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Reconstruction of a star motion in the vicinity of black hole from the

redshift of the electromagnetic spectrum
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The problem of calculating the redshift of electromagnetic spectrum of the star, moving
in the vicinity of Schwarzschild black hole is solved within the framework of the Gen-
eral Theory of Relativity. The inverse problem — determination the parameters of the

motion of a star from observational data of redshift is considered. The approach that
gives possibilities to solve the inverse problem is proposed. The approach is tested on
the numerical model that gives possibilities to calculate redshift as function of time of
observation for a star moving in the vicinity of Schwarzschild black hole. The parame-
ters of the star in numerical model are close to parameters of the S-stars, moving in the
vicinity of the Sgr A*.
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1. Introduction

It is well-known from astrophysical observations that supermassive black hole with

mass mSBH ≈ 4 ·106m�,1, 2 where m� is the mass of the Sun, exists in the Galactic

Center.1, 3–5 Apart from this, large amount of stars exists in this region. For example,

S-cluster includes stars closest to supermassive black hole.2, 6–8

Astrophysical observations of such stars give possibility to study the structure of

the Galactic Center and to test theories of gravity. The main source of information

about the motion of these stars is their electromagnetic radiation. In the present

work, we have performed theoretical investigation of the redshift of electromagnetic

radiation of a star moving in the vicinity of a black hole. This problem includes

two parts: the direct problem — calculation the redshift of the electromagnetic

radiation of a star moving in external gravitational field and the inverse problem: —

determination the motion of the star in external gravitational field if redshift as

function of time of observation is known.

The direct problem within the framework of the General Relativity is consid-

ered in many papers see, e.g.,6–12. The mentioned studies consider different general

relativistic effects such as Shapiro delay, gravitational redshift, and Doppler shift.

To solve the direct problem, one needs to solve the boundary value problem for the

isotropic geodesic that connects the source and the observer. In the cited studies,

if the corresponding general relativistic effects are taken into account, this prob-

lem is solved using tables of impact parameters that make the accuracy of the

solution limited by the step of the data in the tables. In our previous papers,13–15

we developed a covariant approach that allows one to obtain compact expressions
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for redshift as a function of observation time. We have solved the boundary value

problem by numerically solving a non-linear equation, which allows for much more

accurate solutions than table-based methods.

For the solution of inverse problem it is necessary to use statistical methods such

us MCMC method.6, 8–10, 12 But mentioned studies do not contain any approach

for constructing initial guess for the solution of the problem. The method that is

presented in this paper gives possibility to obtain such guesses from graphics.

As an example of solving the inverse problem, we consider a mathematical model

of a star moving close to a supermassive black hole. For the demonstration purpose,

we chose the parameters of motion corresponding to a star on a slightly closer orbit

around the black hole than the orbits of known S-stars (see, e.g.,2, 5). Such orbits

allow us to test the approach in the strong-field regime apply to the cases when the

sources are on very tight orbits near the Galactic Center. Sources with such orbits

may be found with future observations.

In this paper, we use a system of units where the speed of light in the vacuum

is equal to unity (c = 1), and the metric has signature − + + + .

2. Theoretical model

In the present paper consider only the case of spherically symmetric non-charged

black hole. In General Relativity such a black hole can be described by the

Schwarzschild metric (see, e.g.,16):

ds2 =
dr2

1− 2M/r
+ r2dθ2 + r2 sin2 θdϕ2 −

(
1− 2M

r

)
dt2 . (1)

