
MAD, A FLOATING—POINT UNIT FOR MASSIVELY—PARALLEL
PROCESSORS

A. Bartoloni, C. Battista, S. Cabasino, N. Cabibbo, F. Del Prete, F. Marzano, P.S. Paolucci, R. Sarno, G. Salina, G.M. Todesco,

M. Torelli, R. Tripiccione, W. Tross, P. Vicini and E. Zanetti

Abstract

We describe in detail the architecture and implementation of the MAD chip. It is a floating point unit, used as the elementary

processing element of the APE100 array processor. The design has been accurately tailored to the requirements of a SIMD

floating point intensive machine.

1. Introduction
Dedicated processors have recently emerged as an important

element in the numerical simulations of Lattice Gauge Theories
(LGT). In fact, a fair fraction of LGT simulations have been
performed on dedicated processors in the last 5 years.

Typical dedicated machines for LGT (LGT engines, for
conciseness) exploit the rather unusual features of the relevant
numerical algorithms and are able to achieve sustained per-
formances exceeding those of state-of—the—art commercial
supercomputers [1]. This is possible for the following two
reasons. First, LGT algorithms are homogeneous and local, so that
massively parallel arrays of processing nodes with limited inter-
node connectivity achieve performances growing nearly linearly
with the number of processing nodes. Second, LGT calculations
exhibit an unusually high ratio of floating-point operations over
required data operand (of up to ten to one). This high ratio helps to
keep very fast processing nodes busy in spite of limited I/O
bandwidth capabilities. Moreover, limited bandwidth require-
ments make large arrays of processors easier to assemble.

It is interesting to note, however, that actual programs to
design, build, and operate LGT engines have been triggered
essentially by technological developments in the field of micro—
electronics. lndeed serious (that is, faster than commercial
machines) LGT engines appeared only in the mid eighties when
floating point chips were developed by industry. Later develop—
ments have essentially concentrated on the fairly limited increase
in the number of processing elements and their upgrade to the
better performing devices that have been developed.

In this paper, we report on a first attempt to resort to a dif—
ferent, albeit related, technological development to substantially
increase the performance of LGT engines by nearly two orders of
magnitude. This progress is made possible by the use of custom—
designed integrated circuits, which can be accurately tuned to the
rather unusual needs of LGT engines.

The plan of this paper is as follows: sect. 2 schematically
describes the architecture of the APE100, a massively—parallel
LGT engine whose processing node is based on one custom—
integrated circuit, the main arithmetic data (MAD) chip. A

© I99] Gordon and Bleach Science Publishers S A
Photocopying permitted by license only

discussion of the substantial advantages offered by custom design
for parallel LGT engines is given in sect. 3. Section 4 describes
the architecture of the MAD chip, while sect. 5 discusses the
technological constraints within which the design of our custom—
integrated circuit had to be performed. Section 6 presents details
on the actual implementation of the device. Section 7 contains
some remarks on our project methodology and is followed by our
conclusions.

2. The APE family of parallel LGT engines
This section is a brief introduction to LGT engines in general

and to the architecture of a specific family of parallel processors
known as the APE family. The interested reader is addressed to
the proceedings of the Lattice Conferences of the last few years
for the history of the development of dedicated computers for
LGT and to ref. [2] for a detailed description of the APE100.

LGT engines were proposed early in the eighties, when it was
realized that parallel processing was an efficient technique to
provide the computing power (typically, thousands of Cray level
CPU hours) necessary for realistic simulations of field theories on
the lattice. Indeed. LGT codes can be run on large processor
arrays with relative performance close to one, as long as the
number of processors does not exceed the number of physical
sites on the lattice (of the order of 304, or larger). The basic
reason why such unexpectedly high performance can be reached
is now explained.

