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Abstract

Five-dimensional N" = 2 Yang-Mills-Einstein supergravity and its couplings to hyper and
tensor multiplets are considered on an orbifold spacetime of the form My x S1/T", where T is
a discrete group. As is well known in such cases, supersymmetry is broken to N' = 1 on the
orbifold fixed planes, and chiral 4D theories can be obtained from bulk hypermultiplets (or
from the coupling of fixed-plane supported fields). Five-dimensional gauge symmetries are
broken by boundary conditions for the fields, which are equivalent to some set of I'-parity
assignments in the orbifold theory, allowing for arbitrary rank reduction. Furthermore, Wil-
son lines looping from one boundary to the other can break bulk gauge groups, or give rise
to vacuum expectation values for scalars on the boundaries, which can result in spontaneous
breaking of boundary gauge groups. The broken gauge symmetries do not survive as global
symmetries of the low energy theories below the compactification scale due to 4D minimal
couplings to gauge fields. Axionic fields are a generic feature, just as in any compactification
of M-theory (or string theory for that matter), and we exhibit the form of this field and its
role as the QCD axion, capable of resolving the strong-CP problem. The main motivation
for the orbifold theories here is taken to be orbifold-GUTs, wherein a unified gauge group is
sought in higher dimensions while allowing the orbifold reduction to handle problems such as
rapid proton decay, exotic matter, mass hierarchies, etc. To that end, we discuss the allow-
able minimal SU(5), SO(10) and Es GUT theories with all fields living in five dimensions.
It is argued that, within the class of homogeneous quaternionic scalar manifolds character-
izing the hypermultiplet couplings in 5D, supergravity admits a restricted set of theories
that yield minimal phenomenological field content. In addition, non-compact gaugings are
a novel feature of supergravity theories, and in particular we consider the example of an
SU(5,1) YMESGT in which all of the fields of the theory are connected by local (susy and
gauge) transformations that are symmetries of the Lagrangian. Such non-compact gaug-
ings allow a novel type of gauge-Higgs unification in higher dimensions. The possibility
of boundary-localized fields is considered only via anomaly arguments. In particular, the
theories with a 5D Chern-Simons form in the Lagrangian will give rise to anomaly inflow
classically (which is compensated globally in the S!/Z, case). However, compensation lo-
cally requires the quantum theory to have a chiral anomaly on the boundary, which can
arise if there is an appropriate bulk fermionic field content, or otherwise by the addition of

appropriate boundary-supported fermionic fields with minimal coupling to the gauge fields
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propagating there. Some comments are made regarding the phenomenological features of
the models, such as the Yukawa couplings and scalar potentials, which depend on the size of
the fifth dimension as well as the scalar vacuum. Finally, we sketch the possible M-theoretic
origins of these theories, which is left for future work. In particular, the supergravity orb-
ifold theories generally correspond to phases of M-theory distinct from the strongly coupled
heterotic string, which has served as the primary phenomenological framework in the past.
Throughout, we try to compare and contrast with the phenomenological model building of
rigid susy orbifold-GUTs as well as the string/M-theoretic approaches that have dominated
the literature for the past decade.



Table of Contents

List of Figures . . . . . . . . e

List of Tables . . . . . . o s,

Notation/Convention . . . . . . . . ..ottt

Acknowledgments . . . . .. L

Chapter 1. Introduction . . . . . . . . . . L

Chapter 2. 5D N = 2 Yang-Mills-Einstein Supergravity . . . . . ... ... ... ..

2.1
2.2
2.3

Conventions . . . . . . . . . . . e
5D MESGTs . . . . .
Gauged supergravity theories . . . . . .. ... oo
2.3.1 Pure YMESGTs . . .. .. ..
2.3.2 YMESGTs coupled to tensor multiplets . . . . . . ... .. ... ...
2.3.3 Coupling to hypermultiplets . . . . . . ... .. ... ... ... ...

Chapter 3. Options for Phenomenological Field Content in 5D . . . . ... ... ..

3.1

3.2

3.3
3.4

Options for 5D hypermultiplets . . . . . . . . ... ... ... ... .....
3.1.1 Simple classes of YMESGTs without tensors or spectators . . . . ..
3.1.2  Theories based on homogeneous quaternionic scalar manifolds

3.1.3 Homogeneous, non-symmetric spaces . . . . . . . . . . .. ... ...
3.1.4 Comments on theories based on non-homogeneous spaces . . . . . . .
3.1.5  Summary and discussion: YMESGTSs coupled to hypermultiplets . . .
Options for YMESGTs coupled to tensor multiplets . . . . . . .. ... ...
3.2.1 Homogeneous, non-symmetric scalar manifolds . . . . . . .. ... ..
3.2.2  Non-homogeneous scalar manifolds . . . . . .. ... ... ... ...
3.2.3  Summary and discussion: YMESGTSs coupled to tensors . . . . . ..
Non-compact gaugings and unified YMESGTs . . . .. .. ... ... ...
Summary of 5D options . . . . . . ...

Chapter 4. Supergravity on S'/T° . . . . . . ...

4.1
4.2

4.3

I' = Z, Orbifold field theory . . . . . . . .. ... . ..
5D N = 2 Yang-Mills-Einstein Supergravity . . . . . .. ... ........
4.2.1 Reduction of 5D N =2 YMESGT on S* . . . ... ... ... ....
4.2.2 YMESGT sector parity assignments . . . . . . .. .. ... ......
Hypermultiplet sector . . . . . . . . . . . . ...
4.3.1 Hypermultiplet parity assignments . . . .. .. .. ... ... ....

13
13
14
17
17
19
21



4.4  Tensor multiplet couplings . . . . . . . . .. ... oL 58
4.4.1 Parity assignments for tensor-coupled theories . . . . . . .. ... .. 62

4.5 Objects other than fields . . . . . . . ... .. ... ... ... 64
4.5.1 Discussion . . . . ..o 67

4.6 Extension to I' =Zo X Zo . . . . . .. 70
4.6.1 Vector sector . . . . . . . . .. 71

4.6.2 Hypermultiplet sector . . . . . . . ... ... ... oL 73

4.7 Summary of parity assignments . . . . . .. ... 75
Chapter 5. Symmetries and Anomalies . . . . . . . ... . ... ... ........ 7
5.1 Symmetries at the orbifold fixed points . . . . . . .. ... ... 7
5.2  Symmetry breaking via Wilson lines . . . . . ... ... ... .00 81
5.3 Anomalies . . . . . ... 87
Chapter 6. Phenomenology . . . . . . . . . .. .. .. 94
6.1 The QCD Axion . . . . . . . . 94
6.2 Yukawa Couplings . . . . . . . . . . . 102
Chapter 7. Some thoughts on M-theoretic origins . . . . .. ... ... ... .... 105
Appendix A. Notational Conventions . . . . . . .. .. ... ... ... ... .... 109
Appendix B. Parity Assignments . . . . . .. ... 110
B.1 Bosonic fields . . . . . . .. 110
B.1.1 Generic assignments . . . . . .. ..o 110

B.1.2 Vector sector . . . . . . . . ... 110

B.1.3 Scalarsector . . . . . . ... 112

B.1.4 Hypermultiplet sector . . . . . . ... ... L0 113

B.2 Fermionic fields . . . . . .. ... 114

Bibliography . . . . . . . 117



1.1

4.1
4.2
4.3

5.1

5.2

5.3

List of Figures

Within the framework of the MSSM, the renormalization group flow of the
dimensionless SU(3) x SU(2) x U(1) gauge couplings a3, as and o, and the
dimensionless gravitational coupling g = kE?, are plotted vs. energy in
GeV. Figure is from [P99]. . . . . . .. ... L o

The function €(z°) vs. 2° where {—7R} = {+7R}. . .. .. ... ... ...
The function x(z°) is plotted vs. x°, where {—7R} = {+7R}. . ... .. ..
Schematic of massive and massless vector and scalar fields with boundary
propagating modes. . . . . . ...

4D slices of spacetime showing the strength of the potential A7 by shading.
On the boundaries y = 0 and y = 7R, the scalar field A* has a vev. . . . ..
4D slices of spacetime showing the strength of the potential A7 by shading.
On the boundaries y = 0 and y = 7R, the scalar field and its vev A® vanish.
4D slices of spacetime showing the strength of the potential Ag/ by shading.
On the boundary y = 0, the vev for the scalar A% vanishes, while on y =
TR/2, it is non-zero. . . . ... L

vii

85



1.1
1.2

1.3

3.1

3.2

3.3

3.4

3.5

B.1

List of Tables

First generation of Standard Model fermions and their representations . . . .
Partial list of heterotic/M-theoretic dualities; X is a d-manifold preserving
minimal susy; 3 <n < 6; and @) is a 3-manifold. . . . . . . ... ... L.
Values of sin? @y . . . o o o

Homogeneous quaternionic scalar manifolds. The “type” of space is the clas-
sification name as in [dWVP95]; and Hy, is the isotropy group of Mg. . . . .
List of hypermultiplets in lowest dimensional representations when gauging
Eg, where n = 1,2,.... . . . . . . . . e
List of hypermultiplets in lowest dimensional representations when gauging
SO(10), where n = 1,2,. ... . . . . . .
List of hypermultiplets in lowest dimensional representations when gauging
SU(B), where n = 1,2, ...« . . . . ..
Summary of theories admitting SU(5) x U(1) gauging with tensor couplings
(and with smallest field content). . . . . . . .. ... ... ...

Parity assignments for fermions . . . . . . ... ...

viil
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In this thesis, we will adopt the following conventions:
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SM Standard Model
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GUT Grand Unified Theory
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HW Horava-Witten
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MESGT Maxwell-Einstein Supergravity Theory
YMESGT Yang-Mills-Einstein Supergravity Theory
M, Generic (smooth) n-dimensional spacetime manifold
Mpg Real Riemannian scalar manifold
Mg Quaternionic scalar manifold
I'so(M) Isometry group of the manifold M
G Global symmetry group of a 5D YMESGT
K 5D gauge group
Ko 4D boundary gauge group
E(a) Lie algebra for K,
t(@) Algebra of K(,)-non-singlets in K/K )
¢(@ Algebra of K(,) singlets in K/K 4
Crik Rank-3 symmetric G-invariant tensor
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Chapter 1

Introduction

The Standard Model of particle physics (SM) that was formulated by the mid-1970s
represents a remarkable collision of theory and experiment. It has been tested to great
precision since then, and for the most part has held firm. The model can be summarized in
a tidy fashion, hiding the great amount of understanding that is contained within it. It is a
quantum field theory with spontaneously broken SU(3). x SU(2)r x U(1)y local symmetry,
which manifests itself dynamically as propagating gauge fields (photons, gluons, W, B’)
coupled to three copies of the following leptons and quarks. Table (1.1) is a list of the first
generation of quarks and leptons distinguished by their representations under the SM gauge

group.

Field  SU(3) x SU(2) x U(1) rep
<€_7 Ve)L (1’27 )
en (1,1,-2)
(u,d)p, (3,2,1/3)
up (3,1,4/3)
dr (3,1,-2/3)

Table 1.1: First generation of Standard Model fermions and their representations

There are three independent couplings of SU(3), x SU(2); x U(1)y, which we can
parametrize by g., tanfw = gy /g1, € = grLgv/\/(97% + g¥), where g. is the SU(3), strong
coupling; Oy is called the weak mixing (or Weinberg) angle; and e is the electromagnetic
coupling of U(1)epm,

There are a few tagged-on items to this model: (1) there must be a mechanism for the
spontaneous breakdown of (SU(2) X U(1))ey to U(1)em, which is popularly taken to be due
to a scalar (Higgs) field with an appropriate potential. These scalars must be in the real
2®2 of SU(2);." (2) Neutrinos were found to have a mass, which means that the SM must

ISee appendix for notational conventions.
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be modified to allow for this. This can naturally arise from the existence of a (v.)g field
with the same quantum numbers as (v,), after electroweak (EW) symmetry breaking to the
gauge group SU(3). X U(1)em.

Even as the model came into shape in the 1970s, the arbitrariness of the ~ 20 independent
parameters was questioned. In light of the fact that next-generation colliders such as the
Large Hadron Collider (LHC) will involve dramatically higher energies and luminosities than
in the past decades, these questions are more relevant than ever. Perhaps the most suggestive
features pointing to physics beyond the Standard Model at the time of its formulation were
the phenomenological assignments of representations of the SM gauge group to the quarks
and leptons (table (1.1)). After the work of Pati and Salam in 1974 [PS74], Georgi and
Glashow showed [GG74] that one family of left-handed leptons and quarks could be grouped
into the reducible representation 5 & 10 of SU(5) (which contains SU(3) x SU(2) x U(1)
as a maximal compact subgroup). This was a hint that perhaps the three known gauge
interactions were part of a hidden simple gauge group such as the SU(5) they considered;
the three independent gauge couplings of the SM would be reduced to one. Electroweak-
strong unification scenarios in which the SM gauge group is embedded in a larger simple
gauge group (that is unbroken at energies somewhere above O(100)GeV are now popularly
known as Grand Unified Theories (GUTS).

While GUTs reduce the number of free parameters of the Standard Model, they introduce
issues of their own that must be addressed if they are to be taken seriously. For example, in
the Georgi-Glashow model, the Higgs scalars of the Standard Model must fall into represen-
tations of SU(5); the minimal way this can be done is by introducing additional scalars and
putting them all into the 5 @ 5. The scalars form weak doublets and weak triplets under
the SM gauge group. Since only the doublets should be involved in the Standard Model,
this introduces the “doublet-triplet” splitting problem: how are the remaining scalars de-
coupled from the low energy theory (at the electroweak breaking scale M,,,)? Furthermore,
these color triplets, along with the new gauge bosons of the larger SU(5) gauge group, al-
low for decay of the proton. Searches for such decays have resulted in a lower bound on
the proton lifetime of up to 2.3 x 1033 years at 90% confidence level (this is for the decay
p — vK™T) [KO05]; this in turn constrains the GUT models one can construct.

Soon after the SU(5) model, GUTs based on the simple compact gauge groups SO(10)
and Eg were proposed. Georgi [G75], and Fritzsch with Minkowski [FM75], showed that
the left-handed quarks and leptons of one generation could sit in the irreducible 16 of an
SO(10) gauge group by introducing a left-handed fermionic SM singlet. This extra field can

be identified as a left-handed anti-neutrino, which is necessarily accompanied by a right-
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Figure 1.1: Within the framework of the MSSM, the renormalization group flow of the
dimensionless SU(3) x SU(2) x U(1) gauge couplings as, oy and «y, and the dimensionless
gravitational coupling ag = kKE?, are plotted vs. energy in GeV. Figure is from [P99)].

handed neutrino. Again, after introducing additional scalars, the Higgs scalars can sit in
the real 10 of SO(10). Next, Gursey, Ramond and Sikivie[GRS76] proposed a model with
Eg gauge group under which one generation of left-handed fermions, including two new SM-
singlets, and the Higgs fields in the 10 of SO(10) form the irreducible 27. In these two
theories, the presence of a right-handed neutrino and left-handed anti-neutrino allows one
to form a light neutrino that’s charged under the weak interaction, and a more massive (but
unobserved) neutrino that is a SM singlet. As a downside to these models, an additional,
large Higgs sector must be introduced if the GUT groups are to be broken spontaneously.
It became apparent in the late 1970s that a number of attractive features could be brought
to the table if spacetime supersymmetry (susy) was included in a theory of particle physics.
In GUTs without supersymmetry, the value of the weak mixing angle (in the form of sin? fy;,)
can be predicted [DRW81]; it is suggestively close to, but nevertheless discordant with, the
experimentally determined value. The presence of spacetime supersymmetry modifies the
assumption of gauge coupling unification leads to prediction of sin? 8y such that it is in better
agreement with experiment. The running of the dimensionless gauge couplings is shown
in figure (1.1). Supersymmetry also offers a partial resolution to an important question
that arises in electroweak theory: how is the mass of the Higgs scalar characterized by the
electroweak scale M.,,,, when it should receive radiative corrections on the order of larger

scales (such as a GUT scale My and ultimately the Planck scale Mp)? This Higgs naturalness
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(or gauge hierarchy) issue is partially resolved as follows: as long as supersymmetry is
unbroken, the massless Higgs scalars sit in supermultiplets that are protected from receiving
radiative mass corrections; once supersymmetry is broken, the remaining (massive) Higgs
scalar receives radiative corrections to its mass that are bounded by the supersymmetry
breaking scale. For the issue to be completely resolved, however, one must determine the
mechanism for low energy supersymmetry breaking that does not involve the naturalness
issue in a different guise.

The search for GUTs left out the question of gravitation in part due to the difficulties
surrounding this interaction; but also due to the fact that the predicted unification scale
in 4D field theory GUTs is 10'%GeV, which is several orders of magnitude below the usual
“quantum gravity” scale, so that one may assume that quantum gravitational effects are
negligible. But a supersymmetric theory can only be coupled to gravitation if the super-
symmetry is made local, yielding supergravity [SW78, FvN78, CJSVNFG78, CISFGvNT9,
CFGvP82, CFGvP83]. Supergravity was once a promising candidate for a renormalizable or
even finite quantum field theory of gravity coupled to other gauge and matter fields. How-
ever, it became apparent that any theory whose involvement with gravitation was restricted
to simply an Einstein-Hilbert term in the Lagrangian would be non-renormalizable, even
with the softening of divergences among particles and superparticles [DKS77, DS99, D99].

The original idea of the unification of seemingly distinct interactions came in the form
of Kaluza-Klein unification of classical electromagnetism and gravitation: the two interac-
tions in four dimensions could be realized by general relativity in five spacetime dimensions.
Supergravity in D > 4 dimensions does not embody this type of unification since there are
higher dimensional fields in addition to the spacetime metric. However, the 11D supergrav-
ity [CJST78] gets closest to embodying this idea: it is a unique theory [D97b] without vector
gauge fields consisting of a gravity supermultiplet (graviton, gravitino, and 3-form field).
Not all of the vector fields upon compactification come from gravitation (i.e., the metric),
but it is close: they come from the fields that are related by supersymmetry transformations
to gravity.

Finding a phenomenologically interesting theory in four dimensions from 11D supergrav-
ity proved difficult historically. For example, the SO(8) gauge group obtained from round
sphere compactification of 11D supergravity on My x ST [CJ79] is not large enough to contain
the Standard Model gauge group. One needed a way to generate larger non-abelian gauge
symmetry, but smooth 7-manifolds with large isometry groups, and preserving minimal susy;,
cannot give rise to a chiral theory of fermions in SM representations. It turns out that many

phenomenologically interesting spaces yielding large gauge symmetry are those with small



or trivial isometry groups. But the idea behind this would require string theory.

There is an argument that simplicity alone is not sufficient for explaining the absence of
additional terms in a microscopic Lagrangian (see e.g. [W96b]). That is, if one leaves out
particular terms consistent with the low energy symmetries of nature, one must explain why
those particular terms are not present. For example, there are higher order interaction terms
one can add to the Einstein-Hilbert action that preserve the general coordinate invariance of
spacetime. String theory is an example of such a generalization of spacetime quantum field
theory: one can tentatively view it as an infinite expansion in higher order interaction terms
of the spacetime curvature and other fields, whose explicit form is not known. Obtaining a
proper effective field theory from a string theory (by integrating out states with string-scale
masses) appears to be difficult. However, supergravity appears as the truncation of the field
expansion of string theory to the massless string states at the string tree level. In this sense,
supergravity theories are generically the low energy approximation of superstring theories.

In 1984, Green and Schwarz showed that the gravitational anomalies of perturbative
superstring theory could cancel, leading to a consistent quantum theory of interacting
strings [GS84, GS85a, GS85b]. Furthermore, due to the nature of string interactions in
spacetime, perturbative string theory seems to be finite at each order in the topological
expansion in powers of the string coupling o.?> Thus, the perturbative superstring theory
became a serious candidate to describe a quantum theory of gravitation, as well as of matter
and the other interactions. It was soon shown that there were only five distinct perturbative
superstring theories, which were consistent only in ten spacetime dimensions (consistent in
the sense that all of the possibly troublesome anomalies in local symmetries vanished).

To get from 10D string theory to 4D semi-realistic scenarios, it was originally noted that
the 10D ground state spacetime could be M* x Y, where Y is a complex 3-manifold with
vanishing first Chern class (i.e., with holonomy SU(3)). Such a manifold Y is called a Calabi-
Yau manifold, and is chosen so that N/ = 1 supersymmetry is preserved in the low energy
4D theory. Such a compactification of the heterotic superstring theory with Eg x Eg gauge
group led to semi-realistic models in that, for example, one could find a Standard Model
gauge group, and one could show how to get several generations of matter particles as a
topological property of the internal space [W85, CHSW85, DHVW85, DHVWS86]. However,
there remain a number of unresolved issues, and the full Standard Model has not been
obtained. In addition, the four dimensional Newtonian constant Gy comes out orders of

magnitude too large (assuming Y is isotropic and the volume is V' ~ Mg0, the prediction

2However, the full perturbation series diverges; it is not Borel summable.



is Gy ~ 1073°GeV ! compared to the observed Gy ~ 10738GeV 1) .2

Of course, perturbative S-matrices are not all there is to physics; there is non-perturbative
phenomena that cannot be captured by perturbative calculations. (There have been some
results in rigid supersymmetric theories regarding the extraction of non-perturbative physics
from perturbative calculations, though [DV02].) Classical general relativity, and presumably
any extension involving higher order interactions, is a background-field-independent theory:
given a suitable topology of spacetime, one solves a set of equations to find the metric on this
space. Perturbative string theory does not yet satisfactorily address this issue, though work
in string field theory has made serious in-roads [S89, S90a, S90b, S90¢, S93]. It would be
surprising if some generic results from the quantum geometry program [A02, A03] were not
mirrored in a proper non-perturbative formulation (or generalization) of string theory. These
results are, afterall, simply a consequence of constructing a background-field-independent
quantum theory of spacetime geometry. One notable feature of string theory is that it
has provided a way of introducing topological and geometric transitions as well as allowing
particular classes of singular spacetime geometries. String theory does seem to have the
feature that background geometry is in the eye of the beholder: using strings as probes
allows for interpretation in terms of different geometries. This is reflected in early studies of
string dualities [DHVWS85, DHVWS8G6].

While perturbative string theories are consistent only in ten dimensions, there is a
(unique) 11D supergravity theory. It turns out that the strong coupling limit of some super-
string theories leads to an eleven dimensional theory, M-theory, whose weakly coupled low
energy description is the 11D supergravity [HW96a, HW96b, W96a] (the other string theo-
ries have each other as strongly coupled limits). Below we provide some of the weak-strong
coupling duality relationships between the heterotic Eg x Eg string theory and M-theory by

listing the internal manifolds that lead to dual theories. For reviews, see [S97a, M99.

\ Heterotic \ M-theory \
X X x SY/7Z,
ks K3 x T3

T3 x Q K3 xQ

Table 1.2: Partial list of heterotic/M-theoretic dualities; X is a d-manifold preserving mini-
mal susy; 3 < n < 6; and () is a 3-manifold.

3 As pointed out in [W95], one can take Y to be anisotropic, with d dimensions each of size characterized
by the string coupling (~ v¢'), and 6 — d dimensions each of size Mé&T to get the observed GUT scale
symmetry breaking, but the best one can do is still too large by an order of magnitude.
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As previously mentioned, it was shown that if gauge coupling unification was assumed and
supersymmetry was present at some higher energy, the prediction of the weak mixing angle,
in the form of sin®#y,, was closer to the experimental value than in non-supersymmetric

models [AdBF91, GKL91, EKN91, LL91]:

Experiment 0.23161 £ 0.00018
Non-Susy SU(5) GUT  0.214 4 0.003 + 0.006 ln[%]
Susy SU(5) GUT 0.236 £ 0.003
Heterotic String *

Table 1.3: Values of sin? 6y,

From the second to third line, the predicted value of sin? 8y gets better, while the scale of
unification, My, is pushed up toward the scale at which quantum gravitational effects become
non-negligible (which we will call My, whether or not string theory is actually involved). This
hints that perhaps a unification of all interactions should be sought. Afterall, there is much
extrapolation in traversing the desert between the electroweak scale M., ~ O(100)GeV, and
a conjectured unification scale M. But a framework that incorporates gravitation must be
chosen before this issue can be addressed.

As we have mentioned, the heterotic superstring theory with Eg x Eg gauge group is the
most direct route to string phenomenology, and involves a quantum theory of gravity (more
exactly, a modification of general relativity by higher order, but suppressed, interactions on
a classical background spacetime). We've denoted the prediction of sin?fy, for this theory
by * in table (1.3) since the situation is complicated by the fact that we are now dealing with
a string theory, which naturally has a single parameter. As a result, unification of gauge
and gravitational couplings is a generic feature, and the scale of this unification is predicted
to be the string scale M. A naive field theory calculation (up to two loop order) shows
that the prediction of the weak mixing angle is far off from the measured value. (In other
words, the MSSM calculation predicts that My << My, while the tree string calculation
predicts unification at My.) At this point there are various paths to take (see [D97a] for a
review), of which we’ll mention a few. (1) One can simply abandon the requirement that
gravitational and SM gauge couplings unify at a single scale, and instead allow the usual
GUT scenario at an intermediate scale’ (in which case, all couplings will still ultimately
unify at the string scale). (2) Sring theory allows one to abandon a GUT scenario altogether

by changing the Kac-Moody algebra of the string worldsheet so that all couplings unify at

4By intermediate, we mean an energy scale between the electroweak scale M,,, and the scale M,;.
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the string scale, but without a GUT group. (3) Look for gauge and gravitational coupling
unification at a single energy by including heavy string and Wilson line corrections to the
renormalization group flow. We take the approach of the third path: as more corrections
are considered, the prediction for sin? fy, can move into closer agreement with measurement,
while the gauge coupling unification scale is pushed up even closer to the perturbative string
scale [NS95, NS97].

The work of Horava and Witten [HW96a, HW96b, W96a] showed that the territory of
weakly coupled string theories was only part of the string story. They showed that the strong
coupling limit of the 10D heterotic string theory with Egx Eg gauge group has a description as
a weakly coupled 11D theory (M-theory) on My x S*/Z,, which is isomorphic to a spacetime
Mo x I, where 7 is an interval. Further compactification on a Calabi-Yau 3-fold Y yields a
theory on My x S'/Z, with gauge fields that have support only on the boundaries. Due to
the ground state product structure of the spacetime, the size of the spaces can be adjusted
independently; setting the size of S'/Z, to be much larger than Y, we obtain an effective
5D theory at some intermediate energy scale. As a result, the running of the gravitational
coupling starting from 4D is pushed up at the compactification scale M, (the inverse size R~
of S1/Z,), and all four couplings can meet in the newly unveiled 5D theory. The running of
the gauge couplings is unaffected by the fifth dimension since the gauge fields are confined
to the 4D boundary. This allows a complete unification of couplings in the framework of
string theory, without ruining the original minimal supersymmetric SM predictions of sin? Oy
(this ignores the contributions due to heavy string states). In other words, the string scale is
pushed down toward the usual MSSM prediction of My;. Furthermore, such scenarios predict
a 4D Newtonian constant that can have a physically correct order of magnitude, in contrast
to compactifications of weakly coupled heterotic string theory.

The work of Horava and Witten deals with only one particular phase of M-theory: one
in which there is an unbroken Fg gauge group at the 10D boundaries of the 11D spacetime.
But M-theory can sit on a myriad of backgrounds with 4D low energy effective behavior
giving various gauged supergravity theories coupled to matter. Some of these have a 5D
universe at an intermediate energy scale. The details of these theories are hard to come by
since the internal 7-manifold must have Gy structure [AW03], and such manifolds are not as
well-known as Calabi-Yau manifolds.

