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Abstract. A two-electrode cylindrical mirror energy analyzer of charged particles is
proposed and calculated. It has a high luminosity due to the axisymmetric field distribution and
second-order focusing in the detector plane. Charged particles are introduced into and removed
from the analyzer without using grids through an opening in the end electrodes, where the field is
practically absent. The electrostatic field of the analyzer is calculated analytically using the
methods of the theory of functions of a complex variable. Numerical integration of differential
equations of motion and the Monte Carlo method are used to model the behavior of charged
particle beams. Analyzer variants with high dispersion and luminosity are calculated.

Key words: cylindrical energy analyzers of charged particles, axisymmetric electron mirrors,
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INTRODUCTION

At present, one of the main research methods in the field of solid state physics is electron
spectroscopy. energy analyzers based on fields of cylindrical and two-dimensional mirrors have
become widely used as analyzing devices. cylindrical mirror energy analyzers have high
dispersion and luminosity due to the rotational symmetry of the field and the presence of second-
order focusing in the detector plane. [1-4].

The main disadvantage of currently used energy analyzers based on cylindrical and two-
dimensional mirror fields is the use of fine-structured grids for introducing particles into the
analyzer and removing them from the analyzer. The blurring of the potential barrier on the grids
limits the analytical capabilities of such devices. Therefore, the development of highly efficient
gridless energy analyzers of charged particles with simple electrode geometry is an urgent task
of physical electronics.

The cylindrical mirror analyzer with closed ends (CMACE) is considered in [5]. Input
and output of charged particles in the analyzer is carried out through a grid system, which is its
main drawback. In the present work, the input and output of particles is carried out through holes
in the ends of the analyzer, where the field is practically absent, which allows to significantly
improve its characteristics. In [5], an analytical expression is given for the axisymmetric
potential describing the analyzer field. This expression is obtained by the standard method of
separating variables in the form of an expansion in a series of Bessel functions. However, it is
inconvenient to use these expressions for numerical calculation of particle trajectories due to
poor convergence of the series. In [6], another method for calculating the field of axisymmetric
systems is proposed, which is used in the present work.

1. CALCULATION OF THE ANALYZER FIELD

In the case of axisymmetric systems, the electrostatic field potential ¢ in cylindrical
coordinates p, v, z depends only on variables p, z and satisfies the Laplace equation. Moving
to dimensionless variables using the relations:
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we obtain the following equation for the potential ¢ (77, £):
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It should be noted that in the region p =R variable =0 and potential ¢ (, ¢) satisfies the
two-dimensional Laplace equation. We will look for the potential ¢ (7, ¢) as a sum of two terms
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Here (p(o) (n, ¢) — harmonic potential satisfying the two-dimensional Laplace equation:
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and given boundary conditions. Using the methods of the CVFT it can be found in closed form.
Then the second term o™ (n, ¢) satisfies the zero Dirichlet boundary conditions and is a
solution to the following inhomogeneous equation:
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In most cases, the term is already (% (;, ¢) is a fairly good approximation for

calculating the potential. This is due to the fact that large values of the derivative
020 (0) 62 (0) _ _ _ _
= on the right side (5) takes in the area, where n = 0. In this area oV (1, ¢)
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approximately satisfies the two-dimensional Laplace equation:
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which, under zero Dirichlet boundary conditions on a closed boundary, has an identically zero
solution.
Let us consider the CMACE proposed in the work [5]. The electrode system of such an

analyzer is shown schematically in Fig. 1.Here Ry, R, —radii of the inner and outer cylindrical

surfaces, respectively, L — distance between the end electrodes. We will assume that the
potentials of the ends and the inner cylinder are the same and equal V , and the potential of the

outer cylinder is equal to V .
The parameter R in formulas (1) is defined by the expression:

R=,/R;R,. (7)
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In variables  u ¢ potential ¢ (£, r) satisfies the boundary conditions in the symmetrical
rectangle shown in Fig. 2. The potential of the upper electrode, for which 7 =7, , equal V , and
the remaining electrodes have potential V . Quantities 7, and & in the figure are defined by

the expressions:
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Fig. 1. Image of the projection of the electrodes of the CMACE onto the x z plane of the
accompanying Cartesian coordinate system.

Let's map this rectangle onto the upper half-plane of the complex plane w=u+iv,
using conformal transformation [7]:
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Here are the dots +1 w- planes correspond to vertices ¥ &\ + 177, , and the points +a — to

the peaks F &, — 17, respectively. To determine the constants, the following integrals must be
calculated:
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Fig. 2. Boundary value problem inthe ¢ # plane
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Integrals J;, J, in expressions (10), (11) are elliptical. Their values were found numerically,
and in a small &- neighborhoods of special points 1, +a the integrals were calculated

analytically, which made it possible to obtain calculation accuracy no worse than 5%
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In Table 1 for different values of the parameter a The calculated values of the integrals
are given J,, J,, and also their ratio, equal to:
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Table 1. Values of integrals J,, J, depending on the value of the a parameter

a J1 J2 NITIND)

11 2,318616 1,639984 1,413805
1,2 2,064762 1,712320 1,205827
15 1,807818 1,900835 0,951065
2,0 1,684159 2,153757 0,781963
3,0 1,615925 2,526283 0,639645

The calculation is carried out as follows: the geometry of the system is specified and,
according to formulas (8), for the given geometry, the following are found: ¢, and 7, then
the value of the parameter a is selected in such a way that the relation (14) is satisfied and for the

found value of the parameter a the constant is found from the expression (10) C.
Distribution of harmonic potential in the plane w is determined by the expression:

FO (u,v) =V, + V=V [arctg 1-u +arctg 1+_u) . (15)
z v v

Let us also write down the partial derivatives of the harmonic potential (15):
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Solving the differential equation for equipotentials:
(0)
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du (O
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let's build a picture of equipotentials in the plane, w which is shown in Fig. 3. Here the electrode
with potential V = 2 is located on the real axis in the interval —1< U <1, and on the rest of the

real axis the potential Vy =1. The graph shows nine equipotentials with potential
FON, =1.9;1.8;...;1.1.

