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High kinetic inductance cavity arrays for
compact band engineering and topology-
based disorder meters

Vincent Jouanny 1,2 , Simone Frasca 1,2, Vera Jo Weibel 1,2,
léo Peyruchat 1,2, Marco Scigliuzzo 2,3, Fabian Oppliger1,2, Franco De Palma1,2,
Davide Sbroggiò1,2, Guillaume Beaulieu 1,2, Oded Zilberberg 4 &
Pasquale Scarlino 1,2

Superconducting microwave metamaterials offer enormous potential for
quantum optics and information science, enabling the development of
advanced quantum technologies for sensing and amplification. In the context
of circuit quantum electrodynamics, such metamaterials can be implemented
as coupled cavity arrays (CCAs). In the continuous effort to miniaturize
quantum devices for increasing scalability, minimizing the footprint of CCAs
while preserving low disorder becomes paramount. In this work, we present a
compact CCA architecture using superconducting NbN thin films manifesting
high kinetic inductance. The latter enables high-impedance CCA (~1.5 kΩ),
while reducing the resonator footprint. We demonstrate its versatility and
scalability by engineering one-dimensional CCAs with up to 100 resonators
and with structures that exhibit multiple bandgaps. Additionally, we quanti-
tatively investigate disorder in the CCAs using symmetry-protected topologi-
cal SSH edge modes, from which we extract a resonator frequency scattering
of 0:22+0:04

�0:03 %. Our platform opens up exciting prospects for analog quantum
simulations of many-body physics with ultrastrongly coupled emitters.

Metamaterials made of superconducting circuits1 have emerged as
highly versatile platforms at the forefront of quantum technologies,
offering a broad range of applications encompassing sensing2,
amplification3, and quantum information processing4,5. Moreover,
when quantum emitters are strongly or ultrastrongly coupled to
microwave superconducting metamaterials that feature high quality
and mode density6–8, or to structured photonic baths9–11, it provides a
valuable framework for exploring many-body phenomena through
analog quantum simulation12–14. In particular, coupled cavity arrays
(CCAs) have emerged as a flexible architecture for realizing artificial
photonic materials in the tight-binding limit15,16, enabling the creation
of band structures with varying complexity17,18. These structures are

even capable of realizing non-Euclidean geometries19, non-trivial
tolopogical lattices20–22, and flat bands23, offering insights into com-
plex many-body physics24 and enabling various quantum information
processing tasks4,5,25.

Conventional on-chip superconducting CCAs are realized with
distributed coplanar waveguide (CPW)26 or lumped element LC27

resonators, typically made of aluminum (Al) or niobium (Nb) super-
conducting thin films. This architecture allows for arbitrary band
engineering by tailoring the frequency and coupling of the
cavities1,19,28. Despite this flexibility, the large physical footprint of a
single resonator at frequencies ~5 GHz covers several millimeters’
square26,29, and can restrict the scalability of the array. Recent research
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has explored alternative approaches, such as the replacement of the
geometric inductance with the Josephson inductance of compact
junction arrays25,30,31. However, achieving control of the Josephson
junction inductance with an imprecision below a few percent31[,32

remains challenging, leading to significant variability in cavity para-
meters and impacting the spectral properties of the CCAs. Addition-
ally, this approach introduces significant nonlinearity, affecting the
higher excitation manifold of the CCA. Despite the variety of approa-
ches, the challenge of realizing a CCA made of unit cells that combine
simultaneously high-quality, ultra compactness, and weak non-
linearities, while maintaining a low overhead in fabrication, still
remains elusive. To fully harness the potential of CCAs while drama-
tically reducing their size, it is crucial to maintain low scattering of the
cavity frequencies and inter-site coupling, as well as to develop
methods to efficiently quantify the impact of disorder.

In this work, we report on a compact and versatile lumped-
element CCA architecture characterized by low disorder, with only
0:22+0:04

�0:03% deviation in resonator frequency. The resonators aremade
of high kinetic inductance NbN thin film resulting in compact
inductors33–35.We show the versatility and scalability of the platformby
engineering one-dimensional CCAs with up to 100 resonators with
multiple band-structures. To efficiently quantify the amount of dis-
order in the system, we develop a topology-inspired metric for asses-
sing the resonators’ frequency scattering by systematically exploring
the in-gap mode distribution of CCAs that realize the Su-Schrieffer-
Heeger (SSH) chain36. Due to the bulk-edge correspondence37 in-gap
modes are also sensitive to chiral symmetry-breaking disorder in the
bulk of the CCA. Thus, by focusing solely on the edge modes we can
infer the overall disorder present in the entire system. Notably, the
high kinetic inductance of our devices enables the realization of high-
impedance resonators in the array. This characteristic increases the
coupling to charge degree of freedom of both superconducting38 and
semiconducting39 qubits, enhancing the possibility to achieve the
ultra-strong coupling regime40.

This ultracompact, high-impedance platform significantly enhances
the density of modes within a given footprint, without compromising
the quality or increasing the disorder. This enables the exploration of
complex and high density of photonic states necessary for emulating
the effect of highly structured non-Markovian environment of open

quantum system17,18. This development lays the groundwork for inte-
grating quantum emitters into our bath-engineered CCA environment.

