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Superconducting microwave metamaterials offer enormous potential for
quantum optics and information science, enabling the development of
advanced quantum technologies for sensing and amplification. In the context
of circuit quantum electrodynamics, such metamaterials can be implemented
as coupled cavity arrays (CCASs). In the continuous effort to miniaturize
quantum devices for increasing scalability, minimizing the footprint of CCAs
while preserving low disorder becomes paramount. In this work, we present a
compact CCA architecture using superconducting NbN thin films manifesting
high kinetic inductance. The latter enables high-impedance CCA (-1.5kQ),
while reducing the resonator footprint. We demonstrate its versatility and
scalability by engineering one-dimensional CCAs with up to 100 resonators
and with structures that exhibit multiple bandgaps. Additionally, we quanti-
tatively investigate disorder in the CCAs using symmetry-protected topologi-
cal SSH edge modes, from which we extract a resonator frequency scattering
of O.22j8“8§‘ %. Our platform opens up exciting prospects for analog quantum
simulations of many-body physics with ultrastrongly coupled emitters.

Metamaterials made of superconducting circuits' have emerged as even capable of realizing non-Euclidean geometries'®, non-trivial

highly versatile platforms at the forefront of quantum technologies,
offering a broad range of applications encompassing sensing’,
amplification®, and quantum information processing**. Moreover,
when quantum emitters are strongly or ultrastrongly coupled to
microwave superconducting metamaterials that feature high quality
and mode density®®, or to structured photonic baths’™, it provides a
valuable framework for exploring many-body phenomena through
analog quantum simulation”™, In particular, coupled cavity arrays
(CCAs) have emerged as a flexible architecture for realizing artificial
photonic materials in the tight-binding limit™"¢, enabling the creation
of band structures with varying complexity"®, These structures are

tolopogical lattices”®?, and flat bands®, offering insights into com-
plex many-body physics?* and enabling various quantum information
processing tasks**%,

Conventional on-chip superconducting CCAs are realized with
distributed coplanar waveguide (CPW)* or lumped element LC¥
resonators, typically made of aluminum (Al) or niobium (Nb) super-
conducting thin films. This architecture allows for arbitrary band
engineering by tailoring the frequency and coupling of the
cavities""”?*. Despite this flexibility, the large physical footprint of a
single resonator at frequencies ~-5GHz covers several millimeters’
square**?’, and can restrict the scalability of the array. Recent research
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Fig. 1| High-impedance CCA. a Optical micrograph of a representative linear-
design CCA comprising 25 resonators with rectangular base unit. The dark part is
silicon while the light part is NbN. b False-colored scanning electron micrographs of
the zoomed-in regions of the CCA [marked by black frames in (a)]. The microwave
portis colored in blue and the cavities in green. Notice that the coupling port (blue)
does not have an inductor shunted to ground. Inset: Further zoom-in on a portion
of the inductor [marked by a red frame in (b)]. ¢ Optical micrograph of a repre-
sentative zigzag-design CCA comprising 26 resonators with hexagonal base unit.
d False-colored scanning electron micrograph of the zoomed-in region of the CCA
[marked in (c)]. The microwave port is colored in blue and the cavities in green. The
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insets [yellow (red) frame] show a zoom-in on the mutual capacitor between two
cavities (the inductor of a cavity). e Schematic of the lumped-element model of the
CCAs. Each cavity is modeled as an LC resonator with aninductor Lz and a capacitor
Cigto ground; the i and j cavities are coupled via a mutual capacitor C;;. The cavities
at the edges of the CCA are coupled to the microwave ports via the capacitors C, in
blue. f Schematic of the corresponding chain Hamiltonian including first (second)
neighbor interaction J; ;.1 (J; ;+2) between cavities i and i + 1 (i + 2), cf. Eq. (2). The
input and output microwave ports are represented in blue, and @, indicates the
input (output) field operator.

has explored alternative approaches, such as the replacement of the
geometric inductance with the Josephson inductance of compact
junction arrays®*%*', However, achieving control of the Josephson
junction inductance with an imprecision below a few percent®!*
remains challenging, leading to significant variability in cavity para-
meters and impacting the spectral properties of the CCAs. Addition-
ally, this approach introduces significant nonlinearity, affecting the
higher excitation manifold of the CCA. Despite the variety of approa-
ches, the challenge of realizing a CCA made of unit cells that combine
simultaneously high-quality, ultra compactness, and weak non-
linearities, while maintaining a low overhead in fabrication, still
remains elusive. To fully harness the potential of CCAs while drama-
tically reducing their size, it is crucial to maintain low scattering of the
cavity frequencies and inter-site coupling, as well as to develop
methods to efficiently quantify the impact of disorder.

In this work, we report on a compact and versatile lumped-
element CCA architecture characterized by low disorder, with only
0.22* 893 % deviation in resonator frequency. The resonators are made
of high kinetic inductance NbN thin film resulting in compact
inductors®~°, We show the versatility and scalability of the platform by
engineering one-dimensional CCAs with up to 100 resonators with
multiple band-structures. To efficiently quantify the amount of dis-
order in the system, we develop a topology-inspired metric for asses-
sing the resonators’ frequency scattering by systematically exploring
the in-gap mode distribution of CCAs that realize the Su-Schrieffer-
Heeger (SSH) chain®®. Due to the bulk-edge correspondence® in-gap
modes are also sensitive to chiral symmetry-breaking disorder in the
bulk of the CCA. Thus, by focusing solely on the edge modes we can
infer the overall disorder present in the entire system. Notably, the
high kinetic inductance of our devices enables the realization of high-
impedance resonators in the array. This characteristic increases the
coupling to charge degree of freedom of both superconducting®® and
semiconducting® qubits, enhancing the possibility to achieve the
ultra-strong coupling regime*’.