Here, xi = {t, r, θ, ϕ} are Schwarzschild coordinates. Furthermore, M = GmSBH ,

where G is the gravitational constant. In our model, the mass of the black hole

mSBH is much larger than the mass of the star ms ∼ m�. Because of this, we

model source stars as test particles moving in the external gravitational field of the

supermassive black hole. One can obtain the 4-velocity components of the star from

the geodesic equation. They have the following form (see, e.g.,16):

u0 =
dt

dτ
=

E

(1− 2M/r)
;

u1 =
dr

dτ
= es

√
E2 − (1− 2M/r)(1 + L2/r2) ;

u2 =
dθ

dτ
= 0 ;

u3 =
dϕ

dτ
=
L

r2
, (2)

where we chose the orientation of the spatial part of the coordinate system in such

a way that the trajectory of the star lies in the plane θ = π/2. Here L is the specific

angular momentum of the star (in mass), E is its specific energy (in mass), and τ is

its proper time. Factor es describes whether the considered part of the trajectory

is receding or approaching.
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From the system of equations (2), one can find the trajectory of the star in

analytic form. In the case of finite motion, it has the following form (see, e.g.,17):

1

r
=

1

rs(ϕ, δ, p1, p2)
=

1

p1
− p2 − p1

p1p2
sn2

[
(ϕ− δ)

2

√
1− 4M

p2
− 2M

p1
, ks

]
, (3)

where

ks =

√
p2 − p1

p1p2/(2M)− p2 − 2p1
,

where sn[ϕ, k] is the Jacobi sine of the first kind (see18 for definition), δ is the longi-

tude of pericenter, and p1 and p2 are pericenter and apocenter distances respectively.

They are uniquely related to E and L as follows:

L =
p1p2√(

1 +
p1 + p2

2M

)
p1p2 − (p1 + p2)2

;E =

√√√√√√
(p1 + p2)

(
2M +

p1p2
2M

− p1 − p2
)

(
1 +

p1 + p2
2M

)
p1p2 − (p1 + p2)2

.

(4)

The proper time of the star τ can be expressed as a function of its angular

coordinate ϕ by using the well-known analytic formula (see, e.g.,17):

τ = τs(ϕ, p1, p2) + τ0 . (5)

Here, τs(δ, p1, p2) = 0. We will not write down this expression explicitly due to

cumbersomeness.

Astrophysical observations of stars in the vicinity of the Galactic Center use

electromagnetic radiation in the wavelength range of 1μm− 10m (including obser-

vations of pulsars, see, e.g.,3). Such wavelengths are small compared to the typical

orbit sizes of S-stars, which allows us to use the geometric optics approximation (see,

e.g.,19). In this approximation, electromagnetic radiation propagates along a null

geodesic with tangent vector ki that satisfies the following relations: kjk
j = 0 and

ki;jk
j = 0. Here we chose the following coordinate frame K̃ : {t, r, θ̃, ϕ̃}. Therefore,

the observer resides on the axis θ̃ = 0, ϕ̃ = 0, we find that the trajectory of the

light ray lies in the plane ϕ̃ = const and obtain (see, e.g.,16):

k0 =
dt

dν
=

1

(1 − 2M/r)
;

k1 =
dr

dν
= er

√
1− (1− 2M/r)D2/r2 ;

k2 =
dθ̃

dν
= −D

r2
;

k3 =
dϕ̃

dν
= 0 , (6)

where ν is an affine parameter along the ray and D is the impact parameter. Factor

es describes whether the considered light trajectory is receding or approaching.
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The sign in the expression for θ̃ in equation (6) is chosen so that D > 0. We

only consider zeroth-order trajectories, i.e. trajectories for which the increment of

θ̃ from the source to observer is less then π (see, e.g.,20, 21).

From equations (6) and by using the boundary condition r → ∞ for θ̃ = 0, we

obtain the following analytic expression for the trajectory of the ray:

1

r
=

1

rr(θ̃, D)
=

1

P
− Qk2

2PM
cn2

[
θ̃

2

√
Q

P
+ F

[
arccos

(√
2M

Qk2

)
, k

]
, k

]
,

where rr = r is satisfied for the points on the world line of the ray,

Q =
√
P 2 + 4PM − 12M ; k =

√
Q− P + 6M

2Q
, (7)

cn [ϕ, k] and F [ϕ, k] are the Jacobi cosine and the elliptic integral of the first kind,

respectively (see18 for definition). If real, P has a physical meaning of the closest

approach distance (see, e.g.,17). However, whether P is real or complex, it can be

expressed through the impact parameter D as follows:

P = − 2√
3
D sin

[
1

3
arcsin

(
3
√

3M

D

)
− π

3

]
.

