International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 032024 doi:10.1088/1742-6596/331/3/032024

The Software Framework of the Belle II Experiment

Andreas Moll
Max-Planck-Institut fiir Physik, Féhringer Ring 6, 80805 Miinchen, Germany
Exzellenzcluster Universe, Boltzmannstr. 2, 85748 Garching, Germany

E-mail: molland@mpp.mpg.de

Abstract. The future of CP-Violation experiments is to begin in 2014 with the launch of
the SuperKEKB collider in Tsukuba, Japan. As a part of this process the BELLE experiment
will undergo an upgrade, giving rise to the BELLE II experiment. The BELLE II detector will
include improvements and redesigns of various subdetectors, as well as the addition of an entire
new subdetector for precise vertexing. In order to reflect these changes in the existing BELLE
software framework, major modifications of nearly all parts of the software would have been
necessary. As a result the decision was made to completely rewrite the software framework. In
this article the main concepts of the new framework and the applied technologies are presented.

1. Introduction

The BELLE IT experiment is the upgrade of the highly successful BELLE experiment located at
the KEK research center in Tsukuba, Japan. The BELLE experiment, running until June 2010,
was located at the interaction point of the KEKB collider [1], a ring accelerator for electrons and
positrons at the asymmetric energies of 8 GeV (e~) and 3.5 Gev (e'). The main physics goal of
BELLE, and in turn BELLE II, is the measurement of CP-Violation in the B-meson system. To
measure CP-Violation to a high precision, a large number of B-meson pairs is necessary. This
requires a major increase of the instantaneous luminosity, the driving force for the design and
operation of the new SuperKEKB [2] collider and the BELLE II experiment. The final peak
luminosity will be 8 - 10%°e¢m=2s~!. The upgrade will not only increase the rate of the data
that has to be written out, but will also increase the expected background for all subdetectors
of BELLE II. The current BELLE detector is not able to handle the new conditions that will
be found at SuperKEKB, hence an upgrade of the BELLE detector is necessary. The upgraded
detector, BELLE II, will see improvements and redesigns of various subdetectors, as well as
the addition of an entire new subdetector. This new subdetector, the Pixel Vertex Detector
(PXD), is developed by the DEPFET [3] collaboration to precisely measure the decay vertices
of B-mesons, allowing the measurement of time-dependent CP-Violation.

2. The impact on the software framework

The software framework used successfully for over 10 years at BELLE is called BASF (Belle
AnalysiS Framework). One of its strengths lies in its ability to be used not only for offline
purposes (such as reconstruction and analysis), but also for online tasks (such as data aquisition,
data quality monitoring and the high level trigger). In order to reflect the changes made in the
BELLE II detector upgrade in the existing software framework, major modifications of nearly all
parts of the software would have been necessary. The vast amount of required modifications and

Published under licence by IOP Publishing Ltd

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 032024 doi:10.1088/1742-6596/331/3/032024

the lack of object oriented persistency (BASF uses Fortran based Panther tables to store data)
led to the decision to completely rewrite the software framework. The new software framework,
called basf2, incorporates concepts of other HEP experiments, such as ILC, LHCb, CDF and
ALICE, into its design, but primarily follows concepts proven in BASF. In addition, the reuse of
well-written algorithms of BASF is encouraged in order to maintain the excellent work done in
the past 10 years at BELLE. To facilitate and accelerate the development, established third-party
libraries such as ROOT, boost, CLHEP and libxml are used throughout the entire software.

3. The basic architecture of basf2

Like any other HEP software framework, basf2 was developed to process large data sets in a
flexible and configurable way. This flexibility is achieved by making the methods applied to
the data user-adjustable. Each data processing method is encapsulated within a module, with
multiple modules arranged in a strict linear order inside a container called a path. The user
can create an arbitrary number of modules and paths with one or more paths linked together
to form a data processing chain.

