimensions are equal ([A + l j  q = [k + 2 — (A + 1)J q = [k — A 4- l j  q). 
Nevertheless,, we believe that the quantum group Aqu<l2 will give a good description of the 
CFTss braiding properties. To motivate this statement, let us first look at the tensor product 
decompositionn of A^^. This is given by 

min{A+A',2fc-A~A' } } 

A"=|A-A' | | 

whichh is the same as the fusion rules (2.29) for the parafermions, except that the identifica-
tionss (2.28) are not incorporated. Nevertheless, using the formulae (2.58) for the truncated 
tensorr product of the Uqi (s/(2) ̂ representations, one can see that it is impossible to distinguish 
particless in representations that correspond to the same parafermion sector by means of these 
fusionn rules alone. In other words, it is consistent with these fusion rules to declare that particles 
inn the representations 7rA, 7r +̂2jt and 7r^£ are indistinguishable, just as it is consistent witii the e 
fusionn rules of a CFT to declare all descendants of a field indistinguishable. 

Noww let us look at the braiding of ^li92-representations. To describe this braiding, we can 
usee the bases that we introduced for Uqi(sl(2)) in section (2.4.8), because the representations 
off  CZ4jfei92 are one-dimensional. The matrices that describe the braiding w.r.t. these bases will 
bee the product of the matrices for Uqi (sl(2)) that we gave in (2.88) with the powers of q2 that 
wee get from the ^-matrix (2.115) for C Z ^ ^. Using the symmetries (2.77) of the truncated 
6j-symbols,, one may then check that, when one changes the representations which represent 
CFT-sectorss in a way which is consistent with the quantum group's fusion rules, the elements 
off  the braiding matrices will at most get minus signs. Again, this situation is similar to the 
situationn for the chiral boson that we discussed in section 2.5.4. 

Wee are now left with the difficulty of choosing the quantum group representations which 
shouldd represent the fields $2

 an<  ̂$1» which are important for the description of electrons and 
quasiholess in the i?i2-states. We will use the representations TT£ and n\ for this (rather than for 
examplee n%_2 and TTJJ,+1). This choice keeps comparison to the CFT-picture easy and it gives 
goodd results. Also, it gives results which are consistent with those of the quantum group for the 
cosett sl(k)l x sl(k)l/sl(k)2, for which there is a one-to-one correspondence between quantum 
groupp representations and CFT-sectors. 

Thee quantum group for  sl(k)l x si(A;)1/5Z(fc)2 

Forr the coset sl(k)l x s/(fc)1;/sf(k)2, we do not have a factorisation formula like (2.26) and there-
foree we cannot find die braiding matrices for this coset by the method we used for sl(2)k/U{l) k 

inn the previous section (cf. formula (2.116)). Still, the results of the previous section and also the 
fusionn rules and modular properties 10 of sl{k)x x sl(k)Jsl(k)2 suggest a natural candidate for 

10Forr modular properties of cosets, one can consult for example [65],[15]. The relationship between modular 
andd braiding properties of CFTs and quantum groups is clarified in [68]. 
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aa quantum group related to this coset: the quantum group Uq3(sl(k)) <g> U^slfó)) ® Uq4(sl(k)) 
withh q3 = eiir/(fe+1) and q4 = e-

i7r/(*+2) = («ft)-1. The irreducible representations of this 
quantumm group are tensor products of those of the factors and hence they are labeled by two 
«/(fc^-weightss and an s/(fc)2-weight, just like the fields $£I ''i2 of section 2.3.1. Let us thus 
denotee the quantum group irreps as 7r£1,M2. We are now in the same situation mat we en-
counteredd in the case of the coset sl(2)k/U{l) k; we have several quantum group representa-
tionss per CFT-sector, because the quantum group does not take the identifications (2.32) into 
account.. However, in this case, there is a subset of representations of the quantum group which 
closess under fusion and which contains exactly one representation for each CFT-sector. In 
fact,, there are two such subsets: the set of irfc1'* 12 with ^i = 0 and the set of ir^1^2 with 
fifi 22 — 0. If we restrict to one of these sets (clearly, it does not matter which of the two we 
use),, then we are effectively forgetting about one of the £/,3(sJ(fc))-factors of the quantum 

groupp and hence we may say that the quantum group for the coset s/(fc)1 x sl(k)1/sl(k)2 is 
Z3q3i944 := Uq3(sl(k)) ® UqA(sl(k)). The irreducible representations of this quantum group are 
labeledd by an s/(A;)1-weight ^i and an s£(fc)2-weight fi. For the irreps mat are relevant to the 
descriptionn of the coset CFT, the s/ffc^-weight is uniquely determined by the s/(&)2-weight 
throughh the branching rule (2.30), so that we may choose to label the relevant irreps by just a 
singlee s/(fc)2-weight /i. We may write these representations n  ̂and they are in one-to one corres-
pondencee with the fields 3^ we defined in section (2.3.1). Clearly, the fusion rules of the ir^ are 
thee same as those of the 3^; they are identical to the fusion rules for the corresponding sl(k)2-
fieldsfields or L^2(sZ(A;))-representations. We have not checked if all the braiding representations we 
gett from the quantum group Uqa(sl(k)) <g> Uq4(sl(k)) are equivalent to those one gets from the 
quantumm group Aqi,q2 of the previous section, but we do know this for the representations that 
aree related to the quasiholes of the i?i?-states. In section 2.5.5, the quasihole was represented 
byy the irrep n\ of Aqiiq2, whereas here, it must clearly be represented by the irrep 7rei of Bqsm 

(forr the notation ei, see section 2.3.1). Explicit calculation of braiding matrices, using formulae 
(2.105),, (2.101) and (2.115) shows that the braid group representations related to these irreps 
aree indeed equivalent. Rather than writing out all these calculations in detail here, we will make 
somee remarks which make this result very plausible. First of all, the braid group representations 
wee get from the tensor products (Tf\)<8m and TT®" have the same fusion diagram associated to 
them.. This guarantees for example that the representations will have a similar structure (see the 
discussionn at the end of section 2.5.2) and in particular that their dimensions are equal. Second, 
thee eigenvalues of the matrices that represent the fundamental exchanges may be easily found if 
wee note that the representation matrices of the canonical Hecke algebra generators always have 
eigenvaluess —1 and q (this follows directly from the last relation in (2.99)). Thus, if we denote 
thee eigenvalues of the braiding for n\ by ai and a2, then we have, using (2.101) and (2.115): 

aa22 = (qi)-V*{-l) q2 = -e=1ti8& L. (2.118) 

Onn the other hand, the eigenvalues ft and ft for the braiding associated with nei can be found 
usingg (2.101) and this yields 

*+ ll  *+ l - i (2*+l) i r 

ftft  = (g4)" « (-i)(g2)" 2fc «2 - -e *<fc+2> = <*2 

ftft  = ( g 4 ) - ^ ( - l ) ( f t ) - ^ ( - l ) = c i ^ = a i , (2-119) 

soo that the eigenvalues of the braidings are equal, as they should be. 
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2.66 Quantum group picture and braiding for  the RR-states 
Inn thiss section, we will describe the Read-Rezayi states as systems of point particles with a hid-
denn quantum group symmetry. We also give an explicit description of braiding representations 
thatt are associated with these states. All of this will be done in subsection 2.6.1. In section 2.6.2, 
wee will give an alternative description of the resulting braid group representations, which does 
nott make any explicit use of quantum groups. In this description, it is also somewhat easier 
too change the number of quasiholes in the system. Finally, in section 2.6.3, we show how the 
resultss a of Nayak and Wilczek [17] for the Pfaffian state arise as a special case. 

2.6.11 RR-states and hidden quantum group symmetry 

Inn section 2.3.2, we described the RR-states as conformal blocks in a CFT which was the tensor 
productt of the parafermion CFT and a CFT for a chiral boson. In section 2.5.5, we derived a 
relationn between the parafermion CFT and the quantum groups AqiiQ3 = Uqi (sl(2)) ® CZ4fc]92 

andd Bqs  ̂ = Uq3 (sl(k)) <g> UQ4(sl(k)). In section 2.5.4, we gave a quantum group for the chiral 
boson.. Clearly, we can thus make a quantum group which will describe fusion and braiding 
forr the Read-Rezayi states by tensoring the parafermion and boson quantum groups. However, 
sincee the extra boson factor does not affect the fusion of the relevant representations and only 
addss some scalar factors to the braiding matrices, we will choose to work with -4qll92 and B^^ 
andd to add the scalar factors by hand. Thus, we see the following picture of the RR-states 
emerge.. The RR-system of electrons and quasiholes can be seen as a system of point particles 
withh hidden quantum group symmetry (cf. section 2.4.9). The electrons, which were repres-
entedd by the operator ift = $° = $2ei in the CFT-picture, are now point particles which carry 
thee representation 7rJ, of A^,  ̂ or the representation 7r2ei of Bq3tq4. Similarly, the quasiholes, 
whichh used to be represented by the field a = <&}  = <&ei, now carry the representation ir\  of 
AqAqxmxm or the representation irei of Bq3tq4. The state of an RR-system with N electrons and n 
quasiholess may then be described as a vector in the tensor product of N -n% (or 7r2ei) modules 
andd n xj (or 7rei) modules. However, not all of the vectors in this tensor product correspond 
too physical states. First of all, we have to restrict to the states in a truncated tensor product 
withh a given bracketing, as explained in sections 2.4.3 and 2.4.6. Second, there is a restriction 
thatt comes from the fact that the conformal block in (2.37) vanishes unless all the fields that 
appearr in it fuse into the vacuum sector. This now means that the system as a whole is in one 
off  the ^^-representations 7r°, TT£ or in the Bq3tq4-representation 7r0. Thus, the physical states 
inn the tensor product are those that lie in a truncated tensor product and are in a global quantum 
groupp representation that corresponds to the CFT's vacuum sector. The second condition has 
thee same consequence as the corresponding condition for the CFT; one has to have N + n equal 
too zero modulo k, because otherwise there are no states that fulfil l this condition. The condition 
cann be interpreted as saying that the incorporation of more electrons in an RR-system and the 
creationn of quasiholes in such a system are .A-charge preserving processes. It follows as in the 
CFT-picturee that quasiholes may only be created in multiples of A; at a time (if the number of 
electronss is kept fixed). 

Noww let us look at the braiding of electrons and quasiholes. For convenience, we will do 
thiss in terms of Aqim, but the treatment in terms of B^  ̂ will give equivalent results (see the 
discussionn at the end of section 2.5.5). Since the representation ^ is one dimensional, the 
braidingg between electrons is Abelian. This means any exchange of electrons will just give a 
phasee factor. To find this factor, one may use the formulae (1.39) and (1.28) for the universal R-
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matrixx and for the representations of Uqi (5/(2)), the analogous formulae (2.115) and (2.111) for 
thee universal i?-matrix of a,4k,q2»

an^ m e explicit factors from the boson vertex operators which 
appearr in the expression (2.37) for the wave function. All this together just gives a factor of —1, 
ass is appropriate for fermions. Similarly, one may show that there is no non-Abelian braiding 
betweenn electrons and quasiholes and that the braiding factor for electron-quasihole exchanges 
iss equal to one. Hence, as far as the braiding is concerned, the electrons and quasiholes can be 
treatedd separately. Since only the quasiholes have non-Abelian braiding, we will from now on 
focuss on these. 

Thee braiding associated to a system of identical particles with hidden quantum group sym-
metryy can be elegantly described in terms of a basis that is labeled by the paths on the fusion 
diagramm of the quantum group representation carried by the particles (we described this in detail 
inn sections 2.4.8 to 2.4.10). The quasiholes of the RR-states carry the Aquq2-representation TT{ 
andd the fusion diagram for this representation is the same as that for the parafermionic field $} , 
whichh is in turn the same as the fusion diagram for the spin-\-representation of Uqi {sl(2)). The 
braidingg representations associated to this C/g(s/(2))-representation were described in detail in 
sectionn 2.4.10 (and they were also included in the material of section 2.5.3). The only difference 
betweenn the braid representations described there and the braiding for the RR-quasiholes lie in 
aa scalar factor for every exchange, which comes from the CInk,q2 part °f Aquq2

 an<^ fr°m m e ex* 
plicitt factors in the wave function (2.37). Thus, a basis for the space of states with n quasiholes 
inn fixed positions is labeled by the paths on the fusion diagram of figure 2.1 which start at the 
pointt (0,0) and which end at the point (n, A), where A = —N mod k, so that die Aqim-charge 
off  the whole system corresponds to the vacuum sector of the CFT. We will call the braid group 
representationn on this space p£. In this representation, the braid group generator rm will only 
mixx paths which differ from each other only at the mth node. Given any path p, there will be at 
mostt one path p' which differs from p only at the mth node and we will call this the partner path 
off  p at node m. If a path does not have a partner path at node m, then the action of rm on this 
pathh will be multiplication by a scalar factor. To give this factor, let us first take q =  e

2ni^k+2\ 
soo that we have 

gii  = g, g2 = g~*~*- (2.120) 

ii  I l - M  , 
Thee path will then get a factor of —q ^ 2(̂ +2) jf \i changes direction at the rnm node and a 

l - M M 

factorr of g 2707+27 otherwise. When M takes its lowest physical value of 1, these factors reduce 
too — q~x and 1 respectively. If a path does have a partner path at its mth node, then the path 
andd its partner path will have the same representations at nodes m — 1 and m + 1 and these 
representationss will have the same dimension. Let us call this dimension d. The exchange rm 

wil ll  then act on the vector space generated by the path and its partner path through the matrix 

h{m)h{m)-- W, WLd+iJ,L<«-iJ t -odl2  ( ' 

Heree we have ordered the basis so that the first of die basis vectors corresponds to the path with 
thee highest representation at node m of the diagram. The matrix above is symmetric and unitary 
andd should be compared with (2.95). The braid group representations p„  are irreducible by the 
samee arguments as those we used for the braid group representations associated with Uq(sl(2)). 
Informationn on their dimensions has been gathered in section 2.3.4. 
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2.6.22 Tensor  product description of the braiding 

Wee will now set up an alternative description for the braid group representations pA of the 
previouss section. In this description, the representation spaces are seen as subspaces of n-
foldd tensor product spaces. This makes it somewhat closer in spirit to the description Nayak 
andd Wilczek have given of the braiding for the Pfaffian state [17], a fact we will utilize in 
sectionn 2.6.3. We also feel that the description of this section is useful in itself, because it shows 
veryy clearly how braidings in systems with an arbitrary number of quasiholes can be performed 
byy a recipe that depends very littl e on this number. 

Lett us start by defining Vkj, to be the fc-dimensional vector space spanned by orthonormal 
vectorss which represent the possible /th steps in a path on the fusion diagram of figure 2.1. We 
write: : 

VVk>lk>l  = < 

Span{v0)i,, v2,3, , vk-2,k-i, v2,i, u4i3,..., t;fc)fc-i}  {k even , / odd) 
Span{üii2,, i>3,4> ) vk_hk, vii0, v3i2,  vk-i,k-2} {k even , I even) 
Span{v0,i,, v2,3, , Ufc-i,*, v2,i,v 3̂,..., vk_lik_2} {k odd , I odd) 

LL Span{vi,2, t>3,4) , wfc_2,jfc_i, vitQ, u3i2,..., t>fc,fc-i}  {k odd , / even). 

(2.122) ) 

Heree the indices on each basis vector represent the weights at the starting points and end points 
off  the piece of path represented by the vector. In order to simplify the description, we have 
also,, for I < k, included some vectors which do not actually correspond to bits of path in the 
fusionn diagram of figure 2.1 (for example the vector v2ii at I — 1). Clearly, any continuous 
pathh of length n through the fusion diagram may be represented by a canonical basis vector 
off  the "domino" form VAX,\2 <g>  fA2,A3 ® ^A3,A4 ®  ® ^A„_I,A „  in the tensor product space 
Vk,iVk,i ® Vk,2 <8> ... ® Vk,n- The paths in the representation space of pA can be isolated by requiring 
A00 = 0 and An — A. 

Wee can now define a matrix representation r \ n of the relations (1.11) on the given tensor 
productt space which has a very simple form and which reduces to the braid group representation 
ppAA when one restricts to the subspace of the tensor product which corresponds to the paths in 
ppAA.. The action of the r, is defined as follows, ^ „ ( r , ) is always of the form 1 <g>... ® 1 <g) Rkji ® 
11 ® . .. ® 1, where the matrix Rkj acts only on Vk,i <E> Vkj+i. On the basis vectors which are of 
dominoo form in the ith and (i + l) t h factor, we take 

Rk,iRk,ivvAi,Ai+lAi,Ai+l  ® uAi+l,Ai+ 2 = O ^ A ^ + l <§> ^ + 1 ^ + 2 

Rk,iVAi,Ai~lRk,iVAi,Ai~l ® VA(-l,Ai- 2 = « « A J A - I ® ^ - 1 , ^ - 2 

—aqq 2 
iik,iiik,i vvAi,Ai+lAi,Ai+l  ® «Ai+I A = I A .  i l  vAi,Ai+l  ® * A + l A -

aqaq~'~' WW..ll^^ U[AiU[Ai K^K^ +i+ie„*e„* +w<+w< (i < A< <k-1) 

r.. a<l  2 

fticiVA^Ai-ifticiVA^Ai-i  ® «Ai-i A = TA—rrr V A * .Ai- i ® ^ - I A LA,, + 1J9 

aq-^[Aaq-^[Aii + 2\g[A i\ 
«A^At+ll  ® «A,+I,A4 (1 < A,- < A; - 1) 

LA.. + 1J, 
RkflVRkflVAilAilAAi+i+ ii  <g> VAi+i A = ~aq~lVAi.Aj+1 ® «Aj+IA (A*  = °) 

^ j fc^A iA- i®^- ! ^^ = -ag^VAiA-i^WArf-i A (At = fc), (2.123) 
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wheree we have defined 
l - M M 

aa = q2(kM+2), (2.124) 
Thiss factor of course reduces to 1 when M = 1. For basis vectors v which are not of the domino 
formm in Vk,i <8> V^t+i, we define RktiV = 0. With this definition, the matrices in Tk,„ satisfy the 
relationss (1.11), but they are not invertible (of course they are invertible if we restrict to the 
spacee generated by vectors of the domino form). Alternatively, one may set RkjV = v. In that 
case,, the matrices in I \ n are invertible, but they no longer satisfy the second relation in (1.11) 
(off  course, they still do satisfy this relation on the "domino state space"). It is not difficult to 
seee that, on the set of vectors which corresponds to the paths of p„,  the representation defined 
heree indeed reduces to p .̂ The matrices i?*^, for given k, depend only on the parity of i, which 
meanss that knowledge of R^i and R^p is enough to determine the representation Yk^n and hence 
alsoo all the p„  completely. This is quite useful, because it gives us an easy way to go from a 
descriptionn of n particles to a description of n +1 particles; we just add another tensor factor and 
usee the same matrices R^i and R  ̂ as before to implement particle exchanges. We hope that 
thiss explicit recipe can be a small first step towards a second quantized description of particles 
withh non-Abelian statistics. 

2.6.33 Reproducing the results for the Pfaffian state 

Noww let us check that our results reproduce those of Nayak and Wilczek [17] for A; = 2, n — 2m 
even,, N even and M = 1. In this case, the relevant paths on the fusion diagram have to end at 
thee coordinates (0, 2m) in case m is even and at the coordinates (2, 2m) in case m is odd. The 
fusionn diagram for k = 2 is given in figure 2.7 Each of these paths can be uniquely characterized 

Figuree 2.7: fusion diagram for the quasiholes at k = 2. The diagram must be thought extended indefinitely in 
thee A-direction 

byy stating whether or not it changes direction at each of its odd numbered vertices. If m is even, 
thenn the paths have to change direction an even number of times in order to end up at the point 
(0,2m).. If m is odd then the number of changes of direction also has to be odd in order for 
thee path to end up at the point (2,2m). Thus, for m even, we may represent any path of length 
2mm by a ket \si,S2,...sm), where each of the s; is a sign, a plus sign denoting a change of 
directionn and a minus sign no change. The physically relevant paths are then the paths for which 
thee product of all these signs is a plus sign. For m odd, we may do the same, but now with a 
minuss sign denoting a change of direction and a plus sign denoting no change. The relevant 
statess are then once more the ones whose overall sign is positive. Both for m odd and for m 
even,, we thus describe a 2m _1 dimensional space whose basis vectors are labeled in the same 
wayy as those of Nayak and Wilczek. Just as Nayak and Wilczek have done, we will interpret 
thiss space as a subspace of an m-fold tensor product of two dimensional spaces, each of which 
hass basis {| + ), | — )} . Now let us check that the action of the braiding matrices on these states 
iss also the same as in [17]. 
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Forr k = 2, the tensor product V*,! <S> Vk,2 contains four states with the domino property: the 
statess u0,i <8>ui,o, ^o,i ®vi,2, ^2,1 ® üi,2 and u2,i ® v\$. Using these as an ordered basis of relevant 
states,, the matrix i?*,! can now be found by filling  in (2.123). It is given by 

Rk,\Rk,\ — 

ii  0 0 0 
00 1 0 0 
00 0 i 0 
00 0 0 1 

(2.125) ) 

Fromm this, we may read off that the action of the braid group generator r2/+i on the sign states 
|s i , . . . ,sm) isgivenby y 

T2i+i\si,...,sT2i+i\si,...,smm)) = 
ff  l | * i , . . . t 

11 *| «!,...,
i )) (&21+1 =m + l mod 2) 
)) {$21+1 = m mod 2). 

(2.126) ) 

Inn this equation, we let the value + of me symbol s2«+i correspond to 0 mod 2 and we let the 
valuee - correspond to 1 mod 2. We see that T2I+I  acts only on the (2/ + l ) t h factor of the tensor 
productt of sign spaces and on this factorr it is given by the following 2 x2 matrix: 

T21+1T21+1 = < 

(mm = 1 mod 2) 

(mm = 0 mod 2). 
(2.127) ) 

Inn Nayak and Wilcek's work, the action of TJ+I also corresponds to the action of a diagonal 
matrixx in the (/ + l) t h tensor product factor. In this case, the matrix does not depend on m and 
itt is given by (cf. (2.51)) 

'' i 0 JVWW _ 
'21+1 '21+1 

' l a T ' SS — ==  e*e* - (St ) -- (2.128) ) 

Here,, <r3 denotes the third Pauli matrix. We see that the Nayak-Wilczek matrix is the same as 
ours,, up to a change in the order of the basis when m is odd. 

Thee tensor product 14)2 <8» Vfci3 contains only two states with the domino property: the states 
Vi,oo ® ̂ 0,1 and i>0,i <8> vi)0. Using this as an ordered basis for the relevant states, the matrix Rkt2 
cann again be found from (2.123) and is given by 

( I-HH - i f t \ 

4** if* J (2.129) ) 

Fromm this, we may read off the action of the braid groupp generator r2\ on the states j s\,..., sm). 
Thiss generator acts only on the (2l)tb and (2/ + l) t h tensor factors of the sign space and on those 
itt is given by the matrix: 

T211 = 

/ / 

V V 

! ! 
2 2 
0 0 
0 0 

-Hi -Hi 
2 2 

0 0 
Hi Hi 

2 2 

0 0 

0 0 

2 2 
0 0 

22 » 
0 0 
0 0 (2.130) ) 

/ / 
wheree the basis on which this matrix acts, is {| + + ), | H—), | — \ - ) , | }} . The matrix 
abovee is identical to Nayak and Wilczek's matrix for T21, which we gave in (2.51). Hence, we 
havee reproduced Nayak and Wilczek's result Note that the change of order in the basis which 
wass needed for T2J+I when m is odd has no effect on the matrix for ra, which is why the result 
doess not depend on the parity of m this time. 
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2.77 Discussion and outlook 
Wee have shown how quantum groups may be used to give an algebraic description of the braid-
ingg and fusion properties of the excitations of non-Abelian quantum Hall systems. Due to the 
relationshipp between conformal field theory and quantum groups, it is in principle possible to 
findfind such a description for any quantum Hall state that has a CFT-description. As an application, 
wee obtained the explicit braiding matrices for the quasihole excitations over the Read-Rezayi 
seriess of states. In a special case, these reduce to the matrices given by Nayak and Wilczek in 
[17],, as they should. 

Thee obvious question to ask is now whether one can somehow make predictions about phys-
icall  quantities from the results we have derived. The answer to this depends very much on what 
quantitiess one considers as physical. For example, one may fairly easily calculate amplitudes 
forr Aharonov-Bohm scattering of quasiholes from the braiding matrices we have given, but it 
seemss unlikely that the control over quasiholes that one needs to test these will soon be reached 
inn experiments. 

Onee would probably have better chances of making contact with experiment if one could 
findfind effects of the non-Abelian braiding in some transport properties of the quantum Hall state. 
Too be able to make predictions about such quantities, one would most probably need to have 
aa better understanding of the relation between the overcomplete set of states with localized 
quasiholess which we deal with here and a basis of the Hilbert space of the quantum Hall state. 
Suitablee bases of the spaces of zero modes for the Read-Rezayi-states are constructed in [31, 
32]]  and a logical next step in the program of understanding the consequences of non-Abelian 
braidingg in quantum Hall states would thuss be to express the states with localized quasiholes in 
termss of these bases and vice versa. 

Thee degeneracy associated with many quasihole states also gives a contribution to the en-
tropyy of a non-Abelian quantum Hall state. If one could measure die entropy sufficiently well 
(whichh is not the case at present) and separate this contribution from the (many) other contri-
butions,, then one could in principle determine the quantum dimension of the quantum group 
representationn carried by the quasiholes. 