The angular coordinates in both coordinate systems are connected by the fol-

lowing relation (see Fig. 1):

θ̃ = arccos[cos(ϕ) sin(i0)] , (8)

where angle i0 is the inclination of the orbit of the star.

Redshift of the spectrum of electromagnetic radiation can be calculated from

the formula (see, e.g.,10):

z =
δλ

λ
=

(ui)s(k
i)s

(uj)o(kj)o
− 1 . (9)

Here, λ is the wavelength of emitted light, δλ is the wavelength difference between

received and emitted light. (ki)o and (ki)s denote the wave vector at the location of

the observer and source, respectively. Likewise, (ui)o and (ui)s denote the 4-velocity

vector of the observer and the star, respectively.

Consider the case of a stationary observer located at spatial infinity. Therefore,

the spacetime around the observer is described to good accuracy by the Minkowsky

metric. Therefore, for the observer we have (ui)o = {1, 0, 0, 0}. To calculate the

components of the wave vector (ki)s, it is necessary to solve the boundary value

problem for the system of differential equations (6) (see Fig. 2). The zeroth-order

trajectory corresponds to the maximal intensity, and one may find it almost in all

cases for S-stars (see, e.g.,20, 21). Because of this, we will consider only light rays of

zeroth order. Therefore, the solution is unique. For the chosen assumptions, solving

the mentioned boundary value problem reduces to solving the following non-linear

ordinary equation for the impact parameter D:

rs(ϕ, p1, p2) = rr(θ̃, D) . (10)
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θ

φ

i

To the observer

Source

Supermassive black hole

Trajectory of the star

Trajectory of light

o

Pericenter

Fig. 1. For the derivation of formula (8)

Source
Observer(u )

o

s

i

ii

s

(u )ii

(k )

i(k )
o

Fig. 2. (ki)o and (ki)s are tangent vectors to null geodesic that intersect both the worldline of
the source and the worldline of the observer

Taking into account the stationarity of the observer, the relation between the

angles (8), and substituting expressions (2), (6) into (9), we obtain the redshift in

the following form:

z = −1 +
E

q
+
DL

r2
β − eser 1

q

√(
E2 − q

(
1 +

L2

r2

))(
1− qD

2

r2

)
. (11)

Here, we denote 1 − 2M/r = q and β = sin(i0) sin(ϕ)/ sin(θ̃). The presented equa-

tions allow one to solve the direct problem: calculating the redshift of a star moving
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in an external gravitational field of a supermassive black hole as a function of ob-

servation time. We illustrate the method by using a numerical model as shown in

Fig. 3.

Fig. 3. Redshift of electromagnetic spectrum of a star in an external Schwarzschild gravitational
field as a function observation time t. The pericenter distance of the stellar orbit is p1 = 60M ,
its apocenter distance is p2 = 90M , its inclination is i0 = 1.4 rad, the longitude of pericenter is
δ = 1 rad and the initial time of pericenter passage is τ0 = 0M

However, it is more interesting for astrophysical purposes to solve the inverse

problem: determining the parameters of motion of a star in the external gravitational

field of a supermassive black hole based on its redshift data. In the literature, the

inverse problem is solved by minimizing the χ2 function (see, e.g.,9, 10):

χ2 =

N∑
j=1

[
(zj − zobs,j)2

σ2
Z

]
, (12)

where zj and zobs,j are the theoretical and observed values of the redshift, respec-

tively, for the times of observation tj (j ∈ [1, N ]). σ2
Z is the dispersion of the redshift

observation data. Since function zobs,j(t) has no explicit expression (at least, because

D is the solution of non-linear equation 10), minimizing χ2 can only be performed

numerically (for example, using the Metropolis-Hastings algorithm22).

