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Abstract We make an analysis of three -loop effects of
the strong coupling constant in the study of masses and
decay constants of the heavy-flavour pseudo-scalar mesons
(PSM) D, Ds , B, Bs, Bc, ηc and ηb in a non-relativistic
QCD potential model using Dalgarno’s perturbation theory
(DPT). The first order mesonic wavefunction is obtained
using Dalgarno’s perturbation theory. The three-loop effects
of strong coupling constant are included in the wave func-
tion in co-ordinate space and then used to examine the static
and dynamic properties of the heavy-flavour mesons for 2S
and 3S higher states. The results are compared with the other
models available and are found to be compatible with avail-
able experimental values. In V-scheme, the three-loop effects
on masses and decay constants of heavy-flavour mesons show
a significant result.

1 Introduction

The non-relativistic predictions of Potential Models with a
non-relativistic Hamiltonian for the heavy-light and heavy-
heavy mesons are found to be in fair agreement with the
updated experimental data, theoretical results like QCD sum
rule [1,2], Lattice results [3] and relativistic harmonic con-
finement model (RHCM) [53]. The static potential between
the two heavy quarks is a fundamental quantity in QCD [4].
While its one loop corrections are computed in [5,6], the
corresponding two-loop effects were reported in late 1990’s
[7–9]. Numerical results are obtained first for fermionic con-
tributions [10–12], whereas the analytical results are more
recent [12]. Some important hadronic properties are the
pseudoscalar meson mass MP and decay constant fP . Phe-
nomenological study of two-loop effects in the static and
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dynamic properties of heavy-flavour mesons using a lin-
ear cum Coulomb Cornell potential has been reported in
the recent years [14,15]. In this work, quantum perturba-
tion approach [16,17] is used to calculate the approximate
analytical forms of heavy flavored mesons. Here specifically
the linear part of the potential V (r) = − 4αs

3r + br is used as
perturbation.

The most common perturbative method is Dalgarno’s
perturbation theory (DPT) [21,23–25], which is a station-
ary static perturbation theory. The non-relativistic potential
model has been found successful for heavy-heavy B, ηc and
ηb families. The study of the wave functions of heavy-flavour
mesons like B and D and η are important both analytically
and numerically for studying the properties of strong inter-
action between heavy-light and heavy-heavy quarks as well
as for investigating the mechanism of heavy meson decays.
In this work, we have obtained a total first order corrected
wavefunction for 2S and 3S states using Dalgarno’s method
of perturbation [30] with linear part of the Cornell potential
[19,31] as perturbation in co-ordinate space. This wavefunc-
tion is then used to estimate the masses and decay constants
of heavy-light and heavy-heavy pseudo-scalar mesons in this
improved QCD Potential model approach.

One aim of the present work is to make an analysis of the
contribution of three-loop effects in the improved strong cou-
pling constant αV ( 1

r ) in V -scheme, which in turn contributes
to the spin–spin interaction [27–29] term present in the
expression of mass and decay constant of the heavy-flavour
meson. In addition, the non-relativistic binding energy effect
between the two quark–antiquark composition of the heavy-
flavour meson is newly incorporated in the expression of
PSM mass, which was absent in our some previous works
[23–25,37,39,41].
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The rest of the paper is organised as follows: Sect. 2
contains formalism, Sect. 3 contains results while Sect. 4
includes the conclusion.

2 Formalism

2.1 V-scheme: three-loop effects

V-scheme is a standard way of taking into account the higher
order effects of QCD, which are expressed as power series
in the running strong coupling constant αMS in MS-scheme.
The two-loop static potential in V-scheme which is also used
as the three-loop static potential defined as [8,33,34],

V (r) = −CFαV
( 1
r

)

r
(1)

Here, αV is the effective strong coupling constant and

CF is the color factor, given as, CF = (N2
C−1)

2NC
, where NC

is the no. of colors. Generally, the quark–gluon interaction
is characterised by strong coupling constant αMS(q

2) in a
dimensionally independent MS-scheme [7,20]. As discussed
in the introduction , three-loop effects have been reported
numerically first for fermionic contribution [10] followed by
the gluonic counter part [10–12]. Analytic three-loop static
potential have been discussed only in the year 2016 [12].
These effects are invariably reported in momentum space
where the author setsq2 = μ

′2 as the renormalization scale to
suppress the infrared logarithmics. For the three-loop effects,
we follow [11] the numerical solution for the potential at
three-loop level in momentum space is given by,

V (|q|) = −4πCFαs(|q2|)
q2

×
[
1 +

(αs

π

) (
2.5833 − 0.2778n f

)

+
(αs

π

)2 (
28.5468 − 4.1471n f + 0.0772n2

f

)

+
(αs

π

)3 (
209.884 − 51.4048n f

+2.9061n2
f − 0.0214n3

f

)]
(2)

The corresponding expression in co-ordinate space will
be,

V (r) = −CF

r
αs(μ

′2)
[
1 +

(αs

π

)
(2.5833 − 0.2778n f )

+
(αs

π

)2
(28.5468 − 4.1471n f + 0.0772n2

f )

+
(αs

π

)3
(209.884 − 51.4048n f

+2.9061n2
f − 0.0214n3

f )
]

(3)

Using Eq. (1), we obtain the relationship between the
improved strong coupling constant αV ( 1

r ) and the standard
leading order strong coupling constant in MS-scheme at
N 3LO level is given by:

αV

(
1

r

)
= αs(μ

′2)
[
1 +

(αs

π

)
(2.5833 − 0.2778n f )

+
(αs

π

)2
(28.5468 − 4.1471n f + 0.0772n2

f )

+
(αs

π

)3
(209.884 − 51.4048n f

+2.9061n2
f − 0.0214n3

f )
]

(4)

From the above equation, it is observed that at one-, two-
and three-loop order, a large screening of the nonfermionic
contributions by the n f terms which is most prominent in the
case of a3 for n f = 5.