Ann important theoretical question is whether there is some intuitive way of understanding 
whichh features of the underlying theory cause the quantum symmetry exhibited by the effective 
tfieoriestfieories at the plateaus. If such an intuitive picture could be found it would probably be very 
helpfull  in extracting physics from the effective theories. A good place to start looking would 
seemm to be the paper [92] of Ivanov, which provides an understanding of the degeneracy of the 
manyy quasihole states of die Pfaffian starting from the theory of p-wave superconductors. An-
otherr road towards a better understanding of die quantum group symmetry could start from me 
approachh of Ho and Capelli, Georgiev and Todorov [33, 34], who construct non-Abelian Hall 
statess from Abelian ones. It would be interesting to have a description of the projections onto 
non-Abeliann theories performed in diese papers in the quantum group tiieoretical framework. 

Theree are also some questions of a more mathematical nature which arise naturally from 
ourr work. For example, one would like to generalize the way we associated quantum groups to 
cosett CFTs to more general cosets man the ones we considered. Such a generalization would 
alsoo have applications to physics, since it would enable us to describe more of the trial Hall 
statess that have been proposed by means of quantum groups. A first step in this program would 
bee to look at me generalizations of me parafermions mat were defined by Gepner [93] or at me 
cosetss of [60,61], which are described by W-algebras. We expect that most arguments we gave 
forr die parafermions will go through unchanged for these meories. In connection witii diis, mere 
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shouldd be identities like (2.77) for the "6j-symbols" of quantum universal enveloping algebras 
moree general man Uq(sl(2)); one identity for each external automorphism of the corresponding 
Affinee Lie algebra. A generalization of the identities (2.77) in a different direction has recently 
beenn obtained in [94]. One may also ask whether the groups generated by the braiding matrices 
wee have found are finite and/or can be characterized in a nice way. Some light has recently been 
shedd on such matters by Read [95] (see also [96]). 

Acknowledgments.. We would like to thank Eddy Ardonne, Robbert Dijkgraaf, Jürgen Fuchs, 
Kareljann Schoutens and Christoph Schweigert for illuminating discussions and comments. We 
thankk Tom Koornwinder for useful remarks on some of the quantum group theory we used. 
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Chapterr  3 

Hopff  symmetry breaking and confinement 
inn planar  gauge theory 

Manyy two-dimensional physical systems have symmetries which are mathematically described 
byy quantum groups. In this chapter we study the phases that appear when such a symmetry 
iss broken spontaneously. As our model systems, we take gauge theories in 2+1 dimensions 
whosee gauge symmetry is spontaneously broken to a finite group. These enjoy a quantum 
groupp symmetry which includes the residual gauge symmetry. This Hopf symmetry provides 
aa framework in which fundamental excitations (electric charges) and topological excitations 
(magneticc fluxes) can be treated on equal footing. Using our general formalism, we can thus 
studyy symmetry breaking by condensates with both electric and magnetic quantum numbers 
andd we can investigate the Higgs and confinement phenomena which accompany the formation 
off  these condensates. As usual, confinement of particles is linked to the formation of string-like 
defectss and these defects are also classified. We find that symmetry breaking by an electric 
condensatee leads to magnetic confinement and vice-versa. The general formalism is elucidated 
byy many examples which involve electric, magnetic and even dyonic condensates. 

3.11 Introductio n 

Onee of the roads towards an understanding of confinement starts with the proposal of 't Hooft 
andd Mandelstam [97,98] to think of it in terms of the breaking of a dual or magnetic symmetry 
byy a condensate of magnetic monopoles. While this idea has been very fruitful, it has not yet led 
too a rigorous proof of confinement. One reason for this is that the supposed magnetic symmetry 
iss not manifest in the usual formulation of gauge theory. It is therefore difficult to study its 
breakingg in detail. Other approaches also try to link the phenomenon of electric confinement 
too condensate physics in the magnetic sector, but there seems to be no general consensus as to 
whichh magnetic excitations should be the ones to condense. 

Wee will study the Higgs and confinement transitions in a class of theories where both die 
electricc and the magnetic symmetry are manifest and where we have a clear picture of the 
possiblee magnetic excitations. The theories in question are (2+l)-dimensional gauge theories 
inn which the gauge group G is broken down to a discrete group H. The full electric-magnetic 
symmetryy in such "discrete gauge meories" is described by a quantum group or quasitriangular 
Hopff  algebra: the quantum double D(H) of the discrete unbroken gauge group. If H is Abelian, 
thenn D(H) is just the groupp algebra of thee group H x H, so that we have the electric group H 
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andd a dual magnetic group H = H. However, if H is non-Abelian, then D(H) is not a group 
algebraa and so the total symmetry is not described by a group. As a consequence, the discussion 
off  £)(i/)-symmetry breaking cannot proceed in the usual way when H is non-Abelian; we need 
too generalize the concepts involved in the discussion of symmetry breaking so that we can 
studyy symmetry breaking not only for symmetries described by groups, but also for symmetries 
describedd by quantum groups. 

Thee construction of a formalism for the description of spontaneous quantum group sym-
metryy breaking is not just a hurdle in the study of (2+l)-dimensional gauge theories, but should 
ratherr be seen as a problem of great independent interest. Many models of low-dimensional 
systemss in high energy and in condensed matter physics are known to exhibit quantum group 
symmetriess and a general formalism for the breaking of such symmetries could be applied to 
classifyy and study the phases of all these models. Therefore, a large part of this chapter (sec-
tionss 3.5 and 3.6) is devoted to setting up a formalism for the description of symmetry breaking 
andd confinement in theories whose symmetry is described by a finite dimensional semisimple 
quasitriangularr Hopf algebra. This class of Hopf algebras includes for example all group al-
gebrass of finite groups and their quantum doubles. However, there are also many physically 
interestingg quantum groups which are not included in this class; one may for example think of 
thee g-deformed enveloping algebras at roots of unity that appeared in the quantum Hall systems 
off  chapter 2. Nevertheless, a symmetry breaking formalism for finite dimensional quantum 
groupss is a good first step and we expect that some features of the scheme we present here will 
turnn out to be generic. 

Lett us preview some of these features. Before symmetry breaking, we have a theory whose 
fieldsfields or particles carry representations of a Hopf algebra A. This Hopf symmetry is broken 
byy the formation of a condensate and the residual symmetry is described by the maximal Hopf 
subalgebraa T of A which leaves the condensate invariant. However, not all the irreps of T 
correspondd to free particles in the broken theory; some are confined. The unconfined excitations 
cann be classified by a third Hopf algebra U, which is a quotient of T. The strings that confined 
excitationss pull in the condensate are labeled by means of the so called Hopf kernel of the 
projectionn of T onto 14. In section 3.12, we give a much more elaborate summary of the whole 
symmetryy breaking formalism, including a diagram of the most important algebras and maps 
involvedd (figure 3.2). To keep one's orientation, it may be useful to look forward to this figure 
regularlyy while making one's way toward it. 

Noww let us mention some of the results on discrete gauge theories that we have obtained 
usingg our theory of symmetry breaking. These include descriptions of 

 electric gauge symmetry breaking and the corresponding magnetic confinement, 

 symmetry breaking by manifestly gauge invariant magnetic condensates and the ensuing 
electricc confinement, 

 symmetry breaking and confinement by various other types of condensates, such as non-
gaugee invariant magnetic condensates and dyonic condensates. 

Al ll  these results will be illustrated with explicitly worked examples. These will include a com-
pletee treatment of the discrete gauge theories whose gauge group is an odd dihedral group. 

Thee detailed setup of the chapter is as follows. In section 3.2, we give a quick introduc-
tionn to discrete gauge theories. We describe the fundamental and topological excitations and 
thee topological interactions between these excitations, which play an important role in the con-
finementfinement discussion. At the end of this section, we also give a non-technical preview of the 
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effectss of symmetry breaking by a condensate of fundamental, electrically charged particles. 
Inn section 3.3, we describe the quantum groups which reproduce the spectrum and interactions 
off  discrete gauge theories: the quantum doubles of finite groups. Some examples of quantum 
doubless which we use throughout the chapter are introduced in section 3.4. In section 3.5, we 
developp a general method for the study of spontaneous symmetry breaking in systems with a 
quantumm group symmetry and in section 3.6, we give a general discussion of the confinement 
phenomenaa mat accompany this symmetry breaking. Section 3.7 gives some motivation for 
thee choice of the specific condensates we study in the rest of the chapter. In section 3.8, we 
discusss the phases of discrete gauge theories that occur when the electric symmetry is broken 
byy condensation of electrically charged particles that do not carry magnetic flux. In section 
3.9,, we discuss the phases that occur when the magnetic symmetry is broken by a gauge invari-
antt magnetic condensate. In section 3.10, we discuss the simultaneous breaking of the electric 
andd magnetic symmetries as a consequence of the condensation of a pure, non gauge invari-
ant,, magnetic flux. In section 3.11, we present some results on dyonic condensates. Finally, in 
sectionn 3.12, we give a summary and a brief outlook. 

3.22 Discrete gauge theories: physical setting 

Wee use the term discrete gauge theory for a (2+l)-dimensional Yang-Mills-Higgs theory in 
whichh the Higgs field has broken the (continuous) gauge group G down to a finite group H. 
Suchh theories are discussed in detail in [99, 100, 101, 102, 103,104]. As a consequence of the 
symmetryy breaking these theories contain topological defects which are labeled by elements of 
-K\{G(H).-K\{G(H). By the exact homotopy sequence, this corresponds to TTQ(H) = H when 7Ti(G) is 
trivial.. It follows that, when G is simply connected, the defects are characterized by elements 
off  the unbroken group H.1 The element of H that characterizes a defect may be identified as 
thee value of a Wilson loop integral around the defect. In analogy with electromagnetism, we 
wil ll  call the value of this loop integral the "magnetic flux" through the loop and we will call 
thee defects magnetic fluxes. In this setting, fluxes are thus group valued. It is clear that the 
valuess of the Wilson loop integrals are indeed elements of the unbroken group H, since, if they 
weree not, parallel transport around the closed loop would not leave the Higgs field's expectation 
valuee invariant. 

Thee action of the unbroken group H on fluxes is given by conjugation: a flux g G H is sent 
too hghr1 by the element h of H. This transformation rule is just the transformation rule for the 
Wilsonn loop integral. As a consequence, the fluxes are organized into gauge multiplets, one for 
eachh conjugacy class of H. Thus, the distinct types of flux-carrying particle are labeled by the 
conjugacyy classes A, B,... of H, while a particle of, say, type A, has an internal Hubert space 
off  dimension equal to the number of elements of the conjugacy class A. 

Apartt from the topological fluxes, we also allow fundamental charged particles which are 
labeledd by the irreducible representations of the unbroken group H. The internal Hilbert space 
off  a particle that carries the irrep a of H is just the module Va of a and the action of the gauge 
groupp on this space is just the action given by the matrices of the irrep a. In addition to charges 
andd fluxes, one has dyons: particles which carry both flux and charge. The charges of dyons 
withh flux g e H are characterised by the irreducible representations of the centraliser associated 

'Onee may argue that even in a theory where G is not simply connected, the set of stable fluxes will still be 
labeledd by elements of H, due to the presence of (Dirac) magnetic monopoles in the three-dimensional theory that 
underliess the two-dimensional theory we are considering here [104] 
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withh the conjugacy class of g in H. In other words, the charge of a dyon is characterised by 
aa representation of the subgroup of the gauge group that leaves the flux of the dyon invariant. 
Thee set of electric charges available to a dyon thus depends on the flux of the dyon, indicating 
thatt there must be a non-trivial interplay between the electric and magnetic symmetries in this 
theory. . 

Noww that we have given the natural set of quantum numbers labeling the different sectors 
(orr particle charges) in this theory, let us turn to the interactions. Because the unbroken group is 
discrete,, the gauge fields of thee theory are massive, with mass proportional to the length v of the 
vacuumm expectation value of the Higgs field. As a consequence, the electric and magnetic gauge 
interactionss are screened with a screening length inversely proportional to v. We are interested 
inn the low energy or long distance limit of these theories, or equivalently in the limit in which the 
expectationn value of the Higgs field becomes large. In this limit, the theory becomes topological; 
thee only interacions between the particles that survive are ultra-short range interactions, mat 
mayy be described by fusion rules, and non-local Aharonov-Bohm interactions (the Aharonov-
Bohmm effect is not screened by the Higgs effect [105,106, 102, 104]). These Aharonov-Bohm 
interactionss may be described by the action of a (coloured) braid group on the multi-particle 
statess involved and hence we will refer to it as "braiding" 

Thee fusion rules for charges are given by the tensor product decomposition of H-irreps. 
Thee fusion product of two fluxes is found by concatenation of the associated Wilson loops, 
whichh leads to the conclusion that the fusion product of fluxes g\,g2 € H is the flux labeled 
byy gig2 € H. The effect of braiding a charge a around a flux g € H is given by the action 
off  g on Va. If a is a one-dimensional irrep of Ht then this is the usual Aharonov-Bohm phase 
factor,, but if a is higher-dimensional, then the action of g on Va will be described by the matrix 
a(g),a(g), which will not necessarily reduce to a phase factor. It follows that, if the unbroken group 
iss non-Abelian, discrete gauge theories allow for non-Abelian braiding between charges and 
fluxes;; if a charge is first taken around a flux g\ and then around a flux g2t then the effect on the 
wavee function of the charge may be different than if it is taken first around g2 and then around 
gglyly simply because one may have a(gi)a(g2)  ̂ a(g2)a(gi). The braiding between fluxes may 
bee found by contour manipulation. If a particle with flux  is taken around a particle with 
fluxflux  g2, then its flux will change from gx to g29i92

1, i.e. braiding between fluxes is given by 
conjugation.. Braiding and fusion of dyons will be described in section 3.3. 

Muchh of the rest of this chapter is devoted to the development of a mathematical formalism 
whichh will help us describe the phases that result when the symmetry of a discrete gauge theory 
iss broken by the formation of a condensate. However, in the special case where the condensate 
iss purely electric, one may already get a fairly accurate picture of what happens using only the 
informationn in this section. The reason for this is that the formation of an electric condensate 
cann be viewed as a simple modification of the Higgs condensate which broke G down to H 
inn the first place. After this modification, the new residual gauge group will be the subgroup 
NN of H which leaves the new condensate invariant. The spectrum of free excitations should 
thuss consist of fluxes labeled by conjugacy classes of JV, charges labeled by irreps of N and 
dyonss with flux and centralizer charge. In short, everything should be as it was before, except 
thatt the role of H has been taken over by N. Any fluxes h e H\N that were present when 
thee new condensate formed, will pull a string. That is, their presence makes it impossible for 
thee new Higgs condensate to be single valued and hence causes the expectation value of the 
Higgss field to develop a line-like discontinuity. The energy associated with this discontinuity 
wil ll  grow linearly with its length and as a consequence, the fluxes h outside N will be confined 
inn "hadrons" whose overall flux does he in N. The line discontinuities themselves can be 
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viewedd as domain walls between regions with different values V\, v2 of the Higgs expectation 
value.. They may thus be characterized by an element h € H such that hv\ = v2, but this 
characterizationn is not unique, since hnv\ will also equal r̂  for any n € N. Therefore, the 
stringss (or walls) should be characterised by a coset hN in H/N, or more precisely by a gauge 
orbitt of such cosets. This picture of what happens when a purely electric condensate is formed is 
ann important part of the intuition that will be used in the rest of this chapter and it is a non-trivial 
testt of die formalism we will develop that it must repoduce this picture. 

3.33 The quantum double of a finite group 

33.11 The double and its dual 

Thee ribbon Hopf algebra that describes the fusion and braiding of the discrete gauge theory with 
unbrokenn group H is the quantum double D(H) of H, As a vector space, D(H) is F(H) <2> CH, 
thee tensor product of the group algebra CH of H and its dual, the space F(H) of functions on 
H.H. Since H is finite, we may identify this vector space with F(H x H), the space of functions 
onn H x H, and we may write elements of the double as such functions. On the double, we have 
thee usual structures of a Hopf algebra: a multiplication , identity 1, comultiplication A, counit 
ee and antipode S: 

l(z>3/) ) 
ifi»f2)(x,y) ifi»f2)(x,y) 

{Af){x{Af){xuuyy11;x2,y;x2,y22) ) 
(Sf)(x,y) (Sf)(x,y) 

== fHfi(x>z)Mz lxz>z ly)dz 

== fHf(e>y)dy 
==  f{xix2,yi)6yi{y2) 
==  /( iT 1* - 1»,»- 1)-

(3.1) ) 

Here,, the integrals over H are a convenient notation for the sum over all elements of H. We 
seee that D{H) is generated as an algebra by the elements 1 <g> g (g €. H) and Sg <8> e (g E H). 
Thee elements 1 <g> g together form the gauge group H, while the elements Sg <8> e are a basis of 
F(H)F(H) and can be interpreted as projections on the set of states with flux g in the theory. Both 
multiplicationn and comultiplication of the double are consistent with this interpretation. The 
universall  .R-matrix of D(H) is given by the formula 

R(xR(xuu yi; x2, y2) = 8e{yl)8e{x1y2 ) (3.2) ) 

andd the ribbon element c is given by 

c(x,, y) =  o (5 <g> \A){R2l) = 6e(xy). (3.3) ) 

Thee dual D{H)*  of D(H) is CH <g> F(H) as a vector space. This space may again be identified 
widii  F(H xH),&o that we may realize both the structures of D(H) and those of D{H)*  on this 
space.. The multiplication *, unit 1*, comultiplication A*, counit e*  and antipode S* of D(H)* 
aree given by 

i*(*,y ) ) 
ifi*f2)(x,y) ifi*f2)(x,y) 

) ) 
(A* f){xuy\\x2,y2) ) 

(S*f)(x,y) (S*f)(x,y) 

== Se(x) 
== JHMz>y)f2(z~1x,y)dz 
== JHf(x>e)dx 

==  f{y~lx-ly,y-1). 

(3.4) ) 
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D(H)D(H) and D(H)* have a canonical Hermitian inner product, given by die same formula for 
bothh D{H) and D{H)*: 

(h>h)=(h>h)=  I / fx(x,y)f2(x,y)dxdy. (3.5) 
JHJH JH 

Thee matrix elements of die irreps of botii D(H) and D(H)* are orthogonal witfi respect to this 
innerr product. This follows from die meory of Woronowicz [107] for compact matrix quantum 
groups,, which holds bom for D(H) and D(H)*  [108], but it may also be proved directly. 

3.3.22 Irreducibl e representations 

Thee irreducible representations -K£ of D(H) have been classified in [109], using die fact mat 
diee double is a based ring in me sense of Lusztig [110]. An alternative way to classify me 
irrepss of quantum doubles of groups makes use of the fact mat D(H) is a transformation group 
algebraa [111]. Since we will be making rather extensive use of transformation group algebras 
inn the sequel, we will follow this path. We follow the notation and conventions of [111]. First, 
wee give a simplified definition of a transformation group algebra, adjusted to our needs, which 
involvee only finite groups: 

Definitionn 6 Let H be a finite group acting on a finite set X. Then F(X x H) is called a 
transformationtransformation group algebra if it is equipped with the multiplication  given by 

(F(F11*F*F 22)(x,y))(x,y) = f F1(x,z)F2(z-1x,z-1y)dz. (3.6) 
JH JH 

Forr a more general definition and references, see [112]. When we take X — H and die action 
off  H given by conjugation, then we regain die algebra structure of the quantum double D(H). 
Theree is a general tiieorem which classifies me irreducible representations of all transforma-
tionn group algebras as defined above, but before we give this, we must first first define me Hilbert 
spacess mat the representations will act upon. Let N be a subgroup of H, let a be a unitary 
representationn of AT, and let Va be its module, then we define 

FFaa{H,V{H,VQQ)) := {<j) : H -> Va\<j>{xn)  = T r ^ r T 1 ) ^ ) ^ G tf,Vn € N}. (3.7) 

Thee irreps of our transformation group algebras are men described by me following tiieorem, 
whichh is a simple consequence of theorem 3.9 in [113] 

Theoremm 1 Let F(X x H) be a transformation group algebra and let {ÖA} be the collection 
ofof H-orbits in X (A takes values in some index set). For each A, choose some £A € ÖA and let 
NANA be the stabilizer of^A in H. Then, for each pair {ÖA, ot) of an orbit ÖA and an irrep a of 
thethe stabilizer NA of this orbit, we have an irreducible unitary representation r£ofF(X x H) 
onon Fa(H, VQ) given by 

(T£(F)<I>)(X)(T£(F)<I>)(X)  :=  f F{xUz)(j>{z-lx)dz. (3.8) 
JH JH 

Moreover,Moreover, all unitary irreducible representations ofF(X x H) are of this form and irreps T£ 
andand T¥ are equivalent only ifÖA = ÖB ÖB and a = 0. 
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Inn the case of D(H), the orbits ÖA are just the conjugacy classes of H (in the following, 
wee will often denote a conjugacy class ÖA by its label A only). The irreps n£ of D(H) are 
thuss labeled by pairs (A, a) of a conjugacy class A and an irrep a of the centralizer NA of 
aa specified element gA £ A. We see that the spectrum of irreps of D(H) is in one to one 
correspondencee with the spectrum of excitations of the discrete gauge theory that we described 
inn section 3.2. In particular, the pure (uncharged) magnetic fluxes correspond to the Hf, where 
11 denotes the trivial representation of H, and the pure charges correspond to the n*. We will 
calll  the element gA € A the preferred element of A. Any choice of preferred element yields the 
samee isomorphism class of representations of D(H). The carrier space of IT^ is just the space 
FFaa (H, Va) defined above and for brevity we will denote it by V* The dimension d£ of V* is the 
productt of the number of elements of the conjugacy class A and the dimension da of a. To see 
this,, note that the functions in V£ V£ are completely determined once their value on one element 
off  each iV^-coset is chosen. Now the number of JV^-cosets is just | A\> the number of elements 
off  A, which shows that d£ = \A\da. In fact, there is a canonical correspondence between cosets 
off  NA and elements of A: the coset hNA corresponds to the element hgAh~l. Thus, a state with 
puree flux hgAh~l will be represented by a wave function with support on hNA. 

Thee action of an element F € D(H) on V* is given by the formula in the theorem above, 
whichh in the case of D{H) becomes 

faf(F)0)faf(F)0) (x) := f dzFixgAX-1^)^-^). (3.9) 
JH JH 

Fromm this formula, it is easy to see that the action of the gauge group elements 1 <g> g in the 
purelyy electric representation Wa is indeed isomorphic to the action of the gauge group in the 
representationn a. Also, the action of the gauge group on magnetic fluxes is given by conjuga-
tion,, which can be seen as follows: the state with flux hgAhr1 is represented by the function 
lhNlhNAA € Vf, i.e. by the characteristic function of the coset HNA- The action of the element 
11 ® g € D(H) sends this function to the function lghNA, which in turn corresponds to the flux 
gihgAh'^g-gihgAh'^g-11. . 

Thee spin of a particle that transforms in the irrep 11̂  is given by the action of the ribbon 
elementt c. We have 

faf(c)0)faf(c)0) (x) :=  a(g-A
l)<f>{x).  (3.10) 

Sincee the element gA
l is central in NA, the matrix aQ^1) is a constant multiple of the unit 

matrix:: we have oc(g^1) = s^I, where s£ € C is a root of unity which we call the spin factor 
off  n£. Clearly, we have s* =  ̂ Trfafg^1)), where da is the dimension of the representation a 
off  NA- A consistent description of the braiding for arbitrary representations of D(H) is given 
byy the fl-matrix (3.2). 

3.3.33 Matri x elements and Characters 

Thee fusion rules for representations of D(H) and of more general transformation group algebras 
mayy be calculated by means of a character formalism. The character of a representation IT of 
aa transformation group algebra T = CC(X x H) is a linear functional x  T —> C defined 
ass follows: \{t) 1S m e **&&  of the matrix 7r(r). Clearly, the character of the representation -K 
dependss only on the isomorphism class of IT. Let us calculate the character of an irrep T£ of T 
fromm the formula in theorem 1. The first thing we need is a basis for the vector space Fa (G, Va). 
Too get this, we choose a basis ef for Va and a representative for each left coset of  NA- For a 
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givenn coset of NA, all the elements of this coset send the preferred element £4 of thee orbit OA to 
thee same element C of this orbit. Moreover, each element ( G OA uniquely determines a coset. 
Therefore,, we call the representative elements of the cosets x  ̂and these x  ̂are just arbitrarily 
chosenn elements of H with the property that xc£A = £. A basis for Fa(G, VQ) is now given by 
thee functions <fy defined by 

<p\(y)<p\(y) = ix<NA(y)<*(y-\)e?- (3.ii) 

<j>\<j>\  is the unique element of Fa(G, Va) which takes the value ef at xc and one may easily verify 
thatt these elements do indeed form a basis for Fa{G, Va). The matrix elements of r£ in this 
basiss are given by 

*£(?)%,=*£(?)%,= [ Fix^x^nx^aijin)  ̂ (3.12) 
JNJNA A 

wheree the Q^ are the matrix elements of a with respect to the basis of ef. As a consequence, 
thee character \t 0I" Ta *s given by 

xi(F)=xi(F)=  f d( [  dnF(xcU^nx^)Xa(n), (3.13) 
JoJoAA JNA 

wheree Xa denotes the character of a. We can remove the arbitrarily chosen elements x  ̂ from 
thiss formula by adding an integration over NA, thus changing the integration over OA into an 
integrationn over H: 

xi{F)xi{F)  = f dz f dnF{zU,znz-l)Xa{n). (3.14) 
JHJH JNA 

Whenn T = D{H), this reduces to the formula given in [111]. Clearly, the characters are fully 
determinedd by their values on a basis for T. When X is finite, we can take the basis of delta 
functionss 5^5h (r]€ X,hE H) and we can take the characters to be elements of F(X x H) by 
writingg xi(*/, h) := xi^M- We have 

x£fo,fc)) = l^ihnoMXaix^hXr,). (3.15) 

Whenn T = D(H)y this gives the formula for the characters in [109]. 
Wee may define an inner product , ) on the space of functions X x H by the formula 

<Xi,X2>== / dri I dhx\{rith)x2{ri>h). (3.16) 
JxJx JH 

Onee may check that the characters are orthogonal with respect to this inner product: 

{xtx{xtxBBp)p) = \H\5A,B6aS. (3.17) 

Whenn T = D{H), the inner product defined here is just the invariant inner product (3.5) on 
D(H)*D(H)*  and the orthogonality of the characters with respect to this inner product follows from 
Woronowicz'ss general theory. The decomposition of a tensor product of irreps of D(H) may 
bee found by calculating the inner products of the characters of the irreps with the character of 
thee tensor product. In this way, the fusion properties of pure fluxes and charges mat we have 
describedd in section 3.2 are reproduced and we may also calculate the fusion rules for dyons. 
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3.44 Examples of quantum doubles 
Wee briefly present examples of quantum doubles of finite groups. These will be the standard 
exampless in our discussion of symmetry breaking in the remainder of this chapter. 