In this work, we present another approach based on deriving a system of equa-

tions expressed explicitly using elementary or special functions of the parameters

of motion of the star. To obtain such equations for the inverse problem, one has to

find expressions not only for z but also for dz/dτ . We describe this calculation in

the following section.

3. Derivative of the redshift function

3.1. Newman-Penrose null tetrad and optical scalars

In this section we will use the Newman-Penrose null tetrad (see, e.g.,23, 24), deter-

mined along the world line of the ray emitted by the star:

ki, ni, mi m̄i . (13)
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Here ki is the wave vector of the ray. Symbol ¯ denotes the complex conjugation.

All vectors in (13) are null. All scalar products between vectors in (13) are equal to

0 apart from

kin
i = −1; mim̄

i = 1 . (14)

Consider a congruence of isotropic geodesics that have tangent vectors ki and inter-

sect the world line of the observer at time to. Also, consider the Newman-Penrose

tetrad (13) at all points of this congruence. Then the components of the vectors of

the tetrad in the coordinate basis of K̃ have the form (we chose the affine parameter

ν such that k0=-1):

kj =

{
−1, er

√
1− (1− 2M/r)D2/r2

1− 2M/r
, −D, 0

}
;

nj =

{
−1

2
(1− 2M/r), −er

2

√
1− (1− 2M/r)D2/r2,

D

2
(1− 2M/r), 0

}
;

mj =

1√
2

{
0, i

D

r
, ierr

√
1− (1− 2M/r)D2/r2, r sin θ̃

}
;

m̂j =

1√
2

{
0, −iD

r
, −ierr

√
1− (1− 2M/r)D2/r2, r sin θ̃

}
.

(15)

For the considered congruence, one can obtain the following equations (see,

e.g.,24–26, ε = k[i;j] = 014)

ki;jm
im̄j = −ρ , ki;jmimj = −σ , ki:jk

j = ki;jk
i = 0 . (16)

Here, ρ and σ are optical scalars. They are can be found numerically from well-

known equations (see, e.g.,23–26): Only the sum ρ+σ admits an analytical expression

(see, e.g.,25):

ρ+ σ = −
d

dν

(
r sin θ̃

)

r sin θ̃
=

−er
r

√
1−

(
1− 2M

r

)
D2

r2
+
D

r2
cot θ̃ . (17)

We now write down components of the vector of 4-velocity of the star in the basis

of the null tetrad (15):

uj =
1√
2

(
Āmj +Am̄j

)
+Bkj + Cnj . (18)
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Here A, B, C — are coefficients of decomposition. We obtain −kjuj = (1 + z) = C.

Denoting the components of the Killing vector ∂
∂t as ξj , we have

ξj =
1

2

(
1− 2M

r

)
kj + nj . (19)

Furthermore

E = −uiξi = B +
1

2

(
1− 2M

r

)
(1 + z) . (20)

From the relation for the norm of ui, we obtain

uju
j = |A|2 − 2(1 + z)B = −1 . (21)

From (20) and (21), it follows that

B =
1 + |A|2
2(1 + z)

, |A|2 = −1 + 2E(1 + z)− (1− 2M/r)(1 + z)2 .

Now, we express the time derivative of redshift, using the relation k[j;l] = 0

satisfied for the considered congruence in Schwarzschild spacetime (see, e.g.,14):

dz

dτ
= −kj;lujul = −|A|2kj;lmjm̄l −A2kj;lm

jml −
Ā2kj;lm̄

jm̄l − 2Ā(1 + z)kj;ln
jml − 2A(1 + z)kj;ln

jm̄l =

|A|2(ρ+ σ cos (2PA))− 2
√

2(1 + z)
D

r3
|A| sin (PA) +

er
r2

(1 + z)2

√
1−

(
1− 2M

r

)
D2

r2
. (22)

Here we use A = |A|eiPA , where |A| and PA are real. Numerical calculations show

that optical scalar σ have very small value comparing to other terms in 22. Due to

this will neglect the value of σ in calculations.

