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Abstract

Five-dimensional N = 2 Yang-Mills-Einstein supergravity and its couplings to hyper and

tensor multiplets are considered on an orbifold spacetime of the form M4×S1/Γ, where Γ is

a discrete group. As is well known in such cases, supersymmetry is broken to N = 1 on the

orbifold fixed planes, and chiral 4D theories can be obtained from bulk hypermultiplets (or

from the coupling of fixed-plane supported fields). Five-dimensional gauge symmetries are

broken by boundary conditions for the fields, which are equivalent to some set of Γ-parity

assignments in the orbifold theory, allowing for arbitrary rank reduction. Furthermore, Wil-

son lines looping from one boundary to the other can break bulk gauge groups, or give rise

to vacuum expectation values for scalars on the boundaries, which can result in spontaneous

breaking of boundary gauge groups. The broken gauge symmetries do not survive as global

symmetries of the low energy theories below the compactification scale due to 4D minimal

couplings to gauge fields. Axionic fields are a generic feature, just as in any compactification

of M-theory (or string theory for that matter), and we exhibit the form of this field and its

role as the QCD axion, capable of resolving the strong-CP problem. The main motivation

for the orbifold theories here is taken to be orbifold-GUTs, wherein a unified gauge group is

sought in higher dimensions while allowing the orbifold reduction to handle problems such as

rapid proton decay, exotic matter, mass hierarchies, etc. To that end, we discuss the allow-

able minimal SU(5), SO(10) and E6 GUT theories with all fields living in five dimensions.

It is argued that, within the class of homogeneous quaternionic scalar manifolds character-

izing the hypermultiplet couplings in 5D, supergravity admits a restricted set of theories

that yield minimal phenomenological field content. In addition, non-compact gaugings are

a novel feature of supergravity theories, and in particular we consider the example of an

SU(5, 1) YMESGT in which all of the fields of the theory are connected by local (susy and

gauge) transformations that are symmetries of the Lagrangian. Such non-compact gaug-

ings allow a novel type of gauge-Higgs unification in higher dimensions. The possibility

of boundary-localized fields is considered only via anomaly arguments. In particular, the

theories with a 5D Chern-Simons form in the Lagrangian will give rise to anomaly inflow

classically (which is compensated globally in the S1/Z2 case). However, compensation lo-

cally requires the quantum theory to have a chiral anomaly on the boundary, which can

arise if there is an appropriate bulk fermionic field content, or otherwise by the addition of

appropriate boundary-supported fermionic fields with minimal coupling to the gauge fields
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propagating there. Some comments are made regarding the phenomenological features of

the models, such as the Yukawa couplings and scalar potentials, which depend on the size of

the fifth dimension as well as the scalar vacuum. Finally, we sketch the possible M-theoretic

origins of these theories, which is left for future work. In particular, the supergravity orb-

ifold theories generally correspond to phases of M-theory distinct from the strongly coupled

heterotic string, which has served as the primary phenomenological framework in the past.

Throughout, we try to compare and contrast with the phenomenological model building of

rigid susy orbifold-GUTs as well as the string/M-theoretic approaches that have dominated

the literature for the past decade.
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Chapter 1

Introduction

The Standard Model of particle physics (SM) that was formulated by the mid-1970s

represents a remarkable collision of theory and experiment. It has been tested to great

precision since then, and for the most part has held firm. The model can be summarized in

a tidy fashion, hiding the great amount of understanding that is contained within it. It is a

quantum field theory with spontaneously broken SU(3)c×SU(2)L×U(1)Y local symmetry,

which manifests itself dynamically as propagating gauge fields (photons, gluons, W , B′)

coupled to three copies of the following leptons and quarks. Table (1.1) is a list of the first

generation of quarks and leptons distinguished by their representations under the SM gauge

group.

Field SU(3)× SU(2)× U(1) rep
(e−, νe)L (1, 2,−1)

e−R (1, 1,−2)
(u, d)L (3, 2, 1/3)
uR (3, 1, 4/3)
dR (3, 1,−2/3)

Table 1.1: First generation of Standard Model fermions and their representations

There are three independent couplings of SU(3)c × SU(2)L × U(1)Y , which we can

parametrize by gc, tan θW = gY /gL, e = gLgY /
√

(g2
L + g2

Y ), where gc is the SU(3)c strong

coupling; θW is called the weak mixing (or Weinberg) angle; and e is the electromagnetic

coupling of U(1)em.

There are a few tagged-on items to this model: (1) there must be a mechanism for the

spontaneous breakdown of (SU(2)× U(1))ew to U(1)em, which is popularly taken to be due

to a scalar (Higgs) field with an appropriate potential. These scalars must be in the real

2⊕ 2̄ of SU(2)L.1 (2) Neutrinos were found to have a mass, which means that the SM must

1See appendix for notational conventions.
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be modified to allow for this. This can naturally arise from the existence of a (νe)R field

with the same quantum numbers as (νe)L after electroweak (EW) symmetry breaking to the

gauge group SU(3)c × U(1)em.

Even as the model came into shape in the 1970s, the arbitrariness of the ∼ 20 independent

parameters was questioned. In light of the fact that next-generation colliders such as the

Large Hadron Collider (LHC) will involve dramatically higher energies and luminosities than

in the past decades, these questions are more relevant than ever. Perhaps the most suggestive

features pointing to physics beyond the Standard Model at the time of its formulation were

the phenomenological assignments of representations of the SM gauge group to the quarks

and leptons (table (1.1)). After the work of Pati and Salam in 1974 [PS74], Georgi and

Glashow showed [GG74] that one family of left-handed leptons and quarks could be grouped

into the reducible representation 5̄ ⊕ 10 of SU(5) (which contains SU(3) × SU(2) × U(1)

as a maximal compact subgroup). This was a hint that perhaps the three known gauge

interactions were part of a hidden simple gauge group such as the SU(5) they considered;

the three independent gauge couplings of the SM would be reduced to one. Electroweak-

strong unification scenarios in which the SM gauge group is embedded in a larger simple

gauge group (that is unbroken at energies somewhere above O(100)GeV are now popularly

known as Grand Unified Theories (GUTs).

While GUTs reduce the number of free parameters of the Standard Model, they introduce

issues of their own that must be addressed if they are to be taken seriously. For example, in

the Georgi-Glashow model, the Higgs scalars of the Standard Model must fall into represen-

tations of SU(5); the minimal way this can be done is by introducing additional scalars and

putting them all into the 5 ⊕ 5̄. The scalars form weak doublets and weak triplets under

the SM gauge group. Since only the doublets should be involved in the Standard Model,

this introduces the “doublet-triplet” splitting problem: how are the remaining scalars de-

coupled from the low energy theory (at the electroweak breaking scale Mew)? Furthermore,

these color triplets, along with the new gauge bosons of the larger SU(5) gauge group, al-

low for decay of the proton. Searches for such decays have resulted in a lower bound on

the proton lifetime of up to 2.3 × 1033 years at 90% confidence level (this is for the decay

p→ ν̄K+) [K05]; this in turn constrains the GUT models one can construct.

Soon after the SU(5) model, GUTs based on the simple compact gauge groups SO(10)

and E6 were proposed. Georgi [G75], and Fritzsch with Minkowski [FM75], showed that

the left-handed quarks and leptons of one generation could sit in the irreducible 16 of an

SO(10) gauge group by introducing a left-handed fermionic SM singlet. This extra field can

be identified as a left-handed anti-neutrino, which is necessarily accompanied by a right-
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Figure 1.1: Within the framework of the MSSM, the renormalization group flow of the
dimensionless SU(3)× SU(2)× U(1) gauge couplings α3, α2 and α1, and the dimensionless
gravitational coupling αG = κE2, are plotted vs. energy in GeV. Figure is from [P99].

handed neutrino. Again, after introducing additional scalars, the Higgs scalars can sit in

the real 10 of SO(10). Next, Gursey, Ramond and Sikivie[GRS76] proposed a model with

E6 gauge group under which one generation of left-handed fermions, including two new SM-

singlets, and the Higgs fields in the 10 of SO(10) form the irreducible 27. In these two

theories, the presence of a right-handed neutrino and left-handed anti-neutrino allows one

to form a light neutrino that’s charged under the weak interaction, and a more massive (but

unobserved) neutrino that is a SM singlet. As a downside to these models, an additional,

large Higgs sector must be introduced if the GUT groups are to be broken spontaneously.

It became apparent in the late 1970s that a number of attractive features could be brought

to the table if spacetime supersymmetry (susy) was included in a theory of particle physics.

In GUTs without supersymmetry, the value of the weak mixing angle (in the form of sin2 θW )

can be predicted [DRW81]; it is suggestively close to, but nevertheless discordant with, the

experimentally determined value. The presence of spacetime supersymmetry modifies the

assumption of gauge coupling unification leads to prediction of sin2 θW such that it is in better

agreement with experiment. The running of the dimensionless gauge couplings is shown

in figure (1.1). Supersymmetry also offers a partial resolution to an important question

that arises in electroweak theory: how is the mass of the Higgs scalar characterized by the

electroweak scale Mew, when it should receive radiative corrections on the order of larger

scales (such as a GUT scaleMU and ultimately the Planck scaleMP )? This Higgs naturalness
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(or gauge hierarchy) issue is partially resolved as follows: as long as supersymmetry is

unbroken, the massless Higgs scalars sit in supermultiplets that are protected from receiving

radiative mass corrections; once supersymmetry is broken, the remaining (massive) Higgs

scalar receives radiative corrections to its mass that are bounded by the supersymmetry

breaking scale. For the issue to be completely resolved, however, one must determine the

mechanism for low energy supersymmetry breaking that does not involve the naturalness

issue in a different guise.

The search for GUTs left out the question of gravitation in part due to the difficulties

surrounding this interaction; but also due to the fact that the predicted unification scale

in 4D field theory GUTs is 1016GeV , which is several orders of magnitude below the usual

“quantum gravity” scale, so that one may assume that quantum gravitational effects are

negligible. But a supersymmetric theory can only be coupled to gravitation if the super-

symmetry is made local, yielding supergravity [SW78, FvN78, CJSvNFG78, CJSFGvN79,

CFGvP82, CFGvP83]. Supergravity was once a promising candidate for a renormalizable or

even finite quantum field theory of gravity coupled to other gauge and matter fields. How-

ever, it became apparent that any theory whose involvement with gravitation was restricted

to simply an Einstein-Hilbert term in the Lagrangian would be non-renormalizable, even

with the softening of divergences among particles and superparticles [DKS77, DS99, D99].

The original idea of the unification of seemingly distinct interactions came in the form

of Kaluza-Klein unification of classical electromagnetism and gravitation: the two interac-

tions in four dimensions could be realized by general relativity in five spacetime dimensions.

Supergravity in D > 4 dimensions does not embody this type of unification since there are

higher dimensional fields in addition to the spacetime metric. However, the 11D supergrav-

ity [CJS78] gets closest to embodying this idea: it is a unique theory [D97b] without vector

gauge fields consisting of a gravity supermultiplet (graviton, gravitino, and 3-form field).

Not all of the vector fields upon compactification come from gravitation (i.e., the metric),

but it is close: they come from the fields that are related by supersymmetry transformations

to gravity.

Finding a phenomenologically interesting theory in four dimensions from 11D supergrav-

ity proved difficult historically. For example, the SO(8) gauge group obtained from round

sphere compactification of 11D supergravity on M4×S7 [CJ79] is not large enough to contain

the Standard Model gauge group. One needed a way to generate larger non-abelian gauge

symmetry, but smooth 7-manifolds with large isometry groups, and preserving minimal susy,

cannot give rise to a chiral theory of fermions in SM representations. It turns out that many

phenomenologically interesting spaces yielding large gauge symmetry are those with small
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or trivial isometry groups. But the idea behind this would require string theory.

There is an argument that simplicity alone is not sufficient for explaining the absence of

additional terms in a microscopic Lagrangian (see e.g. [W96b]). That is, if one leaves out

particular terms consistent with the low energy symmetries of nature, one must explain why

those particular terms are not present. For example, there are higher order interaction terms

one can add to the Einstein-Hilbert action that preserve the general coordinate invariance of

spacetime. String theory is an example of such a generalization of spacetime quantum field

theory: one can tentatively view it as an infinite expansion in higher order interaction terms

of the spacetime curvature and other fields, whose explicit form is not known. Obtaining a

proper effective field theory from a string theory (by integrating out states with string-scale

masses) appears to be difficult. However, supergravity appears as the truncation of the field

expansion of string theory to the massless string states at the string tree level. In this sense,

supergravity theories are generically the low energy approximation of superstring theories.

In 1984, Green and Schwarz showed that the gravitational anomalies of perturbative

superstring theory could cancel, leading to a consistent quantum theory of interacting

strings [GS84, GS85a, GS85b]. Furthermore, due to the nature of string interactions in

spacetime, perturbative string theory seems to be finite at each order in the topological

expansion in powers of the string coupling α′.2 Thus, the perturbative superstring theory

became a serious candidate to describe a quantum theory of gravitation, as well as of matter

and the other interactions. It was soon shown that there were only five distinct perturbative

superstring theories, which were consistent only in ten spacetime dimensions (consistent in

the sense that all of the possibly troublesome anomalies in local symmetries vanished).

To get from 10D string theory to 4D semi-realistic scenarios, it was originally noted that

the 10D ground state spacetime could be M4 × Y , where Y is a complex 3-manifold with

vanishing first Chern class (i.e., with holonomy SU(3)). Such a manifold Y is called a Calabi-

Yau manifold, and is chosen so that N = 1 supersymmetry is preserved in the low energy

4D theory. Such a compactification of the heterotic superstring theory with E8 × E8 gauge

group led to semi-realistic models in that, for example, one could find a Standard Model

gauge group, and one could show how to get several generations of matter particles as a

topological property of the internal space [W85, CHSW85, DHVW85, DHVW86]. However,

there remain a number of unresolved issues, and the full Standard Model has not been

obtained. In addition, the four dimensional Newtonian constant GN comes out orders of

magnitude too large (assuming Y is isotropic and the volume is V ∼ M−6
GUT , the prediction

2However, the full perturbation series diverges; it is not Borel summable.
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is GN ∼ 10−35GeV −1 compared to the observed GN ∼ 10−38GeV −1).3

Of course, perturbative S-matrices are not all there is to physics; there is non-perturbative

phenomena that cannot be captured by perturbative calculations. (There have been some

results in rigid supersymmetric theories regarding the extraction of non-perturbative physics

from perturbative calculations, though [DV02].) Classical general relativity, and presumably

any extension involving higher order interactions, is a background-field-independent theory:

given a suitable topology of spacetime, one solves a set of equations to find the metric on this

space. Perturbative string theory does not yet satisfactorily address this issue, though work

in string field theory has made serious in-roads [S89, S90a, S90b, S90c, S93]. It would be

surprising if some generic results from the quantum geometry program [A02, A03] were not

mirrored in a proper non-perturbative formulation (or generalization) of string theory. These

results are, afterall, simply a consequence of constructing a background-field-independent

quantum theory of spacetime geometry. One notable feature of string theory is that it

has provided a way of introducing topological and geometric transitions as well as allowing

particular classes of singular spacetime geometries. String theory does seem to have the

feature that background geometry is in the eye of the beholder: using strings as probes

allows for interpretation in terms of different geometries. This is reflected in early studies of

string dualities [DHVW85, DHVW86].

While perturbative string theories are consistent only in ten dimensions, there is a

(unique) 11D supergravity theory. It turns out that the strong coupling limit of some super-

string theories leads to an eleven dimensional theory, M-theory, whose weakly coupled low

energy description is the 11D supergravity [HW96a, HW96b, W96a] (the other string theo-

ries have each other as strongly coupled limits). Below we provide some of the weak-strong

coupling duality relationships between the heterotic E8×E8 string theory and M-theory by

listing the internal manifolds that lead to dual theories. For reviews, see [S97a, M99].

Heterotic M-theory

X X × S1/Z2

T n K3× T n−3

T 3 ×Q K3×Q

Table 1.2: Partial list of heterotic/M-theoretic dualities; X is a d-manifold preserving mini-
mal susy; 3 ≤ n ≤ 6; and Q is a 3-manifold.

3As pointed out in [W95], one can take Y to be anisotropic, with d dimensions each of size characterized
by the string coupling (∼

√
α′), and 6 − d dimensions each of size M−1

GUT to get the observed GUT scale
symmetry breaking, but the best one can do is still too large by an order of magnitude.
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As previously mentioned, it was shown that if gauge coupling unification was assumed and

supersymmetry was present at some higher energy, the prediction of the weak mixing angle,

in the form of sin2 θW , was closer to the experimental value than in non-supersymmetric

models [AdBF91, GKL91, EKN91, LL91]:

Experiment 0.23161± 0.00018
Non-Susy SU(5) GUT 0.214± 0.003± 0.006 ln[0.16GeV

ΛMS
]

Susy SU(5) GUT 0.236± 0.003
Heterotic String ?

Table 1.3: Values of sin2 θW

From the second to third line, the predicted value of sin2 θW gets better, while the scale of

unification, MU , is pushed up toward the scale at which quantum gravitational effects become

non-negligible (which we will call Mst whether or not string theory is actually involved). This

hints that perhaps a unification of all interactions should be sought. Afterall, there is much

extrapolation in traversing the desert between the electroweak scale Mew ∼ O(100)GeV , and

a conjectured unification scale MU . But a framework that incorporates gravitation must be

chosen before this issue can be addressed.

As we have mentioned, the heterotic superstring theory with E8×E8 gauge group is the

most direct route to string phenomenology, and involves a quantum theory of gravity (more

exactly, a modification of general relativity by higher order, but suppressed, interactions on

a classical background spacetime). We’ve denoted the prediction of sin2 θW for this theory

by ? in table (1.3) since the situation is complicated by the fact that we are now dealing with

a string theory, which naturally has a single parameter. As a result, unification of gauge

and gravitational couplings is a generic feature, and the scale of this unification is predicted

to be the string scale Mst. A naive field theory calculation (up to two loop order) shows

that the prediction of the weak mixing angle is far off from the measured value. (In other

words, the MSSM calculation predicts that MU << Mst, while the tree string calculation

predicts unification at Mst.) At this point there are various paths to take (see [D97a] for a

review), of which we’ll mention a few. (1) One can simply abandon the requirement that

gravitational and SM gauge couplings unify at a single scale, and instead allow the usual

GUT scenario at an intermediate scale4 (in which case, all couplings will still ultimately

unify at the string scale). (2) Sring theory allows one to abandon a GUT scenario altogether

by changing the Kac-Moody algebra of the string worldsheet so that all couplings unify at

4By intermediate, we mean an energy scale between the electroweak scale Mew and the scale Mst.
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the string scale, but without a GUT group. (3) Look for gauge and gravitational coupling

unification at a single energy by including heavy string and Wilson line corrections to the

renormalization group flow. We take the approach of the third path: as more corrections

are considered, the prediction for sin2 θW can move into closer agreement with measurement,

while the gauge coupling unification scale is pushed up even closer to the perturbative string

scale [NS95, NS97].

The work of Hor̆ava and Witten [HW96a, HW96b, W96a] showed that the territory of

weakly coupled string theories was only part of the string story. They showed that the strong

coupling limit of the 10D heterotic string theory with E8×E8 gauge group has a description as

a weakly coupled 11D theory (M-theory) on M10×S1/Z2, which is isomorphic to a spacetime

M10×I, where I is an interval. Further compactification on a Calabi-Yau 3-fold Y yields a

theory on M4 × S1/Z2 with gauge fields that have support only on the boundaries. Due to

the ground state product structure of the spacetime, the size of the spaces can be adjusted

independently; setting the size of S1/Z2 to be much larger than Y , we obtain an effective

5D theory at some intermediate energy scale. As a result, the running of the gravitational

coupling starting from 4D is pushed up at the compactification scale Mc (the inverse size R−1

of S1/Z2), and all four couplings can meet in the newly unveiled 5D theory. The running of

the gauge couplings is unaffected by the fifth dimension since the gauge fields are confined

to the 4D boundary. This allows a complete unification of couplings in the framework of

string theory, without ruining the original minimal supersymmetric SM predictions of sin2 θW

(this ignores the contributions due to heavy string states). In other words, the string scale is

pushed down toward the usual MSSM prediction of MU . Furthermore, such scenarios predict

a 4D Newtonian constant that can have a physically correct order of magnitude, in contrast

to compactifications of weakly coupled heterotic string theory.

The work of Hor̆ava and Witten deals with only one particular phase of M-theory: one

in which there is an unbroken E8 gauge group at the 10D boundaries of the 11D spacetime.

But M-theory can sit on a myriad of backgrounds with 4D low energy effective behavior

giving various gauged supergravity theories coupled to matter. Some of these have a 5D

universe at an intermediate energy scale. The details of these theories are hard to come by

since the internal 7-manifold must have G2 structure [AW03], and such manifolds are not as

well-known as Calabi-Yau manifolds.

Taking a step back, field-theoretic model building has a long history of scenarios in which

the universe appears higher-dimensional above some energy scale. As previously mentioned,

the original Kaluza-Klein scenarios involved compactification on S1 or tori, and attempts

were made in obtaining four-dimensional gauge and gravitational symmetries from the higher
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dimensional gravitational theory (or supergravity in later versions). In [F83], it was pointed

out that the estimated scale of strong-electroweak unification, Msew ∼ 1016GeV , was around

the energy scale where a Kaluza-Klein type universe may not be able to be approximated by

a 4D theory, in which case grand unification would occur in higher dimensions. Earlier, the

authors of [M79, CM81] had constructed models in which one has a pure GUT gauge theory

in higher dimensions, leading to a low energy theory with Standard Model gauge group and

Higgs sector. Nevertheless, these Kaluza-Klein theories did not yield the Standard Model

for reasons depending on the scenarios.

In [A90], followed by [AADD98, ADPQ99], it was suggested that the size of an extra

dimension could be much larger (TeV scale) within the framework of perturbative string

theory (one of the motivations was to tie this scale to the N = 1 supersymmetry breaking

scale). Subsequently, the Hor̆ava-Witten (HW) scenario [HW96a, HW96b, W96a, LOSW98]

and Randall-Sundrum (RS) scenarios [RS99a, RS99b] served as the most recent revival of

the idea that there could be a five-dimensional universe at some intermediate energy scale,

but not via compactification on S1 (or tori in higher dimensional versions), but rather via

the “orbifold” S1/Γ (in the “upstairs picture”) [K00, K01a, K01b, K01c, AF01, HMR01a,

KY02, HMN02, DM02, HN01], which corresponds to a manifold with boundaries (in the

“downstairs picture”).5 More precisely, the points of M4 × S1 that are invariant under the

action of the discrete group Γ are isomorphic to four-dimensional boundaries. The interior

of the 5D spacetime is referred to as the “bulk”. In contrast to the HW and RS scenarios, in

these theories the SM gauge fields propagate in the full five dimensions, and gauge coupling

unification can be explored there.

From a ground-up perspective, spacetimes such as these can resolve a number of issues

in the supersymmetric Standard Model and supersymmetric GUTs, as well as move closer

to realizing the goals of the earlier Kaluza-Klein scenarios. The GUTs on these spacetimes,

which we refer to as orbifold-GUTs, can have suppressed proton decay by first eliminating

dimension five operators responsible for too-rapid decay rates; and second by giving large

masses to the new fields involved in the decay processes. Additionally, undesirable scalars

in Higgs multiplets of GUT theories can receive large masses, leaving only massless weak

doublets. These scenarios provide an alternative to 4D GUTs that have been ruled out, such

as the minimal supersymmetric SU(5) theory [MP01]. The presence of boundaries can also

perform some or all of the breaking of the GUT group to the Standard Model gauge group,

removing the need for an extended Higgs sector that is needed in 4D GUTs. However, since

5See chapter 4 for use of the term “orbifold” in this thesis.
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the gauge fields now live in 5D, the presence of the fifth dimension affects the running of the

gauge couplings, in contrast to the HW and RS scenarios. Therefore, we should be concerned

about the prediction of sin2 θW [DDG98, DDG99]. However, in 5D GUT theories, the fifth

dimension is the only extra dimension that is “large”, which means the modifications are

generically not as drastic (this can be seen in the calculations of gauge coupling running

throughout the orbifold-GUT literature).

There is another price to pay for going from four to five dimensions: not only is the

gravitational sector non-renormalizable, but the entire theory is non-renormalizable from

dimensional arguments, and the infinite tower of massive states can lead to catastrophic UV

effects [DT82a, DT82b]. One must introduce a cutoff or consider a UV completion via a UV

fixed point [S96b] or a new theory like superstring/M-theory. Of course, the latter theories

are consistent only in ten and eleven dimensions, respectively, and so we must pay the price

of additional dimensions if we are to use these as UV completions. Even if one cuts off the

theory so that there is a finite number of massive states, the presence of these states may still

be problematic. The orbifold-GUT literature is filled with calculations arguing that gauge

coupling unification can still be acheived in such circumstances.

If these theories are to be low energy effective descriptions of superstring theory, there is

a technical feature that makes unification scenarios nicer in 5D orbifold theories. To break

a GUT group to the Standard Model gauge group solely via a Higgs mechanism requires

fields in the adjoint, or larger, representation of the GUT group (as in the model in [NSW01]

described below). Such a state does not exist below the string scale in (weakly coupled)

heterotic string theory if the gauge group is based on a level one Kac-Moody algebra defined

on the worldsheet [DL89, FIQ90]. Thus, breaking the unified gauge group with a Higgs

mechanism at a 4D boundary requires a string theory whose 4D gauge group is based

on a higher level underlying Kac-Moody algebra. This is not as economical since a large

number of additional states, which appear unnecessary, are introduced.6 In contrast, one

can spontaneously break a partially unified gauge group with a level one spectrum, so all

that would remain is to explicitly break the unified group to such a partially unified gauge

group using boundary conditions. (Partially unified gauge group refers to non-simple groups

such as SU(5)×U(1), SU(4)× SU(2)× SU(2), or SU(3)× SU(3)× SU(3).) Such a mixed

scenario has been considered in [KR02]. This is one of the benefits of orbifold-GUT scenarios

(from the point of view of string theory).

Since an orbifold spacetime is singular, field theories are not well-defined on it, which

6There are alternative ways to obtain adjoint reps without extra massless matter [F95] but these models
seem to require a complicated setup.
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requires some further interpretation (in the downstairs picture, the boundary is sharp).

Supergravity admits solitonic solutions that could ultimately be interpreted as the boundaries

of these theories; these solutions are domain walls with some thickness, smoothing out the

singular nature of sharp boundaries. Alternatively, since supergravity is generally a low

energy approximation of string/M-theory, we can rely on the singularity-resolution that

takes place in those theories [DHVW85, DHVW86, M86, A94]. Anyway, in light of this

introduction so far, a natural next step from 5D supersymmetric orbifold-GUTs is to embed

them into 5D N = 2 supergravity. General features of 5D supergravity orbifolds (without

reference to string/M-theory) have been considered in the literature, with couplings to vector

and hypermultiplets [YL03, ZGAZ04, DGKL04].

Embedding 5D supersymmetric GUTs into supergravity is not a trivial incorporation,

as N = 2 supergravity places restrictive relationships between gaugings and matter content.

It helps to review the situation in the case of four-dimensional theories. In the case of

rigidly supersymmetric theories, the set of allowed spin-1/2 multiplet couplings is in one-to-

one correspondence with all Kähler manifolds in the case of N = 1 supersymmetry [Z79,

AGF80]; and hyper-Kähler manifolds in the case of N = 2 supersymmetry [AGF81]. Local

supersymmetry (supergravity) imposes additional restrictions such that the set of allowed

spin-1/2 multiplet couplings is in one-to-one correspondence with Hodge manifolds, which

are special cases of Kähler manifolds, in the case of N = 1 supersymmetry [CJSFGvN79,

BW82]; and one-to-one correspondence with quaternionic manifolds in the case of N = 2

supersymmetry [BW83]. Thus, in the case of N = 1 supersymmetry, only a subset of the

possible matter couplings with rigid supersymetry may be directly coupled to supergravity;

and in the case of N = 2 supersymmetry, none of the possible matter couplings with rigid

supersymmetry may be directly coupled to supergravity. The latter result follows from the

fact that quaternionic manifolds have non-zero curvature, while hyper-Kähler manifolds are

flat.

Despite the inability to directly couple N = 2 supersymmetric theories to supergravity,

we can obtain one theory from the other using a particular mapping. The mapping is between

quaternionic and hyper-Kähler manifolds as the curvature is taken to zero, corresponding to

the decoupling of supergravity (the “rigid limit”). See [ABC97, BDF98] for the discussion of

rigid limits in 4D N = 2 supergravity. It has not been proven that a rigid limit always exists.

In fact, it has been shown that there is no rigid limit for supergravity coupled to particular

compact scalar manifolds. If the rigid limit exists, we may take a supergravity theory with

compact gauge group coupled to a particular quaternionic scalar manifold, and obtain a

particular super-Yang-Mills theory coupled to a hyper-Kähler scalar manifold. Though the
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nature of the hypermultiplet couplings change in this limit, the gauge group representations

assigned to the hypermultiplets remain unchanged.