Field theories are \discretized on a four—dimensional lattice of
points and dynamical variables corresponding to the physical
degrees of freedom are defined at each lattice site. A statistical
Monte Carlo procedure is used to provide equilibrium configura—
tions of the dynamical variables on which expectation values of
operators are measured. “Equilibrium" means that each config-
uration appears with a probability inversely proportional to the
exponential of its weight in the action. The evolution in Monte
Carlo time of the variables attached to each lattice points depends
only on the configuration at the point itself and at its neighbours
since actions are local. therefore the evolution of several lattice

Particle World, Vol 2. N0 3. p. 65—73. l99l

65

66

A Barloloni el all

points can be evaluated in parallel. Consequently, it is possible to
use several processors that operate concurrently on different sub—
lattices. Action locality ensures that communication overhead
between processors, one of the main factors in performance
degradation in parallel processing, will be limited. Load balanc—
ing among processors, another key factor to achieve high perfor—
mance in parallel systems is ensured by translational invariance
of the theory, so that each lattice point requires on average the
same amount of processing. Note also that since all lattice points
undergo the same evolution and measurement algorithms, the
simplest form of parallel processing, i.e. SIMD (Single
Instruction Multiple Data) processing is adequate for LGT.

The APE family of processors was proposed in 1985 to reach
the target of l Gflops in LGT simulations. APE [3] was a small-
scale parallel processor of nodes arranged along a ring; machines
with 4 to 16 nodes were built. All nodes operated in SIMD node
and accessed non-local data across a barrel—shift switching
network. It was decided to keep the number of nodes rather small,
and to squeeze as much processing power as possible inside each
node. Processors of 64 Mflops were built, incorporating a
hardwired complex number floating point unit. A SIMD structure
was used since it was simpler from the hardware point of view
and easier to program.

APE has been used for LGT simulations since 1986 (1987 for
the 16-node machine). The APE100 project was started in 1988
to provide a substantial increase in floating point performance
and a somewhat broader spectrum of applications for the
machine. This time, it was decided to set up a massively—parallel
machine, since assembling a large number of nodes is easier (if
each node is simple, compact and reliable) than building an
appreciably more powerful processing node. This point is
explained in detail in later sections.

The new project is a rather straightforward upgrade of the
original APE architecture. It provides a massively parallel array
of nodes (in excess of 1000) running in lock step mode and
steered by just one controller (SIMD architecture). There is a
major difference, however, in the topology of the processing
nodes. We have adopted a three—dimensional mesh, particularly
well adapted to the simulations of physical systems in three or
more dimensions. A further difference is that APE100 nodes
perform real (as opposed to complex) number arithmetics,
making the new machine much more versatile.

The actual structure of the machine is based on a processing
element containing one floating point unit and one memory bank.
Nodes can be assembled as one, two or three—dimensional arrays
of, in principle, arbitrary size with direct data links to nearest
neighbours in all dimensions. All nodes execute the same
instruction at each Clock cycle. Sequencing of program instruc—
tions is ensured by a master controller, which also provides the
common address to all memory banks. The peak performance of
the processing node is of the order of 50 Mflops (as explained in
detail in later sections). About 2000 nodes are necessary to reach

our 100 Gflops target. They can be assembled as, for instance, a
16 X I6 X 8 mesh of processors.

3. Custom chip design and massively-parallel processors
This section describes the reasons that led us to base the

actual implementation of the APE100 architecture on two custom
chips, incorporating respectively the floating point unit of each
node and the data link to the neighbour nodes.

It might seem that the assembly of some appropriate sets of
commercially available integrated circuits (floating point building
blocks. in our case) is the obvious way to design a complex com—
puter system. In the case of the APE100, a better choice was
available, as is explained below.

Floating point devices have been generally available for sev—
eral years now, with different levels of performance and integra—
tion. They can be broadly divided into:
(a) coprocessor devices for standard microprocessors,
(b) floating point subsystems embedded within a high-

performance microprocessor, and
(c) stand—alone floating point units.

None of these proved to be the best choice for our machine.
Class (a) is immediately ruled out for its low performance (in the
Mflops range), while class (b) (exemplified by the Intel i860) is
unsuited for the APE100, since it would require a complete re-
definition of the architecture of the machine. Class (c) must be
considered with more attention. Indeed, the floating point unit of

the original APE machine was assembled with commercial ALUs
(Arithmetic and Logic Units), multipliers and register files,
controlled at each clock cycle by an appropriate command word.
Several improved devices are now available, incorporating
arithmetic units and registers on the same chip, with clock rates
up to ~ 40 or 50 MHz, designed as floating point blocks for high—
performance workstations or graphics engines. These devices are
not the best choice for the APE100 for both architectural and
electrical reasons, as discussed in the next paragraph.