Taking a step back, field-theoretic model building has a long history of scenarios in which
the universe appears higher-dimensional above some energy scale. As previously mentioned,
the original Kaluza-Klein scenarios involved compactification on S! or tori, and attempts

were made in obtaining four-dimensional gauge and gravitational symmetries from the higher
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dimensional gravitational theory (or supergravity in later versions). In [F'83], it was pointed
out that the estimated scale of strong-electroweak unification, M., ~ 101°GeV, was around
the energy scale where a Kaluza-Klein type universe may not be able to be approximated by
a 4D theory, in which case grand unification would occur in higher dimensions. Earlier, the
authors of [M79, CM81] had constructed models in which one has a pure GUT gauge theory
in higher dimensions, leading to a low energy theory with Standard Model gauge group and
Higgs sector. Nevertheless, these Kaluza-Klein theories did not yield the Standard Model
for reasons depending on the scenarios.

In [A90], followed by [AADDI8, ADPQ99], it was suggested that the size of an extra
dimension could be much larger (TeV scale) within the framework of perturbative string
theory (one of the motivations was to tie this scale to the N’ = 1 supersymmetry breaking
scale). Subsequently, the Horava-Witten (HW) scenario [HW96a, HW96b, W96a, LOSW98]
and Randall-Sundrum (RS) scenarios [RS99a, RS99b] served as the most recent revival of
the idea that there could be a five-dimensional universe at some intermediate energy scale,
but not via compactification on S* (or tori in higher dimensional versions), but rather via
the “orbifold” S*/T" (in the “upstairs picture”) [K00, KOla, KO1b, KOlc, AF01, HMRO1a,
KY02, HMNO02, DM02, HNO1], which corresponds to a manifold with boundaries (in the
“downstairs picture”).” More precisely, the points of M, x S! that are invariant under the
action of the discrete group I' are isomorphic to four-dimensional boundaries. The interior
of the 5D spacetime is referred to as the “bulk”. In contrast to the HW and RS scenarios, in
these theories the SM gauge fields propagate in the full five dimensions, and gauge coupling
unification can be explored there.

From a ground-up perspective, spacetimes such as these can resolve a number of issues
in the supersymmetric Standard Model and supersymmetric GUTSs, as well as move closer
to realizing the goals of the earlier Kaluza-Klein scenarios. The GUTs on these spacetimes,
which we refer to as orbifold-GUTs, can have suppressed proton decay by first eliminating
dimension five operators responsible for too-rapid decay rates; and second by giving large
masses to the new fields involved in the decay processes. Additionally, undesirable scalars
in Higgs multiplets of GUT theories can receive large masses, leaving only massless weak
doublets. These scenarios provide an alternative to 4D GUTs that have been ruled out, such
as the minimal supersymmetric SU(5) theory [MPO1]. The presence of boundaries can also
perform some or all of the breaking of the GUT group to the Standard Model gauge group,

removing the need for an extended Higgs sector that is needed in 4D GUTs. However, since

®See chapter 4 for use of the term “orbifold” in this thesis.
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the gauge fields now live in 5D, the presence of the fifth dimension affects the running of the
gauge couplings, in contrast to the HW and RS scenarios. Therefore, we should be concerned
about the prediction of sin?fy [DDCI8, DDGI9]. However, in 5D GUT theories, the fifth
dimension is the only extra dimension that is “large”, which means the modifications are
generically not as drastic (this can be seen in the calculations of gauge coupling running
throughout the orbifold-GUT literature).

There is another price to pay for going from four to five dimensions: not only is the
gravitational sector non-renormalizable, but the entire theory is non-renormalizable from
dimensional arguments, and the infinite tower of massive states can lead to catastrophic UV
effects [DT82a, DT82b]. One must introduce a cutoff or consider a UV completion via a UV
fixed point [S96b] or a new theory like superstring/M-theory. Of course, the latter theories
are consistent only in ten and eleven dimensions, respectively, and so we must pay the price
of additional dimensions if we are to use these as UV completions. Even if one cuts off the
theory so that there is a finite number of massive states, the presence of these states may still
be problematic. The orbifold-GUT literature is filled with calculations arguing that gauge
coupling unification can still be acheived in such circumstances.

If these theories are to be low energy effective descriptions of superstring theory, there is
a technical feature that makes unification scenarios nicer in 5D orbifold theories. To break
a GUT group to the Standard Model gauge group solely via a Higgs mechanism requires
fields in the adjoint, or larger, representation of the GUT group (as in the model in [NSWO01]
described below). Such a state does not exist below the string scale in (weakly coupled)
heterotic string theory if the gauge group is based on a level one Kac-Moody algebra defined
on the worldsheet [DL89, FIQ90]. Thus, breaking the unified gauge group with a Higgs
mechanism at a 4D boundary requires a string theory whose 4D gauge group is based
on a higher level underlying Kac-Moody algebra. This is not as economical since a large
number of additional states, which appear unnecessary, are introduced.® In contrast, one
can spontaneously break a partially unified gauge group with a level one spectrum, so all
that would remain is to explicitly break the unified group to such a partially unified gauge
group using boundary conditions. (Partially unified gauge group refers to non-simple groups
such as SU(5) x U(1), SU(4) x SU(2) x SU(2), or SU(3) x SU(3) x SU(3).) Such a mixed
scenario has been considered in [KR02]. This is one of the benefits of orbifold-GUT scenarios
(from the point of view of string theory).

Since an orbifold spacetime is singular, field theories are not well-defined on it, which

6There are alternative ways to obtain adjoint reps without extra massless matter [F95] but these models
seem to require a complicated setup.
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requires some further interpretation (in the downstairs picture, the boundary is sharp).
Supergravity admits solitonic solutions that could ultimately be interpreted as the boundaries
of these theories; these solutions are domain walls with some thickness, smoothing out the
singular nature of sharp boundaries. Alternatively, since supergravity is generally a low
energy approximation of string/M-theory, we can rely on the singularity-resolution that
takes place in those theories [DHVWS85, DHVWS86, M86, A94]. Anyway, in light of this
introduction so far, a natural next step from 5D supersymmetric orbifold-GUTSs is to embed
them into 5D N = 2 supergravity. General features of 5D supergravity orbifolds (without
reference to string/M-theory) have been considered in the literature, with couplings to vector
and hypermultiplets [YL03, ZGAZ04, DGKLO04].

Embedding 5D supersymmetric GUTs into supergravity is not a trivial incorporation,
as N’ = 2 supergravity places restrictive relationships between gaugings and matter content.
It helps to review the situation in the case of four-dimensional theories. In the case of
rigidly supersymmetric theories, the set of allowed spin-1/2 multiplet couplings is in one-to-
one correspondence with all Kéahler manifolds in the case of N' = 1 supersymmetry [Z79,
AGF80]; and hyper-Kéhler manifolds in the case of N' = 2 supersymmetry [AGF81]. Local
supersymmetry (supergravity) imposes additional restrictions such that the set of allowed
spin-1/2 multiplet couplings is in one-to-one correspondence with Hodge manifolds, which
are special cases of Kdhler manifolds, in the case of NV = 1 supersymmetry [CJSFGvNT9,
BW82]; and one-to-one correspondence with quaternionic manifolds in the case of N' = 2
supersymmetry [BW83]. Thus, in the case of N' = 1 supersymmetry, only a subset of the
possible matter couplings with rigid supersymetry may be directly coupled to supergravity;
and in the case of N' = 2 supersymmetry, none of the possible matter couplings with rigid
supersymmetry may be directly coupled to supergravity. The latter result follows from the
fact that quaternionic manifolds have non-zero curvature, while hyper-Kahler manifolds are
flat.

Despite the inability to directly couple N' = 2 supersymmetric theories to supergravity,
we can obtain one theory from the other using a particular mapping. The mapping is between
quaternionic and hyper-Kéahler manifolds as the curvature is taken to zero, corresponding to
the decoupling of supergravity (the “rigid limit”). See [ABC97, BDF98] for the discussion of
rigid limits in 4D N = 2 supergravity. It has not been proven that a rigid limit always exists.
In fact, it has been shown that there is no rigid limit for supergravity coupled to particular
compact scalar manifolds. If the rigid limit exists, we may take a supergravity theory with
compact gauge group coupled to a particular quaternionic scalar manifold, and obtain a

particular super-Yang-Mills theory coupled to a hyper-Kéhler scalar manifold. Though the
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nature of the hypermultiplet couplings change in this limit, the gauge group representations
assigned to the hypermultiplets remain unchanged.

The layout of the thesis is as follows. Chapter 2 is a review five-dimensional N' = 2 Yang-
Mills-Einstein supergravity theories (YMEGTS) coupled to tensor- and hyper-multiplets. In
chapter 3, which is based on [M05a], we discuss the phenomenologically interesting GUT field
content admitted by YMESGTs in the form of hypermultiplets, as well as discuss the pos-
sibilities of embedding this content in tensor multiplets or gauge multiplets of non-compact
gauge symmetries. Chapter 4, which is based on [GMZ05a, GMZ05b, M05b], introduces 5D
YMESGTS on the a spacetime that is topologically My x S1/T", where My is a 4-manifold and
' is a discrete group acting non-freely on the circle. The spectrum of boundary-propagating
supermultiplets, as determined by orbfifold parity assignments of bulk fields, is given. Fur-
thermore, the required parity assignments of objects other than fields are listed. In chapter
5, which is based on [M05¢], we discuss the form of the symmetries arising from local sym-
metries of the YMESGT on the above spacetime and the anomalies that may break these
local symmetries. Chapter 6, which is also based on [M05¢|, covers a few phenomenological
issues arising from a YMESGT on the above spacetime, such as the presence of QCD-type
axions with possiblility of cosmologically allowed coupling strength and Yukawa terms. Fi-
nally in chapter 7, which will appear in [M05d], we discuss possible M-theoretic origins of
these theories, and contrast with previous string/M-phenomenology. Appendix 1 contains a
few conventions that we follow in the thesis. Appendix 2 covers more details of the orbifold

parity assignments discussed in chapter 4.
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Chapter 2
5D N = 2 Yang-Mills-Einstein Supergravity

2.1 Conventions

Let us lay out the conventions used in this thesis. We use the mostly plus signature 7, =
diag(—1,+1,4+1,+1,+1) with m = 0,1, 2,3,5. For gamma matrices, we take

rm 0 o™ 5 7 0
—o™ 0 0 —1

™ are the 4D spacetime Pauli matrices, and m = 0,1,2,3 is a tangent spacetime

where o

index. We use the convention where I'"™1 e = [lm

C = ¢ 0 where e = 0 -1 )
0 —e 1 0

The charge conjugation matrix therefore satisfies

1...T™l The charge conjugation matrix

is taken to be

CT'=-C=C"' and crmCc'=(Im7",

In five spacetime dimensions, there are a minimum of eight supercharges so that there is
a global SU(2)g symmetry (the automorphism group of the superalgebra). It is therefore
convenient to use symplectic-Majorana spinors, which form an explicit SU(2)g doublet.

Given a pair of 4-component spinors \’, the Dirac conjugate is defined by
j\i - ()\Z>TF0,
where i is an SU(2)g index, which is raised and lowered according to

/\i = €ij>\j >\j = )\iEZ‘j,
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with €15 = €!2 = 1. Then a symplectic-Majorana spinor is one that satisfies
M=\

We will take the following form for our Majorana spinors showing the 2-component spinor

eC* —e*

2.2 5D MESGTSs

content:

We follow the formulation of Maxwell-Einstein supergravity theories of Giinaydin, Sierra,
and Townsend [GST84a] and their promotion to Yang-Mills-Einstein supergravity theo-
ries [GST85a, GST85b, EGZ01]. An N = 2 5D Maxwell-Einstein supergravity theory
(MESGT) describes the coupling of a minimal supergravity multiplet to ny vector super-
multiplets. The total field content is

{éZn’ \Ij;u A;{u Aiﬁv ¢j}7

where the 5D curved spacetime index is g = 0,1,2,3,5; the 5D tangent spacetime index
is m = 0,1,2,3,5; the index I = (0,1,...,ny) labels the “bare graviphoton” and vector
fields from the ny vector multiplets; i = (1,2) is an SU(2)g index; and p = (1,...,ny) and
Z = (1,...,ny) label the fermions and scalars from the ny vector multiplets. The scalar fields
parametrize an ny-dimensional real Riemannian manifold Mg, so the indices p, g, ... and
Z,7,... may also be viewed as flat and curved indices of Mg, respectively.

Introducing (ny + 1) parameters £/(¢) depending on the scalar fields, we define a cubic

polynomial

V(€) = Cryx'e’e",

where C} i is a constant rank-3 symmetric tensor. This polynomial can be used to define a

symmetric rank-2 tensor

ary(§) = _53_518_5‘] InV(¢).

The parameters £/ can be interpreted as coordinate functions for an (ny + 1)-manifold, which

we call the “ambient space”. The tensor a;;, which may have indefinite signature, defines a

metric on this space. However, the coordinates are restricted via V(§) > 0 so that the metric
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is positive definite, which means that the manifold is Riemannian. The equation V(§) = k

(k € R) defines a family of real hypersurfaces, and in particular

V() =1

defines a real ny-manifold. As was shown in [GST84a], this manifold can be identified with
the scalar manifold Mpz of the 5D MESGT. We can denote the restriction of the ambient
space metric to My as:

o]
arj= aIJ|V:1-

The metric of the scalar manifold is the pullback of the restricted ambient space metric to

MRi

where & is the 5D gravitational coupling (with units of inverse energy); and the function h’

= \/§§I<¢)|V=1a

so that the h! are essentially embedding coordinates of Mg in the ambient space. Both of

is directly proportional to &f]y—;:

the metrics &I s and gz are positive definite due to the constraint ¥V > 0 that was imposed.
The vielbein fg relate curved and flat scalar manifold indices. In particular, the Mz and
tangent space metrics are related by gz = f}f fgnﬁq.

Up to four-fermion terms, the five-dimensional MESGT Lagrangian is [GST84a] (hats
denote 5D quantities)

1o

1
e L) = o F R — —g~g 1" O Y

2,%2
222 A VA v e éxp (19730 + Q9,07 ) A

PO . - | O
—)\WF“F”\I/M fE0,0" + Z—lhﬁ’)\wF“F””\I’mFgﬁ

r Yipar g ol (21)
3Z T i TP 6 I = iy 7ol
/%é‘l

C«IJKG,quU)\FI FJ AK

+6\/6 Aot pars
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Lis the inverse of the fiinfbein determinant; & is the 5D gravitational coupling; R

where e~
is the spacetime Ricci curvature scalar; V is the spacetime covariant derivative based on
the spacetime spin connection; and F /{V = 28[#141{  are abelian fieldstrengths.

The functions h! and hl satisfy a set of relations, which follow from supersymme-

try [GST84a]:

h'hy =1 hih; =0
ary = hihy + hih%gss  gsg =ayy héhé

5 3o 51715
Crixk = §hIthK 5 hiey + TagzhTh b

[ 3 3
I I

h[ :gLL] hJ h’gIE = gjghlg

Tigz = Croxhihih

(2.2)

As a result, we have

1 - -
Cryh™ = hrhy — §h§h§.

Note that the canonical relationship gz; = héh; ay s is interpreted as the pullback of the
ambient space restriction to the scalar manifold upon use of (2.2), which involves &.

The Cp i tensor completely determines the MESGT Lagrangian [GST84al]. Therefore,
the global symmetry group of the Lagrangian is given by the symmetry group, G, of this
tensor, along with automorphisms of the N' = 2 superalgebra: G x SU(2)g. Since G consists
of symmetries of the full Lagrangian, they are symmetries of the scalar sector in particular,
and therefore isometries of the scalar manifold Mpg: G C Iso(Mpg) (the SU(2)p action is
trivial on the scalars). The full Lagrangian, however, is not necessarily invariant under the
full group Iso(Mp). The action of G on the elements of the ambient space is £/ — M1¢7

with the C-tensor invariance condition
M(II/CJK)[/ - 0

A sometimes convenient (“canonical”) basis can be chosen such that the C-tensor takes the
form [GST84a]

1
Cooo = 1, Coij = —55@', Cooi = 0, Cjjx = arbitrary, (2.3)
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where we have made the index split I = (0,7) with i = 1,... ny.

2.3 Gauged supergravity theories

A gauged supergravity theory can be obtained from a MESGT by promoting the vector fields
of the theory to gauge fields of a subgroup of the global symmetry group of the Lagrangian.
We use the terminology of [GST85a] when the following groups, K, are gauged:

KcaG Yang-Mills-Einstein supergravity theory (YMESGT)
K Cc SU(2)r Gauged Maxwell-Einstein supergravity theory
K cGxSU2)g Gauged YMESGT,

where, in the latter case, a (non-trivial) subgroup of both factors is gauged. We are primarily
interested in YMESGTs in this thesis.

Obviously, a necessary condition for a subgroup of the global symmetry group K C G to
be gauged is that there be enough vector multiplets (i.e., ny + 1 > dim[K]). The symmetry
group of the Lagangian is broken to K by the minimal couplings that are introduced. The

ny + 1 vector fields of the theory decompose into K-reps
(ny + 1) = adj(K) @ non-singlets(K) @ singlets(K). (2.4)

Gauging a compact semi-simple group K yields at least one K-singlet spectator vector field
(which can be identified as the graviphoton). However, if there is an abelian factor in K,

the graviphoton can be identified as the corresponding gauge field.

2.3.1 Pure YMESGTSs

Let us for now assume that there aren’t any non-singlets in the decomposition above. The

bosonic fields transform as follows under infinitesimal K-transformations parametrized by
ol(z):
I Lo J I K

Sa0” =l K¥() (2.5)
SuN'? =a! LR (p)NT,
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where K7 (¢) are a set of ny + 1 Killing vectors on the scalar manifold parametrized by the ¢*
(furnishing a representation of K); L?fi are a set of ny + 1 scalar-dependent K-representation
matrices;' and f!,. and o vanish if any index corresponds to a spectator (gauge singlet)
vector field. Now the Cjjx must be a rank-3 symmetric invariant of K.

To obtain the YMESGT Lagrangian and supersymmetry transformations, one makes the

following replacements in the MESGT Lagrangian

F;{ﬁ — féﬁ = Fp{p + gf}KA;{Ag
959" — Dp¢” = 99" + gAL KT (9)
VAT — DA+ g ALLY (¢) X',

with the exception of the Chern-Simons term.” Instead, we must (in general) replace the

term
’%é_IC opoA I ] AK
6\/6 IJKE€ aod’ pa413,
with

-1

e 10555 3
Crik €' A{Fp{ﬁFE{%A,{\(‘*‘ _ng{ﬁA;{ (ffMAﬁAy)

6v/6 2 (2.6)
3
+2 9" (fen ATAT) (fLrAZAT) AL}

Furthermore, to preserve supersymmetry, one must add the Yukawa term
A—1 L oyipyd I
e A[, = —59)\ p)\gK][ﬁhq].

Finally, the supersymmetry transformations do not require corrections in the gauging pro-
cedure.
A pure 5D YMESGT does not have scalar potential, so that the bulk spacetime will be

flat.

IThe transformation matrix fields are related to the Killing vectors by LM =K ?;q — QgﬁK % where ) is
the Mp spin connection.

2By “Chern-Simons term”, we do not mean the 5D Chern-Simons form, in general. This will be the case
when Cj i is an irreducible tensor.
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2.3.2 YMESGTSs coupled to tensor multiplets

Let’s return to the fact that, in general, the ny + 1 vector fields of a MESGT decompose

into K-reps as
ny + 1 = adj(K) @ non-singlets(K) & singlets(K).

There is a conflict for non-singlet vector fields, as they must transform non-trivially under
a non-abelian group as well as have an associated abelian symmetry (being Maxwell fields).
The former will break the latter so that the vectors are not protected from becoming massive
at the quantum level. But if these vectors become massive, supersymmetry will be broken
due to a mismatch in bosonic and fermionic degrees of freedom. The simplest requirement
is for the non-singlet vector fields to be dualized to anti-symmetric tensor fields [GZ99]
satisfying a field equation that serves as a “self-duality constraint” (thus keeping the degrees
of freedom the same) [TPvN84].? For a single uncoupled tensor in five dimensions, this is of
the form

By, = ice, 7 0,Boy), (2.7)

v

where ¢ has dimensions of inverse mass. The factor of i is required in odd spacetime di-
mensions so that the tensors can be written in a complex form, implying that there is an
even number nr of tensors. At the end of the day, one may write the tensors in a real
basis. However, since the tensors in a YMESGT will be K-non-singlets, the complex struc-
ture actually implies that one must have a symplectic structure, so that only gaugings in
which the non-singlets appearing in the decomposition form a symplectic representation are
allowed. This solves the problem since a tensor field does not require an associated abelian
invariance to remain massless. Now, if K is compact, there can be tensor fields transforming
i non-singlet representations of this group iff at least one abelian isometry from Mg is
gauged in K. (The tensor fields must then at least be charged under the abelian factor, but
can transform non-trivially under the other factors as well, according to the decomposition
in (2.4).) Tt is important to note that, after gauging, g-dependent terms in the Lagrangian
prevent Hodge-dualization from tensors back to vectors.

Tensor supermultiplets are of the same form as the vector multiplets from which they
came. In fact, in the MESGT prior to gauging, the dualization from vectors Aé\f to tensors

Bl% does not modify the scalar and fermionic sectors. The scalar and fermionic fields of the

3In the case of maximal N = 8 supergravity in five dimensions, the AdS superalgebra already admits such
tensor couplings transforming non-trivially under the bosonic subalgebra [GRW85, GRW86, PPvN85, GMS85].
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tensor sector are therefore intertwined with those of the vector sector of the YMESGT. We

can define

where I = (I, M), and write the vector and tensor multiplets as*
{Ho N, 67},

However, to be consistent with the gauge symmetry, the components of the C-tensor are

constrained to have components:

V6
2

Cunp=0 Cuy1;=0, (2.8)

CIMN = QNPAfM

where )y p is the K-invariant symplectic metric on the space spanned by the Bﬁ,{; and AP,
are symplectic K-representation matrices appearing in the K-transformation of the tensor
fields: 5aB% =af A%\,Bﬁj. Furthermore, C;x must be a rank-three symmetric K-invariant
tensor as in the pure YMESGT case. Note: We are assuming a gauge group of the form
K semi—simple X Kapetian; see [BCAWGVvP04] for more general couplings where Cyrry # 0.

The terms in the bosonic 5D Lagrangian involving tensors are [GZ99]

1o U 1o A

s—1 _ = M RN ~ppavs  — 1 M ~fip A0G
e Lr= 1 MN B Bs 9" 5 4m Fio B 99

et wpch M7 BN et C opsd gM gN gl

+——¢€ MNDB;p Vb s + —=Cunr € v Ppe A5

4qg 21/6

The 5D field equations for the Bj] (in form notation) are

*DBM = gQMN g - HI.

41t is understood here that the 2-forms F! satisfy the Bianchi identity 7! = DA, so that the 1-forms
AT are the fundamental fields.
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2.3.3 Coupling to hypermultiplets

An N = 2 5D hypermultiplet consists of four real scalars and four helicity 1/2 states. A

collection of ny hypermultiplets is then
{ CiAv qX }

The scalars qX (X =1,...,4ny) of ny hypermultiplets parametrize a 4ny-real-dimensional
quaternionic scalar manifold Mg with tangent space group Usp(2ng) x Usp(2) [BWS83].

The 4ng-bein f 4 relate scalar manifold and tangent space metrics

gxyfA iB — = €;;CaB,

where X,Y are curved indices; i,j = 1,2 are Usp(2) indices; and A, B = 1,...,2nyg are
Usp(2ng) indices.
The total scalar manifold of a MESGT coupled to hypermultiplets is

M = Mgz x Mg,

with isometry group Iso(M) ~ Iso(Mpg) x Iso(Mg) [S85]. Once again, one can gauge a
subgroup K C G C Iso(M). In particular, since we want non-trivially charged hypermulti-
plets, K C Iso(Mpg) x Iso(Mg), where K is generally K., X Kape. For the semi-simple
part, Kemi C G1 X Gy C Iso(M) such that K., is isomorphic to both a subgroup of
Gy C Iso(Mp) and a subgroup of Gy C Iso(Mg).

If there are non-trivial isometries of Mg, the Killing fields K IX, and the related repre-

sentation matrices L8 using the Mg spin connection, act as

5oqu - OélKIX<Q)

(2.9)
5aCt =o' L1P(q)

The susy transformations are

oq* = —ie' ¢ fX

1 /6 (2.10)
5CA = _QFmEZqu fX + Tgezle KI h1(¢> T

where dots in the fermion transformation indicate terms with fermionic fields. The hyper-
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multiplet Lagrangian (coupled to a YMESGT), without all-fermionic terms, is
A—1 1 XY FAD 29 i A
€™ Lhyper = — §9X?Dﬂq Drq" — ¢ T"DpCa — ?ViAV
DT D W A+ YO E rt oA 2.11
+iCa nd mfif( + ?“@hICA M C ( . )

2 L
gl VG, —

szzhft?BgAgB 2K fARLCAN],

where the t75 are ny + 1 gauge group representation matrices for the fermions, which are
determined by the Killing fields K IX of the quaternionic scalar manifold. Smooth manifolds,
such as the quaternionic manifolds parametrized by the qX , have an affine connection I‘é 5
But in the vielbein formulation, there are local fields f;% (the vielbein), and local connections
71)423 determined by them. Therefore, letting DXK}} = 8XK}7 + F?(ZKIZ

L % V' ri
t1143 = §fi)1(3D)ZK}/fyA-
Also,
. 6 S
vid = L_hIKf 4 (2.12)

4

and the K-covariant derivatives act as

Duq™ = Dug® + gALK (q)

DACA:DACA‘F AI A B (213)
i i g ﬂwIB(Q)C

with D, the covariant derivative based on the tangent space Lorentz and Usp(2ny) x SU(2)

connections. The scalar potential admits supersymmetric AdS vacua.
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Chapter 3

Options for Phenomenological Field Content
in 5D

In orbifold-GUTs, the five-dimensional field content for a given gauge group is not arbi-
trary, but depends on the scalar manifold My x Mg chosen. In this chapter, we describe
some of the phenomenologically interesting vector, tensor, and hypermultiplets that can be
coupled to supergravity with gauge groups SU(5), SO(10) and Eg. The material in this
chapter is based on [M05a].

3.1 Options for 5D hypermultiplets

In orbifold theories, the minimal supersymmetric Standard Model (MSSM) Higgs sector can
be taken to lie in 5D hypermultiplets. Furthermore, if we do not wish to deal with ad hoc
additions of SM matter on the boundaries of the spacetime, we can incorporate these fields
in bulk hypermultiplets as well. The goal of this section is to then examine the possibilities
for coupling hypermultiplets that are charged under a GUT group SU(5), SO(10), or FEg
within the framework of 5D N = 2 supergravity. Although there may be further mention of
orbifold field theories in this chapter, we will not need to know any of the details until the
next chapter.

Due to supersymmetry, the scalars in 5D hypermultiplets must generally form the
2(¥;n;) ® 2%, (n, @ ny,)

representation of any gauge group we consider, where 7 labels pseudoreal irreps and « labels
real and complex irreps. Notice the factor of two (not four) in front of the pseudoreal
terms; this is due to the fact that such 5D hypermultiplets can be split into two 4D chiral
multiplets each in a pseudoreal irrep of a gauge group, which is a reflection of the fact that

they are self-conjugate. The main groups discussed here (SU(5), SO(10), and Es) do not
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carry pseudoreal representations. However, Fr; has the 56, which will play a role later on.

Let’s set our notation. A 5D N = 2 hypermultiplet contains four real scalars. If 4m
scalars form the real or complex representations my = 2(m @ m), we say that the hyper-
multiplet is in the m (we do not need to distinguish from m). If the 4m scalars form the
pseudoreal my = 2[2m], we will denote the hypermultiplet as being in the 2m. A 4D
N =1 spin-1/2 multiplet contains two real scalars. If 2m scalars form the real or complex
mc = m & m, we say that the spin-1/2 multiplet is in the m (or equivalently, there is a
chiral plet in the m and its CPT conjugate); while if the 2m scalars form the 2m, we say
the spin-1/2 multiplet is in the pseudoreal 2m.

