MULTIPLICITY DISTRIBUTION IN IMPACT PARAMETER SPACE
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Abstract : We summarize the formulation of inclusive overlap
functions which give multiplicity distributions at incident impact
parameter b, Several models of multiperipheral type are discussed.,
It is pointed out that the dependence of the momentum=-transfer
slope upon subenergies is important in knowing which collision,
central or peripheral, has higher multiplicity.

Résumé : On passe en revue la formulation de fonctions de recouvrement
inclusives qui donnent des distributions de multiplicité & parametre
d'impact de la particule incidente b. Plusieurs modé¢les de type multi-
périphérique sont discutés. On remarque que la manidre dont la pente
en moment transféré dépend des sous-énergies est importante paur con-

naitre quel type de collisions, centrale ou périphérique, a une multi-
plicité plus élevée.

+)Adress after September 1974 : Rutherford High Energy Laboratory,
Chilton, Didcot, Berkshire, England.
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1. Introduction

High energie elastic scattering can be understood as the shadow of
multiparticle production by means of the s—-channel unitarity relation(1).
One of the most interesting questions in this approach is: which collision
has higher multiplicity, central or peripheral? A new formalism, called
inclusive overlap function, has been recently presented(z)in order to ana-
lyze the multiplicity distribution as a function of :incident impact para-

meter b.

The purpose of this report is to summarize the previous results on the
inclusive overlap function and to add the analysis o:f several models.
Inclusive overlap functions are defined and the generalized unitarity re-
lation is stated in the next section. Consequences of' the assumption of the
dominance of a simple factorizable Pomeron pole are described in Sect. 3.
Inclusive overlap functions in a multiperipheral model (MPM) with the Chew-
Pignotti approximation and in the absorbed MPM are calculated in Sect. L.
The final section is devoted to a discussion of the average squared impact
parameter as a function of multiplicity. We point out the importance of an
experimental determination of the dependence of the slope in momentum

transfer upon subenergies in the final state.

2. Ceneralized unitarity and inclusive overlap functions

The well-known optical theorem
is the unitarity relation in the s-
- = - - 2 = -p! 2
channel at t = 0 ( t=(p' pa) (pb Pb) ) X
(1 Utotzlm fel (t=0
The s-channel unitarity relation at )X ) .

general t is ’ KN

(2) 0(t) =1Im t, (t)

1
where 0(t) is the overlap function,(3) 1]

whose Fourier transform gives the

cross section ¢ (b) at incident impact
paramter b. Mueller first noted the
generalized optical theorem which

gives the single-particle inclusive
cross section in terms of an appropriate
absorptive part of three-body forward

(4)(5)

elastic amplitude

Fig. 1



(3) ® — = Abs. £, (% = o)
q
2) q * q

generalized the Mueller's optical L .

In a recent publication( s We have
theorem to a full unitarity relation
' 0
in the missing-mass channel at pu pb Db

general t=(p'-p )2
dz:i(tii P, q P

(4) o = Abs. f_(t)
2q 6 Abs. — -t

The left-hand side is defined by an

overlap integral for two multiparticle R q pb
S-matrix elements and is called the

single-particle inclusive overlap

function. For details, see ref. 2. Fig. 2

If we decompose final states into various multiplicities,we obtain

%ot = % % ?

(5) o(t)=xo (¢),

3
rd_q w—dl = En [
and ® d3 ?
q
3 az, (t)
- d’q 1 -
€ H®w = [ o—3— = Fu®

w

The Fourier transform in terms of the momentum transfer pa'.-p‘ gives the

impact parameter representation in the incident channel

o(t) = o (b) ra, (®) ,

(1)

En 9, (v)

T, (t) = ZI(b)
Therefore the average multiplicity as a function of the incident impact

parameter is given by

(8 a() ®w Fag )/ Fq (=1 B/ ol

which can be obtained from the two- and three-body elastic scattering

amplitude.
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The above consideration can be extended to many-particle inclusive
overlap functions and the set of all such inclusive overlap functions is
equivalent to the information on the complete multiplicity distributions

in impact parameter space.

3. Simple factorizable Pomeron pole

Pomeron exchange in elastic scattering gives the overlap function

in Fig. 3 ,

Py Py

t) -1
(9 0w =eBMTg (4) 5 (1) P
ﬂq Bb -t

where B is the Pomeron-two-particle R S P
vertex, o P(1:) the Pomeron trajectory,
Y=log(s/m2) the total rapidity. Fig. 3

The dominant contribution to the
inclusive overlap function at high
energies comes from the pionization
region and is given in terms of two-