This ultracompact, high-impedance platform significantly enhances
the density of modes within a given footprint, without compromising
the quality or increasing the disorder. This enables the exploration of
complex and high density of photonic states necessary for emulating
the effect of highly structured non-Markovian environment of open

quantum system”, This development lays the groundwork for inte-
grating quantum emitters into our bath-engineered CCA environment.

Results

Platform

We design, simulate, fabricate, and investigate 1-dimensional (1D)
CCAs comprising rectangular-shaped (Fig. 1a, b) and hexagonal-
shaped base units (Fig. 1c, d). Each CCA is fabricated from a high
kinetic inductance NbN thin film (see Methods) and can be modeled as
an array of N superconducting lumped-element LC resonators, as
schematically represented in Fig. le. Each resonator is defined by a
capacitor with total capacitance Cs; = Ciz + Ciy; + Cis1, Where Cyg
represents the capacitance to ground of the i cavity, which also shares
mutual capacitances, Ci; and Gy With its neighboring resonators.
These latter two capacitances can be adjusted by varying the spacing
between the resonators d;;; and d;;;, or by adjusting the inter-
digitated capacitor, see Fig. 1b, d. The resonance frequency of the i
resonator, denoted as w;/2m, is determined by 1/, /L, C5 ;. Both C;gand
Ciz1; can be tailored independently, while keeping Cs; and, conse-
quently, the resonance frequency w;/2m, constant. The inductance to
ground, L, of the nanowire inductor with width winq and length fing
(Fig. 1b, d) can be expressed as®>**

[ind +1

n

Lig =Ly +Lgeo =Ly o

geo’ (1)

with Ly (L) representing the (sheet) kinetic inductance, and Lge,
accounting for the geometric inductance. In our case, the ratio
Li/Lgeo ~ 250 indicates that the inductance of the CCA is completely
dominated by its kinetic contribution. Leveraging this property, we are
able to engineer resonators with a significantly reduced footprint
typically down to 50 x 75 um?». This size is remarkably smaller if
compared to conventional lumped-element resonators (-100 x
smaller)”®* and CPW distributed resonators (-1500 x smaller)"*,
Due to the large kinetic inductance, the resonators in the array present
an impedance Z;=, /L, /Cs ; of approximately 1.5kQ (0.8 kQ) for the
rectangular (hexagonal) geometry. This high impedance enhances the
capacitive couplings between resonators (/; ;,; « /Z;Z;,;) and to
quantum emitters (g; o« \/Z;).
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Fig. 2 | Band engineering. a General CCA schematic displaying the cavities in
green, with a unit cell including M cavities. b Transmission spectrum |S,;| for CCAs
with N = 25, 50 and 100 cavities with rectangular design with M = 1. The shaded
region around 8.05 GHz highlights the presence of microwave chip slot modes.

¢ Top: Same as (b) for M =1 CCAs with Ji/2 = 58 MHz (rectangular design), J/

2m = 164 MHz (rectangular design), and /;/2m = 1200 MHz (hexagonal design).
Additional slot modes are visible around 11.1 GHz. Inset: a zoom-in on the two lower
coupling CCAs in the main panel. Bottom: Frequency difference, Af = f; - fi1,
between two consecutive modes for the corresponding CCAs. The crosses repre-
sent the Af extracted for the CCAs, each plotted in relative to the averaged modes'

frequencies (f; + f;.1)/2. The continuous black lines indicate fits of the extracted Af
according to the eigenmodes of the CCAs Hamiltonian (see Methods). Inset table
collects the coupling /;/2m, the stray capacitance ratio C'/Cy, where C'=C; ;. ,, and
next nearest-neighbor couplings ratioJ' //, for the three CCAs. d Top: Same as ¢ for
dimerized CCAs (rectangular design, M = 2) with 4//2m = |/, - J3|/2m ~ 50 MHz (100
MHz) on the left (right). Bottom: Extracted modes (crosses) and their fits to the
eigenmodes of the CCAs Hamiltonian (continuous line) (see Methods). e Same as
c for (top to bottom) unit cells with M =3, 4, and 5. All the transmission spectra are
normalized by their maximum amplitude.

The Hamiltonian of the system is derived following standard
Lagrangian circuit quantization** (see Methods), and takes the form

N Q N—g
H=Y wala+Y" /,.,,.+,,(aja,.+q+h.c.), )

i-1 g=1i=-1

up to the Q™ order in coupling in # = 1 units. Here, @; and &,T are the
photonic annihilation and creation operators at site i. The nearest-
neighbor coupling terms, J;;;, originate mainly from direct
capacitive coupling. In our model, we neglect inductive coupling
due to the resonators’ high impedance, as it scales as 1/./Z,.
Coupling terms of order g > 1 have a double origin: stray capacitive
coupling between next nearest-neighbor resonators and from the
inversion of the capacitance matrix in the circuit’s Lagrangian, the
latter increases with the ratio C;.1/Cs; (see Methods and

Supplementary file). In the following, we focus on CCAs realized
with resonators with degenerate frequencies, w,/2m. To ensure this
degeneracy, we introduce driving ports shaped and positioned
exactly as a cavity of the array but whose inductor is not shunted to
ground. Such ghost ports ensure a uniform capacitive environment
for both edge and bulk resonators (see blue false-colored part
in Fig. 1b).

