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Abstract

In this thesis we go beyond the standard cosmological ΛCDM model and study the ef-

fect of an interaction between dark matter and dark energy. Although the ΛCDM model

provides good agreement with observations, it faces severe challenges from a theoretical

point of view. In order to solve such problems, we first consider an alternative model

where both dark matter and dark energy are described by fluids with a phenomenological

interaction given by a combination of their energy densities. In addition to this model, we

propose a more realistic one based on a Lagrangian density with a Yukawa-type interac-

tion. To constrain the cosmological parameters we use recent cosmological data, the CMB

measurements made by the Planck satellite, as well as BAO, SNIa, H0 and Lookback time

measurements.

Keywords: Cosmology. Dark Matter. Dark Energy.





Resumo

Nesta tese vamos além do modelo cosmológico padrão, o ΛCDM, e estudamos o efeito

de uma interação entre a matéria e a energia escuras. Embora o modelo ΛCDM esteja

de acordo com as observações, ele sofre sérios problemas teóricos. Com o objetivo de

resolver tais problemas, nós primeiro consideramos um modelo alternativo, onde ambas,

a matéria e a energia escuras, são descritas por fluidos com uma interação fenomenológica

dada como uma combinação das densidades de energia. Além desse modelo, propomos

um modelo mais realista baseado em uma densidade Lagrangiana com uma interação tipo

Yukawa. Para vincular os parâmetros cosmológicos usamos dados cosmológicos recentes

como as medidas da CMB feitas pelo satélite Planck, bem como medidas de BAO, SNIa,

H0 e Lookback time.

Palavras-Chave: Cosmologia. Matéria Escura. Energia Escura.
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Introduction

The large amount of precise astronomical data released in the past few years provided

opportunities to answer questions in cosmology and astrophysics. Such a precision allows

us to test cosmological models and determine cosmological parameters with high accuracy.

The simplest cosmological model one can build that reasonably explains the current

data is the ΛCDM model. This model consists in a cosmological constant Λ to account

for the observed acceleration of the Universe, plus cold dark matter (CDM) necessary to

produce the gravitational potential wells inferred on galactic to cosmological scales.

However, theoretically the ΛCDM model itself faces challenges, the cosmological con-

stant problem[1] and the coincidence problem[2]. The first one refers to the small observed

value of the cosmological constant, incompatible with the vacuum energy description in

field theory. The second one refers to the fact that we have no natural explanation for

why the energy densities of dark matter and vacuum energy are of the same order today.

These problems open the avenue for alternative models of dark energy to substitute the

cosmological constant description.

One way to alleviate the coincidence problem, which embarrasses the standard ΛCDM

cosmology, is to consider an interaction between dark energy and dark matter. Consider-

ing that dark energy and dark matter contribute with significant fractions of the contents

of the Universe, it is natural, in the framework of field theory, to consider an interaction

between them. The interaction between dark energy and dark matter will affect signifi-

cantly the expansion history of the Universe and the evolution of density perturbations,

changing their growth. The possibility of the interaction between dark sectors has been

widely discussed in the literature [3–36]. Determining the existence of dark matter and

dark energy interactions is an observational endeavor that could provide an interesting

insight into the nature of the dark sectors.

Since the physical properties of dark matter and dark energy at the present moment
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2 INTRODUCTION

are unknown, we cannot derive the precise form of the interaction from first principles. For

simplicity, most considerations of the interaction in the literature are from phenomenology.

Attempts to describe the interaction from field theory have been proposed in [37–39]. One

possibility is a phenomenological model of the interaction, Q, between dark matter and

dark energy, which is in a linear combination of energy densities of the dark sectors

Q = 3H(ξ1ρc + ξ2ρd) [13, 29, 40]. In this interaction, H is the Hubble parameter, ξ1

and ξ2 are dimensionless parameters, assumed to be time independent, for simplicity,

and ρc and ρd are the energy densities of dark matter and dark energy, respectively.

Such a model was widely studied in [13, 18, 34, 41–44]. It was disclosed by the late

integrated Sachs-Wolf (ISW) effect [25, 27] that the interaction between dark matter

and dark energy influences the cosmic microwave background (CMB) at low multipoles

and at high multipoles through gravitational lensing [44, 45]. With the WMAP data

[25, 27] together with galaxy cluster observations [34, 35] and also recent kinetic Sunyaev-

Zel’dovich effect observations [46], it was found that this phenomenological interaction

between dark energy and dark matter is viable and the coupling constant is positive,

indicating that there is energy flow from dark energy to dark matter, which is required to

alleviate the coincidence problem and to satisfy the second law of thermodynamics [16].

It is of great interest to build alternative models of the Universe and employ the

latest high-precision data to further constrain them. This is the main motivation of the

present work. We will combine the CMB data from Planck [47–49] with other cosmological

probes such as the baryonic acoustic oscillations (BAO) [50–52], supernovas [53], the latest

constraint on the Hubble constant [54] and lookback time [55, 56]. We want to see how

these different probes will influence the cosmological parameters and put tight constraints

on the interaction between dark sectors.

This thesis is organized as follows: in the first chapter we introduce some fundamental

aspects of cosmology and present the contents of the Universe. Chapter two goes beyond

the homogeneous and isotropic universe and describe the linear perturbations. Our models

of interactions between dark energy and dark matter are presented in chapter three. The

data analysis and our fitting results appear in chapter four. Finally, we conclude and

discuss some perspectives for future works.



Chapter 1

Introduction to Cosmology: The

Need of Dark Matter and Dark

Energy

Cosmology is the study of the Universe as a whole. Despite the great complexity of this

system, if we are interested in its dynamics on large scales, it is possible to construct

a relatively simple model to describe it. On large scales, the interactions between the

constituents of the Universe are governed by the laws of gravitation which, nowadays, are

best explained by the theory of general relativity published by Einstein in 1915 [57].

1.1 Homogeneous and Isotropic Universe

General relativity establishes that the geometry of the spacetime is determined by the

energy content of the Universe and this geometry governs the motion of free particles. In

general, the geometry of the spacetime is described by the line element

ds2 = gµνdx
µdxν , (1.1)

where gµν are the components of the metric tensor. The indices µ, ν are defined such that

x0 represents the time coordinate and xi, with i = 1, 2, 3, represent the spatial coordinates.

We are using the Einstein’s convention where repeated indices are summed.

To determine the form of the line element of a given cosmological model we use the

3



4 CHAPTER 1. INTRODUCTION TO COSMOLOGY

underlying symmetries. The simplest cosmological model can be built assuming that the

constituents of the Universe present the properties of statistical homogeneity and isotropy,

known as the cosmological principle. In fact, observations of the cosmic microwave back-

ground have shown isotropy of one part in 100.000 [58]. Also, evidences of galaxy surveys

suggest that the Universe is homogeneous on large scales [59].

Using the cosmological principle, the metric of the spacetime must be the Friedmann-

Lemaitre-Robertson-Walker (FLRW) metric [57], which is given by

ds2 = −dt2 + a(t)2

[
dr2

1−Kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
. (1.2)

Here a(t) is a scale factor accounting for the expansion or contraction of the Universe and

K is a constant that establishes the geometry of the spatial section. If K > 0 the spatial

section is closed, while for K = 0 it is flat and K < 0 means that the spatial section is

open. Throughout this work we are using natural units such that h̄ = c = kB = 1.

The motions of free particles follow the geodesic equations

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0, (1.3)

where λ is a monotonically increasing parameter that parameterizes the particle’s path

and Γµαβ are the Christoffel symbols. The Christoffel symbols are related to the metric

tensor by the expression

Γµαβ =
gµν

2

(
∂gαν
∂xβ

+
∂gβν
∂xα

− ∂gαβ
∂xν

)
, (1.4)

where gµν is the inverse of the metric tensor such that gµαgαν = δµν with δµν , the Kronecker

delta, defined as zero unless µ = ν in which case it is equal to one.

To obtain a(t) and K we need the dynamical equations governing the Universe. In

the context of general relativity it is determined by the Einstein equations [60]

Rµν −
1

2
gµνR = 8πGTµν , (1.5)

where Rµν is the Ricci tensor, which can be written in terms of the Christoffel symbol as

Rµν =
∂Γαµν
∂xα

−
∂Γαµα
∂xν

+ ΓαβαΓβµν − ΓαβνΓ
β
µα. (1.6)
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R = gµνRµν is the Ricci scalar, or curvature scalar, G is the Newton gravitational constant

and Tµν is the energy-momentum tensor of the content in the Universe. All the quantities

in the left hand side of (1.5) are geometrical quantities, while the right hand side presents

the energy content. Thus, the Einstein equations relate the geometry of the Universe to

the energy content.

On large scales the constituents of the Universe can be treated as a fluid. The most

general energy-momentum tensor for a fluid component “A”, TAµν , is given by

TAµν = (ρA + PA)uAµu
A
ν + gµνP

A + πAµν + qAµ u
A
ν + qAν u

A
µ , (1.7)

where ρA is the energy density, PA is the pressure, uAµ is the four-velocity vector, πAµν is

the anisotropic stress and qAµ is the heat flux vector relative to uAµ , all these quantities with

respect to the A-fluid. The total energy-momentum tensor is Tµν =
∑

A T
A
µν . However,

if the fluid has at each point a velocity ~v, such that an observer with this velocity sees

the fluid around him as isotropic, this is known as a perfect fluid [57] and in this case the

anisotropic stress and the heat flux are null.

Using the FLRW metric (1.2) and the energy-momentum tensor (1.7) for all compo-

nents with the assumption of a perfect fluid, the Einstein equations (1.5) result in two

independent equations. The time-time component gives the Friedmann equation

H2(t) =
8πG

3
ρ(t)− K

a2(t)
(1.8)

and the space-space components result in

Ḣ(t) = −4πG [ρ(t) + P (t)] +
K

a2(t)
, (1.9)

where H(t) ≡ ȧ(t)/a(t) is called Hubble parameter, ρ, P denote the total energy density

and pressure and a dot means differentiation with respect to the cosmic time t.

We can define a critical density ρcrit by

ρcrit ≡
3H2(t)

8πG
, (1.10)

such that the abundance of a substance in the Universe can be expressed with respect to
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it. Constructing the density parameter Ω as

Ω =
∑
A

ΩA ≡
∑
A

ρA
ρcrit

, (1.11)

the Friedmann equation (1.8) can be rewritten as

Ω− 1 =
K

H2(t)a2(t)
. (1.12)

From this equation we can see that the curvature of the spacial section K is determined

by the energy content of the Universe. In fact,
ρ < ρcrit ⇒ Ω < 1⇒ K < 0,

ρ = ρcrit ⇒ Ω = 1⇒ K = 0,

ρ > ρcrit ⇒ Ω > 1⇒ K > 0.

(1.13)

To solve the Friedmann equation (1.8) and find how the scale factor a(t) evolves with

time, we have to know what is the dependence of ρ with time, or equivalently with the scale

factor. Combining (1.8) and (1.9), or using the conservation of the energy-momentum

tensor, results

ρ̇+ 3H(ρ+ P ) = 0. (1.14)

As (1.14) can be obtained from (1.8) and (1.9), it means that only two of equations (1.8),

(1.9) and (1.14) are independent. Equation (1.14) is valid for the total energy density, but

if the individual components are independent, they will obey similar equations. Thus, if

we know what are the components of the Universe and the equation of state they satisfy,

we can solve Eq. (1.14) for each individual component and find their dependence with

the scale factor. Knowing this, we can solve the Friedman equation (1.8).

There is another relation that can be obtained from equations (1.8) and (1.9). Elimi-

nating K/a2 from those equations, we obtain

ä

a
= −4πG

3
(ρ+ 3P ). (1.15)

This equation tells us that an accelerated expansion only occurs if ρ + 3P < 0. As the

energy density must be a positive quantity, this means that in order to realize an accel-
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erated expansion, the Universe must contain some component with a negative pressure.

Considering a fluid with a linear barotropic equation of state1, P = ωρ, the accelerated

expansion can occur if w < −1/3.

1.2 Cosmic Distances

In the previous section we established a theoretical model for a homogeneous and isotropic

universe. Solving the system of equations (1.8) and (1.14) allows us to determine the

evolution of the scale factor a(t) and consequently the history of the Universe. However,

to solve that system of equations we need to determine the values of some parameters

as K, the initial value of H(t), the initial energy densities of all the constituents of the

Universe and their equation of state, usually assumed to be of the form ω = P/ρ. To

describe the real Universe these parameters must be in agreement with observations,

which means we need observables that allow us to compare theory with observations.

A fundamental step to compare theory with observations is the measurement of dis-

tances on cosmological scales. These measurements enable us to relate physical observ-

ables with the parameters in our model such that we can constrain it and make predictions.

Actually, there are several ways to define distances in cosmology as we show below.

From the FLRW line element (1.2), a light ray traveling along the radial direction

satisfies the geodesic equation

ds2 = −dt2 + a2(t)dχ2 = 0, (1.16)

where we defined dχ ≡ dr/(1 − Kr2)1/2. Therefore, considering that a light ray have

traveled from the time t = 0, we can find the total comoving distance that it could travel

until the time t as

η ≡
∫ t

0

dt′

a(t′)
. (1.17)

This distance establishes a limit beyond which no information can further propagate

in the comoving frame. Thus, η can be thought as a comoving horizon. Because η

is monotonically increasing, it can also be defined as a time variable, which is called

conformal time. Using equation (1.16), we can obtain the comoving distance from a

1A barotropic fluid is a fluid whose pressure depends on the density alone [61].
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distant object at scale factor a to us:

χ(a) =

∫ t0

t(a)

dt′

a(t′)
=

∫ a0

a

da′

a′2H(a′)
, (1.18)

where the subscript “0” represents quantities at the present time.

The comoving coordinates are constant over the expansion history of the Universe.

Thus, using Eq. (1.18), a light ray emitted at time t + δt and observed at time t0 + δt0

satisfies ∫ t0

t

dt′

a(t′)
=

∫ t0+δt0

t+δt

dt′

a(t′)
. (1.19)

Manipulating the limits of integration, we can write

∫ t+δt

t

dt′

a(t′)
=

∫ t0+δt0

t0

dt′

a(t′)
. (1.20)

At first order in δt we have
δt

a(t)
=

δt0
a(t0)

. (1.21)

If δt is the period of emission of the light ray and δt0 the period of detection, as the wave

frequency ν is the inverse of the period and the wave length is defined as λ = c/ν, we

obtain

1 + z ≡ νemit
νobs

=
λobs
λemit

=
a0

a
. (1.22)

This expression defines a cosmological Doppler effect associated with the expansion or

contraction of the Universe. To account with this effect we defined the redshift z. The

above equation allows us to relate the redshift of a distant object to the scale factor when

the light ray was emitted.

Basically, there are two ways of inferring distances in astronomy: using a standard

ruler or a standard candle. With the knowledge of trigonometry astronomers have inferred

lengths for a long time. Measuring the angle θ subtended by an object of known physical

size l (a standard ruler), the distance to that object is

dA =
l

2 tan( θ
2
)
≈ l

θ
, (1.23)

assuming the angle subtended is small. On the other hand, using the line element (1.2),
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we can see that the physical length l of an object described by an angle θ is given by

l = a(t)rθ. (1.24)

Therefore, comparing Eqs. (1.23) and (1.24), we observe that the angular diameter dis-

tance is

dA = a(t)r = a(t)


1

H0
√

Ωk0
sinh(H0

√
Ωk0χ) Ωk > 0,

χ Ωk = 0,

1
H0
√
−Ωk0

sin(H0

√
−Ωk0χ) Ωk < 0,

(1.25)

where we used the definitions of χ and Ωk ≡ −K/H2(t)a2(t), and we are using a normal-

ization such that a0 = 1.

Another important technique to determine distances is to find an object of known

intrinsic brightness, a standard candle, such that any difference between the apparent

brightness of two of these objects is a result of their different distances from us. Given an

object of known luminosity L, the observed flux F a distance dL from the source is

F =
L

4πd2
L

. (1.26)

On an expanding universe we can write a similar equation considering a comoving grid as

F =
L(χ)

4πr2(χ)
, (1.27)

where L(χ) is the luminosity of the source through a comoving spherical shell with radius

r(χ). Assuming that the photons are emitted with the same energy, the luminosity L(χ)

is the energy multiplied by the number of photons crossing the shell per unit time. As

the Universe expands, the number of photons passing through the spherical shell per unit

time becomes smaller by a factor of a. On the other hand, Eq. (1.22) tells us that the

wave lengths of the photons are stretched by a factor of 1/a. Thus, as the energies of

the photons are inversely proportional to the wave length, they will decrease accordingly.

Therefore, the energy per unit time on the spherical shell at r(χ) will be a factor of a2

smaller than the luminosity at the source

F =
La2

4πr2(χ)
. (1.28)
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If we define the luminosity distance dL as

dL ≡
r(χ)

a
=

1

a(t)


1

H0
√

Ωk0
sinh(H0

√
Ωk0χ) Ωk > 0,

χ Ωk = 0,

1
H0
√
−Ωk0

sin(H0

√
−Ωk0χ) Ωk < 0,

(1.29)

we can keep the form of the flux given by Eq. (1.26). Comparing Eq. (1.25) with Eq.

(1.29) we observe that

dA = a2(t)dL =
dL

(1 + z)2
, (1.30)

which is valid in general since the flux is conserved [61].

From equations (1.18), (1.25) and (1.29) we see that in the limit z � 1 all distances

recover the Euclidean distance in Minkowski spacetime.

1.3 Components of the Universe

To calculate the equation (1.14) we need to know what are the constituents of the Universe

and what are the equations of state they obey. Thus, we sketch below the standard model

of particle physics (SM) and describe some properties of the fundamental ingredients that

build the Universe.

1.3.1 The Standard Model of Particle Physics

The standard model of particle physics contains our present knowledge of the fundamen-

tal particles that compose all the material content in the Universe and the interactions

between them. The standard model consists in a gauge group

GSM ≡ SU(3)c × SU(2)L × U(1)Y , (1.31)

where U(N) is defined by its fundamental representation as the group of unitary matrices

N ×N and SU(N) is the group of special unitary matrices, i.e. unitary matrices N ×N

with determinant equal to 1. Thus, SU(3)c describes the internal symmetry for hadrons,

which are particles that can interact via the strong interaction because they have a color

charge c. This theory is described by Quantum Chromodynamics (QCD). On the other

hand, SU(2)L × U(1)Y represents the symmetry of electroweak interaction. The indices
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L, Y mean that the symmetries SU(2), U(1) correspond to left-handed doublets and

hypercharge, respectively.

The fundamental constituents of matter are fermions with spin 1/2 which are classified

as quarks or leptons. Quarks appear together forming hadrons such as: protons, neutrons,

pions, kaons, etc. They have color and interact strongly as explained by QCD. Leptons,

such as the electron and neutrino, have no color degree of freedom and cannot interact

via strong interaction. Besides this, neutrinos do not carry electric charge either, their

motion is influenced only by weak interaction.

In the standard model, interactions among quarks and leptons are mediated by gauge

bosons with spin 1. There are five types of gauge bosons: photons, which are responsible

for the electromagnetic interaction; W± and Z0, that mediate the weak interaction; finally,

the gluons in the strong interaction. Below is a sketch of the standard model:

1st Generation 2nd Generation 3rd Generation

Quarks

uc
dc


L

, ucR, d
c
R,

cc
sc


L

, ccR, s
c
R,

tc
bc


L

, tcR, b
c
R, (1.32)

Leptons

νe
e−


L

, e−R,

νµ
µ−


L

, µ−R,

ντ
τ−


L

, τ−R , (1.33)

Gauge bosons


photon γ,

weak bosons W±, Z0,

gluons g,

(1.34)

Higgs bosons H. (1.35)

We can see that quarks and leptons come in three generations. The corresponding

particles in each generation have the same quantum numbers except for its mass. The

first family is the less massive and the third is the most massive. The SU(3) triplets

are represented by the color index c and the SU(2) doublets are arranged in columns.

Also, the upper quarks have electric charge equal to 2/3 and the lower ones have charge

−1/3. On the other hand, neutrinos have no electric charge and their leptonic partners

carry electric charge equal to −1. All of them have antiparticles with the same mass and

opposite quantum numbers.
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The last component of the standard model, the Higgs boson, is a scalar particle that

is responsible for the Higgs mechanism. In the gauge group (1.31) the particles cannot

be massive otherwise the symmetries are not preserved. Therefore, to obtain massive

particles as observed in Nature we have to break the symmetry group (1.31) at some time.

The Higgs mechanism accounts for that performing a spontaneous symmetry breaking

(SSB), where the Lagrangian remains symmetric under (1.31) while the physical vacuum

becomes non-invariant. In this way

SU(3)c × SU(2)L × U(1)Y → SU(3)c × U(1)Q, (1.36)

where Q denotes the electric charge generators.

The standard model of particle physics agrees pretty well with the observed particles

and the corresponding interactions. However, from a theoretical point of view, there are

some remarkable difficulties. Therefore, it is a consensus that a more fundamental theory

must exist coinciding with the standard model in the low-energy limit. It should also be

noted that the SM does not include gravitation.

As we said before, on large scales the behavior of the particles are governed by the

gravitational interaction. In fact the strong and weak interactions act only in the nuclear

range. On the other hand, the atoms that build the matter content are neutral and

have spin oriented randomly so that on large scale matter do not interact with each other

electromagnetically. Actually, these interactions are important in the early Universe when

it was hotter and denser, but can be neglected at more recent epochs.

1.3.2 Photons

For a dilute weakly-interacting gas with g∗ internal degrees of freedom, the number density

n, energy density ρ and pressure P are given by [60, 62]

n =
g∗

(2π)3

∫
f(~x, ~p)d3p, (1.37)

ρ =
g∗

(2π)3

∫
E(~p)f(~x, ~p)d3p, (1.38)

P =
g∗

(2π)3

∫
|~p|2

3E(~p)
f(~x, ~p)d3p, (1.39)
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where E2 = |~p|2 +m2 and f(~x, ~p) is the phase space distribution function (or occupation

number) which counts the number of particles around position ~x and momentum ~p in phase

space. If some component is in kinetic equilibrium, i.e. is in equilibrium at temperature

T , the distribution function is

f(~x, ~p) =
1

e(E−µ)/T ± 1
, (1.40)

where µ is the chemical potential. Fermions obey Fermi-Dirac statistics which is repre-

sented by the above equation with the +1 sign and bosons obey Bose-Einstein statistics

that is given by the −1 sign.

Basically, all information of the outside space comes from photons. They have a

well known homogeneous and isotropic distribution at one part in 105. Presently, the

temperature amounts to T0 = 2.725(2) K as measured by the FIRAS instrument aboard

the COBE satellite [63]. Combining equations (1.38) and (1.39) for a relativistic particle

(kBT � m) we have that

P =
1

3
ρ. (1.41)

Thus, photons obey a linear barotropic equation of state with ω = 1/3 and using (1.14)

we can see that their energy density evolves as ργ ∝ a−4.

Photons can be described as a gas with a temperature given by the COBE satellite

and a chemical potential µ = 0, since they can be freely created or destroyed. In fact,

observationally, the limits on a chemical potential are |µ|/T < 9×10−5 [64], thus µ can be

safely neglected. With these assumptions, and knowing that photons have two degenerate

states given by their polarizations, we obtain from (1.38)

ργ =
π2

15
T 4. (1.42)

Since ργ ∝ a−4 this tells us that the temperature of the CMB must vary as T ∝ a−1.

With respect to the critical density today, the photon energy density is

ργ
ρcrit

=
π2

15

(
2.725K

a

)4
1

8.098× 10−11 h2 eV4 =
2.47× 10−5

h2a4
, (1.43)

where h parameterizes the Hubble constant H0 = 100h kmsec−1Mpc−1 and we used that

1eV = 11605K. Substituting the observational value of h above, h = 0.72 [65], and using
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a normalization of a given by a0 = 1, we have Ωγ0 ≈ 5× 10−5.

1.3.3 Baryons

Generally in cosmology, we call the protons, neutrons and electrons that together build

the atoms, as baryons. Although electrons are not baryons, but leptons, because their

masses are so small in comparison with that of the protons and neutrons, we can consider

that atoms are made of baryons. In this way, the baryons form all the known matter

content in the Universe.

Using equations (1.37), (1.38) and (1.39) for non-relativistic particles (m � kBT ),

both fermionic and bosonic components result in the same equations for the number

density, energy density and pressure

n = g∗

(
mT

2π

)3/2

e−(m−µ)/T , (1.44)

ρ = mn, (1.45)

P = nT � ρ. (1.46)

Combining these equations we can construct an equation of state P (ρ) = ωρ ≈ 0 for non-

relativistic particles. In an ideal case we consider that ω = const. = 0. Thus, as baryons

are non-relativistic particles, we consider that they obey an equation of state with ω = 0.

With this equation of state, the continuity equation (1.14) gives us that ρb ∝ a−3.

Now, we know how the energy density of baryons evolves with the scale factor. In

this way, if we obtain the value of the energy density at some epoch, all the history

will be established. However, unlike the CMB photons which can be described by a gas

with a temperature T and zero chemical potential, the above equations show that the

energy density for non-relativistic particles does not depend on the temperature T only.

Therefore, the energy density for non-relativistic particles must be measured directly from

observations.

There are four methods to measure the density of baryons and all of them are in

good agreement [66]. The first method consists in observing baryons in galaxies today,

the baryon density can be obtained estimating the mass of stars and mainly the mass

of gas in the groups of galaxies. The second way is obtained by observing the spectra

of distant quasars and the amount of light absorbed by the intervening hydrogen [67].
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The anisotropies in the Universe also depend on the baryon density and studying them

constitutes another form to infer the baryon density [68]. At last, the light element

abundances are able to pin down the baryon density [69]. All of these observations restrict

the baryon density in the Universe to 2− 5% of the critical density.

