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Abstract
When discussing the expansion of the universe, we often use a scalar

potential as a model. To build this type of model, one can use flux

compactifications in type IIB string theory. In the introduction of this

thesis, we cover this and other relevant concepts. Then, in the next section,

we discuss our work in [5], where we examine a nongeometric model and

discuss the local minima of its associated scalar potential. Finally, in the

last section, we look at our work in [6], where we study the intersection

between two higher dimensional objects in string theory, known as D-branes

or O-planes. The intersection of these objects in string theory are of interest

when building models of particle physics and for flux compactifications.

vii



1 Introduction

The work in this thesis will be based off of our work done in [5] and [6]. To

motivate this, let’s first talk about some basic concepts.

1.1 Scalar fields

A scalar field is a function which ascribes some scalar value to every point

in spacetime. A common example of this is a temperature map, like those

used in weather forecasts on news channels, as shown in Figure 1. Given this

Figure 1: This is an example of a temperature map of the United States of
America, provided by the National Weather Service [1].

definition, we can use a scalar field to describe some aspect of spacetime. In

particular, consider a scalar field ϕ with the following action [7]:

S =

∫
d4x

√−g
(
−1

2
∂µϕ∂

µϕ− V (ϕ)

)
(1.1)
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where V (ϕ) is the potential of the scalar field, g is the spacetime metric, and

µ = 0, 1, 2, 3.

Then, by varying the action with respect to the metric, the energy density

of ϕ is found to be

ρϕ =
1

2
ϕ̇2 +

1

2

(∇ϕ)2
a2

+ V (ϕ) (1.2)

and the pressure of ϕ is found to be

Pϕ =
1

2
ϕ̇2 − 1

6

(∇ϕ)2
a2

− V (ϕ). (1.3)

For a slowly-varying scalar field, the derivatives in these equations would

be small, leading to the simplification:

ρϕ ≈ V (ϕ) ≈ −Pϕ. (1.4)

If we compare this to the relationship between energy density and pressure

for the cosmological constant:

ρΛ =
Λ

8πG
= −PΛ, (1.5)

then we see that these two equations are similar. This leads to the conclusion

that the potential of a slowly-varying scalar field could play the role of the

cosmological constant.
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1.2 Inflation

Now that we’ve motivated the idea of a slowly-varying scalar field, let’s give

more details to the idea of slow-roll inflation. This is the general type of scalar

potential discussed in section 2. This can be described by a scalar field coupled

to general relativity with the action [2]:

S =

∫
d4x

√−g
(
1

2
M2

PR− 1

2
∂µϕ∂

µϕ− V (ϕ)

)
(1.6)

where MP is the reduced Planck mass and µ = 0, 1, 2, 3.

A graph of a potential is shown in Figure 2.

Figure 2: This is the general shape of the potential expected for slow-roll
inflation [2].

This leads to slow roll inflation if the following conditions are met:

ϵV ≡ M2
P

2

(
V ′(ϕ)

V (ϕ)

)2

≪ 1 (1.7)

and

|ηV | ≡M2
P

∣∣∣∣V ′′(ϕ)

V (ϕ)

∣∣∣∣≪ 1. (1.8)
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Because space gets stretched exponentially during inflation, the spatial

variations die off quickly, meaning ∂µϕ∂
µϕ ≈ ∂tϕ∂

tϕ ≪ V (ϕ) [2]. So the

action reduces to

S =

∫
d4x

√−g
(
1

2
M2

PR− V (ϕ)

)
. (1.9)

Since the potential depends on the scalar field, the potential is approx-

imately constant because ϕ is changing slowly. This means that the scalar

field acts like general relativity with the non-vanishing cosmological constant

ΛM2
P = V (ϕ) [2].

1.3 Compactifications

Another important concept for this research is that of compactification. Super-

symmetric string theory requires 10 dimensions, but we only see 4 dimensions

in our universe (3 spatial dimensions plus time). Calabi-Yau (CY) manifolds

are generally used to explain this, so let’s look at a toy example. Consider a

parallelogram folded to become the shape of a torus, as seen in Figure 3.

Figure 3: This is a diagram showing how a parallelogram can be folded into
the shape of a torus [2].
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If we consider the parallelogram, we can see that it has three real param-

eters. Let’s identify the length of the bottom by R1, the height by R2, and

the angle betweeen the two sides by θ. The overall volume of the torus is

controlled by R1R2, and the overall shape of the torus is determined by both

R1

R2
and θ. If a theory of general relativity is compactified on this torus, then

these parameters are part of the internal metric and give rise to 4-dimensional

scalar fields [2].

The above is also true for more complicated string compactifications on 6

real dimensional CY-manifolds. A limit of a CY-manifold can be constructed

by taking three identical copies of the torus described above. This gives rise

to three real scalar fields [2].

If we restrict ourselves to type IIB string theory, we can take the low energy

limit, which gives a 10D N = 2 supergravity. In this theory, there are two

10D scalars (the dilaton which sets the string coupling and the axion C0), two

real 2-forms (BMN and CMN), and a 4-form (CMNOP ). The dilaton and the

axion can be combined into a complex scalar, called the axio-dilaton [2]:

S = C0 +
i

gS
= C0 + ie−ϕ (1.10)

where gS is the string coupling.

Although BMN and CMN can combine to give complex 4D scalars ifM and

N extend along the internal directions, we will restrict ourselves to compact-

ifications with no appropriate 2-cycles along which these indices can extend.

CMNOP in this compactification gives rise to a real scalar field which combines

5



with the volume modulus (R1R2)
2 to give a complex modulus T , called the

Kähler modulus. In more generic string compactifications of this type on CY-

manifolds, there can be multiple Kähler moduli, T k, whose imaginary parts

control the volumes of the internal cycles. But because we are making the

three tori identical, all of the T fields are equal. The two real scalar fields R1

R2

and θ from above combine to give a complex modulus U , called the complex

structure modulus. Again, there can in principle be multiple of these (Uk), but

making the three tori equal identifies all of the U fields with each other. This

model gives rise to a 4D N = 1 supergravity and is called the STU -model [2].

Some important restrictions we have to make to trust our theory are that

Im(S) ≫ 1 and Im(T) ≫ 1. This ensures that the string coupling is small (so

we do not have large corrections) and that the volume of the internal space

is large [2]. For our specific model, there are extra dimensions threaded with

electric and magnetic field lines and potentially wrapped by D-branes and O-

planes, as shown in Figure 4.

1.4 The Swampland

Effective field theories (EFTs) are very useful in describing physical phenom-

ena up to a certain energy scale, denoted as Λ. Modifications to the EFT are

required above this scale, but it accurately describes the physics below this

scale according to both theory and experiments [4].

When given some UV (ultraviolet) complete theory, meaning a theory that

is well-defined at arbitrarily high energies, it is possible to integrate out the

UV degrees of freedom. This gives the low energy EFT. So for a d-dimensional

6



Figure 4: This is a sketch of a string compactification [3].

ΛCC

10−11

ΛQCD

100

MEW

102

H MKK Ms Mp

1019

Λ (GeV)

Figure 5: This figure shows typical reference scales in high energy physics,
including the cosmological constant, quantum chromodynamics, electroweak
symmetry breaking, and the Planck scale, Mp. H indicates a possible es-
timation for the Hubble scale during inflation, MKK indicates the Kaluza-
Klein compactification scale, and Ms indicated the string scale [4].

theory, the effective Lagrangian can be separated into the renormalizable part

and a tower of non-renormalizable operators [4]

Leff = Lren +
∞∑
n=d

On

Mn−d
p

(1.11)

where Mp is the Planck mass.

The aim of the Swampland program is to explore whether some quantum

EFT weakly coupled to Einstein gravity can always be UV completed to a con-
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sistent theory of quantum gravity. In other words, can the process always be

reversed? No, as it turns out, we cannot UV complete any EFT in a way that

is consistent with quantum gravity. Although the string landscape is large, not

everything is covered. The question then becomes: what conditions does an

EFT need to satisfy in order for this to be possible? The Swampland is defined

as “those apparently consistent (anomaly free) quantum EFTs that cannot be

embedded in a UV consistent theory of quantum gravity” [4]. Essentially, if

we say that the EFTs that are consistent with quantum gravity are in “the

landscape,” then what is the boundary that separates the Swampland from

the landscape [4]? To help visualize this question, Figure 6 has been included

below.

Figure 6: This figure shows the Swampland and the Landscape of EFTs.
The cone is formed because the constraints on the Swampland become
stronger at high energies [4].
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1.5 Sources in String Theory

String theory has not just string but extended objects that we briefly review

here.

1.5.1 D-branes

Writing the open string mode expansion:

Xµ(z, z̄) = Xµ(z) +Xµ(z̄)

Xµ(z) =
xµ

2
+
x′µ

2
− iα′pµ ln(z) + i

(
α′

2

)1/2∑
n̸=0

1

n
αµ
nz

−n

Xµ(z̄) =
xµ

2
− x′µ

2
− iα′pµ ln(z̄) + i

(
α′

2

)1/2∑
n̸=0

1

n
αµ
nz̄

−n (1.12)

where x′µ is an arbitrary number [8]. This number cancels out when doing the

usual open string coordinate. If we place X ′25 on a circle of radius R, then the

T-dual coordinate is

X ′25(z, z̄) = X25(z)−X25(z̄)

= x′25 − iα′p25 ln
(z
z̄

)
+ i(2α′)1/2

∑
n ̸=0

1

n
α25
n e

−inτ sin(nσ)

= x′25 + 2α′p25σ + i(2α′)1/2
∑
n̸=0

1

n
α25
n e

−inτ sin(nσ)

= x′25 + 2α′ n

R
σ + i(2α′)1/2

∑
n̸=0

1

n
α25
n e

−inτ sin(nσ) (1.13)

The momentum usually comes from the zero mode term in the mode ex-

pansion, and we can see that there is no τ dependence in this term. This means

9



that there is no momentum. Because the oscillator terms equal zero at the end-

points σ = 0, π, we see that the endpoints cannot move in the X ′25 direction.

We can see that we have the Dirichlet boundary condition, ∂tX = i∂τX = 0,

instead of the typical Neumann boundary condition, ∂nX = ∂σX = 0. For

clarity, ∂n refers to the normal partial derivative, and ∂t refers to the tangen-

tial partial derivative. More precisely, the ends are fixed in place [8]:

X ′25(π)−X ′25(0) =
2πα′n

R
= 2πnR′ (1.14)

As we can see, the values of the coordinateX ′25 at each end are the same up

to an integer multiple of the periodicity of the dual dimension. This is consis-

tent with the idea that the definition of the normal and tangential derivatives

get exchanged under T-duality [8]:

∂nX
25(z, z̄) =

∂X25(z)

∂z
+
∂X25(z̄)

∂z̄
= ∂tX

′25(z, z̄),

∂tX
25(z, z̄) =

∂X25(z)

∂z
− ∂X25(z̄)

∂z̄
= ∂nX

′25(z, z̄). (1.15)

It is important to realize that this all pertains to just X25, the direction

we T-dualised. The ends can still move in the remaining 24 spatial directions,

which constitutes a hyperplane called a ‘D-brane’. Since there are 24 spatial

dimensions, this is more specifically called a D24-brane [8].

1.5.2 O-planes

The effect of T-duality can also be understood as a one-sided parity transfor-

mation. In the case of closed strings, the original coordinate is Xm(z, z̄) =

10



Xm(z) + Xm(z̄), and the dual coordinate is X ′m(z, z̄) = Xm(z) − Xm(z̄). A

world sheet parity reversal is the action of exchanging Xµ(z) and Xµ(z̄). For

the dual coordinate, this gives [8]:

X ′m(z, z̄) ↔ −X ′m(z̄, z). (1.16)

Notice that this is the product of world-sheet and spacetime parity opera-

tion. For unoriented strings, they are invariant under the world sheet parity

operation, while the dual coordinate, they are invariant under the product

of the world-sheet parity operation and a spacetime parity operation. This

generalisation of the usual unoriented theory is called an ‘orientifold’. This

term mixes the term ‘orbifold’ and orientation reversal. Unlike a D-brane, an

O-plane is not a dynamical object [8].

1.5.3 Smearing Sources

The process of smearing a source is usually done by removing the delta function

for the source and replacing it with a constant in the equations of motion.

This delta function localizes the brane, so by removing it, we are spreading

the source into all dimensions. This means that we are no longer constraining

the source to extend along only particular dimensions, leaving no transverse

directions.

11



1.6 Supersymmetry

Many people have been interested in symmetries that extend Poincaré sym-

metry since the 1960s as a part of certain mathematical proofs by Coleman

and Mandula [9]. However, Golfand and Likhtman found the first supersym-

metric (SUSY) model in four dimensions in 1970 [10]. In this theory, they

extended the Poincaré algebra to a “graded-Lie algebra,” meaning algebra

with anticomutators and spinor generators. This allowed for the possibility of

a symmetry between bosons and fermions. Then, Haag et. al. extended the

Coleman-Mandula theorem to allow for these algebras. They showed that the

only possible extension of the Poincaré algebra is SUSY and found the most

general form of the SUSY algebra [9].

The generators of SUSY include the usual Poincaré generators for transla-

tions, rotations, and boosts as well as complex, anticommuting spinors Q and

their conjugates Q† [9]:

{Qα, Qβ} = {Q†
α̇, Q

†
β̇
} = 0. (1.17)

The nontrivial extension of Poincaré symmetry arises because a translation

generator, the momentum operator Pµ, is given from the anticommutator of

the spinors and their conjugates [9]:

{Qα, Q
†
α̇} = 2σµ

αα̇Pµ, (1.18)

12



where

σµ
αα̇ =

(
1, σi

)
, σ̄µ

αα̇ =
(
1,−σi

)
. (1.19)

Note that 1 denotes the 2 × 2 identity matrix and the σi are the usual Pauli

matrices:

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (1.20)

2 Type IIB flux compactifications withh1,1=0

The following work in this section is from a paper published in JHEP, which

is also available on arXiv. I completed this work in collaboration with Jacob

Bardzell, Eduardo Gonzalo, Muthusamy Rajaguru, and Timm Wrase [5].

2.1 Introduction

Recent years have seen a flurry of activities related to the swampland program

[11, 12, 13]. Many new conjectures were proposed and fascinating interconnec-

tions between different conjectures became apparent. However, given that it is

extremely hard to prove any swampland conjecture (see for example [14]), one

might wonder whether all of the conjectures are truly imposed by quantum

gravity or whether some arose from our somewhat limited understanding of

string theory. Given that many conjectures are motivated and tested against

what we observe in controlled string theory setups, there is an apparent need

to broaden our tool kits and to get trustworthy results from larger and larger

classes of string theory setups.
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While this is a noble goal we are faced with the immediate problem that

enlarging the landscape of trustworthy string theory constructions is extremely

difficult. New approaches are rare (see for example [15]) and in most instances,

like for example in the absence of supersymmetry, one can only study a fairly

limited set of string theories. While these might already hold surprises (see

for example [16, 17, 18, 19, 20, 21]), we are clearly very far from even remotely

understanding the landscape of non-supersymmetric string theories.

