

Λ(1405) Spectroscopy via the In-flight $d(K^-, n)$ Reaction at the J-PARC K1.8BR

Shingo KAWASAKI¹, Shu AIKAWA^{11,15}, Shuhei AJIMURA², Takaya AKAISHI¹,
Hidemitsu ASANO¹¹, George BEER³, Carolina BERRUCI⁴, Mario BRAGADIREANU⁶,
Paul BUEHLER⁴, Luigi BUSSO^{7,8}, Michael CARGNELLI⁴, Seonho CHOI⁵,
Catalina CURCEANU⁹, Shun Enomoto¹⁰, Hiroyuki FUJIOKA¹⁵, Yuya FUJIWARA¹³,
Tomokazu FUKUDA¹⁴, Carlo GUARALDO⁹, Tadashi HASHIMOTO²¹, Ryugo S. HAYANO¹³,
Toshihiko HIRAIWA², Masami IIO¹⁰, Mihai ILIESCU⁹, Kentaro INOUE², Yosuke ISHIGURO¹²,
Takashi ISHIKAWA¹³, Shigeru ISHIMOTO¹⁰, Kenta ITAHASHI¹¹, Masaaki IWAI¹⁰,
Masahiko IWASAKI^{11,15}, Koki KANNO¹³, Kazuma KATO¹², Yuko KATO¹¹, Paul KIENLE¹⁶,
Yusuke KOMATSU¹⁰, Hirofumi KOU¹⁵, Yue MA¹¹, Johann MARTON⁴, Yasuyuki MATSUDA¹⁷,
Yutaka MIZOI¹⁴, Ombretta MORRA⁷, Tomofumi NAGAE¹², Hiroyuki NOUMI²,
Hiroaki OHNISHI²³, Shinji OKADA¹¹, Zhadyra OMAR², Haruhiko OUTA¹¹,
Kristian PISCICCHIA⁹, Yuta SADA², Atsushi SAKAGUCHI¹, Fuminori SAKUMA¹¹,
Masaharu SATO¹⁰, Alessandro SCORDO⁹, Michiko SEKIMOTO¹⁰, Hexi SHI⁹,
Kotaro SHIROTORI², Diana SIRGHI^{9,6}, Florin SIRGHI^{9,6}, Ken SUZUKI⁴, Shoji SUZUKI¹⁰,
Takatoshi SUZUKI¹³, Kiyoshi TANIDA²¹, Hideyuki TATSUNO²², Atsushi O. TOKIYASU²³,
Makoto TOKUDA¹⁵, Dai TOMONO², Akihisa TOYODA¹⁰, Kyo TSUKADA¹⁸,
Oton VAZQUEZ DOCE^{9,16}, Eberhard WIDMANN⁴, Takumi YAMAGA¹¹,
Toshimitsu YAMAZAKI^{11,13}, Heejoong YIM²⁰, Qi ZHANG¹¹ and Johann ZMESKAL⁴
(J-PARC E31 Collaboration)

¹Department of Physics, Osaka University, Osaka, 560-0043, Japan

²Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan

³Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada

⁴Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria

⁵Department of Physics, Seoul National University, Seoul, 151-742, South Korea

⁶National Institute of Physics and Nuclear Engineering - IFINHH, Romania

⁷INFN Sezione di Torino, Torino, Italy

⁸Dipartimento di Fisica Generale, Università di Torino, Torino, Italy

⁹Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy

¹⁰High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan

¹¹RIKEN, Wako, 351-0198, Japan

¹²Department of Physics, Kyoto University, Kyoto, 606-8502, Japan

¹³Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan

¹⁴Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan

¹⁵Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan

¹⁶Technische Universität München, D-85748, Garching, Germany

¹⁷Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan

¹⁸Department of Physics, Tohoku University, Sendai, 980-8578, Japan

¹⁹Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany

²⁰Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139-706, South Korea

²¹ASRC, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan

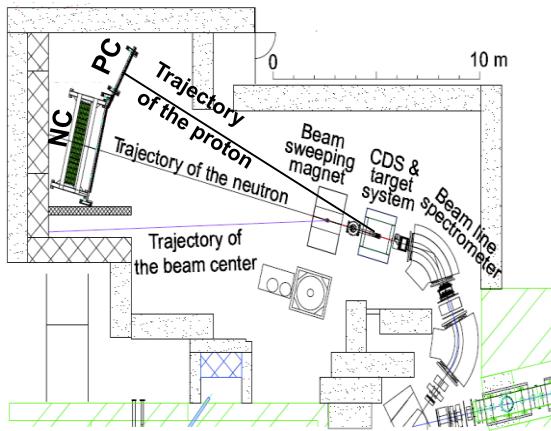
²²Department of Chemical Physics, Lund University, Lund, 221 00, Sweden