1.3.4 Neutrinos

Neutrinos were in equilibrium with the initial cosmic plasma, but lost contact with it

slightly before the annihilation of electrons and positrons when the temperature was of the

order of the electron mass. Therefore, neutrinos did not receive any energy contribution

from this annihilation while the photons did. Then, photons are hotter than the neutrinos.

From the second law of thermodynamics

TdS = d(ρV ) + PdV − µd(nV ), (1.47)

we obtain that the entropy density is defined by

s ≡ ρ+ P − µn
T

. (1.48)

Now, as all evidences indicate that |µ| � T , we can assume that all chemical potentials

are zero. Thus, using the energy conservation (1.14) it can be demonstrated that the

entropy per comoving volume is conserved, sa3 = constant.

Equations (1.38) and (1.48) tell us that massless bosons contribute with 2π2T 3/45 to

the entropy density for each degenerate state, massless fermions with 7/8 of this value and

from (1.44), (1.45) and (1.46) we see that massive particles have a negligible contribution

to the entropy density. Before the annihilation of electrons and positrons, the particles

in equilibrium in the cosmic plasma were electrons, positrons, neutrinos, anti-neutrinos

and photons. Considering the degeneracies of these particles, the entropy density at this

epoch a1 was

s(a1) =
2π2

45
T 3

1

[
2 +

7

8
(2 + 2 + 3 + 3)

]
=

43π2

90
T 3

1 . (1.49)

After the annihilation, there are no electrons or positrons and the neutrinos are not in
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equilibrium with the photons. Thus at an epoch a2 after annihilation, we have

s(a2) =
2π2

45

(
2T 3

γ +
7

8
6T 3

ν

)
. (1.50)

However, since sa3 = constant, we obtain

s(a1)a3
1 =

43π2

90
(a1T1)3 =

4π2

45

[(
Tγ
Tν

)3

+
21

8

]
(a2Tν)

3 = s(a2)a3
2. (1.51)

The neutrino temperature varies proportionally to a−1, i.e. a1T1 = a2Tν , thus the above

relation implies

Tν
Tγ

=

(
4

11

)1/3

. (1.52)

Now that we can associate a temperature with the neutrinos, we can use (1.38) for

a massless fermion to compute the energy density of neutrinos. Each neutrino has one

degree of freedom and there are three generations of them with their corresponding anti-

particles, thus taking into account all of these contributions the neutrinos possess a total

of six degrees of freedom. In this way

ρν =
7π2

40

(
4

11

)4/3

T 4
γ . (1.53)

With respect to the critical density, results

Ων0 =
ρν0

ρcrit0
=

1.68× 10−5

h2
. (1.54)

Actually, neutrinos seem to be massive as observed from oscillations of solar [70] and

atmospheric neutrinos [71]. Nevertheless, at epochs where the temperature is much larger

than the predicted mass of the neutrinos, we can consider them as massless. Just when

kBT ∼ mν or less, we have to consider the mass of the neutrinos. For a massive neutrino,

the relative energy density will be [60]

Ων0 =
mν

94h2eV
. (1.55)

Finally, we emphasize that, unlike baryons and photons, cosmic neutrinos have not been

observed. Their contributions come from theoretical arguments.
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1.3.5 Dark Matter

There is a large number of evidences in ranges from the galactic to cosmological scales

indicating the presence of a new component in the Universe or some deviation from

the known laws of gravitation. If it actually is a new component, it cannot interact

electromagnetically, since its presence can only be detected via gravitational effects. Thus,

it is dubbed dark matter.

On galactic scales, the most convincing and direct evidence of dark matter comes

from observations of the rotation curves. The rotation curves of galaxies are a measure of

circular velocities of stars and gas as a function of their distance from the galactic center.

Theoretically, using Newtonian dynamics, we expect the circular velocities to be

v(r) =

√
GM(r)

r
, (1.56)

where M(r) ≡ 4π
∫
ρ(r)r2dr is the mass interior to the radius r and ρ(r) is the mass

density profile. The above equation tells us that beyond the optical disc the circular

velocity should scale as v(r) ∝ 1/
√
r. However, observationally, rotation curves usually

exhibit a flat behavior at large distances from the galactic center as can be seen in Fig.

1.1.

Figure 1.1: Rotation curve for the spiral galaxy NGC 6503. The dotted, dashed and dash-
dotted lines are the contributions to the circular velocities of gas, disk and dark matter halo,
respectively. Extracted from [72], itself based on [73].
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Actually, the first indication of dark matter was obtained by Zwicky in 1933 [74].

Studying the Coma cluster he inferred a mass-to-light ratio of 400 solar masses per solar

luminosity, two orders of magnitude greater than observed in the solar neighborhood. The

mass of a galaxy cluster can be determined in several ways: applying the virial theorem

to the observed distribution of radial velocities, by weak gravitational lensing, and from

the X-ray emitted by the hot gas in the cluster. All of these measurements are consistent

with Ωm ∼ 0.2− 0.3 [75–77].

Finally, on cosmological scales, the anisotropies of the cosmic microwave background

(CMB) provide stringent constraints on the abundance of baryons and dark matter in the

Universe as placed by the Wilkinson Microwave Anisotropy Probe (WMAP) data. Recent

determinations give Ωdm0 = 0.228± 0.013 [68].

All of these evidences show that there must be in the Universe a component that

contributes with around 25% of the critical energy density. Since baryons contribute with

only 5%, this component must be nonbaryonic. Because it does not interact electromag-

netically the first guess would be neutrinos. However, from (1.55) and the upper limit on

the neutrino mass mν < 2.05eV [78], we have

Ωνh
2 ≤ 0.07, (1.57)

which means that there are not enough neutrinos to be the dominant component of dark

matter. Thus, dark matter must really be a new component.

1.3.6 Dark Energy

Observations of anisotropies in the CMB have shown that the geometry of the spatial

section is very close to a flat one [79–82]. Actually, we also expect this theoretically from

inflationary scenarios in the early Universe [60]. This means that the total energy density

should be equal to the critical density. However, summing the contributions of all the

components described so far, we obtain that they contribute with around 30% of the

critical density. Thus, there is a lack of 70% in the energy content of the Universe.

Using the luminosity distance (1.29) we can find the apparent magnitude m of an
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object with intrinsic magnitude M . Conventionally we have

m−M = 5 log

(
dL

10pc

)
+K, (1.58)

whereK is a shifting correction factor of the spectrum into the wavelength range measured.

In 1998, two groups measured the apparent magnitude of various supernovae Type Ia and

established that a universe dominated by a vacuum energy density, i.e. a cosmological

constant, with equation of state ω = −1 is favored by the data [83, 84], as shown in Figure

1.2.

Figure 1.2: Hubble diagram from distant Type Ia supernovae. It is plotted three curves
predicted by different energy contents in the Universe. Extracted from [60].

These two sets of observational evidences show that beyond dark matter there must

be another unknown component in the Universe, which is called dark energy. Then, we

conclude that our present Universe is composed of around 5% of baryons, 25% of dark

matter and 70% of dark energy, with insignificant contributions of photons and neutrinos.
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Nowadays, the best model explaining the data is the ΛCDM , with cold dark matter

(CDM) and where dark energy is the cosmological constant Λ.

The ΛCDM model is the simplest one that fits the data. However, it suffers of two

theoretical problems. The first occurs when we try to associate the cosmological constant

with the vacuum energy density. In quantum field theory, we generally introduce a cut

off on the energy beyond which our theory cannot describe the physics. If we introduce

this cut off at the Planck reduced mass MPl = (8πG)−1/2 = 2.436 × 1018GeV [85], the

vacuum energy density will be given by ρvac ∼ M4
Pl ∼ 1073(GeV )4. On the other hand,

the energy density of dark energy today is ρΛ = 3M2
PlH

2
0 ΩΛ ∼ 10−47(GeV )4. Thus, there

is a difference of 120 orders of magnitude, which is known as the cosmological constant

problem.

The second problem arises when we consider the evolution of the components in the

Universe. As we already saw, the non-relativistic matter (baryons and dark matter)

scales as ρm ∝ a−3, radiation scales as ρr ∝ a−4 and the cosmological constant has a

density ρΛ = constant. Therefore, each component scales in a very different way. But,

as mentioned above, matter and dark energy have the same order of magnitude today.

Thus, the question arise: “why matter and dark energy have the same order of magnitude

exactly now in the whole history of the Universe?”. This is called the coincidence problem.

These difficulties in the ΛCDM model have motivated the search for new models of

dark energy. In conclusion we observe that both dark matter and dark energy have no

explanation in the standard model of particle physics.



Chapter 2

Cosmological Perturbations

The description of the Universe was, up to now, performed considering it as homoge-

neous and isotropic, as described by the cosmological principle. However, the structures

around us imply that at some point we have to break these assumptions and introduce

inhomogeneities and anisotropies in our model. Because on large scales the cosmological

principle leads to correct results, we shall do that using perturbation theory.

2.1 Perturbed Metric

The metric of a flat FLRW universe with small perturbations can be written as

ds2 =
[

(0)gµν + δgµν(x
γ)
]
dxµdxν , (2.1)

where (0)gµν corresponds to the unperturbed part and |δgµν | � |(0)gµν |. Using the confor-

mal time (1.17), the most general components of the metric tensor are given by [86]

g00 = −a2(1 + 2ψ), (2.2)

g0i = a2(B,i +Si), (2.3)

gij = a2 [(1 + 2φ)δij +DijE + Fi,j +Fj,i +hij] , (2.4)

where the perturbations are introduced by the scalar functions ψ, B, φ and E; the diver-

gence free vectors Si and Fi; and a traceless and transverse tensor hij. Here the comma

means differentiation with respect to the respective spatial index, e.g. B,i = ∂B/∂xi. We

21
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also define

Dij =

(
∂i∂j −

1

3
δij∇2

)
. (2.5)

From the three types of perturbations, the scalars are the most important in cosmology

because they present gravitational instability and can lead to structure formation in the

Universe. The vector perturbations are responsible for rotational motions of the fluid and

decay very quickly. Finally, tensor perturbations describe gravitational waves, but in the

linear approximation they do not induce perturbations in the perfect fluid. Moreover,

the decomposition theorem [60, 86] states that these three types of perturbations evolve

independently. Thus, in this work, we will only be interested in scalar perturbations. In

this case the metric becomes

ds2 = a2
[
−(1 + 2ψ)dη2 + 2∂iBdηdx

i + (1 + 2φ)δijdx
idxj +DijEdx

idxj
]
. (2.6)

Given a coordinate transformation

xµ → x̃µ = xµ + ξµ, (2.7)

where ξµ ≡ (ξ0, ξi⊥+ ζ ′i) are infinitesimally small functions of space and time, the metric

tensor has its components changed by

g̃µν(x̃
ρ) =

∂xγ

∂x̃µ
∂xδ

∂x̃ν
gγδ(x

ρ) ≈ (0)gµν(x
ρ) + δgµν − (0)gµδξ

δ,ν − (0)gγνξ
γ,µ , (2.8)

at first order in δg and ξ. The new coordinate system also allows to split the metric into

a background and a perturbed part

g̃µν(x̃
ρ) = (0)gµν(x̃

ρ) + δg̃µν , (2.9)

where (0)gµν(x̃
ρ) is the Friedmann metric in the new coordinates. On the other hand,

expanding the background part of (2.1) in a Taylor series around the coordinates x̃, we

have

(0)gµν(x
ρ) ≈ (0)gµν(x̃

ρ) − (0)gµν ,γ ξ
γ . (2.10)

Therefore, comparing Eqs. (2.8) and (2.9) and also using Eq. (2.10), we obtain the gauge
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transformation law

δgµν → δg̃µν = δgµν − (0)gµν ,γ ξ
γ − (0)gµδξ

δ,ν − (0)gγνξ
γ,µ . (2.11)

Using the gauge transformation law (2.11), the metric (2.6) has its components changed

as

ψ̃ = ψ − 1

a
(aξ0)′, (2.12)

B̃ = B − ζ ′ + ξ0, (2.13)

φ̃ = φ− 1

6
∇2E − a′

a
ξ0, (2.14)

Ẽ = E − 2ζ. (2.15)

Here a prime means the derivative with respect to the conformal time. The coordinate

transformation (2.7) is completely arbitrary, then we can choose ξ0 and ζ freely. Thus, the

above transformations of the metric components show we can choose ξ0 and ζ appropri-

ately in order to eliminate two of the four functions ψ, B, φ and E. Therefore, there are

just two physical perturbations. Combining equations (2.12)-(2.15), we can construct two

gauge-invariant functions which span the two-dimensional space of physical perturbations

Ψ = ψ − 1

a

[(
−B +

E ′

2

)
a

]′
, (2.16)

Φ = φ− 1

6
∇2E +

a′

a

(
B − E ′

2

)
. (2.17)

Instead of working with gauge-invariant functions, we can impose two conditions on

the coordinate transformation, which is equivalent to a gauge choice. In particular, the

conformal-Newtonian gauge is obtained with coordinates ξ0 and ζ such that B = E = 0.

Another gauge, widely used in the literature, is the synchronous gauge. It corresponds

to the gauge choice ψ = B = 0. However, unlike the conformal-Newtonian gauge, the

synchronous gauge does not fix the coordinates uniquely. If the conditions ψ = B = 0 are

satisfied in a coordinate system xµ ≡ (η, ~x), they will also be satisfied in any coordinate

system x̃µ given by

η̃ = η +
C1(xj)

a
, x̃i = xi + C1,i (x

j)

∫
dη

a
+ C2,i (x

j), (2.18)
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where C1(xj) and C2(xj) are arbitrary functions of the spatial coordinates.

Equations (2.16) and (2.17) allow to relate the gauge-invariant perturbations with the

perturbations in a particular gauge. Thus, if we know a solution for perturbations with

gauge-invariant variables, or using the conformal-Newtonian gauge, we can transform it

into the synchronous gauge without needing to solve the Einstein equations again.

2.2 Einstein Equations

Now we know the components of the perturbed metric tensor. We can thus obtain their

evolution using the Einstein equations (1.5). Assuming the perturbations are small we

can expand them in a Taylor series. Thus, as we did to the metric tensor, it is possible

to split the Einstein tensor Gµ
ν and the energy-momentum tensor T µν into background

and perturbed parts: Gµ
ν = (0)Gµ

ν + δGµ
ν and T µν = (0)T µν + δT µν . The zeroth order

terms correspond to the homogeneous and isotropic background and the others give us

the perturbed Einstein equations

δGµ
ν = 8πGδT µν . (2.19)

The geometric part of the Einstein equations (2.19) can be solved following the same

procedure adopted in the last chapter. Thus, using the perturbed metric (2.6) in the

conformal-Newtonian gauge and keeping only first-order terms, we obtain

δG0
0 = 2a−2

[
3H (HΨ− Φ′) +∇2Φ

]
, (2.20)

δG0
i = 2a−2 (Φ′ −HΨ) ,i , (2.21)

δGi
j = 2a−2

[(
H2 + 2H′

)
Ψ +HΨ′ − Φ′′ − 2HΦ′

]
δij +

a−2
[
∇2 (Ψ + Φ) δij − (Ψ + Φ) ,ij

]
. (2.22)

Here we defined the conformal Hubble parameter H ≡ 1
a
da
dη

= Ha and from Eqs. (2.16)

and (2.17) we see that Ψ = ψ and Φ = φ in this gauge.

From equations (2.20)-(2.22), we observe that the Einstein equations (2.19) turn out

to be a set of linear partial differential equations. If we Fourier expand all perturbation
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quantities

θ(~x, η) =

∫
d3k

(2π)3
ei
~k·~xθ̃k(η), (2.23)

where θ denotes a generic perturbation and the subscript k represents a Fourier mode for

each wavenumber k, the resulting Fourier amplitudes obey ordinary differential equations.

Thus, working in the Fourier space makes things easier. Furthermore, the Fourier modes

θk evolve independently in the linear regime. Therefore, instead of solving an infinite

number of coupled equations, we can solve for one k-mode at a time. In practice, each

perturbation quantity θ and its derivatives can be substituted as

θ(~x, η) → ei
~k·~xθ̃(η), (2.24)

~∇θ(~x, η) → iei
~k·~x~kθ̃(η), (2.25)

∇2θ(~x, η) ≡ ∇i∇iθ(~x, η) → −ei~k·~xk2θ̃(η), (2.26)

where we are omitting the subscript k to simplify the notation.

The Einstein equations are a set of 16 equations. However, the symmetries in the

indices µ, ν reduce the number of independent equations to 10. Only two of the four scalar

functions in the metric (2.6) represent physical states. Thus, choosing the conformal-

Newtonian gauge, we just need two Einstein equations to obtain the evolution of the

functions Ψ and Φ. We choose the time-time component of the Einstein equations (2.19)

δG̃0
0 =

2

a2

[
3H
(
HΨ̃− Φ̃′

)
− k2Φ̃

]
= 8πGδT̃ 0

0 (2.27)

and the longitudinal traceless projection of the space-space components

(
k̂ik̂

j − 1

3
δji

)
δG̃i

j =
2

3a2
k2(Ψ̃ + Φ̃) = 8πG

(
k̂ik̂

j − 1

3
δji

)
δT̃ ij . (2.28)

These equations were written in the Fourier space and we defined the unit direction

wavevector k̂i = k̂i, which satisfies δij k̂
ik̂j = 1.

2.3 Boltzmann Equation

To solve the Einstein equations (2.27) and (2.28) we need the first-order components of

the energy-momentum tensor. This could be obtained using the hydrodynamic equations
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as in the homogeneous and isotropic case. However, those equations can be obtained

by the first moments of the Boltzmann equation, which means that it is more general.

Furthermore, the radiation description is made using fluctuations of the temperature, and

the Boltzmann formalism is more natural in this case.

The Boltzmann equation formalizes the statement that the variation in the distribution

of some species is equal to the difference between the rates of ingoing and outgoing

particles of that species. In its differential form, the Boltzmann equation is

df

dt
= C[f ], (2.29)

where f is the distribution function and C[f ] is a functional of the distribution function,

which establishes all possible collision terms of the particle of interest. In general, f is a

function of the spacetime point xµ = (t, ~x) and also of the four-dimensional momentum

vector in comoving frame

P µ ≡ dxµ

dλ
, (2.30)

where λ parametrizes the particle’s path. The four-vector P µ is related to the physical

momentum four-vector pµ by P µ = ∂xµ

∂x̃ν
pν , with x̃ν in the physical frame.

In order to calculate the perturbed energy-momentum tensor, we develop below the

Boltzmann equation for each component in the Universe.

2.3.1 Photons

Photons satisfy the energy-momentum relation

P 2 ≡ gµνP
µP ν = −(1 + 2Ψ)(P 0)2 + gijP

iP j = −(1 + 2Ψ)(P 0)2 + p2 = 0, (2.31)

where we used the metric (2.6) in the conformal-Newtonian gauge passing to the cosmic

time and p2 is the generalized magnitude of the momentum. The above relation allows

us to express P 0 in terms of p. Thus, there are only three independent components of

the four-dimensional momentum vector. Then, we can expand the total time derivative

of f in the Boltzmann equation (2.29) considering only the momentum magnitude p and
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angular direction p̂i = p̂i:

df

dt
=
∂f

∂t
+
∂f

∂xi
· dx

i

dt
+
∂f

∂p
· dp
dt

+
∂f

∂p̂i
· dp̂

i

dt
, (2.32)

where δij p̂
ip̂j = 1.

Let us begin to solve equation (2.32). The last term does not contribute at first order

in perturbation theory. In fact, the zeroth order part of f depends only on p, which

means ∂f/∂p̂i is nonzero only in a perturbed level. In the same way, a photon moves in a

straight line in the absence of the potentials Ψ and Φ, therefore, dp̂i/dt is also a perturbed

quantity. Thus, the last term of (2.32) must be of second order.

Using the definition of the comoving energy-momentum vector (2.30), we obtain

dxi

dt
=
dxi

dλ

dλ

dt
=
P i

P 0
. (2.33)

From (2.31) the time-component of P µ is given by

P 0 =
p√

1 + 2Ψ
= p(1−Ψ), (2.34)

where the last equality is valid at first order. On the other hand, the spatial component

is proportional to the unit direction vector p̂i

P i ≡ |P |p̂i. (2.35)

Plugging (2.35) in the definition of the spatial magnitude, we find

p2 ≡ gijP
iP j = a2(1 + 2Φ)(δij p̂

ip̂j)P 2 = a2(1 + 2Φ)P 2, (2.36)

which gives |P | = p(1 − Φ)/a at first order. Therefore, combining equations (2.34) and

(2.35), we have
dxi

dt
=

1− Φ + Ψ

a
p̂i. (2.37)

The next term we need to evaluate is dp/dt. This factor can be calculated from the

time component of the geodesic equation dP 0/dλ = −Γ0
µνP

µP ν in a simple, although
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tedious, way [60]. Here we just show the final result

dp

dt
= −p

(
H +

∂Φ

∂t
+
p̂i

a

∂Ψ

∂xi

)
. (2.38)

Combining the terms obtained so far, the left hand side of the Boltzmann equation for

photons yields
df

dt
=
∂f

∂t
+
p̂i

a

∂f

∂xi
− p∂f

∂p

(
H +

∂Φ

∂t
+
p̂i

a

∂Ψ

∂xi

)
, (2.39)

where we neglected the product of ∂f/∂xi and either Ψ or Φ because they are second-order

terms.

Photons in a homogeneous and isotropic distribution with an equilibrium temperature

T obey the Bose-Einstein statistics given by equation (1.40). There, T is a function

of time only. To describe perturbations about this distribution, we have to introduce

inhomogeneities, so that it must have an ~x dependence, and anisotropies, which means

a dependence with the direction of propagation p̂. Thus, for photons, the distribution

function is given by

f(t, ~x, p, p̂, ) =

{
exp

[
p

T (t)[1 + Θ(t, ~x, p̂)]

]
− 1

}−1

, (2.40)

where T (t) is the zero-order temperature and Θ ≡ δT/T characterizes the perturbation to

the distribution function. Here we have assumed that Θ does not depend on the magnitude

p, which is a valid assumption since in a Compton scattering p is approximately conserved.

Expanding up to first order,

f = f (0) + T
∂f (0)

∂T
Θ = f (0) − p∂f

(0)

∂p
Θ. (2.41)

Plugging Eq. (2.41) into Eq. (2.39) and collecting terms of similar order, at zeroth order

we find the background equations for the number and energy conservation from the first

moments of the Boltzmann equation. Finally, the first-order terms result in

df (1)

dt
= −p∂f

(0)

dp

[
∂Θ

∂t
+
p̂i

a

∂Θ

∂xi
+
∂Φ

∂t
+
p̂i

a

∂Ψ

∂xi

]
. (2.42)

The last step necessary to calculate the Boltzmann equation for photons is the collision
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term. Photons interact with electrons through the Compton scattering

e−(~q) + γ(~p)↔ e−(~q ′) + γ(~p ′), (2.43)

where the momentum of each particle is indicated. To obtain the effect of the Compton

scattering in the distribution function of photons with momentum ~p, we must sum the

contributions of all the other momenta to the collision term [60]

C[f(~p)] =
1

p

∫
d3q

(2π)32Ee(q)

∫
d3q′

(2π)32Ee(q′)

∫
d3p′

(2π)32E(p′)
|M|2(2π)4

× δ3[~p+ ~q − ~p ′ − ~q ′]δ[E(p) + Ee(q)− E(p′)− Ee(q′)]× {fe(~q ′)f(~p ′)− fe(~q)f(~p)} .

(2.44)

Some explanation about the collision term is fruitful here. First we note that in the

Boltzmann equation (2.29) we considered the total time derivative of the distribution f .

However, general relativity requires derivatives with respect to the affine parameter λ,

df
dλ

= dt
dλ

df
dt

= P 0 df
dt

. At first order this introduces the factor 1
p

in front of the integrals.

Actually, the integrals are over the four-momentum vectors and the factors of 2E come

from the integration over the time component. M is the scattering amplitude of the

process in question, which can be found using the Feynman rules. The delta functions

arise from conservation of energy and momentum. Finally, the last terms count the

number of particles with the given momenta 1.