Results
Platform
We design, simulate, fabricate, and investigate 1-dimensional (1D)
CCAs comprising rectangular-shaped (Fig. 1a, b) and hexagonal-
shaped base units (Fig. 1c, d). Each CCA is fabricated from a high
kinetic inductance NbN thin film (seeMethods) and can bemodeled as
an array of N superconducting lumped-element LC resonators, as
schematically represented in Fig. 1e. Each resonator is defined by a
capacitor with total capacitance CΣ,i ≈ Cig + Ci−1,i + Ci,i+1, where Cig

represents the capacitance to groundof the ith cavity,whichalso shares
mutual capacitances, Ci−1,i and Ci,i+1 with its neighboring resonators.
These latter two capacitances can be adjusted by varying the spacing
between the resonators di−1,i and di,i+1, or by adjusting the inter-
digitated capacitor, see Fig. 1b, d. The resonance frequency of the ith

resonator, denoted asωi/2π, is determined by 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LigCΣ, i

q
. Both Cig and

Ci±1,i can be tailored independently, while keeping CΣ,i and, conse-
quently, the resonance frequency ωi/2π, constant. The inductance to
ground, Lig, of the nanowire inductor with width wind and length lind
(Fig. 1b, d) can be expressed as33,34

Lig = Lk + Lgeo = Lk,&
lind
wind

+ Lgeo, ð1Þ

with Lk (Lk,□) representing the (sheet) kinetic inductance, and Lgeo
accounting for the geometric inductance. In our case, the ratio
Lk/Lgeo ~ 250 indicates that the inductance of the CCA is completely
dominated by its kinetic contribution. Leveraging this property, we are
able to engineer resonators with a significantly reduced footprint
typically down to 50 × 75 μm235. This size is remarkably smaller if
compared to conventional lumped-element resonators (~100 ×
smaller)20,41 and CPW distributed resonators (~1500 × smaller)19,26.
Due to the large kinetic inductance, the resonators in the array present
an impedance Zi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lig=CΣ, i

q
of approximately 1.5 kΩ (0.8 kΩ) for the

rectangular (hexagonal) geometry. This high impedance enhances the
capacitive couplings between resonators (Ji, i+ 1 /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZiZ i+ 1

p
) and to

quantum emitters (gi /
ffiffiffiffiffi
Zi

p
).
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Fig. 1 | High-impedance CCA. a Optical micrograph of a representative linear-
design CCA comprising 25 resonators with rectangular base unit. The dark part is
siliconwhile the light part is NbN.b False-colored scanning electronmicrographs of
the zoomed-in regions of the CCA [marked by black frames in (a)]. The microwave
port is colored in blue and the cavities in green. Notice that the coupling port (blue)
does not have an inductor shunted to ground. Inset: Further zoom-in on a portion
of the inductor [marked by a red frame in (b)]. c Optical micrograph of a repre-
sentative zigzag-design CCA comprising 26 resonators with hexagonal base unit.
d False-colored scanning electron micrograph of the zoomed-in region of the CCA
[marked in (c)]. Themicrowave port is colored in blue and the cavities in green. The

insets [yellow (red) frame] show a zoom-in on the mutual capacitor between two
cavities (the inductor of a cavity). e Schematic of the lumped-elementmodel of the
CCAs. Eachcavity ismodeled as anLC resonatorwith an inductor Lig and a capacitor
Cig to ground; the i and j cavities are coupled via amutual capacitor Ci,j. The cavities
at the edges of the CCA are coupled to themicrowave ports via the capacitors Cp in
blue. f Schematic of the corresponding chain Hamiltonian including first (second)
neighbor interaction Ji,i+1 (Ji,i+2) between cavities i and i + 1 (i + 2), cf. Eq. (2). The

input and outputmicrowave ports are represented in blue, and âinðoutÞ indicates the

input (output) field operator.
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The Hamiltonian of the system is derived following standard
Lagrangian circuit quantization42 (see Methods), and takes the form

Ĥ =
XN
i= 1

ωiâ
y
i âi +

XQ
q= 1

XN�q

i = 1

Ji, i +q ây
i âi +q +h:c:

� �
, ð2Þ

up to the Qth order in coupling in ℏ = 1 units. Here, âi and ây
i are the

photonic annihilation and creation operators at site i. The nearest-
neighbor coupling terms, Ji,i+1, originate mainly from direct
capacitive coupling. In our model, we neglect inductive coupling
due to the resonators’ high impedance, as it scales as 1=

ffiffiffiffiffi
Zi

p
.

Coupling terms of order q > 1 have a double origin: stray capacitive
coupling between next nearest-neighbor resonators and from the
inversion of the capacitance matrix in the circuit’s Lagrangian, the
latter increases with the ratio Ci,i+1/CΣ,i (see Methods and

Supplementary file). In the following, we focus on CCAs realized
with resonators with degenerate frequencies, ωr/2π. To ensure this
degeneracy, we introduce driving ports shaped and positioned
exactly as a cavity of the array but whose inductor is not shunted to
ground. Such ghost ports ensure a uniform capacitive environment
for both edge and bulk resonators (see blue false-colored part
in Fig. 1b).

Band engineering
We begin by characterizing the extensibility of the introduced
compact CCA platform by measuring chains with homogeneous
coupling, i.e., Ji,i+1 = J1 and Ji, i + 2 = J

0, cf. Fig. 1d. To this end, we set
Cig = Cg, Lig = Lg and Ci,i+1 = C1. Note that we haveM = 1 resonators per
unit cell [cf. Fig. 2a], and for J1≫J0, we expect a finite-size sampling of
a cosine dispersion, i.e., the emergence of a passband centered
around ωr/2π with a span of 4J125. In Fig. 2b, we report on the
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Fig. 2 | Band engineering. a General CCA schematic displaying the cavities in
green, with a unit cell includingM cavities. b Transmission spectrum ∣S21∣ for CCAs
with N = 25, 50 and 100 cavities with rectangular design with M = 1. The shaded
region around 8.05GHz highlights the presence of microwave chip slot modes.
c Top: Same as (b) for M = 1 CCAs with J1/2π = 58MHz (rectangular design), J1/
2π = 164MHz (rectangular design), and J1/2π = 1200MHz (hexagonal design).
Additional slotmodes are visible around 11.1 GHz. Inset: a zoom-in on the two lower
coupling CCAs in the main panel. Bottom: Frequency difference, Δf = fi − fi+1,
between two consecutive modes for the corresponding CCAs. The crosses repre-
sent the Δf extracted for the CCAs, each plotted in relative to the averaged modes'

frequencies (fi + fi+1)/2. The continuous black lines indicate fits of the extracted Δf
according to the eigenmodes of the CCAs Hamiltonian (see Methods). Inset table
collects the coupling J1/2π, the stray capacitance ratio C0=CΣ, where C0 =Ci, i+ 2, and
next nearest-neighbor couplings ratio J0=J1 for the three CCAs. d Top: Same as c for
dimerized CCAs (rectangular design, M = 2) with ΔJ/2π = ∣J2 − J1∣/2π ~ 50 MHz (100
MHz) on the left (right). Bottom: Extracted modes (crosses) and their fits to the
eigenmodes of the CCAs Hamiltonian (continuous line) (see Methods). e Same as
c for (top to bottom) unit cells withM = 3, 4, and 5. All the transmission spectra are
normalized by their maximum amplitude.

