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Abstract: The Large Hadron Collider (LHC) is one of the largest scientific instruments ever
built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global
user community working in fundamental particle physics and the physics of hadronic matter at
extreme temperature and density. To sustain and extend its discovery potential, the LHC will
undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of
five beyond the original design value and the integrated luminosity by a factor ten. The new
configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations
that push accelerator technology beyond its present limits. Among these are cutting-edge 11 −
12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before,
compact superconducting cavities for longitudinal beam rotation, new technology and physical
processes for beam collimation. The dynamics of the HL-LHC beams will be also particularly
challenging and this aspect is the main focus of this paper.
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1 Goals of the high luminosity upgrade

The Large Hadron Collider (LHC, see ref. [1] for more detail) was successfully commissioned in
2010 for proton-proton collisions with a 7 TeV centre-of-mass energy. It delivered 8 TeV centre-of-
mass proton collisions from April 2012 until the end of Run 1 in 2013. Following the first long shut
down (LS1) in 2013-2014, it operated with 13 TeV centre-of-mass proton collisions during Run 2
from 2015 onwards.

To enhance its discovery potential, the LHC will need a major upgrade in the 2020s to extend
its operability by another decade and to increase its luminosity, and thus collision rate, by a factor
of five beyond its design value.

The instantaneous luminosity L, which is the key figure of merit for a collider, is given by

L =
nbN2 f rev γrel

4 π β∗ εn
R

(
β∗, σz, dbb

)
. (1.1)

The r.m.s. normalized emittance εn in collision is assumed here to be equal for the two beams and
for the horizontal and vertical planes. The r.m.s. beam size at the interaction point (IP) is given
by σ∗ =

√
εn β∗/γrel where β∗ is the optical beta-function, γrel is the relativistic gamma factor and

the relativistic βrel is always assumed to be unity. A crossing angle is needed to separate bunches
immediately upstream and downstream of the collision point. This ensures a sufficient long-range
beam-beam separation dbb, but also reduces the geometric overlap between the colliding beams, thus
reducing L. The luminosity is also reduced by the ‘hourglass effect’ that arises from the increase
of the beta function along the bunch longitudinal distribution, and the factor R in eq. (1.1) takes
both the crossing angle and the hourglass effect into account. The considerations that constrain the
values of all these parameters are reviewed in refs. [2–4], where the main two goals of the HL-LHC
project are also discussed:
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Figure 1. Simulated evolution of main beam parameters during a nominal HL-LHC physics fill.

• a peak luminosity in ATLAS and CMS of 5×1034 cm−2s−1 sustained over several hours using
luminosity levelling techniques compatibly with a maximum average pile-up, i.e. the number
of events per bunch crossing, limit of 140 events/bunch crossing defined by the experiments;

• an average integrated luminosity of 250 fb−1 per year with the goal of 3000 fb−1 in about a
dozen years after the upgrade.

It is expected that the engineering margin applied in the design of the accelerator components
should allow to operate the machine up to a peak levelled luminosity of about 7.5 × 1034 cm−2s−1

increasing the average pile-up in the detectors up to around 200. This luminosity should enable the
collection of up to about 4000 fb−1 during the HL-LHC lifetime assuming an higher performance
efficiency close to 60 % as it has been achieved during the LHC operation in 2016.

Radio frequency deflectors, called crab cavities, first proposed in 1988 as a means to increase
the luminosity of linear colliders, then installed in the B-factory KEKB in 2007, but never used
in hadron machines, will be used in the interaction regions to increase the overlap between the
colliding beams, hence increasing the virtual1 luminosity, allowing to level over sufficiently long
periods and to decrease pile-up density. To note that the crab cavity voltage is not sufficient to fully
compensate for the crossing angle. Baseline parameters are presented in table 1, while a simulated
HL-LHC physics fill is shown in figure 1. Details of the simulation are described in [5]. The
saw-tooth pattern in the instantaneous luminosity reflects the step-wise changes in β∗ to restore
luminosity after a 2 % decay. In this configuration the 250 fb−1 are achieved in 160 days with
52 % efficiency during Run 4. This value will increase in the following years due to the increase
of the number of days of operation, resulting from the stop of the ion operation after Run 4, and a
reduction of the machine studies required for performance enhancement.

Improvements to the HL-LHC baseline are currently being explored, including new filling
schemes and further reduction of β∗ and crossing angle.

For the sake of completeness it is worth mentioning that the HL-LHC physics programme
includes ions physics, too (see e.g., refs. [3, 4] for more detail).