Several conjectures involving moduli spaces and scalar potentials have been

proposed recently in [22, 23, 24, 25]. Sometimes these are influenced by what

does and does not work in explicit string theory compactifications. The most

studied of such string compactifications are based on geometric compactifi-

cations of 10d supergravity theories that arise as low energy limits of string

theory. One may be tempted to conjecture that a property that we observe

in such a corner of moduli space is indeed a fundamental consistency require-

ment of quantum gravity. However, the presence of a heuristic argument, for

example based on black hole physics, is usually considered a more important

hint that the criteria applies more generally. In the absence of such arguments

one can only try to enlarge the landscape of four-dimensional theories that one

can obtain from string theory, to check existing conjectures against a larger

part of the string landscape. This is what we are doing here, by focusing on a

corner of the landscape which has not been explored much, namely flux com-

pactifications with orientifolds and purely non-geometric SCFT descriptions

for the internal dimensions. In particular, we focus on type IIB and two differ-

ent Landau-Ginzburg (LG) orientifold models, with F3 and H3 fluxes turned

14



on. The tools necessary to determine the low energy effective action for these

models were spelled out in [26]. See [27, 28] for additional details regarding

the geometrical description of the mirror of the rigid CY that we consider.

In this work we revisit and expand the results of [26, 29, 30]. We find

new AdS, Minkowski and dS solutions and discuss them in the context of the

swampland program. In the first part of the paper we focus our attention on

supersymmetric solutions. At weak coupling and large complex structure we

find several infinite families of AdS solutions. In some cases the solutions are

mirror dual to the well known type IIA AdS flux vacua found by DeWolfe,

Giryavets, Kachru and Taylor (DGKT) [31] (see also [32, 33, 34, 35, 36] for

earlier work). We find perfect agreement with the AdS distance conjecture

except in one family of solutions which is dual to DGKT. It was argued in

[37] that the presence of a Zk discrete symmetry forces a modification of the

conjecture. We argue that such a symmetry is indeed present in our setup so

we find an agreement with the refined version of the conjecture, just like for

DGKT.

Surprisingly our setup, which is essentially dual to a generalization of the

DGKT model in type IIA, allows also for infinite families of AdS solutions

with an ever growing number of D3 branes. Such solutions do naively give rise

to AdS4 spacetimes with arbitrarily large gauge group rank. We are not aware

of any such solutions in the literature and they certainly deserve further study

and scrutiny.

We also find fully stabilized four-dimensional Minkowski families of solu-

tions, which are to our knowledge the only full-fledged string theory construc-

15



tions ofN = 1Minkowski vacua without flat directions. Such Minkowski vacua

were previously discovered in [26, 29] and their validity beyond the perturba-

tive regime was shown to be guaranteed by a powerful non-renormalization

theorem in [26]. We extend the previous analysis to show that these vacua

do not only survive despite string loop corrections but we also prove that,

although string loop corrections can change the masses, they cannot lead to

any flat directions.

We also study non-supersymmetric solutions. In the parametrically weak

coupling and large complex structure regime we find a family of non-supersym-

metric AdS vacua as in the dual DGKT setting. We find that the masses lie

above the BF bound, so the vacuum is perturbatively stable. According to the

conjecture in [38] these should be unstable but we leave it for the future to

study potential decay. In the not-so-weak coupling regime we find a metastable

dS vacuum which requires the presence of D3 branes in order to satisfy the

tadpole cancellation condition. These vacua are, however, not protected by the

non-renormalization theorem. In particular, the Kähler potential is expected

to receive quantum corrections that are not under control and therefore these

dS vacua are not trustworthy.

The structure of the section is as follows. In the next section 2.2 we re-

view how to obtain the low energy 4d N = 1 theories and revisit the no-go

theorems protecting the superpotential. Then, in section 2.3 we discuss fully

stabilized, supersymmetric Minkowski vacua and contrast their existence with

related swampland conjectures. In section 2.4 we find several new families of

supersymmetric and non-supersymmetric AdS vacua and we discuss their con-

16



nection to the AdS distance conjecture. Lastly, we study dS vacua in section

2.5 before concluding in section 2.6. We include several useful formulas regard-

ing Type IIA flux compactifications on Calabi-Yau manifolds in appendix A.

2.2 Review of the setup

In type IIA flux compactifications on Calabi-Yau manifolds with smeared O6-

plane sources and NSNS and RR fluxes it is possible to stabilize all moduli at

tree-level if h2,1 = 0, i.e. if we are dealing with a rigid Calabi-Yau manifold [31].

In a mirror symmetric type IIB compactification, using the SYZ conjecture

[39], one would then expect to be able to stabilize all moduli on ‘spaces’ with

h1,1 = 0. The RR fluxes Fp with p = 0, 2, 4, 6 on the IIA side all transform

into RR F3 flux. The IIA H3 flux could in principle transform to a mixture of

NSNS H3, geometric and non-geometric fluxes in IIB.1 However, on the type

IIA side, for h2,1 = 0, we have a space with only one 3-cycle (and its dual).

Turning on the H3 flux in type IIA so that it does not thread the T 3 fibration

of the SYZ setup, we expect that after the three T-dualities, we end up in

type IIB with a setup that only involves H3 flux and neither geometric nor

non-geometric fluxes. Intuitively, this might also be expected from the work of

Giddings, Kachru and Polchinski (GKP) [41] that showed that in type IIB it

is possible to stabilize the axio-dilaton and all complex structure moduli using

only F3 and H3 fluxes. This means of course that we can stabilize all moduli

in the absence of Kähler moduli, i.e. for h1,1 = 0.

This idea of studying how all moduli are stabilized at tree-level in type

1See [40] for a recent detailed discussion of the T-duality between type IIA and type
IIB flux compactifications.
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IIB flux compactifications with F3 and H3 fluxes on ‘spaces’ with h1,1 = 0

was first fleshed out in [26, 29]. There the authors studied orbifolds of certain

Landau-Ginzburg models and searched successfully for completely stabilized,

supersymmetric 4d N = 1 Minkowski and AdS vacua. Such Minkowski vacua

are absent in geometric type IIA flux compactifications [42, 43] and require

non-geometric fluxes, which are not well-controlled due to potential α′ correc-

tions. However, as mentioned above, under mirror symmetry the H3 flux can

become geometric and non-geometric fluxes. So, even if we only turn on theH3

flux on the type IIB side, we actually probe a genuinely larger part of the string

landscape than DGKT. Furthermore, due to powerful no-go theorems that we

will review in the next subsection, these settings are very well-controlled.

Landau-Ginzburg orbifold models provide a way of analytically continuing

Calabi-Yau compactifications to small volume and can even be used to describe

the mirror dual of compactification on a rigid Calabi-Yau manifold [44]. A

Landau-Ginzburg theory is determined by the superpotential W (Φi), which is

a quasi-homogeneous analytic function of the (worldsheet) chiral superfields

Φi. In this paper, following [26], we will consider two models. Firstly, we

consider the 19 model with a superpotential given by

Wws =
9∑

i=1

Φ3
i , (2.1)

and secondly we will consider the 26 model with a superpotential given by

Wws =
6∑

i=1

Φ4
i . (2.2)
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In the 19 model one can orbifold by the Z3 symmetry Φi → ωΦi where ω = e
2πi
3 ,

while in the 26 model we use the Z4 symmetry with ω = e
πi
2 . For the 19 ori-

entifold, σ1 in [26], one combines worldsheet parity with (Φ1,Φ2,Φ3, ...,Φ9) →

−(Φ2,Φ1,Φ3, ...,Φ9). The orientifold for the 26 model is the σ0 orientifold in

[26] that acts on the fields as (Φ1,Φ2,Φ3, ...,Φ6) → e2πi/8(Φ1,Φ2,Φ3, ...,Φ6). In

both of the cases one ends up with O3-planes whose charge can be cancelled

by turning on F3 and H3 fluxes and/or by adding D3 branes.

Before turning on the fluxes, it is easy to check which are the corresponding

Calabi-Yau (CY) manifolds. We need to compute the dimensions of the ring

of superprimary chiral operators R = C[Φ]
∂jW (Φ)]

. The (c, c) ring correspond to

(2, 1) harmonic forms while the chiral-antichiral ring (c, a) corresponds to (1, 1)

forms. For the 19 model it is easy to check that there are h2,1 = 63 monomials

ΦiΦjΦk which are invariant under the Z3 and the orientifold action. One also

obtains h1,1 = 0 [26], that is, there are no corresponding Kähler moduli in the

would be CY manifold. It corresponds to the mirror of T 6

Z3×Z3
. Thus we see

that in the absence of fluxes the model is dual to a DGKT construction, i.e.

to a compactification of type IIA on a rigid CY manifold.2 Similarly, for the

26 orientifold one obtains h1,1 = 0 and h2,1 = 90 and it corresponds to the

mirror of T 6

Z4×Z4
.

In this work, following [29, 30], we will restrict ourselves to what would be

the bulk moduli in the mirror dual toroidal orbifold. We will furthermore set

the three bulk complex structure moduli equal and study a rather simple 4d

N = 1 SU model. This allows us to find many analytic families of solutions

2The actual model that was explicitly worked out by DGKT is a slightly different
T 6

Z3×Z3
that differs from this model in the twisted sector [29].
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and thereby truly study the parameter space of this model in great detail.3 It

is expected that all of our findings carry over to the full model. In the simplest,

somewhat restricted setup where our model is dual to the DGKT model, this

follows from the explicit check of the blow-up modes in the DGKT paper [31].

When talking about fully stabilized Minkowski vacua, then we can refer to the

paper [26] where Minkowski vacua were found even when including all moduli.

In particular, our new proof below that the masses cannot become zero even

when including all corrections applies equally well to our SU model and the

full model studied in [26]. However, although we do not expect surprises, it

would of course be interesting to extend our analysis to a generic setup with

arbitrary many moduli.

The careful reader might worry that stabilizing blow-up modes requires

turning on many additional fluxes that then contribute to the tadpole which

then might become much larger than the fixed negative charge induced by the

O3 planes in our models. This expectation would be in line with the recently

proposed tadpole conjecture [45, 46, 47, 48, 49]. However, it does not apply

here for two reasons: Firstly, in the case where our models are dual to the

DGKT model, all blow-up moduli are stabilized in the dual model by using

F4 fluxes that do not appear in any non-trivial tadpole condition in the type

IIA model. This means that the dual F3 flux quanta, that stabilize blow-up

modes, likewise do not appear in the tadpole condition on the type IIB side.

3While the previous work [26, 29] studied particular solutions of these models, the
more recent paper [30] picked random flux numbers within a finite range and generated
large generic solution sets that were compared with a variety of swampland conjectures.
Here, we actually test several swampland conjectures against new infinite families of ana-
lytic solutions.
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Secondly, as we explain in the next subsection, the large volume intuition that

fluxes contribute with the same sign as D3 branes to the tadpole is not correct

in these non-geometric settings. Fluxes are no longer required to be ISD and

can even in supersymmetric solutions contribute to the tadpole with the same

sign as orientifold planes.

Type IIB string theory compactifications on the above two Landau Ginz-

burg models, after including the above discussed O3 orientifold projections,

give rise to 4d N = 1 theories. The superpotential is generated by H3 and F3

fluxes and takes the standard form W =
∫
M
(F3−SH3)∧Ω [50, 51]. However,

given that we are in these setting in a small volume regime, the usual Kähler

potential K = − ln[−i(S − S̄)] − ln[i
∫
M
Ω ∧ Ω] does receive corrections as

discussed in subsection 3.2 of [29]. These corrections can be derived by using

mirror symmetry (see appendix A), which leads to the following the Kähler

potential K = −4 ln[−i(S − S̄)]− ln[i
∫
M
Ω ∧Ω]. In our simple case where we

restrict to two moduli, the axio-dilaton S = C0+ie−ϕ and a complex structure

modulus U , both the 19 and the 26 model give rise to the following Kähler and

superpotential

K = −4 ln[−i(S − S̄)]− 3 ln[−i(U − Ū)] , (2.3)

W =
(
f 0 − Sh0

)
U3 − 3

(
f 1 − Sh1

)
U2 + 3 (f1 − Sh1)U + (2.4)

(f0 − Sh0) .

This restricted model, corresponding to h2,1 = 1, is dual to a similarly re-

stricted model in type IIA where, for example, one sets the three Kähler mod-
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uli in the original DGKT model equal, to get an effective model with h1,1 = 1

on the type IIA side (an ST model). The four F3 flux components, labelled

by f0, f1, f
1, f 0 above correspond on the type IIA side to F6, F4, F2 and F0

fluxes, while the four H3 flux components h0, h1, h
1, h0 correspond on the type

IIA side to H3 flux, metric flux and non-geometric Q and R fluxes, respec-

tively (see table 1 in [52]). Thus, this flux compactification on the type IIB

side is indeed extending the original DGKT construction [31] in a very impor-

tant way. Furthermore, as we will explain in the next subsection, there are

non-renormalization theorems that allows one to obtain trustworthy results in

regimes that have not really been probed much in the existing literature.

As is familiar from any flux compactification with orientifolds, one has to

cancel the net charge induced by the fluxes, O-planes and potentially D-branes.

In our case this will be the O3 plane charge and the tadpole condition is given

by ∫
M

F3 ∧H3 +ND3 =
1

2
NO3 . (2.5)

This allows us now to clarify, why we discussed above the 19 model and the

26 model although they both give rise to the same (restricted) Kähler and

superpotential in equations (2.3) and (2.5): The above mentioned orientifold

projection for the 19 model gives rise to NO3 = 24, while the orientifold pro-

jection for the 26 model gives rise to NO3 = 80 [26]. This means that the flux

contribution to the tadpole

Nflux =

∫
M

F3 ∧H3 = −h0f0 − 3h1f1 + h0f
0 + 3h1f

1 , (2.6)
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would have to equal either 12 or 40, if we want to satisfy the tadpole condition

in equation (2.5) without the addition of D3 branes.

However, it is also important and interesting in these models to include D3

branes. The reason for this is that the flux contribution to the tadpole Nflux

has no definite sign (see subsection 3.3 in [29]). This means in particular that

fluxes can contribute with the same sign as O3 planes in the tadpole and we

will see below that there are even infinite families in which Nflux → −∞ and

at the same time ND3 → ∞. One may ask why this is possible, since in the

well-known geometric type IIB CY orientifolds with 3-form fluxes, studied in

GKP [41], the Nflux is always positive. This follows in that case simply from

the requirement that the flux F3 − SH3 has to be imaginary self dual (ISD).

The latter in turn follows from the vanishing of the covariant derivatives of

the superpotential with respect to the axio-dilaton and the complex structure

modulus, i.e. DSW = DUW = 0. In our setup there are small volume

corrections to the Kähler potential in equation (2.3). In particular, the factor

of 4 changes DSW = 0 in such a way that one can no longer derive the ISD

requirement, as is discussed in more detail in [29].