Path 3
Module| |Module
Module chain #8 #9
t A P X Path Path 1
Module| |Module| [Module| |Module I
#1 #2 #3 #4 Module| [Module| |Module| |Module
#1 #2 #3 #4
17 17 7 17 T
DataSt
atastore Path 2
Figure 1. A simple data process- M‘;;’Su'e M‘fg'e M‘;f;”e
ing chain. One path containing 4
modules that exchange data with
each other using the common Data- Figure 2. Multi path scheme in basf2: Three
Store. paths connected by conditions. Both possible

condition types are shown: An integer value and
a simple boolean value.

Figure 1 shows a simple example of a path consisting of 4 modules. The tasks of the modules
vary from simple ones, such as reading data from a file, to complex tasks, such as full detector
simulation. Unlike most other HEP software frameworks, basf2 employs the module concept for
all tasks and data processing methods within the framework. Even the reading of data from
and writing to disk is done through modules.

During the processing of data the framework executes the modules of a path, starting with
the first one and proceeding to the next. The modules are executed one at a time, exactly in
the order in which they were placed into the path. The data to be processed by the modules
is stored in a common storage, the DataStore (see Figure 1). As previously mentioned more
than one path can be created in basf2. Multiple paths can then be connected to each other
using conditions. Each module can return an integer or a boolean value. Depending on these
return values and the user defined conditions, the process flow can then switch from one path
to another (see Figure 2).

3.1. Libraries and modules
The main idea behind the module concept is to have the whole framework functionality
distributed over small, reusable and independent modules. The latter feature leads to the

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 032024 doi:10.1088/1742-6596/331/3/032024

basf2 disk

Libraries Module Pool

@ ylatior dynamic loading
racking d d
@:l (on demand)

. 5

Geometry
‘add

Simulation

Path

-

Tracking

R
[
>
]
c
<

Analysis

Figure 3. Modules and libraries are separated in basf2. Modules are loaded on-demand by a
user request.

requirement that modules are not allowed to directly include any other modules. While often
developers tend to implement methods and algorithms within one single module, hiding those
algorithms from other developers, basf2 overcomes this drawback by separating modules and
their functionality. The functionality is encapsulated in shared, and therefore reusable, libraries.
A module then uses one or more of these libraries to carry out a specific task. This has the
advantage that one algorithm can be used by more than one module. For example, the tracking
algorithms can be used by the tracking module, the alignment module or a user analysis module.
The final architecture of this concept is shown in figure 3.

Modules are located inside shared object files and only loaded on-demand. If a module is
requested by the user, the associated shared object file is dynamically loaded, and the contained
modules are added to a common Module Pool. This allows the reuse of loaded modules the
next time the user requests an already existing module. To build up a data processing chain,
the requested module is then added to a path.

3.2. The DataStore

Modules read data from and, after processing, write it back to the DataStore (see Figure 1). This
means that a module always has access to the data which was processed by its preceding modules.
The DataStore is divided into three categories: one for data which should be stored only for
one single event; one for data which is stored over a complete run; and a persistent category
for data which should be collected over the entire data processing. The basf2 framework deletes
the data in the category of the DataStore after the event, run or data processing, respectively.
The DataStore itself is based on ROOT persistency and can therefore handle any class with a
ROOQT dictionary attached. Saving and loading the data to or from disk is also performed using
ROOT. This leads to files which are compatible with any ROOT based tool.

