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Abstract

The collective field theory technique provides a method of tackling problems with two N x N
matrices in the large N limit. The collective field background from one matrix is first found,
then the second matrix is introduced into this background as an impurity. Within the context
of the AdS/CFT correspondence, this technique can be used to describe gauge theory states in
the BMN limit.

This dissertation starts by developing the collective field theory technique, firstly in general
variables, then for one matrix, and subsequently for two matrices. It goes on to introduce a
Yang-Mills interaction term, where two variable identifications are considered. The first is the
more traditional angular momentum eigenstate model. The second is a model that directly uses
two of the Higgs scalars. This model has been mentioned in the literature, but has not been
considered in great depth. The exact two impurity spectrum is found, and the multi-impurity
spectrum is found to first order. The resulting energy values match a spectrum that has been

found for giant magnons.
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Chapter 1

Introduction

1.1 Background

't Hooft published a paper in 1974 [1] pointing out an interesting phenomena that arises when
the N in SU(N) gauge theories is treated as a free parameter. When the large N limit is
taken, the Feynman diagrams are arranged in a similar way to that of a string. This paved the
way to a proposed correspondence between gauge theories and string theory. Perhaps the best
recent example of this correspondence is a duality proposed by Maldacena [2], called the Anti-de
Sitter/Conformal Field Theory (AdS/CFT) correspondence. This relates type IIB string theory
involving AdS space (namely AdSs x S%) and A/ = 4 Super Yang Mills (SYM) theory. Much
work has been done on developing a “dictionary” allowing one to go from the string theory to
the field theory or vice versa.

One promising area of research within the AdS/CFT correspondence has involved looking at
giant gravitons in AdS x S, and their SYM duals. On the field theory side, 1/2 BPS states and
their interactions can be described in terms of a (single matrix) free fermion model of harmonic
oscillators. This description makes use of a complex matrix in a harmonic potential ([3], [4]).
Later on, Lin, Lunin and Maldacena (LLM) showed that a fermionic droplet configuration
completely describes 1/2 BPS states [5]. [6] reproduced the energy and flux obtained by LLM.
They extended the free fermion matrix model by considering a one dimensional Hermitian matrix
in a bosonic phase space density description.

To consider more interesting cases than free fermions, it is necessary to consider models with

more than one matrix. It is not known how to solve a two matrix model exactly. One way of



tackling the problem at large N is to solve one of the matrices exactly by introducing a new set
of invariant collective fields. While overcomplete for finite N, the new variables tend towards
independence in the large N limit. The second matrix is treated in a coherent state basis, using
creation and annihilation operators. Creation operators corresponding to the second matrix are
then added as impurities into the background created by the first matrix. Using this technique
on a two matrix model with an harmonic potential, [6] found a sequence of eigenvalue equations
that generalised the results obtained earlier for one matrix [7]. Eigenstates were obtained for a
harmonic oscillator potential for any number of impurities. A 1-1 map was found that relates
these eigenfunctions to a 2D subset of suitable transformed wavefunctions from Supergravity on
AdS x S.

By considering a different set of states, [8] obtained the full free spectrum for two Hermitian
matrices. It went on to introduce the interaction term from the SYM action. This was done
in two different contexts. The first used the traditional angular momentum eigenstates. First
order energy results were found by considering part of the Hamiltonian. The second method
involved modelling the two scalars directly.

This thesis aims firstly to review the work leading up to this point, showing the physical
significance of the collective field theory approach to tackling one and two matrix models. The
context of this work within the AdS/CFT correspondence is given. Secondly, it aims to extend
the field by deriving the energy spectrum that results from the introduction of a Super Yang-Mills
interaction term, for a particular identification of variables corresponding to a direct treatment

of two Higgs.

1.2 Outline

This thesis is organised as follows.

Chapters 2 and 3 contain background material to the AdS/CFT correspondence, which will
motivate the calculations of later chapters. Chapter 2 contains a summary of and motivation
for the AdS/CFT correspondence. The initial motivation for this link came from 't Hooft in the
context of QCD [1]. His original argument is revisited, and it is shown how the large N limit
yields planar diagrams to leading order in the Feynman expansion. This large N expansion is
of the form of a perturbation expansion in string theory, which provides the first indication that

gauge theories and string theories are linked.