From equations (22) and (17) for the time derivative of redshift, we obtain

dz

dτ
=

[
2E(1 + z)−

(
1− 2M

r

)
(1 + z)2 − 1

]
×

[
−er
r

√
1−

(
1− 2M

r

)
D2

r2
+
D

r2
cot θ̂

]
−

2
D

r3
sinPA

√
2E(1 + z)−

(
1− 2M

r

)
(1 + z)2 − 1 +

er
r2

(1 + z)2

√
1−

(
1− 2M

r

)
D2

r2
. (23)
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To obtain an analytical formula, it is convenient to exclude the impact parameter

D from equations (11) and (23). We obtain:

D

r
= (24)

L
r β
(
(1 + z)

(
1− 2M

r

)− E)±√(E2 − (1− 2M
r

) (
1 + L2

r2

)) (|A|2 + (β2 − 1)L
2

r2

)
E2 − 1 + 2

r + L2

r2 (β2 − 1)(1− 2
r )

=

F1(r, z, p1, p2, i0, θ̃) ;

and
D

r
= F2(r, z,

dz

dτ
, p1, p2, i0, θ̃) =

r dz
dτ

(
|A|2 cot θ̃ − 2(1+z)

r |A|S
)

(
1− 2M

r

) ( (1+z)2

r − |A|2
)2

+
(
|A|2 cot θ̂ − 2(1+z)

r |A|S
)2 ±

√(
1− 2M

r

) [( (1+z)2

r − |A|2
)2
− r2 (dzdτ )2

]
+
(
|A|2 cot θ̃ − 2(1+z)

r |A|S
)2

(
1− 2M

r

) ( (1+z)2

r − |A|2
)2

+
(
|A|2 cot θ̂ − 2(1+z)

r |A|S
)2 ×

(
(1 + z)2

r
− |A|2

)
. (25)

Here, S = sinPA. To find an exact expression for sinPA, one may use the law of

angular momentum conservation:

uiΨ
i = L = const , (26)

where Ψi is the Killing vector field associated with the symmetry of the

Schwarzschild metric relative to spatial rotation around an arbitrary axis (we chose

it to be orthogonal to the orbit plane). Components of Ψi in the coordinate basis

of K̂ are given by (see, e.g.,19)

Ψj =
{

0, 0, (cos i+ sin i cot θ̃ cos ϕ̃), sin i sin ϕ̃
}
. (27)

Equation of the orbital plane has the following form

− sin i sin θ̃ cos ϕ̃+ cos i cos θ̃ = 0 . (28)

From equations (26), (27), (28), (18) and (15), it follows

er
l

r

1− β2

|A|
√

1− (1− 2M
r

)
D2

r2

+ ePβ

√
1− l2

r2
(1 − β2)

|A|2 =

β sinPA + er

√
1− β2√

1− (1− 2M
r

)
D2

r2

cosPA , (29)
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where eP is defined as

eP = sign

[
erβl

√
1−

(
1− 2M

r

)
D2

r2
+ esD

√
E2 −

(
1− 2M

r

)(
1 +

L2

r2

)]
.

(30)

The exact solution of (29) has the form

sinPA = eP

√
1− L2

r2
(1− β2)

|A|2 . (31)

4. The inverse problem

4.1. The surface of parameters of motion

The main purpose of the present subsection is to obtain the relation between the

parameters of motion of the star from one hand and the redshift z and the derivative

dz/dτ for certain moments of proper time from another. From (25) and (25), we

obtain:

F1(r, z(to), p1, p2, i0, θ̃) = F2(r, z(to),
dz

dτ
(to), p1, p2, i0, θ̃) . (32)

For the known redshift data z(to) and dz
dτ (to) = (z(to) + 1) dz

dτ (to) (to is a certain

observation time), equation (32) allows one to implicitly express the constant pa-

rameters of motion p1, p2 and i0 in the case, when the radial location of emission

r and the angle θ̃ are known. Therefore, more equations are needed to solve the

problem. For this purpose, one can use equations (25) and (10). We express θ̃ from