3.8. Parallel processing

For the real-time systems of the detector (such as the high level trigger) the data processing
speed of the framework is crucial. A proven concept, providing the required computing speed, is
to run the data processing in parallel. But not only the real-time systems profit from processing
the data in parallel. In recent years multi-core processors have become common for desktop
computers and are the standard for modern computers nowadays. In order to make use of
multi-core systems for both real-time systems and desktop computers, the basf2 framework has
an advanced and user-friendly parallel processing mechanism built-in. This means, to make

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 032024 doi:10.1088/1742-6596/331/3/032024

Module| Module |Module| [Module| Module Module Module |Module
single | ' parallel | single single | ' parallel | parallel ' parallel | single

Module ||| Module '|[Module [|Module | Module Module Module | Module
single parallel single || single parallel parallel ' parallel single

Module Module Module Module
parallel parallel | parallel parallel
Module @ Module »@ Module||Module @ Module Module Module @o Module
single ("% =5 | parallel | % =5 || single || single ||"% =5 | parallel |parallel parallel %, ~5"|| single
Module Module Module Module
parallel parallel ' parallel | parallel

Figure 4. The parallel processing mechanism.

full use of the parallel processing capabilities of basf2, the user simply activates the parallel
processing feature while still being able to keep the steering files (see section 4) unchanged. In
order to provide such a user-friendly experience, basf2 uses the concept of so called module
properties. Each module in basf2 can carry properties that give the framework additional
information about the capabilities of a module. For the parallel processing mechanism a special
property called ParallelProcessingCertified was introduced. This property flags modules
that can be run in parallel processing mode safely. Only modules which comply with certain
standards are allowed to carry this property. In particular, all computation-intensive modules,
such as detector simulation and reconstruction modules, carry this property. If the parallel
processing feature is turned on, the framework scans the module paths for continuous blocks
of modules carrying this parallel processing property. Having identified the blocks of parallel
processing aware modules, the framework splits the user-defined paths into a tree consisting of
single processing and parallel processing paths. Figure 4 illustrates this process.

The parallel processing paths are forked and the single processing paths are connected to these
by ring buffers. A ring buffer is responsible for either distributing the data coming from a
single processing path to multiple parallel processing paths or for simply collecting the data from
parallel processing paths. This concept avoids the drawbacks often found in parallel processing
HEP frameworks. For example, no special parallel file reading or writing code is necessary and
user-written analysis modules are executed automatically in the safer single processing mode.

4. The steering file

The basf2 framework is written in C++ and provides a Python interface. This interface allows
the user to communicate with the framework in a simple and intuitive way. In particular, the user
writes a Python script to configure the framework and process the data. Such a configuration
script is called a steering file and is a plain Python script. Therefore, the full set of Python
functionality can be used in addition to the basf2 specific one. A typical steering file is shown
in listing 1. It starts by importing the basf2 Python module in order to make the basf2 Python
classes available. Then the two modules Demo and Test are registered followed by the creation
of two paths (main, path2). The modules are added to the paths and both paths are connected
by a condition. The final statement of the steering file begins the data processing.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 032024 doi:10.1088/1742-6596/331/3/032024

Listing 1. A simple basf2 steering file

from basf2 import *

#Register modules
demo = register_module("Demo")
test = register_module("Test")

#Create paths
main = create_path()
path2 = create_path()

#Add modules to path
main.add_module (demo)
path2.add_module (test)

#Set condition
demo .condition(">5",path2)

#Process ewvents
process (main)

5. Geometry

Nearly all tools of the offline software chain need a geometrical description of the BELLE II
detector, starting from the Monte Carlo based simulation of the passage of particles through
the detector, to the simulation of the response of the subdetector hardware, to the final
reconstruction (e.g. tracking) algorithms. To make sure that all tools of the framework have
access to the same version of the detector description, it must be stored centrally. The central
repository stores all parameter values needed to fully describe the BELLE II detector. The
concrete geometry used for the simulation and reconstruction algorithms is created using C++
source code from the stored parameters. Storing parameter values instead of concrete geometry
in the central repository allows for a simple and generic way to handle time varying geometry.
For example, the position of the sensors of the PXD have to be known to a high precision.
Various effects, such as temperature variations, may change the position of these parts over
time. By measuring the position of the sensors at a given time, the deformation of the geometry
can later be taken into account for the reconstruction of the particle tracks.