In a massively—parallel machine it is essential to keep the I/O
bandwidth for the computing nodes as low as possible without
compromising the floating point performance. This is not an
important design requirement in standard devices. A typical
routine for a graphical workstation might be a 3-d coordinate
transformation of a set of points. An optimized, possibly hand—
coded routine would first load the elements of the rotation matrix
A<i,j> and the displacement vector D<i> onto the register file.
The procedure would then load in succession the coordinates of
the data points P<i,n>, perform the coordinate transformation

P'<i,n> = A<i,j> P<j,n> + D<i> and store the new values.
The above calculation requires 18 floating point operations, 3

data inputs and 3 data outputs, that is, 3 floating point operations
per I/O operation. We call R the value of this ratio. In practice,
available floating point devices are tuned for a much smaller value
of R z 0.5 — 1, because they are designed to run code generated by

high—level (c.g., FORTRAN or C) compilers. These compilers are
not very efficient in register optimization and often save onto
memory all intermediate results of the calculation, requiring a
larger bandwidth. The strategy behind the design of typical
floating point devices is now clear: a small number of registers
(typically 32) is accompanied by one or even two 64—bit data
buses that can be used for input or output at each clock cycle. This
degradation of R is sustainable in a workstation that uses fast
memory devices and perhaps a cache, but would be prohibitively
expensive on a massive parallel machine. In this case the most
economical strategy consists in providing each node with a large
number of registers and in using an efficient compiler.

The actual number of registers required by this strategy can be
estimated by considering one of the most I/O intensive LGT
kernels, the product of a Wilson spinor by an SU(3) matrix |4|. The
working set includes one gauge matrix (identified by two of its
columns, a total of six complex numbers), one set of input fermion

fields (4 X 3 complex numbers) and one set of output fermion
fields, for a total I/O activity of 60 data words moved from/to
memory. The actual matrix multiply requires three complex
multiplies and 2 complex adds for each of the twelve numbers.
Altogether, 212 real operations are required, yielding an R of ~ 3.5,
not very different from the previous example. It must be stressed,
however, that we can achieve such a large value for R only if a
large working set (~ 70 words) can be kept inside the register file.
A smaller register file would lead to more frequent data moves, that
is, to a smaller value of R, even for very accurately tuned routines.
Extensive simulations on a variety of LGT algorithms have shown
that this strategy actually requires ~ 100 registers.

From the electrical point of view, standard floating point units
have large buses and high—clock rates, resulting in high-power
rates. They also require complex glue logic. Glue logic has a bad
impact on a massive system, since it usually requires a small
number of gates assembled on several chips of “smallish” scale of
integration. For instance, an error detection/correction circuit
contains about one thousand gates, but needs nearly as much
board space as one full floating point unit.

The above considerations lead to our picture of the ideal
floating point unit for a parallel engine: a dedicated device with a
large register file of ~ [00 registers, floating point arithmetic
circuits and all glue logic required to keep the node at work. The
data bandwidth can be kept rather low, compatible with a value of
R 2 2, but maximum flexibility must be provided to control the
chip, since it is anticipated that very efficient programming is
needed to sustain high performance.

Note finally that, although this type of device is accurately
tuned towards the requirements of LGT simulations, it can be
efficiently used in all kind of floating point compute-intensive
algorithms.

A device with the desired mix of features was not available,
and we had to develop it from scratch. Its structure is presented in
sect. 4.

A Baitoloni ct al

4. The architecture of the MAI) chip
This section presents a description of the architecture of the

MAD chip. with emphasis on the accurate tuning of the device to
the particular needs of both LGT calculations and embedding in a
SIMD parallel system.