The layout of the thesis is as follows. Chapter 2 is a review five-dimensional N = 2 Yang-

Mills-Einstein supergravity theories (YMEGTs) coupled to tensor- and hyper-multiplets. In

chapter 3, which is based on [M05a], we discuss the phenomenologically interesting GUT field

content admitted by YMESGTs in the form of hypermultiplets, as well as discuss the pos-

sibilities of embedding this content in tensor multiplets or gauge multiplets of non-compact

gauge symmetries. Chapter 4, which is based on [GMZ05a, GMZ05b, M05b], introduces 5D

YMESGTs on the a spacetime that is topologicallyM4×S1/Γ, whereM4 is a 4-manifold and

Γ is a discrete group acting non-freely on the circle. The spectrum of boundary-propagating

supermultiplets, as determined by orbfifold parity assignments of bulk fields, is given. Fur-

thermore, the required parity assignments of objects other than fields are listed. In chapter

5, which is based on [M05c], we discuss the form of the symmetries arising from local sym-

metries of the YMESGT on the above spacetime and the anomalies that may break these

local symmetries. Chapter 6, which is also based on [M05c], covers a few phenomenological

issues arising from a YMESGT on the above spacetime, such as the presence of QCD-type

axions with possiblility of cosmologically allowed coupling strength and Yukawa terms. Fi-

nally in chapter 7, which will appear in [M05d], we discuss possible M-theoretic origins of

these theories, and contrast with previous string/M-phenomenology. Appendix 1 contains a

few conventions that we follow in the thesis. Appendix 2 covers more details of the orbifold

parity assignments discussed in chapter 4.
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Chapter 2

5D N = 2 Yang-Mills-Einstein Supergravity

2.1 Conventions

Let us lay out the conventions used in this thesis. We use the mostly plus signature ηm̂n̂ =

diag(−1,+1,+1,+1,+1) with m̂ = 0, 1, 2, 3, 5. For gamma matrices, we take

Γm =

(
0 σm

−σm 0

)
Γ5 =

(
i 0

0 −i

)

where σm are the 4D spacetime Pauli matrices, and m = 0, 1, 2, 3 is a tangent spacetime

index. We use the convention where Γm1···m℘ ≡ Γ[m1 · · ·Γm℘]. The charge conjugation matrix

is taken to be

C =

(
e 0

0 −e

)
where e =

(
0 −1

1 0

)
.

The charge conjugation matrix therefore satisfies

CT = −C = C−1 and CΓmC−1 = (Γm)T .

In five spacetime dimensions, there are a minimum of eight supercharges so that there is

a global SU(2)R symmetry (the automorphism group of the superalgebra). It is therefore

convenient to use symplectic-Majorana spinors, which form an explicit SU(2)R doublet.

Given a pair of 4-component spinors λi, the Dirac conjugate is defined by

λ̄i = (λi)
†Γ0,

where i is an SU(2)R index, which is raised and lowered according to

λi = εijλj λj = λiεij,
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with ε12 = ε12 = 1. Then a symplectic-Majorana spinor is one that satisfies

λ̄i = λi TC.

We will take the following form for our Majorana spinors showing the 2-component spinor

content:

λ1 =

(
ξ

eζ∗

)
λ2 =

(
ζ

−eξ∗

)
.

2.2 5D MESGTs

We follow the formulation of Maxwell-Einstein supergravity theories of Günaydin, Sierra,

and Townsend [GST84a] and their promotion to Yang-Mills-Einstein supergravity theo-

ries [GST85a, GST85b, EGZ01]. An N = 2 5D Maxwell-Einstein supergravity theory

(MESGT) describes the coupling of a minimal supergravity multiplet to nV vector super-

multiplets. The total field content is

{êm̂µ̂ ,Ψi
µ̂, A

I
µ̂, λ

i p̃, φx̃},

where the 5D curved spacetime index is µ̂ = 0̇, 1̇, 2̇, 3̇, 5̇; the 5D tangent spacetime index

is m̂ = 0, 1, 2, 3, 5; the index I = (0, 1, ..., nV ) labels the “bare graviphoton” and vector

fields from the nV vector multiplets; i = (1, 2) is an SU(2)R index; and p̃ = (1, ..., nV ) and

x̃ = (1, ..., nV ) label the fermions and scalars from the nV vector multiplets. The scalar fields

parametrize an nV -dimensional real Riemannian manifold MR, so the indices p̃, q̃, . . . and

x̃, ỹ, . . . may also be viewed as flat and curved indices of MR, respectively.

Introducing (nV + 1) parameters ξI(φ) depending on the scalar fields, we define a cubic

polynomial

V(ξ) = CIJKξ
IξJξK ,

where CIJK is a constant rank-3 symmetric tensor. This polynomial can be used to define a

symmetric rank-2 tensor

aIJ(ξ) = −1

3

∂

∂ξI
∂

∂ξJ
lnV(ξ).

The parameters ξI can be interpreted as coordinate functions for an (nV +1)-manifold, which

we call the “ambient space”. The tensor aIJ , which may have indefinite signature, defines a

metric on this space. However, the coordinates are restricted via V(ξ) > 0 so that the metric
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is positive definite, which means that the manifold is Riemannian. The equation V(ξ) = k

(k ∈ R) defines a family of real hypersurfaces, and in particular

V(ξ) = 1

defines a real nV -manifold. As was shown in [GST84a], this manifold can be identified with

the scalar manifold MR of the 5D MESGT. We can denote the restriction of the ambient

space metric to MR as:
◦
aIJ= aIJ |V=1.

The metric of the scalar manifold is the pullback of the restricted ambient space metric to

MR:

gx̃ỹ =
3

2κ̂2

◦
aIJ h

I
,x̃h

J
,ỹ,

where κ̂ is the 5D gravitational coupling (with units of inverse energy); and the function hI

is directly proportional to ξI |V=1:

hI(φ) =

√
2

3
ξI(φ)|V=1,

so that the hI are essentially embedding coordinates of MR in the ambient space. Both of

the metrics
◦
aIJ and gx̃ỹ are positive definite due to the constraint V > 0 that was imposed.

The vielbein f p̃x̃ relate curved and flat scalar manifold indices. In particular, the MR and

tangent space metrics are related by gx̃ỹ = f p̃x̃f
q̃
ỹηp̃q̃.

Up to four-fermion terms, the five-dimensional MESGT Lagrangian is [GST84a] (hats

denote 5D quantities)

ê−1L(5) =− 1

2κ̂2
R̂− 1

4

◦
aIJ F

I
µ̂ν̂F

J µ̂ν̂ − 1

2
gx̃ỹ∂µ̂φ

x̃∂µ̂φỹ

− 1

2κ̂2
Ψ̄i
µ̂Γ

µ̂ν̂ρ̂∇ν̂Ψρ̂ i −
1

2
λ̄ip̃
(
Γµ̂∇µ̂δ

p̃q̃ + Ωp̃q̃
x̃ Γµ̂∂µ̂φ

x̃
)
λq̃i

− i

2
λ̄i p̃Γµ̂Γν̂Ψµ̂ if

p̃
x̃∂ν̂φ

x̃ +
1

4
hp̃I λ̄

i p̃Γµ̂Γν̂ρ̂Ψµ̂ iF
I
ν̂ρ̂

+
iκ̂

2
√

6

(
1

4
δp̃q̃hI + Tp̃q̃r̃h

r̃
I

)
λ̄i p̃Γµ̂ν̂λq̃iF

I
µ̂ν̂

− 3i

8
√

6κ̂
hI
(
Ψ̄i
µ̂Γ

µ̂ν̂ρ̂σ̂Ψν̂ iF
I
ρ̂σ̂ + 2Ψ̄µ̂ iΨν̂

i F
I
µ̂ν̂

)
+
κ̂ê−1

6
√

6
CIJKε

µ̂ν̂ρ̂σ̂λ̂F I
µ̂ν̂F

J
ρ̂σ̂A

K
λ̂
,

(2.1)
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where ê−1 is the inverse of the fünfbein determinant; κ̂ is the 5D gravitational coupling; R

is the spacetime Ricci curvature scalar; ∇µ̂ is the spacetime covariant derivative based on

the spacetime spin connection; and F I
µν = 2∂[µA

I
ν] are abelian fieldstrengths.

The functions hI and hIx̃ satisfy a set of relations, which follow from supersymme-

try [GST84a]:

hIhI = 1 hIx̃hI = 0
◦
aIJ = hIhJ + hx̃Ih

ỹ
Jgx̃ỹ gx̃ỹ =

◦
aIJ h

I
x̃h

J
ỹ

CIJK =
5

2
hIhJhK −

3

2

◦
a(IJ hK) + Tx̃ỹz̃h

x̃
Ih

ỹ
Jh

z̃
K

hIx̃ = −
√

3

2κ̂2
hI,x̃ hI x̃ =

√
3

2κ̂2
hI,x̃.

(2.2)

As a result, we have

hI =
◦
aIJ h

J hIx̃ = gx̃ỹh
I ỹ

Tx̃ỹz̃ = CIJKh
I
x̃h

J
ỹh

K
z̃

CIJKh
K = hIhJ −

1

2
hp̃Ih

p̃
J .

Note that the canonical relationship gx̃ỹ = hIx̃h
J
ỹ

◦
aIJ is interpreted as the pullback of the

ambient space restriction to the scalar manifold upon use of (2.2), which involves κ̂.

The CIJK tensor completely determines the MESGT Lagrangian [GST84a]. Therefore,

the global symmetry group of the Lagrangian is given by the symmetry group, G, of this

tensor, along with automorphisms of the N = 2 superalgebra: G×SU(2)R. Since G consists

of symmetries of the full Lagrangian, they are symmetries of the scalar sector in particular,

and therefore isometries of the scalar manifold MR: G ⊂ Iso(MR) (the SU(2)R action is

trivial on the scalars). The full Lagrangian, however, is not necessarily invariant under the

full group Iso(MR). The action of G on the elements of the ambient space is ξI → M I
Jξ

J ,

with the C-tensor invariance condition

M I′

(ICJK)I′ = 0.

A sometimes convenient (“canonical”) basis can be chosen such that the C-tensor takes the

form [GST84a]

C000 = 1, C0ij = −1

2
δij, C00i = 0, Cijk = arbitrary, (2.3)



17

where we have made the index split I = (0, i) with i = 1, . . . , nV .

2.3 Gauged supergravity theories

A gauged supergravity theory can be obtained from a MESGT by promoting the vector fields

of the theory to gauge fields of a subgroup of the global symmetry group of the Lagrangian.

We use the terminology of [GST85a] when the following groups, K, are gauged:

K ⊂ G Yang-Mills-Einstein supergravity theory (YMESGT)

K ⊂ SU(2)R Gauged Maxwell-Einstein supergravity theory

K ⊂ G× SU(2)R Gauged YMESGT,

where, in the latter case, a (non-trivial) subgroup of both factors is gauged. We are primarily

interested in YMESGTs in this thesis.

Obviously, a necessary condition for a subgroup of the global symmetry group K ⊂ G to

be gauged is that there be enough vector multiplets (i.e., nV + 1 ≥ dim[K]). The symmetry

group of the Lagangian is broken to K by the minimal couplings that are introduced. The

nV + 1 vector fields of the theory decompose into K-reps

(nV + 1) = adj(K)⊕ non-singlets(K)⊕ singlets(K). (2.4)

Gauging a compact semi-simple group K yields at least one K-singlet spectator vector field

(which can be identified as the graviphoton). However, if there is an abelian factor in K,

the graviphoton can be identified as the corresponding gauge field.

2.3.1 Pure YMESGTs

Let us for now assume that there aren’t any non-singlets in the decomposition above. The

bosonic fields transform as follows under infinitesimal K-transformations parametrized by

αI(x):

δαA
I
µ̂ =− 1

g
∂µ̂α

I + αJf IJKA
K
µ̂

δαφ
x̃ =αIK x̃

I (φ)

δαλ
i p̃ =αILp̃q̃I (φ)λq̃,

(2.5)
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where K x̃
I (φ) are a set of nV +1 Killing vectors on the scalar manifold parametrized by the φx̃

(furnishing a representation of K); Lp̃q̃I are a set of nV +1 scalar-dependent K-representation

matrices;1 and f IJK and αI vanish if any index corresponds to a spectator (gauge singlet)

vector field. Now the CIJK must be a rank-3 symmetric invariant of K.

To obtain the YMESGT Lagrangian and supersymmetry transformations, one makes the

following replacements in the MESGT Lagrangian

F I
µ̂ν̂ −→ F I

µ̂ν̂ = F I
µ̂ν̂ + gf IJKA

J
µ̂A

K
ν̂

∂µ̂φ
x̃ −→ Dµ̂φ

x̃ = ∂µ̂φ
x̃ + gAIµ̂K

x̃
I (φ)

∇µ̂λ
i p̃ −→ Dµ̂λ

i p̃ + gAIµ̂L
p̃q̃
I (φ)λi q̃,

with the exception of the Chern-Simons term.2 Instead, we must (in general) replace the

term
κ̂ ê−1

6
√

6
CIJKε

µ̂ν̂ρ̂σ̂λ̂F I
µ̂ν̂F

J
ρ̂σ̂A

K
λ̂

with

κ̂ ê−1

6
√

6
CIJK ε

µ̂ν̂ρ̂σ̂λ̂{F I
µ̂ν̂F

J
ρ̂σ̂A

K
λ̂

+
3

2
gF I

µ̂ν̂A
J
ρ̂ (fKLMA

L
σ̂A

M
λ̂

)

+
3

5
g2(fJGHA

G
ν̂ A

H
ρ̂ )(fKLFA

L
σ̂A

F
λ̂
)AIµ̂}.

(2.6)

Furthermore, to preserve supersymmetry, one must add the Yukawa term

ê−1∆L = − i
2
gλ̄i p̃λq̃iKI[p̃h

I
q̃].

Finally, the supersymmetry transformations do not require corrections in the gauging pro-

cedure.

A pure 5D YMESGT does not have scalar potential, so that the bulk spacetime will be

flat.

1The transformation matrix fields are related to the Killing vectors by Lp̃q̃
I = K p̃;q̃

I − Ωp̃q̃
x̃ K x̃

I , where Ω is
the MR spin connection.

2By “Chern-Simons term”, we do not mean the 5D Chern-Simons form, in general. This will be the case
when CIJK is an irreducible tensor.
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2.3.2 YMESGTs coupled to tensor multiplets

Let’s return to the fact that, in general, the nV + 1 vector fields of a MESGT decompose

into K-reps as

nV + 1 = adj(K)⊕ non-singlets(K)⊕ singlets(K).

There is a conflict for non-singlet vector fields, as they must transform non-trivially under

a non-abelian group as well as have an associated abelian symmetry (being Maxwell fields).

The former will break the latter so that the vectors are not protected from becoming massive

at the quantum level. But if these vectors become massive, supersymmetry will be broken

due to a mismatch in bosonic and fermionic degrees of freedom. The simplest requirement

is for the non-singlet vector fields to be dualized to anti-symmetric tensor fields [GZ99]

satisfying a field equation that serves as a “self-duality constraint” (thus keeping the degrees

of freedom the same) [TPvN84].3 For a single uncoupled tensor in five dimensions, this is of

the form

Bµν = ic ε ρσλ
µν ∂[ρBσλ], (2.7)

where c has dimensions of inverse mass. The factor of i is required in odd spacetime di-

mensions so that the tensors can be written in a complex form, implying that there is an

even number nT of tensors. At the end of the day, one may write the tensors in a real

basis. However, since the tensors in a YMESGT will be K-non-singlets, the complex struc-

ture actually implies that one must have a symplectic structure, so that only gaugings in

which the non-singlets appearing in the decomposition form a symplectic representation are

allowed. This solves the problem since a tensor field does not require an associated abelian

invariance to remain massless. Now, if K is compact, there can be tensor fields transforming

in non-singlet representations of this group iff at least one abelian isometry from MR is

gauged in K. (The tensor fields must then at least be charged under the abelian factor, but

can transform non-trivially under the other factors as well, according to the decomposition

in (2.4).) It is important to note that, after gauging, g-dependent terms in the Lagrangian

prevent Hodge-dualization from tensors back to vectors.

Tensor supermultiplets are of the same form as the vector multiplets from which they

came. In fact, in the MESGT prior to gauging, the dualization from vectors AMµ̂ to tensors

BM
µ̂ν̂ does not modify the scalar and fermionic sectors. The scalar and fermionic fields of the

3In the case of maximal N = 8 supergravity in five dimensions, the AdS superalgebra already admits such
tensor couplings transforming non-trivially under the bosonic subalgebra [GRW85, GRW86, PPvN85, GM85].
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tensor sector are therefore intertwined with those of the vector sector of the YMESGT. We

can define

HĨ
µ̂ν̂ :=

(
F I
µ̂ν̂

BM
µ̂ν̂

)
,

where Ĩ = (I,M), and write the vector and tensor multiplets as4

{HĨ
µ̂ν̂ , λ

p̃ i, φx̃}.

However, to be consistent with the gauge symmetry, the components of the C-tensor are

constrained to have components:

CIMN =

√
6

2
ΩNPΛP

IM

CMNP = 0 CMIJ = 0, (2.8)

where ΩNP is the K-invariant symplectic metric on the space spanned by the BM
µν ; and ΛP

IM

are symplectic K-representation matrices appearing in the K-transformation of the tensor

fields: δαB
M
µν = αIΛM

INB
N
µν . Furthermore, CIJK must be a rank-three symmetric K-invariant

tensor as in the pure YMESGT case. Note: We are assuming a gauge group of the form

Ksemi−simple ×Kabelian; see [BCdWGVvP04] for more general couplings where CMIJ 6= 0.

The terms in the bosonic 5D Lagrangian involving tensors are [GZ99]

ê−1LT = −1

4

◦
aMN BM

µ̂ν̂ B
N
ρ̂σ̂ ĝ

µ̂ρ̂ĝν̂σ̂ − 1

2

◦
aIM F I

µ̂ν̂ B
M
ρ̂σ̂ ĝ

µ̂ρ̂ĝν̂σ̂

+
ê−1

4g
εµ̂ν̂ρ̂σ̂λ̂ ΩMNB

M
µ̂ν̂ ∇ρ̂B

N
σ̂λ̂

+
ê−1

2
√

6
CMNI ε

µ̂ν̂ρ̂σ̂λ̂BM
µ̂ν̂ B

N
ρ̂σ̂ A

I
λ̂
.

The 5D field equations for the BM
µ̂ν̂ (in form notation) are

?DBM = gΩMN ◦
aMĨ H

Ĩ .

4It is understood here that the 2-forms FI satisfy the Bianchi identity FI = DAI , so that the 1-forms
AI are the fundamental fields.
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2.3.3 Coupling to hypermultiplets

An N = 2 5D hypermultiplet consists of four real scalars and four helicity 1/2 states. A

collection of nH hypermultiplets is then

{ζ iA, qX̃}.

The scalars qX̃ (X̃ = 1, . . . , 4nH) of nH hypermultiplets parametrize a 4nH-real-dimensional

quaternionic scalar manifold MQ with tangent space group Usp(2nH) × Usp(2) [BW83].

The 4nH-bein f X̃iA relate scalar manifold and tangent space metrics

gX̃Ỹ f
X̃
iAf

Ỹ
jB = εijCAB,

where X̃, Ỹ are curved indices; i, j = 1, 2 are Usp(2) indices; and A,B = 1, . . . , 2nH are

Usp(2nH) indices.

The total scalar manifold of a MESGT coupled to hypermultiplets is

M≡MR ×MQ,

with isometry group Iso(M) ' Iso(MR) × Iso(MQ) [S85]. Once again, one can gauge a

subgroup K ⊂ G ⊂ Iso(M). In particular, since we want non-trivially charged hypermulti-

plets, K ⊂ Iso(MR) × Iso(MQ), where K is generally Ksemi ×Kabel. For the semi-simple

part, Ksemi ⊂ G1 × G2 ⊂ Iso(M) such that Ksemi is isomorphic to both a subgroup of

G1 ⊂ Iso(MR) and a subgroup of G2 ⊂ Iso(MQ).

If there are non-trivial isometries of MQ, the Killing fields KX̃
I , and the related repre-

sentation matrices LABI using the MQ spin connection, act as

δαq
X̃ = αIKX̃

I (q)

δαζ
A = αILABI (q)

(2.9)

The susy transformations are

δqX̃ = −iε̄iζAf X̃iA

δζA = −1

2
Γm̂εiDm̂q

X̃fA
iX̃

+

√
6

4
gεifA

X̃i
KX̃
I h

I(φ) + · · · ,
(2.10)

where dots in the fermion transformation indicate terms with fermionic fields. The hyper-
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multiplet Lagrangian (coupled to a YMESGT), without all-fermionic terms, is

ê−1Lhyper =− 1

2
gX̃ỸDµ̂q

X̃Dµ̂qỸ − ζ̄AΓµ̂Dµ̂ζA −
2ĝ2

κ̂2
Vi AV

i A

+ iζ̄AΓm̂Γµ̂Dµ̂q
X̃Ψi

m̂f
A
iX̃

+

√
6

8
iκ̂hI ζ̄AΓm̂n̂HI

m̂n̂ζ
A

+ ĝ[− 2

κ̂2
V A
i ζ̄AΓm̂Ψi

m̂ −
√

3

2κ̂2
ihItAIB ζ̄Aζ

B + 2iKX̃
I f

A
iX̃
hIxζ̄Aλ

i x],

(2.11)

where the tAIB are nV + 1 gauge group representation matrices for the fermions, which are

determined by the Killing fields KX̃
I of the quaternionic scalar manifold. Smooth manifolds,

such as the quaternionic manifolds parametrized by the qX̃ , have an affine connection ΓX̃
Ỹ Z̃

.

But in the vielbein formulation, there are local fields f X̃iA (the vielbein), and local connections

γX̃AB determined by them. Therefore, letting DX̃K
Ỹ
I ≡ ∂X̃K

Ỹ
I + ΓỸ

X̃Z̃
KZ̃
I

tAIB ≡
1

2
f X̃iBDX̃K

Ỹ
J f

iA
Ỹ
.

Also,

V i A ≡
√

6

4
hIKX̃

I f
A i
X̃

(2.12)

and the K-covariant derivatives act as

Dµ̂q
X̃ = Dµ̂q

X̃ + gAIµ̂K
X̃
I (q)

Dµ̂ζ
A = Dµ̂ζ

A + gAIµ̂ω
A
IB(q)ζB

(2.13)

with Dµ the covariant derivative based on the tangent space Lorentz and Usp(2nH)×SU(2)

connections. The scalar potential admits supersymmetric AdS vacua.
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Chapter 3

Options for Phenomenological Field Content

in 5D

In orbifold-GUTs, the five-dimensional field content for a given gauge group is not arbi-

trary, but depends on the scalar manifold MV ×MQ chosen. In this chapter, we describe

some of the phenomenologically interesting vector, tensor, and hypermultiplets that can be

coupled to supergravity with gauge groups SU(5), SO(10) and E6. The material in this

chapter is based on [M05a].

3.1 Options for 5D hypermultiplets

In orbifold theories, the minimal supersymmetric Standard Model (MSSM) Higgs sector can

be taken to lie in 5D hypermultiplets. Furthermore, if we do not wish to deal with ad hoc

additions of SM matter on the boundaries of the spacetime, we can incorporate these fields

in bulk hypermultiplets as well. The goal of this section is to then examine the possibilities

for coupling hypermultiplets that are charged under a GUT group SU(5), SO(10), or E6

within the framework of 5D N = 2 supergravity. Although there may be further mention of

orbifold field theories in this chapter, we will not need to know any of the details until the

next chapter.

Due to supersymmetry, the scalars in 5D hypermultiplets must generally form the

2(Σini)⊕ 2Σα(nα ⊕ n̄α)

representation of any gauge group we consider, where i labels pseudoreal irreps and α labels

real and complex irreps. Notice the factor of two (not four) in front of the pseudoreal

terms; this is due to the fact that such 5D hypermultiplets can be split into two 4D chiral

multiplets each in a pseudoreal irrep of a gauge group, which is a reflection of the fact that

they are self-conjugate. The main groups discussed here (SU(5), SO(10), and E6) do not
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carry pseudoreal representations. However, E7 has the 56, which will play a role later on.

Let’s set our notation. A 5D N = 2 hypermultiplet contains four real scalars. If 4m

scalars form the real or complex representations mH ≡ 2(m ⊕ m̄), we say that the hyper-

multiplet is in the m (we do not need to distinguish from m̄). If the 4m scalars form the

pseudoreal mH = 2[2m], we will denote the hypermultiplet as being in the 2m. A 4D

N = 1 spin-1/2 multiplet contains two real scalars. If 2m scalars form the real or complex

mC ≡ m ⊕m, we say that the spin-1/2 multiplet is in the m (or equivalently, there is a

chiral plet in the m and its CPT conjugate); while if the 2m scalars form the 2m, we say

the spin-1/2 multiplet is in the pseudoreal 2m.

The 4D minimal supersymmetric Standard Model requires a minimum Higgs supermul-

tiplet content of two chiral multiplets forming the 2 ⊕ 2̄ of SU(2), along with their CPT

conjugate supermultiplets. In fact, this minimum number is preferred by predictions of

sin2 θW [DG81, AdBF91, GKL91, EKN91, LL91]. However, we do not need to assume such

minimality in general; in fact, some constructions outside the framework of orbifold-GUTs

prefer non-minimal Higgs coupling [BL99, BKL01, BL04].

A 5D hypermultiplet H consists of four scalars and two spin-1/2 fields, which would form

a pair of 4D N = 1 chiral multiplets {H,Hc} and their CPT conjugates. However, orbifold

parity assignments restrict the boundary propagating modes to be either the H or Hc chiral

multiplets. Therefore, in SU(5) orbifold models the Higgs scalars can be minimally taken to

come from 5D hypermultiplets in the 5⊕5 of SU(5). In SO(10) orbifold models, the scalars

are taken to sit in a 5D hypermultiplet in the 10 of SO(10).

The hypermultiplet content necessary to contain Standard Model matter in five dimen-

sions is also a simple extension of the matter content in 4D supersymmetric GUTs. In the

supersymmetric GUTs (in four dimensions), matter fields lie in chiral multiplets. For SU(5)

GUTs, the left-handed quarks and leptons sit in left-chiral supermultiplets in the 5̄⊕10; for

SO(10) GUTs, the left-chiral multiplets, including an (unobserved) additional susy Standard

Model singlet, are in the spinor irrep 16. We have saved the case of E6 GUTs until now

since SM Higgs, quarks, leptons, and the additional SM singlet all fit into the fundamental

irrep 27.

3.1.1 Simple classes of YMESGTs without tensors or spectators

There are many YMESGTs one can consider, characterized by various choices of CIJK , and

the gauging generally requires a number of spectator vector fields and/or the presence of

charged tensors (with the latter requiring an abelian gauge factor). Throughout, we will be
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interested in relatively large non-abelian gaugings of the form Ksimple×U(1) for the purposes

of discussing five-dimensional GUTs, and in which there is minimal additional field content.

In this section, we list several forms of the C-tensor that allow gaugings not involving tensors

or “extra” spectators (that is, other than the graviphoton in the case of compact gaugings).

This is to allow us to first focus on the coupling of charged hypermultiplets containing matter

and/or Higgs fields.

(1) Consider the simple theory with nV vector multiplets and

Cijk = 0.

The scalar manifold for this choice of theories is in general non-homogeneous, and the La-

grangian is invariant under the maximum possible group G = SO(nV ) (as is clear from the

form of Cijk). The vector fields decompose as nV⊕ 1 under G. Thus, the vector fields other

than the graviphoton transform in the fundamental representation of SO(nV ); the gravipho-

ton is a spectator vector field.

Remark : any choice of Cijk 6= 0 breaks the global symmetry group of the Lagrangian to a

subgroup of SO(nV ), and the nV vector fields will no longer necessarily form an irrep of this

new symmetry group.

The adjoint representation of any compact group K can always be embedded in the

fundamental representation of SO(nV ) with nV ≥ dim(K); the nV − dim(K) vectors join

the graviphoton as spectators.

It follows that the adjoint representation of K can be exactly embedded into the nV of

SO(nV ) without additional fields (i.e., nV = dim(K)). For example, consider nV = 24 and

K = SU(5); nV = 45 and K = SO(10); or nV = 78 and K = E6. In this way, we can obtain

an SU(5), SO(10), or E6 YMESGT with singlet graviphoton. Of course, one may consider

other compact gaugings similarly.

(2) One may split the index i = (a, α), and take Cijk to be

Cabc = bdabc Cαβγ = 0,

where dabc are the d-symbols of SU(n) ⊂ SO(nV ); and b ≥ 0 is a real parameter. The group

action preserving the C-tensor is consequently reduced to a subgroup SU(n) ⊂ SO(nV ).

Now, K ⊂ SU(n) can be gauged, with the remaining nV − dim(K) vector fields outside the

adjoint representation being spectators. Again, if we are interested in minimal field content,

then we demand that nV = dim(K), which means that we must restrict out attention to
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SU(n) gaugings with dim[SU(n)] = nV . There are then no vector fields with α indices (i.e.,

no singlets).

Remark : In contrast to the case of b = 0, for b 6= 0 we have a single parameter family of

theories. The theories are of the same form, since the C-tensor determines couplings in the

theory, but there is a single adjustable parameter affecting the strength of those couplings.

(3) There is a class of theories called unified YMESGTs1 in which all vector fields of the

theory, including the graviphoton, furnish the adjoint representation of a simple gauge group.

The known 5D unified YMESGTs are those in which the CIJK are the d-symbols of the

“reduced” Lorentzian Jordan algebras JC
(1,N)0 (N > 2), which can be realized as traceless

(N + 1) × (N + 1) matrices with complex elements that are hermitian with respect to an

(N + 1)-dimensional Minkwoski metric. In a unified YMESGT, the gauge group is the

invariance group of the CIJK , which in the known cases is the automorphism group of the

full Lorentzian Jordan algebra JC
(1,N), which is SU(N, 1) (this is the group under which the

Jordan algebra is reducible: {e}⊕JC
(1,N)0, where {e} are elements proportional to the identity

of the full Jordan algebra).

While the above pure YMESGTs are minimal in their additional field content, we should

note that there can be important implications in four dimensions (either in the dimensional

reduction or orbifold effective theory) based on one’s choice of CIJK components. In partic-

ular, this is responsible for determining the part of the 4D scalar manifold arising from the

MESGT sector.

3.1.2 Theories based on homogeneous quaternionic scalar mani-

folds

To list the hypermultiplet content allowed by supergravity, one starts with a particular

quaternionic scalar manifold admitting the desired gauge group, and corresponding to some

total number of hypermultiplets in representations of Iso(MQ). The representations of

the (real) scalars break down under the global symmetry group of the Lagrangian, G ⊂
Iso(MR) × Iso(MQ). Finally, under the group we wish to gauge, K ⊂ G, the scalars

decompose further giving the spectrum of hypermultiplet representations in the theory.

