
J
H
E
P
0
8
(
2
0
2
5
)
0
0
7

Published for SISSA by Springer

Received: November 28, 2024
Accepted: May 20, 2025

Published: August 1, 2025

TCC in the interior of moduli space and its implications
for the string landscape and cosmology

Alek Bedroya ,a,b Qianshu Lu c,d and Paul J. Steinhardt b,e

aPrinceton Gravity Initiative, Princeton University,
Princeton, NJ 08544, U.S.A.

bJefferson Physical Laboratory, Harvard University,
Cambridge, MA 02138, U.S.A.

cSchool of Natural Sciences, Institute for Advanced Study,
Princeton, NJ 08540, U.S.A.

dCenter for Cosmology and Particle Physics, Department of Physics, New York University,
New York, NY 10003, U.S.A.

eDepartment of Physics, Princeton University,
Princeton, NJ 08544, U.S.A.

E-mail: ab4407@princeton.edu, qianshu.lu@ias.edu, steinh@princeton.edu

Abstract: We consider the classical Friedmann-Robertson-Walker solutions that describe
a universe undergoing a transition from an accelerating expansion phase in the past to an
eternal decelerating expansion phase in the future, driven by a scalar field evolving in a
potential energy landscape. We show that any solution for which the accelerating phase
violates the Trans-Planckian Censorship Conjecture (TCC), even in the interior of moduli
space, never approaches the asymptotic vacuum with zero particles. Based on the assumption
that the effective field theory must be valid for the vacuum on the asymptotic boundary, as
motivated by holography and string theory, we argue that (multi-field) scalar potentials with
such solutions are disallowed, thus strengthening the case for TCC. In particular, assuming
the regularity of the future vacuum state in the string landscape, we derive results that imply
a new set of highly-nonlinear constraints across the string landscape which in the absence
of certain meta-stable vacua make realizing inflation impossible.

Keywords: Cosmological models, Effective Field Theories, Models of Quantum Gravity,
Superstring Vacua

ArXiv ePrint: 2407.08793

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP08(2025)007

https://orcid.org/0000-0002-3083-0940
https://orcid.org/0000-0002-9277-1130
https://orcid.org/0000-0003-3488-1603
mailto:ab4407@princeton.edu
mailto:qianshu.lu@ias.edu
mailto:steinh@princeton.edu
https://doi.org/10.48550/arXiv.2407.08793
https://doi.org/10.1007/JHEP08(2025)007


J
H
E
P
0
8
(
2
0
2
5
)
0
0
7

Contents

1 Introduction 1

2 Summary of the argument 3

3 Particle production in cosmological transitions 6
3.1 A simple toy model (in the contracting picture) 8
3.2 WKB approximation (in the contracting picture) 13

4 Adding spatial curvature 16

5 Critical points of the scalar potential 20

6 Trans-Planckian problem in black hole physics vs cosmology 22

7 Implications for inflationary cosmology in the string theory landscape 24

A FRW mode expansions 25

1 Introduction

One of the special features of quantum gravity is the emergence of spacetime from boundary
observables. Such observables have the benefit of not relying on the spacetime topology,
which can fluctuate in quantum gravity. Scattering amplitudes in Minkowski space and
boundary correlation functions in AdS space [1–3] are examples of such boundary observables.
Note that here by boundary we refer to the boundary of the compactified spacetime after a
conformal transformation. It is desirable to extend this logic to Friedmann-Robertson-Walker
(FRW) backgrounds given their relevance for cosmology. However, the task of defining such
boundary observables in FRW backgrounds is not straightforward. Boundary observables
are conventionally defined by taking the limit of appropriate bulk correlation functions in a
chosen vacuum. In this work, we consider cases where there is a natural choice of vacuum
and examine their implications.

For example, in perturbative descriptions of string theory, there can be small perturbations
about the vacuum in the infinite past or future. This statement also holds for time-dependent
backgrounds that satisfy loop-corrected equations of motion [4–6]. Given that the scalar
potential in string theory is always generated by non-zero string coupling [4], FRW backgrounds
in string theory are time-dependent solutions to the gs-corrected equations. The typical
expanding FRW solutions realized in string theory are driven by moduli scalar fields evolving
down a potential energy landscape where these solutions become singular in the infinite past
and have power-law decelerated expansion in the future [7]. In this case, the natural choice
of boundary vacuum to consider for our analysis is the future vacuum.

Beginning from this vacuum defined on the asymptotic boundary of spacetime, we identify
a class of theories (defined by their scalar field potentials) that are inconsistent with effective
field theory (EFT), and hence, with quantum gravity. For this class of theories, we find
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that EFT breaks down if the Trans-Planckian Censorship Conjecture (TCC) [8] is violated.
Motivated by studies of string theory, TCC postulates that quantum gravity prohibits long
periods of accelerated expansion that can stretch fluctuations with Planckian wavelengths to
Hubble sized wavelengths. This conjecture is well supported in string theory in the asymptotic
regime of moduli space where there is power-law decelerated expansion at future infinity
(see [9–12] for tests of TCC in string constructions and [13] for its generalization to negative
potentials). For example, in this asymptotic regime, the validity of TCC has been justified
in earlier work by one of us [7] based on the existence of boundary observables at future
infinity. However, this earlier analysis has limited phenomenological implications because it
only constrains potentials in the large field/far future limit. For example, a very long-lived
quasi-de Sitter space in the past that smoothly evolves into an eternally decelerating universe
is not ruled out by this analysis. Although the bulk of the evidence for TCC comes from
the asymptotic behavior in the string landscape, there are also independent arguments that
non-trivially relate TCC to other Swampland conjectures. For example, the authors in [14]
showed that the emergent string conjecture [15], which is independently motivated [16, 17],
has similar implications as TCC for the slope of monotonic scalar potentials in the interior of
the moduli space. In this paper we strengthen the case for TCC by providing a bottom-up
argument that precisely reproduces TCC for a wide class of potentials with less assumptions.

This paper is organized as follows. In section 2, we summarize the arguments that
underlie our conclusions. In section 3, we show that, if TCC is violated by a prolonged
period of accelerated expansion, the initial state must have had trans-Planckian excitations
inconsistent with EFT to evolve into the future vacuum. We first demonstrate this for
a toy model where the quasi-stationary modes and particle production can be calculated
analytically. Then we provide a general argument in terms of the WKB approximation.
Perhaps, the most surprising finding is that we show that no matter how smoothly the
expansion transitions from TCC-violating accelerated expansion to an eternally decelerating
expansion, the past and future vacua will not evolve into one another. We explain why our
conclusion does not violate the adiabatic theorem. In section 4, we extend our arguments
to a class of spatially-curved open universes to show that our findings are robust against
sufficiently small classical perturbations.

In section 6, we discuss the difference between our argument presented in this paper
and the “trans-Planckian problem” [18–20] raised decades ago in the context of inflationary
cosmology and black hole physics. We will show that our argument does not imply any
inconsistency when applied to trans-Planckian blueshifts near black hole horizons, although
it imposes significant constraints on accelerated expansion in cosmology.

We discuss the implications of our results for the critical points of the scalar potential in
section 5. Since our argument relies on perturbations around a given classical background,
it falls short of bounding metastable quasi-de Sitter vacua which decay non-perturbatively.
However, we can rule out long-lived unstable quasi-de Sitter phases that violate TCC.

In section 7, we consider the implications for inflationary cosmology. We argue that,
in a typical string landscape described by a multiplicity of scalar fields, the extended TCC
presented here imposes extraordinarily complex and highly-nonlinear constraints across the
entire string landscape that may not be possible to satisfy.
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2 Summary of the argument

In this section, we explain our assumptions and summarize our argument. Our goal is to
determine which scalar field theories are consistent with quantum gravity generally. To achieve
this, we study the set of classical FRW solutions that describe a universe that undergoes a
transition from an accelerating expansion phase in the past to a decelerating expansion in the
future, driven by the scalar field evolving along its potential. In order to rule out a theory, we
make an assumption that is motivated by holography and is satisfied in perturbative string
theory: namely, we assume that the EFT is valid in the state with zero particle excitations
in the future. In perturbative string theory, which is a theory of scattering amplitudes, one
can define a Hilbert space in terms of particle excitations around an asymptotic vacuum.
For such a definition to make sense, we need at least one asymptotic vacuum. The EFT
is then defined to approximate the low-energy physics for such states in the Hilbert space.
Therefore, this condition is satisfied by definition. Moreover, since expanding FRW solutions
realized in string theory are typically singular in the past, the only available boundary is
future infinity and the future vacuum is the only natural ground state from the perspective of
holography. We will show that a certain subset of TCC-violating solutions cause the EFT to
breakdown when describing this ground state, thus these solutions cannot be consistent with
string theory. We cannot rule out all TCC-violating solutions with our present arguments;
the conditions for our argument and some notable cases where our argument does not apply
are listed below. However, our bottom-up argument has the advantage of exactly reproducing
TCC both qualitatively and quantitatively in the interior of the moduli space for a wide
range of potential energy landscapes.