²³Research Center for Electron Photon Science (ELPH), Tohoku University, Sendai, 982-0826, Japan

E-mail: shinngo@rcnp.osaka-u.ac.jp

(Received February 1, 2019)

The spectral shape of the $\Lambda(1405)$ baryon was measured via the in-flight $d(K^-, n)$ reaction at the J-PARC K1.8BR beam-line (J-PARC E31). The second E31 physics run was carried out in January and February, 2018. Approximately 3.9×10^{10} kaons were irradiated on the deuteron target. The missing mass spectrum for the $d(K^-, n)$ where the residual final-state particles were Σ^0 and π^0 ($d(K^-, n)\Sigma^0\pi^0$ spectrum) was measured for the first time.


KEYWORDS: in-flight $d(K^-, n)$ reaction, $\Lambda(1405)$, spectral shape,

1. Introduction

The $\Lambda(1405)$ baryon is well-known hyperon with isospin $I=0$, spin-parity $J^p=1/2^-$, mass $m \sim 1405$ MeV, and width $\Gamma \sim 50$ MeV [1]. $\Lambda(1405)$ is the lightest among negative-parity baryons although it contains a heavy strange quark. This is difficult to explain in a naïve quark model. Since $\Lambda(1405)$ is located 27 MeV below the $\bar{K}N$ threshold, $\Lambda(1405)$ has been speculated as a $\bar{K}N$ molecular state for a long time. According to the chiral unitary model, the pole appears at 1426-16i MeV in the S-wave $\bar{K}N$ scattering amplitude [2]. In the experimental situation, some reports about $\Lambda(1405)$ show that measured spectral shapes are different in different $\Lambda(1405)$ production reactions. Therefore, a further experimental measurement which is sensitive to the $\bar{K}N$ - $\Lambda(1405)$ coupling was proposed at the J-PARC K1.8BR beam-line (J-PARC E31 [3]). Since $\Lambda(1405)$ cannot be formed directly from K^-p scattering in free space, we use the reaction of $d(K^-, n)$ with an incident kaon momentum of 1 GeV/c. We measure the $\Lambda(1405)$ spectrum shape given as a missing-mass distribution of the $d(K^-, n)$ reaction and identifying the three final states: $\Sigma^-\pi^+$, $\Sigma^+\pi^-$, and $\Sigma^0\pi^0$ so that isospin amplitudes of $I=0,1$ and their interference are decomposed.

2. Experimental setup

The E31 experiment is performed at the K1.8BR beamline in the Hadron Experimental Hall at J-PARC. The schematic drawing of the K1.8BR spectrometer and experimental setup for the E31 experiment is shown in Fig. 1 [4]. The K^- beam momentum is analyzed by the beam-line spectrometer with a resolution of 2.2 MeV/c at 1.0 GeV/c. Decay charged particles associated with the $d(K^-, n)$ reaction are detected by a cylindrical detector system (CDS) surrounding a deuterium target to obtain their momentum and time of flight. CDS is operated in a magnetic field of 0.7 T. The Neutron Counter (NC) and Proton Counter (PC), which detect neutrons and protons, respectively, are placed 15 m ahead in the forward direction. Since $\Lambda(1405)$ recoils backward when a neutron is emitted at a forward angle, a decay proton in the $\Sigma^0\pi^0$ mode ($\Sigma^0\pi^0 \rightarrow \Lambda\gamma\pi^0 \rightarrow p\pi^-\gamma\pi^0$) is emitted backward, which is detected with a backward proton detector (BPD) and chamber (BPC) placed upstream of the target.