It is a simple exercise to write down the list of possible matter representations given

a gauge group and quaternionic scalar manifold. We first list the hypermultiplets that

appear in theories based on homogeneous/symmetric spaces, followed by a brief discussion

1We use boldface to distinguish this from grand unification. We will discuss this more later
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of those based on homogeneous/non-symmetric quaternionic scalar manifolds. We then make

comments on non-homogeneous quaternionic scalar manifolds in section (3.1.4).

Homogeneous spaces are characterized by the fact that the isometry group acts transi-

tively on the space M. Such spaces are isomorphic to Iso(M)/H, where H is the isotropy

group of M. Generally, though not always, homogeneous spaces are the ones admitting large

isometry groups, which can then admit large gauge groups. A listing of the homogeneous

“special” quaternionic manifolds appearing in the coupling to supergravity (in 3, 4, and 5

spacetime dimensions) can be found in [dWVP95]; the spaces we are interested in are given

in table (3.1). For these theories, Iso(MQ) is the symmetry group G of the Lagrangian.

After reducing the scalars of these theories down to reps of E6, SO(10), and SU(5), we

find the possible hypermultiplet representations charged under those gauge groups; they are

given in tables (3.2), (3.3) and (3.4), respectively. We have listed those cases with the lowest

irrep dimensions (with the exception of the case L(0, 74)).



28Type Scalar Manifold dimH(MQ) HQ-rep of scalars

L(0, P ) SO(P+4,4)
SO(P+4)×SO(4) P + 4 (P + 4,4)

L(2, 1) E6

SU(6)×SU(2) 10 (20,2)

L(4, 1) E7

SO(12)×SU(2)
16 (32′,2)

L(8, 1) E8

E7×SU(2) 28 (56,2)

L(−3, P ) USp(2P+2,2)
USp(2P+2)×SU(2) P + 1 (2P + 2,2)

L(−2, P ) SU(P+2,2)
SU(P+2)×SU(2)×U(1) P + 2 (P + 2,2)⊕ (P + 2,2)

L(q, P ) Discussed in text

Table 3.1: Homogeneous quaternionic scalar manifolds. The “type” of space is the classifi-
cation name as in [dWVP95]; and HQ is the isotropy group of MQ.
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Type dimH(MQ) K-rep of hypermultiplets

L(−2, P ) P + 2 = 27n n(27)
L(0, P ) P + 4 = 54 27⊕ 27

78 78
L(8, 1) 28 1⊕ 27

Table 3.2: List of hypermultiplets in lowest dimensional representations when gauging E6,
where n = 1, 2, . . ..

Type dimH(MQ) K-rep of hypermultiplets

L(−2, P ) P + 2 = 27n n(1⊕ 10⊕ 16)
L(0, P ) P + 4 = 10n n(10)

78 1⊕ 2(16)⊕ 45
L(4, 1) 16 16
L(8, 1) 28 2(1)⊕ 10⊕ 16

Table 3.3: List of hypermultiplets in lowest dimensional representations when gauging
SO(10), where n = 1, 2, . . ..

Type dimH(MQ) K-rep of hypermultiplets

L(−3, P ) P + 1 = 5n n(5)
L(−2, P ) P + 2 = 5n n(5)

27n 2n(1)⊕ 3n(5)⊕ n(10)
L(0, P ) P + 4 = 10n 2n(5)

78 4(1)⊕ 2(5)⊕ 4(10)⊕ 24
L(2, 1) 10 10
L(4, 1) 16 1⊕ 5⊕ 10
L(8, 1) 28 3(1)⊕ 3(5)⊕ 10

Table 3.4: List of hypermultiplets in lowest dimensional representations when gauging SU(5),
where n = 1, 2, . . ..



30

3.1.3 Homogeneous, non-symmetric spaces

Other L(q,P):

We will now go through the type of hypermultiplet content obtained by coupling homogeneous/non-

symmetric quaternionic scalar manifolds to supergravity. There will generically be a number

of gauge singlets in addition to non-trivial irreps. The isotropy group for quaternionic scalar

manifolds L(q, P ) that are homogeneous, but non-symmetric is

H = SO(q + 3)× SU(2)× Sq(P, Ṗ ),

where Sq(P, Ṗ ) is given in table 10 of [dWVP95]. The quaternionic dimension of the manifold

is

n+ 1 = 4 + q + (P + Ṗ )Dq+1.

The isometry algebra has a three-grading with respect to a generator ε′:

V = V0 ⊕ V1 ⊕ V2

V0 = ε′ ⊕ so(q + 3, 3)⊕ sq(P, Ṗ )

V1 = (1, spinor, vector)

V2 = (2, vector, 0),

where spinor is the spinor representation of so(q + 3, 3), which is dimension 4Dq+1.

• SU(5) ⊂ H

The only way this can arise is when Sq ≡ U(5); in turn, this occurs for:

q Dq+1 P dimH(MQ)

2 4 5 26

6 16 5 90

When we gauge SU(5), the scalars will then have the following representation under

the gauge group:

[1⊕ (9 + 3q)1]⊕ [2Dq+1(5⊕ 5̄)]⊕ [(q + 6)1].

• SU(6) ⊂ H

Again, the only way to get this is to have Sq ≡ U(6). This case is then similar to the



31

above, with P = 6. We will get vectors and singlets of SU(6), and therefore 5s and

singlets of SU(5).

• SO(10) ⊂ H

A. Sq ≡ SO(10)

The choices are then

q Dq+1 P dimH(MQ)

−1 1 10 13

1 2 10 25

7 16 10 171

The scalars in these cases form the following representation under SO(10):

[1⊕ (3q + 9)1)]⊕ [(4Dq+1)10]⊕ [(q + 6)1]

B. SO(q + 3) ≡ SO(10) (q = 7, Dq+1 = 16, P =arbitrary)

These spaces have quaternionc dimension 11 + 16P . However, under an SO(10) sub-

group of the isotropy group, the scalars form a set of representations inconsistent with

supersymmetry, as they do not form quaternions that can sit in 5D hypermultiplets.

Thus, neither SO(10) nor its SU(5) subgroup can be consistently gauged.

• Sp(10) ⊂ H This case is similar to the above and will not be discussed.

3.1.4 Comments on theories based on non-homogeneous spaces

Non-homogeneous real and quaternionic scalar manifolds are relevant in string compacti-

fications. For example, it has been shown that, in the special case of the universal hy-

permultiplet of string compactifications, the quaternionic scalar manifold generally becomes

non-homogeneous after string corrections are considered [S97b]. In string theory on a Calabi-

Yau manifold, 1-loop effects can show up in 11D supergravity on a Calabi-Yau, and thus can

appear in compactifications to 5D. However, non-homogeneous quaternionic manifolds have

not been generally classified; in particular those admiting relatively large isometry groups

(suitable for obtaining large gauge groups with charged hypermultiplets in phenomenologi-

cally interesting representations). We can list three methods from the literature for obtaining

(non-compact) non-homogeneous quaternionic manifolds.

(i) In 5D, it has been shown that there are Maxwell-Einstein supergravity theories with large
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isometry groups based on real non-homogeneous manifolds parametrized by scalars from the

vector multiplets [EGZ01, GZ03]. By dimensionally reducing these five-dimensional the-

ories to three dimensions, we can obtain non-homogeneous quaternionic scalar manifolds

with large isometry groups, which we can couple to 5D supergravity. Such a reduction was

done for the theories with a special class of symmetric scalar manifolds [GST83], and later

an analysis for more general homogeneous spaces appeared [dWVP95]. An analysis of the

isometries of the non-homogeneous quaternionic spaces arising from the theories in [GZ03]

is a work in progress by the authors of [GMZ05a].

(ii) One may construct 4n+ 4-dimensional non-homogeneous quaternionic manifolds M̂ by

fibering over an arbitrary 4n-dimensional quaternionic base manifoldM with isometry group

Iso(M), as discussed in [PP86]. The isometry group is locally Iso(M)× SU(2).

(iii) In [KG87], it was shown how 4n-dimensional generalizations of the four-dimensional

non-homogeneous quaternionic space of Pedersen [HP87] (originally considered by Hitchin)

could be constructed. These spaces have SU(n)× SU(2)× U(1) isometries, and seem to be

non-homogeneous forms of the space L(−2, P ) in table (3.1). Aside from the spaces that are

cosets of exceptional groups, most of the infinite families of quaternionic manifolds classified

to date are quaternionic quotients by quaternionic isometries of the quaternionic projective

space HHn = Sp(2n + 2)/Sp(2n) × SU(2), or non-compact or pseudo-quaternionic forms

thereof. The spaces in [KG87] are of this type, and are presumably pseudo-quaternionic

analogues of the spaces L(−2, P ) in table (3.1).

We will not attempt to discuss the possible roles of these theories within this thesis.

3.1.5 Summary and discussion: YMESGTs coupled to hypermul-

tiplets

Just as all compact gaugings are possible in pure MESGTs, all compact gaugings are pos-

sible when coupling to non-trivially charged hypermultiplets. For example, the theories of

type L(0, P ) admit any compact gauge group K, since the adjoint representation of K can

always be embedded in the fundamental representation of SO(P + 4) if P + 4 ≥ dim(K).

However, the resulting hypermultiplet content may be undesirable. This then restricts the

number of theories in which we can obtain both the gauge group and hypermultiplet content

desired (a theory being uniquely determined by the scalar manifold up to possible arbitrary

parameters).

The restriction is even more severe than this. It is not guaranteed that an arbitrary set

of hypermultiplets can be obtained by finding a suitable quaternionic manifold admiting the
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desired gauging. This is clear at least within the set of quaternionic scalar manifolds that

are homogeneous, as discussed in this thesis. For example, one may not obtain an arbitrary

number of hypermultiplets in the 10 of an SU(5) gauge group. It should be noted that one

may not get around this restriction by simply coupling two quaternionic scalar manifolds

M1 and M2 such that MQ = M1 ×M2, since these are no longer quaternionic manifolds.

A quaternionic structure is necessary for coupling to supergravity [BW83].

However, there is a way to construct new quaternionic manifolds from a pair (M1,M2) of

quaternionic manifolds, as discussed in [S91]. The construction relies on the fact that a 4n-

dimensional hyper-Kähler manifold (Sp(2n) holonomy) can be constructed as a bundle over

a (4n− 4)-dimensional quaternionic manifold (Sp(2n− 2)×SU(2) holonomy). Let M1, M2

be quaternionic scalar manifolds of dimension 4n1 and 4n2, respectively. Then there exists a

4n1 +4n2 +4-dimensional quaternionic manifold J (M1,M2) called the “quaternionic join”.

Let U1, U2 be the hyper-Kähler bundles with base manifolds M1 and M2, respectively.

The hyper-Kähler manifold U1 × U2 is then the bundle over J (M1,M2). Locally, the

manifold J (M1,M2) is a Z2 quotient of M1 × M2. The construction requires hyper-

Kähler manifolds admitting a hyper-Kähler potential (a Kähler potential for each of the

three complex structures). The global manifold does not need to carry the isometries of M1

or M2, which may ruin the options for gauging. Even if a particular gauge group is still

allowed, the local structure does not necessarily admit the representation R[M1]⊕R[M2]⊕1,

where R[M] is the representation of the scalars (parametrizing M) under the gauge group.

This is in contrast with the case of vector and tensor scalars, which locally form a product

structure MV ×MT so that in any neighborhood, scalars can always be divided up into

R[MV ]⊕R[MT ]; i.e., representations of a “vector sector” and reps of a “tensor sector”.

Theories with only bulk Higgs coupling

In many phenomenological models, the 5D theory is super-Yang-Mills coupled to 5D

Higgs hypermultiplets in particular representations of the gauge group (this is sometimes

referred to as “the field theory in the bulk”). It is simple to obtain such field content in

supergravity. In the case of SU(5) gauging, one can couple any number n of hypermultiplets

in the 5 by coupling the scalar manifolds L(−3, 5n − 1) or L(−2, 5n + 2). In the case of

SO(10) gauging, one can couple any number n of hypermultiplets in the 10 by coupling the

scalar manifold L(0, 10n − 4). In gauging E6, any number n of hypermultiplets in the 27

may be obtained by coupling to the scalar manifold L(−2, 27n− 2).

Theories with bulk matter

As an interesting illustration of the options that supergravity allows (within the homo-
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geneous quaternionic cases), it appears that to obtain a generation of bulk matter hyper-

multiplets in the 5⊕10 of SU(5) one must include a gauge singlet hypermultiplet (see table

(3.4)). But the corresponding theory of type L(4, 1) naturally allows gauging of SO(10),

under which the hypermultiplets form the irreducible 16 (see table (3.3)). One can then

orbifold one of these theories as desired.

If a Higgs sector and single generation of matter hypermultiplets is to be coupled in the

bulk SU(5) theory, one must add two or three additional singlets, which corresponds to the

coupling of a different scalar manifold: L(−2, 25) or L(8, 1), respectively (see table (3.4)).

Now the field content can sit in smaller set of reps if we gauge E6 instead, under which the

hypermultiplets form a single 27 or 27 ⊕ 1, respectively (see table (3.2)). Again, one may

then orbifold one of these theories as desired. One can go further. The hypermultiplets

in the 27 ⊕ 1 in the L(8, 1) theory can form the 56 pseudoreal irrep if we gauge the E7

allowed by that space. Upon orbifolding the E6 theory, we would get a chiral multiplet in

the 27 ⊕ 1 and its CP conjugate. Orbifolding the E7 theory yields a spin-1/2 multiplet in

the self-conjugate 56, which is not good phenomenologically.

Finally, suppose one desires three generations of matter and Higgs in an SU(5) theory.

Once again, one must couple two additional singlet hypermultiplets for each generation,

corresponding to the scalar manifold L(−2, 79). This begs the question why we shouldn’t

gauge E6 instead such that the fields form three generations of 27.

One might instead envision the breaking in five dimensions of SO(10) to SU(5) gauge

group in the theory with scalar manifold L(4, 1). If spontaneous, this breaking would require

an additional 5D Higgs sector, which would require a coupling of a different quaternionic

scalar manifold. For example, one would have to couple to L(−2, 25) or L(8, 1), which

introduce additional gauge singlets. Note that if the group is broken to SU(5) × U(1), the

U(1) factor consists of mixture of gauged real and quaternionic manifold isometries (since

all of the SO(10) gauge symmetries are gauged isometries of both the real and quaternionic

scalar manifolds). However, tensors charged under this U(1) are not required since there are

massive vector multiplets from the Higgs mechanism that take their place.

Similarly, we could evisage the spontaneous breaking of the above E6 theory to SO(10).

We’d need to couple a new scalar manifold admitting a Higgs sector (the simplest being

L(−2, 52) or L(0, 50) with two 27s), but this would make the field content more complicated

in the end.

Alternatively, the 5D breaking could be performed by Wilson lines of, e.g., the U(1)

factor in the subgroup SU(5)× U(1) ⊂ SO(10) or of SO(10)× U(1) ⊂ E6. Some details of

such breaking and the relation to parity assignments is discussed in [M05c]; for related issues
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of boundary conditions and Wilson lines in S1/Γ orbifold field theory scenarios, see [HMN02,

HHHK03, BR04].

Partial unification in four dimensions

Most of our discussion is in the context of orbifold-GUTs wherein the Standard Model

gauge group remains at one of the fixed points. If one wants to break to a partially unified

group at one of the fixed points, the Higgs content in the bulk must of course be enlarged

(suppose that we do not wish to turn to string theory and its twisted sector states).

SO(10) → SU(4)× SU(2)L × SU(2)R

In four dimensions, we would need the 16⊕16 of SO(10) to break the Pati-Salam gauge

group (PS) to that of the SM (we need the (4, 1, 2) of PS and its conjugate to perform

the breaking), as well as the electroweak breaking. Since each hypermultiplet can provide

a 4D left-chiral 16 or 16, we will need to have 2 five-dimensional hypermultiplets in the

16. In addition, a single generation of matter is in the 16 of SO(10). The minimal way to

get multiple 16s in the bulk is by coupling an SO(10) YMESGT to hypermultiplets whose

scalars parametrize the manifold L(−2, 27n − 2); that is, we must have n hypers in the

1⊕10⊕16. Therefore, extra fields must come along (n copies of (2, 2, 1)⊕ (1, 1, 6)⊕ (1, 1, 1)

of SU(2)×SU(2)×SU(4)). These extra states will show up as color triplets and extra weak

doublets and singlets, and must be made massive via boundary conditions. This in turn will

affect the gauge coupling running, possibly adversely. Anyway, the necessary additions beg

the question: why not gauge E6 instead so that the fields form an irrep?

E6 → SU(3)c × SU(3)L × SU(3)R

To round out the discussion, suppose we wish to have an SU(3)3 trinification [G84, LPS93]

scenario at the fixed points of the orbifold. In four dimensions, we would need the 27⊕27 of

E6 to break the trinification group (TG) to SM, and then down to the visible SU(3)c×U(1)em.

Since the color singlets inside the 27s are used to perform gauge symmetry breaking, we must

add an additional 27 for each generation of matter. We can obtain such a model by coupling

an E6 YMESGT to n hypermultiplets whose scalars once again parametrize the manifold

L(−2, 27n− 2).
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3.2 Options for YMESGTs coupled to tensor multi-

plets

As mentioned previously, we may gauge any compact group in the framework of 5D N = 2

supergravity, but we cannot presume any charged field content we like. A real Riemannian

scalar manifold must be specified for which K ⊂ G ⊂ Iso(MR). In [TPvN84], it was shown

that tensor multiplets carrying non-trivial representations of a group G and satisfying a self-

duality condition are required to come in complex conjugate pairs Σimi ⊕ Σim̄i. However,

it was shown in [GZ99] that, when gauging K, the complex K-representations should be of

“quaternionic type”2; that is, symplectic representations. Tensor multiplets charged under

a gauge group K therefore arise when there are symplectic, non-singlet representations of K

in the decomposition appearing in (2.4). It is sufficient to find complex representations of a

compact gauge group Ksemi−simple × U(1) coming in pairs m⊕ m̄.

We may now look for gauge theories we are interested in that admit tensor couplings.

We will ignore any coupling to hypermultiplets here so that the scalar manifold is MR, and

we can gauge K ⊂ G ⊂ Iso(MR), where G consists of isometries that are symmetries of the

Lagrangian. Recall that the rank-3 symmetric tensor CIJK uniquely determines the form of

a MESGT (up to possible arbitrary reparametrizations) and that the non-trivial invariance

group of this tensor is precisely G. An algebraic analysis of the form of this tensor is useful for

understanding the vector and tensor field content in a YMESGT, and for gauging purposes

is equivalent to the geometric analysis of the form of the scalar manifold and its isometry

group.

It was shown in [GZ99] that for theories based on homogeneous, symmetric real scalar

manifolds, there aren’t any large non-abelian gauge groups (such as the typical GUT groups)

with charged tensors.

3.2.1 Homogeneous, non-symmetric scalar manifolds

These scalar manifolds are described in [dWVP95]. The presence of tensor fields in these

theories was addressed in [GZ99], though we perform a slightly different analysis.

2“Quaternionic type” meaning that there exists a K-invariant anti-symmetric bilinear form on the vector
space.
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The isometry algebra has a one-grading with respect to a generator λ:

χ =χ0 ⊕ χ3/2

χ0 =λ⊕ so(q + 1, 1)⊕ sq(P, Ṗ )

χ3/2 =(spinor, vector),

where spinor denotes the spinor representation of SO(q + 1, 1) of dimension Dq+1, and the

groups corresponding to the algebras sq(P ) are listed in [dWVP95]. The isotropy group is

H = SO(q + 1)× Sq(P, Ṗ ),

where Sq(P, Ṗ ) is the group corresponding to the algebra sq(P, Ṗ ). The dimension of the

real Riemannian scalar manifold is (n− 1) = 2 + q+Dq+1P. The vector multiplets form the

following representation under H:

(1,1)⊕ (q + 1,1)⊕ (Dq+1,P). (3.1)

The condition for gauging a group K is that the adjoint representation of K should

appear in the decomposition into K-reps (see (2.4)).

• K ⊂ SO(q + 1) and q ≥ 9, Dq+1 ≥ 32, P =arbitrary

K = SU(5)

(i) If 10 ≤ q + 1 ≤ 23, then the only possibility for the adjoint rep of K to exist

is if the spinor rep of SO(q + 1, 1) contains it in the decomposition. The spinor rep

is of dimension 32 ≤ Dq+1 ≤ 4096 in our special case. It seems that the largest

representation dimension decomposing from the spinor representation of SO(q + 1, 1)

is the 16 of SO(10) so that we cannot gauge SU(5).

(ii) If q+1 ≥ 24, any value of q in this range allows gauging of SU(5), with (q+1)−24

spectator fields. The remaining vector fields are P copies of the decomposition of

spinor[SO(q + 1, 1)] into SU(5)-reps. This yields a large number of tensor fields (>

4096).

K = SO(10)

(i) If 10 ≤ q + 1 ≤ 44, the only possibility for the adjoint rep of K to exist is if

the spinor rep of SO(q + 1, 1) contains it in the decomposition. The spinor rep is of

dimension 32 ≤ Dq+1 ≤ 223, but the largest irrep in the decomposition into SO(10)

representations is the 16. Therefore, SO(10) cannot be gauged for these values of q.
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(ii) If q+1 ≥ 45, we can gauge SO(10) for all values of q in this range. The (q+1)−45

vector fields not involved in this gauging are spectators. The remaining vector fields

are in P copies of the decomposition of spinor[SO(q + 1, 1)] into SO(10)-reps. This

yields a large number of tensor fields (> 223) in the 16⊕ 16.

• K ⊂ Sq(P ) ≡ SO(P ) with P ≥ 10

We require that adj(K) ⊂ vector[Sq(P )]. The adjoint of any compact Lie group sits

in the n of SO(n) if n ≥ dim[adj(K)]. There will then be n − dim[adj(K)] spectator

vector fields in addition to the graviphoton. Therefore, no tensors charged under a

non-abelian gauge group appear.

• K ⊂ Sq(P ) ≡ U(P ) with P ≥ 5

The values of q are restricted to q = 2 mod(8) and 6 mod(8). Again, we require

adj(K) ⊂ vector[Sq(P )]. The vector fields form the 1⊕ (q + 1)1⊕ (Dq+1)P of Sq(P ).

For the adjoint of U(5) to appear, we require P ≥ 25. However, there aren’t any tensors

to be charged with respect to the U(1) factor. This applies for other non-abelian cases.

3.2.2 Non-homogeneous scalar manifolds

• Theory with Cijk = 0

This is the choice in case 1 of section (3.1.1). It is clear that these theories do not

admit tensor multiplets charged under non-abelian gauge groups.

A set of interesting theories are based on Lorentzian Jordan algebras [GZ03]3 JA
(1,N) of degree

(N+1), where A = R,C,H; there is also the exceptional theory based on JO
(1,2). These theories

are listed below, where G denotes the invariance group of the Lagrangian. In constrast to

the theories with homogeneous scalar manifolds, these theories admit GUT groups coupled

to non-trivially charged tensor multiplets. For phenomenological reasons, though, we focus

on SU(5)× U(1) gauging.

3These were originally called “Minkowski” Jordan algebras in that work.
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JR
(1,N) N(N + 3)/2− 1 SO(N, 1)

JC
(1,N) N(N + 2)− 1 SU(N, 1)

JH
(1,N) N(2N + 3)− 1 USp(2N, 2)

JO
(1,2) 25 F(4,−20)

These theories are all examples of “unified” MESGTs, in the sense that there is a continuous

symmetry connecting every field of the theory:4

↔ ↔ ↔
{emµ Ψµ A0

µ}
m
{Aiµ λa φx}
↔ ↔ ↔

(3.2)

where horizontal arrows represent (local) supersymmetry action, and the vertical arrow rep-

resents the action of a simple global symmetry groupG, like those listed in the above theories.

(For more on unified MESGTs, see [GST84a, GZ03].)

A general discussion of the tensor couplings in these theories can be found in [GZ03],

which we use to write down the theories of interest to us here.

• JR
(1,N)

One can gauge SU(n)× U(1) ⊂ SO(2n, 1) (with N = 2n), obtaining tensors in(
n(n+ 1)

2
⊕ n(n+ 1)

2

)
⊕ (n⊕ n̄) .

In particular, gauging SU(5)× U(1) (n = 5), we get tensors in (15⊕ 15)⊕ (5⊕ 5̄).

• JC
(1,N)

If we gauge SU(N) × U(1) ⊂ SU(N, 1), we get tensors in the N ⊕N. In particular,

taking N = 5, we get 5⊕ 5̄ tensors. More generally, consider gauging SU(5)×U(1) ⊂
SU(5n, 1); we get n sets of tensors in the (5⊕ 5) of SU(5).

Next consider N = 27 and gauge E6×U(1) ⊂ SU(27)×U(1) ⊂ SU(27, 1). This yields

704 fields outside of the adjoint representation.

• JH
(1,N)

4We will use boldface to distinguish this from any other sense of “unified”.
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Gauging SU(N, 1) ⊂ USp(2N, 2), we get tensors in N(N+1)
2

⊕ N(N+1)
2

Choosing N = 5,

we get 15⊕ 15. Under SU(5)× U(1), this becomes (5̄⊕ 10)⊕ (5⊕ 10).

• JO
(1,2)

The symmetry group of the Lagrangian is too small to gauge a GUT group.

We summarize the theories with reasonable numbers of tensor couplings in table (3.5).

They are all of SU(5)× U(1) type gauging.

J.A. dim(MR) Tensor K-reps
JR

(1,10) 64 (15⊕ 15)⊕ (5⊕ 5̄)

JC
(1,5n) 5n(5n+ 2)− 1 n(5⊕ 5̄)

JH
(1,5) 64 (5̄⊕ 10)⊕ (5⊕ 10)

Table 3.5: Summary of theories admitting SU(5)×U(1) gauging with tensor couplings (and
with smallest field content).

3.2.3 Summary and discussion: YMESGTs coupled to tensors

Within the class of theories discussed in this thesis, the only ones admitting reasonable

numbers of tensor multiplets of interest in GUTs are the those based on Lorentzian Jor-

dan algebras discussed in the previous section. Table (3.5) lists the theories for the case of

SU(5) × U(1) gauge group (they were discussed in [GZ03]). Generically, the gauging GUT

groups starting from a given MESGT is associated with large numbers of tensors and spec-

tator vector fields. We have not systematically considered E6 × U(1) gauging with tensor

multiplets, though it appears that these theories also have large numbers of tensors and

singlets. A large number of unwanted tensor multiplets can be troublesome in orbifold-GUT

models since one cannot get rid of all of the field content in these multiplets via orbifold

boundary conditions (this is shown in [M05b]).

There are other families of tensor couplings with non-homogeneous scalar manifolds that

we have not discussed in this thesis. Although the geometry of these scalar manifolds is not

understood, an algebraic discussion of such theories can be found in [EGZ01].

Non-trivially charged tensor multiplets offer a possible way to introduce scalar fields in

non-trivial gauge group representations in a more economical way; for every hypermultiplet

introduced, there are four real scalars, whereas for every tensor muliplet introduced, there

is only one real scalar. Such a 5D GUT model is considered in [DGKL01]. The authors
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consider a field content that consists of gauge multiplets for SU(5), 10 tensor multiplets (in

the 5 ⊕ 5̄ of SU(5)), a spectator vector multiplet, and a graviton multiplet. The theory

is not obtained from an explicit scalar manifold, though and appears to be obtained by

decomposition of SU(5) ⊂ G, with G = SU(6) or a non-compact form thereof. However,

one must recall that, if tensor mulitplets non-trivially charged under a compact gauge group

K, there must be at least one abelian factor (corresponding to an isometry of the real scalar

manifold).

Example of gauging with tensor couplings

Within the framework of supergravity that we have reviewed throughout, the above

model can be obtained from the theory based on Lorentzian Jordan algebra JC
(1,5). Gauging

SU(5) × U(1) ⊂ SU(5, 1) yields a theory with the 35 vector fields decomposing into 1 ⊕
5⊕ 5̄⊕ 24 under U(5). The 5⊕ 5̄ vectors must be dualized to tensor fields, and the singlet

gauging the U(1) is the graviphoton. Under particular boundary conditions of the theory,

one can obtain massless chiral multiplets in the 5 ⊕ 5̄ along with their CPT conjugates,

which can therefore potentially serve as a Higgs sector. Otherwise, these will lead to massive

vector multiplets in the 5⊕ 5̄. More details of this will be shown in [M05b], which decribes

the options for parity assignments in 5D N = 2 orbifold supergravity theories. Note that

the graviphoton is required in the gauging. This theory comes from the gauging of a unified

MESGT, where all of the fields had been connected by a continuous global symmetry; the

gauging of SU(5)× U(1) then disconnects the gravity and vector supermultiplets.

Obtaining a simple unifying group appears difficult starting from a theory with Ksimple×
Kabel and charged tensors. One could be satisfied with a partially unified group like the

“flipped SU(5)” model with SU(5) × U(1) gauge group [B82, DRGG80, AEHN87]. But

suppose we wish to embed the above theory into one with a simple compact gauge group.

There will be tensors at each stage of the embedding, requiring a U(1) factor, until the tensor

reps lie in the adjoint of the simple group. Starting from SU(5) × U(1), that group is E8.

However, starting with such a gauge group, there must be a mechanism for breaking it down

the line to SU(5) × U(1); a Higgs mechanism will yield massive vectors, not tensors. So

we cannot embed the tensor coupled theory in this way. Anyway, we don’t know of a real

scalar manifold admiting an E8 gauging unless we take the theory defined by Cijk = 0. But

tensor couplings require non-trivial C-tensor components (see section (2.3.2)). It could be

that tensor multiplets have a natural home in higher dimensional unification scenarios.