Pomeron—two-particle coupling c(qa, t)

d%(t) (t). ¢ (q )
= 0(t). ’ t
(10 T, L
as 5 (+) = (a4 22
w, W = 0 (t). ¢ (@), t).c(dy,t)
192 —‘-'_d"lﬂ’q; " 3

and so on. Therefore the average multip-
licity n(b) and the correlation parameter
f2(b) as functions of impact parameter

are given by

1
ol

(11) 1 (b) 2 o (b) Y/ o () Fig. 5

cmcmo(® 1/ o - & ()3

fz(b)
where ¢ means the Fourier transform of c(t)= g..zq_ 16(q,, t) and = means
the convolution integral ; B O=(2T )_1“' a®b'e(b') o (B-5"). Using the expe-
rimental fact that the overlap function is approximately exponential in t,
we obtain in Fig. 6 a representative curve for n(b) and fz(b) in the

case of a smooth space-like decreasing function c(t).
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b2 \ b2

Fig. 6

4, Multiperipheral-type models (MPM) for exclusive processes

4.1 Simplified model in the Chew-Pignotti approximation
(6)

The matrix element is given by

M= %_5_ %Y M (z,8) 9 q, Gn  Qnet
m i=o
-ai 5 2
(12) M, (zZ, ,.Q) 06 (z2.) Jai e i < <
i ivi i Q Q
a’i = ;i + G'Zi pu pb
Ei = a fori=1, """, n-1 Fig. 7

where z. is the rapidity difference and Qi the transverse momentum transfer
of the i-th step, and o, and o' are the intercept and the slope of the

Regge trajectory exchanged in the multiperipheral chain.

Using high energy approximation

x; mo for i=1,""", n1
(13)
*o =1 xn+1‘=’_1
where
2qi//
X = —
/s
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we obtain

0 (+) = d(t) exp [lc(t) + 20 -2 + 0"t} Y)

2
5 (£).2 (3,1
w = 0(t).c q&,t
—_—
(1k) d’q
dzz(t) . .
0)1(1)2 7 > = 0("b).c(q1 J,’t)-c(qz*yt)
d3q d3q
and so on, where >
2@ ,t) = _e(t). exp(-aq 4 ),

ay b

(15) 3

c(t) = c e

Leading singularity in j-plane corresponds to a simple factorizable pole
= O
at j= P(t'.)

(6 B = 2%_1+,§.'t+c(t).

+—t
4.2 Absorbed MPM
For comparison, we calculate «—t

inclusive overlap functions of the
self-consistent MPM with absorp-
(M) yureipricity aistribu-

tions in impact parameter space have

tion

been worked out in ref. 8. Using it, Fig. 8
ve obtain the leading singularity

of the t-channel partial wave

amplitudes for the absorptive part

of the two- and three-body elastic

amplitudes. ;

I (§3t) - 5 5 =
m ee 3 « ((3_1 )2 _ th}%

(17)
1 1 1

Abs.f (3, ,3,:t) o -
e i3y [(32-1)t(52-1>2-n2t} (j1—1)f(j1-—1)z-Rd/:o)J




The leading singularity is at j = 1 + iR /-t and non-factorizable, which
corresponds to a fully absorbing sphere of radius RY. The average multipli-

city is given by 8

SUNE SO T

Se Sn
5. Average squared impact parameter b2(n) ‘SR Ty
Let us now examine a complementary quantity,
the average squared impact parameter b2(11_) as a te tn
function of multiplicity. We take a matrix
element for the configuration in Fig. 9
Fig. 9

n
(19) M = F . exp (F aiti)

i=o

where F and a; are functions of 5 and s, and we neglect the t,-dependent

(9

phase. An exact expression for bz(n) in this case was derived which
gives, in a high energy approximation (13),

= n
(20) ® ()= 2<% o5 >

vhere < > means the averaging.

The Chew-Pignotti model in the Sect. 4.1 gives a; =a+ 'z
so we find

(21) b () = 2(in+o 1)

i.e. higher multiplicites are more peripheral.

In the CLA model( 10) .

a; is given by
s',
22 = -
(22) & 1oge(1 + )
b.
i
vhere bi are parameters and

' 2
s, = - ~ .
(23) s, =s; - (m; 4m, ) 2m, s 4pooShly -y )
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fas o sas 2 V.=Y.
For small multiplicities si > my e’ i+l
and we obtain a decreasing function of
n(log(m;T /v) <0)

2 mi
(2u) ® () = 2 {(a+1)1log (I) + ¥}
b
. . (1) T2
We can estimate the behavior of b“(n)
for large n, by assuming equal spacing in

rapidity

2 m%- Y
(25) b (n) =2(n+1)log (1+ 2cosh n )

Y +1

which is illustrated in Fig. 10.

Fig. 10

In the absorbed MPM in Sect. 4.2., large shrinkage in each multi-

peripheral step (a:.L [ (yi-yi”)z) forces b2(n) small as n increases,
although the formula (20) is not directly applicable because of the

absorption factor.

As a conclusion, we would like to stress the importance of obtaining

experimental information of the dependence of the momentum-transfer slope

upon subenergies, in order to see which collision, central or peripheral,

has higher multiplicity.
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