Article https://doi.org/10.1038/s41467-025-58595-8

Nature Communications |         (2025) 16:3396 3

www.nature.com/naturecommunications


transmission spectra of several such homogeneous CCAs with N up
to 100 sites. The transmission, ∣S21∣, is measured in a cryogenic setup
at 10mK with a vector network analyzer (see Supplementary file).
Each CCA transmission is normalized with respect to its maximum
transmission amplitude. We observe N distinct peaks, corresponding
to the eigenmodes of the CCA. The modes at the center of the band
have respectively larger coupling to the ports [higher peaks], κext,
and sparser frequency spacing, Δf, relative to the smaller coupling
[lower peaks] and higher mode density at the band edges25 (Fig. 2b
and Supplementary file). In all examined CCAs, we resolve the
majority of the modes; for example, we detect as many as ~90 dis-
tinct modes in the case of N = 100 CCA. The missing modes can be
attributed to two dominant factors: (i) the modes at the edges of the
pass-band have lower visibility, and (ii) to avoid erroneous counting,
we exclude the frequency region around 8.1 GHz (Fig. 2b), where chip
slot modes are present. On average, we extract individual mode
single-photon internal dissipation rates κMode

int =2π of 100 kHz for ωr/
2π = 5GHz (internal quality factor QMode

int � 50× 103), indicating low-
loss CCAs (see Supplementary file). Remarkably, fabricating CCAs
with a high number of cavities does not degrade the low-power
quality factor of the device35.

We proceed to demonstrate high control over the inter-site cou-
pling, see Fig. 2c. By redistributing the components contributing to the
total capacitance, CΣ, of each resonator, specifically adjusting the
capacitance to ground, Cg, and mutual capacitance, C1, we can mod-
ulate the inter-site coupling rate. This allows us to engineermultimode
environments with bandwidths ranging from approximately 230MHz
up to 4.8 GHz, resulting in a free spectral range spanning from hun-
dreds of MHz down to 1 MHz. Considering the low-dissipation rates
and the possibility to engineer narrow free spectral range, this archi-
tecture opens exciting prospects for exploring superstrong light-
matter coupling7 and many-body Hamiltonians in the strongly non-
linear regime43,44. Notably, we demonstrate control over high-quality
CCAs comprising up to 100 resonators with a density of 5 resonators
per 100 μm, highlighting our capability to finely engineer the envir-
onment bandwidth.

To demonstrate a multiband spectrum, we consider configura-
tions withM up to 5 cavities per unit cell (Fig. 2d,e). We denote with Ji,

where i = 1…M − 1, the coupling between cavities within a unit cell
(intracell coupling) and with JM+1 the coupling between unit cells
(intercell coupling). As we increase the number of elements in the unit
cell, additional bands appear in the array spectrum45. As such, band-
gaps are expected to emerge in the midst of the CCA’s spectrum, with
up toM passbands. In the dimer case (M = 2), each resonator presents
the same two coupling capacitances, in an alternating fashion, which
automatically satisfies the resonant condition. However, forM > 2, the
cavities do not necessarily have the same total capacitance and hence
maintaining a constant resonant frequency for all cavities requires fine
tuning of the inductors to compensate for this effect (see Supple-
mentary file).

In all measurements in Fig. 2, the influence of higher-order cou-
pling terms, J0, are present and manifest in two primary aspects: first,
the mode distribution in the passband is asymmetric with respect to
ωr, resulting in higher mode density at lower frequencies (see Supple-
mentary file). Second, the mode coupling to the ports, κext, for the low
frequency eigenmodes is lower than for their higher frequency coun-
terpart (see Supplementary file). By fitting the CCA spectra (see
Methods), we estimate J0 � 10%J for the rectangular designs (domi-
nated by direct stray capacitive coupling), while for the hexagonal one,
J0 � 20%J (due to high Ci,i+1/CΣ,i ratio), where J is the mean of the
nearest neighbor couplings in the CCA (see Table in Fig. 2c). Further-
more, the asymmetryobserved in the size of the bandgaps (Fig. 2e) can
be attributed to systematic design imperfection (see Supplemen-
tary file).

Engineering localized modes
Using our architecture, we demonstrated excellent control over the bulk
spectrum of the CCA. Relying on topology, the creation of low-
dimensional bound modes can prove useful for coupling to quantum
emitters46–49. Remaining in a 1D chain geometry, we turn to engineer
CCAs in the topologically non-trivial SSH configuration (Fig. 3)36,37. The
SSH chain can be in a chiral-symmetry-protected topological phase,
where its bands exhibit a quantized bulk polarization, with associated
mid-gap 0D edge states. The model has been extensively studied in
photonic CCAs50, cold-atoms51,52, polaritonics53, and optomechanical
arrays54, andused to engineer directional topological waveguideQED20,55.
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Fig. 3 | Engineering SSHedgemodes. a Schematic of the SSHmodel. Each unit cell
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model from trivial (J1 > J2) to topological (J1 < J2) phase, with J0 =0. The black lines
represent the bulk modes for a CCA with N = 32. For J1 ≠ J2, the system presents a
bandgap of size Δ32