There is an alternative scenario in 5D that allows tensor coupings with simple groups:

non-compact gaugings. This is the topic of the next section.
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3.3 Non-compact gaugings and unified YMESGTs

In contrast to their rigid limits, 5D N = 2 supergravity theories coupled to vector multiplets

admit non-compact non-abelian gauge groups while remaining unitary. Such gaugings have

been considered since the 1980’s [GST83, GZ03]. The ground states of these theories preserve

at most the maximal compact subgroup as a symmetry group, with the non-compact gauge

multiplets becoming 5D BPS massive:

{AMµ , λmi},

whereM is the index for the non-compact generators of the gauge group (andm is the tangent

space index for the scalar manifold coresponding to the directions of the non-compact gauged

isometries).

Example of Higgs sector from non-compact gauging

Consider the infinite family of YMESGTs based on the Lorentzian Jordan algebras JC
(1,N)

with gauge group SU(N, 1). This family of YMESGTs are known as unified in the sense that

there is a continuous (and in this case local) symmetry relating every field in the theory; see

(3.2), where horizontal arrows represent (local) supersymmetry transformations, and vertical

arrows now represent the action of a simple gauge group involving all the vector fields of

the theory (For more on unified YMESGTs, see [GST83, GZ03, GMZ05a].) The ground

state of these theories preserves at most an SU(N) × U(1) symmetry group, while the 2N

non-compact gauge fields transforming in the N⊕ N̄ become BPS massive.

In particular, we may consider the N = 5 case: we have an SU(5, 1) gauge group with

35 gauge fields. The ground state of the theory can have at most SU(5) × U(1) gauge

group with the remaining 10 vector multiplets in the 5 ⊕ 5̄ becoming BPS massive. This

could be a unified theory into which flipped SU(5) is embedded, since U(5) is not simple,

but SU(5, 1) is. Note that the scalars in the non-compact gauge multiplets are eaten by

the vector partners, and so we cannot obtain 5D Higgs scalars from these theories. Upon

dimensional reduction, a 5D N = 2 BPS vector multiplet yields a 4D N = 2 BPS vector

multiplet:

{AMµ , λmi, AM},

where the real scalar fields AM come from the reduction of 5D vectors. Truncating to N = 1,

we would expect a massive 4D N = 1 vector multiplet; we would not obtain 4D massless

Higgs scalars. However, just as in the case of tensor multiplets on the orbifold, one can

assign parities appropriately so that instead of a massive vector multiplet, we are left with
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massless 4D N = 1 chiral multiplets in the 5⊕ 5̄ along with their CPT conjugate multiplets

(see chapter 4). One can use orbifold parity conditions to obtain a subgroup of SU(5)×U(1)

and/or use a vev on the boundaries to perform the breaking, as is usually done in orbifold

models.

Example of non-compact gauging with tensors

One can also now have tensor multiplets charged under a simple gauge group. For

example, one can gauge SU(N, 1) in the theory based on the Lorentzian Jordan algebra

JH
(1,N), with charged tensor multiplets in the (N+1)

2
⊕ (N+1)

2
(see section (3.2.2)). The theory

is a unified YMESGT coupled to tensors. The original MESGT is a unified theory, but

when gauged, the tensor sector is “cut off”. In particular, consider the case of N = 5; we

get the unified gauge group SU(5, 1) again, but now coupled to tensors in the 15 ⊕ 15.

The ground state has at most SU(5) × U(1) gauge group, with 5 ⊕ 5̄ BPS massive vector

multiplets, and tensor multiplets in the (5̄ ⊕ 10) ⊕ (5 ⊕ 10). This theory can then be

orbifolded [M05b].

Though one may obtain non-compact gauged supergravity theories from “compactifica-

tion” of M- or string theory on non-compact hyperboloidal manifolds [CGP04], it is not clear

that this is the only way to obtain such gaugings from a more fundamental theory in higher

dimensions.

3.4 Summary of 5D options

We have pointed out that, within the classification of homogeneous quaternionic scalar man-

ifolds, one cannot choose any pairing of gauge group and hypermultiplet representations one

likes. However, we have shown how orbifold models considered in the literature can be con-

structed in supergravity via these manifolds (without the introduction of boundary localized

fields).

• Any number n of 5D Higgs hypermultiplets in the 5 or 10 can be embedded in an

SU(5) or SO(10) (resp.) gauge theory by coupling the relevant homogeneous scalar

manifolds in tables (3.4) and (3.3) (resp.).

• If a single generation of matter in the 5⊕10 of an SU(5) theory is desired, an additional

singlet must be coupled (see table (3.4)). The theory is characterized by the coupling
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of the scalar manifold (see table (3.1))

MR ×
E7

SO(12)× SU(2)
.

But this theory admits an SO(10) gauging under which the matter forms the 16 (table

(3.3)).

• If n generations of bulk matter and Higgs multiplets in the

(5̄⊕ 10)⊕ (5⊕ 5̄)

of the gauge group SU(5) are desired, two additional singlets must be added (see table

(3.4)). This corresponds to the coupling of the scalar manifold (see table (3.1))

MR ×
SU(27n, 2)

SU(27n)× SU(2)× U(1)
.

But this theory admits an E6 gauging under which each generation of fields form the

27 (table (3.2)).

Since there are no known quaternionic scalar manifolds with compact E8 isometries, there

isn’t a unification of generations into an irreducible representation within the framework

of 5D supergravity. However, multiple generations arise in Calabi-Yau compactifications of

string or M-theory, and are therefore expected to appear in the supergravity approximations

in four and five dimensions, respectively.

In all of the above cases, MR is whatever scalar manifold one has chosen, with the

following constraints:

(i) The isometry group must admit the gauge group as a subgroup, and

(ii) If the decomposition of the nV + 1 vector fields under the compact gauge group has

non-singlet (not including the adjoint) representations, the corresponding vectors must be

dualized to tensors and at least one abelian isometry must be gauged.

For minimality, one may take the spaces described in section (3.1.1) in which all of the

vector fields gauge the group of interest, except the graviphoton, which is a spectator in the

compact gaugings of scalar manifold isometries. However, it should be emphasized that this

choice is not motivated by any other compelling phenomenological reason.

As an alternative scenario to hypermultiplets in the bulk, we may attempt to put the

Higgs scalars or matter fields in tensor multiplets; however, gauging a compact subgroup of
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Iso(MR) with charged tensors requires the group to have at least one abelian factor. For

example, we may consider the 5⊕5̄ tensor multiplets of the SU(5)×U(1) gauge theory based

on the Lorentzian Jordan algebra JC
(1,5). This is a more economical approach, in the sense

that one uses only 10 scalars as opposed to the 40 (in this example). Even though theories

with tensor couplings do not involve a simple gauge group, there is the partial unification

model based on SU(5)× U(1) (“flipped SU(5)”). Furthermore, a generation of matter can

sit in a bulk (5̄⊕10)⊕ (5⊕10) by coupling the real scalar manifold based on the Lorentzian

Jordan algebra JH
(1,5). We will thus be left with a non-chiral theory.

Non-compact gauge groups in 5D supergravity are another novel way to get 4D massless

chiral multiplets in interesting representations of the gauge group, which allows for an exten-

sion of previously studied gauge-Higgs unifications via compact groups [HNS02, BN03, HS03].

We have mentioned the example of a unified SU(5, 1) YMESGT based on the Lorentzian

Jordan algebra JC
(1,5), though there is an infinite family of such non-compact gaugings; the

theories based on JC(1,N) admit unified SU(N, 1) YMESGTS. Unified here, is in the sense

that all fields of the YMESGT are connected by a combination of supersymmetry and gauge

transformations; therefore, this is in some sense in between the ideas of Grand Unification

and gauge/gravity coupling unification.

We have not discussed the case of a “gauged YMESGT” (where a subgroup of SU(2)R

is gauged), which admits AdS or flat supersymmetric vacua, depending on the linear com-

bination of vector fields used to gauge this factor (coupling to tensors then results in novel

supersymmetric vacua) [GST84b, GST85a, GST85b, GZ99, GZ00a, GZ01a].
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Chapter 4

Supergravity on S1/Γ

In modeling five-dimensional spacetimes with four-dimensional boundaries, we can choose

a particular construction using a spacetime of the form M4 × S1/Γ, where Γ is a discrete

group that acts non-freely on the circle. Following the physics literature, we call S1/Γ

an “orbifold”, and M4 × S1/Γ an “orbifold spacetime”. However, we note here that the

correct definition of an n-orbifold X is a singular n-manifold, whose singularities are locally

isomorphic to Rn/Γ where Γ ⊂ GL(n,R), such that the orbifold fixed surfaces (under action

of Γ) are at least codimension 2. Clearly, S1/Γ is not an orbifold by this definition; it has

codimension 1 fixed points. While true orbifolds such as T 2/Z2 have properties in common

with manifolds, the “orbifold” S1/Z2 does not benefit from such similarities. Nevertheless,

we will refer to this as an orbifold, dropping the quotes from now on.

Orbifold constructions have been performed many times in the literature for both rigidly

and locally supersymmetric field theories; for examples of the former, see [K00, K01a, K01b,

K01c, AF01, HMR01a, KY02, HMN02]; for the latter, see [ABN01, BB03, YL03, ZGAZ04].

The generic results of the construction are two 4D boundary theories that preserve N = 1

supesymmetry and support broken gauge groups. However, a systematic classification of

the types of boundary theories available via parity assignments has not been performed

for Yang-Mills-Einstein supergravity theories (YMESGTs) coupled to vector, hyper-, and

tensor multiplets. In this chapter, based on [M05b], we hope to provide a more complete

list of options for the low energy spectrum via parity assignments in the simple case of the

S1/Z2 orbifold, and the extension to the case S1/(Z2 × Z2). Some of the results are generic

to theories with super-Yang-Mills coupled to hypermultiplets, while others are unique to

supergravity. While orbifold-GUTs are a main motivation, the results are not restricted

to these scenarios. As a novel example of 5D GUT in the framework of supergravity, we

illustrate some of the parity assignments using an SU(5, 1) gauging.

Before continuing, let’s review the supermultiplet structure of 4D N = 1 theories, which

has susy automorphism group U(1)R.



47

• The supergravity multiplet consists of the graviton and gravitino fields

{gµν ,Ψµ}

• A vector multiplet consists of a vector field and left/right helicities of a spin-1/2 field

{Aµ, λ}

• A massive vector multiplet consists of helicity +1,0,-1 states (forming a massive vec-

tor field), two ±1/2 helicity states (forming two massive spin-1/2 fields), and a real

(massive) scalar field

{Aµ, λ, φ}

• A left (right) chiral multiplet consists of a +1/2 (resp. -1/2) helicity field and a real

scalar field

{λL (R), φ}

A pair of left and right chiral supermultiplets are charge conjugates (the two scalar

fields are a complex scalar and its complex conjugate).

4.1 Γ = Z2 Orbifold field theory

A groundstate spacetime M4 × I, where I is an interval, is isomorphic to the orbifold

M4×S1/Γ, where Γ is a discrete subgroup of the U(1) isometry group of the circle. Instead

of considering a 5D theory with a boundary (downstairs picture), it is often convenient to

compactify the 5D theory on S1, followed by assignment of Γ-parities to quantities in the

theory (upstairs picture). The choice of Γ reflects different classes of boundary conditions

from the downstairs point of view. We will first consider the simplest case Γ = Z2, which

results in a theory with equivalent spectra and interactions at the two fixed points.

The choice of the way Z2 acts on quantities in the theory reflects a particular set of

consistent boundary conditions. First of all, Z2 cannot have a free action on S1, so there

will be fixed points. In particular, it acts as reflections on the S1 covering space [−πR, πR]

(where −πR ≡ πR), with fixed points at {0}, {πR}. However, when fields carry internal

quantum numbers, they are sections of a fiber bundle, with spacetime being the base space.

In such a situation, it makes sense for the action of Z2 to be lifted from the base space

to the total space [DHVW85, DHVW86]. There are a number of ways to perform this
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lift, corresponding to various classes of boundary conditions. Just as the Z2 action on the

covering space S1 results in a singular space S1/Z2, the Z2 action on the total space will, in

general, change the structure of the fibers over the base space.

In particular, we are interested in gauge theories, so there will be a gauge bundle. Objects

other than fields that appear in the Lagrangian carry representation indices of the gauge

group. For example, in a YMESGT where I, J are adjoint indices,
◦
aIJ (φ) must be a rank-

2 symmetric invariant (locally δIJ), and CIJK is a rank-three symmetric invariant of the

gauge group (in the case of SU(N) gauge groups, these are proportional to the d-symbols).

Such quantities are structures appearing in the gauge bundle, and are therefore generally

affected by modifications of the gauge bundle resulting after Z2 action. This gives meaning

to assigning these objects Z2 parities.

Although physical states onM4×S1/Z2 must be even under Z2-action, the field operators

can carry even or odd parity. A field on M×S1 can be expressed as a sum over Kaluza-Klein

modes; but under Z2 action, the spacetime becomes singular. The general expansion of an

odd parity field will have nth term of the form

Φ
(n)
− (xµ, x5) = AnΦ

(n)
− (xµ) sin(nx5/R) +BnΦ

(n)
− (xµ)ε(x5) cos(nx5/R), (4.1)

where ε(x5) is +1 for (−πR, 0) and −1 for (0, πR) (see figure (4.1)); the Φ
(n)
− (xµ) are even;

and An, Bn are normalization factors.

The equations of motion for bosonic fields are 2nd order differential equations, so these

fields cannot have ε(x5) factors (otherwise, there will be δ ′ and δ 2 factors in the equations

of motion, with δ(x5) being the Dirac distribution). Therefore, we impose the condition

Bn = 0 for odd bosonic fields; it’s clear, then, that odd bosonic fields Φ(xµ, x5) vanish on

the orbifold fixed planes.

On the other hand, the equations of motion for fermionic fields are 1st order differential

equations, so ε(x5) factors are allowed (they will give rise to δ(x5) factors in the equations

of motion). Therefore, fermionic fields on S1/Z2 do not necessarily have well-defined limits

in the upstairs picture.

Field-independent objects CI1...In
J1...Jn

carrying gauge indices that are assigned odd parity

are redefined, where allowed, by ε(x5)CI1...In
J1...Jn

, with CI1...In
J1...Jn

now being parity even. However,
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Figure 4.1: The function ε(x5) vs. x5 where {−πR} ≡ {+πR}.

some such objects are required to be redefined as κ(x5)CI1...In
J1...Jn

for consistency, where

κ(x5) =


0 for x5 = −πR
−1 for − πR < x5 < 0

0 for x5 = 0

+1 for 0 < x5 < πR

(4.2)

See figure (4.2).

To leave the space M4 × S1/Z2 invariant under the Z2 action, the coordinate functions,

basis vectors, basis 1-forms, and metric components have

P (xµ; ∂µ; dx
µ) = +1 P (x5; ∂5; dx

5) = −1

P (ĝµν ; ĝ 55) = +1 P (ĝµ5) = −1,

where P (Φ) denotes the Z2 parity of the object Φ. Since the S1 measure is odd on the

orbifold, the fixed planes {πR ≡ −πR} and {0} must be non-orientable for the action S

to be invariant under Z2 reflections. It is natural to take the integration path over x5 to

always be in the orientation of the dx5 form; we can use the following prescription: in the

region [−πR, 0], one can integrate from {−πR} to {0} (taking dx5 to be positively oriented
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Figure 4.2: The function κ(x5) is plotted vs. x5, where {−πR} ≡ {+πR}.

in x5), while in the region [0, πR], one can integrate from {πR} to {0} (since dx5 is negatively

oriented in x5). In the downstairs picture, we will have two boundaries that are oppositely

oriented. For the assignment of parities, it follow that we must require the Z2-action to

leave the Lagrangian invariant. This puts constraints on the relative parities of the fields.

There are further constraints imposed by the consistency of local coordinate transformations,

supersymmetry transformations and gauge transformations.

4.2 5D N = 2 Yang-Mills-Einstein Supergravity

Recall that the total field content for a pure 5D N = 2 YMESGT consists of a supergravity

multiplet coupled to nV gauge multiplets:

{gµ̂ν̂ ,Ψi
µ̂, A

I
µ̂, λ

p̃ i, φx̃}.

The supersymmetry parameters εi, the gravitini Ψi
µ̂, and the spin-1/2 fields λp̃ i are 5D

symplectic-Majorana spinors (see (2.1)), which can be written as

ε1 =

(
η

eζ∗

)
ε2 =

(
ζ

−eη∗

)



51

Ψ1
µ =

(
αµ

eβ∗µ

)
Ψ2
µ =

(
βµ

−eα∗µ

)
(4.3)

λp̃ 1 =

(
δp̃

eγ p̃ ∗

)
λp̃ 2 =

(
γ p̃

−eδp̃ ∗

)
.

The 5D bosonic YMESGT Lagrangian is

ê−1Lbos =− 1

2κ̂2
R̂− 1

4

◦
aIJ F I

µ̂ν̂FJ µ̂ν̂ − 1

2
gx̃ỹDµ̂φ

x̃Dµ̂φỹ

+
κ̂ê−1

6
√

6
CIJK ε

µ̂ν̂ρ̂σ̂λ̂ {F I
µ̂ν̂F

J
ρ̂σ̂A

K
λ̂

+
3

2
gF I

µ̂ν̂A
J
ρ̂ (fKLMA

L
σ̂A

M
λ̂

)

+
3

5
g2(fJGHA

G
ν̂ A

H
ρ̂ )(fKLFA

L
σ̂A

F
λ̂
)AIµ̂ },

(4.4)

where hats indicate five-dimensional quantities; ê is the determinant of the fünfbein; and

F I
µ̂ν̂ = 2∂[µ̂A

I
ν̂]

F I
µ̂ν̂ = F I

µ̂ν̂ + 2gAI[µ̂A
J
ν̂]

Dµ̂φ
x̃ = ∂µ̂φ

x̃ + gK x̃
IA

I
µ̂.

The supersymmetry transformations are

δêm̂µ̂ =
1

2
ε̄iΓm̂Ψµ̂ i

δΨµ̂ i =Dµ̂εi +
i

4
√

6
hI{Γν̂ρ̂µ̂ − 4δν̂µ̂Γ

ρ̂}F I
ν̂ρ̂εi + · · ·

δAIµ̂ =− 1

2
hIp̃ε̄

iΓµ̂λ
p̃
i +

i
√

6

4
hI ˆ̄Ψi

µ̂εi

δλp̃i =− i

2
f p̃x̃Γ

µ̂(∂µ̂φ
x̃)εi +

1

4
hp̃IΓ

µ̂ν̂εiF
I
µ̂ν̂

δφx̃ =
i

2
f x̃p̃ ε̄

iλp̃i ,

(4.5)

where dots indicate terms with fermionic fields.

4.2.1 Reduction of 5D N = 2 YMESGT on S1

In the “upstairs” orbifold construction, one starts with a 5D theory, and compactifies on S1.

It is sufficient for our purposes to use the dimensionally reduced theory, consisting of those
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fields satisfying ∂5Φ = 0. This captures the zero modes of the theory on M4 × S1/Z2. The

dimensional reduction of the theory (as well as the orbifold) breaks the 5D local Lorentz

invariance to a 4D local Lorentz invariance. The four local symmetries that are broken can

be used to fix four degrees of freedom in the fünfbein. Splitting µ̂ = (µ, 5), we choose the

parametrization for the fünfbein to be [GST84a]

êm̂µ̂ =

(
e−

σ
2 emµ 2eσCµ

0 eσ

)
.

Since ĝµ̂ν̂ = êm̂µ̂ ê
n̂
ν̂ ηm̂n̂, we find that

ĝµν =e−σgµν + 4e2σCµCν

ĝ5 5 =e2σ

ĝµ 5 =2e2σCµ.

(4.6)

Furthermore, let

AIµ̂ = (AIµ, A
I).

Under infinitesimal local coordinate transformations of the compact coordinate parame-

terized by ξ5(xµ), the 4D fields AIµ and Cµ transform as1

δξ5A
I
µ = −∂µξ5AI (4.7)

δξ5Cµ = −2∂µξ
5, (4.8)

with the remaining four dimensional bosonic fields being invariant. One can interpret ξ5(xµ)

as a parameter for local U(1) transformations, for which Cµ is a gauge field. Note that the

vector fields AIµ transform non-trivially under these U(1) transformations. In order to obtain

U(1)(or KK)-invariant fields, we make the local field redefinition

AIµ → AIµ + 2CµA
I ,

such that the new AIµ satisfies δξ5A
I
µ = 0.

In terms of these KK-invariant vector fields AIµ, the dimensionally reduced bosonic La-

1For (D + d) reductions where d > 1, there are also global SL(d, R) transformations coming from the
(D + d)-dimensional local coordinate transformations [C81].
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grangian becomes [GMZ05a]

e−1LDR =− 1

2κ̂2
R− 3

4κ̂2

◦
aIJ Dµh̃

IDµh̃J − 1

2
e−2σ ◦

aIJ DµA
IDµAJ

− (
1

2κ̂2
e3σ + eσ

◦
aIJ A

IAJ)CµνC
µν

− 1

4
eσ

◦
aIJ F I

µνFµν J − eσ
◦
aIJ A

IFJ
µνC

µν

+
κ̂e−1

2
√

6
CIJKε

µνρσ(AIFJ
µνFK

ρσ + 2AIAJFK
µνCρσ +

4

3
AIAJAKCµνCρσ)

− g2

κ̂2
P,

(4.9)

where h̃I = eσhI , and

P =
3

4
e−3σ ◦

aIJ (AKf IKLh
L)(AMfJMNh

N), (4.10)

and

DµA
I ≡ ∂µA

I + gAJµf
I
JKA

K (4.11)

Dµh̃
I ≡ ∂µh̃

I + gAJµf
I
JK h̃

K (4.12)

Cµν ≡ 2∂[µCν]. (4.13)

Just as AIµ was redefined to be KK-invariant, we make the further redefinitions

Ψi
µ → Ψi

µ + Ψi
5̇
Cµ (4.14)

Γµ → Γµ + Γ5̇Cµ, (4.15)

so that Ψi
µ and Γµ are now KK-invariant. The dimensionally reduced susy transformations

are then

δ′emµ =
1

2
ε̄iΓmΨ

(4)
µ i

δρ =
1

2
ε̄iΓ5ψi

δCµ =
1

2
ρ−3/2ε̄iΓ5Ψµ i

δφx =
i

2
fxa ε̄

iλai ,

(4.16)
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where δ′ denotes the “bare” susy transformation from five dimensions plus a local Lorentz

transformation to maintain the condition êm
5̇

= 0; and we have identified the four-dimensional

gravitini to be

Ψ
(4)
µ i ≡ enµ{Ψn i +

1

2
(Γn)−1Γ5Ψ5 i}. (4.17)

The kinetic energy term and potential of the scalar fields2 can be written as [GST84a,

GMZ05a]

e−1LS = −1

2

(
1

κ̂2
ãIJDµh̃

IDµh̃J +
2

3
ãIJDµA

IDµAJ
)

and

P =
1

2
e−3σãIJ(A

Kf IKLh̃
L)(AMfJMN h̃

N)

where we have defined

ãIJ =
3

2
e−2σ ◦

aIJ .

The condition V(h) = 1 becomes

V(h̃) = CIJK h̃
I h̃J h̃K = e3σ > 0. (4.18)

Defining

FA
µν =

(
Cµν

F I
µν

)
,

we can express the vector part of the Lagrangian concisely as

e−1LV = −1

4
(FT )AµνMABFB µν +

e−1

2
√

6
εµνρσ(FT )AµνNABFB

ρσ,

where

MAB =


2
κ̂2 e

3σ + 4eσ
◦
aIJ A

IAJ 2eσ
◦
aIJ A

I

2eσ
◦
aIJ A

J eσ
◦
aIJ


and

NAB =


4κ̂
3
CIJKA

IAJAK κ̂CIJKA
IAK

κ̂CIJKA
JAK κ̂CIJKA

K

 .

The scalar manifolds of four dimensional MESGTs are Kähler [CJSFGvN79, BW82], so their

2σ and hI have zero mass dimension.
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metrics are determined locally by a Kähler potential F as

gIJ̄ = ∂I∂J̄F.

The Kähler potentials of scalar manifolds of the 4D MESGTs obtained by dimensional re-

duction from five dimensions are given by a cubic form defined by CIJK [GST84a]. The

corresponding Kähler geometry is called “very special”. In terms of the complex combina-

tions of the scalar fields

zI =

√
1

2

(√
2

3
AI +

i

κ̂
h̃I

)
,

the kinetic energy term of the scalar manifolds in four dimensions can be written as [GST84a]

e−1Ls = −gIJ̄∂µzI∂µz̄J̄ ,

where

gIJ̄ = ãIJ(z − z̄) = −1

2
∂I∂J̄ lnV(z − z̄),

with

V(z − z̄) = CIJK(z − z̄)I(z − z̄)J(z − z̄)K

satisfying V(Im(z)) > 0 (see (4.18)).

4.2.2 YMESGT sector parity assignments

Let’s split the index I = (0, α, a); x̃ = (x, χ); and p̃ = (p, ρ). At the fixed points (upstairs

picture), the fermionic fields generally satisfy jumping conditions and so don’t have a well-

defined limit. In the downstairs picture, the fermions will have a well-defined limit at the

boundaries (see [ABN01, BB03] e.g.). Thus, in the downstairs picture, the fermions in

(4.3) can be written at the boundaries either as left-chiral fermions with their right-chiral

conjugates

λp̃ 1 =

(
δp̃

0

)
λp̃ 2 =

(
0

−eδp̃ ∗

)
,

or right-chiral fermions with their left-chiral conjugates

λ̃p̃ 1 =

(
0

eγ p̃ ∗

)
λ̃p̃ 2 =

(
γ p̃

0

)
.
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In particular, it is clear from appendix B that the action of Z2 on the supersymmetry

spinors εi necessarily requires half of the components to be odd, so that the original eight

supersymmetry currents will be broken to four on the boundaries. The boundary theories

therefore have at most N = 1 susy. In terms of symplectic-Majorana spinors εi, the Z2

action is represented as

−iΓ5ε1 and iΓ5ε2.

Note: The 4-component eigenspinors of the Z2 action are the two (Dirac spinor) linear

combinations of the two symplectic-Majorana spinors.

The general set of consistent parity assignments allows for the following boundary prop-

agating multiplets

Multiplet Representation Type

{gµν , Ψµ} K(α) singlet

{Aαµ, λρ i} adj[K(α)] Real

{λ̃p i, za} RV[K/K(α)] Real

{Ψ5̇, z
0} K(α) singlet

where the value of n′ in α = 1, . . . , n′ and a = (n′ + 1), . . . , (nV + 1) is arbitrary. We have

denoted the surviving gauge group on the boundaries as K(α). The second to last multiplet

consists of a chiral multiplet in a real representation and its CPT conjugate. The case where

there are 5D spectator vector multiplets should be clear.

What happens when a non-compact group is gauged? If the non-compact gauge fields

were assigned even parity, then a non-compact gauge group would appear in the 4D theory.

However, there would not be the proper degrees of freedom to give a ground state with

compact gauge symmetry since the scalar degrees of freedom AI needed to form massive

N = 1 vector multiplets must have odd parity. Therefore, the non-compact gauge fields must

be assigned odd parity. We will then getN = 1 chiral multiplets in the cosetK/H, withH the

maximal compact subgroup of K. Since these multiplets furnish representations of the non-

compact isometries of the scalar manifold, there are non-vanishing Killing fields appearing

in the scalar potential (5.6). This is a novel way of obtaining a 4D Higgs sector, along the

lines of previous Higgs-gauge unifications in higher dimensions [HNS02, BN03, HS03].

4.3 Hypermultiplet sector

As discussed in section (2.3.3), hypermultiplets in five dimensions consist of 2nH fermions

and 4nH real scalars, the latter parametrizing a quaternionic nH-manifold MQ with tangent
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space group USp(2nH)× SU(2)R. We write the multiplets as

{ζA, qX̃},

where X̃ = 1, . . . , 4nH are the curved indices of MQ; and A = 1, . . . , 2nH are flat, USp(2nH)

indices. The 4nH-bein f X̃iA relate scalar manifold curved and flat space metrics

gX̃Ỹ f
X̃
iAf

Ỹ
jB̃

= εijCAB̃,

where i, j = 1, 2 are SU(2)R indices. Note that, in contrast to the case of vector multiplets,

the scalars form 2nH SU(2)R-doublets, while the 2nH fermions are SU(2)R-singlets.3 In

2-component spinor notation, we write the fermions as

ζA =

(
ζA1

ζA2

)
.

4.3.1 Hypermultiplet parity assignments

Let’s split the index X̃ = (X,χ), with X = 1, . . . , 2nH and χ = 2nH +1, . . . , 4nH . We let qX

be the even parity fields, and qχ the odd fields. Similarly, we spit the index A = (n, ñ) with

n = 1, . . . , nH and ñ = nH + 1, . . . , 2nH . If we couple a 5D YMESGT to hypermultiplets

in the quaternionic RH[K] of the gauge group, the multiplets with boundary propagating

modes will be

Multiplet Representation Type

{ζn1 , qX1} RH[Kα] Real or Complex

{ζ ñ2 , qX2} RH[Kα] Real or Complex

where we have further split X = (X1, X2) with X1 = 1, . . . , nH and X2 = nH + 1, . . . , 2nH .

That is, we get a left-chiral multiplet and its CPT conjugate. Here RH[Kα] is the decompo-

sition of RH[K] under the group Kα ⊂ K.

Example

Consider the unified MESGT with SU(5, 1) global symmetry group (see section (3.3)),

whose vector fields are in 1-1 correspondence with the traceless elements of the Lorentzian

Jordan algebra JC
(1,5) [GZ03]. All of the vector fields of the 5D theory (including the bare

3Recall that, in this thesis, we are not considering gaugings of SU(2)R or its subgroups.
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graviphoton) furnish the adj[SU(5, 1)]. The CIJK tensor is a rank-3 symmetric invariant of

the global symmetry group, so its components are proportional to the d-symbols of SU(5, 1).