The two theories on either side of the AdS/CFT correspondence are then examined. Some
of the properties and content of N/ = 4 Super Yang Mills theory are found by starting with
a conformal field theory, then adding supersymmetry. Anti-de Sitter space is introduced, and
some fundamental properties of type IIB strings defined on AdS5 x S° are given. On the gauge
theory side, chiral primary are introduced. These are 1/2 BPS operators which are of particular
interest as their dimension does not receive coupling dependent corrections.

Maldacena’s original argument [2] for the identification of N' = 4 SYM theory and IIB string
on AdS x S is then explored. N parallel D3-branes are put into a ten dimensional space, and
two different low energy limits are taken. In the first case, the result is free supergravity plus
N = 4 SYM, and in the other case the result is free supergravity plus strings on AdSs x S°.
The SYM theory and the string theory are therefore identified.

Chapter 3 looks at consistency checks for the AdS/CFT, as well as exploring some of the links
that have found between specific sets of states on either side of the correspondence. Parameters
which are mapped to each other on both sides of the correspondence are identified. The BMN
limit is explored, which relates strings in a plane wave background to single trace operators into
which impurities have been introduced. Spin chains are briefly introduced, together with some
motivation for their study and some basic spin chain results.

Chapters 4, 5, 6 and 7 look at applying the collective field theory technique to matrix models.
Chapter 4 develops the mathematical formalism, using general notation. The change of variables
to invariant collective fields is described, and the Jacobian is found by requiring Hermiticity.

Chapter 5 starts by outlining the physical motivation for examining free single matrix models
using the collective field theory techniques. These models describe 1/2 BPS states — extremal
states whose anomalous dimension (or energy on the string side) is protected by supersymmetry
considerations. The general formalism developed in chapter 4 is then applied to an Hermi-
tian matrix. A Fourier transform is made to an eigenvalue density description and the energy
spectrum of the single matrix Hamiltonian is found.

Chapter 6 goes on to look at the identification of variables from the AdS/CFT correspondence
that leads to matrix models involving two of the SYM scalars. Two possibilities arise, creating
angular momentum eigenstates from the SYM scalars, or directly modelling the two SYM scalars.
These two models will be examined in more detail in chapters 7 and 8. Both involve two

matrix models, which are traditionally difficult to solve. The approach followed is thus to treat



the first matrix exactly, as described in chapter 5. The second matrix is then expressed in a
creation/annihilation basis, and introduced in the form of impurities into the background created
by the first matrix. The result of adding impurities into the zero-impurity background produced
by the first matrix is then examined. The many-impurity Hamiltonian is found together with
the energy spectrum, using results calculated in the appendices. The eigenfunctions are found
to involve products of Chebyshev polynomials, which have a similar structure to spin chains.

The gy s interaction term is added in chapters 7 and 8. Chapter 7 examines it in terms
of the angular momentum eigenstate in the interaction potential of A" = 4 SYM theory, using
the angular momentum variables. This is shown to generate an interaction Hamiltonian. The
resulting first order energy spectrum is reviewed.

Chapter 8 presents new work on the two SYM scalar matrix model. While this model has
been mentioned before in [8], it has not been developed fully. The Hamiltonian is found to
generate a term of the same form as the leading contribution from chapter 7. This leads to a
difference equation. The original derivation in [8] gave energy results for two impurities to first
order by only considering the some of the terms in the difference equation. We take this further
by introducing an ansatz which gives an analytic solution to the complete difference equation for
any number of impurities. We then perform a Bogoliubov transformation. The energy spectrum
resulting from the ansatz is shown to exactly determine the spectrum resulting from the gy s
interaction term for two impurities, and to first order in the t 'Hooft coupling for any number
of impurities. The final energy is shown to be of the same form as a result found recently for
giant magnons.

Chapter 9 is reserved for a discussion of the results, and future outlook.

Appendix A contain details of the calculations of the collective field theory parameters for
many impurities. Appendix B has the calculation of the many-impurity energy spectrum. These
results are used in chapter 6. Appendix C contains a proof for the equivalence of two operators

that is used in chapter 8.
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Chapter 2

AdS/CFT correspondence

The foundations of the AdS/CFT correspondence were laid within the context of understand-
ing the strong force. In fact, string theory was first developed as an attempt to describe the
observed variety of hadrons and mesons, which interact via the strong force. It was not very
successful at this, and this approach was no longer pursued after the development of Quantum
Chromodynamics (QCD), which describes hadrons and mesons as being made up of constituent
quarks. Despite the lack of overall success, string theories retain some of the properties that
make them an attractive candidate for describing the strong force.

