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1. Introduction

Field theory is a successful framework and a powerful tool in theoretical physics for investigating
the fundamental properties of matter. It is used to study physical processes in various contexts, as
it finds applications across different energy and density scales. Below are some notable examples:

• Electroweak and strong interactions in particle physics.

• Phase transitions in condensed matter.

• Inflation in cosmology.

• Quantum gravity via holography.
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Advances in these areas have notably relied on simplifications arising from symmetries, and
Landau’s theory of phase transitions is no exception. In this case, symmetries serve as an orga-
nizing principle for describing phases of matter. They offer insights into vacuum degeneracy and
systematically construct the lowest-energy excitations upon it in a bottom-up manner. According to
Landau, the low-energy versions of different theories displaying the same symmetry pattern belong
to the same phase and can be described universally. However, over the past century, examples
that do not fit Landau’s paradigm have been found. Famous examples include superfluids on thin
materials, deconfined phases of gauge theories, topological field theories, and the list continues to
grow today.

More recently, Gaiotto, Kapustin, Seiberg, and Willett brought the concept of higher-form
symmetries to the forefront [1]. Along with ’t Hooft anomalies, these symmetries have provided
physicists with new tools to uncover the low-energy mysteries of field theories. In particular,
McGreevy emphasized in a review [2] that they can revitalize Landau’s idea. Higher-form sym-
metries can be identified in the aforementioned outliers and many more, reigniting the quest for a
classification of phases of matter, provided we generalize our approach to symmetries.

In these lecture notes, we follow the spirit of [2] and use phases of matter as motivation to
introduce higher-form symmetries and related tools, such as ’t Hooft anomalies. We aim to illustrate
this introduction with simple examples from scalar field theories and electromagnetism to cover both
older and more recent results on symmetries, their breaking, and their anomalies. Unfortunately,
these notes will end prematurely, as many other examples could have been included, given that they
were designed for only six hours of lectures. For instance, non-invertible and subsystem symmetries
will not be introduced here.

Our main references are [1–3]. Additionally, these notes have drawn upon preexisting reviews
[4–11] and teaching material [12–17].

2. Review on fields, symmetries, and phases

2.1 Field theories

Quantum field theory casts knowledge about physical phenomena into correlation functions
for its different observables O. For local observables, these are evaluated at several points 𝑥 in a 𝑑-
dimensional spacetime manifold ℳ𝑑 . When the field theory is formulated in terms of a Lagrangian,
correlation functions can be computed via a path integral:

〈O1(𝑥1) · · · O𝑁 (𝑥𝑁 )〉 =
1
𝑍

∫
𝐷ΦO1(Φ(𝑥1)) · · · O𝑁 (Φ(𝑥𝑁 ))𝑒𝑖𝑆 [Φ]/ℏ , (1)

where 𝑍 is the partition function of the field theory:

𝑍 =

∫
𝐷Φ 𝑒𝑖𝑆 [Φ]/ℏ . (2)

In the path integral formulation, we sum over field configurations Φ(𝑥) with complex weights
provided by the action 𝑆[Φ]. Each O on the LHS of Equation (1) is an operator acting on the
Hilbert space of the field theory. On the RHS, it is a function of the fields Φ.
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To ensure that the path integral converges, it may be convenient to convert the complex weight
into a real one by performing a Wick rotation:

𝑡 → −𝑖𝜏 , (3)

together with introducing an Euclidean action 𝑆e:

𝑖𝑆[Φ]/ℏ → −𝑆e [Φ]/ℏ . (4)

This defines the path integral for the Euclidean theory.
The Wick rotation transforms the path integral into a familiar form for statistical physicists.

Indeed, the RHS of Equation (4) is reminiscent of the free energy for a static field configuration, as
shown by the following identification:

− 𝑆e [Φ]/ℏ ↔ −𝛽𝐹 [Φ] . (5)

The reduced Planck constant ℏ is replaced with the inverse temperature 𝛽 = 1/𝑘𝐵𝑇 of the statistical
system. Instead of summing over quantum fluctuations, statistical physicists sum over thermal
fluctuations, but the computational device is similar. An important caveat is that the Euclidean
action 𝑆e is evaluated on fields in a 𝑑-dimensional Euclidean spacetime, while the free energy 𝐹 is
evaluated on static field configurations in a 𝑑-dimensional space without a time component. The
key takeaway is that some results from Euclidean QFT in a 𝑑-dimensional spacetime, like the falloff
of certain correlation functions, can be exported to classical statistical systems in 𝑑 + 1 dimensions,
and vice-versa. This already illustrates the universal power of field theory in a broad sense.

In both quantum and statistical field theories, an important question is whether we can use the
microscopic details of the field theory, or a lattice version, to predict its behavior at low energies
and momenta. Ultimately, this would allow us to understand the phase of matter it describes. The
renormalization group flow answers this question in many cases. It has been put forward by Wilson
in 1975 to solve the Kondo problem [18]. This field theory tool is instrumental in our quest to
classify the phases of matter, as illustrated in the next sections.

2.2 Renormalization group flow

One way to introduce the renormalization group flow (RG flow) is to separate low and high-
frequency modes in the partition function. This is the frequency separation scheme, which is
pedagogically presented in [12]. The field Φ being a sum of Fourier modes, we may formally
distinguish its infrared (IR) and ultraviolet (UV) contributions with respect to an arbitrary energy
scale Λ:

Φ = ΦIR +ΦUV , IR 6 Λ < UV . (6)

We can then think about integrating the UV modes in the path integral to produce an effective action
𝑆eff for the IR modes only:

𝑍 =

∫
𝐷ΦIR𝐷ΦUV 𝑒

𝑖𝑆 [ΦIR,ΦUV ] =

∫
𝐷ΦIR 𝑒

𝑖𝑆eff [ΦIR;Λ] . (7)

The effective action is useful for studying processes with energy transfers that are not larger than Λ.
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In more detail, the RG flow maps the Lagrangian theory of 𝑆 to an effective one, equipped with
the action 𝑆eff, through a continuous deformation that coarse-grains the theory. Focusing on low
frequencies is achieved with a scaling:

(𝐸, ®𝑘) → 𝜆−1(𝐸, ®𝑘) , (𝑡, ®𝑥) → 𝜆(𝑡, ®𝑥) , 𝜆 > 1 . (8)

Relevant interactions will increase in strength in the infrared, while irrelevant ones will lose
importance. There are also marginal couplings unaffected by the RG flow. This qualification is
dictated by the dimension of the coupling.

For example, in the free theory of a massive field with mass 𝑚, such that [𝑚] = 1, the
adimensional mass 𝜈 = 𝑚/𝐸 gains importance in the IR:

𝜈 → 𝜆𝜈 , 𝜆 > 1 . (9)

As we go down in the IR, the mass 𝑚 is increasingly felt. Ultimately, if Λ < 𝑚, the energy transfers
will not be sufficient to create any excitation related to the massive field, and the latter can be
removed, or integrated out, from the effective field theory. This demonstrates that, in parallel to
changes in the coupling, the RG flow also adapts the degrees of freedom of theory. Contrary to what
is formally suggested in Equation (6), ΦUV and ΦIR may have different natures. In the following,
we will use these symbols to represent the various degrees of freedom in the UV and IR theories,
not merely as different modes of a single field Φ.

Note that this presentation refers to the Wilsonian scheme of renormalization, which should be
contrasted with the 1PI effective action where the path integral is performed over all frequencies.
However, these schemes may coincide in the absence of interacting massless particles.

These notions could be reviewed in greater detail, but we will instead focus on a limited set of
hopefully enlightening physical examples.

Weak interaction

In our modern understanding of particle physics, the weak interaction is responsible for 𝛽
decay:

𝑛(𝑢𝑑𝑑) → 𝑝+(𝑢𝑢𝑑) + 𝑒− + 𝜈̄𝑒 . (10)

More precisely, the Salam-Weinberg model of 1968 tells us that the decay of the neutron is mediated
by the boson𝑊−, as shown in Figure 1 (a). In the corresponding Lagrangian, one finds the following
terms involving𝑊− and fermionic matter 𝜓:

LSW ⊃ 𝑔𝜓̄𝛾𝜇𝑊𝜇𝜓 + 𝑚𝑊𝑊
𝜇𝑊𝜇 . (11)

These terms explain how one quark 𝑑 in the neutron can be converted into a quark 𝑢 by emitting a
𝑊−, turning the neutron into a proton. The 𝑊− then converts into a pair of fermions: an electron
𝑒− and an antineutrino 𝜈̄𝑒.

The mass of the 𝑊− is given by 𝑚𝑊 = 80 GeV. Below this scale, the 𝑊− is integrated out,
leaving only fermions. The interaction is effectively seen as a quartic interaction between fermions,
as shown in Figure 1 (b) and prescribed by Fermi in 1933:

LF ⊃ 𝐺F𝜓̄𝜓𝜓̄𝜓 . (12)

5



P
o
S
(
M
o
d
a
v
e
2
0
2
3
)
0
0
3

Modave lecture notes: Field exploration in phases of matter Antoine Pasternak

(a) Salam-Weinberg model of the weak
interaction.

(b) Fermi interaction.

Figure 1: Two views on the 𝛽 decay.

The couplings in both models are matched by the RG flow at the tree level:

𝐺F ∝ 𝑔2

𝑚2
𝑊

. (13)

In Fermi’s interaction, the coupling 𝐺F is found to be irrelevant and, as a result, tends effectively to
zero as we flow down to the IR. This explains the name "weak interaction".

Strong interaction

In quantum chromodynamics (QCD), the gauge coupling 𝑔 is classically marginal but becomes
relevant once loop corrections are added. Its running with energy is prescribed by the so-called
beta function equation:

𝛽(𝐸) = 𝐸 𝜕

𝜕𝐸
𝑔(𝐸) = 𝑏 𝑔(𝐸)2 + · · · , (14)

where 𝑏 < 0 is a numerical factor which characterizes one-loop contributions. To integrate this
equation, we need to introduce the dynamical scale ΛQCD such that

𝑔(𝐸) =
𝑔(ΛQCD)

1 + 𝑏 𝑔(ΛQCD) ln(ΛQCD/𝐸)
. (15)

The coupling grows strong near 𝐸 ∼ ΛQCD 𝑒
−1/𝑏𝑔 (ΛQCD) .

In fact, the gauge coupling in QCD grows stronger and stronger as we go down in energy.
Bound states form, and the correct degrees of freedom are not simply the quarks and gluons
obtained after frequency separation, but rather composite fields like the mesons and baryons. One-
loop contributions in the beta function are not enough to capture these strong-coupling features and
solving the low-energy regime of QCD remains an outstanding problem nowadays.

Possible ends of the renormalization group flow

The RG flow ends on a fixed point of the beta function and the later determines the deep IR of
the theory. Since the RG flow may remove some fields and adapt the couplings, it is not surprising

6
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that a single fixed point may connect different UV theories. For instance, consider two theories, A
and B, where B is just theory A plus some extra decoupled massive fields. It is then expected that
A and B flow to the same IR fixed point. This illustrates the fact that the RG is not a group and that
it erases some information (see 𝑎, 𝑐, 𝐹-theorems).

In general, many different UV theories share the same universal IR, and fall in the same phase
of matter. Sometimes, theory A may be a bona fide quantum field theory, while B could be a
quantum theory on a lattice. This may seem trivial if the lattice is just a regularization of the
quantum field theory spacetime, but in principle, there might be some more interesting scenarios.

It is tempting to take these observations to motivate the classification of different endpoints of
the RG flow. The first important criterion is whether the IR theory is gapped or gapless.

• Gapped theory: all excitations remain massive at infinite volume.

– Trivially gapped theory: the vacuum is unique (example: a theory of massive scalars).
– Non-trivially gapped theory: displaying degeneracy of the vacuum, long-range order,

etc. (example: the topological theory of Chern-Simons).

• Gapless theory: there are massless excitations at infinite volume. We can further distinguish
two cases:

– Free theory (example: a theory of free massless scalars).
– Interacting theory (example: Wilson-Fisher fixed point).

Since all scales are washed out by the RG flow, the last two cases are scale-invariant theories,
which generally fall under the class of conformal field theories (CFT).

How do we know in which kind of vacuum we end up at the end of an RG flow?
Even though the renormalization group had not yet been studied at the time, Landau hypoth-

esized that the properties of the infrared should be characterized by the symmetries of the model
[19]. We will now explore reasons why this idea is far from anachronistic.

2.3 Symmetries and Landau’s paradigm

The symmetries of a quantum field theory interestingly characterize its RG flow:

(a) If𝐺 is the symmetry group of a UV theory, then it cannot be explicitly broken by the RG flow.
In other words, the effective action will never contain a term that is not invariant under 𝐺.
Note however that 𝐺 may be replaced with a larger structure, such as an emergent symmetry
group.

(b) Since the field content changes from ΦUV to ΦIR, representations of 𝐺 in the IR may differ
from the ones in the UV. In general, only a subgroup of 𝐺 will act non-trivially, or faithfully,
on the degrees of freedom in the IR, and so actually counts as a symmetry. The emergent
symmetry group is faithful by definition.