As in section (3.1.2), we can now couple hypermultiplets whose scalars parametrize the

quaternionic manifold

MQ =
E7

SO(12)× SU(2)
(4.19)

to the MESGT based on JC
(1,5), gauging the common SU(5, 1) subgroup. As pointed out

in [GST84c, GZ03], the dimensionless ratio g3/κ is quantized, where g is the non-abelian

gauge coupling and κ is the gravitational coupling. Then the five-dimensional ground state

would have at most an SU(5)×U(1) gauge group coupled to hypermultiplets in the 1⊕5⊕10.

We may then make the following assignments (in terms of SU(5) reps)

α a 0 n ñ

adj[SM ] SU(5)/SM ⊕ 5⊕ 5̄ 1 1⊕ 5̄⊕ 10 c.c.

The 4D low energy effective theory (LEET) will have an N = 1 supergravity multiplet; SM

gauge multiplets; weak doublet and color triplet chiral multiplets both with a scalar potential

term; and left-chiral matter multiplets (including sterile fermion multiplet) along with their

right-chiral conjugates. There are also the generic singlet left and right-chiral multiplet

coming from the 5D supergravity multiplet, and chiral multiplets in the symmetric space

SU(5)/SM .

4.4 Tensor multiplet couplings

When a MESGT with nV abelian vector multiplets is gauged, the symmetry group of the

Lagrangian is broken to the gauge group K ⊂ G and the nV +1 vector fields decompose into

K-reps

nV + 1 = adj(K)⊕ non-singlets(K)⊕ singlets(K).

As was discussed in section (2.3.2), such a gauging requires the non-singlet vector fields to

be dualized to anti-symmetric tensor fields satisfying a field equation that serves as a “self-

duality” constraint [TPvN84, GRW85, GRW86, PPvN85, GM85, GZ99] (thus keeping the

degrees of freedom the same):

BM
µν = cMN ε ρσλ

µν ∂[ρB
N
σλ] + · · · , (4.20)

where cMN has dimensions of inverse mass, and dots denote terms involving other fields.
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We have already discussed the scalar sector of a pure 5D YMESGT. When tensor mul-

tiplets are coupled the scalar manifold is again a real Riemannian space, but which cannot

be decomposed globally as a product of “vector” and “tensor” parts. We can, of course,

identify an orthogonal frame of scalars at each point of the manifold: the vector multiplets

are associated with the combination hIx̃φ
x̃ at a given point, while the tensor multiplets are

associated with the independent combination hMx̃ φ
x̃. Similarly, the combination of fermions

hIp̃λ
p̃ i are associated with vector multiplets, while hMp̃ λ

p̃ i with tensor multiplets. (In con-

trast to vector multiplet scalars, the tensor multiplet scalars have a potential term in the

Lagrangian - see (4.22).) We will write φx̃ and φm̃ to denote the scalar partners of the vector

and tensors, respectively, at any given point of the scalar manifold. Similarly, we write λp̃ i

and λ
˜̀i as the fermionic partners of the vector and tensor fields, respectively. It is then

implicitly understood that the meaning of this notation is given by the above discussion.

When tensors are present, we will use indices I, J,K for 5D vector fields and M,N,P

for 5D tensor fields. We write the tensor multiplets as

{BM
µ̂ν̂ , λ

˜̀i, φm̃}.

To be consistent with the gauge symmetry, the components of the C-tensor are constrained

to be:

CIMN =

√
6

2
ΩNPΛP

IM , CMNP = 0, CMIJ = 0, (4.21)

where ΩNP is the antisymmetric symplectic metric on the vector space spanned by the

(BM, BM̄) and ΛP
IM are symplecticK-representation matrices appearing in theK-transformation

of the tensor fields:

δαB
M
µν = αIΛM

INB
N
µν .

Furthermore, CIJK must be a rank-three symmetric K-invariant tensor. Note: We are

assuming the most general gauging is K = Ksemi−simple ×Kabelian; see [BCdWGVvP04] for

more general couplings where CMIJ 6= 0.

The terms in the bosonic 5D Lagrangian involving tensors are [GZ99]

ê−1LT = −1

4

◦
aMN BM

µ̂ν̂ B
N
ρ̂σ̂ ĝ

µ̂ρ̂ĝν̂σ̂ − 1

2

◦
aIM F I

µ̂ν̂ B
M
ρ̂σ̂ ĝ

µ̂ρ̂ĝν̂σ̂

+
ê−1

4g
εµ̂ν̂ρ̂σ̂λ̂ ΩMNB

M
µ̂ν̂ ∂ρ̂B

N
σ̂λ̂

+
ê−1

2
√

6
CMNI ε

µ̂ν̂ρ̂σ̂λ̂BM
µ̂ν̂ B

N
ρ̂σ̂ A

I
λ̂
.
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The 5D field equations for the BM
µ̂ν̂ are

?DBM = gΩMN ◦
aMI ĤI ,

where

HĨ =

(
F I

BM

)
.

The presence of non-trivially charged tensors introduces a scalar potential P (T ) that was not

present in the case of pure YMESGTs. The term in the Lagrangian is

ê−1LP (T ) = −2g2W p̃W p̃

with W p̃ = −
√

6

8
hp̃MΩMNhN . (4.22)

In the dimensional reduction, we parametrize the tensor field as

BM
µ̂ν̂ =

(
0 −ÃMν
ÃMµ BM

µν

)
,

where tildes have been used to help distinguish from vector fields coming from 5D vectors.

Consider the ξ5 transformation of the dimensionally reduced fields BM
µν and ÃMµ :

δξ5B
M
µν = ∂µξ

5ÃMν − ∂νξ
5ÃMµ

δξ5Ã
M
µ = 0.

(4.23)

Just as for vector fields AIµ, we must make a field redefinition

BM
µν → BM

µν − 4C[µÃ
M
ν]

such that the BM
µν are now KK-invariant.
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The “naive” dimensionally reduced Lagrangian is then [GMZ05b]

e−1LDR = − 1

2κ̂2
R− 3

4κ̂2

◦
aĨJ̃ (Dµh̃

Ĩ)(Dµh̃J̃)− 1

2
e−2σ ◦aIJ(DµA

I)(DµAJ)

−e−2σ ◦aIM(DµA
I)AµM − 1

2
e−2σ ◦aMNA

M
µ A

µN

+
e−1

g
εµνρσΩMNB

M
µν(∂ρA

N
σ + gAIρΛ

N
IPA

P
σ )

+
e−1

g
εµνρσΩMNCµνA

M
ρ A

N
σ +

e−1

2
√

6
CMNIε

µνρσBM
µνB

N
ρσA

I

−1

4
eσ

◦
aMNB

M
µνB

Nµν − 1

2
eσ

◦
aIM(F I

µν + 2CµνA
I)BMµν

−1

4
eσ

◦
aIJ(F I

µν + 2CµνA
I)(FJµν + 2CµνAJ)− 1

2
e3σCµνC

µν

+
e−1κ̂

2
√

6
CIJKε

µνρσ
{
F I
µνFJ

ρσA
K + 2F I

µνCρσA
JAK +

4

3
CµνCρσA

IAJAK
}

−g
2

κ̂2
P, (4.24)

where

DµA
I ≡ ∂µA

I + gAJµf
I
JKA

K (4.25)

F I
µν ≡ 2∂[µA

I
ν] + gf IJKA

J
µA

K
ν (4.26)

Dµh̃
Ĩ ≡ ∂µh̃

I + gAJµM
Ĩ
JK̃
h̃K̃ , (4.27)

where

M Ĩ
JK̃

=

(
f IJK 0

0 ΛM
JN

)
and the total scalar potential, P , is given by

P = 2e−σW p̃W p̃ + e−3σ ◦aĨJ̃U
ĨU J̃ , (4.28)

where W p̃ is given in (4.22), while

U Ĩ :=

√
3

2
AIM Ĩ

IK̃
hK̃ .
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4.4.1 Parity assignments for tensor-coupled theories

Since (4.23) are only true for transformations connected to the identity, the ÃMµ are not

necessarily even under Z2 action. However, these expressions do lead to the constraint

P (ÃMµ ) = −P (BM
µν),

componentwise. These two fields do not describe independent propagating degrees of freedom

since they are related by a field equation (coming from the fact that the 5D tensors satisfied

a “self-duality” field equation reducing the number of propagating modes):

BM
µν = cMN (?DÃN)µν + · · · , (4.29)

where cMN is proportional to ΩMP ◦
aPN ; ? is the Hodge operator; and the dots indicate terms

involving other fields. There are two classes of assignments we can make, characterized by

the parity of the symplectic form ΩMN on the vector space spanned by the 5D tensors.

Odd Parity ΩMN

Let P (ÃMµ ) = +1. In the field equations for the vector fields ÃMµ , the mass squared

matrix is proportional to cPMcPN ; if the self-duality relation is used to express all tensor

fields in terms of the vectors ÃMµ , the mass of the ÃMµ is non-vanishing at the orbifold fixed

points. However, there are insufficient fermionic degrees of freedom to form massive N = 1

vector multiplets. Therefore, we must use the field equation to write ÃMµ → BM
µν . Now, these

fields can be Hodge dualized to scalars BM by adding a term of the form

εµνρσΩMNBMµνρDσB
N (4.30)

to the Lagrangian, where Dρ is the gauge covariant derivative acting on the scalars, and

BMµνρ = 3! ∂[µB
M
νρ]. From this term, it is clear that the BM will have even parity. We’ll then

get massive spin-1/2 multiplets if we assign P(hM) = +1.

Remark : it is inconsistent to try to write the Lagrangian as a mixture of AM
′

µ and BM ′′
µν

by splitting the index M since the field equation relating the vectors and tensors mixes the

two types of indices; we must choose one type of field to appear in the Lagrangian.

The multiplets that will propagate on the fixed planes are

Multiplet Representation Type

{λ̃p i, zM} N⊕N Real

This multiplet consists of a chiral multiplet in a real representation and its CPT conjugate.
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Example

Consider, again, the unified 5D MESGT based on the Lorentzian Jordan algebra JC
(1,5),

whose global symmetry group is SU(5, 1) [GZ03]. We can couple this theory to hypermul-

tiplets whose scalars parametrize the particular scalar manifold (4.19). If we gauge the

common SU(5) × U(1) ⊂ SU(5, 1) subgroup, we will get SU(5) × U(1) gauge multiplets,

along with tensor multiplets in the 5 ⊕ 5̄ and hypermultiplets in the 1 ⊕ 5 ⊕ 10. This is

then similar to the ground state theory in the SU(5, 1) gauging example of section(4.3), but

with some important differences, one of which being the scalar potential in this case is of

the form P (T ) in (4.22). We can make the assignments

α a 0 M n ñ

adj[SM ] SU(5)/SM 1 5⊕ 5̄ 1⊕ 5̄⊕ 10 c.c.

The propagating modes along the fixed planes will be SU(3)×SU(2)×U(1) gauge fields;

weak doublet (Higgs) chiral multiplets; color triplet chiral multiplets; and left-chiral matter

multiplets (including a sterile fermion multiplet) with their CPT conjugates. Again, there is

also the generic singlet spin-1/2 multiplet coming from the 5D supergravity multiplet, and

chiral multiplets in the symmetric space SU(5)/SM . All of these multiplets are tree-level

massless, while the scalars in the 5⊕ 5̄ have a potential term.

Even Parity for ΩMN

The multiplets with boundary propagating modes will be

Multiplet Representation Type

{AM, λρ i, hM} <(N) Real

The notation for the representation means that the gauge group at the fixed points must

support a real N. Let’s illustrate this with an example.

Example

The minimal example in which one is left with a group containing SM is where the

5D gauge group is SU(10) × U(1). Starting with the unified MESGT defined by the

Lorentzian Jordan algebra JC
(1,10) and with SU(N, 1) global symmetry of the Lagrangian, we

can gauge the SU(10) × U(1) subgroup, yielding tensors in the 10 ⊕ 10. If the symplectic

form has even parity, then the orbifold conditions require the group to be broken to at least

SO(10)× U(1), under which we have massive vector multiplets in the (real) 10. There are

also chiral multiplets from the broken gauge multiplets forming the 54, along with their CPT

conjugates.
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4.5 Objects other than fields

There are field-dependent and independent objects that appear in the Lagrangian and super-

symmetry transformations that carry Z2 parity. In particular, the field independent objects

are the CIJK tensor defining the MESGT that exists prior to gauging; the structure con-

stants f IJK and transformation parameters αI(x) of the 5D gauge group; and the symplectic

tensor ΩMN and transformation matrices ΛM
IN in the tensor coupled theory. These contain a

jumping function implicitly when assigned odd parity. The field dependent objects are the

restricted ambient space metric
◦
aIJ (φ) and scalar manifold metrics gxy(φ) and gXY (q); the

hIp(φ); the scalar vielbein fpx(φ) and f X̃iA(q); the Killing vectors on the scalar manifold KI
x(φ)

and KI
X̃

(q). These vanish when assigned odd parity.

Pure YMESGT

Recall from equation (2.3) that the CIJK defining a MESGT may be put in a “canonical”

basis satisfying the positivity of V = CIJKζ
IζJζK :

C000 = 1, C0ij = −1

2
δij, C00i = 0, Cijk = arbitrary. (4.31)

The parity assignments of the components are determined by requiring the polynomial V to

be invariant under Z2 action. There is freedom in choosing ε(x5) or κ(x5) as the jumping

function for odd components. However, we will choose the former for reasons to be discussed

later. Splitting i = (α, a), we have

Even Odd

Cabc Caαβ Cαβγ Cαab

Before moving on, let us make some brief remarks. In the upstairs picture, we can effect

odd parity for components of CIJK by redefining them as ε(x5)CIJK , where the CIJK are

now even, as we did in the above example. Such components are not well-defined at the

fixed points, while the polynomial V characterizing the real scalar manifold is. However, one

may instead redefine the CIJK to be κ(x5)CIJK (see (4.2)). In the downstairs picture, one

may interpret this to mean the components vanish at the boundaries due to degenerations

in the gauge bundle over the boundary points. If they are taken to vanish everywhere, the

5D theory one starts with is restricted in the form of its vector and tensor sector from the

beginning. As an aside: if the 5D theory arises from compactification of 11D supergravity

on a Calabi-Yau space, collapsing CY cycles lead to vanishing intersection numbers, which

are the components of the CIJK tensor. In particular, these degenerations can occur over the



65

singular points of the 5D spacetime (i.e., over the orbifold fixed points). In that case, there

will generally be massless states coming from membranes wrapping CY 2-cycles, localized

at the orbifold fixed points (this is in addition to any brane fields that have support there).

See [MZ01, LMZ03] for a discussion of a purely 5D supergravity description of collapsing

CY cycles.

Consistency of the infinitesimal gauge transformations (2.5) require parity assignments

for the f IJK and αI(x) to be

Even Odd

fαβγ fαab fabc f
a
αβ

f 0
aβ f 0

α0 f 0
αβ

αβ α0 αb

where f IJK vanishes if any of the indices correspond to 5D spectator vector fields;4 and

permutations of the indices have the same parity. The gauge transformation parameters are

subject to an expansion on S1/Z2, and consequently, odd parameters are not well-defined at

the orbifold fixed points. Consistency of the algebra requires that odd f IJK be redefined as

ε(x5)f IJK.

The components of the restricted ambient space metric and scalar manifold metric have

parities determined by the requirement that the line elements of those spaces be preserved.

Even Odd
◦
aαβ

◦
aab

◦
aaβ

◦
a0α

◦
a00

◦
a0a

gxy gχψ gχy

Consistency of the gauge transformations (2.5) determine the parities of the Killing vectors

Even Odd

Kx
α Kx

0 Kx
a

Kχ
0 Kχ

a Kχ
α

Note that the non-zero components Kx
α on the fixed planes are Killing fields of the scalar

manifold parametrized by those φx̃ that are fixed-plane propagating. (There will also be new

Killing vectors, which are not involved in the gauging, associated with the AI). The Kx
α are

sections of the tangent bundle over the scalar manifold. There are also non-zero components

Kχ
a , which are a set of sections of the normal bundle over the 4D scalar manifold. In fact,

4This will be true, e.g., for the “bare graviphoton” A0
µ if the 5D gauge group is compact.
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these normal vector fields determine the form of the scalar potential involving the φx and

Aa at the fixed points (c.f. (4.10)):

gχψK
χ
a K

ψ
b A

aAb, (4.32)

where gχψ is the metric determined by the normal bundle connection.

Finally, the functions hI and hIp; the vielbein fpx ; and the functions hIx = hIpf
p
x are required

to satisfy

Even Odd

h0 ha hα

h0
p hap hαρ haρ hαp

fpx fρχ fpχ fρx

h0
x hax hαχ haχ hαx

Tensor couplings

In the tensor-coupled theory, the parities of the additional C-tensor components are

Even Odd

CMN̄α CMNα CM̄N̄α

CMNa CM̄N̄a CMN̄a

P (ΩMN) = +ΩMN

Even Odd

CMNa CMNα

P (ΩMN) = −ΩMN

Remarks

Let us again briefly consider the higher dimensional origins of the tensor-coupled theory.

String or M-theory can be consistent in singular spaces associated with collapsing Calabi-

Yau cycles, whose intersections provide the components of CIJK in a Yang-Mills-Einstein

supergravity theory. We have shown that odd components of CIMN appearing in the coupling

of tensors must vanish at the orbifold fixed points when ΩMN has even parity. From a higher

dimensional point of view (11D supergravity on a Calabi-Yau space), we cannot ignore

the associated collapsing cycles since membranes wrapping CY 2-cycles appear as massless

states,and should appear in the supergravity description. Since the collapsing of the cycles

occurs over the 5D orbifold fixed points, the new massless states will have support there.

Consistency of the gauge transformations require the representation matrices to satisfy
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ΛM
αN ΛM̄

α N̄ ΛM̄
αN ΛM

α N̄

ΛM̄
0N ΛM

0 N̄ ΛM̄
0 N̄ ΛM

0N

ΛM̄
aN ΛM

a N̄ ΛM̄
a N̄ ΛM

aN

P (ΩMN) = +ΩMN

Even Odd

ΛM
αN ΛM

0N ΛM
aN

P (ΩMN) = −ΩMN

As in the pure YMESGT case, the ambient space and scalar manifold line elements should

be preserved under the Z2 action so that

Even Odd
◦
aMN

◦
aM̄N̄

◦
aMN̄

◦
aM̄α

◦
aMa

◦
aMα

◦
aM̄a

gmn gm̄n̄ gm̄n

gxm gχm̄ gxm̄ gχm

P (ΩMN) = +ΩMN

Even Odd
◦
aaM

◦
aαM

gxm gmn gχm

P (ΩMN) = −ΩMN

Finally, the functions hM(φ) and hM˜̀ ; the vielbein f
˜̀
m; and the functions hIx = f

˜̀
xh

I
˜̀ satisfy

(where we have split ˜̀= (`, ¯̀) and m̃ = (m, m̄))

Even Odd

hM(φ) hM̄(φ)

hMm hM̄m̄ hMm̄ hM̄m

hM` hM̃¯̀ hM̃` hM¯̀

P (ΩMN) = +ΩMN

Even Odd

hM(φ)

hMm

hM` hM¯̀

P (ΩMN) = −ΩMN

Hypermultiplet couplings

The parity assignments for the Killing vectors and vielbein of the quaternionic scalar

manifold are required to be

Even Odd

KX
α KΩ

a KX
a KΩ

α

fX1n fX2ñ fX2n fX1ñ

fΩ
2n fΩ

1ñ fΩ
1n fΩ

2ñ

4.5.1 Discussion

We previously expressed, and note again with the parity assignments above, that there

appears to be a notational complication arising from the fact that the scalar and fermionic

partners of the vector vs. tensor fields are generally different linear combinations of the

manifest scalars and fermions appearing in the Lagrangian, depending on the point of the
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scalar manifold at which the theory lives. So far, it has been understood that the indices

x (resp. m) and p (resp. `) appearing in the above partity assignments are representative

of the partner fields of the vectors (resp. tensors). What we have assumed is that, in

practice, one looks at combinations like hαx̃φ
x̃ appearing in the “manifest basis” of scalars

that appear in the Lagrangian. This combination should vanish so that the supersymmetry

transformations are consistent (since they can’t be 4D N = 1 superpartners of any fields).

Thus, in our notation, we simply say that “hαx and φχ are Z2-odd, while hαχ and φx are Z2

even”. But in the cases of symmetric “very special” scalar manifolds, as well as in the case

where Cijk = 0, this is in fact correct notation, since one can consistently assign parities to

the φx̃. It is perhaps not apparent at this point whether or not setting some set of scalars

φχ = 0 at the fixed points is the correct truncation in general, though, so let’s illustrate with

some examples.

Let’s begin with a MESGT that’s in the “generic Jordan” family, which have symmetric

scalar manifolds [GST84a]

MR = SO(1, 1)× SO(nV − 1, 1)

SO(nV − 1)
.

The cubic polynomial for the theory in the absence of an orbifold is V = CIJKξ
IξJξK , where

C000 = 1, C00i = 0, C0ij = −1

2
, C111 =

1√
2
, C1ab = +

1√
2
δab,

with a, b = 2, . . . , nV .

However, on M4 × S1/Z2, the CIJK can have odd components satisfying jumping con-

ditions (upstairs picture). There is a caveat: at least one hI must have even parity so that

it doesn’t vanish at the fixed points. Otherwise, the polynomial would vanish leading to an

ill-defined theory. In the canonical basis, it is natural for h0 to have even parity so that we

may only give odd parity to the Cijk. Let us give odd parity to h1 and C1ij in the current

example by redefining C1ij → ε(x5)C1ij. Then the polynomial is

V =

{
(h0)3 − 3

2
h0δijh

ihj − ε(x5)√
2

(h1)3 +
3ε(x5)√

2
h1[(h2)2 + · · ·+ (hnV )2]

}
.

At the orbifold fixed points, the terms with h1 vanish so that

V|fp = h0

{
(h0)2 − 3

2
δabh

ahb
}
.
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That is, this has the affect of restricting the 4D complex scalar manifold to the Im(z1) = 0

surface, with the hI still satisfying the condition on the “bulk polynomial” V = 1. In

general, 4D N = 1 supergravity theories are in 1-1 correspondence with Hodge manifolds.

The 4D N = 1 supergravity theory we obtain from orbifolding is of a special class based on

a (not necessarily irreducible) cubic polynomial satisfying Vfp(Im(z)) = e3σ > 0 (for similar

discussion in the N = 2 case via dimensional reduction, see [GST84a, GMZ05a]).

The solution to the condition V = 1 in this example is h0 ∝ 1/|φ|2 and hi ∝ φi (i =

1, . . . , nV ), where |φ|2 is the “Minkowski” norm with signature (+ − · · ·−). Clearly, the

assignment of parity to the φi is straightforward in this case, and the vacua of the theory

will follow the 〈φ1〉 = 0 flow. Let’s contrast this with a different example: the non-Jordan

family with cubic polynomial

V =
√

2ȟ0(ȟ1)2 − ȟ1
∑


(ȟ )2,

with solution to V = 1:

ȟ0 =
1√

2(φ1)2
+

1√
2
φ1
∑


(φ )2

ȟ1 =φ1

ȟ =φ1φ 

where  = 2, . . . , nV and ȟI is not in the canonical basis. Clearly, there is now a restriction

that ȟ0, ȟ1 be even (which means two vectors at least must be projected out), while there is

freedom in parity assignments in the remaining ȟ. In this case, the requirement that ȟαx̃φ
x̃

be odd (and therefore vanish at the fixed points) allows for an infinite family of ground state

flows in which the vev for all scalars can be non-zero. For example, if A2
µ has even parity, then

ȟ2
x̃φ

x̃ must have odd parity so that there is a collection of flows, with the direction normal to

the flows being 〈φ1〉φ2 + 〈φ2〉φ1 (since this is the direction in which the propagating scalar is

truncated). However, as ȟ2 must also be odd, this requires φ2 to be odd so that it vanishes at

the fixed points. Therefore, the theory is restricted to lie along the flow 〈φ2〉 = 0 connected

to the basepoint.

In fact, this is a general result: If some hI(φ) are non-linear polynomials in φx̃, trunca-

tion of the scalar combination hαx̃φ
x̃ allows for an infinite family of vacua generated by the

Killing vectors Kx
α (one for each remaining gauge symmetry). However, the hα, which are

polynomials in the φx̃, must be odd, which implies that some φx̃ are necessarily odd, and
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so vanish at the orbifold fixed points. Therefore, we are always restricted to some set of〈
φx̃
〉

= 0 flows, which are connected to the basepoint. These scalars are what we have been

calling φχ. We now have our justification for the way in which we’ve been assigning parities

to objects with scalar manifold indices like the φx̃: although the combination hαx̃φ
x̃ appears

as the 5D partner of the vector component Aαµ, only the trivial set of solutions (the 〈φχ〉 = 0

flow) is truncated.

There is an additional subtlety, which the above “non-Jordan” family illustrates. In that

example, the C-tensor was written in a non-canonical basis in which it was clear that ȟ0

and ȟ1 needed to have even parity. However, if we write the C-tensor in the canonical basis,

all of the hi can be assigned parity freely. In the absence of the orbifold, the two bases are

related by a linear transformation ȟI = M I
Jh

J , and the theories described by them are the

same. In the presence of the orbifold, however, the two bases are no longer related by a

symmetry transformation. The transformation, involving jump functions, takes us between

two different theories, with different sets of parity assignments. It is not clear in general if

there is always a basis in which there aren’t constraints on the parity assignments of the

vector sector scalars. Regardless, for the generic non-Jordan family, generic Jordan family,

magical Jordan theories, and the Cijk = 0 theories, one can always work in such a basis.

4.6 Extension to Γ = Z2 × Z2

There are a couple of phenomenological issues that make the S1/Z2 orbifold models too

simplistic. First, there are always massless chiral multiplets in real representations when

a gauge group is broken at the orbifold fixed planes (though these may contain MSSM

Higgs fields). Second, all chiral multiplets come in complete representations of the 5D gauge

group, which can lead to unwanted fields charged under the Standard Model gauge group.

The boundary conditions described by an S1/(Z2 × Z2) [BHN01] construction are for the

most part capable of resolving these issues.

An exception is the tensor sector: although there is a choice in assignment of parity for

the symplectic form ΩMN , we cannot assign (+−) parity under Z2 × Z2 action (it leads to

inconsistencies of assignments for the fields). Furthermore, given a choice of ΩMN parity,

there wasn’t a choice of parity assignments in the Γ = Z2 case since supersymmetry dictated

the results (see appendix for details). Therefore, the situation with tensors is no different

in the S1/Z2 × Z2 construction. This means that, e.g., tensor multiplets do not allow a

doublet-triplet resolution via parity assignments (see the example with odd ΩMN parity in

section (4.4)).
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An expansion of Φ(x, x5) on S1/(Z2 × Z2) will take the form

Φ(++)(x, x5) =
∑
n

Φ(n)(x) cos[
2nx5

R
]

Φ(+−)(x, x5) =
∑
n

Φ(n)(x)(A(n) cos[
(2n+ 1)x5

R
] +B(n)ε(x

5) sin[
(2n+ 1)x5

R
])

Φ(−+)(x, x5) =
∑
n

Φ(n)(x)(C(n) sin[
(2n+ 1)x5

R
] +D(n)ε(x

5) cos[
(2n+ 1)x5

R
])

Φ(−−)(x, x5) =
∑
n

Φ(n)(x)(E(n) sin[
2nx5

R
] + F(n)ε(x

5) cos[
2nx5

R
])

so that Φ(+−)(x, x5) vanishes at x5 = 0 and Φ(−+)(x, x5) vanishes at x5 = πR/2. Once

again, bosonic fields cannot have ε factors since the equations of motion would involve δ′

or δ2, where δ is the Dirac distribution. For those, we must set B(n) = D(n) = F(n) = 0.

But fermionic fields are allowed these terms in the expansion so that they are generally not

well-defined at the fixed points.

Let P (Φ) be the parity of Φ under the first Z2 factor, and P ′(Φ) denote the parity under

the second factor. Taking the covering space to be [−πR, πR] (with {−πR} ≡ {πR}) as

before, the orbifold now has fixed points at {0}, {πR/2}.

4.6.1 Vector sector

In the previous sections, we made an index split for quantities with ±1 parity under the

single Z2. We will make a further index splitting for quantities with the four possible values

{±1,±1} for the parity {P (Φ), P ′(Φ)}:

i = (α, α′, a, a′) p̃ = (ρ, ρ′, p, p′).

A given assignment of Z2×Z2 parity to an object will consist of the union of two assignments

in the S1/Z2 construction.

Fields from the 5D vector multiplets will have the following assignments:



72++ +− −+ −−
Aαµ Aα

′
µ Aaµ Aa

′
µ

Aa
′

Aa Aα
′

Aα

ha
′

ha hα
′

hα

δρ δρ
′

δp δp
′

γp
′

γp γρ
′

γρ

Note: the bare graviphoton A0
µ always has (−−) parity (so A0 has (++) parity). The

range of ℘1, ℘2, and ℘3 in α = 1, . . . , ℘1; α
′ = ℘1 + 1, . . . , ℘2; a = ℘2 + 1, . . . , ℘3; and

a′ = ℘3 + 1, . . . , nV , are arbitrary.

The fields with (+−) or (−+) eigenvalues have massive n = 0 modes on the fixed planes

for the same reason that any Kaluza-Klein field does: there is excitation in the x5 direction.

In the low energy effective theory, such fields will fall into massive N = 1 multiplets in four

dimensions due to terms in the Lagrangian with ∂5Φ
+− or ∂5Φ

−+.

