
1. Introduction

Symmetries, global or local, always play an important role in the conceptual aspects of physics
be in broken or unbroken phase. Spontaneous breaking of the continuous symmetries always
generates various excitations with varying mass spectra. Axion is one of that type, generated
via spontaneous breaking of a global Chiral U(1) symmetry named after its discoverers, Peccei
and Queen. This symmetry is usually denoted by U(1)PQ. To give a brief introduction to this
particle and its origin we have to turn our attention to the development of the standard model
of particle physics and its associated symmetries. The standard model of particle physics
describes the strong, weak and electromagnetic interactions among elementary particles. The
symmetry group for this model is, SUc(3)× SU(2)× U(1). The strong interaction ( Quantum
Chromo Dynamics (QCD)) part of the Lagrangian has SU(3) color symmetry and it is given
by,

L = − 1

2g2
Tr Fa

µνF
µν
a + q̄(i/D − m)q. (1)

It was realized long ago that, in the limit of vanishingly small quark masses (chiral limit),
Strong interaction lagrangian has a global U(2)V × U(2)A symmetry. This symmetry group
would further break spontaneously to produce the hadron multiplets. The vector part of the
symmetry breaks to iso-spin times baryon number symmetry given by U(2)V = SU(2)I ×
U(1)B. In nature baryon number is seen to be conserved and the mass spectra of nucleon and
pion multiplets indicate that the isospin part is also conserved approximately.

So one is left with the axial vector symmetry. QCD being a nonabelian gauge it is believed that
this theory is confining in the infrared region. The confining property of the theory is likely to
generate condensates of antiquark quark pairs. Thus u- and d quark condensates would have
non-zero vacuum expectation values, i.e.,

< 0|ū(0)u(0)|0 >=< 0|d̄(0)d(0)|0 > �= 0 . (2)

and they would break the U(2)A symmetry. Now if the axial symmetry is broken, we would
expect nearly four degenerate and massless pseudoscalar mesons. Interestingly enough, out
of the four we observe three light pseudoscalar Nambu Goldstone (NG) Bosons in nature, i.e.,
the pions. They are light, mπ ≃ 0, but the other one (with approximately same mass) is not
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to be found. Eta meson though is a pseudoscalar meson, but it has mass much greater than
the pion ( mη ≫ mπ). So the presence of another light pseudoscalar meson in the hadronic
spectrum, seem to be missing. This is usually referred in the literature [(Steven Weinberg ,
1975)] as the U(1)A problem.

1.1 Strong CP problem and neutron dipole moment

Soon after the identification of QCD as the correct theory of strong interaction physics,
instanton solutions [(Belavin Polyakov Shvarts and Tyupkin , 1975)] for non-abelian gauge
theory was discovered. Subsequently, through his pioneering work, ‘t Hooft [(‘t Hooft ,
1976a),(‘t Hooft , 1976b)] established that a θ term must be added to the QCD Lagrangian.
The expression of this piece is,

Lθ = θ
g2

32π2
F

µν
a F̃aµν. (3)

But in the presence of this term the axial symmetry is no more a realizable symmetry for QCD.
This term violates Parity and Time reversal invariance, but conserves charge conjugation
invariance, so it violates CP. Such a term if present in the lagrangian would predict neutron
electric dipole moment. The observed neutron electric dipole moment [(R. J. Crewther, 1978)]
is |dn| < 3 × 10−26 ecm and that requires the angle θ to be extremely small [dn ≃ eθmq/M2

N

indicating [(V. Baluni , 1979; R. J. Crewther et. al. , 1980)] θ < 10−9]. This came to be known
as the strong CP problem. In order to overcome this problem, Pecci and Queen subsequently
Weinberg and Wilckzek [(R. Peccei and H. Quinn , 1977; S. Weinberg , 1978; F. Wilczek , 1978)]
postulated the parameter θ to be a dynamical field with odd parity arising out of some chiral
symmetry breaking taking place at some energy scale fPQ. With this identification the θ term
of the QCD Lagrangian now changes to,

La =
g2

32π2
aF

µν
a F̃aµν, (4)

where a is the axion field. They[(R. Peccei and H. Quinn , 1977; S. Weinberg , 1978; F. Wilczek ,
1978)] also provided an estimate of the mass of this light pseudoscalar boson. Although these
ultra light objects were envisioned originally to provide an elegant solution to the strong CP
problem [(R. Peccei and H. Quinn , 1977),WW,wilczek] (see (R. Peccei , 1996)] for details) but
it was realized later on that their presence may also solve some of the outstanding problems in
cosmology, like the dark matter or dark energy problem (related to the closure of the universe).
Further more their presence if established, may add a new paradigm to our understanding of
the stellar evolution. A detailed discussion on the astrophysical and cosmological aspects of
axion physics can be found in [(M.S. Turner , 1990; G. G. Raffelt , 1990; G. G. Raffelt , 1997;
G .G .Raffelt , 1996; J. Preskill et al , 1983)]. In all the models of axions, the axion photon
coupling is realized through the following term in the Lagrangian,

L =
1

M
a E · B. (5)

Where M ∝ fa the axion coupling mass scale or the symmetry breaking scale and a stands
for the axion field. The original version of Axion model, usually known as Peccei-Queen
Weinberg-Wilczek model (PQWW), had a symmetry breaking scale that was close to weak
scale, fw. Very soon after its inception, the original model, associated with the spontaneous
breakdown of the global PQ symmetry at the Electro Weak scale (EW) fw, was experimentally
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ruled out. However modified versions of the same with their associated axions are still of
interest with the symmetry breaking scale lying between EW scale and 1012 GeV. Since the
axion photon/matter coupling constant, is inversely proportional to the breaking scale of the
PQ symmetry, fa and is much larger than the electroweak scale fa ≫ fw, the resulting axion
turns out to be very weakly interacting. And is also very light (ma ∼ f−1

a ) therefore it is often
called “the invisible axion model” [(M.Dine et al. , 1981; J. E. Kim , 1979)]. For very good
introduction to this part one may refer to[(R. Peccei , 1996)].

There are various proposals to detect axions in laboratory. One of them is the solar axion
experiment. The idea behind this is the following, if axions are produced at the core of
the Sun, they should certainly cross earth on it’s out ward journey from the Sun. From
equation [5], it can be established that in an external magnetic field an axion can oscillate
in to a photon and vice versa. Hence if one sets up an external magnetic field in a cavity, an
axion would convert itself into a photon inside the cavity.This experiment has been set up in
CERN, and is usually referred as CAST experiment[(K. Zioutas et al.,, 2005)]. The conversion
rate inside the cavity, would depend on the value of the coupling constant ( 1

M ), axion mass
and the axion flux. Since inside the sun axions are dominantly produced by Primakoff and
compton effects. One can compute the axion flux by calculating the axion production rate
via primakoff & compton process using the available temp and density informations inside
the sun. Therefore by observing the rate of axion photon conversion in a cavity on can
estimate the axion parameters. The study of solar axion puts experimental bound on M to
be, M > 1.7 × 1011GeV [(Moriyama et al. , 1985),(Moriyama et al. , 1998b)].