At the epochs of interest the energies are the relativistic limit for photons E(p) = p

and the non-relativistic limit for electrons Ee(q) = me + q2/(2me) ≈ me. Thus, we can

use the three-dimensional delta function to eliminate the integral over ~q ′

C[f(~p)] =
π

4m2
ep

∫
d3q

(2π)3

∫
d3p′

(2π)3p′
|M|2 × δ[p+

q2

2me

− p′ − (~q + ~p− ~p ′)2

2me

]

× {fe(~q + ~p− ~p ′)f(~p ′)− fe(~q)f(~p)} . (2.45)

For non-relativistic Compton scattering very little energy is transferred Ee(q) − Ee(~q +

~p − ~p ′) ≈ (~p ′−~p)·~q
me

, which holds since ~q is much larger than ~p and ~p ′. In this limit, the

scattering is nearly elastic p′ ≈ p. As the change in the electron energy is small, it makes

1We should include additional factors of 1 + f and 1− fe for stimulated emission and Pauli blocking,
respectively. However, at first order these terms can be neglected.
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sense to expand the final electron kinetic energy (~q + ~p − ~p ′)2/(2me) around its zeroth

order value q2/(2me). Therefore, we can make the formal expansion in the delta function

δ[p+
q2

2me

− p′ − (~q + ~p− ~p ′)2

2me

] ≈ δ(p− p′)

+ [Ee(q
′)− Ee(q)]

∂δ[p+ Ee(q)− p′ − Ee(q′)]
∂Ee(q′)

∣∣∣∣
Ee(q)=Ee(q′)

= δ(p− p′) +
(~p− ~p ′) · ~q

me

∂δ(p− p′)
∂p′

. (2.46)

Using this expansion and fe(~q + ~p− ~p ′) ≈ fe(~q), we obtain

C[f(~p)] =
π

4m2
ep

∫
d3q

(2π)3
fe(~q)

∫
d3p′

(2π)3p′
|M|2

×
{
δ(p− p′) +

(~p− ~p ′) · ~q
me

∂δ(p− p′)
∂p′

}
× {f(~p ′)− f(~p)} . (2.47)

The amplitude for Compton scattering can be found using the Feynman rules [87]

|M|2 = 12πσTm
2
e(ε̂ · ε̂ ′), (2.48)

where σT is the Thomson cross section, ε̂ and ε̂ ′ are the polarization vectors of the initial

and final photons, respectively. For simplicity, we average over all polarizations and

angular dependence which results in a constant amplitude

|M|2 = 8πσTm
2
e. (2.49)

Thus, using this amplitude and the expansion of the distribution function (2.41), the

collision term can be written as

C[f(~p)] =
2π2neσT

p

∫
d3p′

(2π)3p′
×
{
δ(p− p′) + (~p− ~p ′) · ~vb

∂δ(p− p′)
∂p′

}
×
{
f (0)(~p ′)− f (0)(~p)− p′∂f

(0)

∂p′
Θ(p̂ ′) + p

∂f (0)

∂p
Θ(p̂)

}
, (2.50)

where we did the integrals over momentum ~q using the number density definition (1.37)

and we define the velocity as

vi ≡ g∗
n

∫
d3p

(2π)3
f
pp̂i

E
. (2.51)
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The spin degeneracy g∗ can be incorporated into the phase space distribution f .

To solve the integral over ~p ′ in Eq. (2.50), we split the radial and angular parts of the

differential d3p′. Then, keeping only first-order terms in perturbations, the integral over

the solid angle yields

C[f(~p)] =
neσT
p

∫ ∞
0

dp′p′
{
δ(p− p′)

[
−p′∂f

(0)

∂p′
Θ0 + p

∂f (0)

∂p
Θ(p̂)

]
+~p · ~vb

∂δ(p− p′)
∂p′

[
f (0)(p′)− f (0)(p)

]}
, (2.52)

where we define the multipoles

Θl ≡
1

(−i)l

∫ 1

−1

dµ

2
Pl(µ)Θ(µ), (2.53)

such that Pl is the Legendre polynomial of order l and instead of the unit vector p̂, we

used the direction cosine

µ ≡
~k · p̂
k
. (2.54)

Finally, the p′ integral can be done in the first line of Eq. (2.52) with the delta function

and in the second line integrating by parts, the result is [60]

C[f(~p)] = −p∂f
(0)

∂p
neσT [Θ0 −Θ(p̂) + p̂ · ~vb] , (2.55)

where ne is the electron density and ~vb is the velocity of the electrons, which is associated

with the baryons.

At last the first-order Boltzmann equation (2.29) for photons can be obtained equating

Eq. (2.42) and Eq. (2.55)

∂Θ

∂t
+
p̂i

a

∂Θ

∂xi
+
∂Φ

∂t
+
p̂i

a

∂Ψ

∂xi
= neσT [Θ0 −Θ(p̂) + p̂ · ~vb] . (2.56)

As usual we assume the fluid to be irrotational, which means we can write vib = vbk
i/k.

Thus, passing to the conformal time and Fourier space we obtain

Θ̃′ + ikµΘ̃ + Φ̃′ + ikµΨ̃ = −τ ′
[
Θ̃0 − Θ̃(p̂) + µṽb

]
, (2.57)
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where we defined the optical depth

τ ≡
∫ η0

η

neσTadη̃. (2.58)

When deriving Eq. (2.57) we use a constant amplitude given by (2.49). Actually,

the Compton scattering has an angular dependence and it also couples the temperature

field to the strength of the polarization field ΘP . The general expression can be obtained

following the same procedure we did, but using the complete amplitude (2.48). The

answer is [60]

Θ̃′ + ikµΘ̃ + Φ̃′ + ikµΨ̃ = −τ ′[Θ̃0 − Θ̃ + µṽb −
P2(µ)

2
Π], (2.59)

where Π = Θ̃2 + Θ̃P2 + Θ̃P0. ΘP0 and ΘP2 are the monopole and quadrupole of the

polarization field, which satisfies

Θ̃′P + ikµΘ̃P = −τ ′[−Θ̃P +
1− P2(µ)

2
Π]. (2.60)

The above equations show that even if we are interested only in the temperature field, it

is influenced by the polarization field.

2.3.2 Baryons

The formalism presented in the last subsection can be used to obtain the Boltzmann

equation for any constituent in the Universe. We now move to consider the behavior of

massive particles, for which we have

P 2 = gµνP
µP ν = −m2. (2.61)

Defining the energy

E ≡
√
p2 +m2, (2.62)

where p2 is the same as in equation (2.36), the four-momentum of a massive particle is

given by

P µ =

[
(1−Ψ)E,

1− Φ

a
pp̂i
]
. (2.63)
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Instead of the momentum p, massive particles must be described by the energy E.

Therefore, the left hand side of the Boltzmann equation (2.29) is expanded as

df

dt
=
∂f

∂t
+
∂f

∂xi
· dx

i

dt
+
∂f

∂E
· dE
dt

+
∂f

∂p̂i
· dp̂

i

dt
. (2.64)

Following the same steps as for the case of photons, we can obtain the coefficients dxi/dt

and dE/dt such that Eq. (2.64) can be rewritten as

df

dt
=
∂f

∂t
+
p̂i

a

p

E

∂f

∂xi
− p ∂f

∂E

(
H
p

E
+
p

E

∂Φ

∂t
+
p̂i

a

∂Ψ

∂xi

)
. (2.65)

Once again we neglected the last term in Eq. (2.64) as it does not contribute at first order.

The main difference of this equation to the photon case is the presence of factors p/E,

which arise from the energy-momentum constraint. The massless case can be recovered

from Eq. (2.65) with E = p.

When we considered photons, to complete the left hand side of the Boltzmann equa-

tion, we needed the knowledge of the distribution function. For massive particles, the

treatment can be simplified if they are nonrelativistic. In this case, we do not need a

detailed information about the distribution function, all we need is to take moments of

the Boltzmann equation taking into account that terms second-order in v = p/E must be

neglected because of the nonrelativistic behavior.

The zeroth moment is obtained integrating the Boltzmann equation as

∫
d3p

(2π)3

df

dt
=

∂

∂t

∫
d3p

(2π)3
f +

1

a

∂

∂xi

∫
d3p

(2π)3
f
pp̂i

E

−
[
H +

∂Φ

∂t

] ∫
d3p

(2π)3

∂f

∂E

p2

E
− 1

a

∂Ψ

∂xi

∫
d3p

(2π)3

∂f

∂E
pp̂i. (2.66)

From the definitions (1.37) and (2.51), the first two terms of the right hand side of

equation (2.66) can be written in terms of the number density and velocity, respectively

2. To integrate the third term of the r.h.s. of Eq. (2.66) we observe that dE/dp = p/E,

thus

∫
d3p

(2π)3

∂f

∂E

p2

E
=

∫
d3p

(2π)3
p
∂f

∂p
=

∫
dΩ

(2π)3

∫ ∞
0

dpp3∂f

∂p
= −3

∫
dΩ

(2π)3

∫ ∞
0

dp p2f = −3n,

(2.67)

2The spin degeneracy g∗ can be incorporated in the phase space distribution f .
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where in the third step we integrated by parts. The last term of (2.66) does not contribute

at first order since the integral over the direction vector is null at zeroth order and that

integral multiplies a metric perturbation, thus this term is at least of second order. Finally,

we obtain ∫
d3p

(2π)3

df

dt
=
∂n

∂t
+

1

a

∂(nvi)

∂xi
+ 3

(
H +

∂Φ

∂t

)
n. (2.68)

The above result for the zeroth moment of the Boltzmann equation has introduced

two unknown variables: n and vi. Thus, we need one more equation to close the system.

This additional equation can be obtained taking the first moment

∫
d3p

(2π)3

pp̂j

E

df

dt
=

∂

∂t

∫
d3p

(2π)3
f
pp̂j

E
+

1

a

∂

∂xi

∫
d3p

(2π)3
f
p2p̂ip̂j

E2

−
[
H +

∂Φ

∂t

] ∫
d3p

(2π)3

∂f

∂E

p3p̂j

E2
− 1

a

∂Ψ

∂xi

∫
d3p

(2π)3

∂f

∂E

p2p̂ip̂j

E
. (2.69)

The first term on the r.h.s. can be identified with the partial time derivative of nvj.

The second one is neglected at first order since it depends on (p/E)2. To calculate the

last terms, we follow the same procedure used in Eq. (2.67). Therefore, keeping only

first-order terms, the first moment of the Boltzmann equation is

∫
d3p

(2π)3

pp̂j

E

df

dt
=
∂(nvj)

∂t
+ 4Hnvj +

n

a

∂Ψ

∂xj
. (2.70)

An interesting fact can be observed by taking moments of the Boltzmann equation: the

lth moment depends on the (l + 1)th moment. Thus, in principle, they constitute an

infinite hierarchy of equations. However, as we are considering nonrelativistic particles,

we neglected terms of second order and higher in (p/E) which correspond to the higher

moments. Therefore, Eqs. (2.68) and (2.70) form a closed system for n and vi.

Until now we restricted the analysis to the left hand side of the Boltzmann equation.

The results presented in equations (2.68) and (2.70) are general for any massive and

nonrelativistic component in the Universe. To proceed further let us restrict the study to

the case of baryons.

Electrons and protons are coupled by Coulomb scattering whose rate is much larger

than the expansion rate at all epochs of interest. Because of this tight coupling, electrons
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and protons have the same overdensities

ρe − ρ(0)
e

ρ
(0)
e

=
ρp − ρ(0)

p

ρ
(0)
p

≡ δb (2.71)

and velocities

~ve = ~vp ≡ ~vb. (2.72)

Besides the Coulomb scattering, baryons interact with photons through the Compton

scattering. Thus, the unintegrated Boltzmann equation for baryons is given by

dfb(t, ~x, ~q)

dt
= 〈ceγ〉pp′q′ , (2.73)

where 〈ceγ〉pp′q′ represents the Compton collision term, as in Eq. (2.44), and the subscripts

represent which momenta are being integrated. In principle, the collision term should have

an additional term account for the proton-photon Compton scattering, however, the cross

section for this process is much smaller than the electron-photon scattering and can be

ignored. We are also considering a simplified model with all electrons ionized.

To solve Eq. (2.73) we first take the zeroth moment integrating in the electron mo-

mentum ~q. Thus, using Eq. (2.68) we obtain

∂nb
∂t

+
1

a

∂(nbv
i
b)

∂xi
+ 3

(
H +

∂Φ

∂t

)
nb = 〈ceγ〉pp′q′q . (2.74)

The collision term in the right hand side vanishes since the integration is symmetric under

the interchange of p↔ p′ and q ↔ q′ while it is antisymmetric in the distribution function

factors. The number density can be split into a background part and a perturbed part as

nb = n
(0)
b [1 + δb]. Thus, collecting the zeroth order and first-order terms, and passing to

conformal time and Fourier space, the perturbed part gives us

δ̃′b + ikṽb + 3Φ̃′ = 0. (2.75)

The second equation, which describes the evolution of the velocity field, is obtained

taking the first moment of Eq. (2.73). In Eq. (2.70) we found the first moment of the

left-hand side of the Boltzmann equation. There we first multiplied by ~p/E and then

integrated. For baryons we multiply Eq. (2.73) by the momentum ~q instead of ~q/E. This
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will produce the same result as (2.70) except for a factor of mb

mb
∂(nbv

j
b)

∂t
+ 4Hmbnbv

j
b +

mbnb
a

∂Ψ

∂xj
=
〈
ceγq

j
〉
pp′q′q

. (2.76)

Using the conservation of the total momentum ~q + ~p, we have that 〈ceγ~q〉pp′q′q =

−〈ceγ~p〉pp′q′q. Passing to Fourier space and multiplying Eq. (2.76) by k̂j, the right-hand

side becomes −〈ceγpµ〉pp′q′q. In equation (2.55), we already computed 〈ceγ〉p′q′q, thus we

just need to multiply that result by pµ and integrate over all ~p,

−〈ceγpµ〉pp′q′q = neσT

∫
d3p

(2π)3
p2∂f

(0)

∂p
µ
[
Θ̃0 − Θ̃(µ) + µṽb

]
= neσT

∫ ∞
0

dp

2π2
p4∂f

(0)

∂p

∫ 1

−1

dµ

2
µ
[
Θ̃0 − Θ̃(µ) + µṽb

]
. (2.77)

In the second line we split the integration over ~p into a radial part and an angular part.

The integral over the radial part p can be made integrating by parts similar to Eq.(2.67),

the result is −4ργ. The first term in the µ-integration vanishes, the second term is the

dipole component of Θ and the last term reduces to vb/3. Therefore, collecting these

results in Eq. (2.76) and switching to conformal time, we obtain

ṽ′b +
a′

a
ṽb + ikΨ̃ = τ ′

4ργ
3ρb

[
3iΘ̃1 + ṽb

]
. (2.78)

2.3.3 Neutrinos

Equation (2.59) can be extended to massless neutrinos. They obey a similar equation

without a collision term,

Ñ ′ + ikµÑ + Φ̃′ + ikµΨ̃ = 0, (2.79)

where N is the perturbation in the neutrino temperature. On the other hand, if neutrinos

are massive, the left-hand side of the Boltzmann equation will be given by Eq. (2.65).

However, unlike the baryon case, neutrinos are relativistic particles, then we cannot ne-

glect terms of order (p/E)2 and higher, we have to take into account the whole hierarchy

of moments. A discussion about massive neutrinos can be found in [88].
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2.3.4 Dark Matter

Cold dark matter behaves like baryons. However, it does not interact electromagnetically,

then the perturbations are not affected by a collision term 3. Thus, the density contrast

of cold dark matter obeys an equation identical to (2.75)

δ̃′c + ikṽc + 3Φ̃′ = 0 (2.80)

and the velocity equation is similar to (2.78) without a collision term

ṽ′c +
a′

a
ṽc + ikΨ̃ = 0. (2.81)

We observe that to obtain Eqs. (2.80) and (2.81) we use the Boltzmann equation, how-

ever, cold dark matter always behaves like a fluid, which means that it can be described

completely by the energy-momentum tensor Tµν . Thus, we could obtain the evolution

equations above using the conservation of the energy-momentum tensor as we did in the

homogeneous case.

2.3.5 Energy-Momentum Tensor

Now that we know the equations governing the evolution of perturbations in the compo-

nents of the Universe, we are in position to complete the Einstein equations (2.27) and

(2.28) with the perturbed energy-momentum tensor. In general, the energy-momentum

tensor of a fluid with a distribution function f(t, ~x, ~p) is given by

T µν (t, ~x) = g∗

∫
d3p

(2π)3

pµpν
E

f(t, ~x, ~p). (2.82)

Remember that the Einstein equations take into account the contributions of all species

in the Universe, thus from the time-time component of (2.82), we obtain

T 0
0 = −

∑
all species i

g∗i

∫
d3p

(2π)3
Ei(p)fi(t, ~x, ~p). (2.83)

The distribution functions above consist in a background part and a perturbed part.

For nonrelativistic particles, the integral produces −ρi(1 + δi), while for relativistic ones,

3In the next chapter we will extend this model assuming an interaction in the dark sector.
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the integral can be done using the expansion (2.41). Considering only the first-order

perturbations, the Einstein equation (2.27) results

k2Φ̃ + 3
a′

a

(
Φ̃′ − Ψ̃

a′

a

)
= 4πGa2

[
ρcδ̃c + ρbδ̃b + 4ργΘ̃0 + 4ρνÑ0

]
, (2.84)

where Ñ0 is the monopole term of the neutrino temperature perturbations.

The second Einstein equation (2.28) needs the longitudinal traceless projection of the

space-space energy-momentum tensor

(
k̂ik̂

j − 1

3
δji

)
T ij =

∑
all species i

g∗i

∫
d3p

(2π)3
p2µ

2 − 1/3

Ei(p)
fi(t, ~x, ~p). (2.85)

We observe that the factor µ2−1/3 is equal to 2/3P2(µ), where P2(µ) is the second Legen-

dre polynomial. Therefore, the integral picks out the quadrupole part of the distributions.

We already saw that nonrelativistic particles do not contribute to the second moment and

higher, thus only photons and neutrinos must be taken into account. For example, let us

calculate the integral in the case of photons:

− 2

∫
dp

2π2
p4∂f

(0)

∂p

∫ 1

−1

dµ

2

2P2(µ)

3
Θ(µ) =

4Θ2

3

∫
dp

2π2
p4∂f

(0)

∂p
= −8ργΘ2

3
. (2.86)

Finally, combining (2.28) and (2.85) we obtain the second Einstein equation

k2(Φ̃ + Ψ̃) = −32πGa2
[
ργΘ̃2 + ρνÑ2

]
. (2.87)

We emphasize that, in principle, we should have a term for perturbations in the dark

energy in the Einstein equations above. However, until now, we consider it to be smooth

and important only very recently as described by the cosmological constant model.

2.4 Initial Conditions

Equations (2.59), (2.60), (2.75), (2.78), (2.79), (2.80), (2.81), (2.84) and (2.87) form a

system of nine first-order differential equations. To solve them we need a set of nine

initial conditions. However, in the early Universe, we can relate all perturbation variables

to the gravitational potential Φ, such that we will actually need just one initial condition.
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Considering times so early that for all k-modes of interest kη � 1, we can neglect

all terms in the Boltzmann equations multiplied by k. This condition means that on

early times all perturbations of interest had wavelengths much larger than the distance

of causal contact. Thus, an observer within the causal horizon sees a uniform sky, which

means that higher multipoles, e.g. Θ1, Θ2, ..., are much smaller than the monopole term.

Therefore, using these considerations, equations (2.59), (2.79), (2.75) and (2.80) can be

written as

Θ̃′0 + Φ̃′ = 0, (2.88)

Ñ ′0 + Φ̃′ = 0, (2.89)

δ̃′b + 3Φ̃′ = 0, (2.90)

δ̃′c + 3Φ̃′ = 0, (2.91)

respectively. The velocities vb and vc are of the same order of magnitude of the dipole

moment of the temperature distribution, thus they can be neglected at first. We are also

setting the polarization equal to zero.

Using the Einstein equation (2.84) at early times, and knowing that radiation domi-

nates the energy content at those epochs, we obtain

Φ̃′′η + Φ̃′ − Ψ̃′ = −2Φ̃′, (2.92)

where we used equations (2.88) and (2.89). On the other hand, the second Einstein

equation (2.87) tells us that Ψ = −Φ, because the terms of quadrupole can be neglected

at those epochs. Therefore, the equation above implies

Φ̃′′η + 4Φ̃′ = 0, (2.93)

which has solution Φ̃ = A + Bη−3, where A and B are constants. The second term is

a decaying mode, consequently any contribution to it will vanish very quickly. Thus, we

will consider solutions with Φ̃ = constant.

If Φ̃ = constant, Eqs. (2.88) and (2.89) imply that Θ̃0 and Ñ0 are constants too. On

the other hand, most models of structure formation consider that Θ̃0 = Ñ0. Using such
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arguments in (2.84) we are led to

Φ̃(ηi, k) = 2Θ̃0(ηi, k), (2.94)

where ηi means that this is valid for some initial conformal time. Combining (2.88) with

(2.75) and (2.80), we obtain that their initial conditions are given by

δ̃b = 3Θ̃0 + constant (2.95)

and

δ̃c = 3Θ̃0 + constant. (2.96)

If the constants above are zero we have adiabatic initial conditions, but if they are nonzero

the initial conditions are called isocurvature ones.

Although we have neglected the initial conditions for velocities, there are situations

where they must be taken into account. Using (2.59), (2.78), (2.79) and (2.81), we can

show they are given by

Θ̃1 = Ñ1 =
iṽb
3

=
iṽc
3

= − kΦ̃

6aH
. (2.97)

The above equations relate all variables of the initial perturbations to the initial grav-

itational potential Φ̃(ηi, k). Then, it remains to be known how these primordial pertur-

bations were generated and which initial value they should have. The theory of inflation,

which was created to account with the horizon problem, also provides a mechanism respon-

sible for the origin of perturbations in the Universe. In this theory, quantum mechanical

fluctuations during inflation are responsible for the variations around the smooth back-

ground. At any given time, there are regions where the fields are slightly larger and

regions where they are smaller, so that the average value is zero

〈
Φ̃(~k)

〉
= 0. (2.98)

However, the variance is nonzero

〈
Φ̃(~k)Φ̃∗(~k′)

〉
= (2π)3PΦ(k)δ3(~k − ~k′), (2.99)

where PΦ(k) is the power spectrum of the primordial perturbations to the gravitational
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potential Φ.

To account with an inflationary scenario we need a field with a negative equation of

state, the inflaton, which is responsible for the exponential acceleration of the Universe

at early times. Quantum mechanical fluctuations on this field feed perturbations in the

metric. Assuming a canonical scalar field is responsible for inflation, we can obtain the

post-inflation power spectrum of Φ from the horizon-crossing spectrum of the scalar field

as [60]

PΦ(k) =
8πGH2

9k3ε

∣∣∣∣
aH=k

≡ 50π2

9k3

(
k

H0

)ns−1

δ2
H , (2.100)

where ε = −H ′/aH2 is the slow roll parameter of the scalar field. In the second equal-

ity, we rewrote the primordial power spectrum defining the scalar spectral index ns and

the scalar amplitude δH
4. This convention means that a scale-invariant scalar spectrum

corresponds to ns = 1.

2.5 Inhomogeneities: Matter Power Spectrum

The perturbation equations developed in sections 2.2 and 2.3, with the initial conditions

obtained in the last section, allow us to calculate the inhomogeneities and anisotropies in

the Universe. Inhomogeneities in the matter density at the early Universe will grow up

due to gravitational instabilities and they will build the structures we observe. Actually,

to describe correctly the structures observed, e.g. galaxy distributions, we have to take

into account nonlinearities and gas dynamics, but even on small scales the linear regime

is a starting point.

Solving the cosmological perturbations it is verified that their evolution can be divided

in three stages. Thus, the density contrast of matter at some conformal time η, or

equivalently with scale factor a, δ̃m(a,~k), is related to the primordial density contrast

δ̃mP (~k) by

δ̃m(a,~k) = δ̃mP (~k)T (k)Dδ(a), (2.101)

where the transfer function T (k) describes the evolution of perturbations through the

epochs of horizon crossing and transition from radiation to matter. On the other hand, the

4Camb code parameterizes the primordial super-horizon power spectrum PΦ(k) of curvature perturba-
tions as PΦ(k) = As(

k
ks

)(ns−1). The input parametes are the pivot scale ks, the spectral index ns and the
amplitude at the pivot scale As. As we are interested in using the Camb code for numerical calculations,
we shall use such convention for the primordial power spectrum in the next chapters.
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growth function Dδ(a) describes the late time growth which is independent of wavelength.

To compare with observations we note that, as for the gravitational potential Φ̃(~k),

the density contrast of matter also has a vanishing average,

〈
δ̃m(a,~k)

〉
= 0. (2.102)

Its variance equals

〈
δ̃m(a,~k)δ̃∗m(a, ~k′)

〉
= (2π)3Pδm(a, k)δ3(~k − ~k′). (2.103)

Therefore, combining (2.101) with the above variance, we see that the matter power

spectrum is given by

Pδm(a, k) = |T (k)|2|Dδ(a)|2Pδm(ηi, k). (2.104)

2.6 Anisotropies: CMB Power Spectrum

One way to solve the perturbation equation for photons (2.59) is expanding the Θ function

in Legendre polynomials

Θ̃(η,~k, p̂) =
∞∑
l=0

(−i)l(2l + 1)Θ̃l(η,~k)Pl(µ), (2.105)

such that (2.59) is split in a hierarchical system of differential equations as

Θ̃′0 = −kΘ̃1 − Φ̃′,

Θ̃′1 =
k

3

(
Θ̃0 − 2Θ̃2 + Ψ̃

)
+ τ ′

(
Θ̃1 −

i

3
ṽb

)
,

Θ̃′2 =
k

5

(
2Θ̃1 − 3Θ̃3

)
+ τ ′

(
Θ̃2 −

Π

10

)
,

Θ̃′l = − k

2l + 1

[
(l + 1)Θ̃l+1 − lΘ̃l−1

]
+ τ ′Θ̃l, l > 2. (2.106)

In fact this was done in the first numerical programs to calculate the anisotropies in the

CMB. However, this method requires to solve thousands coupled differential equations for

small angular scales θ ≈ 1/l, besides the need of a small time step to obtain good results.

Therefore, nowadays, another method is used, the line of sight approach. Following this
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strategy we can obtain an approximate analytic solution given by [60]

Θ̃l(η0, ~k) ≈
[
Θ̃0(η∗, ~k) + Ψ̃(η∗, ~k)

]
jl[k(η0 − η∗)]

+ 3Θ̃1(η∗, ~k)

{
jl−1[k(η0 − η∗)]−

(l + 1)jl[k(η0 − η∗)]
k(η0 − η∗)

}
+

∫ η0

0

dηe−τ
[
Ψ̃′(η,~k)− Φ̃′(η,~k)

]
jl[k(η0 − η)], (2.107)

where η∗ is the conformal time at recombination and jl is the spherical Bessel function.