The first useful property concerns the relationship between mass and angular momentum.
Within the space of hadrons with a given spin, the hadron with the lowest mass obeys m? ~
T.J? 4 const, which is satisfied by a rotating relativistic string.

Two other useful properties are asymptotic freedom and confinement. Asymptotic freedom
states that the force between quarks goes to zero at small distances. At large distances the force
increases sharply, so that one is never able to observe a free quark; this is called confinement.
These properties can be understood in a string-like manner. The flux lines between quarks can
be thought of as stretching out in a tube, such that the quarks are always bound to each other.
At small distances the force is not large, but at large distances it increases as the flux tube is
extended. These flux lines are similar to strings with quarks at both ends.

While QCD on the whole has been very successful, it is not easy to do calculations at low
energy scales, where QCD becomes strongly coupled. One of the problems is the lack of a
good dimensionless parameter on which to perform perturbation theory. QCD is defined around

SU(3), in other words quarks come in three colours. t "Hooft [1] attempted to tackle the strongly
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coupled region by instead taking a gauge theory where the number of colours is N, and then
taking the large N limit. If this simplified the theory, then 1/N corrections could be added to
leading terms, which would allow one to get a perturbative expansion when N — 3. The result
of this approach was an expansion that matched that of free string theory. In this way, the large
N limit gave the first hint that gauge theories are related to string theories, as will be described
in more detail in the next section.

The kind of argument followed by ’t Hooft turns out to be very general, and links can be
found between many different gauge theories and string theories. A general property of dualities
between gauge theories and string theories is that in the region where one is strongly coupled, the
other is weakly coupled, and vice versa. This is useful, as it suggests a way to do calculations in
regions where previously it was very difficult, such as in low energy QCD. It is also problematic,
as it has made proving dualities between theories difficult because the regions where calculations
can be done do not overlap nicely.

Of the dualities, the AdS/CFT correspondence in particular has received much attention in
the literature, and provides the background to this thesis. It involves two highly supersymmetric
theories, relating strings in a space with an Anti-de-Sitter (AdS) component to operators in

Super-Yang-Mills conformal field theory (CFT).

2.1 Large N limit

Following the review in [9], we consider a general theory based on SU(N) with fields ®. For a
less specific version of this argument, involving a general Hermitian matrix M, see [10]. In ®¢,
a is an index in the adjoint representation of SU(N), and i is another index, such as flavour or
colour. Three point vertices will contribute gy s, and four point vertices g% - After rescaling

by taking ¢ — ¢/gy s, the Lagrangian is of the form

1 g g
L= —— | Te(d®;dd;) + A Te(D;0;Py) + d”ler(<I>i<I>j<IJk<I>l)] (2.1)
Iy m

The original argument followed 't Hooft in [1] dealt with the gauge field theory that describes
the strong interaction. The Lagrangian was therefore more complex, involving quark fields and
ghost fields (in the Feynman gauge) in addition to the gauge fields Auji. The general principles

of the argument are the same, however.
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Figure 2.1: The contributions to g2 ,, and N that arise from various diagrams

We can represent each adjoint field as a direct product of a fundamental and an anti-
fundamental field, so the theory will be built out of objects with two indices, <I>§ The propagators

(neglecting terms sub-leading in N for some groups) are of the form
(DLOF) o 6107,

To keep track of the two indices, we introduce a double line notation into the Feynman diagrams,
where the upper indices are denoted by incoming arrows and lower indices by outgoing arrows.
Where arrows join, such as at vertices, the indices are summed. The resulting Feynman diagram
will be a network of directed double lines. This can be viewed as a simplical decomposition of
a surface, where the lines (arrows) are edges or faces in the decomposition.

To see what happens at large N, the scaling of gyj; as N — oo must be determined.
Requiring that the leading terms of the beta function for SU(N) YM theory scale consistently
at large N (see [9] for details) means that N limit should be taken in such a way as to keep
A= g%, AV finite. This is called the 't Hooft limit.

We determine the gy s and N dependence from the geometrical properties of the surface.
From equation 2.1, vertices will contribute a factor of 1/¢g%,,. Propagators (or edges) are
inversely proportional to the quadratic part, and thus contribute a factor of g% - Closed loops
are equivalent to 5:-', so each closed loop, or face, contributes a factor of IN. These cases are
shown in figure 2.1.