The same can be estimated from astrophysical observations. In this situation, it possible to
estimate the rate at which the axions would draw energy away form the steller atmosphere
by calculating the axion flux (i.e. is axion luminosity) from the following reactions[7]

e+ + e− → γ + a , e− + γ → e− + a (6)

&

γplasmon → γ + a , γ + γ → a. (7)

Axions being weakly interacting particles, would escape the steller atmosphere and the star
would lose energy. Thus it would affect the age vs luminosity relation of the star. Comparison
of the same with observations yields bounds on e.g., axion mass ma and M. A detailed survey
of various astrophysical bounds on the parameters of axion models and constraints on them,
can be found in ref. [(G .G .Raffelt , 1996)].

In the astrophysical and cosmological studies, mentioned above, medium and a magnetic
field are always present. So it becomes important to seek the modification of the axion
coupling to photon, in presence of a medium or magnetic field or both. Particularly in some
astrophysical situations where the magnetic component, along with medium (usually referred
as magnetized medium) dominates. Examples being, the Active Galactic Nuclei (AGN),
Quasars, Supernova, the Coalescing Neutron Stars or Nascent Neutron Stars, Magnetars etc. .
The magnetic field strength in these situations vary between, B ∼ 106 − 1017 G, where some
are significantly above the critical, Schwinger value[( J. Schwinger , 1951)]

Be = m2
e /e ≃ 4.41 × 1013 G (8)
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[(M. Ruderman , 1991; Duncan & Thompson , 1992)]. In view of this observation and the
possibilities of applications of axion physics to these astrophysical as well as cosmological
scenarios, it is pertinent to find out the effect of medium and magnetic field to axion photon
coupling.

As we already have noted, the axion physics is sensitive to presence of medium and magnetic
field. In most of the astrophysical or cosmological situations these two effects are dominant.
In view of this it becomes reasonable to study how matter and magnetic field effect can affect
the axion photon vertex. Modification to axion photon vertex in a magnetized media was
studied in [(A. K. Ganguly , 2006)]. In this document we would present that work and discuss
new correction to a− γ vertex in a magnetized media. In the next section that we would focus
on axion photon mixing effect with tree level axion photon vertex and show how this effect
can change the polarization angle and ellipticity of a propagating plane polarized light beam
passing through a magnetic field. After that we would elaborate on how the same predictions
would get modified if the same process takes place in a magnetized media. This particular
study involves diagonalisation of a 3 × 3 matrix, so at the end we have added an appendix
showing how to construct the diagonalizing matrix to diagonalize a 3 × 3 symmetric matrix.

2. The loop induced vertex

The axion-fermion ( lepton in this note ) interaction1 — with g′a f =
(

X f m f / fa

)
the

Yukawa coupling constant, X f , the model-dependent factors for the PQ charges for different
generations of quarks and leptons [(G .G .Raffelt , 1996)], and fermion mass m f – is given by,
[(M.Dine et al. , 1981)],

La f =
g′a f

m f
∑

f

(Ψ̄ f γµγ5Ψ f ) ∂µ a, (2.9)

The sum over f, in eqn. [2.9], stands for sum over all the fermions, from each family. Although,
in some studies, instead of using [2.9], the following Lagrangian has been employed,

La f = −2ig′a f ∑
f

(Ψ̄ f γ5Ψ f )a, (2.10)

but, Raffelt and Seckel [( G. Raffelt , 1988)] has pointed out the correctness of using [2.9]. We
for our purpose we will make use of [2.9]. We would like to note that the usual axion photon
mixing Lagrangian in an external magnetic field turns out to be,

Laγ = −gaγγ
e2

32π2
aFF̃Ext. (2.11)

In equation [2.11] the axion photon coupling constant is described by,

gaγγ =
1

fa

[
Aem

PQ − Ac
PQ

2(4 + z)

3(1 + z)

]
, . (2.12)

with z = mu
md

, where mu and md are the masses of the light quarks. Anomaly factors are given

by the following relations, Aem
PQ = Tr(Q2

f )X f and δab Aem
c = Tr(λaλbX f ) (and the trace is over

1 Some of the issues related axion fermion coupling had been reviewed in [(A. K. Ganguly , 2006)], one
can see the references there.
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the fermion species). We would like to add that, for the sake of brevity at places, we may use
g instead of gaγγ at some places in the rest of this paper. Therefore the additional contribution
to the axion photon effective lagrangian from the new vertex would add to the existing one
i.e.,eqn. [2.11].

3. Expression for photon axion vertex in presence of uniform background

magnetic field and material medium

In order to estimate the loop induced γ − a coupling, one can start with the Lagrangian given
by Eqn. [2.9]. Defining p′ = p + k the effective vertex for the γ − a coupling turns out to be,

iΓν(k) = ga f e Q f

∫
d4 p

(2π)4
kµTr
[
γµγ5iS(p)γνiS(p′)

]
. (3.13)

The effective vertex given by [3.13], is computed from the diagram given in [Fig.1]. In eqn.
[3.13] S(p) is the in medium fermionic propagator in external magnetic field, computed to all
orders in field strength. The structure of the same can be found in [(A. K. Ganguly , 2006)].
One can easily recognize that, eqn. [3.13], has the following structure, Γν(k) = kµΠA

µν(k).

Where ΠA
µν, is the axial polarization tensor, comes from the axial coupling of the axions to the

leptons and it’s:

iΠA
µν(k)= ga f e Q f

∫
d4 p

(2π)4
Tr
[
γµγ5iS(p)γνiS(p′)

]
. (3.14)

In general the axial polarization tensor, ΠA
µν (some times called the VA response function),

would have contributions from pure magnetic field background, as well as magnetic field
plus medium, i.e., magnetized medium. The contribution from only magnetic field and the
one with magnetized medium effects, are given in the following expression,

iΠA
µν(k)= ga f e Q f

∫
d4 p

(2π)4
Tr
[
γµγ5iSV

B (p)γνiSV
B (p′)+γµγ5S

η
B(p)γνiSV

B (p′)

+γµγ5iSV
B (p)γνS

η
B(p′)

]
. (3.15)

The pure magnetic field contribution to ΠA
µν(k) has been estimated in [(A. K. Ganguly , 2006;

D. V. Galtsov , 1972; L. L.DeRaad et al. , 1976; A. N. Ioannisian et al. , 1997; C. Schubert ,
2000)]. The expression of the would be provided in the next section, after that the thermal
part contribution to the same would be reported .

3.1 Magnetized vacuum contribution

The VA response function in a magnetic field ΠA has been evaluated in [(A. K. Ganguly , 2006;
D. V. Galtsov , 1972; L. L.DeRaad et al. , 1976; A. N. Ioannisian et al. , 1997; C. Schubert , 2000)],
with varying choice of metric; we have reevaluated it according to our metric convention
gµν ≡ diag (+1,−1,−1,−1). The expression for the same according our convention is:
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ΠA
µν(k)=

iga f (e Q f )
2

(4π)2

∫ ∞

0
dt
∫ +1

−1
dv eφ0

{(1 − v2

2
k2
‖−2m2

e

)
F̃µν −(1 − v2)kµ‖ (F̃k)ν

+R
[
kν⊥ (kF̃)µ + kµ⊥(kF̃)ν

]}
, (3.16)

Where, R =
[

1−v sinZv sinZ−cosZ cosZv
sin2 Z

]
and φ0 = it

[
1−v2

4 k2
|| − m2 − cos vZ−cosZ

2Z sinZ k2
⊥
]
. In the

above expression, F̃µν = 1
2 ǫµνρσFρσ, and ǫ0123 = 1 is the dual of the field-strength tensor, with

