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P H Y S I C S

Solid-state spin coherence time approaching the 
physical limit
Shuo Han1,2†, Xiangyu Ye1,2†, Xu Zhou1,2,3†, Zhaoxin Liu1,2, Yuhang Guo1,2, Mengqi Wang1,2, 
Wentao Ji1,2, Ya Wang1,2,3*, Jiangfeng Du1,2,3,4

Extending the coherence time of quantum systems to their physical limit is a long-standing pursuit and critical for 
developing quantum science and technology. By characterizing all the microscopic noise sources of the electronic 
spin [nitrogen-vacancy (NV) center] in diamonds using complete noise spectroscopy, we observe a previously unfore-
seen noise spectrum manifested as the empirical limit (T

2
≈

1

2
T
1
) that has puzzled researchers for decades in various 

solid-state systems. By implementing a corresponding dynamical decoupling strategy, we are able to surpass the 
empirical limit and approach the upper physical limit T

2
= 2T

1
 for NVs, from room temperature down to 220 kelvin. 

Our observations, including the independence across different spatial sites and its dependence on temperature in 
the same way as spin-lattice relaxation, suggest an emerging decoherence mechanism dominated by spin-lattice in-
teraction. These results provide a unified and universal strategy for characterizing and controlling microscopic noises, 
thereby paving the way for achieving the physical limit in various solid-state systems.

INTRODUCTION
Exploring the physical limits of physical systems represents a critical 
frontier with far-reaching implications for both fundamental re-
search and technological development. In modern science, quantum 
technologies promise to surpass classical counterparts by leveraging 
quantum coherence. However, quantum systems inevitably encoun-
ter challenges in maintaining their quantum coherence due to various 
noises and dissipation. For all qubits, the dissipation with a character-
istic relaxation time T1 imposes an upper limit on the coherence time 
T2, known as T2 = 2T1 (1). Reaching this limit would have profound 
implications for realizing the quantum revolution, including largely 
reducing the overhead in quantum computing (2, 3), achieving 
optimal quantum sensing (4, 5), and establishing large-scale quantum 
networks (6, 7).

However, achieving this goal is challenging, especially for solid-
state spin systems, which have emerged as promising candidates for 
scalable quantum networks and nanoscale quantum sensing (8–19). 
Substantial efforts have been devoted to both active isotopically en-
gineered processes (20, 21) and passive dynamical decoupling (DD) 
techniques (22–30). Despite notable progress achieved in recent de-
cades, the spin coherence time of all these solid-state spin systems 
remains intriguingly restricted to an empirical limit T2 ≈

1

2
T1 (Fig. 1A), 

which dates back to the historical study of electron paramagnetic 
resonance (31). This broad and long-standing puzzle suggests the 
existence of undiscovered physical mechanisms beyond the pre-
vious scope of material engineering and DD techniques. Therefore, 
addressing this intricate physical mechanism represents a key step 
toward advancing quantum technology.

In this paper, we quantitatively identify the underlying micro-
scopic interaction mechanisms within diamond material using a 
unified and universal approach developed here. We show that this 
mechanism exhibits a unique nonlocal nature distinct from the con-
ventional spin-lattice relaxation. By decoupling this interaction, we 
enable the nitrogen-vacancy (NV) center to surpass the empirical 
limit and achieve the longest room-temperature coherence time of 
4.34 ms ever observed for solid-state electronic spins (20, 21, 24, 29).

RESULTS
The discrepancy between empirical limit and physical limit 
for NV centers
Our experiments use individual NV centers (S = 1) in diamond crys-
tals for illustration. To verify the limit discrepancy, we measured a spin 
qubit composed of the ms = 0 and ms = −1 states from the spin-triplet 
(Fig. 1B) under a magnetic field around 400 G. A standard Carr-
Purcell-Meiboom-Gill (CPMG) sequence (Fig. 1D, top) was applied 
to obtain the coherence time T2 by extracting T2,CPMG as the pulse 
number increased (Fig. 1D, middle), until it reached saturation (Fig. 
1D, bottom). For the T1 measurement, two additional dissipation 
channels from the qubit subspace to the ms = + 1 state need to be 
considered. These channels are characterized by Ω

⊥

(
ω0,+1

)
, represent-

ing the transition rate between ms = 0 and ms = + 1, and γ
⊥

(
ω
−1,+1

)
, 

representing the transition rate between ms = −1 and ms = + 1 (Fig. 
1B). Together with the transition rate Ω

⊥

(
ω0,−1

)
, these rates deter-

mine the relaxation time T1 (see section S1.A). To extract the specific 
transition rate, two groups of sequences were applied (Fig. 1C, top) 
with the results shown in Fig. 1C (bottom). Last, the results of three 
randomly selected NV centers, as displayed in Fig. 1E, show that 
T2 is still restricted by the empirical limit for S = 1 spin systems 
(as detailed in Materials and Methods) and remains far from the 
physical limit.