The core oi the device is a floating point data—path, with
ample register space (I28 registers), a floating point multiplier
and a floating point ALU with equal performance, since mul—
tiplies are roughly equally frequent as adds in scientific compu—
tations. These basic building blocks must be wired together in
such a way as to: (a) maximize performance and (b) make auto—

matic code optimization as easy as possible. A complete dis-
cussion of these requirements would lead us far away, but can be
summarized by these two points:
(a) the configuration must be such that the multiplier and the

ALU can operate concurrently,
(b) for each operation there must be a unique source of operands

and a unique destination for results.
The second requirement frees the compiler from the burden

of choosing the best strategy for intermediate storage. In MAD,
all arithmetic operations are register—to—register. An optimal
layout within the above constraint is shown in fig. 1, where it is
understood that each port can be accessed at each clock cycle.

External data bus
i

that
(LL-
Register file

h MUL

| |
l ALU “

A possible optimal architecture fot the MAD chip.

This layout allows completely independent operation of both
floating point devices and of all I/O activity, with obvious
advantages for performance and code optimization. A serious

68

A Baitoloni cl all

drawback is that a large number, 8, of register ports are nec»
essary. requiring a very complex register file design and a wide
bit field for register addressing. We have therefore chosen the
layout of fig. 2.

32+7__.

LUT

X

Register file

(128 32—bit words)

5

’5 i

7" l— l ll- 32 V32 1’3- _/‘32
' l

I
l

V “V? l .
LOCALIF

ALU 9" LOGIC
.4 l

Simplified block diagram of the MAD chip.

This structure requires only six register ports, two less than in
the previous example. It does not guarantee that the multiplier
and the ALU can be kept busy at all times, but this is ensured for
several frequent algorithmic structures (e.g. matrix multiply, of
real or complex numbers), in which triadic expression must be
evaluated.

The main arithmetic data path is pipelined, so that a new
operation can be started at each clock cycle. The pipeline length

is chosen as a reasonable balance ol performance and latency and
is heavily dependent on technology considerations [5|. Details on
this point will be given int sect. 5. Note, however, that the
pipeline delay is the same for all arithmetic operations, a very
important element in achieving maximum performance with
relatively simple compilation techniqtlcs.

It is convenient to include additional hardware to the basic
structure discussed above, in order to guarantee reasonable per—
formance for those operations that, although less frequent, would
require long and cumbersome expansions in terms 01 adds and
multiplies. A list of these additional devices includes:
(a) Look—up (LU) circuitry encoding first approximations of the

functions |/.\‘ and l/\l.\'. Correct inverses and inverse roots are
calculated with an iteration procedure. One over square root
is traditionally preferred because it is more frequently used
than square root.

(b) Look-up circuitry for first approximations oi the log(,\‘) and
exp(r) functions, which are widely used special functions in
Monte Carlo algorithms. This circuitry is necessary because
bit—manipulation instructions used in standard routines to
compute logs and exps are not available on MAD.
All look-up operations are again register-to—register, but no

dedicated ports are available on the register file for this purpose.
The register—file ports to/from the data bus are used instead. This
configuration has been chosen in order that the main arithmetic
path can be kept active during LU accesses. Contention on the
[/0 bus is not a problem, since when an LU is accessed, a very
compute—intensive operation is being performed. so traffic on the
1/0 bus is expected to be low.

The arithmetic capabilities of the MAD chip have been
discussed so far. Let us now consider those features of the device
used to: (a) interface it to the outside world and (b) support SIMD
parallel operation.

Point (21) is straightforward. Just one bi—directional 32-bit data
bus is used for all data l/O activities. In the actual APElOO
system, this bus is directly connected to the memory bank and is
spied by the communication interface to the neighbour nodes.
Single and double—bit error detection and single—bit error cor-
rection circuitry are also provided (the check word is 7—bit long),
since it is crucial to keep the reliability of the whole system
within reasonable limits.