Z = eQ fBt. Therefore, following eqn. [3.13], the photon axion vertex in a purely magnetized

vacuum, would be, Γν(k) = kµΠ
AB
µν (k) i.e.,

Γν(k) =
iga f (e Q f )

2

(4π)2

∫ ∞

0
dt
∫ +1

−1
dv eφ0 kµ

{(1 − v2

2
k2
‖ − 2m2

e

)
F̃µν −(1 − v2)kµ‖ (F̃k)ν

+ R
[
kν⊥ (kF̃)µ + kµ⊥ (kF̃)ν

]}
, (3.17)

This result is not gauge invariant. However following [(A. K. Ganguly , 2006; A. N. Ioannisian
et al. , 1997)], one may integrate the first term under the integral, and arrive at the expression
for, the Effective Lagrangian for loop induced axion photon coupling in a magnetized vacuum,
to be given by,

LB
aγ = aAνΓν(k) (3.18)

In eqn.[3.18],we define the axion field by a and (kF̃)ν = kµ F̃µν and (F̃k)ν = F̃νµkµ. Finally the
loop induced contribution to the axion photon effective Lagrangian is,

LB
aγ == − 1

32π2
ga f (eQ f )

2

[
4 +

4

3

(
k2
‖

m2

)]
aFµνF̃µν. (3.19)

Since we are interested in ω < m, so the magnitude of the factor
(

k||
m

)2
<< 1, thus the order

of magnitude estimate estimate of this contribution is of O(1). However some of the factors
there are momentum dependent, so it may affect the dispersion relation for photon and axion.

4. Contribution from the magnetized medium

Having estimated the effective axion photon vertex in a purely magnetic environment, we
would focus on the contribution from the magnetized medium. As before, one can evaluate
the same by using the expression for a fermion propagator in external magnetic field and
medium; the result is:

Π
Aβ
µν (k) = (iga f eQ f )

∫
d4 p

(2π)4

∫ ∞

−∞
ds eΦ(p,s)

∫ ∞

0
ds′eΦ(p′,s′)Tr

[

[
γµγ5G(p, s)γνG(p′, s′)

]
ηF(p) +

[
γµγ5G(−p′, s′)γνG(−p, s)

]
ηF(−p)

]

=(iga f eQ f )
∫

d4 p

(2π)4

∫ ∞

−∞
ds eΦ(p,s)

∫ ∞

0
ds′ eΦ(p′,s′)Rµν(p, p′, s, s′) (4.20)
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where Rµν(p, p′, s, s′) contains the trace part. Rµν(p, p′, s, s′) is a polynomial in powers of the
external magnetic field with even and odd powers of B, can be presented as,

Rµν(p, p′, s, s′) = R
(E)
µν (p, p′, s, s′) + R

(O)
µν (p, p′, s, s′) (4.21)

k ←

p

k ←
ν

p + k ≡ p′

Fig. 1. One-loop diagram for the effective axion electromagnetic vertex .

We have denoted the pieces with even and odd powers in the external magnetic field strength

B in Rµν, as R
(E)
µν and R

(O)
µν . In addition to being just even and odd in powers of eQ fB, they

are also odd and even in powers of chemical potential, therefore, under charge conjugation
they would transform as, B&µ ↔ (−µ)&(−B),i. e., both behave differently. More over their
parity structures are also different. These properties come very useful while analyzing, the
structure of axion photon coupling, using discrete symmetry arguments to justify the presence
or absence of either of the two; that is the reason, why they should be treated separately. The
details of this analysis can be found in [(A. K. Ganguly , 2006)].

4.0.1 Vertex function: even powers in B

The expression for the RE
µν, (that is the term with even powers of the magnetic field), comes

out to be,

R
(E)
µν

◦
= 4iη−(p0)

[
εµναβ pαkβ(1 + tan(eQ fBs) tan(eQ fBs′)) + εµναβ⊥kαkβ⊥

× tan(eQ fBs) tan(eQ fBs′)
tan(eQ fBs)− tan(eQ fBs′)

tan(eQ fBs) + tan(eQ fBs′)

]
. (4.22)

Because of the presence of εµναβkβ and εµναβ⊥kα, it vanishes on contraction R
(E)
µν with kν.

The two point VA response function ΠA(k), can be interpreted as a (one particle irreducible)
two point vertex; with one point for the external axion line and the other one (Lorentz indexed)
for the external photon line. But since the evaluations are done in presence of external
magnetic field B they correspond to soft external photon line insertions. That is their four
momenta kα → 0 . If each soft external photon line contributes either +1 or -1 to the total
spin ( angular momentum ) of the effective vertex, then, for an even order term in external
field strength B the total spin of this piece would be a coherent sum of all the contributions
from all the odd number of soft photon linesB. Now recall that in order arrive at the the
expression for the effective interaction Lagrangian for γ− a from ΠA

µν(x)–we need to multiply

the same (with some sort of naivete) by a(x)Fµν(x) . Therefore, it is worth noting that, if
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we multiply Π
A ( Even B)
µν (x) with a(x)Fµν(x), the number of photon lines become odd and

number of spin zero pseudoscalar is also odd. Since the effective Lagrangian can be related
to the generating functional of the vertex for transition of photons to axion, then for this case
it would mean, odd number of photons are going to produce a spin zero pseudoscalar. That
is odd number of spin one photons would combine to produce a spin zero axion— which is
impossible, hence such a term better not exist. Interestingly enough, that is what we get to see
here.

4.0.2 Vertex function: odd powers in B

The nonzero contribution to the vertex function would be coming from RO
µν. More precisely,

from the following term,

ikµR(O)
µν = 8m2η+(p)

[
kµεµν12(tan(eQ fBs) + tan(eQ fBs′))

]
, (4.23)

Placing all the factors and integral signs, the vertex function Γν(k) can be written as,

Γν(k) = (ga f eQ f )
(

8m2kµεµν12

)∫ d4 p

(2π)4
η+(p)

∫ ∞

−∞
ds
∫ ∞

0
ds′eΦ(p,s)+Φ(p′,s′)

×
[
tan(eQ fBs) + tan(eQ fBs′)

]
(4.24)

Upon performing the gaussian integrals for the perpendicular momentum components, there
after taking limit |k| → 0 and assuming photon energy ω < m f one arrives at,

Γν(k) == −16(ga f (eQ f )
2)

(
kµF̃µν

16π2

)
Λ(k2

‖ , k · u, β, µ). (4.25)

All the informations about the medium, are contained in Λ(k2
‖ , k‖ · u, β, µ) and it is given by.

Λ(k2
‖ , k · u, β, µ)=

∫
d2 p‖

[
nF(|p0|, µ) + nF(|p0|,−µ)

](
m2δ(p2

‖ − m2)

(k2
‖ + 2(p · k)‖ )

)
(4.26)

In the expression above the temperature of the medium ( β = 1/T), number density of the
fermions (which in turn is related to µ), mass of the particles in the loop (m), energy and
longitudinal momentum of the photon ( i.e. k||). The statistical factor has already been
evaluated in [(A. K. Ganguly , 2006)], in various limits. So instead of providing the same
we state the result obtained in the limits m ≪ µ, and limitT → 0. The value of the same in this
limit is

LtT→0Λ ≃ − 1

2

∣∣ µ
m

∣∣
√(

1 +
[ µ

m

]2)
(4.27)

In the limit µ ≫ m, the right hand side of Eqn. [4.27] ∼ 1
2 and when µ ∼ m, it would turn out

to be ∼ 1
2
√

2
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In the light of these estimates, it is possible to write down the axion photon mixing
Lagrangian, for low frequency photons in an external magnetic field, in the following way:

LTotal
aγ = Lvac

aγ + LB
aγ + LB,µ,β

aγ . (4.28)

Where each of the terms are given by,

Lvac
aγ = −gaγγ

e2

32π2
aFF̃,

LB
aγ =

−1

32π2

[
4 +

4

3

(
k‖

m

)2
]

∑
f

ga f (eQ f )
2aFF̃.