In the above discussion, we have explained how certain combinations of a classical solution
and a natural choice of vacuum state can be shown to be inconsistent with quantum gravity. If
even one inconsistent solution can be found for a (multi-field) scalar potential, the potential is
ruled out even if for the same potential, there also exist combinations of classical solutions and
vacua that are consistent. The idea that every time-evolution of a valid theory of quantum
gravity has to satisfy certain consistency conditions is a familiar idea in the Swampland
program, which aims to identify those conditions for the quantum gravity landscape. TCC
and Penrose inequality are two such examples which are conjectured consistency conditions
for all solutions in a theory of quantum gravity [8, 21]. However, we will not rely on any of
the Swampland conjectures in our argument and give a bottom-up argument for TCC.

The TCC-violating solutions of interest are ones with the following properties:

1. TCC-violating accelerated expansion phase: an epoch or sequence of epochs
of accelerating expansion that collectively last long enough to stretch modes with
Planckian wavelength to super-Hubble wavelengths.

2. Transition at finite time to a long decelerated expansion phase: the decelerated
expansion phase must last long enough that the modes whose wavelengths went from
sub-Hubble to super-Hubble during the acceleration phase re-enter the Hubble horizon
and become sub-Hubble during the decelerated expansion phase, and remain sub-horizon
in the asymptotic future.
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future infinity

Phase II:
ä ≤ 0

Phase I:
ä ≥ 0

TCC-violating

Figure 1. The partial Penrose diagram of a flat expanding FRW spacetime with two phases. Phase I:
contains epochs of accelerated expansion that collectively violate TCC. Phase II: an eternal decelerating
phase or a finite decelerating phase followed by an eternal non-accelerating phase which, in either case
lasts for infinite proper time in the comoving frame.

3. Small non-positive initial spatial curvature: if Ωk is precisely zero, the decelerated
(ä < 0) expansion phase must be eternal. For non-zero Ωk, the decelerated expansion
phase can transition to an expanding phase in which Ωk does not vanish at future
infinity. In such backgrounds, the acceleration vanishes at future infinity (ä → 0). Here
Ωk is the ratio of the spatial curvature to the critical density. In the latter case, the
initial spatial curvature must have a magnitude small enough that the non-accelerating
phase begins after Planckian wavelength modes stretched to super-Hubble wavelengths
created during the accelerating phase have re-entered the horizon during the decelerating
expansion phase.

4. Semi-classical evolution: the entire cosmological background evolution from the
initial accelerating phase to the future vacuum in the asymptotic limit of the eternally
expanding phase(s) that follow is well-described by the classical equations of motion.
For example, this eliminates cases in which quantum-generated bubble nucleation or
large quantum fluctuation effects are essential/dominant in transitioning from the
accelerating to the decelerating expansion phase.

If a classical solution with these properties exists, then our arguments show that the
EFT must break down in the past for the state that evolves into the future vacuum.

Let us first consider a homogeneous, isotropic, and spatially flat classical background
that satisfies the above conditions. (We will later consider more general solutions.) Such a
background has a spacetime Penrose diagram that looks like figure 1. Phase I denotes the
period of accelerated expansion which violates TCC and Phase II denotes the eternal phase
that follows, which is not accelerating. Note that we are not concerned with the past infinity or
whether the spacetime is geodesically complete in the past. What matters for our argument is
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that the semi-classical description is valid in the accelerating phase for long enough to violate
the TCC. Therefore, we consider only a part of the spacetime that is bounded in the past.

Suppose a classical solution satisfying our conditions exists. The problem created by
violating the TCC arises from the fact that the vacuum in Phase I is different from the vacuum
in Phase II, and, consequently, a solution that begins in the vacuum of Phase I and transitions
to Phase II necessarily is filled with particles and vice versa. In particular, this means that
the vacuum of Phase II can be traced back in Phase I to an excited state with trans-Planckian
energies. Therefore, the energy-momentum tensor sourced by these trans-Planckian particles
will cause a breakdown in the EFT. Note that the trans-Planckian particles are observable
by the free-falling comoving observer. The existence of this solution means that this scalar
potential cannot arise in the quantum gravity landscape under the assumption that the EFT
must be valid in the future vacuum for any solution. As noted above, this assumption is
motivated by holography and is a feature of how EFT is defined in perturbative string theory.

In our arguments, we use the deceleration in the future to infer the TCC in the past.
One might find it surprising that we find a connection between the past and the future. This
is indeed very surprising from the perspective of effective field theory, however, we would
like to point out that in an expanding universe, the past corresponds to UV physics and the
future corresponds to IR physics. Therefore, this is nothing other than the usual UV/IR
connection in quantum gravity and holography.

The argument can be rephrased in terms of the contracting solution obtained by CPT
conjugating the expanding solution that violates the TCC and satisfies our assumptions.
CPT conjugation maps the future vacuum in the expanding solution to the past vacuum
in the contracting solution. The contracting universe undergoes a transition from Phase
II to Phase I which produces many particles with Hubble physical momentum. As the
contraction continues in Phase I, these particles will get blue-shifted until they become
trans-Planckian and break down the EFT.

How does the argument modify in the presence of anisotropy and spatial curvature? In the
homogeneous limit in d-dimensional spacetimes, anisotropy and spatial curvature contribute
terms to the Friedmann equation that scale as ∝ 1/a2(d−1) and ∝ 1/a2, respectively, to be
compared to the energy density of the scalar field, which scales as 1/aβ where β < 2 during
Phase I and 2 ≤ β < 2(d − 1) during Phase II. Consequently, the ratio of the anisotropy to
other contributions to the Friedmann equation is greatest at the beginning of Phase I and
decreases monotonically and rapidly during any expansion phases that follow. Therefore, over
the finite range of initial conditions in which the initial anisotropy is negligible compared to
the initial scalar field energy density at the beginning of Phase I, the anisotropy will remain
negligible throughout the evolution and will not violate any of the conditions assumed above.

The story is more subtle for spatial curvature. Any non-zero amount of initial spatial
curvature will eventually become non-negligible in Phase II after the accelerating Phase I
has ended. However, as we will show in section 4, if there are spatially flat solutions that
satisfy our assumptions, there is also a finite range of open universes that do as well. The
key observation is that open universes can become non-accelerating (ä = 0) at future infinity.
Moreover, there exists a finite range of initial spatial curvature for which the spatial curvature
remains negligible until some arbitrarily long (but finite) time after the accelerated expansion
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future infinity

Phase II: non-accelerating
ä ≤ 0 eternal expansion

Phase I: has epochs of ä ≥ 0 that
collectively violate TCC.

Ωk ≪ 1

Ωk: constant

Phase II-A:

t = t∗

Phase II-B:

ä < 0

ä > 0

aH < ∞

Figure 2. The Penrose diagram of a FRW solution with negative spatial curvature that transitions
from a TCC-violating phase to a non-accelerating phase. Phase I has accelerating epochs that
collectively violate the TCC. Phase II consists of two subphases: in Phase II-A, ä is less than zero; the
spatial curvature is negligible; and the expansion is entirely driven by the scalar field. In Phase II-B,
ä becomes negligible; the spatial curvature becomes important; and Ωk converges to a non-zero value.

phase ends. This range includes initial conditions for which our assumptions will still be
satisfied. (Note that we do not consider closed universes, as they become singular in the
future and hence violate assumption 2.)

3 Particle production in cosmological transitions

In this section, for simplicity, we confine ourselves to flat FRW solutions that are described
by classical equations of motion in which the evolution is driven by a scalar field ϕ with
canonical energy density −1

2∂µϕ∂µϕ and a positive scalar potential V (ϕ). The spacetime
is described by the convential FRW metric

ds2 = −dt2 + a(t)2
(

d−1∑
i=1

(dxi)2
)

. (3.1)

We examine the validity of EFT for classical solutions satisfying conditions 1 thru 4 in
section 2 that undergo a smooth transition between two phases of expansion:

• Phase I: a phase of accelerated expansion ä > 0 (a(t) ∼ tq, q > 1) that lasts long
enough to violate TCC; that is, amax/amin > Mpl/Hmin where max and min denote the
maximum and minimum during this phase. In particular the accelerated phase can be
a continuous solution consisting of a sequence of accelerating epochs interspersed with
decelerating ones, as long as the epochs collectively violate the TCC.