5.1. Implementation of parameter storage and access

The central repository is realised using XML documents for the basic detector parameters. XML
documents have the advantage of being human readable and highly extendable. Furthermore,
they are widely used in both particle physics and industry, leading to the availability of high
quality libraries, tools and software (both Open Source and commercial) to write, read and
manage XML documents. The access to the parameters describing the BELLE II detector is
handled by a user-friendly library called Gearbox. Using the XPath query language, the user
sends a request for a parameter via the Gearbox library and gets the value of the parameter
back. Special care was taken to handle the unit of parameters (e.g. length) consistently. The
user is able to attach the unit in which a parameter is specified in the XML file. Upon request
of a parameter the library automatically performs the correct unit conversion from its specified
unit to the standard unit of the basf2 software framework.

5.2. Creating geometry objects from parameters
The geometry handling system explained so far only stores parameter values and, optionally,
their development over time. The missing link between parameter values and geometry objects
is filled by C++ code. Figure 5 shows the basic architecture of the geometry object building
system.

Each subdetector has associated C++ code that is aware of the available parameters for that
specific subdetector. The C++ code requests the parameter values that are needed in order

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 032024 doi:10.1088/1742-6596/331/3/032024

ROOT |
C++ Code XML document !l XML Document
TGeo hierarchy Belle Il detector !
PXD | PXD
Top volume \ XML Document
Composite volume C++ Code \ ! i SvD
Geometry
Box volume — XML Document
SVD handling lib
Tube volume B cDC
Composite volume C++ Code L —% | Xé/ICLLD_cI)_gu;'lent
Box volume ' ’ T i
. cboc |/
ox volume
Box volume
C++ Code
ECL, TOF, ...

Figure 5. The basic architecture of the geometry object building system.

to build the actual geometry of the subdetector from the Gearbox library. Then, using the
parameter values, each subdetector’s C++ code creates the actual geometry objects and writes
the created geometry into an object hierarchy. The geometry objects and their relationships
within the hierarchy are implemented using ROOT TGeo objects, a common standard for
geometry objects developed at CERN. The hierarchy is shared between all sub-detectors, leading
to a single geometry object hierarchy for the whole BELLE II detector. It can then either be
kept in memory and directly be used by the simulation/reconstruction software or be saved to
disk for later use.

6. Simulation

The full detector simulation in basf2 is based on Geant4 [4], the standard toolkit for the
simulation of particles traversing matter in the HEP community. The TGeo geometry objects
have to be made available to Geant4. The basf2 framework uses the G4Root library for that
purpose as well as performing additional steps. Among those is the special treatment of sensitive
detector parts, which have to be connected to a class that handles the feedback from the Geant4
simulation. For example, in the PXD such a class takes the Geant4 output and converts it to
detector hits. These hits specify the path along which the particle traversed the detector. The
results of the simulation are stored in the DataStore for further processing.

7. Summary

The BELLE II experiment is the upgrade of the highly successful BELLE experiment, located
in Japan. The main physics goal of both BELLE and BELLE II, is the measurement of CP-
Violation in the B-meson system and the search for rare decays. The vast amount of changes
created by the upgrade from the BELLE to the BELLE II detector make it necessary to rewrite
the existing software framework. The new framework is called basf2, while incorporating
concepts of other HEP experiments, primarily follows concepts proven in BASF. The data
processing chain consists of modules grouped into paths and offers a built-in parallel processing
mechanism. The geometry is stored as a set of parameters in XML documents used by C++
code to create the actual geometry objects. For the detailed detector simulation Geant4 is used.

References

[1] A. Abashian et al., Nucl. Instrum. Meth. A 479 (2002) 117.

[2] S. Hashimoto et al., Lol for KEK Super B Factory, Part I: Machine, KEK-Report 2004-4 (2004).
[3] J. Kemmer, G.Lutz et al., Nucl. Instrum. Meth. A 253 (1987) 356.

[4] JS. Agostinelli et al., Nucl. Instrum. Meth. A 506 (2003) 250.