3.4.11 D(i/) for  Abelian # 
Thee quantum double of an Abelian group H is isomorphic to the group algebra of H x H as 
aa Hopf algebra. One way to see this is the following: First recall that any finite Abelian group 
iss isomorphic to some Z  ̂ x ... x 1^, where ki\kj for i < j . Then recall that, by Pontryagin 
duality,, the character group of an Abelian group H is isomorphic to H. We may thus denote 
thee elements of H by n-tuples (mi , . . ., mn), with 0 < m< < k{ and we may also label the 
characterss Xmu...,mn of H with such n-tuples in such a way that the map (mi, . .. ,m„) -> 
Xmi,...,̂ ^ is an isomorphism of groups. The canonical way to do this labeling is such that 
XmXmuu...,m...,mnn is the character given by 

XmiXmi mn(h,  - -, U = exp(27ri( -̂ + ... + ^ ) ) . (3.18) 

Thee characters are linearly independent functions on H and thus D(H) is spanned by the ele-
mentss x ® $h, where x is a character of H and h is an element of H. But one calculates easily 
that t 

(Xii  ® K)  (X2 ® 5h2) = UiX2®Shlh2) 

1D(H)) = 1 ® Se = eHxH 
<\(x®8<\(x®8hh)) = (x ® Sh) <g> (x ® Sh) 

S{x®h)S{x®h) = (x®Sh-i) = {x®Sh)-1 

e(e(XX®6®6hh)) = 1, (3.19) 

soo that, comparing to (1.19), we see that we indeed have D(H) = C(H x H) as a Hopf algebra. 
Ass a consequence, the irreducible representations of D(H) are the tensor products xi ® Xi 

thatt may be formed from two irreps xi> Xi of H. These correspond to the irreps n^ that we 
describedd in section 3.3.2 in the following way. When H is Abelian, all conjugacy classes of 
AA consist of just one element, so that the label A may be identified with the element gA of H. 
Thiss element may in turn be identified with a character XA using the isomorphism between H 
andd its character group that we indicated above. Also, we have NA = H and so a is already a 
characterr of H. One may now check easily that the irrep IT£ of D{H) corresponds to the irrep 
XAXA <8> a of H <g> H. The tensor product of two D(/f )-irreps is just the usual tensor product of 
HH x H representations. The only difference with the usual representation theory of H x H is 
thatt the representations now have non-trivial spin-factors and non-trivial braiding, given by the 
ribbonn element and the i2-matrix of D(H) respectively. We have 

ni®n$(R)=P(gni®n$(R)=P(gAA).). (3.20) 

Ass one may read off using (3.18), these are just the usual phase factors one expects for Abelian 
dyons,, involving products of charge and flux quantum numbers. 
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3.4.22 D(D2m+i) 

Perhapss the simplest non-Abelian groups are the dihedral groups Dn which describe the sym-
metriess of the regular rc-gons. Among these is the smallest non-Abelian group: the dihedral 
groupp £>3, which is isomorphic to the symmetric group S3. Dn has 2n elements: the unit, n - 1 
non-triviall  rotations and n reflections. It can be presented on two generators as follows: 

DDnn = {s, r\ s2 = rn = 1, sr = r"_1s} (3.21) ) 

Thee 2n elements may all be written in the form rk or srk (with e = r°). The powers of r are the 
rotations,, the elements that involve s are the reflections. 

Wee will deal exclusively with the odd dihedral groups D2m+i. D2m+i has m + 2 conjugacy 
classes,, which we will label by their preferred elements and which we will denote by their 
preferredd elements in square brackets (e.g.[r]) if confusion between class and element might 
arise.. The classes are 

[e]]  = {e} 
[r[r kk]]  = {rk,r~k} {0<k<m) 

[s][s]  = {srk\0<k<2m+l}. 

Thee centralizers of these classes are given by 

(3.22) ) 

NNee = D2m+u JVr*  = ( r ) ^ Z 2 m + 1, Ns=<s>^%2, (3.23) 

wheree we use the notation {g}  for the subgroup generated by the element g. D2m+i has two 
onee dimensional representations: the trivial representation, which we will denote J0 and a rep-
resentationn Ji given by Ji(r) = 1, JL(s) = — 1. The remaining irreps of D2m+i are all two 
dimensionall  and faithful. We will call tfiem a1 ?. . ., am and they may be given by 

Mr )) = VV si 
c o s( ^ ï )) -s i n(2 f c 7r 

S m( 2 ^ + ï)) w uV2m+l 
2m+l' ' 

c o s ( ^) ) )) «(^("o 1?) 
Thee character table for D2m+Ï can now be read off; it is given in table 3.1 

Jo Jo 
Jl Jl 
aj aj 

[e] [e] 
1 1 
1 1 
2 2 

[r[r kk] ] 
1 1 
1 1 

qqjkjk  + q-jk 

w w 
1 1 

- 1 1 
0 0 

(3.24) ) 

Tablee 3.1: character table for D2m+i. We have defined q =  e2»i/{2m+i)i 

Thee representations of the l^m+i and Z2 centralizers will be denoted /?o, Pi, , Pim and 70,71 
respectively.. They are as given in the previous section. Sometimes, we will also write 1 for % or 
700 and 7 for 71. The representations of D(D2m+\)  will thus be labeled IIj o, n ^, n f̂c, 11 ,̂ U{ 
andd II* . All in all this yields 2(m2 + m + 2) representations. The dimensions d£ and spin 
factorss s£ of these irreps are given in table 3.2: The fusion rules of the irreps of D(D2m+i) 
mayy be determined by means of the characters (3.15) and the orthogonality relations (3.17). 
Theyy have been given explicitly in [114]. One may also show that tensor products of multiple 
-D(D2m+i)-irrepss can carry non-Abelian representations of the braid group. 
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4 4 
*% *% 

1 1 
1 1 

n& & 
i i 
i i 

a, , 

2 2 
1 1 

rrr* * llll 0, 0, 
2 2 

nj j 
2 m +1 1 

1 1 

7 7 

2m++ 1 
- 1 1 

Tablee 3.2: dimensions and spin factors for the irreps of D(£>2m+i) 

3.55 Symmetry Breaking 

3.5.11 Hopf symmetry breaking 

Considerr the situation where a condensate has formed, carrying the representation 11̂  of D(H). 
Thee ground state or "vacuum" of the theory is then a background of identical particles, all in the 
samee state <p £ V*. We model this situation with a tensor product state 0® 0®... <g>0. This state 
breakss the £>(#)-symmetry of the theory and we want to find out what the residual symmetry 
algebraa of the system after this breaking is. Now if the original symmetry were described by 
aa group, then finding the residual symmetry would in principle be straightforward; we would 
findd out which of the group elements leave die condensate state <f>  invariant, i.e. we would find 
thee stabilizer of <j>,  and this stabilizer would be the residual symmetry. If the original symmetry 
iss described by a Hopf algebra, then we cannot use this recipe, for several reasons. First of 
all,, we cannot expect to find a subalgebra of the Hopf algebra which leaves 0 invariant in the 
usuall  sense of the word; any such subalgebra would have to contain the element 0 which would 
obviouslyy send 0 to 0. Hence, we need a new definition of invariance. Fortunately, there is a 
naturall  definition, namely the following (cf. [7]) 

Definitionn 7 Let A be a Hopf algebra with counit e, let a 6 A and let 4>bea vector in some A-
module.module. Then we say that 0 is left invariant by a if the action of a on 0 is given by a  0 = e(a)0. 

Thiss definition is natural, since it just says that the vector 0 transforms under a 6 A in the 
samee way that the vacuum would. Also, if the Hopf algebra A is a group algebra, then we see 
thatt this definition of invariance reduces to the usual one on the group elements. Nevertheless, 
whenn we apply the above definition of invariance to a group algebra, then we see that the 
subalgebraa which leaves a vector 0 invariant is not the group algebra of the stabilizer of 0. In 
fact,, it is a much larger algebra, which is not a Hopf algebra. On the other hand, the maximal 
Hopff  subalgebra of the group algebra which leaves 0 invariant (with the above definition of 
invariance),, is exactly the group algebra of the stabilizer of 0. This follows easily from the fact 
thatt the Hopf subalgebras of a group algebra CG are exactly the group algebras of the subgroups 
off  G (this is well known to Hopf algebra theorists, but we also give an explanation of why it 
iss so in section 3.5.3). This suggests that we should define the residual symmetry algebra after 
breakingg as follows: 

Definitionn 8 Suppose we have a theory with Hopf symmetry A If a condensate of particles 
inin the state 0 forms in this theory, then the residual symmetry algebra is the maximal Hopf 
subalgebrasubalgebra of A that leaves 0 invariant. We will  call this algebra the Hopf stabilizer of 0 

AA maximal Hopf subalgebra with a certain property is defined as a Hopf subalgebra with this 
propertyy which is not a subalgebra of a larger Hopf subalgebra with his property. The max-
imall  Hopf subalgebra in the above definition is unique, since, if we have two different Hopf 
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subalgebrass which leave the same vector invariant, then the subalgebra generated by these two 
iss itself a Hopf subalgebra which leaves this vector invariant and which contains the original 
twoo Hopf subalgebras. The above definition reduces to the usual definition in the case of group 
algebrass and it has the further advantage that the residual symmetry algebra will always be a 
Hopff  algebra2. The spectrum of the residual algebra will thus have the desirable properties that 
wee discussed in chapter 1; there will be a natural description of many-particle states, there will 
bee a trivial or vacuum representation and given an irrep of the algebra that labels a "particle" 
(ann excitation over the condensate), there will also be an irrep (possibly the same) that labels the 
"antiparticle".. The fact that the residual symmetry algebra is a Hopf algebra also makes sure 
thatt the invariance of <fi  implies the invariance of all the states <f>  ® <f) <S>... ® <j>.  This follows 
easilyy from the fact that (e ® e) o A = e. Thus, we might have taken me condensate to be a 
superpositionn of states with different numbers of particles (still all in the state <j>)  and such a 
condensatee would be left invariant by the same residual algebra. 

3.5.22 Hopf subalgebras and Hopf quotients 

Inn view of the definition of the residual symmetry algebra after the formation of a condensate 
(definitionn 8), it is useful to find out all we can about Hopf subalgebras of the quantum double 
D(H),D(H), or more generally, about Hopf subalgebras of finite dimensional semisimple Hopf al-
gebras.. In the present section, we give a characterization of the Hopf subalgebras of such Hopf 
algebras,, which will provide us with a way of finding all these Hopf subalgebras and in partic-
ularr the residual symmetry algebras of definition 8 in a systematic way. Along with the results 
onn Hopf subalgebras, we also prove some results on Hopf quotients or quotient Hopf algebras 
whichh will be useful in our discussion of confinement further on. The main theorems in diis 
sectionn are closely related to results in [116] and [117]. We include elementary proofs here in 
orderr to make our treatment more self-contained. We write the results in a form which is useful 
forr our needs, rather than maximally general or compact. A lot of background for this section 
cann be found in [4]. 

Wee define a Hopf quotient as follows 

Definitionn 9 Let A and B be Hopf algebras. If we have a surjective Hopf map V : A -> B, 
thenthen we call B a Hopf quotient of A 

Thee Hopf algebra B is in fact isomorphic to the quotient of A by the kernel of the map I\ ex-
plainingg the terminology. Our first step in characterizing Hopf subalgebras and Hopf quotients 
iss to relate them to each other, using the following proposition 

Propositionn 1 Let A and B be finite dimensional Hopf algebras and letY : A -> B be a Hopf 
map.map. Then the dual map V* : B* -> A* is also a Hopf map. Moreover, ifT is injective then V* 
isis surjective and ifT is surjective then T* is injective. Finally, if we identify A and A**  and B 
andand B**  in the canonical way, then we have T**  = T. 

ProofProof The proof that T* is a Hopf map is straightforward calculation. As an example, we show 
thatt P ® T*  o AB' = AA. o r* . For any ƒ e B\ we have 

rr ® r o AB. (ƒ) = ƒ o /iB o r ® r = ƒ o r o ^ = A.A. o r (ƒ). (3.25) 
2Inn fact, it is also semisimple since any Hopf subalgebra of a finite dimensional semisimple Hopf algebra is 

itselff  semisimple. This is proved in [4], using the Nichols-Zoeller theorem [115]. 
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Wee used the fact that r is a Hopf map in the second equality. The other properties that make F* 
intoo a Hopf map can be verified analogously. The proof that T**  = F is also easy. We identify 
thee element a € A with the functional Ea e A**  that is evaluation in A, i.e. Ea : f *-¥ f (a). 
Similarly,, we identify b € B with Eb e B** . One may check that these identifications are Hopf 
isomorphisms.. The action of T**  on a is calculated as follows: 

T**{a)U)T**{a)U)  = T**(Ea)(f) = (Ea o r ) (ƒ) = Ea(f o T) = £?r(o)(/) = T(a)(f) (3.26) 

Hence,, we see that indeed T**  = F. The statements about injectivity or surjectivity of T* are 
basicc properties of the dual map. D 
Fromm this proposition, we have the following corollaries 

Corollar yy 1 Let A be a finite dimensional Hopf algebra and let B be a Hopf subalgebra of A. 
ThenThen B* is a Hopf quotient of A*. The corresponding surjective Hopf map is restriction to B, 
whichwhich is the dual map of the embedding ofB in A 

Corollar yy 2 Let A be a finite dimensional Hopf algebra and let B be a Hopf quotient of A, 
withwith corresponding surjective Hopf map F. Then A* has a Hopf subalgebra isomorphic to B*, 
namelynamely the image of the embedding F*. 

Thee next proposition shows that if B is a Hopf quotient of A, then the set of representations of 
BB naturally corresponds to a subring of the representation ring of A. 

Propositionn 2 Let Abe a Hopf algebra and let B be a Hopf quotient of A Denote the asso-
ciatedciated surjective Hopf map from A to B by V. Then the representations ofB are in one-to-one 
correspondencecorrespondence with the representations of A that factor over F. Also, this correspondence pre-
servesserves irreducibility. It follows that, if A is semisimple, then so is B. The correspondence map 
betweenbetween representations also commutes with taking conjugates and tensor products of repres-
entations.entations. As a consequence, the tensor product ofirreps of A that factor over F will  decompose 
inin the same way as the tensor product of the corresponding irreps ofB. 

Proof.Proof. Let p be a representation of B. Then p o T is a representation of A, since T is a Hopf 
map.. Moreover, if p is irreducible then so is p o I \ since T is surjective. On the other hand, let 
rr : A -> Mnxn be a representation of A which factors over V, that is, r = por for some map p : 
BB  Mnxn. Then p is a representation ofB, since T is surjective and irreducibility of r implies 
thatt p is irreducible. Also, r uniquely determines p and vice versa. Hence, the representations 
off  B are in one-to-one correspondence with the representations of A which factor over F and 
irreducibilityy is preserved in this correspondence. Semisimplicity of A is equivalent to the 
propertyy that all .4-modules decompose into irreducibles. This holds in particular for all A-
moduless in which the action of A factors over I \ and hence also for all B-modules, implying 
thatt B is semisimple. The remaining statements follow easily from the fact that T is a Hopf f 
map.. If r = p o r then r = poT. This can be seen by looking at the matrix elements T ^ of r: 

n jj  = (TJ,i ° SA ) = Pj,i oToSA = piti o 5e o r = pitj <g> T. (3.27) 

Here,, we have used r o SA = SB O F. For the tensor product of irreps ra = poF and rb = pb o F, 
wee have 

rr aa <8> rb o A A = pa <g> pb o r ® r o A.4 = pa <g> pb o A B o F, (3.28) 

wheree we used that r ® F o AA = A e o r. We see that ra ® rb o AA and pa ® pb o Ag act 
onn the same module by the same matrices (since F is surjective). Hence the decomposition of 
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tensorr product representations of A will be the same as the decomposition of tensor product 
representationss of B. D 
Beforee the next proposition, we need another definition 

Definitionn 10 We call a set X of irreps of a Hopf algebra A closed under tensor products 
andd conjugation ifr£X=>T€X and if ra,rb E X implies that all the irreps in the 
decompositiondecomposition of the tensor product ofra and rb are contained in X. 

Notee that, in the previous proposition, the set of irreps of A that factor over T is an example of 
aa set of irreps of A that is closed under tensor products and conjugation. Also note that a set of 
irrepss that is closed under tensor products and conjugation will always contain the counit. We 
noww prove a basic fact about closed sets of irreducibles of A'. 

Propositionn 3 Let Abe a semisimple Hopf algebra and let X be a set of irreps of A that is 
closedclosed under conjugation and tensor products. Then the linear space Vx spanned by the matrix 
elementselements of the representations in X is a Hopf subalgebra of A* 

ProofProof First, let us take the product of two matrix elements. We have HA'^t^kj) — (r" ® 
rr bb o AA)(i,j),(k,i)- In other words, the product of matrix elements of ra and rb in A* is a matrix 
elementt of the tensor product representation ra <g> r6 o AA. Since A is semisimple, this tensor 
productt may be decomposed into irreps and the matrix elements of the tensor product repres-
entationn are linear combinations of the matrix elements of the irreps this decomposition. But 
sincee these irreps are contained in X, it follows that Vx is closed under multiplication. Clearly, 
VVxx also contains lA*  = e A, SO VX is a unital subalgebra of A*. We also have S(VX) C Vx, 
since e 

SSAA-(T-(Titiiti )) = TiJoSA = TM (3.29) 

andd r e X ^ r e X For the comultiplication of a matrix element of any representation of A, 
wee have 

AAAA*(T^)*(T^) = ^2 Tiik <g) rKj (3.30) 
k k 

andd hence we have A A* (VX) C Vx <8> Vx-
Noww we arrive at one of our main goals, which is a partial converse of the previous proposition: 

Theoremm 2 Let A be a finite dimensional semisimple Hopf algebra over the complex numbers. 
LetLet B be a Hopf subalgebra of A = A**.  Then B is spanned by the matrix elements of a set of 
irrepsirreps of A* which closes under conjugation and tensor products. 

ProofProof Let i be the inclusion of B into A. Then B* is a Hopf quotient of A* with the associated 
Hopff  map given by t*  (cf. corollary 1). Because A is semisimple and defined over the complex 
numbers,, its dual A* is also semisimple (see [118] and also [4]). Hence, using proposition 2, 
B*B*  is also semisimple. But then it follows that the matrix elements of the irreps of B* span 
B**B**  = B. On the other hand, we know from proposition 2 that the irreps of B* are identified 
(throughh i**  = i) with a set of irreps of A* which closes under conjugation and tensor products. 

Thiss theorem is the characterization of Hopf subalgebras that we will be using in our discussion 
off  D(H)-symmetry breaking in section 3.5.3. More generally, it can simplify the problem of 
findingg all the Hopf subalgebras of a finite dimensional semisimple Hopf algebra A enormously. 
Iff  the irreps of A* and the decompositions of their tensor products are known, then finding all 
setss of irreps of A* that close under tensor products is a process that can be carried out easily 
onn a computer. Finally, we prove a similar statement about Hopf quotients: 
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Theoremm 3 Let Abe a finite dimensional semisimple Hopf algebra over the complex numbers. 
ThenThen any Hopf quotient of A = A**  is isomorphic to a quotient obtained by restriction to a 
HopfsubalgebraHopfsubalgebra of A* generated by matrix elements of a set ofirreps of A which closes under 
conjugationconjugation and tensor products. 

Proof.Proof. Let B be a Hopf quotient of A and let T be the associated projection. Then T*(B*) = B* 
iss a Hopf subalgebra of A* (cf. corollary 2) and B = B**  is isomorphic to the quotient of 
AA = .4**  obtained by restriction to T*(B*). Since A is semisimple, A* is also semisimple. 
Thus,, we can now apply the previous theorem to the pair (A*,T*(B*))  and it follows that 
T*(B*)T*(B*)  is the desired Hopf subalgebra. D 

3.5.33 Hopf subalgebras of quantum doubles 

Inn section 3.5.2, we showed that the Hopf subalgebras of a finite dimensional semisimple Hopf 
algebraa (such as D{H)) are in one-to-one correspondence with sets of irreps of the dual Hopf 
algebraa that close under tensor products and conjugation. Therefore, we now construct the 
representationss of the dual algebra D(H)*. From (3.4), we see that, as an algebra (but not 
ass a Hopf algebra), D(H)* is isomorphic to CH <g> F{H). As a consequence, the irreducible 
representationss of D(H)* are tensor products of irreps of CH and irreps of F(H). The irreps 
off  CH just correspond to the irreps of H and we will denote them Pi. The irreps of F(H) are 
alll  one dimensional and are labeled by the elements of H. We have an irrep Eg for each g e H, 
givenn by 

EE99{f){f)  = f'(9)- (3.31) 

Wee can thus label each representation of D{H)*  by a pair (Pi, g). Tensor products of the irreps 
off  D{H)*  may be formed by means of A*. Although this coproduct is not the same as the usual 
coproductt for CH ® F(H), the decomposition of tensor products into irreps is not affected by 
thiss (the Clebsch-Gordan coefficients for the decomposition are affected). Thus we have 

PiPi ® Pj = 0 Nt
k
jPk => {Pi, g) <g> (Pj, h) = 0 N^(Pk,gh) (3.32) 

kk k 

wheree the Nl
k
J are the usual multiplicities in the decomposition of tensor products of H-irreps. 

Also,, we have 
(Pi,g)(Pi,g) = (pi,g-1)- (3.33) 

Fromm these formulae, we see that any set X of irreps of D (H)* that closes under tensor products 
andd conjugation is associated to a set of irreps of H and a set of irreps of F(H) with the same 
property.. These sets just consist of the irreps that may occur as a factor of one of the irreps in 
X.X. Consequently, for any Hopf subalgebra B of D(H), there are minimal Hopf subalgebras C 
off  F(H) and V of CH such that B C C 0 V c D{H). In the other direction, we see that, 
forr any pair of Hopf subalgebras C C F(H) and V C CH, the vector space C <S> V is a Hopf 
subalgebraa of D(H). Note that this Hopf subalgebra is usually not isomorphic to C ® V as a 
Hopff  algebra. Also, not all Hopf subalgebras of D(H) are of this form. However, the ones that 
aree will be quite important in the sequel. Therefore, we now find all the Hopf subalgebras of the 
groupp algebra CH and of the function algebra F(H). This also gives us two simple examples 
off  the use of theorem 2. 

Propositionn 4 The Hopf subalgebras of a group algebra CH are the group algebras of the 
subgroupssubgroups ofH. 
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Proof.Proof. The Hopf algebra dual to CH is the vector space F(H) of functions on H, with Hopf 
algebraa structure given by 

1**  : g H+ 1, /!*(ƒ! , A) : g  ̂ fi{g)h{g), A*(/ ) : (51,52) > /foifti) , 
e'' : ƒ H. /(e), £*(ƒ) : g  ̂ f(g~l), (3.34) 

wheree g, gi,g2 are arbitrary elements of the group H. Note that, in the formula for the comulti-
plication,, we have identified F(H) ® F(H) with F(H x H) in the usual way. The irreducible 
representationss Eg of F(H) were given in (3.31). One checks easily that the tensor product of 
twoo if these irreps, as defined using A* , is given by 

EEgg éEh = Egh. (3.35) 

Also,, we have ag = Eg-i. Hence, the sets of irreps of (CH)* that close under conjugation and 
tensorr products correspond exactly to the subgroups of H. The proposition follows. D 

Propositionn 5 A Hopf subalgebra of an algebra F(H) of functions on a group H is isomorphic 
toto the algebra F(H/K) of functions on the quotient ofH by some normal subgroup K. 