2.2 Dalgarno’s perturbation theory

2.2.1 2S state wave-function of the heavy-flavour mesons

For shell L, we take n = 2 and l = 0 ; the 2S state normalized
wave-function [42] is given by:

ψ
(0)
20 (r) =

(
1

2
√

2π

) (
1

a0

) 3
2
(

1 − r

2a0

)
e
− r

2a0 (5)

In Dalgarno’s perturbation theory, we make a small defor-
mation to the Hamiltonian of the system as ,

H = H0 + H ′ (6)

where H0 is the Hamiltonian of the unperturbed system and
H ′ is the perturbed Hamiltonian. The approximation method
is most suitable when H is close to the unperturbed Hamil-
tonian H0, i.e. H ′ is small. The standard potential is [19],

V (r) = −4αV

3r
+ br. (7)

This Coulomb-plus-linear potential, called Cornell poten-
tial is an important ingredient of the model which is estab-
lished on the two kinds of asymptotic behaviours: ultraviolet
at short distance (Coulomb like) and infrared at large distance
(linear confinement term).

The Schrödinger equation takes the form as,

H |ψ〉 = (H0 + H ′)|ψ〉 = E |ψ〉 (8)

so that the first-order perturbed eigenfunction ψ(1) and eigen
energy W (1) can be obtained using the relation,

H0ψ
(1) + H ′ψ(0) = W (0)ψ(1) + W (1)ψ(0) (9)
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where H0 and H
′

are the parent and perturbed Hamiltonian
defined as,

H0 = −�2

2μ
− A

r
(10)

H
′ = br (11)

and

W (0) = 〈ψ(0)|H0|ψ(0)〉 = −μA2

2
(12)

W (1) = 〈ψ(0)|H ′|ψ(0)〉 (13)

With Cornell potential we get two choices in DPT:

1. Coulomb Parent, Linear Perturbation (CP).
2. Linear Parent, Coulomb Perturbation (LP).

In our present analysis we consider the first option. The
radial Schrodinger equation for l = 0 and n = 2 is,
[
− 1

2μ

(
d2

dr2 + 2

r

d

dr

)
+ l(l + 1)

2
− A

r
− W (0)

]
ψ

(1)
20

= −
[
br − W (1)

]
ψ

(0)
20 (14)

[
d2

dr2 + 2

r

d

dr
+ 2μA

r
− μ2A2

]
ψ

(1)
20

= 2μ
[
br − W (1)

]
ψ

(0)
20 (15)

where ψ
(0)
20 is unperturbed wave function and is defined in

Eq. (5) and ψ
(1)
20 is the first order correction to the wave

function.
To solve the above equation, let us start from [24],

ψ
(1)
20 = br R(r) (16)

With this substitution, Eq. (15) takes the form as:

(br)
d2R(r)

dr2 + 4b
dR(r)

dr
+ 2bR(r)

r
+ 2bR(r)

a0
− br R(r)

a2
0

= K (br − W (1))

(
1 − r

2a0

)
e
− r

2a0 (17)

with,

K = (2μ)
1

2
√

2π

(
1

a0

) 3
2

(18)

a0 = 1

μA
(19)

A = 4αV

3
(20)

Putting as in [24],

R(r) = F(r)e
− r

2a0 (21)

Equation (17) becomes,

(br)F
′′
(r) +

(
4b − br

a0

)
F

′
(r) +

(
2b

r
− 3br

4a2
0

)

F(r)

= K (br − W (1))

(
1 − r

2a0

)
(22)

The method of Frobenius [56] is a power series solution.
Considering the only four terms in the series and neglecting
the higher order terms for 2S state,

F(r) = A−1

r
+ A0 + A1r + A2r

2 (23)

with this the final form of the Eq. (22) is obtained as,

(
2ba0 + bA−1

a0

)
1

r

(

6bA1 − 3bA−1

4a2
0

)

r0

+
(

12bA2 − bA1

a0
− 3bA0

4a2
0

)

r −
(

2bA2

a0
+ 3bA1

4a2
0

)

r2

−
(

3bA2

4a2
0

)

r3 = −(KW 1)r0 +
(
Kb + KW 1

2a0

)
r

−
(
Kb

2a0

)
r2 (24)

The expectation energy (eigen energy) is easily obtained
using mathematica-9 as ,

〈W (1)〉 =
∫ ∞

0
4πr2ψ0H

′
ψ0 = 6ba0 (25)

Equating co-efficients of r−1,r0 r and r2 on both sides of
Eq. (24), we get the values of constants as:

A−1 = 40Ka3
0

3
(26)

A0 = 20Ka2
0

3
(27)

A1 = 2Ka0

3
(28)

A2 = 0 (29)

Hence Eq. (16) becomes,

ψ
(1)
20 = K (K1 − K2r + K3r

2)e
− r

2a0 (30)

with, K1 = 40ba3
0

3 , K2 = 20ba2
0

3 , K3 = 2ba0
3 .

Hence, using Dalgarno’s perturbation theory with Coulom-
bic parent, we get the total wave-function of the form cor-
rected up to first order,

ψ total
20 (r) = ψ

(0)
20 (r) + ψ

(1)
20 (r)

= N
[
P − Qr + Rr2

]
e
− r

2a0 , (31)

P = K

[
1

2μ
+ K1

]
(32)
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Q = K

[
1

4μa0
+ K2

]
(33)

R = KK3 (34)

where the normalization constant is,

N = 1
[∫ ∞

0 4πr2
[
P − Qr + Rr2

]2
e
− r

a0 dr
] 1

2

. (35)

where, a0 = 1
μA ; the value of b is b = 0.183 GeV2 is

the confinement parameter [5,9]. μ = m1m2
m1+m2

is the reduced
mass.