A filial feature of the MAD chip is a condition code handling
scheme that enhances the basic SIMD architecture, introducing a
parallel conditional structure (called WHERE(cond) THERE in APE
jargon, for instance ref. [6]). All instructions inside the WHERE
block are executed only in those processing nodes where the
relevant condition is true. The remaining nodes must perform no-
ops instead. This is obtained by freezing all memory and register
writes on these nodes and is controlled by a condition—code stack,
which allows nested conditional constructs. The latter is included
in a simple stack—machine, which allows the computation of
complex conditions (e.g. WHERE (A > B and C < D) THERE. etc.).

A last point to consider is the strategy used to control the
device. The usual approach for this purpose starts with the
(lelinition of a set of machine—level instructions rrscd in assembly
programs. Machine instructions are decoded and expanded into
elementary steps inside the device. A simpler approach provides
control bits to all sub—components at each clock cycle. The break—
up of each macro instruction into elementary actions becomes in
this case a software task, performed at some level of the corn—
pilation chain. This approach has two main advantages: first, the
hardware structure is simplified, since instruction decoding is no
longer necessary. More important, very efficient code optimiz—
ation can be performed in this way. The large size of the instruc-
tion word (48 bits. in our case) is not a serious problem in a SIMD
machine, where all processing elements share the same code.

5. Technology issues for the MAD chip
This section discusses the technology constraints that have

been taken into account in the design of the MAD chip, and
presents some estimates of the level of performance expected for
the circuit.

The first point concerns the electronic technology chosen to
implement the MAD chip. We have selected a CMOS technology
for several reasons. it offers the highest gate density available and
is the easiest to integrate in a complex system, thanks to its high—
noise immunity level and low—power consumption. CMOS tech—
nologies also offer the crucial advantage that simple but reliable
simulation models have been developed, so the behaviour of a
complex circuit can be tested before being fabricated. Finally, effi—
cient semi—custom design tools are available for this technology.

In principle, once the basic architecture of the chip has been
selected, chip performance has to be maximized. Generally
speaking performance can be increased with the use of more
complex (more parallel) circuitry, and increasing the number of
pipeline stages. On the other hand, as chip complexity is in-
creased, the area of the device becomes larger and intercon—
nection delays also grow, until some limits are reached that are
set by the technological process at hand. These figures also
depend strongly on the design style (full custom vs cell based)
that is used. Full custom design maximizes speed and minimizes
area, while cell-based design is slower and uses more silicon area,
brrt allows a very fast design style. A reasonable compromise has
to be set on all these points.

Our target performance has been set by the requirement that
the MAD chip interfaces easily with standard 4—Mbit DRAM
(Dynamic Random Access Memory) chips that have an access
time of ~ 80 ns. This requirement sets the clock rate of the device
at [2.5 X N MHz. where N is an integer number (preferably a
power of two). In principle, N can be made rather large, if enough
pipeline stages are inserted in the data path. A reasonable value of
N is suggested by some rough estimates of a few simple figures of
merit for the used technology [7].

/\ liarloloni cl rrl

Let rrs assume that the average switching time for a typical
gate is 7'0. and that the clock period is 1;. = II To. that is, about It
gate levels can be squeezed in each pipeline stage. Some time is
also used up in register transfer between stages. Let us write the
register transfer time as r X To. Then only It 7 r gates are left for
useful work. This means that the gate efficiency of the device is

8=(n#r)//r. (I)

while the required silicon area increases (under the optimistic
assumption that interconnections scale as the gate count) by

R:/r/(rrir) . (2)

Also. if the longest combinatorial path traverses L gates. the
number of pipeline stages required is

kZL/(Ilil‘). (3)

These simple relations show that there is a practical per—
formance limit inherent to the used technology, beyond which a
small increase of speed requires a much larger silicon area and
much longer pipelines (when eqs (2) and (3) start to depart from
linearity (fig. 3)). .

We use a 1.2 ttm CMOS technology/(iii) with To : 0.9 ns, and
r z 9. Corresponding values for 8, R and k are given in table I.

MAD working point ,

R,k ,

Estimated silicon area and pipeline corrnl vs clock frequency.