The above property might be surprising.4 Therefore we quickly discuss it

also in the dual type IIA models. In the case where we only turn on a single

H3 flux quanta our model is dual to a type IIA flux compactification à la

DGKT with h2,1 = 0. There is then a single O6 plane tadpole condition. In

this case, for supersymmetric AdS vacua, the flux contribution to the tadpole

4At small volume there are a plethora of instances were the large volume understand-
ing of mutually supersymmetric objects changes completely due to stringy corrections. So,
it shouldn’t necessarily be surprising that fluxes can carry anti-D3 brane charge and still
be mutually supersymmetric with D3 branes and O3 planes.
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has to have the same sign as D6-branes. If that were not the case, then we

could add D6 branes in addition to the O6 planes and thereby completely

cancel their negative contribution to the scalar potential. Then there would

be no negative term in the scalar potential (and therefore no AdS vacua) since

RR fluxes and H3 flux contribute positive definite terms only. Thus in this

case, which is the dual of the DGKT model with h2,1 = 0, the fluxes induce a

charge in the tadpole that has the same sign as D branes and Nflux is therefore

bounded by zero from below and NO3/2 from above. Now when we turn on

more general H3 flux on the type IIB side then this corresponds to type IIA

flux compactifications in the presence of geometric and non-geometric fluxes.

These fluxes can contribute to the scalar potential with either sign and the O

plane term is no longer the only negative term in the scalar potential. Thus,

there is no immediate obstruction to over-cancelling the O plane contribution

by adding a very large number of D branes. We will see how this works in

explicit examples below, when we discuss concrete solutions.

2.2.1 Non-renormalization theorem

In this subsection we first recall the absence of perturbative and non-perturba-

tive corrections to the superpotential [26, 29]. First of all, α′ corrections are

already taken into account in the LG theory. Thus, one only has to focus

on gs perturbative and non-perturbative corrections. However, it was ar-

gued in [26, 29] that the superpotential does not receive any perturbative or

non-perturbative corrections at all, which follows for example from the non-

renormalization of the BPS tension of a D5-brane domain wall but also passes
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other non-trivial checks [26]. This means that the superpotential is exact even

at strong coupling. Note however, that the Kähler potential can and will re-

ceive perturbative and non-perturbative corrections, which is something we

will return to in the next paragraph. The cautious reader might worry about

the familiar brane instanton corrections to the IIB superpotential. Let us

therefore recall that our models have h1,1 = 0 and thus no Euclidean D3-brane

instantons. The absence of D(-1) instantons was argued for in footnote 6 in

[26] as follows: Since the D(-1) instantons do not depend on the volume and

they are not there in the decompactification limit due to higher supersymme-

try, they should also not appear here. This is also consistent with the recent

analysis in [53], which trivially covers our setup since we have h1,1 = 0 and

therefore no 4-cycles and no D7 branes or O7 planes. Alternative it was argued

for the absence of any brane instanton corrections in [29] using the duality to

the type IIA setting of DGKT: There the only 3-cycle in models with h2,1 = 0

has H3 flux and therefore there are no brane instantons [54].

When studying Minkowski vacua we will assume that the non-renormaliza-

tion theorem holds and the superpotential receives no corrections even in those

vacua where gs is of order 1 or larger. The conditions for supersymmetric

Minkowski vacua are ∂iW = W = 0 and do not depend on the Kähler poten-

tial. Thus, the very existence of Minkowski vacua does not change even if one

includes arbitrary corrections because those can only appear in the Kähler po-

tential. Previously, such explicit supersymmetric, fully stabilized Minkowski

vacua were constructed in [26, 29, 30]. However, it was stated in [29] that
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these are necessarily at strong coupling5 and thus receive large corrections to

the Kähler potential. This then leads to the following important question: Are

these truly fully stabilized 4d N = 1 Minkowski vacua or can the corrections

to K lead to flat directions?

We will prove here that even arbitrary, unknown corrections to K cannot

lead to flat directions in these models: We assume that one has been able to a

find a fully stabilized SUSY Minkowski vacuum as was the case in [26, 29, 30]

(see also section 2.3 below). Then the Hessian matrix of second derivatives of

the scalar potential has only positive eigenvalues and is given by6

Hiȷ̄ = ∂i∂ȷ̄V = (∂i∂kW )Kkℓ̄(∂ℓ̄∂ȷ̄W ), (2.7)

or in matrix form

H = WKW . (2.8)

Now compute the determinant

det H = det W det K det W = | det W |2 det K . (2.9)

Given that all eigenvalues of H were positive to begin with we can conclude

that | det W |2 > 0.

Now let us take into account arbitrary and unknown corrections to the

5We find that they cannot be at parametrically weak coupling but there are certainly
examples with gs < 1.

6For simplicity we work here with the Hessian. The actual masses squared are the
eigenvalues of Hiȷ̄K

ȷ̄k. However, given that the Kähler metric is positive definite, this
does not change our conclusion.
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Kähler potential and denote the inverse Kähler metric after including all these

corrections Kc. The new Hessian for this corrected Minkowksi vacuum is now

given by

Hc = WKcW . (2.10)

We again compute the determinant

det Hc = det W det Kc det W = | det W |2 det Kc . (2.11)

Since the superpotential did not receive any corrections we have from above

that | det W |2 > 0. Since the Kähler metric controls the kinetic terms of the

scalar fields, its eigenvalues have to be positive. This remains true even after

including arbitrary corrections and therefore det Kc ̸= 0. This, combined with

the preservation of | detW|2 implies that det Hc ̸= 0. Thus, all the eigenvalues

of Hc must be nonzero.

In supersymmetric Minkowski vacua eigenvalues of the Hessian matrix have

to be positive for stabilized moduli or zero for flat directions. It was just

shown that the eigenvalues of Hc are nonzero, so we can conclude that these

Minkowski vacua cannot have flat directions even when including unknown

and arbitrary corrections to the Kähler potential.

One can actually prove also the existence of AdS vacua at strong cou-

pling using the non-renormalization of W [26]. While this is not so impor-

tant since there are infinite families of AdS vacua with parametrically weak

coupling, let us nevertheless briefly recall the argument. For supersymmet-

ric AdS vacua, satisfying DiW = ∂iW + (∂iK)W = 0, the ∂iK term can
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receive corrections. The authors of [26] expanded the corrected Kähler po-

tential around the minimum which one can choose to be at ϕi = 0, so that

Kc = K+ f(ϕi)+ f̄(ϕ̄ı̄)+ϕiϕ̄ȷ̄giȷ̄(ϕ
i, ϕ̄ı̄). At the minimum ϕi = 0 the only cor-

rection to ∂iK arises from f(ϕi). However, this can be interpreted as a Kähler

transformation: K → K+f+f̄ ,W → We−f , which changesDiW → e−fDiW .

Therefore, supersymmetric AdS vacua satisfying DiW = 0 cannot disappear

even when including arbitrary unknown Kähler corrections. However, for ex-

ample the mass spectrum is expected to be corrected (within the limits allowed

by N = 1 supergravity).

Finally, there is no argument for preventing corrections to non-supersym-

metric vacua. So, if one finds them at strong coupling, they could disappear

or become unstable when including string loop corrections.

2.3 Fully stabilized N = 1 Minkowski vacua

As mentioned previously, the first fully stabilized 4d N = 1 Minkowski vacua

were found in [26]. In the dual type IIA case, such vacua do not exist in geo-

metric compactifications [42, 43], which means that in the type IIB models at

least two components of the H3 flux have to be turned on. It was also show in

[29] that these IIB Minkowski vacua are never arising at large complex struc-

ture, i.e. on the dual type IIA side they cannot arise at large volume. However,

as we reviewed above the Landau-Ginzburg models take all α′ corrections into

account and therefore do not require us to be at large complex structure. It

was furthermore stated [29] that these Minkowski vacua are confined to strong

coupling. Given the non-renormalization theorem from the previous section,
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we can trust Minkowski vacua even at strong coupling. However, we also find

that only parametrically weak coupled solutions are forbidden in this setup

and gs < 1 is possible with a model dependent lower bound on gs. In the next

subsection we present a new infinite family of fully stabilized supersymmetric

Minkowski vacua and in the following subsection we discuss how this family

of solutions fits into the swampland program.

2.3.1 Minkowski solutions

In order to find Minkowski vacua we have to solve W = ∂SW = ∂UW = 0

for the W given in equation (2.5) above. A particular family of solutions with

properly integer quantized fluxes arises for

f 0 = −4, f 1 = 0, f1 = 0, f0 = 4, h0 = −3− h0, h1 = 1, h1 = −1 .

(2.12)

Here h0 ∈ Z is a free parameter that actually does not appear in the tadpole

condition since Nflux in equation (2.5) reduces to Nflux = 12 independent of

h0. Thus, this is a solution to the 19 model which does not require D3 branes

since the fluxes cancel the negative O3 plane charge.

The moduli are stabilized at the following values

Re(U) = −1
2
, Im(U) =

√
3

2
,

Re(S) = 6+4h0

3+h0(3+h0)
, Im(S) =

2
√
3

3 + h0(3 + h0)
. (2.13)

While the complex structure modulus is stabilized at a fixed value, the inverse
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string coupling Im(S) changes when we vary the free parameter h0 ∈ Z. It

takes on its maximal value of Im(S) = 2
√
3 for h0 = −1 and for h0 = −2. For

h0 → ±∞ we enter parametrically strong coupled regions with Im(S) ∝ 1/h20.

We stress again that even in this parametrically strong coupled regime there

are no corrections to W due to the above non-renormalization theorem.

The positive masses squared for the two complex scalar fields in the Min-

kowski vacuum are given by

m2
− =

(11− 4
√
7)(3 + h0(3 + h0))

3

192
√
3

, m2
+ =

(11 + 4
√
7)(3 + h0(3 + h0))

3

192
√
3

.

(2.14)

We see that in the limit h0 → ±∞ the masses grow like h60. For the largest

inverse string coupling value Im(S) = 2
√
3 ≈ 3.46 which is obtained for h0 =

−1 and for h0 = −2, the masses squared reduce in both cases to m2
− =

11−4
√
7

192
√
3

≈ 0.00125 and m2
+ = 11+4

√
7

192
√
3

≈ 0.0649.

2.3.2 Minkowski vacua and the swampland

It is easy to find string compactifications that give rise to 4d Minkowski vacua

with N ≥ 2, for example, by compactifying type II string theory on a Calabi-

Yau manifold or a torus. However, to the best of our knowledge all these

Minkowksi vacua with N ≥ 2 have flat directions, i.e. massless scalar fields.

These flat directions can be protected by the high amount of supersymmetry.

However, in 4d N = 1 theories there is no such protection and it is expected

that all flat direction would be lifted by corrections which likely leads to run-

away directions. To the best of our knowledge, the Minkowski vacua first
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discovered in [26, 29] are the only fully stabilized N = 1 Minkowski vacua

that arise in full-fledged string theory constructions. Given that corrections

to the scalar potential are not forbidden by N = 1 supersymmetry, one would

have thought that it would not be possible to really argue for the existence of

these vacua when including all perturbative and non-perturbative corrections.

However, the non-renormalization of the superpotential [26] and our argument

above about the mass matrix are implying that these vacua do indeed exist in

a strongly coupled corner of string theory.

Given the more recent objections to the existence of dS vacua in string

theory [55, 56], the very existence of fully stabilized 4d N = 1 Minkowksi

vacua was questioned as well. The reason is that any small, SUSY breaking,

positive energy contribution to the scalar potential turns these Minkowksi

vacua into metastable dS solutions. Following this logic, the authors of [57]

conjectured that strongly stabilized AdS vacua should be forbidden. Here

by strongly stabilized one means that the mass of the lightest field satisfies

mlightLAdS ≫ 1, where LAdS is the length scale of the AdS space. This AdS

moduli conjecture seems to imply that if we take the limit LAdS → ∞ to

go to Minkowksi space, then mlight → 0 in contradiction with the Minkowski

vacua discussed here and previously in [26, 29, 30]. Note however, that these

Minkowski vacua cannot arise as the limit of any of the infinite families of AdS

solutions that we find in these models and that will be discussed in the next

subsection. Likewise, there is no obvious small SUSY breaking correction or

change to the model that leads to dS vacua. All string loop corrections do not

change W and only modify the values of the positive masses squared of the
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scalar fields in the Minkowski vacuum. Changing some flux quanta to break

supersymmetry is a large effect and the same probably applies to any other

change given that the complex structure modulus is stabilized at order 1 and

we are at strong coupling. However, it would definitely be interesting to study

this further.

The existence of these vacua and the absence of corrections is surprising,

maybe even more so given the recent paper [58] that finds that generically in

quantum gravity any allowed correction should appear. The exception to this

rule is stated in the same paper and is formalized in the supersymmetric gener-

icity conjecture [58]. This conjecture says that quantities that are protected

in higher supersymmetric theories should only vanish in lower supersymmetric

theories, if the lower supersymmetric theory is related to a higher supersym-

metric theory. In particular, the authors discuss 4d N = 1 Minkowski vacua

with everywhere vanishing superpotential, W = 0. They find that the equa-

tion W = 0 can only survive all corrections if the theory is related to a higher

dimensional theory via for example a simple orbifold projection. While our

setup with fluxes and a non-zero W generate by those fluxes is not covered

by the analysis in [58], our findings seem nevertheless compatible with the

supersymmetric genericity conjecture since our setups are simple orbifolds of

toroidal models that preserve higher amounts of supersymmetry.

Summarizing, these non-geometric type IIB setups give rise to fully stabi-

lized 4d N = 1 Minkowksi vacua that seem to survive all stringy corrections,

which makes them to our knowledge the only full-fledged string theory con-

structions of this type. These vacua arise only at relatively strong coupling in
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a barely studied part of the string landscape.

2.4 Infinite families of AdS vacua

In this section we study exemplary families of AdS solutions that arise in these

non-geometric type IIB flux compactifications. As discussed above, due to

the non-renorma-lization of W even supersymmetric AdS solutions at strong

coupling will persist when including all potential corrections. However, for

example the masses and the cosmological constant in these solutions might

get significantly modified when we are not at weak string coupling. All the

different families of AdS solutions that we present below, allow us to go to

parametrically weak coupling and thus we have parametric control over them.

This enables us to perform trustworthy and detailed studies even when these

solutions are not supersymmetric. Given that the exact number of O3 planes

in these infinite families plays essentially no role, we will restrict ourselves to

the 19 model with NO3 = 24. We will introduce representative examples to

illustrate the different behaviors that these infinite families display. Firstly,

we present families that are dual to the AdS vacua found in DGKT [31] but

we also find other infinite families of AdS vacua that arise in our more general

setup. Secondly, we study interesting and very different sets of solutions, where

by increasing the number of D3 branes the contribution of the fluxes to the

tadpole can become negative and very large. In the Nflux → −∞ limit the

number of D3 branes needs to become infinite ND3 → ∞ as well, in order to

satisfy the tadpole condition. We discuss how all these solutions fit into the

web of swampland conjectures at the end of this section.
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2.4.1 Infinite families of AdS vacua without D3 branes

The DGKT dual In [29] two infinite families of SUSY AdS solutions were

presented. The first solution is related to the infinite family of SUSY AdS

vacua that were found in DGKT [31].7 To find it one has to necessarily set

three H3 flux quanta to zero, h0 = h1 = h1 = 0. The tadpole condition (2.5)

then implies

h0 =
12

f 0
, (2.15)

which means that due to flux quantization f 0 ∈ {1, 2, 3, 4, 6, 12}. We will not

plug in any specific flux values but keep in mind that f 0 and h0 are bounded

due to tadpole cancellation condition but the other fluxes are not.

