
Concurrent conditions access across validity
intervals in CMSSW

David Dagenhart1,*, and Christopher Jones1

1Fermi National Accelerator Laboratory, Batavia, IL, USA

Abstract. The CMS software system, known as CMSSW, has a
generalized conditions, calibration, and geometry data products system
called the EventSetup. The EventSetup caches results of reading or
calculating data products based on the 'interval of validity', IOV, which is
based on the time period for which that data product is appropriate. With
the original single threaded CMSSW framework, updating only on an IOV
boundary meant we only required memory for a single data product of a
given type at any time during the program execution. In 2016 CMS
transitioned to using a multi-threaded framework as a way to save on
memory during processing. This was accomplished by amortizing the
memory cost of EventSetup data products across multiple concurrent
events. To initially accomplish that goal required synchronizing event
processing across IOV boundaries, thereby decreasing the scalability of the
system. In this presentation we will explain how we used 'limited
concurrent task queues' to allow concurrent IOVs while still being able to
limit the memory utilized.

1 Introduction
In 2015, the CMS Experiment became the first LHC experiment to begin using a multi-
threaded framework for event processing. This came after multiple years of preparation.
Over the succeeding years CMS has gradually improved both the level of concurrency in its
multi-threaded processes and the efficiency of those processes. The software enabling this
capability is concentrated in the framework, but significant changes were needed
throughout the entire CMS software system (CMSSW). Much of the required work has
been outside the framework in algorithmic modules. Concurrency is implemented using
Intel’s Threading Building Blocks library (TBB) [1]. Concurrent processing of events is
supported; concurrent processing of modules within an event is supported; and modules can
internally start tasks that are processed concurrently [2, 3]. The use of tools to help find
issues related to multi-threading in CMSSW has been critical [2, 3]. CMS performed static
code checks using the Clang [4] tool suite, which were extended beyond the default set of
checks provided by the tool. Helgrind [5] was used to look for possible race conditions.

In 2015 CMS performed tests of its multi-threaded capability in a production
environment and reported the results [6]. The primary benefit of using a multi-threaded
process over using many independent single threaded processes is reduced per core
memory requirements. Threads share the memory needed to store data not associated with
specific events. This was critical for CMS to be able to make good use of CPU resources

* Corresponding author: wdd@fnal.gov

FERMILAB-CONF-20-060-CMS-SCD

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359
with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

currently available and affects the costs associated with future CPU purchases. There were
other benefits. CMS uses a workflow management system to coordinate running a large
number of applications on many grid sites spread throughout the world. Because a multi-
threaded job can do more, fewer jobs are needed. This reduces database requests and file
opens among other things. Fewer jobs reduce the pressure on the workflow management
system and the many sites processing data.

CMS has been making continual improvements to its multi-threading capability. In
2017 CMS reported about its progress, which included changes that allowed CMS to
increase the number of threads above 4, that allowed using multiple threads in digitization
and simulation processes in addition to reconstruction processes, and that improved
efficiency in multi-threaded processes [7]. CMS reported on efforts to identify algorithmic
modules impairing multi-threading efficiency. There were also improvements to the
framework. CMSSW now schedules modules that produce data objects before the modules
that need that data are spawned to the TBB scheduling system. Serial task queues aid in the
scheduling of tasks that required resources that cannot be executed concurrently. CMSSW
now schedules concurrent execution of filter sequences.

In CMS, an event is data associated with a particular interesting collision in the detector.
Events are grouped in luminosity blocks. A luminosity block corresponds to the events
recorded in a contiguous 23-second time period. In the original multi-threaded framework,
events from different luminosity blocks could not be processed concurrently. In 2018, CMS
implemented changes that allowed processing multiple luminosity blocks concurrently [8].

In this paper, CMS reports further improvements that increase the concurrency of CMS
multi-threaded processes.

