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Abstract

In this thesis we go beyond the standard cosmological ACDM model and study the ef-
fect of an interaction between dark matter and dark energy. Although the ACDM model
provides good agreement with observations, it faces severe challenges from a theoretical
point of view. In order to solve such problems, we first consider an alternative model
where both dark matter and dark energy are described by fluids with a phenomenological
interaction given by a combination of their energy densities. In addition to this model, we
propose a more realistic one based on a Lagrangian density with a Yukawa-type interac-
tion. To constrain the cosmological parameters we use recent cosmological data, the CMB
measurements made by the Planck satellite, as well as BAO, SNIa, Hy and Lookback time

measurements.

Keywords: Cosmology. Dark Matter. Dark Energy.






Resumo

Nesta tese vamos além do modelo cosmoldgico padrao, o ACDM, e estudamos o efeito
de uma interacao entre a matéria e a energia escuras. Embora o modelo ACDM esteja
de acordo com as observagoes, ele sofre sérios problemas tedricos. Com o objetivo de
resolver tais problemas, nés primeiro consideramos um modelo alternativo, onde ambas,
a matéria e a energia escuras, sao descritas por fluidos com uma interagao fenomenolégica
dada como uma combinacao das densidades de energia. Além desse modelo, propomos
um modelo mais realista baseado em uma densidade Lagrangiana com uma interagao tipo
Yukawa. Para vincular os parametros cosmoldgicos usamos dados cosmolégicos recentes
como as medidas da CMB feitas pelo satélite Planck, bem como medidas de BAO, SNIa,
Hy e Lookback time.

Palavras-Chave: Cosmologia. Matéria Escura. Energia Escura.
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Introduction

The large amount of precise astronomical data released in the past few years provided
opportunities to answer questions in cosmology and astrophysics. Such a precision allows

us to test cosmological models and determine cosmological parameters with high accuracy.

The simplest cosmological model one can build that reasonably explains the current
data is the ACDM model. This model consists in a cosmological constant A to account
for the observed acceleration of the Universe, plus cold dark matter (CDM) necessary to

produce the gravitational potential wells inferred on galactic to cosmological scales.

However, theoretically the ACDM model itself faces challenges, the cosmological con-
stant problem[I] and the coincidence problem|[2]. The first one refers to the small observed
value of the cosmological constant, incompatible with the vacuum energy description in
field theory. The second one refers to the fact that we have no natural explanation for
why the energy densities of dark matter and vacuum energy are of the same order today.
These problems open the avenue for alternative models of dark energy to substitute the

cosmological constant description.

One way to alleviate the coincidence problem, which embarrasses the standard ACDM
cosmology, is to consider an interaction between dark energy and dark matter. Consider-
ing that dark energy and dark matter contribute with significant fractions of the contents
of the Universe, it is natural, in the framework of field theory, to consider an interaction
between them. The interaction between dark energy and dark matter will affect signifi-
cantly the expansion history of the Universe and the evolution of density perturbations,
changing their growth. The possibility of the interaction between dark sectors has been
widely discussed in the literature [3H36]. Determining the existence of dark matter and
dark energy interactions is an observational endeavor that could provide an interesting

insight into the nature of the dark sectors.

Since the physical properties of dark matter and dark energy at the present moment
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are unknown, we cannot derive the precise form of the interaction from first principles. For
simplicity, most considerations of the interaction in the literature are from phenomenology.
Attempts to describe the interaction from field theory have been proposed in [37H39]. One
possibility is a phenomenological model of the interaction, (), between dark matter and
dark energy, which is in a linear combination of energy densities of the dark sectors
Q = 3H(&1pe + &apq) 13, 29) 40]. In this interaction, H is the Hubble parameter, &
and & are dimensionless parameters, assumed to be time independent, for simplicity,
and p. and p; are the energy densities of dark matter and dark energy, respectively.
Such a model was widely studied in [I3] 018, 34, 41-H44]. It was disclosed by the late
integrated Sachs-Wolf (ISW) effect [25, 27] that the interaction between dark matter
and dark energy influences the cosmic microwave background (CMB) at low multipoles
and at high multipoles through gravitational lensing [44], 45]. With the WMAP data
[25], 27] together with galaxy cluster observations [34) [35] and also recent kinetic Sunyaev-
Zel’dovich effect observations [46], it was found that this phenomenological interaction
between dark energy and dark matter is viable and the coupling constant is positive,
indicating that there is energy flow from dark energy to dark matter, which is required to
alleviate the coincidence problem and to satisfy the second law of thermodynamics [16].

It is of great interest to build alternative models of the Universe and employ the
latest high-precision data to further constrain them. This is the main motivation of the
present work. We will combine the CMB data from Planck [47H49] with other cosmological
probes such as the baryonic acoustic oscillations (BAO) [50H52], supernovas [53], the latest
constraint on the Hubble constant [54] and lookback time [55] [56]. We want to see how
these different probes will influence the cosmological parameters and put tight constraints
on the interaction between dark sectors.

This thesis is organized as follows: in the first chapter we introduce some fundamental
aspects of cosmology and present the contents of the Universe. Chapter two goes beyond
the homogeneous and isotropic universe and describe the linear perturbations. Our models
of interactions between dark energy and dark matter are presented in chapter three. The
data analysis and our fitting results appear in chapter four. Finally, we conclude and

discuss some perspectives for future works.



Chapter 1

Introduction to Cosmology: The
Need of Dark Matter and Dark
Energy

Cosmology is the study of the Universe as a whole. Despite the great complexity of this
system, if we are interested in its dynamics on large scales, it is possible to construct
a relatively simple model to describe it. On large scales, the interactions between the
constituents of the Universe are governed by the laws of gravitation which, nowadays, are

best explained by the theory of general relativity published by Einstein in 1915 [57].

1.1 Homogeneous and Isotropic Universe

General relativity establishes that the geometry of the spacetime is determined by the
energy content of the Universe and this geometry governs the motion of free particles. In

general, the geometry of the spacetime is described by the line element
ds® = g, datda”, (1.1)

where g, are the components of the metric tensor. The indices 1, v are defined such that
20 represents the time coordinate and ¢, with i = 1, 2, 3, represent the spatial coordinates.
We are using the Einstein’s convention where repeated indices are summed.

To determine the form of the line element of a given cosmological model we use the

3
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underlying symmetries. The simplest cosmological model can be built assuming that the
constituents of the Universe present the properties of statistical homogeneity and isotropy;,
known as the cosmological principle. In fact, observations of the cosmic microwave back-
ground have shown isotropy of one part in 100.000 [58]. Also, evidences of galaxy surveys
suggest that the Universe is homogeneous on large scales [59).

Using the cosmological principle, the metric of the spacetime must be the Friedmann-

Lemaitre-Robertson-Walker (FLRW) metric [57], which is given by

dr?

2 _ 2 2

+ 77 (6 + sin® 6dg?®) | . (1.2)
Here a(t) is a scale factor accounting for the expansion or contraction of the Universe and
K is a constant that establishes the geometry of the spatial section. If K > 0 the spatial
section is closed, while for K = 0 it is flat and K < 0 means that the spatial section is
open. Throughout this work we are using natural units such that h = c¢ = kg = 1.

The motions of free particles follow the geodesic equations

d?xt 4 dx® dxP

e ey

(1.3)

where A is a monotonically increasing parameter that parameterizes the particle’s path
and Fzﬂ are the Christoffel symbols. The Christoffel symbols are related to the metric

tensor by the expression

(1.4)

9" ([ OGaw agﬂu agaﬁ
r“. = —
of 9 (8:1:5 T o T o )

where ¢g"” is the inverse of the metric tensor such that g**g,, = 6% with 0%, the Kronecker
delta, defined as zero unless p = v in which case it is equal to one.

To obtain a(t) and K we need the dynamical equations governing the Universe. In
the context of general relativity it is determined by the Einstein equations [60]

1
R‘Lw — QQ'LWR = 87TGTuV, (15)

where R, is the Ricci tensor, which can be written in terms of the Christoffel symbol as

org,  org,

a S a 7S
uy Oxc - W + Bar,uu - Bl/F,ua' (16)
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R = g" R, is the Ricci scalar, or curvature scalar, G is the Newton gravitational constant
and T}, is the energy-momentum tensor of the content in the Universe. All the quantities
in the left hand side of are geometrical quantities, while the right hand side presents
the energy content. Thus, the Einstein equations relate the geometry of the Universe to

the energy content.

On large scales the constituents of the Universe can be treated as a fluid. The most

general energy-momentum tensor for a fluid component “A”, TMAV, is given by

le}/ = (p" + PA)u;‘uf + gu,,PA + 7r;‘,/ + q;‘uf + qfufb‘, (1.7)
where p? is the energy density, P4 is the pressure, u;‘ is the four-velocity vector, ’/T;?V is

the anisotropic stress and q;j‘ is the heat flux vector relative to uﬁ, all these quantities with

respect to the A-fluid. The total energy-momentum tensor is 7, = > , Tﬁ,.

However,
if the fluid has at each point a velocity o, such that an observer with this velocity sees
the fluid around him as isotropic, this is known as a perfect fluid [57] and in this case the

anisotropic stress and the heat flux are null.

Using the FLRW metric ((1.2)) and the energy-momentum tensor ([1.7)) for all compo-
nents with the assumption of a perfect fluid, the Einstein equations (1.5 result in two

independent equations. The time-time component gives the Friedmann equation

8t K
H?(t) = ——p(t) — 1.
() = S0~ (1.9
and the space-space components result in
H(t) = —47G [p(t) + P(t)] + (1.9)

(0’

where H(t) = a(t)/a(t) is called Hubble parameter, p, P denote the total energy density

and pressure and a dot means differentiation with respect to the cosmic time ¢.

We can define a critical density perix by

_3H(1)
Perit = 87TG )

(1.10)

such that the abundance of a substance in the Universe can be expressed with respect to
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it. Constructing the density parameter () as

_ PA
Q:ZQA: — (1.11)
A A Ccri

the Friedmann equation (|1.8)) can be rewritten as

K
Q—1= RO (1.12)

From this equation we can see that the curvature of the spacial section K is determined

by the energy content of the Universe. In fact,

p<pait=N<1=K<O0,
P=pai=0=1= K =0, (1.13)

P> P =2>1= K >N0.

To solve the Friedmann equation and find how the scale factor a(t) evolves with
time, we have to know what is the dependence of p with time, or equivalently with the scale
factor. Combining and , or using the conservation of the energy-momentum
tensor, results

p+3H(p+ P) =0. (1.14)

As ([1.14)) can be obtained from (1.8) and ([1.9), it means that only two of equations (|1.8)),
(1.9) and ((1.14)) are independent. Equation (|1.14)) is valid for the total energy density, but

if the individual components are independent, they will obey similar equations. Thus, if
we know what are the components of the Universe and the equation of state they satisfy,
we can solve Eq. for each individual component and find their dependence with
the scale factor. Knowing this, we can solve the Friedman equation .

There is another relation that can be obtained from equations ([1.8)) and (1.9)). Elimi-

nating K/a® from those equations, we obtain

a 4dn G
- —— P). 1.1
S =T+ ap) (1.15)

This equation tells us that an accelerated expansion only occurs if p + 3P < 0. As the

energy density must be a positive quantity, this means that in order to realize an accel-
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erated expansion, the Universe must contain some component with a negative pressure.
Considering a fluid with a linear barotropic equation of state[L P = wp, the accelerated

expansion can occur if w < —1/3.

1.2 Cosmic Distances

In the previous section we established a theoretical model for a homogeneous and isotropic
universe. Solving the system of equations and allows us to determine the
evolution of the scale factor a(t) and consequently the history of the Universe. However,
to solve that system of equations we need to determine the values of some parameters
as K, the initial value of H(¢), the initial energy densities of all the constituents of the
Universe and their equation of state, usually assumed to be of the form w = P/p. To
describe the real Universe these parameters must be in agreement with observations,
which means we need observables that allow us to compare theory with observations.

A fundamental step to compare theory with observations is the measurement of dis-
tances on cosmological scales. These measurements enable us to relate physical observ-
ables with the parameters in our model such that we can constrain it and make predictions.
Actually, there are several ways to define distances in cosmology as we show below.

From the FLRW line element , a light ray traveling along the radial direction

satisfies the geodesic equation
ds® = —dt* + a*(t)dx* = 0, (1.16)

where we defined dy = dr/(1 — Kr?)'/2. Therefore, considering that a light ray have

traveled from the time t = 0, we can find the total comoving distance that it could travel

.
n:/o ook (1.17)

This distance establishes a limit beyond which no information can further propagate

until the time t as

in the comoving frame. Thus, 7 can be thought as a comouving horizon. Because 7
is monotonically increasing, it can also be defined as a time variable, which is called

conformal time. Using equation ([1.16)), we can obtain the comoving distance from a

LA barotropic fluid is a fluid whose pressure depends on the density alone [61].
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distant object at scale factor a to us:

o ar w0 da
a) = — = _ 1.18
x@ /t@ a(t) / @ H(d) 1)
where the subscript “0” represents quantities at the present time.

The comoving coordinates are constant over the expansion history of the Universe.

Thus, using Eq. (1.18)), a light ray emitted at time t + ¢ and observed at time ¢y + 0t

to dt/ to+dto dt/
— . 1.19
/t () / () (1.19)

Manipulating the limits of integration, we can write
t+6t dt/ t0+5t0 dt/
/ — = / —. (1.20)
eooat) o alt)

5t Sto
o = (1.21)

If 4t is the period of emission of the light ray and dtq the period of detection, as the wave

satisfies

At first order in 6t we have

frequency v is the inverse of the period and the wave length is defined as A = ¢/v, we

obtain

ems )\os
14 o= Zemit _ Aobs G0 (1.22)

Vobs )\emit a

This expression defines a cosmological Doppler effect associated with the expansion or
contraction of the Universe. To account with this effect we defined the redshift z. The
above equation allows us to relate the redshift of a distant object to the scale factor when

the light ray was emitted.

Basically, there are two ways of inferring distances in astronomy: using a standard
ruler or a standard candle. With the knowledge of trigonometry astronomers have inferred
lengths for a long time. Measuring the angle # subtended by an object of known physical
size | (a standard ruler), the distance to that object is

l l

L 1.23
A 2tan(g) 0 ( )

assuming the angle subtended is small. On the other hand, using the line element ([1.2)),
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we can see that the physical length [ of an object described by an angle 6 is given by
[ =a(t)rd. (1.24)

Therefore, comparing Eqs. ((1.23)) and (1.24]), we observe that the angular diameter dis-

tance is
m sinh(Hov/Qrox) Q% >0,
da=a(t)r=a(t){ x Q. =0, (1.25)
m Sin(Ho\/ _QkOX) Qk < O,
where we used the definitions of x and Q;, = —K/H?(t)a?(t), and we are using a normal-

ization such that q¢ = 1.

Another important technique to determine distances is to find an object of known
intrinsic brightness, a standard candle, such that any difference between the apparent
brightness of two of these objects is a result of their different distances from us. Given an

object of known luminosity L, the observed flux F' a distance dj, from the source is

L

 dmd?’

(1.26)
On an expanding universe we can write a similar equation considering a comoving grid as

~ Lx)
F= prTont (1.27)

where L(x) is the luminosity of the source through a comoving spherical shell with radius
r(x). Assuming that the photons are emitted with the same energy, the luminosity L(x)
is the energy multiplied by the number of photons crossing the shell per unit time. As
the Universe expands, the number of photons passing through the spherical shell per unit
time becomes smaller by a factor of a. On the other hand, Eq. tells us that the
wave lengths of the photons are stretched by a factor of 1/a. Thus, as the energies of
the photons are inversely proportional to the wave length, they will decrease accordingly.
Therefore, the energy per unit time on the spherical shell at () will be a factor of a?

smaller than the luminosity at the source

La?
F=—— 1.28
4mr(x) (1.28)
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If we define the luminosity distance dy, as

00 , #QTO sinh(Hov/Qrox) Q% >0,

Hox/l—Qiko sin(Hov/—Qrox) % <0,

we can keep the form of the flux given by Eq. (1.26). Comparing Eq. (1.25) with Eq.

(1.29) we observe that
dp

dA = a2(t)dL = m,

(1.30)

which is valid in general since the flux is conserved [61].

From equations ((1.18)), (1.25) and (1.29)) we see that in the limit z < 1 all distances

recover the Euclidean distance in Minkowski spacetime.

1.3 Components of the Universe

To calculate the equation we need to know what are the constituents of the Universe
and what are the equations of state they obey. Thus, we sketch below the standard model
of particle physics (SM) and describe some properties of the fundamental ingredients that
build the Universe.

1.3.1 The Standard Model of Particle Physics

The standard model of particle physics contains our present knowledge of the fundamen-
tal particles that compose all the material content in the Universe and the interactions

between them. The standard model consists in a gauge group
GSM = SU(B)C X SU(Q)L X U(l)y, (131)

where U(N) is defined by its fundamental representation as the group of unitary matrices
N x N and SU(N) is the group of special unitary matrices, i.e. unitary matrices N x N
with determinant equal to 1. Thus, SU(3). describes the internal symmetry for hadrons,
which are particles that can interact via the strong interaction because they have a color
charge c¢. This theory is described by Quantum Chromodynamics (QCD). On the other

hand, SU(2), x U(1)y represents the symmetry of electroweak interaction. The indices
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L, Y mean that the symmetries SU(2), U(1) correspond to left-handed doublets and
hypercharge, respectively.

The fundamental constituents of matter are fermions with spin 1/2 which are classified
as quarks or leptons. Quarks appear together forming hadrons such as: protons, neutrons,
pions, kaons, etc. They have color and interact strongly as explained by QCD. Leptons,
such as the electron and neutrino, have no color degree of freedom and cannot interact
via strong interaction. Besides this, neutrinos do not carry electric charge either, their
motion is influenced only by weak interaction.

In the standard model, interactions among quarks and leptons are mediated by gauge
bosons with spin 1. There are five types of gauge bosons: photons, which are responsible
for the electromagnetic interaction; W= and Z°, that mediate the weak interaction; finally,

the gluons in the strong interaction. Below is a sketch of the standard model:

1st Generation  2nd Generation 3rd Generation

u® ¢ t¢
Quarks ,U%, %7 ,C%,S%, ) ?%7 527 (132)
de s b
L L L
Ve _ Vu _ VT _
Leptons yERS s RS ' TR (133)
e” I T
L L L
photon 7,
Gauge bosons weak bosons W=, 20, (1.34)
gluons g,
Higgs bosons H. (1.35)

We can see that quarks and leptons come in three generations. The corresponding
particles in each generation have the same quantum numbers except for its mass. The
first family is the less massive and the third is the most massive. The SU(3) triplets
are represented by the color index ¢ and the SU(2) doublets are arranged in columns.
Also, the upper quarks have electric charge equal to 2/3 and the lower ones have charge
—1/3. On the other hand, neutrinos have no electric charge and their leptonic partners
carry electric charge equal to —1. All of them have antiparticles with the same mass and

opposite quantum numbers.
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The last component of the standard model, the Higgs boson, is a scalar particle that
is responsible for the Higgs mechanism. In the gauge group the particles cannot
be massive otherwise the symmetries are not preserved. Therefore, to obtain massive
particles as observed in Nature we have to break the symmetry group at some time.
The Higgs mechanism accounts for that performing a spontaneous symmetry breaking
(SSB), where the Lagrangian remains symmetric under while the physical vacuum

becomes non-invariant. In this way
SU(3). x SU2), x U(Ll)y = SU(3). x U(1)g, (1.36)

where () denotes the electric charge generators.

The standard model of particle physics agrees pretty well with the observed particles
and the corresponding interactions. However, from a theoretical point of view, there are
some remarkable difficulties. Therefore, it is a consensus that a more fundamental theory
must exist coinciding with the standard model in the low-energy limit. It should also be

noted that the SM does not include gravitation.

As we said before, on large scales the behavior of the particles are governed by the
gravitational interaction. In fact the strong and weak interactions act only in the nuclear
range. On the other hand, the atoms that build the matter content are neutral and
have spin oriented randomly so that on large scale matter do not interact with each other
electromagnetically. Actually, these interactions are important in the early Universe when

it was hotter and denser, but can be neglected at more recent epochs.

1.3.2 Photons

For a dilute weakly-interacting gas with g, internal degrees of freedom, the number density

n, energy density p and pressure P are given by [60, [62]

g* — 3

no= o [ 1@ (137)
g* — 3

b = i [ B EE. (1.33)

P = (22;‘)3/?)@5)10(:5,;5)65%, (1.39)
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where E? = |p]? + m? and f(Z,p) is the phase space distribution function (or occupation
number) which counts the number of particles around position # and momentum p'in phase
space. If some component is in kinetic equilibrium, i.e. is in equilibrium at temperature

T, the distribution function is

o 1
f(Z,p) = CEWT L] (1.40)

where g is the chemical potential. Fermions obey Fermi-Dirac statistics which is repre-
sented by the above equation with the +1 sign and bosons obey Bose-Einstein statistics
that is given by the —1 sign.

Basically, all information of the outside space comes from photons. They have a
well known homogeneous and isotropic distribution at one part in 10°. Presently, the
temperature amounts to Ty = 2.725(2) K as measured by the FIRAS instrument aboard
the COBE satellite [63]. Combining equations and for a relativistic particle
(kgT > m) we have that

P = —p. 1.41
37 (1.41)

Thus, photons obey a linear barotropic equation of state with w = 1/3 and using (|1.14)

we can see that their energy density evolves as p, oc a™*.

Photons can be described as a gas with a temperature given by the COBE satellite
and a chemical potential © = 0, since they can be freely created or destroyed. In fact,
observationally, the limits on a chemical potential are |u|/T < 9 x 107 [64], thus x can be
safely neglected. With these assumptions, and knowing that photons have two degenerate
states given by their polarizations, we obtain from (|1.38))

2
pvzzggjﬂ. (1.42)

Since p. oc a™* this tells us that the temperature of the CMB must vary as T oc a™'.

With respect to the critical density today, the photon energy density is

8.098 x 1071 p2eV4 h2a*

a

2 4 -5
p s 2. 720K 1 2.47 x 10
o 15 ( - (1.43)

where h parameterizes the Hubble constant Hy = 100h kmsec ! Mpc~! and we used that
leV = 11605K. Substituting the observational value of h above, h = 0.72 [65], and using



14 CHAPTER 1. INTRODUCTION TO COSMOLOGY

a normalization of a given by ag = 1, we have ., &~ 5 x 107°.

1.3.3 Baryons

Generally in cosmology, we call the protons, neutrons and electrons that together build
the atoms, as baryons. Although electrons are not baryons, but leptons, because their
masses are so small in comparison with that of the protons and neutrons, we can consider
that atoms are made of baryons. In this way, the baryons form all the known matter
content in the Universe.