The solutions of (2.59) are given by Θl. We need to know how to make comparisons

with the observations. We thus first expand the temperature perturbation in spherical

harmonics,

Θ(η, ~x, p̂) =
∞∑
l=1

l∑
m=−l

alm(η, ~x)Ylm(p̂). (2.108)

Using the orthogonality property of the spherical harmonics, we can invert the expansion

above to obtain

alm(η, ~x) =

∫
dΩY ∗lm(p̂)Θ(η, ~x, p̂). (2.109)

However, we cannot make predictions for a particular alm, only their distributions are

known which are originated in quantum mechanical fluctuations at the inflationary epoch.

Therefore, in the linear regime, they have a gaussian distribution, where

〈alm(η, ~x)〉 = 0 (2.110)

and

〈alm(η, ~x)a∗l′m′(η, ~x)〉 = δll′δmm′Cl. (2.111)

Finally, substituting (2.109) in (2.111), going to the Fourier space and using the expansion

(2.105), we can write

Cl = (4π)

∫
d3k

(2π)3
PΦ(ηi, k)|Θ̃l(η, k)|2. (2.112)

The matter power spectrum obtained in the last section and the CMB power spectrum

in the above equation give us a prediction for the variance in the matter and CMB temper-

ature, respectively. Both depend on the whole system of Einstein-Boltzmann equations

developed in this chapter. Thus, their predictions take into account all the components
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in the Universe. In the next chapter, we will extend the standard scenario presented so

far, considering models with an interaction in the dark sector. Using these power spectra

we will be able to make predictions about the behavior of an interaction and constraint

the models comparing with some observational data.



Chapter 3

Interacting Dark Energy

In the last years several works on the possibility of an interaction between dark energy

and dark matter have appeared [3, 10, 18, 21, 22, 36, 42, 89–94]. One of the motivations

is that a model with an interaction in the dark sector can provide a mechanism to solve,

or at least to alleviate, the coincidence problem. Moreover, because both dark energy and

dark matter are, until now, two unknown components, when considering that they are

originated by physical fields from quantum field theory it is natural to assume that they

interact.

3.1 Phenomenological Model

The first chapters dealt with general aspects of cosmology. We started with a homogeneous

and isotropic model of the Universe and treated its components. Then, in order to explain

the structures around us, we introduced inhomogeneities and anisotropies about this

background through a perturbation theory. We pass now to discuss a specific model

which consists in a universe filled with baryons, photons, neutrinos, dark matter and dark

energy where we introduce an interaction between the components in the dark sector.

If dark matter and dark energy are coupled with each other, the energy-momentum

tensor T µν(λ) of each individual component λ = c, d is no longer conserved. Instead,

∇µT
µν
(λ) = Qν

(λ) , (3.1)

where∇µ is the covariant derivative, Qν
(λ) is the four-vector governing the energy-momentum

transfer between dark components and the subscript (λ) can refer to dark matter (c) or

45
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dark energy (d), respectively. Including an interaction in the dark sector, dark matter

and dark energy components are not separately conserved, while the energy-momentum

tensor of the whole dark sector is still conserved:

∑
λ

∇µT
µν
(λ) =

∑
λ

Qν
(λ) = 0, (3.2)

thus, Qν
(c) = −Qν

(d).

We assume a spatially flat Friedmann-Lemaitre-Robertson-Walker background given

by Eq. (1.2) and an energy-momentum tensor of a perfect fluid (1.7). From the energy

conservation of the full energy-momentum tensor, we can derive the equations of evolution

of the background dark matter and dark energy densities,

ρ′c + 3Hρc =a2Q0
c =+aQ ,

ρ′d + 3H (1 + ω) ρd =a2Q0
d =−aQ , (3.3)

where the derivatives and the Hubble parameter H are in conformal time, ρc and ρd

are the energy densities for dark matter and dark energy, respectively, ω = pd/ρd is the

equation of state of dark energy and Q was chosen to be the energy transfer in cosmic

time coordinates. We emphasize that the homogeneity and isotropy of the background

require the spatial components of Qν
(λ) to be zero.

In this section we concentrate on the phenomenological interaction as a linear combi-

nation of energy densities of dark sectors with the form of Q = 3H(ξ1ρc+ξ2ρd), describing

the energy transfer. With the above expression for the continuity equations, if Q > 0, we

have that the dark energy transfers energy to the dark matter. In studying the curvature

perturbation, it has been made clear that when the interaction is proportional to the en-

ergy density of dark energy (Q = 3Hξ2ρd), we get a stable curvature perturbation except

for ω = −1; however, when the interaction is proportional to the dark matter density

(Q = 3Hξ1ρc) or total dark sectors (Q = 3Hξ(ρc + ρd)), the curvature perturbation can

only be stable when the constant dark energy equation of state satisfies ω < −1 [13].

For the case of a time-dependent dark energy equation of state, the stability of curvature

perturbations was discussed in [14, 15]. With the interaction, the effective background
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equations of state for the dark matter and dark energy change to

ωc,eff = − a
2Q0

c

3Hρc
, ωd,eff = ω − a2Q0

d

3Hρd
. (3.4)

We summarize different forms of the interaction with the effective background equation

of state in Table 3.1; we label our models with Roman numerals [44].

In order to solve the coincidence problem, we require the ratio of the energy densities

of dark matter and dark energy, % = ρc/ρd, to be a constant in the expansion history of

our Universe, %′ = ρ′c
ρd
− %ρ

′
d

ρd
= 0. This leads to a quadratic equation,

ξ1%
2 + (ξ1 + ξ2 + ω) %+ ξ2 = 0. (3.5)

The solutions of this equation can lead to unphysical results, such as negative energy

density of cold dark matter in the past or complex roots. For different phenomenological

models of the interaction between dark sectors, the conditions to obtain physical results,

positive energy densities and real roots were obtained in [44] as shown in Table 3.1. Figure

3.1 illustrates the behavior of % for the four interacting models. We observe that, for the

interaction proportional to the energy density of dark energy, a positive interaction can

help to alleviate the coincidence problem as there is a longer period for the energy densities

of dark matter and dark energy to be comparable. In contrast, a negative interaction can

not alleviate the coincidence problem. For the interaction proportional to the energy

density of dark matter or to the sum of both energies, the ratio % presents a scaling

behavior.

Table 3.1: Different coupling models with their constraints, dark energy equation of state and
the effective equation of state for both dark sector fluids.

Model Q DE EoS ωc,eff ωd,eff Constraints
I 3ξ2Hρd −1 < ω < 0 −ξ2/% ω + ξ2 ξ2 < −2ωΩc

II 3ξ2Hρd ω < −1 −ξ2/% ω + ξ2 ξ2 < −2ωΩc

III 3ξ1Hρc ω < −1 −ξ1 ω + ξ1% 0 < ξ1 < −ω/4
IV 3ξH (ρd + ρc) ω < −1 −ξ (1 + 1/%) ω + ξ (%+ 1) 0 < ξ < −ω/4

From the background dynamics we see that when we introduce the phenomenological

interaction between dark sectors, it is possible to have the scaling solution of the ratio

between dark matter and dark energy, which can help to alleviate the coincidence problem.

However, in the background dynamics there appears an inevitable degeneracy between the
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Figure 3.1: Evolution of the dark energy to dark matter energy density ratio % ≡ ρc/ρd in
a model with Q = 3H(ξ1ρc + ξ2ρd) for different coupling constants. (a) The red dashed line
corresponds to Planck best-fit Model I, with ξ2 = −0.1881 corresponding to the lowest value in
the 68% C.L. as in Table 4.2. The black solid line has the same parameters but no interaction.
(b) The black solid line corresponds to a noninteracting model with w = −1.65 and Ωd = 0.78.
The red dot-dashed line describes Model II listed in the first column of Table 4.3 with ξ2 = 0.2.
The green dashed line corresponds to Planck best-fit Model III (see Table 4.4), and the blue
dotted line, to Planck best-fit Model IV (see Table 4.5).

coupling in dark sectors and the dark energy equation of state. In general this degeneracy

cannot be broken by just investigating the dynamics of the background spacetime, except

in the case when the coupling is proportional to the dark matter density (Model III)

[44]. It is expected that the degeneracy between the coupling and other cosmological

parameters can be solved in the perturbed spacetime by considering the evolution of the

perturbations of dark energy and dark matter.

Although we introduced perturbations in the components of the Universe through the

Boltzmann equation in the last chapter, the dark matter could be completely described

using the energy-momentum tensor as we observed earlier. Thus, for the interacting

model, we will consider perturbations through the conservation equation (3.1). To calcu-

late the covariant derivative we use the perturbed metric (2.6) and we assume that the

energy-momentum tensor is given by a perfect fluid even in the perturbed case:

T µν(λ)(η, ~x) = {ρ(η)[1 + δ(η, ~x)] + [P (η) + δP (η, ~x)]}uµuν + [P (η) + δP (η, ~x)]gµν , (3.6)

where δ(η, ~x) is the density contrast δ ≡ δρ/ρ and the four-velocity reads

uµ = a−1(1− ψ,~v(λ)) and uµ = a(−1− ψ,~v(λ) + ∂iB). (3.7)
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~v(λ) can be written as minus the gradient of a peculiar velocity potential v(λ) plus a zero

divergence vector. Only the first one contributes to scalar perturbations. Thus, taking

the perturbed part of the energy-momentum conservation results

δ∇µT
µ0
(λ) =

1

a2

{
−2 [ρ′λ + 3H (ρλ + Pλ)]ψ + (ρλδλ)

′ − (ρλ + Pλ)∇2vλ + 3H(ρλδλ + δPλ)

+3(ρλ + Pλ)φ
′} = δQ0

(λ) (3.8)

and

∂iδ∇µT
µi
(λ) =

1

a2

{
[P ′λ +H(ρλ + Pλ)]∇2B − [(ρ′λ + P ′λ) + 4H(ρλ + Pλ)]∇2vλ

+(ρλ + Pλ)∇2B′ +∇2δPλ − (ρλ + Pλ)∇2v′λ + (ρλ + Pλ)∇2ψ
}

= ∂iδQ
i
(λ).

(3.9)

To solve equations (3.8) and (3.9) we need a relation for δPλ. In order to find such a

relation, we first observe that the sound speed cs of a fluid or scalar field is the propagation

speed of pressure fluctuations in its rest frame [12]:

c2
s =

δP

δρ

∣∣∣∣
rf

. (3.10)

For a scalar field ϕ, the sound speed is equal to the speed of light, c2
sϕ = 1. On the other

hand, we can define the “adiabatic sound speed” for any medium as

c2
a =

P ′

ρ′
= ω +

ω′ρ

ρ′
. (3.11)

If a fluid is barotropic, the sound speed is equal to the adiabatic sound speed, c2
s = c2

a,

and if its equation of state is constant, then c2
a = ω. At first sight, the dark-energy fluid

with ω = const. is a barotropic adiabatic model. However, this results in an imaginary

sound speed which leads to instabilities in the dark energy. Thus, we impose that c2
sd > 0

by hand and it is natural to adopt the scalar field value.

The rest frame is defined as the comoving (v|rf = 0) and orthogonal (B|rf = 0) frame,

which implies T i0|rf = T 0
i |rf = 0. Making a gauge transformation, xµ → xµ + (δη, ∂iδx),
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from the rest frame to a general gauge, we obtain 1

− v +B = (−v +B)|rf + δη , δP = δP |rf − P ′δη , δρ = δρ|rf − ρ′δη. (3.12)

Using the definition of the rest frame, the first equality above results δη = −v+B. Thus,

following [12], the perturbed pressure of dark energy is given by

δPd = δPd|rf − P ′d(−vd +B)

=
δPd|rf
δρd|rf

δρd|rf −
P ′d
ρ′d
ρ′d(−vd +B)

= c2
sd[ρdδd + ρ′d(−vd +B)]− c2

adρ
′
d(−vd +B)

= c2
adρdδd + (c2

sd − c2
ad)[ρdδd + ρ′d(−vd +B)]

= c2
adρdδd + δP(nad), (3.13)

where δP(nad) is the intrinsic non-adiabatic pressure perturbation in the dark energy fluid.

For the coupled case, we have

δPd = c2
sdρdδd + (c2

sd − c2
ad)
[
−3H(1 + ω)ρd + a2Q0

d

]
(−vd +B), (3.14)

where δd = δρd/ρd is the density contrast, c2
sd is the effective sound speed at the rest

frame, which we set to one, and c2
ad is the adiabatic sound speed, all with respect to dark

energy.

The perturbed four-vector δQν
(λ) can be decomposed into

δQ0
(λ) = ±

(
−ψ
a
Q+

1

a
δQ

)
, δQp(λ) = QI

p(λ)

∣∣
t
+Q0

(λ)vt. (3.15)

Here the ± sign refers to dark matter or dark energy, respectively, and δQp(λ) is the

potential of the perturbed energy-momentum transfer δQi
(λ). Q

I
p(λ)

∣∣∣
t

is the external non-

gravitational force density and vt is the average velocity of the energy transfer. In this

section we consider that there is no nongravitational interaction between dark energy and

dark matter; only an inertial drag effect appears due to stationary energy transfer. Thus

QI
p(λ)

∣∣∣
t

and vt vanish, which implies that δQi
(λ) = 0.

1The minus sign in v comes from our convention to define the velocity as minus the gradient of a
peculiar velocity potential.



3.1. PHENOMENOLOGICAL MODEL 51

Finally we are in position to write the equations governing the evolution of linear

perturbations for dark matter and dark energy. As we are interested to implement the

interacting model in the public code CAMB [95], it will be more appropriate to obtain

the perturbed equations in the synchronous gauge. Thus, collecting equations (3.14) and

(3.15) in (3.8) and (3.9), and passing to the Fourier space2, we obtain

δ̇c = −(kvc +
ḣ

2
) + 3Hξ2

1

r
(δd − δc) , (3.16)

δ̇d = − (1 + ω) (kvd +
ḣ

2
) + 3H(ω − c2

e)δd + 3Hξ1r (δd − δc)

− 3H
(
c2
e − c2

a

)
[3H (1 + ω) + 3H (ξ1r + ξ2)]

vd
k
, (3.17)

v̇c = −Hvc − 3H(ξ1 +
1

r
ξ2)vc , (3.18)

v̇d = −H
(
1− 3c2

e

)
vd +

3H
1 + ω

(
1 + c2

e

)
(ξ1r + ξ2) vd +

kc2
eδd

1 + ω
, (3.19)

where h = 6φ is the synchronous gauge metric perturbation. In practice, we fix the

remaining freedom in the synchronous gauge setting a comoving frame with respect to

the dark matter fluid, such that the peculiar velocity of dark matter vc vanishes.

To solve equations (3.16)-(3.19) we set initial conditions according to [13]. Using the

gauge-invariant quantity [96]

ζ = φ−Hδρ
ρ′

(3.20)

and the gauge-invariant relative entropy perturbation

SAB = 3H
(
δρB
ρ′B
− δρA

ρ′A

)
= 3(ζA − ζB), (3.21)

we get adiabatic initial conditions

δc
1− ξ1 − ξ2/r

=
δd

1 + ω + ξ1r + ξ2

=
3δγ
4

(3.22)

and

vd = vγ. (3.23)

In the linear perturbation formalism, the influence of the interaction between dark energy

2In the Fourier space, we use the convention to divide the velocity potential by an additional factor
of k ≡ |~k| so that it has the same dimension as the vector part. Thus, θ ≡ ∇ · ~v = −∇2v = kv.
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and dark matter on the CMB and the matter power spectrum can be calculated by

modifying the CAMB code [95]. Figures 3.2-3.5 present the behavior of the power spectra

for different phenomenological models. The appendix A shows the most important steps

to introduce the phenomenological model in the CAMB code.
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Figure 3.2: Power spectra for the phenomenological Model I with ω = −0.8 and different
values of the interaction parameters.

Figures 3.2-3.5 show that in addition to modifying the CMB spectrum at small l, the

coupling between dark sectors can shift the acoustic peaks at large multipoles. While

the change of equation of state of dark energy can only modify the low l CMB power



3.1. PHENOMENOLOGICAL MODEL 53

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1  10  100  1000

l(
l+

1
)C

l/2
π
 (

µ
K

2
)

l

CMB

ξ1 = 0, ξ2 = -0.1
ξ1 = 0, ξ2 = -0.01

ξ1 = 0, ξ2 = 0
ξ1 = 0, ξ2 = 0.01

ξ1 = 0, ξ2 = 0.1

(a)

 1

 10

 100

 1000

 10000

 100000

 0.0001  0.001  0.01  0.1  1  10

P
(k

)

k/h

Matter Power Spectrum

ξ1 = 0, ξ2 = -0.1
ξ1 = 0, ξ2 = -0.01

ξ1 = 0, ξ2 = 0
ξ1 = 0, ξ2 = 0.01

ξ1 = 0, ξ2 = 0.1

(b)

Figure 3.3: Power spectra for the phenomenological Model II with ω = −1.2 and different
values of the interaction parameters.

spectrum, it leaves the acoustic peaks basically unchanged. This provides the possibility

to break the degeneracy between the coupling and the equation of state of dark energy in

the linear perturbation theory. Furthermore, it was observed that the abundance of dark

matter can influence the acoustic peaks in CMB, especially the first and the second ones.

The degeneracy between the abundance of the dark matter and the coupling between

dark sectors can be broken by examining the CMB spectrum at large scale, since only the

coupling between dark sectors influences the large scale CMB spectrum. Theoretically it
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Figure 3.4: Power spectra for the phenomenological Model III with ω = −1.2 and different
values of the interaction parameters.

was observed that there are possible ways to break the degeneracy between the interaction,

dark energy equation of state and the dark matter abundance in the perturbation theory

[44]. This can help to get tight constraint on the interaction between dark energy and

dark matter.
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Figure 3.5: Power spectra for the phenomenological Model IV with ω = −1.2 and different
values of the interaction parameters.

3.2 Lagrangian Model

It would be desirable to construct a more fundamental model for dark matter, dark energy

and a possible interaction between them. As we know, the fundamental particles and the

corresponding interactions in the standard model are described by quantum field theories.

In the same way, we would like to account with dark matter and dark energy in the context

of a quantum field theory. However, as we already saw, the standard model of particle
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physics have no explanation for the dark sector. Thus, in this section, we postulate a

model for dark matter interacting with dark energy.

3.2.1 The Tetrad Formalism

We are interested in the behavior of the fields on cosmological scale which means we need

a field theory on a curved spacetime. We could be tempted to follow the general approach

to transform the special-relativistic equations into general-relativistic equations chang-

ing the tensors Tα···β··· , the derivatives ∂/∂α and the metric ηαβ to tensors T µ···ν··· , covariant

derivatives ∇µ and metric gµν in the general coordinate frame. However, there are no

representations of the general-coordinate transformation group which behave like spinors

under the Lorentz subgroup. Thus, to deal with a fermionic field in the context of general

relativity we need the tetrad formalism [57].

Using the Principle of Equivalence, we can establish, at every point X, a set of coordi-

nates ξαX that are locally inertial. In the locally inertial frame, the metric is the Minkowski

one, ηαβ. Thus, we can obtain the metric in a general noninertial coordinate system xµ

as 3

gµν(x) = eαµ(x)eβν (x)ηαβ, (3.24)

where

eαµ(X) ≡
(
∂ξαX(x)

∂xµ

)
x=X

. (3.25)

Fixing the locally inertial coordinates ξαX at each physical point X, the partial derivatives

eαµ change under a general coordinate transformation xµ → x′µ as

eαµ → e′
α
µ =

∂xν

∂x′µ
eαν . (3.26)

Thus, we can identify eαµ with four covariant vector fields, and this set of four vectors

is called a tetrad, or vierbien. On the other hand, the tetrad behaves like a Lorentz

contravariant vector under a Lorentz transformation Λα
β(x) of the locally inertial frame:

eαµ → e′
α
µ = Λα

β(x)eβµ. (3.27)

3We use Greek letters from the beginning of the alphabet (α, β, · · · ) to describe coordinates in the
locally inertial frame, while we use Greek letters from the end of the alphabet (µ, ν, · · · ) to describe a
general coordinate system.
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Given a contravariant vector Aµ, we can contract it with the tetrad eαµ such that the

resulting object Aα = eαµA
µ transforms as a set of four scalars under a general coordinate

transformation, while it transforms as a Lorentz contravariant vector under a Lorentz

transformation of the locally inertial coordinate system. In general, a tensor n times

contravariant and m times covariant T µ1···µnν1···νm , having its contravariant indices contracted

with eαµ and its covariant indices contracted with the inverse tetrad eνβ = ηαβg
µνeαµ, will

transform as a set of n × m scalars under a general transformation, and as a Lorentz

tensor n times contravariant and m times covariant under a Lorentz transformation of

the local frame.

A matter action physically acceptable must be both a scalar under a general coordinate

transformation and under a locally inertial Lorentz transformation. If an action could be

obtained solely from fields, this condition would be automatically achieved. However,

any physically sensible action must also involve derivatives of the fields. Let us consider

a field Ψ (where Ψ can be a field of multiple components), which transforms under a

Lorentz transformation as Ψ′(x) = D(Λ(x))Ψ(x), where D(Λ) is a matrix representation

of the Lorentz group. What we need is to define a covariant derivative that for a local

Lorentz transformation behaves as ∇̃′βΨ′ = Λα
βD(Λ)∇̃αΨ. We can verify that the following

covariant derivative obeys such a condition [57]:

∇̃α ≡ eµα(∂µ + Γµ) = eµα

[
∂µ +

1

2
σβδeνβ(x) (∇µeδν(x))

]
, (3.28)

where ∇µeδν(x) ≡ ∂µeδν(x)− Γλµνeδλ(x) and σβδ are the generators of the Lorentz group.

For example, scalars have σβδ = 0 and ∇̃α = ∂α, while spinors have σβδ = 1
4
[γβ, γδ], where

γβ are Dirac matrices.

Finally we have a prescription to generalize a field theory to curved spacetimes: given a

Lagrangian which is a function of the fields and their derivatives, we contract all vectors,

tensors, etc., with the tetrad (e.g. Aα → eαµA
µ) and substitute the derivatives ∂α for

covariant derivatives ∇̃α. Using this prescription, the action will be a scalar under a

general coordinate transformation and under a local Lorentz transformation.

The energy-momentum tensor can be defined as [57]

Tµν(x) ≡ − eαµ(x)

det[e(x)]

δSM
δeνα(x)

, (3.29)
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where SM denotes the action of the matter fields and det[e(x)] =
√
−g, where g is the

determinant of the metric tensor. It is possible to show that the energy-momentum tensor

defined in this way is symmetric and obeys the conservation equation ∇µT
µν = 0. Using

the definition above, we can obtain the energy-momentum tensor for fields with spin in a

curved spacetime.

3.2.2 Yukawa-Type Interaction

Let us consider now a model of interaction between dark energy and dark matter from

a Lagrangian density. In this model, the dark energy will be described by a scalar field

φ and the dark matter will be described by a massive fermionic field of spin-1
2

Ψ 4. We

will suppose that the interaction between them is realized by an Yukawa type interaction,

which is the only interaction between a scalar field and a fermionic field of spin-1
2

that is

renormalizable. Thus, the action for this model will be given by

SM =

∫
d4x
√
−g
{
−1

2
∂µφ∂

µφ− V (φ) +
i

2

[
Ψ̄γµ∇̃µΨ− (∇̃µΨ̄)γµΨ

]
− (M − βφ)Ψ̄Ψ

}
,

(3.30)

where β is a dimensionless interaction constant and V (φ) is the scalar potential. γµ are

matrices in the curved spacetime identified with the Dirac matrices γα multiplied by the

tetrad as γµ ≡ eµαγ
α and they obey the anti-comutation relation

{γµ, γν} = −2gµν(x). (3.31)

Varying the action SM with respect to the Dirac field Ψ and the adjoint Ψ̄, we obtain

the equations of motion for the fermionic fields

iγµ∇̃µΨ− M̄Ψ = 0 (3.32)

and

i(∇̃µΨ̄)γµ + M̄Ψ̄ = 0, (3.33)

where M̄ ≡ M − βφ. Using these equations, we can show that the current defined as

4Note that φ and Ψ here are scalar and fermionic fields, respectively. Do not confuse with the metric
perturbations defined in the previous chapter.
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jµ(x) =
√
−gΨ̄γµΨ is conserved

∂µj
µ(x) = 0. (3.34)

On the other hand, varying the action with respect to the scalar field φ, we obtain its

equation of motion

∇µ∂
µφ− dV

dφ
= −βΨ̄Ψ, (3.35)

where ∇µ is the covariant derivative in the curved spacetime.

The energy-momentum tensor of the system can be calculated using Eq. (3.29). For

our scalar and fermionic fields described by the action (3.30), we can show that [97]

T φµν(x) = ∂µφ∂νφ− gµν(
1

2
gαβ∂αφ∂βφ+ V (φ)) (3.36)

and

TΨ
µν(x) =

i

4

[
(∇̃µΨ̄)γνΨ + (∇̃νΨ̄)γµΨ− Ψ̄γµ∇̃νΨ− Ψ̄γν∇̃µΨ

]
. (3.37)

We have split the energy-momentum tensor by defining a scalar part and a fermionic part

such that

Tµν(x) = T φµν(x) + TΨ
µν(x) (3.38)

and the interaction was included in the fermionic part.