Band engineering

We begin by characterizing the extensibility of the introduced
compact CCA platform by measuring chains with homogeneous
coupling, i.e., Jy;+1 =1 and J; ;., =/, cf. Fig. 1d. To this end, we set
Cig=Cg, Lig =Lz and C; ;11 = Ci. Note that we have M =1 resonators per
unit cell [cf. Fig. 2a], and for /;»/', we expect a finite-size sampling of
a cosine dispersion, i.e., the emergence of a passband centered
around w,/2m with a span of 4/,”. In Fig. 2b, we report on the
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Fig. 3 | Engineering SSH edge modes. a Schematic of the SSH model. Each unit cell
contains two cavities A and B, both with frequency w,. /; and /, are respectively the
intracell and intercell coupling. b Simulated phase transition diagram of the SSH
model from trivial (/; > /) to topological (J; < /,) phase, with /' = 0. The black lines
represent the bulk modes for a CCA with N = 32. For J; # J,, the system presents a
bandgap of size Aaéulk . In the non-trivial phase, two hybridized SSH edge modes
(red and orange) are enabled at the center of the bandgap and are separated by
A3-|%0p0. The gray area represents the phase transition diagram N > . ¢ (e) Simu-
lated photonic population of the CCA with N = 64 in correspondence of the
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symmetric (red) and antisymmetric (orange) hybridized SSH edge modes in the
weakly localized configuration, /5//; = 1.22 (strongly localized configuration, /,/
J1=1.57) according to the eigenvectors of the CCAs Hamiltonian (see Methods). d (f)
Left: Transmission spectrum |Sy|, for CCAs with /5//; =1.22 (J,//; =1.57) and N=16, 32
and 64. Right: Reflection spectra Arg Sy »,, as a function of the frequency detuning
f = ropo- for a frequency region of 100 MHz around the SSH edge modes. fr,, is
the mean frequency of the two SSH edge modes. The modes in red and orange
represent the symmetric and antisymmetric hybridized SSH edge modes,
respectively.

transmission spectra of several such homogeneous CCAs with N up
to 100 sites. The transmission, |S,,|, is measured in a cryogenic setup
at 10 mK with a vector network analyzer (see Supplementary file).
Each CCA transmission is normalized with respect to its maximum
transmission amplitude. We observe N distinct peaks, corresponding
to the eigenmodes of the CCA. The modes at the center of the band
have respectively larger coupling to the ports [higher peaks], Kex,
and sparser frequency spacing, 4f, relative to the smaller coupling
[lower peaks] and higher mode density at the band edges® (Fig. 2b
and Supplementary file). In all examined CCAs, we resolve the
majority of the modes; for example, we detect as many as ~-90 dis-
tinct modes in the case of N =100 CCA. The missing modes can be
attributed to two dominant factors: (i) the modes at the edges of the
pass-band have lower visibility, and (ii) to avoid erroneous counting,
we exclude the frequency region around 8.1 GHz (Fig. 2b), where chip
slot modes are present. On average, we extract individual mode
single-photon internal dissipation rates k%% /21 of 100 kHz for w,/
2 = 5 GHz (internal quality factor QY% ~ 50 x10%), indicating low-
loss CCAs (see Supplementary file). Remarkably, fabricating CCAs
with a high number of cavities does not degrade the low-power
quality factor of the device®.

We proceed to demonstrate high control over the inter-site cou-
pling, see Fig. 2c. By redistributing the components contributing to the
total capacitance, Cs, of each resonator, specifically adjusting the
capacitance to ground, C,, and mutual capacitance, C;, we can mod-
ulate the inter-site coupling rate. This allows us to engineer multimode
environments with bandwidths ranging from approximately 230 MHz
up to 4.8 GHz, resulting in a free spectral range spanning from hun-
dreds of MHz down to 1 MHz. Considering the low-dissipation rates
and the possibility to engineer narrow free spectral range, this archi-
tecture opens exciting prospects for exploring superstrong light-
matter coupling’ and many-body Hamiltonians in the strongly non-
linear regime****. Notably, we demonstrate control over high-quality
CCAs comprising up to 100 resonators with a density of 5 resonators
per 100 um, highlighting our capability to finely engineer the envir-
onment bandwidth.

To demonstrate a multiband spectrum, we consider configura-
tions with M up to 5 cavities per unit cell (Fig. 2d,e). We denote with /;,

where i = 1...M - 1, the coupling between cavities within a unit cell
(intracell coupling) and with J/y.; the coupling between unit cells
(intercell coupling). As we increase the number of elements in the unit
cell, additional bands appear in the array spectrum®. As such, band-
gaps are expected to emerge in the midst of the CCA’s spectrum, with
up to M passbands. In the dimer case (M = 2), each resonator presents
the same two coupling capacitances, in an alternating fashion, which
automatically satisfies the resonant condition. However, for M > 2, the
cavities do not necessarily have the same total capacitance and hence
maintaining a constant resonant frequency for all cavities requires fine
tuning of the inductors to compensate for this effect (see Supple-
mentary file).

In all measurements in Fig. 2, the influence of higher-order cou-
pling terms, /', are present and manifest in two primary aspects: first,
the mode distribution in the passband is asymmetric with respect to
wy, resulting in higher mode density at lower frequencies (see Supple-
mentary file). Second, the mode coupling to the ports, ke, for the low
frequency eigenmodes is lower than for their higher frequency coun-
terpart (see Supplementary file). By fitting the CCA spectra (see
Methods), we estimate J' ~ 10%/ for the rectangular designs (domi-
nated by direct stray capacitive coupling), while for the hexagonal one,
J ~20%/ (due to high C;;.1/Cs; ratio), where J is the mean of the
nearest neighbor couplings in the CCA (see Table in Fig. 2c). Further-
more, the asymmetry observed in the size of the bandgaps (Fig. 2e) can
be attributed to systematic design imperfection (see Supplemen-
tary file).