One can easily solve DSW = DUW = 0 and find that the axio-dilaton is

stabilized at

Re(S) =
f0(f

0)2 + 3f1f
0f 1 − 2(f 1)3

12f 0
, Im(S) = 2

√
5

3

(f1f
0 − (f 1)2)

3
2

9f 0
,

(2.16)

while the complex structure modulus is stabilized at

Re(U) =
f 1

f 0
, Im(U) =

√
5

3

(f1f
0 − (f 1)2)

1
2

f 0
. (2.17)

Given that f1 is unconstrained by the tadpole, we can make it large and even

send it to infinity. In that limit the string coupling 1/Im(S) becomes para-

metrically small and the complex structure modulus becomes parametrically

7In the second SUSY AdS solution in subsection 4.3.2 in [29], there seems to be a
typo. We find that either Im(U) or Im(S) are necessarily negative, so this does not seem
to be a physically meaningful solution.
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large. This is the mirror dual of the large volume, weak coupling families of

AdS vacua that arise in type IIA flux compactifications if one makes the F4

flux large [31].

The scalar potential at the minimum is

VAdS =
−19683

√
3
5
(f 0)3

3200(f1f 0 − (f 1)2)
9
2

. (2.18)

The four masses squared in this family can be conveniently expressed in terms

of the above value of the scalar potential as

m2 =

{
10

3
, 6,

70

3
,
88

3

}
|VAdS| . (2.19)

Since the AdS radius in 4d is given by RAdS =
√

3/|VAdS| one finds surprisingly

that all the masses squared in AdS units, i.e. all m2R2
AdS, are integers. This

was recently discovered in [59] (see also [60]). Furthermore, the integers are

such that the operator scaling dimensions in the dual CFT3, i.e.

∆ =
1

2

(
3 +

√
9 + 4m2R2

AdS

)
= {5, 6, 10, 11} , (2.20)

are integers as well [59, 61, 62]. This fascinating feature of this family of AdS

vacua currently awaits an explanation and we check below in our other families

whether the same is true or not.

Given that we want to compare our infinite families with the AdS distance

conjecture, it is important to determine the mass scale of a tower of states that

becomes light in the large flux limit. In the dual DGKT construction [31] the
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large flux limit corresponds to a large volume limit and the KK scale sets the

scale of a tower with a mass scale that goes to zero as the flux quanta go to

infinity. Using mirror symmetry, as further discussed in appendix A, we can

determine the dual mass scale of a tower that becomes light in this large flux

limit8

m2
tower ∼

1

Im(U)Im(S)2
∼ (f 0)3

(f1f 0 − (f 1)2)
7
2

∼ 1

f
7
2
1

. (2.21)

As we discuss below, the AdS distance conjecture [63], constrains the parame-

ter α that relates the mass scale of the tower to the cosmological constant via

mtower ∼ |Λ|α. In this solution we have α = 7/18 since

mtower ∼
1

f
7
4
1

∼ |VAdS|
7
18 . (2.22)

SUSY families with α = 1/2 Next we discuss another infinite family of

AdS vacua that is also parametrically controlled but not dual to the DGKT

model since we have two H3 flux quanta turned on. In particular, we fix the

following fluxes

f 0 = 0 , f1 = 0 , h0 = −3 , h1 = 0 , h0 = 0 . (2.23)

The tadpole condition in equation (2.5) is satisfied if we set f0 = 4−h1f
1 and

we are left with two free flux parameters h1, f
1 ∈ Z. In this solution the real

parts of S and U are equal to zero and the imaginary parts are given by

8By mirror symmetry the large volume limit becomes a large complex structure limit
in which winding modes should become light and lead to this tower of states.
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Im(U) =

√
9f1h1+2(−9+

√
81+24f1h1(−4+f1h1))

f1

√
15

, (2.24)

Im(S) =


(
−16f 1h1 + 3

(
9 +

√
81 + 24f 1h1(−4 + f 1h1)

))
2h21

 Im(U) .

In the limit f 1 → ∞ (and for negative h1 < 0) we find the following scaling

of the moduli

Im(U) ≈

√
(9− 4

√
6)h1√

15
,

Im(S) ≈

√
6 + 8

√
2
3
f 1

√
−h1

. (2.25)

So, we have parametric control since we can go to parametrically small string

coupling. We can in principle also make the complex structure modulus large

by an appropriate choice of h1, however, this is not necessary since the Landau-

Ginzburg model already takes all α′ corrections into account [26].

In the above limit of very large f 1 the value of the potential at the minimum

is given by

VAdS ≈ − 27(−h1)
5
2

32
√

1329 + 544
√
6

1

(f 1)2
. (2.26)

Comparing the mass of the light tower from equation (A.6) with the value of

the scalar potential in this limit, we find that mtower ∼ |VAdS|
1
2 , i.e. α = 1/2.
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In the limit where f 1 → ∞ the masses squared are,

m1±
2 =

2

9

(
17 +

√
6±

√
127 + 46

√
6

)
|VAdS| ,

m2±
2 =

1

9

(
25− 2

√
6±

√
337 + 68

√
6

)
|VAdS| . (2.27)

The smallest of these masses squared,m2
2−=

1
9
(25−2

√
6−
√
337 + 68

√
6)|VAdS|

≈ −0.260|VAdS|, is above the Breitenlohner-Freedman bound m2
BF = −3

4
|VAdS|

[64], as required by supersymmetry. Obviously, none of these masses are inte-

gers in AdS units and the same is true for the dual conformal scaling dimen-

sions. Since we kept h1 finite in this example, the complex structure remains

finite and therefore the mirror dual type IIA families should have likewise a

fixed finite volume, which might (or might not) be related to the absence of

integer conformal scaling dimensions.

Non-supersymmetric AdS vacua Lastly, we discuss here a single non-

supersymmetric family of AdS vacua. We have not performed an all encom-

passing search for such solutions but given that they exist in the type IIA

models of DGKT and are related to the supersymmetric solutions by simple

sign flips of F4 flux quanta, they have to exist here as well. We found one such

family that is related to the supersymmetric AdS solution discussed above in

subsection 2.4.1, by setting f 1 = f0 = 0 and flipping the sign of f1.

Concretely, for h0 = h1 = h1 = f 1 = f0 = 0, and f 0 essentially fixed by

the tadpole as in equation (2.15) above, we find a one parameter family of

non-SUSY AdS vacua parameterized by f1. The real parts of the two moduli
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vanish in this family, Re(S) =Re(U) = 0 and the imaginary parts are given by

Im(U) =

√
5

3

√
− f1
f 0
, Im(S) =

2

9

√
5

3
(−f1)

3
2

√
f 0 . (2.28)

So, we see that both grow in the limit f1 → −∞ and we have parametric

control over these non-supersymmetric solutions. The scalar potential is given

by

VAdS = −
√

3

5

19683

3200(f 0)
3
2 (−f1)

9
2

. (2.29)

Since the moduli and the cosmological constant scale as for the supersymmetric

counter part in subsection 2.4.1 above, one again finds α = 7/18.

The four masses squared for these solutions are given by

m2 =

{
70

3
,
40

3
, 6,−2

3

}
|VAdS| . (2.30)

The smallest of these masses squared, m2 = −2
3
|VAdS|, is above the Breiten-

lohner-Freedman bound m2
BF = −3

4
|VAdS| [64] and this solutions is stable,

although in this case this is not guaranteed by supersymmetry.

We note that the masses squared above again give rise to dual conformal

dimensions ∆ = {10, 8, 6, 2 or 1} that are all integers. This was previously

noticed for non-supersymmetric DGKT solutions in [59, 61] and it would be

interesting to extend the general analysis of [62] to non-supersymmetric AdS

vacua.
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2.4.2 AdS vacua with a large number of D3 branes

Given the fact that supersymmetric fluxes in this setup can contribute to the

tadpole condition in the same way as O3 planes, we do not necessarily need the

latter, however, we will keep them in the models below. We can furthermore

ask whether we can find infinite families of supersymmetric vacua where a flux

contribution in the tadpole can cancel an arbitrarily large number of D3 branes.

This is indeed the case and we will present below two exemplary families

where Nflux → −∞, ND3 → ∞ while the tadpole Nflux + ND3 = NO3/2 = 12

is satisfied. To the best of our knowledge such types of solution have never

been discussed in the flux compactification literature before. We will present

them below and then discuss potential problems and detailed features of these

solutions in more detail below in subsection 2.4.3.

An infinite family with α = 1/2 and ND3 → ∞ We will set the follow-

ing four fluxes to zero f 1 = f0 = h0 = h1 = 0. Then we solve the SUSY

equations DSW = DUW = 0. We find supersymmetric AdS solutions with

Re(S) =Re(U)=0 and the imaginary parts are stabilized at

Im(U) =

√
−3f 0h0 − 9f1h1 +

√
9(f 0h0)2 + 74f1f 0h0h1 + 81(f1h1)2

2f 0h1
, (2.31)

Im(S) =

(
−3f 0h0 + 9f1h

1 +
√
9(f 0h0)2 + 74f1f 0h0h1 + 81(f1h1)2

8h0h1

)
Im(U) .

The tadpole equation (2.5) in this case reduces to

−3h1f1 + h0f
0 +ND3 = 12 . (2.32)
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Keeping h0 and f 0 fixed and choosing a positive h1, we can send f1 → ∞.

This gives rise to an infinite family of solution that requires an ever growing

number of D3 branes to be present, with ND3 ∝ f1. For simplicity we study

the particular example h1 = f 0 = 1. In the f1 → ∞ limit the moduli are

approximately given by

Im(U) ≈
√
5h0
3

, Im(S) ≈ 3
√
5f1

4
√
h0

.

Thus we are at parametrically weak coupling and we can even make Im(U)

very large by choosing an appropriate fixed but arbitrarily large value for h0.

In the limit where f1 goes to infinity we have:

VAdS ≈ −2(h0)
3/2

25
√
5f 2

1

. (2.33)

In the large f1 limit the mass of the light tower (in Planck units) is

m2
tower ∼

1

Im(U)Im(S)2
≈ 16

√
h0

15
√
5f 2

1

, (2.34)

which corresponds to α = 1/2. The masses squared in this limit are

m1±
2 ≈ 1

27
(41± 4

√
181)|VAdS| , m2±

2 ≈ 1

27
(26±

√
181)|VAdS| . (2.35)

The smallest mass squared, m2
1− ≈ 1

27
(41− 4

√
181)|VAdS| ≈ −0.475|VAdS|,

is above the Breitenlohner-Freedman bound m2
BF = −3

4
|VAdS| [64], as required

by supersymmetry.
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An infinite family with α = 3/2 and ND3 → ∞ Lastly, we present an

infinite family that gives rise to a different value of α, while still requiring an

ever growing number of D3 branes. We choose the following fixed flux values

f 1 = 1, f0 = 1, h0 = 0, h1 = −1, h1 = 0, h0 = −1, f 0 = 1 ,

(2.36)

leaving us with f1 as the free parameter. There exist then supersymmetric

AdS vacua in which the moduli take on the following values

Re(U) = 0 , Im(U) =

√
−3− 9f1 +

√
9 + f1(74 + 81f1)√
2

, (2.37)

Re(S) = −1 , Im(S) =

(
3− 9f1 −

√
9 + f1(74 + 81f1)

8

)
Im(U) .

The tadpole equation (2.5) in this case reduces to

3f1 +ND3 = 13 . (2.38)

In the limit f1 → −∞ the above tadpole requires ND3 ∼ −3f1 → ∞. The

value of the scalar potential in this limit is

VAdS ≈ − 729

32768(−f1)
1
2

. (2.39)

The moduli scale for f1 → −∞ like

Im(S) ≈ 8
√−f1
3

, Im(U) ≈ 3
√

−f1 , (2.40)
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and therefore

m2
tower ∼

1

Im(U)Im(S)2
∼ 1

(−f1)
3
2

. (2.41)

This actually means that mtower ∼ |VAdS|
3
2 , i.e. α = 3/2 in this case.

In the limit where f1 → −∞ the masses become

m2 ≈
{
6,

10

3
,
22

7
,− 8

27

}
|VAdS| . (2.42)

The masses squared are above the Breitenlohner-Freedman bound m2
BF =

−3
4
|VAdS| [64], as required by supersymmetry. Interestingly the first two

masses squared give again rise to dual conformal scaling dimensions that

are integers, while the later two give rise to fractional scaling dimensions:

∆ = {6, 5, 11/3, 8/3}.

2.4.3 AdS vacua and the swampland

Many explicit and widely studied constructions of AdS vacua in string the-

ory exhibit the following two features: First, there are usually some light

fields whose masses are comparable (or smaller) than the AdS scale MAdS =

1/RAdS =
√

|VAdS|/3 and this was conjectured to be true in all string compact-

ifications in [57]. Second, the most widely studied AdS vacua in string theory

are of Freund-Rubin type [65, 66] or exhibit similar features, by which we mean

that the size of the internal space RKK is not parametrically smaller than RAdS.

This property was recently studied for example in [67, 68, 69, 70, 71, 61, 72, 73]

and has led to the AdS distance conjecture [63] that states that for infinite

families of AdS vacua with VAdS → 0, there exist a tower of massive states
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with masses that satisfy mtower ∼ |VAdS|α for some positive α of order one.

The strong version of this conjecture says that for supersymmetric AdS vacua

α = 1/2. This conjecture has been refined in [74, 37]. Lastly, it was conjec-

tured that no stable AdS vacua exist at all [38] and all these conjectures have

been used to derive important implications for the standard model of particle

physics [75, 76, 77, 78, 79, 80].

Against the backdrop of the above results, let us start by examining our

infinite families of AdS vacua. First, let us note that in all the above families

of solution the masses of the light fields S and U are always of the same order

as
√
|VAdS|. This means that they are all consistent with the AdS/moduli

conjecture proposed in [57].

Let us now look at the Nflux = 12 solutions, which do not require the

presence of D3 branes and that were discussed above in subsection 2.4.1. The

supersymmetric AdS solutions with α = 7/18 violate the strong version of the

AdS distance conjecture. A refined version of the conjecture was proposed

in [37] where a 4d discrete Zk 3-form gauge symmetry was identified in the

DGKT model and the following refined conjecture was proposed: mtower ∼√
k|VAdS|. Given that our family of solutions is mirror dual to the DGKT

AdS vacua we have a discrete Zf1 symmetry and our solutions indeed satisfy

mtower ∼
√
f1|VAdS|.9

The next family of supersymmetric AdS vacua that we discuss above sat-

9One could in principle work this out explicitly following [37]: A 3-form gauge field
with U(1) gauge group arises from F7 = dC6 wrapping an internal 3-cycle. This 3-form
gauge field couples to the F3 flux component f1 and the complex structure axion Re(U),
which leads to the breaking of the symmetry to Zf1 . However, given the non-geometric
nature of our compactifications things are more involved and it is easiest to simply rely on
mirror symmetry.
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isfies the strong version of the AdS distance conjecture since it has α = 1/2.

This absence of scale separation was also discovered in related IIA models in

[81].

This leaves us with a non-supersymmetric family of AdS solutions that is

also dual to DGKT and that has α = 7/18. This is again consistent with the

refined AdS distance conjecture due to the presence of a discrete symmetry

that is unaffected by a simple sign flip of a flux quanta. Since these solutions

are non-supersymmetric they are predicted to decay perturbatively or non-

perturbatively [38]. Given that we find that the masses squared of S and

U are above the Breitenlohner-Freedman bound [64], it is not clear whether

there is a perturbative instability. Studying all possible non-perturbative decay

channels or trying to identify one explicit non-perturbative decay channel is a

daunting task, so we restrict ourselves here to referring to a related study of

non-supersymmetric AdS vacua in the dual DGKT model [82].