2.2.2 3S state wave-function of the heavy-flavour mesons

For shell M, we taken = 3 and l = 0 ; the 3S state normalized
wave-function [42] is given by,

ψ
(0)
30 (r) =

(
1

3
√

3π

) (
1

a0

) 3
2
(

1 − 2r

2a0
+ 2r2

27a3
0

)

e
− r

3a0

(36)

represents the unperturbed wave function for 3S state. For
l = 0 and n = 3, the corresponding Eq. (15) for 3S state
becomes,
[
d2

dr2 + 2

r

d

dr
+ 2μA

r
− μ2A2

]
ψ

(1)
30

= 2μ
[
br − W (1)

]
ψ

(0)
30 (37)

where ψ
(1)
30 is the first order correction to the wave function.

Similarly, as in Eq. (16) Let,

ψ
(1)
30 = br R(r) (38)

with this substitution the Eq. (37) takes the form as,

(br)
d2R(r)

dr2 + 4b
dR(r)

dr
+ 2bR(r)

r
+ 2bR(r)

a0
− br R(r)

a2
0

= L(br − W (1))

(

1 − 2r

3a0
+ 2r2

27a3
0

)

e
− r

3a0 (39)

with,

L = (2μ)
1

3
√

3π

(
1

a0

) 3
2

(40)

The corresponding substitution as in Eq. (21);

R(r) = F(r)e
− r

3a0 (41)

Therefore, Eq. (39) is obtained as,

(br)F
′′
(r) +

(
4b − 2br

3a0

)
F

′
(r) +

(
2b

3a0
− 8br

9a2
0

+ 2b

r

)

F(r)

= L(br − W (1))

(

1 − 2r

3a0
+ 2r2

27a2
0

)

(42)

Similar way, the corresponding only four terms in the
method of Frobenius [56] for 3S state,

F(r) = A
′
−1

r
+ A

′
0 + A

′
1r + A

′
2r

2 (43)

With this, the final form of the Eq. (42) is obtained as,
(

2bA
′
0 + 4bA

′
−1

3a0

)
1

r

+
(

6bA
′
1 + 2bA

′
0

3a0
− 8bA

′
−1

9a2
0

)

r0

+
(

12bA
′
2 − 8bA

′
0

9a2
0

)

r −
(

2bA
′
2

3a0
+ 8bA

′
1

9a2
0

)

r2

−
(

8bA
′
2

9a2
0

)

r3

= L

[

br −
(

2b

3a0

)
r2 +

(
2b

27a2
0

)

r3 − W (1)

+
(

2r

3a0
W (1)

)
r −

(
2r2

27a2
0

W (1)

)

r2

]

(44)

The expectation energy is obtained using mathematica-9
as ,

〈W (1)〉 = 4b

a2
0

(45)

Equating the co-efficients of r−1, r , r2 and r3, we get the
values of the constants as:

A
′
−1 = 27La3

0

8
+ 9L

2
(46)

A
′
0 = −

(
9La2

0

4
+ 3L

a0

)

(47)

A
′
1 = 39La0

48
+ L

3a2
0

(48)

A
′
2 = − L

12
(49)

Hence, Eq. (38) yields,

ψ
(1)
30 = b(A

′
1 + A

′
0r + A

′
1r

2 + A
′
2r

3)e
− r

3a0 (50)

Therefore, the total wave-function corrected up to first
order using Dalgarno’s perturbation theory is,

ψ total
30 (r) = ψ

(0)
30 (r) + ψ

(1)
30 (r)

= N
′ [
L1 + L2r + L3r

2 + L4r
3
]
e
− r

3a0 , (51)
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with,

K
′ = 1

3
√

3π

(
1

a0

) 3
2

(52)

L1 =
[
K

′ + bA
′
−1

]
(53)

L2 =
[

bA
′
0 − 2K

′

3a0

]

(54)

L3 =
[

bA
′
1 + 2K

′

27a2
0

]

(55)

L4 =
[
bA

′
2

]
(56)

where the normalization constant is obtained from,

N
′ = 1

[∫ ∞
0 4πr2

[
L1 + L2r + L3r2 + L4r3

]2
e
− 2r

3a0 dr

] 1
2

.

(57)

2.3 Wave function at origin (WFO)

At origin, r = 0; WFO for 2S state (Eqn .31) is given by,

ψ total
20 (0) = N P = NK

(
1

2μ
+ 40ba3

0

3

)

(58)

Similarly, WFO, for 3S state (Eqn .51) is given by,

ψ total
30 (0) = N

′
L1 = N

′
[

K
′ + b

(
27La3

0

8
+ 9L

2

)]

(59)

2.4 The expression of mass and decay constant of
pseudo-scalar meson

Fermi–Breit Hamiltonian: We take the non-relativistic two
body Schrodinger equation (8) viz.,

H |ψ〉 = (H0 + H ′)|ψ〉 = E |ψ〉, (60)

Where H0 is the free Hamiltonian for two quarks of masses
mi and m j and three momenta Pi and Pj . H0 is defined as,

H0 = P2
i

2mi
+ P2

j

2m j
(61)

and H is the Fermi–Breit Hamiltonian with confinement
which is defined as [51,55],

H(r) = HCon f (r) + Hhyp(r) + HS.O.(r) (62)