(15:) Our chips are manufactured by European Silicon Structures (E82) Paris

70

A. Bailoloni cl ul

Table l

. N 8 R k(nom1alized)
1 .899 1.1 l 1.00
2 797 [.25 2.25
4 .595 1.68 6.04

These numbers clearly show that the best—suited clock
frequency for our technology is at some value of N slightly larger
than 2, but definitely smaller than 4 (fig. 3). These considerations
suggest a clock period of 40 ns. Reasonable values for the pipe—
line length of the main arithmetic blocks are obtained with this
clock rate. as detailed in sect. 6.

Let us now consider the design style for our circuit. In our
[.2 pm technology, the smallest inverter gate can be built in an
area of ~ 250 umz, that is, 800 k transistors/cm? In real life. a full
custom design might reasonably be half as dense, while a cell—
based design could have between l00 k and 200 k transistor/cm?

A cell-based design seems appropriate for MAD, since a
floating point unit is not a very regular design and the estimated
gate count for all main blocks is not too high (for example the
multiplier and ALU require ~ 20 k transistors each) if single
precision only is implemented.

This is not true, however, for the register file, which has been
designed as a full custom block. On the one hand, the register file
is a very regular structure that can be built by abutment of a small
number of basic layouts. On the other hand, minimum dimension
transistors, not available as standard cells, are required in the
memory core. A rough estimate shows that a cell—based register
file would be nearly ten times larger than our custom design.

6. The MAD implementation
This section presents some details of the actual implement-

ation of MAD as a CMOS integrated circuit.
A detailed block diagram of the MAD chip is shown in fig. 4.

Basic elements of the circuit include the main arithmetic data
path, the register file, the look-up tables, the status register, the
condition-code block and the interface to the external bus, includ—
ing the error detection and correction circuitry. A representative
selection of these elements is described in the remainder of this
section. Full details can be found in ref. [8].

6.1 The MAD path
The MAD path is a 3-input block, containing a floating point

multiplier and ALU. The standard operation performed by this
block (called the “normal” operation, in the APE100 assembler
[6])isd=axb+c.

The multiplier always computes the product of a and I), while
the ALU is able to perform all eight combinations of additions
and subtractions (and the corresponding absolute values) of two
inputs.

Floating point arithmetics follows a consistent subset of the
IEEE floating point standard [9']. The published standard is not
fully adhered to, since:
(a) rounding to nearest is always performed,
(b) denormalized numbers (smaller than the smallest repre—

sentable value) are considered as true zero.
(e) no distinction is made between the IEEE representation of

infinity and the so—called not—a—number.
Full details on the arithmetics performed by MAD are given

in ref. [8]. Here, we only remark that we have succeeded in
maintaining almost complete consistency with the IEEE standard
for non-exceptional inputs and results, while discarding all those
features needed for general exception handling. They are not
needed in our case, and would greatly increase circuit complex—
ity. At an early stage of the project we considered the possibility
to build a combined multiplier adder with rounding applied only
after the adder stage. This scheme is simpler and faster from the
hardware point of view and also provides marginally higher
numerical accuracy, but we decided to implement independent
rounding after both multiply and add, in order to keep compat-
ibility with old APE arithmetics and standard IEEE hardware.

The multiplier has five pipeline levels, while the ALU re—
quires just four stages (the operand to result round—trip is eleven
stages long, including register access). These numbers do not
appreciably degrade the performance of typical floating point
intensive blocks of program.

6.2 Register file
The register file used in MAD contains 128 32-bit registers.

Register contents can be read from three ports at each clock
cycle, to provide operands for the arithmetic block. Results can
also be written at each clock cycle on one write port. These four
ports are used concurrently during the execution of typical
programs. Additional and independent write and read ports are
used to load or store data from/to the external bus.

The register file is the single largest block of the MAD chip,
in term of transistor count (it contains ~ 50 000 transistors). It had
to be designed as a full custom block, developed for us by E52, in
order to keep its size within reasonable limits.

6.3 Look-up circuitry
The basic ideas for the design of the look—up circuitry are

given here. Full details can be found in ref. [10].
In the case of the inverse and inverse—root functions, MAD

provides a look—up table for a first approximation to the result,
with 3—bit accuracy in the mantissa. A correct result (i 1 least-
significant bit) is obtained with four iteration steps. This choice
represent a substantial saving in hardware cost compared to
standard solutions, which use 8 bits into 8-bit PROMs.