Using equations ([1.37), and for non-relativistic particles (m > kgT),
both fermionic and bosonic components result in the same equations for the number

density, energy density and pressure

mT\>?
_ mTN"" gy 1.44
= a(Gr) e (1.44)
p = mn, (1.45)
P = nT<p. (1.46)

Combining these equations we can construct an equation of state P(p) = wp ~ 0 for non-
relativistic particles. In an ideal case we consider that w = const. = 0. Thus, as baryons
are non-relativistic particles, we consider that they obey an equation of state with w = 0.
With this equation of state, the continuity equation ([1.14)) gives us that p, o< a=3.

Now, we know how the energy density of baryons evolves with the scale factor. In
this way, if we obtain the value of the energy density at some epoch, all the history
will be established. However, unlike the CMB photons which can be described by a gas
with a temperature 7" and zero chemical potential, the above equations show that the
energy density for non-relativistic particles does not depend on the temperature 7' only.
Therefore, the energy density for non-relativistic particles must be measured directly from
observations.

There are four methods to measure the density of baryons and all of them are in
good agreement [66]. The first method consists in observing baryons in galaxies today,
the baryon density can be obtained estimating the mass of stars and mainly the mass
of gas in the groups of galaxies. The second way is obtained by observing the spectra

of distant quasars and the amount of light absorbed by the intervening hydrogen [67].
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The anisotropies in the Universe also depend on the baryon density and studying them
constitutes another form to infer the baryon density [68]. At last, the light element
abundances are able to pin down the baryon density [69]. All of these observations restrict

the baryon density in the Universe to 2 — 5% of the critical density.

1.3.4 Neutrinos

Neutrinos were in equilibrium with the initial cosmic plasma, but lost contact with it
slightly before the annihilation of electrons and positrons when the temperature was of the
order of the electron mass. Therefore, neutrinos did not receive any energy contribution

from this annihilation while the photons did. Then, photons are hotter than the neutrinos.

From the second law of thermodynamics
TdS = d(pV)+ PdV — pd(nV), (1.47)

we obtain that the entropy density is defined by

p+ P —pun

= (1.48)

S

Now, as all evidences indicate that |u| < T, we can assume that all chemical potentials
are zero. Thus, using the energy conservation ([1.14) it can be demonstrated that the

entropy per comoving volume is conserved, sa® = constant.

Equations and tell us that massless bosons contribute with 27273 /45 to
the entropy density for each degenerate state, massless fermions with 7/8 of this value and
from , and we see that massive particles have a negligible contribution
to the entropy density. Before the annihilation of electrons and positrons, the particles
in equilibrium in the cosmic plasma were electrons, positrons, neutrinos, anti-neutrinos
and photons. Considering the degeneracies of these particles, the entropy density at this

epoch a; was
4372

90

92 7
qm)zj%ﬁ‘2+§@+2+3+$ -

T3, (1.49)

After the annihilation, there are no electrons or positrons and the neutrinos are not in
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equilibrium with the photons. Thus at an epoch as after annihilation, we have

272 7
s(az) = % <2T$ + g6T3> . (1.50)

3

However, since sa®> = constant, we obtain

472
45

4372
s(a1)a; = ()’ =

90 (asT,)* = s(az)aj. (1.51)

T,\° 21
— + J—
T, 8

The neutrino temperature varies proportionally to a™!, i.e. a1} = a7, thus the above

T, 4 1/3

o

relation implies

Now that we can associate a temperature with the neutrinos, we can use for
a massless fermion to compute the energy density of neutrinos. Each neutrino has one
degree of freedom and there are three generations of them with their corresponding anti-
particles, thus taking into account all of these contributions the neutrinos possess a total

of six degrees of freedom. In this way

T2 [ 4 4/3
Pu:4—0(ﬁ) T;. (1.53)

With respect to the critical density, results

5 1.68 x 107°
Qo= L0 - 222
Peritd h

(1.54)

Actually, neutrinos seem to be massive as observed from oscillations of solar [70] and
atmospheric neutrinos [71]. Nevertheless, at epochs where the temperature is much larger
than the predicted mass of the neutrinos, we can consider them as massless. Just when
kgT ~ m,, or less, we have to consider the mass of the neutrinos. For a massive neutrino,

the relative energy density will be [60]

my,

Qo = ——~—. 1.
"0 94h2eV (1.55)

Finally, we emphasize that, unlike baryons and photons, cosmic neutrinos have not been

observed. Their contributions come from theoretical arguments.
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1.3.5 Dark Matter

There is a large number of evidences in ranges from the galactic to cosmological scales
indicating the presence of a new component in the Universe or some deviation from
the known laws of gravitation. If it actually is a new component, it cannot interact
electromagnetically, since its presence can only be detected via gravitational effects. Thus,
it is dubbed dark matter.

On galactic scales, the most convincing and direct evidence of dark matter comes
from observations of the rotation curves. The rotation curves of galaxies are a measure of
circular velocities of stars and gas as a function of their distance from the galactic center.

Theoretically, using Newtonian dynamics, we expect the circular velocities to be

u(r) =/ Gﬂfoﬂ), (1.56)

where M(r) = 4z [ p(r)r?dr is the mass interior to the radius r and p(r) is the mass

density profile. The above equation tells us that beyond the optical disc the circular
velocity should scale as v(r) oc 1/4/r. However, observationally, rotation curves usually

exhibit a flat behavior at large distances from the galactic center as can be seen in Fig.

L1

150 — -

Radius (kpc)

Figure 1.1: Rotation curve for the spiral galaxy NGC 6503. The dotted, dashed and dash-
dotted lines are the contributions to the circular velocities of gas, disk and dark matter halo,
respectively. Extracted from [72], itself based on [73].
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Actually, the first indication of dark matter was obtained by Zwicky in 1933 [74].
Studying the Coma cluster he inferred a mass-to-light ratio of 400 solar masses per solar
luminosity, two orders of magnitude greater than observed in the solar neighborhood. The
mass of a galaxy cluster can be determined in several ways: applying the virial theorem
to the observed distribution of radial velocities, by weak gravitational lensing, and from
the X-ray emitted by the hot gas in the cluster. All of these measurements are consistent

with Q,, ~ 0.2 — 0.3 [75-77).

Finally, on cosmological scales, the anisotropies of the cosmic microwave background
(CMB) provide stringent constraints on the abundance of baryons and dark matter in the
Universe as placed by the Wilkinson Microwave Anisotropy Probe (WMAP) data. Recent
determinations give Q4,0 = 0.228 £ 0.013 [6§].

All of these evidences show that there must be in the Universe a component that
contributes with around 25% of the critical energy density. Since baryons contribute with
only 5%, this component must be nonbaryonic. Because it does not interact electromag-
netically the first guess would be neutrinos. However, from and the upper limit on

the neutrino mass m,, < 2.05¢V" [78], we have
Q,h* <0.07, (1.57)

which means that there are not enough neutrinos to be the dominant component of dark

matter. Thus, dark matter must really be a new component.

1.3.6 Dark Energy

Observations of anisotropies in the CMB have shown that the geometry of the spatial
section is very close to a flat one [T9H82]. Actually, we also expect this theoretically from
inflationary scenarios in the early Universe [60]. This means that the total energy density
should be equal to the critical density. However, summing the contributions of all the
components described so far, we obtain that they contribute with around 30% of the

critical density. Thus, there is a lack of 70% in the energy content of the Universe.

Using the luminosity distance (1.29) we can find the apparent magnitude m of an
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object with intrinsic magnitude M. Conventionally we have

d
m — M = 5log (W&) +K, (1.58)

where K is a shifting correction factor of the spectrum into the wavelength range measured.
In 1998, two groups measured the apparent magnitude of various supernovae Type la and
established that a universe dominated by a vacuum energy density, i.e. a cosmological

constant, with equation of state w = —1 is favored by the data [83],[84], as shown in Figure
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Figure 1.2: Hubble diagram from distant Type Ia supernovae. It is plotted three curves
predicted by different energy contents in the Universe. Extracted from [60].

These two sets of observational evidences show that beyond dark matter there must
be another unknown component in the Universe, which is called dark energy. Then, we
conclude that our present Universe is composed of around 5% of baryons, 25% of dark

matter and 70% of dark energy, with insignificant contributions of photons and neutrinos.
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Nowadays, the best model explaining the data is the ACDM, with cold dark matter
(CDM) and where dark energy is the cosmological constant A.

The ACDM model is the simplest one that fits the data. However, it suffers of two
theoretical problems. The first occurs when we try to associate the cosmological constant
with the vacuum energy density. In quantum field theory, we generally introduce a cut
off on the energy beyond which our theory cannot describe the physics. If we introduce
this cut off at the Planck reduced mass Mp; = (87G)~Y/? = 2.436 x 10'8GeV [8F], the
vacuum energy density will be given by pyae ~ Mp, ~ 107 (GeV)%. On the other hand,
the energy density of dark energy today is py = 3M3 HZQ ~ 10747(GeV)*. Thus, there
is a difference of 120 orders of magnitude, which is known as the cosmological constant
problem.

The second problem arises when we consider the evolution of the components in the
Universe. As we already saw, the non-relativistic matter (baryons and dark matter)
scales as p,, o< a~3, radiation scales as p, o< a~? and the cosmological constant has a
density py = constant. Therefore, each component scales in a very different way. But,
as mentioned above, matter and dark energy have the same order of magnitude today.
Thus, the question arise: “why matter and dark energy have the same order of magnitude
exactly now in the whole history of the Universe?”. This is called the coincidence problem.

These difficulties in the AC'DM model have motivated the search for new models of
dark energy. In conclusion we observe that both dark matter and dark energy have no

explanation in the standard model of particle physics.



Chapter 2

Cosmological Perturbations

The description of the Universe was, up to now, performed considering it as homoge-
neous and isotropic, as described by the cosmological principle. However, the structures
around us imply that at some point we have to break these assumptions and introduce
inhomogeneities and anisotropies in our model. Because on large scales the cosmological

principle leads to correct results, we shall do that using perturbation theory.

2.1 Perturbed Metric

The metric of a flat FLRW universe with small perturbations can be written as
ds® = [Vg,, + 6g,u(27)] datdz”, (2.1)

where Vg, corresponds to the unperturbed part and |3g,,| < |?g,,|. Using the confor-
mal time ((1.17)), the most general components of the metric tensor are given by [86]

goo = —a’*(1+2v), (2.2)
g = a*(B,+5), (2.3)
gij = CL2 [(1 + 2@5)(5” + DZ]E + E,j +Fj,i +hl]] s (24)

where the perturbations are introduced by the scalar functions ¢, B, ¢ and F; the diver-
gence free vectors S; and Fj; and a traceless and transverse tensor h;;. Here the comma

means differentiation with respect to the respective spatial index, e.g. B,;= dB/dx". We

21



22 CHAPTER 2. COSMOLOGICAL PERTURBATIONS

also define

Dij = <al-aj - %@jv?) : (2.5)

From the three types of perturbations, the scalars are the most important in cosmology
because they present gravitational instability and can lead to structure formation in the
Universe. The vector perturbations are responsible for rotational motions of the fluid and
decay very quickly. Finally, tensor perturbations describe gravitational waves, but in the
linear approximation they do not induce perturbations in the perfect fluid. Moreover,
the decomposition theorem [60), [86] states that these three types of perturbations evolve
independently. Thus, in this work, we will only be interested in scalar perturbations. In

this case the metric becomes

ds* = a® [—(1 + 2¢)dn? + 20;Bdndz’ + (1 + 2¢)6;;da’da’? + Dy Eda'da’] . (2.6)

Given a coordinate transformation
at — It =t + (2.7)

where ¢* = (€9, £ + (") are infinitesimally small functions of space and time, the metric
tensor has its components changed by

B oxY Ox?

§W(fp) - @@gw(ﬁp) ~ (O)QMV(:Ep) + 5guu - (O)guﬁgcsw - (0)97V§7’u ) (28)

at first order in dg and £&. The new coordinate system also allows to split the metric into

a background and a perturbed part

guu(jp) = (O)QMV(jp) + 5§MV’ (29)

where Vg, (7°) is the Friedmann metric in the new coordinates. On the other hand,
expanding the background part of (2.1)) in a Taylor series around the coordinates Z, we
have

O g (@) = D gy () = Vg € . (2.10)

Therefore, comparing Eqgs. (2.8]) and ([2.9)) and also using Eq. (2.10]), we obtain the gauge
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transformation law

5g;w — 5§~I,u1/ = 6g;w - (O)Q;Wa’y g'y - (0)gu6€6au - (O)Q'yuf’yau . (2'11)

Using the gauge transformation law (2.11]), the metric (2.6)) has its components changed

as

b= g, (212)
B = B-{+¢&, (2.13)
5 — o Llyrp P

6 = ¢—VE-—¢, (2.14)
E = E—-2. (2.15)

Here a prime means the derivative with respect to the conformal time. The coordinate
transformation (2.7)) is completely arbitrary, then we can choose £° and ( freely. Thus, the
above transformations of the metric components show we can choose £° and ¢ appropri-
ately in order to eliminate two of the four functions v, B, ¢ and E. Therefore, there are
just two physical perturbations. Combining equations —, we can construct two

gauge-invariant functions which span the two-dimensional space of physical perturbations

v oot EYd| o0

1 / E
o = ¢—EV2E+%(B—7). (2.17)

Instead of working with gauge-invariant functions, we can impose two conditions on
the coordinate transformation, which is equivalent to a gauge choice. In particular, the
conformal-Newtonian gauge is obtained with coordinates £ and ¢ such that B = E = 0.
Another gauge, widely used in the literature, is the synchronous gauge. It corresponds
to the gauge choice v = B = 0. However, unlike the conformal-Newtonian gauge, the
synchronous gauge does not fix the coordinates uniquely. If the conditions ¢y = B = 0 are
satisfied in a coordinate system x* = (1, &), they will also be satisfied in any coordinate

system z* given by

j , . [ d j
) T =a"+Chy, (xj>/;n+o2m' (@), (2.18)
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where Cy(27) and Cy(27) are arbitrary functions of the spatial coordinates.

Equations (2.16)) and (2.17)) allow to relate the gauge-invariant perturbations with the

perturbations in a particular gauge. Thus, if we know a solution for perturbations with
gauge-invariant variables; or using the conformal-Newtonian gauge, we can transform it

into the synchronous gauge without needing to solve the Einstein equations again.

2.2 Einstein Equations

Now we know the components of the perturbed metric tensor. We can thus obtain their
evolution using the Einstein equations . Assuming the perturbations are small we
can expand them in a Taylor series. Thus, as we did to the metric tensor, it is possible
to split the Einstein tensor G¥ and the energy-momentum tensor 7% into background
and perturbed parts: G# = OGH + §G# and TF = OT# + §T*. The zeroth order
terms correspond to the homogeneous and isotropic background and the others give us

the perturbed Einstein equations

SGH = 8rGST". (2.19)

The geometric part of the Einstein equations (2.19) can be solved following the same
procedure adopted in the last chapter. Thus, using the perturbed metric (2.6) in the

conformal-Newtonian gauge and keeping only first-order terms, we obtain

0Gy = 2a77 [3H (MY — @) + V?P], (2.20)
6GY = 207 (9 —HY) ,;, (2.21)
6G: = 2277 [(H* +2H') U + HY' — 0" — 21| 6 +

a? [VP(U+®)5— (U +D),]. (2.22)

Here we defined the conformal Hubble parameter H = %g—z = Ha and from Egs. (2.16
and (2.17) we see that ¥ = ) and ® = ¢ in this gauge.

From equations ([2.20))-(2.22), we observe that the Einstein equations (2.19) turn out

to be a set of linear partial differential equations. If we Fourier expand all perturbation
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quantities
= Ik pag
0(%,n) = 2m)¢ Ox(n), (2:23)

where 6 denotes a generic perturbation and the subscript k represents a Fourier mode for
each wavenumber k, the resulting Fourier amplitudes obey ordinary differential equations.
Thus, working in the Fourier space makes things easier. Furthermore, the Fourier modes
0 evolve independently in the linear regime. Therefore, instead of solving an infinite
number of coupled equations, we can solve for one k-mode at a time. In practice, each

perturbation quantity # and its derivatives can be substituted as

0(F,m) — ), (2:24)
VO(E,n) — ieFTh(n), (2.25)
V20(Z,n) = ViVO(E,n) — —e 7k%(n), (2.26)

where we are omitting the subscript k£ to simplify the notation.

The Einstein equations are a set of 16 equations. However, the symmetries in the
indices p, v reduce the number of independent equations to 10. Only two of the four scalar
functions in the metric represent physical states. Thus, choosing the conformal-
Newtonian gauge, we just need two Einstein equations to obtain the evolution of the

functions ¥ and ®. We choose the time-time component of the Einstein equations ([2.19))
. 2 . . .
5C = = [3% (qu - cb’) - k2<1>] — 87 GOTY (2.27)
a
and the longitudinal traceless projection of the space-space components
3 - 3a?

(kkﬂ - 155) 6G! = lk?(ﬁf + @) = 872G (kkﬂ - éag) T} (2.28)

These equations were written in the Fourier space and we defined the unit direction

wavevector k' = k;, which satisfies é}-ﬂ%%j = 1.

2.3 Boltzmann Equation

To solve the Einstein equations (2.27)) and (2.28)) we need the first-order components of

the energy-momentum tensor. This could be obtained using the hydrodynamic equations
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as in the homogeneous and isotropic case. However, those equations can be obtained
by the first moments of the Boltzmann equation, which means that it is more general.
Furthermore, the radiation description is made using fluctuations of the temperature, and

the Boltzmann formalism is more natural in this case.

The Boltzmann equation formalizes the statement that the variation in the distribution
of some species is equal to the difference between the rates of ingoing and outgoing

particles of that species. In its differential form, the Boltzmann equation is

df
==, (2:29)

where f is the distribution function and C[f] is a functional of the distribution function,
which establishes all possible collision terms of the particle of interest. In general, f is a
function of the spacetime point z# = (¢, %) and also of the four-dimensional momentum

vector in comoving frame
_dz*

Pt =—
a\’

(2.30)

where A\ parametrizes the particle’s path. The four-vector P* is related to the physical

oxH

momentum four-vector p* by P* = %7

p¥, with ¥ in the physical frame.

In order to calculate the perturbed energy-momentum tensor, we develop below the

Boltzmann equation for each component in the Universe.

2.3.1 Photons
Photons satisfy the energy-momentum relation
P? =g, PP = —(1+20)(P°)? + g;;P'P? = —(1 +20)(P")* + p* = 0, (2.31)

where we used the metric in the conformal-Newtonian gauge passing to the cosmic
time and p? is the generalized magnitude of the momentum. The above relation allows
us to express P in terms of p. Thus, there are only three independent components of
the four-dimensional momentum vector. Then, we can expand the total time derivative

of f in the Boltzmann equation ([2.29)) considering only the momentum magnitude p and
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angular direction p¢ = p;:

df of | of du' of dpf

dt ot Oxt dt  Op dt Op dt’

of dp

(2.32)
where 0;;p'p’ = 1.

Let us begin to solve equation . The last term does not contribute at first order
in perturbation theory. In fact, the zeroth order part of f depends only on p, which
means Jf /9P’ is nonzero only in a perturbed level. In the same way, a photon moves in a
straight line in the absence of the potentials ¥ and ®, therefore, dp'/dt is also a perturbed
quantity. Thus, the last term of must be of second order.

Using the definition of the comoving energy-momentum vector (2.30]), we obtain

dx’ _dxi@_ii
dt — d\ dt PO

(2.33)
From ([2.31)) the time-component of P* is given by
p
P'= — =p(1-0), 2.34

where the last equality is valid at first order. On the other hand, the spatial component

is proportional to the unit direction vector p*
P' = |P|p'". (2.35)
Plugging in the definition of the spatial magnitude, we find
p* = g PP = a®(1 + 20)(0,,;0'p ) P? = a*(1 4 2®) P?, (2.36)

which gives |P| = p(1 — ®)/a at first order. Therefore, combining equations ([2.34) and

(2.35), we have
dri 1—-d+ 0

dt a

(2.37)

The next term we need to evaluate is dp/dt. This factor can be calculated from the

time component of the geodesic equation dP°/d\ = —I') P*P" in a simple, although
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tedious, way [60]. Here we just show the final result
dp od Pl ovw
—=—-p|lH+—+4+——). 2.38
dt < * ot i a 81‘1) (2.38)

Combining the terms obtained so far, the left hand side of the Boltzmann equation for

photons yields
ﬂ_@_f P of B 8_f(H+8(I> ﬁi8\IJ>

it~ ot Taor Pop ot T aor

(2.39)

where we neglected the product of 3 f/0x% and either ¥ or ® because they are second-order

terms.

Photons in a homogeneous and isotropic distribution with an equilibrium temperature
T obey the Bose-Einstein statistics given by equation ({1.40). There, 7" is a function
of time only. To describe perturbations about this distribution, we have to introduce
inhomogeneities, so that it must have an ¥ dependence, and anisotropies, which means
a dependence with the direction of propagation p. Thus, for photons, the distribution

function is given by

sz = {oo [z 1) 240

where T'(t) is the zero-order temperature and © = §7/7T characterizes the perturbation to
the distribution function. Here we have assumed that © does not depend on the magnitude
p, which is a valid assumption since in a Compton scattering p is approximately conserved.

Expanding up to first order,

af© af©

f:f(0)+T—@:f(0)—p 5
p

o7 o. (2.41)

Plugging Eq. (2.41)) into Eq. (2.39) and collecting terms of similar order, at zeroth order
we find the background equations for the number and energy conservation from the first

moments of the Boltzmann equation. Finally, the first-order terms result in

dv O [90 o0 0 PO

it~ Pap ot Taow T ot T aon

(2.42)

The last step necessary to calculate the Boltzmann equation for photons is the collision
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term. Photons interact with electrons through the Compton scattering

e (@) + (D) < e (') + ("), (2.43)

where the momentum of each particle is indicated. To obtain the effect of the Compton
scattering in the distribution function of photons with momentum p, we must sum the

contributions of all the other momenta to the collision term [60]

_1 d3q d3q/ d3p/ ) 7T4
o=, [ <27r>32Ee<q>/ <27r>32Ee<q/>/ anpig) M)

X Op+ 77" = qEP) + Elq) — EQ) — Ed)] x {f(q) f(7") = f(D) f (D)} -
(2.44)

Some explanation about the collision term is fruitful here. First we note that in the
Boltzmann equation ([2.29)) we considered the total time derivative of the distribution f.
However, general relativity requires derivatives with respect to the affine parameter A,
% = j—i% = PO%. At first order this introduces the factor % in front of the integrals.
Actually, the integrals are over the four-momentum vectors and the factors of 2E come
from the integration over the time component. M is the scattering amplitude of the
process in question, which can be found using the Feynman rules. The delta functions

arise from conservation of energy and momentum. Finally, the last terms count the
number of particles with the given momenta [f]

At the epochs of interest the energies are the relativistic limit for photons E(p) = p
and the non-relativistic limit for electrons E.(q) = m. + ¢*/(2m.) ~ m.. Thus, we can

use the three-dimensional delta function to eliminate the integral over ¢’

T d3q d*p/ 9 ¢ . (q+p—-p")?
clr@l = 4m§p/ (2m)3 / (27T)3P”M| < Olp+ 2m,  2m.