LB,µ,β
γa =

32

32π2
·
(

k‖

ω

)2

(Λ)∑
f

ga f (eQ f )
2aFF̃. (4.29)

Therefore, in the limit of |k⊥| → 0 and ω << m f , one can write the total axion photon effective
Lagrangian using eqn. [4.29], in the following form.

LTotal
aγ =−

⎡

⎣gaγγ+

(
4 +

4

3

(
k‖

m

)2
)

∑
f

ga f (Q f )
2 − 32

(
k‖

ω

)2

Λ∑
f

ga f (Q f )
2

⎤

⎦ e2

32π2
aFF̃. (4.30)

We would like to point out that, the in medium corrections doesn’t alter the tensorial structure
of the same. It remains intact. However the parameter M , doesn’t remain so. Apart from
numerical factors it also starts depending on the kinematic factors. It is worth noting that,
all the terms generated by loop induced corrections do respect CPT. Additionally, as we have
analyzed already the total spin angular momentum is also conserved. The tree level photon
axion interaction term in the Lagrangian as found in the literature is of the following form,

1

M
aFµν.F̃ext

µν , (4.31)

The bounds on various axion parameters are obtained by using this Lagrangian. As we have
seen the medium and other corrections can affect the magnitude of M . Since M is related
to the symmetry breaking scale, a change in the estimates of M would have reflection on the
symmetry breaking scale and other axion parameters. This is the primary motivation for our
dwelling on this part of the problem before moving into aspects of axion electrodynamics, that
affects photon polarization.

5. Axion photon mixing

Now that we are equipped with the necessary details of axion interactions with other particles,
we can write down the relevant part of the Lagrangian that describes the Axion photon
interaction. The tree level Lagrangian that describes the axion photon dynamics is given by,

L = − 1

4
FµνFµν +

1

4M
FµνF̃µν +

1

2

(
∂µa∂µa − m2

aa2
)

, (5.32)
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here ma , is the axion mass and other quantities have their usual meaning. This effective
Lagrangian shows the effect of mixing of a spin zero pseudo-scalar with two photons. If one
of the dynamical photon field in eqn. [5.32] is replaced by an external magnetic field, one
would recover the Lagrangian given by eqn.[4.31]. This mixing part can give rise to various
interesting observable effects; however in this section we would consider, the change in the
state of polarization of a plane polarized light beam, propagating in an external magnetic field,
due to axion photon mixing. In order to perform that analysis, we start with the equation of
motion for the photons and the axions, in an external magnetic field B , that follows from the
interaction part of the Lagrangian in eqn. [5.32], as we replace one of the dynamical photon
field by external magnetic field field.

This system that we are going to study involve the dynamics of three field Degrees Of
Freedom (DOF). As we all know, that the massless spin one gauge fields in vacuum have
just two degrees of freedom; so we have those two DOF and the last one is for the spin
zero pseudoscalar Boson. In this simple illustrative analysis, we would ignore the transverse
component of the momentum k⊥. With this simplification in mind we have three equations of
motion, one each for: A⊥(z), A||(z) and a(z)–i.e., the three dynamical fields. Where A⊥(z) ,
the photon/gauge field with polarization vector directed along the perpendicular direction
to the magnetic field, A||(z) the remaining component of the photon/gauge field having

polarization vector lying along the magnetic field and ′′a(z)′′ the pseudoscalar Axion field.
These three equations can be written in a compcat form e g.,

[
(ω2 + ∂2

z) I +M
]
⎛
⎜⎝

A⊥
A‖
a

⎞
⎟⎠ = 0. (5.33)

where I is a 3 × 3 identity matrix and M is the short hand notation for the following matrix.

M =

⎛
⎝

0 0 0
0 0 igBω
0 −igBω −m2

a

⎞
⎠ , (5.34)

usually termed as axion photon mixing matrix or simply the mixing matrix. As can be seen
from eqn.[5.33], the transverse gauge degree of freedom gets decoupled from the rest, and
the other two i.e., the longitudinal gauge degrees of freedom and pseudoscalar degree of
freedom are coupled with each other. It is because of this particular way of evolution of the
transverse and the parallel components of the gauge field, even magnetized vacuum would
show dichoric effect.

In the off diagonal element of the matrix [5.34] given by, ±igBω, B = BEsin (α̂), is the
transverse part of the external magnetic field BE and α̂ is the angle between the wave vector
�k and the external magnetic field BE and lastly in a short hand notation, g = 1

M . The
nondiagonal part of the 3x3 matrix, in eqn. [5.34] can be written as,

M2×2 =

(
0 igBω

−igBω −m2
a

)
. (5.35)
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One can solve for the eigen values of the eqn. [5.35], from the determinantal equation,

∣∣∣∣
Mj −igBω

igBω m2
a + Mj

∣∣∣∣ = 0. (5.36)

In eqn. [5.36] j can take either of the two values + or −, and the roots are as follows:

M± = −m2
a

2
±

√√√√
[(

m2
a

2

)2

+ (gBω)2

]
. (5.37)

6. Equation of motion

The equations of motion for the photon field with polarization vector in the perpendicular
direction to the external magnetic filed is,

[
(ω2 + ∂2

z)
] (

A⊥
)
= 0 . (6.38)

The remaining single physical degree freedom for the photon, with polarization along the
external magnetic field, gets coupled with the axion; and the equation of motion turns out to
be, [

(ω2 + ∂2
z) I + M2×2

] ( A‖
a

)
= 0. (6.39)

It is possible to diagonalize eqn.[6.39] by a similarity transformation. We would denote the
diagonalizing matrix by O, given by,

O =

(
cos θ −sin θ
sin θ cos θ

)
≡
(

c −s
s c

)
, (6.40)

in short. The diagonal matrix can further be written as,

MD = OT M2×2O =

(
c s
−s c

)(
M11 M12

M21 M22

)(
c −s
s c

)
, (6.41)

with the following forms for the elements of the matrix M2×2, given by: M11 =
0, M12 = igBω, M21 = −igBω and lastly M22 = −m2

a. The value of the parameter θ is
fixed from the equality,

MD =

(
c s
−s c

)(
M11 M12

M21 M22

)(
c −s
s c

)
=

(
M+ 0

0 M−

)
, (6.42)

leading to,

(
c2 M11 + s2M22 + 2csM12 M12(c

2 − s2) + cs(M22 − M11)
M12(c

2 − s2) + cs(M22 − M11) s2M11 + c2M22 − 2csM12

)
=

(
M+ 0

0 M−

)
, (6.43)

Now equating the components of the matrix equation [6.43], one arrives at:
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tan(2θ) =
2M12

M11 − M22
=

2igBω

m2
a

. (6.44)