Bulk . In the non-trivial phase, two hybridized SSH edge modes
(red and orange) are enabled at the center of the bandgap and are separated by
Δ32
Topo . The gray area represents the phase transition diagram N → ∞. c (e) Simu-

lated photonic population of the CCA with N = 64 in correspondence of the

symmetric (red) and antisymmetric (orange) hybridized SSH edge modes in the
weakly localized configuration, J2/J1 = 1.22 (strongly localized configuration, J2/
J1 = 1.57) according to the eigenvectorsof theCCAsHamiltonian (seeMethods).d (f)
Left: Transmission spectrum ∣S21∣, for CCAswith J2/J1 = 1.22 (J2/J1 = 1.57) andN = 16, 32
and 64. Right: Reflection spectra Arg S11,22, as a function of the frequency detuning
f � f Topo, for a frequency region of 100 MHz around the SSH edge modes. f Topo is
the mean frequency of the two SSH edge modes. The modes in red and orange
represent the symmetric and antisymmetric hybridized SSH edge modes,
respectively.
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Our microwave photonic analogue of the SSHmodel comprises a
dimerized (M = 2) chain, with the unit-cell made of A and B sites
(Fig. 3a). The intra- (J1) and inter-cell (J2) hopping are alternating,
leading to a two bulk-band spectrum. However, a gap closing occurs
when J1 = J2 (Fig. 3b). The gap closing marks a topological phase tran-
sition between the topologically-trivial (J2 < J1, cf. Fig. 2d) and the
topologically nontrivial cases (J1 < J2, cf. Fig. 3). A quantized jump in the
bulk polarization of the chain distinguishes between the two cases,
where in the latter it implies the appearance of two degenerate mid-
gap edge states.

The bulk Hamiltonian of our SSH CCA, in quasimomentum space
reads56:

ĤðkÞ= ω0 + 2J
0 cos kdð Þ� �

τ0
+ J1 + J2 cos kdð Þ� �

τx + J2 sin kdð Þ τy + ξ τz
ð3Þ

where k is the reciprocal wavevector, d is the lattice constant (distance
between theunit cells), and τ0, τx, τy and τz represent the Paulimatrices.
While periodic boundary conditions were applied to derive the
Hamiltonian in Eq. (3), to observe SSH edge states, the CCAmust have
open boundary conditions. Furthermore, the mid-gap edge states are
well defined only if chiral symmetry is realized, i.e., when Γ̂ĤΓ̂

y
= � Ĥ

holds,where Γ̂ is the chiral symmetry operator. Specifically, for theSSH
model, Γ̂ is defined using the sublattice projectors associated to the A
andB sites, P̂A and P̂B, as Γ̂= P̂A � P̂B

37,57. Hence, the appearanceof next
nearest-neighbor hopping J0, and disorder terms ξ due to fabrication
imperfections lead to deviation from the standard SSH model56 (see
Supplementary file). The latter breaks the chiral symmetry and will
move the topological edge states away from the middle of the gap.
Disorder in first neighbor hopping, Ji, does not break the chiral
symmetry and will bear a lesser impact on the edge states37 (see
Supplementary file).

In a finite-size CCA (Fig. 3a), the tails of the mid-gap edge states
overlap in the bulk, resulting into a finite hybridization that gives rise
to a frequency splitting according to

ΔN
Topo =2 / e�ðN�1Þ=ζ , ð4Þ

where ζ is the edge states’ spatial localization

ζ =
1

log J2=J1
: ð5Þ

Thedegreeof hybridization between the SSHedge states depends
on the chain’s size,N, and the coupling ratio, J2/J1. Correspondingly, the
hybridized SSH edge states form symmetric and antisymmetric
superpositions between the left and right edge states, see Fig. 3c,e. In
the remainder of the manuscript, we will refer to the hybridized SSH
edge states as SSH edge modes.

We experimentally investigate two distinct configurations: a
weakly-localized case with J2/J1 = 1.22 (Figs. 3c,d) and a strongly-
localized case with J2/J1 = 1.57 (Figs. 3e,f). These configurations present
CCAs with N = 16, 32, and 64 resonators. Measurements of CCA
transmission, S21, reveal a significant reduction in the amplitude of the
SSHedgemodes as the size of theCCA increases. This reduction canbe
attributed to the decreasing overlap of the localized edge states in the
bulk region, resulting in reduced coupling and, therefore, reduced
transmission between the two microwave ports (see Supplementary
file). This trend is also visible in the behavior of the phase shift of the
SSH edge modes measured in reflection (S11, S22)58 (right panel of
Figs. 3d,f). As the modes’ hybridization reduces, the phase shift of the
SSH edge modes becomes more prominent, indicating a stronger
coupling to the microwave ports due to localization at the boundary.

As for the topologically trivial CCAs (Sec. II B), next nearest
neighbor coupling have an influence on the SSH-CCAs spectra. We

expect that the two edge modes for J0≠0 do not exhibit anymore
perfect localization on a single sub-lattice of the unit cell (see Supple-
mentary file). Instead, some photonic population extends into the
neighboring sub-cell, thereby breaking chiral symmetry, even in the
absenceof a τz term in theHamiltonian in Eq. (3). For J0 smaller than the
bandgap, the SSH edge modes retain partial protection59,60. ΔN

Topo

exponentiallydecreases as a functionofN, even in thepresenceofnon-
zero J0.

However, as shown in the right panels of Fig. 3d,f, the measured
splitting between the SSH edge modes does not always decrease as a
function of N, contrarily to what is predicted by Eq. (4). In particular,
for the specific realization of the J2/J1 = 1.57 case (Fig. 3f), the splitting
ΔTopo, even appears to increase with N. As discussed in the next sec-
tion, this effect is attributed to disorder.