A diagram with E edges, V vertices and F faces will be proportional to

NV—E-FFAE—V — N2_29AE_V

where Euler’s formula has been used to introduce the genus, or number of handles, g. (We

are assuming connected diagrams — the extension to disconnected diagrams is easily made by
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adding the terms for the different components.) A full perturbative expansion will be a sum of

terms of the above form, and can be written as

o0

SN0 (2.2)

9=0

where the functions f; capture the A dependence. The leading terms are the ones with g = 0,
which are diagrams that can be drawn on a plane. The large N limit is thus often referred to as
the “planar limit”. For each handle that is added, the diagram will be suppressed by a factor
of 1/N?2.

Equation (2.2) has the same form as the perturbative expansion for closed oriented strings,
if we identify 1/N as the string coupling constant. We therefore see that in the large N limit,
gauge fields are linked to string theories. It should be noted that this connection is based on a
perturbation expansion that does not converge, and can thus not be called a rigorous derivation.
It is thought, however, that it is indicative of a true equivalence between gauge field theories

and string theories.

2.2 Properties of N =4 SYM and IIB strings on AdS x S

Having given the general motivation for links between gauge theories and string theories, we
now turn to the example of interest, namely the AdS/CFT correspondence. One the string side,
the correspondence involves type IIB string theory on a ten dimensional space that consists of
a 5-sphere and a five dimension Anti-de-Sitter space, i.e. AdSs x S°. This is identified with the
maximally supersymmetric four dimensional conformal field theory, which is A' = 4 Super Yang
Mills (SYM) with the gauge group SU(N) [2, 11]. Before giving an outline of the justification for
this link, let us briefly explore the theories on either side of the correspondence, starting with
the SYM field theory.

A conformal field theory (CFT) is a quantum field theory that is invariant at quantum level
under the group of conformal transformations. These transformations preserve the metric up to
an overall (in general x dependant) scaling factor, g, (z) — Q*(2)g,w (), thus preserving angles.
The conformal group is the smallest group that contains both the Poincaré group as well as the
inversion symmetry x# — z#/22. In Minkowski space, the conformal group is generated by

Poincaré transformations, scale transformations and a special conformal transformation given
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o + ata?
H 2.3
S + 2z%a, + a?x? (2:3)

For details on the full set of commutators obeyed by the generators of these transformations,
see for example the review in [9]. For now, there are two that are of interest. Denote the
generator of the conformal transformation (2.3) by K, the generator of translations by P, and

the scaling operator (also called the dilatation operator), which takes z# — Ax*, by D. Then,

[D,K,]=iK, and [D,P,]=—iP, (2.4)

Consider now representations that consist of operators that are eigenfunctions of D with
eigenvalue —iA where A is referred to as the scaling dimension (or just dimension) of the field.
From the commutators in (2.4), the action of P, is to raise the scaling dimension of the field by

one, while K, will lower it by one. For example,

D(Pu(q))) = Pu(D(‘I))) - iP#(tb)

= —i(A+1)P,(D)

There is a lower bound on the dimension of the field for unitary field theories. The operators
with lowest scaling dimension are called primary operators, and will be annihilated by K.

We now add supersymmetry to the conformal field theory, to get superconformal field theory.
Supersymmetry relates bosons to fermions, and contains fermionic operators, or supercharges.
We look for the maximally supersymmetric (N = 4) four dimensional Yang-Mills algebra that
includes both the conformal group and the Poincaré group. These constraints are very restrictive,
essentially uniquely determining the field content and the Lagrangian of the theory, up to the
gauge group and the coupling constant. We will take the gauge group to be SU(N), as was the
case in 't Hooft’s original exploration of the planar limit in the context of QCD. We will briefly
look at the content of this theory, for a more detailed summary see for example the reviews in
[12], [13] and [9].

If no particles with spin greater than one are included, in other words the theory does
not include gravity, the maximum number of supercharges for a free theory is 16. Adding
conformal invariance doubles this number to make 32 supersymmetries. This is because Poincaré

supersymmetries and the transformations K, do not commute, yet both are symmetries. The
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result of their commutation must therefore be another conformal symmetry, which is generated
by an additional four supercharges S and their complex conjugates, adding an additional 16
supercharges.