This discrepancy suggests the presence of an undiscovered noise 
mechanism. To investigate this, we analyze both the CPMG and 
spin-relaxation measurements in terms of noise spectroscopy. As 
illustrated in Fig. 2, we resolve the axial noise spectrum density 
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(32, 33) from the CPMG data in Fig. 1D (see section S3.A). The 
CPMG results yield a Lorentzian spectrum in the low-frequency re-
gime (ω∕2π < 1 kHz), with a baseline intensity (SE) responsible for 
the observed empirical limit (ω∕2π > 1 kHz). In contrast, the noise 
intensity (SP) from the spin-relaxation results determines the coherence 
physical limit. As expected, the noticeable disparity between these 
two limits suggests the existence of an emerging noise mechanism 
within the frequency range (from kilohertz to gigahertz).

Therefore, to surpass the long-standing empirical limit, it is cru-
cial to characterize the profile of the missing noise spectrum in 

such a broad frequency range and develop a corresponding noise-
suppression strategy.

Relaxation noise spectroscopy characterizing the 
spectrum profile
To cover a broad frequency range, we leverage the capability of 
spin-relaxation measurements to tune the spin energy across a 
wide dynamic range by simply varying the magnetic field (Fig. 3A). 
However, this spectroscopy becomes complicated when the transi-
tion frequency approaches the magnitude of other weak hyperfine 
interactions. For NV centers in diamonds, the hyperfine interaction 
with the nitrogen nuclear spin (I = 1) (34) causes the electron spin 
state strongly mix with nitrogen spin states (mI = + 1, 0, − 1) as the 
energy crossing point is approached (ω0,−1 ~ MHz), as shown in 
Fig. 3B. This interaction alters the qubit’s susceptibility to the mag-
netic field and opens additional relaxation pathways that were 
previously forbidden. As a result, extracting the relaxation rate at 
frequencies around megahertz becomes complicated. To address 
this challenge, we adopt a specific transition (Fig. 3B, orange line; 
see section S2.B) that is nearly isolated from other states and ex-
hibits an almost unchanged susceptibility (η =

�ω

−γe �Bz

∼ 0.9) close 
to that of a free electron spin.

We thus prepare the initial state as ∣ms = −1,mI = −1⟩ and then 
measure its relaxation (Fig. 3C; also see section S2.C). This process 
allows us to accurately determine the relaxation rate Ω

⊥

(
ω0,−1

)
 

when ω0,−1 ∼MHz and to construct the transverse noise spectrum 
(Fig. 3D; also see section S2.C), which fills in the missing frequency 
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Fig. 1. Solid-state spin coherence time limit. (A) The reported coherence time (T2) of solid-state spins, including S = 1 systems such as VV0 in SiC (25), NV center in dia-
mond (21, 29), and V−

B
 in hBN (27), as well as S = 1/2 systems like P donor in silicon (26), single-electron spin of rare-earth ion (Ce3+) (28), and SiV− in diamond (30), follows 

the empirical limit. (B) The level structure of the NV’s electronic spin (S = 1) and the dissipation channels between these levels are shown. Under a magnetic field around 
400 G, the energy difference ω0,−1, ω0,+1, and ω

−1,+1 are all around gigahertz. In the qubit’s subspace, its relaxation time could be simplified as T1 = 1∕
(
3Ω

⊥
+γ

⊥

)
, assuming 

Ω
⊥

(
ω0,+1

)
= Ω

⊥

(
ω0,−1

)
= Ω

⊥
 and γ

⊥
= γ

⊥

(
ω
−1,+1

)
. (C) The measurement sequence for Ω

⊥
 and γ

⊥
 , where Ω

⊥
 is extracted from S1 − S2, and γ

⊥
 is extracted from S3 − S4. a.u., 

arbitrary units. (D) The CPMG sequence for measuring T2,CPMG and the process to extract T2,CPMG at different pulse numbers. T2 is determined once T2,CPMG approaches a 
steady value as the pulse number (N) increases. (E) The measured T2 and T1 follow the empirical limit for NV centers at different sites and different temperatures.
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range in Fig. 2. Notably, in addition to the intrinsic spin relaxation 
(Fig. 3D, orange line), a distinct noise component (Fig. 3D, green 
line) emerges at frequencies below 1 MHz, which is inconsistent 
with conventional electromagnetic noise sources (35–38). Because 
the cutoff frequency of this noise lies at the edge of the detection 
bandwidth of the DD sequence, it suggests that using a CPMG se-
quence with a decoupling frequency extending into this range could 
further extend the spin coherence time.