X {e(@+ =0 f(0) = f(@) (D)} (2:45)

For non-relativistic Compton scattering very little energy is transferred E.(q) — E.(q+

p—p L= - which holds since ¢ is much larger than p and p”’. In this limit, the

IV
/) ~ (pm;)q

scattering is nearly elastic p’ &~ p. As the change in the electron energy is small, it makes

'We should include additional factors of 1 + f and 1 — f, for stimulated emission and Pauli blocking,
respectively. However, at first order these terms can be neglected.
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sense to expand the final electron kinetic energy (¢ + p — p”)?/(2m.) around its zeroth

order value ¢*/(2m.). Therefore, we can make the formal expansion in the delta function

¢ (c7+ﬁ—ﬁ’)2]

0
P+ 2me 2me

OE(¢) B.(q)=B.(d)
N, W=1")-qo5(p—p)
o 2.4
=)+ - oy (246)

Using this expansion and f.(¢+ p'— p’) = fe(q), we obtain
T d3q d3p/

CUG = o | sl [ o
X

~ 4m2p /4
no (D—=p")-q05(p—1p)
{5(19 p)+ - o

M

}x{ﬂﬁw—ﬂmy (2.47)

The amplitude for Compton scattering can be found using the Feynman rules [87]
|IM|? = 12rarm?2(é-¢'), (2.48)

where o7 is the Thomson cross section, ¢ and ¢’ are the polarization vectors of the initial
and final photons, respectively. For simplicity, we average over all polarizations and

angular dependence which results in a constant amplitude
|IM? = 8rorm?. (2.49)

Thus, using this amplitude and the expansion of the distribution function (2.41f), the

collision term can be written as

N0 d3p’ , Lo LO0p—17
© o)
y {fm)(ﬁ/) o _p/%@(p') +p8£p @(ﬁ)}, (2.50)

where we did the integrals over momentum ¢ using the number density definition (|1.37)

and we define the velocity as

. g [ &Pp pp
i= 2x iy 2.51
v n / (271’)3f E ( g )
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The spin degeneracy g, can be incorporated into the phase space distribution f.

To solve the integral over p” in Eq. (2.50)), we split the radial and angular parts of the
differential d®p’. Then, keeping only first-order terms in perturbations, the integral over

the solid angle yields

. o / OO oroO
Clf(p)] = n;T/O dp'p {5(p—p) {—p éfp/ Oy +p (‘J;p @(p)}

+p- 17b%p_,p/) LFOW) = fOp)] } , (2.52)

where we define the multipoles

o= / U B (wyeru), (2.53)

such that P, is the Legendre polynomial of order [ and instead of the unit vector p, we
used the direction cosine

P
=>F 9.54
pE= (2.54)

Finally, the p’ integral can be done in the first line of Eq. (2.52)) with the delta function
and in the second line integrating by parts, the result is [60]

of©

Clf] = _pa—pneOT [©0 —O(p) +p- 1], (2.55)

where n, is the electron density and v is the velocity of the electrons, which is associated

with the baryons.

At last the first-order Boltzmann equation (2.29)) for photons can be obtained equating

Eq. (2.42) and Eq. (2.55)

00§00 b pov
ot a 0xt Ot a 0x'

=ncor (O —O(p) +p- 6. (2.56)

As usual we assume the fluid to be irrotational, which means we can write v; = v,k'/k.

Thus, passing to the conformal time and Fourier space we obtain

& +ikpud + & + ikl = —7 [éo —O@p) + u@b] , (2.57)
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where we defined the optical depth
70
T= / neoradi]. (2.58)
n

When deriving Eq. we use a constant amplitude given by . Actually,
the Compton scattering has an angular dependence and it also couples the temperature
field to the strength of the polarization field ©p. The general expression can be obtained
following the same procedure we did, but using the complete amplitude (2.48]). The

answer is [60]

~ ~ ~ ~ ~ P:
0"+ iku® + & + ikpV = —7'[0g — O + uv, — 2;M)H], (2.59)

where Il = (:)2 + épg + épo. Opp and Opy are the monopole and quadrupole of the

polarization field, which satisfies

. i - 1-P
O + ikpdp = —7'[~Op + %

1. (2.60)
The above equations show that even if we are interested only in the temperature field, it

is influenced by the polarization field.

2.3.2 Baryons

The formalism presented in the last subsection can be used to obtain the Boltzmann
equation for any constituent in the Universe. We now move to consider the behavior of

massive particles, for which we have
P? =g, P"P" = —m>. (2.61)

Defining the energy

E = +/p?+ m2, (2.62)

where p? is the same as in equation (2.36]), the four-momentum of a massive particle is

given by

1-o
Pt =|1-V)E, —pp'|. (2.63)
a
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Instead of the momentum p, massive particles must be described by the energy FE.

Therefore, the left hand side of the Boltzmann equation ([2.29)) is expanded as

G _0f 0f ' 0f 4B Of dp

dt ot Oxt dt OE dt Opt dt’

(2.64)

Following the same steps as for the case of photons, we can obtain the coefficients dx?/dt

and dF/dt such that Eq. (2.64) can be rewritten as

po®
E Ot a O0xt

& _of vpof _ Of <Hp (2.65)

» af oo i ov
i ot aEor TOE

Once again we neglected the last term in Eq. as it does not contribute at first order.
The main difference of this equation to the photon case is the presence of factors p/FE,
which arise from the energy-momentum constraint. The massless case can be recovered
from Eq. with £ = p.

When we considered photons, to complete the left hand side of the Boltzmann equa-
tion, we needed the knowledge of the distribution function. For massive particles, the
treatment can be simplified if they are nonrelativistic. In this case, we do not need a
detailed information about the distribution function, all we need is to take moments of
the Boltzmann equation taking into account that terms second-order in v = p/E must be
neglected because of the nonrelativistic behavior.

The zeroth moment is obtained integrating the Boltzmann equation as

/di”pﬂzg/ d3pf+18 / d?’pfpﬁ"
(2m)3dt ot ) (2m)3 adx’ | (2m)3° E

0P d*p Of p* 10V &p Of .,
- [“ﬂ / QP OFEE  adn / onpopt? (260)

From the definitions (1.37) and (2.51)), the first two terms of the right hand side of
equation (2.66) can be written in terms of the number density and velocity, respectively

Pl To integrate the third term of the r.h.s. of Eq. (2.66) we observe that dE/dp = p/E,
thus

Pp Of p? . dp Of a ds) o of B d0 oo B
/ (2r)'0EE / @n? op W/o dpp* = _3/W/0 dpp?f = ~3n,
(2.67)

2The spin degeneracy g¢. can be incorporated in the phase space distribution f.
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where in the third step we integrated by parts. The last term of (2.66)) does not contribute
at first order since the integral over the direction vector is null at zeroth order and that

integral multiplies a metric perturbation, thus this term is at least of second order. Finally,

d*p df  on  19(nv') 0P
/ (27T)3£ = + P +3 (H + E) n. (2.68)

we obtain

The above result for the zeroth moment of the Boltzmann equation has introduced
two unknown variables: n and v*. Thus, we need one more equation to close the system.

This additional equation can be obtained taking the first moment

&Pp pp?df 0 [ &Pp pp 10 &p  p*p'p
/(2@37%_a/(zw)sff+5%/(zw)3f B
_[ aﬂ/ d*p Of p*pl 18\1// d’p Of p*p'p’

; .

5 23 OE E

(2r)30F E?  aOxt

(2.69)

The first term on the r.h.s. can be identified with the partial time derivative of nv7.
The second one is neglected at first order since it depends on (p/E)?. To calculate the
last terms, we follow the same procedure used in Eq. (2.67). Therefore, keeping only

first-order terms, the first moment of the Boltzmann equation is

+4Hn! + ——. (2.70)

/ d®p ]ﬁﬁ ~O(m?) . nov
(27)3 E dt Ot a 0z’

An interesting fact can be observed by taking moments of the Boltzmann equation: the
Ith moment depends on the (I 4+ 1)th moment. Thus, in principle, they constitute an
infinite hierarchy of equations. However, as we are considering nonrelativistic particles,
we neglected terms of second order and higher in (p/FE) which correspond to the higher
moments. Therefore, Eqs. and form a closed system for n and v’

Until now we restricted the analysis to the left hand side of the Boltzmann equation.
The results presented in equations (2.68) and (2.70) are general for any massive and
nonrelativistic component in the Universe. To proceed further let us restrict the study to

the case of baryons.

Electrons and protons are coupled by Coulomb scattering whose rate is much larger

than the expansion rate at all epochs of interest. Because of this tight coupling, electrons
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and protons have the same overdensities

pe =0 pp—py
= =2 P =g (2.71)
(0) (0)
Pe Pr
and velocities
U = Uy = Up. (2.72)

Besides the Coulomb scattering, baryons interact with photons through the Compton

scattering. Thus, the unintegrated Boltzmann equation for baryons is given by

dfy(t, Z, q)

2L = (e (2.73)

where <Ce'7>pp’q’ represents the Compton collision term, as in Eq. , and the subscripts
represent which momenta are being integrated. In principle, the collision term should have
an additional term account for the proton-photon Compton scattering, however, the cross
section for this process is much smaller than the electron-photon scattering and can be

ignored. We are also considering a simplified model with all electrons ionized.
To solve Eq. (2.73]) we first take the zeroth moment integrating in the electron mo-

mentum ¢. Thus, using Eq. (2.68)) we obtain

Iny,  10(nyv}) 0P B
R i R o KR (2.74)

The collision term in the right hand side vanishes since the integration is symmetric under
the interchange of p <+ p’ and ¢ <+ ¢’ while it is antisymmetric in the distribution function
factors. The number density can be split into a background part and a perturbed part as
ny = nl()o)[l + ). Thus, collecting the zeroth order and first-order terms, and passing to

conformal time and Fourier space, the perturbed part gives us

oy 4 ikty + 39" = 0. (2.75)

The second equation, which describes the evolution of the velocity field, is obtained
taking the first moment of Eq. . In Eq. we found the first moment of the
left-hand side of the Boltzmann equation. There we first multiplied by p/E and then
integrated. For baryons we multiply Eq. by the momentum ¢ instead of ¢/E. This
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will produce the same result as (2.70)) except for a factor of m

) J
- (7;;%)

mpny ov

+ 4Hmynyvy + 90 (Certd”) e (2.76)

Using the conservation of the total momentum ¢ + p, we have that (cw(j}m’,q,q =

— (ceyﬁ}pp,q,q. Passing to Fourier space and multiplying Eq. (2.76) by &7, the right-hand

side becomes — (cevp,u)pp,q,q. In equation 1} we already computed (ce,y)p,q,q, thus we

just need to multiply that result by pu and integrate over all p,

43 9f0) . ~
/ (2753}72 gp p [@0 —O(n) +l“~)b}

_ “dp ,OfO [Tdp 14 A i
= neaT/O 5.2P p /1 - M [@0—@(u)+uvb]. (2.77)

- <Ce'yp/j’>pp/q/q = TNeoT

In the second line we split the integration over p into a radial part and an angular part.
The integral over the radial part p can be made integrating by parts similar to Eq.,
the result is —4p,. The first term in the p-integration vanishes, the second term is the
dipole component of © and the last term reduces to v,/3. Therefore, collecting these

results in Eq. (2.76]) and switching to conformal time, we obtain

/ B 4 5
B+ oy ikl = 2 (30, + ) (2.78)
a 3y

2.3.3 Neutrinos

Equation (2.59)) can be extended to massless neutrinos. They obey a similar equation
without a collision term,

N+ ikpN + & 4 ikp¥ = 0, (2.79)

where N is the perturbation in the neutrino temperature. On the other hand, if neutrinos
are massive, the left-hand side of the Boltzmann equation will be given by Eq. .
However, unlike the baryon case, neutrinos are relativistic particles, then we cannot ne-
glect terms of order (p/E)? and higher, we have to take into account the whole hierarchy

of moments. A discussion about massive neutrinos can be found in [8§].
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2.3.4 Dark Matter

Cold dark matter behaves like baryons. However, it does not interact electromagnetically,
then the perturbations are not affected by a collision term E| Thus, the density contrast

of cold dark matter obeys an equation identical to ([2.75]
0 + ik, + 3P =0 (2.80)

and the velocity equation is similar to (2.78) without a collision term

/

7+ S+ ikD = 0. (2.81)
a

We observe that to obtain Eqgs. and we use the Boltzmann equation, how-
ever, cold dark matter always behaves like a fluid, which means that it can be described
completely by the energy-momentum tensor 7). Thus, we could obtain the evolution
equations above using the conservation of the energy-momentum tensor as we did in the

homogeneous case.

2.3.5 Energy-Momentum Tensor

Now that we know the equations governing the evolution of perturbations in the compo-
nents of the Universe, we are in position to complete the Einstein equations (2.27)) and
(2.28) with the perturbed energy-momentum tensor. In general, the energy-momentum

tensor of a fluid with a distribution function f(¢,Z,p) is given by

1(t.) = g. [ (ij;g L bt 7, p). (2.82)

Remember that the Einstein equations take into account the contributions of all species

in the Universe, thus from the time-time component of (2.82)), we obtain

- Y e (;lTp;gEi(p)fi(t,f,m (2.83)

all species ©

The distribution functions above consist in a background part and a perturbed part.

For nonrelativistic particles, the integral produces —p;(1 + 9;), while for relativistic ones,

3Tn the next chapter we will extend this model assuming an interaction in the dark sector.
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the integral can be done using the expansion (2.41)). Considering only the first-order
perturbations, the Einstein equation ([2.27)) results

/ /
26 4+ 3% <<I>’ gL
a

a) = 47Ga? [pcSc + Pl + 4p,O0 + 4p, Ny | (2.84)

where N is the monopole term of the neutrino temperature perturbations.

The second Einstein equation (2.28)) needs the longitudinal traceless projection of the

space-space energy-momentum tensor

(k;kf - %5{) Ti= Y / “ — 1>/3f2(t,x,ﬁ). (2.85)

all species i

We observe that the factor u?—1/3 is equal to 2/3P,(u), where Py(p) is the second Legen-
dre polynomial. Therefore, the integral picks out the quadrupole part of the distributions.
We already saw that nonrelativistic particles do not contribute to the second moment and
higher, thus only photons and neutrinos must be taken into account. For example, let us

calculate the integral in the case of photons:

dp LOfO (Y du2P(u) 40, / dp ,Of© 80,0
/ ot Tap )L 2 3 W ==3" | 52 5, 3 (2.86)

Finally, combining (2.28]) and (2.85)) we obtain the second Einstein equation
K@+ 0) = ~327Ga? .0, + p, N5 (2.87)

We emphasize that, in principle, we should have a term for perturbations in the dark
energy in the Einstein equations above. However, until now, we consider it to be smooth

and important only very recently as described by the cosmological constant model.

2.4 Initial Conditions

Equations (2.59), (2.60), (2.75), (2.78)), (2.79), (2.80), (2.81), (2.84) and (2.87) form a

system of nine first-order differential equations. To solve them we need a set of nine
initial conditions. However, in the early Universe, we can relate all perturbation variables

to the gravitational potential ®, such that we will actually need just one initial condition.
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Considering times so early that for all k-modes of interest kn < 1, we can neglect
all terms in the Boltzmann equations multiplied by k. This condition means that on
early times all perturbations of interest had wavelengths much larger than the distance
of causal contact. Thus, an observer within the causal horizon sees a uniform sky, which
means that higher multipoles, e.g. ©1, O, ..., are much smaller than the monopole term.

Therefore, using these considerations, equations (2.59), (2.79), (2.75)) and (2.80) can be

written as

O, +d = 0, (2.88)
Nj+ @ = 0, (2.89)
oy + 30 = 0, (2.90)
o 30 = 0, (2.91)

respectively. The velocities v, and v, are of the same order of magnitude of the dipole
moment of the temperature distribution, thus they can be neglected at first. We are also

setting the polarization equal to zero.

Using the Einstein equation (2.84)) at early times, and knowing that radiation domi-

nates the energy content at those epochs, we obtain
'+ — = 29, (2.92)

where we used equations (2.88) and (2.89). On the other hand, the second Einstein
equation (2.87) tells us that ¥ = —®, because the terms of quadrupole can be neglected

at those epochs. Therefore, the equation above implies
d'n 449" = 0, (2.93)

which has solution ® = A 4+ Bn~3, where A and B are constants. The second term is
a decaying mode, consequently any contribution to it will vanish very quickly. Thus, we

will consider solutions with ® = constant.

If & = constant, Eqs. (2.88) and (2.89) imply that ©, and A are constants too. On

the other hand, most models of structure formation consider that C:)o = ./\70. Using such
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arguments in (2.84)) we are led to

where 7); means that this is valid for some initial conformal time. Combining ({2.88|) with
(2.75)) and (2.80)), we obtain that their initial conditions are given by

0 = 30 + constant (2.95)

and

0. = 30, + constant. (2.96)

If the constants above are zero we have adiabatic initial conditions, but if they are nonzero

the initial conditions are called isocurvature ones.

Although we have neglected the initial conditions for velocities, there are situations

where they must be taken into account. Using (2.59), (2.78), (2.79) and (2.81]), we can

show they are given by -
~ ~ 1wy 10, kP

O, — b _ e V" 2.97

1= M= = 6aH (297)

The above equations relate all variables of the initial perturbations to the initial grav-
itational potential é(ni, k). Then, it remains to be known how these primordial pertur-
bations were generated and which initial value they should have. The theory of inflation,
which was created to account with the horizon problem, also provides a mechanism respon-
sible for the origin of perturbations in the Universe. In this theory, quantum mechanical
fluctuations during inflation are responsible for the variations around the smooth back-
ground. At any given time, there are regions where the fields are slightly larger and

regions where they are smaller, so that the average value is zero
<ci>(E)> —0. (2.98)
However, the variance is nonzero
<ci>(12)ci>*(/5’f)> = (212 Py(k)5*(k — k), (2.99)

where Py (k) is the power spectrum of the primordial perturbations to the gravitational
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potential .

To account with an inflationary scenario we need a field with a negative equation of
state, the inflaton, which is responsible for the exponential acceleration of the Universe
at early times. Quantum mechanical fluctuations on this field feed perturbations in the
metric. Assuming a canonical scalar field is responsible for inflation, we can obtain the

post-inflation power spectrum of ® from the horizon-crossing spectrum of the scalar field

as [60]
87GH? 50m% [k \"
Py(k) = = — o7 2.100
where ¢ = —H'/aH? is the slow roll parameter of the scalar field. In the second equal-

ity, we rewrote the primordial power spectrum defining the scalar spectral index n, and
the scalar amplitude 67} This convention means that a scale-invariant scalar spectrum

corresponds to ng, = 1.

2.5 Inhomogeneities: Matter Power Spectrum

The perturbation equations developed in sections and 2.3, with the initial conditions
obtained in the last section, allow us to calculate the inhomogeneities and anisotropies in
the Universe. Inhomogeneities in the matter density at the early Universe will grow up
due to gravitational instabilities and they will build the structures we observe. Actually,
to describe correctly the structures observed, e.g. galaxy distributions, we have to take
into account nonlinearities and gas dynamics, but even on small scales the linear regime
is a starting point.

Solving the cosmological perturbations it is verified that their evolution can be divided
in three stages. Thus, the density contrast of matter at some conformal time 7, or

equivalently with scale factor a, Sm(a, E), is related to the primordial density contrast

Omp (k) by

-

O, k) = b6,p(K)T (k) Ds(a), (2.101)

where the transfer function 7'(k) describes the evolution of perturbations through the

epochs of horizon crossing and transition from radiation to matter. On the other hand, the

4Camb code parameterizes the primordial super-horizon power spectrum Py (k) of curvature perturba-
tions as Pg (k) = As(ﬁ)("S’l). The input parametes are the pivot scale kg, the spectral index ng and the
amplitude at the pivot scale A;. As we are interested in using the Camb code for numerical calculations,
we shall use such convention for the primordial power spectrum in the next chapters.
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growth function Ds(a) describes the late time growth which is independent of wavelength.

To compare with observations we note that, as for the gravitational potential &)(/5),

the density contrast of matter also has a vanishing average,

<Sm(a, /%’)> ~0. (2.102)

Its variance equals
<5m(a, 1)5¢ (a, /<7>> = (21)*Ps, (a, k)83 (k — &). (2.103)

Therefore, combining (2.101)) with the above variance, we see that the matter power

spectrum is given by

Py, (a,k) = |T(k)[*| Ds(a)[* Ps,, (n:, k). (2.104)

2.6 Anisotropies: CMB Power Spectrum

One way to solve the perturbation equation for photons (2.59)) is expanding the © function
in Legendre polynomials

O(n, k, p) Z Y21+ 1)64(n, k) Pi(), (2.105)
=

such that (2.59) is split in a hierarchical system of differential equations as

0, = —kO; -

& — 2(60_2@2+¢)+T'(é1_§m>,

0, = F(26,-36;) + (@2_%>

0, = —%—lil [<l+1)él+1—lél_1}+7'/él, 1> 2. (2.106)

In fact this was done in the first numerical programs to calculate the anisotropies in the
CMB. However, this method requires to solve thousands coupled differential equations for
small angular scales 6 ~ 1/[, besides the need of a small time step to obtain good results.

Therefore, nowadays, another method is used, the line of sight approach. Following this
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strategy we can obtain an approximate analytic solution given by [60]

6u(1mo, £) ~ |80 (.. K) + ¥ (e, £)| ulkmo — )

+U(n.,
+ 3@ (N, k { k(no —n.)] — (L + 1)k (o — n.)] }
¥

—i—/ dne™ "

— &0, )] dlke(no — )], (2.107)
where 7, is the conformal time at recombination and j; is the spherical Bessel function.

The solutions of (2.59)) are given by ©;. We need to know how to make comparisons
with the observations. We thus first expand the temperature perturbation in spherical

harmonics,
o) l
=1 m=

Using the orthogonality property of the spherical harmonics, we can invert the expansion

above to obtain

(. ) = [ 4O, (5)0(0. 7. 5). (2.100)

However, we cannot make predictions for a particular a;,, only their distributions are
known which are originated in quantum mechanical fluctuations at the inflationary epoch.