N = 4 supersymmetry in four dimensions has a unique vector multiplet. This contains
complex Weyl fermions, a vector field and six real scalars, ¢!, I = 1...6. See [9] for a summary
of the action of supersymmetry generators on these fields. The group that rotates the six scalars
into each other is SO(6) (or SU(4)) which is called the R-symmetry. Including the R-symmetry,
N =4 SYM obeys a global supersymmetry corresponding to the supergroup SU(2,2|4).

We now turn briefly to the string theory side. AdSs x S° consists of a 5-sphere and five
dimensional Anti-de-Sitter (AdS). AdS is the maximally symmetric solution of Einstein’s equa-
tions with a negative cosmological constant. It can be defined by embedding the six dimensional
hyperboloid

X2 4+ X2 -X? - X2 - X2 - X?=R? (2.5)

into a space similar to Minkowski space, but with two time-like coordinates:
ds? = —dX?, —dX2 +dX? +dX2 +dX2 +dX?
We now change coordinates such that

(X_l,X[)) — R COShp ];‘2

(X1, X2, X3, X4) — R sinhp ky

where ko and ky are the two and four dimensional unit vectors respectively that give the direction
of the two vectors. This can be seen to satisfy the hyperboloid constraint (2.5). The AdS5 metric

is then

ds* = R* [—dt® cosh? p + dp* + dp? sinh p dQ3]

Once a 5-sphere of radius (R) is added, the full metric for AdSs x S is
ds* = R* [—dt® cosh? p + dp® + dp® sinh? p dQ3 + dip* cos® 0 + d6? + sin® 0dQ5 (2.6)

AdS5x S° can be shown to be a solution to the type IIB supergravity equations of motion [10].
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These arise from considering an action with a term involving the metric and a term involving

the fiveform field strength,

S:/\/§R+S§

and constraining the field strength to be self-dual. In this solution, the radius of the AdS space

is equal to that of the 5-sphere, and is given by
1
R = (4mgsN) 4l (2.7)

where g, is the string coupling constant and [, is the string length. The symmetry group of AdS5
is SO(2,4), and the symmetry group of S° is SO(6), thus AdSs x S° has an overall symmetry
group of SO(2,4) x SO(6). In complex terms this is SU(2,2|4), which is the same as that of
the SYM theory.

2.3 Chiral Primary Operators

We now introduce a particular set of operators within the SYM theory, called chiral primaries,
which are of particular interest because their dimension does not receive coupling dependent
corrections. This makes it easy to compare them to similarly protected states on the string
theory side.

In the previous section, we found that additional supercharges S arise from the introduction
of conformal symmetry. The commutator between the generators S and the generator of the
scaling transformation, D, is [D, S| = %S . This means that the generators S act in a similar way
to K, in that they reduce the dimension of operators. Primary operators in superconformal field
theory are therefore operators that are annihilated by both K, and S. Because the conformal
algebra is a subalgebra of the conformal algebra, in general each primary of the superconformal
algebra will include several primaries of the conformal algebra. These can be found by acting
on the superconformal primary operator with the supercharges Q.

Chiral Primary operators are defined as operators that are annihilated by some combination
of the supercharges ). Their dimension is uniquely determined by their R-symmetry repre-
sentations and thus cannot receive any quantum corrections. In any given representation, the
chiral primary will always have the lowest dimension; other operators will have a strictly higher

dimension. Representations of the superconformal algebra can be formed by starting with a
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chiral primary, and then generating descendants by acting on it with the operators () and P,.
For Abelian R-symmetry groups, A > a|R| for some constant a, and this bound is saturated by
chiral primary operators. They are 1/2 BPS states, preserving 16 of the 32 supersymmetries.
It is possible to find chiral primaries by looking for components of a primary multiplet that
cannot be written as a supercharge () acting on another operator, as these will be of lowest
dimension. Any operators built from the fermions or vector fields can be expressed as () acting
on other fields, and are thus not chiral primary. We therefore look for operators that are built
out of scalar fields, and it turns out that chiral primary operators correspond to symmetric,

traceless combinations of the ¢!.

2.4 Initial motivation for the AdS/CFT correspondence

Having provided a general explanation of why one expects field theories to be linked to string
theories, we now provide some justification for why in particular we expect N' =4 SU(N) to be
dual to a string theory on AdSs x S°.