(c) If ΦIR transforms non-trivially under 𝐺, or one of its subgroups, then its vacuum expectation
value (VEV) is an order parameter. More precisely, if 〈ΦIR〉 ≠ 0 is preserved by 𝐻 ⊂ 𝐺, we
say that 𝐺 is spontaneously broken down to 𝐻.

7
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The idea of Landau is to use that knowledge to characterize different phases of matter. The
notion of phase is more general than the notion of vacua discussed before. For example, we say
that different gapped vacua, possibly from different UV theories, belong to the same phase if one
can go from one to the other by performing an adiabatic change without closing the gap. This may
involve modifying the couplings of the theory and adding or removing degrees of freedom. In this
case, phase transitions thus signal the apparition of massless degrees of freedom.

Landau’s paradigm

(1) Different phases correspond to different combinations (𝐺, 𝐻).

(2) Massless degrees of freedom at the critical point are given by the fluctuations of the
order parameter 〈ΦIR〉.

In these lectures, we will mainly be concerned with (1) and will illustrate it right away with a
famous example from statistical physics.

Ising model

The Ising model is a lattice theory with 𝑁 spins𝜎𝑖 = ±1 located at sites 𝑖. Consider the classical
version of the model in 𝑑 > 2 + 1 spacetime dimensions and subject to thermal fluctuations. The
Hamiltonian exhibits a nearest-neighbor interaction with interaction strength 𝐽 > 0:

𝐻 = −𝐽
𝑁∑︁
〈𝑖 𝑗 〉

𝜎𝑖𝜎𝑗 . (16)

It is minimized when all spins either point downward 𝜎𝑖 = −1, or upward 𝜎𝑖 = +1. Those are called
ordered or ferromagnetic configurations. Thermal fluctuations will introduce some randomness in
the spin configuration. In particular, the model has a critical temperature 𝑇𝑐 over which the spins
average to zero.1 This is a disordered or paramagnetic configuration.

This discussion can be rephrased in terms of symmetries𝐺 and𝐻. The Hamiltonian is invariant
under a symmetry group 𝐺 = Z2 which acts as follows:

𝜎𝑖 → −𝜎𝑖 . (17)

In this case, an order parameter is given by the average magnetization of the spin-lattice:

𝑚 =
1
𝑁

𝑁∑︁
𝑖=1

𝜎𝑖 . (18)

Indeed, it transforms non-trivially under 𝐺 = Z2: 𝑚 → −𝑚.

• Disordered phase at 𝑇 > 𝑇𝑐: 〈𝑚〉 = 0 and 𝐺 = 𝐻 = Z2. The symmetry group is preserved
and the vacuum is unique.

• Ordered phase at 𝑇 < 𝑇𝑐: 〈𝑚〉 = ±1 and 𝐺 = Z2, 𝐻 = ∅. The symmetry group is
spontaneously broken and there are two vacua related to each other by Z2.

1In 1944, Onsager solved analytically the Ising model for 𝑑 = 2 + 1 and found 𝑇𝑐 = 2𝐽/𝑘𝐵 ln(1 +
√

2).
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This example illustrates well how the VEV of the order parameter, and hence the couple (𝐺, 𝐻),
determines the phase in which our vacua belongs. Moreover, they illustrate a general lesson related
to the groundstate degeneracy (GSD) of theories with a discrete symmetry (in the higher-form
context, call it a zero-form discrete symmetry).

Breaking of a discrete symmetry
The breaking of discrete zero-form symmetry 𝐺 into 𝐻 leads to a groundstate degeneracy:

GSD = |𝐺/𝐻 | = |𝐺 |
|𝐻 | . (19)

Beyond Landau’s paradigm

After Landau formulated his proposal for classifying phases of matter, much water flowed
under the bridges, and physicists went on to discover many phases of field theories that fall outside
the aforementioned paradigm. A non-exhaustive list includes the following examples:

• Superfluids on thin layers.

• Gapless phases of gauge theories.

• Quantum Hall effect and topological order.

• Symmetry-protected topological order.

• Fractons.

• Landau Fermi liquids.

The object of these lectures is to slightly deviate from Landau’s original paradigm, while keeping
symmetries as the central aspect for classifying phases of matter, following [2]. We will find that
introducing anomalies and higher-form symmetries allows us to reincorporate some of the examples
in this list into phases that can be classified in terms of symmetries. But first, we review some basic
aspects of symmetries in quantum field theory.

2.4 From currents and charges to topological operators

Continuous symmetries are traditionally introduced with a Lie group 𝐺.2 Let 𝑔 ∈ 𝐺. The
element 𝑔 can be obtained as an expansion around the identity 1:

𝑔 = 1 + 𝑖𝛼𝑎𝑡𝑎 + · · · , 𝑎 = 1, · · · , dimg . (20)

where 𝛼𝑎 is a set of parameters and 𝑡𝑎 are generators of the Lie algebra g. In the following, we will
refer to a Lie group element by 𝑔 or 𝛼 interchangeably. Let Φ𝑔 and Φ𝑡𝑎 be the fields obtained after
transformation under 𝑔 and 𝑡𝑎 respectively. We have

Φ𝑔 = Φ + 𝑖𝛼𝑎Φ𝑡𝑎 + · · · . (21)

2Non-invertible symmetries are not be covered in these lecture notes. See [7, 11] for introductions to this topic.
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For example, 𝐺 = 𝑈 (1) is defined together with a periodic parameter 𝛼 ∼ 𝛼 + 2𝜋 such that

Φ𝑔 = 𝑒𝑖𝛼𝑞Φ , Φ𝑡 = 𝑞Φ . (22)

Importantly, in this example, 𝑞 ∈ Z, otherwise 𝛼 = 2𝜋 cannot consistently reproduce the identity of
the group𝑈 (1). The charge 𝑞 may vary from one field to another.

Symmetry currents and charges

𝐺 is a symmetry of the classical field theory if all of its elements 𝑔 leave the action 𝑆[Φ]
invariant up to boundary terms:

𝑆 [Φ𝑔] = 𝑆 [Φ] + boundary terms . (23)

Then, Noether’s theorem proves the existence of conserved currents:

𝑗𝑎𝜇 =
𝜕𝐿

𝜕𝜕𝜇Φ
Φ𝑡𝑎 − 𝐾𝜇 , (24)

in the sense that 𝑗𝑎𝜇 satisfies the continuity equation on-shell:

𝜕𝜇 𝑗
𝑎𝜇 = 0 . (25)

These are often called Noether currents, in contrast to topological currents which satisfy the
continuity equation even off-shell.

Let ℳ𝑑 = R × 𝒩𝑑−1, where R and 𝒩𝑑−1 are the time and spatial components respectively.
Noether charges are defined as follows:

𝑄𝑎 (𝑡) ≡
∫
𝒩𝑑−1

d𝑑−1𝑥 𝑗𝑎𝑡 (𝑡, ®𝑥) . (26)

Each charge is conserved on-shell as a result of Noether’s theorem:

d𝑄𝑎

d𝑡
=

∫
𝒩𝑑−1

d𝑑−1𝑥 𝜕𝑡 𝑗
𝑎
𝑡 =

∫
𝒩𝑑−1

d𝑑−1𝑥 ®∇ · ®𝑗𝑎 =

∫
𝜕𝒩𝑑−1

d𝑑−2𝑥 ®𝑛 · ®𝑗𝑎 = 0 . (27)

The last equality is obtained trivially when 𝒩𝑑−1 is a closed manifold, i.e. without boundaries:
𝜕𝒩𝑑−1 = 0. Otherwise, we must assume good fall-off conditions for the field Φ near the boundary.

At the quantum level, the conservation of the current is generalized by Ward’s identities:

〈𝜕𝜇 𝑗𝑎𝜇 (𝑥)〉 = 0 ,
〈𝜕𝜇 𝑗𝑎𝜇 (𝑥)Φ(𝑦)〉 = 𝑖〈Φ𝑡𝑎 (𝑦)〉𝛿𝑑 (𝑥 − 𝑦) ,

〈𝜕𝜇 𝑗𝑎𝜇 (𝑥)Φ(𝑦)Φ(𝑧)〉 = 𝑖〈Φ𝑡𝑎 (𝑦)Φ(𝑧)〉𝛿𝑑 (𝑥 − 𝑦) + 𝑖〈Φ(𝑦)Φ𝑡𝑎 (𝑧)〉𝛿𝑑 (𝑥 − 𝑧) ,
etc.

(28)

Symmetry operator

In the quantum theory, 𝑄 and Φ are promoted to operators acting on the Hilbert space. Note
that 𝑄 was defined at some time 𝑡, but could equivalently be defined by 𝒩𝑑−1, the hypersurface on

10
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which it is integrated. We drop the index 𝑎 of the Lie generator from now on. The operators obey
the following commutation relation:

[𝑄(𝒩𝑑−1),Φ(𝑥)] = 𝑖Φ𝑡 (𝑥)𝐼 (𝑥,𝒩𝑑−1) , (29)

where 𝐼 (𝑥,𝒩𝑑−1) is the intersection number between 𝑥 and 𝒩𝑑−1:

𝐼 (𝑥,𝒩𝑑−1) =
{

1 if 𝑥 ∈ 𝒩𝑑−1 ,

0 otherwise .
(30)

We can make our life easy by picking up 𝐺 = 𝑈 (1):

[𝑄(𝒩𝑑−1),Φ(𝑥)] = 𝑖𝑞Φ(𝑥)𝐼 (𝑥,𝒩𝑑−1) , 𝑞 ∈ Z . (31)

In general, 𝑄 defines a unitary action for 𝑔 ∈ 𝐺:

𝑈𝛼 (𝒩𝑑−1) ≡ 𝑒𝑖𝛼𝑄 (𝒩𝑑−1) . (32)

We call𝑈𝛼 the symmetry operator. It obeys the following set of useful identities:

𝑈𝛼 (𝒩𝑑−1)−1 = 𝑈𝛼 (𝒩𝑑−1)† = 𝑈−𝛼 (𝒩𝑑−1) = 𝑈𝛼 (−𝒩𝑑−1) , (33)

where −𝒩𝑑−1 is 𝒩𝑑−1 with reversed orientation. It acts on operators by conjugation:3

𝑈𝛼 (𝒩𝑑−1)Φ(𝑥)𝑈𝛼 (𝒩𝑑−1)−1 = 𝑒𝑖𝛼𝑞𝐼 (𝑥,𝒩𝑑−1)Φ(𝑥) . (34)

See Figure 2 (a) for an illustration of this equality. The symmetry operator satisfies the following
fusion rule inherited from group law:

𝑈𝛼 (𝒩𝑑−1)𝑈𝛽 (𝒩𝑑−1) = 𝑈𝛼 ·𝛽 (𝒩𝑑−1) . (35)

Note that𝑈𝛼 exists for discrete symmetries too.

Symmetry defect

While we defined𝑈𝛼 (𝒩𝑑−1) as an operator acting on an Hilbert space H(𝒩𝑑−1), one can also
introduce a timelike hypersurface 𝒯𝑑−1 such that 𝑈𝛼 (𝒯𝑑−1) appears in correlation functions as a
defect. Its effect is to modify the quantum theory by imposing a boundary condition. If the location
of the hypersurface 𝒯𝑑−1 matches with some location 𝑦, quantification should impose the condition:

lim
𝜖→0

Φ(𝑦 − 𝜖) = 𝑒𝑖𝛼𝑞 lim
𝜖→0

Φ(𝑦 + 𝜖) , (36)

and hence modifying the Hilbert space H(𝒩𝑑−1) without affecting the set of operators.
In the Euclidean theory, the defect is naturally obtained from the operator with a spacetime

rotation. In fact, any topological deformation of 𝒩𝑑−1 can be conceived in the Euclidean spacetime.
Following this insight, consider a closed hypersurface 𝒞𝑑−1 in ℳ𝑑 , i.e. 𝜕𝒞𝑑−1 = 0. First of all,
note that it generalizes the definition of charge accordingly:

𝑄(𝒞𝑑−1) ≡
∮
𝒞𝑑−1

d𝑑−1𝑥 𝑛𝜇 𝑗𝜇 , (37)

3The action by conjugation is a general feature. Note that it allows for projective representations as well.
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(a)𝑈𝛼 is defined on a spacelike surface
𝒩𝑑−1 that intersects with 𝑥 (distances

are exagerated in the picture for clarity).

(b)𝑈𝛼 is defined on a closed
hypersurface 𝒞𝑑−1 in spacetime that

links with 𝑥.

Figure 2: Action of the symmetry operator𝑈𝛼 on the local operator Φ(𝑥).

where 𝑛𝜇 is the normal vector to 𝒞𝑑−1. Now, smoothly deform 𝒞𝑑−1 into 𝒞
′
𝑑−1.

𝑄(𝒞′
𝑑−1) −𝑄(𝒞𝑑−1) =

∮
𝒞

′
𝑑−1

d𝑑−1𝑥 𝑛𝜇 𝑗𝜇 −
∮
𝒞𝑑−1

d𝑑−1𝑥 𝑛𝜇 𝑗𝜇 =

∫
𝒳𝑑

d𝑑𝑥 𝜕𝜇 𝑗𝜇 , (38)

where 𝒳𝑑 is chosen such that 𝜕𝒳𝑑 = 𝒞
′
𝑑−1−𝒞𝑑−1. The last integral vanishes if no charge is present

in 𝒳𝑑 . So, the insertion of 𝑄(𝒞′
𝑑−1) in a correlation function will not differ from choosing to

insert 𝑄(𝒞𝑑−1) instead if it does not include a charged operator Φ(𝑥) with 𝑥 ∈ 𝒳𝑑 . Put differently,
we should be able to deform 𝑄(𝒞′

𝑑−1) into 𝑄(𝒞𝑑−1) without crossing Φ(𝑥). This shows that the
dependence of the charge operator in 𝒞𝑑−1 is only homological.