On large scales, we assume that the components in the Universe can be described by a

fluid with energy-momentum tensor given by Eq. (1.7). Thus, from the energy-momentum

tensor of a perfect fluid, we find that

ρ = −T 0
0 and P =

1

3
T ii . (3.39)

Therefore, using the energy-momentum tensor of the scalar field (3.36), we can identify

an energy density and a pressure given by

ρφ = −1

2
(∂µφ∂

µφ) + V (φ) (3.40)

and

Pφ = −1

2
(∂µφ∂

µφ)− V (φ). (3.41)

On the other hand, from the energy-momentum tensor of the fermionic field (3.37), we
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have

ρΨ = M̄Ψ̄Ψ +
i

2

[(
∇̃iΨ̄

)
γiΨ− Ψ̄γi∇̃iΨ

]
(3.42)

and

PΨ =
i

6

[(
∇̃iΨ̄

)
γiΨ− Ψ̄γi∇̃iΨ

]
. (3.43)

We observe that in the relativistic limit M̄ = 0, we recover the equation of state for an

ideal relativistic gas, PΨ = ρΨ/3.

Let us assume that the Universe obeys the FLRW metric and the fields are homoge-

neous such that ∂iφ = 0, ∂iΨ = ∂iΨ̄ = 0 and
(
∇̃iΨ̄

)
γiΨ− Ψ̄γi∇̃iΨ = 0. Thus, the energy

density and pressure of the fields result

ρφ =
1

2
φ̇2 + V (φ) (3.44)

Pφ =
1

2
φ̇2 − V (φ) (3.45)

ρΨ = M̄Ψ̄Ψ (3.46)

PΨ = 0. (3.47)

From the above equations we observe that the scalar field possesses an equation of state

given by

ωφ ≡
Pφ
ρφ

=
φ̇2 − 2V

φ̇2 + 2V
. (3.48)

Besides the relations above, in a FLRW universe, the equation of motion for the scalar

field (3.35) yields

φ̈+ 3Hφ̇+
dV

dφ
= βΨ̄Ψ (3.49)

and the current conservation of the fermionic field (3.34) gives

d(a3Ψ†Ψ)

dt
= 0. (3.50)

Deriving equations (3.44) and (3.46) with respect to the cosmic time and using the

equations of motion for the scalar and fermionic fields, we obtain the energy balance

equations

ρ̇φ + 3Hρφ(1 + ωφ) = βφ̇Ψ̄Ψ = Q (3.51)
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and

ρ̇Ψ + 3HρΨ = −βφ̇Ψ̄Ψ = −Q. (3.52)

From Eq. (3.46), we see that the interaction Q ≡ βφ̇Ψ̄Ψ can be rewritten as

Q ≡ βφ̇Ψ̄Ψ = −∂ ln M̄

∂φ
ρΨφ̇ =

β

M − βφ
ρΨφ̇. (3.53)

Thus, we observe that the fermionic field can be completely described by a fluid, since the

energy balance equations depend on the fermionic field only through the energy density

ρΨ and a constant mass M . On the other hand, the scalar field cannot be completely

described by the energy balance equations because the equation of state ωφ and the

interaction termQ depend on the scalar field and its derivative. Therefore, the background

equations describing the evolution of the fermionic and scalar fields are

ρ̇Ψ + 3HρΨ = − β

M − βφ
ρΨφ̇ (3.54)

and

φ̈+ 3Hφ̇+
dV

dφ
=

β

M − βφ
ρΨ. (3.55)

Let us introduce now linear perturbations in our model. To facilitate the study of

linear perturbations, we assume that the fermionic field can be completely described by

the fluid equations even in the perturbed level. The interaction between the dark energy

and dark matter can be generalized into a covariant form as

Qµ =
∂ ln M̄

∂φ
ρΨ∂

µφ. (3.56)

Thus, the balance equations can be generalized to

∇µT
µν
φ = Qν =

β

M − βφ
ρΨ∇νφ (3.57)

and

∇µT
µν
Ψ = −Qν = − β

M − βφ
ρΨ∇νφ, (3.58)

where T µνΨ assumes the form of a perfect fluid as in Eq. (3.6). The scalar field can be

decomposed into a homogeneous part and a perturbed part, φ(t) + ϕ(t, ~x). Thus, using
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the metric (2.6) in the synchronous gauge, the balance equations (3.57) and (3.58) yield

the perturbed equations

ϕ′′ + 2Hϕ′ + k2ϕ+ a2d
2V

dφ2
ϕ+

h′φ′

2
= −a2 β2

(M − βφ)2
ϕρΨ + a2 β

M − βφ
ρΨδΨ, (3.59)

δ′Ψ = −h
′

2
− kvΨ −

β

M − βφ
ϕ′ +

β2

(M − βφ)2
φ′ϕ, (3.60)

v′Ψ = −HvΨ +
β

M − βφ
vΨφ

′ − k β

M − βφ
ϕ, (3.61)

in the Fourier space and conformal time.

To complete the discussion about the linear perturbations we need the initial condi-

tions of the perturbed quantities. We assume that the dark matter and the dark energy

satisfy adiabatic initial conditions

δρφ
ρφ + Pφ

=
δρΨ

ρΨ + PΨ

, (3.62)

where using equations (3.44) and (3.45) in the conformal time, we have

δρφ =
φ′ϕ′

a2
+
dV

dφ
ϕ and δPφ =

φ′ϕ′

a2
− dV

dφ
ϕ. (3.63)

Thus, the adiabatic initial condition (3.62) can be rewritten as

φ′ϕ′ + a2 dV
dφ
ϕ

φ′2
= δΨ. (3.64)

As the scalar field obeys a second-order differential equation, we need two initial condi-

tions. The second initial condition can be obtained considering that the intrinsic entropy

is null
δρφ
ρφ
− δPφ

Pφ
= 0, (3.65)

which implies
φ′ϕ′ + a2 dV

dφ
ϕ

φ′2

2
+ a2V

=
φ′ϕ′ − a2 dV

dφ
ϕ

φ′2

2
− a2V

. (3.66)

Finally, solving equations (3.64) and (3.66) for ϕ and ϕ′, we obtain the perturbed initial

conditions for the scalar field

ϕ =
2δΨφ

′2V

(φ′2 + 2a2V )dV
dφ

(3.67)
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and

ϕ′ =
δΨφ

′3

φ′2 + 2a2V
. (3.68)

We modified the CAMB code to include the Lagrangian model above. We considered

that the scalar potential is given by

V (φ) = Ae−λφ/Mpl , (3.69)

where A is a normalization constant, λ is a dimensionless parameter and Mpl is the reduced

Planck mass. We set A to the value of the cosmological constant energy density A = ρΛ.

Thus, λ 6= 0 and β 6= 0 is a measurement of how our model differ from the cosmological

constant model. We also see from Eq. (3.53) that the interaction β and the fermion mass

M are degenerate, we can only know the ratio r ≡ β
M
Mpl. Therefore, we use r instead

of β as our interaction parameter. This has the advantage of decreasing one degree of

freedom in the analysis, at the cost that we are unable to know the individual values of

β or M .

The appendix B shows the most import steps to introduce the Lagrangian model in

the CAMB code. Below we present some graphs for the CMB and matter power spectrum

obtained from the Lagrangian model for different values of the parameters. Figure 3.6

shows that the scalar potential parameter λ has a small effect on the CMB and matter

power spectrum, affecting mainly the low-l CMB power spectrum. On the other hand, as

observed in the phenomenological case, we see from Fig. 3.7 that in addition to modifying

the CMB spectrum at low l, the coupling between dark sectors can shift the acoustic peaks

at large multipoles. However, comparing with the phenomenological models, the Yukawa

interaction has a more dramatic effect on low multipoles and less effect on the acoustic

peaks. We also observe that the power spectra present an almost symmetric behavior

around the zero value for the interaction. However, such a symmetry is broken when we

look at background quantities, e.g. the age of the Universe.
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Figure 3.6: Power spectra for the Lagrangian model with r = β
MMpl = 0 and different values

for the scalar potential parameter.
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Figure 3.7: Power spectra for the Lagrangian model with λ = 1 and different values for the
dimensioless interaction parameter r = β

MMpl.



Chapter 4

Analysis

In the previous chapter we presented some models of interacting dark energy. We showed

some aspects of their behavior, especially on the power spectra. We now wish to test such

models with current observational data in order to constrain the cosmological parameters.

The results of this chapter are matter of publication in [98–100].

4.1 Methods for Data Analysis

Let us suppose we want to estimate a random physical quantity x with a probability density

function (PDF) f(x|θ) that depends on an unknown parameter θ. Naturally, we cannot

know the exact value of x, since there are several uncertainties in the measurement, which

we denote as σ. Then, the probability of obtaining x in the interval ∆x around x is

P =

∫ x2

x1

f(x|θ)dx. (4.1)

Such a probability is called a conditional probability of having the data x given the theo-

retical parameter θ. If the interval of integration above is small, we can approximate the

probability as P ≈ f(x|θ)∆x.

The law of joint probability tells us that for several measurements xi, i = 1, ..., N , the

probability of having x1 in the interval ∆x1 around x1, x2 in the interval ∆x2 around x2

and so forth is

P (xi|θ) ≈ (∆x)N
N∏
i=1

f(xi|θ) ≡ (∆x)NL(xi|θ). (4.2)

This procedure is correct given the fact that the measurements are mutually independent

66
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and considering equally spaced small intervals ∆xi. In the above expression we defined the

likelihood function, L(xi|θ) ≡
∏N

i=1 f(xi|θ). Except for a constant value, the likelihood

function gives us the probability of having the outcomes xi given the parameter θ. In

general, the data can be correlated and depend on several parameters θj. For correlated

data, L(xi|θj) will not be the simple product of the PDFs, but its statistical interpretation

remains the same.

For every set of parameters θj, the likelihood function L(xi|θj) will assume a different

value. It is logic to define the best θjs as the parameters that maximize the likelihood.

Thus, the maximum likelihood method of parameter estimation consists in finding the

parameters that maximize the likelihood solving the system

∂L(xi|θj)
∂θj

= 0, j = 1, · · · ,m. (4.3)

The solutions of these equations, θ̂js, are functions of the random data xis, therefore they

are random too. In the frequentist approach, one tries to find the distribution of the θ̂js

given the distribution of the data xis; if this is possible, one can associate probabilities to

intervals of θ̂js, for instance determine the interval of θ̂j that has 95% probability that a set

of data were obtained from the theoretical distribution. However, it is often too difficult to

derive the θ̂j’s distributions analytically and very demanding to derive them numerically

using simulated datasets. Moreover, this approach does not take into account our previous

knowledge about the theoretical parameters, e.g. the results of preceding experiments.

These issues can be worked more appropriately using the Bayesian approach.

In the Bayesian approach, instead of looking for the probability of having the data

given the model, L(xi|θj), we look for the probability of the model given the data, P (θj|xi).

This is possible thanks to the Bayes’s theorem,

P (B|A, I) =
P (A|B, I)P (B|I)

P (A|I)
, (4.4)

which relates the conditional probability of having an event B given the event A occurred,

P (B|A, I), with the conditional probability P (A|B, I) of A given B and the probabilities

P (B|I) and P (A|I) of the events B and A, respectively. The letter “I” denotes that these

probabilities depend on some information I we assume to be true.

In our case we have the data A ≡ xi and the parameters B ≡ θj for some theoretical
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model I ≡M , thus

p(θj|xi,M) =
L(xi|θj)p(θj|M)

p(xi|M)
. (4.5)

The function p(θj|xi,M) is the posterior probability distribution, p(xi|M) is the PDF

of the data xi, sometimes called evidence, and p(θj|M) is the prior probability for the

parameters θj, it represents our previous knowledge for the parameters before we make

the experiment. Therefore, the posterior contains the information we are looking for: the

probability of having the parameters θj given the data xi and some previous knowledge

about the parameters.

The posterior is a probability distribution and consequently it must be normalized to

unity ∫
p(θj|xi,M)dmθj =

∫
L(xi|θj)p(θj|M)dmθj

p(xi|M)
= 1, (4.6)

which implies ∫
L(xi|θj)p(θj|M)dmθj = p(xi|M). (4.7)

Thus, we can think the evidence as a normalization factor. On the other hand, the prior

is often unknown. Usually, if we know nothing about the parameters we want to estimate,

we choose a uniform prior in some interval and zero outside it. However, if we have some

estimate of the parameters from previous experiments, we can adopt a Gaussian centered

at the estimated value as our prior. In general, the choice of priors affect the posterior

distribution, but if we have enough data they will dominate the posterior.

Given the posterior p(θj|xi,M) we can find the maximum likelihood estimators θ̂j as

∂p(θj|xi,M)

∂θj
= 0 j = 1, · · · ,m. (4.8)

We can also derive the regions of confidence for the parameters, which are defined as

regions R(α) such that ∫
R(α)

p(θj|xi,M)dmθ = α, (4.9)

where the posterior must be normalized, which means 0 < α < 1. To find these regions,

the limits of integration must be the lowest ones such that the integral is valid. Typical

choices of α are α = 0.683, 0.954, 0.997 which denote the 1σ, 2σ and 3σ confidence levels.

Frequently, we are interested in a subset of the parameter space and we consider the

others as “nuisance”, thus we integrate (marginalize) over the uninterested parameters.
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In general, the distribution function depends on the characteristics of the quantity it

describes and its uncertainties. In cosmology we usually assume a Gaussian distribution

for the data even when each data was not extracted from a Gaussian distribution. This is

possible thanks to the central limit theorem [101, 102], which establishes that for a set of

N variables with some distribution each one with a finite variance, in the limit N →∞,

the average distribution tends to a Gaussian one. Thus, if the data have a Gaussian

distribution and are independent of each other, then

L(xi|θj) =
N∏
i=1

1√
2πσi

exp

[
−1

2

(
xi − xi(θj)

σi

)2
]

=

(
N∏
i=1

1√
2πσi

)
exp

[
−1

2

N∑
i=1

(
xi − xi(θj)

σi

)2
]
. (4.10)

Therefore, maximizing the posterior distribution (4.5) is equivalent to minimizing the

above exponent

χ2 ≡
N∑
i=1

(
xi − xi(θj)

σi

)2

. (4.11)

If the data are correlated, the above likelihood must be generalized as

L(xi|θj) ∝
1√

detC
exp

(
−1

2
XTC−1X

)
, (4.12)

where X is the data vector and C is the covariance matrix.

4.2 Data

To constrain the cosmological parameters in our interacting models, we use several data

sets, the measurements of CMB anisotropies, BAO, SNIa, the direct measurement of the

Hubble constant H0 and Lookback Time. Below we describe the likelihood for these

measurements.

4.2.1 CMB Measurements

The Planck data set we use is a combination of the low-l TT likelihood, which includes

measurements for l = 2 − 49, combined with the high-l TT likelihood, which includes

measurements from l = 50 up to a maximum multipole number of lmax = 2500 [47–49].
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Together with the Planck data, we include the polarization measurements from the nine

year Wilkinson Microwave Anisotropy Probe (WMAP) [103], the low-l (l < 32) TE, EE,

BB likelihoods.

The CMB power spectrum likelihood for low-l multipoles can be written as

L(Cl) = p(m|Cl) =
1

2πn/2|M|1/2
exp

(
−1

2
mtM−1m

)
, (4.13)

where n is the number of observed pixels, M(Cl) = C(Cl) + N is the data covariance

matrix, which is split into the CMB, C, and noise, N, covariance matrices, and m = s + n

is the observed map. Actually, the estimated Cl distribution is not well approximate by

a Gaussian at low l (l < 50), because of the limited degrees of freedom per l. However,

if foregrounds and instrumental systematics are negligible, then the CMB signal s and

instrumental noise n are nearly Gaussian and the above likelihood is valid.

In the general case, the data vector m includes both temperature and linear polariza-

tion. For the temperature, the signal covariance matrix gives

〈Ti1Ti2〉 =
lmax∑
l=2

2l + 1

4π
Cth
l b

2
lW

2
l Pl(θi1i2) + Ni1i2 , (4.14)

where Pl are Legendre polynomials calculated at angle θi1i2 between the centers of pixels

i1 and i2, bl is the effect of instrumental beam and Wl is the window function. For

polarization correlations, we obtain similar expressions.

4.2.2 BAO Measurements

In addition to the CMB data sets, we also consider measurements of Baryon Acoustic

Oscillations (BAO) in the matter power spectrum. We combine the results from three

redshift surveys: the 6dF Galaxy Survey measurement at redshift z = 0.106 [50], the

SDSS DR7 BAO measurement at redshift z = 0.35 as analysed by Padmanabhan et al.

[51] and the BOSS DR9 measurement at z = 0.57 [52].

These redshift surveys measure the distance ratio

dz =
rs(zdrag)

DV (z)
, (4.15)

where rs(zdrag) is the comoving sound horizon at the baryon drag epoch, the epoch when
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baryons became dynamically decoupled from photons, and DV (z) combines the angular

diameter distance dA(z) and the Hubble parameter H(z), in a way appropriate for the

analysis of spherically-averaged two-point statistics,

DV (z) =

[
(1 + z)2d2

A(z)
cz

H(z)

]1/3

. (4.16)

The comparison with BAO measurements is made using χ2 statistics

χ2
BAO = (x− xobs)TC−1

BAO(x− xobs), (4.17)

where x is our theoretical predictions and xobs denotes the data vector. The data vector

is composed by the measurements of the three data sets above: For the 6dF DV (0.106) =

(457± 27)Mpc, for the DR7 DV (0.35)/rs = 8.88± 0.17 and for the DR9 DV (0.57)/rs =

13.67± 0.22.

4.2.3 SNIa Measurements

We use the SNIa data from the Supernova Cosmology Project (SCP) Union 2.1 compi-

lation [53], which has 580 samples. The Union 2.1 uses SALT2 [104] to fit supernova

lightcurves. The SALT2 model fits three parameters to each supernova: an overall nor-

malization, x0, to the time dependent spectral energy distribution of a SNIa, the deviation

from the average lightcurve shape x1 and the deviation from the mean SNIa B - V color

c. Combining these parameters, the distance modulus is given by

µB = mmax
B + α · x1 − β · c+ δ · P (mtrue

? < mthreshold
? )−MB, (4.18)

where mmax
B is the integrated B-band flux at maximum light, P (mtrue

? < mthreshold
? ) gives

the correlation of SNIa luminosity to the mass of the host galaxy and MB is the absolute

B-band magnitude. The nuisance parameters α, β, δ and MB are fitted simultaneously

with cosmological parameters.

The best-fit cosmology is determined by minimizing the χ2,

χ2
SN =

580∑
i=1

[µB(α, β, δ,MB)− µ(z,Ωm,Ωd, w)]2

σ2
. (4.19)



72 CHAPTER 4. ANALYSIS

To test our interacting dark energy models we use the CosmoMC [105, 106] module

associated with the Union 2.1 sample. In this module the nuisance parameters are hold

fixed with values α = 0.1218, β = 2.4657 and δ = −0.03634.

4.2.4 H0 Measurements

From observations of Cepheid variables and low-redshift Type Ia surpernovae, the Hubble

Space Telescope (HST) determined the Hubble constant with 3.3% uncertainty including

systematic errors [54]

H0 = 73.8± 2.4kms−1Mpc−1. (4.20)

We use this measurement of the Hubble constant as an additional data.

4.2.5 Lookback Time Measurements

The background observables treated so far, the measurements of H0 and SNIa, are firmed

on distance measurements. To pin down the cosmological parameters we will consider

another indicator, the lookback time, which is based on ages instead of distances. The

lookback time tL(z) is the difference between the present age of the Universe, t0, and its

age at redshift z, t(z),

tL(z) = t0 − t(z) =

∫ ∞
0

dz′

(1 + z′)H(z′)
−
∫ ∞
z

dz′

(1 + z′)H(z′)
=

∫ z

0

dz′

(1 + z′)H(z′)
. (4.21)

For an object at redshift zi, we can calculate its age from the difference between the age

of the Universe at redshift zi and the age of the Universe when the object was formed at

redshift zF ,

t(zi) =

∫ ∞
zi

dz′

(1 + z′)H(z′)
−
∫ ∞
zF

dz′

(1 + z′)H(z′)
=

∫ zF

zi

dz′

(1 + z′)H(z′)
= tL(zF )− tL(zi),

(4.22)

where we used the lookback time definition (4.21). Thus, the above equation tells us that

the observed lookback time tobsL (zi) to an object i at redshift zi is

tobsL (zi) = tL(zF )− t(zi) = [tobs0 − t(zi)]− [tobs0 − tL(zF )] = tobs0 − t(zi)− df, (4.23)
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where df ≡ tobs0 − tL(zF ) is the delay factor which encodes our ignorance of the formation

redshift zF .

In order to constrain the cosmological parameters, we implement a CosmoMC module

to calculate the likelihood for lookback time measurements (Appendix C shows the details

of this module). We use the data of 32 passively evolving galaxies in the redshift interval

0.117 ≤ z ≤ 1.845 with an uncertainty in the age measurements of 12% at one standard

deviation [56]. Additionally, we use the ages of 6 galaxy clusters in the redshift range

0.10 ≤ z ≤ 1.27 with an uncertainty of 1Gyr at one standard deviation [55]. The likelihood

is a Gaussian with

χ2
LBT =

38∑
i=1

[tL(zi, ~p)− tobsL (zi, df)]2

σ2
i + σ2

tobs0

+
[t0(~p)− tobs0 ]2

σ2
tobs0

, (4.24)

where ~p denotes the theoretical cosmological parameters. The delay factor is a nuisance

parameter that is fitted simultaneously with the cosmological parameters.

4.3 Results

4.3.1 Phenomenological Model

We would like to put constraints on the four phenomenological coupled dark energy models

listed in Table 3.1. For this purpose, we will use the recent measurements of the cosmic

microwave background anisotropies as measured by the Planck satellite mission. We

will also consider the combined constraints from the Planck data plus BAO, SNIa and

H0 measurements. In our analysis, we will choose our priors of different cosmological

parameters as listed in Table 4.1. The results were published in [98].

We will allow the equation of state of dark energy to vary. We also choose the helium

abundance Yp from a big bang nucleosynthesis (BBN) consistent scenario. Thus, the

primordial helium abundance Yp is predicted as a function of the baryon density Ωbh
2

and number of extra radiation degrees of freedom ∆N . We will use interpolated results

from the PArthENoPE code [107] to set Yp, following [108]. We will take the relativistic

number of degrees of freedom Neff = 3.046, the total neutrino mass
∑
mν = 0.06eV and

the spectrum lensing normalization AL = 1. To compare theory with observations, we

employ the Markov chain Monte Carlo (MCMC) methodology through a modified version
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Table 4.1: Priors for the cosmological parameters considered in the analysis of the phenomeno-
logical interaction models.

Parameters Prior
Ωbh

2 [0.005, 0.1]
Ωch

2 [0.001, 0.5]
100θ [0.5, 10]
τ [0.01, 0.8]
ns [0.9, 1.1]

log(1010As) [2.7, 4]
Model I Model II Model III Model IV

ω [−1,−0.1] [−2.5,−1] [−2.5,−1] [−2.5,−1]

ξ [−0.4, 0] [0, 0.4] [0, 0.01] [0, 0.01]

of the program CosmoMC [105, 106]. We set the statistical convergence of the chains from

the Gelman and Rubin criterion R − 1 = 0.03. After running the MCMC, we list our

fitting results in Tables 4.2-4.5.

Table 4.2: Cosmological parameters - Model I.

Planck Planck+BAO Planck+BAO+SNIa+H0
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits

Ωbh
2 0.02213 0.02202+0.000272

−0.000273 0.02225 0.02203+0.000261
−0.000261 0.0221 0.02202+0.000251

−0.000251

Ωch
2 0.1188 0.06889+0.0483

−0.0252 0.1121 0.0608+0.038
−0.0311 0.07199 0.04824+0.0256

−0.0319

100θMC 1.041 1.045+0.00174
−0.00351 1.042 1.045+0.00179

−0.00309 1.044 1.046+0.00195
−0.00256

τ 0.08951 0.08843+0.0123
−0.0136 0.09803 0.08835+0.0121

−0.0139 0.09492 0.08866+0.012
−0.0136

ns 0.9596 0.9601+0.00747
−0.00739 0.9643 0.9606+0.00639

−0.00642 0.964 0.9598+0.00616
−0.00624

ln(1010As) 3.088 3.087+0.0237
−0.0256 3.106 3.086+0.0238

−0.0265 3.102 3.088+0.0236
−0.0261

w -0.9747 −0.8797+0.0287
−0.119 -0.9934 −0.9141+0.0221

−0.0849 -0.9935 −0.9362+0.0171
−0.0628

ξ2 -0.0006633 −0.1353+0.128
−0.0528 -0.02123 −0.1546+0.0743

−0.0947 -0.1359 −0.1854+0.0524
−0.0793

Ωd 0.6829 0.7918+0.112
−0.0937 0.7103 0.8234+0.0852

−0.072 0.8106 0.8569+0.0706
−0.0478

Ωm 0.3171 0.2082+0.0957
−0.114 0.2897 0.1766+0.072

−0.0852 0.1894 0.1431+0.0478
−0.0706

zre 11.05 10.99+1.08
−1.07 11.74 10.96+1.1

−1.08 11.55 10.99+1.08
−1.06

H0 66.81 67.66+4.7
−3.55 68.26 69.26+2.04

−1.99 70.72 70.71+1.36
−1.37

Age/Gyr 13.83 13.82+0.0762
−0.116 13.78 13.78+0.0458

−0.0468 13.75 13.76+0.0371
−0.0374

χ2
min/2 4903.07 4903.61 4970.24

The constraints on the parameters and the best fit values for Model I are reported

in Table 4.2. The 1-D posteriors for the parameters are shown in Fig.4.1 and the main

parameter degeneracies are shown in Fig.4.2. The presence of a dark coupling is perfectly

compatible with the Planck data set. The marginalized value tells us ξ2 < 0. With

the combined constraint by including other observational data, the negative value of the

coupling keeps. Thus, for this coupling model, there is a lower value of the cold dark

matter density today, since there is energy flow from dark matter to dark energy. This

direction of energy flow cannot alleviate the coincidence problem. As shown in Fig.3.1,
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Figure 4.1: The likelihood for the parameters of the phenomenological Model I. The black
solid lines correspond to the Planck constraints, the red dashed lines correspond to Planck +
BAO and the blue dot-dashed lines correspond to Planck + BAO + SNIa + H0.

there is even shorter period for the energy densities of dark matter and dark energy

to be comparable. For the Hubble constant value, from the Planck data alone, H0 is

small in this interacting model, which is similar to that obtained in the ΛCDM case. This

interaction model between dark sectors cannot be of much help to relax the tension on the

Hubble parameter between Planck measurement and HST observation. After including

other observational data at low redshift, we find that the tension between the Hubble

constant measurements is alleviated.
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Figure 4.2: 2-D distribution for selected parameters - Model I.