The exponential function is evaluated in the following way.
Note first that exp(x) is equal to 2Z with z = x log2(e). If we write
2 = Int(z) + Frac(z), then 2Z = 2mm) x 2c(z)_

FPUEX
,. 7'!x1

:3 i A:

EX
SO

FT
RE

O

STATU‘K if7 , 7,*,W , ,7

\Z IOCODE <3.0>

|
IODECODEi

MP
:

M
AD

W
R

Fm

7:1}:i xo LU

—<] 15 GND

—<] 10 VDD

—<] 1spare

—<] 40 ns CLOCK

Detailed block diagram of the MAD chip

The floating point representation of ZN“) is simply the
integer value of 1111(2) + 127, shifted in the exponent field of the

E
X

D
A

E
i

\
_

l32+7

:_'-
;

;J—
SEN-:Hiim‘i

MN l -: ,
llNul! iii 7';

m LJr. y; '39-:7
lOEN
rlf‘l’lililMEl‘l

'MPYPIPE 1

MPYPIPE
MPYPIPE .-

MPYPIPE .1
|

ilmPWJIPE 5|
3 or I
_J A
-J '

‘ I "’ ,;]A ,:,B
_ ALUPlPE 1

[z ' I .|
'ALUPlPE2',1 , I

i ;ALUP|PE3I

I I j lALUPIPE4'
— ii. i :7

ii?

k. E :‘J‘f Yi'i'l I“.

DATIO

*39

ST
AC

KQ
<7

.0
>

MEMEN

*0

IF !> STACK I

EERAHvY
|

A Btuloloni cl Hi.

f TRISTATE

! MASKMEM

EDACEN

5° ADDR<6.0>

IFSTATUS

l .
7 lFCODE<3.0>

' ALUCODE<2.0>

.w;

CODE<47.0>

floating point representation. It can be readily seen by inspection
of the IEEE standard that the required integer value is contained

71

72

A Battoloni cl al

in the lowest—significant bits of the floating point number
F = z + M, where M is a magic number corresponding to the
floating point representation of (223 + 127). It can also be seen
that Int(:) 2 F — M, and Frac(z) = z — lnt(:).

The computation can be completed at this point by an
improved series expansion for 2F“lC(7-). Similar tricks are used for
the log function.

6.4 Error detection and correction
Data words are written to (read from) memory together with a

7—bit check pattern, allowing single—bit error correction and
double-bit error detection (this is usually known as EDAC
capability). Correction codes are necessary in the APElOt), since
the mean time between failures for uncorrected soft memory
errors is estimated at ~ 80 h. Our EDAC strategy raises this
number to the level of more than 100 days. The EDAC strategy is
compatible with the industry standard algorithms used for
instance in the 74LS632 integrated circuit. Inclusion of the
EDAC circuitry in MAD is a typical example of tailoring our
device to the needs of a massively—parallel processor. Indeed, we
have added some badly-needed additional circuitry to our chip
(adding just a few percent to the total gate count or silicon area)
that would require almost as much board space as MAD itself.

MAD chip prototypes were produced in fall I990. The final
chip layout has a size of ~ 9.4 X 9.4 mm2. It contains ~ [40 000
transistors and 20 000 standard cells and uses 1 18 pins, including
ground and supply lines. The register file uses ~ 30% of the chip
core, while the rows of a standard cell cover about half the core
area. Finally, 15% of the device is used for routing avenues.

Figure 5 shows the cell array and fig. 6 depicts the two metal
interconnect layers.

Cell layout of the MAD chip. Colour codes are: grey Iegister file; red multiplier:
yellow ALU; pink EDAC: and gt een condition-code stack machine.

5-‘---n¢n-nnm —_ filmwl.

Layout ol‘ the MAD chip. showing the two metal intetconnect luyets.