The same is true for𝑈𝛼 (𝑄(𝒞𝑑−1)). Moreover, one can show that its action can be generalized
as follows:

𝑈𝛼 (𝒞𝑑−1)Φ(𝑥) = 𝑒𝑖𝛼𝑞𝐿 (𝑥,𝒞𝑑−1)Φ(𝑥) , (39)

where the linking number 𝐿 (𝑥,𝒞𝑑−1) is more suited to this definition than the intersection number.
See Figure 2 (b) for an illustration This confirms the homological nature of the symmetry operator,
hence it is a topological operator.

2.5 Anomalies

The current 𝑗𝜇 associated with a continuous symmetry is sourced in the path integral by a
classical background 𝐴𝜇. It is often implemented with a minimal coupling:

𝑍 [𝐴] =
∫

𝐷Φ 𝑒𝑖𝑆 [Φ;𝐴] , 𝑆[Φ; 𝐴] ⊃
∫

d𝑑𝑥 𝐴𝜇 𝑗
𝜇 , (40)

such that
〈 𝑗 𝜇 (𝑥) · · · 〉𝐴 =

1
𝑍 [𝐴] (−𝑖)

𝛿

𝛿𝐴𝜇 (𝑥)
· · · 𝑍 [𝐴] . (41)

The notation 〈·〉𝐴 means that the background field is not set to zero when evaluating the correlation
function.

12
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A general feature is that the symmetry transformation is promoted to a gauge transformation
in the presence of the background:

𝑔 = 𝑔(𝑥) : Φ → Φ𝑔 , 𝐴𝜇 → 𝐴
𝑔
𝜇 = 𝑔𝐴𝜇𝑔−1 + 𝑖𝑔𝜕𝜇𝑔−1 . (42)

If 𝐺 = 𝑈 (1), then we find

𝑔 = 𝑒𝑖𝛼(𝑥) : Φ → 𝑒𝑖𝛼Φ , 𝐴𝜇 → 𝐴𝜇 + 𝜕𝜇𝛼 . (43)

At this point, a few remarks are in order.

• The classical background 𝐴𝜇 should not be confused with the dynamical gauge field 𝑎𝜇 of a
gauge theory. In the latter case, the path integral sums over different field configurations for
𝑎𝜇:

𝑍gauge =

∫
𝐷𝑎𝐷Φ 𝑒𝑖𝑆 [𝑎,Φ] . (44)

Moreover, terms involving the field strength 𝑓𝜇𝜈 in the action rule its dynamics:

𝑆[𝑎,Φ] ⊃ −1
4

∫
d𝑑𝑥 𝑓𝜇𝜈 𝑓 𝜇𝜈 with 𝑓𝜇𝜈 = 𝜕𝜇𝑎𝜈 − 𝜕𝜈𝑎𝜇 . (45)

• In contrast with the previous point, we appreciate that 𝑍 [𝐴] is evaluated on a single configu-
ration for the gauge field 𝐴𝜇. Moreover, if we set 𝐴𝜇 to the rather singular choice:

𝐴𝜇 =

{
𝛼𝑛𝜇 𝑥 ∈ 𝒞𝑑−1 ,

0 elsewhere,
(46)

where 𝑛𝜇 the orthonormal vector to the hypersurface 𝒞𝑑−1 and 𝛼 is constant, then it may be
observed that

𝑍 [𝐴] =
∫

𝐷Φ 𝑒
𝑖𝛼

∮
𝒞𝑑−1

d𝑑−1𝑥 𝑛𝜇 𝑗𝜇
𝑒𝑖𝑆 [Φ] =

∫
𝐷Φ𝑈𝛼 (𝑄(𝒞𝑑−1))𝑒𝑖𝑆 [Φ] . (47)

So, evaluating the correlation function with such a classical background is equivalent to
introducing a symmetry operator:

〈· · · 〉𝐴 = 〈𝑈𝛼 (𝑄(𝒞𝑑−1)) · · · 〉 . (48)

In general, a fixed classical background introduces a mesh of symmetry operators. A gauge
transformation on 𝐴 introduces a change in the mesh.

This justifies a posteriori why the global symmetry becomes a gauge symmetry in the gauge
version of the theory. When we sum over all configurations 𝑎 in the path integral of Equa-
tion (44), we sum over all possible insertions of symmetry operators and keep only the
invariant pieces, the same way a projection would operate.

13
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’t Hooft anomalies

One could ask whether the path integral is invariant under the symmetry 𝐺 when a classical
background is added:

𝑍 [𝐴𝑔] ?
= 𝑍 [𝐴] . (49)

This is not always the case. When it is not, the non-invariance is encapsulated in a term 𝑓 (𝐴, 𝑔):

𝐷Φ𝑔 𝑒𝑖𝑆 [Φ
𝑔;𝐴𝑔 ] = 𝐷Φ 𝑒𝑖𝑆 [Φ;𝐴]𝑒𝑖

∫
d𝑑𝑥 𝑓 (𝐴,𝑔) (50)

There is still hope to cancel this variation with the introduction of local counterterms 𝑐[Φ; 𝐴]:

𝑆[Φ; 𝐴] → 𝑆[Φ; 𝐴] + 𝑐[Φ; 𝐴] . (51)

For instance, these would modify the minimal coupling of Equation (40).
The addition of counterterms is not always enough to get rid of the non-invariance. In this

case, this signals the presence of a ’t Hooft anomaly in the field theory. It should not be seen as
a flaw. The field theory is perfectly sane as it is and this anomaly can be used to infer some of
its properties. A first observation is that we cannot simply sum over gauge field configurations to
gauge the symmetry 𝐺. There is an ambiguity in the definition of 𝑍 [𝐴].

Anomaly inflow

There is one way of getting rid of the ’t Hooft anomaly. It can be done by claiming that ℳ𝑑 is
the boundary of a higher-dimensional bulk 𝒳𝑑+1 where the classical background 𝐴 lives too. We
say that the bulk supports the anomaly theory, which is an action for the classical field:

A𝑑+1 [𝐴] = 2𝜋
∫
𝒳𝑑+1

d𝑑+1𝑥 𝜔(𝐴) . (52)

Then, we ask that
𝜔(𝐴𝑔) = 𝜔(𝐴) − 𝜕𝜇 (𝑛𝜇 𝑓 (𝐴, 𝑔)) . (53)

We are then prepared to introduce a partition function for the whole bulk-boundary system:

𝑍 ′[𝐴] ≡ 𝑍 [𝐴]𝑒𝑖A𝑑+1 [𝐴] . (54)

This one is invariant under the symmetry transformation:

𝑍 ′[𝐴𝑔] ≡ 𝑍 ′[𝐴] . (55)

The anomaly theory fully characterizes the anomaly and allows us to gauge the symmetry at the
condition to keep the bulk and boundary together.

Anomalies and the infrared

The anomaly is an RG flow invariant. If 𝐺 bears an anomaly in the UV, it does in the IR too.
Importantly then, the IR cannot be trivially gapped! In line with what we said about the possible
ends of the RG flow in section 2.2, we can infer some general remarks on the presence of ’t Hooft
anomalies:

14
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• 𝑑 = 0 + 1: ’t Hooft anomalies correspond to projective representations of symmetries.

• 𝑑 = 1 + 1: Topological order is not possible in this dimension. So, anomalies signal either
gapless or degenerate gapped vacua.

• 𝑑 > 2 + 1: Anomalies signal topological order, gapless, or degenerate gapped vacua.

Note that discrete symmetries may feature anomalies too.

3. Superfluids

At temperatures below 2.2 K, liquid helium-4 (4He) is in a superfluid phase [20]. It deserves
this qualification since it satisfies the following characteristics:

• The flow of the fluid preserves the number of 4He atoms because these are stable isotopes.

• All 4He atoms may occupy the same lowest energy state, forming a Bose-Einstein condensate.

• The flow of the fluid is non-viscous.

Drawing parallels to solids in frictionless contact, it costs arbitrarily small amounts of energy
to generate motion in a non-viscous fluid. Hence, a massless pole should be found in the correlation
functions of the field theory of a superfluid. We say that superfluids are gapless phases of matter,
as opposed to normal fluids with their gapped excitations.

The stability of 4He isotopes signals that their number should be a conserved charge, naturally
fitting in a representation of 𝑈 (1), meaning it belongs to Z. This is the crucial hint that the
corresponding field theory should be invariant under a𝑈 (1) symmetry acting on a certain field Φ:

𝑈 (1) : Φ → 𝑒𝑖𝛼Φ . (56)

Then, Goldstone’s theorem nicely connects the Bose-Einstein condensate, here the finite VEV of
the field,

〈Φ〉 = 𝑣 , (57)

to the presence of a massless mode, the Goldstone boson [21]. The classical version of the theorem
will reviewed in the following section.

This brief account on superfluids is another illustration of how symmetries, and in this case
Goldstone’s theorem, characterize effectively some gapless phases of matter. However, the theorem
has known limitations in field theories with low dimensions due to infrared fluctuations, as shown
by the Coleman-Hohenberg-Mermin-Wagner theorem [22–24]. This is our motivation to introduce
an alternative and more recent argument based solely on symmetries and their anomalies to exhibit
massless poles [3]. This can be done in any dimension by introducing higher-form symmetries.

15
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3.1 Spontaneous symmetry breaking

For a quantum field theory in 𝑑 spacetime dimensions to be symmetric under a𝑈 (1) group, we
need some operator charged under it. So, we introduce a single complex scalar Φ that transforms
as follows:

𝑈 (1) : Φ → 𝑒𝑖𝛼Φ , 𝛼 ∼ 𝛼 + 2𝜋 . (58)

It is natural to fix its charge to +1 so that the charges of the excited states will match the number of
helium isotopes.

To generate a condensate in the vacuum, we ask that the scalar feels a Ginzburg-Landau
potential:

𝑉 (Φ∗Φ) = −𝑚
2

2
Φ∗Φ + 𝜆

4
(Φ∗Φ)2 , (59)

This potential qualifies because it is invariant under the 𝑈 (1) symmetry. The energy is bounded
below for 𝜆 > 0. The sign of the quadratic term is chosen together with𝑚2 > 0 such that, classically,
the energy is minimized whenever

|〈Φ〉| = 𝑣 = 𝑚
√
𝜆
. (60)

We say that the scalar develops a non-zero vacuum expectation value 𝑣, which is equivalent to a
vacuum condensate.

The vacua solutions to Equation (60) form a circle in field space, and the 𝑈 (1) symmetry
moves you continuously from one vacuum to another. In other words, the vacua are not symmetric
under 𝑈 (1) because they fix the phase of 〈Φ〉 to a certain value, so 𝑈 (1) is spontaneously broken.
We find the symmetry groups of the theory and vacua to be

𝐺 = 𝑈 (1) , 𝐻 = 1 . (61)

Goldstone’s theorem

Goldstone’s theorem famously states that a spontaneously broken continuous symmetry signals
the presence of a massless particle in the spectrum: the Goldstone boson. In consequence, the
infrared phase of the model must be gapless.

The Goldstone boson can be found classically by expanding the Ginzburg-Landau potential
around a spontaneously selected vacuum. Taking 〈Φ〉 = 𝑣 to be purely real suggests the following
expansion:

Φ(𝑥) = (𝑣 + 𝜌(𝑥))𝑒𝑖𝜙 (𝑥) . (62)

Now, we have two real scalars at our disposal: the non-compact 𝜌 and compact 𝜙 ∼ 𝜙 + 2𝜋. With
this expansion, the complete action of the model reads

𝑆[𝜌, 𝜙] =
∫
ℳ𝑑

d𝑑𝑥
[
−1

2
𝜕𝜇𝜌𝜕

𝜇𝜌 − 1
2
(𝑣 + 𝜌)2𝜕𝜇𝜙𝜕

𝜇𝜙 + 𝑚2𝜌2 + 𝑚
2

𝑣
𝜌3 + 𝑚2

4𝑣2 𝜌
4 − 𝑚2𝑣2

4

]
. (63)

This makes it clear that 𝜌 has a mass𝑚. The compact 𝜙 is massless and happens to be the Goldstone
boson for the broken𝑈 (1).

Goldstone, Salam, and Weinberg proved in a seminal paper that this idea generalizes at the
quantum level [21]. The result is usually quoted as Goldstone’s theorem. It may be formulated as
follows:
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Goldstone’s theorem
Consider a quantum field theory with a continuous and internal symmetry 𝐺. If the theory
develops a vacuum expectation value 〈Φ〉 = 𝑣 preserved by 𝐻 ⊂ 𝐺, and such that 𝐻 ≠ 𝐺, it
contains a massless particle in its spectrum.