Finally, let us discuss the most interesting families of supersymmetric 4d

N = 1 AdS vacua, namely the new families that allow for the inclusion of

an arbitrarily large number of D3 branes and that are discussed in subsection

2.4.2. While the first one has α = 1/2 and is therefore consistent with the

strong version of the AdS distance conjecture, the second one has α = 3/2,

which means that the light tower is becoming light much more quickly. These

solution can be made consistent with the strong version of the AdS distance

conjecture by demanding α ≥ 1/2, as is already discussed in the original paper

[63]. Nevertheless, given that these vacua with α = 3/2 are different from all

the other solutions which had α = 1/2 or smaller, they are interesting and
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deserve further study.

Since the later two families of supersymmetric AdS vacua have an ever

increasing number of D3 branes one should worry about what that means ex-

actly. In geometric compactifications we would expect an ever growing number

of light open string modes associated with these ND3 branes. Concretely, for

ND3 branes at separate locations the number of light open string degrees of

freedom should grow like ND3. If there is a an actual potential being generated

for the D3 brane position moduli, then it seems likely that they all settle into

the minimum.10 We can of course also always choose to place all the ND3 on

top of each other and since they are mutually BPS there should be no force be-

tween them. This would then lead to a number of light degrees of freedom that

grows even faster like N2
D3. Due to the species bound [83, 84, 85, 86], this leads

to a UV cutoff that goes like ΛUV ∼Mpl/
√
N2

D3 =Mpl/ND3. In our first fam-

ily of AdS vacua one finds that ΛUV ∼ 1/f1 ∼ mtower. So, the UV cutoff from

the species bound scales in the same way as the infinite tower of light modes.

In the second example with α = 3/2 one finds that ΛUV ∼ 1/f1 ∼ m
4
3
tower.

This means that the species bound is even lower than the tower of light states

that comes down rather quickly in this case anyways. Note that the previous

discussion is based on the geometric intuition that might well carry over to

these non-geometric setups. However, the actual open string spectrum for D3

branes in these model was not worked out in the previous literature. We leave

it as an interesting task for the future to check the light open string degrees

10At least in a geometric compactification the moduli space is compact so there are no
runaway directions and for a non-trivial potential there has to exist a global minimum.
Any potential that is generated for the D3 brane position moduli should be small in our
limit of parametrically weak string coupling, so these position moduli should be light.
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of freedoms in these models.

Slightly disconnected from the different AdS conjectures discussed above,

we lastly would like to point out the most interesting and most surprising

feature of these AdS solutions with ND3 → ∞: The fluctuations along the

AdS4 directions of the open string modes on these branes should give rise

to gauge groups with arbitrarily large rank. For example, if we place all

ND3 branes on top of each other one would naively expect an SU(ND3/2)

gauge group.11 String universality in higher dimensions with higher amount of

supersymmetry leads to fairly low ranks for the gauge group, which seems in

stark contrast with the solutions above. This is a by now very active area of

research following the initial work of [87, 88, 89, 90, 91]. However, there is no

argument in the literature that forbids 4d N = 1 (not scale separated) AdS

solutions with an SU(N) gauge group for arbitrarily large N . Furthermore,

there exist families of AdS7 solutions with arbitrarily large gauge group rank

(see for example [92, 93, 94, 95, 96] for early work on this). So, it seems

reasonable that related AdS4 solutions do exist as well in the barely explored

part of the string landscape that we study here. As discussed in section IV

of [63], since the AdS7 solutions are not scale separated one should think

of the gauge group as living on a defect in the higher dimensional AdS7 ×

S4/Zk theory. For this AdS7 case one can increase the gauge group rank by

making k large and this does not lead to a decompactification. However, in our

setup when we increase the rank of the gauge group we send the cosmological

11The tadpole condition in equation (2.5) counts D3 branes in the covering space,
hence there can be at most ⌊ND3/2⌋ freely moving D3 branes in the quotient space. If
ND3 is odd then one D3 brane would necessarily be stuck on top of an O3 plane.
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constant to zero VAdS → 0. The internal space is also not geometric. So,

although our solutions are not scale separated and there is a tower of light

string modes, it is not necessarily natural to think of the D3 branes as defects

in a higher dimensional geometric space. We again add as a word of caution

that the open string spectrum for these D3 branes has not been worked out

and therefore it could hypothetically not contain any massless open strings or

no gauge fields at all. It would be very interesting to check this explicitly and

we hope to do this in the future.

2.5 de Sitter vacua

Lastly, we would like to comment on the existence of dS vacua in this setup.

Given that the Kähler potential can receive string loop corrections, one finds

that non-supersymmetric solutions can cease to exist, if corrections are large.

Thus, unless they are at weak coupling one should not trust non-supersym-

metric solutions. All dS solutions in the models discussed here will have a

string coupling that is not that much smaller than 1 and it is therefore not

clear whether they can be trusted. Nevertheless, we discuss them for the

following two reasons: Firstly, they were recently studied in [30] and in the

dual type IIA picture in [97] and we would like to comment on and extend

these previous results. Secondly, dS vacua are notoriously difficult to construct

in purely classical scalar potentials [98] and only very few explicit solutions

without tachyons exist in the literature [99, 100, 101, 102]. Therefore, it is

interesting to check whether they also exist in our simple models or not.

Unstable dS solutions, i.e. solutions with a tachyonic direction and the
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correct tadpole for the 19 model, Nflux = 12, were found in [30]. Interestingly,

the authors of that paper performed a scan over flux values that do not satisfy

the tadpole condition and they found that stable dS vacua exist for a large

Nflux ∼ O(100). They also noticed that the ratio of stable dS vacua to all

randomly generated vacua grows with Nflux (see figure 9 in [30]). The smallest

Nflux value that was giving rise to a stable dS solution in figure 9 in [30] is

larger than 66 and the smallest, explicitly listed, stable dS solution in table

5 of that paper has Nflux = 74. While this is substantially larger than the

allowed Nflux = 12 in the 19 model, it is not that much larger than the allowed

Nflux = 40 in the 26 model.

2.5.1 Explicit dS solutions

An explicit tachyonic dS extremum with Nflux = 12 was previously found in

[30]. The corresponding fluxes are

f 0 = 4, f 1 = 8, f1 = 7, f0 = −17,

h0 = 1, h1 = 1, h1 = 1 , h0 = −2 . (2.43)

Given that Nflux = 12 this is a solution to the 19 model which does not require

D3 branes since the fluxes cancel the negative O3 plane charge. The moduli

are stabilized at the following values

Re(U) ≈ 0.544 , Im(U) ≈ 1.11 ,

Re(S) ≈ 7.72 , Im(S) ≈ 5.19 . (2.44)
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The value of the scalar potential is given by VdS ≈ 1.72 × 10−4. The masses

squared for the four real scalar fields in the unstable dS extremum are given

by

m2
1 ≈ 0.0226 , m2

2 ≈ 0.0157 , m2
3 ≈ 0.00143 , m2

4 ≈ −0.00119 .

(2.45)

So, there are unstable dS solutions like the one above and, as mentioned

previously, there are also metastable dS vacua, if one ignores the tadpole and

lets Nflux become fairly large. Therefore, one should ask what the lowest

possible value for Nflux is that still gives rise to metastable dS solutions. We

have not been able to answer this question in full generality. However, we

noticed that unstable and metastable dS solutions still exist when we set four

fluxes to zero: f 1 = f0 = h0 = h1 = 0. We then studied the full parameter

space spanned by the remaining four fluxes, while ignoring the tadpole. This

led us to discover infinite families of solutions that transition from AdS to

unstable dS and then to metastable dS, if we vary the fluxes. Within these

family we identified the smallest possibleNflux that has integer quantized fluxes

and gives rise to metastable dS solutions. We find that the only possible value

below NO3/2 = 40 for the 26 model is Nflux = 30.12 For this value there are

four different metastable dS solutions. Three have Im(S) < 1 and are therefore

expected to receive substantial string loop corrections. The fourth one with

12The next larger values of Nflux that give rise to metastable dS solutions in our re-
stricted model with only four non-zero fluxes are Nflux = {59, 60, 61}. This is too large to
be compatible with the tadpole cancellation condition.
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the fluxes

f 0 = 33, f 1 = 0, f1 = −1, f0 = 0,

h0 = 0, h1 = −1, h1 = 0 , h0 = 1 , (2.46)

has a metastable dS vacuum at

Re(U) = 0 , Im(U) ≈ 0.299 ,

Re(S) = 0 , Im(S) ≈ 1.32 . (2.47)

The value of the scalar potential is given by VdS ≈ 0.00524. The masses

squared for the four real scalar fields in the dS minimum are given by

m2
1 ≈ 3.31 , m2

2 ≈ 1.29 , m2
3 ≈ .302 , m2

4 ≈ 0.0999 . (2.48)

Given that Nflux = 30 this is a solution to the 26 model which does require

ND3 = 10 D3 branes. Thus, there should be additional light open string

moduli associated with those D3 branes.

It would be interesting to extend our full analysis beyond the restriction

f 1 = f0 = h0 = h1 = 0 and check whether there exist metastable dS solutions

in these models that are at smaller string coupling and/or that do not require

D3 branes in order to satisfy the tadpole. Due to the mirror symmetry that

relates our above models to models with H3 flux and non-geometric Q flux

there should be also a connection to the metastable dS solution found in 2009

in [103]. Note however, that the latter also required geometric and/or non-
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geometric fluxes in the type IIB duality frame since h1,1 ̸= 0 and thus they are

less controlled then the models we discussed in this paper due to the risk of

large α′ corrections.

2.5.2 dS extrema and the swampland

The very existence of dS vacua in string theory was first questioned in [55, 56]

and a variety of refined dS swampland conjectures were proposed in 2018 in for

example [104, 105, 106, 22, 107]. All of these conjectures forbid metastable dS

solutions. However, given that our metastable dS solution above is expected

to receive substantial string loop corrections, it does not invalidate these con-

jectures. The previously discovered unstable dS extremum of [30] has eϕ ≈ .5

and does not require D3 branes. It is thus in much better shape, however,

given that it is unstable with large |η| ≈ 7 it is not really incompatible with

any of the refined dS swampland conjectures.

It would be interesting to study this simplified model or related more com-

plicated setups to see whether one can find metastable dS vacua at weak

coupling and without D3 branes. While there is no obstruction to this, it was

recently shown in the context of type IIA flux compactifications that dS solu-

tions cannot exist in a parametrically controlled region [108, 109]. While these

papers mostly focused on geometric type IIA flux compactifications they also

discuss more exotic ingredients like non-geometric fluxes which makes them

applicable to all the type IIA flux compactifications that are the mirror dual of

our type IIB setup. Thus, they actually apply also to our non-geometric type

IIB models. This means there should be no parametrically controlled dS solu-
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tions, i.e. no solutions with a free flux parameter that we can send to infinity

to get Im(S) → ∞. However, there is no obvious reason why well-controlled

dS solutions with Im(S) ≫ 1 cannot exist in the setup discussed in this paper.

2.6 Conclusion

In this section we have studied type IIB flux compactifications based on

Landau-Ginzburg orientifolds. We have focused on models that are non-

geometric in the sense that h1,1 = 0, i.e., there are no Kähler moduli. This

barely studied class of models was originally introduced in [26, 29] and allows

for full moduli stabilization. We have revisited these models and discovered a

variety of interesting new families of solutions. We have contrasted these so-

lutions with several swampland conjectures (see [30] for recent related work).

Concretely, we have explored the four dimensional landscape of two models

which are mirror duals to type IIA string theory on rigid Calabi-Yau orien-

tifolds, i.e., Calabi-Yau manifolds with h2,1 = 0. After including H3 and F3

fluxes our models are dual to type IIA flux compactifications with both metric

and non-geometric fluxes, so our analysis goes beyond (and includes) setups

such as DGKT [31]. However, while non-geometric fluxes are not under control

in type IIA supergravity models, we have only regular (and well understood)

H3 and F3 fluxes in the mirror dual Landau-Ginzburg models in IIB. Further-

more, there exists a very powerful non-renormalization theorem that protects

the superpotential from receiving any corrections at all [26]. For simplicity we

have focused here on an isotropic two moduli (SU) model, which is not the

most general setup, but it is already enough to provide us with new interesting
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results that we now sum up.

In this work we have provided additional arguments which point to the ex-

istence of fully stabilized 4d N = 1 Minkowski vacua. While these were origi-

nally discovered in [26, 29], we managed to find infinite families of Minkowski

vacua and we have argued that they are in principle compatible with exist-

ing swampland conjectures like [57, 58]. Furthermore, we have proven that

although the masses do receive corrections, they can never become zero and

there cannot arise any flat directions even when including all unknown correc-

tions.

We have also found several new infinite families of AdS vacua, which are

not connected to the aforementioned family of Minkowski vacua. By taking

some particular flux combinations to infinity (often simply one of the fluxes)

these AdS solutions approach Minkowski space. However, in every example we

have argued using mirror symmetry that there is a tower of states becoming

light with a certain power α ≥ 1/2 of the cosmological constant, i.e. mtower ∼

|VAdS|α. Thus, our results in this regard are consistent with the AdS distance

conjecture [63]. However, since our models are essentially a generalization of

the DGKT models in type IIA, we also identified supersymmetric and non-

supersymmetric infinite families of AdS vacua in a subset of our model, which

have α = 7/18 like the original examples in DGKT [31]. For similar reasons as

discussed in [37] we find agreement of these families with the refined version

of the AdS distance conjecture due to a large discrete 3-form gauge symmetry.

For the nonsupersymmetric infinite family of AdS vacua, our moduli S and U

acquire masses squared above the BF bound. These vacua arise in a regime
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of parametric control but should be unstable according to the conjecture in

[38]. It would be interesting to analyze possible decay modes for our family of

non-supersymmetric AdS solutions.

As explained in [29], due to the non-geometric nature of our models, the

Kähler potential acquires an unfamiliar factor of 4 whose main effect is to

allow supersymmetric fluxes that are not imaginary self-dual. This actually

allows the H3 and F3 fluxes to contribute to the D3/O3 tadpole condition with

either sign. Interestingly, this enables us to construct new infinite families of

supersymmetric AdS4 vacua with an unbounded number of spacetime filling D3

branes. This is possible because the flux contribution to the tadpole can have

the same sign as that of O3 orientifold planes and we can make it arbitrarily

large. This arbitrarily large flux then requires an arbitrarily large number of

D3 branes. Given that all these solutions are consistent with the AdS distance

conjecture there is an infinite tower of massive states becoming light when we

increase the flux and the number of D3 branes at the same time. Furthermore,

it is expected that there are large numbers of massless open string modes that

are associated with those D3 branes, leading to an ever decreasing species

bound ΛUV ∼ Mpl/ND3. Nevertheless, it seems naively possible to get a very

large rank for the gauge group in these 4d N = 1 AdS vacua. It would be very

interesting to study this further and see whether these solutions are indeed

trustworthy or suffer from some inconsistencies.