Table 4.3: Cosmological parameters - Model II.

Planck Planck+BAO Planck+BAO+SNIa+H0
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits

Ωbh
2 0.02201 0.02208+0.000283

−0.000277 0.02219 0.02199+0.000264
−0.00026 0.02208 0.02203+0.000255

−0.000255

Ωch
2 0.1308 0.1335+0.0076

−0.0118 0.132 0.1352+0.00844
−0.0115 0.1432 0.1344+0.00751

−0.0118

100θMC 1.041 1.041+0.000815
−0.000768 1.041 1.04+0.000747

−0.000758 1.04 1.04+0.00076
−0.000757

τ 0.08672 0.08934+0.0128
−0.0138 0.08154 0.08761+0.0121

−0.0137 0.08312 0.08844+0.012
−0.0135

ns 0.9615 0.9599+0.00715
−0.00703 0.9598 0.9581+0.00654

−0.00658 0.962 0.9586+0.00632
−0.00637

ln(1010As) 3.085 3.089+0.0245
−0.0267 3.078 3.088+0.0234

−0.0261 3.079 3.089+0.0232
−0.0263

w -1.696 −1.516+0.312
−0.305 -1.166 −1.189+0.152

−0.0721 -1.181 −1.192+0.0771
−0.0715

ξ2 0.02837 0.03923+0.0121
−0.0392 0.03522 0.04818+0.0164

−0.0482 0.0784 0.04562+0.0155
−0.0456

Ωd 0.806 0.762+0.0799
−0.0384 0.69 0.6849+0.0292

−0.0296 0.6653 0.6901+0.0253
−0.0201

Ωm 0.194 0.238+0.0384
−0.0799 0.31 0.3151+0.0296

−0.0292 0.3347 0.3099+0.0201
−0.0253

zre 10.81 11.+1.11
−1.1 10.35 10.92+1.08

−1.08 10.5 10.98+1.07
−1.07

H0 88.93 82.69+9.78
−11.9 70.68 70.92+2.08

−3.19 70.42 71.25+1.48
−1.48

Age/Gyr 13.53 13.6+0.0942
−0.148 13.74 13.76+0.0489

−0.0487 13.75 13.75+0.0373
−0.0378

χ2
min/2 4901.08 4903.02 4968.20

Now we present the fitting results for the coupling Model II in Table 4.3. In this model,

the interaction between the dark sectors is still proportional to the energy density of dark

energy but with equation of state of dark energy smaller than −1. From the Planck data

analysis alone, we obtain the Hubble constant value significantly larger than that in the

standard ΛCDM case, H0 = 82.69+9.78
−11.9 km · s−1 ·Mpc−1. This is different from what we

observed in the fitting results of Model I, where the H0 is much smaller and consistent

with the ΛCDM case. The lower fitting range of the H0 in Model II is consistent with the

observations in the low redshift. We have explored the degeneracy between the Hubble

value and the equation of state of dark energy and found that smaller equation of state

of dark energy leads to higher value of the Hubble parameter. The coupling constant

ξ2 is found to be positive, which shows that there is an energy flow from dark energy

to dark matter. This is required to alleviate the coincidence problem, because with this
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Figure 4.3: The likelihood for the parameters of the phenomenological Model II. The black
solid lines correspond to the Planck constraints, the red dashed lines correspond to Planck +
BAO and the blue dot-dashed lines correspond to Planck + BAO + SNIa + H0.

interaction there is longer period for the energy densities of dark matter and dark energy

to be comparable, which was illustrated in the Fig.3.1. Combined with other observational

data, we show that a combined analysis provides significant evidence for this coupled dark

energy with positive non-zero value of the coupling parameter, consistent Hubble constant

and equation of state of dark energy. The 1-D posteriors for the parameters are shown in

Fig.4.3 and the main parameter degeneracies are shown in Fig.4.4.

Now we turn our discussion to the coupled dark energy Model III, where the interaction
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Figure 4.4: 2-D distribution for selected parameters - Model II.

Table 4.4: Cosmological parameters - Model III.

Planck Planck+BAO Planck+BAO+SNIa+H0
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits

Ωbh
2 0.02225 0.02265+0.000412

−0.000506 0.02248 0.02244+0.000347
−0.000399 0.02227 0.02235+0.000314

−0.000372

Ωch
2 0.1258 0.1292+0.00516

−0.00857 0.1254 0.1251+0.00256
−0.00257 0.1237 0.123+0.00212

−0.00212

100θMC 1.041 1.041+0.000676
−0.000689 1.041 1.041+0.000591

−0.000589 1.041 1.041+0.000587
−0.000584

τ 0.08378 0.08887+0.013
−0.0131 0.09507 0.08956+0.0126

−0.0142 0.08342 0.09011+0.0124
−0.0141

ns 0.9584 0.9563+0.00756
−0.00758 0.9603 0.9587+0.00651

−0.00667 0.9631 0.9599+0.00614
−0.0062

ln(1010As) 3.075 3.081+0.0252
−0.0269 3.095 3.084+0.0246

−0.0269 3.071 3.086+0.0239
−0.0273

w -1.638 −1.779+0.457
−0.341 -1.48 −1.455+0.275

−0.139 -1.296 −1.254+0.0944
−0.0695

ξ1 0.002118 < 0.004702 0.002266 0.002272+0.00103
−0.00137 0.001781 0.001494+0.00065

−0.00116

Ωd 0.7668 0.7393+0.111
−0.0365 0.7431 0.7361+0.0219

−0.0281 0.719 0.717+0.0127
−0.0115

Ωm 0.2332 0.2607+0.0365
−0.111 0.2569 0.2639+0.0281

−0.0219 0.281 0.283+0.0115
−0.0127

zre 10.57 10.91+1.11
−1.11 11.49 10.99+1.1

−1.1 10.51 11.04+1.1
−1.09

H0 79.85 79.35+12.4
−12.1 76.02 75.23+2.73

−4.91 72.24 71.88+1.44
−1.43

Age/Gyr 13.81 13.93+0.189
−0.362 13.82 13.84+0.0709

−0.0715 13.85 13.82+0.0575
−0.0702

χ2
min/2 4902.23 4903.24 4969.78

is proportional to the energy density of dark matter. In this model, to ensure stability of

the curvature perturbation, if the equation of state of dark energy is constant, it has to be

smaller than −1 [13]. Looking at the new constraints on this coupled dark energy model

from the recent measurements of CMB from the Planck satellite mission alone, in Table

4.4, we find that the Hubble constant value is consistent with low redshift observations,

but it is much higher than that of the ΛCDM result. The coupling constant is more

tightly constrained in this coupled dark energy model than those in Models I and II,

which is in agreement with the findings in the WMAP constraints [25, 44]. The value of

the coupling parameter ξ1 is small positive, which meets the requirement to alleviate the

coincidence problem. The evolution of the ratio between energy densities of dark matter

and dark energy with this small positive coupling was shown in the Fig.3.1, which has

a longer period for the dark matter and dark energy energy densities to be comparable



4.3. RESULTS 79

0.022 0.023 0.024

Ωbh
2

0.12 0.13 0.14 0.15

Ωch
2

1.040 1.042
100θMC

0.050 0.075 0.100 0.125
τ

0.930 0.945 0.960 0.975
ns

3.00 3.05 3.10 3.15

ln(1010As)

−2.4 −2.0 −1.6 −1.2
w

0.000 0.002 0.004 0.006 0.008 0.010
ξ1

0.2 0.4 0.6 0.8
ΩΛ

0.2 0.4 0.6 0.8
Ωm

8 10 12 14
zre

45 60 75 90
H0

13.6 14.0 14.4 14.8

Age/Gyr

Figure 4.5: The likelihood for the parameters of the phenomenological Model III. The black
solid lines correspond to the Planck constraints, the red dashed lines correspond to Planck +
BAO and the blue dot-dashed lines correspond to Planck + BAO + SNIa + H0.

when ξ is positive and has the attractor solution with the ratio between dark energy and

dark matter energy densities % ∼ constant in the past. We also consider the combined

constraints from the Planck data plus other measurements. The results are listed in Table

4.4, which shows stronger evidence for this coupled dark energy model with small positive

coupling. We plot the 1-D posteriors for the parameters in Fig.4.5 and show the main

parameter degeneracies in Fig.4.6.

Finally, we present the fitting results for the coupled dark energy Model IV, where
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Figure 4.6: 2-D distribution for selected parameters - Model III.

Table 4.5: Cosmological parameters - Model IV.

Planck Planck+BAO Planck+BAO+SNIa+H0
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits

Ωbh
2 0.02047 0.02037+0.000275

−0.00027 0.02041 0.02042+0.000257
−0.000263 0.02053 0.02056+0.000253

−0.000265

Ωch
2 0.1251 0.1273+0.00309

−0.00321 0.125 0.1261+0.00254
−0.0025 0.1245 0.1242+0.00204

−0.00208

100θMC 1.04 1.04+0.000618
−0.000607 1.04 1.04+0.000574

−0.000572 1.04 1.04+0.000537
−0.000541

τ 0.0883 0.07771+0.011
−0.0129 0.06756 0.07785+0.0112

−0.0124 0.07537 0.07899+0.0112
−0.0127

ns 0.9305 0.9309+0.00746
−0.00743 0.9295 0.9332+0.00643

−0.00655 0.9338 0.9368+0.00592
−0.00594

ln(1010As) 3.086 3.068+0.0221
−0.0253 3.045 3.066+0.0228

−0.0248 3.06 3.064+0.0227
−0.0233

w -1.613 −1.763+0.385
−0.432 -1.267 −1.472+0.229

−0.147 -1.305 −1.286+0.082
−0.074

ξ 0.00009881 < 0.0004618 0.00001943 < 0.0004260 0.0000671 < 0.0003314
Ωd 0.7735 0.772+0.0793

−0.0319 0.7079 0.7365+0.0238
−0.0267 0.7199 0.7149+0.0126

−0.0115

Ωm 0.2265 0.228+0.0319
−0.0793 0.2921 0.2635+0.0267

−0.0238 0.2801 0.2851+0.0115
−0.0126

zre 11.61 10.65+1.14
−1.12 9.624 10.63+1.14

−1.1 10.35 10.66+1.11
−1.11

H0 80.35 82.5+12.4
−9.95 70.71 75.+3.07

−4.59 72.11 71.45+1.48
−1.46

Age/Gyr 13.8 13.85+0.0891
−0.136 13.92 13.9+0.046

−0.0532 13.89 13.92+0.0385
−0.0391

χ2
min/2 4991.13 4991.28 5058.81

we consider the interaction between dark energy and dark matter is proportional to the

energy density of the total dark sectors. In order to ensure the stability of the curvature

perturbation, the constant equation of state of dark energy has to be in the phantom

range. This was disclosed in [13]. As observed in the WMAP fitting results, this type of

interaction has very similar constraints to the Model III [25, 44]. Confronting the model

to the Planck data alone and the combined observational data, we list the constraints in

Table 4.5. We show the 1-D posteriors for the parameters in Fig.4.7 and plot the main

parameter degeneracies in Fig.4.8. From the Planck data alone, we again see that the

Hubble constant is much higher than that of the ΛCDM model. This is consistent with

the observations from Model II and Model III. The coupling constant is more tightly

constrained in Model IV to be very small but positive, what is needed to alleviate the

coincidence problem with longer period for the dark energy and dark matter energy den-
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Figure 4.7: The likelihood for the parameters of the phenomenological Model IV. The black
solid lines correspond to the Planck constraints, the red dashed lines correspond to Planck +
BAO and the blue dot-dashed lines correspond to Planck + BAO + SNIa + H0.

sities to be comparable in the expansion of the Universe as shown in Fig.3.1. The Model

IV has an attractor solution with % ∼ constant in the future. In the joint constraints,

by including other observational data, we find that the coupled dark energy model IV is

fully compatible with astronomical observations. It is a viable model.

We constrained, up to now, the four phenomenological models based on Planck mea-

surements and additional data from BAO, SNIa and H0. These additional data sets are

based on measurements of distances. As we pointed out in the previous section, another
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Figure 4.8: 2-D distribution for selected parameters - Model IV.

Table 4.6: Priors for the cosmological parameters considered in the analysis with lookback
time of the phenomenological models.

Parameters Prior
Ωbh

2 [0.005, 0.99]
Ωch

2 [0.001, 0.99]
H0 [20, 100]
df [0, 5]

Model I Model II Model III Model IV

ω [−1,−0.1] [−2.5,−1] [−2.5,−1] [−2.5,−1]

ξ [−0.4, 0.4] [−0.4, 0.4] [−0.4, 0.4] [−0.4, 0.4]

kind of data can be obtained based on measurements of ages instead of distances. One

such technique is the lookback time. Thus, to take this kind of data into account we

implemented the likelihood for lookback time in the CosmoMC code (see Appendix C).

We choose our priors for the different cosmological parameters as listed in Table 4.6. The

equation of state of dark energy is set constant, but it can have any value inside the prior

interval. We also take the relativistic number of degrees of freedom Neff = 3.046 and

the total neutrino mass
∑
mν = 0.06eV . The MCMC will run until the chains reach the

statistical convergence for Gelman and Rubin criterion R − 1 = 0.01. We list our fitting

results in Tables 4.7-4.10. These results will be part of publication in [100].

The lookback time constraints for Model I are reported in Table 4.7. The 1-D posterior

distributions are shown in Fig. 4.9 and the main parameter degeneracies appear in Fig.

4.10. The first columns of Table 4.7 present the best fit and 68% C.L. for the prior

given in Table 4.6. The columns in the middle redo the calculations with a restrict prior

for ξ2 as that in Table 4.1. The last columns show the results including the Planck

measurements, in this case the others parameters are set according to Table 4.1. For
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Table 4.7: Cosmological parameters - LBT analysis for Model I.

LBT+H0 LBT+H0 (ξ2 = [−0.4, 0]) LBT+H0+Planck
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits

Ωbh
2 0.1693 0.09288+0.0277

−0.0879 0.009321 0.03423+0.00737
−0.0292 0.02185 0.02203+0.000252

−0.000251

Ωch
2 0.05315 0.08679+0.0244

−0.0858 0.006469 0.03003+0.00751
−0.029 0.04167 0.04524+0.0168

−0.04

H0 73.22 73.15+2.42
−2.42 72.85 72.94+2.44

−2.5 71.69 71.06+1.82
−1.82

w -0.6778 −0.7319+0.143
−0.165 -0.4277 −0.7098+0.184

−0.141 -0.9621 −0.9346+0.016
−0.0644

ξ2 0.2708 0.1992+0.197
−0.0635 -0.008092 −0.05135+0.0513

−0.00763 -0.2048 −0.1878+0.0479
−0.0812

df 2.461 2.205+0.31
−0.259 2.387 1.831+0.27

−0.268 1.376 1.381+0.0993
−0.0991

Ωd 0.5838 0.6623+0.0794
−0.154 0.969 0.8772+0.0623

−0.0465 0.8751 0.8637+0.0784
−0.0389

Ωm 0.4162 0.3377+0.154
−0.08 0.03097 0.1228+0.047

−0.0627 0.1249 0.1363+0.0389
−0.0784

χ2
min/2 13.48 13.60 4921.61
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Figure 4.9: The likelihood for the parameters of the phenomenological Model I using lookback
time measurements. The black solid lines correspond to the LBT + H0 constraints, the red
dashed lines correspond to LBT + H0 with a restricted prior to ξ2 = [−0.4, 0] and the blue
dot-dashed lines correspond to LBT + H0 + Planck.

lookback time calculations of Model I, we use the age of the Universe obtained with

Planck data tobs0 = 13.821Gyr with one standard deviation σtobs0
= 0.101Gyr. From the

fitting results, we observe that Planck measurements provide narrower constraints than

lookback time, especially for Ωbh
2. This would be expected since baryon perturbations are

coupled to photons and thus the CMB anisotropies depend on the amount of baryons. On

the other hand, lookback time only takes into account the background evolution. We also

see that lookback time prefers a dark energy equation of state in the quintessence regime
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Figure 4.10: 2-D distribution for selected parameters - LBT analysis for Model I.

Table 4.8: Cosmological parameters - LBT analysis for Model II

LBT+H0 LBT+H0 (ξ2 = [0, 0.4]) LBT+H0+Planck
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits

Ωbh
2 0.2548 0.098+0.0294

−0.093 0.1355 0.1095+0.0346
−0.104 0.02228 0.0222+0.000264

−0.000263

Ωch
2 0.005993 0.0958+0.0305

−0.0948 0.1255 0.1054+0.036
−0.104 0.1372 0.1335+0.00814

−0.0125

H0 74.34 74.06+2.5
−2.52 74.12 74.04+2.52

−2.53 77.88 74.94+2.23
−2.24

w -1.009 −1.482+0.481
−0.148 -1.015 −1.413+0.412

−0.0657 -1.359 −1.274+0.0972
−0.0886

ξ2 0.3967 0.144+0.255
−0.0715 0.398 0.2475+0.151

−0.0496 0.05431 0.04451+0.0146
−0.0445

df 1.961 1.312+0.291
−0.421 1.937 1.405+0.325

−0.346 1.338 1.27+0.1
−0.101

Ωd 0.5269 0.6441+0.0552
−0.115 0.5237 0.6058+0.0444

−0.0692 0.7359 0.7209+0.0271
−0.0221

Ωm 0.4731 0.3559+0.115
−0.0553 0.4763 0.3942+0.0692

−0.0444 0.2641 0.2791+0.0221
−0.0271

χ2
min/2 14.12 14.03 4919.71

at 68% C. L., while Planck is consistent with a cosmological constant. The lookback time

measurements favor a positive interaction parameter, which is in tension with more than

2σ as compared with the result from Planck. Such difference in the interaction has an

effect in the time when the structures were formed, as described by the delay factor df ,

and also in the amount of dark matter and dark energy at present.

We pass now to consider the behaviour of Model II with respect to LBT data. Table

4.8 presents the best fit values and marginalizations for the parameters. Figure 4.11 plots

the 1-D posterior distributions and Fig. 4.12 plots the main parameters degeneracies. The

age of the Universe is set to tobs0 = 13.604Gyr with standard deviation σtobs0
= 0.115Gyr.

From the fitting results, we observe that the dark energy equation of state tends to larger

values consistent with a cosmological constant. However, we note that our prior prevents

the EoS to be larger than ω = −1. Thus, this result is in agreement with that obtained

for Model I. On the other hand, the Planck likelihood constrains the EoS of dark energy

in the phantom region with more than 95% C.L.. At first sight, we could combine Models
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I and II into one single model with EoS from quintessence to phantom regions and an

interaction from negative to positive ones. This is true for the background, however Eq.

(3.19) diverges for ω = −1 and also appears several divergences in the power spectra for

a positive interaction for Model I and negative interaction for Model II, this is the reason

why we restricted the priors for the Planck data. Finally, as for Model I, we observe that

lookback time data prefer larger values for the interaction in opposite to Planck.
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Figure 4.11: The likelihood for the parameters of the phenomenological Model II using look-
back time measurements. The black solid lines correspond to the LBT + H0 constraints, the
red dashed lines correspond to LBT + H0 with a restricted prior to ξ2 = [0, 0.4] and the blue
dot-dashed lines correspond to LBT + H0 + Planck.
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Figure 4.12: 2-D distribution for selected parameters - LBT analysis for Model II.
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Table 4.9: Cosmological parameters - LBT analysis for Model III

LBT+H0 LBT+H0 (ξ1 = [0, 0.4]) LBT+H0+Planck
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits

Ωbh
2 0.006805 0.0378+0.00592

−0.0328 0.009584 0.03848+0.0059
−0.0335 0.02248 0.02244+0.000332

−0.000399

Ωch
2 0.3828 0.252+0.106

−0.0793 0.386 0.2503+0.105
−0.0759 0.1199 0.1251+0.00331

−0.00462

H0 73.1 73.69+2.65
−2.6 73.25 73.65+2.61

−2.59 74.27 74.26+2.46
−2.46

w -1.64 −1.731+0.73
−0.769 -1.558 −1.722+0.721

−0.778 -1.232 −1.417+0.212
−0.112

ξ1 0.3735 0.3033+0.0957
−0.0199 0.3955 0.3054+0.0936

−0.0215 0.0006722 0.002171+0.000729
−0.00197

df 2.506 2.048+0.379
−0.298 2.554 2.048+0.369

−0.287 1.669 1.405+0.181
−0.146

Ωd 0.2698 0.4615+0.156
−0.138 0.2616 0.4628+0.152

−0.134 0.7406 0.7305+0.0218
−0.0177

Ωm 0.7302 0.5385+0.138
−0.156 0.7384 0.5372+0.134

−0.152 0.2594 0.2695+0.0177
−0.0218

χ2
min/2 11.59 11.59 4918.55

Table 4.10: Cosmological parameters - LBT analysis for Model IV

LBT+H0 LBT+H0 (ξ = [0, 0.4]) LBT+H0+Planck
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits

Ωbh
2 0.007615 0.04137+0.00758

−0.0364 0.005097 0.0409+0.00713
−0.0359 0.0224 0.0224+0.000335

−0.000376

Ωch
2 0.4325 0.3159+0.103

−0.0854 0.3857 0.3177+0.106
−0.0835 0.125 0.1251+0.00302

−0.00316

H0 73.27 73.22+2.59
−2.59 72.89 73.17+2.52

−2.54 73.83 74.03+2.29
−2.6

w -2.384 −1.702+0.701
−0.798 -1.768 −1.702+0.701

−0.798 -1.341 −1.384+0.167
−0.113

ξ 0.3188 0.3011+0.0979
−0.0247 0.2772 0.3014+0.0976

−0.0238 0.00141 0.001953+0.000914
−0.00116

df 2.498 2.188+0.411
−0.356 2.406 2.192+0.422

−0.362 1.378 1.323+0.115
−0.116

Ωd 0.1791 0.3287+0.155
−0.153 0.2632 0.3251+0.157

−0.155 0.7284 0.7289+0.0191
−0.0167

χ2
min/2 13.39 13.39 4920.34

Models III and IV present very similar behavior. The best fit values and 68% C.L.

limits are presented in Tables 4.9 and 4.10 for Models III and IV, respectively. Figures

4.13 and 4.14 show the 1-D posterior distributions for the parameters, while Fig. 4.15 and

Fig. 4.16 plot the main parameter degeneracies. For Model III the age of the Universe is

given by tobs0 = 13.928Gyr with standard deviation σtobs0
= 0.280 and for Model IV the age

is tobs0 = 13.854Gyr and σtobs0
= 0.111, which were obtained from the Planck measurements

alone. We observe that Planck measurements pin the parameters down much better than

lookback time data for both models, especially the dark energy equation of state which is

completely unconstrained using LBT. There is still a tension in the determination of the

interaction parameter over several sigmas, e.g. the 95% C.L. lower limit for the interaction

using only LBT is ξ1 = 0.14 for Model III, while the maximum value at 95% C.L. with

Planck is ξ1 = 0.0047. Note the tiny confidence regions for Planck constraints as compared

with the LBT constraints, and the separation between them in the 2-D distributions.
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Figure 4.13: The likelihood for the parameters of the phenomenological Model III using look-
back time measurements. The black solid lines correspond to the LBT + H0 constraints, the
red dashed lines correspond to LBT + H0 with a restricted prior to ξ1 = [0, 0.4] and the blue
dot-dashed lines correspond to LBT + H0 + Planck.
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Figure 4.14: The likelihood for the parameters of the phenomenological Model IV using look-
back time measurements. The black solid lines correspond to the LBT + H0 constraints, the
red dashed lines correspond to LBT + H0 with a restricted prior to ξ = [0, 0.4] and the blue
dot-dashed lines correspond to LBT + H0 + Planck .
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Figure 4.15: 2-D distribution for selected parameters - LBT analysis for Model III.
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Figure 4.16: 2-D distribution for selected parameters - LBT analysis for Model IV.

4.3.2 Lagrangian Model

Let us consider now our Lagrangian model described in the previous chapter. We want

to put constraints on the cosmological parameters and verify if the Yukawa interaction is

favored by the observational data. The priors that we use are listed in Table 4.11. At

first we allow the parameter of the scalar potential λ to vary freely. We fixed the helium

Table 4.11: Priors for the cosmological parameters considered in the analysis of the Yukawa
interacting model.