7. Design methodology
In a complex project such as MAD it is essential to be able at

each step to gain confidence in the correctness of the design, and
in its functionality. In the case of a programmable device, the best
strategy is that of building a software model, a simulator, which
can be used to execute real-life programs. At a first stage, the
behaviour of the simulator can be used to assess the merits of
particular design choices. In this respect, it was essential that a
compiler for the new machine, derived from the original APE
compiler, was available at an early stage of the development. We
have thus been able to run long programs (tens of thousands ma-
chine instructions). many of which actually are chunks of LGT
simulation programs. The output has been compared bit by bit
with those of corresponding code running on an IEEE compatible
workstation.

At a second stage the simulator was used to check the consis—
tency of the electrical design and to prepare and verify a set of
test vectors also produced by compiling real-life programs. In this
way we have a triple set of cross checks: the test vectors corre-
sponding to a given program can be fed to a logical simulator of
the electrical design. The resulting output can be compared with
both the results produced by the software simulator and those
obtained by a commercial machine. Furthermore, we can com—
pare the state of internal signals on the electrical design and on
the software simulator.

8. Conclusions
Given the powerful design tools now available, including

libraries of standard cells, it is now possible for a small group to
design powerful custom chips.

The lesson to be learned is that in our case a custom processor
proved the most economical solution for obtaining the building
block for our massively—parallel machine. Any standard solution
would have required four or five chips per processing element,
and we would not have been able to assemble many nodes (eight)
on a single board. The same approach will certainly prove useful
for other applications, especially in high-energy experimental
physics, in the frequent cases where nonstandard processors are
required in a large number of copies.

The CAD design techniques now available have made it
possible to complete the MAD design in ten months, with an
effort of about four man-years. A crucial part in the success of the
work has been the availability of a compilation chain for the new
device which has been derived from that written for our previous
APE parallel machine, which shares most of the key architectural
features with the APE100. The effort dedicated to the software
development represents an excellent investment, since the
compiler used for testing during the design stage will be the basis
of that used for the real machine.

Acknowledgements
We cannot even try to list all those people that have

contributed suggestions and ideas for this project. E. Marinari,
J. Pech and F. Rapuano have contributed to the early phases of
the project, while L. Elman and A. Vadillo have been precious for
their work within ES2. Finally, we warmly thank G. Parisi who
helped shape this project with his many ideas and continuous
support.

References
[1] R. Tripiccione, Nucl. Phys. B (proc. suppl.) 17 (1990) 137.
[2] The APE Collaboration, Roma preprint 733 (1990);

W. Tross, Status of the APE project, to be published in the
proceedings of LATTICE 90.

[3] M. Albanese et al., Comp; Phys. Comm. 45 (1987) 345.
[4] P.B. Mackenzie, Nucl. Phys. B (proc. suppl.) 17 (1990) I37

(and references therein).
[5] H.S. Stone, High-performance computer architectures,

ed. Addison Wesley (1987).
[6] The APE Collaboration, preprint A100/DOC/S01 (1990).
[7] C. Mead and L. Conway, Introduction to VLSI systems,

ed. Addison Wesley (1980).
[8] The APE Collaboration, preprint AlOO/DOC/HOI (1990).
[9] ANSI/IEEE Standard for Binary Floating Point Arithmetic,

No. 754 (1988).
[10] The APE Collaboration, preprint AlOO/DOC/GOl (1991).

A Baltoloni cl al

Addresses:

A. Bartoloni, C. Battista, S. Cabasino, F. Marzano, R. Sarno,
G.M. Todesco, M. Torelli, W. Tross and P. Vicini.
INFN. Sezione di Roma and Dipartimento di Fisica
Universita degli Studi di Roma, La Sapienza
Piazzale Aldo Moro, 2
1—00185 Roma (Italy)

N. Cabibbo, P.S. Paolucci and G. Salina.
INFN, Sezione di Roma and Dipartimento di Fisica
II Universita di Roma, Tor Vergata
Via Orazio Raimondo
La Romanina
I—00173 Roma (Italy)

F. De] Prete, R. Tripiccione and E. Zanetti.
INFN, Sezione di Pisa
Via Livornese, 582A
San Piero a Grado
1—56010 Pisa (Italy)

Received on 17 April 199/

73