Therefore upon using this similarity transformation, the coupled Axion photon differential
equation can further be brought to the following form,

[
(ω2 + ∂2

z) I + MD

] ( Ā‖
ā

)
= 0. (6.45)

7. Dispersion relations

Defining the wave vectors in terms of ki’s, as:

k⊥ = ω

k+ =
√

ω2 + M+

k− = −
√

ω2 + M+ (7.46)

and

k′+ =
√

ω2 + M−

k′− = −
√

ω2 + M− (7.47)

8. Solutions

The solutions for the gauge field and the axion field, given by [6.45] as well as the solution for
eqn. for A⊥ in k space can be written as,

Ā||(z) =Ā||+(0)e
ik+z + Ā||−(0)e

−ik−z (8.48)

ā(z) = ā+(0) eik′+z + ā−(0) e−ik′−z (8.49)

A⊥(z) =A⊥+
(0)eik⊥z + A⊥− (0)e

−ik⊥z (8.50)

9. Correlation functions

The solutions for propagation along the +ve z axis, is given by,

Ā||(z) =Ā||+(0)e
ik+z (9.51)

ā(z) = ā+(0) eik′+z (9.52)

that can further be written in the following form,

(
Ā||(z)
ā(z)

)
=

(
eik+z 0

0 eik′+z

)(
Ā||(0)
ā(0)

)
. (9.53)

60 Particle Physics

www.intechopen.com



Introduction To Axion Photon Interaction In Particle Physics and Photon Dispersion In Magnetized Media 13

Since,

(
Ā||(z/0)

ā(z/0)

)
= OT

(
A||(z/0)

a(z/0)

)
. (9.54)

it follows from there that,

(
A||(z)
a(z)

)
= O

(
eik+z 0

0 eik′+z

)
OT

(
A||(0)
a(0)

)
. (9.55)

Using eqn.[9.55] we arrive at the relation,

A||(z) =
[

eik+zcos2θ + eik′+zsin2θ
]

A||(0) +
[
eik+z − eik′+z

]
cosθ sinθ a(0) (9.56)

a(z) =
[

eik+z − eik′+z
]

cosθ sinθ A||(0) +
[
eik+zsin2θ + eik′+zcos2θ

]
a(0) (9.57)

If we assume the axion field to be zero, to begin with, i.e., a(0) = 0, then the solution for the
gauge fields take the follwing form,

A||(z)=
[
eik+zcos2θ + eik′+zsin2θ

]
A||(0)

A⊥(z)=eik⊥z A⊥(0). (9.58)

Now we can compute various correlation functions with the photon field. The correlation
functions of parallel and perpendicular components of the photon field take the following
form:

< A∗
||(z)A||(z) >=

[
cos4θ + sin4θ + 2 sin2θ cos2θ cos

[(
k+ − k′+

)
z
]]
< A∗

||(0)A||(0) >

< A∗
||(z)A⊥(z) >=

[
cos2 θei(k⊥−k+)z + sin2θ ei(k⊥−k′+)z

]
< A∗

||(0)A⊥(0) >

< A∗
⊥(z)A⊥(z) >=< A∗

⊥(0)A⊥(0) > (9.59)

10. Digression on stokes parameters

Various optical parameters like polarization, ellipticity and degree of polarization of a given
light beam can be found from the the coherency matrix constructed from various correlation
functions given above. The coherency matrix, for a system with two degree of freedom is
defined as an ensemble average of direct product of two vectors:

ρ(z) = 〈
(

A||(z)
A⊥(z)

)
⊗
(

A||(z) A⊥(z)
)∗

〉 =
(
〈A||(z)A∗

||(z)〉 〈A||(z)A∗
⊥(z)〉

〈A∗
||(z)A⊥(z)〉 〈A⊥(z)A∗

⊥(z)〉

)
(10.60)

The important thing to note here is that, under any anticlock-wise rotation α about an axis
perpendicular the || and ⊥ components, would convert:

ρ(z) → ρ′(z) = 〈R(α)

(
A||(z)
A⊥(z)

)
⊗
(

A||(z) A⊥(z)
)∗

R−1(α)〉 (10.61)
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where R(α) is the rotation matrix. Now from the relations between the components of
coherency matrix and the stokes parameters:

I=< A∗
||(z)A||(z) > + < A∗

⊥(z)A⊥(z) >,

Q=< A∗
||(z)A||(z) > − < A∗

⊥(z)A⊥(z) >,

U=2Re < A∗
||(z)A⊥(z) >,

V=2 Im < A∗
||(z)A⊥(z) > . (10.62)

It is easy to establish that,

ρ(z) =
1

2

(
I(z) + Q(z) U(z)− iV(z)
U(z) + iV(z) I(z)− Q(z)

)
(10.63)

Therefore, under an anticlock wise rotation by an angle α, about an axis perpendicular to the
plane containing A‖(z) and A⊥(z), the density matrix transforms as: ρ(z) → ρ′(z); the same
in the rotated frame would be given by,

ρ′(z) =
1

2
R(α)

(
I(z) + Q(z) U(z)− iV(z)
U(z) + iV(z) I(z)− Q(z)

)
R−1(α) . (10.64)

For a rotation by an angle α–in the anticlock direction– about an axis perpendicular to A‖and

A⊥ plane, the rotation matrix R(α) is,

R(α) =

(
cos α sin α
−sin α cos α

)
. (10.65)

From the relations above, its easy to convince oneself that, in the rotated frame of reference
the two stokes parameters, Q and U get related to the same in the unrotated frame, by the
following relation.

(
Q

′
(z)

U
′
(z)

)
=

(
cos 2α sin 2α
−sin 2α cos 2α

)(
Q(z)
U(z)

)
(10.66)

The other two parameters, i.e., I and V remain unaltered. It is for this reason that some times
I and V are termed invariants under rotation.

For a little digression, we would like to point out that, in a particular frame, the Stokes
parameters are expressed in terms of two angular variables χ and ψ usually called the
ellipticity parameter and polarization angle, defined as,

I = Ip

Q = Ipcos 2ψ cos 2χ

U = Ipsin 2ψ cos 2χ

V = Ipsin 2χ. (10.67)
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The ellipticity angle, χ, following [10.67], can be shown to be equal to,

tan2χ =
V√

Q2 + U2
, (10.68)

and the polarization angle can be shown to be equal to.

tan2ψ =
U

Q
(10.69)

From the relations given above, it is easy to see that, under the frame rotation,

R(α) =

(
cos 2α sin 2α
−sin 2α cos 2α

)
(10.70)

the Tangent of χ, i.e., tanχ remains invariant, however the tangent of the polarization angle
gets additional increment by twice the rotation angle, i.e.,

tan(2χ) → tan(2χ)

tan(2ψ) → tan(2α + 2ψ). (10.71)

It is worth noting that the two angles are not quite independent of each other, in fact they are
ralated to each other. Finally we end the discussion of use of stokes parameters by noting that,
the degree of polarization is usually expressed by,

p =

√
Q2 + U2 + V2

IPT

(10.72)

where IPT
is the total intensity of the light beam.