Disorder
We have demonstrated the scalability and versatility of the archi-
tecture, exhibiting a high degree of control and suggesting minimal
resonant frequency scattering between the cavities. However, some
amount of disorder remains evident in the spectra of the CCAs. In the
bulk, disorder manifests in deviations from a smooth envelope profile
of the mode’s transmission and in displacement of mode frequencies
from their expected dispersion relation (Figs. 2 and 3). Quantifying
disorder from the bulk modes is challenging due to the system com-
plexity. On the other hand, SSH edgemodes, despite being localized at
the edges of the CCA, are readily probed. Crucially, due to the bulk-
edge correspondence37 they are also sensitive to chiral symmetry-
breaking disorder in the bulk of the CCA. Hence, they can serve
as a reliable indirect probe to quantitatively assess the extent of dis-
order in the bulk, solely by analyzing the behavior of the two SSH
edge modes.

To investigate the impact of disorder on the SSH edgemodes, we
fabricate and characterize additional SSH devices (see Supplementary
file)with a coupling ratioof J2/J1 = 1.22, as illustrated in Fig. 3d. InFig. 4a,
we present a dataset comprising ΔN

Topo values extracted from the
measured CCAs as a function of chain length N. Notably, while ΔN

Topo

exhibits the expected exponential decay with respect to N, it does not
asymptotically approach zero, demonstrating significant deviations
from the theoretical prediction (black line in Fig. 4a).

To rigorously account for this observation, we conduct numerical
simulations that introduce Gaussian noise, denoted as σL, applied to
the inductance values of all resonators within the chain (red line in
Fig. 4a). The choice to introduce scattering in Lg as the main noise
source ismotivatedby the fact that the inductors have themost critical
dimension in the resonator design, rendering them more susceptible
to scatteringduring the fabricationprocess.The σLnoise applied to the
inductors induces both τz and τx type of disorder in Eq. (3), impacting
respectively the resonant frequencyand the couplingof the resonators
in the CCA. Our analysis primarily focuses on the principal effect of σL
scattering namely τz-type disorder (breaking chiral symmetry), which
we refer to as σL→z. These simulations accurately describe the behavior
of ΔTopo observed in Fig. 3d, f. In the inset of Fig. 4a, we present the
simulated Probability Density Function (PDF) forΔ64

Topo as a functionof
σL→z (see Methods). For σL = 0, Δ64

Topo � 0, with J2/J1 = 1.22. As the
disorder increases, the probability of observing Δ64

Topo values higher
than ~ 0 also increases, along with the standard deviation.

In the measurements shown in Fig. 4a, a notable deviation is
observed for Δ22

Topo compared with the general trend. To gain further
insight into the source of this deviation, we perform time-resolved
measurements of the SSH edge modes amplitude, using the pulse
sequence illustrated in Fig. 4b. This sequence involves sending a
Gaussian pulse at a frequency between the two SSH edge modes,
leading to beating oscillations in time between the modes’ population
if the two modes are hybridized, with a frequency of the beating cor-
responding to the coupling rateΔN

Topo =2 (see Supplementary file). The
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results of this measurement are presented in Fig. 4c for the cases
corresponding to the two circled data points in Fig. 4a: N = 22 (the
outlier point in Fig. 4a) and N = 26 (a representative of devices fol-
lowing the trend in Fig. 4a). For the N = 26 SSH-CCA, we distinctly
observe beatings between the two SSH edge modes at a frequency of
approximately 4.97 MHz, aligning with the value of Δ26

Topo = 4:96MHz
extracted from spectroscopy measurements (Fig. 4a). In contrast, for
the N = 22 CCA, we observe a significantly reduced visibility of the
beating pattern, indicatingweak coupling to the edgemicrowaveports
and, therefore, suggesting that themodes are localized not at the edge
but more in the bulk of the CCA. This could be due to two effects: a
strong disorder at the edge lifts the resonant frequency of a resonator
or a strong impurity in the bulk (strongly detuned resonator) effec-
tively divides the chain and quenches the transmission. We utilize
these time-resolved measurements to identify devices with strong
local disorder that no longer conform to our Gaussian disorder model
of the SSH.

To evaluate the overall disorder introduced during the fabrication
process, we conduct a comprehensive statistical analysis involving 26
CCAs in the SSH configuration. These 26devices,manufacturedduring
different fabrication runs, have been designed in the two SSH config-
urations depicted in Fig. 3 (see Supplementary file). To quantify the
disorder, we extract ΔN

Topo from spectroscopy measurements for all
the tested devices and generate their associated PDFs as functions of
σL and N for each sample batch S. For each batch, we compute the
likelihood of the inferred frequency fluctuation with respect to the
model as a function of σL, which we refer to as likelihood function,
defined as follows:

LSðσLÞ=
Y
i

PDFSðNi,Δ
Ni
Topo , i; σLÞ, ð6Þ

whereNi and ΔNi
Topo , i represent respectively the number of resonators in

the CCA and the SSHmode frequency splitting of the ith CCA.We report
the extracted maximum likelihoods and their full width at half max-
imum (FWHM) in Fig. 4d. To obtain an estimate of the disorder across all
the tested batches, we computed the combined likelihood, represented

by the black line in the same figure (see Methods). Our analysis yield an
extracted relative disorder value of σC

L!z=f r =0:22
+0:04
�0:03 %, equivalent to

an absolute disorder value of σC
L!z = 10:97

+2:28
�1:59 MHz for ωr/2π ~ 5GHz.

This represents a minimal frequency scattering, especially considering
the high compactness of the implementedCCAs, and it is comparable to
what is achieved with lattices of CPW resonators (but with 102−3 larger
footprint)16 and state-of-the-art frequency scattering control of
advanced MKIDs detector arrays61,62.

Discussion
We have presented a platform based on coupled cavity arrays
(CCAs) utilizing high kinetic inductance NbN thin films, which serve
as compact multipurpose high-impedance metamaterials in the
microwave domain. The compactness of each cavity allows for the
integration of 1D CCAs with up to 100 resonators within a few mil-
limeters of sample space. The remarkable versatility of our CCA
platform has been demonstrated through the creation of CCAs with
bandwidths ranging from a few 100 MHz up to 4.5 GHz and the
engineering of multiple bandgaps. Importantly, all fabricated devi-
ces exhibited mode dispersion in excellent agreement with
our exact models. Furthermore, using the SSH chain’s in-gap modes,
we extracted a small resonator frequency scattering
of σC

L!z=f r =0:22
+0:04
�0:03 %.