Finally, we have been able to find a metastable de Sitter vacuum that

requires some number of D3 branes to be present. However, this vacuum does

not arise at weak coupling and there is no argument preventing perturbative
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and non-perturbative corrections from destroying it.

Given the current large amount of activity in the swampland program, it

is very important to keep exploring all different areas of the string landscape,

in particular, areas that are truly stringy in the sense that they do not have

a geometric supergravity description. In this section we have revisited and

extended previous studies of type IIB flux compactifications in the absence of

Kähler moduli, i.e. for h1,1 = 0. We found several intriguing results which

could be natural in this rather unexplored corner of the string landscape and

that deserve further study in the future.

3 On the absence of supergravity solutions for

localized, intersecting sources

The following work in this section is from a paper available for preprint on

arXiv. I completed this work in collaboration with Jacob Bardzell, Kevin

Federico, and Timm Wrase [6].

3.1 Introduction

For more than two decades string theory compactifications with intersecting

D-branes and O-planes have played an important role in string phenomenol-

ogy. On the one hand, intersecting D-brane models are used to obtain particle

physics models that can resemble the supersymmetric standard model and ex-

tension thereof, see for example the review article [110]. On the other hand,

orientifold planes are needed in flux compactifications to partially break super-
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symmmetry and to provide a source of negative energy in the scalar potential,

see for example [111, 112] for early review articles. For flux compactifications

on toroidal orbifolds the orientifold planes generically intersect in the internal

space. So, both settings lead to supergravity equations of motion that have

localized sources that intersect in a non-trivial way.

For such intersecting sources one then has to solve the equations of motion

for the electromagnetic field strengths that are being sourced. This is rather

simple since the equations are linear and the field strengths for each individual

source can simply be added up. However, Einstein’s equations are non-linear

and extremely hard to solve. This has led to the often-employed simplification

of a so-called smearing of the sources over their transverse directions. Math-

ematically speaking one replaces the delta function sources with constants,

which dramatically simplifies the equations of motion. If one does that, one

would then have to try to understand how close such a smeared solution is to

the actual localized solution one started with, which is not an easy question

to answer [113, 114, 115].

One can of course try to solve the equations of motions for intersecting ob-

jects without smearing or by only partially smearing the sources. For example,

one could smear only over the mutual transverse directions of all sources, or

one smears the sources only over directions that are transverse to one and par-

allel to another, etc. This leads to a plethora of possibilities that are discussed

for example in the review article [116] (see also [117] for an earlier review ar-

ticle). The upshot of this endeavor is that fully localized solutions are known

essentially only for parallel sources and in all other cases one has to do at least
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some partial smearing in order to solve the equations of motion. One exception

is the case of two intersecting NS5-branes extending along x0, x1, x2, x3, x4, x5

and x0, x1, x6, x7, x8, x9 respectively (without any mutually transverse direc-

tions), see [118] for a discussion of this solution.

Within the swampland program [119] in string theory many flux com-

pactifications have recently been revisited and scrutinized. In particular, flux

compactifications of massive type IIA give rise to infinite families of weakly

coupled 4d N = 1 AdS vacua [31, 36]. The viability of these solution was

questioned for example by the AdS swampland conjecture [63]. One criti-

cism pertaining to these type IIA flux compactifications is that they are using

smeared orientifolds planes, i.e., the full 10d supergravity equations of mo-

tion have not been explicitly solved [120]. Two papers recently revisited this

problem [121, 122] and found approximate solution with localized sources (see

also [69, 70, 62, 72, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133] for

closely related recent work). These approximate solutions in [121, 122] arose

from an expansion in the large F4-flux quanta and they capture the leading

order backreaction of the localized orientifold planes. However, at this order

the actual effects of the intersection of the O-planes is not taken into account.

It would therefore be extremely important to extend these approximate solu-

tions to higher order. However, given the importance of intersecting sources

in many parts of string theory, a broader approach is also certainly warranted.

In this section we study the equations of motion for two localized Dp-branes

or Op-planes in flat space. We take them to intersect perpendicular with four

Neumann/Dirichlet directions and (p − 2) common directions (often denoted
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Dp ⊥Dp (p−2)). This means the setup preserves 8 supercharges, which allows

us study the SUSY transformations of the fermions. Demanding that these

vanish, as required for a supersymmetric solution, we find that a fully localized

solution cannot exist for a generic diagonal metric Ansatz, even when allowing

for fully generic fluxes. While this might come as a surprise, similar results

were previously obtained. For example, it was shown in [134] that no solution

can exist for localized, intersecting D3/D5-branes.

The outline of the section is as follows: In section 3.2 we review the su-

pergravity solution for a single source. Then we discuss two perpendicularly

intersecting objects in section 3.3 and show that the corresponding equations

of motion have no solution. In section 3.4 we discuss our findings and provide

an outlook on important open questions.

3.2 Review of a single source

In this section we will solve the equations of motion of type II supergravity

coupled to a stack of Dp-branes or an Op-plane in 10d flat space. Such a

solution is textbook material [135] but we review it here to set up our notation

and to remind the reader of some features that will be important in the next

section.
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3.2.1 Type II supergravity

We are using the notation and conventions of [113] but we will change to string

frame. The trace reversed Einstein equations are given by

Rab = −2∇a∂bϕ+
1

4
gab
(
2gcd∂cϕ∂dϕ−∇2ϕ

)
+

1

2
|H|2ab −

1

8
gab|H|2 (3.1)

+
∑
n≤5

e2ϕ
(

1
2(1+δn5)

|Fn|2ab − n−1
16(1+δn5)

gab|Fn|2
)
+

1

2
eϕ
(
T loc
ab − 1

8
gabT

loc

)
.

The sum over n includes all even/odd numbers from 0 to 5 for IIA/IIB. The

δn5 is the Kronecker delta, and squares of q-forms are defined via |A|2αβ =

1
(q−1)!

Aαa2...aqAβ
a2...aq , |A|2 = 1

q!
Aa1...aqA

a1...aq . We restrict to parallel (stacks)

of Dp-branes or Op-planes so that the local stress tensor is given by

T loc
µν = µp gµν δ(p) . (3.2)

Here µp is negative for Dp-branes and positive for an Op-plane.13 δ(p) denotes

a delta function that localizes us on the p + 1 dimensional world volume of

the source. For multiple parallel Dp-branes or Op-planes δ(p) should be un-

derstood as a sum of δ-functions. µ, ν are denoting the directions along the

worldvolume of the source and gµν is the pullback of the spacetime metric gab

to the worldvolume of the source.

13While we do not need the exact values, the charge and tension of a stack of Np

Dp-branes is −Npµ̃p = −Np(2π
√
α′)−p/

√
α′. The charge and tension of an Op-plane

is −2p−5µ̃p in the quotient space. The quantity appearing in our equations is µp =

−Np2κ
2
10µ̃p = −Np(2π

√
α′)7−p for a stack of Dp-branes and µp = 2p−5(2π

√
α′)7−p for

an Op-plane.
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The equation of motion for the dilaton is given by

∇2ϕ = 2gab∂aϕ∂bϕ− 1

2
|H|2 +

∑
n<5

5−n
4
e2ϕ|Fn|2 − p−3

4
eϕµpδ(p) . (3.3)

Plugging the above into equation (3.1), we find that it simplifies to

Rab = −2∇a∂bϕ+
1

2
|H|2ab +

∑
n≤5

e2ϕ
(

1
2(1+δn5)

|Fn|2ab − 1
4(1+δn5)

gab|Fn|2
)

+
1

2
eϕ
(
T loc
ab − 1

2
gabµpδ(p)

)
. (3.4)

In the absence of NS5-branes, the Bianchi identities for the field strengths are

dH = 0 ,

dFn = H ∧ Fn−2 − µ8−nδn+1(8− n) , (3.5)

where δn+1(8 − n) is a shorthand notation for the delta function δ(8 − n)

multiplied by a normalized (n+ 1) volume form transverse to the source.

The equations of motion for the gauge fields in the absence of NSNS sources

are given by

d
(
e−2ϕ ⋆ H

)
= −1

2

∑
n≤10

⋆Fn ∧ Fn−2 ,

d (⋆Fn) = −H ∧ ⋆Fn+2 − (−1)
n(n−1)

2 µn−2δ11−n(n− 2) . (3.6)

The equations of motion for the RR fields can be obtained from the Bianchi

identities in equation (3.5) by using that Fn = (−1)
(n−1)(n−2)

2 ⋆ F10−n.

For supersymmetric solutions one has to require that the SUSY transforma-
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tions of the fermions vanish. This provides a simpler set of first order equations

that often completely fixes the system and thereby automatically solves the

Einstein and dilaton equations. We use the conventions of [136, 111] so that

the transformations of the gravitino and gaugino are given by

δϵψa =

(
∂a +

1

4
ωa +

1

4
HaP

)
ϵ+

1

8
eϕ
∑
n

1

1 + δn5
FnΓaPnϵ ,

δϵλ =

(
∂ϕ+

1

4
HP

)
ϵ+

1

4
eϕ
∑
n

(−1)n(5− n)FnPnϵ . (3.7)

The sum over n includes all even/odd numbers from 0 to 5 for IIA/IIB. As

above a = 0, 1, . . . , 9 is a curved space index and we denote the corresponding

tangent space indices as A,B = 0, 1, . . . , 9. The underlined quantities are

given by

ωa = ωa
ABΓAB , Ha =

1
2
HabcΓ

bc , H = 1
3!
HabcΓ

abc ,

Fn = 1
n!
Fa1...anΓ

a1...an , ∂ϕ = ∂aϕΓ
a ,

(3.8)

where Γa1a2...an = Γ[a1Γa2 . . .Γan], and we also define Γ10 = Γ012...9. Further-

more, we have that

P = Γ10 in IIA, P = −σ3 in IIB, (3.9)

Pn = (Γ10)
n
2 in IIA, Pn =

 σ1 for n+1
2

even,

iσ2 for n+1
2

odd,
in IIB .

The spinor ϵ in type IIA has 32 real components, which could be split into

two 16 component Majorana-Weyl spinors with opposite chiralities: Γ10ϵ1 = ϵ1,
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Γ10ϵ2 = −ϵ2. For IIB ϵ = (ϵ1, ϵ2)
T is a doublet of two 16 component Majorana-

Weyl spinors with positive chirality so that Γ10ϵi = ϵi. The Pauli matrices σi

above act on this doublet.

In the presence of Dp-branes along the first p+1 directions or when doing

the corresponding orientifold projection we break half of the supersymmetry

via the following projection (involving the flat space Γ-matrices)

ϵ2 = Γ01...pϵ1 . (3.10)

3.2.2 A single p-dimensional source

We consider first a single Op-plane or a stack of Dp-branes. These localized

objects are magnetic sources for F8−p due to their Chern-Simons coupling to

Cp+1. So, the only sourced RR-field is F8−p = ⋆Fp+2. We can set all other

RR-fields and the NSNS-flux H equal to zero.

We can choose our coordinates in such a way that the Op-plane or the

stack of Dp-branes extend along xµ with µ = 0, 1, . . . , p and are located at the

origin in the transverse directions xi = 0, for i = p+1, p+2, . . . , 9. This then

preserves an SO(p, 1) × SO(9 − p) symmetry group, where the first SO(p, 1)

factor is enhanced to the full Poincaré group. The most general metric Ansatz

that is compatible with these symmetries is

g = e2A1(r)ηµνdx
µdxν + e2A2(r)δijdx

idxj . (3.11)

Here e2A1(r) and e2A2(r) can only depend on r =
√

(xp+1)2 + . . .+ (x9)2, the
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overall transverse distance from the localized source.

The solution to the equations above in subsection 3.2.1 can be found in the

textbook [135, (10.38)] and we write it as

e−4A1(r) = e4A2(r) = 1− µ̃p

r7−p
, (3.12)

eϕ(r) = eϕ0+(p−3)A1(r) , (3.13)

Cp+1(r) =
(
1− e4A1(r)

)
e−ϕ0 dx0 ∧ dx1 ∧ . . . ∧ dxp . (3.14)

Here eϕ0 is the asymptotic value of the dilaton infinitely far away from the

source. We fixed the metric to be asymptotically Minkowski and we chose

Cp+1(r) to asymptotically vanish. We also defined µ̃p =
(−1)p+1eϕ0Γ( 9−p

2
)

2(7−p)π
9−p
2

µp.

Note that due to the minus sign in equation (3.12) and the fact that µ̃p

is positive for an Op-plane, there is actually a singularity at a finite distance

r = µ̃
1

7−p
p from the Op-plane. This singularity is at a distance that is of the

order of the string length, ls = 2π
√
α′. At this point stringy corrections modify

the equations of motion and remove this singularity.

Since we will need this later, we derive here explicitly the solution to the

non-trivial Bianchi identity (cf. equation (3.5)). We rewrite it using the trans-

verse metric determinant g9−p = e2(9−p)A2 as follows

dF8−p = −µp δ9−p(p)

= −µp δ9−p(p) ⋆9−p 1

= −µp
1

√
g9−p

δ(xp+1)δ(xp+2)...δ(x9)
√
g9−p dx

p+1 ∧ dxp+2 ∧ ... ∧ dx9

= −µp δ(x
p+1)δ(xp+2)...δ(x9) dxp+1 ∧ dxp+2 ∧ ... ∧ dx9

64



= −µp δ̃(r⃗) ⋆̃9−p1 . (3.15)

The tilde indicates that we are working with the flat space metric so there is

no warp factor dependence anymore. The solution is given by

F8−p = ⋆̃9−p d

(
µ̃p

r7−p

)
, (3.16)

since

dF8−p = d⋆̃9−pd

(
µ̃p

r7−p

)
= (−1)p(⋆̃9−p1)∇̃2

(
µ̃p

r7−p

)
= (−1)p+1(⋆̃9−p1)µ̃p

2(7− p)π
9−p
2

Γ(9−p
2
)

δ̃(r⃗)

= (⋆̃9−p1)µp δ̃(r⃗) . (3.17)

Summarizing, we see that it is possible to solve the supergravity equations

exactly for a single source. Similarly, one can solve the equations of motion

for parallel sources that are located not necessarily at r⃗ = 0 but at different

positions r⃗
(α)
0 , α = 1, 2, . . .. In this case we can simply add up the individual

solutions for each source and the solution is given by

e−4A1(r⃗) = e4A2(r⃗) = 1−
∑
α

µ̃
(α)
p∣∣r⃗ − r⃗
(α)
0

∣∣7−p ,

eϕ(r⃗) = eϕ0+(p−3)A1(r⃗) ,

Cp+1(r⃗) =
(
1− e4A1(r⃗)

)
e−ϕ0 dx0 ∧ dx1 ∧ . . . ∧ dxp . (3.18)
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Note that the Bianchi identities in equation (3.5) are linear and we can always

simply add up the field strengths for any arbitrarily complicated configuration

of sources. However, it is highly unusual, and special to this case of parallel

sources, that the non-linear general relativity equation in (3.1) is also solved

if we simply add up solutions.

3.3 Two perpendicularly intersecting sources

In this section we want to solve the equations of motion for two perpendicularly

intersecting p-dimensional sources in flat space. These could be either two Op-

planes or two stacks of Dp-branes or one of each. We restrict to 1 ≤ p ≤ 6

so that we can have four directions that are along one of the objects and

transverse to the other and there is at least one common transverse direction.