11. Evaluation of ellipticity (χ) and polarization (ψ) angles

Now we would proceed further from the formula given in the previous sections, to evaluate
the ellipticity and polarization angles for a beam of plane polarized light propagating in the
z direction. Since we are interested in finding out the effect of axion photon mixing, we need
the expressions for the Stokes parameters with the Axion photon mixing effect and with that
we would evaluate the ellipticity angle χ and polaraization angle ψ at a distance z from the
source. Using the expressions for the correlators (i.e., eqns. [9.59] ) , one can evaluate the
stokes parameters and they turn out to be

I=
[
cos4θ + sin4θ + 2 sin2θ cos2θ cos

[(
k+ − k′+

)
z
] ]

< A∗
||(0)A||(0) > + < A∗

⊥(0)A⊥(0) >

Q=
[
cos4θ + sin4θ + 2 sin2θ cos2θ cos

[(
k+ − k′+

)
z
] ]

< A∗
||(0)A||(0) > − < A∗

⊥(0)A⊥(0) >

U=2
([

cos2θ cos [(k⊥ − k+) z]
]
+ sin2θcos

[(
k⊥ − k′+

)
z
])

< A∗
||(0)A⊥(0) >

V=2
([

cos2θ sin [(k⊥ − k+) z]
]
+ sin2θsin

[(
k⊥ − k′+

)
z
])

< A∗
||(0)A⊥(0) > (11.73)
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Till this point, the expressions, we obtain are very general i. e., no approximations were made.
However for predicting or explaining the experimental outcome one would have to choose
some initial conditions and make some approximations to evaluate the physical quantities of
interest. In that spirit, in this analysis we would take the initial beam of light to be plane
polarized, with the plane of polarization making an angle π

4 with the external magnetic
field. And their amplitude would be assumed to be unity; therefore under this approximation
A||(0) = A⊥(0) = 1√

2
.

It is important to note that, for axion detection through polarization measurements or,
astrophysical observations, the parameter θ << 1. Also we can define another dimension
full parameter, δ =

g
m2

a
. With the current experimental bounds for Axion mass and coupling

constant δ << 1. So we can safely take cosθ ∼ 1 and sinθ ∼ θ. Now going back to eqns.,
(7.46) and (7.47) one can see that the dispersion relations for the wave vectors are given by,

k⊥≃ω,

k+ ≃ ω +
(gBω)2

2m2
aω

,

k′+ ≃ ω − m2
a

2ω
− (gBω)2

2m2
aω

(11.74)

θ=
gBω

m2
a

Since the ratio
g

m2
a
= δ << 1, we can always neglect their higher order contributions in any

expansion involving δ. Therefore making the same, Q can be shown to be close to zero and
the Stokes parameter U turns out to be:

U = 1 + O(δn) when n ≥ 1 .. (11.75)

Before proceeding further, we note the following relations,

k+ − k⊥ =
m2

aθ2

2ω

k′+ − k⊥ = − m2
a

2ω
, (11.76)

k+ − k′+ ≃ m2
a

2ω
.

they would be useful to find out the other Stokes parameter V. In terms of these, V comes out
to be,

V = sin(−m2
aθ2z

2ω
) + θ2sin(m2

az/2ω) (11.77)

If we retain terms of order θ2 only, in eqn. [11.77], then, we find, V = 1
48

θ2m6
az3

ω3 , where an
overall sign has been ignored. Finally substituting the values of θ and other quantities, the
ellipticity angle χ is turns out to be
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χ =
1

96ω

((
Bm2

a

)

M

)2

z3. (11.78)

The expression of the ellipticity angle χ as given by eqn. [11.78], found to be consistent with
the same in (R. Cameron et al. , 1993). It should however be noted that, for interferometer
based experiments, if the path length between the mirrors is given by l, and there are n
reflections that take place between the mirrors then χ(nl) = nχ(l), i.e. the coherent addition
of ellipticity per-pass. The reason is the following: every time the beam falls on the mirror the
photons get reflected, the axions are lost, they don’t get reflected from the mirror.

Having evaluated the ellipticity parameter, we would move on to calculate the polaraization
angle from the expression

tan(2ψ) =
U

Q
.

However there is little subtlety involved in this estimation; recall that the beam is initially
polarized at an angle 45o with the external magnetic field. So to find out the final polarization
after it has traversed a length z, we need to rotate our coordinate system by the same angle
and evaluate the cumulative change in the polarization angle. We have already noted in
the previous section, the effect of such a rotation on the stokes parameters and hence on
the polarization angle; so following the same procedure, we evaluate the angle Ψ from the
following relation,

tan(2ψ +
π

2
) =

U

Q
. (11.79)

We have already noted (eq. [11.75]) that for the magnitudes of the parameters of interest, the
stokes parameter U ∼ 1; and that makes the angle 2ψ inversely proportional to Q, where the
proportionality constant turns out to be unity. Therefore we need to evaluate just Q, using the
approximations as stated before. Recalling the fact that, the mixing angle θ is much less than
one, we can expand all the θ dependent terms in the expression for Q, and retain terms up to
order θ2. Once this is done, we arrive at:

Q = −2θ2

(
sin2

(
(k+ − k

′
+)z

2

))
, (11.80)

Now one can substitute the necessary relations given in eqns. [11.77] in eqn. [11.80] to arrive
at the expression for ψ. Once substituted the polarization angle turns out to be.

ψ =

(
BEz
)2

16M2ω
. (11.81)

We would like to point out that, the angle of polarization as given by [11.81] also happens to
be consistent with the same given in reference [(R. Cameron et al. , 1993)] where the authors
had evaluated the same using a different method. In the light of this, we conclude this
section by noting that, all the polarization dependent observables related to optical activity
can be obtained independently by various methods, for the parameter ranges of interest or
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instrument sensitivity, the results obtained using stokes parameters turns out to be consistent
with the alternative ones.

12. Axion electrodynamics in a magnetized media

In the earlier section we have detailed the procedure of getting axion photon modified
equation of presence of tree level axion photon interaction Lagrangian. And this equation
of motion would be valid in vacuum, but in nature most of the physical processes take
place in the presence of a medium, ideal vacuum is hardly available. Therefore to study the
axion photon system and their evolution one needs to take the effect of magnetized vacuum
into account. This could be done by taking an effective Lagrangian, that incorporates the
magnetized matter effects. This Lagrangian is provided in [(A. K. Ganguly P.K. Jain and S.
Mandal , 2009)].

In momentum space this effective Lagrangian is given by:,

L =
1

2

[
−Aµk2 g̃µν Aν + AµΠ̃µν Aν + i

F̃µνkµ Aνa

Ma
− a(k2 − m2

a)a

]
. (12.82)

The notations in eqn. [12.82] are the following, g̃µν =
(

gµν − kµkν

k2

)
, F̃µν is the field strength

tensor of the external field, 1
Ma

≃ 1
M the axion photon coupling constant, Π̃µν is polarization

tensor including Faraday contribution and is given by,

Π̃µν(k) = ΠT(k)R
µν + ΠL(k)Q

µν(k) + Πp(k)P
µν . (12.83)

Usually in the thermal field theory notations, the cyclotron frequency is given by, ωB = eB
m

and plasma frequency (in terms of electron density ne and temperature T) in written as, ωp =√
4παne

m

(
1 − 5T

2m

)
. In terms of these expressions, the longitudinal form factor ΠL , transverse

form factor ΠT and Faraday form factor Πp along with their projection operators Qµν, Rµν

and Pµν are given by,

ΠL(k)=−k2ω2
p

(
1

ω2
+ 3

|�k|2
ω4

T

m

)
, Πp(k) =

ωωBω2
p

ω2 − ω2
B

and ΠT = ω2
p

(
1 +

|�k|2
ω2

T

m

)

where

⎧
⎪⎨

⎪

Qµν =
ũµ ũν

ũ2

Rµν = g̃µν − Qµν ,

Pµν = iǫµ⊥ναβ
kα

|K|u
β.