The 4D minimal supersymmetric Standard Model requires a minimum Higgs supermul-
tiplet content of two chiral multiplets forming the 2 @ 2 of SU(2), along with their CPT
conjugate supermultiplets. In fact, this minimum number is preferred by predictions of
sin? 0y [DG81, AdBFI1, GKLI1, EKN91, LL91]. However, we do not need to assume such
minimality in general; in fact, some constructions outside the framework of orbifold-GUTs
prefer non-minimal Higgs coupling [BL99, BKL.0O1, BLO4].

A 5D hypermultiplet H consists of four scalars and two spin-1/2 fields, which would form
a pair of 4D N = 1 chiral multiplets { H, H°} and their CPT conjugates. However, orbifold
parity assignments restrict the boundary propagating modes to be either the H or H¢ chiral
multiplets. Therefore, in SU(5) orbifold models the Higgs scalars can be minimally taken to
come from 5D hypermultiplets in the 5@& 5 of SU(5). In SO(10) orbifold models, the scalars
are taken to sit in a 5D hypermultiplet in the 10 of SO(10).

The hypermultiplet content necessary to contain Standard Model matter in five dimen-
sions is also a simple extension of the matter content in 4D supersymmetric GUTs. In the
supersymmetric GUTs (in four dimensions), matter fields lie in chiral multiplets. For SU(5)
GUTs, the left-handed quarks and leptons sit in left-chiral supermultiplets in the 5 @ 10; for
SO(10) GUTS, the left-chiral multiplets, including an (unobserved) additional susy Standard
Model singlet, are in the spinor irrep 16. We have saved the case of Eg GUTs until now
since SM Higgs, quarks, leptons, and the additional SM singlet all fit into the fundamental
irrep 27.

3.1.1 Simple classes of YMESGTSs without tensors or spectators

There are many YMESGTSs one can consider, characterized by various choices of C};x, and
the gauging generally requires a number of spectator vector fields and/or the presence of

charged tensors (with the latter requiring an abelian gauge factor). Throughout, we will be



25

interested in relatively large non-abelian gaugings of the form K, X U(1) for the purposes
of discussing five-dimensional GUTs, and in which there is minimal additional field content.
In this section, we list several forms of the C-tensor that allow gaugings not involving tensors
or “extra” spectators (that is, other than the graviphoton in the case of compact gaugings).
This is to allow us to first focus on the coupling of charged hypermultiplets containing matter

and/or Higgs fields.

(1) Consider the simple theory with ny vector multiplets and
C’ijk - 0

The scalar manifold for this choice of theories is in general non-homogeneous, and the La-
grangian is invariant under the maximum possible group G = SO(ny) (as is clear from the
form of Cjj;). The vector fields decompose as ny & 1 under G. Thus, the vector fields other
than the graviphoton transform in the fundamental representation of SO(ny ); the gravipho-
ton is a spectator vector field.

Remark: any choice of Cjj, # 0 breaks the global symmetry group of the Lagrangian to a
subgroup of SO(ny ), and the ny vector fields will no longer necessarily form an irrep of this
new symmetry group.

The adjoint representation of any compact group K can always be embedded in the
fundamental representation of SO(ny) with ny > dim(K); the ny — dim(K) vectors join
the graviphoton as spectators.

It follows that the adjoint representation of K can be exactly embedded into the ny of
SO(ny) without additional fields (i.e., ny = dim(K)). For example, consider ny = 24 and
K = SU(5); ny =45 and K = SO(10); or ny = 78 and K = Fjg. In this way, we can obtain
an SU(5), SO(10), or Es YMESGT with singlet graviphoton. Of course, one may consider

other compact gaugings similarly.

(2) One may split the index ¢ = (a, a), and take Cjjj, to be
Cabc = bdabc Cozﬁ’y = 07

where dgp. are the d-symbols of SU(n) C SO(ny); and b > 0 is a real parameter. The group
action preserving the C-tensor is consequently reduced to a subgroup SU(n) C SO(ny).
Now, K C SU(n) can be gauged, with the remaining ny — dim(K’) vector fields outside the
adjoint representation being spectators. Again, if we are interested in minimal field content,

then we demand that ny = dim(K'), which means that we must restrict out attention to
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SU(n) gaugings with dim[SU(n)] = ny. There are then no vector fields with « indices (i.e.,
no singlets).

Remark: In contrast to the case of b = 0, for b # 0 we have a single parameter family of
theories. The theories are of the same form, since the C-tensor determines couplings in the

theory, but there is a single adjustable parameter affecting the strength of those couplings.
(3) There is a class of theories called unified YMESGTs' in which all vector fields of the

theory, including the graviphoton, furnish the adjoint representation of a simple gauge group.
The known 5D unified YMESGTSs are those in which the C} i are the d-symbols of the
“reduced” Lorentzian Jordan algebras JéCL N0 (N > 2), which can be realized as traceless
(N 4+ 1) x (N + 1) matrices with complex elements that are hermitian with respect to an
(N + 1)-dimensional Minkwoski metric. In a unified YMESGT, the gauge group is the
invariance group of the Cy;x, which in the known cases is the automorphism group of the
full Lorentzian Jordan algebra Jg’ Ny which is SU(N, 1) (this is the group under which the
Jordan algebra is reducible: {e}® JéCL 0> Where {e} are elements proportional to the identity
of the full Jordan algebra).

While the above pure YMESGTSs are minimal in their additional field content, we should
note that there can be important implications in four dimensions (either in the dimensional
reduction or orbifold effective theory) based on one’s choice of Cryx components. In partic-

ular, this is responsible for determining the part of the 4D scalar manifold arising from the

MESGT sector.

3.1.2 Theories based on homogeneous quaternionic scalar mani-
folds

To list the hypermultiplet content allowed by supergravity, one starts with a particular
quaternionic scalar manifold admitting the desired gauge group, and corresponding to some
total number of hypermultiplets in representations of Iso(Mg). The representations of
the (real) scalars break down under the global symmetry group of the Lagrangian, G C
Iso(Mpg) x Iso(Mg). Finally, under the group we wish to gauge, KX C G, the scalars
decompose further giving the spectrum of hypermultiplet representations in the theory.

It is a simple exercise to write down the list of possible matter representations given
a gauge group and quaternionic scalar manifold. We first list the hypermultiplets that

appear in theories based on homogeneous/symmetric spaces, followed by a brief discussion

"'We use boldface to distinguish this from grand unification. We will discuss this more later



27

of those based on homogeneous/non-symmetric quaternionic scalar manifolds. We then make
comments on non-homogeneous quaternionic scalar manifolds in section (3.1.4).

Homogeneous spaces are characterized by the fact that the isometry group acts transi-
tively on the space M. Such spaces are isomorphic to I'so(M)/H, where H is the isotropy
group of M. Generally, though not always, homogeneous spaces are the ones admitting large
isometry groups, which can then admit large gauge groups. A listing of the homogeneous
“special” quaternionic manifolds appearing in the coupling to supergravity (in 3,4, and 5
spacetime dimensions) can be found in [{WVP95]; the spaces we are interested in are given
in table (3.1). For these theories, Iso(Myg) is the symmetry group G of the Lagrangian.

After reducing the scalars of these theories down to reps of Fg, SO(10), and SU(5), we
find the possible hypermultiplet representations charged under those gauge groups; they are
given in tables (3.2), (3.3) and (3.4), respectively. We have listed those cases with the lowest
irrep dimensions (with the exception of the case L(0,74)).



Type Scalar Manifold | dimg (M) Hg-rep of scalars
L(0, P) Sofzgﬁ)ﬁéllo)(@ P+4 (P+4,4)
L(2,1) SU(G)%SU@) 10 (20,2)

L(4,1) WM 16 (32,2)

L(8,1) E7X€;SU(2) 28 (56,2)
L(-3,P) Usggf;f;;?é@@) P+1 (2P + 2, 2)
L(-2,P) | szroposasom | P+2 |(P+22)0(P+22)

L(q, P) Discussed in text

28

Table 3.1: Homogeneous quaternionic scalar manifolds. The “type” of space is the classifi-
cation name as in [AWVP95]; and Hy, is the isotropy group of M.



| Type dimg(Myg) K-rep of hypermultiplets
L(-2,P) P+4+2=27Tn n(27)
(0, P) P+d=54 27 & 27
78 78
L(8,1) 28 1&27

Table 3.2: List of hypermultiplets in lowest dimensional representations when gauging FEg,
where n =1,2,....

’ Type dimg(Myg) K-rep of hypermultiplets ‘
L(-2,P) P+2=2mn n(1® 10 16)
L(0, P) P+4=10n n(10)
78 1@ 2(16) @ 45
L(4,1) 16 16
L(8,1) 23 21) @10 @ 16

Table 3.3: List of hypermultiplets in lowest dimensional representations when gauging
SO(10), where n = 1,2, .. ..

’ Type dimg(Mg)  K-rep of hypermultiplets ‘
L(-3,P) P+1=5n n(5)
L(—-2,P) P+2=5n n(5)
27n 2n(1) @ 3n(5) ® n(10)
L(0,P) P+4=10n 2n(5)
78 A4(1) © 2(5) @ 4(10) @ 24
L(2,1) 10 10
L(4,1) 16 16510
L(8,1) 28 31) @ 3(5) @ 10

Table 3.4: List of hypermultiplets in lowest dimensional representations when gauging SU (5),

where n =1,2,....
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3.1.3 Homogeneous, non-symmetric spaces

Other L(q,P):
We will now go through the type of hypermultiplet content obtained by coupling homogeneous/non-

symmetric quaternionic scalar manifolds to supergravity. There will generically be a number
of gauge singlets in addition to non-trivial irreps. The isotropy group for quaternionic scalar

manifolds L(q, P) that are homogeneous, but non-symmetric is
H = SO(q +3) x SU(2) x S,(P, P),

where S, (P, P) is given in table 10 of [IWVP95]. The quaternionic dimension of the manifold
is
n+1=44q+ (P+ P)Dyy1.

The isometry algebra has a three-grading with respect to a generator €’

V=WoViol
Vo =€ @ s0(q+3,3) @ s,(P, P)
Vi = (1, spinor, vector)

Vo = (2, vector, 0),

where spinor is the spinor representation of so(q + 3,3), which is dimension 4D,;.

e SU(5) CH

The only way this can arise is when S, = U(5); in turn, this occurs for:

¢ Dy P dimu(Mog)
2 4 5 26
6 16 5 90

When we gauge SU(5), the scalars will then have the following representation under

the gauge group:
[1® (9+3¢)1] ® [2Dg41(5 ® 5)] ® [(q + 6)1].

e SU(6) CH
Again, the only way to get this is to have S, = U(6). This case is then similar to the
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above, with P = 6. We will get vectors and singlets of SU(6), and therefore 5s and
singlets of SU(5).

e SO(10)C H
A. S, =S0(10)

The choices are then

¢ Do P dimg(Mg)

—1 1 10 13
1 2 10 25
7 16 10 171

The scalars in these cases form the following representation under SO(10):
[1® (3¢ +9)1)] @ [(4Dg41)10] @ [(g + 6)1]

B. SO(q+3) =S0O(10) (¢ =7, Dyy1 = 16, P =arbitrary)

These spaces have quaternionc dimension 11 + 16 P. However, under an SO(10) sub-
group of the isotropy group, the scalars form a set of representations inconsistent with
supersymmetry, as they do not form quaternions that can sit in 5D hypermultiplets.

Thus, neither SO(10) nor its SU(5) subgroup can be consistently gauged.

e Sp(10) C H This case is similar to the above and will not be discussed.

3.1.4 Comments on theories based on non-homogeneous spaces

Non-homogeneous real and quaternionic scalar manifolds are relevant in string compacti-
fications. For example, it has been shown that, in the special case of the universal hy-
permultiplet of string compactifications, the quaternionic scalar manifold generally becomes
non-homogeneous after string corrections are considered [S97b]. In string theory on a Calabi-
Yau manifold, 1-loop effects can show up in 11D supergravity on a Calabi-Yau, and thus can
appear in compactifications to 5. However, non-homogeneous quaternionic manifolds have
not been generally classified; in particular those admiting relatively large isometry groups
(suitable for obtaining large gauge groups with charged hypermultiplets in phenomenologi-
cally interesting representations). We can list three methods from the literature for obtaining
(non-compact) non-homogeneous quaternionic manifolds.

(i) In 5D, it has been shown that there are Maxwell-Einstein supergravity theories with large
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isometry groups based on real non-homogeneous manifolds parametrized by scalars from the
vector multiplets [EGZ01, GZ03]. By dimensionally reducing these five-dimensional the-
ories to three dimensions, we can obtain non-homogeneous quaternionic scalar manifolds
with large isometry groups, which we can couple to 5D supergravity. Such a reduction was
done for the theories with a special class of symmetric scalar manifolds [GST83], and later
an analysis for more general homogeneous spaces appeared [{WVP95]. An analysis of the
isometries of the non-homogeneous quaternionic spaces arising from the theories in [GZ03]
is a work in progress by the authors of [GMZ05a].

(ii) One may construct 4n + 4-dimensional non-homogeneous quaternionic manifolds M by
fibering over an arbitrary 4n-dimensional quaternionic base manifold M with isometry group
Iso(M), as discussed in [PP86]. The isometry group is locally Iso(M) x SU(2).

(iii) In [KG87], it was shown how 4n-dimensional generalizations of the four-dimensional
non-homogeneous quaternionic space of Pedersen [HP87] (originally considered by Hitchin)
could be constructed. These spaces have SU(n) x SU(2) x U(1) isometries, and seem to be
non-homogeneous forms of the space L(—2, P) in table (3.1). Aside from the spaces that are
cosets of exceptional groups, most of the infinite families of quaternionic manifolds classified
to date are quaternionic quotients by quaternionic isometries of the quaternionic projective
space HH™ = Sp(2n + 2)/Sp(2n) x SU(2), or non-compact or pseudo-quaternionic forms
thereof. The spaces in [KG87| are of this type, and are presumably pseudo-quaternionic
analogues of the spaces L(—2, P) in table (3.1).

We will not attempt to discuss the possible roles of these theories within this thesis.

3.1.5 Summary and discussion: YMESGTSs coupled to hypermul-
tiplets

Just as all compact gaugings are possible in pure MESGTs, all compact gaugings are pos-
sible when coupling to non-trivially charged hypermultiplets. For example, the theories of
type L(0, P) admit any compact gauge group K, since the adjoint representation of K can
always be embedded in the fundamental representation of SO(P + 4) if P+ 4 > dim(K).
However, the resulting hypermultiplet content may be undesirable. This then restricts the
number of theories in which we can obtain both the gauge group and hypermultiplet content
desired (a theory being uniquely determined by the scalar manifold up to possible arbitrary
parameters).

The restriction is even more severe than this. It is not guaranteed that an arbitrary set

of hypermultiplets can be obtained by finding a suitable quaternionic manifold admiting the
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desired gauging. This is clear at least within the set of quaternionic scalar manifolds that
are homogeneous, as discussed in this thesis. For example, one may not obtain an arbitrary
number of hypermultiplets in the 10 of an SU(5) gauge group. It should be noted that one
may not get around this restriction by simply coupling two quaternionic scalar manifolds
M and My such that Mg = M; x My, since these are no longer quaternionic manifolds.
A quaternionic structure is necessary for coupling to supergravity [BW83].

However, there is a way to construct new quaternionic manifolds from a pair (M;, My) of
quaternionic manifolds, as discussed in [S91]. The construction relies on the fact that a 4n-
dimensional hyper-Kéahler manifold (Sp(2n) holonomy) can be constructed as a bundle over
a (4n — 4)-dimensional quaternionic manifold (Sp(2n —2) x SU(2) holonomy). Let My, M,
be quaternionic scalar manifolds of dimension 4n; and 4ns, respectively. Then there exists a
4nq + 4ng + 4-dimensional quaternionic manifold 7 (M, M) called the “quaternionic join”.
Let Uy, Uy be the hyper-Kahler bundles with base manifolds M; and M, respectively.
The hyper-Kéhler manifold U; x U, is then the bundle over J(M;j, Ms). Locally, the
manifold J(Mj, My) is a Zs quotient of M; x Ms. The construction requires hyper-
Kéhler manifolds admitting a hyper-Kéhler potential (a Kahler potential for each of the
three complex structures). The global manifold does not need to carry the isometries of M,
or My, which may ruin the options for gauging. Even if a particular gauge group is still
allowed, the local structure does not necessarily admit the representation R[M;]® R[M,]®1,
where R[M] is the representation of the scalars (parametrizing M) under the gauge group.
This is in contrast with the case of vector and tensor scalars, which locally form a product
structure My X M so that in any neighborhood, scalars can always be divided up into

R[IMy| @ R[Mr]; i.e., representations of a “vector sector” and reps of a “tensor sector”.

Theories with only bulk Higgs coupling

In many phenomenological models, the 5D theory is super-Yang-Mills coupled to 5D
Higgs hypermultiplets in particular representations of the gauge group (this is sometimes
referred to as “the field theory in the bulk”). It is simple to obtain such field content in
supergravity. In the case of SU(5) gauging, one can couple any number n of hypermultiplets
in the 5 by coupling the scalar manifolds L(—3,5n — 1) or L(—2,5n + 2). In the case of
SO(10) gauging, one can couple any number n of hypermultiplets in the 10 by coupling the
scalar manifold L(0,10n —4). In gauging Fjs, any number n of hypermultiplets in the 27
may be obtained by coupling to the scalar manifold L(—2,27n — 2).

Theories with bulk matter

As an interesting illustration of the options that supergravity allows (within the homo-
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geneous quaternionic cases), it appears that to obtain a generation of bulk matter hyper-
multiplets in the 5@ 10 of SU(5) one must include a gauge singlet hypermultiplet (see table
(3.4)). But the corresponding theory of type L(4,1) naturally allows gauging of SO(10),
under which the hypermultiplets form the irreducible 16 (see table (3.3)). One can then
orbifold one of these theories as desired.

If a Higgs sector and single generation of matter hypermultiplets is to be coupled in the
bulk SU(5) theory, one must add two or three additional singlets, which corresponds to the
coupling of a different scalar manifold: L(—2,25) or L(8,1), respectively (see table (3.4)).
Now the field content can sit in smaller set of reps if we gauge Ejg instead, under which the
hypermultiplets form a single 27 or 27 @ 1, respectively (see table (3.2)). Again, one may
then orbifold one of these theories as desired. One can go further. The hypermultiplets
in the 27 @ 1 in the L(8,1) theory can form the 56 pseudoreal irrep if we gauge the FE;
allowed by that space. Upon orbifolding the Ejg theory, we would get a chiral multiplet in
the 27 @& 1 and its CP conjugate. Orbifolding the E7 theory yields a spin-1/2 multiplet in
the self-conjugate 56, which is not good phenomenologically.

Finally, suppose one desires three generations of matter and Higgs in an SU(5) theory.
Once again, one must couple two additional singlet hypermultiplets for each generation,
corresponding to the scalar manifold L(—2,79). This begs the question why we shouldn’t
gauge Fjg instead such that the fields form three generations of 27.

One might instead envision the breaking in five dimensions of SO(10) to SU(5) gauge
group in the theory with scalar manifold L(4, 1). If spontaneous, this breaking would require
an additional 5D Higgs sector, which would require a coupling of a different quaternionic
scalar manifold. For example, one would have to couple to L(—2,25) or L(8,1), which
introduce additional gauge singlets. Note that if the group is broken to SU(5) x U(1), the
U(1) factor consists of mixture of gauged real and quaternionic manifold isometries (since
all of the SO(10) gauge symmetries are gauged isometries of both the real and quaternionic
scalar manifolds). However, tensors charged under this U(1) are not required since there are
massive vector multiplets from the Higgs mechanism that take their place.

Similarly, we could evisage the spontaneous breaking of the above Ejg theory to SO(10).
We’d need to couple a new scalar manifold admitting a Higgs sector (the simplest being
L(—2,52) or L(0,50) with two 27s), but this would make the field content more complicated
in the end.

Alternatively, the 5D breaking could be performed by Wilson lines of, e.g., the U(1)
factor in the subgroup SU(5) x U(1) C SO(10) or of SO(10) x U(1) C Eg. Some details of

such breaking and the relation to parity assignments is discussed in [M05c¢]; for related issues
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of boundary conditions and Wilson lines in S*/T" orbifold field theory scenarios, see [HMN(2,
HHHKO03, BR0O4].

Partial unification in four dimensions

Most of our discussion is in the context of orbifold-GUTs wherein the Standard Model
gauge group remains at one of the fixed points. If one wants to break to a partially unified
group at one of the fixed points, the Higgs content in the bulk must of course be enlarged

(suppose that we do not wish to turn to string theory and its twisted sector states).

SO(10) — SU(4) x SU(2);, x SU(2)r

In four dimensions, we would need the 16 & 16 of SO(10) to break the Pati-Salam gauge
group (PS) to that of the SM (we need the (4,1,2) of PS and its conjugate to perform
the breaking), as well as the electroweak breaking. Since each hypermultiplet can provide
a 4D left-chiral 16 or 16, we will need to have 2 five-dimensional hypermultiplets in the
16. In addition, a single generation of matter is in the 16 of SO(10). The minimal way to
get multiple 16s in the bulk is by coupling an SO(10) YMESGT to hypermultiplets whose
scalars parametrize the manifold L(—2,27n — 2); that is, we must have n hypers in the
19104 16. Therefore, extra fields must come along (n copies of (2,2,1)@(1,1,6)&® (1,1,1)
of SU(2) x SU(2) x SU(4)). These extra states will show up as color triplets and extra weak
doublets and singlets, and must be made massive via boundary conditions. This in turn will
affect the gauge coupling running, possibly adversely. Anyway, the necessary additions beg

the question: why not gauge Ejg instead so that the fields form an irrep?

E¢ — SU(3). x SU(3), x SU(3)r

To round out the discussion, suppose we wish to have an SU(3)? trinification [G84, LPS93]
scenario at the fixed points of the orbifold. In four dimensions, we would need the 27 @27 of
Es to break the trinification group (TG) to SM, and then down to the visible SU(3). XU (1)epm.-
Since the color singlets inside the 27s are used to perform gauge symmetry breaking, we must
add an additional 27 for each generation of matter. We can obtain such a model by coupling

an Fg YMESGT to n hypermultiplets whose scalars once again parametrize the manifold
L(—2,2Tn — 2).
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3.2 Options for YMESGTSs coupled to tensor multi-
plets

As mentioned previously, we may gauge any compact group in the framework of 5D N = 2
supergravity, but we cannot presume any charged field content we like. A real Riemannian
scalar manifold must be specified for which K C G C Iso(Mpg). In [TPvN84], it was shown
that tensor multiplets carrying non-trivial representations of a group G and satisfying a self-
duality condition are required to come in complex conjugate pairs >;,m; & >;m;. However,
it was shown in [GZ99] that, when gauging K, the complex K-representations should be of
“quaternionic type”?; that is, symplectic representations. Tensor multiplets charged under
a gauge group K therefore arise when there are symplectic, non-singlet representations of K
in the decomposition appearing in (2.4). It is sufficient to find complex representations of a
compact gauge group Kemi—simpte X U (1) coming in pairs m & m.

We may now look for gauge theories we are interested in that admit tensor couplings.
We will ignore any coupling to hypermultiplets here so that the scalar manifold is Mg, and
we can gauge K C G C Iso(Mpg), where G consists of isometries that are symmetries of the
Lagrangian. Recall that the rank-3 symmetric tensor C;x uniquely determines the form of
a MESGT (up to possible arbitrary reparametrizations) and that the non-trivial invariance
group of this tensor is precisely G. An algebraic analysis of the form of this tensor is useful for
understanding the vector and tensor field content in a YMESGT, and for gauging purposes
is equivalent to the geometric analysis of the form of the scalar manifold and its isometry
group.

It was shown in [GZ99] that for theories based on homogeneous, symmetric real scalar
manifolds, there aren’t any large non-abelian gauge groups (such as the typical GUT groups)

with charged tensors.

3.2.1 Homogeneous, non-symmetric scalar manifolds

These scalar manifolds are described in [dWVP95]. The presence of tensor fields in these

theories was addressed in [GZ99], though we perform a slightly different analysis.

2“Quaternionic type” meaning that there exists a K-invariant anti-symmetric bilinear form on the vector
space.
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The isometry algebra has a one-grading with respect to a generator \:

X =Xo D X3/2
Xo =A@ s0(q +1,1) ® s,(P, P)

X3/2 =(spinor, vector),

where spinor denotes the spinor representation of SO(¢ + 1,1) of dimension D44, and the

groups corresponding to the algebras s,(P) are listed in [dWVP95]. The isotropy group is

H = SO(q+1) x Sy(P, P),

where S,(P, P) is the group corresponding to the algebra s,(P, P). The dimension of the
real Riemannian scalar manifold is (n — 1) = 24 ¢ + D41 P. The vector multiplets form the

following representation under H:
(1,1)®(q+1,1)® (Dgs41, P). (3.1)

The condition for gauging a group K is that the adjoint representation of K should

appear in the decomposition into K-reps (see (2.4)).

o K CSO(¢g+1)and g >9, Dypq > 32, P =arbitrary

K =SU(5)

(i) If 10 < ¢+ 1 < 23, then the only possibility for the adjoint rep of K to exist
is if the spinor rep of SO(q + 1,1) contains it in the decomposition. The spinor rep
is of dimension 32 < D, < 4096 in our special case. It seems that the largest
representation dimension decomposing from the spinor representation of SO(q + 1,1)
is the 16 of SO(10) so that we cannot gauge SU(5).

(ii) If ¢+ 1 > 24, any value of ¢ in this range allows gauging of SU(5), with (¢+1) —24
spectator fields. The remaining vector fields are P copies of the decomposition of
spinor[SO(q + 1,1)] into SU(5)-reps. This yields a large number of tensor fields (>
4096).

K = SO(10)

(i) If 10 < ¢+ 1 < 44, the only possibility for the adjoint rep of K to exist is if
the spinor rep of SO(q + 1, 1) contains it in the decomposition. The spinor rep is of
dimension 32 < D,,; < 2%, but the largest irrep in the decomposition into SO(10)
representations is the 16. Therefore, SO(10) cannot be gauged for these values of g.
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(ii) If g+1 > 45, we can gauge SO(10) for all values of ¢ in this range. The (¢+1)—45
vector fields not involved in this gauging are spectators. The remaining vector fields
are in P copies of the decomposition of spinor[SO(q + 1,1)] into SO(10)-reps. This
yields a large number of tensor fields (> 2%%) in the 16 @ 16.

o K C S,(P)=SO(P) with P > 10
We require that adj(K) C vector[S,(P)]. The adjoint of any compact Lie group sits
in the n of SO(n) if n > dim[adj(K’)]. There will then be n — dim[adj(K)] spectator
vector fields in addition to the graviphoton. Therefore, no tensors charged under a

non-abelian gauge group appear.

o K C S,(P)=U(P) with P >5

The values of ¢ are restricted to ¢ = 2 mod(8) and 6 mod(8). Again, we require
adj(K) C vector[S,(P)]. The vector fields form the 1 & (¢ + 1)1 & (Dy41)P of S,(P).
For the adjoint of U(5) to appear, we require P > 25. However, there aren’t any tensors

to be charged with respect to the U(1) factor. This applies for other non-abelian cases.

3.2.2 Non-homogeneous scalar manifolds

e Theory with Cj;, =0
This is the choice in case 1 of section (3.1.1). It is clear that these theories do not

admit tensor multiplets charged under non-abelian gauge groups.

A set of interesting theories are based on Lorentzian Jordan algebras [GZ03]? J(Al N) of degree

(N+1), where A = R, C, H; there is also the exceptional theory based on JgZ).

are listed below, where GG denotes the invariance group of the Lagrangian. In constrast to

These theories

the theories with homogeneous scalar manifolds, these theories admit GUT groups coupled
to non-trivially charged tensor multiplets. For phenomenological reasons, though, we focus
on SU(5) x U(1) gauging.