Therefore, in the linear regime, they have a gaussian distribution, where

(am(n, 7)) =0 (2.110)

and

<alm<777 )al’ (na f)> = 5ll’5mm’cl- (2111)

Finally, substituting (2.109) in (2.111)), going to the Fourier space and using the expansion

(2.105)), we can write

d3k ~

Cr = (4m) [ 555 Palo ) B, ) (2112)
(2m)

The matter power spectrum obtained in the last section and the CMB power spectrum

in the above equation give us a prediction for the variance in the matter and CMB temper-

ature, respectively. Both depend on the whole system of Einstein-Boltzmann equations

developed in this chapter. Thus, their predictions take into account all the components
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in the Universe. In the next chapter, we will extend the standard scenario presented so
far, considering models with an interaction in the dark sector. Using these power spectra
we will be able to make predictions about the behavior of an interaction and constraint

the models comparing with some observational data.



Chapter 3

Interacting Dark Energy

In the last years several works on the possibility of an interaction between dark energy
and dark matter have appeared [3, 10} I8, 21], 22, [36] 42}, 89-94]. One of the motivations
is that a model with an interaction in the dark sector can provide a mechanism to solve,
or at least to alleviate, the coincidence problem. Moreover, because both dark energy and
dark matter are, until now, two unknown components, when considering that they are
originated by physical fields from quantum field theory it is natural to assume that they

interact.

3.1 Phenomenological Model

The first chapters dealt with general aspects of cosmology. We started with a homogeneous
and isotropic model of the Universe and treated its components. Then, in order to explain
the structures around us, we introduced inhomogeneities and anisotropies about this
background through a perturbation theory. We pass now to discuss a specific model
which consists in a universe filled with baryons, photons, neutrinos, dark matter and dark
energy where we introduce an interaction between the components in the dark sector.

If dark matter and dark energy are coupled with each other, the energy-momentum

tensor 1 (’f\’; of each individual component A\ = ¢, d is no longer conserved. Instead,
VMT(/;S - Ql(jx) ) (3.1)

where V, is the covariant derivative, Ql(’/\) is the four-vector governing the energy-momentum

transfer between dark components and the subscript (\) can refer to dark matter (¢) or

45
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dark energy (d), respectively. Including an interaction in the dark sector, dark matter
and dark energy components are not separately conserved, while the energy-momentum

tensor of the whole dark sector is still conserved:
> VT =2 Q% =0, (3.2)
A A

We assume a spatially flat Friedmann-Lemaitre-Robertson-Walker background given
by Eq. (1.2) and an energy-momentum tensor of a perfect fluid (1.7). From the energy
conservation of the full energy-momentum tensor, we can derive the equations of evolution

of the background dark matter and dark energy densities,

Pl + 3Hp. =a*Q" =+aQ,

Py +3H (1 + w) pa =a’Qy =—aQ, (3.3)

where the derivatives and the Hubble parameter H are in conformal time, p. and py
are the energy densities for dark matter and dark energy, respectively, w = pg/pq is the
equation of state of dark energy and () was chosen to be the energy transfer in cosmic
time coordinates. We emphasize that the homogeneity and isotropy of the background

require the spatial components of Q(”/\) to be zero.

In this section we concentrate on the phenomenological interaction as a linear combi-
nation of energy densities of dark sectors with the form of Q = 3H (&1p.+&2p4), describing
the energy transfer. With the above expression for the continuity equations, if ) > 0, we
have that the dark energy transfers energy to the dark matter. In studying the curvature
perturbation, it has been made clear that when the interaction is proportional to the en-
ergy density of dark energy (Q = 3H&pq), we get a stable curvature perturbation except
for w = —1; however, when the interaction is proportional to the dark matter density
(Q = 3H¢& p.) or total dark sectors (Q = 3HE(p. + pa)), the curvature perturbation can
only be stable when the constant dark energy equation of state satisfies w < —1 [13].
For the case of a time-dependent dark energy equation of state, the stability of curvature

perturbations was discussed in [I4], [15]. With the interaction, the effective background
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equations of state for the dark matter and dark energy change to

Q0 Q)
— , Wieff =W — .
3Hpc et ?’de

Weeff = (34)

We summarize different forms of the interaction with the effective background equation
of state in Table 3.1} we label our models with Roman numerals [44].

In order to solve the coincidence problem, we require the ratio of the energy densities
of dark matter and dark energy, o = p./pq, to be a constant in the expansion history of

Q@ = 0. This leads to a quadratic equation,

/
our Universe, ¢ = 2= — py

pd

GO+ (G +&E+w)ot+&E=0. (3.5)

The solutions of this equation can lead to unphysical results, such as negative energy
density of cold dark matter in the past or complex roots. For different phenomenological
models of the interaction between dark sectors, the conditions to obtain physical results,
positive energy densities and real roots were obtained in [44] as shown in Table . Figure
illustrates the behavior of g for the four interacting models. We observe that, for the
interaction proportional to the energy density of dark energy, a positive interaction can
help to alleviate the coincidence problem as there is a longer period for the energy densities
of dark matter and dark energy to be comparable. In contrast, a negative interaction can
not alleviate the coincidence problem. For the interaction proportional to the energy
density of dark matter or to the sum of both energies, the ratio o presents a scaling
behavior.

Table 3.1: Different coupling models with their constraints, dark energy equation of state and
the effective equation of state for both dark sector fluids.

Model Q DE EoS Weeff Wd,eff Constraints
1 3£2de —1l<w<0 —52/9 w + 52 52 < —2wS),
11 362 H pg w< —1 —&3/0 w+ & & < —2wl,
111 3¢&1Hp, w< —1 -& w+&o 0<& < —w/4
IV | 3¢H (pa + pe) w< —1 —£(1+1/p) |w+E€(o+1) | 0<E< —w/4

From the background dynamics we see that when we introduce the phenomenological
interaction between dark sectors, it is possible to have the scaling solution of the ratio
between dark matter and dark energy, which can help to alleviate the coincidence problem.

However, in the background dynamics there appears an inevitable degeneracy between the
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Figure 3.1: Evolution of the dark energy to dark matter energy density ratio ¢ = p./pq in
a model with @ = 3H (§1pc + &pq) for different coupling constants. (a) The red dashed line
corresponds to Planck best-fit Model I, with &, = —0.1881 corresponding to the lowest value in
the 68% C.L. as in Table The black solid line has the same parameters but no interaction.
(b) The black solid line corresponds to a noninteracting model with w = —1.65 and 4 = 0.78.
The red dot-dashed line describes Model II listed in the first column of Table with & = 0.2.
The green dashed line corresponds to Planck best-fit Model III (see Table , and the blue
dotted line, to Planck best-fit Model IV (see Table .

coupling in dark sectors and the dark energy equation of state. In general this degeneracy
cannot be broken by just investigating the dynamics of the background spacetime, except
in the case when the coupling is proportional to the dark matter density (Model III)
[44]. Tt is expected that the degeneracy between the coupling and other cosmological
parameters can be solved in the perturbed spacetime by considering the evolution of the

perturbations of dark energy and dark matter.

Although we introduced perturbations in the components of the Universe through the
Boltzmann equation in the last chapter, the dark matter could be completely described
using the energy-momentum tensor as we observed earlier. Thus, for the interacting
model, we will consider perturbations through the conservation equation . To calcu-
late the covariant derivative we use the perturbed metric and we assume that the

energy-momentum tensor is given by a perfect fluid even in the perturbed case:
T35 (0, @) = {p(n)[1 + 8(n, @)] + [P(n) + dP(n, ©)]}u*u” + [P(n) + dP(n, ©)]g",  (3.6)
where 0(n, ¥) is the density contrast 6 = dp/p and the four-velocity reads

u =a (1=, 0y) and w, =a(—1—1, Ty + 6;B). (3.7)
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Uy can be written as minus the gradient of a peculiar velocity potential v(y) plus a zero
divergence vector. Only the first one contributes to scalar perturbations. Thus, taking

the perturbed part of the energy-momentum conservation results

1 / /
5VHT(A§3 :; {—2 [p)\ + 3H (p)\ + PA)] 770 + (p,\5,\) — (p)\ + P)\)VQU)\ + 3H(p>\5>\ + (5P>\)

+3(px + P9’} = 0Q)y (3.8)
and
7 1 / / /
08,1y = {5+ Hlpa + P V?B = [(0h + PY) + 4% (s + P)] Vo

+(pr + P)V2B' + V2P — (px + PV, + (pa + P )V} = 0,0Q0.
(3.9)

To solve equations ({3.8)) and (3.9) we need a relation for § Py. In order to find such a
relation, we first observe that the sound speed ¢, of a fluid or scalar field is the propagation

speed of pressure fluctuations in its rest frame [12]:

, OP

o= — .
0p |pf

(3.10)

For a scalar field ¢, the sound speed is equal to the speed of light, ng = 1. On the other

hand, we can define the “adiabatic sound speed” for any medium as

=" =w+-". (3.11)

2

a’

If a fluid is barotropic, the sound speed is equal to the adiabatic sound speed, ¢? = ¢
and if its equation of state is constant, then ¢ = w. At first sight, the dark-energy fluid
with w = const. is a barotropic adiabatic model. However, this results in an imaginary
sound speed which leads to instabilities in the dark energy. Thus, we impose that ¢2; > 0

by hand and it is natural to adopt the scalar field value.

The rest frame is defined as the comoving (v|,; = 0) and orthogonal (B|,; = 0) frame,

which implies T¢|.; = T?|.; = 0. Making a gauge transformation, z# — z# + (o1, 90z),
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from the rest frame to a general gauge, we obtainﬂ
—v+B=(—v+ B)|,s+n, dP =6P|.; — P'on, dp = 0plrs — p'on.  (3.12)

Using the definition of the rest frame, the first equality above results 6n = —v+ B. Thus,
following [12], the perturbed pressure of dark energy is given by

(5Pd = (SPd’Tf — Poll(—Ud + B)
OPyl, P,

= 5[):" ;5Pd’rf - p—,dpﬁz(—vd +B)

r d

= 2, [paba + ply(—va + B)] — uply(—va + B)

= cﬁdpd% + (ng - Cid)[pd(;d + ply(—va + B)]

= 2 gpada + 0 Paa), (3.13)

where d P44 is the intrinsic non-adiabatic pressure perturbation in the dark energy fluid.

For the coupled case, we have
0Py = cigpada+ (cog — ciq) [—3H (1 +w)pa + a*Qg] (—va + B), (3.14)

where §; = dpg/pq is the density contrast, c?; is the effective sound speed at the rest
frame, which we set to one, and c?; is the adiabatic sound speed, all with respect to dark
energy.

The perturbed four-vector 5@’(’/\) can be decomposed into

Y

1
5@?/\) =+ (_EQ + 5562) ; 0Qpn) = Qé(k)‘t + Q?A)vt. (3.15)

Here the & sign refers to dark matter or dark energy, respectively, and 6@, is the
potential of the perturbed energy-momentum transfer 5Q2 N Qé( N ‘t is the external non-
gravitational force density and v; is the average velocity of the energy transfer. In this
section we consider that there is no nongravitational interaction between dark energy and
dark matter; only an inertial drag effect appears due to stationary energy transfer. Thus

Qé(,\) . and v; vanish, which implies that (5@2/\) = 0.

!The minus sign in v comes from our convention to define the velocity as minus the gradient of a
peculiar velocity potential.
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Finally we are in position to write the equations governing the evolution of linear
perturbations for dark matter and dark energy. As we are interested to implement the
interacting model in the public code CAMB [95], it will be more appropriate to obtain
the perturbed equations in the synchronous gauge. Thus, collecting equations and

(3.15) in (3.8)) and (3.9), and passing to the Fourier spaceﬂ, we obtain

: h 1
e = —(kve + 5) + 37%52; (8a — 9c) , (3.16)

. h
da = — (1 +w) (kvg + 5) + 3H(w — ¢2)dg + 3HE T (8q — 6,)

— B (e — c2) [3H (1 +w) + 3% (Gr + &))< (317)
1
i)c = —HUC — 3?‘[(51 + ;fg)vc, (318)
3H k25
b= —H (132 vat 17— (14) (Er + &) vt ot (3.19)

where h = 6¢ is the synchronous gauge metric perturbation. In practice, we fix the
remaining freedom in the synchronous gauge setting a comoving frame with respect to

the dark matter fluid, such that the peculiar velocity of dark matter v, vanishes.

To solve equations (3.16))-(3.19) we set initial conditions according to [13]. Using the

gauge-invariant quantity [90]

)
(=0-H"P (3.20)
p
and the gauge-invariant relative entropy perturbation
4] )
Sap =3H ( p,B — p,A) = 3(¢a — CB), (3.21)
PB A
we get adiabatic initial conditions
: = d _ 3 (3.22)
1-&—&/r 1+w+&ir+é 4
and
Vg = Vs (3.23)

In the linear perturbation formalism, the influence of the interaction between dark energy

2In the Fourier space, we use the convention to divide the velocity potential by an additional factor
of k = |k| so that it has the same dimension as the vector part. Thus, § = V- & = —V?v = kv.
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and dark matter on the CMB and the matter power spectrum can be calculated by
modifying the CAMB code [95]. Figures present the behavior of the power spectra
for different phenomenological models. The appendix [A] shows the most important steps

to introduce the phenomenological model in the CAMB code.
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Figure 3.2: Power spectra for the phenomenological Model T with w = —0.8 and different
values of the interaction parameters.

Figures show that in addition to modifying the CMB spectrum at small [, the
coupling between dark sectors can shift the acoustic peaks at large multipoles. While

the change of equation of state of dark energy can only modify the low [ CMB power
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Figure 3.3: Power spectra for the phenomenological Model II with w = —1.2 and different

values of the interaction parameters.

spectrum, it leaves the acoustic peaks basically unchanged. This provides the possibility
to break the degeneracy between the coupling and the equation of state of dark energy in
the linear perturbation theory. Furthermore, it was observed that the abundance of dark
matter can influence the acoustic peaks in CMB, especially the first and the second ones.
The degeneracy between the abundance of the dark matter and the coupling between
dark sectors can be broken by examining the CMB spectrum at large scale, since only the

coupling between dark sectors influences the large scale CMB spectrum. Theoretically it
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Figure 3.4: Power spectra for the phenomenological Model III with w = —1.2 and different
values of the interaction parameters.

was observed that there are possible ways to break the degeneracy between the interaction,

dark energy equation of state and the dark matter abundance in the perturbation theory

).

dark matter.

This can help to get tight constraint on the interaction between dark energy and
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Figure 3.5: Power spectra for the phenomenological Model IV with w = —1.2 and different
values of the interaction parameters.

3.2 Lagrangian Model

It would be desirable to construct a more fundamental model for dark matter, dark energy
and a possible interaction between them. As we know, the fundamental particles and the
corresponding interactions in the standard model are described by quantum field theories.
In the same way, we would like to account with dark matter and dark energy in the context

of a quantum field theory. However, as we already saw, the standard model of particle
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physics have no explanation for the dark sector. Thus, in this section, we postulate a

model for dark matter interacting with dark energy.

3.2.1 The Tetrad Formalism

We are interested in the behavior of the fields on cosmological scale which means we need
a field theory on a curved spacetime. We could be tempted to follow the general approach
to transform the special-relativistic equations into general-relativistic equations chang-
ing the tensors T, the derivatives 9/0% and the metric 7,5 to tensors T}, covariant
derivatives V,, and metric g,, in the general coordinate frame. However, there are no
representations of the general-coordinate transformation group which behave like spinors
under the Lorentz subgroup. Thus, to deal with a fermionic field in the context of general
relativity we need the tetrad formalism [57].

Using the Principle of Equivalence, we can establish, at every point X, a set of coordi-
nates £& that are locally inertial. In the locally inertial frame, the metric is the Minkowski

one, 7,3. Thus, we can obtain the metric in a general noninertial coordinate system x*

as
G (%) = €5 (2)ep(2)1hag, (3.24)

where

eo(X) = <ag§_£;))m:)(' (3.25)

Fixing the locally inertial coordinates £§ at each physical point X, the partial derivatives

ey change under a general coordinate transformation x# — 2’ " as

o Ox”
I o't

e (3.26)

e, —e -

Thus, we can identify e with four covariant vector fields, and this set of four vectors
is called a tetrad, or wierbien. On the other hand, the tetrad behaves like a Lorentz

contravariant vector under a Lorentz transformation A§(z) of the locally inertial frame:

er — e = Aj(x)el. (3.27)

3We use Greek letters from the beginning of the alphabet (o, 3,---) to describe coordinates in the
locally inertial frame, while we use Greek letters from the end of the alphabet (u,v,---) to describe a
general coordinate system.
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Given a contravariant vector A*, we can contract it with the tetrad e, such that the
resulting object A% = ej A" transforms as a set of four scalars under a general coordinate
transformation, while it transforms as a Lorentz contravariant vector under a Lorentz
transformation of the locally inertial coordinate system. In general, a tensor n times

contravariant and m times covariant T/!"#" having its contravariant indices contracted

e
o

with e and its covariant indices contracted with the inverse tetrad ej = 7,59 e}, will
transform as a set of n X m scalars under a general transformation, and as a Lorentz
tensor n times contravariant and m times covariant under a Lorentz transformation of

the local frame.

A matter action physically acceptable must be both a scalar under a general coordinate
transformation and under a locally inertial Lorentz transformation. If an action could be
obtained solely from fields, this condition would be automatically achieved. However,
any physically sensible action must also involve derivatives of the fields. Let us consider
a field ¥ (where ¥ can be a field of multiple components), which transforms under a
Lorentz transformation as ¥'(z) = D(A(x))¥(x), where D(A) is a matrix representation
of the Lorentz group. What we need is to define a covariant derivative that for a local
Lorentz transformation behaves as @’B\I/’ = A%‘D(A)@QKIJ. We can verify that the following

covariant derivative obeys such a condition [57]:
. 1 s,
Voa=eh(0,+T,) =€k |0, + 50’8665(95) (Vyes(x)) |, (3.28)

where V€5, (2) = 0ues,(z) — T') es7(z) and 0 are the generators of the Lorentz group.
For example, scalars have ¢ = 0 and V,, = d,, while spinors have ¢ = }1[75, /%], where

+% are Dirac matrices.

Finally we have a prescription to generalize a field theory to curved spacetimes: given a
Lagrangian which is a function of the fields and their derivatives, we contract all vectors,
tensors, etc., with the tetrad (e.g. A% — ejjA") and substitute the derivatives d, for
covariant derivatives V,. Using this prescription, the action will be a scalar under a

general coordinate transformation and under a local Lorentz transformation.

The energy-momentum tensor can be defined as [57]

(3.29)
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where Sj; denotes the action of the matter fields and detle(z)] = /—g, where g is the
determinant of the metric tensor. It is possible to show that the energy-momentum tensor
defined in this way is symmetric and obeys the conservation equation V,T*” = 0. Using
the definition above, we can obtain the energy-momentum tensor for fields with spin in a

curved spacetime.

3.2.2 Yukawa-Type Interaction

Let us consider now a model of interaction between dark energy and dark matter from
a Lagrangian density. In this model, the dark energy will be described by a scalar field
¢ and the dark matter will be described by a massive fermionic field of Spin-% v . We
will suppose that the interaction between them is realized by an Yukawa type interaction,
which is the only interaction between a scalar field and a fermionic field of spin—% that is

renormalizable. Thus, the action for this model will be given by

su= [ dav=g {—% u60"6 =V (6) + 5 |19V, ¥ = (V, )" | — (M — 5¢>W} ,
(3.30)

where [ is a dimensionless interaction constant and V' (¢) is the scalar potential. v* are

matrices in the curved spacetime identified with the Dirac matrices v* multiplied by the

tetrad as v* = el v and they obey the anti-comutation relation
{777 = —2¢9"(2). (3.31)

Varying the action Sy, with respect to the Dirac field ¥ and the adjoint ¥, we obtain

the equations of motion for the fermionic fields
iV, — MU =0 (3.32)

and

i(V, )" + MT =0, (3.33)

where M = M — ¢. Using these equations, we can show that the current defined as

4Note that ¢ and ¥ here are scalar and fermionic fields, respectively. Do not confuse with the metric
perturbations defined in the previous chapter.
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j*(z) = /—g¥U~"V is conserved
5" (x) = 0. (3.34)

On the other hand, varying the action with respect to the scalar field ¢, we obtain its

equation of motion

V.0 p — Z—Z = —pUY, (3.35)

where V, is the covariant derivative in the curved spacetime.

The energy-momentum tensor of the system can be calculated using Eq. (3.29)). For
our scalar and fermionic fields described by the action (3.30)), we can show that [97]

1
T(x) = 0u60,6 — g (59" 0aDs + V (9)) (3.36)

and
TV () = % (V0,0 + (V, 0)y, 0 — By, V, ¥ — 7, V, 7] . (3.37)

nv
We have split the energy-momentum tensor by defining a scalar part and a fermionic part
such that
Ty(x) =TH,(x) + Ty (x) (3.38)
and the interaction was included in the fermionic part.

On large scales, we assume that the components in the Universe can be described by a
fluid with energy-momentum tensor given by Eq. (1.7]). Thus, from the energy-momentum
tensor of a perfect fluid, we find that

1 .
p=-T, and P = gTZ’ (3.39)

Therefore, using the energy-momentum tensor of the scalar field (3.36)), we can identify

an energy density and a pressure given by

po = 3 (0,09"6) + V(©) (3.40)

and

Py = 5 (0,00"0) — V(0). (3.41)

On the other hand, from the energy-momentum tensor of the fermionic field (3.37)), we
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have .
po = MUU + % [(v\p) iU — ww] (3.42)
and .
Py = é [(vm) il — \WWD] . (3.43)

We observe that in the relativistic limit M = 0, we recover the equation of state for an

ideal relativistic gas, Py = py/3.