Engineering localized modes

Using our architecture, we demonstrated excellent control over the bulk
spectrum of the CCA. Relying on topology, the creation of low-
dimensional bound modes can prove useful for coupling to quantum
emitters**. Remaining in a 1D chain geometry, we turn to engineer
CCAs in the topologically non-trivial SSH configuration (Fig. 3)**¥. The
SSH chain can be in a chiral-symmetry-protected topological phase,
where its bands exhibit a quantized bulk polarization, with associated
mid-gap OD edge states. The model has been extensively studied in
photonic CCAs*, cold-atoms™, polaritonics®, and optomechanical
arrays™, and used to engineer directional topological waveguide QED***.
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Our microwave photonic analogue of the SSH model comprises a
dimerized (M = 2) chain, with the unit-cell made of A and B sites
(Fig. 3a). The intra- (/) and inter-cell (J;) hopping are alternating,
leading to a two bulk-band spectrum. However, a gap closing occurs
when J; =/, (Fig. 3b). The gap closing marks a topological phase tran-
sition between the topologically-trivial (/, < J;, cf. Fig. 2d) and the
topologically nontrivial cases (/; <J,, cf. Fig. 3). A quantized jump in the
bulk polarization of the chain distinguishes between the two cases,
where in the latter it implies the appearance of two degenerate mid-
gap edge states.

The bulk Hamiltonian of our SSH CCA, in quasimomentum space
reads™:

H(k) = (wo +2J cos(kd)) T, 3
+ (/1 +J, cos(kd)) T, +/, sin(kd) T, + & T,
where k is the reciprocal wavevector, d is the lattice constant (distance
between the unit cells), and 7o, 74, 7, and 7, represent the Pauli matrices.
While periodic boundary conditions were applied to derive the
Hamiltonian in Eq. (3), to observe SSH edge states, the CCA must have
open boundary conditions. Furthermore, the mid-gap edge states are
well defined only if chiral symmetry is realized, i.e., when TAT' = —H
holds, where I is the chiral symmetry operator. Specifically, for the SSH
model, [ is defined using the sublattice projectors associated to the A
and Bsites, P, and Py, as [ =P, — P;*"". Hence, the appearance of next
nearest-neighbor hopping /', and disorder terms & due to fabrication
imperfections lead to deviation from the standard SSH model** (see
Supplementary file). The latter breaks the chiral symmetry and will
move the topological edge states away from the middle of the gap.
Disorder in first neighbor hopping, J;, does not break the chiral
symmetry and will bear a lesser impact on the edge states® (see
Supplementary file).
In a finite-size CCA (Fig. 3a), the tails of the mid-gap edge states
overlap in the bulk, resulting into a finite hybridization that gives rise
to a frequency splitting according to

Ao /2 x eV 4)
where (is the edge states’ spatial localization

1

¢= log/y /)

S

The degree of hybridization between the SSH edge states depends
on the chain’s size, N, and the coupling ratio, /»//;. Correspondingly, the
hybridized SSH edge states form symmetric and antisymmetric
superpositions between the left and right edge states, see Fig. 3c,e. In
the remainder of the manuscript, we will refer to the hybridized SSH
edge states as SSH edge modes.

We experimentally investigate two distinct configurations: a
weakly-localized case with /»//; = 1.22 (Figs. 3c,d) and a strongly-
localized case with /,//; = 1.57 (Figs. 3e,f). These configurations present
CCAs with N = 16, 32, and 64 resonators. Measurements of CCA
transmission, S,;, reveal a significant reduction in the amplitude of the
SSH edge modes as the size of the CCA increases. This reduction can be
attributed to the decreasing overlap of the localized edge states in the
bulk region, resulting in reduced coupling and, therefore, reduced
transmission between the two microwave ports (see Supplementary
file). This trend is also visible in the behavior of the phase shift of the
SSH edge modes measured in reflection (Sy, $»,)°® (right panel of
Figs. 3d,f). As the modes’ hybridization reduces, the phase shift of the
SSH edge modes becomes more prominent, indicating a stronger
coupling to the microwave ports due to localization at the boundary.

As for the topologically trivial CCAs (Sec. Il B), next nearest
neighbor coupling have an influence on the SSH-CCAs spectra. We

expect that the two edge modes for /#0 do not exhibit anymore
perfect localization on a single sub-lattice of the unit cell (see Supple-
mentary file). Instead, some photonic population extends into the
neighboring sub-cell, thereby breaking chiral symmetry, even in the
absence of a 7, term in the Hamiltonian in Eq. (3). For/’ smaller than the
bandgap, the SSH edge modes retain partial protection™. AY |
exponentially decreases as a function of N, even in the presence of non-
zero/'.

However, as shown in the right panels of Fig. 3d,f, the measured
splitting between the SSH edge modes does not always decrease as a
function of N, contrarily to what is predicted by Eq. (4). In particular,
for the specific realization of the /,//; = 1.57 case (Fig. 3f), the splitting
Aropo, €VEN appears to increase with N. As discussed in the next sec-
tion, this effect is attributed to disorder.