Here,

HCon f (r) =
(

−αs(r)

r
+ 3br

4
+ 3c

4

)
(
F̄i .F̄j

)
(63)

Hhyp(r) = − αs (r)

mim j

×
[

8π

3
S̄i .S̄ j δ

3(r) + 1

r3

(
3(S̄i .r̄)(S̄ j .r̄)

r2 − S̄i .S̄ j

)]
(
F̄i .F̄j

)

(64)
HS.O.(r) = HS.O.(c.m.)(r) + HS.O.(t.p)(r) (65)

HS.O.(c.m.)(r) = αs(r)

r3

(
1

mi
+ 1

m j

) (
Si
mi

+ S j

m j

)
L

(
F̄i .F̄j

)
(66)

HS.O.(t.p)(r) = − 1

2r

δHCon f

δr

(
Si
m2

i

+ S j

m2
j

)

L (67)

Here, Si and S j are the spins of the i th and j th quarks
separated by a distance r . For ground state (l = 0), only the
contact term proportional to δ3(r) contributes and the Hamil-
tonian takes the simpler form as:

H = 4αs

3

(

−1

r
− 8π

3
δ3(r)

S̄i .S̄ j

mim j

)

+ br + c (68)

In the present work, c sets to be zero. To compute mass of
the pseudoscalar mesons the spin–spin interaction possessing
the form given by [49,50],

〈Hss〉 = − 8παs

3mim j
ψ(0)|2 ≡ − 8παs

3m1m2
|ψ(0)|2 (69)

The mass and the decay constant of heavy-flavour pseudo-
scalar meson including only spin–spin interaction are given
in [26,27] as:

MP = m1 + m2 + En,l + 〈Hss〉 (70)

where, m1 and m2 are the masses of quark–antiquark and αs

is the strong coupling constant identified as αV in the present
work, En,l is the non-relativistic binding energy between the
quark–antiquark composition and the van Royen–Weisskopf
formula [54] for the decay of pseudo-scalar meson is,

fP =
√

12|ψ(0)|2
MP

(71)

Here, αV is the improved strong coupling constant in V-
scheme defined by Eq. (4) and |ψ(0)| is the wave function at
origin (WFO).

The non-relativistic binding energy is given by [29,30,32],

En,l = −2μA2

(2(n − 1) + 1)2 + (2l + 1)2 + (4(n − 1) + 2)(2l + 1)

(72)

S-waves states: For the S-wave state l = 0 , we have;

En,l = −2μA2

(2(n − 1) + 1)2 + (4(n − 1) + 2) + 1
(73)

Now, for 2S state (n = 2) and for 3S state (n = 3), the
En,l takes the form as:

E2,0 = −2μA2

16
(74)

123
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and

E3,0 = −2μA2

36
(75)

3 Results

3.1 Input parameters used in the calculation

With the formalism developed in Sec.2, we calculate the
masses and decay constants of pseudo-scalar heavy-flavour
mesons using Eqs. (70) and (71) in 2S and 3S states,
which are shown in Tables 6, 7, 8 and 9 respectively. The
input parameters are taken as in [24,36,37,52]; mu/d =
0.336 GeV, mb = 4.95 GeV, mc = 1.55 GeV, ms =
0.483 GeV, and b = 0.183 GeV2. Also we calculated the
effective strong coupling constant in V-scheme and found
αV ( 1

r ) = 0.73 for n f = 4 and αV ( 1
r ) = 0.303 for n f = 4 at

N 3LO level respectively. We make a comprehensive com-
parison of our results with QCD sum rule [1,2], Lattice results
[3,19,43,44] other models like [24], RHCM [53] and the
recent experimental values [36].

We use the usual expression for strong coupling constant
in MS scheme for lowest order (LO level) is given by [40]

αs(q
2) = αMS(q

2) = 4π

β0ln

(
m2

Q

�2
QCD

) (76)

Here, mQ is the mass of the heavy quark and �QCD

is the QCD scale parameter having values 0.292 GeV and
0.210 GeV for n f = 4 and n f = 5 respectively.

3.2 αV , En,l and different parameters used in V-scheme

3.2.1 Calculation of effective strong coupling constant
αV ( 1

r )

Using Eq. (4), we tabulate the values of αV ( 1
r ) taking into

account one-loop (NLO), two-loop (N 2LO) and three-loop
(N 3LO) in Table 1 for n f = 4 and n f = 5. It shows that for
n f = 4, the enhancements are respectively 21%, 48% and
62% while for n f = 5, the corresponding enhancements are
8% , 14% and 17% respectively. The anti-screening effects
of gluons seem to play an important role for n f = 5.

Table 1 Values of αV ( 1
r )

n f LO NLO N 2LO N 3LO

4 0.45 0.5445 0.67 0.73

5 0.259 0.28 0.297 0.303

3.2.2 Calculation of non-relativistic binding energy En,l

Following Eqs. (74) and (75) along with Eq. (20) we obtain
the non-relativistic binding energy En,l (in GeV) of the
heavy-flavour pseudo-scalar mesons D, Ds , B, Bs, Bc, ηc
and ηb respectively and tabulated them in Table 2 below.

It is seen that from the above Table 2, the magnitude of the
non-relativistic binding energy is always greater for 2S state
than 3S state, which indicates, the non-relativistic binding
energy decreases with increasing higher states.

3.2.3 Calculation of parameter A

Using Eq. (20) with the values of αV from Table 1, we cal-
culate the parameter A for the same heavy-flavour pseudo-
scalar mesons given in the Table 3 below.