3These were originally called “Minkowski” Jordan algebras in that work.
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Jiny | N(IN+3)/2—1| SO(N,1)
Jin | NIN+2)—1 | SU(N,1)
Jiwny | NN +3)—1 | USp(2N,?2)
Jio) 25 Fla,_20)

These theories are all examples of “unified” MESGTSs, in the sense that there is a continuous

symmetry connecting every field of the theory:*

— >

{ezl W, Aﬂ}
) 3.2
{A, A ¢}

— = <=

where horizontal arrows represent (local) supersymmetry action, and the vertical arrow rep-
resents the action of a simple global symmetry group G, like those listed in the above theories.
(For more on unified MESGTSs, see [GST84a, GZ03].)

A general discussion of the tensor couplings in these theories can be found in [GZ03],

which we use to write down the theories of interest to us here.

* S
One can gauge SU(n) x U(1) C SO(2n,1) (with N = 2n), obtaining tensors in

(n(n;—l)@n(n;—l)) & (o).

In particular, gauging SU(5) x U(1) (n = 5), we get tensors in (15 ® 15) & (5 & 5).

* Jim B
If we gauge SU(N) x U(1) C SU(N,1), we get tensors in the N @ N. In particular,
taking N = 5, we get 5@ 5 tensors. More generally, consider gauging SU(5) x U(1) C
SU(5n,1); we get n sets of tensors in the (5@ 5) of SU(5).
Next consider N = 27 and gauge Eg x U(1) C SU(27) x U(1) C SU(27,1). This yields
704 fields outside of the adjoint representation.

o Jiwm

4We will use boldface to distinguish this from any other sense of “unified”.
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: . N(N+1) . N(N+D) : -
Gauging SU(N,1) C USp(2N,2), we get tensors in —=— @ —5— Choosing N = 5,
we get 15 @ 15. Under SU(5) x U(1), this becomes (5 ¢ 10) & (5 & 10).

0]
. J(1,2)

The symmetry group of the Lagrangian is too small to gauge a GUT group.

We summarize the theories with reasonable numbers of tensor couplings in table (3.5).
They are all of SU(5) x U(1) type gauging.

J.A. dim(Mpg) Tensor K-reps

I 10) 64 (150 15)® (5®5)
Jism | On(5n+2) —1 ~ n(b®&5)
I ) 64 (5®10)® (5®10)

Table 3.5: Summary of theories admitting SU(5) x U(1) gauging with tensor couplings (and
with smallest field content).

3.2.3 Summary and discussion: YMESGTSs coupled to tensors

Within the class of theories discussed in this thesis, the only ones admitting reasonable
numbers of tensor multiplets of interest in GUTs are the those based on Lorentzian Jor-
dan algebras discussed in the previous section. Table (3.5) lists the theories for the case of
SU(5) x U(1) gauge group (they were discussed in [GZ03]). Generically, the gauging GUT
groups starting from a given MESGT is associated with large numbers of tensors and spec-
tator vector fields. We have not systematically considered Eg x U(1) gauging with tensor
multiplets, though it appears that these theories also have large numbers of tensors and
singlets. A large number of unwanted tensor multiplets can be troublesome in orbifold-GUT
models since one cannot get rid of all of the field content in these multiplets via orbifold
boundary conditions (this is shown in [MO05b]).

There are other families of tensor couplings with non-homogeneous scalar manifolds that
we have not discussed in this thesis. Although the geometry of these scalar manifolds is not
understood, an algebraic discussion of such theories can be found in [EGZ01].

Non-trivially charged tensor multiplets offer a possible way to introduce scalar fields in
non-trivial gauge group representations in a more economical way; for every hypermultiplet
introduced, there are four real scalars, whereas for every tensor muliplet introduced, there
is only one real scalar. Such a 5D GUT model is considered in [DGKLO01]. The authors
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consider a field content that consists of gauge multiplets for SU(5), 10 tensor multiplets (in
the 5 ® 5 of SU(5)), a spectator vector multiplet, and a graviton multiplet. The theory
is not obtained from an explicit scalar manifold, though and appears to be obtained by
decomposition of SU(5) C G, with G = SU(6) or a non-compact form thereof. However,
one must recall that, if tensor mulitplets non-trivially charged under a compact gauge group
K, there must be at least one abelian factor (corresponding to an isometry of the real scalar

manifold).

Example of gauging with tensor couplings

Within the framework of supergravity that we have reviewed throughout, the above
model can be obtained from the theory based on Lorentzian Jordan algebra J8,5)- Gauging
SU(5) x U(1) € SU(5,1) yields a theory with the 35 vector fields decomposing into 1 &
5@ 5@ 24 under U(5). The 5@ 5 vectors must be dualized to tensor fields, and the singlet
gauging the U(1) is the graviphoton. Under particular boundary conditions of the theory,
one can obtain massless chiral multiplets in the 5 @ 5 along with their CPT conjugates,
which can therefore potentially serve as a Higgs sector. Otherwise, these will lead to massive
vector multiplets in the 5 @& 5. More details of this will be shown in [M05b], which decribes
the options for parity assignments in 5D N = 2 orbifold supergravity theories. Note that
the graviphoton is required in the gauging. This theory comes from the gauging of a unified
MESGT, where all of the fields had been connected by a continuous global symmetry; the
gauging of SU(5) x U(1) then disconnects the gravity and vector supermultiplets.

Obtaining a simple unifying group appears difficult starting from a theory with Kg;ppie X
Kauper and charged tensors. One could be satisfied with a partially unified group like the
“flipped SU(5)” model with SU(5) x U(1) gauge group [B82, DRGG80, AEHNS87]. But
suppose we wish to embed the above theory into one with a simple compact gauge group.
There will be tensors at each stage of the embedding, requiring a U(1) factor, until the tensor
reps lie in the adjoint of the simple group. Starting from SU(5) x U(1), that group is Es.
However, starting with such a gauge group, there must be a mechanism for breaking it down
the line to SU(5) x U(1); a Higgs mechanism will yield massive vectors, not tensors. So
we cannot embed the tensor coupled theory in this way. Anyway, we don’t know of a real
scalar manifold admiting an Eg gauging unless we take the theory defined by Cj;;, = 0. But
tensor couplings require non-trivial C-tensor components (see section (2.3.2)). It could be
that tensor multiplets have a natural home in higher dimensional unification scenarios.

There is an alternative scenario in 5D that allows tensor coupings with simple groups:

non-compact gaugings. This is the topic of the next section.
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3.3 Non-compact gaugings and unified YMESGT's

In contrast to their rigid limits, 5D N = 2 supergravity theories coupled to vector multiplets
admit non-compact non-abelian gauge groups while remaining unitary. Such gaugings have
been considered since the 1980’s [GST83, GZ03]. The ground states of these theories preserve
at most the maximal compact subgroup as a symmetry group, with the non-compact gauge

multiplets becoming 5D BPS massive:
{4 A,

where M is the index for the non-compact generators of the gauge group (and m is the tangent
space index for the scalar manifold coresponding to the directions of the non-compact gauged

isometries).

Example of Higgs sector from non-compact gauging

Consider the infinite family of YMESGTSs based on the Lorentzian Jordan algebras JECL )
with gauge group SU(N, 1). This family of YMESGTSs are known as unified in the sense that
there is a continuous (and in this case local) symmetry relating every field in the theory; see
(3.2), where horizontal arrows represent (local) supersymmetry transformations, and vertical
arrows now represent the action of a simple gauge group involving all the vector fields of
the theory (For more on unified YMESGTSs, see [GST83, GZ03, GMZ05a].) The ground
state of these theories preserves at most an SU(N) x U(1) symmetry group, while the 2V
non-compact gauge fields transforming in the N & N become BPS massive.

In particular, we may consider the N = 5 case: we have an SU(5,1) gauge group with
35 gauge fields. The ground state of the theory can have at most SU(5) x U(1) gauge
group with the remaining 10 vector multiplets in the 5 @ 5 becoming BPS massive. This
could be a unified theory into which flipped SU(5) is embedded, since U(5) is not simple,
but SU(5,1) is. Note that the scalars in the non-compact gauge multiplets are eaten by
the vector partners, and so we cannot obtain 5D Higgs scalars from these theories. Upon
dimensional reduction, a 5D N = 2 BPS vector multiplet yields a 4D N = 2 BPS vector
multiplet:

(A, X7, A1),

where the real scalar fields AM come from the reduction of 5D vectors. Truncating to N' = 1,
we would expect a massive 4D N = 1 vector multiplet; we would not obtain 4D massless
Higgs scalars. However, just as in the case of tensor multiplets on the orbifold, one can

assign parities appropriately so that instead of a massive vector multiplet, we are left with
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massless 4D N = 1 chiral multiplets in the 5® 5 along with their CPT conjugate multiplets
(see chapter 4). One can use orbifold parity conditions to obtain a subgroup of SU(5) x U(1)
and/or use a vev on the boundaries to perform the breaking, as is usually done in orbifold

models.

Example of non-compact gauging with tensors
One can also now have tensor multiplets charged under a simple gauge group. For

example, one can gauge SU(N,1) in the theory based on the Lorentzian Jordan algebra

JngI > With charged tensor multiplets in the % & (N—;rl) (see section (3.2.2)). The theory

is a unified YMESGT coupled to tensors. The original MESGT is a unified theory, but

when gauged, the tensor sector is “cut off”. In particular, consider the case of N = 5; we

get the unified gauge group SU(5,1) again, but now coupled to tensors in the 15 & 15.
The ground state has at most SU(5) x U(1) gauge group, with 5 @& 5 BPS massive vector
multiplets, and tensor multiplets in the (5 @ 10) @ (5 @ 10). This theory can then be
orbifolded [MO05b].

Though one may obtain non-compact gauged supergravity theories from “compactifica-
tion” of M- or string theory on non-compact hyperboloidal manifolds [CGP04], it is not clear
that this is the only way to obtain such gaugings from a more fundamental theory in higher

dimensions.

3.4 Summary of 5D options

We have pointed out that, within the classification of homogeneous quaternionic scalar man-
ifolds, one cannot choose any pairing of gauge group and hypermultiplet representations one
likes. However, we have shown how orbifold models considered in the literature can be con-

structed in supergravity via these manifolds (without the introduction of boundary localized
fields).

e Any number n of 5D Higgs hypermultiplets in the 5 or 10 can be embedded in an
SU(5) or SO(10) (resp.) gauge theory by coupling the relevant homogeneous scalar
manifolds in tables (3.4) and (3.3) (resp.).

e If a single generation of matter in the 5&10 of an SU(5) theory is desired, an additional
singlet must be coupled (see table (3.4)). The theory is characterized by the coupling
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of the scalar manifold (see table (3.1))

MR X —E7 .
SO(12) x SU(2)

But this theory admits an SO(10) gauging under which the matter forms the 16 (table

(3.3)).

e If n generations of bulk matter and Higgs multiplets in the
(5®10)® (5®5)

of the gauge group SU(5) are desired, two additional singlets must be added (see table
(3.4)). This corresponds to the coupling of the scalar manifold (see table (3.1))

SU(2Tn, 2)

Me X Sr ) % SU@) x U)°

But this theory admits an Fg gauging under which each generation of fields form the
27 (table (3.2)).

Since there are no known quaternionic scalar manifolds with compact FEg isometries, there
isn’t a unification of generations into an irreducible representation within the framework
of 5D supergravity. However, multiple generations arise in Calabi-Yau compactifications of
string or M-theory, and are therefore expected to appear in the supergravity approximations
in four and five dimensions, respectively.

In all of the above cases, My is whatever scalar manifold one has chosen, with the

following constraints:

(i) The isometry group must admit the gauge group as a subgroup, and
(ii) If the decomposition of the ny + 1 vector fields under the compact gauge group has
non-singlet (not including the adjoint) representations, the corresponding vectors must be

dualized to tensors and at least one abelian isometry must be gauged.

For minimality, one may take the spaces described in section (3.1.1) in which all of the
vector fields gauge the group of interest, except the graviphoton, which is a spectator in the
compact gaugings of scalar manifold isometries. However, it should be emphasized that this
choice is not motivated by any other compelling phenomenological reason.

As an alternative scenario to hypermultiplets in the bulk, we may attempt to put the

Higgs scalars or matter fields in tensor multiplets; however, gauging a compact subgroup of
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Iso(Mp) with charged tensors requires the group to have at least one abelian factor. For
example, we may consider the 5®5 tensor multiplets of the SU(5) x U(1) gauge theory based
on the Lorentzian Jordan algebra JECLS). This is a more economical approach, in the sense
that one uses only 10 scalars as opposed to the 40 (in this example). Even though theories
with tensor couplings do not involve a simple gauge group, there is the partial unification
model based on SU(5) x U(1) (“flipped SU(5)”). Furthermore, a generation of matter can
sit in a bulk (56 10) @ (5@ 10) by coupling the real scalar manifold based on the Lorentzian
Jordan algebra J%}fj). We will thus be left with a non-chiral theory.

Non-compact gauge groups in 5D supergravity are another novel way to get 4D massless
chiral multiplets in interesting representations of the gauge group, which allows for an exten-
sion of previously studied gauge-Higgs unifications via compact groups [HNS02, BN03, HS03].
We have mentioned the example of a unified SU(5,1) YMESGT based on the Lorentzian
Jordan algebra Jécl,5>, though there is an infinite family of such non-compact gaugings; the
theories based on J(CL ) admit unified SU(N, 1) YMESGTS. Unified here, is in the sense
that all fields of the YMESGT are connected by a combination of supersymmetry and gauge
transformations; therefore, this is in some sense in between the ideas of Grand Unification
and gauge/gravity coupling unification.

We have not discussed the case of a “gauged YMESGT” (where a subgroup of SU(2)r
is gauged), which admits AdS or flat supersymmetric vacua, depending on the linear com-
bination of vector fields used to gauge this factor (coupling to tensors then results in novel
supersymmetric vacua) [GST84b, GST85a, GST85b, GZ99, GZ00a, GZ01a).
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Chapter 4

Supergravity on S!'/T

In modeling five-dimensional spacetimes with four-dimensional boundaries, we can choose
a particular construction using a spacetime of the form M, x S'/T', where I' is a discrete
group that acts non-freely on the circle. Following the physics literature, we call S*/T
an “orbifold”, and My x S'/T" an “orbifold spacetime”. However, we note here that the
correct definition of an n-orbifold X is a singular n-manifold, whose singularities are locally
isomorphic to R™/I" where I' C GL(n,R), such that the orbifold fixed surfaces (under action
of T') are at least codimension 2. Clearly, S'/T is not an orbifold by this definition; it has
codimension 1 fixed points. While true orbifolds such as T?/Z, have properties in common
with manifolds, the “orbifold” S'/Z, does not benefit from such similarities. Nevertheless,
we will refer to this as an orbifold, dropping the quotes from now on.

Orbifold constructions have been performed many times in the literature for both rigidly
and locally supersymmetric field theories; for examples of the former, see [[K00, K0la, KO1b,
KO0le, AF01, HMRO1a, KY02, HMNO2]; for the latter, see [ABNO1, BB03, YL03, ZGAZ04].
The generic results of the construction are two 4D boundary theories that preserve N' = 1
supesymmetry and support broken gauge groups. However, a systematic classification of
the types of boundary theories available via parity assignments has not been performed
for Yang-Mills-Einstein supergravity theories (YMESGTS) coupled to vector, hyper-, and
tensor multiplets. In this chapter, based on [M05b], we hope to provide a more complete
list of options for the low energy spectrum via parity assignments in the simple case of the
St /Zy orbifold, and the extension to the case S'/(Zy X Z5). Some of the results are generic
to theories with super-Yang-Mills coupled to hypermultiplets, while others are unique to
supergravity. While orbifold-GUTs are a main motivation, the results are not restricted
to these scenarios. As a novel example of 5D GUT in the framework of supergravity, we
illustrate some of the parity assignments using an SU(5, 1) gauging.

Before continuing, let’s review the supermultiplet structure of 4D A = 1 theories, which

has susy automorphism group U(1)g.
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The supergravity multiplet consists of the graviton and gravitino fields

{g;wv ‘I]#}

A vector multiplet consists of a vector field and left /right helicities of a spin-1/2 field

{Au A}

e A massive vector multiplet consists of helicity 4+1,0,-1 states (forming a massive vec-
tor field), two 4+1/2 helicity states (forming two massive spin-1/2 fields), and a real

(massive) scalar field

{Auw A 0}

A left (right) chiral multiplet consists of a +1/2 (resp. -1/2) helicity field and a real

scalar field

{AL(r), 0}

A pair of left and right chiral supermultiplets are charge conjugates (the two scalar

fields are a complex scalar and its complex conjugate).

4.1 [' = Z- Orbifold field theory

A groundstate spacetime My x Z, where Z is an interval, is isomorphic to the orbifold
My x ST, where T is a discrete subgroup of the U(1) isometry group of the circle. Instead
of considering a 5D theory with a boundary (downstairs picture), it is often convenient to
compactify the 5D theory on S, followed by assignment of I'-parities to quantities in the
theory (upstairs picture). The choice of T" reflects different classes of boundary conditions
from the downstairs point of view. We will first consider the simplest case I' = Z,, which
results in a theory with equivalent spectra and interactions at the two fixed points.

The choice of the way Z, acts on quantities in the theory reflects a particular set of
consistent boundary conditions. First of all, Z, cannot have a free action on S!, so there
will be fixed points. In particular, it acts as reflections on the S* covering space [—-7R, 7R]
(where —mR = wR), with fixed points at {0}, {7R}. However, when fields carry internal
quantum numbers, they are sections of a fiber bundle, with spacetime being the base space.
In such a situation, it makes sense for the action of Zy to be lifted from the base space
to the total space [DHVWS85, DHVW&6]. There are a number of ways to perform this
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lift, corresponding to various classes of boundary conditions. Just as the Z, action on the
covering space S! results in a singular space S'/Z,, the Z, action on the total space will, in
general, change the structure of the fibers over the base space.

In particular, we are interested in gauge theories, so there will be a gauge bundle. Objects
other than fields that appear in the Lagrangian carry representation indices of the gauge
group. For example, in a YMESGT where I, J are adjoint indices, gLI 7 (¢) must be a rank-
2 symmetric invariant (locally d;;), and Cpyx is a rank-three symmetric invariant of the
gauge group (in the case of SU(N) gauge groups, these are proportional to the d-symbols).
Such quantities are structures appearing in the gauge bundle, and are therefore generally
affected by modifications of the gauge bundle resulting after Z, action. This gives meaning
to assigning these objects Zy parities.

Although physical states on M*x S1/Z, must be even under Z-action, the field operators
can carry even or odd parity. A field on M x S* can be expressed as a sum over Kaluza-Klein
modes; but under Z, action, the spacetime becomes singular. The general expansion of an
odd parity field will have nth term of the form

o™ (z#,2°) = AnCID(_")(:U“) sin(nz”/R) + B, o™ (2")e(z”) cos(nz’/R), (4.1)
where €(z°) is +1 for (—7R,0) and —1 for (0,7 R) (see figure (4.1)); the CID(,n)(x“) are even;
and A,,, B, are normalization factors.

The equations of motion for bosonic fields are 2nd order differential equations, so these
fields cannot have e(z°) factors (otherwise, there will be 6’ and 62 factors in the equations
of motion, with 6(z°) being the Dirac distribution). Therefore, we impose the condition
B,, = 0 for odd bosonic fields; it’s clear, then, that odd bosonic fields ®(x#, z°) vanish on
the orbifold fixed planes.

On the other hand, the equations of motion for fermionic fields are 1st order differential
equations, so €(x;) factors are allowed (they will give rise to d(x5) factors in the equations
of motion). Therefore, fermionic fields on S*/Zy do not necessarily have well-defined limits
in the upstairs picture.

Field-independent objects C’ﬁ:::g’; carrying gauge indices that are assigned odd parity

are redefined, where allowed, by e(a:5)0§1::j§2, with Cﬁjjf,’; now being parity even. However,
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Figure 4.1: The function €(z”) vs. z° where {—7R} = {+7R}.

some such objects are required to be redefined as /i(ﬂ?5)0§1:::52 for consistency, where

0 for z° = —-7R
—1 for —7TR<z°<0
5\
w7") = 0 for 2°=0 (4.2)

+1 for 0 < 2® < 7R

See figure (4.2).
To leave the space My x S'/Z, invariant under the Z, action, the coordinate functions,

basis vectors, basis 1-forms, and metric components have

P(at; 8,; da*) =41 P(2”; 0; da®) = —1
P(g,ul/§ §55) =+1 P(QMB) = _]-a

where P(®) denotes the Z, parity of the object ®. Since the S' measure is odd on the
orbifold, the fixed planes {mR = —7 R} and {0} must be non-orientable for the action S
to be invariant under Z, reflections. It is natural to take the integration path over z° to
always be in the orientation of the dz® form; we can use the following prescription: in the

region [—7R, 0], one can integrate from {—mR} to {0} (taking dz® to be positively oriented
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Figure 4.2: The function x(z°) is plotted vs. z°, where {—7R} = {+7R}.

in z°), while in the region [0, 7 R], one can integrate from {w R} to {0} (since dz’ is negatively
oriented in z°). In the downstairs picture, we will have two boundaries that are oppositely
oriented. For the assignment of parities, it follow that we must require the Zs-action to
leave the Lagrangian invariant. This puts constraints on the relative parities of the fields.
There are further constraints imposed by the consistency of local coordinate transformations,

supersymmetry transformations and gauge transformations.

4.2 5D N =2 Yang-Mills-Einstein Supergravity

Recall that the total field content for a pure 5D N = 2 YMESGT consists of a supergravity

multiplet coupled to ny gauge multiplets:
{gﬂﬁa ‘;[j;]a A{)v )‘ﬁza ¢5B}

The supersymmetry parameters €', the gravitini W7, and the spin-1/2 fields A\?* are 5D

symplectic-Majorana spinors (see (2.1)), which can be written as

() ()
eC* —en*
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The 5D bosonic YMESGT Lagrangian is

. ~ 1o , 1 o
¢ Loos = 2,€2 1 a7 — 5935 Dp¢™ D"
- 3
+ ZT/GC”K N FLFL AN + 59 gF LAY (flAE AL (4.4)

22 ([ AG AT WLrAZAS) A ),
where hats indicate five-dimensional quantities; € is the determinant of the fiinfbein; and
I I
Fﬂﬁ - 28 AAA
]:51; = F; L+ ZQA A
D™ = 0p¢” + QK?A,I;-

The supersymmetry transformations are
st =Lerny
eﬂ —5 i

i op oo ol
5\11';”- :DﬂEi + mh[{rﬁ - 45ﬂFP}F9ﬁEZ’ +

1 i D Z\/_ [
514{1 = — Qhée Fﬂ)\f +— hI\I} (45)
5N = — 3f§Fﬂ<aﬂ¢m>ei + zh’?FﬂﬁeiF;{a
5¢ _ fz—z)\P

where dots indicate terms with fermionic fields.

4.2.1 Reduction of 5D N =2 YMESGT on S!

In the “upstairs” orbifold construction, one starts with a 5D theory, and compactifies on S*.

It is sufficient for our purposes to use the dimensionally reduced theory, consisting of those
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fields satisfying 95® = 0. This captures the zero modes of the theory on My x S'/Z,. The
dimensional reduction of the theory (as well as the orbifold) breaks the 5D local Lorentz
invariance to a 4D local Lorentz invariance. The four local symmetries that are broken can
be used to fix four degrees of freedom in the fiinfbein. Splitting i = (i, 5), we choose the
parametrization for the fiinfbein to be [GST84a]

g m o
[ € 2en 2e°C),
ep = )
60'

Since gy = égl €% N, we find that

o

G =€ 7 G + 46200”0,,
Js5 =€ (4.6)
Ous =220,
Furthermore, let
A,Iz = (Ai, A",

Under infinitesimal local coordinate transformations of the compact coordinate parame-
terized by £°(z"), the 4D fields A], and C, transform as'

b Al = —0,8A (4.7)
5esC, = —20,€°, (4.8)

with the remaining four dimensional bosonic fields being invariant. One can interpret £°(z*)
as a parameter for local U(1) transformations, for which C, is a gauge field. Note that the
vector fields A{L transform non-trivially under these U(1) transformations. In order to obtain
U(1)(or KK)-invariant fields, we make the local field redefinition

Al — AL 420, A,

such that the new AfL satisfies 555A£ =0.

In terms of these KK-invariant vector fields A/’;, the dimensionally reduced bosonic La-

For (D + d) reductions where d > 1, there are also global SL(d, R) transformations coming from the
(D + d)-dimensional local coordinate transformations [C81].
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grangian becomes [GMZ05a]

e Lpr=— Q%QR — 4%2 ar; Dyh'DPRY — %e% ary D,A' D" A’
- (2—;630 +e7 apg ATA7)C,, CM
- ie" ary Fp, 7" — e ary ANF]CM (4.9)
+ ’;6\/_61 Cryxe™” (ATF]Fr + 2ATATFrCop + %AIAJAKOWCPJ)
2
_ % P,
where ! = ¢RI, and
P = 207 Gy (A Fl b (AY Fh), (4.10)
and
D,A" = 9,A" + gAl [ A (4.11)
Db = 0" + gAlfi k" (4.12)
Cur = 20,0, (4.13)

Just as Alﬂ was redefined to be KK-invariant, we make the further redefinitions

v, — U4+ ULC, (4.14)
T, — T,+T:C, (4.15)

so that \IIL and I',, are now KK-invariant. The dimensionally reduced susy transformations

are then
mo_ L it (@)
5'(3“ = §€F v,
1.
(Sp = §€T5wi
1 . (4.16)
6C, §p_3/2€T5\I/W
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where ¢’ denotes the “bare” susy transformation from five dimensions plus a local Lorentz
transformation to maintain the condition éz* = 0; and we have identified the four-dimensional
gravitini to be

1
U = W+ (07T, (4.17)

The kinetic energy term and potential of the scalar fields? can be written as [GST84a,
GMZ05a]

1 /1 ~ ~ 2
6_1£S == —5 <?5L[JD“hIDMhJ + gCNL[JDMAID‘uAJ)

and 1
P = Se ¥y (A" ffe B)(AY fiiyh ")

where we have defined

-2
ary = 56 arj -

The condition V(h) = 1 becomes

V(h) = Crych'h’hE = €% > 0. (4.18)

C

A iz
e (%)

uv

we can express the vector part of the Lagrangian concisely as

Defining

-1

1 e
¢ Ly = =3 (F)uMapFoM + 5T \@EWU(?T),?,,NAB?B

po

where
[} [¢]
1%2—2630 + 4e° ary AIAJ 2e’ ary AI
Mag =
o 2 J o °
2e ary A e ary
and
%’*CUKAIAJAK RO ATAK
Nap =

I%C[JKAJAK /%C[JKAK
The scalar manifolds of four dimensional MESGTs are Kéhler [CISFGvNT9, BW82], so their

2

o and h! have zero mass dimension.



55
metrics are determined locally by a Kahler potential F' as
g1y = 0r105F.

The Kahler potentials of scalar manifolds of the 4D MESGTSs obtained by dimensional re-
duction from five dimensions are given by a cubic form defined by Cj x [GST84a]. The

corresponding Kéhler geometry is called “very special”. In terms of the complex combina-

(2., i
F— /= [ 1/2A + =h!
¢ 2( PR

the kinetic energy term of the scalar manifolds in four dimensions can be written as [GST84a]

tions of the scalar fields

e 'Ly = —gfjﬁuzla’“‘fj,
where )
arj = a[J(Z — 2) = —5818j1nV(z — 2),

with
V(z—2)=Crk(z —2)(z—2)(z — 2)¥

satisfying V(Im(z)) > 0 (see (4.18)).