In contrast to the S1/Z2 construction, we can now remove all massless chiral multiplets

in real representations by choosing there to be no a′, p′ indices. In that case, no fields

from the 5D vector multiplets are completely projected out of the boundary spectra of

propagating modes. Alternatively, we can keep a subset of those massless chiral multiplets

(in a real representation) such that they no longer furnish complete K-representations. We

can summarize the results in a table. We have decomposed the representation RV[K] =

adj[Kα]⊕R1
V [Kα]⊕R2

V [Kα]⊕R3
V [Kα].

Multiplet Representation Type Boundary Tree-level Mass

{Aαµ, λρ i} adj[Kα] Real Both Massless

{λ̃p′ i, za
′} R1

V [Kα] Real Both Massless

{Ψi
5, z

0} Kα-singlet Real Both Massless

{Aα′
µ , λ

ρ′ i} R2
V [Kα] Real y = 0 O(1/R)

{λ̃p i, za} R3
V [Kα] Real y = 0 O(1/R)

{Aaµ, λp i} R3
V [Kα] Real y = πR/2 O(1/R)

{λ̃ρ′ i, zα
′} R2

V [Kα] Real y = πR/2 O(1/R)

Example

Let’s revisit the SU(5, 1) example based on the Lorentzian Jordan algebra JC
(1,5). We can

obtain chiral multiplets (with a scalar potential) in the (1,2)⊕(1, 2̄) of SU(3)×SU(2)×U(1)

(along with a spin-1/2 gauge singlet multiplet). Let the indices correspond to:

I α a′ α′ a 0

SU(5, 1) SU(3)× SU(2)× U(1) (1, 2)⊕ (1, 2̄) (3, 1)⊕ (3̄, 1) N/A (1,1)

⊕(3, 2)⊕ (3̄, 2)
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Figure 4.3: Schematic of massive and massless vector and scalar fields with boundary prop-
agating modes.

The Aαµ correspond to Standard Model gauge fields propagating on both fixed planes;

the remaining vector fields either sit in massive multiplets, or are simply projected out. In

particular, we take the Aα
′
µ to be the (3, 2) ⊕ (3̄, 2) vectors (X, Y bosons) and color triplet

vectors (3, 1)⊕ (3̄, 1), which will propagate in massive supermultiplets in the effective theory

of the y = 0 plane. This implies that massive spin-1/2 multiplets in the ((3, 2)⊕(3, 1))⊕(c.c.)

will propagate in the effective theory of the y = πR plane. Next, let the Aa
′
µ denote the vectors

in the (1, 2) ⊕ (1, 2̄), which means there will be chiral multiplets in this representation at

both fixed planes (with scalar potential terms). Finally, we get conjugate pairs of massless

chiral gauge singlet multiplets from the 5D supergravity multiplet. There are no fields with

index a in this example.

4.6.2 Hypermultiplet sector

So far, we have not been able to obtain massless chiral multiplets in complex representations

of the boundary gauge group even in the Γ = Z2 × Z2 construction. Once again, the only

way to do this (starting only from a 5D bulk theory) is to couple 5D hypermultiplets. We

can make an index split as in the previous cases:

X̃ = (X,X ′,Ω,Ω′) A = (n, n′, ñ, ñ′),
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where the fields have the following parity assignments under Z2 × Z2:

++ +− −+ −−
qX qX

′
qΩ qΩ′

ξn1 ξn
′

1 ξñ1 ξñ
′

1

ξñ2 ξñ
′

2 ξn2 ξn
′

2

The fields with (+−) and (−+) eigenvalues have massive n = 0 modes, and so should

fall into massive spin-1/2 multiplets. Therefore, the indices n and ñ are required to be in

1-1 correspondence as are the indices n′ and ñ′. However, there is no constraint between

unprimed and primed indices, and each pair has an arbitrary range. That is, n = 1, . . . , ℘

and n′ = ℘ + 1, . . . , nH ; while ñ = nH + 1, . . . , (nH + ℘) and ñ′ = (nH + ℘) + 1, . . . , 2nH ,

where ℘ is variable.

If K is the 5D gauge group, and Kα is the boundary gauge group, the Kα-representations

of the massless chiral multiplets at the boundaries no longer need to form complete K-

representations.

We can summarize the results for the hypermultiplets in a table. Start with nH 5D

hypermultiplets in the RH[K] of the 5D gauge group K. Let the gauge group at the orbifold

fixed points be Kα so that under this group, the RH[K] decomposes into the representation

RH[Kα] = R1
H [Kα]⊕R2

H [Kα],

where the indices 1 and 2 denote the splitting of X̃ into (X,X ′). At the fixed points, the

hypermultiplets split into chiral multiplets with indices split into (X,Ω′;X ′,Ω), and are in

the representations Ri
H [Kα] or Ri

H [Kα]⊕R
i

H [Kα] as listed here:

Multiplet Representation Type Boundary Tree-level Mass

{ξn, qX1} R1
H [Kα] Real or Complex Both Massless

{ξñ, qX2} R
1

H [Kα] Real or Complex Both Massless

{ξA′
, qX

′} R2
H [Kα]⊕R

2

H [Kα] Real y = 0 O(1/R)

{ξA′
, qΩ} R2

H [Kα]⊕R
2

H [Kα] Real y = πR/2 O(1/R)

We have split X = (X1, X2) such that X1 = 1, . . . , nH and X2 = nH + 1, . . . , 2nH . Also,

A′ = (n′, ñ′) is a USp(2m) index.

Example

Consider the SU(5) YMESGT with CIJK as in (2.3) (where Cijk are the d-symbols of

SU(5)), coupled to the minimal amount of Higgs and matter content in the bulk. From
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section (3.1.2), this can be realized by coupling the YMESGT to hypermultiplets whose

scalars parametrize the quaternionic manifold5

MQ =
SU(27n, 2)

SU(27n)× SU(2)× U(1)
,

resulting in a coupling of n sets of hypermultiplets in the 1⊕ 3(5)⊕ 10 of SU(5).

Suppose we are going to break SU(5) → SU(3)×SU(2)×U(1); focussing on the hyper-

multiplet sector, we can make the following assignments

n ñ n′ ñ′

Matter ⊕ (1, 2)⊕ (1, 2̄) c.c. (3, 1)⊕ (3̄, 1) c.c.

This will result in a low energy effective theory at both boundaries with Standard Model

chiral matter multiplets; a pair of left-chiral Higgs doublets and their CPT conjugates; and

a pair of massive spin-1/2 color triplet multiplets, all at both boundaries.

4.7 Summary of parity assignments

We have found parity assignments for fields and other objects in five-dimensional Yang-Mills-

Einstein supergravity coupled to tensor and hypermultiplets. This is useful for understanding

the theory at the boundaries as well as the low energy effective theory. We have not con-

sidered boundary localized fields, which would arise from p-branes located there, or states

becoming massless due to membranes wrapping cycles that collapse there. We have allowed

for general gauge symmetry breaking K → Kα, which can arise via boundary conditions, or

in special cases via Wilson lines looping between boundaries.

Five-dimensional tensor multiplets can yield 4D N = 1 chiral multiplets with a scalar

potential (admitting supersymmetric Minkowski ground states). Since they appear in real

representations, they are potential Higgs multiplets. However, we are stuck with complete

K-representations. Therefore, we cannot use boundary conditions to make unwanted rep-

resentations massive (which was one of the original motivations for field theory orbifold

models).

A novel feature of supergravity theories is that one can gauge a non-compact group.

The vectors representing the non-compact generators must be given odd parity, yielding a

4D compact gauge group and chiral multiplets in real representations. There is a potential

5By allowing an additional singlet hypermultiplet, we can instead couple the exceptional scalar manifold
E8

SU(6)×SU(2) .
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serving as a mass term for the scalars in these chiral multiplets (admitting supersymmetric

Minkowksi ground states).

Bulk hypermultiplets can lead to chiral multiplets in complex representations. The bulk

minimal coupling to gauge fields yields another potential for scalars in the YMESGT sector.

In the case of 5D non-compact gauging, this provides another mass term for these scalars.

Furthermore, there is a potential for the scalars from the hypermultiplets; in the case of

non-compact gauging, there is a mass term for these scalars as well.

Non-compact gauging in orbifold-GUTs thus leads to Higgs and matter masses in a new

way. Of course, one is left with the usual problem of breaking supersymmetry while fixing

an appropriate vev for the Higgs scalars.
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Chapter 5

Symmetries and Anomalies

It is well known that the manifest global symmetry algebra of a dimensionally reduced

five-dimensional N = 2 MESGT Lagrangian (up to topological terms) is

g4 = (g5 ⊕ β) s t,

where g5 is the global symmetry algebra of the 5D Lagrangian; β are rescalings present in

any dimensionally reduced supergravity theory; and t act as translations of the 4D scalars

AI arising from the 5D vector fields [GST84a, dWVP95]. (The translation algebra also acts

non-trivially on the fieldstrengths of the 4D theory, but this action does not carry over to

the orbifold theory.) If k5 ⊂ g5 is gauged in the 5D theory, then the 4D gauge algebra

is k5 ⊕ u(1),1 and the global translations are no longer necessarily symmetries due to the

minimal coupling terms and scalar potential. With that in mind, let’s look at the case of an

orbifold reduction.

5.1 Symmetries at the orbifold fixed points

The gauge transformations of the Aβµ and Ab restricted to the fixed points are

δAβµ|fp = −1

g

∑
n

B1
(n)∂µα

β
(n) +

∑
n,m

B1
(n)B

2
(m)α

δ
(n)f

β
δγA

γ
µ (m) + · · ·

δAa|fp =− 1

g

∑
n

( n
R

)
G(n)α

a
(n) −

1

g

∑
n

H(n)α
a
(n)δ(x

5)

+
∑
n,m

B1
(n)B

2
(m)α

β
(n)f

a
β cA

c
(m) + · · · ,

1In constrast to k5, the u(1) local symmetry is not part a YMESGT gauging since nothing is charged
under it.
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where dots indicate terms involving ε(x5), and the B(n) and G(n), H(n) are expansion con-

stants. However, ∫
∂µα

a(x, x5)|fpdx5 = 0

so that αa is constant on the fixed planes.2 The first set of transformations are simply the

local action of the non-abelian gauge group on the fixed-plane-propagating vector fields. KK

modes are mixed when we have non-abelian gauging; however, for n > 0 vector fields, the

transformations are not symmetries of the equations of motion, so that only the zero mode

components of the first expression are symmetries of the on-shell theory. The second set of

transformations are constant shifts on all Aa together with the action of the gauge group on

the Aâ; that is, the “Poincare group” acting on the non-singlet scalars. Thus, the symmetry

algebra generating the 5D gauge group K is broken, with the fields furnishing a representa-

tion of a resulting algebra with structure constants fαβγ, f
α
ab, f

a
bα. These structure constants

indicate that the orbifold forces a symmetric structure decomposition for the algebra

(k(α) s t(â))⊕ t(Ĩ), (5.1)

where s is the semi-direct sum; k(α) is the Lie algebra for a compact subgroup K(α) ⊂ K (the

new gauge group); t(â) correspond to K(α)-non-singlets in the coset K/K(α); and Ĩ = (0, ã)

runs over singlets of K(α). This then implies that

Cabc ∝ {CãCb̃Cc̃, Cãδb̂ĉ} (5.2)

Caαβ ∝ Cã δαβ, (5.3)

where Cã are real-valued constants.

Consider breaking the simple gauge algebra su(N, 1). The algebra admits the 3-graded

form (with respect to the u(1) generator)

N− ⊕ [su(N)⊕ u(1)]⊕N+.

If k = su(N, 1) and k(α) = su(N) ⊕ u(1), then k(α) is the gauge symmetry algebra at the

orbifold fixed points, with scalars in the N−⊕N+ propagating there. The vectors Aαµ, scalars

2In the upstairs picture, ∂µαa|fp is proportional to ε(x5) so that the expression is only well-defined as an
integral over the fifth dimension. In the downstairs picture, on the other hand, the boundary conditions are
αa(x, y)|bdry = 0 and ∂µαa(x, y)|bdry = 0.
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Aâ, and scalar A0 therefore together furnish a representation of

(su(N) s t2N)⊕ t0. (5.4)

From a four-dimensional point of view, this consists of gauge transformations and shifts

of the Aa scalars, while from a five-dimensional point of view, this algebraic structure is

simply a reflection of the on- and off-boundary gauge interactions at the fixed points. In this

example, there aren’t any non-zero Cabc or Caαβ terms in the 4D Lagrangian.

If we want k(α) = su(N) instead, the structure of the symmetry algebra at the fixed

points is

(su(N) s t2N)⊕ t(Ĩ)

despite the fact that the Aâ were charged with respect to the manifest U(1) in the previous

example. Now both the scalar A0 and the scalar from the U(1) factor furnish a representation

of t(Ĩ). In this case, Cabc and Caαβ are described by a single parameter, and may therefore

be non-zero.

The dimensionally reduced Lagrangian restricted to the orbifold fixed points has the

terms

e−1LV |fp = −e
σ CĨh

Ĩ

4
δαβFα

µν Fβ µν +
κ̂CĨA

Ĩ

2
√

6
e−1εµνρσδαβFα

µν Fβ
ρσ, (5.5)

where Ĩ = (0, ã). These terms will describe the fields that will be massless in the 4D

effective theory of a given boundary. As a result, the shifts of the singlet scalar CĨA
Ĩ are

not symmetries of the Lagrangian due to the topological shifts they induce. The shifts of

the Aâ are also not symmetries of the Lagrangian due to the minimal couplings to the the

gauge fields Aαµ.

The scalar potential restricted to the fixed points is

V |fp = gχψK
χ
a K

ψ
b A

aAb. (5.6)

In general, this potential can contribute to the breaking of the possible shift symmetries. In

particular, shift symmetries of the AĨ can be broken by this term. If the 5D gauge group

K is compact, then it is a subgroup of the isotropy group of the scalar manifold MV . In

that case, there always exists a point on MV that is invariant under K-action: δφx̃0 = 0, so

that KI
x̃|0 = 0 for all I and x̃. This holds upon dimensional reduction, where now the subset

Kχ
a |0 = 0 so that there exists a K-invariant critical point of the above scalar potential. In

the canonical basis, the critical point with vanishing potential is the canonical basepoint
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h0 = 1, ha = 0.

While sitting at the basepoint of the 5D theory is sufficient for the existence of t(Ĩ)

symmetries of the potential (5.6), we can relax this requirement after rewriting the potential

as:

e−1Lpot = −3ĝ2

4κ̂2
e−3σ ◦

aIJ (AKf IKLh
L)(AMfJMNh

N). (5.7)

The fields are still not manifestly written in terms of CĨA
Ĩ since the metric contracts with

the structure constants. But we may look at the form of this potential at the fixed points of

the orbifold and write (◦
aαβ f

α
abf

β
cd + ε(x5)2 ◦

aeg f
e
abf

g
cd

)
AahbAchd. (5.8)

The indices a, b, . . . can be split into non-singlet and singlet indices â, b̂, . . . and ã, b̃, . . ..

For general vacua, the above potential contributes to the breaking of any possible shift

symmetries, with the exception of scalars arising from K-singlet vectors in AIµ̂ (which don’t

appear in the above scalar potential).

Note that, while the infinitesimal gauge transformations for Aβ and Abµ vanish at the

orbifold fixed points, two gauge transformations of these fields yields a fixed point localized

term due to the odd structure functions ε(x5)f IJK . This is similar to the fact that these

fields do appear in fixed-point localized terms (i.e., with delta functions). In the presence of

the fixed points, there appears an algebraic element fαaβA
aαβ and fabβα

βAbµ parametrized by

the gauge coupling at the boundary. Thus, there is a structure in addition to that of (5.1).

Since the fields Aβ and Abµ appear as auxilliary fields in the upstairs picture, this structure

that they close into is an “auxilliary algebra”, which will not appear as a physical symmetry

algebra of the low energy effective theory of a given boundary.

In the S1/Z2 construction, it is clear that the αβ parametrize gauge symmetries of the

Lagrangian as well as of the equations of motion for n = 0 fields. Let us now look at the

S1/(Z2×Z2) construction. Here, the Γ action on the gauge bundle gives fields four possible

parities (±±). The situation for (++) and (−−) fields is the same as before. But (+−)

fields have propagating modes only on the x5 = 0 fixed plane, while (−+) has propagating

modes only on the x5 = πR/2 plane. Let’s consider a (+−) vector field AIµ(x, x
5); it has the

form

φ(+−)(x, x5) =
∑
n

φ(n)(x) cos[(2n+ 1)x5/R] + · · · ,

where dots indicate additional terms that are even under the first Z2 action and odd under
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the second Z2 action. The 5D Lagrangian yields the equations of motion for the AIµ(x, x
5):

∂µF I (n)
µν −

(
(2n+ 1)

R

)2

AI (n)
µ + · · · = 0,

where dots indicate a gauge invariant topological term (F I ∧ F J). Therefore, for all n,

the equations of motion at x5 = 0 do not respect the local symmetries of the Lagrangian

restricted to x5 = 0, so that these (+−) vector fields are not gauge fields from the point

of view of a low energy observer at x5 = 0. The off-shell theory, of course, is invariant

under (++) and (+−) parameters at x5 = 0 so that, e.g., coupling terms in the Lagrangian

respect the larger set of symmetries at the fixed point. Due to these off-shell symmetries,

however, there may be residual global symmetries even in the on-shell or effective theory.

The arguments extend to all local symmetries of the 5D theory for n 6= 0 vector fields (KK

excited modes): the restricted Lagrangian satisfies the symmetries, while the equations of

motion (and effective theory) do not.

Aside from the symmetries arising from 5D gauge symmetry, we should check whether

supersymmetry is preserved in the theory on the orbifold. In particular, N = 2 susy should

be unbroken in the bulk, while N = 1 unbroken on the boundaries. Despite the fact that we

have assigned parities consistent with the susy transformations, the fermions of the theory

involve jumping functions so that the susy transformations will involve Dirac distributions

with support at one or both orbifold fixed points. For example, from the susy transformation

δΨµ̂ i, we have the component

δΨ5 i = D5εi · · ·

where

ε1 =

(
η

ε(x5)eξ∗

)
ε2 =

(
ε(x5)ξ

−eη∗

)
.

At first sight, it appears that this can break the supersymmetry of the entire theory. If this

is so, then fixed point localized terms must be added (see [ABN01, BB03] e.g.). In addition

to the delta factors in the susy transformations, there are fixed point localized fermion terms

in the Lagrangian such as in the kinetic term Ψ̄i
µ̂Γ

µ̂ν̂ρ̂Dν̂Ψρ̂ i.

5.2 Symmetry breaking via Wilson lines

Much of the literature on orbifold theories focuses on the symmetry breaking that is asso-

ciated with the presence of Wilson lines on the spacetime S1/Z2 or R/(Z n Z2): since the
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Wilson line is a mapping to an element of the original symmetry algebra, its presence restricts

the surviving gauge algebra to be the maximal one commuting with this element. In the first

case, the rank is not reduced, while in the second it is reduced by one. However, an orbifold

spacetime breaks supersymmetry, which can be interpreted as a boundary condition on the

Killing spinors. Similarly, we can view the presence of Wilson lines as be generated consis-

tently with the boundary conditions of the vector fields. For example, the 5D graviphoton

must be projected out of the boundary spectrum if the boundary is isomorphic to an orbifold

fixed plane; the boundary condition allows the field to form a Wilson line stretching between

boundaries. Thus, it is the very nature of the orbifold spacetime to allow for general gauge

symmetry breaking by a set of allowed boundary conditions [HMR01b, M05b]. Wilson lines,

in turn, can be associated with vacuum expectation values of scalar fields on a boundary.

Let’s first recall the notion of a Wilson line. A gauge field Aµ can have a vacuum

expectation value, but the local Lorentz symmetries will be broken. Therefore, one generally

does not allow such vevs for vector indices in the observed 4D spacetime. A gauge field

background can be locally gauge-transformed to zero (that is, the fieldstrength is locally

exact F = dA); if it can be so transformed everywhere, then the original vev is not physical

(it is “pure gauge”). One way to measure the non-triviality of a given gauge field background

is with the topological quantity ν ≡
∫
M
F , with M the spacetime manifold. Since F is closed

(the Bianchi identity for the fieldstrength), the value ν labels a particular cohomology class

of the field configuration on a given manifold M . Now suppose one has a 1-form gauge field

on a circle; it is either zero everywhere, or it can wrap the circle any integral number of times.

But in this case, there is no fieldstrength to be defined, and anyway one cannot integrate over

anything more than 1-forms since the manifold is 1-dimensional. In this case, it is natural to

consider the quantity ν ≡
∫
S1 A, where A = Aµdx

µ. Now we can consider 1-form gauge fields

that are closed, dA ≡ F = 0, so that there is no background fieldstrength. Then ν labels the

cohomology class of the gauge field A, which again depends on the topology of the manifold

M . This generalizes to field configurations on any n-manifold M : the quantity ν ≡
∫
P
A,

where P is a closed path in M , depends on the topology of the manifold into which the

path is embedded. There can be non-zero ν if π1(M) is not finite; for example, if it contains

Z. Otherwise, all of the closed paths are homotopic to a point. The exponentiation of ν,

exp(i
∫
P
Aµdx

µ), is called a Wilson loop. However, we will use the term “Wilson loop” to

refer to
∫
P
A, which is common in the literature. Since a Wilson loop

∫
P
A is a mapping from

the n-manifold M to an element of the gauge algebra, the exponentiation is a mapping to

an element of the gauge group K. Conformally mapping points at infinity to a single point,

the n-manifold can be mapped to Sn so that the exponentiated Wilson loop is an element
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of the n-th homotopy group πn(K). Therefore, if a manifold M has a non-finite π1(M), and

if the gauge group K is such that πn(K) is also non-finite, the vacuum breaks the gauge

group to the centralizer of the K-element ν. For example, a gauge field on a hyper-cylinder

that is topologically R2×S1, can have non-zero winding number ν, while π3(K) = Z for any

compact connected simple K. What about for a manifold of the form M4 × S1/Γ? Due to

the Γ action, the manifold is simply connected (i.e., π1(M) is finite) so that all closed loops

are contractable to a point. But if we start on the covering space M4 × S1, we can have

Wilson loops, and after Γ-identification, we have a path stretching from one fixed plane to

the other. This situation inspires us to generalize the notion of a Wilson loop to a Wilson

line, simply by allowing the path P to have distinct endpoints. Now, if the path is not

contractable to a point, such as in the case in which the endpoints are on distinct fixed

planes, we have a topologically nontrivial path. Therefore, we generalize our conditions for

gauge group breaking to be: if π1(M) is non-finite for either M being the spacetime, or

its covering space in the case of orbifolds, and if πn(K) is also non-finite, then the gauge

group may be broken by the presence of Wilson loops/lines. In the case of 5D spacetimes,

π5(K) = Z for K = SU(n), n ≥ 3 and for K = SO(n), n ≥ 7. For K = USp(2n), n ≥ 1,

π5(K) = Z2. The exceptional groups all have π5(K) = 0 (π3(K) = Z for the exceptional

groups, while E6 has π9(E6) = Z).3

With this in mind, let’s consider the presence of Wilson lines in the upstairs picture,

where we work on the covering space [−πR, πR] (with {−πR} ≡ {πR}). A Wilson line

can thus begin at {−πR} and end at {πR}; we call this path P . Due to the Z2 action,

dx5 → −dx5 about x5 = 0. Therefore, the orientation of the line will flip at x5 = 0:

〈
Aaµ̂
〉
|P =

1

2

∑
n

∫ 0

−πR
Aa(n)(x)C(n) cos(

nx5

R
)dx5

− 1

2

∑
n

∫ πR

0

Aa(n)(x)C(n) cos(
nx5

R
)dx5,

where the factor of 1/2 is due to the Z2 identification to obtain the spacetime M4 × S1/Z2.

The result is then 〈
Aaµ̂
〉
|P = πR C(0)A

a
(0)(x), (5.9)

where C(0) is simply an O(1) expansion constant, and Aa(0) is a vacuum expectation value.

In the downstairs picture, where the fifth dimension is parametrized by y ∈ [0, πR], there

3Note that strictly using Wilson lines in a more general spacetime with boundaries (i.e., not isomorphic
to an orbifold) to break gauge symmetries would exclude an exceptional GUT scenario in five dimensions.
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Figure 5.1: 4D slices of spacetime showing the strength of the potential Aaµ̂ by shading. On
the boundaries y = 0 and y = πR, the scalar field Aa has a vev.

is one copy of a Wilson line that stretches from one boundary to the other. Figure 5.1 is

a schematic of this Wilson line, which is seen as a scalar vev for Aa on the boundaries.

Similarly, for the Aαµ̂ 〈
Aαµ̂
〉
|P = −2

∑
n odd

(
R

n

)
CnA

α
(n)(x). (5.10)

See figure 5.2 for a schematic of this Wilson line. The strength vanishes on the boundaries

so that there is no vev for the scalar Aα that is projected out of the boundary-propagating

spectrum. If we wrap around the covering circle N times, then there are N Wilson lines

stretching between the boundaries in the downstairs picture. The total strength is then

NπR 〈A〉.
The Wilson lines are such that, for very large energies (large number of levels n excited),

the full group K can be unbroken in the presence of (5.9) and (5.10). For lower energies

(lower levels n excited), the group is broken to the centralizer of the element of K associated

with (5.10); the resulting five-dimensional gauge group therefore depends on the range of

α (i.e., the parity assignments of the AIµ) and, ultimately, which Wilson lines are turned
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Figure 5.2: 4D slices of spacetime showing the strength of the potential Aαµ̂ by shading. On
the boundaries y = 0 and y = πR, the scalar field and its vev Aα vanish.

on. The 4D low energy effective theory of a given boundary (below the scale, Mc, of the

compact dimension) is dominated by the n = 0 level and has an unbroken gauge group as

determined by the parity assignments for the AIµ (boundary conditions in the downstairs

picture). Finally, at even lower energies, the 4D scalar sector, in part determined by the

form of (5.9), may break the gauge group further (e.g. electroweak breaking).

Although we have been discussing Wilson lines on S1/Z2, we could consider non-abelian

lines on R/(Z n Z2), which allows the rank to be reduced by one (where Z acts on elements

of R as addition by 2πn, n = 0, 1, 2, . . .).

Let’s extend the discussion to the case of S1/(Z2×Z2) orbifolds. The parity assignments

are consistent with an inhomogeneous Wilson line that drops in strength from one boundary

to the next. The result for (+−) fields is now

〈
Aaµ̂
〉
P

=
∑
n

∫ 0

−πR/2
Aa(x) cos

(2n+ 1)x5

R

=
∑
n

Aa(x)
R

2n+ 1
.
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Figure 5.3: 4D slices of spacetime showing the strength of the potential Aα
′

µ̂ by shading. On

the boundary y = 0, the vev for the scalar Aα
′
vanishes, while on y = πR/2, it is non-zero.

Figure 5.3 scehmatially illustrates the downstairs picture, where the fifth dimension is

parametrized by y ∈ [0, πR/2]; the strength of the Wilson line schematically goes from

zero at the y = 0 boundary to some non-zero value at the y = πR/2 boundary (really, there

are diminishing contributions from a countably infinite set of excited modes of the 5D field

Aα
′

µ̂ ).

Again, for large energies (where large n modes are excited), the gauge group is K, while

for intermediate energies the above Wilson lines, along with Wilson lines from (++) modes

(of the same form as (5.10)), break the group to K(α) in five dimensions. However, the x5 = 0

fixed point does not experience the breaking until the energy scale goes below Mc since the

Wilson line strength drops to zero there. Below the scale Mc, both fixed planes will have

gauge symmetry K(α).

In light of the discussion in section (3.1.2), it is natural to have SO(10) with the L(4, 1)

space (or E6 with the L(8, 1) space) for large energies, whereas for intermediate energies the

theory is still five-dimensional and based on the L(4, 1) space (resp. L(8, 1)) but with SU(5)

(resp. SO(10)) gauge subgroup.
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5.3 Anomalies

Previous work on anomalies in orbifold theories can be found in [AHCG01, SSSZ02, PR02,

BCCRS02, L02, L03, vGQ03, SS04]. We will present here an independent analysis of the

anomalies present in 5D supergravity on M4 × S1/Γ, which is based on [M05c].

We would like to consider the minimal field additions for anomaly cancelation. There

is nothing wrong with adding more multiplets localized at boundaries consistent with the

symmetries and anomaly cancellation, but one is less compelled to make these additions. In

the framework of string theory, the entire low energy field content would follow, in principle,

from the particular compactification considered. These states would then survive in the su-

pergravity approximation. In the bottom-up approach, by contrast, massless supermultiplets

can be added by hand after constructing the orbifold version of the 5D theory.

Five-dimensional orbifold theories can have pure gauge or mixed anomalies due to the

presence of 4D chiral fermions in complex representations of the gauge group. However,

charged chiral multiplets coming from 5D vector or tensor multiplets appear in real repre-

sentations of the boundary gauge group. Furthermore, if the 5D gauge group is compact,

the chiral multiplet coming from the 5D supergravity multiplet is a gauge singlet. If non-

compact, this chiral multiplet joins the other chiral multiplets to form a real representation.

The 4D spin-3/2 fermion is in the 4D supergravity multiplet and will not have anomalous

gauge couplings (we are not gauging R-symmetries). Therefore, the only fermions that can

have anomalous gauge couplings are the chiral multiplets coming from 5D hypermultiplets

charged under the gauge group. Note that R-symmetries are not gauged, so there aren’t any

Fayet-Illiopoulos terms.

One can always express a non-zero variation of a 4D action as an integral over a 4-form;

with the Wess-Zumino consistency condition, we can express it as δΛ
∫∑ I5, which in turn can

be expressed in terms of a gauge invariant 6-form I6 such that I6 = dI5 for transformations

parametrized by Λ that are connected to the identity. The gauge invariant 6-forms that serve

as the gauge and mixed anomaly polynomials will be of the form trF 3 and trR2F . These

anomaly terms are associated with three external gauge boson and two graviton/one gauge

boson triangle diagrams, respectively. If there are polynomials I6 that are not reducible

(cannot be written in the form ImI6−m for m 6= 0), the massless spectrum of the 4D theory

must be modified by the addition of suitable multiplets with support only on the boundary.