The theorem is sometimes refined to include the counting rules for the number of Goldstone
bosons, which may be subtle in the context of non-relativistic field theories or for the breaking of
spacetime symmetries. See [25] for a recent review on this matter.

Effective field theory for the Goldstone boson

For energies below 𝑚, the field 𝜌 can be integrated out from the expanded action in Equa-
tion (63). The effective action for the Goldstone boson 𝜙 then takes into account the interactions
between 𝜌 and 𝜕𝜙 in the form of quartic and higher couplings:

𝑆[𝜙] =
∫
ℳ𝑑

d𝑑𝑥
[
−𝑣

2

2
𝜕𝜇𝜙𝜕

𝜇𝜙 + 𝑎4

𝑚2 (𝜕𝜇𝜙𝜕
𝜇𝜙)2 + 𝑎6

𝑚4 (𝜕𝜇𝜙𝜕
𝜇𝜙)3 + · · ·

]
, (64)

where 𝑎4 and 𝑎6 are numerical factors. The expansion goes on with higher derivative terms. At the
lowest energies, one retains only the term with fewer derivatives:

𝑆[𝜙] = −𝑣
2

2

∫
ℳ𝑑

d𝑑𝑥 𝜕𝜇𝜙𝜕𝜇𝜙 . (65)

In both actions, the spontaneously broken 𝑈 (1) symmetry is realized as a shift, or momentum,
symmetry:

𝑈 (1)m : 𝜙 → 𝜙 + 𝛼 , 𝛼 ∼ 𝛼 + 2𝜋 . (66)

Normal fluids

Notice that if the sign of the quadratic term in Equation (59) was positive, then we would be
dealing with a field theory of (anti)particles with a mass proportional to 𝑚. In this gapped phase,
the potential is minimized with

〈Φ〉 = 0 , (67)

and 𝐺 = 𝐻 = 𝑈 (1). This is show that the VEV 〈Φ〉 is the order parameter for the phase transition.

3.2 Infrared fluctuations in low dimensions

A key assumption in the proof of Goldstone’s theorem is that the complex scalar, that serves
as an order parameter in this context, develops long-range order:

〈Φ〉 = 𝑣 , (68)

where we arbitrarily set the phase to zero. We already saw that this is realized at the level of classical
field theory by minimizing a Ginzburg-Landau potential, but the vacuum expectation value may
actually suffer from quantum or thermal fluctuations that dominate the infrared.
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This problem of fluctuations does not concern the massive field 𝜌 whose infrared behavior is
regulated by its mass 𝑚. We can forget about it and directly assume

〈Φ〉 = 𝑣〈𝑒𝑖𝜙〉 (69)

as starting point and investigate on its compatibility with Equation (68). In the quantum theory of
Equation (65), this is done by separating the positive and negative energy modes of the compact
field:

𝜙 = 𝜙+ + 𝜙− , such that 𝜙− |0〉 = 0 , 〈0| 𝜙+ = 0 . (70)

Using Baker–Campbell–Hausdorff formula together with [𝜙±, [𝜙+, 𝜙−]] = 0, one finds

〈𝑒𝑖𝜙〉 = 〈𝑒𝑖𝜙+
𝑒 [𝜙

+,𝜙− ]/2𝑒𝑖𝜙
−〉 = 𝑒−〈[𝜙−,𝜙+ ] 〉/2 . (71)

Note that
〈𝜙(𝑥)𝜙(𝑦)〉 = 〈𝜙−(𝑥)𝜙+(𝑦)〉 = 〈[𝜙−(𝑥), 𝜙+(𝑦)]〉 , (72)

so we can write
〈𝑒𝑖𝜙〉 = 𝑒−〈𝜙 (𝑥)𝜙 (𝑥) 〉/2 . (73)

The vacuum expectation value is expressed in terms of a two-point function evaluated at coincident
points, so it will carry UV divergences. It is customary to take care of these in quantum field theory
with renormalization. The real trouble will come from potential IR divergences also present in the
two-point function.

We can evaluate the two-point function in an Euclidean 𝑑-dimensional spacetime using an IR
cut-off ΛIR:

〈𝜙(𝑥)𝜙(𝑦)〉 = 1
𝑣2

∫
ΛIR

d𝑑𝑘
(2𝜋)𝑑

𝑒−𝑖𝑘 · (𝑥−𝑦)

𝑘2 ∝
{

− log(ΛIR |𝑥 − 𝑦 |) 𝑑 = 1 + 1
−|𝑥 − 𝑦 |2−𝑑 + Λ𝑑−2

IR 𝑑 > 1 + 1
. (74)

The harmless UV divergence can be seen in both expressions when 𝑥 → 𝑦. An IR divergence is
also present for 𝑑 = 1 + 1 in the limit of ΛIR → 0. The latter cannot be treated with counterterms
in the action and reveals a true physical feature of the theory, that is

〈𝑒𝑖𝜙〉 ΛIR→0→ 0 ⇒ 〈Φ〉 = 0 for 𝑑 = 1 + 1 . (75)

The outcome is that there is no long range order for a relativistic quantum field theory in 𝑑 = 1 + 1.
On the other side, spontaneous symmetry breaking remains possible in higher dimensions.

This result generalizes with thermal fluctuations in statistical field theories in one dimension
higher. It also has a counterpart for discrete symmetries in lower dimensions. We summarize all of
theses results below:

Coleman-Mermin-Wagner theorems

There are spacetime dimensions 𝑑 for which long-range order, 〈Φ〉 = 𝑣, and so spontaneous
symmetry breaking, are spoiled by infrared fluctuations:

〈Φ〉 = 0 is imposed by quantum fluctuations thermal fluctuations
Continuous symmetry 𝑑 6 1 + 1 𝑑 6 2 + 1
Discrete symmetry 𝑑 = 0 + 1 𝑑 = 1 + 1
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The conclusion of this section is that the gaplessness of the superfluid phase in 𝑑 > 1 + 1 in a
quantum theory follows from a symmetry principle thanks to Goldstone’s theorem. But if we were
to find a gapless mode in a 𝑑 = 1 + 1 scalar theory, some other principle should be invoked. The
same can be said for a statistical theory in 𝑑 = 2 + 1.

3.3 The compact scalar in 𝑑 = 1 + 1

Can superfluids be accommodated in quantum field theory when 𝑑 = 1 + 1? In statistical
physics, this is equivalent to asking whether a superfluid phase exists in two-dimensional materials,
or thin layers. The answer is that such phases do exist. However, we have already seen that they
cannot coexist with long-range order, so there must be something special about these dimensions.
Indeed, the phase transition to these states is known to be of infinite-order and is called the
Berezinskii-Kosterlitz-Thouless transition, sometimes referred to as a topological phase transition.

As we will see, the model of Equation (65) with 𝑑 = 1 + 1 is a CFT (with central charge
𝑐 = 1) and is known to exhibit a massless pole. A priori, this action qualifies to study a bosonic
superfluid and it is natural to start here with respect to higher dimensions. So, what does protect
the masslessness in this case?

We will explore in more details the theory of a free compact scalar in 1 + 1-dimensions.

𝑆[𝜙] = −𝑅
2

4𝜋

∫
ℳ2

d2𝑥 𝜕𝜇𝜙𝜕
𝜇𝜙 . (76)

Note the change of notations with respect to the previous section (𝑅2 = 2𝜋𝑣2). The dimensions are
[𝜙] = [𝑅] = 0. For what follows, the compactness of 𝜙 is crucial, and we recall that the field is
normalized such that

𝜙 ∼ 𝜙 + 2𝜋 . (77)

The theory displays a momentum symmetry that acts a shift on the compact field:

𝑈 (1)m : 𝜙 → 𝜙 + 𝛼 , 𝛼 ∼ 𝛼 + 2𝜋 . (78)

This 𝑈 (1)m is the analogue of the one that was spontaneously broken in higher dimensions. The
corresponding conserved current is given by

𝑗𝜇 =
𝑅2

2𝜋
𝜕𝜇𝜙 . (79)

It is easy to check that it is a Noether current and its conservation follows simply from the equation
of motion:

𝛿𝑆

𝛿𝜙
=
𝑅2

2𝜋
𝜕𝜇𝜕

𝜇𝜙 = 0 . (80)

If our spacetime decomposes as ℳ2 = R × 𝒩1 with 𝒩1 the purely spatial component, then the
following charge is conserved over time:

𝑄(𝒩1) =
𝑅2

2𝜋

∫
𝒩1

d𝑥 𝜕𝑡𝜙 . (81)
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In an Euclidean spacetime ℳ2, the charge density can be integrated over any closed contour 𝒞1:

𝑄(𝒞1) =
𝑅2

2𝜋

∮
𝒞1

d𝑥𝜇 𝜖𝜇𝜈𝜕𝜈𝜙 . (82)

Whenever a current is a gradient, we can use the epsilon symbol to construct another conserved
current in the theory:

𝑗̃𝜇 =
𝜖𝜇𝜈

𝑅2 𝑗
𝜈 =

𝜖𝜇𝜈

2𝜋
𝜕𝜈𝜙 . (83)

Its conservation is guaranteed by topology (as long as 𝜙 is not singular) and does not rely on the
equation of motion. This is an example of topological current. The corresponding charge that is
conserved over time writes as follows:

𝑄(𝒩1) =
1

2𝜋

∫
𝒩1

d𝑥 𝜕𝑥𝜙 . (84)

In an Euclidean spacetime, we will find

𝑄(𝒞1) =
1

2𝜋

∮
𝒞1

d𝑥𝜇 𝜕𝜇𝜙 . (85)

But what does it measure?

Winding

If the field 𝒞1 is a contour on a plane where 𝜙 is smooth and well-defined, then Equation (85)
vanishes trivially and the charge does not measure anything. To get a non-trivial answer, we have
to resort to non-trivial topological configurations.

Once again, the compact scalar is subject to the following identification:

𝜙 ∼ 𝜙 + 2𝜋 . (86)

This redundancy in 𝜙 can be used on a generic spacetime manifold ℳ2 while gluing different
patches into an atlas. In the following, we will treat ℳ2 as an Euclidean manifold.

For instance, consider the Euclidean plane with an hole in the middle. The pierced plane can be
covered with three patches 𝒰 (𝑖)

2 ⊂ ℳ2, 𝑖 = 1, 2, 3, where 𝜙 is represented by 𝜙 (𝑖) . The patching is
illustrated on Figure 3. We chose the patches such that every intersection 𝒰

(𝑖)
2 ∩𝒰

( 𝑗)
2 is connected.

Since the scalar is compact, this implies that 𝜙 (𝑖) and 𝜙 ( 𝑗) may differ by an unique multiple of 2𝜋:

𝜙 (𝑖) − 𝜙 ( 𝑗) = 2𝜋𝑚𝑖 𝑗 , 𝑚𝑖 𝑗 ∈ Z , on 𝒰
(𝑖)
2 ∩𝒰

( 𝑗)
2 . (87)

In our example, we will choose

𝜙 (2) − 𝜙 (1) = 0 on 𝒰
(2)
2 ∩𝒰

(1)
2 ,

𝜙 (3) − 𝜙 (2) = 0 on 𝒰
(3)
2 ∩𝒰

(2)
2 ,

𝜙 (1) − 𝜙 (3) = 2𝜋𝑚 on 𝒰
(1)
2 ∩𝒰

(3)
2 .

(88)

In general, consistency imposes a cocycle condition on triple intersections, if any:

𝑚𝑖 𝑗 + 𝑚 𝑗𝑘 + 𝑚𝑘𝑖 = 0 on 𝒰
(𝑖)
2 ∩𝒰

( 𝑗)
2 ∩𝒰

(𝑘)
2 . (89)
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Figure 3: Three patches 𝒰 (𝑖)
2 , with 𝑖 = 1, 2, 3, are introduced in the holed spacetime ℳ2. The closed contour

𝒞1 can be used to integrate the winding charge 𝑄.

Draw a closed contour 𝒞1 around the hole in our example such that it goes through every of
the three patches, as shown on Figure 3. The topological charge along this contour is given by

𝑄(𝒞1) =
1

2𝜋

∮
𝒞1

d𝑥𝜇 𝜕𝜇𝜙 . (90)

Find three points 𝑥𝑖 𝑗 ∈ 𝒰
(𝑖) ∩ 𝒰

( 𝑗) and such that they belong to the contour, 𝑥𝑖 𝑗 ∈ 𝒞1. We can
finally compute the topological charge:

𝑄(𝒞1) = 1
2𝜋

[ (
𝜙 (1) (𝑥13) − 𝜙 (1) (𝑥21)

)
+
(
𝜙 (2) (𝑥21) − 𝜙 (2) (𝑥32)

)
+
(
𝜙 (3) (𝑥32) − 𝜙 (3) (𝑥13)

) ]
= 𝑚 .

(91)
The topological charge measures the winding of the field around the hole. It counts how much
the field increases or decreases around a non-trivial cycle in the spacetime geometry. All of this
topological information is contained in the integers used to glue the patches.