The starting point is type IIB string theory, which is a supersymmetric ten dimensional
string theory. We now introduce D-branes. These are extended objects that can be defined by
the fact that open strings can end on them [14]. They arose from the study of Dirichlet boundary
conditions, where it was realised (in the context of compactification of open string theory) that
they define a hyperplane that is a dynamical object. They are a necessary part of the theory;
attempts to include only Neumann boundary conditions result in Dirichlet boundary conditions
being introduced via the T-duality which links type ITA and IIB string theories.

Specifically, consider IIB string theory on ten dimensional Minkowski space, with N parallel
D3 branes that very close to each other (or even co-incident). There are two different ways of
looking at the low energy limit of this system, and the identification of the results from each will
lead us to the link between strings on AdS and SYM, originally postulated by Maldacena [2].

In the first point of view, perturbative excitations corresponding to both closed and open
strings are examined. Closed strings are not connected to D-branes, and are therefore excitations
of open space. Open strings end on D-branes, and can be viewed as excitations of the D-branes.
At low energies, only massless string states can be excited, and the effective Lagrangian of these
massless modes is of the form

S = Sbulk + Sbrane + Sint (28)

18



where Spyik is the Lagrangian in the bulk due to closed string modes, Sprane is the Lagrangian
on the D-branes to due open string modes and Sjyt describes the interaction between the bulk
and brane modes.

Sbulk consists of a quadratic part plus higher order interaction terms that disappear at low
energies. We are thus left with only the free part, which includes the graviton and describes free
supergravity in the bulk. It is then useful to take low energy limit by keeping the energy fixed,
and taking I, and o’ to zero. The coupling, given by gsa/?, goes to zero in this limit, and Sin
falls away. Sprane is the Lagrangian of strings that start and end on one of N different branes,
and therefore describes objects with two indices running from 1 to N, so one might expect a
description in terms of field theory. It turns out to consist of a piece that is the same as (3+1)
dimensional N' =4 U(N) SYM theory, plus higher order terms that also disappear in the low
energy limit. We are thus left with two pieces, free gravity in the bulk and A/ = 4 SYM which
lives on the world-volume of the D3-branes.

The second point of view looks at D-branes as being a source for supergravity fields, and
looks at a D3 brane solution (see [9]) of the N parrallel D3 branes described above. From the
viewpoint of an observer at infinity, the energy of an object would get smaller and smaller as
it gets closer in to the D-brane. As r — 0, there are two types of low energy excitations that
the observer could see, massless low energy (i.e. very high wavelength) particles in the bulk, or
excitations that are brought close to r = 0. At low energy, the wavelength of bulk particles is
much larger than the brane size, and thus the cross-section goes to zero. From the other side,
near horizon (close to r = 0) excitations find it hard to escape the gravitational potential of the
D-brane at low energy. The two different excitations therefore become decoupled, leaving two
separate pieces, namely free bulk supergravity and the near horizon region, which turns out to
have the same geometry as AdS5 x S°.

We thus have two different low energy solutions, each of which yield free supergravity plus
something else. It is natural to identify the second part in each system, which leads to an
identification of (3+1) dimensional U(N)! SYM theory with IIB strings on AdSs x S°. Note
that the claim is not just that there is a similarity between the theories; rather the two theories

are actually identified with each other.

I There is some little flexibility when looking at the near horizon region, where there are some zero modes that
live in the region connecting the near horizon with the bulk. Depending on whether or not these are included,
the AdS correspondence is either with SU(N) or U(N).
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Chapter 3

Testing the AdS/CFT
correspondence — developing a

dictionary

Having found a good reason to want to identify the two theories, we should take a moment to
examine whether this is, in fact, a sensible thing to do. Everything that goes into the conformal
theory should have a matching description on the string side, and vice versa. It turns out
that this is a highly non-trivial problem, and much work over the last several years has gone
into developing this “dictionary”, describing what we should be matching on either side of the
correspondence. [9] contains a good review of the early work on this.

The first obvious objection is that it seems strange to link a four dimensional field theory
to a ten dimensional string theory — it would be more intuitively appealing to link the field
theory to something with the same number of dimensions. This is not possible however, because
string theory is not consistent in four dimensions. The first problem is the Weyl symmetry
(9ab — Qgap). Quantum mechanically, taking g, — e¢§ab generates an effective action (the
Liouville action) for ¢, and integrating over ¢ is equivalent to adding a dimension. So we
immediately see that the string theory we are looking for cannot be four dimensional, and
we need a theory that has at least five dimensions. After adding one dimension, it is not so
unreasonable to add another five to get to ten, the critical number of supersymmetric strings.
The correspondence between a ten dimensional theory and a four dimensional theory is an

example of the holographic principle, which states that all the information contained in a volume
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of space can be represented by another theory which lives on the boundary of that volume. From
the “derivation” of the AdS/CFT correspondence given in section 2.4, the SYM theory can be
thought of as living on the four dimensional boundary of the five dimensional AdS space.