(10). The impact parameter D in equation (10) can be expressed using (25). This

way, we obtain:

θ̃ = f(r, F1(r, z(to), p1, p2, i0, θ̃)) . (33)

Here f is some known explicit function. This equation can be solved for θ̃ using the

iteration method. Because the right-hand side of (33) depends on θ̃ only through

the small optical scalar ρ, it has little influence on the whole expression, and the

solution of (33) converges quickly. For our numerical model, we have used only two

iterations to obtain the solution in explicit form. Therefore, we obtain the following

equation:

r = rs(ϕ(θ̃(r, z(to), p1, p2, i), i)− δ, p1, p2) . (34)

The system (32), (34 obtained for certain observation time to contains 2 equations

and 5 unknown variables: p1, p2, i0, δ, r. Because of this, the solution is a 3-surface

in a corresponding 5-dimensional space. Since we are only interested in the relations

that connect the parameters of motion we must numerically calculate a projection

of this space into a 4-dimensional space (with four coordinates: p1, p2, i0, δ). The

calculation results for our numerical model of the radiation of the star are presented

(see Fig. 4–7) for different points of redshift data. To uniquely visualise the solution,

we present it graphically on 2-dimensional sections of the mentioned 4-dimensional
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space. As seen from Fig. 4–5, the 3-surfaces obtained for each data point do not

coincide. Therefore, the intersection point of the surfaces gives an exact value of the

parameters of motion of the star. This point can be determined from the obtained

figures with high accuracy.

Fig. 4. 2-sections of the solution of (32), (34) for i0 = π/2 and δ = 1 by plane p1, p2 for different
points of data (dashed: t = 777M , dotted: t = 851M , black: t = 923M , gray: t = 992M , see also
Fig. 3)

Figures 4–7 also illustrate that in the case when the angular parameters are cho-

sen to coincide with the exact solution, sections have a unique point of intersection

(Fig. 6) that corresponds to the solution of the inverse problem. At the same time,

if the angular parameters are not exact, a unique intersection point does not exist

(Fig. 7). This is because the chosen 2-dimensional surface in the last case does not

intersect with the solution in the whole 4-dimensional space of motion parameters.

By using these figures, one may find if there exists a unique point of intersection

in a certain region of the surface. Therefore, an initial approximation to the exact

solution of the inverse problem can be found from these figures with a fairly good

accuracy.

4.2. Solution of the inverse problem

A further improvement of the results can be obtain using the least squares method.

For this purpose, we use functions τs(ϕ, p1, p2) and rs(ϕ, p1, p2). From (32), obtain

the following equation:

F1(rs(ϕ+ δ, E, L), z(τs + τ0), p1, p2, i, θ̃(ϕ, i)) =

F2(rs(ϕ+ δ, E, L), z(τs + τ0),
d

dτ
z(τs + τ0), p1, p2, i, θ̃(ϕ, i)) . (35)
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Fig. 5. 2-sections of solution of (32), (34) for i0 = π/2 and δ = 1, 4 by plane p1, p2 for different
points of data (dashed: t = 777M , dotted: t = 851M , black: t = 923M , gray: t = 992M , see also
Fig. 3)

Fig. 6. Magnification of a part of figure (4)

Here, function z(τ) can be constructed based on the observational data for z(t) and

from function τ(t) given as an implicit function from:

τ(t) =

∫ t

0

dt′

(1 + z(t′))
. (36)
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Fig. 7. Magnification of a part of figure (5)

Table 1. Results

Parameter Initial Reconstructed Exact
approxima- value value

tion

Pericenter distance, p1/M 62.0 60.1 60.0
Apocenter distance, p2/M 95.0 89.1 90.0
Orbital inclination, i0, rad 1.5 1.48 1.4

Initial phase, δ, rad 0.9 1.0 1.0
Initial time of

pericenter passage, τ0/M – 0.0 0.0

The left-hand side of (35) and the right-hand side of (35) are certain functions of

ϕ. As follows from (35), these functions must be equal for a certain set of unknown

parameters E, L, i0, δ, τ0. Therefore, one may find these parameters by using the

least-squares method. As an example, we choose 10 points for different values of ϕ

in the range [1rad, 1.4rad]. We obtain the initial approximation using the results

from the previous subsection. We show the obtained results in Table 1.