When the field is in such a topologically non-trivial configuration, say with 𝑚 ≠ 0, we call it
a vortex or instanton. If we introduce polar coordinates (𝑟 > 0, 𝜑 ∼ 𝜑 + 2𝜋) on the pierced plane
such that the hole is located at 𝑟 = 0, then a minimal example of vortex solution with winding 𝑚
can be written as

𝜙(𝑟, 𝜑) = 𝑚𝜑 . (92)

More generally, we can introduce a 𝑚-vortex by removing a disk 𝒟2 (or tube in higher 𝑑) from the
spacetime geometry together with a condition on the boundary 𝜕𝒟2 for the compact field:

1
2𝜋

∮
𝜕𝒟2

d𝜙 = 𝑚 (93)

imposed as a boundary condition.
The winding charges are always integers, and so suggests that the topological symmetry is

actually a𝑈 (1)w. Since it is a topological symmetry, it is not seen as acting on 𝜙. We will see next
how to define operators charged under𝑈 (1)w.
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Dual field

Vortices are intrinsically non-perturbative objects. To be seen as usual perturbative excitations,
we need a dual description of the theory in terms of a dual field.

Start with the partition function (with loose notation)

𝑍 =

∫
𝐷𝜙 𝑒−𝑖

∫
𝑅2
4𝜋 (𝜕𝜙)2

. (94)

Notice that the action does only depend on 𝜕𝜙. Thus we can treat 𝜕𝜙 as a field on its own in the
partition function at the price of specifying explicitly the topological condition,

𝜖 𝜇𝜈

2𝜋
𝜕𝜇𝜕𝜈𝜙 = 0 , (95)

with the help of a Lagrange multiplier 𝜙. Neglecting meaningless factors in front of the path integral
and integrating by parts on the Lagrange multiplier term, we find

𝑍 =

∫
𝐷𝜕𝜙𝐷𝜙 𝑒−𝑖

∫
𝑅2
4𝜋 (𝜕𝜙)2−𝜙 𝜖 𝜇𝜈

2𝜋 𝜕𝜇𝜕𝜈𝜙 =

∫
𝐷𝜕𝜙𝐷𝜙 𝑒−𝑖

∫
𝑅2
4𝜋 (𝜕𝜙)2+ 𝜖 𝜇𝜈

2𝜋 𝜕𝜇𝜙𝜕𝜈𝜙 . (96)

The equations of motion are

2𝜋
𝛿𝑆

𝛿𝜕𝜇𝜙
= 𝑅2𝜕𝜇𝜙 − 𝜖𝜇𝜈𝜕𝜈𝜙 = 0 , 2𝜋

𝛿𝑆

𝛿𝜙
= 𝜖 𝜇𝜈𝜕𝜇𝜕𝜈𝜙 = 0 . (97)

The first equation shows how to relate 𝜙 to 𝜙, and the second just imposes the topological condition,
as expected.

Because the theory is free, it is easy now to integrate out 𝜕𝜙, using its equation of motion. We
find

𝑍 =

∫
𝐷𝜙 𝑒

−𝑖
∫ 1

4𝜋𝑅2 (𝜕𝜙)2
. (98)

This exactly the same theory as the original with the coupling 𝑅 replaced by 1/𝑅. This is T-duality
in action, and 𝜙 ∼ 𝜙 + 2𝜋 is the compact scalar field T-dual to 𝜙.

From the first equation of motion in Equation (97), we find that the winding charge for 𝜙 is a
momentum charge for 𝜙:

𝑄(𝒞1) =
1

2𝜋

∮
𝒞1

d𝑥𝜇 𝜕𝜇𝜙 =
1

2𝜋𝑅2

∮
𝒞1

d𝑥𝜇 𝜖𝜇𝜈𝜕𝜈𝜙 . (99)

So, the winding symmetry𝑈 (1)w acts as a momentum symmetry on the dual field. The continuous
symmetries we found are summarized below:4

𝑈 (1)m : 𝜙 → 𝜙 + 𝛼 , 𝛼 ∼ 𝛼 + 2𝜋 .
𝑈 (1)w : 𝜙 → 𝜙 + 𝛽 , 𝛽 ∼ 𝛽 + 2𝜋 .

(101)

4Note in passing that the theory of the compact scalar also enjoys a discrete symmetry, the conjugation operation:

Z2 : (𝜙, 𝜙) → −(𝜙, 𝜙) . (100)
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The operators respectively charged under𝑈 (1)m and𝑈 (1)w are

𝑒𝑖𝑛𝜙 and 𝑒𝑖𝑚𝜙 , for 𝑛, 𝑚 ∈ Z . (102)

The operator 𝑒𝑖𝑚𝜙 gives an alternative way to introduce a vortex in a correlation function.
Returning to the statistical physics perspective, in 𝑑 = 2 + 1, the dual framework is particularly

convenient for studying the phase at high temperatures, i.e. above the temperature at which the
Berezinskii-Kosterlitz-Thouless transition occurs. In this phase, vortex configurations are favored
and proliferate.

Mixed ’t Hooft anomaly

There is something special about the momentum and winding symmetries that we will be able
to use in order to show the existence of a massless mode in 𝑑 = 1 + 1, a mixed ’t Hooft anomaly.

We introduce two background sources 𝐴𝜇 and 𝐴𝜇 for the currents 𝑗𝜇 and 𝑗̃𝜇 respectively. They
transform under an improved𝑈 (1)m ×𝑈 (1)w:

𝑈 (1)m :

{
𝜙 → 𝜙 + 𝛼 ,
𝐴𝜇 → 𝐴𝜇 + 𝜕𝜇𝛼 ,

𝛼 ∼ 𝛼 + 2𝜋 .

𝑈 (1)w :

{
𝜙 → 𝜙 + 𝛽 ,
𝐴𝜇 → 𝐴𝜇 + 𝜕𝜇𝛽 ,

𝛽 ∼ 𝛽 + 2𝜋 .
(103)

where 𝛼 and 𝛽 may vary in spacetime. We must then check if the partition function with sources is
still invariant under the symmetries:

𝑍 [𝐴𝜇 + 𝜕𝜇𝛼, 𝐴𝜇 + 𝜕𝜇𝛽]
?
= 𝑍 [𝐴𝜇, 𝐴𝜇] . (104)

If not, this signals the presence of a ’t Hooft anomaly.
In our free theory, this question can already be asked at the classical level, i.e. with the action

alone. Introduce first the background 𝐴𝜇 for𝑈 (1)m:

𝑆[𝜙; 𝐴𝜇] =
∫
ℳ2

d2𝑥

[
−𝑅

2

4𝜋
𝜕𝜇𝜙𝜕

𝜇𝜙 + 𝑗𝜇𝐴𝜇 − 𝑅2

4𝜋
𝐴𝜇𝐴

𝜇

]
= −𝑅

2

4𝜋

∫
ℳ2

d2𝑥 (𝜕𝜇𝜙 − 𝐴𝜇) (𝜕𝜇𝜙 − 𝐴𝜇) .

(105)
Note the necessity to introduce a quadratic term in 𝐴𝜇, also called Meissner term, in order to
maintain invariance under the improved 𝑈 (1)m. This is typical from situations where 𝐴𝜇 couples
to a field that shifts under a symmetry. In fact, the Meissner term shows that 𝑈 (1)m alone is not
anomalous because both 𝑆[𝜙; 𝐴𝜇] and the measure in the path integral are invariant under the
momentum symmetry.

This action can be used to extract the improved current of𝑈 (1)m:

𝐽𝜇 =
𝛿𝑆

𝛿𝐴𝜇
=
𝑅2

2𝜋
(𝜕𝜇𝜙 − 𝐴𝜇) . (106)

The latter is simply the gauge-invariant version of 𝑗𝜇, also called supercurrent in the context of
superfluidity. The equation of motion indicates that this current is conserved even in the presence
of a background:

𝛿𝑆

𝛿𝜙
=
𝑅2

2𝜋
𝜕𝜇 (𝜕𝜇𝜙 − 𝐴𝜇) = 𝜕𝜇𝐽𝜇 = 0 . (107)
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This is another way to see that𝑈 (1)m alone is not anomalous.
Try now to add a background 𝐴𝜇 for𝑈 (1)w in the usual manner:

𝑆′[𝜙; 𝐴𝜇, 𝐴𝜇] =
∫
ℳ2

d2𝑥

[
−𝑅

2

4𝜋
(𝜕𝜇𝜙 − 𝐴𝜇) (𝜕𝜇𝜙 − 𝐴𝜇) + 𝐴𝜇

𝜖 𝜇𝜈

2𝜋
𝜕𝜈𝜙

]
. (108)

This action is invariant up to a boundary term under the improved𝑈 (1)w:

𝛿𝛽𝑆
′[𝜙; 𝐴𝜇, 𝐴𝜇] =

∫
ℳ2

d2𝑥 𝜕𝜇

(
𝛽
𝜖 𝜇𝜈

2𝜋
𝜕𝜈𝜙

)
, (109)

which is acceptable. But it is not invariant under𝑈 (1)m:

𝛿𝛼𝑆
′[𝜙; 𝐴𝜇, 𝐴𝜇] =

∫
ℳ2

d2𝑥 𝐴𝜇

𝜖 𝜇𝜈

2𝜋
𝜕𝜈𝛼 . (110)

You can try to fix the situation by adding a counterterm:

𝑆′′[𝜙; 𝐴𝜇, 𝐴𝜇] = 𝑆′[𝜙; 𝐴𝜇, 𝐴𝜇] −
∫
ℳ2

d2𝑥 𝐴𝜇

𝜖 𝜇𝜈

2𝜋
𝐴𝜈 , (111)

but now we find a lack of invariance under𝑈 (1)w:

𝛿𝛽𝑆
′′[𝜙; 𝐴𝜇, 𝐴𝜇] = −

∫
ℳ2

d2𝑥 𝜕𝜇𝛽
𝜖 𝜇𝜈

2𝜋
𝐴𝜈 . (112)

There is in fact no way to get rid of this non-invariance. The impossibility to gauge both𝑈 (1)m and
𝑈 (1)w at the same time signals the presence of a mixed ’t Hooft anomaly. The anomaly theory in
𝑑 = 2 + 1 is

A[𝐴𝜇, 𝐴𝜇] = −
∫
𝒳3

d3𝑥
𝜖 𝜇𝜈𝜌

2𝜋
𝐴𝜇𝜕𝜈𝐴𝜌 . (113)

In fact, because we have an intimate relation between the two currents in absence of sources:

𝑗̃𝜇 =
𝜖𝜇𝜈

𝑅2 𝑗
𝜈 , (114)

we can actually use a single background to extract both improved currents from the action in
Equation (105). Consider

𝐴𝜇 = 𝑅2𝜖𝜇𝜈𝐴
𝜈 ,

𝛿

𝛿𝐴𝜇
=
𝜖𝜇𝜈

𝑅2
𝛿

𝛿𝐴𝜈

. (115)

We can use 𝑆[𝜙, 𝐴𝜇] from Equation (105) to extract the improved topological current:

𝐽𝜇 =
𝛿𝑆

𝛿𝐴𝜇
=
𝜖𝜇𝜈

2𝜋
(𝜕𝜈𝜙 − 𝐴𝜈) . (116)

The latter is gauge invariant, but is no longer conserved when the 𝑈 (1)m classical background is
curved:

𝜕𝜇𝐽
𝜇 = −𝜖

𝜇𝜈

2𝜋
𝜕𝜇𝐴𝜈 . (117)

This modified Ward identity represents the well-known fact that applying an external electric field
generates winding planes in a superfluid. In the dual picture, one finds the opposite situation: 𝐽𝜇 is
conserved, but the conservation of 𝐽𝜇 is spoiled by 𝜖 𝜇𝜈𝜕𝜇𝐴𝜈 .
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The massless pole

The (non)-conservation laws derived above lead to the following Ward identities:

𝜕𝜇〈𝐽𝜇〉𝐴 = 0 , 𝜕𝜇〈𝐽𝜇〉𝐴 = −
𝜖𝜇𝜈

2𝜋
𝜕𝜇𝐴𝜈 . (118)

Consider the following two-point function involving the improved currents:

〈𝐽𝜇 (𝑥)𝐽𝜈 (𝑦)〉 =
∫

d2𝑥

(2𝜋)2 𝑒
−𝑖𝑘 · (𝑥−𝑦)Π𝜇𝜈 (𝑘) . (119)

We find that Π𝜇𝜈 also determines mixed two-point functions:

〈𝐽𝜇 (𝑥)𝐽𝜈 (𝑦)〉𝐴 =
𝜖𝜈𝜎

𝑅2 〈𝐽𝜇 (𝑥)𝐽𝜎 (𝑦)〉𝐴 . (120)

From its definition, it is clear that Π𝜇𝜈 has an obvious constraint from the permutation of
indices:

Π𝜇𝜈 (𝑘) = Π𝜈𝜇 (−𝑘) . (121)

Using Lorentz invariance, this leads to

Π𝜇𝜈 (𝑘) = 𝑓 (𝑘2)𝑘2𝑔𝜇𝜈 + 𝑔(𝑘2)𝑘𝜇𝑘𝜈 , (122)

with 𝑓 and 𝑔 still unknown.5
We can also use

〈𝐽𝜇 (𝑥)𝐽𝜈 (𝑦)〉𝐴 =
1

𝑍 [𝐴]
𝛿

𝛿𝐴𝜇 (𝑥)
𝛿

𝛿𝐴𝜈 (𝑦) 𝑍 [𝐴] =
1

𝑍 [𝐴]
𝛿

𝛿𝐴𝜇 (𝑥) (𝑍 [𝐴]〈𝐽𝜈 (𝑦)〉𝐴) (123)

to show with Equation (118) that

〈𝐽𝜇 (𝑥)𝜕𝜈𝐽𝜈 (𝑦)〉𝐴 =
1

𝑍 [𝐴]
𝛿

𝛿𝐴𝜇 (𝑥) (𝑍 [𝐴]〈𝜕
𝜈𝐽𝜈 (𝑦)〉𝐴) = 0 . (124)

This implies the following relation:

𝑖𝑘𝜈Γ𝜇𝜈 = 0 ⇔ 𝑓 (𝑘2)𝑘2 + 𝑔(𝑘2)𝑘2 = 0 . (125)

Similarly, one can derive that

〈𝐽𝜇 (𝑥)𝜕𝜈𝐽𝜈 (𝑦)〉𝐴 =
1

𝑍 [𝐴]
𝛿

𝛿𝐴𝜇 (𝑥)

(
𝑍 [𝐴]〈𝜕𝜈𝐽𝜈 (𝑦)〉𝐴

)
= −𝜖𝜈𝜎

2𝜋
〈𝐽𝜇 (𝑥)〉𝐴𝜕𝜈𝐴𝜎 +

𝜖𝜇𝜈

2𝜋
𝜕𝜈𝛿2(𝑥 − 𝑦) .