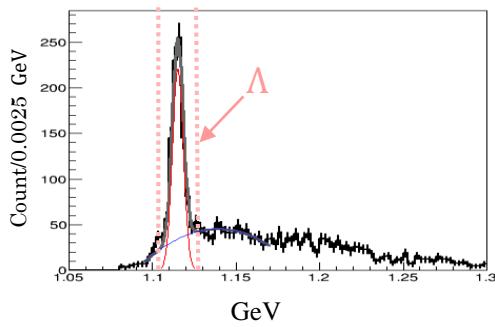
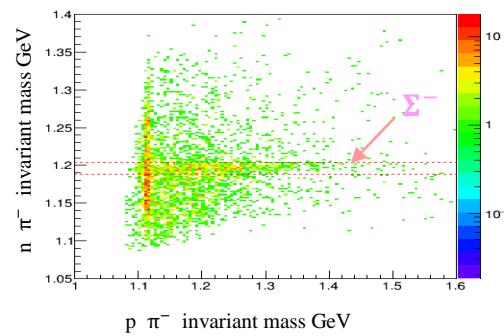


Fig. 1. Schematic view of the K1.8BR spectrometer.


3. Preliminary results

Following to the 1st E31 physics run carried out in June 2016, we have performed the 2nd E31 physics run to observe the $d(K^-, n)\Sigma^0\pi^0$ spectrum with further statistics in January and February in 2018, and completed the proposed beam time including the first run. Approximately 3.9×10^{10} kaons were irradiated on the deuterium target during the E31-2nd run.

The events, in which a proton is detected with BPD and BPC and π^- is detected with CDS, are analyzed to identify Λ production using the $p\pi^-$ invariant mass. Fig. 2 shows the $p\pi^-$ invariant mass distribution, where contribution from $K^-d \rightarrow \Sigma^-p \rightarrow n\pi^-p$ was rejected, as shown in Fig. 3.

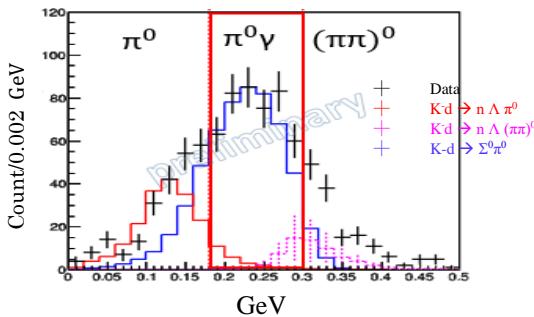


Fig. 2. $p\pi^-$ invariant mass distribution. The Λ produced events are selected in the range from 1.10 GeV to 1.12 GeV.

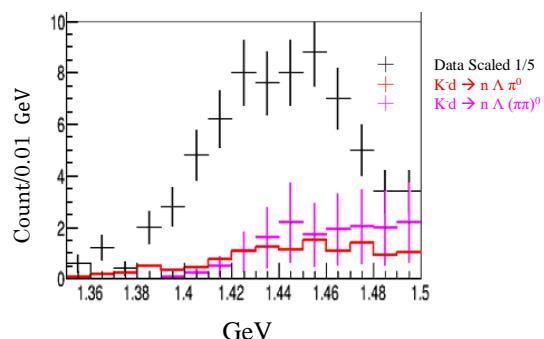


Fig. 3. Correlation between the $p\pi^-$ invariant mass and the $n\pi^-$ invariant mass. Σ^- contribution can be easily rejected with an $n\pi^-$ invariant mass ranging from 1.18 GeV to 1.20 GeV.

The $\Sigma^0\pi^0$ final state is separated from the $\Lambda\pi^0$ and $\Lambda(\pi\pi)^0$ final states by looking at the $d(K^-, n\Lambda)$ missing mass spectrum, as shown in Fig. 4. The estimations of $\Lambda\pi^0$ and $\Lambda(\pi\pi)^0$ in Fig. 4 are performed by a Monte Carlo simulation(MC). The momentum distributions of forward neutrons in MC are generated to follow the data of $d(K^-, n\Lambda)$ missing mass in the range from 0.00 GeV to 0.18 GeV for $\Lambda\pi^0$ and 0.30 GeV to 0.50 GeV for $\Lambda(\pi\pi)^0$ respectively. A magnitude of the $\Lambda\pi^0$ distribution is scaled so that the

Fig. 4. $d(K^-, n\Lambda)$ missing mass spectrum. The $\Lambda\pi^0\gamma$ events are selected in the range from 0.18 GeV to 0.3 GeV. The estimation of $\Lambda\pi^0$ (red), $\Lambda(\pi\pi)^0$ (magenta) and $\Sigma^0\pi^0$ (blue) contributions are presented.