4.2.2 YMESGT sector parity assignments

Let’s split the index I = (0,a,a); T = (z,x); and p = (p, p). At the fixed points (upstairs
picture), the fermionic fields generally satisfy jumping conditions and so don’t have a well-
defined limit. In the downstairs picture, the fermions will have a well-defined limit at the
boundaries (see [ABNO1, BB03] e.g.). Thus, in the downstairs picture, the fermions in

(4.3) can be written at the boundaries either as left-chiral fermions with their right-chiral

)\151 _ o )\152 — 0~ ’
0 —edP*

or right-chiral fermions with their left-chiral conjugates

wio 0} e (7).
eyP* 0

conjugates
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In particular, it is clear from appendix B that the action of Z, on the supersymmetry
spinors €' necessarily requires half of the components to be odd, so that the original eight
supersymmetry currents will be broken to four on the boundaries. The boundary theories
therefore have at most A/ = 1 susy. In terms of symplectic-Majorana spinors €, the Z,
action is represented as

—il%et  and  iTPE.

Note: The 4-component eigenspinors of the Z, action are the two (Dirac spinor) linear
combinations of the two symplectic-Majorana spinors.
The general set of consistent parity assignments allows for the following boundary prop-

agating multiplets

Multiplet Representation Type
{gw/a \Iju} K(a) singlet
{{13; /\pz} adj [K(a)] Real
{/\Pi7 Za} Rv[K/K(a)] Real
{03, 2%} K (o) singlet

where the value of n in a =1,...,n  and a = (' +1),...,(ny + 1) is arbitrary. We have
denoted the surviving gauge group on the boundaries as K(,). The second to last multiplet
consists of a chiral multiplet in a real representation and its CPT conjugate. The case where
there are 5D spectator vector multiplets should be clear.

What happens when a non-compact group is gauged? If the non-compact gauge fields
were assigned even parity, then a non-compact gauge group would appear in the 4D theory.
However, there would not be the proper degrees of freedom to give a ground state with
compact gauge symmetry since the scalar degrees of freedom A’ needed to form massive
N = 1 vector multiplets must have odd parity. Therefore, the non-compact gauge fields must
be assigned odd parity. We will then get N' = 1 chiral multiplets in the coset K /H, with H the
maximal compact subgroup of K. Since these multiplets furnish representations of the non-
compact isometries of the scalar manifold, there are non-vanishing Killing fields appearing
in the scalar potential (5.6). This is a novel way of obtaining a 4D Higgs sector, along the
lines of previous Higgs-gauge unifications in higher dimensions [HNS02, BN03, HS03].

4.3 Hypermultiplet sector

As discussed in section (2.3.3), hypermultiplets in five dimensions consist of 2ny fermions

and 4ny real scalars, the latter parametrizing a quaternionic ng-manifold Mg with tangent
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space group USp(2ng) x SU(2)g. We write the multiplets as
{¢* ¢*Y,

where X = 1,...,4ny are the curved indices of Mg;and A=1,...,2ny are flat, USp(2ny)

indices. The 4ny-bein fﬁ relate scalar manifold curved and flat space metrics
X fY
9xvfial;p = €iCas;

where i,j = 1,2 are SU(2)g indices. Note that, in contrast to the case of vector multiplets,
the scalars form 2ny SU(2)g-doublets, while the 2ny fermions are SU(2)g-singlets.” In

2-component spinor notation, we write the fermions as

L[
‘ <<>

4.3.1 Hypermultiplet parity assignments

Let’s split the index X = (X,x), with X =1,...,2ny and x = 2ny+1,...,4ny. We let g%
be the even parity fields, and ¢X the odd fields. Similarly, we spit the index A = (n,n) with
n=1....,ngand n =ng+1,...,2ng. If we couple a 5D YMESGT to hypermultiplets
in the quaternionic Rg[K] of the gauge group, the multiplets with boundary propagating

modes will be

Multiplet Representation Type
{ct, ¢} Ru[K,] Real or Complex
{&, ¢} Ru[K,) Real or Complex

where we have further split X = (X, X3) with X =1,...,ny and Xo =nyg +1,...,2ng.
That is, we get a left-chiral multiplet and its CPT conjugate. Here Rg[K,] is the decompo-
sition of Ry [K] under the group K, C K.

Example

Consider the unified MESGT with SU(5, 1) global symmetry group (see section (3.3)),
whose vector fields are in 1-1 correspondence with the traceless elements of the Lorentzian
Jordan algebra Jécm) (GZ03]. All of the vector fields of the 5D theory (including the bare

3Recall that, in this thesis, we are not considering gaugings of SU(2)g or its subgroups.
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graviphoton) furnish the adj[SU(5,1)]. The C;x tensor is a rank-3 symmetric invariant of
the global symmetry group, so its components are proportional to the d-symbols of SU (5, 1).
As in section (3.1.2), we can now couple hypermultiplets whose scalars parametrize the

quaternionic manifold
E7

Mo = 55m2) < 50)

(4.19)

to the MESGT based on JS’E)), gauging the common SU(5,1) subgroup. As pointed out
in [GST84c, GZ03], the dimensionless ratio g®/k is quantized, where g is the non-abelian
gauge coupling and x is the gravitational coupling. Then the five-dimensional ground state
would have at most an SU(5) x U(1) gauge group coupled to hypermultiplets in the 15®10.
We may then make the following assignments (in terms of SU(5) reps)

Q a 0 n n
adj[SM] SU(5)/SM &5®5 1 165610 c.c.

The 4D low energy effective theory (LEET) will have an A/ = 1 supergravity multiplet; SM
gauge multiplets; weak doublet and color triplet chiral multiplets both with a scalar potential
term; and left-chiral matter multiplets (including sterile fermion multiplet) along with their
right-chiral conjugates. There are also the generic singlet left and right-chiral multiplet

coming from the 5D supergravity multiplet, and chiral multiplets in the symmetric space
SU(5)/SM.

4.4 Tensor multiplet couplings

When a MESGT with ny abelian vector multiplets is gauged, the symmetry group of the
Lagrangian is broken to the gauge group K C G and the ny + 1 vector fields decompose into
K-reps

ny + 1 = adj(K) @ non-singlets(K) @ singlets(K).

As was discussed in section (2.3.2), such a gauging requires the non-singlet vector fields to
be dualized to anti-symmetric tensor fields satisfying a field equation that serves as a “self-
duality” constraint [TPvN84, GRW85, GRWS&6, PPvN85, GMS85, GZ99] (thus keeping the

degrees of freedom the same):

Bpb =N €07 0B+ (4.20)

uv

where c¥ has dimensions of inverse mass, and dots denote terms involving other fields.
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We have already discussed the scalar sector of a pure 5D YMESGT. When tensor mul-
tiplets are coupled the scalar manifold is again a real Riemannian space, but which cannot
be decomposed globally as a product of “vector” and “tensor” parts. We can, of course,
identify an orthogonal frame of scalars at each point of the manifold: the vector multiplets
are associated with the combination hl¢? at a given point, while the tensor multiplets are
associated with the independent combination h}¢®. Similarly, the combination of fermions
hINP® are associated with vector multiplets, while h}'A?* with tensor multiplets. (In con-
trast to vector multiplet scalars, the tensor multiplet scalars have a potential term in the
Lagrangian - see (4.22).) We will write ¢® and ¢™ to denote the scalar partners of the vector
and tensors, respectively, at any given point of the scalar manifold. Similarly, we write \P?
and A’ as the fermionic partners of the vector and tensor fields, respectively. It is then
implicitly understood that the meaning of this notation is given by the above discussion.

When tensors are present, we will use indices I, J, K for 5D vector fields and M, N, P
for 5D tensor fields. We write the tensor multiplets as

avo
To be consistent with the gauge symmetry, the components of the C-tensor are constrained

to be: \/_
6
TQNPAfMa Cunp =0, Cuyry=0, (4.21)

where Qyp is the antisymmetric symplectic metric on the vector space spanned by the

CIMN =

(BM, BM) and AL, are symplectic K-representation matrices appearing in the K-transformation
of the tensor fields:

M _ IxM pN
0aB,, = a’ NN B,,,.

Furthermore, Cj;x must be a rank-three symmetric K-invariant tensor. Note: We are
assuming the most general gauging is K = Kemi—simpie X Kapetian; see [BCAWGVvP04] for
more general couplings where Cyr; # 0.

The terms in the bosonic 5D Lagrangian involving tensors are [GZ99]

A Lo AP ADE 1o ~fp ADG
€ IETZ—Z amMN B%B,éﬁ, " —§@IM~7:,{,>B% "
LE e g BM g BN+ o e gt B g1
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The 5D field equations for the B/% are

*DBM :gQMN &MI 7:[[7

- _7:1
- (5)

The presence of non-trivially charged tensors introduces a scalar potential P that was not

where

present in the case of pure YMESGTSs. The term in the Lagrangian is

éilﬁp(T) = —2g2 WPW?P

with WP = —gh@QMNhN. (4.22)

In the dimensional reduction, we parametrize the tensor field as

By ( 0 —AM )
pv bt )
Ay By

where tildes have been used to help distinguish from vector fields coming from 5D vectors.

Consider the £ transformation of the dimensionally reduced fields Bﬁ and !134 :

8¢ By, = 0,&° AM — a,,g%ff

R (4.23)

Just as for vector fields A{L, we must make a field redefinition
M M iM
BMV — BNV — 40[“14”]

such that the B% are now KK-invariant.
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The “naive” dimensionally reduced Lagrangian is then [GMZ05b]

— 1 3 o ~7 7 1 _9250°
e 'Lpr = —2/%25’— 12 a;j (D,h")(D*hT) — 3¢ *2a; (D, A" (D A7)

_950 1 o O
—e 2 CLIM(DMAI)AHM — 56 2 CLMNAI]yAMN

-1
+€7e“”"”QMNB%(6pAﬁ,V + gALAN, AP)
+6—_16MVPUQMNC UAMAN + —6_1 CMNIGIWPUBMBNAI
g 2 14 o 2\/6 uv = po
1 o 1 o
—é—leaaMNBﬁBN‘“’ — §€UCL1M(.F;£V + QCMVAI)BMMV

1 o 1
—4—160(11(](.7:!{” + QONVAI)<fJ#V + 20#1/14]) — 563(70}“,0“”

-1

where

e R oo 4
+5 g Cawe™” {Fh T AR 4 2, Cop AT AR + 20,0 AT AT AR |
g2
~%p, (4.24)
DA = 9,A" + gAiijAK (4.25)
Fl, = 20,AL + g A AK (4.26)
DA = 00" + gAML BK, (4.27)

where

; fix 0
ML =
7K (o Al

and the total scalar potential, P, is given by

P =2 "WW? + ¢%a;;UU", (4.28)

where W7 is given in (4.22), while

P V3

I._ Iapl 1K
U '_TAMIf(h .
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4.4.1 Parity assignments for tensor-coupled theories

Since (4.23) are only true for transformations connected to the identity, the flfy are not
necessarily even under Zy action. However, these expressions do lead to the constraint
iM M
P(Au ) = _P(Buy)a
componentwise. These two fields do not describe independent propagating degrees of freedom

since they are related by a field equation (coming from the fact that the 5D tensors satisfied

a “self-duality” field equation reducing the number of propagating modes):

B = N ("DAN) 4 -, (4.29)

M

where ¢} is proportional to QM”

a pN; * is the Hodge operator; and the dots indicate terms
involving other fields. There are two classes of assignments we can make, characterized by

the parity of the symplectic form {2,;5 on the vector space spanned by the 5D tensors.

0Odd Parity Qun

Let P(AM) = +1. In the field equations for the vector fields AY, the mass squared
matrix is proportional to c};cpy; if the self-duality relation is used to express all tensor
fields in terms of the vectors Aj‘f , the mass of the flfy is non-vanishing at the orbifold fixed
points. However, there are insufficient fermionic degrees of freedom to form massive NV = 1
vector multiplets. Therefore, we must use the field equation to write flfy — B%. Now, these
fields can be Hodge dualized to scalars BM by adding a term of the form

P Qun B, Do BY (4.30)

to the Lagrangian, where D, is the gauge covariant derivative acting on the scalars, and
Bﬁ,{p = 3! 8[uB%]. From this term, it is clear that the BM will have even parity. We’ll then
get massive spin-1/2 multiplets if we assign P(hM) = +1.

Remark: it is inconsistent to try to write the Lagrangian as a mixture of A2 and B}
by splitting the index M since the field equation relating the vectors and tensors mixes the
two types of indices; we must choose one type of field to appear in the Lagrangian.

The multiplets that will propagate on the fixed planes are

Multiplet Representation Type
i, My NaeN Real

This multiplet consists of a chiral multiplet in a real representation and its CPT conjugate.
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Example

Consider, again, the unified 50 MESGT based on the Lorentzian Jordan algebra J&S),
whose global symmetry group is SU(5,1) [GZ03]. We can couple this theory to hypermul-
tiplets whose scalars parametrize the particular scalar manifold (4.19). If we gauge the
common SU(5) x U(1) € SU(5,1) subgroup, we will get SU(5) x U(1) gauge multiplets,
along with tensor multiplets in the 5 @ 5 and hypermultiplets in the 1 & 5 @ 10. This is
then similar to the ground state theory in the SU(5, 1) gauging example of section(4.3), but
with some important differences, one of which being the scalar potential in this case is of

the form P™) in (4.22). We can make the assignments

« a 0 M n 0

adj[SM] SU(5)/SM 1 5&5 1®5310 c.c

The propagating modes along the fixed planes will be SU(3) x SU(2) x U(1) gauge fields;
weak doublet (Higgs) chiral multiplets; color triplet chiral multiplets; and left-chiral matter
multiplets (including a sterile fermion multiplet) with their CPT conjugates. Again, there is
also the generic singlet spin-1/2 multiplet coming from the 5D supergravity multiplet, and
chiral multiplets in the symmetric space SU(5)/SM. All of these multiplets are tree-level

massless, while the scalars in the 5 @ 5 have a potential term.

Even Parity for Qyn

The multiplets with boundary propagating modes will be

Multiplet Representation Type
{AM NPl pMY R(N) Real

The notation for the representation means that the gauge group at the fixed points must

support a real N. Let’s illustrate this with an example.

Example

The minimal example in which one is left with a group containing SM is where the
5D gauge group is SU(10) x U(1). Starting with the unified MESGT defined by the
Lorentzian Jordan algebra Jg,m) and with SU(N, 1) global symmetry of the Lagrangian, we
can gauge the SU(10) x U(1) subgroup, yielding tensors in the 10 @ 10. If the symplectic
form has even parity, then the orbifold conditions require the group to be broken to at least
SO(10) x U(1), under which we have massive vector multiplets in the (real) 10. There are
also chiral multiplets from the broken gauge multiplets forming the 54, along with their CPT

conjugates.
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4.5 Objects other than fields

There are field-dependent and independent objects that appear in the Lagrangian and super-
symmetry transformations that carry Z, parity. In particular, the field independent objects
are the Cpyx tensor defining the MESGT that exists prior to gauging; the structure con-
stants f1.. and transformation parameters of () of the 5D gauge group; and the symplectic
tensor ;v and transformation matrices AM; in the tensor coupled theory. These contain a
jumping function implicitly when assigned odd parity. The field dependent objects are the
restricted ambient space metric ary (¢) and scalar manifold metrics g,,(¢) and gxy(q); the
hl(¢); the scalar vielbein f?(¢) and fi‘(q); the Killing vectors on the scalar manifold K(¢)
and K% (q). These vanish when assigned odd parity.

Pure YMESGT
Recall from equation (2.3) that the Cryx defining a MESGT may be put in a “canonical”
basis satisfying the positivity of V = Cr ¢ ¢/ CK:
1

C()()o = 1, COz'j = —E(Sij, COOi = 0, Cijk = arbitrary. (431)

The parity assignments of the components are determined by requiring the polynomial V to
be invariant under Z, action. There is freedom in choosing e(x®) or k(x°) as the jumping
function for odd components. However, we will choose the former for reasons to be discussed

later. Splitting i = («, a), we have

Even Odd
Cabc Caaﬁ Caﬁ’y Caab

Before moving on, let us make some brief remarks. In the upstairs picture, we can effect
odd parity for components of Cjx by redefining them as e(z5)C x, where the Cp x are
now even, as we did in the above example. Such components are not well-defined at the
fixed points, while the polynomial V characterizing the real scalar manifold is. However, one
may instead redefine the Cyjr to be k(2°)Crx (see (4.2)). In the downstairs picture, one
may interpret this to mean the components vanish at the boundaries due to degenerations
in the gauge bundle over the boundary points. If they are taken to vanish everywhere, the
5D theory one starts with is restricted in the form of its vector and tensor sector from the
beginning. As an aside: if the 5D theory arises from compactification of 11D supergravity
on a Calabi-Yau space, collapsing CY cycles lead to vanishing intersection numbers, which

are the components of the C7 i tensor. In particular, these degenerations can occur over the
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singular points of the 5D spacetime (i.e., over the orbifold fixed points). In that case, there
will generally be massless states coming from membranes wrapping CY 2-cycles, localized
at the orbifold fixed points (this is in addition to any brane fields that have support there).
See [MZ01, LMZ03] for a discussion of a purely 5D supergravity description of collapsing
CY cycles.

Consistency of the infinitesimal gauge transformations (2.5) require parity assignments
for the f1, and of(z) to be

Even Odd
Tay Tav | Joe Tas
fos foo | fs

af a® ab

where f1, vanishes if any of the indices correspond to 5D spectator vector fields;! and
permutations of the indices have the same parity. The gauge transformation parameters are
subject to an expansion on S'/Z,, and consequently, odd parameters are not well-defined at
the orbifold fixed points. Consistency of the algebra requires that odd fl be redefined as
e(2°) fix-

The components of the restricted ambient space metric and scalar manifold metric have

parities determined by the requirement that the line elements of those spaces be preserved.

Even Odd

o o o o

aa,@ QAgp aaﬁ Qg
(o) [}

Qoo Aoqa

Gy Yxv Ixy

Consistency of the gauge transformations (2.5) determine the parities of the Killing vectors

Even Odd
K Ky Ky
Ky KY | KX

Note that the non-zero components K? on the fixed planes are Killing fields of the scalar
manifold parametrized by those ¢® that are fixed-plane propagating. (There will also be new
Killing vectors, which are not involved in the gauging, associated with the A’). The K% are
sections of the tangent bundle over the scalar manifold. There are also non-zero components

KX, which are a set of sections of the normal bundle over the 4D scalar manifold. In fact,

4This will be true, e.g., for the “bare graviphoton” Ag if the 5D gauge group is compact.



66

these normal vector fields determine the form of the scalar potential involving the ¢* and
A® at the fixed points (c.f. (4.10)):

g KX KA A, (4.32)

where g, is the metric determined by the normal bundle connection.

Finally, the functions i’ and h/; the vielbein f2; and the functions hl = h f? are required

to satisfy
Even Odd
h° he he
hg hy hy | kg hy

R R
RO RS he | e he

T

Tensor couplings

In the tensor-coupled theory, the parities of the additional C-tensor components are

Even Odd
Even Odd
CM./\TQ CMNa CM/VQ C C
MNa MNa«
Cmna Cxina Crmia

P(Qun) = —Q
P(QMN) _ +QMN ( MN) MN

Remarks

Let us again briefly consider the higher dimensional origins of the tensor-coupled theory.
String or M-theory can be consistent in singular spaces associated with collapsing Calabi-
Yau cycles, whose intersections provide the components of Cr;x in a Yang-Mills-Einstein
supergravity theory. We have shown that odd components of C7y;y appearing in the coupling
of tensors must vanish at the orbifold fixed points when €2,y has even parity. From a higher
dimensional point of view (11D supergravity on a Calabi-Yau space), we cannot ignore
the associated collapsing cycles since membranes wrapping CY 2-cycles appear as massless
states,and should appear in the supergravity description. Since the collapsing of the cycles
occurs over the 5D orbifold fixed points, the new massless states will have support there.

Consistency of the gauge transformations require the representation matrices to satisfy
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Even Odd
AV AN | A AN Even |  Odd
Ak MY | AN AR AM | AM AM
Ak AT | A A P(Qun) = —Qun

P(Qun) = +Qun
As in the pure YMESGT case, the ambient space and scalar manifold line elements should

be preserved under the Z, action so that

Even Odd
amy G | G Even Odd
&Ma &Ma &Ma &Ma COLaM ColaM
9mn  Gmn Gmn 9zm Gmn Gxm
Gazm  Gxm Gaxm  Gxm P(Qun) = —Qun

P(QMN) = ‘I-QMN

Finally, the functions h"(¢) and h}'; the vielbein £ and the functions h! = ffhg satisfy

(where we have split £ = (¢,0) and m = (m,m))

Even Odd Even Odd
WM(g) | BM(0) M (9)
pM M| M pM hM
R RN gt ! h

P(Qun) =4+Qun P(Qun) = —Qun

Hypermultiplet couplings
The parity assignments for the Killing vectors and vielbein of the quaternionic scalar

manifold are required to be

Even Odd

KX K% | KX K%
fin fon | fon [fi%
fon ik | fin fon

4.5.1 Discussion

We previously expressed, and note again with the parity assignments above, that there
appears to be a notational complication arising from the fact that the scalar and fermionic
partners of the vector vs. tensor fields are generally different linear combinations of the

manifest scalars and fermions appearing in the Lagrangian, depending on the point of the
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scalar manifold at which the theory lives. So far, it has been understood that the indices
x (resp. m) and p (resp. ¢) appearing in the above partity assignments are representative
of the partner fields of the vectors (resp. tensors). What we have assumed is that, in
practice, one looks at combinations like h2¢® appearing in the “manifest basis” of scalars
that appear in the Lagrangian. This combination should vanish so that the supersymmetry
transformations are consistent (since they can’t be 4D N = 1 superpartners of any fields).
Thus, in our notation, we simply say that “hg7 and ¢X are Zs-odd, while h and ¢* are Z,
even”. But in the cases of symmetric “very special” scalar manifolds, as well as in the case
where Cj;;, = 0, this is in fact correct notation, since one can consistently assign parities to
the ¢. It is perhaps not apparent at this point whether or not setting some set of scalars
@X = 0 at the fixed points is the correct truncation in general, though, so let’s illustrate with
some examples.

Let’s begin with a MESGT that’s in the “generic Jordan” family, which have symmetric
scalar manifolds [GST84a]

SO(TLV — ]_, 1)
SO(?’LV - 1) )

MR = SO(I, 1) X

The cubic polynomial for the theory in the absence of an orbifold is V = Cr 167K where

Cooo = 1, Cooi =0, Coij = —%, Cinn = %, Crap = +%5aba
with a,b=2,...,ny.

However, on My X S'/Z,, the C7;x can have odd components satisfying jumping con-
ditions (upstairs picture). There is a caveat: at least one h! must have even parity so that
it doesn’t vanish at the fixed points. Otherwise, the polynomial would vanish leading to an
ill-defined theory. In the canonical basis, it is natural for h° to have even parity so that we
may only give odd parity to the Cjj. Let us give odd parity to ' and Cy;; in the current
example by redefining C4;; — €(2°)Cy;;. Then the polynomial is
3e(x?)

€(z°) 143 1r(72)2 ny\2
e+ ey 4 g |

At the orbifold fixed points, the terms with h! vanish so that

VZ{WW—SW%MM—

wm:m{mw_g%mm}
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That is, this has the affect of restricting the 4D complex scalar manifold to the Im(z!) =0
surface, with the h! still satisfying the condition on the “bulk polynomial” V = 1. In
general, 4D N = 1 supergravity theories are in 1-1 correspondence with Hodge manifolds.
The 4D N = 1 supergravity theory we obtain from orbifolding is of a special class based on
a (not necessarily irreducible) cubic polynomial satisfying Vy,(Im(z)) = €*” > 0 (for similar
discussion in the N' = 2 case via dimensional reduction, see [GST84a, GMZ05a]).

The solution to the condition V = 1 in this example is h° o< 1/|4|* and h' « ¢' (i =
1,...,ny), where |¢|* is the “Minkowski” norm with signature (+ — ---—). Clearly, the
assignment of parity to the ¢’ is straightforward in this case, and the vacua of the theory
will follow the (¢') = 0 flow. Let’s contrast this with a different example: the non-Jordan

family with cubic polynomial
V= V2RO(h)? = MY (h7)?

with solution to V = 1:

=+ ' S (o)

hl — ¢l
W =¢'o!
where j = 2,...,ny and h! is not in the canonical basis. Clearly, there is now a restriction

that h°, h' be even (which means two vectors at least must be projected out), while there is
freedom in parity assignments in the remaining A7. In this case, the requirement that hg&
be odd (and therefore vanish at the fixed points) allows for an infinite family of ground state
flows in which the vev for all scalars can be non-zero. For example, if Ai has even parity, then
lvzg%qbi’ must have odd parity so that there is a collection of flows, with the direction normal to
the flows being (¢!) ¢ + (¢?) ¢' (since this is the direction in which the propagating scalar is
truncated). However, as h? must also be odd, this requires ¢? to be odd so that it vanishes at
the fixed points. Therefore, the theory is restricted to lie along the flow (¢?) = 0 connected
to the basepoint.

In fact, this is a general result: If some h!(¢) are non-linear polynomials in ¢%, trunca-
tion of the scalar combination h¢¢® allows for an infinite family of vacua generated by the
Killing vectors KZ (one for each remaining gauge symmetry). However, the h*, which are

polynomials in the ¢, must be odd, which implies that some ¢® are necessarily odd, and
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so vanish at the orbifold fixed points. Therefore, we are always restricted to some set of
<gz§5c > = 0 flows, which are connected to the basepoint. These scalars are what we have been
calling X. We now have our justification for the way in which we’ve been assigning parities
to objects with scalar manifold indices like the ¢*: although the combination h¢® appears
as the 5D partner of the vector component A, only the trivial set of solutions (the (¢X) =0
flow) is truncated.

There is an additional subtlety, which the above “non-Jordan” family illustrates. In that
example, the C-tensor was written in a non-canonical basis in which it was clear that h°
and h' needed to have even parity. However, if we write the C-tensor in the canonical basis,
all of the h* can be assigned parity freely. In the absence of the orbifold, the two bases are
related by a linear transformation h! = M Th7 and the theories described by them are the
same. In the presence of the orbifold, however, the two bases are no longer related by a
symmetry transformation. The transformation, involving jump functions, takes us between
two different theories, with different sets of parity assignments. It is not clear in general if
there is always a basis in which there aren’t constraints on the parity assignments of the
vector sector scalars. Regardless, for the generic non-Jordan family, generic Jordan family,

magical Jordan theories, and the Cj;; = 0 theories, one can always work in such a basis.

4.6 Extension tol =7, X Zy

There are a couple of phenomenological issues that make the S'/Z, orbifold models too
simplistic. First, there are always massless chiral multiplets in real representations when
a gauge group is broken at the orbifold fixed planes (though these may contain MSSM
Higgs fields). Second, all chiral multiplets come in complete representations of the 5D gauge
group, which can lead to unwanted fields charged under the Standard Model gauge group.
The boundary conditions described by an S'/(Zy x Z,) [BHNO1] construction are for the
most part capable of resolving these issues.

An exception is the tensor sector: although there is a choice in assignment of parity for
the symplectic form €2,,y, we cannot assign (+—) parity under Zy X Zs action (it leads to
inconsistencies of assignments for the fields). Furthermore, given a choice of Q,,y parity,
there wasn’t a choice of parity assignments in the I' = Z5 case since supersymmetry dictated
the results (see appendix for details). Therefore, the situation with tensors is no different
in the S'/Zy x Zo construction. This means that, e.g., tensor multiplets do not allow a
doublet-triplet resolution via parity assignments (see the example with odd Qy/y parity in
section (4.4)).



71

An expansion of ®(z,z°) on S'/(Zy x Z,) will take the form

Sz Z ) () cos| 27;955]
#) = 30 80@) (g cos DT 1 (0 sin B D)
¥ ?) = 0@ Cl sinf G2 4 el s 2D
= 0 (sl + Faela® o )

so that ®~)(x, 2°) vanishes at 2° = 0 and ®~F)(x,2°) vanishes at 2° = wR/2. Once
again, bosonic fields cannot have € factors since the equations of motion would involve ¢’
or 6%, where § is the Dirac distribution. For those, we must set By = Dy = Finy = 0.
But fermionic fields are allowed these terms in the expansion so that they are generally not
well-defined at the fixed points.