In addition to these familiar 4D anomalies, 5D theories with bulk Chern-Simons (CS)

terms can contribute to reducible and irreducible anomalies at 4D boundaries due to a non-

zero classical gauge variation of these terms, which is interpreted as an influx of charge
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due to the bulk gauge current [CH85]. In the class of orbifold theories where none of the

bulk vector fields propagate at the fixed points, there can be a contribution when the bulk

fieldstrength is related to gauge fields whose support is only at the fixed points, as occurs

in [HW96a, HW96b], where the bulk theory is required to couple to a localized boundary

gauge theory. On the other hand, in orbifold GUTs, the 5D CS terms involve gauge fields

that are directly involved in any anomalous couplings with chiral fermions at the fixed points.

The presence of Chern-Simons terms and associated anomaly inflow has been discussed

in the literature mostly in the context of rigidly supersymmetric gauge theories. On the

other hand, where M-theory or supergravity is considered, there isn’t any inflow from bulk

fields since the models there are typically of the HW or RS type (where none of the bulk

vectors propagate on the boundaries of the spacetime). In the case of rigidly supersymmetric

theories, there is no a priori reason to have a 5D CS term. In fact, it is often noted [SSSZ02]

for orbifold theories that a CS term is not invariant under orbifold parities (i.e., it’s odd). It

has been suggested in such cases that one can couple an odd field to the CS term, rendering

it invariant; the auxilliary field could then obtain vevs, serving as a dynamically determined

coefficient of the CS term [SSSZ02]. Alternatively, it has been shown [L02, L03] that a 5D

U(1) gauge theory minimally coupled to a single fermion on an orbifold can be given an

infinite “jumping” (or kink) mass, giving rise to a fermion zero mode quantum anomaly at

the fixed points along with a residual 5D CS term (whose classical gauge variation cancels

the quantum anomaly).

However, in 5D supergravity, Chern-Simons terms are part of the classical theory. Fur-

thermore, these terms are consistent with the orbifold symmetries: they have the tensor

CIJK as a coefficient, which carries representation indices of the global symmetry group, G,

in the case of a MESGT, and those of the gauge group, K, in the case of a YMESGT. There-

fore, as the Γ action is lifted to the gauge or flat G-bundle (that is, with trivial connection),

respectively, it can act non-trivially on CIJK .

The action for a five-dimensional Maxwell-Einstein supergravity theory has a Chern-

Simons term

SCS =

∫
M5

5!

6
√

6
CIJKF

I ∧ F J ∧ AK ,

where CIJK is a rank-3 symmetric invariant of the global symmetry group G of the La-

grangian. In Minkowski spacetime, the full action is invariant under local abelian trans-

formations δαA
I = dαI .4 Now we are considering a spacetime with boundary (downstairs

4These are not proper “gauged supergravities”, which arise when R-symmetries or scalar isometries are
gauged.
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picture). In showing that the bulk variations vanish, there will be boundary localized terms.

Consider the variation of the action under the abelian transformations above. The action is

clearly invariant except for the CS term, which gives

δαSCS =
5!

6
√

6
Cαβγ

∫
∂M5

(Fα ∧ F β)αγ,

where α, β, γ label vector fields that propagate along the boundary; and Cαβγ is a rank-3

symmetric invariant of the global symmetry subgroup Gα ⊂ G of the boundary theories.

Since the boundaries are oppositely oriented, the flux of charged current coming from one

boundary is received by the other (i.e., the anomaly globally cancels). However, there is a

classical inflow anomaly at the individual boundaries, so that the corresponding local abelian

symmetries of a 5D MESGT are broken. This inflow must be compensated locally if the

associated 5D symmetry is to be preserved.

However, the classical Lagrangian is otherwise invariant under the local abelian trans-

formations we are discussing. The fermions propagating on the boundaries will not have a

chiral anomaly contribution since they are not charged with respect to any of the abelian

fields. Therefore, in dealing with MESGTs in the presence of boundaries, only the theories

with Cαβγ = 0 are invariant under the full set of local abelian transformations. To compen-

sate for the inflow present in theories with Cαβγ 6= 0, we can add a boundary localized set of

terms involving fermions and minimal coupling to the propagating vectors.

We are more interested in gauged 5D supergravity theories here. If we gauge abelian

isometries of the scalar manifold, the anomaly inflow will be of the same form as above,

but now Cαβγ = CαCβCγ so that the anomaly associated with the set of local abelian

transformations parametrized by αβ is proportional to (CαF
α)∧ (CβF

β)(Cγα
γ). That is, we

have a U(1)−U(1)−U(1) anomaly parametrized by Cγα
γ. Again, we can consider fermions

chirally coupled to the gauge fields propagating on the boundaries in such a way that the

quantum anomaly contribution compensates the inflow. In a pure YMESGT, there aren’t

any chiral couplings on the boundaries. The only way to obtain them is to either start with

a different 5D theory coupled to hypermultiplets, or to consider fermionic fields with support

only at the boundaries (with minimal coupling to the gauge fields from the 5D theory).

Finally, let’s move to the case of primary concern: orbifold-GUTs. In spacetimes without

boundary, a YMESGT based on a reducible C-tensor simply has the gauge invariant term

F I ∧FJ ∧AK , where the bare AK can always be made to be one of the singlet vectors that

must be present in such theories [GST84c]. In the presence of boundaries, however, a non-

abelian YMESGT must generally have a full “Chern-Simons” extension, and the reducibility
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of the C-tensor is no longer a sufficient criterion. If CIJK is reducible, there is again at least

one singlet vector field (the graviphoton) of any non-abelian group that is to be gauged,

and it necessarily appears in every FFA term of the MESGT. If all such singlet vectors do

not have propagating modes on the boundaries (the 5D graviphoton never does), then we

may write the FFA terms of the MESGT such that the singlets appear only as the bare A.

Then, promoting the theory to a YMESGT is simple: replace the abelian fieldstrengths with

non-abelian ones, including in the FFA term. The 5D infinitesimal gauge transformation of

the FFA vanishes, so that there is no anomaly contribution in this case. On the other hand,

if there are any boundary-propagating spectator vectors, the full Chern-Simons extension

must be considered in the YMESGT. The inflow anomaly, however, will be reducible of the

form U(1)−K(α) −K(α) so that the addition of boundary-supported fields is not required.

As an example, consider a MESGT of the “generic Jordan” family [GST84a] with CIJK

tensor being the norm form of the cubic Euclidean Jordan algebra J2 ⊕ R: sQ, where Q is

a quadradic “Minkowski norm” with signature (+− · · ·−). The scalar manifold is

SO(1, 1)× SO(nV − 1, 1)

SO(nV − 1)
,

where nV is the number of vector multiplets coupled to the theory. We can gauge SU(n) ⊂
SO(nV − 1) such that dim[SU(n)] = nV − 1, in which case we’ll be left with two spectator

vectors: the “bare” graviphoton A0
µ̂ and a vector multiplet field A1

µ̂. Although the C-tensor is

reducible, if we allow the 4D vector componentA1
µ to propagate on the boundaries, promoting

the MESGT to a YMESGT will require the full CS form, and there will consequently be a

reducible anomaly inflow.

More interestingly, there will be an irreducible anomaly inflow when the C-tensor is

irreducible. This, in turn occurs for

(A) YMESGTs in which some components Cijk 6= 0. When promoting the MESGT to a

YMESGT, we must replace the FFA term by (2.6)

(B) Unified YMESGTs (in which all of the vector fields in the theory form the adjoint of a

simple group).

Case A

This will occur for non-abelian gaugings containing a subgroup that has a cubic symmetric

invariant dαβγ (i.e., SU(n) n > 2 type); and which, in addition, have D 6= 0 for Cαβγ =

Ddαβγ. Phenomenologically, the interesting gauge groups in the low energy effective orbifold

theories do have cubic symmetric invariants, but we can make life simpler by considering
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the class of those gauge theories defined by Cαβγ = 0. Consider the example in which the

MESGT Cijk are the d-symbols of SU(n), under which the nV + 1 vector fields form the

1⊕ adj[SU(n)] (that is, we have nV = dim[SU(n)] vector multiplets). Then we can promote

the MESGT to a YMESGT with gauge group K = SU(n) under which all of the fields in

the vector multiplets form the adjoint representation, while the graviphoton is a spectator.

When promoting the MESGT to a YMESGT, let’s simplify the replacement of the FFA

term by its gauge invariant form. We can split the CIJKF
I∧F J∧FK terms in the Lagrangian

as (
C000F

0 ∧ F 0 ∧ A0 + 2C0ijF
0 ∧ F i ∧ Aj + C0ijF

i ∧ F j ∧ A0
)

+CijkF
i ∧ F j ∧ Ak,

with first three terms being the “reducible part”, and the fourth being the “irreducible part”.

Integration by parts allows us to re-express the reducible part in the form∫
M5

C0IJF
I ∧ F J ∧ A0 (5.11)

(since the vector A0
µ is necessary removed from the boundary spectrum of propagating

modes). To promote this theory to a YMESGT, we must make the replacement (2.6) for the

irreducible part involving Cijk, while we simply replace the abelian fieldstrengths in (5.11)

with non-abelian ones. Therefore

5!

6
√

6
Cijk

[
F i ∧ F j ∧ Ak +

3

2
gfklm (F i ∧ Aj ∧ Al ∧ Am)

+
3

5
g2f jghf

k
lf (A

g ∧ Ah ∧ Al ∧ Af ∧ Ai)
]

+
5!

6
√

6
C0ij (F i ∧ F j ∧ A0).

(5.12)

The last term is invariant under 5D non-abelian gauge transformations, and we pick up no

boundary term. The only contribution to the inflow anomaly comes from the Cijk terms.

We can rewrite this in terms of the Chern-Simons form (with constant prefactors)

LCS = (Dκ̂/g3)Tr[F ∧ F ∧ A+
3

2
F ∧ A ∧ [A,A] +

3

5
A ∧ [A,A] ∧ [A,A]],

where A = gtiA
i; [A,A] = g tif

i
jk A

j ∧ Ak; and we have used the fact that the C-tensor is

proportional to the d-symbols of the gauge group, with constant of proportionality being
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D. Under global gauge transformations, this term generally transforms as a non-trivial

element of π5(K). However, under transformations connected to the identity, it transforms

with a trivial element: δαLCS = dLFF (α). Therefore, the irreducible anomaly inflow is

δαS
5D
CS = S

(4D)
FF (α), with

S
(4D)
FF (α) = (Dκ/g3)

∫
∂M5

Tr[(F ∧ F)α], (5.13)

where F = g tβ Fβ and α = g tβ α
β.

Case B

Consider the unified YMESGTs based on Lorentzian Jordan algebras JC
(1,N) (represented

as matrices over the complex numbers that are Hermitian with respect to a Minkowski

metric). In this case, the CIJK are the d-symbols of the SU(N, 1) gauge group and all FFA

terms of the original MESGT must be replaced by (2.6). Then the form of the anomaly

inflow is the same as in (5.13), where the gauge group K(α) is at most SU(N). Again,

the irreducible anomaly will require chiral couplings from bulk hypermultiplets or boundary

localized fields.

Extension to S1/(Z2 × Z2)

We may now extend to the S1/(Z2×Z2) case. As mentioned in a previous section, these

spacetimes are consistent with inhomogeneous Wilson lines, whose strength varies from one

boundary to the other. This asymmetric background allows the anomaly flow from one

boundary to the other not to be conserved (that is, there is a global anomaly). However,

due to the nature of (+−) and (−+) type symmetries at the orbifold fixed points, there can’t

be a local anomaly contribution associated with this excess charge flow; the low energy theory

doesn’t have these as gauge symmetries. Therefore, the corresponding inflow contribution

can only be anomalous for rigid symmetries of the theory arising from the broken local

symmetries.

Let’s consider an example of a 5D YMESGT on S1/(Z2 × Z2) with the assignments as

in section (4.6.1). First, let’s note the following: Cαβγ′ is rank-2 with adjoint indices of

SU(3) × SU(2) × U(1), and so is ∝ δαβCγ′ . But it also carries an index in SU(5)/SM ,

so can’t be a singlet of SU(5). Therefore, Cαβγ′ = 0. Finally Cα′β′γ′ = 0 since there isn’t

a rank-3 symmetric singlet of SU(5)/SM . Therefore, a gauge variation of the downstairs

action yields the global inflow contribution

δαS =

∫
y=0

Cα′β′γ

(
Fα′ ∧ Fβ′

αγ + 2Fα′ ∧ Fβαγ
′
)
.
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Again, these contributions do not have to be cancelled locally on the y = 0 boundary, but

rather represent a breaking of rigid symmetries. The Aα
′
µ will be massive fields in the low

energy effective theory of the y = 0 boundary.
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Chapter 6

Phenomenology

6.1 The QCD Axion

In QCD, there is a chiral anomaly in the current Jµ =
∑

f q̄fγµγ5qf : ∂µJ
µ = g2

32π2 ε
µνρσTr[FµνFρσ],

where Tr is the trace in the adjoint representation. Therefore, the amount of charge lost is

∆QA ≡
∫
vol ∂µJ

µ

=
g2

32π2

∫
vol εµνρσTr[FµνFρσ] = ν

where ν is the winding integer for the non-trivial field configuration. Therefore, there is a

set of degenerate vacua corresponding to a set of states {|ν>}, and the effective Lagrangian

will contain a term

∆L = θ
g2

32π2
εµνρσTr[FµνFρσ], (6.1)

where θ parametrizes the vacuum state (which is a superposition of states with winding

numbers in {ν}).
The anomaly in Jµ is directly related to the U(1) chiral anomaly of QCD: making the

transformation δq = eiθγ5 on a quark field q, with θ parametrizing U(1), the Lagrangian

shifts by δL = iθ∂µJµ, where Jµ is the V-A current above. Since
∫
vol δL = iθν, we see

that the anomalous current Jµ is in direct correspondence with the breaking of chiral U(1)

symmetry, and that θ parametrizes the vaccum that couples to the current. In the path

integral of the theory, we will have eiθν eiSQCD , where SQCD is the SU(3) Yang-Mills action

with minimal coupling to quarks.

When the minimally coupled quark are massless, it is clear that we can make a chi-

ral transformation such that the term ∆L in the effective Lagrangian vanishes, without

any further consequences. Therefore, although the chiral transformations are not quantum

symmetries, they interpolate between degenerate vacua labeled by θ that are physically in-
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distinguishable. (So really, the chiral transformations are quantum symmetries in this sense).

However, this symmetry is broken once we minimally couple massive fermions to the gauge

fields. This is due to the fact that the mass of the fermions sitting in an instanton vacuum

depends on the vacuum state labeled by θ; for example the up and down quarks u and d

with masses mu and md have the term

LCP = iθ
mumd

mu +md

(ūγ5u+ d̄γ5d).

Thus, θ can be measured, since a quantum field calculation tells us that the dipole moments

of composite particles will be changed by this term. The neutron dipole moment is the

cleanest to measure, and it is found that θ ≤ 10−10 [B79, CdVVW79]. Since (6.1) is odd

under the action of charge and parity operations (CP), the question of why this dimensionless

parameter is so small (or zero) for the strong interactions is called the strong-CP problem.

Peccei and Quinn [PQ77a, PQ77b] pointed out that one could construct a true chiral

global symmetry U(1)PQ of the theory LQCD + LEW , so that the θ could be rotated to zero

without affecting any observables, including the masses of the fermions after the spontaneous

breakdown of the electroweak symmetry. However, Weinberg [SW77] and Wilczek [FW77]

then pointed out that U(1)PQ, while capable of being a classical symmetry, was only an

approximate quantum symmetry due to the presence of instantons, which as we described

above, are associated with the presence of chiral anomalies. Furthermore, they pointed

out that this approximate symmetry will be spontaneously broken since the spontaneous

electroweak breakdown gives masses to the fermions of the theory (which are manifestly not

U(1)PQ invariant). As a result of a spontaneously broken exact symmetry, there is a massless

Goldstone scalar field. But the spontaneous breakdown of an approximate global symmetry

results in a vacuum with a (spin-0) pseudo-Goldstone particle, which has a small mass. This

particle is the QCD axion.

Let us then summarize the axion resolution to the strong-CP problem: there is an ap-

proximate quantum chiral symmetry U(1)PQ that is ultimately spontaneously broken, if not

above, then at the electroweak breaking scale. There is then a light scalar axion A appearing

in the effective Lagrangian below this scale

LA ∝
A

MPQ

εµνρσTr[FµνFρσ], (6.2)

which joins the effective QCD term (6.1). Here, A has mass dimension 1 and MPQ is the

energy scale at which U(1)PQ is broken. The vacuum minimum is given by the effective θ
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parameter θeff ≡ 〈A〉+ θ = 0, so that at the end of the day, there aren’t any CP-violating

terms in QCD. The axion is the dynamical, quantum realization of Peccei and Quinn’s

classical proposal.

An immediate question that arises is: if the axion exists, why haven’t we seen it? First

of all, it is a spin-0 SM gauge singlet, and so can only charged under the gravitational in-

teraction, which is quite weak at the scales we probe. However, (6.2) generally involves all

gauge fields of the theory at hand, so that it allows for magnetic field-induced decays of

axions to photons, which we can look for experimentally [S83]. Furthermore, the effective

Lagrangian of QCD coupled to an axion will involve axions coupled to quark-gluon compos-

ites, like the pion. The decay rate of the axions into them depends on MPQ in (6.2). All of

these decays contribute to the energy content of the universe and therefore to its temper-

ature. However, from cosmological observations and constraints on reheating arising from

these decays, there are limits on the lifetime of a SM axion; the coupling strength can be

1010GeV < fA < 1012GeV [T90, R90, PWW83, AS83, DF83]. In the SM scenario, this scale

fA would be the U(1)PQ breaking scale MPQ, and therefore, the natural scale of axion vevs

〈A〉. This clearly rules out an electroweak breaking of the PQ symmetry, since that is on the

order of 102GeV . So a SM axion solution to the strong-CP problem requires the introduction

of a new, intermediate, scale.1 This isn’t so bad, since there are other intermediate scales in

“beyond the Standard Model” scenarios. The problem comes when there are a number of

distinct intermediate scales for various new physics, such as axions and strong-electroweak

unification.

We should point out that, in supersymmetric axion scenarios, the constraints on fA are

model-dependent, since one must examine the cosmological implications of axions with their

coupling to supersymmetric particles [BDG03, BDFG03].

Fields denoted as “axions” appear generically in compactifications of supergravity and

string/M-theory. These axions are not necessarily QCD-type axions capable of solving the

strong-CP problem; rather they are generally just scalars that parametrize a U(1). (They

do appear in P/CP violating terms like (6.2), so they are sometimes called pseudoscalars.)

The axions capable of resolving the strong-CP problem in these scenarios generically have

a large coupling strength fA ∼ 1016 − 1018GeV [BD97]. This is why arguments for larger

values of fA in superymmetric theories, such as in [BDG03, BDFG03], are important. Since

supergravity is a low energy approximation to string/M-theory, we should find axions there

as well. The graviphoton in a five dimensional MESGT is hIF
I
µν , a combination that depends

1The presence of this intermediate scale wouldn’t spoil the usual predictions of gauge coupling unification
since the axion is a gauge-singlet.
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on the background
〈
φx̃
〉
. Upon dimensional reduction, the “axion/dilaton” form a complex

scalar field hIz
I sitting in a 4D N = 2 vector multiplet, and parametrize a scalar manifold

SU(1, 1)G/U(1) [MO98, GMZ05a]. The “axion” is the scalar arising from the 5D graviphoton

of the form hIA
I ≡ <(hIz

I). However, in 5D YMESGTs on an orbifold spacetime, a QCD-

type axion appears generically, which is not the above scalar.

There has been previous work in field-theoretic models in which a QCD-type axion arises

from a 5D field. In [ADD98, AADD98, CTY00a, CTY00b], models were constructed in which

the strong CP axion comes from a higher dimensional scalar field. In [DDG00] it was shown

that doing so decouples the PQ breaking scale fPQ from the mass of the axion, and thatmA ≤
O(R−1). On the other hand, the authors of [FHM05] (which followed [ACCR03a, ACCR03b])

consider a U(1) rigidly supersymmetric orbifold gauge theory in which the gauge field Aµ̂

is given odd parity. Then, according to [ACCR03a, ACCR03b, FHM05] 〈Aµ̂〉 (x) can be

treated as a field in the effective 4D theory, assuming that A5(x) is slowly varying on the

fixed planes. The situation described in this thesis are distinct from these scenarios.

Looking at the FF term (5.5), we immediately see that, while the singlet from the

5D graviphoton is hIA
I , the candidate axion is CĨA

Ĩ ; in the case where nV = 0 (simple

supergravity), these two coincide. However, the scalars Aã appear in the potential (5.8)

(while A0 and any scalar arising from K-singlet vectors in AIµ̂ don’t). Usually, for A to

be a QCD-type axion we would have to require the ground state to be such that terms in

the potential containing Aã vanish. This can be satisfied, for example, when
〈
hã
〉

= 0 or〈
Aã
〉

= 0. However, we will see that the mass of the axion (including any contributions from

the scalar potential) is decoupled from the strength of coupling to matter fermions.

We can re-express everything in terms of the scalar A using the relations (see (2.2)

and [GST84a])

hI = CIJKh
JhK (6.3)

◦
aIJ= {3CIKLCJMNh

KhLhMhN − 2CIJKh
K} (6.4)

Tp̃q̃r̃h
r̃
I = CIJK{

1

2
ηp̃q̃h

JhK + hJp̃h
K
q̃ } (6.5)

ΦIp̃q̃ =

√
2

3
CIJK{

3

4
ηp̃q̃h

JhK + hJp̃h
K
q̃ }. (6.6)

In the canonical basis,

C000 = 1, C00i = 0, C0ij = −1

2
δij, Cijk = rank-3 symmetric invariant.
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However, this is not the natural basis in which to write the scalar CĨA
Ĩ . With index splitting

I = (0, ã, â, α), we can perform a linear transformation

h0 → h0 + hãCã.

In the new basis, the first three components above become

C000 = (C0)
3 = 1, C0ãb̃ = C0CãCb̃, C00ã = (C0)

2Cã,

with C0 = 1. Therefore, the only non-zero components of CIJK in the YMESGT are

CĨαβ = −1

2
CĨδαβ

CĨ âb̂ = −1

2
CĨδâb̂

CĨJ̃K̃ = CĨCJ̃CK̃

Cαβγ = Ddαβγ,

(6.7)

where Ĩ = (0, ã); C0 = 1; dαβγ are symmetric invariants of K(α) (d-symbols if the gauge

group is K(α) = SU(N)); and D is an arbitrary parameter.

Let A ≡ CĨA
Ĩ , h ≡ CĨh

Ĩ and ĥ2 ≡ δâb̂h
âhb̂. Then the Lagrangian at the orbifold fixed

points for A becomes

e−1LA|fp =− e−2σ

2
[
3

4
(h2 + ĥ2)2 + h] ∂µA∂µA

− e−1 κ̂

4
√

6 ĝ2
A εµνρσ Tr[FµνFρσ]

− e−2σ[
3

2
(h2 + ĥ2)h + 1] δâb̂h

â∂µA
b̂∂µA+ pot+ · · · ,

where Fµν ≡ g tαFα
µν with tα ∈ k(α) (i.e., elements of the gauge algebra on the boundary);

“pot” denotes the potential contribution from (5.8); dots indicate derivative couplings to

YMESGT fermions. Due to the parity assignments of section (4.5), the scalars AĨ (and
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therefore A) do not appear in the scalar potential. The fermionic coupling terms are

e−1LfA|fp =

√
2

2
√

3
e−σ∂µA

(3

4
ηp̃q̃{h2 − 1

2
ĥ2}λ̄p̃ iΓµλq̃i

+{hphq−
1

2
δâb̂h

â
ph

b̂
q}λ̄p iΓµλ

q
i

−{1

2
δαβh

α
ρh

β
σ}λ̄ρ iΓµλσi

)
+ · · · ,

(6.8)

where dots indicate 4-fermion couplings.

After integrating the zero mode Lagrangian over x5, we pick up a factor of R, the size of

the fifth dimension. Furthermore, ĝ = g
√
R and κ̂ = κ

√
R. Therefore,

1/MPQ =
κ

g3
, (6.9)

which is clearly independent of the compactification energy scale. At first site, this repro-

duces the usual difficulty with axions in string/M-theory: the coupling is far too small for

the Sandard Model axion (though for supersymmetric axions, one may have larger MPQ).

However, MPQ above is not the scale at which a global U(1)PQ symmetry is broken.

The global symmetry, parametrized by CĨα
Ĩ , is defined on the boundaries of the spacetime

so that the natural energy scale is Mc ∼ 1/R. It arises from local symmetries of the bulk

theory. As discussed in the last section, Wilson lines
〈
Aaµ̂
〉
P

stretching between boundaries

of the spacetime give rise to boundary vevs for scalar fields Aa. But
〈
Aaµ̂
〉
P

is a dimensionless

object that equals CAa(x)/Mc, where C is a constant, and Aa is the dimension 1 scalar field

that appears in the 4D effective Lagrangian. Therefore, 〈Aa〉 = Mc

〈
A(5)

〉
/C, where Mc is

the compactification energy scale (Mc ∼ 1/R), and
〈
A(5)

〉
∼ O(1) is expected generically.

The dimensionless coefficient in the axion term is then

1/FPQ =
κMc

g3
,

which for Mc << 1018GeV is a small number. This reflects the fact that, although MPQ ∼
1016GeV is the dimensionful coefficient in (6.2), the characteristic axion scale can be much

lower. That is, under the global U(1) shift parametrized by α̃ ≡ CĨα
Ĩ the axion shifts as

A → A+Mcα̃.

More precisely, the first thing to notice is that the dimensionless parameter θ + 1
FPQ

is the physically relevant one, as it is this parameter which must be << 10−10. As for the

Standard Model case, the QCD instanton potential will be minimized for θ + 1/FPQ = 0.
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The difference in the orbifold scenario is that this generally no longer has O(1) solutions for

θ; it can have very small θ solutions, depending on the size of Mc relative to 1018GeV (i.e.,

κ−1).

Second, to find the decay rate of axions into physically observable composite particles like

pions, one must find the relevant terms in the effective Lagrangian. To do this, we should

be coupling to SM matter, which can sit in 5D hypermultiplets. (The fermion couplings

in (6.8) are those of a pure YMESGT.) At first site, the Aã may appear in the minimal

coupling terms involving the ζA and qX̃ (see (2.11) and (2.13)). Recall that the surviving

hyper-scalars are the qX so that the 5th component of the covariant derivative for the scalars

becomes

D5q
X |fp =

(
D5q

X + gAaKX
a

)
|fp.

But KX
a (q) has odd parity, and vanishes at the fixed points. So there won’t be any Aa (and

therefore A) factors in terms coming from 5D Dµ̂q
X̃ terms. As for terms with Dµ̂ζ

A, we

must check whether there are bare AĨ factors arising from the ωAIB couplings. In general, the

KΩ
a have even orbifold parity (section (4.5)), which means the components ωAaB determined

by them will not generally vanish at the orbifold fixed points. However, we can show that the

KΩ
Ĩ
(q) Killing vectors of this set do vanish, just as in the analogous case of the Kχ

Ĩ
(φ) in the

pure YMESGT sector. We will argue this in a different way, though. From [BCdWGVvP04],

the Killing vectors satisfy

Ri
X̃Ỹ j

KX̃
I K

Ỹ
J +

1

2
fKIJP

i
Kj = 0, (6.10)

where Ri
X̃Ỹ j

is the SU(2)R curvature of the quaternionic manifold (i, j are SU(2)R indices):

RX̃Ỹ ij = κ̂
(
fX̃iAf

A
Ỹ j
− fỸ iAf

A
X̃j

)
, (6.11)

and P i
Kj is the Killing prepotential of the scalar manifold, whose explicit form is irrelevant

here. From section (5.1), we know that the structure constants

fK
ãb̃
→ ε(x5)fK

ãb̃
.

Then (6.10) makes sense as an integral over the fifth dimension, so that it becomes

Ri
X̃Ỹ j

KX̃
Ĩ
K Ỹ
J̃

= 0. (6.12)

But this cannot have a non-trivial solution for the Killing fields since this would impose a

non-trivial constraint on the geometry encoded in the curvature tensor, which is determined
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when one chooses the 5D hypermultiplet couplings (and the SU(2)R curvature does not

vanish, which is apparent by looking at the fixed-point form of (6.11)). Therefore, KX̃
Ĩ

,

where Ĩ are K(α)-singlet indices, must vanish. As a result, scalars AĨ do not appear in the

scalar potential of (2.11).

Finally, the K-representation matrix is

ωAIB = KIX̃;Ỹ f
X̃A
i f Ỹ iB ,

where the semi-colon denotes the covariant derivative on MQ. Since the KX̃
Ĩ

vanish at the

orbifold fixed points, so must their covariant derivatives, and therefore, the components ωA
ĨB

vanish there as well. Thus, the scalars AĨ also do not appear in the minimal coupling terms

in (2.11) of the form ζ̄AΓ5D5ζA.

We have shown that the candidate axion A = CĨA
Ĩ is not directly coupled to hypermulti-

plet fields. On the other hand, there is a derivative coupling of the AĨ to the hyper-fermions,

just as in the YMESGT sector. From

ê−1LζζF =

√
6i

8
κ̂hI ζ̄AΓµ̂ν̂F I

µ̂ν̂ζ
A,

we find the fixed point contribution

e−1LζζF =

√
6i

4

κ̂

ĝ3
e−2σ∂µAgµν{−

1

2
ĥ2 + h2}tr

(
ζ̄Γν5̇ζ

)
,

where A ≡ gCtĨA
Ĩ and tr(ζ̄Γµ5ζ) ≡ ζ̄ACABΓµ5ζ

B (tr is the trace in the representation of

the fermions). After integrating over x5, the coefficient is

e−2σ

MPQ

{−1

2
ĥ2 + h2},

where MPQ is defined in (6.9).

