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Abstract : We summari ze the formulation of inclusive overlap 
functi ons whi ch give multiplicity distributions at incident impact 
parameter b ,  Several models of multiperipheral type are discusse� . 
It is pointed out that the dependence of the momentum-transfer 
slope upon subenergies is important in knowing whi ch collision ,  
central o r  peripheral, has hi gher multiplicity, 

Resume : On passe en revue la formulation de fonctions de recouvrement 
�ives qui donnent des distributions de multiplicite a parametre 
d ' impact de la particule incidente b .  Plusieurs modeles de . type multi­
peripherique sont discutes . On remarque que la maniere dont la pente 
en moment transfere depend des sous-energies est importante pour con­
nai tre que l type de collisions , centrale ou peripherique , a une multi­
plicite plus elevee . 

+ ) Adress after September 1 974 : Rutherford High Energy Laboratory, 
Chilton , Didcot ,  Berkshi re , England, 
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1 .  Introduction 

High energie elastic scattering can be understo(>d as the shadow of 
multiparticle production by means of the s-channel unitarity relation( 1 ) . 
One of the most interesting questions in this approa<�h is : which collision 
has higher multiplicity , central or peripheral? A n<ew formalism ,  called 
inclusive overlap function , has been recently presented ( 2 ) in order to ana­
lyze the multiplicity distribution as a function of :incident impact para­
meter b .  

The purpose o f  this report is to summari ze the previous results on the 
inclusive overlap function and to add the analysis o:� several models .  
Inclusive overlap functions are defined and the .generalized unitarity re­
lation is stated in the next section. Consequences of the assumption of the 
dominance of a simple factorizable Pomeron pole are described in Sect . 3 .  
Inclusive overlap functions i n  a multiperipheral model ( MPM) with the Chew­
Pignotti approximation and in the absorbed MPM are calculated in Sect . 4 . 
The final section is devoted to a discussion of the ELverage squared impact 
parameter as a function of multiplicity. We point out the importance of an 
experimental determination of the dependence of the "lope in momentum 
transfer upon subenergies in the final state.  

2 .  Generali zed unitarity and inclusive overlap functions 

The well-known optical theorem 
is the unitarity relation in the s-

2 2 channel at t = 0 ( t=( p ' -pa) =( pb-pb ) 
( 1 ) atot = Im fel ( t=Ol 
The s-channel unitarity relation at 
general t is 

( 2 ) 0 ( t )  Im f e l  ( t )  

where O ( t ) is the overlap function , ( 3 ) 

whose Fourier transform gives the 
cross section cr ( b ) at incident impact 
paramter b .  Mueller first noted the 
generalized optical theorem which 
gives the single-particle inclusive 
cross section in terms of an appropriate 
absorptive part of three-body forward 
elastic amplitude ( 4 ) ( 5 ) 

Im. 

II 

t 

Fig.  1 



( 3 ) Abs .  f6 ( t  = o )  w 
d q 

I bl. t• < 2 >  h n a recent pu ica ion , ve ave 

generalized the Mueller ' s  optical 

theorem to a full unitarity relation 

in the missing-mass channel at 

general t=( p ' -p )2  a a 
dr1 ( t )  

( 4 )  W -�--d q 

The left-hand side is defined by an 

overlap integral for tvo multiparticle 

S-matrix elements and is called the 

single-particle inclusive overlap 

function . For details , see ref. 2 . 
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Fig. 2 
If ve decompose final states into various multiplicitiea, ve obtain 

<Ytot = 'Ii en ' 

( 5 )  0 ( t )  

3 � 
and w 

( 6 )  L, (t )  

'E 0 ( t )  n n 

w de 
---d\ 

/i n an ' 

-
d\ d'E1 (t )  

S -- w � 
w d Q. 

= 'E no (t)  
n n 

The Fourier transform in terms of the momentum transfer p�-pa gives the 

impact parameter representation in the incident channel 

O (t )  .. rs (b)  
( 7 ) 

I1 ( t )  ; ( b )  'E n a (b) n n 

Therefore the average multiplicity as a function of the incident impact 

parameter is given by 

( 8) ;;: (b ) • 'Ii n an (b )  / 'Ii crn (b)  = L, (b )  / er ( b )  

which can b e  obtained from the tvo- and three-body elasti c  scattering 

amplitude . 
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The above consideration can be extended to many-particle inclusive 
overlap functions and the set of all such inclusive overlap functions is 
equivalent to the information on the complete multiplicity distributions 
in impact parameter space . 

3 .  _Simple factorizable Pomeron pole 

Pomeron exchange in elastic scattering gives the overlap function 
in Fig. 3 

( 9 )  0 (t )  

where S is the Pomeron-two-particle 
vertex , a p( t )  the Pomeron trajectory , 
Y=log( s/m2 ) the total rapidity. 