• Phase II: a phase of eternal decelerated expansion ä < 0 (a(t) ∼ tp, p < 1) that
continues to the infinite future.
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Phase II:

d|ȧ|
dt < 0

Phase I:
tim

e

d|ȧ|
dt ≥ 0

Particle
production
with k ∼ H

Initial vacuumt → −∞ :

t = t∗ :

t = t∗ + ∆t : Blue-shifted
particles

are trans-Planckian

Figure 3. The Penrose diagram of the CPT conjugated of the TCC-violating expanding solution that
satisfies our assumptions. If we start with the past vacuum state, there will be particle production at
the moment of transition from Phase II to Phase I. Under our assumptions, Phase I lasts long enough
to blue-shift those particles to trans-Planckian energies that violate the EFT.

The equation of state w is given by w = (2− 3q)/3q (Phase I) and w = (2− 3p)/3p (Phase II)
with w = −1/3 marking the separation between the two phases. In terms of the background
behavior of the classical solution, this is similar to the usual inflationary cosmology. However,
in inflationary cosmology, the conventional analysis assumes an accelerating Phase I whose
past vacuum is Bunch-Davies [22]. Here we are interested in examining classical solutions
in which the decelerating Phase II terminates in a particle-free future vacuum. As we have
discussed in the section 2, our motivation stems from string theory and holography, which
demand that EFT be valid for classical solutions bounded by the future vacuum.

We will show in this section and section 4 that classical solutions bounded by the future
vacuum state cannot be described by any EFT if Phase I violates the TCC because such
solutions will require that Phase I contains excited states with physical trans-Planckian
momentum. This gives a bottom up argument of why TCC-violation is incompatible with
quantum gravity, given that the assumptions listed in section 2 are satisfied.

To demonstrate this conclusion, we can either 1) specify the “final condition” of the
universe to be in the vacuum in Phase II and evolve it back in time to Phase I (as illustrated
by the Penrose diagram in figure 1); or, equivalently, 2) consider the CPT conjugate picture in
which the universe begins in the particle-free future vacuum and is contracting, first through
a period of decelerated contraction, Phase II, and, then, through a period of accelerated
contraction, Phase I (as illustrated by the Penrose diagram in figure 3). That is, here Phase
II happens before Phase I. Mathematically the two pictures are exactly equivalent and the
same conclusions will be derived. We choose to work in the contracting picture such that
all discussion of time evolution is going forward.

More specifically, in the contracting perspective, spacetime begins in a contracting
Phase II with an infinite past and undergoes a period of decelerated contraction with
a(t) ∼ (−t)p, p < 1, ä < 0. This phase smoothly transitions into a contracting Phase I in
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Classical background: expanding
Quantum state: vacuum of Phase I

(e.g. Bunch-Davies)
Phase I → Phase II

Classical background: contracting
Quantum state: vacuum of Phase I

Phase II → Phase I

CPT

Classical background: expanding
Quantum state: vacuum of Phase II

(our state of interest)
Phase I → Phase II

Classical background: contracting
Quantum state: vacuum of Phase II

Phase II → Phase I

CPT

unrelated by CPT

Figure 4. CPT conjugate relation between different choice of states. The symbol → denote the order
in time in which the two phases happen. Behavior of the universe in each CPT pair is completely
equivalent. Our state of interest, which is a vacuum state in the decelerating Phase II, is not related
by CPT to the usual Bunch-Davies setup in inflationary cosmology, which is a vacuum state in the
accelerating Phase I.

which the spacetime undergoes a period of accelerated contraction with a(t) ∼ (−t)q, q > 1,
ä > 0. Note that the time coordinate t is negative for this solution, t ∈ (−∞, tf ]. The
label “I” and “II” refer to accelerating and decelerating phases respectively as before, but
in the contracting perspective Phase II happens before Phase I in time and both phases
are contracting.

Importantly, taking the CPT conjugate of our contracting solution beginning with the
vacuum state of interest does not map it into an expanding solution in which the accelerating
Phase I begin in the Bunch-Davies vacuum state. The relationship between the different
choices of states and their CPT conjugates are illustrated in figure 4.

As described in section 2, the problem posed by TCC violation can be understood by
considering a contracting solution starting with the vacuum state in Phase II and evolving in
time to find the particle number of different modes in Phase I. As the vacuum state exits the
horizon in Phase II and re-enters the horizon in Phase I, there is non-zero particle production
at the moment of horizon re-entry. This mechanism of particle production seems similar to
the usual inflation story. However, the key difference is that, unlike inflation, as we move
away from the moment of transition, the excited modes are contracting and ultimately create
trans-Planckian energy-densities that are inconsistent with an EFT.

3.1 A simple toy model (in the contracting picture)

We consider a toy model that assumes an instantaneous transition between Phase II and
Phase I. In this case a(t) for the contracting solution is exactly known and all the calculations
can be done exactly. We see that, right after the transition from Phase II to Phase I, there
must be a large occupation number in the super-Hubble modes. If Phase I lasts long enough
to violate the TCC, these highly occupied modes will blue-shift to modes with trans-Planckian
physical momentum. Therefore, the free-falling observer will see trans-Planckian particles
and thus a breakdown of EFT.
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It is easier to work with the conformal time a(τ)dτ = dt. The metric in this coordinate
takes the form

ds2 = a(τ)2
[
−dτ2 +

d−1∑
i=1

(dxi)2
]

, (3.2)

where prime will be used throughout to indicate derivatives with respect to conformal time τ .
In power-law FRW solutions, the conformal time has a minimum (maximum) for power-law
contracting solutions that are eternally accelerating (decelerating). In our setup, the universe
transitions between the two which makes τ unbounded from both below and above. However,
we bound τ from above by considering only a finite period of Phase I that violates TCC.

In this toy model, the scale factor is given by

Phase II (τ < 0): a(τ) =
(

1 − (1 − p)H0
p

τ

) p
1−p

,

Phase I (τ > 0): a(τ) =
(

1 + (q − 1)H0
q

τ

)− q
q−1

, (3.3)

where p < 1 and q > 1 are positive constants. The scale factor is piece-wise defined, in other
words a(τ) satisfies the usual dt/a(t) = dτ relation for a(t) ∼ (−t)p and a(t) ∼ (−t)q in each
contracting phase respectively. The integration constants in the two contracting phases are
chosen such that a(τ) and its first derivative are continuous at the instantaneous transition
time τ = 0, and a(τ = 0) = 1. H0 is the magnitude of the Hubble parameter at the time
of transition τ = 0. In the frame of the comoving observer, this corresponds to a period
of decelerating contraction that transitions into accelerated contraction instantaneously at
τ = 0. Note that q = ∞ corresponds to a de Sitter phase with exponential contraction
in contracting Phase I.

The Hubble parameter a′/a2 in this background is given by

Phase II (τ < 0): H(τ) = −H0

(
1 − (1 − p)H0

p
τ

) −1
1−p

,

Phase I (τ > 0): H(τ) = −H0

(
1 + (q − 1)H0

q
τ

) 1
q−1

. (3.4)

Suppose the above cosmology is driven by a scalar field ϕ evolving along a positive potential
V (ϕ). If the kinetic energy of the scalar field dominates the critical energy density, then
p = 1

d−1 where d is the number of spacetime dimensions. Given that we are interested in the
implications on the shape of the scalar potential, we only consider solutions in which p > 1

d−1
such that the scalar field potential is a non-negligible contribution in driving the contraction.

One can obtain power-law solutions for a(t) from eq. (3.4) as attractor solutions for
positive exponential potentials of the form

V (ϕ) = d − 2
2κ2 (d − 1 − 1

p
)H2

0 exp
(
−κ

2√
(d − 2)p

ϕ

)
, (3.5)

where κ =
√

8πG = Mpl
−(d−2)/2 is the reduced Planck factor, has a classical attractor solution

ϕ =
√

(d − 2)p
κ(1 − p) ln

(
1 − (1 − p)H0

p
τ

)
. (3.6)
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The scale factor for this attractor solution (setting a(τ = 0) = 1) is given by

a(τ) =
(

1 − (1 − p)H0
p

τ

) p
1−p

. (3.7)

Therefore, a potential with two exponential regimes that are glued together can approximate
the time evolution in eq. (3.4). However, to exactly reproduce this time evolution, ϕ′ and
V (ϕ) have to change discontinuously at τ = 0.

In a realistic model with a continuous potential, the transition between the contracting
phases will be smooth. We consider the glued-together time evolution only as a simple toy
model that allows us to build intuition. In the next subsection, we will provide a general
argument and as we will see, the discontinuity of the toy model does not play a significant
role in the conclusions.