We can compare this with the SM analysis in which the coupling coefficient of a quark and

axion is fq/MPQ, where fq is a dimensionless coupling expected to be order unity, depending

on the quark species. In our case, fq = e−2σ{−1
2
ĥ2 + h2}.

As far as this thesis is concerned, we end the analysis of axions here, as the situation

becomes a bit complicated. While the decay rate of the axion may be calculated, there are

couplings to supersymmetric particles, like the axion superpartner, the saxion, which may

itself be the more demanding particle in terms of cosmological constraints [BD97, BDG03,
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BDFG03]. The axion and saxion have general couplings in the Lagrangian so that the anal-

ysis depends on which 5D YMESGT one chooses (that is, the choice of scalar manifold

MR ×MQ of the vector and hypermultiplet sector). However, the analysis here has illus-

trated the generic features of the axion in orbifold YMESGTs, with the most important

result being that the model is quite flexible in allowing a range of axion decay constants,

depending on one’s taste for cosmological constraints.

As a final note, there is a concern that the axion coupling strength is adversely affected

by quantum gravitational interactions. However, in the scenario described here: (1) the vev

of the axion comes from a Wilson line in the bulk, and (2) the global shift symmetry that is

broken by the F ∧F coupling comes from a gauge symmetry in five dimensions. Therefore,

we expect that the strength of the axion couplings to hadrons and the axion mass will be

protected from large corrections due to quantum gravitational interactions.

6.2 Yukawa Couplings

Yukawa couplings are, in general situations, terms in a Lagrangian involving scalar and

fermionic fields. In the Standard Model, the only (conjectured) scalars are the Higgs fields,

so the Yukawa couplings in the SM are the Higgs couplings to the matter fields. These terms

are important in model building for several reasons. The first and foremost is that these

become mass terms for the fermionic fields after electroweak symmetry breaking. Therefore,

the form of the coupling matrix and the magnitudes of the entries in this matrix are fixed

by experiment. Second, in GUTs, the couplings for the leptons seem to unify upon renor-

malization group flow to higher energies (just as the gauge coupling seem to approach each

other). It is an open problem in GUT model building as to why this is so, and in addition,

why not for the quarks?

Higgs from 5D gauge multiplets

First, consider the possibility of putting the MSSM Higgs fields in 5D non-compact gauge

multiplets. The exmple we have focussed on in this thesis from time to time is the SU(5, 1)

YMESGT associated with the Lorentzian Jordan algebra JC
(1,5). This theory is a unified

YMESGT in the sense that all of the 5D vector fields of the theory belong to the adjoint

representation [GST85a, GST85b]. The non-compact gauge symmetries as well as the U(1)

gauged by the graviphoton must be broken at the orbifold fixed points, leaving at most an

SU(5) gauge theory there; the non-compact gauge multiplets are projected to left chiral

multiplets in the 5⊕ 5̄, along with their CPT conjugates. There is a scalar potential at the
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fixed points of the form

gχψ(φ)Kχ
aK

ψ
b A

aAb,

(or, see (5.7)) which is non-negative.

Once we couple charged hypermultiplets to the theory, the Yukawa couplings between

the non-singlet fields Aâ and the hypermultiplet fermions are of the form

ĝAâζAωâ AB(q)ζB,

where ωâ AB are components of the spin connection on the quaternionic scalar manifold

parametrized by the qX̃ . Since the vev of the scalars Aâ on the boundaries should arise due

to the fact that the 5D vector Aaµ̂ has a Wilson line stretching between boundaries, then we

should be concerned about the energy scale involved in the Yukawa couplings, which serve as

mass terms for matter fermions after electroweak symmetry breaking. Although the Wilson

line has associated energy scale Mc, the Yukawa couplings are given by λAB(q) = gAâωaAB;

therefore, the couplings depend on the geometry of the quaternionic scalar manifold (and

therefore, on the particular background of the theory). After integration over x5, we find

the coefficient with mass dimension 1 is〈
Aâ
〉
ω(〈q〉)
g2

.

Since the vev for Aâ is of the order of Mc, we generally require either Mc ∼ 102GeV or ω(〈q〉)
to be quite small.

Higgs from 5D hypermultiplets

Next, let’s consider the most popular scenario in orbifold-GUTs: placing Higgs fields in

hypermultiplets. In chapter 3, we discussed the possibilities for the hypermultiplet content in

YMESGTs coupled to homogeneous quaternionic manifolds. For concreteness, let’s consider

an SU(5) S1/(Z2×Z2) orbifold YMESGT coupled to hypermultiplets in the 5⊕5.2 We may

assign parities as in section (4.6.2), where we can get the MSSM Higgs content and massive

color triplet chiral multiplets. The scalars qΩ in the 4D Higgs multiplets have a potential

inherited from the potential in five dimensions (see (2.11) and (2.12)) as well as from the

pure 5D YMESGT sector via minimal couplings to 5D vectors Aaµ̂. The Yukawa terms now

come from the scalar-fermion couplings of the 5D hypermultiplet Lagrangian (2.11).

2We need two copies since the MSSM has a minimum of two left-chiral multiplets (and their CPT
conjugates), while orbifold parity assignments project out half of a hypermultiplet’s degrees of freedom.
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The scalar potential for the qΩ at the fixed points is

e−1Lq−pot|fp = − ĝ
2

κ̂2
{V 1 ñV1 ñ + V 2nV2n}|fp,

where

V iA|fp =

√
6

4
e−σhâKΩ

â f
iA
Ω .

We might have expected a scalar potential arising from the minimal couplings between the

Aaµ̂ and qX in five dimensions. However, in the previous section, it was pointed out that

D5q
X vanishes at the fixed points, so that such a potential is not present. The above is

the only contribution to the potential for the qX . It is well-known that the scalar potential

in 5D hypermultiplet-coupled YMESGTs admits supersymmetric AdS vacua so that a tree-

level negative potential for the candidate Higgs scalars in the set qX is possible. Of course,

supersymmetry should be spontaneously broken at least the same scale as the electroweak

breaking performed by the Higgs. It is possible that (i) there is a non-supersymmetric,

stable ground state with SU(3)c × U(1)em local symmetry, (ii) corrections to the classical,

supergravity approximation introduce new contributions to the scalar potential leading to

such a stable ground state, or (iii) supersymmetry is dynamically broken at some larger scale

so that the candidate electroweak breaking scalar potential need only admit stable ground

states with SU(3)c × U(1)em local symmetry.

The Yukawa terms now involve the φ- and q-dependent matrix ĝhI(φ)tAIB(q), where the

φ-dependence is clearly universal for all fermion species. Once again, Yukawa unification

in a GUT scenario can be acheived in a similar fashion as in 4D models [FNS79, GJ79].

For example, in an SU(5) GUT, the matrix coupling to quarks and leptons contained in

5D hypermultiplets is in the reducible 5 ⊕ 10. We can look for a theory such that, in

a particular ground state of the qX , hIt5I 5 is proportional to the identity (unification of

Yukawa couplings for the leptons), while hIt10
I 10 isn’t (no such unification for the quarks).

Once again, the t-matrices depend on (a) the form of the hypermultiplet couplings (i.e., the

quaternionic scalar manifold that is coupled to the YMESGT in five dimensions) and (b)

the ground state of the qX scalars. Furthermore, to check whether the couplings become

the phenomenologically correct values, one must perform a renormalization group flow down

to lower scales. In contrast to standard supersymmetric GUTs, the scalars determining the

couplings are contained in the matter hypermultiplets so that a large Higgs sector is not

needed for phenomenological mass relations as in [FNS79, GJ79].

We leave these issues to future studies.
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Chapter 7

Some thoughts on M-theoretic origins

In the 1980s and early 1990s, the (weakly coupled) E8 × E8 heterotic string theory was

the most phenomenologically interesting of the string theories. The six extra dimensions

were presumed to be extremely small, around the Planck scale O(10−18)GeV −1, which was

the scale at which stringy effects would be important. The 6D internal manifold was taken to

be a smooth Calabi-Yau space, which preserves N = 1 supersymmetry. String phenomenol-

ogy sought to find gauge coupling unification (GUTs) as well as unification of gauge and

gravitational couplings within this framework.

However, M-theory entered the scene as the 11D theory appearing in the strong coupling

regime of the (ten-dimensional) heterotic E8 × E8 [HW96a, HW96b, W96a] and type IIA

string theories [W95]. This gave new meaning for the 11D supergravity theory that had

been the great interest of the late 1970s and much of the 1980s: as the tree level, massless

approximation of M-theory. Some immediately interesting consequences of strongly coupled

heterotic string, which can be described as M-theory (or 11D sugra) on M10×S1/Z2, are (i)

Newton’s constant is allowed to have a physically correct order of magnitude, and (ii) the

string (energy) scale can be orders of magnitude less than in the 10D string theories. Thus,

while the string models had urged a merger of gravitational and gauge couplings by pushing

the usual GUT scale 1016GeV to the usual 1018GeV string scale, the Horava-Witten theory

reversed this.

Consider a calculation of some observable in perturbative string theory. A result that

arises beyond string tree level is a “stringy effect” in that it does not appear in the super-

gravity approximation. The strongly coupled theory should capture the perturbative effects

(as well as non-perturbative effects) without doing “loop calculations”, which arise in per-

turbative descriptions. But in string theory, the strong coupling limit is equivalent to either

a different, weakly coupled, string theory; or equivalent to weakly coupled M-theory. In the

latter case, the strongly coupled physics of the original string theory, including the 1-loop

calculation, should therefore be captured by the 11D supergravity theory.
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As an example, consider the compactification of heterotic string theory on a smooth

Calabi-Yau 3-fold Y . The result of the low energy approximation is a 4D supergravity

theory based on a cubic polynomial that’s reducible V = CIJKh
IhJhK ≡ sQ, where Q is a

quadratic polynomial and s ∈ R. The supergravity approxiation does not carry the E8×E8

gauge group of the string theory. A 1-loop string calculation, however, modifies the cubic

polynomial so that it’s irreducible V = CIJKh
IhJhK . Now, consider the M-theoretic limit of

the theory. The low energy theory should still be four dimensional with the compactifying

space having G2 structure and an unbroken E8 gauge phase. In the example at hand, the

internal space is Y ×S1/Z2 so that the E8 gauge theory lying at each boundary of the space

arises from the E8×E8 gauge group of the weakly coupled theory. One can first compactify

M-theory on a Calabi-Yau 3-fold Y , resulting in a theory with a generically irreducible cubic

polynomial V , but in five dimensions. One can then compactify on S1/Z2 to get a 4D

theory that can be compared to the pure string compactification. The sugra approximation

of the M-theory compactification will now carry information about the perturbative stringy

corrections to the cubic polynomial.

As another example of recent interest, consider flux compactifications. For example, the

compactification of type II string theory on AdS5 × S5, which involves infinite towers of

Kaluza-Klein excitations. The non-trivial Kaluza-Klein modes do not lie in the supergravity

truncation, so that this is the domain of stringy effects. In attempting to obtain super-

symmetric Randall-Sundrum scenarios, it has been shown that a so-called “breathing mode”

coresponding to a non-trivial KK-excitation must be allowed to have a non-zero fieldstrength.

Therefore the effect is not captured in the sugra truncation (and thus the same is true for

the minimal, N = 2 truncation). The role of this flux is to generate a scalar potential in

the low energy theory, which can lift the degeneracy in the vacua. In light of the previous

discussion, we might expect that an M-compactification can include this information in the

supergravity approximation. Indeed this is true. However, we cannot directly compactify

M-theory to type IIB string theory (type IIB is dual to type IIA, and the strong coupling

limit of type IIA is equivalent to M-theory on S1). As a first step, suppose that, instead

of compactifying type IIB string theory (and its sugra approximation) on AdS5 × S5, we

compactify M-theory a lá [BG00], obtaining a theory with AdS5 ground states and N = 2

supersymmetry. The non-zero flux is now a supergravity-level field. From the point of view

of the 5D supergravity approximation, the gauge theory is precisely that of a YMESGT

coupled to hypermultiplets, yielding a particular scalar manifold. Therefore, supergravity is

capable of dealing with this situation, and there is no “stringy” physics needed.

There are phases of M-theory with large unbroken gauge groups other than those men-



107

tioned so far, obtained by compactification on more general singular spaces, both of orbifold

type as well as those with worse-than-orbifold singularities [ES98, AW01, AW03]. It is a

known feature, for example, that compactification of string theories with gauge symmetry

G on smooth d-manifolds can be dual to M-theory (which has no vector gauge symmetry

a priori) on a singular d + 1-manifold. The singularities in these cases must be worse than

orbifold singularities; that is, they aren’t just locally of the form M/G, where G is a discrete

group that acts non-freely on a smooth manifold M. The sugra approximation of string

theories doesn’t necessarily carry the gauge symmetry, while the sugra theory that is the low

energy approximation of M-theories (including the known limits of the string theories) can

carry the gauge symmetry, though not in the case where Y is a smooth CY manifold. While

supergravity is capable of doing what string theories can in many cases, it is, of course, not

all of M-theory. Ultimately the corrections to the supergravity approximation must be con-

sidered. Unfortunately, M-theory is not fully known, so only higher order corrections such as

R4 spacetime curvature terms can be considered (in the framework of weakly coupled field

theory), along with the known features of 2- and 5-branes.

We wish to describe compactifications of M-theory leading to an effective description

of supergravity on M4 × S1/Γ. While the action of Γ on the fields of the effective theory

involves a choice of lifting from the base space to total space of the gauge bundle, the parity

assignments will follow from a choice of internal manifold and discrete group action. The 11D

supergravity theory that serves as the low energy approximation of M-theory is a relatively

simple framework for assigning consistent parities. An example of such singular spaces is

the compactification of M-theory on the five-dimensional space (K3×S1)/Z2, where the Z2

acts non-trivially on the entire K3× S1 space, and is discussed in [S96a].

Let us be more precise with the conditions of the compactification space we are looking

for. First of all, the 7-manifold should have G2 holonomy so that we end up with a 4D N = 1

theory. Second, the space should admit a limit in which it is isomorphic to M4×S1/Γ. The

only (connected) Lie subgroups of G2 that can be the holonomy group of a Riemannian

metric on a 7-manifold are {1}, SU(2), SU(3) and G2. If M is a compact manifold with G2

structure, then the holonomy group is G2 iff π1(M) is a finite group. But when M is compact

and the metric is Ricci flat, then π1(M) is finite iff M is simply connected. If, however, M

is isomorphic to a product of a simply connected space and T n, then the holonomy group is

SU(2) or SU(3) when n = 3 or n = 1, respectively. For example, Y ×S1, where Y is a Calabi-

Yau manifold, has SU(3) holonomy, while Y × S1/Z2 has G2 holonomy. Since a product

metric g1 × g2 has a product holonomy group Hol(g1)×Hol(g2), and since M should have

G2 holonomy, the internal compactification space can’t be geometrically a product space. In
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the case of a space with boundaries, the boundary metric can be reduced to a product and

the holonomy group broken. In summary, the compactifications we are interested in involve

irreducible spaces are naively of the form (Y × S1)/Γ, where Γ is some discrete group and

Y is a Calabi-Yau manifold. However, since the internal space must be simply connected to

have G2 holonomy, the singularities must admit resolutions to such a space.

Depending on the choice of compactification space, there may or may not be magnetic

sources in the boundary theories, as there is in the Horava-Witten construction (in the form

of magnetic 5-branes). There are two conditions for magnetic sources to be required: (i)

the action of the discrete group Γ must be such that some components of the fieldstrength

GABCD of the 11D supergravity 3-form are Γ-odd, and (ii) GABCD must be in a non-trivial

cohomology class of the space. These are necessarily true in the HW construction. There,

condition (i) follows immediately from the compactification space Y ×S1/Z2, while condition

(ii) follows from anomaly cancellation. But we are interested in more general compactification

spaces, and a new anomaly analysis must be performed [W01]. This in turn depends on the

generalized twisted sector, which must be understood to obtain the full boundary-localized

spectrum of the theory. In the 5D supergravity approximation, we have already seen that

there can be some requirements on boundary-localized fields due to anomaly inflow via a

5D Chern-Simons term, but there isn’t much help beyond this. For anomaly analysis in the

presence of p-branes and string/M-theory, see [FLO99, SS99a, SS99b, W01]

In summary, the motivations for looking for the orbifold theories of this thesis in M-

theory rather than string theories are:

(i) The cubic polynomial defining the vector/tensor-part of the supergravity approximation

can be irreducible

(ii) The 4D Newtonian constant GN can have the correct order of magnitude

(iii) The appearance of one large extra dimension (relative to the other dimensions) is a

dynamical feature of the theory
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Appendix A

Notational Conventions

We use the mostly plus spacetime metric ηµν = diag(−+ · · ·+). Four-dimensional curved

spacetime indices are µ, ν; flat spacetime indices are m, n. The index range is taken as

0, 1, 2, 3 for these. Hats often denote five-dimensional quantities, such as µ̂, ν̂ and m̂, n̂. The

index range is now 0, 1, 2, 3, 5. Where it is important to distinguish, we will sometimes use

5̇ to denote the fifth dimension curved index, and 5 to denote the flat index.

We will use the representation notation where mC ≡ m ⊕ m̄ is an element of a 2m-

dimensional real representation space. For example, the “Higgs doublet” consists of 2C ≡
2⊕ 2̄. The MSSM minimal Higgs content is two left-chiral supermultiplets forming the 2⊕2

and two right-chiral supermultiplets forming the 2̄ ⊕ 2̄; each left-right CPT pair of chiral

multiplets is then in the 2C ≡ 2 ⊕ 2̄. These four chiral multiplets can form an N = 2

hypermultiplet. We use the notation where mH ≡ mC ⊕mC. Embedding the MSSM Higgs

content into an N = 2 theory, the hypermultiplet would then be in the 2H; we will assume

this is understood when we simply say “the hypermultiplet is in the 2”.

We will use the notation where

T[i1···in] =
1

n!

∑
σ∈Sn

sign(σ)Tiσ(1)···iσ(n)
,

where Sn is the group of permutations of {1, . . . , n}; and sign(σ) is +1 if σ is even and -1 if

σ is odd. The convention in the case of T[i1 · · ·Tin] is analogous.
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Appendix B

Parity Assignments

B.1 Bosonic fields

B.1.1 Generic assignments

To leave the space M4×S1/Z2 invariant under the Z2 action, the coordinate functions, basis

vectors, basis 1-forms, and metric components have

P (xµ; ∂µ; dx
µ) = +1 P (x5; ∂5; dx

5) = −1

P (ĝµν ; ĝ 55) = +1 P (ĝµ5) = −1,

where P (Φ) denotes the Z2 parity of the object Φ. The local coordinate tranformation

parameters ξµ and ξ5 must transform the same as their corresponding coordinate functions,

so P (ξµ) = +1 and P (ξ5) = −1.

Equations (4.6) require P (Cµ) = −1 and P (eσ) = +1. That Cµ does not propagate along

the fixed planes is a reflection of the fact that it is a Kaluza-Klein gauge field for the theory

on M4 × S1. The local coordinate tranformation parameters ξµ and ξ5 must transform the

same as their corresponding coordinate functions, so P (ξµ) = +1 and P (ξ5) = −1. From

(4.8), it follows that

P (AIµ) = −P (AI). (B.1)

B.1.2 Vector sector

The dimensionally reduced Maxwell-Einstein Lagrangian is invariant under the parity as-

signments discussed so far. However, there is remaining freedom in the assignments of the

vector fields, which we will now discuss. There are two terms in the reduced Lagrangian of
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the form

εµνρσCµνCρσ(CIJKA
IAJAK)

εµνρσF I
µνF

J
ρσ(CIJKA

K). (B.2)

From the C000 terms, it follows that P (A0) = +1, which means P (A0
µ) = −1, so that the

bare graviphoton does not have propagating modes along the fixed planes.

Consider the splitting of the index i = (α, a). We can assign parities to the vector fields

(Aαµ, A
a
µ) and scalars (Aα, Aa) such that

P (Aaµ) = −P (Aαµ) P (Aa) = −P (Aα),

keeping in mind that we still must satisfy (B.1). Let us now make a particular choice (since

α, a are dummy indices, it doesn’t matter which choice we make):

P (Aa) = +1 P (Aaµ) = −1

P (Aα) = −1 P (Aαµ) = +1. (B.3)

From these parities and the CIJK terms in (B.2), it follows that the components of CIJK in

the canonical basis satisfy

C000 = 1 C00i = 0

C0ab = −1

2
δab C0αβ = −1

2
δαβ (B.4)

P (Cαβγ) = −1 P (Cαab) = −1

P (Cabc) = +1 P (Caαβ) = +1.

Once we gauge isometries of the scalar manifold, we can write down the parity assign-

ments of the additional objects appearing in the Lagrangian. Unless otherwise noted, assume

throughout that we are gauging a compact group K for simplicity of discussion, and that all

vectors (other than the bare graviphoton) are gauge fields so that i, j, k are adjoint repre-

sentation indices of K. Note that now the Cijk are no longer arbitrary, but must be rank-3

symmetric invariant tensors of K.
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From the infinitesimal gauge transformations

δαA
I
µ̂ = −1

g
∂µ̂α

I + αJf IJKA
K
µ̂

δαφ
x̃ = αIK x̃

I ,

(B.5)

we require that

P (α0) = −1 P (αb) = −1 P (αβ) = +1

P (fαβγ) = +1 P (fabc) = −1 P (faαβ) = −1 P (fαab) = +1,

where f IJK vanishes if any of the indices correspond to 5D spectator vector fields1; and a

structure constant f IJK with indices permuted has the same parity assignment.

B.1.3 Scalar sector

The cubic polynomial V(ζ) = CIJKζ
IζJζK is a centerpiece of 5D supergravity since the

CIJK determine a MESGT completely (and in particular, V = 1 characterizes the real scalar

manifold). Unitarity of a YMESGT requires V > 0 [GST84a]. To maintain this positivity,

we require P (ζI)P (ζJ)P (ζK) = P (CIJK), so that

P (ζ0) = +1, P (ζα) = −1, P (ζa) = +1.

The ζI are directly proportional to the embedding coordinates, hI , of the scalar manifold

when restricted to V = 1, so that they satisfy P (hI) = P (ζI).

We can split the index I = (0, α, a) as we did for the vector sector of the theory, where

α is an index for vector fields with even parity, and a is an index for vectors with odd

parity. From the parity assignments of the CIJK in the previous subsection, we demand

that P (hα) = −1 and P (h0) = +1, where hα are functions of a subset of vector multiplet

scalar fields, φχ. The remaining ha are functions of the remaining scalars, φx (we are making

the split x̃ = (x, χ)). The supersymmetry transformations for the 5D scalars will require

that these functions satisfy P (ha) = +1 (that is, fermions will need the scalars φx as super-

partners). The parities of the tensors
◦
aIJ and gxy are now fixed (see section (4.5)).

1We emphasize that for compact gaugings, there is at least one gauge singlet that can be identified as
the physical graviphoton; for non-compact gaugings, the graviphoton is one of the gauge fields (i.e., it is no
longer a spectator).
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The 5D gauge transformations of the φx̃ in (B.5) require

P (Kx
0 ) = −1 P (Kx

a ) = −1 P (Kx
α) = +1

P (Kχ
0 ) = +1 P (Kχ

a ) = +1 P (Kχ
α) = −1. (B.6)

There are functions hIx̃ appearing implicitly in the Lagrangian and supersymmetry trans-

formation laws. They are directly proportional to hI, x̃, so that P (hIx̃) = P (hI)P (φx̃). We

will also need to determine the parity assignments of the hĨp̃ to find the assignments for

the components of the fermionic λi p̃ later (p̃ is the flat index of the real scalar manifold).

We have already determined the parity assignments for the scalar functions hIx̃ (see section

(4.5)). The two sets of functions are related by the nV -bein of the scalar manifold:

hIx̃ = hIp̃ f
p̃
x̃ ,

where the vielbein satisfy

f p̃x̃f
q̃
ỹ δp̃q̃ = gx̃ỹ. (B.7)

Making the index split for the flat scalar manifold indices p̃ = (p, ρ), we find

P (fpx) = −P (fpχ) P (fρx) = −P (fρχ), for all x, χ.

We select even parity assignment for the fpx , which will contribute to the vielbein for the

fixed plane theories’ scalar manifold. The supersymmetry transformations then require that

fρχ have even parity as well. Consequently, we get the parity assignments for the f p̃x̃ and hIx̃

in section (4.5).

B.1.4 Hypermultiplet sector

For a discussion of hypermultiplet coupling in 5D supergravity, see [?] and appendix E. The

scalars from nH hypermultiplets parametrize a quaternionic manifold of real dimension 4nH ,

with tangent space group Usp(2nH)× Usp(2). The supersymmetry transformations for the

scalars and fermions in the hypermultiplets are given in (2.10). The assignments for the

fermions will require that half of the hypermultiplet field content is generically projected

out of the boundary spectrum. Therefore, let us split the index X̃ = (X,Ω), where X =

1, . . . , 2nH and Ω = 1, . . . , 2nH . Since these are dummy indices, we can assign even parity
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to either subset of qX̃ . Let’s choose

P (qX) = +1 P (qΩ) = −1.

From the gauge transformations of the scalars in (E.1), we find the parity assignments for

the quaternionic manifold Killing vectors (see section (4.5)), where K x̃
I = 0 for K-singlet

values of I.

B.2 Fermionic fields

From the (naive) dimensionally reduced supersymmetry transformations

δemµ =
1

2
ε̄iΓmΨ̃µ i

δCµ =
1

2
ε̄ie−σΓ5(Ψµ i −Ψ5̇ iCµ),

where

Ψ̃µ i = eσ/2Ψµ i +
e−σ

2
(Γm)−1Γ5Ψ5̇ ie

m
µ ,

we find that

P (ε̄i ΓmΨµ i) = +1 and P (ε̄i Γ5Ψµ i) = −1,

respectively. Written out explicitly, these constraints are

P (−ηT eσmeα∗ − ζ†σmβµ − ζT eσmeβ∗µ − η†σmαµ) = +1

P (iηT eβµ + iζ†eα∗µ − iζT eαµ − iη†eβ∗µ) = −1.

Together, these imply that

P (η) = P ({α∗µ}) = −P ({βµ}) = −P (ζ∗)

P (ζ) = P ({β∗µ}) = −P ({αµ}) = −P (η∗).

This means that there are two classes of fermionic parity assignments, which we will take to

be determined by the choice of assignments for the supersymmetry parameters εi. However,

one of the classes yields two helicity 1/2 (or −1/2) states whose Dirac conjugates do not

have support at the orbifold fixed points. This violates the CPT theorem. The other class

of assignments describes a helicity 1/2 state and its helicity −1/2 CPT conjugate. The
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assignments for the components of εi and Ψi
µ are listed in table (B.1).

From the dimensionally reduced susy transformation

δeσ =
1

2
ε̄iΓ5Ψ5̇ i,

we find P (ε̄iΓ5Ψ5 i) = +1. Writing this out in terms of 2-component spinors, we find

P (β5) = P (η) P (α∗5) = P (ζ∗) P (α5) = P (ζ) P (β∗5) = P (η∗),

so that the components of Ψ5 i have the parity assignments in table (B.1).

From the dimensionally reduced susy transformation

δAIµ = −1

2
hIpε̄

iΓµλ
p
i +

i
√

6

2
Ψ̄i
µεih

I ,

we find

P (hαp̃ ε̄
iΓµλ

p̃
i ) = +1 and P (hap̃ ε̄

iΓµλ
p̃
i ) = −1.

From δφx = 1
2
ifxa ε̄

iλai , we find that

P (fxp̃ ε̄
iλp̃i ) = +1 and P (fχp̃ ε̄

iλp̃i ) = −1.

We have determined the parity assignments for the functions hĨp̃ and f p̃x̃ (see section (4.5)),

so that we arrive at the following constraints

P ({δρ ∗}) = P ({γp}) = P (η) = −P ({δp ∗}) = −P ({γρ}) = −P (ζ∗) (B.8)

P ({δp}) = P ({γρ ∗}) = P (ζ) = −P ({γp ∗}) = −P ({δρ}) = −P (η∗). (B.9)

Consequently, we find the assignments for the components of the λp̃ i as in table (B.1).

Now consider the hypermultiplet sector. From

δqX̃ = −iε̄iζAf X̃iA,

we find that

P (ηT e ξn1 ) = P (ζ†ξn2 ) P (ζT e ξn1 ) = P (η†ξn2 )

P (ηT e ξñ1 ) = P (ζ†ξñ2) P (ζT e ξñ1 ) = P (η†ξñ2).
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This implies that

P (ξn1 ) = −P (ξn2 ) P (ξñ1 ) = −P (ξñ2 ),

so that half of the fermionic degrees of freedom from the hypermultiplets are projected out

at the fixed plane. It then follows that

P (ε̄1ξn) = P (fX1n) P (ε̄1ξñ) = P (fX1ñ)

P (ε̄2ξn) = P (fX2n) P (ε̄2ξñ) = P (fX2ñ),

for all X; and opposite signs for X → Ω. The fermionic assignments are only consistent if

P (fX1n) = −P (fX2n) P (fX1ñ) = −P (fX2ñ),

for all X. Therefore

P (ζn1 ) = −P (ζn2 ) P (ζ ñ1 ) = −P (ζ ñ2).

In fact, it turns out that only the parity assignments for the f X̃iA in section (4.5) and assign-

ments for the ζA in table (B.1) are consistent.

Even Odd
αµ α∗µ βµ β∗µ
β5̇ β∗

5̇
α5̇ α∗

5̇

γp γp ∗ δp δp ∗

δρ δρ ∗ γρ γρ ∗

η η∗ ζ ζ∗

ζn1 ζ ñ2 ζn2 ζ ñ1

Table B.1: Parity assignments for fermions
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