2 Intervals of validity
The CMS Experiment uses different kinds of data as it reconstructs the particles and
collisions from the data recorded in its detectors and simulates these particles and
collisions. Some of the data are associated with particular events or luminosity blocks, but
there are other data that CMS calls conditions data. Conditions data include calibration
data, alignment data, and geometry data. Conditions data are associated with a time interval
over which it is valid and can be used. CMS calls these intervals of validity or IOVs.

Typically conditions data are valid for many events. It might be valid for one or many
luminosity blocks. It is often read from a database or calculated from data read from a
database. Then it is stored in a cache in memory. This cache takes a significant amount of
time to fill and uses a significant amount of memory, so it is shared and used by multiple
threads and multiple events in a multi-threaded process.

There are many different types of conditions data. For example, one type might specify
the values related to the average noise to be subtracted from data for each detector element
in the hadronic calorimeter. Another type might contain the location of the particle beams
in the detector. Another type might contain geometric constants. The differing types are
valid for different time periods. Geometric constants might be valid for years. The beam
position might be updated in every luminosity block. Different calibrations get updated
after different intervals of time. Types with the same IOVs are grouped together in what
CMS calls a record. CMS has defined hundreds of different record types. As data are
processed there will be transitions where the IOV of each record type changes.

CMS calls the software system it uses to manage conditions data and IOVs the
EventSetup system.

Prior to 2019, CMS could not concurrently process data from different IOVs. So this
meant that when a process encountered an event associated with a different IOV for any
record, the process had to wait until all processing was complete for all events associated
with all IOVs. The framework had to wait to synchronize processing of IOVs. During this
wait, there is often not enough work to keep all threads busy. Threads end up sitting idle
and this reduces the CPU efficiency of CMS processes.

In 2019, CMS implemented improvements in its framework that add support for
processing multiple IOVs concurrently. If configured, this will eliminate the wait at IOV
boundaries and increase CPU efficiency for CMS processes.

3 Configurable by record
The number of IOVs allowed to run at the same time can be independently configured for
each record. This is important for three reasons.

First, the amount of memory associated with a record varies widely. Some records use
an amount of memory that is negligible compared to the total memory used by a process.
Other records use a very significant amount of memory. When IOVs are run concurrently,
the data for every active IOV must be cached in memory at the same time. CMS can reduce
memory requirements by configuring records using large amounts of memory to allow one
IOV at a time.

Second, as already mentioned, the length of an IOV varies from one record to the next.
Performance improvements related to concurrent IOVs are greater for those records whose
IOVs change more often.

Third, it is possible some software associated with some records does not support
concurrent IOVs. Being able to configure records independently allows records that do not
support concurrent IOVs to be used in jobs processing IOVs concurrently for other records.

4 Inefficiency at IOV boundaries

CMS tested the new ability to process multiple IOVs concurrently by running
reconstruction on data and plotting the number of threads running at each moment of time.
We chose data from 2018 that consisted of 151 events with a known IOV transition near the
middle of the input. We also included special code that monitors the number of threads
executing modules as a function of time. The job was configured to run 16 threads
concurrently, 16 events concurrently, and 2 luminosity blocks concurrently. The job was
run twice. The first time only 1 IOV was allowed to run at a time. The second time the job
was configured to allow 2 IOVs run concurrently. The results are shown in the figure
below.

Fig. 1. Number of modules executing concurrently as a function of time in a reconstruction process
using data from 2018 as input. In the top plot, the process is configured to allow only 1 IOV to be
processed at a time. The only difference in the lower plot is that the process was configured to allow 2
IOVs to be processed concurrently. Section 4 is devoted to discussing this figure and includes more
details describing it.

In the top plot, a gap with white space is visible between 80 and 100 seconds. This
white space indicates threads that are idle and not performing work. In the bottom plot, all

16 threads are busy executing modules during this time. This graphically indicates the CPU
inefficiency related to IOV boundaries. The main point of the figure is to show this
inefficiency.