Let us assume that the Universe obeys the FLRW metric and the fields are homoge-
neous such that 9;¢ = 0, ;¥ = ;¥ = 0 and <@Z\TI) 70 —U~iV,;¥ = 0. Thus, the energy

density and pressure of the fields result

po = %¢2+V(¢) (3.44)
Py = 3 -V(9) (3.45)
Py = 0. (3.47)

From the above equations we observe that the scalar field possesses an equation of state

given by .
P, 22V
Wy = = ¢— (3.48)
Py P2+ 2V
Besides the relations above, in a FLRW universe, the equation of motion for the scalar
field (3.35)) yields
; AV _
¢+3H¢+% = puvw (3.49)
and the current conservation of the fermionic field (3.34) gives
d(a®UTW)
—= =0. 3.50

Deriving equations (3.44)) and (3.46|) with respect to the cosmic time and using the
equations of motion for the scalar and fermionic fields, we obtain the energy balance

equations

po+ 3Hpy(1+w,) = B6UV = Q (3.51)
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and

pw + 3Hpy = =TT = —Q. (3.52)
From Eq. 1} we see that the interaction Q = S¢UU can be rewritten as

dln M

99 P . (3.53)

Q= Bov¥ = — P\I/(ﬁ:

_B_
M — po
Thus, we observe that the fermionic field can be completely described by a fluid, since the
energy balance equations depend on the fermionic field only through the energy density
py and a constant mass M. On the other hand, the scalar field cannot be completely
described by the energy balance equations because the equation of state w, and the

interaction term () depend on the scalar field and its derivative. Therefore, the background

equations describing the evolution of the fermionic and scalar fields are

pv +3Hpy = — pud (3.54)

_s
M — B¢
and

dVv I6]

(3.55)

Let us introduce now linear perturbations in our model. To facilitate the study of
linear perturbations, we assume that the fermionic field can be completely described by
the fluid equations even in the perturbed level. The interaction between the dark energy

and dark matter can be generalized into a covariant form as

_alnM
=5

Q" puw0* . (3.56)

Thus, the balance equations can be generalized to

VI =@ = 5

5¢pwv”¢ (3.57)

and

VuT&/W =-Q"= —M%Mﬂwvy(/ﬁ, (358)

where T3" assumes the form of a perfect fluid as in Eq. (3.6). The scalar field can be

decomposed into a homogeneous part and a perturbed part, ¢(t) + (¢, Z). Thus, using
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the metric (2.6) in the synchronous gauge, the balance equations (3.57) and (3.58) yield

the perturbed equations

PV WY,

" / 2 2 2 /B
o +2He + kK p+a dTﬁQSD t—-=-a WS@P\P +a mﬂqf&lf’ (3.59)
L W R R (3.60)
LT R Y 7L G 0V g FY A |
U(I/ = —HU\I; + M%ﬂ(ﬁvq}(b/ - kM%ﬁ(bgO, (361)

in the Fourier space and conformal time.

To complete the discussion about the linear perturbations we need the initial condi-
tions of the perturbed quantities. We assume that the dark matter and the dark energy

satisfy adiabatic initial conditions

5 5
Po_ __OP¥ (3.62)
P¢+P¢ P\I/‘FP\I/

where using equations (3.44)) and (3.45)) in the conformal time, we have

- ¢/90/ dV B QS/SD/ dV

dpy = — d OP, - —. 3.63
o > T3 g¥ o 5= " as¥ (3.63)
Thus, the adiabatic initial condition (3.62)) can be rewritten as
¢ +a*%p
BT by (3.64)

¢/2

As the scalar field obeys a second-order differential equation, we need two initial condi-

tions. The second initial condition can be obtained considering that the intrinsic entropy

is null
) P,
—@—7#:Q (3.65)
P ¢
which implies
av av
Ao A (3.66)
%,2 + a?V %'2 —a?V

Finally, solving equations ([3.64)) and (3.66|) for ¢ and ¢’, we obtain the perturbed initial
conditions for the scalar field
2040V

(07 + 222V (3.67)

()0:
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and

. 5\11 ¢/3

2

We modified the CAMB code to include the Lagrangian model above. We considered
that the scalar potential is given by

V(p) = Ae /Mol (3.69)

where A is a normalization constant, A is a dimensionless parameter and M, is the reduced
Planck mass. We set A to the value of the cosmological constant energy density A = pjy.
Thus, A # 0 and S # 0 is a measurement of how our model differ from the cosmological
constant model. We also see from Eq. that the interaction 8 and the fermion mass
M are degenerate, we can only know the ratio r = % »- Therefore, we use r instead
of # as our interaction parameter. This has the advantage of decreasing one degree of
freedom in the analysis, at the cost that we are unable to know the individual values of
5 or M.

The appendix [B] shows the most import steps to introduce the Lagrangian model in
the CAMB code. Below we present some graphs for the CMB and matter power spectrum
obtained from the Lagrangian model for different values of the parameters. Figure [3.6
shows that the scalar potential parameter A has a small effect on the CMB and matter
power spectrum, affecting mainly the low-I CMB power spectrum. On the other hand, as
observed in the phenomenological case, we see from Fig. [3.7that in addition to modifying
the CMB spectrum at low [, the coupling between dark sectors can shift the acoustic peaks
at large multipoles. However, comparing with the phenomenological models, the Yukawa
interaction has a more dramatic effect on low multipoles and less effect on the acoustic
peaks. We also observe that the power spectra present an almost symmetric behavior
around the zero value for the interaction. However, such a symmetry is broken when we

look at background quantities, e.g. the age of the Universe.
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Figure 3.6: Power spectra for the Lagrangian model with r = %Mpl = 0 and different values

for the scalar potential parameter.
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Chapter 4
Analysis

In the previous chapter we presented some models of interacting dark energy. We showed
some aspects of their behavior, especially on the power spectra. We now wish to test such
models with current observational data in order to constrain the cosmological parameters.

The results of this chapter are matter of publication in [98-100].

4.1 Methods for Data Analysis

Let us suppose we want to estimate a random physical quantity x with a probability density
function (PDF) f(x]@) that depends on an unknown parameter §. Naturally, we cannot
know the exact value of x, since there are several uncertainties in the measurement, which

we denote as 0. Then, the probability of obtaining = in the interval Az around =z is

P = /12 f(x|0)dx. (4.1)

Such a probability is called a conditional probability of having the data x given the theo-
retical parameter 6. If the interval of integration above is small, we can approximate the
probability as P =~ f(z|0)Ax.

The law of joint probability tells us that for several measurements z;, i = 1, ..., N, the
probability of having x; in the interval Az, around x1, x5 in the interval Az, around -

and so forth is
N

P(x,]0) ~ (Azx)™ [ f(xil0) = (Az)N £(x4]0). (4.2)

=1

This procedure is correct given the fact that the measurements are mutually independent

66
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and considering equally spaced small intervals Ax;. In the above expression we defined the
likelihood function, L£(x;|0) = T[~, f(x:]6). Except for a constant value, the likelihood
function gives us the probability of having the outcomes x; given the parameter 6. In
general, the data can be correlated and depend on several parameters 6;. For correlated
data, £(z;|6;) will not be the simple product of the PDF's, but its statistical interpretation

remains the same.

For every set of parameters 6;, the likelihood function £(z;|6;) will assume a different
value. It is logic to define the best ;s as the parameters that maximize the likelihood.
Thus, the maximum likelihood method of parameter estimation consists in finding the
parameters that maximize the likelihood solving the system

OL(x.l9))

89] 07 j 3 7m ( 3)

The solutions of these equations, éjs, are functions of the random data x;s, therefore they
are random too. In the frequentist approach, one tries to find the distribution of the éjs
given the distribution of the data x;s; if this is possible, one can associate probabilities to
intervals of éjs, for instance determine the interval of éj that has 95% probability that a set
of data were obtained from the theoretical distribution. However, it is often too difficult to
derive the éj’s distributions analytically and very demanding to derive them numerically
using simulated datasets. Moreover, this approach does not take into account our previous
knowledge about the theoretical parameters, e.g. the results of preceding experiments.

These issues can be worked more appropriately using the Bayesian approach.

In the Bayesian approach, instead of looking for the probability of having the data
given the model, £(x;]0;), we look for the probability of the model given the data, P(6,|x;).
This is possible thanks to the Bayes’s theorem,

P(A|B,T)P(B|I)
P(A[I) ’

P(B|A,I) = (4.4)

which relates the conditional probability of having an event B given the event A occurred,
P(B|A, I), with the conditional probability P(A|B,I) of A given B and the probabilities
P(B|I) and P(A|I) of the events B and A, respectively. The letter “I” denotes that these

probabilities depend on some information I we assume to be true.

In our case we have the data A = z; and the parameters B = 6; for some theoretical
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model I = M, thus
L(x:|0,)p(0;M)
p(xi| M)

p(O;lzi, M) = (4.5)

The function p(;|x;, M) is the posterior probability distribution, p(x;|M) is the PDF
of the data z;, sometimes called evidence, and p(6;|M) is the prior probability for the
parameters 0;, it represents our previous knowledge for the parameters before we make
the experiment. Therefore, the posterior contains the information we are looking for: the
probability of having the parameters ¢; given the data x; and some previous knowledge

about the parameters.

The posterior is a probability distribution and consequently it must be normalized to

unity
my ) L(@il0;)p(0;|M)d™0;
JECESIS s -1, (46)
which implies
[ £laleppe;1anams; = plajan). (1)

Thus, we can think the evidence as a normalization factor. On the other hand, the prior
is often unknown. Usually, if we know nothing about the parameters we want to estimate,
we choose a uniform prior in some interval and zero outside it. However, if we have some
estimate of the parameters from previous experiments, we can adopt a Gaussian centered
at the estimated value as our prior. In general, the choice of priors affect the posterior

distribution, but if we have enough data they will dominate the posterior.

Given the posterior p(6;|z;, M) we can find the maximum likelihood estimators 6; as

90, 0 j=1,---,m (4.8)

We can also derive the regions of confidence for the parameters, which are defined as

regions R(a) such that
/ p(6;]5, M)d™0 = o (4.9)
R(e)

where the posterior must be normalized, which means 0 < o < 1. To find these regions,
the limits of integration must be the lowest ones such that the integral is valid. Typical
choices of a are a = 0.683, 0.954, 0.997 which denote the 1o, 20 and 30 confidence levels.
Frequently, we are interested in a subset of the parameter space and we consider the

others as “nuisance”, thus we integrate (marginalize) over the uninterested parameters.
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In general, the distribution function depends on the characteristics of the quantity it
describes and its uncertainties. In cosmology we usually assume a Gaussian distribution
for the data even when each data was not extracted from a Gaussian distribution. This is
possible thanks to the central limit theorem [101], [102], which establishes that for a set of
N variables with some distribution each one with a finite variance, in the limit N — oo,
the average distribution tends to a Gaussian one. Thus, if the data have a Gaussian

distribution and are independent of each other, then
N 2
E(wz‘ej) = H 970, €xp [ 9 ( o, > ]
N N 2
_ - A EA ) 4.1
<H \/27rai> exp [ 2 ZZI ( 0 > ] (4.10)

Therefore, maximizing the posterior distribution (4.5)) is equivalent to minimizing the

above exponent
N — z:(0,)\°
2 = e TR 4.11
v=) ( z ) (4.11)

If the data are correlated, the above likelihood must be generalized as

1

L(x;10;) <
(@:16;) i

exp (—%XTClX) : (4.12)

where X is the data vector and C' is the covariance matrix.

4.2 Data

To constrain the cosmological parameters in our interacting models, we use several data
sets, the measurements of CMB anisotropies, BAO, SNIa, the direct measurement of the
Hubble constant Hy and Lookback Time. Below we describe the likelihood for these

measurements.

4.2.1 CMB Measurements

The Planck data set we use is a combination of the low-l TT likelihood, which includes
measurements for [ = 2 — 49, combined with the high-/ TT likelihood, which includes

measurements from [ = 50 up to a maximum multipole number of /,,,, = 2500 [47-49].
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Together with the Planck data, we include the polarization measurements from the nine
year Wilkinson Microwave Anisotropy Probe (WMAP) [103], the low-/ (I < 32) TE, EE,
BB likelihoods.

The CMB power spectrum likelihood for low-I multipoles can be written as

E(Cl) = p(m[C’l) = lI’Iltl\/I_lIn> N (413)

1
22 M2 P <_2
where n is the number of observed pixels, M(C;) = C(C)) + N is the data covariance
matrix, which is split into the CMB, C, and noise, N, covariance matrices, and m = s +n
is the observed map. Actually, the estimated C; distribution is not well approximate by
a Gaussian at low [ (I < 50), because of the limited degrees of freedom per [. However,
if foregrounds and instrumental systematics are negligible, then the CMB signal s and

instrumental noise n are nearly Gaussian and the above likelihood is valid.
In the general case, the data vector m includes both temperature and linear polariza-

tion. For the temperature, the signal covariance matrix gives

l
« 20 +1
(T Ty) = ), = —C"0{WiPi(0h,3,) + N, (4.14)

v
=2

where P, are Legendre polynomials calculated at angle 6;,;, between the centers of pixels

ivia
i1 and iy, by is the effect of instrumental beam and W), is the window function. For

polarization correlations, we obtain similar expressions.

4.2.2 BAO Measurements

In addition to the CMB data sets, we also consider measurements of Baryon Acoustic
Oscillations (BAO) in the matter power spectrum. We combine the results from three
redshift surveys: the 6dF Galaxy Survey measurement at redshift z = 0.106 [50], the
SDSS DR7 BAO measurement at redshift z = 0.35 as analysed by Padmanabhan et al.
[51] and the BOSS DR9 measurement at z = 0.57 [52].

These redshift surveys measure the distance ratio

o rs(zdrag)
d, = —Dv(z) , (4.15)

where 75(24rqg) is the comoving sound horizon at the baryon drag epoch, the epoch when
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baryons became dynamically decoupled from photons, and Dy (z) combines the angular
diameter distance d4(z) and the Hubble parameter H(z), in a way appropriate for the

analysis of spherically-averaged two-point statistics,

1/3
D | 2,42 €z 4.16
v(z) = |(1+2) A(Z>H<Z> (4.16)
The comparison with BAO measurements is made using x? statistics
Xpao = (x — XObs)TCEilo(X —x™), (4.17)

s denotes the data vector. The data vector

where x is our theoretical predictions and x
is composed by the measurements of the three data sets above: For the 6dF Dy (0.106) =
(457 £ 27) M pc, for the DR7 Dy (0.35)/rs = 8.88 £ 0.17 and for the DR9 Dy (0.57)/rs =

13.67 £ 0.22.

4.2.3 SNIa Measurements

We use the SNIa data from the Supernova Cosmology Project (SCP) Union 2.1 compi-
lation [53], which has 580 samples. The Union 2.1 uses SALT2 [104] to fit supernova
lightcurves. The SALT2 model fits three parameters to each supernova: an overall nor-
malization, xg, to the time dependent spectral energy distribution of a SNIa, the deviation
from the average lightcurve shape x; and the deviation from the mean SNIa B - V color

c. Combining these parameters, the distance modulus is given by

pp =mp? fa-x,—fB-c+ 8- P(mire < mihresholdy _ yrp (4.18)
where m2%% is the integrated B-band flux at maximum light, P(m/re < mihreshold) giyeg

the correlation of SNIa luminosity to the mass of the host galaxy and Mp is the absolute
B-band magnitude. The nuisance parameters o, 3, 6 and Mpg are fitted simultaneously

with cosmological parameters.

The best-fit cosmology is determined by minimizing the x?,

580

a, 55>M _ Zan797w §
X?gsz[MB( B,6, Mp) — p( a W)

o2

(4.19)

i=1
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To test our interacting dark energy models we use the CosmoMC [105], 106] module
associated with the Union 2.1 sample. In this module the nuisance parameters are hold

fixed with values a = 0.1218, = 2.4657 and § = —0.03634.

4.2.4 H, Measurements

From observations of Cepheid variables and low-redshift Type Ia surpernovae, the Hubble
Space Telescope (HST) determined the Hubble constant with 3.3% uncertainty including
systematic errors [54]

Hy = 73.8 +2.4kms ' Mpc™*. (4.20)

We use this measurement of the Hubble constant as an additional data.

4.2.5 Lookback Time Measurements

The background observables treated so far, the measurements of Hy and SNIa, are firmed
on distance measurements. To pin down the cosmological parameters we will consider
another indicator, the lookback time, which is based on ages instead of distances. The
lookback time t7,(z) is the difference between the present age of the Universe, ty, and its

age at redshift z, ¢(2),

& dz’ o© dz’ z dz'
we) =t 1) = | <1+z/>H<z/>‘/z <1+z'>H<zf>:/o a2

For an object at redshift z;, we can calculate its age from the difference between the age
of the Universe at redshift z; and the age of the Universe when the object was formed at

redshift zp,

S > g w__ dd
= armae L areae =) wremm = - o

where we used the lookback time definition (4.21)). Thus, the above equation tells us that

the observed lookback time #5°*(2;) to an object i at redshift z; is

t7* (=) = toler) — t(z) = [t — t(z)] = [t6" — to(zp)] = 15" — t(z) —df,  (4.23)
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where df = t3 —t1(zr) is the delay factor which encodes our ignorance of the formation
redshift zp.

In order to constrain the cosmological parameters, we implement a CosmoMC module
to calculate the likelihood for lookback time measurements (Appendix |C|shows the details
of this module). We use the data of 32 passively evolving galaxies in the redshift interval
0.117 < z < 1.845 with an uncertainty in the age measurements of 12% at one standard
deviation [56]. Additionally, we use the ages of 6 galaxy clusters in the redshift range
0.10 < z < 1.27 with an uncertainty of 1Gyr at one standard deviation [55]. The likelihood

is a Gaussian with

(g = S0 00— B A | [l — 7 a2

2 2 2 ?
Ui + Utobs Utobs
0 0

i=1

where p denotes the theoretical cosmological parameters. The delay factor is a nuisance

parameter that is fitted simultaneously with the cosmological parameters.

4.3 Results

4.3.1 Phenomenological Model

We would like to put constraints on the four phenomenological coupled dark energy models
listed in Table For this purpose, we will use the recent measurements of the cosmic
microwave background anisotropies as measured by the Planck satellite mission. We
will also consider the combined constraints from the Planck data plus BAO, SNIa and
Hy measurements. In our analysis, we will choose our priors of different cosmological
parameters as listed in Table [1.1] The results were published in [98].

We will allow the equation of state of dark energy to vary. We also choose the helium
abundance Y, from a big bang nucleosynthesis (BBN) consistent scenario. Thus, the
primordial helium abundance Y, is predicted as a function of the baryon density Q,h?
and number of extra radiation degrees of freedom AN. We will use interpolated results
from the PArthENoPE code [107] to set Y, following [I08]. We will take the relativistic
number of degrees of freedom N.s; = 3.046, the total neutrino mass > m, = 0.06eV" and
the spectrum lensing normalization Ay, = 1. To compare theory with observations, we

employ the Markov chain Monte Carlo (MCMC) methodology through a modified version
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Table 4.1: Priors for the cosmological parameters considered in the analysis of the phenomeno-
logical interaction models.

Parameters Prior
Oyh? [0.005,0.1]
Q.h? [0.001,0.5]
1006 [0.5,10]
T [0.01,0.8]
Tg [0.9,1.1]
log(10™ Ay) [2.7,4]
Model I Model IT | Model III | Model IV
w [—1,-0.1]| [-2.5,—1]| [-2.5,—1]| [-2.5, —1]
19 [—0.4,0] 0,0.4] [0,0.01] [0,0.01]

of the program CosmoMC [105], [106]. We set the statistical convergence of the chains from
the Gelman and Rubin criterion R — 1 = 0.03. After running the MCMC, we list our

fitting results in Tables 4.5]

Table 4.2: Cosmological parameters - Model 1.

Planck Planck+BAO Planck+BAO-+SNIa+HO0
Parameter  Best fit 68% limits Best fit 68% limits Best fit 68% limits
Q12 0.02213  0.02202705002720.02225  0.022037090028T 0.0221  0.0220275 Jo02e!
Qch? 0.1188  0.068897001%%  0.1121  0.06087093%,  0.07199  0.04824 1092
1000s¢ 1.041 1045100004 1.042 10457000109 1,044 1.04619901%
T 0.08951  0.08843%3912  0.09803  0.0883570912L  0.09492  0.0886679012,
ng 0.9596 0.96017000%a8  0.9643  0.96067000%5  0.964  0.9598+300616
In(10'°4,)  3.088 3.08715:9231 3.106 3.08670-9238 3.102 3.08870 aes
w -0.9747  —0.8797T098T  _0.9934  —0.9141700235  -0.9935  —0.936275 6%
& -0.0006633  —0.135370:0285 -0.02123  —0.1546700042 -0.1359  —0.1854100>2
Qq 0.6829 0.791870 0%, 0.7103  0.823470052  0.8106  0.856970777%
Qpn 0.3171 0.208270%%°7 02897  0.1766700:2,  0.1894  0.1431F)9%8
Zre 11.05 10.9971:98 11.74 10.961 14 11.55 10.9911:98
H, 66.81 676675 68.26 69.267%5) 70.72 70,7173
Age/Gyr 13.83 13.82+00762 13.78 13.78+0:0%8 13.75 13.7610 0501
XCoin/ 2 4903.07 4903.61 4970.24

The constraints on the parameters and the best fit values for Model I are reported
in Table 4.2 The 1-D posteriors for the parameters are shown in Figld.T] and the main
parameter degeneracies are shown in Figd.2] The presence of a dark coupling is perfectly
compatible with the Planck data set. The marginalized value tells us & < 0. With
the combined constraint by including other observational data, the negative value of the
coupling keeps. Thus, for this coupling model, there is a lower value of the cold dark
matter density today, since there is energy flow from dark matter to dark energy. This

direction of energy flow cannot alleviate the coincidence problem. As shown in Figf3.1]
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Figure 4.1: The likelihood for the parameters of the phenomenological Model 1. The black
solid lines correspond to the Planck constraints, the red dashed lines correspond to Planck +

BAO and the blue dot-dashed lines correspond to Planck + BAO + SNIa + Hj.

there is even shorter period for the energy densities of dark matter and dark energy

to be comparable. For the Hubble constant value, from the Planck data alone, Hj is

small in this interacting model, which is similar to that obtained in the ACDM case. This

interaction model between dark sectors cannot be of much help to relax the tension on the

Hubble parameter between Planck measurement and HST observation. After including

other observational data at low redshift, we find that the tension between the Hubble

constant measurements is alleviated.
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Figure 4.2: 2-D distribution for selected parameters - Model 1.

Table 4.3: Cosmological parameters - Model 1.

Planck Planck+BAO Planck+BAO+SNIa+HO0

Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits
Quh%  0.02201  0.02208T0099%83(,02219  0.021997090025%().02208  0.02203F)J00255
Q.h? 0.1308  0.133575007%  0.132  0.1352700%  0.1432  0.1344+0007!