(126)
Putting the source at zero, 𝐴 = 0, this gives

〈𝐽𝜇 (𝑥)𝜕𝜈𝐽𝜈 (𝑦)〉 =
𝜖𝜇𝜈

2𝜋
𝜕𝜈𝛿2(𝑥 − 𝑦) , (127)

and so
𝑖𝑘𝜈

𝜖𝜈𝜎

𝑅2 Π𝜇𝜎 (𝑘) = 𝑖
𝜖𝜇𝜈

2𝜋
𝑘𝜈 ⇔ 𝑓 (𝑘2) = −𝑅

2

2𝜋
1
𝑘2 . (128)

5Because the theory is conformal, additional symmetry arguments could be employed to constrain the functions 𝑓
and 𝑔. However, we choose to rely on the anomaly instead, as this approach is the only one that generalizes to higher
dimensions.
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Eventually, we find

Π𝜇𝜈 (𝑘) =
𝑅2

2𝜋
𝑘𝜇𝑘𝜈 − 𝑘2𝑔𝜇𝜈

𝑘2 . (129)

The propagator exhibits a pole at 𝑘2 = 0 associated to a massless mode.
This entire discussion applies to a broad class of models in any dimension 𝑑, provided they

exhibit the appropriate symmetry structure:

𝑆[𝜙; 𝐴𝜇] =
∫

d𝑑𝑥 F (𝜕𝜇𝜙 − 𝐴𝜇) , (130)

where the function F may be non-analytic. However, to arrive at this conclusion, it is necessary to
introduce higher-form symmetries.

4. Higher-form symmetries

4.1 More winding symmetries

Let us rewrite the free action for a compact scalar 𝜙 ∼ 𝜙 + 2𝜋 in any spacetime ℳ𝑑 as follows:

𝑆[𝜙] = −𝑅
2

4𝜋

∫
ℳ𝑑

d𝑑𝑥 𝜕𝜇𝜙𝜕𝜇𝜙 . (131)

We argued that it was always symmetric under a 𝑈 (1)m momentum symmetry, whose associated
current is

𝑗𝜇 =
𝑅2

2𝜋
𝜕𝜇𝜙 , 𝜕𝜇 𝑗

𝜇 = 0 . (132)

This current always all has a topological counterpart, irrespectively of the dimension 𝑑:

𝑗̃ [𝜇1 · · ·𝜇𝑑−1 ] =
1
𝑅2 𝜖𝜇1 · · ·𝜇𝑑

𝑗 𝜇𝑑 =
1

2𝜋
𝜖𝜇1 · · ·𝜇𝑑

𝜕𝜇𝑑𝜙 , 𝜕𝜇1 𝑗̃
[𝜇1 · · ·𝜇𝑑−1 ] = 0 , (133)

which is conserved even off-shell. The corresponding charge counts the winding of (𝑑 − 2)-
dimensional vortices in a (𝑑 − 1)-dimensional space. So the integral is always performed over
(𝑑 − 1) − (𝑑 − 2) = 1 dimension:

𝑄(𝒞1) =
1

(𝑑 − 1)!

∮
𝒞1

d𝑥𝜇𝜖𝜇𝜈1 · · ·𝜈𝑑−1 𝑗̃
𝜈1 · · ·𝜈𝑑−1 =

1
2𝜋

∮
𝒞1

d𝑥𝜇𝜕𝜇𝜙 . (134)

In contrast, the momentum charge is still integrated over a (𝑑 − 1)-dimensional manifold:

𝑄(𝒞𝑑−1) =
1

(𝑑 − 1)!

∮
𝒞𝑑−1

d𝑥𝜇1 · · · d𝑥𝜇𝑑−1𝜖𝜇 · · ·𝜇𝑑−1𝜈 𝑗
𝜈 =

𝑅2

2𝜋

∮
𝒞𝑑−1

d𝑑−1𝑥 𝑛𝜇𝜕𝜇𝜙 . (135)

The story of the dual field in Section 3.3 can be repeated, with the difference that 𝜙 now appears
as an antisymmetric object with 𝑑 − 2 indices:

𝑆[𝜕𝜙, 𝜙] ⊃ 1
2𝜋

∫
d𝑑𝑥 𝜖 𝜇𝜈1 · · ·𝜈𝑑−2𝜌𝜕𝜇𝜙𝜈1 · · ·𝜈𝑑−2𝜕𝜌𝜙 . (136)

This modified action is still invariant under a shift of the dual field associated with the winding
charge:

𝑈 (1) (𝑑−2)
w : 𝜙𝜈1 · · ·𝜈𝑑−2 → 𝜙𝜈1 · · ·𝜈𝑑−2 + 𝛽𝜈1 · · ·𝜈𝑑−2 , 𝜕[𝜇𝛽𝜈1 · · ·𝜈𝑑−2 ] = 0 , (137)
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with a parameter that satisfies the Bianchi identity. It generalizes that the shift parameter 𝛼 is
constant for the momentum symmetry in any 𝑑 and that the winding shift parameter 𝛽 was constant
for 𝑑 = 1 + 1.

The correct mathematical language to talk about antisymmetric objects like 𝜙 and 𝛽 is the one
of differential forms. Because they have 𝑑 − 2 indices, they are examples of (𝑑 − 2)-forms. Hence,
we say that the winding symmetry is a (𝑑 − 2)-form symmetry, noted 𝑈 (1) (𝑑−2)

w with charges still
being integers. We shall introduce these notions in the next section.

Note in passing that, just like in Section 3.3, the scalar in a 𝑑-dimensional spacetime enjoys a
𝑈 (1) (0)m ×𝑈 (1) (𝑑−2)

w symmetry with a mixed ’t Hooft anomaly. So, the later constrains the correlation
functions to have a massless pole that now coincides with the Goldstone boson of Section 3.1.

Superfluids
All scalar field theories with the action

𝑆[𝜙; 𝐴𝜇] =
∫

d𝑑𝑥 F (𝜕𝜇𝜙 − 𝐴𝜇) , (138)

where F may be non-analytic, exhibit higher-form symmetries𝑈 (1) (0)m ×𝑈 (1) (𝑑−2)
w , subject

to a mixed ’t Hooft anomaly. This anomaly requires the presence of a gapless mode, which
corresponds to the Goldstone boson for 𝑑 > 1 + 1.

4.2 Differential forms

Consider an antisymmetric tensor:

𝑓𝜇1 · · ·𝜇𝑝
= 𝑓 [𝜇1 · · ·𝜇𝑝 ] , (139)

that is smooth and uniquely defined on ℳ𝑑 . It defines a 𝑝-form:

𝑓 =
1
𝑝!
𝑓𝜇1 · · ·𝜇𝑝

d𝑥𝜇1 ∧ · · · ∧ d𝑥𝜇𝑝 , (140)

where the definition of the wedge product involves the permutation group 𝑆𝑝:

d𝑥𝜇1 ∧ · · · ∧ d𝑥𝜇𝑝 =
∑︁
𝑠∈𝑆𝑝

sign(𝑠) d𝑥𝑠 (𝜇1) ⊗ · · · ⊗ d𝑥𝑠 (𝜇𝑝) . (141)

The 𝑝-form is in fact a mathematical device that just wants to be integrated over a 𝑝-dimensional
manifold ℒ𝑝: ∫

ℒ𝑝

𝑓 =
∑︁

𝜇1< · · ·<𝜇𝑝

∫
ℒ𝑝

d𝑝𝑦
𝜕 (𝑥𝜇1 , · · · , 𝑥𝜇𝑝 )
𝜕 (𝑦1, · · · , 𝑦𝑝)

𝑓𝜇1 · · ·𝜇𝑝
. (142)

For example, take 𝑓 to represent the electromagnetic tensor with 𝑓0𝑖 = E𝑖 being the electric field
and 𝑓𝑖 𝑗 = 𝜖𝑖 𝑗𝑘B𝑘 involving the magnetic field. Take the closed 2-dimensional manifold 𝒞2 in space.
We find the magnetic flux through 𝒞2 as follows:∮

𝒞2

𝑓 =
1
2

∮
𝒞2

d2𝑦 𝑛𝑖𝜖
𝑖 𝑗𝑘 𝑓 𝑗𝑘 =

∮
𝒞2

d2𝑦 ®𝑛 · ®B , (143)

where ®𝑛 is the orthonormal normal to 𝒞2.
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The exterior derivative

We introduce the exterior derivative:

d 𝑓 =
1
𝑝!
𝜕𝜇𝑝+1 𝑓𝜇1 · · ·𝜇𝑝

d𝑥𝜇𝑝+1 ∧ d𝑥𝜇1 ∧ · · · ∧ d𝑥𝜇𝑝 . (144)

Notably, antisymmetry implies that
d2 = 0 . (145)

A 𝑝-form 𝑓 is said to be closed if

d 𝑓 = 0 ⇔ 𝜕[𝜇𝑝+1 𝑓𝜇1 · · ·𝜇𝑝 ] = 0 , (146)

and it is exact if there exists a (𝑝 − 1)-form ℎ such that

𝑓 = dℎ ⇔ 𝑓𝜇1 · · ·𝜇𝑝
= 𝑝𝜕[𝜇𝑝

ℎ𝜇1 · · ·𝜇𝑝−1 ] . (147)

Due to Equation (145), an exact form is always closed, but the opposite is not true.
Using this formalism, Stoke’s theorem takes the following form:∫

ℒ𝑝+1

d 𝑓 =
∮
𝜕ℒ𝑝+1

𝑓 , (148)

where ℒ𝑝+1 is a smooth, oriented (𝑝 + 1)-dimensional manifold. Note that, in the context of
vortices, we have

d𝜙 = 𝜕𝜇𝜙 d𝑥𝜇 with
1

2𝜋

∮
𝜕𝒰2

d𝜙 =
1

2𝜋

∫
𝒰2

d2𝜙 = 𝑚 ∈ Z . (149)

This does not contradict Equation (145) because 𝜙 is not uniquely defined on the open manifold 𝒰2

when 𝑚 ≠ 0, and so d𝜙 is not an exact form, despite what is suggested by the notation.
Another important result is Poincaré’s lemma. It states that if a 𝑝-form 𝑓 is closed on an open

ball 𝒰𝑑 ⊂ ℳ𝑑 , then one can always find a (𝑝 − 1)-form ℎ such that the following relation is true
locally on 𝒰𝑑:

𝑓 = dℎ . (150)

Hodge dual

For every 𝑝-form 𝑓 , we may introduce a (𝑑 − 𝑝)-form as its Hodge dual:

★ 𝑓 =

√︁
|𝑔 |

𝑝!(𝑑 − 𝑝)! 𝑓
𝜇1 · · ·𝜇𝑝𝜖𝜇1 · · ·𝜇𝑝𝜈𝑝+1 · · ·𝜈𝑑d𝑥𝜈

𝑝+1 ∧ · · · ∧ d𝑥𝜈
𝑑

. (151)

Coming back to our example with the electromagnetic tensor, we write the electric flux through 𝒞2

with the Hodge dual form:∮
𝒞2

★𝑓 =
1
2

∮
𝒞2

d𝑥𝜇d𝑥𝜈 𝜖𝜇𝜈𝜌𝜎 𝑓 𝜌𝜎 =

∮
𝒞2

d2𝑥 ®𝑛 · ®E . (152)
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The Hodge dual can be used to construct a volume form, or 𝑑-form, that will appear in integrals
over all spacetime ℳ𝑑:

𝑓 ∧★𝑓 =
√︁
|𝑔 |
𝑝!