ProofProof Let C be a Hopf subalgebra of F(H) and let us denote the irreps of CH whose matrix 
elementss span C by #. Then the intersection of the kernels of the pi is a normal subgroup K 
off  H and any function in C will be constant on the cosets of K. We can also say that C really 
consistss of functions on the quotient group H/K. Now let us show the opposite inclusion. If 
wee form the direct sum © ^ of all the representations p{, then this representation of H will 
havee exactly K as its kernel and hence it can be identified with a faithful representation of 
H/K.H/K. Now it is a theorem in the theory of finite groups that the tensor powers of any faithful 
representationn of a group contain all irreducible representations of this group (see for instance 
[119]).. Hence all irreps of H/K are contained in the tensor powers of ®tpi and hence the matrix 
elementss of these irreps are contained in C. But since the matrix elements of the irreps of H/K 
spann F(H/K), it follows that C 2 F(H/K). D 

Thuss we see that for any Hopf subalgebra B of D(H), there is a maximal normal subgroup 
KK of H and a minimal subgroup N of H such that B is in fact a Hopf subalgebra of F (H/K) ® 
C/V.. Also, every subalgebra of D(H) of the form F(H/K) ® CAT is automatically a Hopf 
subalgebra.. These particular Hopf subalgebras are in fact also transformation group algebras, 
withh the group N acting on H/K by conjugation. This will be very useful later on, since it will 
alloww us to apply the representation theory of transformation group algebras that we described 
inn section 3.3. 

Noww let us turn to the problem of finding the Hopf subalgebra of D(H) which leaves a given 
condensatee vector <f>  invariant. 

Propositionn 6 The Hopf stabilizer T C D(H) of a given vector <j)  e V* is spanned by the 
matrixmatrix elements of those irreps (p, g) of D(H)* for which 

Vxx : <j>(gx) = %^<i»{x). (3-36) 
Up p 

Here,Here, xP denotes the character of the irrep pofH and dp denotes its dimension. This equation 
forfor (p, g) can only be satisfied if**^  is a root of unity. T is a transformation group algebra 
ofof the form F(H/K) ® CAT if and only if this root of unity equals I for all (p, g) which satisfy 
(3.36) (3.36) 
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Proof.Proof. T is by definition the maximal Hopf subalgebra of D(H) which leaves <f>  invariant. 
Thereforee it is spanned by the matrix elements of a set of irreps (pu g) of D(H)* which closes 
underr conjugation and tensor products (cf. theorem 2). The requirement that the matrix ele-
mentss of the irrep (p*, g) leave 4> invariant is just 

(Pi)ab(xg(Pi)ab(xgAAx-x-ll)(f)(g-)(f)(g-llx)x) = <W>(*)- (3.37) 

Iff  we take the trace of the left and right hand side of this equation, we obtain 

XXPiPi{9A)4>{9~{9A)4>{9~llx)x) = dPi4>(x). (3.38) 

Here,, we have used the invariance of x  ̂ under conjugation to remove the conjugation with x. 
Thiss equation is equivalent to (3.36), so any solution to (3.37) satisfies (3.36). The converse 
iss also true. From (3.36), we see that <f>  has to be an eigenvector of the action of «j-1 with 
eigenvaluee Xp£9A>. Since g has finite order, this implies that xp^9A' is a root of unity. This means 

thatt Pi{gA) must be Xp^9A' times the unit matrix, since XP^QA) is the sum of the eigenvalues 
ofof pi(gA), which are all roots of unity (pi is unitary). But if this holds, then pi(xgAx~l) is also 
*pyy times the unit matrix and hence (3.37) is satisfied. 

Usingg that the coproduct of D(H)* corresponds to the product of D(H) and also that IlA 

andd e are algebra homomorphisms, one may easily show that the set of irreps (pi,g) whose 
matrixx elements solve (3.37) (or 3.36) closes under tensor products. It also clearly closes under 
conjugation.. Therefore, T is spanned by the matrix elements of those irreps. 

If,, for all irreps (pi, g) whose matrix elements span T, we have Xp^A' = 1, then all the pi 
aree paired up with the same set of elements g of H, namely those elements whose action leaves 
<j><j>  invariant. These elements form a subgroup N+ of H. In this situation, 7" is the transformation 
groupp algebra F(H/K) <g> N  ̂ c D(H), where K is the intersection of the kernels of the pi. If 
onee of the roots of unity Xt>^9A' does not equal 1, then the representation (pu e) of D(H)* does 
nott occur in T, but (pi, g) does, for some g ^ e. Hence T cannot be a transformation group 
algebraa of the form F(H/K) <g> iV in this case. D 

3.66 Confinement 

3.6.11 Confinement and Hopf quotients 

Ass we have seen, the formation of a condensate of particles in the state <f>  breaks the Hopf 
symmetryy A of a theory down to the Hopf stabilizer T C A of <j>.  The particles in the effective 
theoryy which has the condensate as its ground state will thus carry irreducible representations 
off  T. However, not all the particles in the effective theory will occur as free particles; some will 
bee confined. The intuition behind this is simple: if a particle in the effective theory has non-
triviall  monodromy with the condensate particles, then it will "draw a string" in the condensate. 
Thatt is, the condensate's order parameter has to have a (half)line discontinuity as a consequence 
off  the non-trivial parallel transport around the location of the particle. This line discontinuity 
correspondss physically to a domain wall and will cost a fixed amount of energy per unit of 
length.33 Hence it may not extend to infinity. As a consequence, single particles that have non-

3Notee that we have not specified the Hamiltonian in our  model, but we assume here that, behind the scenes, 
theree is a "Higg s potential"  which causes the symmetry breaking condensation. Such a potential will make strings 
costt  an amount of energy that increases linearly with their  length. 
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triviall  braiding with the condensate cannot occur. On the other hand, configurations such as a 
particlee and its antiparticle connected by a (short) finite length string may occur and we may 
comparee these to the mesons of QCD. Similarly, one may have baryon-like excitations, which 
aree bound states of three or more elementary excitations which do not match in pairs. Thus, we 
expectt all the irreps of the Hopf stabilizer of the condensate to occur as particles in the broken 
theory,, but some of them will occur as free particles, while others will occur only as constituents 
off  mesonic or baryonic excitations. 

Theree are some requirements which should hold for the set of representations of T that do 
nott get confined. Clearly, this set should contain the vacuum representation or counit of T. 
Also,, it should be closed under tensor products and charge conjugation; we would not want two 
non-confinedd particles to fuse to a confined particle, and, given that a particle is not confined, 
wee would like the same to hold for its charge-conjugate. From these conditions on the non-
confinedd representations it follows, using the results of section 3.5.2, that the matrix elements 
off  the representations of the non-confined irreps of T span a Hopf-subalgebra of T*. We will 
calll  this subalgebra U*. Again using the results in section 3.5.2, it follows that the dual li  ofW 
wil ll  be a Hopf algebra whose irreducible representations are exactly the representations of T 
whichh are not confined (and whose matrix elements span W). The dual map of the embedding 
off U*  into T*  is a surjective Hopf map from T onto U and therefore U is a Hopf quotient 
off  T. This Hopf quotient U may be seen as the symmetry which classifies the non-confined 
excitationss of the system. A schematic picture of the main symmetry algebras defined in this 
chapterr and of their relations may be found on page 126. 

Too determine which irreps of T correspond to free particles and which are confined, we 
needd to have a notion of braiding between a representation it of thee original Hopf algebra and a 
representationn p of T. Clearly, the braiding should be derived from the i?-matrix of A. Let us 
writee this as R = £f c R\ ® R\. Unfortunately, we cannot just define the matrix for an exchange 
off  a p and a n as a o (p ® TT)(R), since the R\ are not usually elements of T. However, we 
cann take the exchange matrix to be a o ((p o P) ® ir)(R), where P is the orthogonal projection 
off  A onto T. We also define the braid matrix for the product IT ® p as a o (ir  <g> (p o P)){R). 
AA representation p of T should now correspond to a free particle excitation if these braiding 
matricess have trivial action on the product of the condensate vector with an arbitrary vector in 
thee module of p. That is, for a non-confined representation p, we would like to demand 

£p(P( f l i ) )«Hr(Jg)00 = p{l)®4> 
k k 

5>(i2l)0<MP(ig))) = 0®p(l). (3.39) 
k k 

Thiss gives us a requirement on every matrix element of each of the non-confined representations 
p.. These matrix elements are of course elements of T* and we may in fact write down a 
correspondingg requirement for arbitrary elements of T*. To do this, we first define a left and a 
rightt action of T* on the module V* of the representation IT of A. We take 

f-vf-v := £/(P(^)Mi?|)<; 

k k 

k k 

wheree ƒ G T* and v E VK. 
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Propositionn 7 Let* denote the multiplication on T*. Then 

«« = h-{f2-v) 

w ( / i * / a )) = {v-fi)-f2. (3.41) 

Proof,Proof, We have 

(fi*f2)-v(fi*f2)-v  = (/i®/2®7r)o(A®id)o(jp<g>id)(.R)t; 

== {fi®  f2®n)° {P®P® id) o (A® id)(R)v 

==  (fi®f2®n)o(P®P®id)(Rl3R2:i)v 

==  MPiRlVMPiRDMRlRl) 
==  MP(R})MRf)f2(P(Rl)MR2k)v 
==  fi-(h-v). (3.42) 

Inn the fourth equality, we used that it is a representation of A. In the third equality, we used 
{AA ® id)(R) = R13R23. In the second equality, we used the fact that the orthogonal projection 
PP commutes with the comultiplication, that is 

(P(P ® P) o A = A o P. (3.43) 

Onee may see that this holds by evaluating both sides on die basis of A that is given by the matrix 
elementss of the irreps of A*. Using this property of P and (id <g> A)(R) = R13R12, one may 
similarlyy prove that v  (/i  f2) = (v  fi)  /2. D 
Thee requirements (3.39) on the matrix elements of p may now be generalized to 

00 = 0 -/ = /(l)0 = e*(/¥- (3.44) 
Hence,, the requirement that the representation p has trivial braiding with the condensate be-
comess the requirement that the left and right action of the matrix elements of p, as defined 
above,, leave the condensate invariant (in the sense of definition 7). Thus, we may say that 
passingg from the unbroken symmetry T to the unconfined symmetry U is equivalent to break-
ingg the dual T* down to the Hopf stabilizer U*  of the condensate <j>.  If we take this point of 
view,, then the fact that we are talking about braiding is hidden in the definition of the actions 
above. . 

Unfortunately,, it turns out that (3.44) does not always have solutions. In particular, the 
counitt €T of T does not always solve (3.44) (or (3.39)). This is linked to the fact that the 
"action""  we defined above preserves the multiplication, but not necessarily the unit €7- of T*. 

Therefore,, to ensure that W contains at least the "vacuum representation" er of T*, we 
changee the condition (3.44) to 

f-<f>f-<f> = f{\)e.<j> 

4>-f4>-f = / ( l ) ^ - c (3.45) 

Inn other words, we no longer demand that the elements of U*  leave the condensate invariant, but 
instead,, we ask that they act on the condensate in the same way as e. To put it yet another way, 
wee say that the representations of T that are not confined are those representations that have the 
samee braiding with the condensate as the vacuum representation. Note that, since er = IT* »we 
mayy also write the above condition as 

)) = «*(ƒ)(«-0) 
( * • * ) • ƒƒ = * * ( ƒ ) ( * • € ) • (3.46) 
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Wee may thus still see confinement as a dual symmetry breaking, but now T*  is not broken to 
U*U*  by the original condensate 4>, but by the vectors c  4> and <j>  e. Clearly, when e  <f>  = <}>  and 
4>4>  e = <p, the new condition on elements of U*  reduces to (3.44). 

Wee have now defined a Hopf algebra U (through its dual U*)  whose representations should 
classifyy the non-confined excitations over the condensate. There should be an action of the 
braidd group on the Hubert space for a number of such excitations. Therefore, we should like U 
too be quasitriangular with an ^-matrix related to the jR-matrix of the original Hopf algebra A 
(forr example (P ® P)(RA))- As we will see in the examples, the conditions (3.45) are often 
enoughh to ensure that U has such a quasitriangular structure. Nevertheless, it does not always 
seemm to be the case (this will be made somewhat clearer in section 3.10). Therefore we expect 
thatt the requirements (3.45) will in general have to be supplemented by some extra condition 
andd the non-confined algebra could then be smaller than the algebra U defined here. 

3.6.22 Domain walls and Hopf kernels 

Inn the previous section, we talked about confined particles pulling strings in the condensate. 
Thesee were line discontinuities in the condensate's wave function, induced by the non-trivial 
parallell  transport around the confined particle. Evidently, the internal state of the condensate 
particless on one side of such a string will differ from that on the other side. Therefore, we 
mayy also view these strings as domain walls between regions with different condensates which 
exhibitt the same symmetry breaking pattern4. We would like to classify such walls. Clearly, a 
walll  is uniquely determined by the confined particles on which it may end, or in other words, 
byy a representation of the residual algebra T that does not correspond to a representation of its 
non-confinedd quotient U. However, there may be several irreps of T that cause the same parallel 
transportt in the condensate and these will all pull the same string (or wall). In fact, let p be an 
irrepp of T and let r be a non-confined irrep of T, then any irrep of T in the decomposition of the 
tensorr product representation (p ® r) o A will pull the same string as p, since the non-confined 
irrepp r has trivial braiding with the condensate. In short, we may say that walls are unaffected 
byy fusion with non-confined particles. 

Inn view of the above, we expect that the wall that corresponds to a T-representation p is 
alreadyy determined by the restriction of p to a subalgebra W of T. This subalgebra should 
bee such that, if r is a non-confined irrep of T, then the restriction to W of the tensor product 
representationn (p<S>r)o A should be isomorphic to a direct sum of copies of the restriction of p to 
WW (the number of copies being the dimension of r). Now it turns out that such a W C T exists, 
andd in fact, there are two logical options. Denote the Hopf map from the residual symmetry 
algebraa T onto the non-confined algebra U by T. The left Hopf kernel LKer(7) of Y is then the 
subsett of T defined as 

LKer(r)) := {t e T \ {V ® id) o A(t) = lu®t}  (3.47) 

andd similarly, the right Hopf kernel of V is defined as 

RKer(r)) := {t G T | (id ® T) o A(i ) = t ® \u). (3.48) 

Thesee are our two candidates for W. One may check that the left Hopf kernel is a right coideal 
subalgebraa (that is, LKer(r) is a subalgebra and A(LKer(r)) c T ® LKer(r)) and similarly 

4Onee may in principle also have domain walls between condensates with different symmetry breaking patterns, 
butt this requires the parameters which govern the system (the symmetry breaking potential) to vary as one crosses 
thee walls, breaking translational symmetry at the level of the Lagrangian or Hamiltonian 
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thatt the right Hopf kernel is a left coideal subalgebra. Moreover, one has .!?(RKer(r)) = 
LKer(r)) and 5(LKer(r)) = RKer(r). Thus, LKer(r) is a Hopf subalgebra of T exactly 
iff  LKer(r) = RKer(r). In the examples we will meet, this will not usually be the case. 
Notee that, even if LKer(r) ^ RKer(r), the representations of LKer(r) and RKer(r) are in 
onee to one correspondence: the representation p of LKer(r) corresponds to die representation 
pp := p% o S of RKer(r). If LKer(r) and RKer(r) are semisimple algebras (which we will 
assume),, then this isomorphism of representations induces an isomorphism of algebras and so 
LKer(r)) = RKer(r). In odier words: our candidates for W are isomorphic and it does not 
reallyy matter which one we take. 

Conjecturee 1 The wall corresponding to the T-irrep Qp is characterized by the restriction of 
£1%£1% to either LKer(r) or RKer(r). 

Wee provide the following evidence for Üiis conjecture 

1.. If p is a representation of LKer(r) and r is a representation of T, then we define the tensor 
productt as (r <g> p) o A. This is a well-defined representation of LKer(r), since LKer(r) is a 
rightt coideal of T. Now suppose that r corresponds to a representation f of U, mat is, r = f oT. 
Then,, the defining property of LKer(r) guarantees that we have 

(rr ® p) o (r ® id) o A(t) = r ( l ) ® p(t) (3.49) 

forr all t € LKer(r). In other words, LKer(r) is indeed defined in such a way that its repres-
entationss are not affected by fusion with representations of the non-confined algebra U, just as 
wallss are not affected by fusion with non-confined particles. Clearly, we may also define the 
tensorr product (p <8> r) o A of an RKer(r) representation p with a representation r of T and 
again,, the fusion will be trivial if r corresponds to a representation of U. 

2.. Every representation of T corresponds to a representation of LKer(r) by restriction. In 
particular,, if p is an irrep of T which factors over T, that is p = r o r, with r a representation 
off  U, then we have, for alH e LKer(r): 

p(t)p(t) = roT(t) 
==  T o r o (id <g> e) o A(t) 

== ro ( id®c)o( r® id )oA(*) = c(i)T(l). (3.50) 

Thus,, we see that the non-confined irreps of T all correspond to me trivial representation of 
LKer(r).. This result is consistent with the fact that the non-confined representations of T do 
nott pull strings. Again, a similar result holds for RKer(r). 

3.. If B is a finite dimensional Hopf algebra, C a Hopf quotient of B and A the corresponding 
leftt Hopf kernel, then it is known by a theorem of Schneider (theorem 2.2 in [120], see also [4] 
forr background) that B is isomorphic to a crossed product of A and C as an algebra and also as 
aa left .4-module and as a right C-comodule. Such crossed products are defined as follows: 

Definitionn 11 Let C be a Hopf algebra, let Abe an algebra and let a : C<& C -> A be a 
convolution-invertibleconvolution-invertible linear map. Also, suppose we have a linear map from B®Ato A, which 
wewe write asb®ai-> b-a. We require that A is a twisted B-module, that is, 1  a = a for all a  a 
and and 

c-(d-a)c-(d-a) = ^2 ff(c(i), <*(i))(c(2)<*(2)  o)<7_1(c(3)) d(3)) (3.51) 
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HereHere we use Sweedler notation for the coproduct. We also require that a is a cocycle, that is 

cr(c,l)=<7(l)C)) = e(c)l 

^2^2 (c(l))  ff(«*(l),  e(l))) (̂C(2), d(2)C{2)) = 5Z «^(l)» d(l)MC(2)<*(2)> e) <3-52) 

fl/w/fl/w/  f/iöf C measures A: 

c-ll  = e(c)l, c . (a6)=5^(c( 1 ).a)(c( 2 )-6). (3.53) 

Noww tfie crossed product algebra A#aB is the vector space A® B with the product given by 

(a®c)(b<8>d)(a®c)(b<8>d) =^2 a( c( i ) ' &MC(2), d(i)) ® c(3)rf(2)- (3.54) 

Thesee crossed products were introduced in [121, 122]. An accessible treatment may be found 
inn [4] or [8]. When it is given that C measures A, one may show that the conditions that involve 
aa are equivalent to the associativity of the product of A#aC. Some elementary properties of 
thee crossed product are 

 A is embedded into A#ff C through a (-> a ® 1, mat is, we have 
(o®® 1)(&® 1) = (ab® 1). 

 The map j : C -> A#aC given by c M- 1 <g> c is clearly a C-comodule morphism when 
A#o.CA#o.C and C are given the comodule structures id^ ® Ac and A c respectively, but it is 
usuallyy not an algebra morphism; we have (1 ® c)(l <g> d) = S(CT(c(i)> <*(i)) ® c(2)^(2))-

 When (T is trivial, that is cr(c, d) = e(c)e(d), the cross product is just the ordinary smash 
product;; we have (a ® b)(c <8> d) = £ a(c(i)  &) ® C(2)d(2). In this case, j is an algebra 
morphism. . 

Wee see that our residual algebra T is isomorphic to the cross product LKe r f r ) ^ ^ for some 
cocyclee a. This lends support to the idea that T-excitations are characterized by a wall, corres-
pondingg to a representation of LKer(r) and by further quantum numbers, which can be associ-
atedd to the non-confined algebra U. If the cross product was just the tensor product LKer (r) <g>ZY, 
thenn these "non confined quantum numbers" would be labels of ̂ -representations, but here, we 
cannott expect this, because the actions of LKer(r) and U on a T-module will not commute. 
Inn fact, U is typically not even a subalgebra of T. Therefore, finding the quantum numbers 
associatedd to U for the general case is a non-trivial task, which we postpone to future work5. 

3.6.33 Confinement for  transformation group algebras 

Supposee the D{H) symmetry of a discrete gauge theory has been broken by a condensate 4> 6 
V*V*  and the residual symmetry algebra T is a transformation group algebra of the kind referred 
too in section 3.5.3. The explicit definition is 

T={FeT={Fe D(H)\F(xk,y) = F(x,y)lN(y) (Vfc e K)} , (3.55) 

wheree N is a. subgroup of H and K is a normal subgroup of H. Such algebras will arise 
frequentlyy in our examples. Here, we investigate which representations of such a T are confined 

5Notee that much more than we have written here is known when LKer(r) is a Hopf algebra. For such results, 
seee for instance [123,124,125] 
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andd which are not. In particular, we will find that there is a set of non-confined representations of 
TT such that the irreps in this set are in one to one correspondence with those of D(N/(N C\K)). 

First,, we find some properties of the condensate vector 0. If T is of the form given above 
thenn the invariance of <f>  under elements of die forms 1 <g> n (with n € N) and ƒ <g> e implies that 
wee have 

(Vnn G N) : <p{nx) = <j){x) 

(V(// ® e) € T) : f{xgAx-l)<f>{x)  = f{e)<f>(x). (3.56) 

Thee second equation and <j>  ^ 0 imply that there is an x £ H such that f(xgAx~l) = f(e) for 
alll  ƒ that are constant on üf-cosets. As a consequence, we have xgAx~x e K and hence, since 
KK is normal in H, we have Ac K and in particular gA € K. 

Noww let us write down an explicit formula for the orthogonal projection P of D(H) onto T: 

P(F)(x,P(F)(x, y) = -Lf dk F(xk, y)lN(y). (3.57) 

Inn the following, we will sometimes omit the characteristic function of N and just keep in mind 
thatt the projected function has support in N. With the above formula, we can find (P ® id)(R) 
andd (id ® P)(R) from the formula (3.2) for the fl-matrix of D(H): 

(P®id)(R)(x(P®id)(R)(x11,y,yuuxx2y2yyy22)) = -r^-J dkSe(xlk(y2)-
1)5e(y1) 

{id^P){R)(x{id^P){R)(x11,y,yll,x,x2l2ly2)y2) = Se(x1{y2)-
1)Se(y1)lN(y2). (3.58) 

Usingg these formulae, we can write down the left and right actions of T*  on the condensate 
vector,, as defined in equation (3.40). They are given by 

{r-<t>){x){r-<t>){x)  = f ÓZ{T{FL)){Z)4>{Z-1X) 
JH JH 

{<f>-r){x){<f>-r){x)  = (T(FR))<(>(X), (3.59) 

wheree r is an arbitrary element of T*  and we have defined 

FFLL{a,b-z){a,b-z) = ^ f dk8e{akz'l)5e{b) 
\\KK\\ JK 

FFRR{a,b;x,z){a,b;x,z) = 8e{xgAx-lb-x)lN{b). (3.60) 

FFRR and FL should be read as functions of a and b with parameters x and z. We want to find the 
maximall  Hopf subalgebra of T* for which the condition (3.45) holds. This will be spanned (as 
aa linear space) by the matrix elements of a set of representations of T. Since T is isomorphic 
too a transformation group algebra, we know its representations (see section 3.3.2). They are 
labeledd by an orbit B of the action of N on H/K and by an irreducible representation 0 of the 
stabilizerr NB c N of this orbit. The matrix elements of the representation labeled by B and p 
inn the basis of formula (3.11) can be read off from formula (3.12), which in this case becomes 

TT0(0(FF)H=)H=  [ Fix^gBX-'^^nx^i^dn. (3.61) 
JNB JNB 

Inn this formula, we have xv, xc e N as in (3.12), while gB is an arbitrary element of the K-coset 
£B£B that features in (3.12). Note that it does not matter which element of this coset we take, since 
thee function F in the integrand is constant on Zf-cosets in its left argument. 
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Chapterr 3. Hopf symmetry breaking and confinement 

Propositionn 8 The requirements (3.45) which determine which of the irreps T$ of T are not 
confined,confined, reduce to 

(VT?? e OB): - L J dk ̂ (kx^x^x) =  ̂ fR
dk <t>( kx) (362> 

(9A(9A <£N)V (Vx e supp(0), Vr? e OB : ^(x^xgAX^x^) = I) . (3.63) 

Here,Here, OB is the orbit of is in H/K and I is the unit matrix in the module of (3. 