1000y 1041 1041700005 1.041  1.047500075% 1.04 10450000757
T 0.08672  0.0893470012%  0.08154  0.08761799121  0.08312  0.0884479:12
N, 0.9615  0.95991000T15  0.9598  0.958170:0004  0.962  0.958670-99632
In(1004,)  3.085 3.08915:0245 3.078 3.088 100231 3.079 3.0891 0000
w -1.696  —1.51670312 1166 —1.18970:02 1181 —1.19279971
& 0.02837  0.0392319012L 003522 0.04818*09161  0.0784  0.04562+001%
Qq 0.806 0.762F30799 0.69  0.6849700%2  0.6653  0.690175 9%
Qe 0.194 0.23875:0382 0.31 0.31511302%  0.3347  0.309970:9201
Zre 10.81 115371 10.35 10927108 10.5 10.98%1:57
H, 88.93 82.6919:78 70.68 70.92+208 70.42 71.257148
Age/Gyr 1353 13.675:9942 13.74 13.7610:0159 13.75 13.75100ar8
2. /2 4901.08 4903.02 4968.20

Now we present the fitting results for the coupling Model IT in Table4.3| In this model,
the interaction between the dark sectors is still proportional to the energy density of dark
energy but with equation of state of dark energy smaller than —1. From the Planck data
analysis alone, we obtain the Hubble constant value significantly larger than that in the
standard ACDM case, Hy = 82.691)s km -s~! - Mpc~!. This is different from what we
observed in the fitting results of Model I, where the Hy is much smaller and consistent
with the ACDM case. The lower fitting range of the Hy in Model I1 is consistent with the
observations in the low redshift. We have explored the degeneracy between the Hubble
value and the equation of state of dark energy and found that smaller equation of state
of dark energy leads to higher value of the Hubble parameter. The coupling constant
&5 is found to be positive, which shows that there is an energy flow from dark energy

to dark matter. This is required to alleviate the coincidence problem, because with this
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Figure 4.3: The likelihood for the parameters of the phenomenological Model II. The black
solid lines correspond to the Planck constraints, the red dashed lines correspond to Planck +
BAO and the blue dot-dashed lines correspond to Planck + BAO + SNIa + Hj.

interaction there is longer period for the energy densities of dark matter and dark energy
to be comparable, which was illustrated in the Fig[3.1 Combined with other observational
data, we show that a combined analysis provides significant evidence for this coupled dark
energy with positive non-zero value of the coupling parameter, consistent Hubble constant
and equation of state of dark energy. The 1-D posteriors for the parameters are shown in

Fig[d.3] and the main parameter degeneracies are shown in Fig[4.4]

Now we turn our discussion to the coupled dark energy Model III, where the interaction
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Figure 4.4: 2-D distribution for selected parameters - Model I1.

Table 4.4: Cosmological parameters - Model III.

Planck Planck+BAO Planck+BAO+SNIa+HO0
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits
Q12 0.02225  0.02265700001270.02248  0.02244 000%™ 0.02227  0.02235 7000051

Q.h? 0.1258  0.1292759%16° 01254  0.125175:99220 01237  0.1237900%12
10007 1.041 1.04175 00008 1.041 1.04170000298 1.041 1.04175 000
T 0.08378  0.0888779:913 009507  0.089567991%5  0.08342  0.0901170912
ng 0.9584  0.956379:99756  0.9603  0.9587909°L  0.9631  0.959970:90014
In(10°A4,)  3.075 3.08170:922 3.095 3.0847 0034 3.071 3.08670 0aa
w 21,638 —1.779707 -1.48 —1.45570-215 11296 —1.25470:0944
& 0.002118 < 0.004702  0.002266 0.002272+3501%  0.001781 0.00149415:50962
Qq 0.7668  0.7393%00%;  0.7431  0.736170 01 0.719 0.717 00170
Oy 0.2332  0.260770%5% 02569  0.2639709251 0.281 0.28310 0132
Zre 10.57 10.91+111 11.49 10.99111 10.51 11.04+LL
H, 79.85 79.35+124 76.02 7523218 72.24 71.88" 14
Age/Gyr  13.81 13.9370-18 13.82 1384700702 13.85 13.8210:020
Coin]2 4902.23 4903.24 4969.78

is proportional to the energy density of dark matter. In this model, to ensure stability of
the curvature perturbation, if the equation of state of dark energy is constant, it has to be
smaller than —1 [I3]. Looking at the new constraints on this coupled dark energy model
from the recent measurements of CMB from the Planck satellite mission alone, in Table
4.4 we find that the Hubble constant value is consistent with low redshift observations,
but it is much higher than that of the ACDM result. The coupling constant is more
tightly constrained in this coupled dark energy model than those in Models I and II,
which is in agreement with the findings in the WMAP constraints [25], [44]. The value of
the coupling parameter &; is small positive, which meets the requirement to alleviate the
coincidence problem. The evolution of the ratio between energy densities of dark matter
and dark energy with this small positive coupling was shown in the Fig[3.1 which has

a longer period for the dark matter and dark energy energy densities to be comparable
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Figure 4.5: The likelihood for the parameters of the phenomenological Model III. The black
solid lines correspond to the Planck constraints, the red dashed lines correspond to Planck +
BAO and the blue dot-dashed lines correspond to Planck + BAO + SNIa + Hj.

when ¢ is positive and has the attractor solution with the ratio between dark energy and
dark matter energy densities o ~ constant in the past. We also consider the combined
constraints from the Planck data plus other measurements. The results are listed in Table
[4.4] which shows stronger evidence for this coupled dark energy model with small positive
coupling. We plot the 1-D posteriors for the parameters in Figl4.5] and show the main
parameter degeneracies in Fig.

Finally, we present the fitting results for the coupled dark energy Model IV, where
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Figure 4.6: 2-D distribution for selected parameters - Model III.

Table 4.5: Cosmological parameters - Model IV.

Planck Planck+BAO Planck+BAO+SNIa+HO0
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits
Quh? 0.02047  0.0203770000275 " 0.02041  0.02042700002570.02053  0.020567 090202
Q.h? 0.1251 0.127370 0030 0.125 01261705524 0.1245  0.12427599204
10005 1.04 10450 00000s 1.04 1041000000 1.04 1040000241
T 0.0883 0.07771%901%,  0.06756  0.07785700152  0.07537  0.07899139132
ng 0.9305 0.9309 900748 0.9295 0.93327099613 0.9338  0.93687 009207
In(10°4,)  3.086 3.06870022 3.045 3.0661 00228 3.06 3.06410 035
w -1.613 —1.7631035 -1.267 —1.4727022 -1.305 —1.28670552
13 0.00009881 < 0.0004618  0.00001943 < 0.0004260  0.0000671 < 0.0003314
Qq 0.7735 0.7727300%8 0.7079 0.73657 09255 0.7199 0.714970 017
O 0.2265 0.228 00249 0.2921 0.26357 0025 0.2801 0.285119011
Zre 11.61 10.657113 9.624 10.63*] 14 10.35 10.667111
H, 80.35 82.511%4 70.71 75,550 72.11 71.451198
Age/Gyr 13.8 13.8570 050 13.92 13.975:0%8, 13.89 13.9270.0%50
XCoin]2 4991.13 4991.28 5058.81

we consider the interaction between dark energy and dark matter is proportional to the
energy density of the total dark sectors. In order to ensure the stability of the curvature
perturbation, the constant equation of state of dark energy has to be in the phantom
range. This was disclosed in [13]. As observed in the WMAP fitting results, this type of
interaction has very similar constraints to the Model III [25] 44]. Confronting the model
to the Planck data alone and the combined observational data, we list the constraints in
Table We show the 1-D posteriors for the parameters in Figld.7] and plot the main
parameter degeneracies in Figld.8] From the Planck data alone, we again see that the
Hubble constant is much higher than that of the ACDM model. This is consistent with
the observations from Model II and Model III. The coupling constant is more tightly
constrained in Model IV to be very small but positive, what is needed to alleviate the

coincidence problem with longer period for the dark energy and dark matter energy den-
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Figure 4.7: The likelihood for the parameters of the phenomenological Model IV. The black
solid lines correspond to the Planck constraints, the red dashed lines correspond to Planck +
BAO and the blue dot-dashed lines correspond to Planck + BAO + SNIa + Hj.

sities to be comparable in the expansion of the Universe as shown in Fig[3.1 The Model
IV has an attractor solution with o ~ constant in the future. In the joint constraints,
by including other observational data, we find that the coupled dark energy model 1V is
fully compatible with astronomical observations. It is a viable model.

We constrained, up to now, the four phenomenological models based on Planck mea-
surements and additional data from BAO, SNIa and H0. These additional data sets are

based on measurements of distances. As we pointed out in the previous section, another
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Figure 4.8: 2-D distribution for selected parameters - Model IV.

Table 4.6: Priors for the cosmological parameters considered in the analysis with lookback
time of the phenomenological models.

Parameters Prior
Qh? [0.005,0.99]
Q.h? [0.001,0.99]
H, [20, 100]
af 0.5
Model I Model IT | Model IIT | Model IV
w [—1,-0.1]| [-2.5,—1]| [-2.5,—1]| [-2.5, —1]
19 [—0.4,0.4] | [-0.4,0.4]| [-0.4,0.4] | [-0.4,0.4]

kind of data can be obtained based on measurements of ages instead of distances. One
such technique is the lookback time. Thus, to take this kind of data into account we
implemented the likelihood for lookback time in the CosmoMC code (see Appendix |C)).
We choose our priors for the different cosmological parameters as listed in Table 4.6 The
equation of state of dark energy is set constant, but it can have any value inside the prior
interval. We also take the relativistic number of degrees of freedom N.;; = 3.046 and
the total neutrino mass Y m, = 0.06eV. The MCMC will run until the chains reach the
statistical convergence for Gelman and Rubin criterion R — 1 = 0.01. We list our fitting

results in Tables |4.7H4.10] These results will be part of publication in [100].

The lookback time constraints for Model I are reported in Table[d.7] The 1-D posterior
distributions are shown in Fig. [4.9] and the main parameter degeneracies appear in Fig.
4.10 The first columns of Table present the best fit and 68% C.L. for the prior
given in Table [£.6, The columns in the middle redo the calculations with a restrict prior
for & as that in Table [4.1]

The last columns show the results including the Planck

measurements, in this case the others parameters are set according to Table 4.1, For
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Table 4.7: Cosmological parameters - LBT analysis for Model 1.

LBT+H0 LBT+HO (& = [0.4,0]) LBT+HO0+Planck

Parameter Best fit  68% limits Best fit 68% limits Best fit 68% limits
Q2 0.1693  0.0928870:02T(0.009321  0.034237000737  0.02185  0.022037) 300252
Q:h?  0.05315 0.0867970 0z  0.006469  0.030037000°"  0.04167  0.0452479(,%

0.04
Hy 73.22 73151333 72.85 72.941733 71.69 71.06175
w 0.6778  —0.73191018 04277 —0.7098*018  _0.9621  —0.934679:016,
& 0.2708  0.1992750%%. -0.008092 —0.051357 000k, -0.2048  —0.18787 00579
df 2461  2.205703% 2.387 1.83179275¢ 1376 1.3811 0000
Qu 0.5838  0.662370773"  0.969 0.87727 000  0.8751  0.863770 055
Qu, 04162  0.337710%3%  0.03097  0.1228700¢%.  0.1249  0.136370 055

Xin/2 13.48 13.60 4921.61

L S o L L L Sy L L
0.06 0.12 0.18 0.24 0.06 0.12 0.18 0.24
[N Q.h?

Figure 4.9: The likelihood for the parameters of the phenomenological Model I using lookback
time measurements. The black solid lines correspond to the LBT + Hy constraints, the red
dashed lines correspond to LBT + Hjy with a restricted prior to & = [—0.4,0] and the blue
dot-dashed lines correspond to LBT + Hy + Planck.

lookback time calculations of Model I, we use the age of the Universe obtained with
Planck data t3** = 13.821Gyr with one standard deviation Oyovs = 0.101Gyr. From the
fitting results, we observe that Planck measurements provide narrower constraints than
lookback time, especially for ,h2. This would be expected since baryon perturbations are
coupled to photons and thus the CMB anisotropies depend on the amount of baryons. On
the other hand, lookback time only takes into account the background evolution. We also

see that lookback time prefers a dark energy equation of state in the quintessence regime
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Figure 4.10: 2-D distribution for selected parameters - LBT analysis for Model I.

Table 4.8: Cosmological parameters - LBT analysis for Model 11

LBT+H0 LBT+HO (& =[0,0.4])  LBT-+HO+Planck

Parameter Best fit  68% limits Best fit ~ 68% limits  Best fit ~ 68% limits
Quh? 0.2548  0.0987005;  0.1355  0.109570%,,°  0.02228  0.022270 000565
Q.h? 0.005993 0.09581093%5  0.1255  0.1054709%¢  0.1372  0.1335700%5:4

Hy 7434 7406732, 7412 74.047537%3 77.88 74.941233
w -1.009  —1.48270°00  -1.015  —1.413T052,  -1.359  —1.274F0 0002
& 0.3967  0.144%32° 0398  0.247570-05L0 0.05431  0.0445170:0140

df 1.961  1.312707;  1.937  1.405705% 1.338 1.2750 01
Qq 0.5269  0.64417072% 05237  0.605870005  0.7359  0.720970 02
Qi 0.4731  0.3559700s2,  0.4763  0.3942100%0F  0.2641  0.279170 0321

Coin/2 14.12 14.03 4919.71

at 68% C. L., while Planck is consistent with a cosmological constant. The lookback time
measurements favor a positive interaction parameter, which is in tension with more than
20 as compared with the result from Planck. Such difference in the interaction has an
effect in the time when the structures were formed, as described by the delay factor df,

and also in the amount of dark matter and dark energy at present.

We pass now to consider the behaviour of Model II with respect to LBT data. Table
presents the best fit values and marginalizations for the parameters. Figure[4.11] plots
the 1-D posterior distributions and Fig. [£.12] plots the main parameters degeneracies. The
age of the Universe is set to 5 = 13.604Gyr with standard deviation Oyors = 0.115Gyr.
From the fitting results, we observe that the dark energy equation of state tends to larger
values consistent with a cosmological constant. However, we note that our prior prevents
the EoS to be larger than w = —1. Thus, this result is in agreement with that obtained
for Model I. On the other hand, the Planck likelihood constrains the EoS of dark energy
in the phantom region with more than 95% C.L.. At first sight, we could combine Models
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I and II into one single model with EoS from quintessence to phantom regions and an
interaction from negative to positive ones. This is true for the background, however Eq.
diverges for w = —1 and also appears several divergences in the power spectra for
a positive interaction for Model I and negative interaction for Model 11, this is the reason
why we restricted the priors for the Planck data. Finally, as for Model I, we observe that

lookback time data prefer larger values for the interaction in opposite to Planck.

0.06 0.12 0.18 0.24 0.06
[N Q.h°

L
0.60

Figure 4.11: The likelihood for the parameters of the phenomenological Model II using look-
back time measurements. The black solid lines correspond to the LBT 4+ H constraints, the

red dashed lines correspond to LBT + Hj with a restricted prior to £ = [0,0.4] and the blue
dot-dashed lines correspond to LBT + Hy + Planck.
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Figure 4.12: 2-D distribution for selected parameters - LBT analysis for Model II.
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Table 4.9: Cosmological parameters - LBT analysis for Model 111

LBT+H0 LBT+HO (& = [0,0.4]) LBT+H0+Planck
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits
Qyh? 0.006805 0.0378T00%592 0.009584 0.03848T000°%  0.02248  0.0224470000332
Qch? 03828 0.25270%; 0386  0.2503'(¢%,  0.1199 0.125170 60435
H, 73.1 73.6972:6 73.25 73.65725) 74.27 74,2626
w -1.64  —1.731797% <1558 —1.7227572L -1.232 —1.4170%05
& 0.3735 0303370075 0.3955  0.3054%010510  0.0006722  0.00217170 60052
df 2.506 2.048+0559 2.554 2.04870:5% 1.669 14057015
Qu 0.2698  0.46157075¢  0.2616 0462870137 0.7406 0.730570 0258
O 0.7302  0.53851012%  0.7384  0.5372%010  0.2594 0.2695"0 0314
o] 2 11.59 11.59 4918.55
Table 4.10: Cosmological parameters - LBT analysis for Model IV
LBT+HO LBT+HO (£ =[0,0.4]) LBT+HO0+Planck
Parameter Best fit 68% limits Best fit 68% limits  Best fit 68% limits
Quh°  0.007615 0.04137700008 0.005097 0.0409700013 70,0224  0.0224 7700033
Q.h? 0.4325  0.3159%00%3,  0.3857  0.3177 0008, 0.125  0.12511090392
H, 73.27 73.2272:39 72.89 73.172:32 73.83 74.03722
w 2384 —1.7027570% <1768 —1.702%070%  -1.341 —1.3841510%
¢ 0.3188  0.301179997% 02772 0.301470997¢  0.00141 0.00195370:900914
df 2.498 2.1887 545 2.406 2.19275322 1378 1.323%0118
Qq 0.1791  0.3287701% 02632 0.325170127 07284 0.728970011
X2in/2 13.39 13.39 4920.34

Models IIT and IV present very similar behavior. The best fit values and 68% C.L.
limits are presented in Tables and for Models III and IV, respectively. Figures
and show the 1-D posterior distributions for the parameters, while Fig. and
Fig. plot the main parameter degeneracies. For Model III the age of the Universe is
given by ¥ = 13.928Gyr with standard deviation Oyons = 0.280 and for Model IV the age
is 13 = 13.854Gyr and Oyovs = 0.111, which were obtained from the Planck measurements
alone. We observe that Planck measurements pin the parameters down much better than
lookback time data for both models, especially the dark energy equation of state which is
completely unconstrained using LBT. There is still a tension in the determination of the
interaction parameter over several sigmas, e.g. the 95% C.L. lower limit for the interaction
using only LBT is & = 0.14 for Model III, while the maximum value at 95% C.L. with
Planck is & = 0.0047. Note the tiny confidence regions for Planck constraints as compared

with the LBT constraints, and the separation between them in the 2-D distributions.
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Figure 4.13: The likelihood for the parameters of the phenomenological Model III using look-
back time measurements. The black solid lines correspond to the LBT 4+ H{ constraints, the
red dashed lines correspond to LBT + Hj with a restricted prior to & = [0,0.4] and the blue
dot-dashed lines correspond to LBT + Hy 4+ Planck.
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Figure 4.14: The likelihood for the parameters of the phenomenological Model IV using look-
back time measurements. The black solid lines correspond to the LBT + Hy constraints, the
red dashed lines correspond to LBT + Hy with a restricted prior to & = [0,0.4] and the blue
dot-dashed lines correspond to LBT + Hy + Planck .
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Figure 4.15: 2-D distribution for selected parameters - LBT analysis for Model III.
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Figure 4.16: 2-D distribution for selected parameters - LBT analysis for Model IV.

4.3.2 Lagrangian Model

Let us consider now our Lagrangian model described in the previous chapter. We want
to put constraints on the cosmological parameters and verify if the Yukawa interaction is
favored by the observational data. The priors that we use are listed in Table At

first we allow the parameter of the scalar potential A to vary freely. We fixed the helium

Table 4.11: Priors for the cosmological parameters considered in the analysis of the Yukawa
interacting model.

Parameters Prior
Qph? [0.005,0.1]
Q.h? [0.001,0.99]
1006 [0.5,10]

T [0.01,0.8]
N [0.9,1.1]

log(101°A,) [2.7,4]

A [0.1,1.5]
r=2M, | [-0.1,0.1]
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Table 4.12: Cosmological parameters - Lagrangian Model

Planck Planck+BAO Planck+BAO+SNIa+HO
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits
Qph? 0.02203  0.02196 0 000ars  0.02225  0.022047000050  0.02222  0.0221170 500553
Qch? 0.1185 0.119i08;03030§6g2§5 0.1181 0.1176g80;08§5§§ 0.1171 0.1165%80;;3(%;;;
1000y 1.041 1.041+0-000625 1.042 1.04179:000064 1.042  1.041%3000572
T 0.09723  0.0883700H8  0.09281 0.09063799123  0.08889  0.0923179:912
ng 0.9625  0.9579+0:00702 0.9631 0.9608%300592  (0.9647  0.96297390°73
In(10°4,)  3.101 3.08475:0228 3.091 3.0869:9239 3.086 3.08710 042
A 0.6777 0.745179 0.227 0.6046 10101 0.3007  0.39041097%
r -0.02182  —0.001969799224  _0.003793 —0.000848670-923%  0.01311 —0.00229979:933
Qq 0.6858 0.674455230 0.6942 0.6887 01T 0.699 0.70170 015
Qpn 0.3142 0.325610-025 0.3058 0.31275:0118 0.301 0.29970 0103
Zre 11.67 10.9371:52 11.22 11.0773:5 10.87 11175557
H, 67.04 66.05+192 67.91 67.09% 568 68.19 68.28705%
Age/Gyr  13.81 13.84+00051 13.79 13.8150 0117 13.78 13.775 00100
Coin/2 4902.91 4903.89 4972.01
[— Planck - - Planck+BAO  --- Planck+BAO+SN+HO
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Figure 4.17: 2-D distribution for selected parameters - Lagrangian Model.

abundance as Y, = 0.24. The number of relativistic degrees of freedom is adjusted to
Ness = 3.046 and the total neutrino mass is set to Y m, = 0.06eV. At last the spectrum
lensing normalization is Ay = 1. To finish the MCMC we set the Gelman and Rubin
criterion to R —1 = 0.03. The results obtained for this model will be published soon [99].

To constrain the Yukawa-type interacting dark energy, we use the measurements of the
CMB anisotropies made by Planck together with BAO, SNIa and Hy measurements. Using
the priors listed in Table [4.11) we run the MCMC. The results are shown in Table[4.12] the
1-D posteriors for the parameters are given in Fig. [4.18]and some parameter degeneracies
are in Fig. [L.I7. We observe that the Planck data alone is not able to constrain the
scalar potential A and it constrains the interaction parameter r symmetrically around the
zero value. This is what we expected from the discussion about the power spectra of the

Lagrangian model in the previous chapter, as illustrated in Figs. [3.6]and 3.7, Adding low
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redshift measurements, A tends to its lower limit, while the interaction parameter slightly
breaks the symmetry around the zero value. We see that allowing the scalar potential
vary freely does not favor an interacting model. In fact, it shows a tendency to A — 0

and r = 0, which is basically the ACDM model.
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Figure 4.18: The likelihood for the parameters of the Lagrangian Model. The black solid lines
correspond to the Planck constraints, the red dashed lines correspond to Planck + BAO and
the blue dot-dashed lines correspond to Planck + BAO + SNIa + Hj.