𝑓 𝜇1 · · ·𝜇𝑝 𝑓𝜇1 · · ·𝜇𝑝
d𝑥1 ∧ · · · ∧ d𝑥𝑑 . (153)

These will naturally appear in actions of physical theories. For example, we have

𝑆[𝜙] = −𝑣
2

2

∫
ℳ𝑑

d𝜙 ∧★d𝜙 = −𝑣
2

2

∫
ℳ𝑑

d𝑑𝑥
√︁
|𝑔 |𝜕𝜇𝜙𝜕𝜇𝜙 , (154)

and
𝑆[𝑎] = − 1

2𝑒2

∫
ℳ𝑑

𝑓 ∧★𝑓 = − 1
4𝑒2

∫
ℳ𝑑

d𝑑𝑥
√︁
|𝑔 | 𝑓𝜇𝜈 𝑓 𝜇𝜈 . (155)

Finally, note that the exterior derivative and Hodge duality can be combined to reproduce
conservation equations. For instance, Maxwell’s equations in the vacuum become

d★ 𝑓 = 0 ⇔ 𝜕𝜇 𝑓
𝜇𝜈 = 0 ⇔


®∇ · ®E = 0 ,

®∇ × ®B − 1
𝑐2
𝜕 ®E
𝜕𝑡

= ®0 ,
(156)

and

d 𝑓 = 0 ⇔ 𝜕[𝜇 𝑓𝜈𝜌] = 0 ⇔


®∇ · ®B = 0 ,

®∇ × ®E + 𝜕
®B
𝜕𝑡

= ®0 .
(157)

4.3 Properties of the higher-form symmetries

A physical theory is constrained by a continuous higher-form symmetry, say a continuous
𝑝-form symmetry, if it admits a conserved (𝑝 + 1)-form current 𝑗 :

d★ 𝑗 = 0 . (158)

This current is integrated over a closed manifold 𝒞𝑑−𝑝−1 of codimension 𝑝 + 1 to define the
conserved charge:

𝑄(𝒞𝑑−𝑝−1) =
∮
𝒞𝑑−𝑝−1

★𝑗 . (159)

The corresponding symmetry operator takes the following form:

𝑈𝛼 (𝒞𝑑−𝑝−1) = 𝑒𝑖𝛼𝑄 (𝒞𝑑−𝑝−1) . (160)

Charged operators𝑊 carrying charge 𝑞 now extend over 𝑝 directions in spacetime. We find

𝑈𝛼 (𝒞𝑑−𝑝−1)𝑊 (ℒ𝑝) = 𝑒𝑖𝛼𝑞𝐿 (𝒞𝑑−𝑝−1,ℒ𝑝)𝑊 (ℒ𝑝) . (161)

See Figure 4 for an illustration of the linking of the operators above.
We list some key properties of 𝑝-form symmetries:
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Figure 4: Action of the symmetry operator𝑈𝛼 (𝒞𝑑−𝑝−1) on the line operator𝑊 (ℒ𝑝). On the picture, 𝑑 = 3
and 𝑝 = 1.

• The symmetry operator 𝑈𝛼 is again a topological operator. Let 𝒞′
𝑑−𝑝−1 be a smoothly

deformed version of 𝒞𝑑−𝑝−1 along 𝒳𝑑−𝑝, see Figure 5. Then,

𝑄(𝒞𝑑−𝑝−1) −𝑄(𝒞′
𝑑−𝑝−1) =

∮
𝒞𝑑−𝑝−1

★𝑗 −
∮
𝒞

′
𝑑−𝑝−1

★𝑗 =

∫
𝒳𝑑−𝑝

d★ 𝑗 = 0 . (162)

Note that this result relies on Lorentz invariance.6

• For 𝑝 > 0, and assuming spacetime has no torsion, there is no preferred order of symmetry
operations, allowing operators to be rearranged freely. In consequence, the fusion rule may
only be abelian:

𝑈𝛼 (𝒞𝑑−𝑝−1)𝑈𝛽 (𝒞𝑑−𝑝−1) = 𝑈𝛽 (𝒞𝑑−𝑝−1)𝑈𝛼 (𝒞𝑑−𝑝−1) = 𝑈𝛼+𝛽 (𝒞𝑑−𝑝−1) . (164)

• A classical background source can be introduced in the form of a classical 𝑝 + 1-gauge field
𝐵:

𝑆[Φ; 𝐵] ⊃
∫

𝐵 ∧★𝑗 . (165)

In particular, (mixed) ’t Hooft anomalies may still be present.

• A 𝑝-form symmetry may be also discrete, in which case the above properties remain valid,
despite the absence of current.

Higher-form symmetry breaking

While anomalies are a powerful tool for elucidating vacuum properties, symmetry breaking
remains a valuable concept that we aim to generalize to higher-form symmetries.

6Consider the current of a 1-form symmetry, 𝑗 [𝜇𝜈 ] . In a relativistic theory, we write its conservation in components:

𝜕𝑡 𝑗
[𝑡 𝑘 ] + 𝜕𝑖 𝑗 [𝑖𝑘 ] = 0 , 𝜕𝑖 𝑗

[𝑖𝑡 ] = 0 . (163)

The second equation is a constraint imposed by Lorentz invariance, and is not required for a 1-form symmetry current to
be conserved in non-relativistic field theories. However, it is instrumental in Equation (162) [26].
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Figure 5: The deformation of 𝒞𝑑−𝑝−1 into 𝒞
′
𝑑−𝑝−1 generates a hypersurface 𝒳𝑑−𝑝 with two boundaries.

For traditional 0-form symmetries, as discussed in Section 3.1, symmetry breaking is signaled
by the value of the order parameter 〈Φ〉. Spontaneous symmetry breaking is also reflected in the
infrared fluctuations of the two-point functions 〈Φ(𝑥)Φ(0)〉.

Order parameter Fluctuations

Spontaneously broken symmetry: 〈Φ〉 = 𝑣 ≠ 0 → 〈Φ(𝑥)Φ(0)〉 𝑥→∞
= 𝑣2

Preserved symmetry: 〈Φ〉 = 0 → 〈Φ(𝑥)Φ(0)〉 𝑥→∞∝ 𝑒−𝑥/𝐿

(166)

The parameter 𝐿 is the correlation length of the system.
These properties of two-point functions generalize to 𝑝-form symmetries through the perimeter

and area laws for the VEV of the charged operator𝑊 (𝒞𝑝), defined on a closed 𝒞𝑝.

Spontaneously broken symmetry: 〈𝑊 (𝒞𝑝)〉 ∼ 𝑒−Perimeter(ℒ𝑝) ≠ 0
Preserved symmetry: 〈𝑊 (𝒞𝑝)〉 ∼ 𝑒−Area(ℒ𝑝) → 0

(167)

Here, the perimeter corresponds to the volume of 𝒞𝑝, while the area refers to the volume enclosed
by 𝒞𝑝 in one higher dimension. The perimeter law can be absorbed into a renormalization term of
the action, effectively corresponding to a non-zero value for the VEV, reminiscent of spontaneous
symmetry breaking. The area law, however, cannot be absorbed through renormalization and will
vanish in the limit of a large loop 𝒞𝑝, indicating preserved symmetry.

Generalizations of Goldstone and Coleman’s theorems exist for higher-form symmetries [1, 27].
For example, long-range order and spontaneous breaking of a continuous 𝑝-form symmetry are
prohibited for quantum field theories in a spacetime with dimension 𝑑 6 𝑝+2. In higher dimensions,
non-vanishing 〈𝑊 (𝒞𝑝)〉 signals the presence of a Goldstone boson in a 𝑝-form field correlation
function.

5. Electrodynamics

5.1 Maxwell’s theory

Let 𝑎𝜇 be a dynamical gauge field. In 𝑑 = 1 + 3, Maxwell’s action is written as follows:

𝑆 = − 1
2𝑒2

∫
ℳ4

𝑓 ∧★𝑓 , 𝑓 = d𝑎 . (168)
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This leads to the following well-known equation of motion:
1
𝑒2 d★ 𝑓 = 0 . (169)

It is often accompanied by a topological constraint of 𝑓 , known as the Bianchi identity:
1

2𝜋
d 𝑓 = 0 , (170)

which follows from the definition of 𝑓 in term of 𝑎. These two equations can be expressed as
conservation laws for the electric and magnetic 2-form currents, 𝑗 and 𝑗̃ , respectively:

𝑗 =
1
𝑒2 𝑓 , 𝑗̃ =

1
2𝜋

★ 𝑓 . (171)

The constant factors differ from those in Equations (156) and (157), ensuring that the corresponding
charges are integers.

Electric symmetry

The electric symmetry, associated with the conservation of the 2-form electric current 𝑗 ,
manifests in Maxwell’s action as a shift transformation of 𝑎𝜇, making it a 1-form symmetry:

𝑈 (1) (1)e : 𝑎 → 𝑎 + 𝛼 , d𝛼 = 0 . (172)

However, 𝑎𝜇 is not a gauge-invariant object and does not directly define an operator in Maxwell’s
theory. Gauge transformation act as follows:

𝑈 (1)gauge : 𝑎 → 𝑎 + d𝜆 , 𝜆 ∼ 𝜆 + 2𝜋 , (173)

The integral of 𝑎𝜇 over a closed contour 𝒞1 is invariant under all exact gauge transformations, but
it remains sensitive to the ones with a period:∮

𝑎 →
∮

𝑎 + 2𝜋𝑝 if
∮

d𝜆 = 2𝜋𝑝 , 𝑝 ∈ Z . (174)

The true gauge-invariant object are the Wilson lines:

𝑊 (𝒞1) = 𝑒
𝑖𝑛

∮
𝒞1

𝑎
, 𝑛 ∈ Z . (175)

We find that the 1-form electric symmetry acts on them as follows:

𝑈 (1) (1)e : 𝑊 (𝒞1) → 𝑒𝑖𝑛𝛼̄𝑊 (𝒞1) , 𝛼̄ =

∮
𝒞1

𝛼 . (176)

The insertion of a Wilson line operator is reminiscent of introducing a point charge in the path
integral:

〈𝑊 (ℒ1)〉 =
∫

𝐷𝑎 𝑒
− 𝑖

2𝑒2
∫
ℳ4

𝑓 ∧★𝑓 +𝑖𝑛
∫
ℒ1

𝑎
, (177)

where ℒ1 is the wordline of a particle with electric charge 𝑛. The line integral in the Wilson line
can be expressed in terms of the electric potential 𝑎𝑡 and the vector potential ®𝑎:∫

ℒ1

𝑎 = −
∫
ℒ1

d𝑡
(
𝑎𝑡 +

d®𝑥
d𝑡

· ®𝑎
)
. (178)

This term changes the equation of motion by introducing a point source of electric charge 𝑛:
1
𝑒2 d★ 𝑓 = 𝑛 𝛿𝑑 (𝑥 ∈ ℒ1) . (179)
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Magnetic symmetry

The story of the dual field for the compact scalar of Section 3.3 is mirrored with the dynamical
gauge field 𝑎𝜇 by introducing the magnetic photon 𝑎̃𝜇. The magnetic theory is then just Maxwell’s
theory with an inverted coupling:

𝑎 → 𝑎̃ , 𝑒 → 1/𝑒 . (180)

The dual field strength is written as follows:

𝑓̃ = d𝑎̃ =
1

2𝜋𝑒2 ★ 𝑓 . (181)

On 𝑎̃𝜇, the magnetic symmetry acts as a shift transformation:

𝑈 (1) (1)m : 𝑎̃ → 𝑎̃ + 𝛽 , d𝛽 = 0 . (182)

’t Hooft lines are the magnetic equivalent of Wilson lines:

𝐻 (𝒞1) = 𝑒
𝑖𝑚

∮
𝒞1

𝑎
, 𝑚 ∈ Z , (183)

and the magnetic 1-form symmetry acts on them:

𝑈 (1) (1)m : 𝐻 (𝒞1) → 𝑒𝑖𝑚𝛽𝐻 (𝒞1) , 𝛽 =

∮
𝒞1

𝛽 . (184)

The insertion of a ’t Hooft line in the path integral corresponds to introducing a monopole
with magnetic charge 𝑚 in spacetime. In terms of 𝑎𝜇, the magnetic monopole is a singular solution
requiring a patching of space. We introduce two hemispheres, 𝑆2

N (North) and 𝑆2
S (South), defined

with an azimutal angle 𝜑 ∈ [0, 2𝜋[ and a polar angle 𝜃 ∈ [0, 𝜋]. The patch 𝜃 ∈ [0, 𝜋/2] is covered
by 𝑆2

N, and 𝜃 = [𝜋/2, 𝜋] by 𝑆2
S. Consider the following expressions for the gauge field on each

patch:
𝑎N =

𝑚

2
(1 − cos 𝜃)d𝜑 , 𝑎S =

𝑚

2
(−1 − cos 𝜃)d𝜑 , (185)

with 𝑚 ∈ Z. The difference between these definitions is a𝑈 (1) gauge transformation 𝑔(𝜑):

𝑎N − 𝑎S = 𝑖𝑔d𝑔−1 = 𝑚d𝜑 where 𝑔(𝜑) = 𝑒𝑖𝑚𝜑 . (186)

The magnetic flux through the whole sphere is computed as follows:∮
𝑆2
𝑓 =

∫
𝑆2

N

d𝑎N +
∫
𝑆2

S

d𝑎S =

∮
equator

(𝑎N − 𝑎S) = 𝑚
∮

equator
d𝜑 = 𝑚2𝜋 . (187)

The photon as a Goldstone boson

Introduce a Wilson line on a rectangular circuit 𝒞1 with sides of lengths 𝑇 and 𝑅. In the axial
gauge, 𝑎𝑡 = 0, we find