1This term refers to the peak luminosity without levelling.
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Table 1. Main IP and beam parameters for the HL-LHC baseline scenario.

E [TeV] 7
Particles per bunch [1011] 2.2
Number of bunches 2748
IP1 and 5 collisions 2736
Beam current [A] 1.09
Crossing angle [µrad] 510
beam separation [σ] 12.5
β∗ [cm] 20
εn [µm] 2.5
εL [eVs] 3
Relative E spread [10−4] 1.18
r.m.s. bunch length [cm] 9
Crabbing angle [µrad] 380
Virtual luminosity [1035cm−2s−1] 1.17

2 Layout and optics

The HL-LHC layout is based on the nominal LHC ring configuration, in which about 1.2 km of
beam line will be changed. The nominal configuration is designed for a realistic, cost-efficient and
achromatic implementation of low β∗ collision optics, based on the deployment of the Achromatic
Telescopic Squeeze (ATS) scheme [6], together with the installation of insertion magnets of larger
aperture [2, 3]. The first successful validation tests of ATS with beam were achieved in 2011-
2012 [7] in very specific conditions, and more recently in additional machine studies in 2016.

In figure 2 the layout of the new high-luminosity insertion regions (IR) is shown (upper part),
while in the lower part the evolution of the beta function along the insertion is plotted.

The single-aperture magnets, namely the triplet quadrupoles — Q1, Q2a, Q2b, Q3 — for
strong beam focusing at the IP and the separation dipole D1, are visible close to the IP side of
the insertion. The two-in-one apertures magnets, the separation dipole D2 and the quadrupole Q4,
are also shown. The large mechanical aperture of insertion magnets is needed to accommodate
the beams, which reach large dimensions (note the peak value of the beta functions in excess of
20 km), including also appropriate layers of tungsten to protect the superconducting magnets from
the collision debris.

Additional protection is ensured by a number of fixed absorbers (TAXS, TAXN) and movable
devices (TCLX).

The crab cavities are integrated in the same region and provide an essential contribution to
HL-LHC performance. In fact, by rotating along the longitudinal axis the bunches upstream and
downstream of the IP, they increase the value of the factor R in eq. (1.1).

The changes in some of the dispersion suppressors in view of the upgrade of the collimation
system are mentioned in section 3.4.
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Figure 2. Upper: overall layout of one side of the insertion region between the IP and Q4 in Point 1 and 5.
The dark blue and red areas represent the 2.4σ beam envelope for the nominal round optics. The light regions
correspond to a 14.2 σ value of the beam envelope. The vertical, shaded grey areas represent the locations
of the parasitic beam-beam encounters. Lower: evolution of the beta function in the insertion region.

3 Main challenges

3.1 Beam stability

Transverse instabilities have been observed in the LHC in Run 1, with 50 ns beams, and in Run 2,
with 25 ns beams, and have required operating the machine with high chromaticity (Q′ ≈ +15) and
Landau octupole strength close to the maximum feasible, and with maximum gain and bandwidth
of the transverse feedback (50 turns and 20 MHz, respectively) [8]. The observations have clearly
evidenced that in several cases the observed instabilities are the result of the interplay of various
mechanisms. Indeed, the impact on beam stability of coupling impedance, electron cloud, head-
on and long-range beam-beam forces, realistic models of transverse feedback, machine optical
parameters such as tunes, linear coupling, linear and non-linear chromaticity, and other non-linear
effects, is currently under study.

During 2015 and 2016, systematic measurements with single-bunch beams of the LHC
impedance showed a good agreement between the expected stabilising current of Landau octupoles
and the measured values as a function of chromaticity.

Given the higher bunch population and beam brightness expected for HL-LHC and the fact
that almost the maximum values in chromaticity and Landau octupole current have been used
since 2012, the transverse impedance should be kept under control by reducing the impedance of
existing components and minimising that of new components, in particular of the devices installed
in regions with high beta functions like the crab cavities. This is pursued by a vigorous upgrade
programme of the collimation system as, according to the present estimates, there is no sufficient
margin for HL-LHC beam stability with the present primary and secondary collimators in IR7 that
have to be changed with a low-impedance design (see section 3.4). Moreover, the negative current
in the Landau octupoles was chosen after a detailed analysis of the interplay between octupoles

– 4 –



2
0
1
6
 
J
I
N
S
T
 
1
1
 
C
1
2
0
8
1

Figure 3. Effects of the tails of the transverse beam profiles on the single-beam stability just before putting
beams in collision with the current HL-LHC impedance model: (left) stability diagram with the coherent
modes inside and (right) required Landau octupoles current vs. chromaticity to reach beam stability.

and beam-beam long range during the optics squeeze process. The corresponding stability diagram
and coherent modes just before putting beams in collision are shown in figure 3 (left) for different
transverse beam distributions to probe the effect of the tails, while the required Landau octupole
current to stabilize the beam vs. chromaticity is shown in figure 3 (right) [9]. It can be seen that the
beam is stable in all cases if the current in the Landau octupoles is larger than about half themaximum
value, thanks to the efforts to reduce collimators impedance and crab cavities high-order modes.