We then consider the case when we fix the scalar potential parameter A\. We have
learned that as we increase the value for A, the interaction becomes more favored. For

instance, A = 1/3/2 produces the results in Table and the 1-D posterior distributions
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Table 4.13: Cosmological parameters - Lagrangian Model with Fixed A
Planck Planck+BAO Planck+BAO+SNIa+HO0
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits
Quh? 0.02177  0.02195700%027¢ " (.02203  0.022087590020% 0.02216  0.02218 70000272
Q.h? 0.1203  0.11927000388 0.1186  0.116675 50a0, 0.117  0.11557)00%8
1000y 1.041 10415500621 1.041 10417555088 1.042  1.0427900058
T 0.08242  0.088487001"  0.0964  0.09183%091%1 01005  0.0949574:9127
ng 0.9557  0.95757599721  0.961 0.9629+390610 0.9666  0.966275-555
In(10'°4,)  3.076 3.08515:0226 3.099 3.08675:9213 3.103 3.0970 030;
r -0.02151  —0.00128379:0208 (01445 —0.00553570.02L,  -0.03228 —0.0217370:0105
Qq 0.654 0.6567f§j§i§§ 0.6632 0.6731t(8);§i(8)§ 0.6804 O.6851f§j§i§i
Qrn 0.346 0.3433 1016 0.3368  0.3269%05K9  0.3196  0.3149709101
Zre 10.51 10954195 11.61 11.141 14 11.85 11.33% 0
H, 64.23 64.3170-043 64.77 65.3170-729 66.14 66.2970 50
Age/Gyr  13.89 13.87H0:93 13.86 13.8310:0422 13.78 13.7810:032°
XCoin]2 4903.15 4905.40 4977.26

Table 4.14: Cosmological parameters - LBT analysis for the Lagrangian Model

LBT+H0 LBT+HO0+Planck
Parameter Best fit 68% limits Best fit 68% limits
QA% 0.01379  0.04993F300T0.02193  0.0220270-000223
Q.h2  0.05908 0.0498970%211 01177 0.1173+000213
H, 73.85 74.25%%3 67.73 67.5710:9%9
A 1.495  1.09179499 0 1664 0.48270 505
r 0.04726  0.0017077999%  -0.01  —0.0016827 3922
df 2.025 1.81970:2L, 1.307 1.33970:0922
Q4 0.8652  0.815970015 06942  0.693270030
Qe 0.1348  0.1841700438  0.3058  0.3068")9122
2o T2 14.62 4924.29

are plotted in Fig. [£.19] These results show that even when we fix the parameter A, the
Planck data alone is compatible with a null interaction. However, if we include low redshift
measurements from BAO, SNIa and Hy, the symmetric value of r is broken and it favors
a negative value of r. For this value of A, the negative interaction parameter is favored
at 68% C.L.. Augmenting the value of A\, a negative r is even more favorable. Thus, we
conclude that if we are able to determine the value of A, or if we have a theoretical model
fixing it, if this value is sufficiently large, the Yukawa interaction between dark energy

and dark matter will be preferred by the cosmological data.

At last we analyze the Lagrangian model comparing it with the lookback time data.
The results are in Table Figures and present the 1-D posteriors and the
main parameter degeneracies, respectively. As expected, the lookback time yields much

broader results as compared with the Planck constraints. It is not able to constrain the
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Figure 4.19: The likelihood for the parameters of the Lagrangian Model with fixed A. The
black solid lines correspond to the Planck constraints, the red dashed lines correspond to Planck
+ BAO and the blue dot-dashed lines correspond to Planck + BAO + SNIa + Hj.

interaction, which is completely undetermined with lookback time data alone. From the
posterior distributions, we observe that LBT data prefer larger values of A, which is in the
opposite direction to the Planck measurements. Fixing the value of A does not improve
the LBT constraints for the interaction parameter, thus we do not present the results for
this case here. We conclude that the LBT data alone are not of much help to constrain
the Lagrangian Model with Yukawa-type interaction, but they show a tension with the

Planck data in the determination of the scalar potential parameter. These results are

part of a publication to appear soon[100].
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Figure 4.20: The likelihood for the parameters of the Lagrangian Model using lookback time
measurements. The black solid lines correspond to the LBT + Hj constraints and the red dashed

lines correspond to LBT + Hy + Planck.

— LBT+HO - - LBT+HO+Planck

c

0.25 0.50 0.75 1.00 1.25 1.50 —0.08-0.04 0.00 0.04 0.08 -0.08 —.04 0.00 0.04 0.08
A r r

Figure 4.21: 2-D distribution for selected parameters - LBT analysis for the Lagrangian Model.



Conclusions

The aim of this thesis was to propose models of interaction between dark energy and dark

matter and discover from observational data if the interaction is favored.

Chapter one dealt with basic aspects of cosmology. We introduced the simple homo-
geneous and isotropic model for the Universe and the equations governing its evolution.
Then, in order to put the cosmological models on experimental basis, we described def-
initions of cosmic distances which allow us to constrain the cosmological parameters of
a model from observations and make predictions that can be falsifiable. For instance,
observations of surpernova type la put constraints from luminosity distances and mea-
surements of baryon acustic oscillations are based on angular diameter distances. Finally,
we discussed how current observations lead to the necessity of two unknown components:

dark matter and dark energy.

The structures around us imply that we must go beyond the homogeneous and isotropic
universe if our model intends to explain the real Universe. On large scales, we can im-
prove our model through small perturbations in the background. Chapter two introduced
such perturbations and developed their dynamical equations. The linear perturbations
over the smooth background lead to predictions about the cosmic microwave background
anisotropies and matter inhomogeneities which can be tested by anisotropy probes, e.g.

Planck satellite, and galaxy surveys, respectively.

The first two chapters were concerned to establish the cosmological basis we needed.
In chapter three we explore the possibility of an interaction in the dark sector. The sim-
plest cosmological model, the ACDM, is in good agreement with current observations.
However, it suffers from two theoretical problems: the cosmological constant problem
and the coincidence problem. Thus, we consider alternative models: the first is a phe-
nomenological model with an interaction given by a linear combination of the dark fluids

Q = 3H(&1pe + &apa); and, as a tentative to build a more fundamental framework, the
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second model comes from a Lagrangian density of a scalar field, describing dark energy,
and a fermionic field, for dark matter, with an Yukawa interaction between them.

The last chapter compares the theoretical predictions of the interacting models with
several observational data. The data show that an interaction is allowed and in some
cases it is favored. We also observe some tension between the results from Planck with
the low redshift measurements from lookback time. The lookback time favors a larger
positive interaction for the phenomenological models, while for the Planck data it is more
consistent with zero and even negative values for Model I. On the other hand, the lookback
time data prefer larger values for the scalar potential parameter X of the Lagrangian model,
in the opposite direction to the Planck results. Appendices [A] [B and [C] present the most
important parts of the computational implementation used in this thesis.

From this thesis we see at least two possible directions for future works: first, there
is still much space for alternative models of dark energy and dark matter, and different
kinds of interaction; second, there are other data sets that were not considered here and
new techniques and probes should be taken into account. These studies will certainly

augment our knowledge of the nature of dark matter and dark energy.



Appendix A

Camb Code: Phenomenological
Model

!This appendix shows the most import steps to introduce the phenomenological
!linteracting model in the CAMB code.

'We implemented the module Couple in CAMB. Its purpose is to obtain the evolution
'of rho_dm and rho_de with the scale factor "a" for the interacting model.

!The perturbations are introduced in the Gaugelnterface module of CAMB.

'We only present the most important modifications to that module.

module Couple
use precision
use ModelParams
use LambdaGeneral
implicit none
integer, parameter :: NumPoints = 2000
real(dl) aVals(NumPoints+1),grhodm_a(NumPoints+1), grhode_a(NumPoints+1)
real(dl) ddgrhodm_a(NumPoints+1), ddgrhode_a(NumPoints+1)
real(dl), parameter :: amin = 1.d-9

logical:: coupled = .true.
real(dl) :: lambdal = 0._dl, lambda2 = 0._dl

contains

!'This is to call the parameters lambdal and lambda2 from the params.ini file.
!lambdal and lambda2 are the coupling constants multiplying dark matter and
!dark energy densities, respectively, in a phenomenological model.
subroutine Couple_ReadParams(Ini)
use ImniFile
Type(TIniFile) :: Ini

coupled = Ini_Read_Logical_File(Ini,’coupled’,.true.)
if (coupled) then
lambdal = Ini_Read_Double_File(Ini,’lambdal’,0.d0)

lambda2 = Ini_Read_Double_File(Ini,’lambda2’,0.d0)
write(*,’ (" (lambdal, lambda2) = (", £f8.5,", ", £8.5, ")")’) lambdal,lambda2
end if

end subroutine Couple_ReadParams
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!The system of differential equations for rho as a function of "

subroutine EvolveBackground(dum,num,x,y,yprime)
implicit none
real dum
integer num
real(dl) x, y(num), yprime(num)
real(dl) grhodm_ev, grhode_ev

a" is given here.

grhodm_ev
grhode_ev

y(1)
y(2)

yprime(1) = -3._dl*(1._dl/x)*grhodm_ev+3._dl*(1._d1l/x)*
(lambdal*grhodm_ev+lambda2*grhode_ev)

yprime(2) = -3._dlx(1._d1/x)*(1._dl+w_de(x))*grhode_ev-3._dl*(1._d1/x)*
(lambdal*grhodm_ev+lambda2*grhode_ev)

end subroutine EvolveBackground

!The system of differential equations is solved in this subroutine.
subroutine History
real(dl) :: astart,aend,atol,alogmin,lnastart
integer, parameter :: NumEgs=2
real(dl) c(24), w(NumEgs,9), y(NumEgs)
integer ind, 1
real dum,num

ind = 1
atol = 1.d-5

alogmin = dlog(amin)

astart = 1._d1

lnastart = dlog(astart)
y(1) = grhoc
y(2) = grhov

aVals(1l) = astart
grhodm_a(1) = y(1)
grhode_a(1) = y(2)

IFor better interpolation I go a little into the future (a > 1).

do i=1,100
aend = lnastart-(alogmin/NumPoints)*i
aend = dexp(aend)
call dverk(dum,NumEqgs,EvolveBackground,astart,y,aend,atol,ind,c,NumEqgs,w)
aVals(i+l) = aend
grhodm_a(i+1) = y(1)
grhode_a(i+1) = y(2)

enddo

aVals(1) = aend
grhodm_a(1) = y(1)
grhode_a(1) = y(2)

astart = aVals(1)
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lnastart = dlog(astart)

do i=1, NumPoints
aend = lnastart+(alogmin/NumPoints)*i
aend = dexp(aend)
call dverk(dum,NumEqs,EvolveBackground,astart,y,aend,atol,ind,c,NumEqs,w)
aVals(i+1) = aend
grhodm_a(i+1) = y(1)
grhode_a(i+1) = y(2)
enddo

call Flip(aVals)
call Flip(grhodm_a)
call Flip(grhode_a)

do i=1, NumPoints+1
aVals(i)=dlog(aVals(i))
enddo

call spline(aVals,grhodm_a,NumPoints+1,1.d30,1.d30,ddgrhodm_a)
call spline(aVals,grhode_a,NumPoints+1,1.d30,1.d30,ddgrhode_a)

end subroutine History

!This subroutine is to invert the order of the splines.
subroutine Flip(xdat)
real(dl) :: xdat(NumPoints),swap_x
integer i,pos

do i=1, NumPoints+1
pos = (NumPoints+1)-i
if (pos > i) then
swap_x = xdat(pos)
xdat (pos) = xdat(i)
xdat (i) = swap_x
endif
end do
end subroutine

!rho_dm as a function of "a".
function grhodm(a) !8 pi G rho_dm
real(dl) :: grhodm, al
real(dl), intent(IN) :: a

al=dlog(a)
if(al.1lt.aVals(1)) then
grhodm=grhodm_a(1) 'if a < minimum a from wa.dat
else
if(al.gt.aVals(NumPoints)) then
grhodm=grhodm_a (NumPoints) 1if a > maximus a from wa.dat
else
call cubicsplint(aVals,grhodm_a,ddgrhodm_a,NumPoints,al,grhodm)
endif
endif

end function grhodm
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Irho_de as a function of "a"
function grhode(a) !8 pi G rho_de
real(dl) :: grhode, al
real(dl), intent(IN) :: a

al=dlog(a)
if(al.lt.aVals(1)) then
grhode=grhode_a(1) lif a < minimum a from wa.dat
else
if(al.gt.aVals(NumPoints)) then
grhode=grhode_a(NumPoints) lif a > maximus a from wa.dat
else
call cubicsplint(aVals,grhode_a,ddgrhode_a,NumPoints,al,grhode)
endif
endif

end function grhode

!The adiabatic sound speed of dark energy.
function ca2(a)
real(dl) :: ca2, grhodeda
real(dl), intent(IN) :: a

grhodeda = -3._d1x*(1._dl/a)*(1._dl+w_de(a))*grhode(a)-3._dlx(1._dl/a)*
(lambdal*grhodm(a)+lambda2*grhode(a))
ca2 = w_de(a) - wa_ppf*grhode(a)/grhodeda

end function ca?2

end module Couple

!Background evolution
function dtauda(a)
lget d tau / d a

! 8*pixGxrhoxa*x*4.
grhoa2=grhok*a2+grhob*a+grhog+grhornomass+(grhodm(a)+grhode (a) ) *a2**2
dtauda=sqrt (3/grhoa2)

end function dtauda

!Tnitial values for perturbations.
if (coupled) then
initv(1l,i_clxc)=0.75_dl*initv(1l,i_clxg)*(1._dl-lambdal-lambda2#
(grhode (a) /grhodm(a)))
initv(1,i_clxq)=0.75_dl*initv(1l,i_clxg)*(1._dl+w_de(a)+lambdal*
(grhodm(a) /grhode(a))+lambda2)
initv(1,i_vq)=initv(1,i_qg)
else
initv(1l,i_clxc)=initv(1l,i_clxb)
endif
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grhoc_t=grhodm(a)*a2
grhov_t=grhode (a)*a2
w_eff = w_de(a)

!total perturbations: matter terms first, then add massive nu, de and radiation
! 8#pi*a*a*xSUM[rho_ixclx_i]

dgrho=grhob_t*clxb+grhoc_t*clxc

I 8*pi*a*a*SUM[(rho_i+p_i)*v_i]

dgg=grhob_t*vb

clxqg=ay (EV/w_ix)

vg=ay (EV/w_ix+1)

dgrho=dgrho + clxg*grhov_t

dgq = dgq + vg*grhov_t*(1._dl+w_eff)

'Perturbed dark energy equation of motion
if (coupled) then
ayprime (Evjw_ix)= 3._dl*adotoa*w_eff*clxq + &

3._dl*adotoa*lambdal*(grhoc_t/grhov_t)*(clxq - clxc)&
- (1._dl+w_eff)*kxvq - 3._dl*adotoa*cs2_lam*clxq - &
3._dl*adotoa*(cs2_lam-ca2(a))*(3._dl*adotoa*(l._dl+w_eff) + &
3._dl*adotoa*(lambdal*(grhoc_t/grhov_t) + lambda2))*&
vg/k - (1._dl+w_eff)xk*z

ayprime (Evjw_ix+1)= -adotoa*(1l._d1-3._dl*cs2_lam)*vq + &
(3._dl*adotoa/(1._dl+w_eff))*(1._dl+cs2_lam)*&
(lambdal*(grhoc_t/grhov_t) + lambda2)*vq + &
cs2_lamxk*clxq/(1._dl+w_eff)

! CDM equation of motion
clxcdot= -k*z + 3._dl*adotoa*lambda2*(grhov_t/grhoc_t)*(clxq - clxc)
ayprime(3) = clxcdot
else
clxcdot=-k*z
ayprime (3)=clxcdot
endif



Appendix B

Camb Code: Lagrangian Model

!This appendix shows the most import steps to introduce the lagrangian
!interacting model in the CAMB code.

'We implemented the module QCouple in CAMB. Its purpose is to obtain the evolution
'of rho_dm, phi and phidot with the scale factor a for the interacting model.

!The perturbations are introduced in the GaugeInterface module of CAMB.

'We only present the most important modifications to that module.

module QCouple
use precision
use Errors
use ModelParams
use LambdaGeneral
implicit none
integer, parameter :: NumPoints = 2000, NumPointsEx = NumPoints+2
real(dl) aVals(NumPointsEx), grhodm_a(NumPointsEx), phi_a(NumPointsEx),
phidot_a(NumPointsEx)
real(dl) ddgrhodm_a(NumPointsEx), ddphi_a(NumPointsEx), ddphidot_a(NumPointsEx)
real(dl) initial_grhoc, initial_phi, initial_phidot, adot, y_grhoc, norm_grhoc
real(dl), parameter :: amin = 1.4-9

real(dl) :: lambda = 0._dl, r_int = 0._dl, rphi = -1.4d0
logical :: OK_int = .true.

contains

!'This is to call the parameters lambda and r_int from the params.ini file.
!lambda is the power of the potential V(psi) and r_int is the coupling constant
!divided by the dark matter mass, respectively.
subroutine Couple_ReadParams(Ini)
use IniFile
Type(TIniFile) :: Ini

if (coupled) then
lambda = Ini_Read_Double_File(Ini,’lambda’,0.d0)
r_int = Ini_Read_Double_File(Ini,’r_int’,0.d0)
rphi = Ini_Read_Double_File(Ini,’rphi’,-1.d0)

write(*,’("(lambda, r_int, rphi) = (", £8.5,", ", £f8.5, ", ", £8.5, ")")’)
lambda, r_int, rphi
end if
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end subroutine Couple_ReadParams

function Vofphi(phi,deriv)
IReturns (8*Pix*G) "~ (1-deriv/2)*d"{deriv}V(psi)/d"{deriv}psi evaluated at psi
Itimes (Mpc/c)”2 to get units in 1/Mpc~2
IThe input variable phi is sqrt(8*Pi*G)*psi
use constants
implicit none
real(dl) phi, Vofphi
integer deriv
real(dl) norm

!Normalized so that lambda=0 and r_int=0 gives norm=grhov
norm = 3._d1*CP},HO**2x(1000)**2/c**2*CPjomegav

if (deriv==0) then
Vofphi = norm*exp(-lambda*phi)
else
if (deriv==1) then
Vofphi = -lambda*norm*exp(-lambdaxphi)
else
if (deriv==2) then
Vofphi = lambda**2*norm*exp (-lambda*phi)
else
stop ’Invalid deriv in Vofphi’
endif
endif
endif

end function Vofphi

!The system of differential equations for rho as a function of "a" is given here.
subroutine EvolveBackground(dum,num,x,y,yprime)
use constants
use MassiveNu
implicit none
real dum
integer num
real(dl) x, y(num), yprime(num)
real(dl) x2, grhodm_ev, phi, phidot, ga2T00_de, ga2T00, dphida, Q_int
real(dl) rhonu
integer nu_i

OK_int = .true.
X2 = x*%2

phi = y(1)
phidot = y(2)/x2

if (x == amin) then
norm_grhoc = y_grhoc*amin**3/(1-r_int+*phi)
endif

grhodm_ev = norm_grhoc/x**3x(1 - r_int*phi)
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y_grhoc = grhodm_ev

if (rphi < 0) then
if (r_int*phi < 1._dl) then
Q_int = -r_int/(1._dl - r_int*phi)

else
grhodm_ev = 0._dl
Q_int = 0
OK_int = .false.
endif
else

if (r_int*phi > 1._d1l) then
Q_int = -r_int/(1._dl - r_int*phi)

else
grhodm_ev = 0._dl
Q_int = 0
OK_int = .false.
endif
endif

ga2T00_de = x2*(0.5d0*phidot**2 + x2*Vofphi(phi,0))
ga2T00 = grhok*x2+grhob*x+grhog+grhornomass+grhodm_ev*x2**2+ga2T00_de

if (CP%Num_Nu_massive /= 0) then
!Get massive neutrino density relative to massless
do nu_i = 1, CP/nu_mass_eigenstates
call Nu_rho(x*nu_masses(nu_i),rhonu)
ga2T00 = ga2T00 +rhonu*grhormass(nu_i)
end do
end if

adot = sqrt(ga2T00/3.0d0)
dphida = phidot/adot

yprime (1) = dphida
yprime(2) = -x2x*2*(Vofphi(phi,1) + Q_int*grhodm_ev)/adot

end subroutine EvolveBackground

function GetOmegaFromInitial(astart,grhoc_initial,phi,phidot,atol)
1Get CPJomegac and CPjomegav today given particular conditions grhoc, phi and
'phidot at a=astart
implicit none
real(dl), intent(IN) :: astart, grhoc_initial, phi, phidot, atol
real(dl), dimension(2) :: GetOmegaFromInitial
integer, parameter :: NumEqgs=2
real(dl) c(24), w(NumEgs,9), y(NumEgs), ast
integer ind, i
real dum

ast=astart

ind=2
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do i=1,9
c(i)=0._d1
enddo

c(4)=1d-30
c(5)=100

y_grhoc = grhoc_initial
y(1) = phi
y(2) = phidot*astart**2 !Fixed Dec 02

call dverk(dum,NumEgs,EvolveBackground,ast,y,1._dl,atol,ind,c,NumEqgs,w)
if (OK_int) then

call EvolveBackground(dum,NumEqgs,1._dl,y,w(:,1))

GetOmegaFromInitial(1l) = y_grhoc/(3*adot**2)