Our findings pave the way for advancing technological appli-
cations and fundamental investigations using multimode light-
matter systems. This platform will allow for a straightforward
extension to very large-scale 1D and 2D multimode systems with up
to 104 cavities on a single 5 × 5mm2 chip. The versatility of our
platform in controlling mode densities presents exciting prospects
for exploring devices where emitters are coupled to high-impedance
multimode environments7. This provides the means to study the
ultrastrong coupling limit in both the passband of the CCA63 and
atom-photon bound states close to the band edges25,64. This will
allow to investigate quantum-impurity models like spin-boson65 or
Frenkel-Holstein17,18 type Hamiltonians. Additionally, the compact
nature of the resonators facilitates coupling to superconducting
qubits at multiple points, potentially with non-trivial phase delays.

Fig. 4 | Using topology to study disorder. a Study of the frequency splitting,
ΔN
Topo , between the hybridized SSH edge modes for CCAs with different N (J2/

J1 = 1.22). The cross and the circles show ΔN
Topo extracted for CCAs with N = 14, 16,

18, 22, 26, 30, 32 and 64, respectively from spectroscopy and time resolved mea-
surements. The continuous black line represents the expected evolution of
ΔN
Topo vs N for the disorderless case according to the eigenmodes of the CCAs

Hamiltonian (see Methods). The continuous red line represents the median of the
most likely evolution (see panel d) of ΔN

Topo vs N in the presence of disorder with
standard deviation σC

L!z = 10:3MHz applied to ωr of the cavities in the CCAs. The
shaded region represents the 1σ uncertainty on the estimation ofΔN

Topo . The inset
shows the simulated logarithmof the Probability Density Function (PDF) ofΔ64

Topo
as a function of σL→z. The red line shows the median for each disorder realization.
The red dotted lines show the 1σ standard deviation. b Pulse sequence used for the

time-resolved measurement. A gaussian pulse is sent at a frequency between the
hybridized SSH edge modes from one of the edge of the CCA, while the signal is
acquired on both side of the CCA. The orange (red) dot on the y-frequency axis on
the left side, highlights the frequency of the antisymmetric (symmetric) hybridized
SSH edge modes. c Time traces of the transmitted ∣S21∣ and reflected ∣S11∣ signals of
the CCAswithN = 26 and 22 in panel (a). Each data points is averaged 20000 times.
The continuous lines highlight the fit done with an exponentially decaying cosine
(see Supplementary file). d Disorder likelihood extracted for different batches of
devices. The dots highlight the maximum likelihood extracted for each batch. The
error bars show the respective FWHM. The black line shows the combined like-
lihood extracted among the different batches. The shadowed purple area shows its
FWHM. The color code is according to Fig. 3d,f. BatchA (C), contains the CCAswith
N = 16, 32 and 64 (14, 18, 22, 26, 30) of panel (a).
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This makes our architecture a natural platform for studying giant-
atom physics66 and giant-atom photon-bound states in structured
environments67,68.

On the other hand, photon lattices also offer promising avenues
for future experiments aimed at investigating quantum phase
transitions1,69. By effectively reducing random disorder, cavity arrays
can be fabricated with controlled levels of disorder, potentially
enabling the study of many-body localization effects44. While our
current work remains non-interacting, the incorporation of interac-
tions is feasible through the inherent nonlinearity present in high
kinetic inductance materials, resulting in both χ2 and χ3

nonlinearities70, or by integrating qubits into each resonator69. We
aim to leverage nonlinearities in CCAs to investigate driven-
dissipative phase transition69,71,72. Moreover, these lattices facilitate
the creation of unique devices capable of hosting photons in curved
spaces19, gapped flat band73,74, and enable alternative forms of qubit-
qubit interaction20,75. The high-impedance, ultracompact nature of
our platform enables the realization of dense, multimode
environments7,8,41, providing a pathway to study quantummany-body
phenomena with a high degree of control. Its scalability, without
sacrificing quality or increasing disorder, paves the way for future
explorations of light-matter interactions in unconventional regimes,
such as multimode ultra-strong coupling9,43,44 and complex photonic
states for analog quantum simulation17,18,24. Additionally, our topolo-
gical disorder-meter provides a versatile tool for characterizing dis-
order in a wide range of quantum or classical systems, and is, in
principle, applicable to any symmetry-protected topological phase,
such as Kitaev chains76,77 or 2D graphene-like lattices78. These
advancements position our platform as a flexible foundation for
advancing quantum technologies2,3 and specifically analog quantum
simulation17,18,24.

Methods
Fabrication
The fabrication recipe is detailed in35. We fabricate planar coupled
cavity arrays (CCAs) based on lumped LC resonators by etching 13
nm-thick NbN film, with typical sheet kinetic inductance Lk,□ of
100 pH/□. The fabrication process commences with a 2-minute
immersion in a 40% HF bath to eliminate the native oxide layer and
potential surface impurities from a 100 mm silicon wafer, which is
of high resistivity (≥10kΩcm) and has a 〈100〉 orientation. Using a
Kenosistec RF sputtering system at room temperature, NbN films
are bias sputtered following the method described in refs. 35,79
with Ar/N2 flows of 80/7 sccm respectively and a deposition
pressure of 5 μbar. Optical lift-off technique is employed to
deposit Ti/Pt alignment markers, followed by a dehydration step at
150∘ C for 5 minutes. 80 nm-thick CSAR positive e-beam resist is
then spun on the wafer, which is subsequently baked at 150∘ C for
5 minutes. Employing electron beam lithography (Raith
EBPG5000+ at 100 keV), the resist is patterned to form the desired
devices. This is achieved by developing the resist in amyl acetate
for 1 minute, followed by rinsing in a 9:1 MiBK:IPA solution. In
order to transfer the pattern onto the NbN, a reactive ion etching
process is employed using a CF4/Ar mixture. The etching is carried
out with a power of 15 W, using a stepped approach consisting of
10 steps, each lasting for 1 min. These etching steps are alternated
with 1-minute purges using Ar gas. This stepped etching technique
has proven advantageous as it reduces the damage caused to the
CSAR resist due the etching process, thereby facilitating its sub-
sequent stripping without the need for plasma oxygen, which may
damage the underlying superconductor. The resist is then stripped
using Microposit remover 1165 heated to 70∘ C. Finally, the wafer is
coated with a 1.5 μm AZ ECI 3007 positive photolithography resist
to protect the devices before being diced.

