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Abstract. A two-electrode cylindrical mirror energy analyzer of charged particles is 

proposed and calculated. It has a high luminosity due to the axisymmetric field distribution and 

second-order focusing in the detector plane. Charged particles are introduced into and removed 

from the analyzer without using grids through an opening in the end electrodes, where the field is 

practically absent. The electrostatic field of the analyzer is calculated analytically using the 

methods of the theory of functions of a complex variable. Numerical integration of differential 

equations of motion and the Monte Carlo method are used to model the behavior of charged 

particle beams. Analyzer variants with high dispersion and luminosity are calculated. 

 

Key words: cylindrical energy analyzers of charged particles, axisymmetric electron mirrors, 

gridless electron mirrors. 

 
INTRODUCTION 

 

At present, one of the main research methods in the field of solid state physics is electron 

spectroscopy. energy analyzers based on fields of cylindrical and two-dimensional mirrors have 

become widely used as analyzing devices. cylindrical mirror energy analyzers have high 

dispersion and luminosity due to the rotational symmetry of the field and the presence of second-

order focusing in the detector plane. [1-4].  

The main disadvantage of currently used energy analyzers based on cylindrical and two-

dimensional mirror fields is the use of fine-structured grids for introducing particles into the 

analyzer and removing them from the analyzer. The blurring of the potential barrier on the grids 

limits the analytical capabilities of such devices. Therefore, the development of highly efficient 

gridless energy analyzers of charged particles with simple electrode geometry is an urgent task 

of physical electronics. 

The cylindrical mirror analyzer with closed ends (CMACE) is considered in [5]. Input 

and output of charged particles in the analyzer is carried out through a grid system, which is its 

main drawback. In the present work, the input and output of particles is carried out through holes 

in the ends of the analyzer, where the field is practically absent, which allows to significantly 

improve its characteristics. In [5], an analytical expression is given for the axisymmetric 

potential describing the analyzer field. This expression is obtained by the standard method of 

separating variables in the form of an expansion in a series of Bessel functions. However, it is 

inconvenient to use these expressions for numerical calculation of particle trajectories due to 

poor convergence of the series. In [6], another method for calculating the field of axisymmetric 

systems is proposed, which is used in the present work. 

 

1. CALCULATION OF THE ANALYZER FIELD 

 

In the case of axisymmetric systems, the electrostatic field potential   in cylindrical 

coordinates  ,  , z depends only on variables  , z  and satisfies the Laplace equation. Moving 

to dimensionless variables using the relations: 
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we obtain the following equation for the potential ( ) , : 
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It should be noted that in the region R  variable 0  and potential ( ) ,  satisfies the 

two-dimensional Laplace equation. We will look for the potential ( ) ,  as a sum of two terms 
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Here ( ) ,
)0(  – harmonic potential satisfying the two-dimensional Laplace equation: 
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and given boundary conditions. Using the methods of the CVFT it can be found in closed form. 

Then the second term ( ) ,
)1(  satisfies the zero Dirichlet boundary conditions and is a 

solution to the following inhomogeneous equation:  
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In most cases, the term is already ( ) ,
)0(  is a fairly good approximation for 

calculating the potential. This is due to the fact that large values of the derivative 
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)1(  

approximately satisfies the two-dimensional Laplace equation: 
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which, under zero Dirichlet boundary conditions on a closed boundary, has an identically zero 

solution. 

Let us consider the CMACE proposed in the work [5]. The electrode system of such an 

analyzer is shown schematically in Fig. 1.Here 1R , 2R  – radii of the inner and outer cylindrical 

surfaces, respectively, L  – distance between the end electrodes. We will assume that the 

potentials of the ends and the inner cylinder are the same and equal  0V , and the potential of the 

outer cylinder is equal to V .  

The parameter R  in formulas (1) is defined by the expression:   

 

21 RRR = .                                                              (7) 
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In variables   и   potential ( ) ,  satisfies the boundary conditions in the symmetrical 

rectangle shown in Fig. 2. The potential of the upper electrode, for which k = , equal V , and 

the remaining electrodes have potential 0V . Quantities k  and k  in the figure are defined by 

the expressions: 
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Fig. 1. Image of the projection of the electrodes of the CMACE onto the x z plane of the 

accompanying Cartesian coordinate system. 

 

Let's map this rectangle onto the upper half-plane of the complex plane viuw += , 

using conformal transformation [7]: 
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Here are the dots 1  w - planes correspond to vertices kk i + , and the points а  –  to 

the peaks  kk i −  respectively. To determine the constants, the following integrals must be 

calculated: 
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Fig. 2. Boundary value problem  in the   plane  
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Integrals 1J , 2J  in expressions (10), (11) are elliptical. Their values were found numerically, 

and in a small  - neighborhoods of special points 1 , а  the integrals were calculated 

analytically, which made it possible to obtain calculation accuracy no worse than 
2 : 

 









−

+

−−

= 
−

2

1

0

2

2
2

1
1

12)1()1(
aa

u
u

ud
J




,                                        (12) 

 

( ) 







+−

+









−

+

−−

= 
−

+

a
aa

aa

u
u

ud
J

a

1
11

1
12)1()1(

2

2
1

2

2
2

2






,                   (13) 

 

In Table 1 for different values of the parameter а The calculated values of the integrals 

are given 1J , 2J , and also their ratio, equal to:   
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Table 1. Values of integrals 1J , 2J  depending on the value of the а parameter  

а J1
 J2

 J1/ J2 

1,1 2,318616 1,639984 1,413805 

1,2 2,064762 1,712320 1,205827 

1,5 1,807818 1,900835 0,951065 

2,0 1,684159 2,153757 0,781963 

3,0 1,615925 2,526283 0,639645 

 

 

The calculation is carried out as follows: the geometry of the system is specified and, 

according to formulas (8), for the given geometry, the following are found: k and k  then 

the value of the parameter a is selected in such a way that the relation (14) is satisfied and for the 

found value of the parameter a the constant is found from the expression (10) С. 