One might want to reduce this to a single number indicating the overall improvement in
CPU efficiency that results from this new capability in the framework, but this is difficult to
generate. The overall efficiency gain becomes more significant as the number of threads
increases. It becomes less significant as the number of threads decreases. It also
significantly depends on how frequently IOV boundaries are crossed within a processing
job. As the frequency of IOV transitions increases, the degradation of efficiency increases.
If one studies production jobs prior to 2019, then one would find the effect to be small. In
the past, many production jobs run by CMS included only 1 IOV. The improvement is
targeted more to the future. There are development efforts in CMS in progress that will
result in IOV boundaries occurring more often in CMS production jobs. We also expect the
number of concurrent threads to continue to increase. The CMS framework is now ready to
handle these expected environments. This efficiency improvement will be more important
in the future than it would have been in the past.

The type of plot shown in Figure 1 has been useful to CMS and is described in more
detail in [8]. For this paper, the most important feature of the plot is the total area that is
colored (or shaded). The work that needs to be done to process an event is divided into
logical pieces and the software related to a particular piece is called a module. For example,
one module might execute one algorithm to reconstruct track segments in one part of the
CMS detector. Hundreds of modules might execute on each event in a typical CMS
reconstruction process. In Figure 1, the number of modules is almost the same as the
number of threads that are busy doing work. The darker green counts the first module
working on each event. Blue counts modules beyond the first and appears when multiple
threads are working on the same event. Purple and the varying darkness of the green is
really an artefact related to blue and green being plotted too close together to distinguish.
The initialization period before approximately 40 seconds is irrelevant to this paper. It
looks overly significant in the plot because of the large number of threads and the small
number of events. CMS is currently working on improving concurrency in initialization.

5 Limited concurrent task queues
The ability to process IOVs concurrently is implemented with a class defined in CMSSW
called LimitedTaskQueue that uses TBB tasks. This section starts by discussing how the
CMSSW framework uses TBB in general. Then it continues by explaining how the limited
task queue uses TBB and how the framework uses the limited task queue to implement
concurrent IOVs.

5.1 Threading Building Blocks (TBB)

CMSSW relies on the TBB library from Intel as the base on which it implements its
concurrency capabilities. The CMSSW framework makes heavy use of the tbb::task class.
CMSSW classes derived from this contain functions that perform almost all the concurrent
work done in CMSSW. TBB has a scheduler that executes the tasks. The TBB scheduler
has configurable limits on how many tasks will execute concurrently and algorithms that
determine the order of execution of tasks. CMSSW takes advantage of the TBB scheduler.
Although not described here (see [1]), TBB’s scheduler is important to CMSSW.

A task is spawned when it is passed to the TBB scheduler using a TBB function
named spawn. From this point forward, TBB controls when the task will be executed. It
will be executed as soon as possible given the limits on the number of concurrent tasks and
TBB’s scheduling algorithms. Much less often, CMSSW will use the enqueue function of
TBB, which also submits tasks to TBB, but these are scheduled differently.

The framework also makes use of TBB functions to create tasks, destroy tasks, attach
tasks, isolate tasks, manage reference counts, and wait for tasks to complete. Often the
framework uses the reference count to determine when a task should stop waiting and be
spawned. The framework uses task_arena in limited circumstances. CMSSW uses TBB’s
concurrent containers in many contexts.

The CMSSW framework does not use the higher level functionality available in TBB.
For example, TBB’s parallel_for loop is not used within the framework. Although it is used
in CMSSW algorithmic code and works well with the framework in that context.

The CMSSW framework does a lot of work outside of TBB to understand the
dependencies between tasks and to understand which tasks cannot be run concurrently. The
framework does not spawn tasks to TBB when the task cannot run because it needs data
that is not available yet or when other tasks have been spawned and have not yet finished
that cannot run concurrently. This paper is focused on one particular case where the
framework uses TBB to control how many IOVs can be processed concurrently. This is
done through a CMSSW class called LimitedTaskQueue.