Proof.Proof. Substituting (3.61) into to the formulae for the actions above, we find for the left action 

((if((if  )?»'<!>)(*)  = Ï17T f dz f dri f dkSe(xv9Bx-1kz-l)5e(xflnx îij (n)(l>(z-1x) 
'' \K\ JH JNB JK 

==  T1F\\ d n / dkSeixrjnxT^^jin^ik^x^g^x^x) 
l-KK I JNB JK 

== lNB(x?xdfoAxvlxdW\ J dk<l>( kxr>9Blxvlxï (3M) 

andd similarly, for the right action 

( 0 - ( T / ) ^ ) ( X )) = f dnSeixgAX^x^x-^Pijin^ix) 
JNJNB B 

==  lAf B(x^1xgj4x~1xc)/3iJ(x^1a:5Ax"1a:()^(x). (3.65) 

Ass a special case, we can find the left and right action of the counit e € T*, which corresponds 
too the one-dimensional representation r̂  . We have 

(0-c)(x)) = 1N(9A)<K*)- O-66) 

Thee final ingredient we need in order to write down the requirements (3.45) for the matrix 
elements,, is the value of (rf)1  ̂ in 1T = 1D(H)- This is given by 

(^)oi(i^(H) )) = W s - ^ / M * - 1 ^ ) . <3-67> 

Thus,, the conditions (3.45) that the matrix elements of rf have to fulfill , in order for rf not to 
bee confined, become 

lNlNBB(x-\)^j(x^(x-\)^j(x^xxÓT^-xÓT^-x J dk^kx^x^x) = lrfgix-^pijix-^)-^- j&k<t>{kx) 
KK K (3.68) 

and d 

lNlNBB(x-(x-llxgxgAAx-x-llxx<:<: )^{x-)^{x-llxgxgAAx-x-llX(X(ii)4>{x))4>{x) = M ^ ) W ^ " 1 ^ ) ^ ^ - 1 ^ ) ^ ) . (3.69) 

Inn the special case where rj = ( and i = j , the condition (3.68) reduces to (3.62). On the 
otherr hand, if (3.62) holds, then (3.68) will also hold for general (77, C, t, 3) ^ h e n ce (3-62>i s 

equivalentt to (3.68). The condition (3.69) is trivially satisfied when gA is not contained in N 
(thiss is the first alternative in (3.63)). When gA is an element of N (and hence of N n K, using 
(3.56)),, it may also be simplified; in thee special case where 77 = C, (3.69) reduces to 

iNaix^xgAX-ixJpijix^xgAX^XiMx)iNaix^xgAX-ixJpijix^xgAX^XiMx) = Sij(j>(x). (3.70) 
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Noww since g& e N C\ K, it follows that x~lxgAX~xxn E N C\K. But N n K acts trivially on 
H/KH/K and hence N C\ K c NB for any B. Hence the condition above reduces to the second 
alternativee in (3.63). In the other direction, it is not difficult to see that (3.69) will be satisfied 
forr general (77, C, *, j) if (3.63) is satisfied. Thus, we see that (3.69) is equivalent to (3.63). D 
Propositionn 8 indicates how far we can go towards the general solution of (3.45) without spe-
cifyingg the condensate vector <j>.  The following proposition describes a set of solutions that is 
presentt for any 0, but that is not always the full set of solutions. 

Propositionn 9 Independently of the condensate vector <f>,  there is a set ofunconfined irreps of 
TT which closes under conjugation and tensor products. The corresponding Hopf quotient ofT 
isis isomorphic to the quantum double of the group N/(N D K). This quantum double may be 
realizedrealized naturally on the space of functions on N x N which are constant on (N D K)-cosets 
inin both arguments. The Hopf surjection T : T  D(N/(N f] K)) is then given by 

T(f)(x,y)=T(f)(x,y)= f f(x,yk)dk. (3.71) 
JNtlK JNtlK 

Proof.Proof. First, we find our set of irreps. Note that the left hand side of (3.62) is rjU times the 
summ of the values of <f>  over the if-coset x^g^x^xK. Similarly, the right hand side involves 
aa sum over xK. Using the fact that <f>{nx) = <p[x) for any n e N (cf. (3.56)), we see that 
(3.62)) will be satisfied if xvg^lx~xxK = nxK for some n € N, or equivalently if there is an 
nn e N such that gBK = nK. Furthermore, (3.63) is clearly satisfied for all /? that are trivial 
onn N n K c NB- Thus, the irreps rf of T for which gBK — nK and 0\N^K = 1 are never 
confined. . 

Second,, we show that these irreps are in one-to one correspondence with the irreps of 
D(N/(ND(N/(N D K)). To see this, first note that, for m, n2 e N, we have 

nn11KK = n2K&n l(KnN) = n2{KnN). (3.72) 

Inn fact, let N denote the subgroup of H/K which consists of the classes nK with n G N, then 
thiss correspondence is an isomorphism between N and N/(N D K). It follows that the iV-orbits 
inn H/K whose elements lie in N are in one to one correspondence with the conjugacy classes 
off  N/(K D N). Now fix an arbitrary such orbit B C N. The irreps 0 of the stabilizer NB C N 
off  this orbit which are trivial on K n N are in one to one correspondence with the irreps of 
NNBB/(K/(K n N). But NB/(K fl N) is exactly the centralizer of thee conjugacy class of N/(KC\ N) 
thatt corresponds to B. Hence the non-confined irreps of TA are labeled by a conjugacy class of 
N/(KN/(K n N) and an irrep of the centralizer of this class in N/(K n N). But this means that they 
aree in one to one correspondence with the irreps of D(N/(K n N)). 

Noww let us have a closer look at the map r : T  D(N/(N D K)). For convenience, we 
wil ll  realize D(N/(NDK)) on the space of functions onNxN which are constant on (NnK)-
cosetss in both arguments. The isomorphism with the usual formulation in terms of functions on 
N/(NN/(N n K) is taken as follows. Let ƒ e F{N/(N nK)x N/{N D K)) then ƒ corresponds to 
thee function ƒ 6 F(N x N) given by ƒ (x, y) = f[x(N n K), y{N (1K)). The demand that this 
identificationn is an isomorphism fixes the Hopf algebra structure on F(N x N). For example, 
thee product of two functions on JV x N may now be written as 

fifi  ƒ*(*, V) = j ^ ^ i f fi{xt z)Mz~1xz, z-tydz. (3.73) 
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Itt is straightforward to prove that V, as defined above, is indeed a Hopf homomorphism. For 
example,, to see mat T preserves me product, we write 

r ( / i ))  r(/2)(a?,y)= , , dz ƒ dkx I dk2f1{x,zk1)f2(z-lxz,z-lyk2) 
RR n / i | JN j N n K j N n K 

== l y n y l d z / d k l / ^2/l(^,2)/2(^_1ar2,fci2_1^2) 

== / dfc2 fdzf1(x,z)f2(z-1xz,z-1yk2) = r ( / i 2)(ar,y). (3.74) 

Inn going from the first to the second line, we used the invariance of the integral over TV and the 
factt that f2 is constant on /C-cosets in its left argument. In going from the second to the third 
line,, we used the invariance of the fc2-integral to remove the k\-dependence from the integrand 
andd we subsequently removed the fci-integral. The rest of the proof that T is a Hopf algebra 
morphismm is similar. It is also easy to see that T is surjective. 

Too complete the proof of the proposition, we need to show that the set of unconfined irreps 
wee have found consists precisely of those irreps of T that factor over I \ Thus, let I l | be an 

irrepp of D(N/N D K) and let xf be its character, as given in (3.13). Then we have 

x f ( r ( / ) ) == [„<%[  dn f dkfix^x^^nx-^xpin). (3.75) 
JBJB JNÈ JNC\K 

Here,, we have abused notation slightly: in stead of elements of N/(N n K) one should read 
representativess of these elements in N where appropriate. It should be clear mat the choice of 
representativess does not affect the result. We may now change the sum over the conjugacy class 
BB c N/(N n K) into a sum over the corresponding iV-orbit B c N C H/K. Similarly, we 
mayy change the sums over Ng and N C\K into one sum over NB C N. This yields 

X%(P(f))=X%(P(f))= [  <K [  dnfix^BX^.x^nx-^x^n), (3.76) 
JBJB JNB 

wheree 0 is the irrep of NB that corresponds to the irrep (5 of NB (of course, j3 is trivial on 
NN n K). The expression above is just the value on ƒ of the character of the irrep T$ of T. r^ 
indeedd belongs to our set of unconfined irreps and from the one to one correspondence between 
irrepss of D(N/(K D N)) and irreps in our unconfined set, we see that we must get all irreps 
inn the unconfined set in this way. Thus, the set of unconfined irreps of T that we have found 
correspondss precisely to the set of irreps of T that factor over T and the proposition follows. D 
Notee that the i?-matrix and ribbon-element of D(N/(K O N)) provide the set of non-confined 
irrepss mat we have found above with a well defined braiding and spin. It is not clear that 
wee will have such properties for the full set of solutions to (3.62) and (3.63). Therefore, we 
expectt that the physically relevant set of solutions to these equations is the one given in the 
propositionn above.This issue will not be very important in the sequel, since the set of solutions 
inn the proposition is actually complete in all our examples. 

Propositionn 10 The left and right Hopf kernels of F are given by 

LKer(r)) = {feT^x^N: f(xlx2,y) = f(x2,y)A^y^NnK: f(x,y) = 0} (3.77) 

RKer(r)) = {ƒ e T\ix2 e N: f(x1x2,y) = f{xuy) A Vy^NnK: f(x,y) = 0} (3.78) 
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Proof.Proof. We have 

r<g>id(A(/))(xi,t/i,x2)y2)) = / f(xix2,yik)Se(yiky21) 
JNCiK JNCiK 

(lD(JV/(JVnlO)®/)(zi»lfl>S2iSfe)) = lNnK{yi)f{X2,y2) (3.79) 

andd the left Hopf kernel of T consists of those functions ƒ for which the right hand sides of 
thesee equations are equal: 

// f{xiX2,yik)Se(y1ky2l) = lNnK(yi)f(x2,y2)- (3.80) 
JNnK JNnK 

Noww if we take t/i = y2j then this requirement reduces to 

f{xixf{xix 22,yi),yi) = lNr\K{yi)f{x2,yi), (3.81) 
fromm which we see that ƒ (x, y) equals zero for all x € H when y is not an element of N D K, 
whilee for y e N n K, we have f(xix2, y) = ƒ (x2, y) for all xi e N. On the other hand, all ƒ 
whichh satisfy these requirements automatically satisfy (3.80). One may see this by noting that 
bothh the left hand side and the right hand side of (3.80) can be non-zero only if both yx and y2 

aree elements of K n N, in which case left hand side and right hand side are equal. The formula 
forr LKer(r) now follows. The proof of the expression for RKer(r) is similar and we leave it 
too the reader. D 
Iff  we once again let N be the subgroup of H/K that consists of the cosets nK of the elements 
off  N, then we see that we have the following 

Corollar yy 3 As algebras: 

LKer(r )) £*  F(N\{H/K))  <g> C(N n K) 
RKer(r)) £ F{{H/K)/N) <g> C(7V n K) (3.82) 

Proof.Proof. To see that the isomorphisms are algebra isomorphisms, note that the elements of 1 <8> 
C(KC(K n N) commute with those of F(N\(H/K)) ® 1 and F((H/K)/N) <g> 1. This is because 
thee elements of F(H/K) ® 1 already commuted with those of 1 ® C(K n N) in T. D 
Ass a consequence of this corollary, each irreducible representation of the left kernel is a product 
off  an irrep of F{N\{H/K)) and an irrep of AT n K. The irreps of F(N\(H/K)) are of course 
labeledd by the elements of JV\ {H/K) and hence each irrep of LKer(r) is labeled by an element 
off  N\(H/K) and an irrep of NC\ K. Similarly, each irrep of RKer(r) is labeled by an element 
off  (H/K)/N and an irrep of N D K. 

3.77 Requirements on condensates 
Beforee we turn to the study of explicit examples of symmetry breaking and confinement, let us 
firstt motivate the choices of condensate vectors that we will use in our examples. 

Upp to now we have assumed that one may form a condensate of any kind of particle in the 
theory,, in any internal state <f>.  However, if we want to have true Bose condensates, then we 
shouldd demand that the state <p has trivial self-braiding and also trivial spin factor6. In other 
words: : 

6Inn some applications, it could be more useful to think of our condensate as a background of particles in the 
samee internal state, but not necessarily with the same external quantum numbers. Then the restrictions we give 
heree are not necessary. Examples of "condensates" of particles with a non-trivial spin factor would be the fractional 
quantumm Hall ground states proposed in [49, SO] 
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 The condensate must have trivial spin factor, i.e a(gA) = I-

 The condensate must have trivial self-braiding, i.e. 

aoii£<g>n2(i?)4><g)00 = 0®0. <3-83) 

Thee examples that we will treat in the rest of this chapter will all have trivial spin and self-
braiding.. The rest of this section is devoted to finding out which kinds of electric, magnetic and 
dyonicc condensates will satisfy these requirements. 

Forr any purely electric condensates <f>  € V* (see section 3.8), the requirements are both 
triviallyy satisfied. 

AA vector <f>  in a purely magnetic D(H)-module V* will automatically have trivial spin, but 
mayy have non-trivial self-braiding. Nevertheless, there will always be at least two gauge orbits 
off  magnetic states with trivial self-braiding for every class A which has more than a single 
element.. The first of these orbits contains all the states with pure fluxes hgAh'x, which have 
wavee functions lhNA. We will study the corresponding condensates in section 3.10. The second 
orbit,, which will be studied in section 3.9, consists of the single gauge invariant state which 
iss the superposition of all these pure fluxes. Its wave function is the function that sends all 
elementss of H to 1. Of course if A has only a single element, then these orbits coincide. Note 
that,, when the orbits are different, they will also have different symmetry breaking patterns. In 
particular,, the gauge singlet will leave the electric group unbroken, while the states in the other 
orbitt will not. To see that the states in the two orbits we have mentioned do indeed have trivial 
self-braidingg and to see if there are more states with this property, we write down the expression 
forr the self-braiding of an arbitrary ƒ e VÏ* . We have 

f®ff®f : (9,h)^f(g)f(h) 
aoR(f®f)aoR(f®f) : (9,h)^f(g)f(gg^g-1h) (3.84) 

andd hence ƒ has trivial self-braiding precisely when 

f(9)f(h)f(9)f(h) = f{g)f{99Al9-lh) (Vs, h e H). (3.85) 

Onee may readily check that the states we have already mentioned are always solutions to this 
equation.. Depending on H and A, there may also be extra solutions. For example, if A c NA, 
thenn all ƒ are allowed, since in that case hNA = gg^g~lhNA. 

DyonsDyons (see section 3.11) can have non-trivial spin, but dyons with trivial spin also exist for 
manyy groups H. In fact, given a magnetic flux A =£ [e], there will be dyons with flux A and 
triviall  spin factor precisely when gA is contained in a proper normal subgroup of its centralizer 
NNAA.. For Abelian H, this just means that the cyclic group generated by gA must be a proper 
subgroupp of H. For non-Abelian H, one may note that gA is contained in the center of NA, 
whichh is a proper normal subgroup if NA is still non-Abelian. If NA is Abelian, then we have 
thee requirement that the cyclic group generated by gA must be a proper subgroup of NA. When 
HH is Abelian, the requirement of trivial self-braiding is equivalent to that of trivial spin and 
hencee all the spinless dyons we have found may be condensed. When H is non-Abelian, this 
iss not the case and the requirement of trivial self-braiding then restricts the possibilities further. 
Inn particular, using the ribbon property of D(H), it gives the necessary condition that two of 
thee condensed dyons should be able to fuse into a particle with trivial spin. In spite of this 
restriction,, there are still many non-Abelian groups H which allow for dyonic states with trivial 
self-braiding.. One may for example show that they occur for any non-Abelian H with a non 
triviall  center. 
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3.88 Electric condensates 

3.8.11 Symmetry breaking 

Inn this section, we study symmetry breaking by an electric condensate <j>  € II* . The first thing to 
doo is to find the residual symmetry algebra, which is the Hopf stabilizer of <f>.  This means finding 
alll  representations (p,g) of D(H)* which solve equation (3.36) in the special case where the 
fluxflux  A is trivial. In this case, we see immediately that all p are allowed. The requirement on g 
iss just that <j>{gx)  = <f>(x), or equivalently, <f>(g~ lx) = <j>(x) f for all x e H. Using the invariance 
propertyy of (f>, this reduces to a(x~l gx)<f>(x) = <f>(x)  and using the invariance property once 
again,, we see that this reduces to the single requirement 

a(g)<f>(e)a(g)<f>(e) = <j>{e).  (3.86) 

Thus,, if we define v :=  <f>(e) 6 Va, then g has to be an element of the stabilizer Nv of v. Since 
pp was unrestricted, it follows that the residual symmetry algebra is the Hopf subalgebra TV(H) 
off  the double which is F(H) ® CNV as a vector space, or in terms of functions on H x H: 

%{H)%{H) :=  {F 6 D(H)\supp(F) C H x Nv} . (3.87) 

11(H)11(H) is a transformation group algebra, with Nv acting on H by conjugation. Hence we may 
immediatelyy write down all its irreducible representations, using theorem 1. They are labeled by 
ann Nv -orbit O in H and by a representation T of the stabilizer No of a chosen element go € Ö 
inn NA- We will denote them fif.  The Hilbert space on which £1° acts is the space Fr(Nv, VT) 
definedd in (3.7). We will call it Vf for short. The action of Q® on this space is given by the 
formulaa in theorem 1, which in this case becomes 

[Q?{F)4>)[Q?{F)4>)  (x) :=  f dzF{xg0x-1,z)<j>{z- lx). (3.88) 
JNJNV V 

Thee characters $® of these representations are given by formula 3.14 or equivalently by formula 
(3.15).. We have 

^?(f/,, h) = lSn(h)lo(r,)1>A*nlhxi)-  (3" 89) 

Usingg these characters and the inner product (3.16), one may calculate the fusion rules for 
T„(H)-irreps. . 

Clearly,, any representation of D(H) also gives a representation of TV{H) by restriction. 
Whenn we consider the irreps of D(H) as TV{H^representations in this way, they will usually 
noo longer be irreducible. Their decomposition into 7l(i/)-nreps may be calculated by taking 
thee inner product (3.16) of their characters with the characters ^f. The character of the D(H)-
irrepp Up, seen as a 7^(H)-irrep, is just the restriction of the original character xf  w e have 

xSxS (17, h) = lNa{h)lB{Tl)Xa{x?hxn). (3.90) 

Fromm this formula and the formula for ij)°, we see immediately that the irreps Ü° of % which 
constitutee Il f will all have Ö c B. Also we see that a purely magnetic D(H)-irrep nf will 
decomposee into the purely magnetic TV(H)-irreps Qf with O c B .A purely electric irrep 11̂  
off  D(H) will decompose into the purely electric irreps £1% of TV(H) which are such, that the 
irrepp r of NA C H is contained in the decomposition of me irrep (3 of H. 
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3.8.22 Confinement 

Lett us now determine which representations of the residual algebra %{H) of the previous sec-
tionn will be confined and which will not. The non-confined representations have to satisfy the 
conditionss (3.45). Since TV(H) is isomorphic to a transformation group algebra, we may apply 
thee results of section 3.6.3 (with N = Nv and K = {e} ) to simplify these to the conditions 
(3.62)) and (3.63). From section 3.6.3, proposition 9, we know that these equations are solved at 
leastt by those fif  for which goK = nK for some n e Nv and r is trivial on K. Since we have 
KK = {e}  here, this reduces to just the requirement that go €i Nv. We have also shown that this 
sett of irreps closes under conjugation and tensor products and that they are in fact the irreps of 
aa quotient UV{H) of TV(H) that is isomorphic to D{NV/(NV n K)), which is here just D{NV). 

Itt turns out that the irreps Q° with go & Nv are actually all the irreps that meet the require-
mentss (3.62) and (3.63). Let us check this. In the case at hand, (3.63) is always satisfied, since 
gAgA is the unit element of H. Thus, we are left with condition (3.62). Since K — {e} , this 
reducess to 

4>{x4>{xnn9ö9öllx~x~xxx)x) = 4>{x). (3.91) 

Usingg the invariance property of 4>, this becomes a(x~lxr)gox~1x)(p(x) = <j>{x).  Multiplying 
withh a(x) from the left and using the invariance of <j>  once more, we see a{xvgox~x)4>{e) must 
equall  0(e). If we now recall that v = 0(e) and that the xv are elements of Nvy then we see that 
wee are left with the requirement that go should be an element of Nv. Thus, the class of solutions 
matt we had already is indeed complete and the non-confined algebra is just the quantum double 
ofNofNvv. . 

Thee fact that the non-confined algebra U is the quantum double D(NV) of the stabilizer Nv 

off  the condensate vector comes as no surprise; the original D(H) -theory was obtained from 
aa gauge theory with a continuous gauge group G by breaking this group down to H through 
condensationn of an electric excitation. All we have done by condensing one of the electric 
particless of the D(H)-theory is to modify the electric condensate of the G-theory in such a 
wayy that the residual gauge group is now Nv rather than H. We referred to this replacement 
off  H with Nv already at the end of section 3.2 and it is encouraging to see that our formalism 
forr symmetry breaking and confinement in quantum groups produces the result we anticipated 
there. . 

Thee result mat the non confined irreps of Vt° of Tv are exactly those for which go € Nv 

iss also in accordance with our intuitive treatment in section 3.2; the £)f whose "flux" go acts 
triviallyy on the condensate are not confined, because they will have trivial braiding with the 
condensate.. The remaining Q° will be confined, because they pull strings in the condensate. 
Inn fact, all the expectations we voiced in section 3.2 come true and are now under precise 
mathematicall  control. "Hadronic" excitations with overall flux in Nv can be classified by means 
off  the fusion rules of %, which can be obtained using the inner product (3.16) on the space of 
characters.. Also, the theory of section 3.6.2 implies that the classification of strings or domain 
wallss does indeed involve the elements of H/Nv, as we now show. 

Inn section 3.6.2 we asserted that the string associated with an irrep Cl° may be characterized 
byy the restriction of Q° to the left or right Hopf kernel of the projection T of TV{H) onto D(NV). 
Lett us take the right kernel. From (3.78) we see mat the elements of the right kernel are all of 
thee form ƒ ® Se, where ƒ is constant on left cosets of Nv in H\ the right kernel is isomorphic to 
thee algebra of functions on the left 7V„-cosets in H The irreps EhN of RKer(r) are labeled by 
thesee cosets and given by 

EEhNhN(f®6(f®6ee)=f(h).)=f(h). (3.92) 
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Itt is easy to find the restriction of ftf to RKer(r). Let <f>\  be the basis elements for V° as 
definedd through formula (3.11), that is <i>\{y)  = IHN0 Ü /MïT 1^ )^ . Note that the £ are in this 
casee just elements of H and that we have x^gox^1 = £. Also, NQ is just the stabilizer of go in 
N.N. Using this, we have 

(n?(/®® *.)#)(») = f{ygoy-l)4>{y) 

== Kygoy'^U^NoivMy'1^)^ 
== fiO<f>{y) = E(N{f)<Ky). (3.93) 

Soo we see that each of the 0£ spans a one dimensional RKer(r)-submodule of ft® isomorphic 
too the module of E N̂. This gives the decomposition of fif  into RKer(r) modules: for each 
££ in the orbit Ö, we have dT copies of E N̂, Of course, some of the cosets £JV may coincide 
andd then E$N will occur a multiple of dT times in the decomposition. In particular, if fif  is 
nott confined, then the orbit O is just a conjugacy class of N and we see that fïf corresponds 
too \0\dT copies of the trivial RKer(r)-representation EN, a result which we showed in general 
alreadyy in section 3.6.2. Here, it is also easy to see that none of the confined irreps of % has 
thiss property. In other words, none of the non-confined irreps pull strings, while all the confined 
oness do. The result we have got for the labeling of the walls is what we should have expected; a 
stringg is created by inserting a flux g & Nv into the condensate. This string may be characterized 
byy the fact that, if the condensate state on one side of the string is given by 0(0) = v, then it 
mustt be given by a(g)v on the other side. But this means that the fluxes gn, with n G Nv, will 
alll  pull the same string as the flux g, since a(gn)v = a(g)v. Hence, the string may already be 
characterizedd by the coset gNv. However, the flux g which pulls the string may be transformed 
intoo the fluxes ngn~l by gauge transformations with elements n £ Nv. Hence the wall should 
indeedd be labeled by the set of cosets ngn~l Nv which is just the set of cosets £ N of the elements 
CC in the Nv-orbit of g. 

3.8.33 Examples of electric condensates 

Abeliann H 

Supposee a particle in the irrep II„  of D{H) has condensed in the state v e V*. We have seen 
thatt the residual symmetry algebra TV(H) is the Hopf subalgebra of D(H) = C(H x H) = 
F{HF{H  x H) which consists of the functions supported by H x Nv (cf. 3.87). Because H is 
Abelian,, the irrep a is one-dimensional and hence Nv is just the kernel Na of a. Thus, we have 
TTVV{H){H)  ^ F(H x Na) ^ C(H x Na). Here, the action of Na on H is trivial, since H is Abelian 
andd hence the irreps Qp of Tv are labeled by an element h of H and an irrep /3 of Na. The 
decompositionn of D(H)-irreps into 7^(-ff)-irreps is straightforward: we have U/ï ~ Q^, where 
J3J3 is the restriction of @ to iVa. 

Thee irreps ftp of Tv which are not confined are those for which h e Nv and they are of course 
inn one to one correspondence with the irreps of D(NV). The corresponding Hopf projection T : 
TTVV(H)(H) —  D(NV) is just restriction of the functions in %{H) to Nv in the left argument. The left 
andd right Hopf kernels of T coincide and they are both isomorphic to the space of functions on 
thee quotient H/Nv. The representations of this function space are just the evaluation functionals 
onn the classes hNv and as before, we denote them EhNv. The restriction of an irrep Qh of T to 
LKer(r)) is simply given by ftp = EhNv-
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Too illustrate what happens a bit more explicitly, we will work out the case of H = Z„. This 
groupp is generated by a single element which we will call r and it has n irreps ao, . . ., an- i . 
givenn by 

o**  : ra H-> e
2irika/n. (3.94) 

Thee kernel of ak consists of those ra for which ak = 0 mod n. The minimal non-zero a for 
whichh this holds is the quotient n/gcd(n, k) =: x. Hence, we have Na = (rx ) = Zgcd(n,fc). 
Thee corresponding residual symmetry algebra is 

TTvv(Zn)(Zn) = F(Z„  x Zgcd ĵt)) =*  C(Zn x Zfccd f̂c)). (3.95) 

Thuss we see that the electric symmetry can be broken in as many different ways as n has divisors 
(thee magnetic symmetry is never broken). The irreps Q£t of the residual algebra are labeled by 
ann element ra £ H and an irrep at (with 0 < I < gcd(n, k)) of Zgcd(nifc). The decomposition of 
thee irreps U  ̂ (with 0 < / < n) of Z„  is then given by 

IT*IT*  = W*  (3.96) 
«II  «I  mod gcd(n,fc) V ' 

Thiss follows from the fact that a^) =  e
2™Wn = ^iip/gcdK*). 