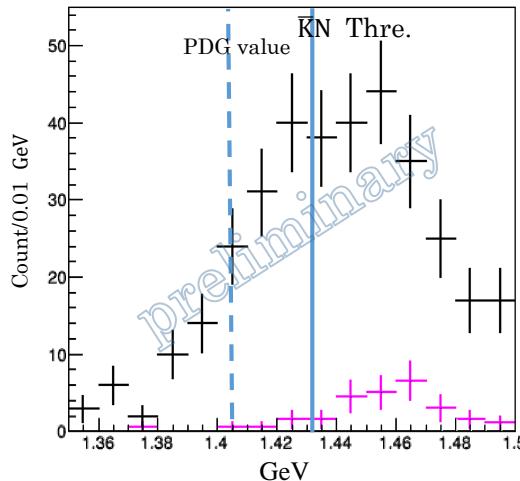


Fig. 5. Missing mass spectrum of $d(K^-, n)\Sigma^0\pi^0$. Contaminations of $\Lambda\pi^0$ (red) and $\Lambda(\pi\pi)^0$ (magenta) in the $d(K^-, n)\Sigma^0\pi^0$ spectrum.

peak fits data at the π^0 mass. The $\Lambda(\pi\pi)^0$ distribution is estimated by the data of $K^-d \rightarrow \Lambda\pi^+\pi^-n$. The contaminations of $\Lambda\pi^0$ and $\Lambda(\pi\pi)^0$ in the $d(K^-, n)\Sigma^0\pi^0$ are found to be small, as shown in Fig. 5.

Finally, we considered the background of $K^-d \rightarrow \Sigma^+\pi^-n (\rightarrow p\pi^0\pi^-n)$. The $\Sigma^+\pi^-$ is one of the final state of $\Lambda(1405)$. The background $\Sigma^+\pi^-$ contribution also can be estimated by missing mass of $d(K^-, n\pi^-\pi^0)\pi^0$ which is expected to be the same result as $\Lambda\pi^0$, as shown in Fig. 4 and Fig.5.

Figure 6 shows the preliminary result of the $d(K^-, n)\Sigma^0\pi^0$ spectrum without acceptance correction. The $\Sigma^+\pi^-$ contribution is plotted in Fig.6. We observe significant yields below and above the $\bar{K}N$ threshold.

Fig. 6. Missing mass spectrum of $d(K^-, n)''\Sigma^0\pi^0''$. The background contribution (magenta) from Λ selection using the $p^- \pi^-$ invariant mass is presented.

4. Summary

The J-PARC E31 experiment was performed to investigate the spectrum shape of $\Lambda(1405)$ directly generated in $\bar{K}N \rightarrow \Sigma\pi$ process using the in-flight $d(K^-, n)$ reaction at the incident kaon momentum of 1.0 GeV/c. We succeeded the identification of $\Sigma^0\pi^0$ final state in the E31-1st data, then observed the $d(K^-, n)''\Sigma^0\pi^0''$ spectrum in the E31-2nd data with 4.5 times as many as the 1st data. The backgrounds of $\Lambda\pi^0$, $\Lambda(\pi\pi)^0$ as well as $\Sigma^+\pi^-$ are estimated to be very small.

We will finalize the $d(K^-, n)''\Sigma^0\pi^0''$ spectrum by correcting detector's acceptance and efficiency, and obtain information on the scattering amplitude of $\bar{K}N \rightarrow \Sigma\pi$ below and above the $\bar{K}N$ threshold.

References

- [1] K.A.Olive et al. (Particle Data Group): Chin. Phys. C 38, (2014) 090001.
- [2] D.Jido et al.: Nucl. Phys. A 725 (2003) 181.
- [3] H.Noumi et al.: J-PARC E31 proposal. http://j-parc/researcher/Hadron/en/pac_0907/pdf/Noumi.pdf
- [4] K.Agari et al.: Prog. Theor. Exp. Phys. , 02B011 (2012).