Parameters Prior
Ωbh

2 [0.005, 0.1]
Ωch

2 [0.001, 0.99]
100θ [0.5, 10]
τ [0.01, 0.8]
ns [0.9, 1.1]

log(1010As) [2.7, 4]
λ [0.1, 1.5]

r = β
M
Mpl [−0.1, 0.1]
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Table 4.12: Cosmological parameters - Lagrangian Model

Planck Planck+BAO Planck+BAO+SNIa+H0
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits

Ωbh
2 0.02203 0.02196+0.000278

−0.000279 0.02225 0.02204+0.000252
−0.000264 0.02222 0.02211+0.000263

−0.000261

Ωch
2 0.1185 0.119+0.00277

−0.00283 0.1181 0.1176+0.00211
−0.00181 0.1171 0.1165+0.00185

−0.00166

100θMC 1.041 1.041+0.000625
−0.000623 1.042 1.041+0.000564

−0.000567 1.042 1.041+0.000572
−0.000565

τ 0.09723 0.0883+0.0118
−0.0136 0.09281 0.09063+0.0123

−0.0125 0.08889 0.09231+0.0126
−0.0127

ns 0.9625 0.9579+0.00702
−0.00701 0.9631 0.9608+0.00592

−0.00577 0.9647 0.9629+0.00573
−0.00558

ln(1010As) 3.101 3.084+0.0229
−0.0256 3.091 3.086+0.0239

−0.0243 3.086 3.087+0.0249
−0.0247

λ 0.6777 0.7451+0.755
−0.645 0.227 0.6046+0.151

−0.505 0.3007 0.3904+0.0736
−0.29

r -0.02182 −0.001969+0.0224
−0.0224 -0.003793 −0.0008486+0.0238

−0.0281 0.01311 −0.002299+0.033
−0.0338

Ωd 0.6858 0.6744+0.0236
−0.0213 0.6942 0.688+0.0141

−0.0116 0.699 0.701+0.0103
−0.0101

Ωm 0.3142 0.3256+0.0213
−0.0236 0.3058 0.312+0.0116

−0.0141 0.301 0.299+0.0101
−0.0103

zre 11.67 10.93+1.04
−1.05 11.22 11.07+1.04

−1.07 10.87 11.17+1.07
−1.07

H0 67.04 66.05+1.93
−1.77 67.91 67.09+1.3

−0.968 68.19 68.28+0.849
−0.839

Age/Gyr 13.81 13.84+0.0651
−0.0567 13.79 13.81+0.0414

−0.0417 13.78 13.77+0.0438
−0.0407

χ2
min/2 4902.91 4903.89 4972.01
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Figure 4.17: 2-D distribution for selected parameters - Lagrangian Model.

abundance as Yp = 0.24. The number of relativistic degrees of freedom is adjusted to

Neff = 3.046 and the total neutrino mass is set to
∑
mν = 0.06eV . At last the spectrum

lensing normalization is AL = 1. To finish the MCMC we set the Gelman and Rubin

criterion to R− 1 = 0.03. The results obtained for this model will be published soon [99].

To constrain the Yukawa-type interacting dark energy, we use the measurements of the

CMB anisotropies made by Planck together with BAO, SNIa andH0 measurements. Using

the priors listed in Table 4.11 we run the MCMC. The results are shown in Table 4.12, the

1-D posteriors for the parameters are given in Fig. 4.18 and some parameter degeneracies

are in Fig. 4.17. We observe that the Planck data alone is not able to constrain the

scalar potential λ and it constrains the interaction parameter r symmetrically around the

zero value. This is what we expected from the discussion about the power spectra of the

Lagrangian model in the previous chapter, as illustrated in Figs. 3.6 and 3.7. Adding low
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redshift measurements, λ tends to its lower limit, while the interaction parameter slightly

breaks the symmetry around the zero value. We see that allowing the scalar potential

vary freely does not favor an interacting model. In fact, it shows a tendency to λ → 0

and r = 0, which is basically the ΛCDM model.
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Figure 4.18: The likelihood for the parameters of the Lagrangian Model. The black solid lines
correspond to the Planck constraints, the red dashed lines correspond to Planck + BAO and
the blue dot-dashed lines correspond to Planck + BAO + SNIa + H0.

We then consider the case when we fix the scalar potential parameter λ. We have

learned that as we increase the value for λ, the interaction becomes more favored. For

instance, λ =
√

3/2 produces the results in Table 4.13 and the 1-D posterior distributions
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Table 4.13: Cosmological parameters - Lagrangian Model with Fixed λ

Planck Planck+BAO Planck+BAO+SNIa+H0
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits

Ωbh
2 0.02177 0.02195+0.000276

−0.000274 0.02203 0.02208+0.000265
−0.000263 0.02216 0.02218+0.000272

−0.000267

Ωch
2 0.1203 0.1192+0.00288

−0.00282 0.1186 0.1166+0.0026
−0.00202 0.117 0.1155+0.00238

−0.00182

100θMC 1.041 1.041+0.000621
−0.000618 1.041 1.041+0.000581

−0.000569 1.042 1.042+0.00059
−0.000598

τ 0.08242 0.08848+0.0117
−0.0144 0.0964 0.09183+0.0124

−0.0142 0.1005 0.09495+0.0127
−0.0145

ns 0.9557 0.9575+0.00727
−0.00734 0.961 0.9629+0.00619

−0.00607 0.9666 0.9662+0.00609
−0.00599

ln(1010As) 3.076 3.085+0.0226
−0.0271 3.099 3.086+0.0243

−0.0271 3.103 3.09+0.0252
−0.0281

r -0.02151 −0.001283+0.0208
−0.0243 -0.01445 −0.005535+0.021

−0.0343 -0.03228 −0.02173+0.0105
−0.0346

Ωd 0.654 0.6567+0.0161
−0.0163 0.6632 0.6731+0.0108

−0.0109 0.6804 0.6851+0.0101
−0.0101

Ωm 0.346 0.3433+0.0163
−0.0161 0.3368 0.3269+0.0109

−0.0108 0.3196 0.3149+0.0101
−0.0101

zre 10.51 10.95+1.06
−1.17 11.61 11.14+1.1

−1.08 11.85 11.33+1.1
−1.09

H0 64.23 64.31+0.943
−1.06 64.77 65.31+0.729

−0.72 66.14 66.29+0.744
−0.866

Age/Gyr 13.89 13.87+0.053
−0.0455 13.86 13.83+0.0422

−0.0424 13.78 13.78+0.0506
−0.045

χ2
min/2 4903.15 4905.40 4977.26

Table 4.14: Cosmological parameters - LBT analysis for the Lagrangian Model

LBT+H0 LBT+H0+Planck
Parameter Best fit 68% limits Best fit 68% limits

Ωbh
2 0.01379 0.04993+0.0501

−0.0449 0.02193 0.02202+0.000223
−0.000227

Ωch
2 0.05908 0.04989+0.0211

−0.0407 0.1177 0.1173+0.00213
−0.00212

H0 73.85 74.25+2.39
−2.38 67.73 67.57+0.989

−0.978

λ 1.495 1.091+0.409
−0.0893 0.1664 0.482+0.106

−0.382

r 0.04726 0.001707+0.0983
−0.102 -0.01 −0.001682+0.0226

−0.0279

df 2.025 1.819+0.21
−0.264 1.307 1.339+0.0923

−0.0924

Ωd 0.8652 0.8159+0.0415
−0.0439 0.6942 0.6932+0.0136

−0.0122

Ωm 0.1348 0.1841+0.0438
−0.0415 0.3058 0.3068+0.0122

−0.0136

χ2
min/2 14.62 4924.29

are plotted in Fig. 4.19. These results show that even when we fix the parameter λ, the

Planck data alone is compatible with a null interaction. However, if we include low redshift

measurements from BAO, SNIa and H0, the symmetric value of r is broken and it favors

a negative value of r. For this value of λ, the negative interaction parameter is favored

at 68% C.L.. Augmenting the value of λ, a negative r is even more favorable. Thus, we

conclude that if we are able to determine the value of λ, or if we have a theoretical model

fixing it, if this value is sufficiently large, the Yukawa interaction between dark energy

and dark matter will be preferred by the cosmological data.

At last we analyze the Lagrangian model comparing it with the lookback time data.

The results are in Table 4.14. Figures 4.20 and 4.21 present the 1-D posteriors and the

main parameter degeneracies, respectively. As expected, the lookback time yields much

broader results as compared with the Planck constraints. It is not able to constrain the
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Figure 4.19: The likelihood for the parameters of the Lagrangian Model with fixed λ. The
black solid lines correspond to the Planck constraints, the red dashed lines correspond to Planck
+ BAO and the blue dot-dashed lines correspond to Planck + BAO + SNIa + H0.

interaction, which is completely undetermined with lookback time data alone. From the

posterior distributions, we observe that LBT data prefer larger values of λ, which is in the

opposite direction to the Planck measurements. Fixing the value of λ does not improve

the LBT constraints for the interaction parameter, thus we do not present the results for

this case here. We conclude that the LBT data alone are not of much help to constrain

the Lagrangian Model with Yukawa-type interaction, but they show a tension with the

Planck data in the determination of the scalar potential parameter. These results are

part of a publication to appear soon[100].
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Figure 4.20: The likelihood for the parameters of the Lagrangian Model using lookback time
measurements. The black solid lines correspond to the LBT + H0 constraints and the red dashed
lines correspond to LBT + H0 + Planck.
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Figure 4.21: 2-D distribution for selected parameters - LBT analysis for the Lagrangian Model.



Conclusions

The aim of this thesis was to propose models of interaction between dark energy and dark

matter and discover from observational data if the interaction is favored.

Chapter one dealt with basic aspects of cosmology. We introduced the simple homo-

geneous and isotropic model for the Universe and the equations governing its evolution.

Then, in order to put the cosmological models on experimental basis, we described def-

initions of cosmic distances which allow us to constrain the cosmological parameters of

a model from observations and make predictions that can be falsifiable. For instance,

observations of surpernova type Ia put constraints from luminosity distances and mea-

surements of baryon acustic oscillations are based on angular diameter distances. Finally,

we discussed how current observations lead to the necessity of two unknown components:

dark matter and dark energy.

The structures around us imply that we must go beyond the homogeneous and isotropic

universe if our model intends to explain the real Universe. On large scales, we can im-

prove our model through small perturbations in the background. Chapter two introduced

such perturbations and developed their dynamical equations. The linear perturbations

over the smooth background lead to predictions about the cosmic microwave background

anisotropies and matter inhomogeneities which can be tested by anisotropy probes, e.g.

Planck satellite, and galaxy surveys, respectively.

The first two chapters were concerned to establish the cosmological basis we needed.

In chapter three we explore the possibility of an interaction in the dark sector. The sim-

plest cosmological model, the ΛCDM, is in good agreement with current observations.

However, it suffers from two theoretical problems: the cosmological constant problem

and the coincidence problem. Thus, we consider alternative models: the first is a phe-

nomenological model with an interaction given by a linear combination of the dark fluids

Q = 3H(ξ1ρc + ξ2ρd); and, as a tentative to build a more fundamental framework, the
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second model comes from a Lagrangian density of a scalar field, describing dark energy,

and a fermionic field, for dark matter, with an Yukawa interaction between them.

The last chapter compares the theoretical predictions of the interacting models with

several observational data. The data show that an interaction is allowed and in some

cases it is favored. We also observe some tension between the results from Planck with

the low redshift measurements from lookback time. The lookback time favors a larger

positive interaction for the phenomenological models, while for the Planck data it is more

consistent with zero and even negative values for Model I. On the other hand, the lookback

time data prefer larger values for the scalar potential parameter λ of the Lagrangian model,

in the opposite direction to the Planck results. Appendices A, B and C present the most

important parts of the computational implementation used in this thesis.

From this thesis we see at least two possible directions for future works: first, there

is still much space for alternative models of dark energy and dark matter, and different

kinds of interaction; second, there are other data sets that were not considered here and

new techniques and probes should be taken into account. These studies will certainly

augment our knowledge of the nature of dark matter and dark energy.



Appendix A

Camb Code: Phenomenological
Model

!This appendix shows the most import steps to introduce the phenomenological

!interacting model in the CAMB code.

!We implemented the module Couple in CAMB. Its purpose is to obtain the evolution

!of rho_dm and rho_de with the scale factor "a" for the interacting model.

!The perturbations are introduced in the GaugeInterface module of CAMB.

!We only present the most important modifications to that module.

module Couple

use precision

use ModelParams

use LambdaGeneral

implicit none

integer, parameter :: NumPoints = 2000

real(dl) aVals(NumPoints+1),grhodm_a(NumPoints+1), grhode_a(NumPoints+1)

real(dl) ddgrhodm_a(NumPoints+1), ddgrhode_a(NumPoints+1)

real(dl), parameter :: amin = 1.d-9

logical:: coupled = .true.

real(dl) :: lambda1 = 0._dl, lambda2 = 0._dl

contains

!This is to call the parameters lambda1 and lambda2 from the params.ini file.

!lambda1 and lambda2 are the coupling constants multiplying dark matter and

!dark energy densities, respectively, in a phenomenological model.

subroutine Couple_ReadParams(Ini)

use IniFile

Type(TIniFile) :: Ini

coupled = Ini_Read_Logical_File(Ini,’coupled’,.true.)

if (coupled) then

lambda1 = Ini_Read_Double_File(Ini,’lambda1’,0.d0)

lambda2 = Ini_Read_Double_File(Ini,’lambda2’,0.d0)

write(*,’("(lambda1, lambda2) = (", f8.5,", ", f8.5, ")")’) lambda1,lambda2

end if

end subroutine Couple_ReadParams
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!The system of differential equations for rho as a function of "a" is given here.

subroutine EvolveBackground(dum,num,x,y,yprime)

implicit none

real dum

integer num

real(dl) x, y(num), yprime(num)

real(dl) grhodm_ev, grhode_ev

grhodm_ev = y(1)

grhode_ev = y(2)

yprime(1) = -3._dl*(1._dl/x)*grhodm_ev+3._dl*(1._dl/x)*

(lambda1*grhodm_ev+lambda2*grhode_ev)

yprime(2) = -3._dl*(1._dl/x)*(1._dl+w_de(x))*grhode_ev-3._dl*(1._dl/x)*

(lambda1*grhodm_ev+lambda2*grhode_ev)

end subroutine EvolveBackground

!The system of differential equations is solved in this subroutine.

subroutine History

real(dl) :: astart,aend,atol,alogmin,lnastart

integer, parameter :: NumEqs=2

real(dl) c(24), w(NumEqs,9), y(NumEqs)

integer ind, i

real dum,num

ind = 1

atol = 1.d-5

alogmin = dlog(amin)

astart = 1._dl

lnastart = dlog(astart)

y(1) = grhoc

y(2) = grhov

aVals(1) = astart

grhodm_a(1) = y(1)

grhode_a(1) = y(2)

!For better interpolation I go a little into the future (a > 1).

do i=1,100

aend = lnastart-(alogmin/NumPoints)*i

aend = dexp(aend)

call dverk(dum,NumEqs,EvolveBackground,astart,y,aend,atol,ind,c,NumEqs,w)

aVals(i+1) = aend

grhodm_a(i+1) = y(1)

grhode_a(i+1) = y(2)

enddo

aVals(1) = aend

grhodm_a(1) = y(1)

grhode_a(1) = y(2)

astart = aVals(1)



98 APPENDIX A. CAMB CODE: PHENOMENOLOGICAL MODEL

lnastart = dlog(astart)

do i=1, NumPoints

aend = lnastart+(alogmin/NumPoints)*i

aend = dexp(aend)

call dverk(dum,NumEqs,EvolveBackground,astart,y,aend,atol,ind,c,NumEqs,w)

aVals(i+1) = aend

grhodm_a(i+1) = y(1)

grhode_a(i+1) = y(2)

enddo

call Flip(aVals)

call Flip(grhodm_a)

call Flip(grhode_a)

do i=1, NumPoints+1

aVals(i)=dlog(aVals(i))

enddo

call spline(aVals,grhodm_a,NumPoints+1,1.d30,1.d30,ddgrhodm_a)

call spline(aVals,grhode_a,NumPoints+1,1.d30,1.d30,ddgrhode_a)

end subroutine History

!This subroutine is to invert the order of the splines.

subroutine Flip(xdat)

real(dl) :: xdat(NumPoints),swap_x

integer i,pos

do i=1, NumPoints+1

pos = (NumPoints+1)-i

if (pos > i) then

swap_x = xdat(pos)

xdat(pos) = xdat(i)

xdat(i) = swap_x

endif

end do

end subroutine

!rho_dm as a function of "a".

function grhodm(a) !8 pi G rho_dm

real(dl) :: grhodm, al

real(dl), intent(IN) :: a

al=dlog(a)

if(al.lt.aVals(1)) then

grhodm=grhodm_a(1) !if a < minimum a from wa.dat

else

if(al.gt.aVals(NumPoints)) then

grhodm=grhodm_a(NumPoints) !if a > maximus a from wa.dat

else

call cubicsplint(aVals,grhodm_a,ddgrhodm_a,NumPoints,al,grhodm)

endif

endif

end function grhodm
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!rho_de as a function of "a"

function grhode(a) !8 pi G rho_de

real(dl) :: grhode, al

real(dl), intent(IN) :: a

al=dlog(a)

if(al.lt.aVals(1)) then

grhode=grhode_a(1) !if a < minimum a from wa.dat

else

if(al.gt.aVals(NumPoints)) then

grhode=grhode_a(NumPoints) !if a > maximus a from wa.dat

else

call cubicsplint(aVals,grhode_a,ddgrhode_a,NumPoints,al,grhode)

endif

endif

end function grhode

!The adiabatic sound speed of dark energy.

function ca2(a)

real(dl) :: ca2, grhodeda

real(dl), intent(IN) :: a

grhodeda = -3._dl*(1._dl/a)*(1._dl+w_de(a))*grhode(a)-3._dl*(1._dl/a)*

(lambda1*grhodm(a)+lambda2*grhode(a))

ca2 = w_de(a) - wa_ppf*grhode(a)/grhodeda

end function ca2

end module Couple

.

.

.

!Background evolution

function dtauda(a)

!get d tau / d a

! 8*pi*G*rho*a**4.

grhoa2=grhok*a2+grhob*a+grhog+grhornomass+(grhodm(a)+grhode(a))*a2**2

dtauda=sqrt(3/grhoa2)

end function dtauda

.

.

.

!Initial values for perturbations.

if (coupled) then

initv(1,i_clxc)=0.75_dl*initv(1,i_clxg)*(1._dl-lambda1-lambda2*

(grhode(a)/grhodm(a)))

initv(1,i_clxq)=0.75_dl*initv(1,i_clxg)*(1._dl+w_de(a)+lambda1*

(grhodm(a)/grhode(a))+lambda2)

initv(1,i_vq)=initv(1,i_qg)

else

initv(1,i_clxc)=initv(1,i_clxb)

endif
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.

.

.

grhoc_t=grhodm(a)*a2

grhov_t=grhode(a)*a2

w_eff = w_de(a)

!total perturbations: matter terms first, then add massive nu, de and radiation

! 8*pi*a*a*SUM[rho_i*clx_i]

dgrho=grhob_t*clxb+grhoc_t*clxc

! 8*pi*a*a*SUM[(rho_i+p_i)*v_i]

dgq=grhob_t*vb

clxq=ay(EV%w_ix)

vq=ay(EV%w_ix+1)

dgrho=dgrho + clxq*grhov_t

dgq = dgq + vq*grhov_t*(1._dl+w_eff)

.

.

.

!Perturbed dark energy equation of motion

if (coupled) then

ayprime(Ev%w_ix)= 3._dl*adotoa*w_eff*clxq + &

3._dl*adotoa*lambda1*(grhoc_t/grhov_t)*(clxq - clxc)&

- (1._dl+w_eff)*k*vq - 3._dl*adotoa*cs2_lam*clxq - &

3._dl*adotoa*(cs2_lam-ca2(a))*(3._dl*adotoa*(1._dl+w_eff) + &

3._dl*adotoa*(lambda1*(grhoc_t/grhov_t) + lambda2))*&

vq/k - (1._dl+w_eff)*k*z

ayprime(Ev%w_ix+1)= -adotoa*(1._dl-3._dl*cs2_lam)*vq + &

(3._dl*adotoa/(1._dl+w_eff))*(1._dl+cs2_lam)*&

(lambda1*(grhoc_t/grhov_t) + lambda2)*vq + &

cs2_lam*k*clxq/(1._dl+w_eff)

! CDM equation of motion

clxcdot= -k*z + 3._dl*adotoa*lambda2*(grhov_t/grhoc_t)*(clxq - clxc)

ayprime(3) = clxcdot

else

clxcdot=-k*z

ayprime(3)=clxcdot

endif



Appendix B

Camb Code: Lagrangian Model

!This appendix shows the most import steps to introduce the lagrangian

!interacting model in the CAMB code.

!We implemented the module QCouple in CAMB. Its purpose is to obtain the evolution

!of rho_dm, phi and phidot with the scale factor a for the interacting model.

!The perturbations are introduced in the GaugeInterface module of CAMB.

!We only present the most important modifications to that module.

module QCouple

use precision

use Errors

use ModelParams

use LambdaGeneral

implicit none

integer, parameter :: NumPoints = 2000, NumPointsEx = NumPoints+2

real(dl) aVals(NumPointsEx), grhodm_a(NumPointsEx), phi_a(NumPointsEx),

phidot_a(NumPointsEx)

real(dl) ddgrhodm_a(NumPointsEx), ddphi_a(NumPointsEx), ddphidot_a(NumPointsEx)

real(dl) initial_grhoc, initial_phi, initial_phidot, adot, y_grhoc, norm_grhoc

real(dl), parameter :: amin = 1.d-9

real(dl) :: lambda = 0._dl, r_int = 0._dl, rphi = -1.d0

logical :: OK_int = .true.

contains

!This is to call the parameters lambda and r_int from the params.ini file.

!lambda is the power of the potential V(psi) and r_int is the coupling constant

!divided by the dark matter mass, respectively.

subroutine Couple_ReadParams(Ini)

use IniFile

Type(TIniFile) :: Ini

if (coupled) then

lambda = Ini_Read_Double_File(Ini,’lambda’,0.d0)

r_int = Ini_Read_Double_File(Ini,’r_int’,0.d0)

rphi = Ini_Read_Double_File(Ini,’rphi’,-1.d0)

write(*,’("(lambda, r_int, rphi) = (", f8.5,", ", f8.5, ", ", f8.5, ")")’)

lambda, r_int, rphi

end if

101



102 APPENDIX B. CAMB CODE: LAGRANGIAN MODEL

end subroutine Couple_ReadParams

function Vofphi(phi,deriv)

!Returns (8*Pi*G)^(1-deriv/2)*d^{deriv}V(psi)/d^{deriv}psi evaluated at psi

!times (Mpc/c)^2 to get units in 1/Mpc^2

!The input variable phi is sqrt(8*Pi*G)*psi

use constants

implicit none

real(dl) phi, Vofphi

integer deriv

real(dl) norm

!Normalized so that lambda=0 and r_int=0 gives norm=grhov

norm = 3._dl*CP%H0**2*(1000)**2/c**2*CP%omegav

if (deriv==0) then

Vofphi = norm*exp(-lambda*phi)

else

if (deriv==1) then

Vofphi = -lambda*norm*exp(-lambda*phi)

else

if (deriv==2) then

Vofphi = lambda**2*norm*exp(-lambda*phi)

else

stop ’Invalid deriv in Vofphi’

endif

endif

endif

end function Vofphi

!The system of differential equations for rho as a function of "a" is given here.

subroutine EvolveBackground(dum,num,x,y,yprime)

use constants

use MassiveNu

implicit none

real dum

integer num

real(dl) x, y(num), yprime(num)

real(dl) x2, grhodm_ev, phi, phidot, ga2T00_de, ga2T00, dphida, Q_int

real(dl) rhonu

integer nu_i

OK_int = .true.

x2 = x**2

phi = y(1)

phidot = y(2)/x2

if (x == amin) then

norm_grhoc = y_grhoc*amin**3/(1-r_int*phi)

endif

grhodm_ev = norm_grhoc/x**3*(1 - r_int*phi)
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y_grhoc = grhodm_ev

if (rphi < 0) then

if (r_int*phi < 1._dl) then

Q_int = -r_int/(1._dl - r_int*phi)

else

grhodm_ev = 0._dl

Q_int = 0

OK_int = .false.

endif

else

if (r_int*phi > 1._dl) then

Q_int = -r_int/(1._dl - r_int*phi)

else

grhodm_ev = 0._dl

Q_int = 0

OK_int = .false.

endif

endif

ga2T00_de = x2*(0.5d0*phidot**2 + x2*Vofphi(phi,0))

ga2T00 = grhok*x2+grhob*x+grhog+grhornomass+grhodm_ev*x2**2+ga2T00_de

if (CP%Num_Nu_massive /= 0) then

!Get massive neutrino density relative to massless

do nu_i = 1, CP%nu_mass_eigenstates

call Nu_rho(x*nu_masses(nu_i),rhonu)

ga2T00 = ga2T00 +rhonu*grhormass(nu_i)

end do

end if

adot = sqrt(ga2T00/3.0d0)

dphida = phidot/adot

yprime(1) = dphida

yprime(2) = -x2**2*(Vofphi(phi,1) + Q_int*grhodm_ev)/adot

end subroutine EvolveBackground

function GetOmegaFromInitial(astart,grhoc_initial,phi,phidot,atol)

!Get CP%omegac and CP%omegav today given particular conditions grhoc, phi and

!phidot at a=astart

implicit none

real(dl), intent(IN) :: astart, grhoc_initial, phi, phidot, atol

real(dl), dimension(2) :: GetOmegaFromInitial

integer, parameter :: NumEqs=2

real(dl) c(24), w(NumEqs,9), y(NumEqs), ast

integer ind, i

real dum

ast=astart

ind=2
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do i=1,9

c(i)=0._dl

enddo

c(4)=1d-30

c(5)=100

y_grhoc = grhoc_initial

y(1) = phi

y(2) = phidot*astart**2 !Fixed Dec 02

call dverk(dum,NumEqs,EvolveBackground,ast,y,1._dl,atol,ind,c,NumEqs,w)

if (OK_int) then

call EvolveBackground(dum,NumEqs,1._dl,y,w(:,1))