Thee irreps Q  ̂ which are not confined are those for which ra e Na, i.e. a = px, with 
00 < p < gcd(n, k). These correspond to the irreps 11̂  of the non-confined algebra U, which is 
givenn by 

UUvv(Zn)(Zn) * D(Na) S DiZ^Hnu). (3.97) 

Thee Hopf map T from F(Z„  x 1^^)) to U is just restriction to \cd{n,k) m ^e le ft argument. 
Thee Hopf kernel of this map consist of the functions ƒ ® 5e in F(Z„  x ZgCd(nifc)) for which ƒ is 
constantt on the cosets of Na = ZgCd(n,k)- Hence, we have 

LKerfrj^FfZfc) .. (3.98) 

Thee representations of LKer(r) may be denoted Ea with (0 < a < x) and are given explicitly 
byy Ea{ ƒ ® 6e) = ƒ (r°). The restriction of ft£ to LKer(r) is given by 

^ „ ,, = ^ a mod x- ( 3 . 9 9) 

Wee will treat all the possible types of electric condensate in order. 
1.. First, we take a condensate v € V£. We then have Nv = {r ) = I^m+i and hence 

%(D%(D2m+12m+1)) S F(L>2m+1) éCZ2 m + 1. (3.100) 

Heree and in the sequel, the tilde on the tensor product sign indicates that the factor on the right 
actss on die factor on the left through conjugation. To find the irreps of Tv, we first need to 
findfind the orbits of the adjoint Ivm+i -action on D2m+i  and their stabilizers. One easily finds that 
thee orbits are {e} , {r} , { r 2} , . . . , {r 2m}  and {s, sr, sr2,..., sr2m} Of these, all the orbits that 
containn a single element have stabilizer { r ) = Z2m+i , while the remaining orbit has the trivial 
stabilizerr {e} . Thus, the irreps of % may be denoted fi£ (with 0 < k, I < 2m -I-1) and Q8. 
Here,, we let rk and s denote the orbits of rk and s, in order not to overload the notation. We 
seee that % has (2m + l)2 + 1 irreps, which are all one-dimensional, except for Qs, which is 
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2mm 4- 1-dimensional. It follows that the squares of the dimensions add up to 2(2m + l ) 2 , which 
equalss the dimension of Tv, as it should. The decomposition of £)(J52m+i)-irreps into 7^-irreps 
mayy be found directly or by means of the orthogonality relations for the characters of %. We 
have e 

TPjTPjtt = n&, n;o = n- O.ioi) 

Off  die representations of Tv, ^*  is confined, since s $. Nv. The others are not confined and are 
inn one to one correspondence with the irreps of the non-confined algebra 

Uv(DUv(D2m+2m+i)i)  = D(NV) = ü(Z2m+1). (3.102) 

Thee right Hopf kernel of the projection V of TV{H) onto D(NV) is isomorphic to the algebra of 
functionss on the set of left { r )-cosets. There are only two such cosets, namely R :=  {r) and 
SS := s(r) and hence two corresponding one-dimensional representations ER and Es of the 
rightright kernel. The decomposition of 7^-irreps into RKerr-irreps is given by 

n££ = ER n° = (2m + 1)ES. (3.103) 

2.. Now we take a condensate v in the module V*.. The stabilizer Nv of v consists by definition 
off  all the elements g of D(£>2m+i) for which v is an eigenvector of ctj(g) with eigenvalue 1. 
Thiss includes in particular all the elements of the kernel of atj. From the character table of 
D(D2D(D2mm+i)+i)  (table 3.1), one may read off that this kernel consists of those elements ra for which 
qj«qj« + g-ja = 2t where q =  e

2'ri/(2" l+1)j or in other words, for which cos(27T7'a/(2m + 1)) = 1. 
Itt follows that one has to have ja = 0 mod 2m + 1. The smallest non-zero a for which this 
holdss is (2m + l)/gcd(2m + 1, j) =:  x. Thus, one has Naj = (rx)  ̂ Zgcd(2m+ij) . 

Off  course, the stabilizer Nv of v may be larger than Naj, if v is an eigenvector of atj(g) 
forr some g £ Naj. Thus, in order to find out what kinds of stabilizers are possible, it is a 
goodd idea to have a look at the eigenvalues of the matrices ctj(g). From the explicit matrices in 
(3.24),, we see that the eigenvalues of a7(r

p) are ^ p and q~ip, with q =  e
27"/(2m+1). It follows 

that,, if one of the eigenvalues of rp equals 1, so does the other. Hence, the only elements 
off  ( r) whose matrices have eigenvalues equal to one are those that are already contained in 
diee kernel of a,. The eigenvalues of each of the matrices aj(srp) are 1 and — 1. Thus, we 
havee two possibilities: eiüier v is not left invariant by any of the matrices ctj(srp), in which 
casee Nv = Na. = (r*)  = Zgcd(2m+i,j)> or v is left invariant by some of the otj(srp). In 
thiss case, we may without loss of generality choose v to be the invariant vector of ctj(s), since 
eachh of the srp is a conjugate of s in I?2m+i and hence die invariant vectors of die srp are 
inn the same gauge orbit as die invariant vector of s. With this choice, one sees easily mat 
JV„„  = (r x) U s( r*)  = -Dgcd(2m+ij)- We will now treat die two possibilities for Nv in order. 
2.aa When Nv = {rx} S Zgcd(2m+1>j), we have 

TTvv{D{D 2m+12m+1)) =*  F(D2m+1) ® CZgcd(2m+1J). (3.104) 

Thee orbits of the {rx )-action on D2m+i  are {e} , { r } , . . . , {r 2m} , with stabilizer (rx), and 
s(r*),, sr{r"),... jSr1 -^?-1), with stabilizer {e} . This means that the irreps of T may be 
denotedd as Qr

0i (with 0 < f c < 2 m + l, 0 <l  < gcd(2m + 1, j)) and Wk (with 0 < k < x). 
Here,, we have once again denoted orbits by representative elements. We see that there are 
(2mm + l)gcd(2m + 1, j ) + (2m + l)/gcd(2m + 1, j) irreps. Of these, (2m + l)gcd(2m + 1, j ) 
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aree one-dimensional and the remaining (2m + l)/gcd(2m + l,j) (the £lsr") are gcd(2m+1, j)-
dimensional,, so that the squares of the dimensions again add up to the dimension of T, which 
iss 2(2m + l)gcd(2m + 1, j ) . The decomposition of D(D2m+i)-\rreps reads 

iij, ,, = &%, n (̂ = ^ © ^ . , 
n * = n **  n ; ^ © 0 £ p < I ^ P (3.105) 
ns,, = n^ © nj_, n; =©0$p<xsi-p 

wheree the labels I and —/ should be read modulo 2m + 1 on the left hand side and modulo 
gcd(2mm + l,j) on the right hand side. The non-confined irreps are those VT  ̂for which rk e 
(r x)) and they are in one correspondence with the irreps of the non-confined algebra 

UUvv{D{D 2m+l2m+l))  ̂ DiZ&Hjjm+D).  (3.106) 

Thee right and the left kernel of the Hopf map r : T —> U are equal and isomorphic to the algebra 
off  functions on the quotient group D2m+X /{fx  Since this quotient group is isomorphic to Dx, 
wee have 

RKer(r)) =*  F{DX). (3.107) 

Thee representations of RKer(r) are labeled by the elements Rk, SRk of Dx and we denote them 
EERRkk,, ESRk. The decomposition of T-irreps into RKer(r)-irreps is given by 

ÜÜrrpptt=E=ERkRk tt8rk = xESRk (3.108) 

where,, on the right hand side, k should be taken modulo x. 
2.b2.b When Nv = Dscd̂ m+i,j), we have 

TTvv{D{D 2m+12m+1)) <*  F{D2m+1)®CD&cd{2m+1J). (3.109) 

Thee orbits of the £>gCd(2m+i,j) on D2m+i  are {e} , {r , r - 1 } , {r 2, r - 2 } , . . . , {r m, r~m}, s{ x) and 
sr(sr( x) U sr*-1 (x), sr2( x) U srx~2{x} — The stabilizer of e is of course all of -Dgcd(2m+ij> 
thee stabilizer of rk is (r x) = ^cd(2m+i j) and the stabilizer of s is {s) = IQ . The stabilizer 
off  the orbits srp( x) U sr,a:"p{  ar) is just {e}  Hence, the irreps of Tv may be denoted fij 0, fij l5 

üüee
akak (with 1 < k < |(gcd(2m + 1, j) - 1)), 0£*  (with 0<k<m,0<l<  gcd(2m + 1, j)), 

fi;fi; oo,, fi^ and finally QST" (with 1 < p < \{x - 1)). This yields 3+ m + l)(gcd(2m + 1, j ) + 
l/gcd(2mm + l,j)) irreps in total and one may check mat the squares of their dimensions sum 
correctlyy to the dimension of Tv, which is 4(2m + l)gcd(2m + 1, j ) . The decomposition of die e 
n f̂cc into % -irreps is now 

(%©"** (M = ) 
n a * HH ^ w ( [ f c ]< | (gcd(2m+lJi ) - l ) (3.110) 

II  " U . ^ , ([fc]>f(gcd(2m + U ) - l ) 
Here,, [fc] denotes A: mod gcd(2m + 1, j). The decomposition of the other Z^m+i-irreps into 
7^-irrepss is given by 

nnJJ00 = «*  n;o = sr» © 01<p<i (x_x) w" 
n^^ = n\ n;, = n*. © e , ^ , , . ,, wp (3.111> 
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Thee labels / on the left should be read modulo 2m + 1, while those on the right hand side should 
bee read modulo gcd(2m + 1, j ) . The non-confined irreps of % are Sl\, Qe

Jif the f%fc, f}^ , ft* t 

andd those ft£* for which rk e {r*) . These irreps correspond to the irreps of the non-confined 
algebra a 

UUvv{D{D2m+12m+1)) =*  D{Dgcd{2m+lJ)). (3.112) 

Thee right kernel of the Hopf map T : T -> U is isomorphic to the algebra of functions on 
thee space of left cosets of Nv = Z^cd^m+ij) in Ö2m+i- There are x distinct cosets, namely 
thee cosets of e, r , . . ., r I _1. We will denote these E,Rt..., #x _ 1. The corresponding irreps of 
RKer(r)) will again be denoted ERk. The restriction of the irreps of Tv to LKer(T) is given by 

n%n% = E E n£ = ERU n>rP = gCd(2m + 1 ,J ) ( E &  © ER*-P) 
Q\Q\ = EE fi'^o = gcd(2m + l,j)EE (3.113) 
QQee

atat = 2EE n*n = gcd(2m + l,j)EE 

wheree the index k should be read modulo 2m + 1 on the left hand side and modulo x on the 
right.right. In the restriction of Q"", we see our first example of a situation where the wall created by 
aa T-particle carries a representation of RKer(r) that contains two distinct irreps of RKer(r), 
namelyy ERP and ERX-P. The isotypical components of these irreps are gauge transformed onto 
eachh other  by s e Nv, since sRFs'1 = Rx~p. 

3.99 Gauge invariant magnetic condensates 

3.9.11 Symmetry breaking 

Theree is precisely one gauge invariant state in every magnetic representation n^. This state is 
representedd by the constant function 

< f > : h ^ ll (3.114) 

onn H. To find the Hopf stabilizer of (j), we need to find the irreps (p,g) of D(H)* which solve 
equationn (3.36). Since <f>  is constant equal to one, this reduces to 

P(9A)P(9A) = I. (3.115) 

Hence,, the unbroken symmetry algebra is die algebra generated by the matrix elements of the 
representationss (p, g) for which g& is contained in the kernel of p. Now define KA as the 
minimall  normal subgroup of H that contains gA (and hence all of A). Since the kernel of a 
representationn is a normal subgroup, the irreducible representations p which have g\ in their 
kernell  will be precisely the ones which contain all of KA in their kernel. Such irreps are in 
one-to-onee correspondence with the irreps of H/KA [119] and since the matrix elements of 
thee irreps of H/KA generate F{H/KA), the algebra generated by the matrix elements of the 
irrepss of H which contain gA in their kernel is precisely the algebra of functions on G which are 
constantt on the cosets of KA. Hence, the unbroken symmetry algebra in this case is the Hopf 
subalgebraa TA{H) of D(H) defined by 

TA(H)TA(H)  := {F E D(H)\Vh € KA : F(xk,y) = F(x,y)} . (3.116) 

Clearly,, TA = F(H/KA x H) as a linear space and we see that TA is a transformation group 
algebra,, with H acting on KA by conjugation. This means we can once again make use of 
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theoremm 1 to write down the irreps of TA- They are labeled by an #-orbit ö C H/K and an 
irrepp r of the stabilizer Nö of a chosen element go e O. The irrep labeled by O and r will be 
denotedd Of. It acts on the Hubert space FT(H, VT) in the usual way: 

(Of(F)0)) (x) := / d ^ F ^ o x -1 ^ ) ^ - 1 » ) . (3.117) 

Thee character V>f of Of is given as a function on H/KA x Hby (cf. (3.15)) 

tf?fa,fc)tf?fa,fc) = ^ „ ( ^ l o C ^ r C a : -1 ^ ) . (3.118) 

Thee decomposition of any T^iO-module into irreps may be found by calculating the inner 
productss (defined in (3.16)) between the character of the module and the above characters of 
thee irreps. Of course, we can view any D(H)-module as a 7A(#)-module by restriction. The 
characterss xf of the irreps II ^ of D(H), viewed as TA{H)-modu\es are given by 

X$(gKX$(gKAA,h),h) = Y, ĝk(h)lB(gk)X0(xJhxgk). (3.119) 
keKkeKA A 

Wee see that all the irreps Of in the decomposition of I l | must be such that B is a subset of the 
sett of elements of H that constitute the i^-classes in Ö. Clearly, there is only a single orbit O 
forr which this holds. The decomposition of a purely electric representation IIJ| is very simple: 
suchh a representation is irreducible and isomorphic to the purely electric irrep Cl0

 = A (Note 
thatt NKA = H). On the other hand, the decomposition of a purely magnetic representation nf 
mayy contain irreps Of which are not purely magnetic (i.e. r may be non-trivial). 

3.9.22 Confinement 

Wee will now find out which of the irreps Of of TA are confined and which are not. The non-
confinedd irreps have to satisfy the requirements (3.45). Since TA is isomorphic to a transforma-
tionn group algebra, these reduce to the conditions (3.62) and (3.63), with K — KA and N = H. 
Wee have seen in section 3.6.3, proposition 9, that these requirements will be satisfied by the 
sett of irreps Of for which g0K = nK for some n € N and for which r is trivial on K. The 
firstfirst of these requirements is trivial here, since N = H and so this set consist of all Of for 
whichh T is trivial on KA- These irreps correspond to the irreps of the quotient D(H/KA) of 
TA-TA- In the case at hand, it turns out that this set of solutions is actually complete and hence the 
non-confinedd symmetry algebra UA is just the quantum double of the quotient group H/KA. 
Lett us demonstrate this. 

Equationn (3.62) is trivially satisfied by the matrix elements of all the irreps of TA, since 4> is 
thee constant function 1. Thus, we are left with the requirement (3.63). Since thee support of 0 is 
alll  of H, this becomes 

(Vzet f)) T{xgAx~1) = I (3.120) 

orr in other words 
AA C Ker(r). (3.121) 

Thee requirement that A C Ker(r) is equivalent to the requirement that KA C Ker(r), since 
KAKA is just the subgroup of H generated by the elements of A. Hence, the non-confined irreps 
Off  of TA are exactly those for which r is trivial on KA, as we claimed. 
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Thee results we have obtained are quite satisfying when one thinks back of the intuition that 
wentt into our method of finding the non-confined irreps. We wanted the non-confined irreps 
too have trivial braiding with the condensate. For a purely magnetic condensate, this means 
roughlyy that the flux of the condensate should commute with the flux of the non-confined irreps 
andd should act trivially on the charges of the non-confined irreps. The first of these conditions 
iss automatically met: the flux state of the condensate commutes with any other flux state (the 
classs sum is a central element of the group algebra of H). Therefore, there is no requirement 
onn Ö. The second condition is implemented by the demand that r is trivial on KA, the group 
whichh is generated by the fluxes in the class A. We also wanted to have well-defined fusion, 
spinn and braiding among the non-confined particles and these are now provided by the Hopf 
structure,, .R-matrix and ribbon-element of D(H/KA). 

Finally,, let us say something about the characterization of strings (or walls). From proposi-
tionn 10, we see that the Hopf kernel of the projection T : TA{H) —  D{H/KA) is just the set of 
elementss 1 ® ƒ e TA{H) for which ƒ has support in KA. In this case, the left and right Hopf 
kernelss coincide and hence the kernel is itself a Hopf algebra. This Hopf algebra is clearly iso-
morphicc to the group algebra CKA (cf. corollary 3) and hence the irreps of LKer(r) correspond 
too the irreps of KA- If p is an irrep of KA then we also write p for the corresponding irrep of 
LKer(r)) and with this slight abuse of notation, we may write 

p(\®8p(\®8kk)=p{k))=p{k)  (3.122) 

forr all k G KA- We will now calculate the decomposition of a representation fif  of TA(H) into 
representationss of LKer(r) by means of the formula (3.13) for the character tp® of fif.  For 
gg € KA, we have 

(^ff  (1 <8> 6g) = d( dn5g{xcnx7l)xr{n) 
JOJO JNO 

==  f dCxr(x^gxc). (3.123) 
Jo Jo 

Fromm this, we see that the restriction of fif  to LKer(r) = CKA contains exactly the irreps of 
KAKA that are contained in the restriction of r to KA, together with the irreps obtained from these 
byy composition with the automorphisms of KA that are given by conjugation with the x^1. As 
inn the case of electric condensates, we see that the non-confined irreps are exactly all those that 
havee trivial restriction to the Hopf kernel of T. 

3.9.33 Examples of gauge invariant condensates 

Abeliann i? 

Forr Abefian H, every state in a purely magnetic representation XlA is gauge invariant, so this 
sectionn covers all purely magnetic condensates for Abelian groups. Suppose we condense a 
statee in the purely magnetic representation labeled by the element gA of H. Then we know 
thatt the residual symmetry algebra TA{H) is the Hopf subalgebra of D(H) which consists of 
thee functions that are constant on cosets of KA in their left argument. Here KA is the minimal 
normall  subgroup of H mat contains gA, which, when H is Abelian, is just the cyclic group 
generatedd by gA- As an algebra, TA{H) is isomorphic to the transformation group algebra 
F(H/KAF(H/KA x H), where H acts on H/KA by conjugation. When H is Abelian, the action of H 
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onn H/KA is thus trivial. The orbits are then just the elements of H/KA = H/(QA) and the 
stabilizerr of each orbit is all of H. Thus, the irreps of TA(H) may be denoted Ü^KA, where KKA 
iss an element of H/KA and a is an irrep of H. The action of TA in the irrep Q^KA is given in 
formulaa (3.117). The irreps of D(H) may be easily decomposed into irreps of TA{H)\ we have 
n££ = Q%KA. The non-confined irreps of TA{H) are those Q^KA for which a is trivial on KA 

Thesee correspond to the irreps of the non-confined algebra U = D{HjKA) = D(H/{gA)). 
Thee kernel of the Hopf map r : T —> U is isomorphic to CKA and hence its irreps are just 
thee irreps of KA- Since KA = {  9A )> it follows that the number of these irreps equals the 
orderr of the element gA- We may indeed give the irreps explicitly; denoting them as pk (with 
00 < A; < ordf&i)), we have Pk({gA)p) = exp(2irikp/ord(gA)) The restriction of the irreps 
off  TA to LKer(r) is also easily found. We have Ü^KA = OL\KA- In other words, the wall 
correspondingg to Q^KA can be labeled by the phase factor a(<M). 

Wee once again explicitly work out the case of H = Z„ . As in section 3.8.3, we will denote 
ourr preferred generator for Z„  by r and we write ao,... ,an-i for the irreps of Z„. Now suppose 
wee condense the magnetic flux gA = rk. Then we have KA = {rk) = (j-scd(fc'n)) = "Lx, where 
xx — n/gcd(k, n). As a consequence, we have H/KA — %t/^x — %%cd(k,n)- Thus, 

T^iZn)T^iZn)  ̂ F(Z {̂ktn) x Zn) * C(Zgcd(M) x Z J (3.124) 

andd we see that there is one type of broken symmetry for each divisor of n. The irreps W"^ 
off  T may be labeled by an element ra of ZgCd (k, n) and an irrep on of Z„. The decomposition 
off  the irreps W  ̂ (with 0 < a < n) of Z„  is then given by 

n ; > <m o d g c d ( n' ' 0 ^^ (3.125) 

Thee unconfined irreps of T are those Ü^KA for which cti(rk) = exp(2irikl/n) = 1, or equival-
ent̂ ^ kl = 0 mod n. These are exactly the ones for which / is a multiple of x and we see that 
theyy correspond to the irreps of 

U^iZn)U^iZn) a D(H/{rk})  a*  D(Z {̂kjn)). (3.126) 

Thee kernel of the Hopf map r : T —  U is isomorphic to CLX and has representations CXJ (with 
(00 < j < z)) defined in the usual way, with rgcd(fe,n> as the preferred generator. That is, we take 
aj(rgcd^'n))) = exp(27rij/x). The restriction of T-irreps to RKerr is given by 

< ^ = a / m o d a :.. (3.127) 

Onee should notice the duality between the situation described here and that for symmetry break-
ingg by electric condensates described in section 3.8.3. 

HH = D2rn+\ 

1.. First, we take the condensate state in the module V^ . To find the residual symmetry algebra 
?[,.*],, we first need to find the minimal normal subgroup K  ̂ of D2m+\  that contains rk. This 
iss just the subgroup generated by the elements of the conjugacy class of rk, which are rk and 
r~r~kk.. In other words, we have K  ̂ = (rk) = (r&

cd(k<2m+ l)) ^ Zj , where we have defined 
xx :=  (2m + l)/gcd(fc,2m + 1). One checks easily that D2m+\/{r k ) = Dscd̂ 2m+i),  where 
thiss Dgcd(fe,2m+i) is generated in the usual way by the rotation R = r{r k) and the reflection 
SS = s( rk). We will also use the notation E for the coset e(rk). The residual algebra is now 

TT[rk][rk] (D(D2m+12m+1)) =*  F(Dzcd̂ 2m+1))®CD2m+1. (3.128) 
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Thee orbits of the D2m+i  action are exactly the conjugacy classes of £>gcd(fc,2m+i)- These are {E}, 
{R?,{R?, R-r} (with 0 < p < (gcd(fc, 2m + 1) - l)/2) and finally {S, SR,.'.., Sflto*«M™+i)-i)} . 
Thee stabilizers of these orbits areNE = D2m+i,  N& = (r) = Z2m+i and Ns = EUsE = Dx. 
Thuss the irreps of 7[r*] may be written as ftf0, ft J, ftf (with 1 < j < m), ftjj"  (with 1 < p < 
i(gcd(fc,, 2m + 1) - 1), 0 < / < 2m + 1), I l j , , n j i i d n£ (with 1 < j < \{x - 1)). This 
yieldss 3 + \{2m 4- l)(gcd(fc, 2m + 1) + gcd(fc|2m+1)) i ^ p si n total and o ne may check that the 
squaress of their dimensions add up to the dimension of 7[r*] , which is 4gcd(&, 2m +1) (2m +1). 
Thee decomposition of D(D2m+i)-ureps is as follows: 

n^^njj  K = ni®@j% (3.129) 

Inn the decomposition of 11 ,̂ we see that a chargeless flux may be turned into a charged flux 
uponn formation of a magnetic condensate. 

Thee irreps ftf of TLk] that are not confined are those for which r is trivial on K[Tk\ = {rk). 
Thesee are the irreps ft f0, ft £, the ftf, and Q  ̂ for which / is a multiple of x, ftj0 and ftfx. They 
correspondd to the irreps of the non-confined algebra 

*V](Asm+i )) = D{D2m+1/(r
k)) <*  D{Dscd(k,2m+l)). (3.130) 

Thee kernel of the Hopf map r : T -> U is isomorphic to C( rk ) = CLX. We will denote its 
representationss by pt (with 0 < / < x). They are defined in the usual way, with r«

cd(fc-2m+1) 
takenn as the preferred generator. The restriction of the irreps of 7^] to LKer(r) is given by 

ft|=A)ft|=A) Of\=Pi®P- i ft?0=gcd(A:,2m + l)po 
tottot = Po % =Pi®P-i  «5, = gcd(fc,2m + l)po (3.131) 

ft£.ft£. = gcd(fc, 2m + \){Pi 0 p_j) 

Here,, the indices on the p's should be read modulo x. 