The operation with 25 ns beam relies heavily on beam-induced scrubbing. The full electron
cloud suppression should be possible for the arc dipoles, but it still needs to be confirmed, whereas
it seems very unlikely for the quadrupoles. Coherent beam instabilities are currently observed
at injection in the presence of electron cloud, which require to use high values of chromaticity
(Q′ ≈ +20 units) in both planes, high transverse damper gain (damping times of ≈ 10 turns) and
high Landau octupole strength. Simulation studies are on going to assess whether the observed
instabilities are generated only by electron cloud or if some interplay between different mechanisms
is involved. As a result of the experience gained in 2015 and 2016 the definition of the working
point for HL-LHC has further progressed: it is proposed to operate HL-LHC at injection with the
horizontal and vertical fractional tunes 0.27/0.295 instead of the nominal values 0.28/0.31 and
to compensate automatically the Laslett tune shifts during the injection process. This will allow
accommodating the large tune spread created by the high Q′ and large strength of the Landau
octupoles needed to stabilize the beam against electron cloud; as linear coupling can drive the
beam unstable because of loss of transverse Landau damping, special care should be paid to its
measurement and correction, or alternatively the separation of the tunes should be increased.

Other mitigation measures under study are the introduction of a larger transverse tune spread
for Landau damping using second order chromaticity or a RFQ [10], or the suppression of the
intra-bunch motion by a wide-band feedback system [11], which could be of interest in case of
instabilities resulting from electron cloud.

Longitudinal instabilities are not expected to be a major issue for the HL-LHC, thanks to the
choice of the nominal bunch length of 9 cm (see table 1), as shorter bunches might indeed become
unstable.

– 5 –
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3.2 Beam-beam effects

The beam-beam interaction is known to be an important factor limiting the performance of colliders,
including the LHC and its high-luminosity upgrade. A combination of mechanisms such as
resonance crossing due to large beam-beam tune-spread coupled with magnetic imperfections and
noise effects can degrade the beam quality inducing losses and/or emittance blow-up. This decreases
beam and luminosity lifetime generating also high background for physics experiments, heat and
radiation load on collimation system.

The beam-beam effects in the LHC were extensively studied during its design phase [12, 13].
A number of experiments were recently undertaken proving that the present LHC has surpassed
the head-on beam-beam tune-shift limit, which was assumed based on experience from past col-
liders [12]. However, the HL-LHC represents a quantitative and qualitative leap into unknown
territory. The baseline configuration employs novel concepts, such as luminosity leveling by vari-
ation of the β∗, tilting bunches in the main IPs with crab cavities, significantly higher head-on
beam-beam tune shift: all these require careful verification.

The beam-beam studies for HL-LHC are mostly performed using the weak-strong approxima-
tion and employ different tracking codes [13, 14] capable of calculating the area of stable motion in
phase space, also called dynamic aperture (DA), over a fewmillion turns (i.e. a fewminutes). Where
necessary, strong-strong simulations are also performed [15–19]. The criterion used for establishing
satisfactory beam dynamics behavior is similar to that of the LHC design, with a target DA value
of 6 σ for 106 turns and HL-LHC baseline parameters. The DA target value is currently under
scrutiny and an effort is on going to complement DA calculations with multiparticle simulations,
which are slower to compute, but produce directly measurable quantities [20, 21].

Weak-strong beam-beam simulations confirmed that the target DA is achieved and surpassed
during the whole leveling process [3], which gives confidence that also for the ultimate scenario
there is adequate margin, either for reducing the crossing angle or for accommodating the impact
of non-linearities, such as magnetic multipole imperfections, high chromaticity, and Landau oc-
tupoles. A global exploration of the impact on DA of all the related parameters, including possible
compensation of the long-range beam-beam effects for non-baseline scenarios [22], are under study
for refining operational scenarios and optimising the projected HL-LHC performance. An example
is seen in figure 4 where the DA is shown vs crossing angle and bunch charge.