Disorder

We have demonstrated the scalability and versatility of the archi-
tecture, exhibiting a high degree of control and suggesting minimal
resonant frequency scattering between the cavities. However, some
amount of disorder remains evident in the spectra of the CCAs. In the
bulk, disorder manifests in deviations from a smooth envelope profile
of the mode’s transmission and in displacement of mode frequencies
from their expected dispersion relation (Figs. 2 and 3). Quantifying
disorder from the bulk modes is challenging due to the system com-
plexity. On the other hand, SSH edge modes, despite being localized at
the edges of the CCA, are readily probed. Crucially, due to the bulk-
edge correspondence” they are also sensitive to chiral symmetry-
breaking disorder in the bulk of the CCA. Hence, they can serve
as a reliable indirect probe to quantitatively assess the extent of dis-
order in the bulk, solely by analyzing the behavior of the two SSH
edge modes.

To investigate the impact of disorder on the SSH edge modes, we
fabricate and characterize additional SSH devices (see Supplementary
file) with a coupling ratio of /5//; =1.22, as illustrated in Fig. 3d. In Fig. 4a,
we present a dataset comprising ATOPO values extracted from the
measured CCAs as a function of chain length N. Notably, while ATopo
exhibits the expected exponential decay with respect to V, it does not
asymptotically approach zero, demonstrating significant deviations
from the theoretical prediction (black line in Fig. 4a).

To rigorously account for this observation, we conduct numerical
simulations that introduce Gaussian noise, denoted as g;, applied to
the inductance values of all resonators within the chain (red line in
Fig. 4a). The choice to introduce scattering in L, as the main noise
source is motivated by the fact that the inductors have the most critical
dimension in the resonator design, rendering them more susceptible
to scattering during the fabrication process. The g; noise applied to the
inductors induces both 7, and 7, type of disorder in Eq. (3), impacting
respectively the resonant frequency and the coupling of the resonators
in the CCA. Our analysis primarily focuses on the principal effect of g;
scattering namely z,-type disorder (breaking chiral symmetry), which
we refer to as ;.. These simulations accurately describe the behavior
of Atopo Observed in Fig. 3d, f. In the inset of Fig. 4a, we present the
simulated Probability Density Function (PDF) for AGT”{)po as afunction of
0, (see Methods). For g; = O, ATOP0 ~ 0, with jjjl = 1.22. As the
disorder increases, the probability of observing ATopo values higher
than - O also increases, along with the standard deviation.

In the measurements shown in Fig. 4a, a notable deviation is
observed for AZTODO compared with the general trend. To gain further
insight into the source of this deviation, we perform time-resolved
measurements of the SSH edge modes amplitude, using the pulse
sequence illustrated in Fig. 4b. This sequence involves sending a
Gaussian pulse at a frequency between the two SSH edge modes,
leading to beating oscillations in time between the modes’ population
if the two modes are hybridized, with a frequency of the beating cor-
responding to the coupling rate A’¥Up0 /2 (see Supplementary file). The
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Fig. 4 | Using topology to study disorder. a Study of the frequency splitting,
A'yropo, between the hybridized SSH edge modes for CCAs with different N (/,/
J1=1.22). The cross and the circles show A’yl'opo extracted for CCAs with N=14, 16,
18, 22, 26, 30, 32 and 64, respectively from spectroscopy and time resolved mea-
surements. The continuous black line represents the expected evolution of
A'yropo vs N for the disorderless case according to the eigenmodes of the CCAs
Hamiltonian (see Methods). The continuous red line represents the median of the
most likely evolution (see panel d) of A'yro o Us Nin the presence of disorder with
standard deviation o¢ , =10.3 MHz applied to w, of the cavities in the CCAs. The
shaded region represents the 1o uncertainty on the estimation of A’ﬁ’ropo .The inset
shows the simulated logarithm of the Probability Density Function (PDF) of Aélz"opo
as a function of g;,. The red line shows the median for each disorder realization.

The red dotted lines show the 1o standard deviation. b Pulse sequence used for the

time-resolved measurement. A gaussian pulse is sent at a frequency between the
hybridized SSH edge modes from one of the edge of the CCA, while the signal is
acquired on both side of the CCA. The orange (red) dot on the y-frequency axis on
the left side, highlights the frequency of the antisymmetric (symmetric) hybridized
SSH edge modes. ¢ Time traces of the transmitted |S,;| and reflected |Sy| signals of
the CCAs with N =26 and 22 in panel (a). Each data points is averaged 20000 times.
The continuous lines highlight the fit done with an exponentially decaying cosine
(see Supplementary file). d Disorder likelihood extracted for different batches of
devices. The dots highlight the maximum likelihood extracted for each batch. The
error bars show the respective FWHM. The black line shows the combined like-
lihood extracted among the different batches. The shadowed purple area shows its
FWHM. The color code is according to Fig. 3d,f. Batch A (C), contains the CCAs with
N =16, 32 and 64 (14, 18, 22, 26, 30) of panel (a).

results of this measurement are presented in Fig. 4c for the cases
corresponding to the two circled data points in Fig. 4a: N = 22 (the
outlier point in Fig. 4a) and N = 26 (a representative of devices fol-
lowing the trend in Fig. 4a). For the N = 26 SSH-CCA, we distinctly
observe beatings between the two SSH edge modes at a frequency of
approximately 4.97 MHz, aligning with the value of AZTGOPO =4.96 MHz
extracted from spectroscopy measurements (Fig. 4a). In contrast, for
the N = 22 CCA, we observe a significantly reduced visibility of the
beating pattern, indicating weak coupling to the edge microwave ports
and, therefore, suggesting that the modes are localized not at the edge
but more in the bulk of the CCA. This could be due to two effects: a
strong disorder at the edge lifts the resonant frequency of a resonator
or a strong impurity in the bulk (strongly detuned resonator) effec-
tively divides the chain and quenches the transmission. We utilize
these time-resolved measurements to identify devices with strong
local disorder that no longer conform to our Gaussian disorder model
of the SSH.