The equations of motion for Gauge pseudoscala fields that follows from the Lagrangian (12.82)
are the following:

(
−k2 g̃αν + Π̃αν(k)

)
Aν(k) = −i

kµF̃µαa

2Ma
(12.84)

(
k2 − m2

)
a = i

b
(2)
µ Aµ(k)

2Ma
. (12.85)
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For the problem in hand we have two vectors and one tensor at our disposal, frame velocity
of the medium uµ, 4 momentum of the photon kµ and external magnetic field strength tensor
Fµν. To describe the dynamics of the 4 component gauge field, we need to expand them in an
orthonormal basis. One can construct the basis in terms of the following 4-vectors,:

b(1)ν = kµFµν, b(2)ν = kµF̃µν, Iν =

⎛

⎝b(2)ν −
(ũµb

(2)
µ )

ũ2
ũν

⎞

⎠ , and kµ. (12.86)

In eqn. [12.86] we have made use of the additional vector, ũν = g̃νµuµ (uµ = (1, 0, 0, 0)).

N1 =
1√

−b
(1)
µ b(1)µ

=
1

BzK⊥

N2 =
1√−Iµ Iµ

=
|�K|

ωK⊥Bz

NL =
1√−ũµũµ

=
K

|�K|
, (12.87)

The negative sign under the square roots are taken to make the vectors real. The Gauge field
or photon field now can be expanded in this new basis,

Aα(k) = A1(k)N1b
(1)
α + A2(k)N2 Iα + AL(k)NLũα + kαN‖A||(k). (12.88)

The form factor A||(k) is associated with the gauge degrees of freedom and would be set to
zero. It is easy to see that, this construction satisfies the Lorentz Gauge condition kµ Aµ = 0 .
The equations of motion for the axions and photon form factors are given by,

(
k2 − ΠT(k)

)
A2(k)− iΠp N1N2

[
ǫµ⊥ν⊥30b(1)ν Iµ

]
N1 A1(k) =−

(
iN2b

(2)
µ Iµ
)

a

Ma
,

(k2 − ΠT(k))A1(k) + iΠpN1N2

[
ǫµ⊥ν⊥30b(1)µIν

]
A2(k) = 0 ,

(
k2 − ΠL

)
AL(k) =

iNL

(
b
(2)
µ ũµ

)
a

Ma
,

⎡
⎣

(
ib

(2)
µ Iµ
)

Ma
N2 A2(k) +

(
ib

(2)
µ ũµ
)

Ma
NL AL(k)

⎤
⎦=
(

k2 − m2
)

a. (12.89)

As in the previous case, in this case too we would assume the wave propagation to be in the z
direction. and a generic solution written as Φi(t, z) for all the dynamical degrees of freedom
would be assumed to be of the form, Φi(t, z) = e−iωtΦi(0, z). As we had done before, now we
may express Eqs. (12.89), in real space in the matrix form

[
(ω2 + ∂2

z)I − M
]
⎛
⎜⎜⎝

A1(k)
A2(k)
AL(k)
a(k)

⎞
⎟⎟⎠ = 0. (12.90)
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where I is a 4 × 4 identity matrix and the modified mixing matrix, because of magnetized
medium, turns out to be,

M =

⎛
⎜⎜⎜⎜⎜⎝

ΠT −iN1N2Πpǫµ⊥ν⊥30b(1)µIν 0 0

iN1N2Πpǫµ⊥ν⊥30b(1)νIµ +ΠT 0 −i
N2b

(2)
µ Iµ

Ma

0 0 ΠL −i
NLb

(2)
µ ũµ

Ma

0 i
N2 b

(2)
µ Iµ

Ma
i

NLb
(2)
µ ũµ

Ma
m2

a

⎞
⎟⎟⎟⎟⎟⎠

. (12.91)

Solving this problem exactly is a difficult task, however in the low density limit one can
usually ignore the effect of longitudinal field and ΠL. Again if we assume the ω ≫ ωp,
then we can simplify the faraday contribution further. Incorporating these effects, the mixing
matrix in this case turns out to be a 3 × 3 matrix, given by:

M =

⎛
⎝

ω2
p iωBω2

p cos θ′/ω 0

−iωBω2
p cos θ′/ω ω2

p −igBω

0 igBω m2
a

⎞
⎠ , (12.92)

The angle θ′ is the angle between the magnetic field and the photon momentum�k, The other
symbols are the same as used in the previously. This matrix can be diagonalized and one can
obtain the exact result. The method of exact diagonalization of this matrix is relegated to the
appendix.

The matrix given by eqn. [12.92] has been diagonalized and its eigen values have been
evaluated perturbatively [(A. K. Ganguly P.K. Jain and S. Mandal , 2009)], in the limit

gBω ≫ ωBω2
pcosθ ′

ω ≫ |m2
a − ω2

p|. The construction of the density (or coherency ) matrix from
there is a straight forward exercise as illustrated before. Therefore instead of repeating the
same here we would provide the values of the stokes parameters, computed from various
components of the density matrix (2). In this analysis we assume plane polarized light, with
the following initial conditions a(0) = 0 and A1(0) = A2(0) =

1√
2

. That is the initial angle

the beam makes with the direction of Iµ is π/4. The resulting stoke parameters are,

Q = −sin (∆z) , I = 1,

V =
(gB)2 ω3sin

(
∆z
2

)
cos
(

∆z
2 − π

4

)

√
2ωB ω2

p cos θ′ (m2
a − ω2

p)
, U = cos (∆z) , (12.93)

where in eqn. [12.93], the parameter ∆ is given by, ∆ = −2
ωBω2

pcosθ ′

ω2 . Since V is associated
with circular/ elliptic polarization, we can see from eqn. [12.93] that, even if one starts with
a plane polarized wave, to begin with, it can become circularly or elliptically polarized light
because of axion photon interaction and faraday effect. The ellipticity of the propagating wave
turns out to be,

χ =
1

2
tan−1

⎛

⎝
(gB)2 ω3sin

(
∆z
2

)
cos
(

∆z
2 − π

4

)

√
2ωB ω2

p cos θ′ (m2
a − ω2

p)

⎞

⎠ . (12.94)

(2) See for instance equation. [5.14], in [(A. K. Ganguly P.K. Jain and S. Mandal , 2009)]
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and the polarization angle,ψ would be given by,:

tan (ψ + π/2) = −cot (∆z) . (12.95)

when z is the path length traversed by the beam, in the magnetized media. We would like to
emphasize here that, even in the limit of weak external magnetic field, it may not be prudent
to ignore the contribution of Faraday effect. If we define a new energy scale ωs, such that

ωs =

∣∣∣∣∣∣

ωB

(
ω4

p − ω2
pm2

a

)
M2cosθ

(BE)2sin2θ

∣∣∣∣∣∣
, (12.96)

then for ωS ≫ ω, to estimate χ, one should consider the Faraday effect simultaneously.