3.2.4 Calculation of different parameters used in the
expression of mass MP

For the mentioned seven heavy-flavour pseudo-scalar mesons
D, Ds , B, Bs, Bc, ηc and ηb respectively, the Eqs. (18), (19),
(20), (32), (33), (34) and (35) along with Eqs. (58), (69) and
(70) yield the values of the following parameters (Table 4):

Similarly, for the same heavy-flavour pseudo-scalar mesons,
the corresponding Eqs. (19), (20), (52), (53), (54), (55), (56),
(57) along with Eqs. (59), (69) and (70) yield the following
Table 5.

Table 2 Values En,l in GeV for 2S and 3S states

Meson State E20 State E30

D(cu/cd) 2S −0.03 3S −0.0145

Ds(cs) 2S −0.0432 3S −0.0194

B(ub/db) 2S −0.0064 3S −0.00285

Bs(sb) 2S −0.009 3S −0.004

Bc(bc) 2S −0.0241 3S −0.011

ηc(cc) 2S −0.0158 3S −0.00703

ηb(bb) 2S −0.051 3S −0.002245

Table 3 Values of parameter A at LO , NLO , N 2LO and N 3LO level

Meson A(LO) A(NLO) A(N 2LO) A(N 3LO)

D(cu/cd) 0.53 0.72 0.89 0.97

Ds(cs) 0.53 0.72 0.89 0.97

B(ub/db) 0.345 0.373 0.396 0.404

Bs(sb) 0.345 0.373 0.396 0.404

Bc(bc) 0.345 0.373 0.396 0.404

ηc(bc) 0.345 0.373 0.396 0.404

ηb(bb) 0.345 0.373 0.396 0.404
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Table 4 Values of parameters
used and |ψ(0)|2 (in GeV3) in
2S State

Meson a0 K P Q R N |ψ(0)|2

D(cu/cd) 3.72 0.01529 1.948 0.3 0.007 0.042 0.0066

D(cs) 2.80 0.03134 1.72 0.307 0.017 0.055 0.00895

B(ub/db) 7.88 0.00566 5.98 0.45 0.006 0.0083 0.0025

Bs(sb) 5.62 0.0132 5.73 0.510 0.0091 0.0096 0.003

Bc(bc) 2.10 0.15498 3.556 0.8495 0.0404 0.064 0.052

ηc(cc) 1.3256 0.2026 1.282 0.4836 0.033 0.32 0.168

ηb(bb) 1.0001 0.98745 2.61 1.304 0.1205 0.2425 0.401

Table 5 Values of parameters
used and |ψ(0)|2 (in GeV3) in
3S state

Meson a0 K
′

L L1 L2 L3 L4 N
′ |ψ(0)|2

D(cu/cd) 3.72 0.01514 0.008358 0.289 0.08 0.0053 0.00009 0.114 0.0011

Ds(cs) 2.80 0.02318 0.01706 0.2685 0.079 0.0066 0.00014 0.14 0.00165

B(ub/db) 7.88 0.0049 0.00308 0.94 0.088 0.0032 0.00004 0.053 0.00249

Bs(sb) 5.62 0.00815 0.007174 0.803 0.12 0.0064 0.0001 0.064 0.00262

Bc(bc) 2.10 0.035688 0.08422 0.59 0.2 0.028 0.001 0.1032 0.0038

ηc(cc) 1.3256 0.071159 0.110297 0.854 0.180 0.0289 0.0014 0.12 0.0105

ηb(bb) 1.0001 0.108589 0.5375 0.89 0.59 0.125 0.007 0.19 0.030

3.3 2S State masses and decay constants of heavy-flavour
mesons and their comparison

Following Eqs. (58), (70), (71) and (76) along with the results
of Tables 1, 2, 3 and 4; we calculate the masses MP and decay
constants fP (in GeV) of the heavy-flavour pseudo-scalar
mesons D, Ds , B, Bs, Bc, ηc and ηb and tabulated them in
Tables 6 and 7 respectively with the comparison of results
of the other models like QCD sum rule [1,2], Lattice results
[3,19,43,44], relativistic harmonic potential model (RHPM)
[53] and experimental data [36,45–47].

3.4 3S State masses and decay constants of heavy-flavour
mesons and their comparison

Using Eqs. (59), (70), (71) and (76) along with the results of
Tables 1, 2, 3 and 5; we calculate the masses MP and decay
constants fP (in GeV) of the same heavy-flavour pseudo-
scalar mesons and tabulated them in Tables 8 and 9.

Comparative analysis of pseudo-scalar meson mass spec-
tra from Tables 6 and 8 provides a well agreement of our
results in both 2S and 3S states while the decay constants
from Tables 7 and 9 are found to be in better harmony only
for 2S state with experimental values and other models avail-
able.

3.5 Sources of uncertainties and possible future
improvements

Let us discuss the sources of uncertainties in the calculation
and the possible future improvements. The sources of uncer-
tainties arise mainly:

(a) Due to the numerical values of quark masses. But for
heavy-light meson, the uncertainty in the light quark mass
does not play any significant role for mQ 	 mq . i.e.,
when the heavy quark mass is very large compared to the
light quark mass.