To evaluate the overall disorder introduced during the fabrication
process, we conduct a comprehensive statistical analysis involving 26
CCAs in the SSH configuration. These 26 devices, manufactured during
different fabrication runs, have been designed in the two SSH config-
urations depicted in Fig. 3 (see Supplementary file). To quantify the
disorder, we extract A’\T’opo from spectroscopy measurements for all
the tested devices and generate their associated PDFs as functions of
o; and N for each sample batch S. For each batch, we compute the
likelihood of the inferred frequency fluctuation with respect to the
model as a function of g;, which we refer to as likelihood function,
defined as follows:

Lg(0;)= [ ] PDFs(N, AT, 20y), ©6)
i

where N;and A% o; epresent respectively the number of resonators in
the CCA and the SSH mode frequency splitting of the i CCA. We report
the extracted maximum likelihoods and their full width at half max-
imum (FWHM) in Fig. 4d. To obtain an estimate of the disorder across all

the tested batches, we computed the combined likelihood, represented

by the black line in the same figure (see Methods). Our analysis yield an
extracted relative disorder value of o€, /f,=0.22"9 %, equivalent to
an absolute disorder value of o _, =10.97*72 MHz for w,/2m - 5 GHz.
This represents a minimal frequency scattering, especially considering
the high compactness of the implemented CCAs, and it is comparable to
what is achieved with lattices of CPW resonators (but with 10?2 larger
footprint)® and state-of-the-art frequency scattering control of

advanced MKIDs detector arrays®®,

Discussion

We have presented a platform based on coupled cavity arrays
(CCAs) utilizing high kinetic inductance NbN thin films, which serve
as compact multipurpose high-impedance metamaterials in the
microwave domain. The compactness of each cavity allows for the
integration of 1D CCAs with up to 100 resonators within a few mil-
limeters of sample space. The remarkable versatility of our CCA
platform has been demonstrated through the creation of CCAs with
bandwidths ranging from a few 100 MHz up to 4.5 GHz and the
engineering of multiple bandgaps. Importantly, all fabricated devi-
ces exhibited mode dispersion in excellent agreement with
our exact models. Furthermore, using the SSH chain’s in-gap modes,
we extracted a small resonator frequency scattering
of o€, /f,=0.22*35%.

Our findings pave the way for advancing technological appli-
cations and fundamental investigations using multimode light-
matter systems. This platform will allow for a straightforward
extension to very large-scale 1D and 2D multimode systems with up
to 10* cavities on a single 5 x Smm? chip. The versatility of our
platform in controlling mode densities presents exciting prospects
for exploring devices where emitters are coupled to high-impedance
multimode environments’. This provides the means to study the
ultrastrong coupling limit in both the passband of the CCA® and
atom-photon bound states close to the band edges™**. This will
allow to investigate quantum-impurity models like spin-boson® or
Frenkel-Holstein® type Hamiltonians. Additionally, the compact
nature of the resonators facilitates coupling to superconducting
qubits at multiple points, potentially with non-trivial phase delays.
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This makes our architecture a natural platform for studying giant-
atom physics®® and giant-atom photon-bound states in structured
environments®’°5,

On the other hand, photon lattices also offer promising avenues
for future experiments aimed at investigating quantum phase
transitions*®’. By effectively reducing random disorder, cavity arrays
can be fabricated with controlled levels of disorder, potentially
enabling the study of many-body localization effects**. While our
current work remains non-interacting, the incorporation of interac-
tions is feasible through the inherent nonlinearity present in high
kinetic inductance materials, resulting in both x> and x*
nonlinearities’®, or by integrating qubits into each resonator®’. We
aim to leverage nonlinearities in CCAs to investigate driven-
dissipative phase transition®’*’2, Moreover, these lattices facilitate
the creation of unique devices capable of hosting photons in curved
spaces'®, gapped flat band’>”*, and enable alternative forms of qubit-
qubit interaction’*”>. The high-impedance, ultracompact nature of
our platform enables the realization of dense, multimode
environments”**, providing a pathway to study quantum many-body
phenomena with a high degree of control. Its scalability, without
sacrificing quality or increasing disorder, paves the way for future
explorations of light-matter interactions in unconventional regimes,
such as multimode ultra-strong coupling®*** and complex photonic
states for analog quantum simulation''$%*, Additionally, our topolo-
gical disorder-meter provides a versatile tool for characterizing dis-
order in a wide range of quantum or classical systems, and is, in
principle, applicable to any symmetry-protected topological phase,
such as Kitaev chains’®”’ or 2D graphene-like lattices’®. These
advancements position our platform as a flexible foundation for
advancing quantum technologies®* and specifically analog quantum
simulation'"5*,