To define the vacuum, we need to determine the mode expansion for perturbations
around the classical background solution. We review this procedure and our conventions
in appendix A. The modes must satisfy the following two equations which are respectively
the normalization condition and the equation of motion.

u(τ, k)u∗′(τ, k) − u′(τ,−k)u∗(τ,−k)) = ia(τ)−(d−2) , (3.8)
u′′

k(τ) + (d − 2)a(τ)Hu′
k(τ) + k2uk(τ) + a(τ)2∂2

ϕV (ϕ0(τ))uk(τ) ≃ 0 , (3.9)

Due to the translational symmetry of the solution, we can consider the following quasi-
stationary ansatz for u.

u(τ, k) = uk(τ)eik⃗·X⃗ . (3.10)

Moving forward, we drop the subindex and the argument of uk(τ) and use u for simplicity.
After substituting in the scalar potential eq. (3.5) into the equation of motion eq. (3.9), we find

−(d − 2)

 u′

1
H0

− 1−p
p τ

+ u′′ + k2u + H2
0 (p(d − 1) − 1)

p2(1 − (1−p)H0
p τ)2

u ≃ 0 (3.11)

Let us define

τ̃ = k

(
τ − p

(1 − p)H0

)
and U(τ̃) = u(τ) . (3.12)

The equation of motion in terms of U in contracting Phase II is

−(d − 2)U ′

τ̃
+
(1 − p

p

)
[U ′′ + U ] + pd − p − 1

p(1 − p) · U

τ̃2 ≃ 0, (3.13)

Note that for p = ∞ which corresponds to the de Sitter space, the last term vanishes and
we recover the usual equations in the de Sitter space.

The eq. (3.8) and eq. (3.9) do not uniquely determine the modes which is why the definition
of the zero-particle state (vacuum) is not unique. To determine the modes, we must impose
extra conditions that pick out the desired vacuum. We choose the modes in each contracting
phase such that they asymptote to the Minkowski modes at large physical momentum.
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There is something very interesting about the eq. (3.13). The behavior at τ → −∞ and
fixed k and the behavior at large k and fixed τ are both captured by τ̃ → −∞. Therefore,
if we make sure that the mode has a single frequency at τ̃ → −∞, it would imply that the
UV vacuum (k → ∞) is identical to the early time vacuum (τ → −∞). In other words, the
state that has zero particles in the past infinity, also looks like the Minkowski vacuum at
very short length scales and thus does not violate the equivalence principle.

The differential eq. (3.13) has an exact solution in terms of the Hankel functions:

U(τ̃) = U0(−τ̃)
1
2−

p(d−2)
2(1−p) H1

ν(p)(−τ̃), (3.14)

where

ν(p) =
√

((d − 1)p − 1) ((d − 1)p − 5)
2|1 − p|

. (3.15)

Hankel functions have the following asymptotic behavior.

H(1,2)
ν (x) x→∞−−−→

√
2

πx
exp

(
∓i

(
x − νπ

2 − π

4

))
, (3.16)

and therefore their frequency at early times has a definite sign. The normalization condition
eq. (3.8) in the limit τ̃ → −∞ gives

4
π
|U0|2(−τ̃)−

p(d−2)
1−p k = a(τ)−(d−2) =

(
−(1 − p)H0

pk
τ̃

)−p(d−2)
1−p

, (3.17)

which is solved by setting

U0 =
√

π

4k

((1 − p)H0
pk

)−p(d−2)
2(1−p)

(3.18)

Using the eq. (3.14) and (3.18) we find

τ < 0 : u−,+
k (τ) =

√
pπ

4H0(1 − p)

(
1 − H0(1 − p)

p
τ

) 1
2−

p(d−2)
2(1−p)

H1,2
ν(p)

(
k

(
p

(1 − p)H0
− τ

))
.

(3.19)
Repeating the same calculation for contracting Phase I leads to

τ > 0 : u−,+
k (τ) =

√
qπ

4H0(q − 1)

(
1 + (q − 1)H0

q
τ

) 1
2−

q(d−2)
2(1−q)

H1,2
ν(q)

(
−k

(
τ + q

(q − 1)H0

))
.

(3.20)
By matching the zeroth and first order derivatives of the mode functions across τ = 0,

we find the Bogoliubov coefficients (αk, βk) relating the two mode expansions.

u+
k (0−) = αku+

k (0+) + βku−
k (0+)

u+′

k (0−) = αku+′

k (0+) + βku−′

k (0+). (3.21)
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Figure 5. Particle number as a function of k/H0, where H0 is the Hubble parameter at the time of
transition τ = 0, where we have normalized the scale factor such that a(τ = 0) = 1. Here we choose
p = 1/2 and q = ∞ as an example. There is a sharp increase in particle number for k < H0, i.e. modes
that are super-horizon at the time of transition. Similar sharp increase of nk at small k is observed
for all p < 1 and q > 1.

which are given by

αk = u−′

k (0+)u+
k (0−) − u−

k (0+)u+′

k (0−)
u+

k (0+)u−′

k (0+) − u−
k (0+)u+′

k (0+)

βk = −u+′

k (0+)u+
k (0−) − u+

k (0+)u+′

k (0−)
u+

k (0+)u−′

k (0+) − u−
k (0+)u+′

k (0+)
. (3.22)

The average particle number nk is given by

nk = βkβ∗
k. (3.23)

For all q > 1 and p < 1, there is a sharp increase in nk for all k < H0. An example of nk

as a function of k/H0 is shown in figure 5.
What is the physical interpretation of this increase in nk at k < H0? It is perhaps helpful

to draw a parallel between what we computed and the familiar inflationary mode function
story. In the usual inflationary computation, we start with the Bunch-Davies vacuum state
during the accelerating phase for all k modes. Some of these k modes exit the horizon during
inflation and re-enter the horizon during the decelerating phase after inflation. It is well
known that particle production occurs when the mode re-enter the horizon in the decelerating
phase. This process is often referred to as “particle production in super horizon modes”, but
it should be understood that actual particle production only occurs after horizon re-entry.
When the modes are still super-horizon, there is not a well-defined vacuum state needed to
define the particle number. Here the computation is exactly the time-reverse. We also start
with the vacuum state in the initial phase (contracting Phase II) and evolve the classical
contracting solution forward in time. Modes in the vacuum state first “exit” the Hubble patch
during contracting Phase II then “re-enter” the Hubble patch in the contracting Phase I. We
have found that there is strong particle production at this horizon “re-entry”. In other words,
we have shown that the initial vacuum state in contracting Phase II evolves into a highly
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Figure 6. The particle number nk at k = H0/2 for varying ϵ, where we set q = 1 + ϵ and p = 1 − ϵ.
We see that as ϵ → 0, particle production at the time of transition diverges.

excited state in contracting Phase I, with large particle numbers for all k modes that exited
the Hubble patch during contracting Phase II. By definition, these modes have k/a(τ) = |H|
at the time of horizon exit. If we time-evolve these modes for ∆t ∼ 1

H ln(Mpl/H) in the
contracting solution, they will have trans-Planckian physical momentum, causing EFT to
break down. In other words, no EFT can describe the classical contracting solution that
begins in the l vacuum state of Phase II if the accelerating contraction in Phase I lasts
longer than ∼ 1

|H| ln(Mpl/|H|).
One might imagine that, if the decelerating contraction phase and accelerating contraction

phase were more similar in their contraction rate, i.e. q = 1 + ϵ and p = 1 − ϵ with ϵ → 0,
there would be less particle production at the transition time τ = 0. Actually, the exact
opposite happens. Figure 6 shows the particle number at the transition time with k = H0/2
as a function of ϵ. As ϵ decreases, nk is divergent. In order to understand the discontinuity
at ϵ = 0 recall that the vacuum of each phase is defined such that the sub-Hubble modes
have zero-particles. Furthermore, the particle production is the consequence of exit and
re-entry of the sub-Hubble modes. In the ϵ → 0 limit, the time required for this process
diverges leading to infinite particle production.

This might seem counterintuitive and in violation of the adiabiatic theorem which states
that a sufficiently slow variation of the quantum system must evolve the initial vacuum into
the final vacuum. However, the adiabatic theorem does not apply to quantum gravity since
the Hamiltonian trivially vanishes and hence the vacuum cannot be defined as the energy
ground state. In the ϵ → 0 limit, the vacua are increasingly different.

3.2 WKB approximation (in the contracting picture)

In this section, we use the Mukhanov-Sasaki equation and the WKB approximation to show
that the discontinuity in a′′(τ) in the toy model studied in the last section does not change our
conclusion about the past vacuum corresponding to a highly excited state in the future. The
Mukhanov-Sasaki equation in an arbitrary flat background driven by a scalar field is given by

v′′k +
(

k2 − z′′

z

)
vk = 0, (3.24)
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τ
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Figure 7. Tunneling problem for calculating the future state obtained from the time evolution of the
past positive frequency vacuum state.

where vk = a(τ)uk, z = a|ϕ̇/H| = 2a2ϵ, ϵ = −Ḣ/H2 = 1/p. We are interested in the solution
to the Mukhanov-Sasaki equation in a general spacetime that in the past infinity has a
power-law contraction a ∝ (−τ)

p
1−p with p < 1 and in the future has a power-law contraction

a ∝ τ
q

1−q with q > 1. In these two contracting phases we have

Phase II: z′′

z
≃ p(2p − 1)

(1 − p)2 τ−2

Phase I: z′′

z
≃ q(2q − 1)

(1 − q)2 τ−2 . (3.25)

The case of de Sitter contraction in the future is recovered by q → ∞, which gives z′′/z = 2τ−2.
The Mukhanov-Sasaki equation takes the form

v′′k − (V(τ) − k2)vk = 0, (3.26)

where the WKB potential function V(τ) (not to be confused with the scalar potential) satisfies

lim
τ→−∞

V(τ)τ2 → p(2p − 1)
(1 − p)2 ,

lim
τ→∞

V(τ)τ2 → q(2q − 1)
(1 − q)2 . (3.27)

We will assume there is a smooth transition between the two stages of expansion and V(τ)
has some finite maximum value near τ = 0, which we denote by Vmax.