GetOmegaFromInitial(1) = y_grhoc/(3*adot**2)

GetOmegaFromInitial(2) = (0.5d0*y(2)**2 + Vofphi(y(1),0))/(3*adot**2)

else

return

endif

!Search for initial phi.

subroutine GetInitialPhi(trial_grhoc,error_phi)

implicit none

real(dl) astart

real(dl) atol

real(dl) initial_phi2

real(dl), dimension(2):: om

real(dl) :: omv1, omv2, deltaphi, phi, trial_grhoc, initial_phi_inv

real(dl) :: omv_min, initial_phi_min, omv_max, initial_phi_max, phi1, phi2

integer, optional :: error_phi

logical OK

integer:: iter = 0, iter2

iter2 = 0

omv_min = 1000

omv_max = -1000

astart = amin

!These two must bracket the correct value to give CP%omegav today

!Assume that higher initial phi gives higher CP%omegav today

!Can fix initial_phi to correct value

if (rphi < 0) then

if (r_int > 0) then

initial_phi = 1._dl/r_int - 1._dl/(100*r_int)

initial_phi2 = -100/lambda

else

if (r_int < 0) then

initial_phi = 100/lambda

initial_phi2 = 1._dl/r_int - 1._dl/(100*r_int)

else

initial_phi = 100/lambda

initial_phi2 = -100/lambda

endif

endif

else
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if (r_int < 0) then

initial_phi = 1._dl/r_int + 1._dl/(100*r_int)

initial_phi2 = -100/lambda

else

if (r_int > 0) then

initial_phi = 100/lambda

initial_phi2 = 1._dl/r_int + 1._dl/(100*r_int)

else

initial_phi = 100/lambda

initial_phi2 = -100/lambda

endif

endif

endif

if (CP%omegav < 0) then

initial_phi_inv = initial_phi

initial_phi = initial_phi2

initial_phi2 = initial_phi_inv

endif

initial_phidot = 0._dl

atol = 1d-5

!See if initial conditions are giving correct CP%omegav now

om = GetOmegaFromInitial(astart,trial_grhoc,initial_phi,initial_phidot,atol)

if (OK_int .and. om(2) < CP%omegav) then

omv1 = om(2)

else

do while (OK_int == .false. .or. om(2) > CP%omegav)

iter2 = iter2 + 1

phi = initial_phi + (initial_phi2 - initial_phi)/2

om = GetOmegaFromInitial(astart,trial_grhoc,phi,initial_phidot,atol)

if (om(2) < CP%omegav .or. OK_int == .false.) then

initial_phi = phi

else

initial_phi2 = phi

endif

if (om(2) < omv_min .and. OK_int) then

omv_min = om(2)

initial_phi_min = phi

endif

if (iter2 == 50 .and. omv_min > CP%omegav) then

do iter2 = 1, 10

phi1 = initial_phi_min + 1

phi2 = initial_phi_min - 1

om = GetOmegaFromInitial(astart,trial_grhoc,phi1,initial_phidot,atol)

omv1 = om(2) - CP%omegav

om = GetOmegaFromInitial(astart,trial_grhoc,phi2,initial_phidot,atol)

omv2 = om(2) - CP%omegav

phi = phi2 - (phi2 - phi1)*omv2/(omv2 - omv1)

om = GetOmegaFromInitial(astart,trial_grhoc,phi,initial_phidot,atol)

if (OK_int) then
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phi1 = phi2

phi2 = phi

else

phi1 = phi

endif

if (om(2) < omv_min .and. OK_int) then

omv_min = om(2)

initial_phi_min = phi

endif

if (om(2) <= CP%omegav .and. OK_int) then

initial_phi = phi

exit

endif

if (iter2 == 10) then

om(2) = omv_min

initial_phi = initial_phi_min

endif

enddo

exit

endif

enddo

omv1 = om(2)

endif

if (abs(omv1-CP%omegav) > 1d-5) then

!if not, do binary search in the interval

OK = .false.

iter2 = 0

om = GetOmegaFromInitial(astart,trial_grhoc,initial_phi2,initial_phidot,atol)

if (OK_int .and. om(2) > CP%omegav) then

omv2 = om(2)

else

do while (OK_int == .false. .or. om(2) < CP%omegav)

iter2 = iter2 + 1

phi = initial_phi2 + (initial_phi - initial_phi2)/2

om = GetOmegaFromInitial(astart,trial_grhoc,phi,initial_phidot,atol)

if (om(2) > CP%omegav .or. OK_int == .false.) then

initial_phi2 = phi

else

initial_phi = phi

endif

omv2 = om(2)

if (om(2) > omv_max .and. OK_int) then

omv_max = om(2)

initial_phi_max = phi

endif

if (iter2 == 50 .and. omv_max < CP%omegav) then

do iter2 = 1, 10

phi1 = initial_phi_max + 1

phi2 = initial_phi_max - 1

om = GetOmegaFromInitial(astart,trial_grhoc,phi1,initial_phidot,
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atol)

omv1 = om(2) - CP%omegav

om = GetOmegaFromInitial(astart,trial_grhoc,phi2,initial_phidot,atol)

omv2 = om(2) - CP%omegav

phi = phi1 - (phi1 - phi2)*omv1/(omv1 - omv2)

om = GetOmegaFromInitial(astart,trial_grhoc,phi,initial_phidot,atol)

if (OK_int) then

phi2 = phi1

phi1 = phi

else

phi2 = phi

endif

if (om(2) > omv_max .and. OK_int) then

omv_max = om(2)

initial_phi_max = phi

endif

if (om(2) >= CP%omegav .and. OK_int) then

initial_phi2 = phi

exit

endif

if (iter2 == 10) then

om(2) = omv_max

initial_phi2 = initial_phi_max

endif

enddo

exit

endif

enddo

omv2 = om(2)

endif

if (omv1 > CP%omegav .or. omv2 < CP%omegav) then

if (error_phi == 100) then

write (*,*) ’Initial phi values must bracket required value.’

call GlobalError(’Initial phi values must bracket required value.’,

error_evolution)

else

return

endif

end if

do iter = 1,100

deltaphi = initial_phi2 - initial_phi

phi = initial_phi + deltaphi/2

om = GetOmegaFromInitial(astart,trial_grhoc,phi,initial_phidot,atol)

if (OK_int) then

if (om(2) < CP%omegav) then

omv1 = om(2)

initial_phi = phi

else

omv2 = om(2)

initial_phi2 = phi

end if

else
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if (phi >= initial_phi) then

initial_phi = phi

else

initial_phi2 = phi

endif

endif

if (omv2 - omv1 < 1d-5) then

OK = .true.

initial_phi = (initial_phi2 + initial_phi)/2

exit

end if

end do

if (.not. OK .and. error_phi == 100) then !this shouldn’t happen

write (*,*) ’Search for good phi initial condition did not converge.’

call GlobalError(’Search for good phi initial condition did not converge.’,

error_evolution)

endif

endif

end subroutine GetInitialPhi

!Search for initial grhoc.

subroutine Init_background

implicit none

real(dl) astart

real(dl) atol

real(dl) initial_grhoc2

real(dl), dimension(2):: om

real(dl) omc1, omc2, deltagrhoc, rhoc

logical OK

integer:: iter = 0

astart = amin

atol = 1d-5

if (lambda == 0._dl .and. r_int == 0._dl) then

!These two must bracket the correct value to give CP%omegac today

!Assume that higher initial grhoc gives higher CP%omegac today

!Can fix initial_grhoc to correct value

initial_grhoc = 1d1*grhoc/astart**3

initial_grhoc2 = 1d-1*grhoc/astart**3

initial_phi = 10

initial_phidot = 0._dl

!See if initial conditions are giving correct CP%omegac now

om = GetOmegaFromInitial(astart,initial_grhoc,initial_phi,initial_phidot,atol)

omc1 = om(1)

if (abs(omc1-CP%omegac) > 1d-4) then

!if not, do binary search in the interval

OK = .false.

om = GetOmegaFromInitial(astart,initial_grhoc2,initial_phi,initial_phidot,atol)
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omc2 = om(1)

if (omc1 < CP%omegac .or. omc2 > CP%omegac) then

write (*,*) ’Initial grhoc values must bracket required value.’

call GlobalError(’Initial grhoc values must bracket required value.’,

error_evolution)

end if

do iter = 1,100

deltagrhoc = initial_grhoc2 - initial_grhoc

rhoc = initial_grhoc + deltagrhoc/2

om = GetOmegaFromInitial(astart,rhoc,initial_phi,initial_phidot,atol)

if (om(1) > CP%omegac) then

omc1 = om(1)

initial_grhoc = rhoc

else

omc2 = om(1)

initial_grhoc2 = rhoc

end if

if (omc1 - omc2 < 1d-5 .and. abs(om(2)-CP%omegav) < 1d-4) then

OK = .true.

initial_grhoc = (initial_grhoc2 + initial_grhoc)/2

if (FeedbackLevel > 0) write(*,*) ’grhoc_initial = ’, initial_grhoc

if (FeedbackLevel > 0) write(*,*) ’phi_initial = ’, initial_phi

om = GetOmegaFromInitial(astart,initial_grhoc,initial_phi,initial_phidot,

atol)

if (FeedbackLevel > 0) write(*,*) ’Omegac0, Omegac = ’, om(1), CP%omegac

if (FeedbackLevel > 0) write(*,*) ’Omegav0, Omegav = ’, om(2), CP%omegav

exit

end if

end do

if (.not. OK) then !this shouldn’t happen

write (*,*) ’Search for good initial conditions did not converge.’

call GlobalError(’Search for good initial conditions did not converge.’,

error_evolution)

endif

endif

else

!These two must bracket the correct value to give CP%omegac today

!Assume that higher initial grhoc gives higher CP%omegac today

!Can fix initial_grhoc to correct value

initial_grhoc = 1d3*grhoc/astart**3

initial_grhoc2 = 1d-3*grhoc/astart**3

!See if initial conditions are giving correct CP%omegac now

call GetInitialPhi(initial_grhoc,0)

om = GetOmegaFromInitial(astart,initial_grhoc,initial_phi,initial_phidot,atol)

if (OK_int .and. om(1) > CP%omegac) then

omc1 = om(1)

else

do iter = 1,10

initial_grhoc = initial_grhoc/2
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call GetInitialPhi(initial_grhoc,0)

om = GetOmegaFromInitial(astart,initial_grhoc,initial_phi,initial_phidot,

atol)

if (OK_int .and. om(1) > CP%omegac) then

omc1 = om(1)

exit

endif

enddo

omc1 = om(1)

endif

if (abs(omc1-CP%omegac) > 1d-5) then

!if not, do binary search in the interval

OK = .false.

call GetInitialPhi(initial_grhoc2,0)

om = GetOmegaFromInitial(astart,initial_grhoc2,initial_phi,initial_phidot,

atol)

if (OK_int .and. om(1) < CP%omegac) then

omc2 = om(1)

else

do iter = 1,10

initial_grhoc2 = 2*initial_grhoc2

call GetInitialPhi(initial_grhoc2,0)

om = GetOmegaFromInitial(astart,initial_grhoc2,initial_phi,

initial_phidot,atol)

if (OK_int .and. om(1) < CP%omegac) then

omc2 = om(1)

exit

endif

enddo

omc2 = om(1)

endif

if (omc1 < CP%omegac .or. omc2 > CP%omegac) then

write (*,*) ’Initial grhoc values must bracket required value.’

call GlobalError(’Initial grhoc values must bracket required value.’,

error_evolution)

end if

do iter = 1,100

deltagrhoc = initial_grhoc2 - initial_grhoc

rhoc = initial_grhoc + deltagrhoc/2

call GetInitialPhi(rhoc,iter)

om = GetOmegaFromInitial(astart,rhoc,initial_phi,initial_phidot,atol)

if (om(1) > CP%omegac) then

omc1 = om(1)

initial_grhoc = rhoc

else

omc2 = om(1)

initial_grhoc2 = rhoc

end if

if (omc1 - omc2 < 1d-5 .and. abs(om(2)-CP%omegav) < 1d-4) then

OK = .true.

initial_grhoc = (initial_grhoc2 + initial_grhoc)/2

if (FeedbackLevel > 0) write(*,*) ’grhoc_initial = ’, initial_grhoc
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if (FeedbackLevel > 0) write(*,*) ’phi_initial = ’, initial_phi

om = GetOmegaFromInitial(astart,initial_grhoc,initial_phi,

initial_phidot,atol)

if (FeedbackLevel > 0) write(*,*) ’Omegac0, Omegac =’,om(1),CP%omegac

if (FeedbackLevel > 0) write(*,*) ’Omegav0, Omegav =’,om(2),CP%omegav

exit

end if

end do

if (.not. OK) then !this shouldn’t happen

write (*,*) ’Search for good initial conditions did not converge.’

call GlobalError(’Search for good initial conditions did not converge.’,

error_evolution)

endif

endif

endif

end subroutine Init_background

!Here we make interpolation tables.

subroutine History

implicit none

real(dl) :: astart, afrom, aend

integer, parameter :: NumEqs=2

real(dl) c(24), w(NumEqs,9), y(NumEqs), atol, splZero

integer ind, i

real dum

ind = 1

atol = 1.d-5

astart = amin

afrom = astart

call Init_background

y_grhoc = initial_grhoc

y(1) = initial_phi

y(2) = initial_phidot

aVals(1) = astart

grhodm_a(1) = y_grhoc

phi_a(1) = y(1)

phidot_a(1) = y(2)

!For better interpolation I go a little into the future (a > 1).

do i=1, NumPointsEx-1

aend = dlog(astart)-(dlog(astart)/(NumPoints-1))*i

aend = dexp(aend)

call dverk(dum,NumEqs,EvolveBackground,afrom,y,aend,atol,ind,c,NumEqs,w)

call EvolveBackground(dum,NumEqs,aend,y,w(:,1))

aVals(i+1) = aend
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grhodm_a(i+1) = y_grhoc

phi_a(i+1) = y(1)

phidot_a(i+1) = y(2)

if (i==NumPoints-1) then

if (FeedbackLevel > 0) then

write(*,*) ’Omega_Q_0=’,real((0.5d0*phidot_a(i+1)**2 +

Vofphi(phi_a(i+1),0))/(3*adot**2)), &

’ w_0=’,real((0.5d0*phidot_a(i+1)**2 - Vofphi(phi_a(i+1),0))/

(0.5d0*phidot_a(i+1)**2 + Vofphi(phi_a(i+1),0)))

end if

end if

enddo

splZero = 0

call spline(aVals,grhodm_a,NumPointsEx,splZero,splZero,ddgrhodm_a)

call spline(aVals,phi_a,NumPointsEx,splZero,splZero,ddphi_a)

call spline(aVals,phidot_a,NumPointsEx,splZero,splZero,ddphidot_a)

end subroutine History

!rho_dm as a function of "a".

function grhodm(a) !8 pi G rho_dm

real(dl) :: grhodm

real(dl), intent(IN) :: a

if(a.lt.aVals(1)) then

grhodm=grhodm_a(1) !if a < minimum

else

if(a.gt.aVals(NumPointsEx)) then

grhodm=grhodm_a(NumPointsEx) !if a > maximus

else

call cubicsplint(aVals,grhodm_a,ddgrhodm_a,NumPointsEx,a,grhodm)

endif

endif

end function grhodm

!phi as a function of "a"

function fphi(a) !sqrt(8*pi*G)*psi

real(dl) :: fphi

real(dl), intent(IN) :: a

if(a.lt.aVals(1)) then

fphi=phi_a(1) !if a < minimum

else

if(a.gt.aVals(NumPointsEx)) then

fphi=phi_a(NumPointsEx) !if a > maximus

else

call cubicsplint(aVals,phi_a,ddphi_a,NumPointsEx,a,fphi)

endif

endif

end function fphi
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!phidot as a function of "a"

function fphidot(a) !sqrt(8*pi*G)*psidot

real(dl) :: fphidot

real(dl), intent(IN) :: a

if(a.lt.aVals(1)) then

fphidot=phidot_a(1) !if a < minimum

else

if(a.gt.aVals(NumPointsEx)) then

fphidot=phidot_a(NumPointsEx) !if a > maximus

else

call cubicsplint(aVals,phidot_a,ddphidot_a,NumPointsEx,a,fphidot)

endif

endif

end function fphidot

end module QCouple

.

.

.

!Background evolution

function dtauda(a)

!get d tau / d a

! 8*pi*G*rho*a**4.

phi = fphi(a)

grhoa2=grhok*a2+grhob*a+grhog+grhornomass+grhodm(a)*a2**2+

(0.5d0*fphidot(a)**2 + a2*Vofphi(phi,0))*a2

dtauda=sqrt(3/grhoa2)

end function dtauda

.

.

.

!Initial values for perturbations.

if (coupled) then

initv(1,i_clxc)=0.75_dl*initv(1,i_clxg)

i_phi = fphi(a)

i_phidot = fphidot(a)

i_Vofphi = Vofphi(i_phi,0)

if (lambda /= 0) then

initv(1,i_clxq)=(2._dl*initv(1,i_clxc)*i_phidot**2*i_Vofphi)/

((i_phidot**2 + 2._dl*a2*i_Vofphi)*Vofphi(i_phi,1))

else

initv(1,i_clxq)=0._dl

endif

initv(1,i_vq)=(initv(1,i_clxc)*i_phidot**3)/(i_phidot**2 + 2._dl*a2*i_Vofphi)

initv(1,i_vc)=0._dl

else

initv(1,i_clxc)=initv(1,i_clxb)

endif
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.

.

.

grhoc_t=grhodm(a)*a2

phia=fphi(a)

phidota=fphidot(a)

Vofphia=Vofphi(phia,0)

grhov_t=0.5d0*phidota**2 + a2*Vofphia

w_eff = (0.5d0*phidota**2 - Vofphia)/(0.5d0*phidota**2 + Vofphia)

!total perturbations: matter terms first, then add massive nu, de and radiation

! 8*pi*a*a*SUM[rho_i*clx_i]

dgrho=grhob_t*clxb+grhoc_t*clxc

! 8*pi*a*a*SUM[(rho_i+p_i)*v_i]

dgq=grhob_t*vb+grhoc_t*vc

clxq=ay(EV%w_ix)

vq=ay(EV%w_ix+1)

dgrho=dgrho + phidota*vq + a2*Vofphi(phia,1)*clxq

dgq = dgq + k*phidota*clxq

.

.

.

!Perturbed dark energy equation of motion

if (coupled) then

Q_inter = -r_int/(1._dl - r_int*phia)

Q_phiphi = r_int**2/(1._dl - r_int*phia)**2

ayprime(Ev%w_ix)= vq

ayprime(Ev%w_ix+1)= -2._dl*adotoa*vq - k2*clxq - a2*Vofphi(phia,2)*clxq &

- k*z*phidota - a2*(Q_phiphi)&

*clxq*grhoc_t/a2 - a2*(Q_inter)&

*(grhoc_t/a2)*clxc

! CDM equation of motion

clxcdot= -k*z - k*vc + (Q_inter)*vq + &

(Q_phiphi)*phidota*clxq

ayprime(3) = clxcdot

ayprime(Ev%w_ix+2)= -adotoa*vc - (Q_inter)*phidota*vc&

+ k*(Q_inter)*clxq

else

clxcdot=-k*z

ayprime(3)=clxcdot

endif



Appendix C

CosmoMC Code: Lookback Time

!This appendix shows the most import steps to introduce the lookback time

!likelihood in the CosmoMC code.

module LBT

use cmbtypes

use CAMB, only: Hofz, DeltaPhysicalTimeGyr

use constants

use Precision

use likelihood

implicit none

real(dl) Age_universe_theory, Age_universe_obs, Age_universe_err

type, extends(CosmologyLikelihood) :: LBTLikelihood

integer :: num_lbt !total number of points used

real(dl), allocatable, dimension(:) :: lbt_z, lbt_age, lbt_err

real(dl), allocatable, dimension(:,:) :: lbt_invcov

contains

procedure :: LogLike => LBT_LnLike

end type LBTLikelihood

contains

!This is to add the Lookback Time Likelihood

subroutine LBTLikelihood_Add(LikeList, Ini)

use IniFile

use settings

class(LikelihoodList) :: LikeList

Type(TIniFile) :: ini

Type(LBTLikelihood), pointer :: like

integer numlbtsets, i

if (Ini_Read_Logical_File(Ini, ’use_LBT’,.false.)) then

Age_universe_obs = Ini_Read_Double_File(Ini,’Age_universe_obs’,0.d0)

Age_universe_err = Ini_Read_Double_File(Ini,’Age_universe_err’,0.d0)

numlbtsets = Ini_Read_Int_File(Ini,’lbt_numdatasets’,0)

if (numlbtsets<1) call MpiStop(’Use_LBT but numlbtsets = 0’)
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do i= 1, numlbtsets

allocate(like)

call ReadLBTDataset(like, ReadIniFileName(Ini,numcat(’lbt_dataset’,i)) )

like%LikelihoodType = ’LBT’

like%needs_background_functions = .true.

call like%loadParamNames(trim(DataDir)//’LBT.paramnames’)

call LikeList%Add(like)

end do

if (Feedback>1) write(*,*) ’read lookback time datasets’

end if

end subroutine LBTLikelihood_Add

!This is to read the Lookback Time data

subroutine ReadLBTDataset(bset, gname)

use MatrixUtils

type (LBTLikelihood) bset

character(LEN=*), intent(IN) :: gname

character(LEN=Ini_max_string_len) :: lbt_measurements_file, lbt_invcov_file

integer i,iopb

logical bad

Type(TIniFile) :: Ini

integer file_unit

file_unit = new_file_unit()

call Ini_Open_File(Ini, gname, file_unit, bad, .false.)

if (bad) then

write (*,*) ’Error opening data set file ’//trim(gname)

stop

end if

bset%name = Ini_Read_String_File(Ini,’name’)

Ini_fail_on_not_found = .false.

if (Feedback > 0) write (*,*) ’reading lookback time data set: ’//trim(bset%name)

bset%num_lbt = Ini_Read_Int_File(Ini,’num_lbt’,0)

if (bset%num_lbt.eq.0) write(*,*) ’ ERROR: parameter num_lbt not set’

allocate(bset%lbt_z(bset%num_lbt))

allocate(bset%lbt_age(bset%num_lbt))

allocate(bset%lbt_err(bset%num_lbt))

lbt_measurements_file = ReadIniFileName(Ini,’lbt_measurements_file’)

call OpenTxtFile(lbt_measurements_file, tmp_file_unit)

do i=1,bset%num_lbt

read (tmp_file_unit,*, iostat=iopb) bset%lbt_z(i),bset%lbt_age(i),bset%lbt_err(i)

end do

close(tmp_file_unit)

allocate(bset%lbt_invcov(bset%num_lbt,bset%num_lbt))

bset%lbt_invcov = 0

if(Ini_HasKey_File(Ini,lbt_invcov_file)) then

lbt_invcov_file = ReadIniFileName(Ini, ’lbt_invcov_file’)

call OpenTxtFile(lbt_invcov_file, tmp_file_unit)

do i=1, bset%num_lbt
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read (tmp_file_unit,*,iostat=iopb) bset%lbt_invcov(i,:)

end do

close(tmp_file_unit)

if (iopb.ne.0) then

call MpiStop(’Error reading lookback time file ’//trim(lbt_invcov_file))

endif

else

do i=1,bset%num_lbt

bset%lbt_invcov(i,i) = 1._dl/(bset%lbt_err(i)**2 + Age_universe_err**2)

end do

endif

call Ini_Close_File(Ini)

call ClearFileUnit(file_unit)

end subroutine ReadLBTDataset

!Lookback Time integrand

function f_lbt(z)

! Type(CMBParams) CMB

real(dl), intent(in) :: z

real(dl) f_lbt

f_lbt = 1._dl/((1._dl + z)*Hofz(z))

end function f_lbt

!Lookback Time integral

function lookbacktime(z)

! Type(CMBParams) CMB

real(dl), intent(in) :: z

real(dl) rombint, lookbacktime, atol

external rombint

atol = 1d-5

lookbacktime = rombint(f_lbt,0.,z,atol)*Mpc/c/Gyr

end function lookbacktime

!Here we calculate the Lookback Time Likelihood

function LBT_LnLike(like, CMB, Theory, DataParams)

! use ModelParams

Class(LBTLikelihood) :: like

Class(CMBParams) CMB

Class(TheoryPredictions) Theory

real(mcp) :: DataParams(:)

integer j,k

real(mcp) LBT_LnLike

real(dl), allocatable :: LBT_theory(:), LBT_obs(:)

real(dl) sigma_lbt

LBT_LnLike=0

allocate(LBT_theory(like%num_lbt))

allocate(LBT_obs(like%num_lbt))
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Age_universe_theory = DeltaPhysicalTimeGyr(0._dl,1._dl)

sigma_lbt = DataParams(1)

do j=1, like%num_lbt

LBT_theory(j) = lookbacktime(like%lbt_z(j))

LBT_obs(j) = Age_universe_obs - like%lbt_age(j) - sigma_lbt

end do

do j=1, like%num_lbt

do k=1, like%num_lbt

LBT_LnLike = LBT_LnLike +&

(LBT_theory(j)-LBT_obs(j))*like%lbt_invcov(j,k)*&

(LBT_theory(k)-LBT_obs(k))

end do

end do

LBT_LnLike = LBT_LnLike + (Age_universe_theory - Age_universe_obs)**2/&

Age_universe_err**2

LBT_LnLike = LBT_LnLike/2.d0

deallocate(LBT_theory)

deallocate(LBT_obs)

end function LBT_LnLike

end module LBT
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