〈𝑊 (𝒞1)〉 = 〈𝑒−𝑖
∫
𝑅

d𝑥 𝑎𝑥 (𝑇 )𝑒𝑖
∫
𝑅

d𝑥 𝑎𝑥 (0)〉 . (188)

In the Euclidean space,

〈𝑊 (𝒞)〉 = 〈0| 𝑒𝑇 𝐻 𝑒−𝑖
∫
𝑅

d𝑥 𝑎𝑥 (0)𝑒−𝑇 𝐻 𝑒𝑖
∫
𝑅

d𝑥 𝑎𝑥 (0) |0〉
=

∑
𝑛 〈0| 𝑒−𝑖

∫
𝑅

d𝑥 𝑎𝑥 (0)𝑒−𝑇 𝐸𝑛 (𝑅) |𝑛〉 〈𝑛| 𝑒𝑖
∫
𝑅

d𝑥 𝑎𝑥 (0) |0〉
=

∑
𝑛 𝑒

−𝑇 𝐸𝑛 (𝑅) | 〈𝑛| 𝑒𝑖
∫
𝑅

d𝑥 𝑎𝑥 (0) |0〉 |2
(189)
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Now, take 𝑇 → ∞ to find
lim
𝑇→∞

〈𝑊 (𝒞1)〉 ∝ 𝑒−𝑇 𝐸0 (𝑅) . (190)

In the conformal phase of electromagnetism, the energy of the static configuration goes like 𝐸0(𝑅) ∝
1/𝑅:

lim
𝑇→∞

〈𝑊 (𝒞1)〉 ∝ 𝑒−𝑇 /𝑅 with 𝑇 � 𝑅 . (191)

The decrease is slower than the perimeter law, which is reminiscent of spontaneous symmetry
breaking. Moreover the one-photon state clearly overlaps with the current 𝑓 𝜇𝜈:

〈0| 𝑓 𝜇𝜈 (𝑥) |𝜉, 𝑘〉 = (𝜉𝜇𝑘𝜈 − 𝑘𝜇𝜉𝜈)𝑒−𝑖𝑘 ·𝑥 . (192)

So, it is natural to identify the photon with a Goldstone boson.

Mixed ’t Hooft anomaly

It is straightforward to generalize the anomaly argument for the compact scalar presented in
Section 3.3 to the case of electromagnetism by improving the field strength with a background
gauge field 𝐵:

𝑓 𝜇𝜈 → 𝑓 𝜇𝜈 − 𝐵𝜇𝜈 . (193)

The improved electric and magnetic currents are the following:

𝐽𝜇𝜈 =
1
𝑒2 ( 𝑓

𝜇𝜈 − 𝐵𝜇𝜈) , 𝐽𝜇𝜈 =
1

2𝜋
𝜖 𝜇𝜈𝜌𝜎 ( 𝑓𝜌𝜎 − 𝐵𝜌𝜎) . (194)

The following Ward identities protect the masslessness of the photon:

〈𝜕𝜇𝐽𝜇𝜈〉𝐵 = 0 , 〈𝜕𝜇𝐽𝜇𝜈〉𝐵 = − 1
2𝜋
𝜖𝜈𝜆𝜌𝜎𝜕𝜆𝐵𝜌𝜎 . (195)

The anomaly theory for𝑈 (1) (1)e ×𝑈 (1) (1)m is written as follows:

A[𝐵, 𝐵] = − 1
2𝜋

∫
ℳ5

𝐵 ∧ d𝐵 . (196)

Electromagnetism
In absence of dynamical charges, Maxwell’s theory is symmetric under the 1-form symme-
tries 𝑈 (1) (1)e ×𝑈 (1) (1)m . The later is subject to a mixed ’t Hooft anomaly that requires the
presence of a gapless mode, the photon.

5.2 With charged matter

Coulomb phase

Quantum Electrodynamics (QED) is the four-dimensional theory of Maxwell coupled to
fermionic matter fields 𝜓. The action for QED combines the Maxwell term, a coupling to matter,
and the matter field’s dynamics:

𝑆QED [𝑎, 𝜓] = − 1
2𝑒2

∫
𝑓 ∧★𝑓 +

∫
𝑎 ∧★𝑗mat(𝜓) + 𝑆mat [𝜓] . (197)
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The equation of motion for the gauge field 𝑎𝜇 acquires a source term from matter fields:

d★ 𝑓 = 𝑒2 ★ 𝑗mat(𝜓) . (198)

This breaks explicitly the electric 1-form symmetry 𝑈 (1) (1)e . The physical reason is that, in QED,
Wilson lines can terminate with insertions of matter fields 𝜓:

𝑊 (𝑥, 𝑦) = 𝜓̄(𝑥)𝑒𝑖
∫ 𝑥

𝑦
𝑎
𝜓(𝑦) . (199)

In other words, Wilson lines get screened by local terms associated with matter fields.
The electric potential runs with the energy scale, which, in the Wilsonian scheme of renormal-

ization, is interpreted as the running of the coupling 𝑒2:

𝑉 (𝑅) = 𝑒(𝑅)2

4𝜋𝑅
, 𝑒(𝑅)2 =

𝑒(Λ−1
∗ )2

1 + 𝛾𝑒(Λ−1
∗ ) ln(Λ∗𝑅)

. (200)

Here, Λ∗ is the energy scale associated with the Landau pole and 𝛾 is a numerical factor. If 𝜓
has a mass 𝑚𝜓, this expression holds up until 𝑅 = 𝑚−1

𝜓
. Beyond this distance, 𝜓 decouples and is

integrated out, leaving:

𝑉 (𝑅) =
𝑒(𝑚−1

𝜓
)2

4𝜋𝑅
, 𝑅 > 𝑚−1

𝜓 . (201)

If 𝜓 is massless, the potential continues to decrease:

𝑉 (𝑅) 𝑅→∞∼ 1
4𝜋𝛾𝑅 ln(Λ∗𝑅)

. (202)

In fact, independently of the value of the mass 𝑚𝜓, the electric potential decreases fast enough so
that the fields 𝜓 decouple and the electric symmetric 1-form symmetry is restored as an emergent
symmetry. The deep IR theory becomes symmetric under 𝑈 (1) (1)e × 𝑈 (1) (1)m . This symmetry
structure is characterized by the presence of a mixed ’t Hooft anomaly between the electric and
magnetic 1-form symmetries, ensuring that the photon remains massless in the IR and the phase is
gapless.

Coulomb phase of electromagnetism
Dynamical charges explicitly break the electric 1-form symmetry of Maxwell’s theory. How-
ever, these charges decouple in the deep IR, leaving behind an emergent 1-form symmetry
group𝑈 (1) (1)e ×𝑈 (1) (1)m , together with a mixed ’t Hooft anomaly, and the massless photon.

Higgs phase with charge 1

We now explore the scalar version of QED to reach the Higgs phase of electromagnetism.
Consider a complex scalar Φ with electric charge 1. The Lagrangian is

LHiggs = −1
2
𝐷𝜇Φ

∗𝐷𝜇Φ − 1
4𝑒2 𝑓𝜇𝜈 𝑓

𝜇𝜈 −𝑉 (Φ∗Φ) . (203)

The potential 𝑉 is chosen to be minimized for |〈Φ〉| = 𝑣. The scalar field can then be expanded
around 𝑣:

Φ = (𝑣 + 𝜌)𝑒𝑖𝜙 . (204)
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As usual, 𝜌 is massive and can be integrated out. The remaining part of the Lagrangian is

LHiggs = − 1
4𝑒2 𝑓𝜇𝜈 𝑓

𝜇𝜈 − 𝑣2

2
(𝑎𝜇 − 𝜕𝜇𝜙) (𝑎𝜇 − 𝜕𝜇𝜙) . (205)

The shift 𝜕𝜇𝜙 can be interpreted as a gauge transformation, such that it may be absorbed in the
definition of 𝑎𝜇:

𝑎𝜇 − 𝜕𝜇𝜙 → 𝑎𝜇 . (206)

The gauge field is clearly massive, with a squared mass proportional to 𝑣2. Thus, in the Higgs
phase, the photon acquires a mass and the system becomes gapped.

The equation of motion for 𝑎𝜇 is

𝜕𝜇 𝑓
𝜇𝜈 = 𝑒2𝑣2𝑎𝜈 . (207)

In components, we get
®∇ · ®E = −𝑚2

𝛾𝑉 ,
®∇ × ®B = −𝑚2

𝛾 ®𝑎 (208)

where 𝑚2
𝛾 = 𝑒2𝑣2 and 𝑎𝑡 = 𝑉 . This leads to the following equations for 𝑉 and ®B:

∇2𝑉 = 𝑚2
𝛾𝑉 , ∇2 ®B = 𝑚2

𝛾
®B . (209)

Both the electric potential and the magnetic fields decay exponentially. Specifically, the electric
potential vanishes at distances larger than 𝑚−1

𝛾 and so the electric charges do not feel any force, they
move freely. The Higgs phase is a superconducting phase. On the other side, the magnetic lines
do not spread over distances larger than 𝑚−1

𝛾 and so are confined in tubes thinner than this distance,
which we call vortices.

The electric 1-form symmetry is explicitly broken by the condensate of electric charges, while
the magnetic 1-form symmetry is preserved (and not spontaneously broken). At sufficiently large
distances, it can be shown that

𝑉e(𝑅) 𝑅→∞∼ 0 , 𝑉m(𝑅) 𝑅→∞∼ 𝜎𝑅 , (210)

where 𝜎 gives the tension of the magnetic flux vortices. This expression for the magnetic potential
translates into an area-law for the ’t Hooft lines.

Higgs phase of electromagnetism
The vacuum condensate explicitly breaks the electric 1-form symmetry of Maxwell’s theory.
Through the Higgs mechanism, the photon acquires a mass, rendering the Higgs phase
gapped. Magnetic fluxes are confined into vortices and protected by a preserved 1-form
magnetic symmetry𝑈 (1) (1)m .

Higgs phase with charge 𝑵

If the scalar field Φ has an electric charge 𝑁 > 1, the scenario becomes more interesting. After
integrating out the Higgs field 𝜌, we obtain the following Lagrangian:

LHiggs = − 1
4𝑒2 𝑓𝜇𝜈 𝑓

𝜇𝜈 − 𝑣2

2
(𝑁𝑎𝜇 − 𝜕𝜇𝜙) (𝑁𝑎𝜇 − 𝜕𝜇𝜙) . (211)
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The equation of motion for 𝜙 imposes that

𝑎 =
1
𝑁

d𝜙 , 𝜙 ∼ 𝜙 + 2𝜋 . (212)

When 𝑁 = 1, this corresponds to a vanishing profile for 𝑎, as a result of a gauge transformation.
However, when 𝑁 > 1, there is the possibility for 𝑎 to acquire a fractional period over a closed
contour 𝒞1:

𝑁

2𝜋

∮
𝒞1

𝑎 =
1

2𝜋

∮
𝒞1

d𝜙 ∈ Z . (213)

From all these periods, there are 𝑁 distinct values that the Wilson loop will recognize:∮
𝒞1

𝑎 = 𝑘
2𝜋
𝑁
, 𝑘 = 0, · · · , 𝑁 − 1 . (214)

Each of these values defines a different vacuum, and these vacua are connected by a subgroup
Z
(1)
𝑁

of the original electric 1-form symmetry group 𝑈 (1) (1)e . This subgroup remains intact while
the rest of the electric group is explicitly broken by the condensate with charge 𝑁 . The vacuum
degeneracy indicates that this discrete subgroup is spontaneously broken. Notably, the magnetic
1-form symmetry 𝑈 (1) (1)m is not spontaneously broken, otherwise that would render the photon
massless. Furthermore, we observe long-range order from the vacuum expectation value (VEV) of
the Wilson loop:

〈𝑊 (𝒞1)〉 = 𝑒𝑖𝑘
2𝜋
𝑁 , 𝑘 = 0, · · · , 𝑁 − 1 . (215)

The degeneracy of the gapped vacuum and the presence of long-range order associated with loop
operators are key indicators that this Higgs phase exhibits topological order. Notably, Equation (215)
holds only if a non-contractible cycle 𝒞1 exists in the spacetime geometry. Without such a
cycle, the loop operator could be deformed into a trivial configuration, forcing its VEV to vanish.
Consequently, the groundstate degeneracy depends on the topology of the spacetime geometry.

For a more detailed derivation of these results, the reader is referred to [28], where the
dualization of the theory is used to show that its infrared behavior is governed by the BF theory:

𝑆BF =
𝑁

2𝜋

∫
𝑏 ∧ d𝑎 , (216)

where 𝑏 is a 2-form field dual to 𝜙. This is a well-known example of topological field theory
(TQFT), which characterizes the Higgs phase with topological order.

Higgs phase with topological order

When the vacuum condensate has a charge 𝑁 > 1, a subgroup Z(1)
𝑁

of Maxwell’s electric
symmetry survives the explicit breaking. This discrete 1-form symmetry is spontaneously
broken in the vacuum, leading to topological order: the vacuum is non-trivially gapped with
a groundstate degeneracy that depends on the spacetime topology, along with long-range
order for loop operators.
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