We want to find the behavior of the past positive frequency mode in terms of the
future positive/negative frequency modes. Consider a solution with the following asymptotic
behaviors,

τ → +∞ : vk ≃ Ake−ikτ + Bkeikτ ,

τ → −∞ : vk = e−ikτ . (3.28)

For k2 < Vmax, this is mathematically equivalent to a “tunneling” problem as shown in
figure 7 (albeit with an unusual setup where we are tuning the amplitude of two incident
waves on the left and the right such that there is no reflected wave on the left side of the
potential.) The WKB approximation leads to Ak and Bk having exponentially enhanced
amplitude with respect to e−ikτ in the past,

|Ak| =
√
|Bk|2 + 1 ∼ exp

(∫ τ2

τ1

√
V(τ) − k2

)
, (3.29)
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where τ1 and τ2 are times at which k2 = V(τ). When k ≪ Vmax, τ1 and τ2 occur in the
regime where Vmax has the asymptotic form in eq. (3.27); therefore

τ1 ≃ −k−1
√

p(2p − 1)
(1 − p)2 ,

τ2 ≃ k−1
√

q(2q − 1)
(1 − q)2 . (3.30)

Note that the second expression is only correct for p > 1
2 . For p < 1

2 , V(τ) ≡ z′′/z is negative
in the asymptotic future. In that case, the precise value of τ1 will then depend on the duration
of the smooth transition between the accelerated and decelerated contraction. For simplicity
we will assume τ1 = 0 for p < 1

2 . This approximation will not affect our main conclusions.
Now let us use eq. (3.29) to estimate the low-k behavior of the coefficients |Ak| and |Bk|.

k2 ≪ Vmax : |Ak| ≃ |Bk| ∼ exp

∫ k−1
√

q(2q−1)
(1−q)2

−k−1
√

p(2p−1)
(1−p)2

√
V(τ) − k2


∼ exp

(√
p(2p − 1)
(1 − p)2 ln(−Vmaxτ1) +

√
q(2q − 1)
(1 − q)2 ln(Vmaxτ2)

)

∼
(

k

Vmax

)−
√

q(2q−1)
(1−q)2 −

√
p(2p−1)
(1−p)2

. (3.31)

If p < 1
2 , the first term in the exponent disappears. Therefore, a more correct formula is

k ≪ Vmax : |Ak| ≃ |Bk| ∼
(

k

Vmax

)−
√

q(2q−1)
(1−q)2 −

√
max

(
0,

p(2p−1)
(1−p)2

)
. (3.32)

As one can see, at small momenta, there is always particle production. Moreover, note that if
p or q are very close to one, the particle production is intensified, consistent with observation
from the toy model in section 3.1, as illustrated in figure 6.

What exactly is the meaning of k2 < max V where we observe a strong particle production?
Using the definition of V(τ), we get

k2

V(τ) = k2a

a′′ = k2/a2

a′′/a3

a′′

a3 =
(

ȧ

a

)2
+ ä

a
= Ḣ + 2H2 =

(2q − 1
q

)
H2,

(3.33)

where we have substituted the solution a(t) ≃ a0(−t/t0)q. So k2 < Vmax means the comoving
momentum k2 is smaller than Vmax = max{a(τ)2H(τ)2

(
2q−1

q

)
}. For q > 1, the comoving

Hubble radius (aH)−1 increases with time. Therefore k2 < Vmax modes are the same modes
that re-enter the Hubble patch in contracting Phase I (up to a factor of (2q − 1)/q ∈ [1, 2] for
q > 1). We have found particle production for all such k modes. The WKB approximation
supports the conclusion from section 3.1 that, regardless of how the transition between
decelerated and accelerated contraction phases happen, as long as the transition is smooth,
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the positive-frequency vacuum in the asymptotic past (Phase II) is described by a state with
large particle number in small k modes in the future (Phase I). These particle excitations have
physical momentum k/a = |H| at the time of horizon re-entry by definition, which means
they would have trans-Planckian physical momentum log(Mpl/|H|) number of e-folds after
the transition. Therefore, if we have accelerated contraction in the future that is longer than
log(Mpl/|H|) number of e-folds, EFT cannot describe the vacuum state in the asymptotic
past with a decelerated contraction.

4 Adding spatial curvature

In the previous section we showed that the effective field theory breaks down for certain
contracting solutions whose CPT conjugate violates TCC. However, the solutions that
we considered were spatially-flat and isotropic. The space of classical solutions that are
exactly isotropic and flat is ultra-fine-tuned and measure zero. Therefore, to make sure
that our arguments are robust against small perturbations, we study the effect of small
spatial curvature and anisotropy. In this section, we show that there is finite but non-zero
range (i.e. measure) of open universe solutions for which our arguments continue to apply.
For a more complete study of the effects of spatial curvature in cosmological solutions that
arise in string theory see [23, 24].

For any finite time interval of the solution, there is a non-zero range of sufficiently small
perturbations that will not violate any of the assumptions listed in section 2. However, the
same cannot be said about the asymptotic behavior of the solution. Assuming the contracting
picture, the solutions that we had considered were bounded in the future (Phase I), but not
bounded in the past (Phase II). Therefore, we have to worry about perturbations, that no
matter how small, will alter the behavior of the solution at past infinity.

The flat solutions that we considered in the previous section have the following asymptotic
behavior at t → −∞.

a(t) ∼ (−t)p
( 1

d − 1 < p < 1
)

H2 ∼ t−2 ∼ a−2/p . (4.1)

We made the assumption p > 1/(d − 1) to make sure the scalar potential energy remains
non-negligible throughout the contraction. Any perturbation that has a contribution to the
critical density which is strictly smaller than H2 ∼ a−2/p in the past t → −∞ is “safe”;
that is, there exists a finite range of initial perturbations that remain negligible and do not
violate any of our assumptions about the classical solution. For example, the contribution of
anisotropy to energy density goes like ∝ a−2(d−1) and therefore is safe because p > 1/(d − 1).

However, the spatial curvature contributes to the energy density as ∝ a−2 and always
becomes relevant at past infinity. Thus, the addition of the spatial curvature can completely
change the solution at past infinity. It is important to see how the solution changes and
whether our arguments still apply to such modified spatially-curved solutions.

It is instructive to study the effect of spatial curvature on the exponential potentials
that generate spatially flat solutions such as (4.1). Similar to the spatially-flat case, there
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is a tracking contracting solution which can be analytically computed. The FRW metric
in the presence of spatial curvature is

ds2 = −dt2 + a(t)2
[

dr2

1 − Kr2 + r2dΩ2
]

, (4.2)

where K = 1 for a closed universe and K = −1 for an open universe. Suppose the scalar
potential is given by

V (ϕ) = V0 exp(−κλϕ) . (4.3)

The Friedman equations in the presence of spatial curvature are

(d − 1)(d − 2)
2

[
H2 + K

a2

]
= 1

2 ϕ̇2 + V (ϕ) ,

ϕ̈ + (d − 1)Hϕ̇ + dV

dϕ
= 0 . (4.4)

The above equations have the following exact contracting solution.

a(t) = −t√
−K(1 − 4

λ2(d−2))

ϕ(t) =
ln
(

λ2V0
2(d−2) t2

)
λ

Ωk = 1 − 4
λ2(d − 2) , Ωϕ̇ = 4

λ2(d − 1)(d − 2) , ΩV = 4
λ2(d − 1) (4.5)

where the last line shows the fractional contribution of the spatial curvature (Ωk), kinetic
energy density (Ωϕ̇), and potential energy density (ΩV ) to the Friedmann equation for the
square of the Hubble parameter, H2. Note that because of the square root in the expression for
the scale factor, the tracking solution for negative spatial curvature only exists for λ > 2√

d−2 .
This is the same range of λ that we considered for the eternally decelerating solutions in the
case of zero spatial curvature. So we focus on λ > 2√

d−2 and K = −1.
The contraction in Phase II can have two sub-phases, as illustrated in the Penrose diagram

in figure 8 which is the CPT conjugate of the expanding version illustrated in figure 2:

• Phase II-B in which Ωk is non-negligible. This is the initial phase of contraction that
starts at infite past.