To find the harmonic part of the potential go(o) (¢,n), defining the field of the Central
Zone of the Atomic Energy System, it is necessary to move from the variables in expression (15)
U, V to variables ¢, 1 using the conformal transformation (9). Correction (o(l) (¢,n) satisfies
zero boundary conditions in the rectangle shown in Fig. 2, as well as on the axes ¢, 77 and can

be found by reducing equation (5) to a system of ordinary differential equations [6]. In what
follows, we will neglect this correction due to its smallness..
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Using the potential FO (u,v), it is possible to find the derivatives of the harmonic

potential (/)(0) (&, n) in variables £, 7, using the conformal transformation (9). As a result we
obtain:
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Fig. 3. Equipotential picture in the UV plane.
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Differentiating (9), we write the relationship:
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The inverse derivatives included in (19) are found using the formulas:
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Equipotentials of the field in variables £,7 can be constructed by solving equation (18)
together with the equations:

d¢_o¢ o¢dv 5
du ou ovdu
u ou ovdu

Picture of field equipotentials in the {7 plane is shown in Fig. 4. The figure shows the
calculation results for the CMACE, which R;=1, R,=L=2. For this system
¢, =0.707107 , n, =0.346574 , a=138590, C = - 0.378137. At V =2, V,=1
equipotential potentials vary from 1.9V, to 1.1V, via0.1V,,.

-0.8
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Fig. 4. Equipotential picture in the plane ¢'7 for the CMACE, which &, =0.707107 ,
n =0.346574 , a =1.38590 , C = -0,378137

Field picture in the Xz plane for the same system is shown in Fig. 5. This figure shows the
field only in the upper part of the cross-section of the cylinders, located in the region X >0. This

figure shows that the electric field is practically absent in the lower corner points of the rectangle
shown. The holes in these areas are used to input and output charged particles into the CMACE

without using grids.
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Fig. 5. Equipotential picture in the plane Xz for the same CMACE

2. CALCULATION OF PARTICLE TRAJECTORIES

We will consider flat beams of charged particles from a point source located along the
axis of the cylinders. Let the particles move in the plane Xz axisymmetric electrostatic field.

The equations of motion of a charged particle in the CMACE in dimensionless Cartesian
coordinates can be written as follows:

oD 0P
X=——, I=—. (27)
oX 0z
Here @ :F(O)/VO — dimensionless potential, the unit of length is taken as the quantity R,

defined by formula (7), the dots denote derivatives with respect to dimensionless time 7 :t/'ro ,

where
m
=R | ——. 28
z-0 |qVO| ( )

In the last formula m — particle mass, q — electric charge of a particle. If the initial value

Yo =0, then the particles in the process of their movement move in the radial plane Xz . In this
case, the motion of particles is described by equations (27). Moreover,

0P _ 0% oudn ob v on
X 0Ou dn ox oV on ox
0P _0doudg od v o¢
0z o0uof 0z ov od oz

(29)
(30)

In the numerical integration of equations (27), the initial conditions for the beam particles
were specified on the symmetry axis: Xo=0, Zzy5=ly; Xo, 2;=0, at that
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Uy =w/x§ +Z'§ =,/ 2(1+ g) . Here & characterizes the relative spread of energy in the initial

beam. Simultaneously with equations (27), the following equations were integrated:

g_dudn, ouol,

on oX 0¢ 0z
Vzﬂa_n)u_a_va_gz_ (32)
on Ox 0¢ 0z

The following initial conditions were given for these equations: Vo =0, Uy =a. From the

solution of equations (31), (32) the variables were found u and v, giving the image of the
trajectory - plane. This made it possible to find the derivatives of the potential included in (27)
using formulas (16), (17) and (29), (30).

The calculation of trajectories for the CMACE was carried out, which R;=1,R,=L=2.
For this system ¢\, =0.707107 , 7, =0.34657459 , a=1.385756 , C = — 0.378117. The

potential of the external electrode was selected in such a way that the trajectory passed through
the edge of the end electrode adjacent to the internal cylinder. This requirement corresponds to

the value V =—-0.0572 (V =1). The trajectories of the monoenergetic beam calculated in this
way are shown in Fig. 6. It is evident that the beam is focused near the cylinder axis. This figure
also shows the axial trajectory of the beam, for which & =0, as well as trajectories that differ
from the axial one with a relative deviation in energy £ =%0.1. From these data, the linear

dispersion of the analyzer along the cylinder axis is approximately equal to 6.0 per 100% energy
change.

-2,82,62,42,2-2-1,81,61,41,2-1 -0,80,60,40,2 0 0,20,40,60,8 1 1,21,41,61,8 2 2,22,42,62,8 3 3,23,4%6

Fig. 6. Trajectories of a beam of charged particles in the CMACE, which R=1,R,=L =2,
potential at the braking electrode V =—0,0572 .
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CONCLUSION

The paper uses a method for calculating the spatial distribution of potential in
axisymmetric mirrors based on the use of CVFT methods. The field distribution in a cylindrical
mirror analyzer with closed ends (CMACE) is found. CMACEs are calculated in which the beam
is input and output in the analyzer through a hole in the electrodes, where the field is practically
absent. Analyzer versions with high resolution and luminosity due to the rotational symmetry of
the field and the presence of second-order focusing in the detector plane are found.
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