(b) Another uncertainty is in the definition of strong cou-
pling constant in the MS-scheme for lowest order (LO
level) defined by Eq. (76). Here the possible uncertainty
is in preferring the choice of scale Q2 = m2

Q , where

m2
Q is the square of the mass of heavy quark. However,

even in an alternative choice of the scale Q2 = m2
meson ,

the differences in the predictions are still insignificant
for heavy-light mesons as mQ 	 mq . For heavy-heavy
mesons like ηc and ηb, where both the quarks are heavy,
there will be a very minor change in the predictions of
mass spectra and decay constants.
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Table 6 Mass (MP ) in GeV

Meson MP(Our) RHCM [53] Ref. [24] Lattice [3] Q. sum rule [1,2] Exp. MP [36,45–47]

D(cu/cd) 1.80 2.653 2.378 1.885 1.87 1.869 ± 0.0016

Ds(cs) 1.886 2.778 2.500 1.969 1.97 1.968 ± 0.0033

B(ub/db) 5.277 6.192 5.798 5.283 5.28 5.279 ± 0.0017

Bs(sb) 5.420 6.264 5.902 5.366 5.37 5.366 ± 0.0024

Bc(bc) 6.45 6.929 6.810 6.278 6.277 ± 0.006

ηc(cc) 2.91 3.626 2.980 ± 0.0012

ηb(bb) 9.80 10.012 9.461 ± 0.0026

Table 7 Decay constant ( fP ) in GeV

Meson fP(Our) RHCM [53] QCD sum [1,2] Latt. [3,19,43,44] Exp. fP

D(cu/cd) 0.209 0.336 0.206 ± 0.002 0.220 ± 0.003 0.205 ± 0.085 ± 0.025[45,46]

Ds(cs) 0.238 0.387 0.245 ± 0.015 0.258 ± 0.001 0.254 ± 0.059[45,46]

B(ub/db) 0.100 0.581 0.193 ± 0.012 0.218 ± 0.005 0.198 ± 0.014[47]

Bs(sb) 0.107 0.600 0.232 ± 0.018 0.228 ± 0.010 0.237 ± 0.017[47]

Bc(bc) 0.311 0.607 0.562[48]

ηc(cc) 0.832 0.420

ηb(bb) 0.699 0.711

Table 8 Mass (MP ) in GeV

Meson MP(Our) RHCM [53] Ref. [24] Lattice [3] Q.sum rule [1,2] Exp. MP [36,45–47]

D(cu/cd) 1.860 3.162 2.378 1.885 1.87 1.869 ± 0.0016

D(cs) 1.997 3.264 2.500 1.969 1.97 1.968 ± 0.0033

B(ub/db) 5.279 6.732 5.798 5.283 5.28 5.279 ± 0.0017

Bs(sb) 5.425 6.764 5.902 5.366 5.37 5.366 ± 0.0024

Bc(bc) 6.48 7.308 6.810 6.278 6.277 ± 0.006

ηc(cc) 3.08 4.047 2.980 ± 0.0012

ηb(bb) 9.87 10.319 9.461 ± 0.0026

Table 9 Decay constant ( fP ) in GeV

Meson fP(Our) RHCM [53] QCD sum [1,2] Latt. [3,19,43,44] Exp. fP

D(cu/cd) 0.100 0.336 0.206 ± 0.002 0.220 ± 0.003 0.205 ± 0.085 ± 0.025[45,46]

Ds(cs) 0.110 0.387 0.245 ± 0.015 0.258 ± 0.001 0.254 ± 0.059[45,46]

B(ub/db) 0.085 0.581 0.193 ± 0.012 0.218 ± 0.005 0.198 ± 0.014[47]

Bs(sb) 0.087 0.600 0.232 ± 0.018 0.228 ± 0.010 0.237 ± 0.017[47]

Bc(bc) 0.09 0.607 0.562[48]

ηc(cc) 0.205 0.420

ηb(bb) 0.200 0.711
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Let us now discuss about the possible future improvements
and their applications: In the present work we have not intro-
duced the relativistic effect in the light quark. For the future
improvement the light quark can be considered relativisti-

cally with the Hamiltonian H = M+ p2

2m+√
p2 + m2+V (r),

where M is the mass of heavy quark and m is the mass of
light quark as in [33,37,57]. Similarly, the QCD correction

factor C
2
(αV ) [37,58] can also be introduced in van Royen–

Weisskopf formula [37,54] for the decay of pseudo-scalar
meson. The improved model then can be applied in the study
of Branching ratio, Oscillation frequency, Leptonic decay as
well [37].

4 Conclusion

The spectroscopic properties of heavy-light and extended
heavy-heavy favour system mesons are studied as a potential
scheme with Dalgarno’s Perturbation Theory. The study of
mass spectroscopy and decay properties of the heavy-flavour
mesonic states considering only spin–spin interaction pro-
vides us a fruitful results of the dynamics of quarks and glu-
ons at the hadronic scale. The values of masses are found to
be 1.80, 1.886, 5.277, 5.420, 6.45, 2.91 and 9.80 GeV and
decay constants are found to be 0.209, 0.238, 0.100, 0.107,
0.311, 0.832, and 0.699 GeV for D, Ds , B, Bs , Bc, ηc and ηb
respectively for pseudo-scalar mesons in 2S state. The cor-
responding masses and decay constants of the above seven
pseudo-scalar mesons for 3S state are found to be 1.860,
1.997, 5.279, 5.425, 6.48, 3.08, 9.87 GeV and 0.100, 0.110,
0.085, 0.087, 0.09, 0.205, 0.200 GeV respectively. The val-
ues of MP and fP are in close agreement with the values
available from other models and experimental data for 2S
state. For 3S state the MP values are in close proximity
with other models but some of fP values are smaller than
the other models and experimental data. The success sug-
gests the importance of the effects of three-loop contribution
and the non-relativistic binding energy between the quark
composite and the choice of renormalization scale parame-
ter used as well as the potential forms for the understanding
of the dynamics of the light-heavy and heavy-heavy quark
systems. However, although mass spectroscopic results are
quite good for 3S state, the values of decay constants fP are
smaller due to the small WFO values. It suggests limitation of
the van Royen–Weisskopf formula (Eqn .71). Proper incor-

poration of QCD corrections C
2
(αV ) [37,58] and relativistic

effects at least minimally [37] are expected to improve the
results.