Distribution of harmonic potential in the plane w  is determined by the expression: 
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Let us also write down the partial derivatives of the harmonic potential (15): 

 










−+
−

++

−
=






2222

0
)0(

)0(

)1(

1

)1(

1

uvuv
v

VV

u

F
Fu


,                               (16) 










−+

−
+

++

+−
−=






2222
0

)0(
)0(

)1(

1

)1(

1

uv

u

uv

uVV

v

F
Fv


.                              (17) 

 

Solving the differential equation for equipotentials: 
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let's build a picture of equipotentials in the plane, w  which is shown in Fig. 3. Here the electrode 

with potential 2=V  is located on the real axis in the interval 11 − u , and on the rest of the 

real axis the potential 10 =V . The graph shows nine equipotentials with potential 

1.1...;;8.1;9.10
)0(

=VF . 

To find the harmonic part of the potential ),(
)0(  , defining the field of the Central 

Zone of the Atomic Energy System, it is necessary to move from the variables in expression (15) 

vu,  to variables  ,  using the conformal transformation (9). Correction ),(
)1(   satisfies 

zero boundary conditions in the rectangle shown in Fig. 2, as well as on the axes  ,  and can 

be found by reducing equation (5) to a system of ordinary differential equations [6]. In what 

follows, we will neglect this correction due to its smallness.. 
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Using the potential ),(
)0(

vuF , it is possible to find the derivatives of the harmonic 

potential ),(
)0(   in variables  , , using the conformal transformation (9). As a result we 

obtain: 

 
Fig. 3. Equipotential picture in the vu plane. 
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Differentiating (9), we write the relationship: 
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Where  
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The inverse derivatives included in (19) are found using the formulas: 
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Equipotentials of the field in variables  ,  can be constructed by solving equation (18) 

together with the equations: 
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Picture of field equipotentials  in the   plane is shown in Fig. 4. The figure shows the 

calculation results for the CMACE, which 11=R , 22 == LR . For this system  

707107.0=k , 346574.0=k , 38590,1=а , С = – 0.378137. At 2=V , 10 =V  

equipotential potentials vary from 09.1 V  to 01.1 V  via 01.0 V .  
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Fig. 4. Equipotential picture  in the plane   for the CMACE, which 707107.0=k , 

346574.0=k , 38590.1=а , С = – 0,378137 

 

Field picture  in the zx  plane for the same system is shown in Fig. 5.  This figure shows the 

field only in the upper part of the cross-section of the cylinders, located in the region 0x . This 

figure shows that the electric field is practically absent in the lower corner points of the rectangle 

shown. The holes in these areas are used to input and output charged particles into the CMACE 

without using grids. 
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Fig. 5. Equipotential picture  in the plane zx  for the same CMACE 

 

2. CALCULATION OF PARTICLE TRAJECTORIES 

 

 We will consider flat beams of charged particles from a point source located along the 

axis of the cylinders. Let the particles move in the plane zx  axisymmetric electrostatic field. 

The equations of motion of a charged particle in the CMACE in dimensionless Cartesian 

coordinates can be written as follows: 
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Here 0
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VFΦ =  – dimensionless potential, the unit of length is taken as the quantity R, 

defined by formula (7), the dots denote derivatives with respect to dimensionless time 0 t= , 
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In the last formula m  – particle mass, q  – electric charge of a particle. If the initial value 

00 =y , then the particles in the process of their movement move in the radial plane zx . In this 

case, the motion of particles is described by equations (27). Moreover, 
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In the numerical integration of equations (27), the initial conditions for the beam particles 

were specified on the symmetry axis: 00 =x , 00 lz = ; 0x , 00 =z , at that 
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00 zx  . Here   characterizes the relative spread of energy in the initial 

beam. Simultaneously with equations (27), the following equations were integrated: 
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The following initial conditions were given for these equations: 00 =v , аu =0 . From the 

solution of equations (31), (32) the variables were found u and v, giving the image of the 

trajectory - plane. This made it possible to find the derivatives of the potential included in (27) 

using formulas (16), (17) and (29), (30). 

The calculation of trajectories for the CMACE was carried out, which 11=R , 22 == LR . 

For this system 707107.0=k , 34657459.0=k , 385756.1=а , С = – 0.378117. The 

potential of the external electrode was selected in such a way that the trajectory passed through 

the edge of the end electrode adjacent to the internal cylinder. This requirement corresponds to 

the value 0572.0−=V  ( 10 =V ). The trajectories of the monoenergetic beam calculated in this 

way are shown in Fig. 6. It is evident that the beam is focused near the cylinder axis. This figure 

also shows the axial trajectory of the beam, for which 0= , as well as trajectories that differ 

from the axial one with a relative deviation in energy 1.0= . From these data, the linear 

dispersion of the analyzer along the cylinder axis is approximately equal to 6.0 per 100% energy 

change. 

 

 
 

Fig. 6. Trajectories of a beam of charged particles in the CMACE, which 11=R , 22 == LR , 

potential at the braking electrode 0572,0−=V . 
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CONCLUSION 

 

The paper uses a method for calculating the spatial distribution of potential in 

axisymmetric mirrors based on the use of CVFT methods. The field distribution in a cylindrical 

mirror analyzer with closed ends (CMACE) is found. CMACEs are calculated in which the beam 

is input and output in the analyzer through a hole in the electrodes, where the field is practically 

absent. Analyzer versions with high resolution and luminosity due to the rotational symmetry of 

the field and the presence of second-order focusing in the detector plane are found.  
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