Approaching the physical limit via complete 
noise spectroscopy
To confirm this prediction, we proceed with CPMG sequences with 
decoupling frequencies approaching 1 MHz (Fig. 4B, with N > 128). 
As anticipated, a further enhancement of the coherence time, surpass-
ing the empirical limit, is observed once the decoupling frequency 
exceeds a certain threshold (Fig. 4A). In this process, we achieve a 
room-temperature coherence time of 4.34 ms, exceeding that observed 
in previous solid-state electronic spin systems (20, 21, 24, 29). Further 

extension of this T2,CPMG is limited by the pulse control fidelity, which 
is halved for N = 4096 at room temperature (fig. S8). The recon-
structed axial noise spectrum from the CPMG results (Fig. 4C, dark 
solid dots from N < 128 and green solid dots from N > 128), aligns 
well with the transverse noise spectrum (Fig. 4C, orange solid dots).

With all these findings, we thus obtain the complete noise spec-
trum for NV centers within diamonds (Fig. 4C). This comprehensive 
spectrum successfully establishes the threshold frequency required 
for completely decoupling each noise mechanism. Below 1 kHz: The 
electronic spin bath is the main contributor to the noise spectrum, 
showing that the interactions between the central spin and its specific 
surrounding electronic spin bath play a crucial role in spin decoher-
ence. Above 1 MHz: The noise spectrum is dominated by the intrinsic 
spin relaxation, suggesting that the relaxation of spins to their equi-
librium state fundamentally determines the coherence physical limit 
of a spin qubit within a quantum system. Between 1 kHz and 1 MHz: 
The spectrum is primarily influenced by a noise source with a high 
cutoff frequency around 1 MHz. Once the decoupling frequency 
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tions that are previously forbidden. A specific transition (ωmI=−1
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) is selected (see sec-

tion S2.B), with a susceptibility (η ∼ 0.9) close to free electron spin. (C) Measured 
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 in (C) (see sec-

tion S2.C). All error bars are 1σ.
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exceeds this threshold, we observe that the coherence time surpasses 
the empirical limit and approaches the physical limit (Fig. 5A, orange 
pentagram and extracted from the longest coherence time of T2,CPMG). 
In particular, these similar behaviors observed across different NVs 
at varying temperatures potentially suggest this emerging noise’s 
nonlocal and temperature-dependent nature.

A spin-lattice interaction dominated by delocalized modes
To further quantify these characteristics, we conduct the experi-
mental characterization and find that the intensity of this emerging 
noise (SE − SP) obtained from randomly selected NV center sites 
demonstrates a site-independent behavior (Fig. 5B). This nonlocal 
nature stands in stark contrast to the previously observed magnetic 
noises, electrical noises, or spin-lattice relaxation, which highly 
depends on the local microscopic environment [local density of spin 
(39, 40), charge (11, 35, 41, 42), and quasilocalized vibrational modes 
(43, 44)] and thus vary across different sites.

Unlike electromagnetic noise, phonons, as quasiparticles, follow 
Bose-Einstein statistics 

[
n
ω
(T)=

1

exp(ℏω∕kBT)−1

]
 for their number 

distribution. This specific characteristic enables temperature-varying 
experiments a powerful tool for identifying the spin-lattice relaxation 
over the past few decades (44–46). In particular, within the experi-
mental temperature range (Fig. 5C), a two-phonon Raman process 
dominates (43, 44), where the spin absorbs and subsequently emits a 
phonon. In this process, the generated noise fluctuations carry fre-
quencies corresponding to the phonon energy differences, perturb-
ing NV’s spin energy. This leads to a specific temperature-dependent 
spin-lattice relaxation rate (SP; Fig. 5C) characterized by the relation-
ship An

ω
(T)

[
n
ω
(T)+1

]
, where A is the coupling strength (44).

Here, we also observe a similar temperature-dependent scaling 
of the emerging decoherence noise intensity (SE − SP; Fig. 5C), sug-
gesting a distinct two-phonon Raman process–induced decoher-
ence mechanism. However, this mechanism is primarily influenced 
by delocalized vibrational modes, marking a notable departure from 
conventional spin-lattice relaxation.

DISCUSSION
Discovering and characterizing the underlying mechanisms are 
becoming increasingly important with the advancement of solid-sate 
quantum technologies. Our approach provides an avenue for unravel-
ing this intricate mechanism of diverse materials, and the observed 
delocalized vibrational modes in the spin-lattice interaction potentially 
point to size effect within the lattice. Future work will focus on further 
understanding and engineering this mechanism, such as the material 
project based on phonon modes engineering, to cultivate robust solid-
state quantum devices with enhanced functionalities and performance, 
thus advancing the widespread applications of quantum technology. 
Otherwise, the results, including the developed characterization 
method and revealed physical mechanisms, also serve as a reference 
for other solid-state systems.