In conclusion, the Dalgarno’s Perturbation approach with
the option of linear perturbation and three-loop effects
employed here is found to be successful in the study of heavy-
flavour mesons with a Coulombic plus linear potential. More-

over, our results suggest, the treatment of light-flavour rel-
ativistically and heavy-flavour non-relativistically seems to
be appropriate in light of the successful predictions of the
various properties of heavy-light and heavy-heavy systems.
The parameters and the results obtained here can be useful in
the study of the leptonic and semi-leptonic decays of these
mesons.

Acknowledgements One of the authors (R. Hoque) acknowledges
Maulana Azad National Fellowship, India for financial support by pro-
viding Fellowship during the research work. He also thanks the Head
of the department of Physics, Gauhati University and the Head of the
department of Physics, Pandu College, Guwahati, India for providing
the necessary facilities.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: Our research work
is basically to build a model to estimate static and dynamic properties of
heavy-flavour mesons within phenomenological Quantum Chromody-
namics. So, data deposition is not necessarily emphasized in our present
work.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. W. Lucha et al., J. Phys. G Nucl. Part. Phys. 38, 105002 (2011)
2. Z.G. Wang, Eur. Phys. J. C 75, 427 (2015). https://doi.org/10.1140/

epjc/s10052-015-3653-9
3. R.J. Dowdall et al., HPQCD Collab., arXiv:1207.5749v1
4. N. Brambilla et al., Quarkonium Working Group,

arXiv:hep-ph/0412158
5. W. Fischler, Nucl. Phys. B 129, 157 (1977)
6. A. Billoire, Phys. Lett. B 92, 343 (1980)
7. M. Peter, Phys. Rev. Lett. 78, 602 (1997). arXiv:hep-ph/9610209
8. M. Peter, Phys. B 501 (1997). arXiv:hep-ph/9702245
9. Y. Schroder, The static potential in QCD to two loops, DESY-98-

191. arXiv:hep-ph/9812205
10. Alexander V. Smirnov et al., Fermionic contributions to the three-

loop static potential. PLB 668, 293 (2008). arXiv:0809.1927v1
11. Alexander V. Smirnov et al., Three-loop static potential. PRL 104,

112002 (2010). arXiv:0911.4742v2
12. Roman N. Lee et al., Phys. Dev. D 94, 054029 (2016)
13. C. Anzai, Y. Kiyo, Y. Sumino, PRL 104, 112003 (2010)
14. M. Melles, Static QCD potential in co-ordinate space with quark

masses through two-loops. Phys. Rev. D 62, 074019 (2000)
15. D.K. Choudhury, N.S. Bordoloi, Mod. Phys. Lett. A. 24(6), 443–

451 (2009)
16. K.K. Pathak, D.K. Choudhury, Chin. Phys. Lett. 28, 101201 (2011)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1140/epjc/s10052-015-3653-9
https://doi.org/10.1140/epjc/s10052-015-3653-9
http://arxiv.org/abs/1207.5749v1
http://arxiv.org/abs/hep-ph/0412158
http://arxiv.org/abs/hep-ph/9610209
http://arxiv.org/abs/hep-ph/9702245
http://arxiv.org/abs/hep-ph/9812205
http://arxiv.org/abs/0809.1927v1
http://arxiv.org/abs/0911.4742v2


 1213 Page 10 of 10 Eur. Phys. J. C          (2020) 80:1213 

17. D.K. Choudhury, N.S. Bordoloi, Mod. Phys. Lett. A. 17(29), 1909–
1913 (2002)

18. Y. Schroder, The static potential in QCD to two loops , DESY-98-
191. arXiv:hep-ph/9812205

19. E. Eichten et al., Phys. Rev. D 21, 203 (1980)
20. S.J. Brodsky, Commensurate scale relations and the Abelian cor-

respondence principle, SLAC-PUB-7861 (1998)
21. A. Dalgarno, Stationary perturbation theory, in Quantum Theory:

I Elements, ed. by D.R. Bates (Academic Press, New York, 1961)
22. D.K. Choudhury, N.S. Bordoloi, Int. J. Mod. Phys. A 15(23), 3667–

3678 (2000)
23. K.K. Pathak, D.K. Choudhury, N.S. Bordoloi, Leptonic decay of

heavy-light mesons in a QCD potential model. Int. J. Mod. Phys.
A (2012). https://doi.org/10.1142/S0217751X13500103

24. T. Das et al., Int. J Mod. Phys. A (2016). https://doi.org/10.1142/
S0217751X1650189X

25. T. Das, D.K. Choudhury, K.K. Pathak, Indian J. Phys. 90, 1307–
1312 (2016). https://doi.org/10.1007/S12648-016-0866-1

26. W. Lucha, F.F. Schoberl, D. Gromes, Bound states of quarks. Phys.
Rep. (Rev. Sect. Phys. Lett.) 200, 127–240 (1991)

27. H. Hassanabadi, M. Ghafourian, S. Rahmani, Study of heavy-
light mesons properties via the variational method for Cor-
nell potential interaction. Few-Body Syst. https://doi.org/10.1007/
s00601-015-1040-6

28. C. Quigg, J.L. Rosner, Phys. Rep. 56, 167 (1979)
29. M. Moazami, H. Hassanabadi, S. Zarrinkamar, Heavy-light

mesons under a new potential containing Cornell, Gaussian and
inverse square terms. Few Body Syst. https://doi.org/10.1007/
s00601-018-1422-7