Let P(®) be the parity of ® under the first Z, factor, and P'(®) denote the parity under
the second factor. Taking the covering space to be [—7R,7R] (with {—7R} = {7R}) as
before, the orbifold now has fixed points at {0}, {wR/2}.

4.6.1 Vector sector

In the previous sections, we made an index split for quantities with £1 parity under the

single Z,. We will make a further index splitting for quantities with the four possible values

{#£1, £1} for the parity {P(®), P'(®)}:

i= (o, a,d) p=(p,p,p.0).

A given assignment of Zo X Lo parity to an object will consist of the union of two assignments
in the S'/Zy construction.

Fields from the 5D vector multiplets will have the following assignments:



- - —— &
A/ff/ A AZ/ A
A AT AY Ao
hY  h*  hY  h®
Y A G 4
,},p/ AP 7p’ o

Note: the bare graviphoton A} always has (——) parity (so A° has (++) parity). The
range of pq, o, and p3 in a = 1,...,901; & = @1+ 1,...,09 a = g2+ 1,...,p3; and
a =3+ 1,...,ny, are arbitrary.

The fields with (+—) or (—+) eigenvalues have massive n = 0 modes on the fixed planes
for the same reason that any Kaluza-Klein field does: there is excitation in the 2 direction.
In the low energy effective theory, such fields will fall into massive N' = 1 multiplets in four
dimensions due to terms in the Lagrangian with 95®%~ or 95®~ .

In contrast to the S*/Z, construction, we can now remove all massless chiral multiplets
in real representations by choosing there to be no ', p’ indices. In that case, no fields
from the 5D vector multiplets are completely projected out of the boundary spectra of
propagating modes. Alternatively, we can keep a subset of those massless chiral multiplets
(in a real representation) such that they no longer furnish complete K -representations. We

can summarize the results in a table. We have decomposed the representation Ry [K] =
adj[Ko] © Ry [K.] ® RY[K,] © R [K,).

Multiplet Representation Type Boundary Tree-level Mass

{AS, A7} adj[K.,] Real Both Massless
(N2 R [K,] Real Both Massless
{wL, 20} K ,-singlet Real Both Massless
{AY N1} R?[K,) Real  y= O(1/R)
{api o} R} [K,] Real y=0 O(1/R)
{As, A7} R} K] Real y=mR/2 O(1/R)
(M o) R [K,] Real y=7R/2 O(1/R)

Example

Let’s revisit the SU(5,1) example based on the Lorentzian Jordan algebra Jéclﬁ). We can
obtain chiral multiplets (with a scalar potential) in the (1,2)®(1,2) of SU(3)x SU(2)xU(1)
(along with a spin-1/2 gauge singlet multiplet). Let the indices correspond to:

I «Q a’ «Q a 0

SUGG,1) | SUB) x SUQ2) xU(1) (1L,2)®(1,2) (3,1)®(3,1) N/A (1,1)




73
40

e
i

/
A Cx
Ay

y=0 y=7R/2

Figure 4.3: Schematic of massive and massless vector and scalar fields with boundary prop-
agating modes.

The Aj correspond to Standard Model gauge fields propagating on both fixed planes;
the remaining vector fields either sit in massive multiplets, or are simply projected out. In
particular, we take the Afj/ to be the (3,2) @ (3,2) vectors (X, Y bosons) and color triplet
vectors (3,1) @ (3, 1), which will propagate in massive supermultiplets in the effective theory
of the y = 0 plane. This implies that massive spin-1/2 multiplets in the ((3,2)®(3,1))&(c.c.)
will propagate in the effective theory of the y = 7R plane. Next, let the AZ’ denote the vectors
in the (1,2) & (1,2), which means there will be chiral multiplets in this representation at
both fixed planes (with scalar potential terms). Finally, we get conjugate pairs of massless
chiral gauge singlet multiplets from the 5D supergravity multiplet. There are no fields with

index a in this example.

4.6.2 Hypermultiplet sector

So far, we have not been able to obtain massless chiral multiplets in complex representations
of the boundary gauge group even in the [I' = Zy X Zy construction. Once again, the only
way to do this (starting only from a 5D bulk theory) is to couple 5D hypermultiplets. We

can make an index split as in the previous cases:

X=(X,X,090) A=(nn' nn),
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where the fields have the following parity assignments under Zy X Zs:

++ - -+ ——
7 ¢
& & &g &
& & & &g

The fields with (+—) and (—+) eigenvalues have massive n = 0 modes, and so should

fall into massive spin-1/2 multiplets. Therefore, the indices n and n are required to be in
1-1 correspondence as are the indices n' and n'. However, there is no constraint between
unprimed and primed indices, and each pair has an arbitrary range. That is, n =1,...,p
and n' = p+1,...,ng; whilen =ng+1,....,(ng +p) and 2’ = (ng + )+ 1,...,2ngy,
where @ is variable.

If K is the 5D gauge group, and K, is the boundary gauge group, the K -representations
of the massless chiral multiplets at the boundaries no longer need to form complete K-
representations.

We can summarize the results for the hypermultiplets in a table. Start with ng 5D
hypermultiplets in the Rg[K] of the 5D gauge group K. Let the gauge group at the orbifold
fixed points be K, so that under this group, the Rg[K] decomposes into the representation

RH[Ka] = R}I[Ka] D R%{[Ka]a

where the indices 1 and 2 denote the splitting of X into (X, X’). At the fixed points, the
hypermultiplets split into chiral multiplets with indices split into (X, Q’; X’ ), and are in
the representations R, [K,] or Ri;[K,] ® R};[K,] as listed here:

Multiplet Representation Type Boundary Tree-level Mass
{€" ¢} RL[K,) Real or Complex Both Massless
{&m, ¢*2} R, [K.)] Real or Complex  Both Massless
{60} Ry[K.) & Ry[K.] Real y=0 O(1/R)
{67 ¢*}  R%[K.) @ Ry (K] Real y=nR/2  O(1/R)

We have split X = (X7, Xs) such that X; = 1,...,ng and Xo = ng + 1,...,2ng. Also,
A" = (n,7') is a USp(2m) index.
Example

Consider the SU(5) YMESGT with Crjx as in (2.3) (where C;j; are the d-symbols of
SU(5)), coupled to the minimal amount of Higgs and matter content in the bulk. From
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section (3.1.2), this can be realized by coupling the YMESGT to hypermultiplets whose

scalars parametrize the quaternionic manifold®

SU(27n,2)

Mo = SU2Tn) x SU(2) x U(1)’

resulting in a coupling of n sets of hypermultiplets in the 1 @ 3(5) @ 10 of SU(5).
Suppose we are going to break SU(5) — SU(3) x SU(2) x U(1); focussing on the hyper-

multiplet sector, we can make the following assignments

n n n' n

Matter & (1,2) & (1,2) cc. (3,1)®(3,1) cc.

This will result in a low energy effective theory at both boundaries with Standard Model
chiral matter multiplets; a pair of left-chiral Higgs doublets and their CPT conjugates; and

a pair of massive spin-1/2 color triplet multiplets, all at both boundaries.

4.7 Summary of parity assignments

We have found parity assignments for fields and other objects in five-dimensional Yang-Mills-
Einstein supergravity coupled to tensor and hypermultiplets. This is useful for understanding
the theory at the boundaries as well as the low energy effective theory. We have not con-
sidered boundary localized fields, which would arise from p-branes located there, or states
becoming massless due to membranes wrapping cycles that collapse there. We have allowed
for general gauge symmetry breaking K — K, which can arise via boundary conditions, or
in special cases via Wilson lines looping between boundaries.

Five-dimensional tensor multiplets can yield 4D AN = 1 chiral multiplets with a scalar
potential (admitting supersymmetric Minkowski ground states). Since they appear in real
representations, they are potential Higgs multiplets. However, we are stuck with complete
K-representations. Therefore, we cannot use boundary conditions to make unwanted rep-
resentations massive (which was one of the original motivations for field theory orbifold
models).

A novel feature of supergravity theories is that one can gauge a non-compact group.
The vectors representing the non-compact generators must be given odd parity, yielding a

4D compact gauge group and chiral multiplets in real representations. There is a potential

By allowing an additional singlet hypermultiplet, we can instead couple the exceptional scalar manifold

Eg
SU6)xSU(2) "
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serving as a mass term for the scalars in these chiral multiplets (admitting supersymmetric
Minkowksi ground states).

Bulk hypermultiplets can lead to chiral multiplets in complex representations. The bulk
minimal coupling to gauge fields yields another potential for scalars in the YMESGT sector.
In the case of 5D non-compact gauging, this provides another mass term for these scalars.
Furthermore, there is a potential for the scalars from the hypermultiplets; in the case of
non-compact gauging, there is a mass term for these scalars as well.

Non-compact gauging in orbifold-GUTs thus leads to Higgs and matter masses in a new
way. Of course, one is left with the usual problem of breaking supersymmetry while fixing

an appropriate vev for the Higgs scalars.
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Chapter 5

Symmetries and Anomalies

It is well known that the manifest global symmetry algebra of a dimensionally reduced

five-dimensional N' = 2 MESGT Lagrangian (up to topological terms) is

g1 = (g5 © B) O,

where g5 is the global symmetry algebra of the 5D Lagrangian; (8 are rescalings present in
any dimensionally reduced supergravity theory; and t act as translations of the 4D scalars
AT arising from the 5D vector fields [GST84a, dWVP95]. (The translation algebra also acts
non-trivially on the fieldstrengths of the 4D theory, but this action does not carry over to
the orbifold theory.) If ks C g5 is gauged in the 5D theory, then the 4D gauge algebra
is ks @ u(1)," and the global translations are no longer necessarily symmetries due to the
minimal coupling terms and scalar potential. With that in mind, let’s look at the case of an

orbifold reduction.

5.1 Symmetries at the orbifold fixed points

The gauge transformations of the Aﬁ and A° restricted to the fized points are
1
gy -+ 1 B 1 p2 6 B A7
Al =~ > BlanOu0ny + 3 Bl Bl @l Sy AL oy +

n

1 1
3% == 32 () Gontey = D Hunalyla”)

1 2 J6] a c
+ Y Bl Bl [ eAGm +

n,m

n constrast to ks, the u(1) local symmetry is not part a YMESGT gauging since nothing is charged
under it.
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where dots indicate terms involving e(x®), and the By and Gy, H(,) are expansion con-

stants. However,
/Guaa(a;, 2°)|pdz® =0

so that a® is constant on the fized planes.” The first set of transformations are simply the
local action of the non-abelian gauge group on the fixed-plane-propagating vector fields. KK
modes are mixed when we have non-abelian gauging; however, for n > 0 vector fields, the
transformations are not symmetries of the equations of motion, so that only the zero mode
components of the first expression are symmetries of the on-shell theory. The second set of
transformations are constant shifts on all A® together with the action of the gauge group on
the A% that is, the “Poincare group” acting on the non-singlet scalars. Thus, the symmetry

algebra generating the 5D gauge group K is broken, with the fields furnishing a representa-

«

a
&, fo.. These structure constants

tion of a resulting algebra with structure constants fg. ,

indicate that the orbifold forces a symmetric structure decomposition for the algebra

(k@) ®t) @ ), (5.1)

where (§ is the semi-direct sum; k4 is the Lie algebra for a compact subgroup K,y C K (the
new gauge group); ¢t correspond to K (4)-non-singlets in the coset K/K,); and I=1(0,a)

runs over singlets of K(,y. This then implies that

Cape X {Ca Ci, Cs, Ca5i,é} (5-2)
Oaaﬂ X O(l 5ag, (53)

where Cj; are real-valued constants.
Consider breaking the simple gauge algebra su(/N, 1). The algebra admits the 3-graded

form (with respect to the u(1) generator)

N_ @ [su(N) ® u(l)] ® N,.

If & =su(N,1) and ko) = su(N) @ u(l), then k¢, is the gauge symmetry algebra at the
orbifold fixed points, with scalars in the N_ @ N, propagating there. The vectors A7, scalars

2In the upstairs picture, 9,,0%| ¢, is proportional to €(z”) so that the expression is only well-defined as an
integral over the fifth dimension. In the downstairs picture, on the other hand, the boundary conditions are
aa(xay”bdry =0 and auaa(xvy)‘bdry =0.
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A% and scalar A° therefore together furnish a representation of
(su(N) ® t*) ¢ t°. (5.4)

From a four-dimensional point of view, this consists of gauge transformations and shifts
of the A% scalars, while from a five-dimensional point of view, this algebraic structure is
simply a reflection of the on- and off-boundary gauge interactions at the fixed points. In this
example, there aren’t any non-zero Cyp. or Cyep terms in the 4D Lagrangian.
If we want ko) = su(N) instead, the structure of the symmetry algebra at the fixed
points is
(su(N) ® V) @ ¢

despite the fact that the A% were charged with respect to the manifest U(1) in the previous
example. Now both the scalar A and the scalar from the U(1) factor furnish a representation
of tO. In this case, Cgpe and Cyqp are described by a single parameter, and may therefore
be non-zero.

The dimensionally reduced Lagrangian restricted to the orbifold fixed points has the
terms

o C-hi ~O-AL
S L —“gf

e b0 Ty, Fiy

671£V|fp = po? (55)

where I = (0,a). These terms will describe the fields that will be massless in the 4D
effective theory of a given boundary. As a result, the shifts of the singlet scalar C fAf are
not symmetries of the Lagrangian due to the topological shifts they induce. The shifts of
the A% are also not symmetries of the Lagrangian due to the minimal couplings to the the
gauge fields Af.

The scalar potential restricted to the fixed points is
Vi = gyw KXKP A A, (5.6)

In general, this potential can contribute to the breaking of the possible shift symmetries. In
particular, shift symmetries of the AT can be broken by this term. If the 5D gauge group
K is compact, then it is a subgroup of the isotropy group of the scalar manifold My . In
that case, there always exists a point on My that is invariant under K-action: §¢2 = 0, so
that KI|op =0 for all I and Z. This holds upon dimensional reduction, where now the subset
KX|op = 0 so that there exists a K-invariant critical point of the above scalar potential. In

the canonical basis, the critical point with vanishing potential is the canonical basepoint
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h® =1,h* = 0.
While sitting at the basepoint of the 5D theory is sufficient for the existence of t()
symmetries of the potential (5.6), we can relax this requirement after rewriting the potential

as:
34>

TRt

7 ary (AR hE)(AM ™). (5.7)

-1
e ‘Cpot =

The fields are still not manifestly written in terms of C}Ai since the metric contracts with
the structure constants. But we may look at the form of this potential at the fixed points of
the orbifold and write

(aas S e@®)? g fi0f2) AR AN (5.8)

The indices a,b,... can be split into non-singlet and singlet indices d,l;, ... and a,b,....
For general vacua, the above potential contributes to the breaking of any possible shift
symmetries, with the exception of scalars arising from K-singlet vectors in Aﬁ (which don’t
appear in the above scalar potential).

Note that, while the infinitesimal gauge transformations for A” and AZ vanish at the
orbifold fixed points, two gauge transformations of these fields yields a fixed point localized
term due to the odd structure functions e(z®)f?,.. This is similar to the fact that these
fields do appear in fixed-point localized terms (i.e., with delta functions). In the presence of
the fixed points, there appears an algebraic element fg‘ﬁAaozﬁ and ffﬁaﬁAZ parametrized by
the gauge coupling at the boundary. Thus, there is a structure in addition to that of (5.1).
Since the fields A? and AZ appear as auxilliary fields in the upstairs picture, this structure
that they close into is an “auxilliary algebra”, which will not appear as a physical symmetry
algebra of the low energy effective theory of a given boundary.

In the S'/Z, construction, it is clear that the o parametrize gauge symmetries of the
Lagrangian as well as of the equations of motion for n = 0 fields. Let us now look at the
S'/(Zy x Zs) construction. Here, the T" action on the gauge bundle gives fields four possible
parities (£=£). The situation for (++) and (——) fields is the same as before. But (+—)
fields have propagating modes only on the x° = 0 fixed plane, while (—+) has propagating
modes only on the > = 7R/2 plane. Let’s consider a (+—) vector field A (z, z%); it has the

form

¢ (z,2°) = qu (z)cos[(2n + 1)z®/R] + - -,

where dots indicate additional terms that are even under the first Z, action and odd under
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the second Z, action. The 5D Lagrangian yields the equations of motion for the Aﬁ(m, x°):

2

where dots indicate a gauge invariant topological term (F! A F”). Therefore, for all n,
the equations of motion at 2° = 0 do not respect the local symmetries of the Lagrangian
restricted to z° = 0, so that these (+—) vector fields are not gauge fields from the point
of view of a low energy observer at #° = 0. The off-shell theory, of course, is invariant
under (++) and (+—) parameters at x° = 0 so that, e.g., coupling terms in the Lagrangian
respect the larger set of symmetries at the fixed point. Due to these off-shell symmetries,
however, there may be residual global symmetries even in the on-shell or effective theory.
The arguments extend to all local symmetries of the 5D theory for n # 0 vector fields (KK
excited modes): the restricted Lagrangian satisfies the symmetries, while the equations of
motion (and effective theory) do not.

Aside from the symmetries arising from 5D gauge symmetry, we should check whether
supersymmetry is preserved in the theory on the orbifold. In particular, N' = 2 susy should
be unbroken in the bulk, while A = 1 unbroken on the boundaries. Despite the fact that we
have assigned parities consistent with the susy transformations, the fermions of the theory
involve jumping functions so that the susy transformations will involve Dirac distributions
with support at one or both orbifold fixed points. For example, from the susy transformation
0V ;;, we have the component

0Ws5; = Dse; - -

L — < n ) 2 — ( e(z°)€ >
e(z®)et* —en* |

At first sight, it appears that this can break the supersymmetry of the entire theory. If this
is so, then fixed point localized terms must be added (see [ABNO1, BB03] e.g.). In addition

to the delta factors in the susy transformations, there are fixed point localized fermion terms

where

in the Lagrangian such as in the kinetic term \TJZF‘A“A’ PDyW 5.

5.2 Symmetry breaking via Wilson lines

Much of the literature on orbifold theories focuses on the symmetry breaking that is asso-

ciated with the presence of Wilson lines on the spacetime S'/Zy or R/(Z x Zj): since the
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Wilson line is a mapping to an element of the original symmetry algebra, its presence restricts
the surviving gauge algebra to be the maximal one commuting with this element. In the first
case, the rank is not reduced, while in the second it is reduced by one. However, an orbifold
spacetime breaks supersymmetry, which can be interpreted as a boundary condition on the
Killing spinors. Similarly, we can view the presence of Wilson lines as be generated consis-
tently with the boundary conditions of the vector fields. For example, the 5D graviphoton
must be projected out of the boundary spectrum if the boundary is isomorphic to an orbifold
fixed plane; the boundary condition allows the field to form a Wilson line stretching between
boundaries. Thus, it is the very nature of the orbifold spacetime to allow for general gauge
symmetry breaking by a set of allowed boundary conditions [HMRO1b, M05b]. Wilson lines,
in turn, can be associated with vacuum expectation values of scalar fields on a boundary.
Let’s first recall the notion of a Wilson line. A gauge field A, can have a vacuum
expectation value, but the local Lorentz symmetries will be broken. Therefore, one generally
does not allow such vevs for vector indices in the observed 4D spacetime. A gauge field
background can be locally gauge-transformed to zero (that is, the fieldstrength is locally
exact F' = dA); if it can be so transformed everywhere, then the original vev is not physical
(it is “pure gauge”). One way to measure the non-triviality of a given gauge field background
is with the topological quantity v = [ o I, with M the spacetime manifold. Since F is closed
(the Bianchi identity for the fieldstrength), the value v labels a particular cohomology class
of the field configuration on a given manifold M. Now suppose one has a 1-form gauge field
on a circle; it is either zero everywhere, or it can wrap the circle any integral number of times.
But in this case, there is no fieldstrength to be defined, and anyway one cannot integrate over
anything more than 1-forms since the manifold is 1-dimensional. In this case, it is natural to
consider the quantity v = |, o1 A, where A = A, dx". Now we can consider 1-form gauge fields
that are closed, dA = F' = 0, so that there is no background fieldstrength. Then v labels the
cohomology class of the gauge field A, which again depends on the topology of the manifold
M. This generalizes to field configurations on any n-manifold M: the quantity v = | »A,
where P is a closed path in M, depends on the topology of the manifold into which the
path is embedded. There can be non-zero v if 71 (M) is not finite; for example, if it contains
7Z. Otherwise, all of the closed paths are homotopic to a point. The exponentiation of v,
exp(i [ p Audzt), is called a Wilson loop. However, we will use the term “Wilson loop” to
refer to [, A, which is common in the literature. Since a Wilson loop [, A is a mapping from
the n-manifold M to an element of the gauge algebra, the exponentiation is a mapping to
an element of the gauge group K. Conformally mapping points at infinity to a single point,

the n-manifold can be mapped to S™ so that the exponentiated Wilson loop is an element



83

of the n-th homotopy group 7, (K). Therefore, if a manifold M has a non-finite 71 (M), and
if the gauge group K is such that m,(K) is also non-finite, the vacuum breaks the gauge
group to the centralizer of the K-element v. For example, a gauge field on a hyper-cylinder
that is topologically R? x S, can have non-zero winding number v, while 73(K) = Z for any
compact connected simple K. What about for a manifold of the form M, x S'/T'? Due to
the I" action, the manifold is simply connected (i.e., w1 (M) is finite) so that all closed loops
are contractable to a point. But if we start on the covering space M, x S!, we can have
Wilson loops, and after I'-identification, we have a path stretching from one fixed plane to
the other. This situation inspires us to generalize the notion of a Wilson loop to a Wilson
line, simply by allowing the path P to have distinct endpoints. Now, if the path is not
contractable to a point, such as in the case in which the endpoints are on distinct fixed
planes, we have a topologically nontrivial path. Therefore, we generalize our conditions for
gauge group breaking to be: if m;(M) is non-finite for either M being the spacetime, or
its covering space in the case of orbifolds, and if m,(K) is also non-finite, then the gauge
group may be broken by the presence of Wilson loops/lines. In the case of 5D spacetimes,
75(K) = Z for K = SU(n), n > 3 and for K = SO(n), n > 7. For K = USp(2n), n > 1,
75(K) = Zs. The exceptional groups all have m5(K) = 0 (m3(K) = Z for the exceptional
groups, while Fg has my(Fg) = Z).

With this in mind, let’s consider the presence of Wilson lines in the upstairs picture,
where we work on the covering space [-mR,7R] (with {—7R} = {7R}). A Wilson line
can thus begin at {—7R} and end at {wR}; we call this path P. Due to the Z, action,
dx® — —dx® about 2° = 0. Therefore, the orientation of the line will flip at 2° = 0:

TLZ‘S

a 1 0 a
(A2 1P =3 En :/_WR Ay (@)Clny cos(
5

1 R nw
_ 52/0 A(n)(x)C’(n) cos(?)alﬁ7

)da®

where the factor of 1/2 is due to the Z, identification to obtain the spacetime M, x S'/Z,.
The result is then
<AZ> |p = TR C0)Afy) (), (5.9)

where C(gy is simply an O(1) expansion constant, and A?o) is a vacuum expectation value.

In the downstairs picture, where the fifth dimension is parametrized by y € [0, 7 R], there

3Note that strictly using Wilson lines in a more general spacetime with boundaries (i.e., not isomorphic
to an orbifold) to break gauge symmetries would exclude an exceptional GUT scenario in five dimensions.
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y=0

Figure 5.1: 4D slices of spacetime showing the strength of the potential A7 by shading. On
the boundaries y = 0 and y = 7R, the scalar field A* has a vev.

is one copy of a Wilson line that stretches from one boundary to the other. Figure 5.1 is
a schematic of this Wilson line, which is seen as a scalar vev for A* on the boundaries.
Similarly, for the A7

(A |p=—23" (%) C A% (). (5.10)

n odd

See figure 5.2 for a schematic of this Wilson line. The strength vanishes on the boundaries
so that there is no vev for the scalar A% that is projected out of the boundary-propagating
spectrum. If we wrap around the covering circle N times, then there are N Wilson lines
stretching between the boundaries in the downstairs picture. The total strength is then
N7R(A).

The Wilson lines are such that, for very large energies (large number of levels n excited),
the full group K can be unbroken in the presence of (5.9) and (5.10). For lower energies
(lower levels n excited), the group is broken to the centralizer of the element of K associated
with (5.10); the resulting five-dimensional gauge group therefore depends on the range of

a (i.e., the parity assignments of the Afb) and, ultimately, which Wilson lines are turned
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y=0 y=7mR

Figure 5.2: 4D slices of spacetime showing the strength of the potential A7 by shading. On
the boundaries y = 0 and y = wR, the scalar field and its vev A% vanish.

on. The 4D low energy effective theory of a given boundary (below the scale, M., of the
compact dimension) is dominated by the n = 0 level and has an unbroken gauge group as
determined by the parity assignments for the Al{ (boundary conditions in the downstairs
picture). Finally, at even lower energies, the 4D scalar sector, in part determined by the
form of (5.9), may break the gauge group further (e.g. electroweak breaking).

Although we have been discussing Wilson lines on S'/Z,, we could consider non-abelian
lines on R/(Z % 7Z5), which allows the rank to be reduced by one (where Z acts on elements
of R as addition by 27n, n =0,1,2,...).

Let’s extend the discussion to the case of S'/(Zy x Z,) orbifolds. The parity assignments
are consistent with an inhomogeneous Wilson line that drops in strength from one boundary
to the next. The result for (+—) fields is now

(2n +1)a®

=S [, Hronl2

. . R
=2 AWy
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y=20 y=mR/2

Figure 5.3: 4D slices of spacetime showing the strength of the potential Ag' by shading. On
the boundary y = 0, the vev for the scalar A% vanishes, while on y = 7R/2, it is non-zero.

Figure 5.3 scehmatially illustrates the downstairs picture, where the fifth dimension is
parametrized by y € [0,7R/2]; the strength of the Wilson line schematically goes from
zero at the y = 0 boundary to some non-zero value at the y = 7 R/2 boundary (really, there
are diminishing contributions from a countably infinite set of excited modes of the 5D field
A%,

Again, for large energies (where large n modes are excited), the gauge group is K, while
for intermediate energies the above Wilson lines, along with Wilson lines from (+4) modes
(of the same form as (5.10)), break the group to K4 in five dimensions. However, the 2° = 0
fixed point does not experience the breaking until the energy scale goes below M, since the
Wilson line strength drops to zero there. Below the scale M., both fixed planes will have
gauge symmetry K.

In light of the discussion in section (3.1.2), it is natural to have SO(10) with the L(4,1)
space (or Fg with the L(8, 1) space) for large energies, whereas for intermediate energies the
theory is still five-dimensional and based on the L(4,1) space (resp. L(8,1)) but with SU(5)
(resp. SO(10)) gauge subgroup.
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5.3 Anomalies

Previous work on anomalies in orbifold theories can be found in [AHCGO1, SSSZ02, PR02,
BCCRS02, L02, L03, vGQO3, SS04]. We will present here an independent analysis of the
anomalies present in 5D supergravity on M, x S'/T', which is based on [M05c].

We would like to consider the minimal field additions for anomaly cancelation. There
is nothing wrong with adding more multiplets localized at boundaries consistent with the
symmetries and anomaly cancellation, but one is less compelled to make these additions. In
the framework of string theory, the entire low energy field content would follow, in principle,
from the particular compactification considered. These states would then survive in the su-
pergravity approximation. In the bottom-up approach, by contrast, massless supermultiplets
can be added by hand after constructing the orbifold version of the 5D theory.