2.. Now we take the condensate state in the module Vj0. Since the minimal normal subgroup of 
DD2m2m+i+i  that contains s is D2m+1 itself, this condensate breaks the magnetic part of D(D2m+i) 
completelyy and we are left with just the electric group D2m+u that is, we have 

TT[a][a] (D(D2m+12m+1)^CD)^CD2m+12m+1.. (3.132) 

Thus,, the irreps of 7[a] are just the irreps J0, J\ and ait..., am of D2m+X. The decomposition 
off  £>2m+i-irreps into these gauge group irreps is 

Jll " * I a2m+i- i (m + 1 < / < 2m + 1) " *  " Jl 8 ^ a ' 
(3.133) ) 

Again,, we see mat pure fluxes may be turned into particles which carry a charge with respect to 
thee residual symmetry. 

Off  the irreps of T\s],  only the trivial representation J0 is not confined. In other words, all 
non-confinedd excitations over this condensate are "color" singlets. This means that 

WW(ftm+i)=C{c} .. (3.134) 

Thee Hopf kernel of the associated map r : T[„]  ->> U[s\ is all of 7[,\. Hence the "restriction" to 
LKer(r)) is trivial; the walls are just labeled by the irreps of 7T,i. 
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3.100 Condensates of pure magnetic flux 

3.10.11 Symmetry breaking 

Wee will now study symmetry breaking by a state with pure flux ygAy_1 in the conjugacy class 
AA c H. The vector <j>  e nf that corresponds to this state is given by 4>{x) =  1VNA(X). 

Accordingg to proposition 6, the residual symmetry algebra TygAy-i(H) is spanned by the matrix 
elementss of the set of irreps (p, g) of D(H)* which have the property that <f>  is an eigenstate of 
thee action of g~l with eigenvalue equal to X^A\ In the case at hand, it is clear that the only 
eigenvaluee of the action of any element of H that may occur is the value 1. It follows that p 
mustt be such that XP(9A) = dp and hence such that gA hes in the kernel of p. Given such a p, we 
cann find the corresponding elements g by solving the equation <f>(gx) = (f>(x). In this case,we 
have e 

1»NA(1»NA(XX)) = W t e * ) = lg-l
VNA(x)- (3.135) 

Noww the functions 1VNA and lg-iyNA are equal exactly if g~l G yNAy~l, or equivalently, g e 
yNyNAAy~y~vv = NygAy-i. Thus, the admissible irreps (p, g) are those for which gA hes in the kernel 
off  p and g commutes with the condensed flux ygAy~l. Following the same arguments as in 
sectionn 3.9.1, we see that the allowed p span exactly the space of functions on H that are 
constantt on the cosets of the minimal normal subgroup KA ofH that contains the class A. Thus 
thee residual symmetry algebra is the Hopf subalgebra TygAy-i{H)  of D(H) defined by 

TTygAyygAy-i(H)-i(H)  :=  {F e D(H)\Vk e KA : F(xk,y) = F(x,y)lNygAy_M} (3.136) 

Clearly,, TygAy-i = F(H/KAxNygAy-i) as a vector space and we see that TygAy-\ is a transform-
ationn group algebra, with NygAy-i acting on KA through conjugation. Thus we may again use 
theoremm 1 to write down the irreps of TygAy-1 - They are labeled by an NygAy-1 -orbit O c H/KA 

andd an irrep r of the stabilizer Na of a chosen element gö e O. The irrep labeled by Ö and r 
wil ll  be denoted f£f. It acts on the Hilbert space FT(NygAy-i, VT) in the usual way: 

(Q?(F)<f>){x):=(Q?(F)<f>){x):=  f dzF{xg0x-\z)<(>{z-lx). (3.137) 
JNJNW> W> 

Thee character ^f ofClf is given as a function on H/KA x NygAy-i by (cf. (3.15)) 

Thee characters \$ °f the irreps nf of D(H), viewed as TygAV-\ (ff)-modules are given by 

Xp(gKXp(gKAA,n)=,n)= J2 1Ngk(n)1A{gk)xp{x9inxgk), (3.139) 
keKkeKA A 

wheree n € NmAV-i. 

3.10.22 Confinement 

Wee want to find out which of the irreps Q% of TygAy-i are confined and which are not. To keep 
thingss simple, we take the condensed flux ygAy~x to be just gA. This can be done without any 
reall  loss of generality, since gA was chosen arbitrarily in A. Again, the non-confined irreps have 
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too satisfy the requirements (3.45) and again, these reduce to (3.62) and (3.63) (with K = KA 
andd N = N9A = NA), since T9A is isomorphic to a transformation group algebra. In the case at 
hand,, where (f> = ljy^, (3.62) reduces to the requirement that 

(Vxx G NA, V*7 G B) ^„QJX^XKA n NA\ = \xKA n NA\. (3.140) 

Byy definition of xv and go, we have X^Q^X^KA = f). Using this and multiplying the sets in the 
abovee equation by x_1 from the right, we see that it reduces to 

(V777 G B) \r}KA n NA\ = \KA n NAV (3.141) 

Wee know that gA G KA n NA and thus that, if the above requirement is to hold, 7}KA H iV^ must 
bee non-empty. But this implies that r\ = nKA for some n G NA. On the other hand, if this is the 
case,, then the above equation is always satisfied. Hence, the orbits B which are not confined 
aree those whose elements can be written in the form UKA for some n G NA-

Thee condition (3.63) becomes 

(Vxx G NA, Vf? G B) / ^X^XJMX^X, , ) = I. (3.142) 

Sincee x G NA and x,, G NA for all 77, this reduces further to yield the condition 

P(9A)P(9A) = I (3.143) 

onn /3. Basically, this says that 0 must be trivial on the minimal normal subgroup of NB that 
containss gA-

Lett us compare the solutions that we have found to the set of solutions that we had found 
alreadyy in proposition 9 in section 3.6.3. The latter set consists of all Q° for which the orbit O 
iss made up of cosets of the form UKA (with n G NA) and for which r is trivial on KA n NA. 
Thus,, we see that we have not found any extra orbits Ö, but, depending on H, A and No, we 
mayy have found extra irreps r of No, since the minimal normal subgroup of No that contains 
ggAA can be smaller than KA n NA. 

Thuss we come back to a point that we touched upon already in section 3.6.1, namely the 
factt that we are in doubt whether it is always possible to give the full set of solutions to (3.45) a 
well-definedd spin and and a well-defined braiding. We do know that braiding and spin are well-
definedd for die set of solutions that we had already found in section 3.6.3, since these are in one 
too one correspondence with the irreps of the quantum double of NA/(KA n NA). Therefore, 
wee expect that the non-confined symmetry algebra for the condensates treated in this section 
shouldd be D{NA/(KA n NA)). 

Iff  the unconfined algebra is D(NA/(KA n NA)), then the walls created by 7^-excitations 
cann be classified by the left or right Hopf kernel of the map r : T9A  D(NA/{KA n NA))- We 
wil ll  take the right kernel, as given in proposition 10. Corollary 3 tells us that this Hopf kernel 
iss isomorphic as an algebra to the tensor product F((H/KA)/NA) ® C(NA n KA), where WA 

iss the subgroup of H/KA which consists of elements of the form nKA, with n G N. In fact, 
RKer(r)) is spanned by the elements of T which are of the form IHKANA <B>Sg with g G AT^DKA-
Thee irreps of RKer(r) are tensor products of an irrep E[$ of F{{H/KA)/NA) and an irrep pi of 
NANA H KA- We will denote them E[Q ® p\. Here, [(,]  is notation for the iV^-coset of £ in H/KA-
Wee have 

%]]  ® PI(UKANA ®g) = 6[Q,[hKA]Pi(g)- (3.144) 
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Thee decomposition of the 7 Â-irrep fif  into RKer(r) irreps may be found using the formula 
(3.13)) for the character ipf. We have 

II>?{UKII>?{UK AANNAA®S®S99)) = d< dnlhK^^x^oX^Sgix^nx-^Xain) 
JoJo JKAHNA 

==  / dClhKANAix^ox^Xai^gx^) 
Jo Jo 

==  / dC^KUhK^Xaix^gx^. (3.145) 
Jo Jo 

Fromm this, we read off that Q,® is the sum over C G O of those E[Q <S> PI for which pi is related 
too one of the NA H JCx-irreps contained in r by conjugation with x^1. Of course, there may be 
multiplicitiess in the decomposition, for example if the coset [Q is the same for severall  £ G O. 
Also,, note that the non-confined irreps of T9A all correspond to the trivial irrep E[KA] ® 1, as 
theyy should. 

3.10.33 Examples of pure flux condensates 

Puree flux condensates whose flux is central in H are gauge invariant and examples may be found 
inn section 3.9.3. Here we treat the case where the flux of the condensate is non-central, so that 
nott only the magnetic part of the double, but also the electric group is broken. 

HH — £>2m+l 

1.. Suppose the condensed flux is rk e D2m+1. In that case, the residual symmetry algebra 
iss the transformation group algebra F(D2m+i/Krk) ® CNrk, where Krk is the minimal normal 
subgroupp that contains rk and where Nrk = ( r}  = Ivm+i is the centralizer of rk in D2m+1. 
Fromm section 3.9.3, we know that iV> = (rk ) = {rgcd(fc,2m+i))  ̂ zx, where x is equal to 
(2mm + l)/gcd(fc, 2m + 1). We also recall that £)2m+i/^ — £)gcd{fc,2m+i)- Hence, 

TADTAD2m+l2m+l)) =*  F(£>gcd(jfc,2m+X)) ® CZ2m+1. (3.146) 

Thee £>gcd(fc,2m+i) is generated R = rl^ and S = sL* and we will write E for its unit element 
eZ,.. The orbits of the action of Nrk on this £>gCd(fc,2m+i) are {E}, {R},..., {Rscd(k,2m+i)-iy 
andd {S, SR,..., J5i?gcd(fe.2m+1)-1} . The stabilizer of the orbits with one element is of course e 
NNrrkk = %2m+i, while the orbit of S has stabilizer KTk = I*.  It follows that the representations 
off  %k may be written fi^P (with 0 < p < gcd(fc, 2m + 1), 0 < I < 2m + 1) and n | (with 
00 < I < x). We see that %k has (2m + l)gcd(fc, 2m + 1) irreps of dimension 1 and x irreps of 
dimensionn gcd(fc, 2m + 1). The squares of the dimensions add to the dimension of TT*,  which 
iss 2(2m + l)2/gcd(fc, 2m + 1). The decomposition of D(D2m+1)-irreps into 7^-irreps is as 
follows: : 

n j 00 = ^/ j 0 ÏI£( = Sift © Ü0i 

n ^ n f ,, 1^ = © , ^ (3.i47) 

Thee irreps of TTk which are not confined are the fïj *  for which A(rfc) = 1, or in other words, 
thosee for which I is a multiple of x. It follows that the unconfined representations are automat-
icallyy in one to one correspondence with the irreps of 

UUrrk(D2m+i)k(D2m+i) = D{Nrk/(Krk n Nrk)) 9Ê ^(Z^Kfc^+i)) . (3.148) 
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Thee right kernel of the Hopf map r : 7> -» I>(Zgcd(fc,2m+i)) is isomorphic to F(Z2) ® CZj. 
andd we may denote its representations as E[Ej <g> pi and £[s] ® pj (with 0 < I < x). Here, [E] 
andd [5] denote the JVr*-cosets of the ATr*-cosets E and S and p( denotes the Ith representation 
off  "Lx, defined in die usual way, with r«

cd(fe»2"»+i) taken as the preferred generator of Zr . The 
restrictionn of the irreps of %k to RKer(r) is given by 

Q$Q$ = E[E]  <g> pi mod x Qpft = gcd(A:) 2m + 1)E[S] <g> p, mod x (3.149) 

2.. Now suppose the condensate has flux s E D2m+i.  The minimal normal subgroup of D2m+i 
thatt contains s is D2m+i  itself and the normalizer Na of s is just {e,s}  = lq. Hence, this 
condensatee leaves us with the symmetry algebra 

T,{DT,{D2m+l2m+l)) ^ FfZz) ^ CZa. (3.150) 

Thee irreps of this Z2 may be labeled ftJo and QJt and the decomposition of the irreps of 
D(D2D(D2mm+i)+i)  is then given by 

n **  = fi^i ^ = (m + l)R/0 © mfiJx (3.151) 

Sincee Ji(s) = - 1 ^ 1, it follows that fijj  is confined, so mat the only non-confined irrep of T9 

iss the "color singlet" £lJo. Hence 

U,(DU,(D2m+2m+i)i)  S C{e}  (3.152) 

andd the corresponding Hopf kernel equals T8. 

3.111 Dyonic condensates 

Attemptss to study dyonic condensates in the same generality as electric or magnetic condens-
atess meet with some problems of a technical nature. For example, the residual algebra after 
symmetryy breaking does not have to be a transformation group algebra of the kind we discussed 
inn section 3.6.3 (see the second part of section 3.11.1 for an example). Therefore, we will only 
treatt some examples with specific groups and condensate vectors here, in order to give an idea 
off  what one may expect. In the process, we also complete our treatment of condensates in 
theoriess where the gauge group is an odd dihedral group. 

3.11.11 H = Zn 

Firstt of all, let us check which condensates satisfy the requirements of trivial spin and self-
braidingg that we gave in section 3.7. As before, we denote our favorite generator of Z„  as r and 
wee denote the representations of this group, defined in the usual way, as cti (with 0 < / < n). 
Thee representations of D{Zn) may then be written 11 *̂. The spin factor s£*  of II£*  is just 
exp(—2mkl/n)) and so the requirement of trivial spin selects those Ur

Qf for which we have 

MM = 0modn. (3.153) 
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Thus,, given k, the allowed I are those which are 0 modulo ri/gcd(fc, n) and given /, the allowed 
kk are those which are 0 modulo n/gcd(l, n). From this, we see immediately that, if n is a prime, 
theree will be no allowed dyonic condensates (either / or k has to be zero). We will thus assume 
fromm now on that n is composite. For Abelian groups, the requirement of trivial self-braiding is 
automaticallyy satisfied for states with trivial spin, so the rj£*  with kl = 0 mod n all give good 
condensates. . 

Too find the residual algebra Tk for a n^-condensate, we have to find the representations of 
D(Zn)*D(Zn)* that satisfy equation (3.37). Since £>(Z„)*  = CZn ® F(Zn), its representations may be 
labeledd by an irrep aq of Z„  and an element rp of 1 .̂ Equation (3.37) then selects those (ap, rq) 
forr which ap(r

k)oti(rq) = 1, or more explicitly, those (apt r
q) for which exp(2iri{kp + lq)/n) 

equalss 1. This means that, to find the allowed p and q, we have to solve the equation 

kpkp + Iq = 0 mod n. (3.154) 

Ratherr than looking at the general solution of this equation for all k and I, we will examine two 
illustrativee special cases: 
1.. First, let us take (n, fc, I) such that n = kl and gcd(fc, I) = 1. In this situation, we can easily 
findfind the solution to equation (3.154). Since kp + Iq is a multiple of n, say ran, we may solve 
forr p to get 

pp — -(mn — Iq) = lm - Tq, (3.155) 
kk k 

usingg n = kl in the second equality. Since p has to be integer, it follows that £<? must be an 
integer.. Since gcd(fc, /) = 1, the fraction ~ is irreducible and hence {q can only be integer if q is 
aa multiple of k. But then it follows from the equation above that p is a multiple of I. On the other 
hand,, it is clear from n = kl that any (p, q) for which p is an /-fold and q is a fc-fold will solve 
(3.154).. Thus the residual algebra Tf is spanned by the (matrix elements of) the representations 
(ap,, r

q) for which p = 0 mod Z and q = 0 mod k. Now since n = kU the irreps ap of Z„  with 
pp = 0 mod / correspond exactly to the irreps of the quotient group 'Ln/(r

k) =Zk. Hence, 

7^^ i J ,(Z h/ ( r *»®C{r f c )^F(Z f c )®CZ,.. (3.156) 

Wee see that Tt
k is a transformation group algebra of the kind treated in section 3.6.3, where both 

thee normal subgroup K and the subgroup N of these sections equal { r k) = % in this case. The 
representationss of Tk may thus be denoted Qr

s, with 0 < r < f c a n d O < s < / a n d t he restriction 
off  the irreps of D(Z„) to Tk is given by 

<< = tóf- (3-157) 

Usingg the theory of section 3.6.3, one may see that all the €TS with (r, s) ^ (0,0) confined. The 
unconfinedd algebra Uk is thus the group algebra of the trivial group and the Hopf kernel of the 
Hopff  map r : Tk -> Uf is all of Tk, implying that walls and Tk -particles are in one-to-one 
correspondence. . 

2.. Now consider the case where I = -k mod n. Equation (3.154) then becomes 

k{pk{p - q) = 0 mod n (3.158) 

soo that the allowed {p, q) are those for which p = q mod n/gcd(fc, n). It follows that 

7?? ssqZnX/*,!(»,„,), (3.159) 
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wheree (ai, r) generates the Z„  and where either (an/gcd^n), e) or (a0, r
n/,gcd(fc'n)) can be taken 

ass the generator for the SgCd(fc,n)- We will take the latter possibility. One should notice that, 
inn contrast to everything we have seen up to now, the full residual algebra is not generated 
byy the residual magnetic and the residual electric symmetry algebra. The residual electric and 
magneticc algebra are generated by (ao, rn/gcd(fc,n)) and (an/gcd(fe7„) , e) respectively and are both 
isomorphicc to CZgcd(fc,„) = F(7tgca(fc,n))- The tota*  residual algebra is C(Z„  x ZgCd(jt,n)) and 
containss for example the element (ai, r), which cannot be generated from the elements of the 
residuall  electric and magnetic algebras. Clearly, the residual algebra is not a transformation 
groupp algebra of the kind treated in section 3.6.3. This phenomenon is not limited to Abelian 
HH,, but can also occur for non-Abelian H. In fact, one may check that it does so already for 
somee condensates in a D(L>4)-theory. 

Thee representations of Tk may be written Xa,b* with 0 < a < n, 0 < b < gcd(fc, n). They 
aree defined in the usual way, through 

X*,b{<*o,rX*,b{<*o,r n/scd(kn/scd(k'' n)n))) = e2* ib/scd(n<k). (3.160) 

Onn the magnetic part of Tf, x*,bis given by Xa,b{<xn/Scd(k,n),e) = e2,ri(a^6)/gcd(n'fc), as follows 
fromm the definition above. The restriction of the irreps of D(Z„) to T is given by 

< = % * * „„  (3-161) 

wheree the second q on the right hand side should be read modulo gcd(fc, n). 
Sincee we cannot apply the theory of section 3.6.3 here, we have to refer back to the re-

quirementss (3.45) in section 3.6.1 in order to determine which of the representations of Tf 
aree confined and which are not. After some algebra, the first of these requirements, applied to 
ƒƒ = Xa,b, reduces to 

e_2«(a-6)*/nn = j (3.162) 

fromm which it follows that 
aa = b mod n/gcd(n, k). (3.163) 

Notee mat n/gcd(n, k) is a divisor of both n and gcd(n, k), since k2 = 0 mod n. As a con-
sequence,, die above equation retains its usual meaning, despite the fact that a is only defined 
moduloo n and b is only defined modulo gcd(n, k). 

Thee second requirement in (3.45), applied to ƒ = Xa,b, becomes 

e>tfefe/nn = 1, (3.164) 

soo that we have 
66 = 0 mod n/gcd(n, k). (3.165) 

Hence,, the unconfined representations of Tk are just those Xa,b for which both a and b are 
multipless of n/gcd(n, k). All in all, this leaves gcd(n, k) possibilities for a and (gcd(n, k))2/n 
possibilitiess for b, so that the non-confined algebra W* is given by 

U\U\ =  C(Zgcd(„, fc) x Z(gcd(n,fc))2/n). (3.166) 

Ass an example, consider the case of U(Zg), wim a condensate given by k = —I = 3. The only 
non-confinedd irreps of T?3 are then xo,o, X3,o and xe,o and the unconfined algebra is CZ3. We 
givee a graphical representation of our results for this case in figure 3.1. 
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Figuree 3.1: Flux-charge lattice for a D(Zg) theory. We assume that a condensate of particles with flux r ' ? 3 
andd charge a_3 = —3 = 6 forms. The condensed irrep is indicated as a square dot. The residual symmetry 
algebraa Tl3 is a group algebra C(Z9 x Z3). Two £>(H)-irreps in the lattice are equivalent as T?3-irreps if one 
cann be reached from the other through translations by the "condensate vector" (—3,3). This way, D(H)-'meps 
aree identified in trios. The trio in the picture corresponds to the T-irrep xs,i- The shaded region contains one 
representativee from each trio and is thus a diagram of all T-iireps. The small white circles indicate the three 
unconfinedd irreps of T, which correspond to the irreps of U = CZ3. 

3.11.22 H = D2m+1 

Inn this section, we complete our treatment of condensates in the odd dihedral gauge theories. 
First,, we find out which states in dyonic representations of D(D2m+i) satisfy the conditions 
off  trivial spin and trivial self-braiding. From table 3.2, we read off that the only dyonic irreps 
off  D(D2m+i) which have trivial spin are those II£ for which exp(2niklj(2m + 1)) = 1, 
orr in other words, for which kl = 0 mod 2m + 1. It follows that there are no admissible 
dyonicc condensates when 2m + 1 is prime. If 2m + 1 is not a prime, then there will be dyons 
withh trivial spin and one may check easily that any state in the module of one of the U.r0i with 
klkl = 0 mod 2m + 1 also has trivial self-braiding. Therefore, all states in the modules of these 
dyonicc irreps may in principle be condensed. 

Noww suppose that we have condensed a state cf> in the module of n^. To find the residual 
symmetryy algebra, we have to solve equation (3.36). The representations (p, g) of D(D2m+\)* 
whichh satisfy this equation are those for which *Qr } is a root of unity and (j>  is an eigenvector 
off  g~x with eigenvalue equal to this root of unity. Thus, let us first find all irreps p of D27n+i for 
whichh XpY ' is a root of unity. From table 3.1 one may read off that these are Jo, J\ and those 
ajaj for which 2cos(2irjk/(2m + 1)) = 2, or equivalently jk = 0 mod 2m + 1. This leaves 
exactlyy those j which are multiples of Xk := (2m + l)/gcd(fc, 2m +1). In all these cases, Xp  ̂ ' 
actuallyy equals 1, or equivalently, p is trivial on r*. It follows that the allowed p correspond to 
thee irreps of the quotient group D2m+i/{r k ), which is isomorphic to ögCd(*:,2m+i)- The residual 
symmetryy algebra will now be spanned by the (p, g) with p in the set we have just found and g 
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ann element of the subgroup of D2m+1 that leaves <f>  invariant. This subgroup will depend on 4>. 
Therefore,, let us write <j>  more explicitly as a<f> rk + b<f> r-k. Here <f> rk and <f> T-k are just the two 
basiss functions for Vj£ as defined through (3.11). We have dropped the index i in (3.11), since 
thee module of fr is one-dimensional. Using the formula (3.12) for the matrix elements of nA* 
withh respect to this basis, we can now write the action of the elements of D2m+1 on <j>  explicitly 
as s 

lij*( 11 ® ̂ (afak + b<f> r-k) = e ^ ^ *  + e^^b<j>r~k 

n^(11 ® srp){a(f> rk + b<t> r-k) = e:£$b<f>rk + e ^ ^ - * . (3.167) 

Fromm the first of these equations, we see that, independently of the choice of (a, b), rp will 
leavee 0 invariant only if exp(2irt(p/(2m + 1)) = 1. In other words, p has to be a multiple of 
xixi :=  (2m+l)/gcd(2m+1,1). From the second equation above, we see that srp will leave <f>  in-
variantt only if b = exp(2irilp/(2m + l))a. If no such relation between o and b exists, then none 
off  the elements srp e D2m+l will leave 0 invariant and the subgroup of D2m+1 that does leave 
<f><f>  invariant is just the ZgCd{2m+i,o generated by rx'. If we do have b = exp(2irilp/(2m + l))a 
forr some p, then the required subgroup of D2m+i  is the Dscd(2m+i,i)  generated by rx>  and srp. 
Alll  these Dgcd(2m+i,i)  subgroups actually represent the same physics, since they are conjugates 
inn £>2m+i (or equivalently, the corresponding condensates are all related by gauge transforma-
tions).. We have thus found two distinct possibilities for the residual symmetry algebra 7~, which 
wee will call Tk and 7Jfc. These algebras are given by 

77**  = F(D2m+1/(r
k})  êC( r * ') S F(Dgcd(2m+hk)) ® CZg c d ( 2 m + u) 

7?7? ^ F(D2m+1/(r
k))®C{rx^s)^F(Dgcd{2m+hk))®CDscd(2m+hl). (3.168) 

Bothh Tk and Tf are thus transformation group algebras of the for F(H/K) ® CN (for Tk, we 
havee K = (rk) and N = {rxt), whereas for 7j*, we have K = (rk) and N = (rx',s)). 
Becausee of this, the decomposition of Z?(.D2m+i)-irreps into T-irreps proceeds in the same 
wayy as for the electric and magnetic cases. Also, the theory of section 3.6.3 may be applied 
too treat confinement. One finds that the unconfined algebras Uk and W* are isomorphic to the 
quantumm doubles of the groups N/(K n JV). Now it turns out that we have K c {rXl) and 
hencee K c N in both cases. To see this, remember that we have kl = 0 mod 2m + 1 and thus 
gcd(Ar,, 2m + l)gcd(/, 2m + 1) = 0 mod 2m + 1. Hence, 

gcd(fc,, 2m + l)gcd(Z, 2m + 1) = q (2m + 1) (3.169) 

forr some integer q and it follows that gcd(fc, 2m + 1) = qxt and (rk ) c ( rx ' ) (note that 
(r(r kk)) = ( r8«i<*.2m+i) ̂  jfe integer q has the property that it divides both gcd(fc, 2m + 1) and 
gcd(/,, 2m +1). Using this, one now sees easily that 

ÜfÜf 2é D(Dq). (3.170) 

Whenn q = 1, this means that there is full confinement of 77fc-irreps, while on the other hand, 
theree are still four unconfined 77*-irreps, since Ük = 0(1^). 