• Phase II-A in which Ωk is negligible and the solution is almost spatially flat. Contracting
Phase II-A starts when the spatial-curvature ∝ a−2 ∼ t−2p becomes comparable to
H2 ∼ 1/t2.

Phase II-A is a strictly decelerating contraction, while Phase II-B could be marginally
accelerating or decelerating based on how the tracking solution eq. (4.5) transitions into
contracting Phase II-A. For the argument in previous section to still be valid, we need to
make sure that the addition of contracting Phase II-B does not violate the assumptions
listed in section 2. In particular, we need all sub-Hubble modes in Phase I to trace back to
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sub-Hubble modes in the infinite past as required by assumption 3 in section 2. Suppose the
mode that re-enters the horizon the latest in contracting Phase I has comoving momentum
kmin. Therefore, we would like kmin

Ha = kmin
ȧ to be very small in the past infinity. Suppose tK

and t∗ respectively denote the approximate times of the phase transitions Phase-IIB/Phase
II-A and Phase II-A/Phase I.

kmin
aH

(t = −∞) = kmin
ȧ

(t = −∞) = ȧ(tK)
ȧ(t = −∞) · ȧ(t∗)

ȧ(tK) · kmin
aH

(t∗), . (4.6)

The decelerated contraction of Phase II-A (a ∼ (−t)p), lasts between times tK and t∗ which
are both negative. This contracting phase contributes a factor of ȧ(t∗)

ȧ(tK) ∼ −t∗
−tK

< 1 to the right
hand side of eq. (4.6). Therefore, by making the spatial curvature at t∗ smaller and prolonging
Phase I, we can make the right hand side smaller. Note that the factor limt→−∞

ȧ(tK)
ȧ(t) always

converges to a constant. However, depending on the details of the transition between Phase
II-B to Phase IIA, that constant can be greater than one.

Note that even if the relative ratio of physical wavelengths compared to the Hubble radius
decreases in contracting Phase II-B, it would only by a finite factor. Therefore, by choosing
a sufficiently small spatial curvature at t = t∗ and making ȧ(t∗)

ȧ(tK) sufficiently small, we can
ensure that kmin

aH (t = −∞) ≪ 1. In other words, we can always choose the spatial curvature
to be sufficiently small (yet non-zero) that all the modes of interest are on wavelengths
much smaller than the spatial curvature scale including throughout Phase IIB. Therefore,
the mode analysis from section 3.2 based on a spatially flat universe also applies for a range
of sufficiently small spatial curvatures.

In the rest of this section we make this argument precise by showing that our WKB
argument from section 3.2 will still work if we add a sufficiently small spatial curvature to the
flat contracting solution at the time of transition between two contracting Phases II and I.

For the metric in eq. (4.2) with non-zero spatial curvature, the Mukhanov-Sasaki equa-
tion is [25]

v′′k +
[
k2 + 2K

(
V ′

|ϕ̇H|

)
− z′′

z

]
vk = 0, (4.7)

where

z = |aϕ̇

H
|
√√√√ k2 − 3K

k2 + 2K
(
V ′/|ϕ̇H|

) . (4.8)

Note that |V ′|/ϕ̇H converges to a constant for the tracking solution at τ → −∞.
Therefore, assuming that it is a continuous function, it must have a maximum over τ ∈
[−∞, τf ] for small spatial curvatures. Suppose this maximum is k2

max. For modes with
k ≫ kmax, we can approximate z ≃ |aϕ̇

H |. This corresponds to the modes that have much
shorter wavelengths than the length scale associated with the spatial curvature. The WKB
potential is given by

V(τ) = z′′

z
. (4.9)
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Figure 8. The Penrose diagram of a contracting FRW solution with negative spatial curvature that
undergoes to phase transitions. Phase I is a period of accelerating contraction long enough that
shrinks Hubble modes to trans-Planckian wavelengths. Phase II consists of two subphases: in Phase
II-B, ä becomes negligible; the spatial curvature becomes important; and Ωk converges to a non-zero
value. In Phase II-A, ä is less than zero; the spatial curvature is negligible; and the contraction is
entirely driven by the scalar field.

The relation between conformal time τ and FRW time t for the open universe solution
given in eq. (4.5) is

τ = −
√

1 − 4
λ2(d − 2) ln(−t) . (4.10)

This implies that, if contraction in Phase II is an open universe, the WKB potential converges
to the constant 1

1− 4
λ2(d−2)

at past infinity τ → −∞.

The WKB potential in contracting Phase II-B stays almost constant V(τ) ≃ 1/(1− 4
λ2(d−2))

while in contracting Phase II-A it grows as V(τ) = z′′/z ∝ τ−2. We want all sub-horizon
modes k2 > V at the end of Phase I (τ = τf ) to trace back to sub-horizon modes in Phase II-B
(i.e. k2 > V(τ = −∞)). This is equivalent to V(τf )

V(−∞) ≫ 1. Let us see how V(τf )
V(−∞) depends on

the magnitude of the spatial curvature that we add to the flat solution in contracting Phase I.
In the presence of spatial curvature and following the conventional normalization that K = −1
for an open universe, the scale factor has dimensions and a physical meaning. Multiplying the
scale factor by A > 1 at the transition between contracting Phases I and II-A is equivalent to
decreasing the spatial curvature by a factor of 1/A2. Moreover, rescaling the scale factor,
will also rescale the conformal time dτ = dt/a(t) as τ → τ/A. Therefore, the WKB potential
V = z′′/z in Phase I will rescale as VPhase I → VPhase IA

2. However, the asymptotic value of
the WKB potential is fixed by the tracking solution to be V(−∞) ≃ 1/(1− 4

λ2(d−2)). Therefore,
by decreasing the spatial curvature, we can arbitrarily increase the ratio V(τf )

V(−∞) until all of
the physical modes that reenter the Hubble horizon in Phase I undergo particle production.
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V(τ)
Phase IPhase II-A

V(τ) ≃
[
1 − 4

λ2(d−2)

]−1
V(τ) ≃ q(2q−1)

(q−1)2 τ−2

Vmax

V(τ) ≃ p(2p−1)
(p−1)2 τ−2

Phase II-B

V(τ = −∞)

τ
τf

V(τf )

Figure 9. The WKB potential V = z′′/z versus the conformal time. Phase II-B with non-negligible
spatial curvature with unbounded past. Phase II-A is a period of deccelerated contraction with
negligible spatial curvature. Phase I denotes a finite period of accelerated contraction which lasts
long enough to violate TCC. By choosing a sufficiently small spatial curvature at τ = 0, we can make
V(τf )/V(−∞) arbitrarily large.

5 Critical points of the scalar potential

The arguments of section 3 apply to any classical solution that undergoes a transition from
TCC-violating accelerating expansion to an eternal decelerating expansion. If the potential
has a critical point ∂ϕV = 0 where the potential is positive V > 0, one way to generate the
accelerating phase is to consider a solution in which the scalar field is very close to that
critical point and has zero kinetic energy. If the scalar field is exactly at the critical point,
it will stay there and the resulting classical solution is a de Sitter spacetime. However, the
stability of the solution depends on the convexity of V at the critical point. For ∂2

ϕV > 0,
the solution is a minimum and classically stable, while for ∂2

ϕV < 0, perturbations of the
scalar field away from the critical point will grow (figure 10). The classically stable solution
can still be quantum mechanically unstable via quantum tunneling to a more stable vacuum.
Since minima with V > 0 are generally believed to be local but not global minima in string
theory, we shall refer to such solutions as metastable de Sitter vacua.

The de Sitter solutions that are classically unstable provide a good setup for our argument
in section 3. For example, consider a scalar field potential V (ϕ) which has a local maximum
at ϕ = ϕc and has a steep exponential decay for ϕ > ϕc (figure 10). By choosing the
initial condition to be (ϕ, ϕ̇)(t = 0) = (ϕc + ϵ, 0) for sufficiently small ϵ, we can make
the quasi-de Sitter accelerating phase arbitrarily long so that it violates TCC. However,
eventually the scalar field will roll down the potential and the solution will transition into
a decelerating background. Therefore, our argument applies to this setup and would rule
out such classical solutions.