Methods

Fabrication

The fabrication recipe is detailed in*. We fabricate planar coupled
cavity arrays (CCAs) based on lumped LC resonators by etching 13
nm-thick NbN film, with typical sheet kinetic inductance Ly 5 of
100 pH/[. The fabrication process commences with a 2-minute
immersion in a 40% HF bath to eliminate the native oxide layer and
potential surface impurities from a 100 mm silicon wafer, which is
of high resistivity (=10kQcm) and has a (100) orientation. Using a
Kenosistec RF sputtering system at room temperature, NbN films
are bias sputtered following the method described in refs. 35,79
with Ar/N, flows of 80/7 sccm respectively and a deposition
pressure of 5Subar. Optical lift-off technique is employed to
deposit Ti/Pt alignment markers, followed by a dehydration step at
150" C for 5 minutes. 80 nm-thick CSAR positive e-beam resist is
then spun on the wafer, which is subsequently baked at 150° C for
5 minutes. Employing electron beam lithography (Raith
EBPG5000+ at 100 keV), the resist is patterned to form the desired
devices. This is achieved by developing the resist in amyl acetate
for 1 minute, followed by rinsing in a 9:1 MiBK:IPA solution. In
order to transfer the pattern onto the NbN, a reactive ion etching
process is employed using a CF,/Ar mixture. The etching is carried
out with a power of 15 W, using a stepped approach consisting of
10 steps, each lasting for 1 min. These etching steps are alternated
with 1-minute purges using Ar gas. This stepped etching technique
has proven advantageous as it reduces the damage caused to the
CSAR resist due the etching process, thereby facilitating its sub-
sequent stripping without the need for plasma oxygen, which may
damage the underlying superconductor. The resist is then stripped
using Microposit remover 1165 heated to 70° C. Finally, the wafer is

Model

In this section, we derive the Hamiltonian of the CCAs using standard
circuit quantization*’. We consider a chain composed of N capacitively
coupled LC resonators as depicted in Fig. 1. Each i resonator pos-
sesses an inductance L;; connected to ground and capacitance Cig to
ground. Resonators i and j are mutually coupled via the coupling
capacitance C;; between the two resonators. The potential energy in
the inductors can be expressed as

SN

1 N
ALYE %

’
ng

where ¢,, denotes the flux at node n. The total kinetic energy stored in
the chain’s capacitors is given by

1| .2 . .2
Ec=5 1> Cognt D_Cij@i— 0|, ®)
n=1 ij

where ¢, represents the electric potential at node n. We neglect
mutual inductance-induced coupling due to the high impedance of the
resonators®. We can now write the Lagrangian, I, of the circuit as

L=E.—E %)
1 N 2 @Rl 1 22 52
=50 |Cagn— 2| + 55 Co (07 - &). (10)
n=1 ng ij
It can be written in a matrix form as
L=20"1Ch 507 1] a
2 2 !

with the vectors ¢:=(¢1,¢2, <, ¢y and @1 =(P,, P, ..., Pp). The
capacitance matrix is defined as

Cy;, ifi=j,
—C;j, ifi#jand|i —j|<3,
0, ifi#jand |i —j|>3,

[C];

;= 1)

where we only consider mutual capacitances where |i —j|<3. Cy; is the
total capacitance of the i cavity defined as

N
Csi=Cygt ) ..Cin 13)
The inverse inductance matrix is defined as
_ 1/L,, ifi=j,
LY, = & 14
-y {0, if i#f. 1

We now introduce the node charge variable canonically conjugated to
the node flux ¢,

oL

%’ as)

with Q"= (Qy, Qs ..., Qu)- ,
For the given system, the charge variables are Q=[C]¢. Making
use of the matrix formalism, the CCA Hamiltonian H then reads

coated with a 1.5 um AZ ECI 3007 positive photolithography resist H= EQT[Cfl]QJr 1¢T[L71]¢_ 16)
to protect the devices before being diced. 2 2
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The real space Hamiltonian can be found to be*?

H,/h=A/ICIL™), 17)
and have the following matrix form
W Ji2 Jis Jun
Jo1 @2 Jys
H, |1 )32 03
W . (18)

: Oy_1 Inon
Ini R N R R Y
For small C;;1/Cs; ratio, and without stray next nearest neighbor
capacitances, the coupling is

_ (l)i(l)j Ci,j
./i,j_

2 JCsiCs,

However, non-negligible additional contributions arise from both
parasitic capacitances C;.; and large C;;./Cs; ratio, modifying the
Hamiltonian (see Supplementary file). In that case, one cannot resort
to simple analytical formulas and a full numerical diagonalization is
required. Eigenvalues of Eq. (18) represent the frequencies of the
modes w; and eigenvectors represent the spatial localization of the
modes. We utilize this model to fit the CCA modes’ frequencies, as
detailed in the following section.

a9

Extraction of parameters

The estimation of the parameters is performed by extracting the
modes’ frequencies from the device’s spectrum and fitting them to the
eigenvalues of Eq. (18). The fitting process involves 5 to 8 fitting
parameters, depending on the specific design, i.e. if the CCA is
dimerized, trimerized, etc .... Initially, we make the assumption that
each fitted CCA is disorder-free and uniform. The influence of disorder
is studied in the following section. The fitting parameters include:

Cg, the capacitance to ground. For a single resonator (M =1) or a
dimer (M = 2), the capacitive environment is automatically iden-
tical for each resonator and we use a single value for Cg. However,
for M > 2, the capacitive environment of each cavity is > not iden-
tical (see Supplementary file) and C; becomes a list, C,, com-
prising the different C;g within a unit cell.

Lg, the inductance to ground. For M<2, since the capacitive
environment is similar for each cavity, having a constant induc-
tance ensures a constant frequency for each cavity in the unit cell
and we use a single value for L,. For M > 2, in order to keep the
resonant frequency constant, Lg is adjusted for eagp cavity
(s_e)e Supplementary file). In this case, it becomes a list L.

C. , the coupling capacitances, which form a list increasing with
the size of the unit cell, i.e. for M=2, C. = (C,, C;), G and C, being
the intra- and inter-cell capacitances.