Thee Hopf kernels of the maps r : Tk -y Uf and f : Tk -»  Üf can also be determined, 
followingg the treatment in section 3.6.3. We find that 

RKer(r)) ^ F(DXl)®CLXk 

RKer(f)) = F(Dgcd(kt2m+1)/Df,cd{kt2rn+1)/xi)®CZXk. (3.171) 
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3.122 Summary and Outlook 

Thee general picture that emerges from our investigation of symmetry breaking and confinement 
inn discrete gauge theories can be seen in figure 3.2. 

Stepp 1: 
Symmetryy Breaking 

"WAL LL ALGEBRA": L 

RKer(r) ) 
restrictionn from T to RKer(r) 
tractss information on strings 

Stepp 2: 
Confinement t 

HOPFF SYMMETRY: 

*-*\"-)*-*\"-)  D(H)-irreps classify the excita-
11 tions before condensation 

P P I I 

" " 
RESIDUALL SYMMETRY: 

ex--

r r 

UN( ( 

T-irrepss classify the excitations 
overr the condensate (both confined 
andd unconfined) 

;ONFINEDD SYMMETRY: 

7 / / 
1/11/1 £/-irreps classify the unconfined 

excitationss over the condensate 

Figuree 3.2: Schematic picture of the structures that play a role in this chapter 

Inn words, it is as follows. The formation of a condensate induces symmetry breaking from 
D(H)D(H) to the Hopf subalgebra T C D(H) which is the Hopf stabilizer of the condensate state. 
Thee ensuing confinement is described by a Hopf projection T of T onto an "unconfined" sym-
metryy algebra U, whose irreps label the free charges over the condensate. Walls or strings in 
thee condensate are labeled by the restrictions of T-irreps to the right Hopf kernel of T. In the 
diagram,, I denotes the (Hopf) inclusion of T into D(H), i denotes the inclusion of RKer(T) 
intoo T and P denotes the orthogonal projection of D(H) onto T, which we use in our definition 
off U. To the information in the diagram, we should add that all "baryonic" excitations on the 
condensatee can be constructed by fusing together a number of confined particles, labeled by 
T-irreps,, in such a way that the overall fusion product has a non-confined charge, labeled by a 
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W-irrep. . 
Notee that the role that the unconfined algebra U plays in the D(H) -theory is quite compar-

ablee to the role that D(H) plays in me gauge theory witii continuous gauge group G of which 
ourr discrete gauge dieory is a Higgsed version. Just like D(H) classifies the free excitations 
overr the Higgs condensate in the continuous gauge theory, U classifies die free excitations over 
thee condensate in the D(/f )-meory. In fact, the different unconfined algebras we have found 
forr specific condensates are typically tiiemselves quantum doubles of a group related to H. For 
example: : 

 For purely electric condensates, we have found that U is die quantum double of die sta-
bilizerr N of the condensate in H. This is just what we expected, since the only effect 
off  condensing one of die electric particles of die D(H)-tiieory is to modify the electric 
condensatee of die G-tiieory in such a way that die residual gauge group is now JV radier 
than#. . 

 For gauge invariant magnetic condensates, we have found that U is die quantum double of 
diee quotient group H/K, where K is die group generated by the elements of conjugacy 
classs that labels die condensate. This is also in accordance with the intuition, since the 
divisionn by K can be seen as a consequence of die fact that, after condensation, die flux 
off  any particle can only be determined up to the condensed flux. 

Inn a sense, we can describe die condensed phases of the D(H)-theory even better man the 
D(if)-dieoryy itself describes the Higgs phase of die G-dieory, since the algebra T diat we 
obtainn after symmetry breaking gives us information on die possible substructures of the free 
excitationss over the condensate. 

Nevertheless,, there is still much work to be done. First of all, from the requirements (3.45) 
thatt we found in section 3.6, it is not clear that the set of irreps of 14 will always have a well-
definedd braiding. Altiiough this does happen in die examples witii electric and gauge invariant 
magneticc condensates (where U is quasitriangular), we do not expect that the equations (3.45) 
wil ll  guarantee tiiis in general. Therefore, we expect mat supplementary conditions will be 
necessaryy for a completely satisfactory definition of li. Secondly, it would be good to have 
somee "independent" dieoretical confirmation of the results we have presented. One could for 
examplee try to find die phases tiiat we are predicting in numerical calculations on a lattice. 

Itt is also important to generalize the techniques for die breaking of Hopf algebra symmet-
riess that we have developed, both to the case where the symmetry algebra is infinite dimensional 
andd to die case where it is no longer a Hopf algebra, but only a quasi-Hopf algebra or even a 
weakk quasi-Hopf algebra or Hopf algebroid. This would extend die applicability of our sym-
metryy breaking scheme enormously. A theory of symmetry breaking for infinite dimensional 
Hopff  algebras could for example have interesting applications in the study of (2+1 )-dimensional 
gravityy using the quantum group dieoretical framework of [13, 14]. A generalization to weak 
quasi-Hopff  algebras would bring any physical system which has a description in terms of Chern-
Simonss dieory or two dimensional conformal field dieory witiii n die reach of our metiiods. One 
applicationn could be the construction of a hierarchy of fractional quantum Hall states much 
likee the one proposed by Haldane and Halperin [49, 50], but using non-Abelian quantum Hall 
statess such as those studied in chapter 2 as die starting point. One could form a condensate of 
quasiholee excitations over such a state to obtain a new Hall state at a different fillin g factor. 

Finally,, it would of course be extremely interesting if die treatment of symmetry breaking 
andd confinement diat we give here could be extended to gauge dieories in 3+1 (or higher) 
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dimensions.. One might begin to think of such an extension starting from the ideas presented in 
[126]. . 
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Symmetriee en topologische wisselwerkingen 

Inn de studie van natuurkundige systemen speelt symmetrie een belangrijke rol. Hierbij gaat het 
niett zozeer om symmetrieèn van objecten in de natuur als wel om symmetrieèn van de natu-
urwetten.. Een voorbeeld is translatie- of verschuivingssymmetrie; de natuurwetten zijn hier 
hetzelfdee als 200 meter (of 200 lichtjaar) verderop. Een ander voorbeeld is rotatiesymmetrie; 
hett maakt niet uit van welke kant je de natuur bekijkt, de natuurwetten die je vindt zijn altijd 
dezelfde.. Naast rotatie- en translatiesymmetrie zijn er nog vele andere vormen van symmetrie. 
Sommigee hebben te maken met de positie en beweging van het te beschouwen systeem in de 
ruimtee en tijd, zoals bijvoorbeeld tijdtranslatiessymmetrie (de natuurwetten zijn nu hetzelfde 
alss in 1685 of 1750), andere staan verder van onze dagelijkse belevingswereld af. Tot deze laat-
stee categorie behoren de ijksymmetrieën. Deze symmetrieèn hebben te maken met een zekere 
willekeurr in de wiskundige beschrijving van het systeem. In een systeem met een ijksym-
metriee zijn er als het ware een aantal extra, "interne", kanten vanwaaruit je het systeem kunt 
bekijken.. Het maakt hierbij voor de fysische voorspellingen niet uit van welke kant je kijkt, 
maarr het maakt wel uit dat er meerdere kanten zijn. Dksymmetrie speelt een belangrijke rol in 
dee beschrijving van elementaire deeltjes bepaalt in belangrijke mate hun wisselwerkingen. Het 
zeerr succesvolle standaardmodel dat alle tot nu toe bekende deeltjes en hun electromagnetische, 
sterkee en zwakke wisselwerkingen beschrijft, is een voorbeeld van een ijktheorie. 

Watt alle symmetrieèn in de natuurkunde gemeen hebben is dat ze beschreven worden door 
wiskundigee bewerkingen die worden losgelaten op de toestand van het systeem. In de studie 
vann symmetrie is het buitengewoon nuttig om de eigenschappen van de verzameling van alle 
symmetriebewerkingenn van een gegeven systeem te bestuderen. Een belangrijke eigenschap is 
datt we twee symmetriebewerkingen altijd na elkaar kunnen toepassen en dat we dan weer een 
symmetriebewerkingg krijgen. Zo kunnen we een systeem bijvoorbeeld twee keer achter elkaar 
verschuivenn of roteren en dit geeft dan samen weer een nieuwe verschuiving of rotatie. Een 
anderee eigenschap die we vaak hebben is dat elke symmetriebewerking teruggedraaid kan wor-
denn (bij rotaties is dit zelfs letterlijk het geval). Wanneer de symmetriebewerkingen van een 
systeemm de zojuist genoemde eigenschappen hebben, zeggen we dat ze samen een groep vor-
menn (zo hebben we bijvoorbeeld rotatiegroepen en translatiegroepen). De wiskundige theorie 
vann groepen is zeer breed toepasbaar op de studie van symmetrieèn van fysische systemen en is 
daaromm tegenwoordig vrijwel altijd onderdeel van de opleiding tot theoretisch natuurkundige. 
Nietteminn komt het voor dat het voor een volledige beschrijving van de symmetrieèn van een 
natuurkundigg systeem nodig is om wiskundige structuren te gebruiken die algemener zijn dan 
groepen.. Belangrijke voorbeelden van zulke structuren zijn Hopf-algebra 's of quantumgroepen. 
Ditt proefschrift is het resultaat van theoretisch onderzoek aan systemen waarvan de symme-
trieènn met behulp van zo'n Hopf-algebra of quantumgroep kunnen worden beschreven. 
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Hoofdstukk 1 van dit proefschrift is gewijd aan een korte inleiding in de theorie van Hopf al-
gebra'ss en met name in de toepassing van Hopf algebra's op de beschrijving van systemen van 
deeltjess die in een tweedimensionale ruimte (bijvoorbeeld een plat vlak) leven. Met behulp van 
eenn Hopf algebra kun je niet alleen de symmetrieën van zo'n systeem beschrijven, maar ook een 
deell  van de wisselwerkingen tussen de deeltjes, de zogenaamde topologische wisselwerkingen. 
Topologischee wisselwerkingen worden gekenmerkt door het feit dat ze niet afhangen van de 
afstandenn tussen deeltjes. Dit onderscheidt ze van de wisselwerkingen die worden veroorzaakt 
doorr krachten zoals de zwaartekracht en de elektrische en magnetische krachten; die worden 
zwakkerr naarmate de wisselwerkende deeltjes zich verder van elkaar bevinden. Het geheel van 
topologischee wisselwerkingen tussen deeltjes heeft grote invloed op de statistische eigenschap-
penn van systemen met veel deeltjes en wordt daarom ook wel aangeduid met de term statistiek. 

Inn de driedimensionale ruimte waarin wij leven komen twee soorten deeltjes voor die ver-
schillenn in hun topologische wisselwerkingen: bosonen en fermionen (genoemd naar S.N. Bose 
enn E. Fermi). De deeltjes waaruit de materie is opgebouwd, de quarks en de electronen, zijn 
allemaall  fermionen. De topologische interacties tussen identieke fermionen zorgen ervoor dat 
dezee graag bij elkaar uit de buurt blijven. Deze eigenschap is er uiteindelijk verantwoordelijk 
voorr dat materie een zekere hoeveelheid ruimte inneemt. Bosonen hebben een veel minder 
"tastbaar""  karakter dan fermionen. Hun gedrag is meer vergelijkbaar met dat van golven op 
eenn wateropppervlak; ze kunnen ongehinderd door elkaar heen bewegen. Lichtdeeltjes zijn 
bijvoorbeeldd bosonen. 

Figuurr 3.3: Links: De deeltjes (de zwarte stippen) bewegen langs de pijlen. Na de beweging zijn de oorspronke-
lijk ee plaatsen weer ingenomen, maar de twee deeltjes links zijn met elkaar verwisseld 
Rechts:Rechts: De "vlecht" die bij de verwisseling links hoort. We zien dat het deeltje rechts bij de vlecht is betokken, 
ondankss dat het niet van zijn plaats is geweest. 

Inn twee dimensies zijn er naast bosonen en fermionen ook deeltjes met andere topologis-
chee interacties. Deze deeltjes worden anyonen genoemd. De topologische interacties tussen 
anyonenn kan men beschrijven aan de hand van het effect dat verwisselingen van een aantal 
anyonenn op de toestand van het systeem hebben. Hierbij is het belangrijk hoe de verwisselin-
genn plaatsvinden. Het is alsof ieder deeltje in het vlak aan een touwtje hangt dat boven het 
deeltjee in een parallel vlak is vastgemaakt. Wanneer deeltjes worden verwisseld worden deze 
touwtjess in elkaar gevlochten en het effect van een verwisseling op de toestand van het sys-
teemm hangt af van de vlecht die bij de verwisseling ontstaat (zie figuur 3.3). In een systeem 
mett een Hopf-symmetrie kan de werking van deze vlechten op de toestanden van het systeem 
opp een systematische manier worden beschreven met behulp van de Hopf-algebra die ook de 
symmetrieënn beschrijft. 

Vlechtenn en het fractionele quantum Hall effect 

Inn hoofdstuk 2 bestuderen we een natuurkundig verschijnsel dat zich in een plat vlak afspeelt 
enn waarbij anyonen een rol spelen, namelijk het fractionele quantum Hall-effect. Om dit te 
beschrijvenn is het nuttig om eerst iets te zeggen over het gewone (klassieke) Hall-effect, dat 
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inn 1879 werd ontdekt door E.H. Hall. Een opstelling waarin dit effect gemeten kan worden 
iss schematisch weergegeven in figuur 3.4. Een stroom wordt in de x-richting door een plaatje 

Figuurr 3.4: schematische voorstelling van een opstelling waarmee men het Hall-effect kan bestuderen 

geleidendd materiaal geleid en een magneetveld B wordt loodrecht op dit plaatje, in de 2-richting 
aangelegd.. Door de aanwezigheid van het magneetveld ontstaat er ook een zogenaamde Hall-
spanningg Vg in de y-richting; de geladen deeltjes die in de z-richting door het plaatje stromen 
wordenn door het magneetveld in de «/-richting afgebogen. De Hall-spanning is normaal gespro-
kenn evenredig met de stroom I door het plaatje en met het aangelegde magneetveld, waardoor 
dee Hall-weerstand RH, die gedefinieerd is als het quotient van VH en I, evenredig is met de 
sterktee van het magneetveld B. De grafiek van RH als functie van B is dus normaal gesproken 
eenn rechte lijn. Dit is echter niet altijd het geval. In de jaren tachtig deden K. von Klitzing 
(Nobelprijss 1985) en H.L. Tsui en D.C. Störmer (Nobelprijzen 1998) belangrijke metingen aan 
hett Hall effect voor een systeem van electronen die slechts in twee dimensies kunnen bewe-
gen.. Zo'n systeem kan gecreëerd worden op het grensvlak tussen twee laagjes materiaal die 
verschillenn in electrisch geleidingsvermogen (het gaat hierbij meestal om halfgeleidermateri-
alenn die ook in de computerindustrie worden toegepast). Als de temperatuur laag genoeg is, 
iss de bewegingsvrijheid van de electronen in de richting loodrecht op dit grensvlak verwaar-
loosbaarr en is het systeem effectief tweedimensionaal. Wanneer men nu het Hall-effect meet in 
eenn dergelijk systeem vindt men dat, wanneer het gebruikte magneetveld erg sterk is, de Hall-
weerstandd niet meer lineair afhangt van het magneetveld. In plaats van een rechte lijn vindt men 
plateauss in de grafiek van RH tegen B (zie figuur 1 op bladzijde 8). De waarden van de Hall-
weerstandd op deze plateaus zijn zo nauwkeurig te bepalen dat het Hall-effect inmiddels wordt 
gebruiktt om de eenheid van weerstand te definiëren. De waarden die gevonden worden hangen 
bovendienn op een eenvoudige manier samen met de fundamentele natuurconstanten e (de lading 
vann het electron, op een minteken na) en h (de constante van Planck). Meestal worden niet de 
waardenn van RH zelf gegeven, maar die van het geleidingsvermogen aH = I/RH- Er geldt 

pepe2 2 

aann = —r> 
qq h 

waarbijj  p en q kleine gehele getallen zijn (over het algemeen kleiner dan 10). De getallen -
voorr elk plateau staan ook aangegeven in figuur 1. 

Mett name op de plateaus waarvoor £ een breuk is (dus q =£ 1) vertoont het twee-dimensio-
nalee electronensysteem erg interessant gedrag. De electronen vormen een toestand die veel weg 
heeftt van een vloeistof. In deze vloeistof kunnen zich plaatselijk verdichtingen en verdunningen 
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vormen.. Deze verdichtingen en verdunningen gedragen zich weer als deeltjes (we noemen ze 
dann ook quasideeltjes), maar wel deeltjes met opmerkelijke eigenschappen. De lading van de 
quasideeltjess kan een fractie zijn van de lading van een electron en de topologische interacties 
tussenn quasideeltjes zijn vaak niet bosonisch of fermionisch; deze quasideeltjes zijn de reeds 
aangekondigdee anyonen. 

Dee quasideeltjes van de quantum-Halltoestanden die in hoofdstuk 2 worden onderzocht 
zijnn anyonen van een bijzonder type. De toestand van een systeem met zulke anyonen wordt 
namelijkk niet uniek vastgelegd door de posities van de anyonen. Zelfs wanneer precies bekend 
iss waar alle anyonen zich bevinden zijn er nog meerdere "interne" toestanden van het systeem 
mogelijk.. In samenhang hiermee kan het gebeuren dat het uitmaakt in welke volgorde we 
quasideeltjess met elkaar verwisselen. We kunnen het gedrag van het systeem vergelijken met 
hett gedrag van bijvoorbeeld een boek onder rotaties. Als we het boek eerst 90 graden om de as 
doorr de voorpagina roteren en dan 90 graden om de as door de rug dan komt het in een andere 
positiee uit dan als we eerst om de as door de rug roteren en dan om de as door de voorpagina. 
Zoo kan het ook uitmaken of we in een systeem met drie identieke deeltjes eerst de linker twee 
deeltjess verwisselen en dan de rechter twee of andersom. De twee verschillende verwisselingen 
kunnenn wiskundig soms zelfs precies zo worden beschreven als rotaties om verschillende assen, 
alleenn liggen de assen hier niet in de echte ruimte, maar in de interne ruimte van het systeem. De 
niet-commutativiteitt van de verwisselingen is natuurlijk een erg interessante eigenschap van de 
quantum-Hallsystemenn die wij hier bestuderen, maar zij maakt het wel een stuk ingewikkelder 
dann normaal om de vlechteigenschappen van de quasideeltjes wiskundig precies te beschrijven. 
Ondankss dat slagen we erin om dit te doen, door te laten zien dat de systemen in kwestie een 
Hopf-symmetriee hebben die kan worden toegepast in de berekening van het effect van verwis-
selingenn op de toestand van het systeem. 

Symmetriebrekingg en confinement 

Inn hoofdstuk 3 houden we ons bezig met een vraag die altijd opduikt als we het over symmetrie 
hebben,, namelijk de vraag wat er gebeurt met een fysisch systeem als een van zijn symmetrieën 
spontaann gebroken wordt. Spontane symmetriebreking is een verschijnsel dat we overal om ons 
heenn zien, namelijk het verschijnsel dat de natuur zich minder symmetrisch manifesteert dan 
menn zou verwachten gezien de wetten die haar beschrijven. Zo is het bijvoorbeeld evident dat de 
natuurr om ons heen niet invariant is onder verschuivingen. In de beschrijving van natuurwetten 
wordtt spontane symmetriebreking interessant op het moment dat we een deel van de natuur dat 
eenn symmetrie breekt voor het gemak vastleggen en als het ware even onderdeel maken van de 
natuurwetten,, de wetten lijken dan plotseling ook minder symmetrisch. 

Eenn voorbeeld hiervan vinden we in de fysica van vaste stoffen. Heel vaak wordt er in 
dee beschrijving van een vaste stof vanuit gegaan dat er een kristalstructuur is, een rooster van 
ionenn of molekulen. Dit wordt niet afgeleid uit de wetten die het gedrag van die ionen of 
molekulenn beschrijven, maar als experimenteel gegeven in het model ingebracht. Wanneer men 
uitgaatt van dit gegeven kan men allerlei verschijnselen in het materiaal, zoals bijvoorbeeld de 
voortplantingg van geluid, warmte of elektrische stroom, veel beter beschrijven dan wanneer 
menn zou uitgaan van een theorie die in principe ook de vorming van het kristal kan beschri-
jven.. Wel is het zo dat de introductie van een kristalrooster de translatie- en rotatiesymmetrie 
vann het oorspronkelijke systeem gedeeltelijk breekt, maar dit verlies van symmetrie verdient de 
voorkeurr boven het verlies aan voorspellende waarde dat een meer symmetrische beschrijving 
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mett zich mee zou brengen. Niettemin kunnen de gebroken symmetrieën nog steeds een belan-
grijkee bijdrage leveren aan de studie van kristallen. Door namelijk systematisch te bestuderen 
opp welke manieren translatie- en rotatiesymmetrie precies gebroken kunnen worden, kunnen 
wee alle soorten kristallen classificeren; elk kristal is een manifestatie van een bepaald type sym-
metriebreking.. Ook de verschillende soorten geluidsgolven door de kristallen en de defecten 
diee kunnen optreden in de kristalstructuur kunnen worden bepaald met behulp van een studie 
vann de breking van symmetrie. 

Ookk ijksymmetrie kan spontaan gebroken worden. De spontane breking van ijksymmetrie 
iss zelfs een cruciaal ingrediënt in het standaardmodel van de elementaire deeltjesfysica. De 
symmetriee wordt in dit geval gebroken door een zogenaamd Higgs-condensaat. Dit zouden 
wee grofweg kunnen omschrijven als een onveranderlijke achtergrond van identieke elektrisch 
geladenn deeltjes in een vaste interne toestand. De ijksymmetrie wordt gebroken door de keuze 
vann deze toestand. Als men deze symmetriebreking niet in het model zou introduceren zou het 
buitengewoonn moeilijk worden om bepaalde massieve deeltjes met behulp van een ijktheorie 
tee beschrijven. Behalve het bestaan van deze massieve deeltjes is er nog een ander fenomeen 
datt optreedt in ijktheorieën en dat beschreven kan worden met behulp van symmetriebreking, 
namelijkk confinement of quarkopsluiting. Quarks worden nooit als vrije deeltjes waargenomen, 
maarr altijd in gebonden vorm. Drie quarks kunnen samen bijvoorbeeld een proton of een neu-
tronn vormen, maar het is niet mogelijk om een enkel quark van een proton of neutron los te 
trekkenn zonder dat hierbij weer nieuwe quarks ontstaan die zich onmiddelijk aan het losse quark 
binden.. De symmetriebreking die wordt geïntroduceerd bij de beschrijving van quarkopsluit-
ingg wordt ook veroorzaakt door een condensaat van deeltjes, maar deze keer zijn de deeltjes in 
kwestiee niet elektrisch geladen, maar dragen zij een magnetische flux of een magnetische lad-
ing.. Ook is de symmetrie die gebroken wordt niet de ijksymmetrie, maar een zogenaamde duale 
symmetriee waarvan niet altijd precies duidelijk is hoe die wiskundig beschreven moet worden. 

Inn hoofdstuk 3 ontwikkelen we een theoretisch kader waarbinnen we het breken van een 
Hopf-symmetriee kunnen bestuderen. Vervolgens passen we dit toe op een eenvoudig soort ijk-
theorie.. Deze ijktheorie leeft in twee ruimtelijke dimensies en kent slechts een eindig aantal 
ijktransformatiess in tegenstelling tot bijvoorbeeld het standaardmodel, dat oneindig veel ijk-
transformatiess kent. Door deze vereenvoudigingen kunnen we de ijksymmetrie en de duale 
symmetriee samen veel nauwkeuriger beschrijven dan normaal gesproken mogelijk is; deze twee 
symmetrieënn blijken allebei tegelijk beschreven te kunnen worden met behulp van één Hopf-
algebra.. Door de breking van deze Hopf symmetrie door verschillende soorten condensaten te 
bestuderenn kunnen we nu uitspraken doen over de verschillende soorten fysisch gedrag die het 
systeemm dat beschreven wordt door de ijktheorie globaal gesproken kan vertonen. We zien hier-
bijj  dat er inderdaad opsluitingsverschijnselen en Higgs-achtige verschijnselen optreden, waarbij 
hett van het veronderstelde condensaat afhangt welke deeltjes in de theorie er worden opgesloten. 
Ondankss de toegepaste vereenvoudigingen lijk t het gedrag van het systeem wel degeüjk op het 
gedragg van systemen met drie ruimtelijke dimensies en een ingewikkelder ijksymmetrie. We 
verwachtenn dan ook dat de aanpak van het probleem van Hopf-symmetriebreking die we hier 
ontwikkeldd hebben in de toekomst van nut kan zijn bij het bestuderen van meer realistische 
modellenn van elementaire deeltjes en van fysische verschijnselen in gecondenseerde materie. 
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