Weak-strong simulations were also used to evaluate the emittance growth due to beam-beam-
related betatron resonances, predicting that the corresponding luminosity lifetime will be large [20,
21, 23]. Another mechanism of emittance degradation can be due to the interplay between the
non-linear beam-beam interaction and various sources of noise. These effects require strong-strong
simulations and the key results are found in refs. [15, 19]

3.3 Beam-induced heat load on the cryogenic system

The circulating beam can deposit a significant amount of power on the structures exposed to it
mainly through three mechanisms: synchrotron radiation, impedance, and electron cloud.

Synchrotron radiation is the most important contribution to the heat load on beam screens
in the arcs, which amounts to 0.66 W/m/beam, assuming nominal HL-LHC parameters, whereas
the longitudinal beam screen impedance generates additional 0.47 W/m/beam. The remaining

– 6 –
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[

Figure 4. MinimumDA vs. crossing angle and bunch charge for β∗ = 0.2 m, Q′ = 3, and maximum strength
of the Landau octupoles. The bunch charge is in the range typical of a nominal HL-LHC fill (see figure 1).

contribution from electron cloud effects depends on the Secondary Electron Yield (SEY) of the
beam screen surface that can be achieved through beam-induced scrubbing. Figure 5 (upper) shows
the heat load from electron-cloud simulations for a main dipole and quadrupole as a function of
bunch intensity and different SEY values, where the multipacting process is modelled as described
in [24]. A SEY of 1.3 is sufficient to fully suppress the e-cloud in dipoles, while much lower values
are needed for the quadrupoles, hardly achievable by beam-induced scrubbing. Although the LHC
is being operated with 25 ns bunch spacing, accumulating a significant electron dose on the beam
screen surfaces, to-date a significant heat load from electron cloud is still measured on the arc beam
screens. In case a sufficiently low SEY cannot be achieved, e-cloud effects can be mitigated by
using specially conceived filling patterns. By using the flexibility of the injector complex, bunch
trains with long enough gaps interspersed, to prevent the build-up of electron cloud along the ring
circumference, can be built. An alternative scenario (referred to as 8b+4e [25]) based on very short
trains with 25 ns spacing has been conceived to reduce e-cloud effects in the HL-LHC and has
been considered as part of the HL-LHC operational scenarios. Although the effectiveness of the
8b+4e scheme for electron cloud suppression has been proven in the LHC in 2015 [26], it should be
stressed that the integrated luminosity provided by this special filling scheme is reduced by about
25 %, which justify the choice of beam scrubbing as the baseline for e-cloud mitigation strategy.

Figure 5 (lower) shows the heat load expected from electron cloud along the triplet assemblies
at the high-luminosity IPs. It can be noticed that the least efficient multipacting (lower heat load)
occurs at the locations of the long-range encounters (vertical dashed lines) and that the heat load in
the D1 dipole is comparable to that in the quadrupoles.

Surface treatments, such as amorphous carbon coating, are foreseen on the beam screens of
the triplet and D1 magnet assemblies for all experimental insertions to achieve a SEY of 1.1 or
lower (these technologies are presently being validated at the COLDEX experiment at the SPS).
This condition will lead to heat loads from e-cloud of approximately 150 to 200 W per triplet or
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Figure 5. Upper: simulated heat load from e-cloud in the arc magnets as a function of bunch intensity and
SEY. Lower: simulated heat load from e-cloud along the triplet and D1 magnets in IR1 and 5 for HL-LHC
beam parameters. The vertical dashed lines indicate the locations of the long-range encounters.

lower. The heating mechanisms for the beam screens of the twin-bore cold magnets have been
studied in detail and the estimated thermal loads for all the insertion regions are reported in [27].
The present baseline includes the surface treatment of the beam screens of the elements installed in
the matching section of the high-luminosity IPs (D2, Q4, Q5, and associated correctors). The need
of coating additional elements is being assessed, taking into account the heat load estimates and the
available cryogenic power during the HL-LHC era [3]. The above estimates rely strongly on the
SEY dependence on the electron energy [24] that determines, e.g., the scaling of the heat load on
the bunch population. The experimental confirmation of these simulations with bunch intensities
close to the nominal for HL-LHC, which will become available after the implementation of the LIU
Project [28] in 2021, is vital for the validation of the HL-LHC performance.

3.4 Cleaning and collimation

TheHL-LHCbeams, with stored energy over 700MJ, are highly destructive, and for this amultistage
collimation system has been installed [1, 29] to safely dispose of beam losses. Unlike other high-
energy colliders, the LHC and the HL-LHC require efficient beam collimation during all stages of
operation, from injection to collision energy.