The configuration that preserves eight supercharges in flat space is shown

below.

Directions 0 ... p− 2 p− 1 p p+ 1 p+ 2 p+ 3 ... 9

First source × × × × × - - - - -

Second source × × × - - × × - - -

The above intersecting sources respect an SO(p− 2, 1)×SO(2)×SO(2)×

SO(7 − p) symmetry.14 The first SO(p − 2, 1) group is actually enhanced

to the full Poincaré group. This symmetry group together with the spe-

cific source configuration shown above allows the metric (warp factors) to

only depend on ρ1 =
√

(xp+1)2 + (xp+2)2, ρ2 =
√

(xp−1)2 + (xp)2 and ρT =

14For the special case of p = 1 there are no directions common to both sources and
therefore no SO(p− 2, 1) factor. However, this does not affect our reasoning.
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√
(xp+3)2 + ...+ (x9)2. We make the following diagonal metric Ansatz

ds2 = e2A1(ρ1,ρ2,ρT )ηµνdx
µdxν + e2A2(ρ1,ρ2,ρT )

(
(dxp−1)2 + (dxp)2

)
(3.19)

+ e2A3(ρ1,ρ2,ρT )
(
(dxp+1)2+(dxp+2)2

)
+e2A4(ρ1,ρ2,ρT )

(
(dxp+3)2 + ...+(dx9)2

)
,

with µ, ν = 0, 1, . . . , p − 2. Poincaré invariance ensures that the first part of

the metric is generic and there cannot be any off-diagonal terms like for ex-

ample gµρ1dx
µdρ1 since there are no invariant constant vectors of SO(p−2, 1).

Non-constant vectors like ηµνx
µdxν are forbidden by translational invariance.

However, in general there could be terms involving dρ1dρT , etc. and also terms

involving the corresponding angles dθ1 and dθ2 when going to polar coordi-

nates, (xp+1, xp+2) → (ρ1, θ1) and (xp−1, xp) → (ρ2, θ2). Here we are restricting

to a diagonal metric to make the problem tractable. Since the source setup

is invariant under the exchanges xp−1 ↔ xp and xp+1 ↔ xp+2 we can impose

the same symmetry on the metric Ansatz, making equation (3.19) the most

general diagonal metric Ansatz compatible with the source configuration.

We choose to work with Cartesian coordinates that have the following

property that will be important below

∂xp−1e2An(ρ1,ρ2,ρT ) =
xp−1

ρ2
∂ρ2e

2An(ρ1,ρ2,ρT ) ,

∂xpe2An(ρ1,ρ2,ρT ) =
xp

ρ2
∂ρ2e

2An(ρ1,ρ2,ρT ) ,

∂xp+1e2An(ρ1,ρ2,ρT ) =
xp+1

ρ1
∂ρ1e

2An(ρ1,ρ2,ρT ) ,

∂xp+2e2An(ρ1,ρ2,ρT ) =
xp+2

ρ1
∂ρ1e

2An(ρ1,ρ2,ρT ) . (3.20)
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For the dilaton the most general Ansatz is ϕ = ϕ(ρ1, ρ2, ρT ). We also define

the transverse coordinates for the two O-planes

r1 =
√
ρ21 + ρ2T =

√
(xp+1)2 + (xp+2)2 + (xp+3)2 + ...+ (x9)2 ,

r2 =
√
ρ22 + ρ2T =

√
(xp−1)2 + (xp)2 + (xp+3)2 + ...+ (x9)2 . (3.21)

Using the metric Ansatz as given in equation (3.19), we seek the solution

for the above source configuration. We first solve the linear Bianchi identity

(cf. equation (3.5))

dF8−p = −µ(1)
p δ

(1)
9−p(p1)− µ(2)

p δ
(2)
9−p(p2) . (3.22)

We solve the above equation by writing F8−p = F
(1)
8−p + F

(2)
8−p + F

(c)
8−p, where

dF
(c)
8−p = 0 is closed15 and

dF
(1)
8−p = −µ(1)

p δ
(1)
9−p(p1) and dF

(2)
8−p = −µ(2)

p δ
(2)
9−p(p2) . (3.23)

So, this manifests the linearity of the electromagnetic equations and allows us

to simply add up the two fields strengths for the two sources, i.e., we can add

up the results for two single sources in flat space. The solution for the first

source is (cf. equation (3.16))

F
(1)
8−p = ⋆̃

(1)
9−pd

(
µ̃
(1)
p

r7−p
1

)
. (3.24)

15We are indebted to Daniel Junghans for pointing out this additional closed piece in
F8−p.
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From equation (3.24) we can read off the non-zero components of F
(1)
8−p

F
(1)
8−p =⋆̃

(1)
9−pd

(
µ̃
(1)
p

r7−p
1

)

=− µ̃
(1)
p (7− p)

r8−p
1

⋆̃
(1)
9−pdr1

=− µ̃
(1)
p (7− p)

r9−p
1

⋆̃
(1)
9−p

(
xp+1dxp+1 + xp+2dxp+2 + ...+ x9dx9

)
=
µ̃
(1)
p (7− p)

r9−p
1

(
xp+1dxp+2 ∧ dxp+3 ∧ ... ∧ dx9

− xp+2dxp+1 ∧ dxp+3 ∧ ... ∧ dx9

+ ...

+ (−1)p
(
x9dxp+1 ∧ dxp+2 ∧ ... ∧ dx8

))
. (3.25)

Explicitly we find the following component that we will use below

(
F

(1)
8−p

)
(p+1)(p+3)(p+4)...9

= − µ̃
(1)
p (7− p)

r9−p
1

xp+2 . (3.26)

F
(2)
2 can be obtained by exchanging xp+1, xp+2 with xp−1, xp in equation (3.25).

In particular, it has the component

(
F

(2)
8−p

)
(p−1)(p+3)(p+4)...9

= − µ̃
(2)
p (7− p)

r9−p
2

xp . (3.27)

Note that the above F8−p = F
(1)
8−p + F

(2)
8−p + F

(c)
8−p is the most generic and exact

solution to the Bianchi identity in equation (3.5). It is independent of our

particular metric Ansatz since the warp factors do not appear.
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3.3.1 The Einstein and dilaton equations

Now we can look at Einstein’s equations from equation (3.1) that reduce to

Rab =− 2∇a∂bϕ+
1

4
gab(2g

cd∂cϕ∂dϕ−∇2ϕ) (3.28)

e2ϕ
(

1

2(1 + δ(8−p))5)
|F8−p|2ab −

7− p

16(1 + δ(8−p)5)
gab|F8−p|2

)
+

1

2
eϕ(T loc

ab − 1

8
gabT

loc) .

Calculating the Ricci scalar for the above metric Ansatz in equation (3.19) we

find for a = p− 1, b = p+ 1 (essentially from equation (3.20) but also via an

explicit computation) that

R(p−1)(p+1) = xp−1xp+1fR(ρ1, ρ2, ρT ) , (3.29)

where fR(ρ1, ρ2, ρ3) is a specific function that one can calculate from the above

metric Ansatz in equation (3.19). The important point is that the entire

R(p−1)(p+1) component of the Ricci tensor is proportional to derivatives with

respect to xp−1 and xp+1. This then leads (cf. equation (3.20)) to the above

prefactor xp−1xp+1 in front of fR(ρ1, ρ2, ρ3).

Likewise we find that the dilaton Ansatz ϕ = ϕ(ρ1, ρ2, ρT ) leads to

−2∇p−1∂p+1ϕ = xp−1xp+1fϕ(ρ1, ρ2, ρT ) . (3.30)

Let us assume first that the F8−p-flux is simply the superposition of the fluxes

from the two single sources as might be expected due to the linearity of the
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corresponding equation (3.22). That means we are setting the closed piece

F
(c)
8−p to zero in the F8−p-flux. This also means that neither the other RR-

fluxes nor the H-flux are sourced.

All non-diagonal entries of the metric in equation (3.19) vanish and the

source terms vanish away from the sources as well. Therefore, the off-diagonal

entry of the Einstein equation (3.28) for (ab) = (p− 1 p+ 1) is given by

Rp−1 p+1 = −2∇p−1∂p+1ϕ+
1

2
e2ϕ|F8−p|2p−1 p+1 (3.31)

xp−1xp+1fR(ρ1, ρ2, ρT ) = xp−1xp+1fϕ(ρ1, ρ2, ρT )

+ e2ϕ
1

2(p− 1)!

F8−p,p−1 a1...a7−pg
a1b1 ... ga7−pb7−pF8−p,p+1 b1...b7−p

= xp−1xp+1fϕ(ρ1, ρ2, ρT )

+ e2ϕ
1

2
F8−p,p−1 p+3...9g

p+3p+3... g99F8−p,p+1 p+3...9

= xp−1xp+1fϕ(ρ1, ρ2, ρT )

+ e2ϕ
1

2
µ̃(2)
p (7− p)

xp

r29−p
e−2(7−p)A4µ̃(1)

p (7− p)
xp+2

r19−p
.

We rewrite this as

xp−1xp+1(fR − fϕ) = xpxp+2

(
e2ϕ−2(7−p)A4

2

µ̃
(1)
p (7− p)

r19−p

µ̃
(2)
p (7− p)

r29−p

)
. (3.32)

The above equation has to be true for all xp−1, xp, xp+1, xp+2. In particular,

the left-hand-side is odd under the sign flips xp−1 → −xp−1 or xp+1 → −xp+1

and even under the sign flips xp → −xp or xp+2 → −xp+2. Since ϕ, A4, r1 and
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r2 are all functions of (ρ1, ρ2, ρT ), we find that the symmetry properties of the

right-hand-side are exactly opposite. This means the left- and right-hand-side

have to vanish independently. Since the dilaton and the component e2A4 of

the diagonal metric cannot vanish everywhere we conclude that the vanishing

of the right-hand-side implies that

µ̃(1)
p µ̃(2)

p = 0 . (3.33)

The above equation implies that one of the two sources is absent. Or, if

we insist that both of the intersecting sources are present, we have shown

that there is no solution to the supergravity equations of motion for our two

intersecting localized sources with our generic diagonal metric Ansatz. To

make this proof fully general, we have to allow for the closed piece F
(c)
8−p as

solution to the Bianchi identity (3.22). Then this closed form piece can source

the H-flux and other RR-fluxes via the equations of motion for the fluxes given

above in (3.6). Thus, in order to give a full proof we have to actually allow

for all possible RR-fluxes and the most generic H-flux compatible with our

SO(p− 2, 1)× SO(2)× SO(2)× SO(7− p) symmetry group. This makes the

Einstein and dilaton equations too complicated to analyze directly. Therefore,

in the next subsection we study the spinor equations and show that there is

indeed no supersymmetric localized solution to the supergravity equations of

motion.
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3.3.2 Spinor equations for the most generic fluxes

Let us discuss the most generic forms that are invariant under the assumed

symmetry group SO(p−2, 1)×SO(2)×SO(2)×SO(7−p) for the backreacted

solution. Since the first factor SO(p − 2, 1) is enhanced to the full Poincaré

group, the only invariant forms are the always present 0-form and its Hodge

dual which is the volume form that is proportional to dx0 ∧ dx1 ∧ . . . ∧ dxp−2.

The other three spaces all have an SO(n) symmetry so we can discuss them

together: In addition to the 0-form and the dual volume form, there are two

more forms. There is one 1-form which is d acting on the radial coordinates,

dρ1, dρ2, dρT in our case, and then there is the dual (n−1)-form. For an SO(2)

symmetry this would be another 1-form, which we denote dθ1 and dθ2, where

(ρi, θi) are simply polar coordinates. For the SO(7−p)-symmetry we would go

to spherical coordinates (ρT , θ
(1)
T , θ

(2)
T , . . . , θ

(6−p)
T ) and an invariant (6−p)-form

is given by sin(θ
(1)
T )5−p sin(θ

(2)
T )4−p . . . sin(θ

(4−p)
T )2 sin(θ

(5−p)
T ) dθ

(1)
T ∧ θ(2)T ∧ . . . ∧

θ
(6−p)
T . Lastly, we note that all functions like the metric, the warp factors, the

dilaton or the prefactors that appear in front of the forms when spelling out

the fluxes, can only depend on ρ1, ρ2, ρT due to the preserved symmetry.

Let us give a concrete example to clarify the above discussion. We choose

p = 6 and want to find a localized solution that describes two O6-planes

(or D6-branes) that extend along the directions (x0, x1, x2, x3, x4, x5, x6) and

(x0, x1, x2, x3, x4, x7, x8), respectively. We take them to be localized at the ori-

gin in their transverse spaces. We assume that the metric is given by equation

(3.19) above for p = 6. We take all warp factors and the dilaton to be func-
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tions of the three variables

ρ1 =
√

(x5)2 + (x6)2 , ρ2 =
√

(x7)2 + (x8)2 , ρT = x9 . (3.34)

We then make the most generic flux Ansatz that is compatible with the sym-

metry group SO(4, 1)× SO(2)× SO(2)

F2 = F
(1)
2 + F

(2)
2 + F

(c)
2 ,

F
(1)
2 = ⋆̃

(1)
3 d

(
µ̃
(1)
6√

ρ21 + ρ2T

)
,

F
(2)
2 = ⋆̃

(2)
3 d

(
µ̃
(2)
6√

ρ22 + ρ2T

)
,

F
(c)
2 =

10∑
i=1

f
(i)
2 (ρ1, ρ2, ρT )Y

2
i ,

F4 =
5∑

i=1

f
(i)
4 (ρ1, ρ2, ρT )Y

4
i ,

H =
10∑
i=1

h(i)(ρ1, ρ2, ρT )Y
3
i . (3.35)

Here the f
(i)
2 , f

(i)
4 , h(i) are unknown functions and the Y 2

i , Y
3
i , Y

4
i denote the

invariant and closed forms that form a basis of invariant forms. Since the

f
(i)
2 (ρ1, ρ2, ρT ) are generic functions and the Y 2

i include for example dθ1 ∧ dθ2,

this Ansatz does not yet satisfy dF
(c)
2 = 0. We furthermore allow for a constant

and non-zero F0. The two 16 component spinors that are present in 10d flat

space are constrained due to the presence of the O6-planes (or D6-branes) and

have to satisfy

ϵ2 = Γ0123456ϵ1 ,
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ϵ2 = Γ0123478ϵ1 . (3.36)

This breaks one quarter of the supersymmetry and leaves us with 8 real in-

dependent spinor components. The fully backreacted solution should preserve

these eight supercharges. We therefore assume that these eight spinors are

independent (and also functions of (ρ1, ρ2, ρT )).