MATERIALS AND METHODS
Sample and experimental setup
The sample in this work is an isotopically controlled single-crystal 
diamond grown using chemical vapor deposition, enriched with 12C 
to a purity of 99.999%. In this sample, the typical dephasing time is 
T∗

2
≈ 0.3 ms, and the linewidth of the filter function in relaxation 

spectroscopy is ~5 kHz.
Magnetic resonance experiments on single NV defect spin 

were conducted on a homebuilt room room-temperature and low-
temperature confocal setup, initialized by a 532-nm laser source 
(Changchun New Industries Optoelectronics Technology). The sample 
is positioned by an XYZ piezo-stage (C3S-D00600, nanofaktur) at 
low temperature and by a scanner (Physik Instrumente) at room 
temperature. Microwave pulses are generated by an arbitrary wave-
form generator (Keysight M8190A) and are fed to a gold strip line 
fabricated on top of the sample after amplification (minicircuit).

The empirical limit for spin S = 1/2 and S = 1 systems
The listed relaxation time in Fig. 1A represents the single-state’s re-
laxation time, which refers to Tms=+1∕2

1
 or Tms=−1∕2

1
 for S = 1/2 spin 

systems and Tms=0

1
 for S = 1 spin systems.

The coherence time T2,CPMG discussed here is obtained through the 
CPMG between ms = 0 and ms = −1. Therefore, the relaxation time re-
lated to this T2,CPMG should not only consider Tms=0

1
 but also T1 for both 

states (21, 29). There is a distinction between Tms=0

1
= 1∕

(
3Ω

⊥

)
 and 
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Fig. 5. A spin-lattice interaction induced decoherence. (A) Approaching the 
physical limit for various NVs at different temperatures. The dark, green, and yel-
low solid points represent the measured temperature of 300, 240, and 220 K, re-
spectively. The pentagram points represent the longest T2,CPMG achievable for each 
NV at the corresponding temperature. (B) Site dependence of noise intensity 
SE − SP and SP (fig. S6). The dashed line represents the average value of SE − SP 
across different sites. (C) Temperature dependence of noise intensity SE − SP and 
SP (fig. S7). The distinct points at each temperature represent different NVs. Here, 
n
ω
(T ) =

1

exp[ℏω∕kBT] − 1
 symbolizes the Bose-Einstein distribution of phonons, with 

the dominant phonon energy of ω ≈ 70 meV within this temperature range (44). 
Also, A is the fitting spin-lattice coupling strength. All error bars are 1σ.
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T1 = 1∕
(
3Ω

⊥
+γ

⊥

)
 for NV centers in diamond, which complicates 

the direct comparison between the empirical limit (T2 ≈ 1∕2T
ms=0

1
) 

and physical limit (T2 = 2T1). In this case, the observation based on 
γ
⊥
∕Ω

⊥
≈ 2 (see fig. S1) provides the opportunity to build a connec-

tion of Tms=0

1
≈ (5∕3)T1 in this three-level spin system. Naturally, we 

could reformulate the empirical limit for NV centers in diamond as 
T2 ≈ (5∕6)T1, as shown in Fig. 1E (black dashed line).

For a two-level spin system, it becomes straightforward as 
T
ms=+1∕2

1
, Tms=−1∕2

1
, and T1 are all equal, and the empirical limit 

remains T2 ≈ 1∕2T1.

Characterizing the site independence and 
temperature dependence
The complete noise spectrum in Fig. 4C includes three distinct de-
coherence mechanisms: impurity spin noise, spin-lattice relaxation, 
and emerging noise. The first two types of noise are both local, and 
the intensity varies randomly across different lattice sites. Because 
these have been extensively studied, we will not delve into it here.

For the last type, the key evidence to determine the universality of 
surpassing the empirical limit in Fig. 5A lies in assessing whether these 
noise spectra exhibit the same distribution form (cutoff frequency) 
across lattice points. The observations in fig. S6 demonstrate that this 
noise has the same distribution across different sites and exhibits iden-
tical intensity. This nonlocal nature illustrates an unprecedented noise, 
ensuring the universality of approaching the physical limit. Further-
more, this cutoff frequency remains consistent across varying tem-
peratures (fig. S7B).

By extracting the intensity from the spectra across different 
sites at various temperatures, we obtain the site independence 
(Fig. 5B) and temperature dependence (Fig. 5C) of this emerg-
ing noise.
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