We conclude here by noting that in this write up, we have tried to provide a comprehensive
study of axion photon mixing and the associated observables of a photon beam. We have
employed the coherency matrix formulation for studying the polarization properties; Starting
with tree level axion photon interaction Lagrangian, we have demonstrated explicitly, how
to construct the Stokes parameters from there. From there we have shown how to calculate
the ellipticity angle and polarization angle from the Stokes Parameters. The relevant findings
or questions pertaining to the current or proposed experiments in this area involve inclusion
of matter effects, consideration of very strong magnetic field, dynamics of very high energy
photon in such a scenario. Except the last, we have discussed the issues relevant for the first
two. We end here by hoping that this elementary write up would help those who would like
to take up advanced level investigations in this direction.
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14. Appendix: Constructing the orthogonal matrix for diagonalization

Here we out line diagonalization of a 3 × 3 matrix given by eqn. (12.92), i.e., a symmetric
matrix of the following type,

X3 =

⎡
⎣

a b 0
b c d
0 d g

⎤
⎦ . (14.97)

Generalizing it to a hermitian matrix of the kind we have is trivial, so we would concentrate
on diagonalizing the type given by eqn. (14.97). As noted already, the Cayley-Hamilton
characterictic equation for this matrix looks like, |X3 − λi| = 0. for the i’th eigen value. Or
for that matter, for any of the three eigen values, one should have:

∣∣∣∣∣∣

a − λi b 0
b c − λi d
0 d g − λi

∣∣∣∣∣∣
= 0 (14.98)
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Which when written in algebraic form looks like,

λ3 − λ2 (a + c + g) + λ
(

gc + ga + ac − d2 − b2
)
+
(

ad2 + gb2 − gac
)
= 0 (14.99)

Recalling that, the three roots of eqn. (14.99) satisfies the following relations

λ1 + λ2 + λ3 = (a + c + g) (14.100)

λ1λ2 + λ2λ3 + λ3λ1 =
(

gc + ga + ac − d2 − b2
)

(14.101)

λ1λ2λ3 = −
(

ad2 + gb2 − gac
)

(14.102)

We should have for any value of i(1, 2or3),

⎡

⎣
a − λi b 0

b c − λi d
0 d g − λi

⎤

⎦

⎛

⎝
ui

vi

wi

⎞

⎠ = 0, (14.103)

with corresponding eigen-vector

Vi =

⎛
⎝

ui

vi

wi

⎞
⎠ , (14.104)

All that we need to prove is ,

Vi · Vj = δij. (14.105)

when suitably normalized. Next, assuming the eigen vectors to be normalized, we would
demonstrate the necessary identities they need to satisfy. The proof should follow by explicit
use of the values of λi ’s in (14.105) (which is laborious ) or by some other less laborius method.
Here we explore the last option. We write down the generic eqns. satisfied by the components
of the eigen vectors

(a − λ)u + bv = 0
bu + (c − λ)v + dw = 0

dv + (g − λ)w = 0. (14.106)

It’s easy to find out the nontrivial solns of (14.106) (for any of the three eigenvalues) by
inspection and they are:

u = −b(g − λ)
v = (a − λ)(g − λ)
w = −d(a − λ). (14.107)

All that is to be shown is V1 · V2 = 0 and other similar relations. We would prove the previous
relation, others can be done using similar method. To begin with note that,

V1 · V2 =
[

b2(g − λ1)(g − λ2) + d2(a − λ1)(a − λ2)

+ (g − λ1)(g − λ2)(a − λ1)× (a − λ2)
]

(14.108)
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which is trivial to check. Next we start from,

[(g − λ1)(g − λ2)] = g2 − g(λ1 + λ2) + λ1λ2. (14.109)

Eqn. (14.109) is a function of λ1 and λ2, and we need to convert it to a function of a single
variable λ3. To do that we would make use of the following tricks,

λ1 + λ2 = [λ1 + λ2 + λ3]− λ3

λ1λ2 = [λ1λ2 + λ2λ3 + λ3λ1]− λ3(λ2 + λ1) (14.110)

Now one can use the relations (14.101, 14.102 and 14.102), to replace the expressions inside the
square bracket in eqns. (14.110) to get a function of only λ3. i.e.

λ1 + λ2 = a + c + g − λ3

λ1λ2 = gc + ga + ac − d2 − b2 − λ3(a + c + g − λ3). (14.111)

As one uses eqns. (14.111) in eqn. (14.109) one arrives at,

g2 − g(λ1 + λ2) + (λ1.λ2) = (λ3 − a)(λ3 − c)− b2 − d2. (14.112)

so

b2(g − λ1)(g − λ2) = b2[(λ3 − a)(λ3 − c)− b2 − d2]. (14.113)

Similarly one can show that,

d2(a − λ1)(a − λ2) = d2[(λ3 − g)(λ3 − c)− b2 − d2]. (14.114)

Finally as we substitute in eqn. (14.108), the results of eqns. (14.113) and (14.114), we get after
some cancellations,

V1 · V2 = (c − λ3)
[
(a − λ3)(g − λ3)(c − λ3)− b2(g − λ3)− d2(a − λ3)

]
= 0, (14.115)

because the expression inside the square bracket of eqn. (14.115) after the first = sign, is zero,
as can be seen by expanding the determinant, i.e., eqn. (14.98) after taking λi to be λ3. In a
similar fashion it can be shown that,

V1V2 = V2V3 = V3V1 = 0. (14.116)

15. Proof: V’s actually diagonalize the mixing matrix

Lets start from:

⎡
⎣

u1 u2 u3

v1 v2 v3

w1 w2 w3

⎤
⎦

T⎛
⎝

a b 0
b c d
0 d g

⎞
⎠
⎡
⎣

u1 u2 u3

v1 v2 v3

w1 w2 w3

⎤
⎦ = (15.117)

⎡

⎣
u1a + bv1 u1b + v1c + w1d v1d + gw1

u2a + bv2 u2b + v2c + w2d v2d + gw2

u3a + bv3 u3b + v3c + w3d v3d + gw3

⎤

⎦

⎛

⎝
u1 u2 u3

v1 v2 v3

w1 w2 w3

⎞

⎠
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Now if we recall (14.106), we see that,

au1 + bv1 = λ1u1

bu1 + cv1 + dw1 = λ1v1

dv1 + gw1 = λ1w1. (15.118)

Similarly,

au2 + bv2 = λ2u2

bu2 + cv2 + dw2 = λ2v2

dv2 + gw2 = λ2w2. (15.119)

And

au3 + bv3 = λ3u3

bu3 + cv3 + dw3 = λ3v3

dv3 + gw3 = λ3w3. (15.120)

So we can substitute eqns. (15.118) to (15.120) in eqns. (15.118), to get:

⎡
⎣

u1a + bv1 u1b + v1c + w1d v1d + gw1

u2a + bv2 u2b + v2c + w2d v2d + gw2

u3a + bv3 u3b + v3c + w3d v3d + gw3

⎤
⎦
⎛
⎝

u1 u2 u3

v1 v2 v3

w1 w2 w3

⎞
⎠ =

⎡
⎣

u1λ1 v1λ1 w1λ1

u2λ2 v2λ2 w2λ2

u3λ3 v3λ3 w3λ3

⎤
⎦(15.121)

×

⎛

⎝
u1 u2 u3

v1 v2 v3

w1 w2 w3

⎞

⎠ =

⎡

⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦

So we have checked that, the transformation matrix, constructed from the orthogonal vectors,
diagonalize the mixing matrix.
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