A scalar potential can still have an unstable critical point as long as quantum effects
make it sufficiently short-lived. The quantum fluctuations of the scalar field about the local
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V (ϕ)

ϕϕc

Unstable
de Sitter

Meta-stable
de Sitter

Rolling solution

Figure 10. A scalar potential with two critical points corresponding to 1) a metastable de Sitter
vacuum in red, and 2) an unstable de Sitter in blue. The dotted curve shows the trajectory of a
classical solution that starts very close to the unstable de Sitter and after a quasi-de Sitter phase
transitions into a non-accelerating solution by rolling down the potential.

maximum will exponentially grow with a rate of τ−1
quantum. For τ < τquantum, the background

will remain classical and we can apply our argument. Suppose H is the Hubble parameter
for this quasi-de Sitter state. If τquantum > 1

H ln(Mpl/H), there can exist initial conditions
in which the solution remains accelerating for τ that is less than τquantum but longer than
1
H ln(Mpl/H). That is, there exists in this case a solution that remains classical but violates
TCC, where we can apply our argument and rule out the solution. Therefore, consistency
with quantum gravity requires that the theory satisfy the condition

τquantum ≲
1
H

ln(Mpl/H), (5.1)

which is exactly the statement of TCC for local maxima of the effective potential [8]. In
particular, this implies that the second derivative of the potential must be large enough
such that quantum fluctuations can quickly drive the state away from the local maximum.
Since the evolution of the quantum fluctuations depends on the shape of the potential near
the critical point, the exact condition takes a complicated form for general potentials (see
equation B.1 in [8]).

For simplicity, consider an inverted quadratic potential V = V0[1 − η
2 (ϕ − ϕc)2] in four

dimensions defined over a field range ϕ ∈ [ϕc, ϕc +∆ϕ]. We assume the potential is sufficiently
small in Planck units (V0/(η(∆ϕ)2) ≪ M4

pl). Then the condition eq. (5.1) leads to

η ≥ 8V (ϕc + ∆ϕ)
3V0

[
ln
(

3M4
pl

V (ϕc + ∆ϕ)

)]−2

. (5.2)

We can easily generalize the above argument to the multi-field scalar potentials. Suppose
the scalar potential depends on multiple scalar fields ϕI with a kinetic term GIJ (ϕ⃗)

2 ∂µϕI∂νϕJ

and the potential has a critical point ϕ = ϕc at which ∂V/∂ϕI = 0 for every I. The kinetic
term of the scalar fields impose a canonical metric GIJ on the space of scalar fields. Using
this metric, we choose an normal basis δϕ′I for the tangent space of the scalar field space
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at point ϕc. In this basis, we have GIJ = δIJ and ∂δϕ′I GJK = 0. The critical point ϕc is an
unstable saddle if the smallest eigenvalue of the Hessian matrix ∂δϕ′I ∂δϕ′J V is negative. Let
us denote the most negative eigenvalue as −ηmaxV (ϕc) < 0 where ηmax is a positive number.
Therefore, there is a direction in the scalar field space in which the scalar potential is locally
approximated by V ≃ V (ϕc)[1 − ηmax

2 (∆ϕ)2] where ∆ϕ is the distance from the critical point
ϕc measured by the canonical metric GIJ . If we can find a solution that moves away from
the unstable equilibrium at ϕc and transitions into a decelerated expansion, we can apply
our single-field analysis noted above to find the quantum gravity constraint

ηmax ≳

[
ln
(

Md
pl

V (ϕc)

)]−2

. (5.3)

Just as in the single-field case, the exact inequality will depend on the details of the scalar
potential.

In the above discussion we focused on unstable de Sitter solutions rather than meta-stable
solutions given by the local minima of the scalar potential. This is because assumption 4 from
section 2 requires a transition between the accelerating phase and the decelerating phase that
is well-described by the classical equations of motion. A metastable de Sitter corresponding to
the local minimum of the potential can only evolve into an eternally decelerating background
through non-perturbative quantum tunneling, which violates this assumption. Even if we start
with a bubble of the meta-stable vacuum in a decelerating background, the assumptions will
not be automatically satisfied since the bubble typically does not disappear [26]. However, for
a scalar potential with a positive local minimum, we can consider other solutions by varying
the initial kinetic energy of the scalar field. If any such solution satisfies the assumptions
listed in section 2 and violates TCC, the scalar potential can be ruled out.

Let us consider an example of how, by choosing the proper initial condition, some
potentials with positive local minima can be ruled out. Consider a positive potential with a
very shallow dip such that |V ′|/V remains very small between the local minimum and the
local maximum and the barrier height is much smaller than the value of the potential (see
figure 11). For such a potential, a classical solution in the local minimum can overcome
the barrier and roll into a decelerating solution with a very small kinetic energy. Therefore,
such a potential supports a solution that satisfies our assumptions. If the local minimum is
sufficiently wide, the quasi-de Sitter portion of the solution can last long enough to violate
the TCC and the potential will be ruled out. In the presence of more than one scalar field,
there is even more freedom to find TCC-violating solutions that classically roll outside of the
local minimum. In order to see exactly what potentials are consistent with our constraints,
one has to consider all classical trajectories and check if TCC is violated for any solution
that satisfies the assumptions listed in section 2.

6 Trans-Planckian problem in black hole physics vs cosmology

In this section, we explain the difference between our argument and “the trans-Planckian
problem” raised decades ago in inflationary cosmology and black hole physics [18–20] and
why our argument applies to cosmological setups but does not apply to black holes.
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V (ϕ)
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local minimum

Quasi-de Sitter
solution

Figure 11. If a scalar potential has a positive local minimum which is sufficiently wide and shallow,
there is TCC-violating classical solution that rolls out of the dip.

The trans-Planckian problem questioned the validity of EFT when a quasi-stationary
mode has a sub-Planckian wavelength in part of the spacetime. For example, in expanding
cosmologies, the quasi-stationary modes can be trans-Planckian in the past. Similarly, the
stationary modes outside of a Schwarzschild black hole become trans-Planckian near the
black hole horizon due to the gravitational blue-shift. However, there is overwhelming
evidence that the EFT calculation in black hole backgrounds that result in Hawking radiation
must be trusted.

The argument presented in this paper is different, not simply a reiteration of the trans-
Planckian problem discussed previously. The trans-Planckian problem in cosmology is typically
addressed by restricting the EFT Hilbert space to states for which the trans-Planckian states
are in the vacuum [22]. Crucially, we consider a different quantum state. Based on holography
and perturbative string theory, we argue that the vacuum of the asymptotic future boundary
of spacetime must also admit an EFT description, which we show is impossible for a certain
class of cosmological TCC violating backgrounds. Therefore, our argument goes beyond EFT
and rests on quantum gravity features such as holography.

Also, unlike the trans-Planckian problem, our reasoning does not apply to black holes.
An essential difference between black hole backgrounds and the cosmological TCC-violating
solutions considered in section 2 is the choice of the observer. If we consider the modes
corresponding to the free-falling observer crossing the horizon, the modes are non-singular and
the UV modes are in the vacuum. The trans-Planckian problem in black hole physics arises
when one considers the infinite boost that relates measurements of the free-falling observer
to those of an observer who hovers just above the horizon. In fact, the same issue could be
raised for Unruh radiation in Rindler spacetime which is a coordinate reparameterization
of Minkowski spacetime. However, the effective field theory is perfectly trustable in the
Minkowski background.
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In our argument, the check for EFT validity is whether the physical observables become
trans-Planckian for free-falling observers. If so, the EFT is invalid. In the case of black
hole, this is not believed to happen. However, in our cosmological setting, it is indeed the
free-falling observer that is stationary with respect to the comoving frame who measures
trans-Planckian energy densities. EFT is invalid because there is no frame in which the
trans-Planckian issue is resolved.

7 Implications for inflationary cosmology in the string theory landscape

In this section we discuss the implications of our findings for the interior of the string theory
landscape where there is less perturbative control. Let us review some well-known observations
about the string theory landscape that are relevant:

1. A generic string theory construction comes with multiple light scalar fields. Therefore,
the scalar field potential often depends on several light scalar fields rather than one.

2. The potential decreases or grows exponentially in the asymptotic directions of the scalar
field space.

3. The directions in which the scalar field potential decreases are steep enough to make
any flat FRW solution decelerating in the future [27].

Based on the above observations, one can see that a generic flat FRW solution which
rolls down the potential has a decelerating future and a singular past in which the EFT
breaks down due to large values of the scalar potential [7]. Since the futures of these solutions
are decelerating, they satisfy the assumptions we listed in section 2 which makes the string
theory landscape an excellent setup to apply our findings. We conclude the following:

Implications for the string theory landscape: Any classical expanding scalar field
cosmology in the string theory landscape in which the scalar field rolls to the asymptotic of
the field space must satisfy TCC. Note that we show TCC must be satisfied even if the scalar
fields travel through the deep interior of the moduli space.

To show the above conclusion, we showed that if TCC is violated, the EFT breaks down
for the vacuum with zero particle excitations in the asymptotics of spacetime. However,
this invalidates the EFT altogether given that in perturbative string theory, the EFT by
definition is supposed to capture the physics of low-energy perturbations around that specific
vacuum state.