– 8 –
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The two-fold increase in stored beam energy for HL-LHC baseline parameters will require a
significant improvement of cleaning performance. Material robustness and beam impedance are
critical points in view of HL-LHC operation, together with reduction of collimator setup time and
maximisation of system availability, which are essential for achieving the HL-LHC design goals.

To meet with the new requirements, the HL-LHC collimation system builds on the current one,
with several upgrades. The backbone of the HL-LHC collimation will remain the betatron (IR7)
and momentum (IR3) cleaning systems installed in two separated insertions [1]. A three-stage
system, based on primary (TCP), secondary (TCS), and on shower absorber (TCLA) collimators, is
deployed in these insertions. In all experimental insertions, tertiary (TCT) collimators are installed
to protect the triplet and the Q4 and Q5 magnets from incoming beam losses. Physics debris (TCL)
collimators are installed downstream of the high-luminosity interaction points to protect matching
section and dispersion suppressor magnets from the collision products. Including also injection and
dump protection devices, the present system counts a total of 92 movable devices.

The system already underwent an important upgrade during LS1, when beam positionmonitors
were successfully deployed in 18 new collimators [30, 31] for faster alignment and continuous orbit
measurements. This new functionality is now the baseline for each new HL-LHC collimators.

The planned upgrades address limitations encountered both for proton and heavy-ion beam
operation [2]:

• Addition of one dispersion suppressor collimator (TCLD) per beam and side of IR7 to improve
the betatron cleaning performance for ion and proton beams [32–34]. This collimator,
installed in cell 8, will intercept dispersive losses of halo particles that have interacted with
the primary collimators. The space for installing a warm collimator is made available by
replacing a standard 8.33 T, Nb-Ti LHC main dipole with 2 new 11 T, Nb3Sn dipoles [3, 35].

• Addition of one dispersion suppressor collimator (TCLD) per beam and side of IR2 to
intercept the products of Pb-Pb collisions that would otherwise quench dispersion suppressor
magnets [36–38]. The TCLD will be installed in the interconnection cryostat and will not
require any 11 T dipole unit.

• Replacement of all secondary collimators in IR7 with a new design with lower impedance,
to ensure the stability of the HL-LHC beams. The present baseline foresees using Mo-Gr
(molybdenum-graphite) devices [39] coated with a pure Mo, 5 µm-thick layer. This material
showed comparable robustness against beam impacts as the present carbon-based secondary
collimators [39], but has an electrical resistivity 5 (uncoated) to 100 times (coated) smaller.

• Complete re-design of the high-luminosity IRs, for protection against incoming beam losses
and for cleaning of collision products. For each IR and beam, two pairs of vertical and
horizontal tertiary collimators will be installed upstream of the IP; three collimators and
three fixed masks will be installed downstream of the IP to protect magnets from physics
debris. New, more robust materials are needed to handle beam losses of the ultra-bright HL-
LHC beams, in particular in case of fast beam failures that would otherwise risk to damage
these collimators [40].

New solutions to improve further the collimation performance are under study. Hollow electron
lenses are considered as a possible way to mitigate beam loss spikes at the HL-LHC, through the
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active control of halo population and diffusion speed [41]. Crystal collimation is also being studied
as a means to improve cleaning efficiency. Following the successful demonstration of channelling
of 6.5 TeV protons, obtained in 2015 with a test stand installed in IR7 [42], crystal collimation is
now considered as a promising option to improve cleaning efficiency for ion beams at the HL-LHC.

4 Conclusions and outlook

The design of the high luminosity LHC upgrade underwent already a number of changes and
considerable evolution since its inception, and in summer 2016 a a major milestone was achieved,
when an in-depth re-baselining of the whole Project took place.

The future runs of the LHC will be crucial for the confirmation of the design choices made for
the HL-LHC as the LHC could be used as test bed for the most challenging techniques needed for
the HL-LHC, e.g., the deployment of the ATS optics. The experience gained in the LHC operation
might lead to further adjustments of the set of beam parameters and running scenarios.

Since crab cavities have yet to be realised and used in hadron rings, beam tests with a prototype
are a prerequisite to identifying potential risks from the technology to safe and reliable operation
of the HL-LHC. Therefore, an essential milestone is a crab cavity test in the CERN Super Proton
Synchrotron (SPS), with the aim of demonstrating the operational reliability, ensuring machine
protection, and cavity transparency. The beam tests are planned as machine development studies
during the run 2018 and the successful validation of the crab cavities in the SPS is a prerequisite
for installation in the LHC ring.
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