We now demand that there is a supersymmetric solution and therefore

demand that the spinor transformations in equation (3.7) satisfy δϵψa = δϵλ =

0. This leads directly to F0 = F4 = H = 0, while F2 has to be of the following

form

F2 = ⋆̃
(1)
3 d

(
µ̃
(1)
6√

ρ21 + ρ2T

)
+ ⋆̃

(2)
3 d

(
µ̃
(2)
6√

ρ22 + ρ2T

)

+f
(3)
2 (ρ1, ρ2, ρT )dθ1 ∧ dρ1 + f

(8)
2 (ρ1, ρ2, ρT )dθ1 ∧ dρT

+f
(7)
2 (ρ1, ρ2, ρT )dθ2 ∧ dρ2 + f

(9)
2 (ρ1, ρ2, ρT )dθ2 ∧ dρT

=

(
f
(3)
2 (ρ1, ρ2, ρT ) +

µ6,1ρ1ρT

(ρ21 + ρ2T )
3
2

)
dθ1 ∧ dρ1

+

(
f
(8)
2 (ρ1, ρ2, ρT )−

µ6,1ρ
2
1

(ρ22 + ρ2T )
3
2

)
dθ1 ∧ dρT

+

(
f
(7)
2 (ρ1, ρ2, ρT ) +

µ6,2ρ2ρT

(ρ21 + ρ2T )
3
2

)
dθ2 ∧ dρ2

+

(
f
(9)
2 (ρ1, ρ2, ρT )−

µ6,2ρ
2
2

(ρ22 + ρ2T )
3
2

)
dθ2 ∧ dρT . (3.37)

Recall that we have made a fully generic Ansatz for the closed piece in F2 and

we have not yet imposed that it is actually closed.
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Let us briefly discuss the above solution in equation (3.37). We see that

without imposing the Bianchi identities and equations of motions for the fluxes

we can only have a very limited number of flux components f
(i)
2 (ρ1, ρ2, ρT ) in

addition to the source terms. These extra flux components actually combine

with the source terms which makes perfect sense. For example, we know

that there are solutions for a single source and we can for example use the

f
(i)
2 (ρ1, ρ2, ρT ) to remove one of the sources and then we actually reproduce the

result for a single source discussed above in subsection 3.2.2. Here however,

we are interested in solutions that describe two intersecting sources and we

therefore do not want to cancel any source terms. We therefore proceed to

study the remaining equations of motion.

We want that the source terms containing µ6,1 and µ6,2 give rise to the

delta function sources and that the rest is closed (see the discussion around

equation (3.22) above). Thus, we have to demand that dF2 = 0 away from the

source and therefore we find that

∂ρ2f
(3)
2 (ρ1, ρ2, ρT ) = 0 ,

∂ρ1f
(7)
2 (ρ1, ρ2, ρT ) = 0 ,

∂ρ2f
(8)
2 (ρ1, ρ2, ρT ) = 0 ,

∂ρ1f
(9)
2 (ρ1, ρ2, ρT ) = 0 . (3.38)

Additionally, the spinor equations in (3.7) did not only set most of the flux

components to zero but they also fixed the first derivatives of the warp factors

via the spin connection term in δϵψa = 0 and the first derivatives of the dilaton
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via δϵλ = 0. Concretely, they fix ∂ρ1e
A2(ρ1,ρ2,ρT ) and ∂ρ2e

A2(ρ1,ρ2,ρT ) to be two

different functions of the warp factors, the dilaton, the f
(i)
2 (ρ1, ρ2, ρT ) and the

source terms

∂ρ1e
A2(ρ1,ρ2,ρT ) = F1(e

Ai , eϕ, f
(i)
2 , ρ1, ρ2, ρT ) ,

∂ρ2e
A2(ρ1,ρ2,ρT ) = F2(e

Ai , eϕ, f
(i)
2 , ρ1, ρ2, ρT ) . (3.39)

Now we can impose the conditions above in equation (3.38) and the following

consistency condition

0 = ∂ρ2∂ρ1e
A2(ρ1,ρ2,ρT ) − ∂ρ1∂ρ2e

A2(ρ1,ρ2,ρT ) (3.40)

= ∂ρ2F1(e
Ai , eϕ, f

(i)
2 , ρ1, ρ2, ρT )− ∂ρ1F2(e

Ai , eϕ, f
(i)
2 , ρ1, ρ2, ρT )

=
eA2−2A4+2ϕ

2ρ1ρ2

(
f
(8)
2 (ρ1, ρT )−

µ6,1ρ
2
1

(ρ21 + ρ2T )
3
2

)(
f
(9)
2 (ρ2, ρT )−

µ6,2ρ
2
2

(ρ22 + ρ2T )
3
2

)
.

Since the prefactor in the above equation cannot vanish everywhere, we see

that

(
f
(8)
2 (ρ1, ρT )−

µ6,1ρ
2
1

(ρ21 + ρ2T )
3
2

)(
f
(9)
2 (ρ2, ρT )−

µ6,2ρ
2
2

(ρ22 + ρ2T )
3
2

)
= 0 . (3.41)

This shows that there is no fully localized solution with our generic diagonal

metric Ansatz. The above equation requires us to at least partially remove (or

smear) one of the sources.

Let us pursue the above further by setting without loss of generality

f
(9)
2 (ρ2, ρT ) =

µ6,2ρ
2
2

(ρ22 + ρ2T )
3
2

. (3.42)
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This cancels the last term in F2 above in equation (3.37) and the closure

dF2 = 0 then imposes the additional constraint that

f
(7)
2 (ρ1, ρ2, ρT ) =

µ6,2ρ
2
2

(ρ22 + ρ2T )
3
2

+ f(ρ2) , (3.43)

where f(ρ2) is an undetermined function. With that F2 becomes

F2 =

(
f
(3)
2 (ρ1, ρT ) +

µ6,1ρ1ρT

(ρ21 + ρ2T )
3
2

)
dθ1 ∧ dρ1

+

(
f
(8)
2 (ρ1, ρT )−

µ6,1ρ
2
1

(ρ22 + ρ2T )
3
2

)
dθ1 ∧ dρT

+f(ρ2)dθ2 ∧ dρT . (3.44)

So, we have effectively removed the second source completely. Actually the

equations of motion for F2 fix f(ρ2) = cρ2 and using that in the solution to

the spinor equations, we find that all derivatives of the warp factors and the

dilaton with respect to ρ2 vanish: ∂ρ2e
Ai = ∂ρ2e

ϕ = 0. This is indicative of a

smeared source and we indeed see from

dF2 ⊃ d(f(ρ2)dθ2 ∧ dρT ) = c dρ2 ∧ dθ2 ∧ dρT , (3.45)

that we can have at best a smeared second source in which the delta function

source (see equation (3.22)) is replaced with the constant c. Thus, in addi-

tion to proving the absence of a solution with two fully localized sources, our

equations pass consistency checks and do not forbid solutions with partially

smeared sources.
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We have repeated the above analysis for two intersecting sources with p =

1, 2, 3, 4, 5 and explicitly reproduced the same absence of localized solutions.

This might have been expected from T-duality invariance of type II string

theory, however, there is an important subtlety: If we have an Op-plane (or a

Dp-brane) in flat space, then we can T-dualize along any of its worldvolume

directions. The reason is that the dilaton, metric and everything else does not

depend on these coordinates. This leads to an O(p− 1)-plane (or a D(p− 1)-

brane) that is actually smeared over the direction we T-dualized. Similarly, we

cannot T-dualize along a transverse direction since these are not isometries.

We would have to first smear the source along this transverse direction and

then we can T-dualize to get a (p+1)-dimensional source. So, strictly speaking

we cannot use T-duality invariance in the strict sense and therefore we checked

the equations for each p = 1, 2, 3, 4, 5, 6 explicitly.

3.4 Discussion and Outlook

The above surprising result, that shows the absence of localized supergravity

solutions for intersecting objects in flat space, raises many important questions:

Does the result also hold for a generic non-diagonal metric? Can such setups

be described explicitly in the full string theory? Does our result carry over to

compactifications? In this subsection we will briefly discuss these questions.

However, we will not be able to answer them and leave many avenues for

further research.

First it seems clear that intersecting sources can arise in string theory and

corresponding solutions will exist. Our two intersecting Op-planes can arise
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from a single orientifold projection combined with a Z2 orbifold of flat space.

For example, we can do an orientifold involution consisting of the worldsheet

parity operator Ωp and a spatial involution that flips the signs of x7, x8, x9.

This leads to a single O6-plane localized at x7 = x8 = x9 = 0. Doing a Z2

orbifold that flips the signs of x5, x6, x7, x8 then introduces a second O6-plane

localized at x5 = x6 = x9 = 0. In principle one should be able to study the

full string theory on such an orientifolded orbifold of flat space. Supergravity

as a low energy approximation of the full string theory might simply not allow

for a solution because we neglect higher derivative corrections, string loop

corrections and/or did not include the full spectrum of the string states.

For the case of intersecting stacks of D-branes in particular we neglected all

the open strings on the D-branes. These open strings give rise to gauge theories

and one can study the dynamics of these gauge theories. It is possible that

the gauge dynamics leads to a (partial) smearing of the D-branes and partially

smeared solutions do certainly exist, see for example [137, 138, 139, 140]. Some

of these papers also discuss the near core (near horizon) limit of these brane

setups and manage to find localized solutions in this limit. For the particular

case of two intersecting D6-branes or O6-planes one can also try to lift things

to M-theory and try to find a solution in 11d supergravity. Such a lift of two

intersecting D6-branes was discussed in [141].

Let us mention that it is known that multiplying together the two har-

monic functions (warp-factors) for the two sources cannot solve the localized

equations of motion but rather requires smearing (see for example [137, eqns.

(1)-(2)] and references therein). We reproduce the same result with a generic
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diagonal metric Ansatz. A loophole to our findings is exploited by the only

(to us) known fully localized supergravity solution of two intersecting branes

[118]. The two intersecting NS5 branes in this setup have no mutually trans-

verse direction since they extend along 012345 and 016789. In our equations

we crucially use the fact that there are 7 − p > 0 transverse directions.16 It

would be interesting to study further brane setups without mutually trans-

verse directions.

We crucially assumed here that there is an unbroken SO(p−2, 1)×SO(2)×

SO(2)×SO(7−p) symmetry group. This seems to be justified for static objects

or in the probe limit but it is possible that the dynamics of the D-branes

(or the dynamics of O-planes at strong coupling) could break this symmetry

group. It would therefore be interesting to see whether one can relax the

requirement of this large unbroken symmetry group. Here let us note that

[134] discusses the D3/D5-brane intersection, where the D5 brane extends

along x0, x1, x2, x3, x4, x5 and the D3-brane along x0, x1, x2, x6. In this case

the authors only assume the presence of an SO(2, 1) Poincaré group and an

SO(3)-symmetry group in the mutually transverse x7, x8, x9 directions. While

solving the equations of motion they discover the necessary presence of an

extra SO(3)-symmetry acting on the x3, x4, x5 directions, before they find

that no localized solution exists. Thus, it is conceivable that our result might

still hold even if we were to give up the SO(2) × SO(2) symmetry and/or

allow for a non-diagonal metric along the corresponding directions. It would

16Recall that here we restrict ourselves to 1 ≤ p ≤ 6. It thus might be possible to write
down fully localized solutions for p = 7 but such setups are better described in F-theory
[142].
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be interesting to check this explicitly in particular given that the orbifold blow

ups discussed recently in [132] would break this SO(2)× SO(2) symmetry. In

our setup one could glue in a P1 to remove the orbifold singularity and this

would correspond to giving a non-zero vev to the Kähler modulus that controls

its size. However, it is unclear to us that this would happen dynamically and

what could fix the scale of a non-zero vev for the Kähler modulus.

A different approach to solving the equations of motion for intersecting

sources was pursued in [143, 144]. In those papers it is required that the sources

preserve a certain amount of supersymmetry and then the constraints from the

equations of motion and the vanishing of the supersymmetry transformations

is being studied. The sources are then derived from the equations of motion

rather than being specified from the outset. This seems to allow for localized

solutions that asymptotically become flat space, but not for our specific set of

two perpendicularly intersecting sources.17

It is a far stretch to go from our setup of two intersecting sources in flat

space to a full compactification of 10d supergravity like the massive type IIA

flux compactifications discussed in [31, 36]. However, we note here that the

two papers [121, 122] only worked to first order in the sources, i.e., in our

language to the first order in the µ̃p. This means that contradictions like

equations (3.33) or (3.41) above that are quadratic would not be visible when

working at linear order. It would be therefore of great importance to extend

the work of [121, 122] to higher order. Already in the simplest case of a toroidal

compactification we note that the preserved symmetry group gets dramatically

17We are indebted to Iosif Bena for bringing these references to our attention and dis-
cussing their consistency with our results.
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reduced and it is conceivable that then localized solutions exist. We plan to

study this as well as a generic off-diagonal metric Ansatz in the future.

A Details of the dual type IIA models

A.1 Kähler potential

As mentioned in the text the way in which one derives the formula for the

Kähler potential is by using mirror symmetry. The usual formula for the

Kähler potential in Type IIA flux compactifications on Calabi-Yau manifolds

is [35]

K = −log

[
4

3

∫
J ∧ J ∧ J

]
− 2log

[
2

∫
Re (CΩ3) ∧ ⋆Re (CΩ3)

]
, (A.1)

where J is the Kähler form and Ω the holomorphic 3-form. The volume is given

by vol6 =
1
6

∫
J ∧J ∧J . The so-called 4d dilaton is defined via eD = eϕ/

√
vol6

and CC
∫
Ω∧Ω = e−2D. The supergravity fields are introduced by expanding

the complexified Kähler form and the complexified holomorphic 3-form [35]

Jc = B2 + iJ =
h(1,1)∑
a=1

T aωa , (A.2)

Ωc = C3 + 2iRe (CΩ3) = Sα0 +
h(2,1)∑
k=1

Ukαk . (A.3)

When h(2,1) = 0 there are no complex structure moduli. We can always write

the volume in terms of the triple intersection number κabc =
∫
ωa∧ωb∧ωc of the
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Calabi-Yau manifold, which leads (up to a constant) to the Kähler potential

K = −log

[
i

6
κabc

(
T a − T

a) (
T b − T

b
) (
T c − T

c)]− 4log

[
− i

2
√
2

(
S − S

)]
.

(A.4)

Mirror symmetry simply exchanges the h1,1 Kähler moduli T a with the

h2,1 complex structure moduli Uk. Since we have no complex structure moduli

the mirror dual Kähler potential is the one given above in equation (2.3),

if one restricts to the torus bulk moduli and sets them all equal [29]. The

superpotential can be derived in the same way but was also argued for directly

in type IIB in [26].

A.2 KK towers

In this section, following the original work [31], we quickly review how to derive

the KK scale in type IIA flux compactifications. Using mirror symmetry we

can then derive the mass scale for a light tower in the non-geometric type

IIB flux compactifications discussed in this paper. As on the type IIA side,

this is not proven to be always the lightest tower but no other lighter tower is

expected to arise in the type IIA side, so presumably the same is true on the

type IIB side. Also, our infinite families of AdS vacua are all consistent with

the refined AdS distance conjecture [63, 37], which means that this is likely

the relevant tower of massive states.

The KK scale in type IIA flux compactifications is controlled by the internal

volumes of 2-cycles, Im(T a). In the isotropic limit where we set the three bulk

2-cycles of the torus equal we will simply use Im(T ) to describe this volume.
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So, we know that m2
KK scales like 1/Im(T ). Compactifying from 10d to 4d

and then going to 4d Einstein frame introduces an extra factor and the correct

KK scale is given by

m2
KK ∼ 1

vol6e−2ϕIm(T )
=

1

(Im(S))2Im(T )
. (A.5)

Again using mirror symmetry, we find a dual massive tower with masses that

scale like

m2
tower ∼

1

(ImS)2 Im(U)
. (A.6)
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