One type of scalar potential that would violate TCC is a long stretch of a sufficiently long
plateau that would allow ln(Mpl/H) e-folds of quasi-de Sitter expansion. This is precisely
the type of potential that is conventionally used in inflationary models. Our findings rule
out the existence of such a plateau in the landscape as long as there is any classical solution
that connects the quasi-de Sitter phase sourced by this plateau to the asymptotic region
of the field space. In inflationary models, it is typically imagined that after inflation, the
scalar field stabilizes at a local minimum of the potential. We emphasize that even if the
scalar field does not roll to the asymptotic region of field space for one particular solution,
the model can still be ruled out as long as any such solution exists.
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Our argument falls short of completely ruling out the inflationary scenario in string theory.
This is due to the possibility that every TCC-violating accelerating expanding solutions drain
into a strictly local non-negative minimum or a negative minimum of the scalar potential,
although different solutions can drain into different minima. These possibilities share the
property that, for one reason or another, there is no classical solution which connects the
TCC-violating phase to the asymptotic vacuum.1

Interestingly, for positive potentials it has proven difficult to construct either inflation
(i.e. very flat potentials) or metastable de Sitter (i.e. positive local minimum) in string theory
and no full construction for either one is currently known. It is understood that realizing
either feature would require a finely-tuned cancellation between different contributions to
the derivatives of the scalar potential.

One of our main findings is that in theories with positive scalar potentials, realizing
one of these fine-tunings (i.e. inflation) in the string theory landscape, requires realizing
the other one as well (i.e. metastable de Sitter). Achieving both is already challenging in
a single-field potential. In the typical string theory landscape, the potential depends on
many fields, which complicates matters. This is because any flat stretch of potential can
allow different accelerating solutions depending on the initial conditions for the direction of
the scalar field. Our argument then implies that any TCC-violating accelerating solution
anywhere in the landscape must end in a metastable de Sitter phase, whether relevant to the
inflationary scenario or not. Thus realizing inflation in a typical string landscape requires
an immeasurably complex and highly-nonlinear condition across the entire string landscape
that may not be possible to satisfy without violating the regularity of the future vacuum
which is motivated by holography.
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A FRW mode expansions

Suppose we have a theory with a scalar potential V (ϕ) which can be a function of multiple
scalar fields with non-trivial scalar geometry. Consider a classical spatially-flat FRW solution
of this theory that is solely driven by the scalar field potential and kinetic terms. Despite the

1If the solution ends in a global minimum with zero potential energy, our arguments still apply due to
eternal deceleration. If the solution goes to a negative minimum, it will ultimately contract to a singularity.
If the ending point is a positive local minimum, it will eventually decay via quantum tunneling. A global
positive minimum is known to be ruled out in string theory [28].
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presence of multiple scalar fields, we can parametrize the classical trajectory using a canonically
normalized scalar field ϕ. Therefore, this classical trajectory extremizes the following action.∫

ddx
√
−g

[R
2κ

− 1
2∂µϕ∂µϕ − V (ϕ)

]
, (A.1)

where κ =
√

8πG = Mpl
−(d−2)/2 is the reduced Planck factor. Note that we have excluded

all the other matter fields As they would be irrelevant to our analysis. However, we will
comment on the implicit assumption of weak coupling between ϕ and other fields in section 7.
Suppose the metric for the spatially-flat FRW solution is

ds2 = a(τ)2

−dτ2 +
∑

1≤i≤d−1
dxidxi

 , (A.2)

where τ is the conformal time. We decompose the scalar field into the classical background
ϕ0(τ) and fluctuation φ.

ϕ(τ, x) = ϕ0(τ) + φ(τ, x). (A.3)

Substituting the above decomposition into the Lagrangian eq. (A.1) leads to

Lmatter =
(

a(τ)d−2

2 ϕ′2
0 − a(τ)dV (ϕ0)

)

+
(

a(τ)d−2ϕ′
0φ′ + a(τ)d−2

2 φ′2
)

−
(

a(τ)d−2

2 (∇⃗φ)2 + a(τ)d∂ϕV (ϕ0)φ + a(τ)d
∂2

ϕV (ϕ0)
2 φ2 + . . .

)
, (A.4)

where prime denotes derivative with respect to τ . Note that since we will be promarily
interested in the mode expansion for the scalar field and not graviton, we have excluded
the gravitational term R.

To define a vacuum we need to find the correct mode expansion.

φ(τ, x) =
∫

dd−1k
(2π)d−1

[
u(τ, k)b(k) + u∗(τ,−k)b†(−k)

]
eik·x , (A.5)

where u(τ, k)eik·x are solutions to the equation of motions and are normalized such that the
creation annihilation operators b† and b satisfy the commutation relations

[b(k1), b†(k2)] = (2π)d−1δd−1(k1 − k2) . (A.6)

To see how the above condition imposes a normalization condition on u(τ, k), we must use
the canonical commutation relations

[φ(τ, x), π(τ, y)] = iδd−1(x − y) , (A.7)

where π(τ, x) is the canonical momentum conjugate given by

π(τ, x) = δL
δφ′ = a(τ)d−2(ϕ′

0 + φ′) . (A.8)
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Generally, the commutation relations in non-inertial coordinate systems curvature dependent
factors on the left side of A.7. However, in the case of conformally flat spacetime such
as ours, such factors are absent. To see why, suppose we were working in a coordinate
system tnormal, xi

normal which was instantaneously inertial at the point (τ, x). We can find
such coordinates by ensuring the following differential equations are satisfied at the point
of interest.

dtnormal = a(τ)dτ

dxnormal = a(τ)dxi . (A.9)

Therefore, the canonical momentum conjugate π and the delta functions are related as follows
across the two coordinate systems.

πnormal = ∂tnormalϕ0 + ∂tnormalφ = a(τ)−(d−1)π

δd−1(x − y)normal = δd−1(a(τ)(x − y)) = a(τ)−(d−1)δ(x − y) . (A.10)

Therefore, we find

[φ(τ, x), π(τ, y)] = a(τ)d−1[φ(τ, x), πnormal(τ, y)]
= ia(τ)d−1δd−1(x − y)normal

= iδ(x − y) . (A.11)

Note that we are working in natural units throughout this article. Using the mode expansion
eq. (A.5) for φ(τ, x), we find

π(τ, x) = a(τ)d−2ϕ′
0 + a(τ)d−2

∫
dd−1k

(2π)d−1

[
u′(τ, k)b(k) + u∗′(τ,−k)b†(−k)

]
eik·x . (A.12)

Note that the first term is proportional to the identity operator and therefore commutes
with any operator. Therefore, we find

[φ(τ, x), π(τ, y)] = a(τ)d−2
∫

dd−1k
(2π)d−1

∫
dd−1k′

(2π)d−1 ei(k·x+k′·y) (A.13)

×
[
u(τ, k)b(k) + u∗(τ,−k)b†(−k), u′(τ, k′)b(k′) + u∗′(τ,−k′)b†(−k′)

]
.

Using the commutation relations eq. (A.6) for b(k) and b(k)†, we find

[φ(τ, x), π(τ, y)] = a(τ)d−2
∫

dd−1k
(2π)d−1 eik·(x−y)

[
u(τ, k)u∗′(τ, k) − u′(τ,−k)u∗(τ,−k))

]
.

(A.14)
To reproduce the canonical commutation relation eq. (A.7), we need

u(τ, k)u∗′(τ, k) − u′(τ,−k)u∗(τ,−k)) = ia(τ)−(d−2) . (A.15)

The equation of motion ( δL
δφ = 0) that each mode satisfies is

[a(τ)d∂ϕV (ϕ0) + ∂τ (a(τ)d−2ϕ′
0)]+[a(τ)d(∂ϕV (ϕ0 + φ) − ∂ϕV (ϕ0))

+ ∂τ (a(τ)d−2φ′) − a(τ)d−2∇2φ] = 0 . (A.16)
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Note that the first bracket vanishes because ϕ0 is a classical background that solves the
equation of motion. So, we find

a(τ)2(∂ϕV (ϕ0 + φ) − ∂ϕV (ϕ0)) + (d − 2)a′

a
φ′ + φ′′ −∇2φ = 0 . (A.17)

By considering the leading term in the expansion of the potential we find

∂ϕV (ϕ0 + φ) − ∂ϕV (ϕ0) ≃ φ∂2
ϕV (ϕ0) . (A.18)

Substituting φ = uk(τ) · exp(ik · x) in the approximate equation of motion leads to

(d − 2)a(τ)Hu′
k(τ) + u′′

k(τ) + k2uk(τ) + a(τ)2∂2
ϕV (ϕ0(τ))uk(τ) ≃ 0 , (A.19)

where H = a′/a2 is the Hubble parameter
The above equation has solutions that have positive and a negative frequencies at I+.

To define the future vacuum, we take u to be the positive frequency solution.
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