30. A. Ghataak, S. Lokanathan, Quantum Mechanics, Theory and
Applications (TRINITY, New Delhi, 2017)

31. D. Griffiths, Introduction to Elementary Particles (Wiley, New
York, 1987), p. 158

32. F. Halzen, A.D., Martin, Quarks and Leptons. Wiley, New York.
ISBN:0-471-88741-2

33. A.K. Rai, R.H. Parmar, P.C. Vinodkumar, J. Phys. G Nucl. Part.
Phys. 28, 22752282 (2002)

34. J. Lahkar, D.K. Choudhury, B.J. Hazarika, arXiv:1902.02079v1
35. G.P. Lepage, P.B. Mackenzie, Phys. Rev. D 48, 2250 (1993)
36. C. Patrignani and Particle Data Group, Chin. Phys. C 40, 100001

(2016)

37. J. Lahkar, D.K. Choudhury, B.J. Hazarika, Commun. Theor. Phys.
71, 49–55 (2019)

38. N. Isgur, M.B. Wise, Phys. Lett. B 232, 113 (1989)
39. B.J. Hazarika, K.K. Pathak, D.K. Choudhury, arXiv:1012.4377v3
40. A. Deur, S.J. Brodsky, G.F. de Teramond, arXiv:1604.08082v3
41. J. Lahkar, R. Hoque, D.K. Choudhury, Mod. Phys. Lett. A. 34,

1950106 (2019). https://doi.org/10.1142/S0217732319501062
42. B.H. Bransden, C.J. Joachain,QuantumMechanics, 2nd edn. (Pear-

son, 2013), p. 363. ISBN:978-81-317-0839-2
43. Heechang Naetal, Phys. Rev. D 86, 034506 (2012). https://doi.org/

10.1103/PhysRevD.86.034506
44. W. Chen et al., TWQCD Collaboration, Phys. Lett. B 736 (2014).

https://doi.org/10.1016/j.physletb.2014.07.025
45. The LHCb Collaboration, arXiv:1304.4741v1 [hep-ex]
46. D. Asner et al., (Heavy Flavor Averaging Group), arXiv:1010.1589
47. B.I. Eisenstein et al., (CLEO Collaboration), Phys. Rev. D 78,

052003 (2008)
48. B. Patel, P.C. Vinodkumar, Chin. Phys. C 34 (2010).

arXiv:0908.2212v1 (2009)
49. T. Bames, S. Godfrey, E.S. Swanson, Phys. Rev. D 72, 054026

(2005)
50. B.H. Yazarloo, H. Mehraban, EPL 116, 31004 (2016)
51. F.E. Close, An Introduction to Quarks and Partons (Academic

Press, London), p. 396
52. H. Mutuk, Hindawi Adv. High Energy Phys. 2018, Article ID

8095653. https://doi.org/10.1155/2018/8095653
53. J.N. Pandya, P.C. Vinodkumar, Pramana J. Phys. 57(4), 821–827

(2001)
54. R. Van Royen et al., Nuovo Cimento 50, 617 (1967)
55. D.K. Choudhury et al., Pramana J. Phys. 44(6), 519–534 (1995)
56. G.B. Arfken et al., Mathematical Methods for Physics, 7th edn.

(2012)
57. D.S. Hwang et al., Phys. Rev. D 53, 4951 (1996)
58. E. Braaten, S. Fleming, Phys. Rev. D 52, 181 (1995). https://doi.

org/10.1103/PhysRevD.52.181

123

http://arxiv.org/abs/hep-ph/9812205
https://doi.org/10.1142/S0217751X13500103
https://doi.org/10.1142/S0217751X1650189X
https://doi.org/10.1142/S0217751X1650189X
https://doi.org/10.1007/S12648-016-0866-1
https://doi.org/10.1007/s00601-015-1040-6
https://doi.org/10.1007/s00601-015-1040-6
https://doi.org/10.1007/s00601-018-1422-7
https://doi.org/10.1007/s00601-018-1422-7
http://arxiv.org/abs/1902.02079v1
http://arxiv.org/abs/1012.4377v3
http://arxiv.org/abs/1604.08082v3
https://doi.org/10.1142/S0217732319501062
https://doi.org/10.1103/PhysRevD.86.034506
https://doi.org/10.1103/PhysRevD.86.034506
https://doi.org/10.1016/j.physletb.2014.07.025
http://arxiv.org/abs/1304.4741v1
http://arxiv.org/abs/1010.1589
http://arxiv.org/abs/0908.2212v1
https://doi.org/10.1155/2018/8095653
https://doi.org/10.1103/PhysRevD.52.181
https://doi.org/10.1103/PhysRevD.52.181

	2S and 3S State Masses and decay constants of heavy-flavour mesons in a non-relativistic QCD potential model with three-loop effects in V-scheme
	Abstract 
	1 Introduction
	2 Formalism
	2.1 V-scheme: three-loop effects
	2.2 Dalgarno's perturbation theory
	2.2.1 2S state wave-function of the heavy-flavour mesons
	2.2.2 3S state wave-function of the heavy-flavour mesons

	2.3 Wave function at origin (WFO)
	2.4 The expression of mass and decay constant of pseudo-scalar meson

	3 Results
	3.1 Input parameters used in the calculation
	3.2 αV, En,l and different parameters used in V-scheme
	3.2.1 Calculation of effective strong coupling constant αV(1r)
	3.2.2 Calculation of non-relativistic binding energy En,l
	3.2.3 Calculation of parameter A
	3.2.4 Calculation of different parameters used in the expression of mass MP

	3.3 2S State masses and decay constants of heavy-flavour mesons and their comparison
	3.4 3S State masses and decay constants of heavy-flavour mesons and their comparison
	3.5 Sources of uncertainties and possible future improvements

	4 Conclusion
	Acknowledgements
	References