We can also see that it is reasonable for the theory to contain an Anti-de Sitter component
by looking at scale invariance [10]. Consider a string theory with 4d Poincaré symmetry, of the
form

ds? = w(z)?(dz,da" + d2*), p=0,...,3 (3.1)

At first glance it looks contradictory for it to have scale invariance, because string theories have
a length scale, set by the string tension. The only way for this to make sense is if the scale

transformation is an isometry of the (3.1), which leads to

m 2
ds? — B2 dmudxz2+ dz
which is five dimensional Anti-de Sitter space. It is therefore not at all strange that the final
string theory that we have arrived at has a five dimensional Anti-de Sitter component.

The next easy area for comparison is the global symmetry of the two theories. From section
2.2 we see that both the SYM theory and the string theory have the same supergroup, SU(2,2|4).
Matching the SU(2) section on both sides of the correspondence implies that the anomalous
dimension of a state (or operator) in the gauge theory corresponds to the energy of the a string
state.

We now turn to the perturbative behaviour of the two theories. From the section on the
planar limit (section 2.1), we don’t expect this to be too pretty. This is indeed the case — the

regimes where we can trust perturbation theory are completely incompatible. The following

parameters are mapped to each other:

Field theory String theory
g%’M = s (3-2)
gyuN - R*/a”

Field theory perturbation is reliable when g%, u N < 1. The string theory perturbation is reliable
in the low energy limit when the radius becomes large compared to the string length, therefore

R*/a? ~ 932/ N > 1. This mismatch allows the identification of two theories which look so
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different without immediate contradiction. It also makes proving the correspondence difficult.
What we would like to do next is find an exact matching between all the states in the two
different theories. This is unfortunately a problem that is still far from being solved. There are
limits in which certain subsets of the states on either side have been matched however. While
it would be beyond the scope of this thesis to provide a comprehensive review of all the work

done on this, there are some examples of particular interest which are discussed next.

3.1 The plane wave solution and the BMN limit

It is not yet known how to obtain the full perturbative string spectrum in AdSs x S°, in order
to match it to the spectrum of single trace operators in SYM theory. At first, it was only known
how to match strings in the large 't Hooft limit, in which case the space becomes flat. These
string states correspond to chiral primary operators in the gauge theory. Later on, a more
interesting maximally supersymmetric solution to IIB string theory was found, called the plane
wave background [15, 16], or pp-wave solution. This solution can be found by taking a Penrose
limit of AdS5 x S°. It can be thought of as a space which lies between flat space and AdS5 x S°,
because it looks like flat space, but with the addition of first order corrections towards the
AdS space. The pp-wave background is interesting because in this background the free string
theory spectrum can be solved exactly in light cone coordinates. Berenstein, Maldacena and
Nastase (BMN)[17] showed how to reproduce this spectrum on the gauge theory side. A good
pedagogical account of this approach can be found in [18].

The approach followed by [17] is to examine the geometry seen by a particle travelling very
fast along the S°. The first step is to examine the AdSs x S metric (2.6), which is reproduced

below.
ds® = R? [—dtQCOSth + dp? + dp?sinh?p dQ% + dip?cos?0 + do* + sinQHngz]
The parameters can be understood as follows:

Latitude on S®°

0
P Coordinate along the equator of S°
p=0 Centre of AdSs

p

= oo Boundary of AdSs
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We can consider a particle in the centre of AdSs moving along the equator of S° by going to

(rescaled) light-cone coordinates
x" = fl(t—i—w) T =—(t—1) o="2 =
2 ’ ’ R’ P

and then enforcing p — 0 and § — 0 by taking the limit R — co. For finite 2, the particle goes
along a path where ¢t ~ 1. Under these transformations, the metric becomes that of a plane
wave:

ds? = —4datde~ — p272%dat? + d7?

where 7 parametrises a point in R® and y is a mass parameter that has been introduced.
The free IIB string on a plane wave background is exactly solvable. The momentum can be
decomposed into Fourier modes, where n < 0 indicates right movers and n > 0 indicates left

movers. In terms of these modes, the Hamiltonian can be written as [19], [17]