Five-dimensional orbifold theories can have pure gauge or mixed anomalies due to the
presence of 4D chiral fermions in complex representations of the gauge group. However,
charged chiral multiplets coming from 5D vector or tensor multiplets appear in real repre-
sentations of the boundary gauge group. Furthermore, if the 5D gauge group is compact,
the chiral multiplet coming from the 5D supergravity multiplet is a gauge singlet. If non-
compact, this chiral multiplet joins the other chiral multiplets to form a real representation.
The 4D spin-3/2 fermion is in the 4D supergravity multiplet and will not have anomalous
gauge couplings (we are not gauging R-symmetries). Therefore, the only fermions that can
have anomalous gauge couplings are the chiral multiplets coming from 5D hypermultiplets
charged under the gauge group. Note that R-symmetries are not gauged, so there aren’t any
Fayet-Illiopoulos terms.

One can always express a non-zero variation of a 4D action as an integral over a 4-form;
with the Wess-Zumino consistency condition, we can express it as d, fZ I5, which in turn can
be expressed in terms of a gauge invariant 6-form Ig such that I = dI5 for transformations
parametrized by A that are connected to the identity. The gauge invariant 6-forms that serve
as the gauge and mixed anomaly polynomials will be of the form trF? and trR?F. These
anomaly terms are associated with three external gauge boson and two graviton/one gauge
boson triangle diagrams, respectively. If there are polynomials Ig that are not reducible
(cannot be written in the form I,,,1s_,, for m # 0), the massless spectrum of the 4D theory
must be modified by the addition of suitable multiplets with support only on the boundary.

In addition to these familiar 4D anomalies, 5D theories with bulk Chern-Simons (CS)
terms can contribute to reducible and irreducible anomalies at 4D boundaries due to a non-

zero classical gauge variation of these terms, which is interpreted as an influx of charge
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due to the bulk gauge current [CH85]. In the class of orbifold theories where none of the
bulk vector fields propagate at the fixed points, there can be a contribution when the bulk
fieldstrength is related to gauge fields whose support is only at the fixed points, as occurs
in [HW96a, HW96b], where the bulk theory is required to couple to a localized boundary
gauge theory. On the other hand, in orbifold GUTs, the 5D CS terms involve gauge fields
that are directly involved in any anomalous couplings with chiral fermions at the fixed points.

The presence of Chern-Simons terms and associated anomaly inflow has been discussed
in the literature mostly in the context of rigidly supersymmetric gauge theories. On the
other hand, where M-theory or supergravity is considered, there isn’t any inflow from bulk
fields since the models there are typically of the HW or RS type (where none of the bulk
vectors propagate on the boundaries of the spacetime). In the case of rigidly supersymmetric
theories, there is no a priori reason to have a 5D CS term. In fact, it is often noted [SSSZ02]
for orbifold theories that a CS term is not invariant under orbifold parities (i.e., it’s odd). It
has been suggested in such cases that one can couple an odd field to the CS term, rendering
it invariant; the auxilliary field could then obtain vevs, serving as a dynamically determined
coefficient of the CS term [SSSZ02|. Alternatively, it has been shown [L.02, L03] that a 5D
U(1) gauge theory minimally coupled to a single fermion on an orbifold can be given an
infinite “jumping” (or kink) mass, giving rise to a fermion zero mode quantum anomaly at
the fixed points along with a residual 5D CS term (whose classical gauge variation cancels
the quantum anomaly).

However, in 5D supergravity, Chern-Simons terms are part of the classical theory. Fur-
thermore, these terms are consistent with the orbifold symmetries: they have the tensor
Crsi as a coefficient, which carries representation indices of the global symmetry group, G,
in the case of a MESGT, and those of the gauge group, K, in the case of a YMESGT. There-
fore, as the T" action is lifted to the gauge or flat G-bundle (that is, with trivial connection),
respectively, it can act non-trivially on Cy .

The action for a five-dimensional Maxwell-Einstein supergravity theory has a Chern-

Simons term

51
S :/ 2O FIAFI A AR,
cSs M 6\/6 I1JK

where C7 x is a rank-3 symmetric invariant of the global symmetry group G of the La-
grangian. In Minkowski spacetime, the full action is invariant under local abelian trans-

formations d, A’ = da’.* Now we are considering a spacetime with boundary (downstairs

4These are not proper “gauged supergravities”, which arise when R-symmetries or scalar isometries are
gauged.
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picture). In showing that the bulk variations vanish, there will be boundary localized terms.
Consider the variation of the action under the abelian transformations above. The action is
clearly invariant except for the CS term, which gives

5uSos = ——C F A FP)a?

a5 = 7 aﬁw/aMS( A EP)a,
where a, 3,7 label vector fields that propagate along the boundary; and C,s, is a rank-3
symmetric invariant of the global symmetry subgroup G, C G of the boundary theories.
Since the boundaries are oppositely oriented, the flux of charged current coming from one
boundary is received by the other (i.e., the anomaly globally cancels). However, there is a
classical inflow anomaly at the individual boundaries, so that the corresponding local abelian
symmetries of a 5D MESGT are broken. This inflow must be compensated locally if the
associated 5D symmetry is to be preserved.

However, the classical Lagrangian is otherwise invariant under the local abelian trans-
formations we are discussing. The fermions propagating on the boundaries will not have a
chiral anomaly contribution since they are not charged with respect to any of the abelian
fields. Therefore, in dealing with MESGTSs in the presence of boundaries, only the theories
with Cy3, = 0 are invariant under the full set of local abelian transformations. To compen-
sate for the inflow present in theories with Cypy # 0, we can add a boundary localized set of
terms involving fermions and minimal coupling to the propagating vectors.

We are more interested in gauged 5D supergravity theories here. If we gauge abelian
isometries of the scalar manifold, the anomaly inflow will be of the same form as above,
but now C,g, = C,C3C, so that the anomaly associated with the set of local abelian
transformations parametrized by o is proportional to (CoF'*) A (C3FP)(C,a”). That is, we
have a U(1) —U(1) — U(1) anomaly parametrized by C,a”. Again, we can consider fermions
chirally coupled to the gauge fields propagating on the boundaries in such a way that the
quantum anomaly contribution compensates the inflow. In a pure YMESGT, there aren’t
any chiral couplings on the boundaries. The only way to obtain them is to either start with
a different 5D theory coupled to hypermultiplets, or to consider fermionic fields with support
only at the boundaries (with minimal coupling to the gauge fields from the 5D theory).

Finally, let’s move to the case of primary concern: orbifold-GUTs. In spacetimes without
boundary, a YMESGT based on a reducible C-tensor simply has the gauge invariant term
FIANF7 N AX | where the bare AX can always be made to be one of the singlet vectors that
must be present in such theories [GST84c|. In the presence of boundaries, however, a non-

abelian YMESGT must generally have a full “Chern-Simons” extension, and the reducibility
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of the C-tensor is no longer a sufficient criterion. If Cx is reducible, there is again at least
one singlet vector field (the graviphoton) of any non-abelian group that is to be gauged,
and it necessarily appears in every F'F'A term of the MESGT. If all such singlet vectors do
not have propagating modes on the boundaries (the 5D graviphoton never does), then we
may write the F'F'A terms of the MESGT such that the singlets appear only as the bare A.
Then, promoting the theory to a YMESGT is simple: replace the abelian fieldstrengths with
non-abelian ones, including in the F'F'A term. The 5D infinitesimal gauge transformation of
the FJF A vanishes, so that there is no anomaly contribution in this case. On the other hand,
if there are any boundary-propagating spectator vectors, the full Chern-Simons extension
must be considered in the YMESGT. The inflow anomaly, however, will be reducible of the
form U(1) — K(a) — K(o) so that the addition of boundary-supported fields is not required.

As an example, consider a MESGT of the “generic Jordan” family [GST84a] with Crx

tensor being the norm form of the cubic Euclidean Jordan algebra J? @ R: s@Q, where @ is

a quadradic “Minkowski norm” with signature (+ — --- —). The scalar manifold is
SO(TLV - ]_, ].)
SO(1,1
(,)X SO(TLV—:U’

where ny is the number of vector multiplets coupled to the theory. We can gauge SU(n) C
SO(ny — 1) such that dim[SU(n)] = ny — 1, in which case we’ll be left with two spectator
vectors: the “bare” graviphoton A% and a vector multiplet field A}L. Although the C-tensor is
reducible, if we allow the 4D vector component AL to propagate on the boundaries, promoting
the MESGT to a YMESGT will require the full CS form, and there will consequently be a
reducible anomaly inflow.

More interestingly, there will be an #rreducible anomaly inflow when the C-tensor is

irreducible. This, in turn occurs for

(A) YMESGTs in which some components Cjjp # 0. When promoting the MESGT to a
YMESGT, we must replace the F'F'A term by (2.6)
(B) Unified YMESGTs (in which all of the vector fields in the theory form the adjoint of a

simple group).

Case A

This will occur for non-abelian gaugings containing a subgroup that has a cubic symmetric
invariant d,s, (i.e., SU(n) n > 2 type); and which, in addition, have D # 0 for Chg, =
Ddp,. Phenomenologically, the interesting gauge groups in the low energy effective orbifold

theories do have cubic symmetric invariants, but we can make life simpler by considering
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the class of those gauge theories defined by C,g, = 0. Consider the example in which the
MESGT C;j; are the d-symbols of SU(n), under which the ny + 1 vector fields form the
1@ adj[SU(n)] (that is, we have ny = dim[SU (n)] vector multiplets). Then we can promote
the MESGT to a YMESGT with gauge group K = SU(n) under which all of the fields in
the vector multiplets form the adjoint representation, while the graviphoton is a spectator.
When promoting the MESGT to a YMESGT, let’s simplify the replacement of the FF'A
term by its gauge invariant form. We can split the Cr g FIAF? AFX terms in the Lagrangian

as

(C’OOOFO AFO N A° 4 200, FO A Fi A AP+ Coy A FI A AO)
+Ci F" A FI N AR,

with first three terms being the “reducible part”, and the fourth being the “irreducible part”.

Integration by parts allows us to re-express the reducible part in the form

C(][JFI/\FJ/\AO (511)
Ms

(since the vector Ag is necessary removed from the boundary spectrum of propagating
modes). To promote this theory to a YMESGT, we must make the replacement (2.6) for the
irreducible part involving Cjjj, while we simply replace the abelian fieldstrengths in (5.11)

with non-abelian ones. Therefore

ol

m@‘jk F'AFIN AR+ ;gfllfn (FIAATNA N A™)
3 . .
+5g2f;hfl’}(A9 A AN AEN AT A AT (5.12)
5!
+_
6v/6

The last term is invariant under 5D non-abelian gauge transformations, and we pick up no

Coij (F' NF7 N A).
boundary term. The only contribution to the inflow anomaly comes from the Cjj; terms.
We can rewrite this in terms of the Chern-Simons form (with constant prefactors)
., 3 3 3
Los = (Di/g*)Te[FANFNA+ 5F NAN[A Al + gA N[A, AN TA, A]],

where A = gt; A% [A, A] = gt;fi A A A¥; and we have used the fact that the C-tensor is
proportional to the d-symbols of the gauge group, with constant of proportionality being
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D. Under global gauge transformations, this term generally transforms as a non-trivial
element of 75(K). However, under transformations connected to the identity, it transforms
with a trivial element: 0,Lcs = dLpp(c). Therefore, the irreducible anomaly inflow is

8,932 = SUD) (a), with

SUD) () = (Dr/g?) / To[(F A F)al, (5.13)

OMs

where F = gtg FP and a = gtgaP.

Case B

Consider the unified YMESGTSs based on Lorentzian Jordan algebras JECL ) (represented
as matrices over the complex numbers that are Hermitian with respect to a Minkowski
metric). In this case, the C;k are the d-symbols of the SU(N, 1) gauge group and all FF A
terms of the original MESGT must be replaced by (2.6). Then the form of the anomaly
inflow is the same as in (5.13), where the gauge group K(,) is at most SU(N). Again,
the irreducible anomaly will require chiral couplings from bulk hypermultiplets or boundary
localized fields.

Extension to S'/(Zy x Z5)

We may now extend to the S'/(Zy X Zs) case. As mentioned in a previous section, these
spacetimes are consistent with inhomogeneous Wilson lines, whose strength varies from one
boundary to the other. This asymmetric background allows the anomaly flow from one
boundary to the other not to be conserved (that is, there is a global anomaly). However,
due to the nature of (+—) and (—+) type symmetries at the orbifold fixed points, there can’t
be a local anomaly contribution associated with this excess charge flow; the low energy theory
doesn’t have these as gauge symmetries. Therefore, the corresponding inflow contribution
can only be anomalous for rigid symmetries of the theory arising from the broken local
symmetries.

Let’s consider an example of a 5D YMESGT on S'/(Zy x Z,) with the assignments as
in section (4.6.1). First, let’s note the following: Cyp, is rank-2 with adjoint indices of
SU(3) x SU(2) x U(1), and so is o d,3C,. But it also carries an index in SU(5)/SM,
so can’t be a singlet of SU(5). Therefore, Cpg,y = 0. Finally Cyp., = 0 since there isn’t
a rank-3 symmetric singlet of SU(5)/SM. Therefore, a gauge variation of the downstairs

action yields the global inflow contribution

505 = / Coor (F N F a7 4+ 27 p Fa).
y=0
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Again, these contributions do not have to be cancelled locally on the y = 0 boundary, but
rather represent a breaking of rigid symmetries. The AZ" will be massive fields in the low

energy effective theory of the y = 0 boundary.
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Chapter 6
Phenomenology

6.1 The QCD Axion

In QCD, there is a chiral anomaly in the current J, = >, qr7,75q5: OpJ" = g P TY[F Fpl,

3272

where Tr is the trace in the adjoint representation. Therefore, the amount of charge lost is

AQa = /vol o, J"

e
/vol P T [F Foy| = v

- 3272

where v is the winding integer for the non-trivial field configuration. Therefore, there is a
set of degenerate vacua corresponding to a set of states {|v>}, and the effective Lagrangian

will contain a term

2
9 po
AL = 02 P T E, Fy) (6.1)

where 6 parametrizes the vacuum state (which is a superposition of states with winding
numbers in {v}).

The anomaly in J, is directly related to the U(1) chiral anomaly of QCD: making the
transformation dq = €% on a quark field ¢, with 6 parametrizing U(1), the Lagrangian
shifts by 6L = i00"J,, where J, is the V-A current above. Since [wvol 6L = ifv, we see
that the anomalous current J, is in direct correspondence with the breaking of chiral U(1)
symmetry, and that € parametrizes the vaccum that couples to the current. In the path
integral of the theory, we will have e ¢®ecp where Sgcp is the SU(3) Yang-Mills action
with minimal coupling to quarks.

When the minimally coupled quark are massless, it is clear that we can make a chi-
ral transformation such that the term AL in the effective Lagrangian vanishes, without
any further consequences. Therefore, although the chiral transformations are not quantum

symmetries, they interpolate between degenerate vacua labeled by # that are physically in-
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distinguishable. (So really, the chiral transformations are quantum symmetries in this sense).
However, this symmetry is broken once we minimally couple massive fermions to the gauge
fields. This is due to the fact that the mass of the fermions sitting in an instanton vacuum
depends on the vacuum state labeled by 6; for example the up and down quarks v and d

with masses m, and m, have the term

Lop = ’iew(ﬂ%u + dysd).
My, + Mg

Thus, 6 can be measured, since a quantum field calculation tells us that the dipole moments
of composite particles will be changed by this term. The neutron dipole moment is the
cleanest to measure, and it is found that < 107! [B79, CAVVWT79]. Since (6.1) is odd
under the action of charge and parity operations (CP), the question of why this dimensionless
parameter is so small (or zero) for the strong interactions is called the strong-CP problem.

Peccei and Quinn [PQ77a, PQ77b] pointed out that one could construct a true chiral
global symmetry U(1)pg of the theory Loop + Lew, so that the 6 could be rotated to zero
without affecting any observables, including the masses of the fermions after the spontaneous
breakdown of the electroweak symmetry. However, Weinberg [SW77] and Wilczek [FW77]
then pointed out that U(1)pg, while capable of being a classical symmetry, was only an
approximate quantum symmetry due to the presence of instantons, which as we described
above, are associated with the presence of chiral anomalies. Furthermore, they pointed
out that this approximate symmetry will be spontaneously broken since the spontaneous
electroweak breakdown gives masses to the fermions of the theory (which are manifestly not
U(1)pg invariant). As a result of a spontaneously broken ezact symmetry, there is a massless
Goldstone scalar field. But the spontaneous breakdown of an approximate global symmetry
results in a vacuum with a (spin-0) pseudo-Goldstone particle, which has a small mass. This
particle is the QCD axion.

Let us then summarize the axion resolution to the strong-CP problem: there is an ap-
proximate quantum chiral symmetry U(1)pg that is ultimately spontaneously broken, if not
above, then at the electroweak breaking scale. There is then a light scalar axion A appearing

in the effective Lagrangian below this scale

A e PITr[F Fopl, (6.2)
PQ

£AO(

which joins the effective QCD term (6.1). Here, A has mass dimension 1 and Mpg is the

energy scale at which U(1)pg is broken. The vacuum minimum is given by the effective 6
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parameter 0. = (A) + 6 = 0, so that at the end of the day, there aren’t any CP-violating
terms in QCD. The axion is the dynamical, quantum realization of Peccei and Quinn’s
classical proposal.

An immediate question that arises is: if the axion exists, why haven’t we seen it? First
of all, it is a spin-0 SM gauge singlet, and so can only charged under the gravitational in-
teraction, which is quite weak at the scales we probe. However, (6.2) generally involves all
gauge fields of the theory at hand, so that it allows for magnetic field-induced decays of
axions to photons, which we can look for experimentally [S83]. Furthermore, the effective
Lagrangian of QCD coupled to an axion will involve axions coupled to quark-gluon compos-
ites, like the pion. The decay rate of the axions into them depends on Mpg in (6.2). All of
these decays contribute to the energy content of the universe and therefore to its temper-
ature. However, from cosmological observations and constraints on reheating arising from
these decays, there are limits on the lifetime of a SM axion; the coupling strength can be
1019GeV < fuq < 10"2GeV [T90, R0, PWWS83, AS83, DF83]. In the SM scenario, this scale
fa would be the U(1)pg breaking scale Mpg, and therefore, the natural scale of axion vevs
(A). This clearly rules out an electroweak breaking of the PQ symmetry, since that is on the
order of 102GeV. So a SM axion solution to the strong-CP problem requires the introduction
of a new, intermediate, scale.! This isn’t so bad, since there are other intermediate scales in
“beyond the Standard Model” scenarios. The problem comes when there are a number of
distinct intermediate scales for various new physics, such as axions and strong-electroweak
unification.

We should point out that, in supersymmetric axion scenarios, the constraints on f, are
model-dependent, since one must examine the cosmological implications of axions with their
coupling to supersymmetric particles [BDG03, BDFGO3].

Fields denoted as “axions” appear generically in compactifications of supergravity and
string/M-theory. These axions are not necessarily QCD-type axions capable of solving the
strong-CP problem; rather they are generally just scalars that parametrize a U(1). (They
do appear in P/CP violating terms like (6.2), so they are sometimes called pseudoscalars.)
The axions capable of resolving the strong-CP problem in these scenarios generically have
a large coupling strength fa ~ 106 — 10'8GeV [BD97]. This is why arguments for larger
values of f4 in superymmetric theories, such as in [BDG03, BDFGO03], are important. Since
supergravity is a low energy approximation to string/M-theory, we should find axions there

as well. The graviphoton in a five dimensional MESGT is h; F’ ;{w a combination that depends

IThe presence of this intermediate scale wouldn’t spoil the usual predictions of gauge coupling unification
since the axion is a gauge-singlet.
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on the background <qb:”> Upon dimensional reduction, the “axion/dilaton” form a complex
scalar field h;z! sitting in a 4D N = 2 vector multiplet, and parametrize a scalar manifold
SU(1,1)¢/U(1) [MO98, GMZ05a]. The “axion” is the scalar arising from the 5D graviphoton
of the form h; Al = R(h;2!). However, in 5D YMESGTs on an orbifold spacetime, a QCD-
type axion appears generically, which is not the above scalar.

There has been previous work in field-theoretic models in which a QCD-type axion arises
from a 5D field. In [ADD98, AADDOI8, CTY00a, CTYO00b], models were constructed in which
the strong CP axion comes from a higher dimensional scalar field. In [DDGO0] it was shown
that doing so decouples the PQ breaking scale fpg from the mass of the axion, and that m 4 <
O(R™1). On the other hand, the authors of [FHMO05] (which followed [ACCR03a, ACCRO3b])
consider a U(1) rigidly supersymmetric orbifold gauge theory in which the gauge field A,
is given odd parity. Then, according to [ACCR03a, ACCR03b, FHMO05] (A;) (x) can be
treated as a field in the effective 4D theory, assuming that As(z) is slowly varying on the
fixed planes. The situation described in this thesis are distinct from these scenarios.

Looking at the F'F' term (5.5), we immediately see that, while the singlet from the
5D graviphoton is h;A!, the candidate axion is C’jAI~ ; in the case where ny = 0 (simple
supergravity), these two coincide. However, the scalars A% appear in the potential (5.8)
(while A% and any scalar arising from K-singlet vectors in Aé don’t). Usually, for A to
be a QCD-type axion we would have to require the ground state to be such that terms in
the potential containing A% vanish. This can be satisfied, for example, when <h&> =0 or
<A& > = 0. However, we will see that the mass of the axion (including any contributions from
the scalar potential) is decoupled from the strength of coupling to matter fermions.

We can re-express everything in terms of the scalar A using the relations (see (2.2)
and [GST84a))

hr = Crych’h® (6.3)
&IJ: {3C1xLCranh  hERM RN — 2C b} (6.4)
. 1

Trerh] = C]JK{gnpthhK + hinE} (6.5)

2 3 JpK | 3 J1K
D5 = gCIJK{anqh WS + hIhE}. (6.6)

In the canonical basis,
1 . . .
Cooo =1, Cooi =0, Cyij = —=06i;, Cijr = rank-3 symmetric invariant.

2
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However, this is not the natural basis in which to write the scalar C fAi . With index splitting

I =(0,a,a,«a), we can perform a linear transformation
hY — hY + hC;.
In the new basis, the first three components above become
Cooo = (00)3 =1, CO&I; = 0006057 Cooa = (CO)QCa
with Cy = 1. Therefore, the only non-zero components of C;x in the YMESGT are

1
Crap = —5C10as
1
Crap = —5C1% (6.7)
Crik = CiCjCk
Caﬁv = Ddaﬁw

where I = (0,a); Cy = 1; dapy are symmetric invariants of K(,) (d-symbols if the gauge
group is Koy = SU(N)); and D is an arbitrary parameter.
Let A = CiAI~ , b= thi and h? = 5&Bh&h’3. Then the Lagrangian at the orbifold fixed

points for A becomes

e 3 2 | 72\2
5 [Z(b + h*)" +b] 0,,A0" A

e i

-
3, - o
— e T[S0 + 2)h + 1] 6,419, AP0" A+ pot + - -

e Lalp=—

A P Tr[F L F oo

where F,, = gtoF, with t, € k) (i.e., elements of the gauge algebra on the boundary);
“pot” denotes the potential contribution from (5.8); dots indicate derivative couplings to

YMESGT fermions. Due to the parity assignments of section (4.5), the scalars A7 (and
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therefore A) do not appear in the scalar potential. The fermionic coupling terms are

V2 3 1.y <. 5
-1 _ —0c Sl TR2 T2 oI q
e Lyl 2\/36 O, A <477pq{h 2h FAPITHN

1 SO R
{Bphg— =0, hARE I NPT (6.8)

2abpq

1 - .
—{G0ushHEIN TN ) 4+

where dots indicate 4-fermion couplings.

5

After integrating the zero mode Lagrangian over x°, we pick up a factor of R, the size of

the fifth dimension. Furthermore, § = gv/R and & = kv/R. Therefore,
K

1/MPQ = g37

(6.9)
which is clearly independent of the compactification energy scale. At first site, this repro-
duces the usual difficulty with axions in string/M-theory: the coupling is far too small for
the Sandard Model axion (though for supersymmetric axions, one may have larger Mpg).
However, Mpg above is not the scale at which a global U(1)pg symmetry is broken.
The global symmetry, parametrized by C' jO[f , is defined on the boundaries of the spacetime
so that the natural energy scale is M, ~ 1/R. It arises from local symmetries of the bulk
theory. As discussed in the last section, Wilson lines <AZ> p stretching between boundaries
of the spacetime give rise to boundary vevs for scalar fields A*. But <AZ> p 1s a dimensionless
object that equals C' A%(x)/M,, where C' is a constant, and A% is the dimension 1 scalar field
that appears in the 4D effective Lagrangian. Therefore, (A*) = M. <A(5)> /C, where M, is
the compactification energy scale (M, ~ 1/R), and (A®) ~ O(1) is expected generically.

The dimensionless coefficient in the axion term is then

kM,

which for M, << 10®GeV is a small number. This reflects the fact that, although Mpg ~
10'GeV is the dimensionful coefficient in (6.2), the characteristic axion scale can be much
lower. That is, under the global U(1) shift parametrized by &@ = C;a! the axion shifts as
A— A+ M.a.

More precisely, the first thing to notice is that the dimensionless parameter ¢ + ﬁ
is the physically relevant one, as it is this parameter which must be << 1071°. As for the

Standard Model case, the QCD instanton potential will be minimized for 6 + 1/Fpg = 0.
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The difference in the orbifold scenario is that this generally no longer has O(1) solutions for
0; it can have very small § solutions, depending on the size of M, relative to 1018GeV (i.e.,
k).

Second, to find the decay rate of axions into physically observable composite particles like
pions, one must find the relevant terms in the effective Lagrangian. To do this, we should
be coupling to SM matter, which can sit in 5D hypermultiplets. (The fermion couplings
in (6.8) are those of a pure YMESGT.) At first site, the A* may appear in the minimal
coupling terms involving the ¢4 and ¢~ (see (2.11) and (2.13)). Recall that the surviving
hyper-scalars are the ¢ so that the 5th component of the covariant derivative for the scalars
becomes

Dsq™|sp = (Dsg™ + gA'KY) |1,

But KX(q) has odd parity, and vanishes at the fixed points. So there won’t be any A® (and
therefore A) factors in terms coming from 5D Dﬂqj( terms. As for terms with D¢, we
must check whether there are bare A factors arising from the w4, couplings. In general, the
K$! have even orbifold parity (section (4.5)), which means the components w?, determined
by them will not generally vanish at the orbifold fixed points. However, we can show that the
K?(q) Killing vectors of this set do vanish, just as in the analogous case of the K3(¢) in the
pure YMESGT sector. We will argue this in a different way, though. From [BCAWGVvP04],
the Killing vectors satisfy

i X 7Y 1 i
Ry KT Ky + §fff,PKj =0, (6.10)

where R?{f’j is the SU(2) g curvature of the quaternionic manifold (i, j are SU(2)g indices):

Ry ij = R (inAféj - mef%) ) (6.11)
and P}gj is the Killing prepotential of the scalar manifold, whose explicit form is irrelevant

here. From section (5.1), we know that the structure constants

£ ela) 5.

Then (6.10) makes sense as an integral over the fifth dimension, so that it becomes

R

X 1Y

But this cannot have a non-trivial solution for the Killing fields since this would impose a

non-trivial constraint on the geometry encoded in the curvature tensor, which is determined
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when one chooses the 5D hypermultiplet couplings (and the SU(2)r curvature does not
vanish, which is apparent by looking at the fixed-point form of (6.11)). Therefore, K }X ,
where [ are K(,)-singlet indices, must vanish. As a result, scalars A’ do not appear in the
scalar potential of (2.11).