Model
In this section, we derive the Hamiltonian of the CCAs using standard
circuit quantization42. We consider a chain composed ofN capacitively
coupled LC resonators as depicted in Fig. 1. Each ith resonator pos-
sesses an inductance Lig connected to ground and capacitance Cig to
ground. Resonators i and j are mutually coupled via the coupling
capacitance Ci,j between the two resonators. The potential energy in
the inductors can be expressed as

EL =
1
2

XN
n= 1

ϕ2
n

Lng
, ð7Þ

whereϕn denotes the flux at node n. The total kinetic energy stored in
the chain’s capacitors is given by

EC =
1
2

XN
n= 1

Cng
_ϕ
2
n +

X
i, j

Ci, jð _ϕi � _ϕjÞ
2

" #
, ð8Þ

where _ϕn represents the electric potential at node n. We neglect
mutual inductance-induced coupling due to the high impedanceof the
resonators38. We can now write the Lagrangian, L, of the circuit as

L= EC � EL ð9Þ

=
1
2

XN
n = 1

Cng
_ϕ
2
n �

ϕ2
n

Lng

" #
+
1
2

X
i, j

Ci, j
_ϕ
2
i � _ϕ

2
j

� �
: ð10Þ

It can be written in a matrix form as

L=
1
2
_ϕ
T
C½ � _ϕ� 1

2
ϕT L�1

h i
ϕ, ð11Þ

with the vectors _ϕ
T
n = ð _ϕ1, _ϕ2, . . . , _ϕNÞ and ϕT

n = ðϕ1,ϕ2, . . . ,ϕNÞ. The
capacitance matrix is defined as

½C�ij =
CΣi, if i= j,

�Ci, j, if i≠ jand ji� jj≤ 3,
0, if i≠ jand ji� jj>3,

8><
>: ð12Þ

where we only consider mutual capacitances where ∣i − j∣≤3. CΣi is the
total capacitance of the ith cavity defined as

CΣi =Cig +
XN

n≠i
Ci,n: ð13Þ

The inverse inductance matrix is defined as

½L�1�ij =
1=Lig , if i= j,

0, if i≠j:

�
ð14Þ

We now introduce the node charge variable canonically conjugated to
the node flux ϕn

Q=
∂L
∂ _ϕ

, ð15Þ

with QT = (Q1, Q2, …, QN).
For the given system, the charge variables are Q= ½C� _ϕ. Making

use of the matrix formalism, the CCA Hamiltonian H then reads

H =
1
2
QT ½C�1�Q+

1
2
ϕT ½L�1�ϕ: ð16Þ
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The real space Hamiltonian can be found to be42

Hn=_=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½C�1�½L�1�

q
, ð17Þ

and have the following matrix form

Hn

_
=

ω1 J1, 2 J1, 3 . . . . . . J1,N

J2, 1 ω2 J2, 3
. .
. . .

. ..
.

J3, 1 J3, 2 ω3
. .
. . .

. ..
.

..

. . .
. . .

. . .
. . .

. ..
.

..

. . .
. . .

. . .
.

ωN�1 JN�1,N

JN, 1 . . . . . . . . . JN,N�1 ωN

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
: ð18Þ

For small Ci,i+1/CΣ,i ratio, and without stray next nearest neighbor
capacitances, the coupling is

Ji, j =

ffiffiffiffiffiffiffiffiffiffi
ωiωj

p
2

Ci, jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CΣ, iCΣ, j

q : ð19Þ

However, non-negligible additional contributions arise from both
parasitic capacitances Ci,l≠j and large Ci,i+1/CΣ,i ratio, modifying the
Hamiltonian (see Supplementary file). In that case, one cannot resort
to simple analytical formulas and a full numerical diagonalization is
required. Eigenvalues of Eq. (18) represent the frequencies of the
modes ωk and eigenvectors represent the spatial localization of the
modes. We utilize this model to fit the CCA modes’ frequencies, as
detailed in the following section.

Extraction of parameters
The estimation of the parameters is performed by extracting the
modes’ frequencies from the device’s spectrum and fitting them to the
eigenvalues of Eq. (18). The fitting process involves 5 to 8 fitting
parameters, depending on the specific design, i.e. if the CCA is
dimerized, trimerized, etc …. Initially, we make the assumption that
eachfitted CCA is disorder-free and uniform. The influence of disorder
is studied in the following section. The fitting parameters include:

• Cg, the capacitance to ground. For a single resonator (M = 1) or a
dimer (M = 2), the capacitive environment is automatically iden-
tical for each resonator and we use a single value for Cg. However,
for M > 2, the capacitive environment of each cavity is not iden-
tical (see Supplementary file) and Cg becomes a list, Cg

�!
, com-

prising the different Cig within a unit cell.
• Lg, the inductance to ground. For M≤2, since the capacitive
environment is similar for each cavity, having a constant induc-
tance ensures a constant frequency for each cavity in the unit cell
and we use a single value for Lg. For M > 2, in order to keep the
resonant frequency constant, Lg is adjusted for each cavity
(see Supplementary file). In this case, it becomes a list Lg

!
.

• Cc
�!

, the coupling capacitances, which form a list increasing with
the size of the unit cell, i.e. forM = 2, Cc = C1,C2

� �
, C1 and C2 being

the intra- and inter-cell capacitances.
• Ci, i + 2=C, the ratio of second neighbor coupling capacitances over
C, the mean value of Cc

�!
.