The dominant contribution to the 
inclusive overlap function at high 
energies comes from the pionization 
region and is given in terms of two­
Pomeron-two-particle coupling c(q4, t )  

d'i (t )  
w --::;-- = O(t ) .  c (qJ. , t)  

( 1 0 )  d q 

w1 w2 d!: z. (t ) 
= O ( t ) . c (qJ.\ t ). c (q!,t )  -da d� q� q1 

and so on . Therefore the average multip-
licity n(b ) and the correlation parameter 
f

2
( b )  as functions of impact parameter 

are given by 

( 1 1  l Ii (bl = c '" (! (bl Y I " (bl 
-

2 - 2 = c • c • (! (bl Y / (! (b) - (n (bl l 

Fig. 3 

Fig. 4 

Fig .  5 

where � means the Fourier
_

trans form of c(t )= J �2q J.(;( qJ., t )  and JI means 
the convolution integral c JI C! =( 2TT )- 1 J d2b 1 c(b ' ) CJ ( b'-b'1 ) .  Using the expe­
rimental fact that the overlap function is approximately exponential in t ,  
we obtain in Fig. 6 a representative curve for �(b )  ELnd f

2
(b ) in the 

case of a smooth space-like decreasing function c( t ) .  



ii ( b l  

Fig. 6 

4. Multiperipheral-t:ype models (MPM) for exclusive processes 

4 . 1 Simplified model in the Chew-Pignotti approximation 

( 12 )  

• . . ( 6 ) The matrix element is given by 

M = 25 e O'oY � 
M. i 

m 

( Z .  ,]. ) i i (Y e 

# M. (Z . ,Q . ) . 1 1 1 1=0 

(Z . )  i Jai -ai 1. 2 
e i 

a a .  + O'' Z .  i i i 

a .  a for i = 1 ,  n-1 i 

q o q ,  ) . t ao 
Pa 

Fig. 7 

where zi is the rapidity difference and Qi the transverse momentum transfer 

of the i-th step , and ot 0 and cl are the intercept and the slope of the 

Regge trajectory exchanged in the multiperipheral chain . 

Using high energy approximation 

x .  "' 0 for i = 1 ,  . . . n-1 i ' 
( 1 3 )  

x "" 1  x 1 "" -1 0 n +  

where 
2qi// 

x .  i Js 
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we obtain 

( 1 4. ) 

0 ( t )  = d(t )  exp [{c (t )  + 2 a  
0 

dr1 ( t )  
W --::;-- = O(t )  .c (q  • , t )  

d q 

-2 + O'' 
2 

and so on , where 

( 1 5 )  

- 2 
c(q .l. , t )  = _c (t ) . _a_ exp(-aq J. ) ,  

at  TT 
2 c ( t) = c e  0 

t 1 yJ 

Leading singularity in j-plane corresponds to a simple factorizable pole 

at j= O'P( t ) 

4. 2 Absorbed MPM 
For comparison , we calculate 

inclusive overlap functions of the 

self-consistent MPM with absorp­

tion { T ) ( B l . Multiplicity distribu­
tions in impact parameter space have 

been worked out in ref .  8 .  Using it , 

we obtain the leading singularity 

of the t-channel partial wave 

amplitudes for the absorptive part 

of the two- and three-body elastic 

amplitudes . 

( 1 7 ) 

Fig. 8 



The leading singularity is at j = 1 ±. iR .r-t and non-factorizable , which 
corresponds to a fully absorbing sphere of radius RY. The average multipli­
city is given by( a )  

--
2

-
5 .  Average squared impact parameter b (n) 

Let us now examine a complement� quantity , 
the average squared impact parameter b2 (n) as a 
function of multiplicity. We take a matrix 
element for the configuration in Fig. 9 

n 
( 19 ) M F .  exp (t a . t . ) 

i = 0 J_ J_ 

Fig. 9 

where F and ai are functions 2!'.._!;i and s ,  and we neglect the t . -dependent 
phase . An exact expression for b2(n)  in this case was derived(91 

which 
gives , in a high energy approximation ( 1 3 ) , 

(20) 2 n 
b (n)  .. 2 < :!: a .  > 

i=o 1 

where < > means the averaging. 

The Chew-Pignotti model in the Sect . 4 . 1  gives ai a +  ' zi ,  
so we find 

(2 1 ) b2 (n)  Sii 2 ( a n + a' Y) 

i . e .  higher multiplicites are more peripheral. 

In the CLA model( lO ) , ai is given by 

s '  
i + -( 22 ) 

b .  J_ 
where bi are parameters and 

(23 ) 
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'i?!n) 
For small multiplicities si 

1"" m� eYCYi+1 
and we obtain a decreasing function of 

n( log� /b ) < 0 )  

" 2  -;r-
( 24 )  b ( n )  "" 2 f (n+1 ) log (�) + Y} 

b ��··· 
We can estimate the behavior( 1 1 )  of b2( n )  

for large n ,  by assuming equal spacing in 

rapidity 

2 
�2- y 

( 25 ) b (n)  ... 2 ( n+1 ) log ( 1 +  .;r 2cosh n+1 ) 

which is illustrated in Fig. 10 .  

Fig. 10 

In the absorbed MPM in Sect . 4 . 2 . ,  l� shrinkage in each multi­

peripheral step ( a. � (y. -y. 1 )2 ) forces b2( n )  small as n increases ,  1 1 1+ 
although the formula ( 20 )  is not directly applicable because of the 

absorption factor . 

As a conclusion , we would like to stress the importance of obtaining 

experimental information of the dependence of the momentum-transfer slope 

upon subenergies , in order to see which collision , central or peripheral , 

has higher multiplicity. 

n 
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