C; i+2/C, theratio of sggnd neighbor coupling capacitances over
C, the mean value of C, .
C; i+3/C, the ratio of third neighbor coupling capacitances over C.

For the fits to converge, we must either fix L, or C; as they both
contribute comparably to the resonant frequency of the cavities and
the coupling between cavities. To this end, we choose to fix L,. We
determine the value of L; through finite-element microwave simula-
tions, where we estimate the sheet kinetic inductance of the film using
Sonnet simulation software. This process involves three steps:

1. We initially fit the modes of the measured spectrum with the
eigenvalues of Eq. (18), fixing L, with an initial guess. This provides a
precise estimation of the resonant frequency of the cavities but not of
the other parameters.

2. We then conduct a simulation for a single cavity in Sonnet, while
sweeping the kinetic inductance, L. The simulated cavity has a
capacitive environment equivalent to that of the cavities in the fitted
CCA, ensuring accurate estimation of the resonant frequency. Subse-
quently, we extract and fit the resonant frequency of the cavity as a
function of the kinetic inductance using the following function for the
frequency:

1

fr——
2 (Lk, O “;?:d +Lgeo)C2

where C; represents the total capacitance of the resonator and Lg, is
the geometric inductance. The extracted Lge, is usually 2 orders of
magnitude smaller than L,. The parameters /j,q and wj,q are fixed
design parameters, corresponding to the length and width of the
inductor, respectively. This procedure allows us to fit L, =L la To

(20)

Win
extract L it is necessary to properly estimate the dimension of the

inductor via an SEM of the device.

3. Using the obtained value of Ly , we calculate the inductance to
ground L using Eq. (1) and then refit the measured spectrum with the
correct L, as a fixed parameter. This enables us to determine the values
of C, C., C;;s,/C, and C;;,3/C. It is important to note that the
estimation of parameters using this method is affected by disorder in
the CCA, which introduces a small systematic error (see Supplemen-
tary file).

Disorder estimation

In this section, we outline the procedure for extracting the level of
disorder from the frequency splitting of the hybridized SSH edge
modes, AY, .

The study is performed on six different batches realized in dif-
ferent fabrication runs. Each batch comprises three to six devices with
different number of resonators. Two batches, A and C, are designed to
have a coupling ratio /,//; = 1.22, while the others batches are designed
to have J,/}; = 1.57. We observed changes in Ly~ due to potential
fluctuations in the film deposition process (thickness or composition),
resulting in up to 15% change of the CCA resonant frequency, w,/2rm.
This variation of kinetic inductance has been reduced to ~ 3% with
improved monitoring and deposition adjustments. Those change have
a minimal effect on J,//;.

We initially employ the fitting routine presented in the previous
Methods section to extract the mean capacitances and inductances
specific to each batch, assuming a disorder-free scenario.

Then we utilize these parameters in the Hamiltonian Eq. (18)
where we introduce Gaussian noise with a standard deviation o
applied to the inductances:

H,/h=1/[C"MIL™ (0,)].

Due to the high kinetic inductance of the films and the small size of the
inductors, the inductances are sensitive to fabrication imperfection.
Hence, the Gaussian noise, o;, is applied to the inductances of the
cavities. For each batch, number of resonators N and disorder value g;,
we generate 30,000 realizations of the Hamiltonian Eq. (21). We then
diagonalize each of the Hamiltonians and extract A’¥0p0. Using these
simulations, we construct for each batch a three-dimensional prob-
ability density function (PDF) that depends on the number of
resonators, the SSH-modes splitting and the level of disorder (Fig. Sla
of Supplementary file).

Several insights can be derived from these PDF. First, as expected,
the splitting between the SSH edge modes decreases with an

@n
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increasing number of resonators. Secondly, the PDF exhibit an asym-
metry which tends to increase the splitting as a function of disorder.
This asymmetry arises from the fact that disorder can only increase the
splitting between the SSH edge modes. However, it is noteworthy that
for short CCAs, such as the case with 16 resonators shown in Fig. Sla
of Supplementary file, the splitting can also decrease with increasing
disorder. This occurs when the SSH edge modes enter the bulk for
sufficiently large disorder values. Thirdly, when A"T’Opo approaches
zero, deviation from its expected value become significantly more
prominent.

We proceed to compute the likelihood for each batch S, using an
interpolated PDF, defined as follows:

Ls(0,)=]],PDFs(N;, ATh o :01) (22)

where N; and A’&poyi represent the number of resonators and the SSH
edge modes frequency splittings of data point (device) i, respectively.
PDFg is the Probability density function used for batch S. The likelihood
functions (Fig. S1b of Supplementary file) are then normalized by their
area from which we extract the full width at half maximum of the
different likelihoods.

To obtain an overall assessment of disorder across all devices of
different batches, we employ the method of combined likelihood,
defined as follows:

L0 =1]Ls0), (23)
where S represents the label of the batch. This function characterizes
the typical disorder among all fabricated devices in the topological
configuration and is illustrated in Fig. Slc of Supplementary file. It is
important to note that this method also presents some limitations, as it
is sensitive to the accuracy of the estimation of the CCA parameters.
Errors in the estimation of the coupling capacitances, for example, can
lead to significant changes in the decay of the SSH edge modes. One
way to mitigate this sensitivity is to operate in a regime where the
hybridization between the modes is weak, reducing the impact of
parameter misestimation.

Data availability
The datasets generated during the current study are available in
Zenodo with the identifier https://doi.org/10.5281/zenodo.14640126.

Code availability

The codes used to produce the plots and perform the disorder analysis
are available in Zenodo with the identifier https://doi.org/10.5281/
zenodo.14640126.
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