5. Conclusion

The presented approach allows one to solve the inverse problem: reconstructing

the motion of a star moving in the external gravitational field of a supermassive
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black hole based on its redshift. The approach uses the properties of congruences

of isotropic geodesics to account for the difference between trajectories of light that

come to the observer from the different locations of the star during the observation

time.

As the main result of the paper, we have provided a method for obtaining good

starting values for the parameters of motion of a star. These starting values al-

low one to solve the inverse problem more accurately by using statistical methods.

For this purpose, we used the graphs of the surfaces in the space of parameters

of motion. However, the approach may also be formulated in terms of solving a

system of equations. If one writes down equations (32) and (34) for four moments

of time of observation (to1, to2, to3, to4), one may obtain a system of 8 equations

for 8 unknown variables (p1, p2, δ, i0 and four values of the radius of radiation:

r1, r2, r3, r4). Therefore, one will obtain a complete system of equations. Even nu-

merically, it is not easy to solve a system of 8 non-linear equations. However, in

future work, developed mathematical methods will allow one to efficiently solve this

system of equations and analyse the conditions for obtaining non-unique solutions.

The problem of non-unique solutions can be solved, for instance, by adding more

equations to the considered system. The last parameter of motion τ0 can be deter-

mined from the least-squares method. Therefore, in principle, equations (32) and

(34) can be used to obtain a unique solution of the inverse problem, rather than the

graphic solution presented in our paper.

The obtained equations are exact equations in General Relativity (we only ne-

glect the optical scalar σ). Therefore, one may use the presented approach for all

possible sources moving at arbitrary distances from the black hole (if they can be

approximated as test particles in an external gravitational field of the black hole).

Furthermore, the approach can be directly applied to pulsar timing data for

a pulsar moving in an external gravitational field. A large number of pulsars will

likely be detected in the Galactic Center in the near future (see, e.g.,12). Pulsars

can move closer to the supermassive black hole than S-stars. This way, they may be

even more interesting for testing theories of gravity. The arrival times of the radio

pulses can be expressed through the redshift by using:

t
(N)
TOA = t

(N−1)
TOA + Tp(z + 1) = t

(N−1)
TOA + Tp

(kiui)s
(kiui)o

.

Here Tp — is the pulsar period in the reference frame of the pulsar, z is the redshift,

t
(j)
TOA — is the time of arrival of the j-th the pulse. In the problem of reconstructing

the pulsar motion in the neighbourhood of a supermassive black hole, there exists

one more unknown parameter — Tp.

Another interesting application of the results of this paper is reconstructing the

motion of a binary star in the vicinity of a black hole. Determining the motion of

such objects is a very important problem in astrophysics and stellar mechanics (see,

e.g.,27–31). An approach for solving the problem of determining only the relative

motion of the binary components was presented in our previous paper.32
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The approach can be applied directly to the redshift data for the stars, moving

near the supermassive black hole in the Galactic Center (for example, the S62 star2)

to test General Relativity. To do this, one may obtain the parameters of motion of

a star by using the presented algorithm and calculate the redshift as a function of

observation time for future observations. Then, comparing the obtained curve with

the observational data will allow one to test the theory.

One may use statistical methods (for example, Metropolis-Hastings algorithm,

see22) to increase the accuracy of reconstructing the motion of the star. Such meth-

ods allow one to calculate the likelihood probability distribution and optimise values

of parameters of motion of the star according to the distribution. The approach can

be generalised to reconstruct the motion of a star in the vicinity of a rotating black

hole. We leave this problem for future work.
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