Finally, the K-representation matrix is

A XA
Wip = IXYf f )

where the semi-colon denotes the covariant derivative on Mg. Since the K X Vanish at the

A
1B

vanish there as well. Thus, the scalars Al also do not appear in the minimal coupling terms
in (2.11) of the form (AT°Ds(,.
We have shown that the candidate axion A = C' I~AI~ is not directly coupled to hypermulti-

orbifold fixed points, so must their covariant derivatives, and therefore, the components w#

plet fields. On the other hand, there is a derivative coupling of the AT to the hyper-fermions,
just as in the YMESGT sector. From

éilﬁgcp = %Iih[CAIWV CA,

we find the fixed point contribution

\/_Z/{

VR0, A (- i 4+ 7 (TT50)

e_lﬁggp =

where A = gC’thf and tr(EFM)C) = EACABFM5CB (tr is the trace in the representation of

the fermions). After integrating over z°, the coefficient is

2
T L,
where Mpg is defined in (6.9).

We can compare this with the SM analysis in which the coupling coefficient of a quark and
axion is f,/Mpg, where f, is a dimensionless coupling expected to be order unity, depending
on the quark species. In our case, f, = 6’2"{—532 + b2}

As far as this thesis is concerned, we end the analysis of axions here, as the situation
becomes a bit complicated. While the decay rate of the axion may be calculated, there are
couplings to supersymmetric particles, like the axion superpartner, the saxion, which may

itself be the more demanding particle in terms of cosmological constraints [BD97, BDGO3,
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BDFGO03]. The axion and saxion have general couplings in the Lagrangian so that the anal-
ysis depends on which 5D YMESGT one chooses (that is, the choice of scalar manifold
Mg x Mg of the vector and hypermultiplet sector). However, the analysis here has illus-
trated the generic features of the axion in orbifold YMESGTs, with the most important
result being that the model is quite flexible in allowing a range of axion decay constants,
depending on one’s taste for cosmological constraints.

As a final note, there is a concern that the axion coupling strength is adversely affected
by quantum gravitational interactions. However, in the scenario described here: (1) the vev
of the axion comes from a Wilson line in the bulk, and (2) the global shift symmetry that is
broken by the F A F coupling comes from a gauge symmetry in five dimensions. Therefore,
we expect that the strength of the axion couplings to hadrons and the axion mass will be

protected from large corrections due to quantum gravitational interactions.

6.2 Yukawa Couplings

Yukawa couplings are, in general situations, terms in a Lagrangian involving scalar and
fermionic fields. In the Standard Model, the only (conjectured) scalars are the Higgs fields,
so the Yukawa couplings in the SM are the Higgs couplings to the matter fields. These terms
are important in model building for several reasons. The first and foremost is that these
become mass terms for the fermionic fields after electroweak symmetry breaking. Therefore,
the form of the coupling matrix and the magnitudes of the entries in this matrix are fixed
by experiment. Second, in GUTSs, the couplings for the leptons seem to unify upon renor-
malization group flow to higher energies (just as the gauge coupling seem to approach each
other). It is an open problem in GUT model building as to why this is so, and in addition,
why not for the quarks?

Higgs from 5D gauge multiplets

First, consider the possibility of putting the MSSM Higgs fields in 5D non-compact gauge
multiplets. The exmple we have focussed on in this thesis from time to time is the SU(5,1)
YMESGT associated with the Lorentzian Jordan algebra Jg,5)' This theory is a unified
YMESGT in the sense that all of the 5D vector fields of the theory belong to the adjoint
representation [GST85a, GST85b]. The non-compact gauge symmetries as well as the U(1)
gauged by the graviphoton must be broken at the orbifold fixed points, leaving at most an
SU(5) gauge theory there; the non-compact gauge multiplets are projected to left chiral
multiplets in the 5 @ 5, along with their CPT conjugates. There is a scalar potential at the
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fixed points of the form
G () KNI ATA”,

(or, see (5.7)) which is non-negative.
Once we couple charged hypermultiplets to the theory, the Yukawa couplings between

the non-singlet fields A% and the hypermultiplet fermions are of the form
§A“CMwaan(q)C”,

where w; ap are components of the spin connection on the quaternionic scalar manifold
parametrized by the qX . Since the vev of the scalars A% on the boundaries should arise due
to the fact that the 5D vector A7 has a Wilson line stretching between boundaries, then we
should be concerned about the energy scale involved in the Yukawa couplings, which serve as
mass terms for matter fermions after electroweak symmetry breaking. Although the Wilson
line has associated energy scale M., the Yukawa couplings are given by Aap(q) = gA%, AB;
therefore, the couplings depend on the geometry of the quaternionic scalar manifold (and

5

therefore, on the particular background of the theory). After integration over z°, we find

the coefficient with mass dimension 1 is

<Ad>w(<Q>)‘

g2

Since the vev for A% is of the order of M., we generally require either M, ~ 102GeV or w({q))

to be quite small.

Higgs from 5D hypermultiplets

Next, let’s consider the most popular scenario in orbifold-GUTs: placing Higgs fields in
hypermultiplets. In chapter 3, we discussed the possibilities for the hypermultiplet content in
YMESGTSs coupled to homogeneous quaternionic manifolds. For concreteness, let’s consider
an SU(5) S'/(Zy x Z) orbifold YMESGT coupled to hypermultiplets in the 5@ 5.2 We may
assign parities as in section (4.6.2), where we can get the MSSM Higgs content and massive
color triplet chiral multiplets. The scalars ¢* in the 4D Higgs multiplets have a potential
inherited from the potential in five dimensions (see (2.11) and (2.12)) as well as from the
pure 5D YMESGT sector via minimal couplings to 5D vectors Af. The Yukawa terms now

come from the scalar-fermion couplings of the 5D hypermultiplet Lagrangian (2.11).

2We need two copies since the MSSM has a minimum of two left-chiral multiplets (and their CPT
conjugates), while orbifold parity assignments project out half of a hypermultiplet’s degrees of freedom.
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The scalar potential for the ¢ at the fixed points is

2
- g n n
€ 1Eq—pmt|fp:_?{vl Vig+V? Vantlps

where

iA Q fiA
Vil = Ko

We might have expected a scalar potential arising from the minimal couplings between the
A% and ¢¥ in five dimensions. However, in the previous section, it was pointed out that
DsqX vanishes at the fixed points, so that such a potential is not present. The above is
the only contribution to the potential for the ¢*. It is well-known that the scalar potential
in 5D hypermultiplet-coupled YMESGTs admits supersymmetric AdS vacua so that a tree-
level negative potential for the candidate Higgs scalars in the set ¢ is possible. Of course,
supersymmetry should be spontaneously broken at least the same scale as the electroweak
breaking performed by the Higgs. It is possible that (i) there is a non-supersymmetric,
stable ground state with SU(3). X U(1).,, local symmetry, (ii) corrections to the classical,
supergravity approximation introduce new contributions to the scalar potential leading to
such a stable ground state, or (iii) supersymmetry is dynamically broken at some larger scale
so that the candidate electroweak breaking scalar potential need only admit stable ground
states with SU(3). x U(1)ep, local symmetry.

The Yukawa terms now involve the ¢- and g-dependent matrix gh!(¢)t{5(q), where the
¢-dependence is clearly universal for all fermion species. Once again, Yukawa unification
in a GUT scenario can be acheived in a similar fashion as in 4D models [FNS79, GJ79].
For example, in an SU(5) GUT, the matrix coupling to quarks and leptons contained in
5D hypermultiplets is in the reducible 5 @ 10. We can look for a theory such that, in
a particular ground state of the ¢X, h't3, is proportional to the identity (unification of
Yukawa couplings for the leptons), while h/t}5, isn’t (no such unification for the quarks).
Once again, the t-matrices depend on (a) the form of the hypermultiplet couplings (i.e., the
quaternionic scalar manifold that is coupled to the YMESGT in five dimensions) and (b)
the ground state of the ¢ scalars. Furthermore, to check whether the couplings become
the phenomenologically correct values, one must perform a renormalization group flow down
to lower scales. In contrast to standard supersymmetric GUTs, the scalars determining the
couplings are contained in the matter hypermultiplets so that a large Higgs sector is not
needed for phenomenological mass relations as in [FNS79, GJ79].

We leave these issues to future studies.
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Chapter 7

Some thoughts on M-theoretic origins

In the 1980s and early 1990s, the (weakly coupled) Es x Eg heterotic string theory was
the most phenomenologically interesting of the string theories. The six extra dimensions
were presumed to be extremely small, around the Planck scale O(107'%)GeV !, which was
the scale at which stringy effects would be important. The 6D internal manifold was taken to
be a smooth Calabi-Yau space, which preserves N’ = 1 supersymmetry. String phenomenol-
ogy sought to find gauge coupling unification (GUTs) as well as unification of gauge and
gravitational couplings within this framework.

However, M-theory entered the scene as the 11D theory appearing in the strong coupling
regime of the (ten-dimensional) heterotic Eg x Eg [HW96a, HW96b, W96a] and type IIA
string theories [W95]. This gave new meaning for the 11D supergravity theory that had
been the great interest of the late 1970s and much of the 1980s: as the tree level, massless
approximation of M-theory. Some immediately interesting consequences of strongly coupled
heterotic string, which can be described as M-theory (or 11D sugra) on My X S'/Z,, are (i)
Newton’s constant is allowed to have a physically correct order of magnitude, and (ii) the
string (energy) scale can be orders of magnitude less than in the 10D string theories. Thus,
while the string models had urged a merger of gravitational and gauge couplings by pushing
the usual GUT scale 105GeV to the usual 10*¥*GeV string scale, the Horava-Witten theory
reversed this.

Consider a calculation of some observable in perturbative string theory. A result that
arises beyond string tree level is a “stringy effect” in that it does not appear in the super-
gravity approximation. The strongly coupled theory should capture the perturbative effects
(as well as non-perturbative effects) without doing “loop calculations”, which arise in per-
turbative descriptions. But in string theory, the strong coupling limit is equivalent to either
a different, weakly coupled, string theory; or equivalent to weakly coupled M-theory. In the
latter case, the strongly coupled physics of the original string theory, including the 1-loop
calculation, should therefore be captured by the 11D supergravity theory.
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As an example, consider the compactification of heterotic string theory on a smooth
Calabi-Yau 3-fold Y. The result of the low energy approximation is a 40 supergravity
theory based on a cubic polynomial that’s reducible V = C;;xh!h/hE = 5Q, where Q is a
quadratic polynomial and s € R. The supergravity approxiation does not carry the Fg X Fg
gauge group of the string theory. A 1-loop string calculation, however, modifies the cubic
polynomial so that it’s irreducible V = C;jxh!h’/h%. Now, consider the M-theoretic limit of
the theory. The low energy theory should still be four dimensional with the compactifying
space having G, structure and an unbroken Eg gauge phase. In the example at hand, the
internal space is Y x S'/Z, so that the Eg gauge theory lying at each boundary of the space
arises from the Eg x Eg gauge group of the weakly coupled theory. One can first compactify
M-theory on a Calabi-Yau 3-fold Y, resulting in a theory with a generically irreducible cubic
polynomial V, but in five dimensions. One can then compactify on S'/Z, to get a 4D
theory that can be compared to the pure string compactification. The sugra approximation
of the M-theory compactification will now carry information about the perturbative stringy
corrections to the cubic polynomial.

As another example of recent interest, consider flux compactifications. For example, the
compactification of type II string theory on AdSs x S°, which involves infinite towers of
Kaluza-Klein excitations. The non-trivial Kaluza-Klein modes do not lie in the supergravity
truncation, so that this is the domain of stringy effects. In attempting to obtain super-
symmetric Randall-Sundrum scenarios, it has been shown that a so-called “breathing mode”
coresponding to a non-trivial KK-excitation must be allowed to have a non-zero fieldstrength.
Therefore the effect is not captured in the sugra truncation (and thus the same is true for
the minimal, N” = 2 truncation). The role of this flux is to generate a scalar potential in
the low energy theory, which can lift the degeneracy in the vacua. In light of the previous
discussion, we might expect that an M-compactification can include this information in the
supergravity approximation. Indeed this is true. However, we cannot directly compactify
M-theory to type IIB string theory (type IIB is dual to type IIA, and the strong coupling
limit of type ITA is equivalent to M-theory on S'). As a first step, suppose that, instead
of compactifying type IIB string theory (and its sugra approximation) on AdSs x S°, we
compactify M-theory a la [BG00], obtaining a theory with AdSs ground states and N = 2
supersymmetry. The non-zero flux is now a supergravity-level field. From the point of view
of the 5D supergravity approximation, the gauge theory is precisely that of a YMESGT
coupled to hypermultiplets, yielding a particular scalar manifold. Therefore, supergravity is
capable of dealing with this situation, and there is no “stringy” physics needed.

There are phases of M-theory with large unbroken gauge groups other than those men-
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tioned so far, obtained by compactification on more general singular spaces, both of orbifold
type as well as those with worse-than-orbifold singularities [ES98, AWO01, AW03]. Tt is a
known feature, for example, that compactification of string theories with gauge symmetry
G on smooth d-manifolds can be dual to M-theory (which has no vector gauge symmetry
a priori) on a singular d 4+ 1-manifold. The singularities in these cases must be worse than
orbifold singularities; that is, they aren’t just locally of the form M /G, where G is a discrete
group that acts non-freely on a smooth manifold M. The sugra approximation of string
theories doesn’t necessarily carry the gauge symmetry, while the sugra theory that is the low
energy approximation of M-theories (including the known limits of the string theories) can
carry the gauge symmetry, though not in the case where Y is a smooth CY manifold. While
supergravity is capable of doing what string theories can in many cases, it is, of course, not
all of M-theory. Ultimately the corrections to the supergravity approximation must be con-
sidered. Unfortunately, M-theory is not fully known, so only higher order corrections such as
R* spacetime curvature terms can be considered (in the framework of weakly coupled field
theory), along with the known features of 2- and 5-branes.

We wish to describe compactifications of M-theory leading to an effective description
of supergravity on M, x S'/T. While the action of I on the fields of the effective theory
involves a choice of lifting from the base space to total space of the gauge bundle, the parity
assignments will follow from a choice of internal manifold and discrete group action. The 11D
supergravity theory that serves as the low energy approximation of M-theory is a relatively
simple framework for assigning consistent parities. An example of such singular spaces is
the compactification of M-theory on the five-dimensional space (K3 x S')/Z,, where the Z,
acts non-trivially on the entire K3 x S! space, and is discussed in [S96a].

Let us be more precise with the conditions of the compactification space we are looking
for. First of all, the 7-manifold should have G5 holonomy so that we end up with a 4D N =1
theory. Second, the space should admit a limit in which it is isomorphic to My x S*/T. The
only (connected) Lie subgroups of G that can be the holonomy group of a Riemannian
metric on a 7-manifold are {1}, SU(2), SU(3) and G,. If M is a compact manifold with G5
structure, then the holonomy group is Gy iff (M) is a finite group. But when M is compact
and the metric is Ricci flat, then m (M) is finite iff M is simply connected. If, however, M
is isomorphic to a product of a simply connected space and 7", then the holonomy group is
SU(2) or SU(3) whenn = 3 or n = 1, respectively. For example, Y x S!, where Y is a Calabi-
Yau manifold, has SU(3) holonomy, while Y x S'/Z, has G5 holonomy. Since a product
metric g; X go has a product holonomy group Hol(g;) x Hol(gs), and since M should have

G5 holonomy, the internal compactification space can’t be geometrically a product space. In
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the case of a space with boundaries, the boundary metric can be reduced to a product and
the holonomy group broken. In summary, the compactifications we are interested in involve
irreducible spaces are naively of the form (Y x S1)/T', where I is some discrete group and
Y is a Calabi-Yau manifold. However, since the internal space must be simply connected to
have (G5 holonomy, the singularities must admit resolutions to such a space.

Depending on the choice of compactification space, there may or may not be magnetic
sources in the boundary theories, as there is in the Horava-Witten construction (in the form
of magnetic 5-branes). There are two conditions for magnetic sources to be required: (i)
the action of the discrete group I' must be such that some components of the fieldstrength
Gapcep of the 11D supergravity 3-form are I'-odd, and (ii) Gapcp must be in a non-trivial
cohomology class of the space. These are necessarily true in the HW construction. There,
condition (i) follows immediately from the compactification space Y x S /Zs, while condition
(ii) follows from anomaly cancellation. But we are interested in more general compactification
spaces, and a new anomaly analysis must be performed [WO01]. This in turn depends on the
generalized twisted sector, which must be understood to obtain the full boundary-localized
spectrum of the theory. In the 5D supergravity approximation, we have already seen that
there can be some requirements on boundary-localized fields due to anomaly inflow via a
5D Chern-Simons term, but there isn’t much help beyond this. For anomaly analysis in the
presence of p-branes and string/M-theory, see [FLO99, SS99a, SS99b, WO01]

In summary, the motivations for looking for the orbifold theories of this thesis in M-
theory rather than string theories are:

(i) The cubic polynomial defining the vector /tensor-part of the supergravity approximation
can be irreducible

(ii) The 4D Newtonian constant Gy can have the correct order of magnitude

(iii) The appearance of one large extra dimension (relative to the other dimensions) is a

dynamical feature of the theory
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Appendix A

Notational Conventions

We use the mostly plus spacetime metric 7, = diag(—+- - - +). Four-dimensional curved
spacetime indices are pu, v; flat spacetime indices are m, n. The index range is taken as
0,1,2,3 for these. Hats often denote five-dimensional quantities, such as fi, 7 and m, n. The
index range is now 0, 1,2,3,5. Where it is important to distinguish, we will sometimes use
5 to denote the fifth dimension curved index, and 5 to denote the flat index.

We will use the representation notation where m¢ = m @ m is an element of a 2m-
dimensional real representation space. For example, the “Higgs doublet” consists of 2¢ =
2@ 2. The MSSM minimal Higgs content is two left-chiral supermultiplets forming the 2 @ 2
and two right-chiral supermultiplets forming the 2 @ 2; each left-right CPT pair of chiral
multiplets is then in the 2¢ = 2 @ 2. These four chiral multiplets can form an N = 2
hypermultiplet. We use the notation where myg = m¢ @ m¢. Embedding the MSSM Higgs
content into an A/ = 2 theory, the hypermultiplet would then be in the 2y; we will assume
this is understood when we simply say “the hypermultiplet is in the 2”.

We will use the notation where

1 .
Tliyig] = nl Z $191(0) T 1) iy

’ O'GSTL

where S, is the group of permutations of {1,...,n}; and sign(c) is +1 if o is even and -1 if

o is odd. The convention in the case of Tj;, - -- T; ) is analogous.
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Appendix B
Parity Assignments

B.1 Bosonic fields

B.1.1 Generic assignments

To leave the space My x S*/Z, invariant under the Z, action, the coordinate functions, basis

vectors, basis 1-forms, and metric components have

P(at; 0,; dat) = +1  P(2”; 0; da®) = —1
P(g,ul/; 955) =+1 P(g/ﬁ)) = —1,

where P(®) denotes the Zs parity of the object ®. The local coordinate tranformation
parameters £# and £° must transform the same as their corresponding coordinate functions,
so P(¢#) = +1 and P(&%) = —1.

Equations (4.6) require P(C,) = —1 and P(e”) = +1. That C,, does not propagate along
the fixed planes is a reflection of the fact that it is a Kaluza-Klein gauge field for the theory
on My x S*. The local coordinate tranformation parameters é* and £° must transform the
same as their corresponding coordinate functions, so P(£#) = +1 and P(£°) = —1. From
(4.8), it follows that

P(A]) = —P(A"). (B.1)

B.1.2 Vector sector

The dimensionally reduced Maxwell-Einstein Lagrangian is invariant under the parity as-
signments discussed so far. However, there is remaining freedom in the assignments of the

vector fields, which we will now discuss. There are two terms in the reduced Lagrangian of
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the form

GHVPGCHVCPU<C[JKAIAJAK>
E'LWPUFI FJ (O]JKAK). (B?)

puv® po

From the Cogo terms, it follows that P(A%) = +1, which means P(A,) = —1, so that the
bare graviphoton does not have propagating modes along the fixed planes.

Consider the splitting of the index ¢ = («, a). We can assign parities to the vector fields
(A5, A7) and scalars (A%, A?) such that

P(AL) = —P(AL)  P(A%) = —P(A%),

keeping in mind that we still must satisfy (B.1). Let us now make a particular choice (since

a, a are dummy indices, it doesn’t matter which choice we make):

P(A*)=+1  P(A%) =-1
P(A%)=—1  P(A%)=+1. (B.3)

From these parities and the C7jx terms in (B.2), it follows that the components of Ck in

the canonical basis satisfy

Cooo = 1 Cooi =0

1
2
P(Cupy) = —1 P(Comp) = —1

P(Cupe) =+1  P(Cuap) = +1.

1
COab = _§5ab COaﬁ = - 5o¢ﬁ (B4)

Once we gauge isometries of the scalar manifold, we can write down the parity assign-
ments of the additional objects appearing in the Lagrangian. Unless otherwise noted, assume
throughout that we are gauging a compact group K for simplicity of discussion, and that all
vectors (other than the bare graviphoton) are gauge fields so that i, j, k are adjoint repre-
sentation indices of K. Note that now the Cjj, are no longer arbitrary, but must be rank-3

symmetric invariant tensors of K.
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From the infinitesimal gauge transformations

1
5QA£ = —Eﬁﬂo/ + onffKAff
500" = o' K7,
we require that

P =—-1 P)=-1 P’ =+1
P(fg,) =41 P(fpc) =—1  P(fas)=—-1 P(fg)=+1,

where f1,. vanishes if any of the indices correspond to 5D spectator vector fields'; and a

structure constant ff. with indices permuted has the same parity assignment.

B.1.3 Scalar sector

The cubic polynomial V(¢) = Crs¢'¢/¢E is a centerpiece of 5D supergravity since the
C1yi determine a MESGT completely (and in particular, V = 1 characterizes the real scalar
manifold). Unitarity of a YMESGT requires V > 0 [GST84a]. To maintain this positivity,
we require P(¢T)P(¢7)P(¢X) = P(Crsk), so that

P(°) = +1, P(C)=—1, P((")=+L

The ¢! are directly proportional to the embedding coordinates, h!, of the scalar manifold
when restricted to V = 1, so that they satisfy P(h!) = P(¢!).

We can split the index I = (0, «, a) as we did for the vector sector of the theory, where
« is an index for vector fields with even parity, and a is an index for vectors with odd
parity. From the parity assignments of the Cj;x in the previous subsection, we demand
that P(h®) = —1 and P(h") = +1, where h® are functions of a subset of vector multiplet
scalar fields, ¢X. The remaining h* are functions of the remaining scalars, ¢* (we are making
the split £ = (x,x)). The supersymmetry transformations for the 5D scalars will require
that these functions satisfy P(h®) = +1 (that is, fermions will need the scalars ¢ as super-

partners). The parities of the tensors a;; and gy are now fixed (see section (4.5)).

'We emphasize that for compact gaugings, there is at least one gauge singlet that can be identified as
the physical graviphoton; for non-compact gaugings, the graviphoton is one of the gauge fields (i.e., it is no
longer a spectator).
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The 5D gauge transformations of the ¢® in (B.5) require

P(KI)=-1 P(K*)=-1 P(K*) =+1
P(K)=+1 PKYX)=+1 P(KX)=-1. (B.6)

There are functions hl appearing implicitly in the Lagrangian and supersymmetry trans-
formation laws. They are directly proportional to h';, so that P(hL) = P(h')P(¢"). We
will also need to determine the parity assignments of the hg to find the assignments for
the components of the fermionic A'? later (p is the flat index of the real scalar manifold).
We have already determined the parity assignments for the scalar functions hl (see section

(4.5)). The two sets of functions are related by the ny-bein of the scalar manifold:
hl — pl P
x pJxr

where the vielbein satisfy
f2 13 0pq = gag- (B.7)

Making the index split for the flat scalar manifold indices p = (p, p), we find

P(f7) =—=P(f})  P(2)=—-P(f7), forallz x.

We select even parity assignment for the fP, which will contribute to the vielbein for the
fixed plane theories’ scalar manifold. The supersymmetry transformations then require that
J2 have even parity as well. Consequently, we get the parity assignments for the ff and hl

in section (4.5).

B.1.4 Hypermultiplet sector

For a discussion of hypermultiplet coupling in 5D supergravity, see [?] and appendix E. The
scalars from ny hypermultiplets parametrize a quaternionic manifold of real dimension 4ny,
with tangent space group Usp(2ny) x Usp(2). The supersymmetry transformations for the
scalars and fermions in the hypermultiplets are given in (2.10). The assignments for the
fermions will require that half of the hypermultiplet field content is generically projected
out of the boundary spectrum. Therefore, let us split the index X = (X,Q), where X =

1,...,2ng and €2 = 1,...,2npy. Since these are dummy indices, we can assign even parity
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to either subset of qj( . Let’s choose
P(@*)=+1 P(¢")=-1.

From the gauge transformations of the scalars in (E.1), we find the parity assignments for
the quaternionic manifold Killing vectors (see section (4.5)), where K7 = 0 for K-singlet

values of I.

B.2 Fermionic fields

From the (naive) dimensionally reduced supersymmetry transformations

m 171' maT
563“ 25 r \Ijui
1

6C, zﬁée—orﬁ?(\pm —V:.C,),

where

o e’ my— m
\I/Mize /2\I}MZ+T<F ) 1F5\I’5i6u’

we find that
PET™V,;)=+1 and P(ET°V,;)=—1,

respectively. Written out explicitly, these constraints are

P(—n"ec™ea* — (To™B, — CTeameﬁ; —nlo™a,) = +1
P(in"eB, + iCTea: —i(Tea, — inTeﬁ;) =1

Together, these imply that

P() = P({a,}) = =P{Bu}) = =P(C7)
P(Q) = P{B}Y) = —P({au}) = —P(n).

This means that there are two classes of fermionic parity assignments, which we will take to
be determined by the choice of assignments for the supersymmetry parameters €. However,
one of the classes yields two helicity 1/2 (or —1/2) states whose Dirac conjugates do not
have support at the orbifold fixed points. This violates the CPT theorem. The other class
of assignments describes a helicity 1/2 state and its helicity —1/2 CPT conjugate. The
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assignments for the components of € and W’ are listed in table (B.1).

From the dimensionally reduced susy transformation

1 .
560 = §7ZF5\IJSZA,

we find P(eT°Ws;) = +1. Writing this out in terms of 2-component spinors, we find
P(Bs) = P(n) Plaz) = P(¢")  P(as) = P(C)  P(35) = Pn),

so that the components of U°* have the parity assignments in table (B.1).

From the dimensionally reduced susy transformation

1 ~ ivV6 - .
I =) % I
514” = —ihPE ]_"M)\I; + quﬂeih s

we find
P(RYET, M) =+1 and P(h%T,\) = —1.
From 6¢® = LifZ&'\?, we find that
P(fféN) =+1 and P(fYeN)=—1.

We have determined the parity assignments for the functions h{; and f7 (see section (4.5)),

so that we arrive at the following constraints

P({d*"}) = P({1"}) = P(n) = =P({0""}) = =P({n"}) = —P({") (B.8)
P({e"}) = P({n""}) = P(¢Q) = =P({y""}) = —=P({0"}) = =P (n"). (B.9)

Consequently, we find the assignments for the components of the A\?? as in table (B.1).

Now consider the hypermultiplet sector. From

we find that

P(n'egl) = P(('e)  P(CTel) = P(n'&)
P(n'e&l) = P(CT€™)  P(C"e&t) = P(n'e™).
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This implies that
P(§) = -P(&)  P(&) =—-P(&)

so that half of the fermionic degrees of freedom from the hypermultiplets are projected out
at the fixed plane. It then follows that

") =P(fi,) PE

P(e
P(e&¢") = P(fy,) P&

for all X; and opposite signs for X — (2. The fermionic assignments are only consistent if

P(fin) = =P(f2)  P(fiz) = —P(fz),

for all X. Therefore
P(¢7) = —P(¢) PG = —P(C™).

In fact, it turns out that only the parity assignments for the f; in section (4.5) and assign-

ments for the (4 in table (B.1) are consistent.

Even Odd
a, oy | B B
By BF | as of
AP PSP P
N LA

nont ¢ ¢
SRSt

Table B.1: Parity assignments for fermions
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