GetOmegaFromInitial(2) = (0.5d0*y(2)**2 + Vofphi(y(1),0))/(3*adot**2)
else

return
endif

!Search for initial phi.
subroutine GetInitialPhi(trial_grhoc,error_phi)
implicit none
real(dl) astart
real(dl) atol
real(dl) initial_phi2
real(dl), dimension(2):: om

real(dl) :: omvl, omv2, deltaphi, phi, trial_grhoc, initial_phi_inv
real(dl) :: omv_min, initial_phi_min, omv_max, initial_phi_max, phil, phi2
integer, optional :: error_phi

logical OK

integer:: iter = 0, iter2

iter2 =
omv_min = 1000
omv_max = —-1000

astart = amin

!These two must bracket the correct value to give CPomegav today
IAssume that higher initial phi gives higher CP%omegav today
!Can fix initial_phi to correct value
if (rphi < 0) then
if (r_int > 0) then
initial_phi = 1._dl/r_int - 1._d1/(100*r_int)
initial_phi2 = -100/lambda
else
if (r_int < 0) then
initial_phi = 100/lambda
initial_phi2 = 1._dl/r_int - 1._d1/(100*r_int)
else
initial_phi = 100/lambda
initial_phi2 = -100/lambda
endif
endif
else
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1See

if

els

(r_int < 0) then
initial_phi = 1._dl/r_int + 1._d1/(100*r_int)
initial_phi2 = -100/lambda
e
if (r_int > 0) then
initial_phi = 100/lambda
initial_phi2 = 1._dl/r_int + 1._d1/(100*r_int)
else
initial_phi = 100/lambda
initial_phi2 = -100/lambda
endif

endif

endif

if (CP
ini
ini
ini
endif

%omegav < 0) then
tial_phi_inv = initial_phi
tial_phi = initial_phi2
tial_phi2 = initial_phi_inv

initial_phidot = 0._dl

atol =

if ini

om = GetOmegaFromInitial(astart,trial_grhoc,initial_phi,initial_phidot,atol)

if (0K
omv

else
do

1d-5

tial conditions are giving correct CPjomegav now

_int .and. om(2) < CP%omegav) then
1 = om(2)
while (OK_int == .false. .or. om(2) > CP%omegav)

iter2 = iter2 + 1
phi = initial_phi + (initial_phi2 - initial_phi)/2
om = GetOmegaFromInitial(astart,trial_grhoc,phi,initial_phidot,atol)

if (om(2) < CPfomegav .or. OK_int == .false.) then
initial_phi = phi

else
initial_phi2 = phi

endif

if (om(2) < omv_min .and. OK_int) then
omv_min = om(2)
initial_phi_min = phi

endif

if (iter2 == 50 .and. omv_min > CP%omegav) then
do iter2 =1, 10
phil = initial_phi_min + 1
phi2 = initial_phi_min - 1

om = GetOmegaFromInitial(astart,trial_grhoc,phil,initial_phidot,atol)

omvl = om(2) - CPlomegav

om = GetOmegaFromInitial(astart,trial_grhoc,phi2,initial_phidot,atol)

omv2 = om(2) - CPlomegav
phi = phi2 - (phi2 - phil)*omv2/(omv2 - omvl)

om = GetOmegaFromInitial(astart,trial_grhoc,phi,initial_phidot,atol)

if (OK_int) then
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phil = phi2

phi2 = phi
else

phil = phi
endif

if (om(2) < omv_min .and. OK_int) then
omv_min = om(2)
initial_phi_min = phi

endif

if (om(2) <= CPlomegav .and. OK_int) then
initial_phi = phi
exit
endif
if (iter2 == 10) then
om(2) = omv_min
initial_phi = initial_phi_min
endif
enddo
exit
endif
enddo
omvl = om(2)
endif

if (abs(omv1-CPj%omegav) > 1d-5) then
'if not, do binary search in the interval
OK = .false.
iter2 = 0
om = GetOmegaFromInitial(astart,trial_grhoc,initial_phi2,initial_phidot,atol)

if (OK_int .and. om(2) > CP%omegav) then
omv2 = om(2)
else
do while (OK_int == .false. .or. om(2) < CP%omegav)
iter2 = iter2 + 1
phi = initial_phi2 + (initial_phi - initial_phi2)/2
om = GetOmegaFromInitial(astart,trial_grhoc,phi,initial_phidot,atol)

if (om(2) > CPYomegav .or. OK_int == .false.) then
initial_phi2 = phi

else
initial_phi = phi

endif

omv2 = om(2)

if (om(2) > omv_max .and. OK_int) then
omv_max = om(2)
initial_phi_max = phi

endif

if (iter2 == 50 .and. omv_max < CPomegav) then
do iter2 = 1, 10
phil = initial_phi_max + 1
phi2 = initial_phi_max - 1
om = GetOmegaFromInitial(astart,trial_grhoc,phil,initial_phidot,
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atol)
omvl = om(2) - CPlomegav
om = GetOmegaFromInitial(astart,trial_grhoc,phi2,initial_phidot,atol)
omv2 = om(2) - CPlomegav
phi = phil - (phil - phi2)*omvl/(omvl - omv2)
om = GetDmegaFromInitial(astart,trial_grhoc,phi,initial_phidot,atol)
if (OK_int) then

phi2 = phil

phil = phi
else

phi2 = phi
endif

if (om(2) > omv_max .and. OK_int) then
omv_max = om(2)
initial_phi_max = phi

endif

if (om(2) >= CPlomegav .and. OK_int) then
initial_phi2 = phi
exit
endif
if (iter2 == 10) then
om(2) = omv_max
initial_phi2 = initial_phi_max

endif
enddo
exit
endif
enddo
omv2 = om(2)
endif

if (omvl > CPYomegav .or. omv2 < CPomegav) then
if (error_phi == 100) then
write (*,%*) ’Initial phi values must bracket required value.’
call GlobalError(’Initial phi values must bracket required value.’,
error_evolution)
else
return
endif
end if

do iter = 1,100
deltaphi = initial_phi2 - initial_phi
phi = initial_phi + deltaphi/2
om = GetOmegaFromInitial(astart,trial_grhoc,phi,initial_phidot,atol)

if (OK_int) then
if (om(2) < CP%omegav) then
omvl = om(2)
initial_phi = phi
else
omv2 = om(2)
initial_phi2 = phi
end if
else
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if (phi >= initial_phi) then
initial_phi = phi
else
initial_phi2 = phi
endif
endif

if (omv2 - omvl < 1d-5) then

0K = .true.
initial_phi = (initial_phi2 + initial_phi)/2
exit
end if
end do
if (.not. OK .and. error_phi == 100) then !this shouldn’t happen

write (*,*) ’Search for good phi initial condition did not converge.’
call GlobalError(’Search for good phi initial condition did not converge.’,
error_evolution)
endif

endif

end subroutine GetInitialPhi

!Search for initial grhoc.

subroutine Init_background
implicit none
real(dl) astart
real(dl) atol
real(dl) initial_grhoc2
real(dl), dimension(2):: om
real(dl) omcl, omc2, deltagrhoc, rhoc
logical OK
integer:: iter = 0

astart = amin
atol = 1d-5

if (lambda == 0._dl .and. r_int == 0._dl) then
IThese two must bracket the correct value to give CPjomegac today
IAssume that higher initial grhoc gives higher CPjomegac today
!Can fix initial_grhoc to correct value

initial_grhoc = 1ldlxgrhoc/astart**3

initial_grhoc2 = 1d-1*grhoc/astart**3

initial_phi = 10

initial_phidot = 0._dl

!See if initial conditions are giving correct CPjomegac now
om = GetOmegaFromInitial(astart,initial_grhoc,initial_phi,initial_phidot,atol)
omcl = om(1)

if (abs(omc1-CP%omegac) > 1d-4) then
'if not, do binary search in the interval
OK = .false.
om = GetOmegaFromInitial(astart,initial_grhoc2,initial_phi,initial_phidot,atol)
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omc2 = om(1)
if (omcl < CP%omegac .or. omc2 > CP%omegac) then
write (*,*) ’Initial grhoc values must bracket required value.’
call GlobalError(’Initial grhoc values must bracket required value.’,
error_evolution)
end if

do iter = 1,100
deltagrhoc = initial_grhoc2 - initial_grhoc
rhoc = initial_grhoc + deltagrhoc/2
om = GetOmegaFromInitial(astart,rhoc,initial_phi,initial_phidot,atol)
if (om(1) > CPlomegac) then
omcl = om(1)
initial_grhoc = rhoc
else
omc2 = om(1)
initial_grhoc2 = rhoc
end if

if (omcl - omc2 < 1d-5 .and. abs(om(2)-CPjomegav) < 1d-4) then

0K = .true.

initial_grhoc = (initial_grhoc2 + initial_grhoc)/2

if (FeedbackLevel > 0) write(*,*) ’grhoc_initial = ’, initial_grhoc
if (FeedbackLevel > 0) write(*,*) ’phi_initial = ’, initial_phi

om = GetOmegaFromInitial(astart,initial_grhoc,initial_phi,initial_phidot,

atol)
if (FeedbackLevel > 0) write(*,*) ’OmegacO, Omegac = ’, om(1), CPlomegac
if (FeedbackLevel > 0) write(*,*) ’Omegav0O, Omegav = ’, om(2), CPlomegav
exit
end if
end do

if (.not. OK) then !this shouldn’t happen
write (*,%*) ’Search for good initial conditions did not converge.’
call GlobalError(’Search for good initial conditions did not converge.’,
error_evolution)
endif

endif

else

IThese two must bracket the correct value to give CPYomegac today

I Assume

that higher initial grhoc gives higher CPJomegac today

!Can fix initial_grhoc to correct value

1See if

initial_grhoc = 1d3*grhoc/astart**3
initial_grhoc2 = 1d-3*grhoc/astart#**3

initial conditions are giving correct CPj%omegac now
call GetInitialPhi(initial_grhoc,0)
om = GetOmegaFromInitial(astart,initial_grhoc,initial_phi,initial_phidot,atol)
if (OK_int .and. om(1) > CPomegac) then

omcl = om(1)
else

do iter = 1,10

initial_grhoc = initial_grhoc/2
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call GetInitialPhi(initial_grhoc,0)

om = GetOmegaFromInitial(astart,initial_grhoc,initial_phi,initial_phidot,

atol)
if (OK_int .and. om(1) > CP%omegac) then
omcl = om(1)
exit
endif
enddo
omcl = om(1)

endif

if (abs(omc1-CPjomegac) > 1d-5) then

'if not, do binary search in the interval

0K = .false.
call GetInitialPhi(initial_grhoc2,0)
om = GetOmegaFromInitial(astart,initial_grhoc2,initial_phi,initial_phidot,
atol)
if (OK_int .and. om(1) < CP%omegac) then
omc2 = om(1)
else
do iter = 1,10
initial_grhoc2 = 2xinitial_grhoc2
call GetInitialPhi(initial_grhoc2,0)
om = GetOmegaFromInitial(astart,initial_grhoc2,initial_phi,
initial_phidot,atol)
if (OK_int .and. om(1) < CPlomegac) then
omc2 = om(1)
exit
endif
enddo
omc2 = om(1)
endif

if (omcl < CPYomegac .or. omc2 > CPomegac) then
write (*,%*) ’Initial grhoc values must bracket required value.’
call GlobalError(’Initial grhoc values must bracket required value.’,
error_evolution)
end if

do iter = 1,100
deltagrhoc = initial_grhoc2 - initial_grhoc
rhoc = initial_grhoc + deltagrhoc/2
call GetInitialPhi(rhoc,iter)
om = GetOmegaFromInitial(astart,rhoc,initial_phi,initial_phidot,atol)
if (om(1) > CPY%omegac) then
omcl = om(1)
initial_grhoc = rhoc
else
omc2 = om(1)
initial_grhoc2 = rhoc
end if

if (omcl - omc2 < 1d-5 .and. abs(om(2)-CPjomegav) < 1d-4) then
0K = .true.
initial_grhoc = (initial_grhoc2 + initial_grhoc)/2
if (FeedbackLevel > 0) write(*,*) ’grhoc_initial = ’, initial_grhoc
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if (FeedbackLevel > 0) write(*,*) ’phi_initial = ’, initial_phi

om = GetOmegaFromInitial(astart,initial_grhoc,initial_phi,
initial_phidot,atol)

if (FeedbackLevel > 0) write(*,*) ’OmegacO, Omegac =’,om(1),CP%omegac

if (FeedbackLevel > 0) write(*,*) ’Omegav0, Omegav =’,om(2),CP}omegav

exit
end if
end do

if (.not. OK) then !this shouldn’t happen
write (*,*) ’Search for good initial conditions did not converge.’
call GlobalError(’Search for good initial conditions did not converge.’,
error_evolution)
endif

endif
endif

end subroutine Init_background

!Here we make interpolation tables.
subroutine History
implicit none
real(dl) :: astart, afrom, aend
integer, parameter :: NumEqs=2
real(dl) c(24), w(NumEgs,9), y(NumEgs), atol, splZero
integer ind, i

real dum
ind = 1
atol = 1.d-5

astart = amin
afrom = astart

call Init_background

y_grhoc = initial_grhoc
y(1) = initial_phi
y(2) = initial_phidot

aVals(1l) = astart
grhodm_a(1) = y_grhoc
phi_a(l) = y(1)
phidot_a(1) = y(2)

IFor better interpolation I go a little into the future (a > 1).
do i=1, NumPointsEx-1
aend = dlog(astart)-(dlog(astart)/(NumPoints-1))x*i
aend = dexp(aend)
call dverk(dum,NumEgs,EvolveBackground,afrom,y,aend,atol,ind,c,NunEqgs,w)
call EvolveBackground(dum,NumEqgs,aend,y,w(:,1))
aVals(i+1) = aend
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grhodm_a(i+1) = y_grhoc

phi_a(i+1) = y(1)

phidot_a(i+1) = y(2)

if (i==NumPoints-1) then

if (FeedbackLevel > 0) then
write(*,*) ’Omega_Q_0=’,real((0.5d0O*phidot_a(i+1)**2 +
Vofphi(phi_a(i+1),0))/(3*adot**2)), &
> w_0=’,real((0.5d0*phidot_a(i+1)**2 - Vofphi(phi_a(i+1),0))/
(0.5d0*phidot_a(i+1)**2 + Vofphi(phi_a(i+1),0)))
end if
end if
enddo

splZero = 0

call spline(aVals,grhodm_a,NumPointsEx,splZero,splZero,ddgrhodm_a)
call spline(aVals,phi_a,NumPointsEx,splZero,splZero,ddphi_a)

call spline(aVals,phidot_a,NumPointsEx,splZero,splZero,ddphidot_a)

end subroutine History

!'rho_dm as a function of "a".
function grhodm(a) !8 pi G rho_dm
real(dl) :: grhodm
real(dl), intent(IN) :: a

if(a.1lt.aVals(1)) then

grhodm=grhodm_a (1) lif a < minimum
else
if(a.gt.aVals(NumPointsEx)) then
grhodm=grhodm_a (NumPointsEx) lif a > maximus
else
call cubicsplint(aVals,grhodm_a,ddgrhodm_a,NumPointsEx,a,grhodm)
endif
endif

end function grhodm

'phi as a function of "a"
function fphi(a) !sqrt(8*pixG)*psi
real(dl) :: fphi
real(dl), intent(IN) :: a

if(a.lt.aVals(1)) then

fphi=phi_a(1) lif a < minimum
else
if(a.gt.aVals (NumPointsEx)) then
fphi=phi_a(NumPointsEx) 'if a > maximus
else
call cubicsplint(aVals,phi_a,ddphi_a,NumPointsEx,a,fphi)
endif
endif

end function fphi
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'phidot as a function of "a"
function fphidot(a) !sqrt(8*pi*G)*psidot
real(dl) :: fphidot
real(dl), intent(IN) :: a

if(a.lt.aVals(1)) then

fphidot=phidot_a(1) 'if a < minimum
else
if (a.gt.aVals(NumPointsEx)) then
fphidot=phidot_a(NumPointsEx) lif a > maximus
else
call cubicsplint(aVals,phidot_a,ddphidot_a,NumPointsEx,a,fphidot)
endif
endif

end function fphidot

end module QCouple

!Background evolution
function dtauda(a)
lget d tau / d a

! 8xpixGkrho*axx4.

phi = fphi(a)
grhoa2=grhok*a2+grhob*a+grhog+grhornomass+grhodm(a) *a2**2+
(0.5d0*fphidot (a)**2 + a2xVofphi(phi,0))*a2

dtauda=sqrt (3/grhoa2)

end function dtauda

!'Initial values for perturbations.

if (coupled) then
initv(1,i_clxc)=0.75_dl*initv(1l,i_clxg)
i_phi = fphi(a)
i_phidot = fphidot(a)
i_Vofphi = Vofphi(i_phi,0)

if (lambda /= 0) then
initv(l,i_clxq)=(2._dl*initv(1l,i_clxc)*i_phidot**2*i_Vofphi)/
((i_phidot#**2 + 2._dl*a2+i_Vofphi)*Vofphi(i_phi,1))
else
initv(1l,i_clxq)=0._d1
endif
initv(l,i_vq)=(initv(l,i_clxc)*i_phidot#**3)/(i_phidot**2 + 2._dl*a2*i_Vofphi)
initv(1,i_vc)=0._dl
else
initv(1l,i_clxc)=initv(1l,i_clxb)
endif
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grhoc_t=grhodm(a)*a2

phia=fphi(a)

phidota=fphidot (a)

Vofphia=Vofphi (phia,0)

grhov_t=0.5d0*phidota**2 + a2*Vofphia

w_eff = (0.5d0O*phidota**2 - Vofphia)/(0.5d0*phidota**2 + Vofphia)

!total perturbations: matter terms first, then add massive nu, de and radiation
I 8xpi*a*a*SUM[rho_i*clx_i]

dgrho=grhob_t*clxb+grhoc_t*clxc

! 8xpi¥a*axSUM[(rho_i+p_i)*v_i]

dgg=grhob_t*vb+grhoc_t*vc

clxg=ay (EV/4w_ix)

vg=ay (EV/w_ix+1)

dgrho=dgrho + phidota*vq + a2+*Vofphi(phia,l)*clxq
dgq = dgq + k*phidota*clxq

'Perturbed dark energy equation of motion

if (coupled) then
Q_inter = -r_int/(1._dl - r_int*phia)
Q_phiphi = r_int**2/(1._dl - r_int*phia)**2

ayprime (Evjw_ix)= vq

ayprime (Evjw_ix+1)= -2._dl*adotoa*vq - k2*clxq - a2xVofphi(phia,2)*clxq &
- kxzxphidota - a2+%(Q_phiphi)&
xclxq*grhoc_t/a2 - a2*(Q_inter)&
*(grhoc_t/a2)*clxc

! CDM equation of motion
clxcdot= -k*z - k*xvc + (Q_inter)*vq + &
(Q_phiphi)*phidotaxclxq
ayprime(3) = clxcdot

ayprime (Evjw_ix+2)= -adotoa*vc - (Q_inter)*phidota*vc&
+ k*x(Q_inter)*clxq
else
clxcdot=-k*z
ayprime (3)=clxcdot
endif



Appendix C

CosmoMC Code: Lookback Time

!'This appendix shows the most import steps to introduce the lookback time
!1ikelihood in the CosmoMC code.

module LBT

use cmbtypes

use CAMB, only: Hofz, DeltaPhysicalTimeGyr
use constants

use Precision

use likelihood

implicit none

real(dl) Age_universe_theory, Age_universe_obs, Age_universe_err

type, extends(CosmologyLikelihood) :: LBTLikelihood

integer :: num_lbt !total number of points used
real(dl), allocatable, dimension(:) :: lbt_z, lbt_age, lbt_err
real(dl), allocatable, dimension(:,:) :: 1lbt_invcov

contains

procedure :: LogLike => LBT_LnLike
end type LBTLikelihood

contains

!This is to add the Lookback Time Likelihood
subroutine LBTLikelihood_Add(LikeList, Ini)
use IniFile
use settings
class(LikelihoodList) :: LikeList
Type(TIniFile) :: ini
Type (LBTLikelihood), pointer :: like

integer numlbtsets, i

if (Ini_Read_Logical_File(Ini, ’use_LBT’,.false.)) then

Age_universe_obs = Ini_Read_Double_File(Ini,’Age_universe_obs’,0.d0)
Age_universe_err = Ini_Read_Double_File(Ini,’Age_universe_err’,O.dO)

numlbtsets = Ini_Read_Int_File(Ini,’lbt_numdatasets’,0)
if (numlbtsets<1) call MpiStop(’Use_LBT but numlbtsets = 0°)
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do i= 1, numlbtsets
allocate(like)
call ReadLBTDataset(like, ReadIniFileName(Ini,numcat(’lbt_dataset’,i)) )
like)LikelihoodType = ’LBT’
likeYneeds_background_functions = .true.
call like)loadParamNames (trim(DataDir)//’LBT.paramnames’)
call LikeList%Add(1like)

end do
if (Feedback>1) write(*,*) ’read lookback time datasets’
end if

end subroutine LBTLikelihood_Add

!This is to read the Lookback Time data
subroutine ReadLBTDataset(bset, gname)
use MatrixUtils
type (LBTLikelihood) bset
character (LEN=+), intent(IN) :: gname
character (LEN=Ini_max_string len) :: lbt_measurements_file, lbt_invcov_file
integer i,iopb
logical bad
Type(TIniFile) :: Ini
integer file_unit

file_unit = new_file_unit()

call Ini_Open_File(Ini, gname, file_unit, bad, .false.)

if (bad) then
write (*,*) ’Error opening data set file ’//trim(gname)
stop

end if

bset)name = Ini_Read_String File(Ini, ’name’)

Ini_fail_on_not_found = .false.

if (Feedback > 0) write (x,*) ’reading lookback time data set: ’//trim(bset’name)
bsetl)num_1bt = Ini_Read_Int_File(Ini,’num_1lbt’,0)

if (bset¥num_lbt.eq.0) write(*,*) ’ ERROR: parameter num_lbt not set’

allocate(bset¥%lbt_z(bset¥num_1lbt))
allocate(bset’lbt_age(bset)num_lbt))
allocate(bset¥%lbt_err(bset/num_1bt))

1bt_measurements_file = ReadIniFileName(Ini,’lbt_measurements_file’)
call OpenTxtFile(1lbt_measurements_file, tmp_file_unit)
do i=1,bset’%num_1lbt
read (tmp_file_unit,*, iostat=iopb) bset)lbt_z(i),bset¥%lbt_age(i),bset¥lbt_err(i)
end do
close(tmp_file_unit)

allocate(bset%lbt_invcov(bsetl)num_1lbt,bsetlnum_1bt))
bset%lbt_invcov = 0O

if (Ini_HasKey_File(Ini,lbt_invcov_file)) then
1bt_invcov_file = ReadIniFileName(Ini, ’1lbt_invcov_file’)
call OpenTxtFile(lbt_invcov_file, tmp_file_unit)
do i=1, bset¥num_1lbt
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read (tmp_file_unit,*,iostat=iopb) bset)lbt_invcov(i,:)
end do
close(tmp_file_unit)

if (iopb.ne.0) then
call MpiStop(’Error reading lookback time file ’//trim(lbt_invcov_file))
endif
else
do i=1,bset¥num_1lbt
bset¥%lbt_invcov(i,i) = 1._d1l/(bset’lbt_err(i)**2 + Age_universe_err*x*2)
end do
endif

call Ini_Close_File(Ini)
call ClearFileUnit(file_unit)

end subroutine ReadLBTDataset

'Lookback Time integrand
function f_1lbt(z)

! Type (CMBParams) CMB
real(dl), intent(in) :: z
real(dl) f_1bt

f_1bt = 1._d1/((1._dl + z)*Hofz(z))
end function f_1bt

'Lookback Time integral
function lookbacktime(z)
! Type (CMBParams) CMB
real(dl), intent(in) :: z
real(dl) rombint, lookbacktime, atol
external rombint

atol = 1d-5
lookbacktime = rombint(f_1lbt,0.,z,atol)*Mpc/c/Gyr
end function lookbacktime

!Here we calculate the Lookback Time Likelihood
function LBT_LnLike(like, CMB, Theory, DataParams)
! use ModelParams
Class(LBTLikelihood) :: like
Class(CMBParams) CMB
Class(TheoryPredictions) Theory
real (mcp) :: DataParams(:)
integer j,k
real (mcp) LBT_LnLike
real(dl), allocatable :: LBT_theory(:), LBT_obs(:)
real(dl) sigma_lbt

LBT_LnLike=0
allocate(LBT_theory(like%num_lbt))
allocate (LBT_obs(like%num_1bt))
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Age_universe_theory = DeltaPhysicalTimeGyr(0._dl,1._dl)
sigma_lbt = DataParams(1)

do j=1, likeYnum_lbt

LBT_theory(j) = lookbacktime(like%lbt_z(j))

LBT_obs(j) = Age_universe_obs - like%lbt_age(j) - sigma_lbt
end do

do j=1, likeYnum_lbt
do k=1, like%num_1bt
LBT_LnLike = LBT_LnLike +&
(LBT_theory(j)-LBT_obs(j))*1like}lbt_invcov(j,k)*&
(LBT_theory (k) -LBT_obs (k))
end do
end do

LBT_LnLike = LBT_LnLike + (Age_universe_theory - Age_universe_obs)**2/&
Age_universe_err**2

LBT_LnLike = LBT_LnLike/2.d0
deallocate(LBT_theory)
deallocate(LBT_obs)

end function LBT_LnLike

end module LBT
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