Fig. 2. A limited task queue is used to implement concurrent IOV processing.

5.2 Concurrent IOVs and limited task queue

The CMSSW framework sequentially reads through the luminosity blocks in an input file.
When it encounters a new luminosity block, it creates a task that will start processing for
that luminosity block. The task is not immediately executed nor is it immediately spawned
to TBB. It is constructed, ready, and waiting. Note that the framework will not read the next
luminosity block from the input file until this task has started. The recursion in the
sequence of tasks, which includes this task and the many tasks involved in processing a
luminosity block, drives the iteration over luminosity blocks.

After the task that starts a luminosity block has been created and while it is waiting, the
framework loops over all the records (different types of conditions data). For each record, it
determines if the new luminosity block is within the current interval of validity (IOV). If it
is not in the current IOV or the first IOV needs to be started for a record, then a task is
created that will start an IOV for that record. Again, this task is not immediately executed
nor is it immediately spawned to TBB. It is constructed, ready, and waiting. The task that

starts the IOV is given a pointer to the task that starts the luminosity block. When the task
that starts the IOV finishes the work needed to start the IOV and the IOV has begun, it
notifies the task that starts the luminosity block. The task that starts the luminosity block
maintains a reference count of IOVs that need to start before it can be run. When that
reference count indicates all required IOVs have started, the task starting the luminosity
block is spawned to TBB.

Figure 2 depicts the creation of the task that starts the IOV and the actions described
below.

For each record there is a limited task queue. The task to start the new IOV is passed to
the limited task queue associated with its record. Each limited task queue is configured with
a positive integer limit restricting the number of IOVs that can be active at the same time. If
the number of active IOVs for that record is less than the limit, then the task that starts the
IOV is immediately spawned to TBB. Otherwise, the task is saved in the queue and waits.
Note that this task simply does the work to start the IOV. When the task completes
execution, the IOV is active and might be in use for a long time while luminosity blocks
within that IOV are processed. The IOV does not end when the task that starts it finishes.

The task that starts an IOV creates yet another task that will end the IOV. Again this
task is constructed, ready, and waiting, but it is not immediately executed or spawned. It
also holds a reference count that is incremented and decremented to determine when it
should be spawned. The most recent IOV for each record is held open by incrementing the
counter and it is decremented when the next IOV for that record is opened. The counter is
also incremented for every luminosity block that is using it. Each luminosity block is
passed a pointer to the tasks that end all of the IOVs that they are using. When each
luminosity block ends, the pointers are used to decrement the reference counts. The task
that ends an IOV will be spawned when all luminosity blocks using it have completed and
it is no longer the most recent IOV for its record or at the end of the job.

One action that the task that ends an IOV performs is to notify the limited task queue
that the IOV is finished and then the limited task queue is able to spawn the task that starts
the next IOV if there is a task waiting in its queue.

6 Conclusion
CMS has improved its software framework so that it is now capable of running multiple
intervals of validity concurrently. This will help CMS to maintain and improve the CPU
efficiency of its production software as the CMS computing environment changes to
require more threads and shorter intervals of validity.

This document was prepared by the CMS Collaboration using the resources of the Fermi National
Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User
Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No.
DE-AC02-07CH11359.

References
1. https://www.threadingbuildingblocks.org
2. C.D. Jones, E. Sexton-Kennedy, J. Phys.: Conf. Ser. 513 022034 (2014)
3. E. Sexton-Kennedy, P. Gartung, C.D. Jones, D. Lange, J.Phys.: Conf. Ser. 608 012034

(2015)
4. http://clang.llvm.org
5. http://valgrind.org
6. C.D. Jones, L. Contreras, P. Gartung, D. Hufnagel, E. Sexton-Kennedy, J. Phys.: Conf.

Ser. 664 072026 (2015)
7. C.D. Jones, J. Phys.: Conf. Ser. 898 042008 (2017)
8. C.D. Jones, CERN Document Server: CR-2018/277 (2018)