• Ci, i + 3=C, the ratio of third neighbor coupling capacitances overC.

For the fits to converge, we must either fix Lg or Cg as they both
contribute comparably to the resonant frequency of the cavities and
the coupling between cavities. To this end, we choose to fix Lg. We
determine the value of Lg through finite-element microwave simula-
tions, where we estimate the sheet kinetic inductance of the film using
Sonnet simulation software. This process involves three steps:

1. We initially fit the modes of the measured spectrum with the
eigenvalues of Eq. (18), fixing Lg with an initial guess. This provides a
precise estimation of the resonant frequency of the cavities but not of
the other parameters.

2.We then conduct a simulation for a single cavity in Sonnet,while
sweeping the kinetic inductance, Lk,□. The simulated cavity has a
capacitive environment equivalent to that of the cavities in the fitted
CCA, ensuring accurate estimation of the resonant frequency. Subse-
quently, we extract and fit the resonant frequency of the cavity as a
function of the kinetic inductance using the following function for the
frequency:

f =
1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLk,& lind

wind
+ LgeoÞCΣ

q , ð20Þ

where CΣ represents the total capacitance of the resonator and Lgeo is
the geometric inductance. The extracted Lgeo is usually 2 orders of
magnitude smaller than Lk. The parameters lind and wind are fixed
design parameters, corresponding to the length and width of the
inductor, respectively. This procedure allows us to fit Lg = Lk,&

lind
wind

. To
extract Lk,□ it is necessary to properly estimate the dimension of the
inductor via an SEM of the device.

3. Using the obtained value of Lk,□, we calculate the inductance to
ground Lg using Eq. (1) and then refit the measured spectrum with the
correct Lg as a fixed parameter. This enables us to determine the values
of Cg, Cc

�!
, Ci, i+ 2=C, and Ci, i + 3=C. It is important to note that the

estimation of parameters using this method is affected by disorder in
the CCA, which introduces a small systematic error (see Supplemen-
tary file).

Disorder estimation
In this section, we outline the procedure for extracting the level of
disorder from the frequency splitting of the hybridized SSH edge
modes, ΔN

Topo .
The study is performed on six different batches realized in dif-

ferent fabrication runs. Each batch comprises three to six devices with
different number of resonators. Two batches, A and C, are designed to
have a coupling ratio J2/J1 ≈ 1.22, while the others batches are designed
to have J2/J1 ≈ 1.57. We observed changes in Lk,□ due to potential
fluctuations in the film deposition process (thickness or composition),
resulting in up to 15% change of the CCA resonant frequency, ωr/2π.
This variation of kinetic inductance has been reduced to ~ 3% with
improvedmonitoring and deposition adjustments. Those change have
a minimal effect on J2/J1.

We initially employ the fitting routine presented in the previous
Methods section to extract the mean capacitances and inductances
specific to each batch, assuming a disorder-free scenario.

Then we utilize these parameters in the Hamiltonian Eq. (18)
where we introduce Gaussian noise with a standard deviation σL
applied to the inductances:

Hn=_=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½C�1�½L�1 σL

� ��q
: ð21Þ

Due to the high kinetic inductance of the films and the small size of the
inductors, the inductances are sensitive to fabrication imperfection.
Hence, the Gaussian noise, σL, is applied to the inductances of the
cavities. For each batch, number of resonatorsN and disorder value σL,
we generate 30,000 realizations of the Hamiltonian Eq. (21). We then
diagonalize each of the Hamiltonians and extract ΔN

Topo . Using these
simulations, we construct for each batch a three-dimensional prob-
ability density function (PDF) that depends on the number of
resonators, the SSH-modes splitting and the level of disorder (Fig. S1a
of Supplementary file).

Several insights can be derived from these PDF. First, as expected,
the splitting between the SSH edge modes decreases with an
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increasing number of resonators. Secondly, the PDF exhibit an asym-
metry which tends to increase the splitting as a function of disorder.
This asymmetry arises from the fact that disorder canonly increase the
splitting between the SSH edge modes. However, it is noteworthy that
for short CCAs, such as the case with 16 resonators shown in Fig. S1a
of Supplementary file, the splitting can also decrease with increasing
disorder. This occurs when the SSH edge modes enter the bulk for
sufficiently large disorder values. Thirdly, when ΔN

Topo approaches
zero, deviation from its expected value become significantly more
prominent.

We proceed to compute the likelihood for each batch S, using an
interpolated PDF, defined as follows:

LSðσLÞ=
Y

i
PDFSðNi,Δ

Ni
Topo , i;σLÞ ð22Þ

where Ni and ΔNi
Topo , i represent the number of resonators and the SSH

edge modes frequency splittings of data point (device) i, respectively.
PDFS is the Probability density functionused for batchS. The likelihood
functions (Fig. S1b of Supplementary file) are then normalized by their
area from which we extract the full width at half maximum of the
different likelihoods.

To obtain an overall assessment of disorder across all devices of
different batches, we employ the method of combined likelihood,
defined as follows:

LC ðσLÞ=
Y

S
LSðσLÞ, ð23Þ

where S represents the label of the batch. This function characterizes
the typical disorder among all fabricated devices in the topological
configuration and is illustrated in Fig. S1c of Supplementary file. It is
important to note that thismethod alsopresents some limitations, as it
is sensitive to the accuracy of the estimation of the CCA parameters.
Errors in the estimation of the coupling capacitances, for example, can
lead to significant changes in the decay of the SSH edge modes. One
way to mitigate this sensitivity is to operate in a regime where the
hybridization between the modes is weak, reducing the impact of
parameter misestimation.

Data availability
The datasets generated during the current study are available in
Zenodo with the identifier https://doi.org/10.5281/zenodo.14640126.

Code availability
The codes used to produce the plots and perform the disorder analysis
are available in Zenodo with the identifier https://doi.org/10.5281/
zenodo.14640126.
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