- . n=00 ) n2
2p =—=p = Z Ny, ue+ W (33)
n=-—00

N, counts the occupation number of the nth mode, and is the eigenvalue of a number operator
made from creation and annihilation operators, (al)'(al), where I = 1,...,8 labels bosonic
excitations. The spectrum of string states can be generated by these creation operators acting
on a ground state with momenta p~ = 0 and p*, denoted |0;p*). In order for a string to be
physical, its total momentum must vanish, so the sum of the products (n x N,,) for all modes
must be zero.

We would like to see what states on the gauge theory side match this solution. The S°
originally had SO(6) symmetry; choosing an equator broke this to SO(4) x U(1). U(1) is the
angle in the 1 2 plane of R®, generated by the angular momentum J = —i0y. The SO(6) R-
symmetry on the gauge side that rotates the six scalar fields ¢! must similarly be broken. This
is done by defining a U(1) subgroup corresponding to rotations of the ¢'-¢? plane!. The charge
of a state under this U(1) rotation is referred to as its R-charge.

We now look at what the light cone coordinate momenta on the string side (p* and p™)

correspond to. Because energy is mapped to conformal dimension, the energy operator (i)

!There are different conventions over which two SYM scalars are chosen. For the sake of consistency, the plane
defined by ¢1 and ¢2 will be used throughout this dissertation. BMN originally used ¢5 and ¢s.
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gets mapped to A. Tracing the momenta through to the gauge theory:

2" =—p_=i(0+0p) = A-J

i A+J
2pt = —p_ = ﬁ(at —0y) = 2

(3.4)

For finite momenta, we are therefore looking for states where A — J is finite and A + J is of
the same order as R?. Noting that R? oc VN (equation 2.7) and g ,,N o R*/a'? (3.2), the
following quantities are useful:

72 and 92= 37

The limit where these are kept finite is referred to as the BMN limit, and operators with finite
go and A — J are referred to as BMN operators.

The ground state |0; p™) must (by (3.4)) correspond to an operator with A —.J = 0. Defining
Z = (¢' +i¢?)/V/2, the gauge operator which satisfies this is Tr(Z”). Next, we can look at
operators whose dimension does not depend on coupling parameters. These states are BPS
states. From (3.3), recalling that 2p~ = A — J, we can see that on the string side, these are
states where n = 0. On their own, these will generate the flat space spectrum. On the gauge
side, states dual to (a})?|0;pT) are created by adding impurities and then summing over all

possible placements within Tr(Z”). The impurities consist of fields with A —.J = 1, for example

one of the other scalars (¢! where I =3,...,6), or derivatives with respect to Z. Therefore,
1 Zh: 7 A 7 i1 12 ik (). 0T
TJZTr[... i Z .. . Zi 7 .. = allal ... .al|0;ph) (3.5)

Berenstein, Maldacena and Nastase’s breakthrough in [17] was to extend this to states which
are not BPS, but are still close to BPS in that they consist of a set number of excitations away
from a BPS state. The proposal is that modes with n # 0 should correspond to operators where
the impurities are introduced with a position (and n) dependent phase given by exp[2minl/J],

where [ is the position of the impurity within the trace. So, for instance,

J
]. 1 2minl
8\ ot | 4rpJ—i] 2minl
a, )" 0; = g Tr {Z Z } e J
( ) | b > \/j - \/jNJ+1 ¢

2
All states with only one impurity disappear, because the trace can be used to move the impurity
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to the front, and the exponentials sum to zero. This is good, because (a$)7|0;p*) does not
have total momentum equal to zero, and is thus not a physical state. The simplest states will
therefore need at least two impurities, corresponding to excitations with momenta that cancel.

For many excitations, the general form is

(an)T .. (an,)T[0;pT) = f Z Te[p... Z¢Z ... Z$Z .. ] x

J+m
ll’ 7lm_1 fN
e[27rz(n1l1+...+nmlm)]/J (36)

where the freedom of the trace has been used to put one of the impurities in the front. The
assumption is always made that J is large, so that the trace behaves like a “dilute gas”, with
many Zs in between each impurity. BMN states of this form, with two impurities, will be of
interest later in this thesis. The condition of zero total momentum means that the values of n for
all the impurities must sum to zero. If this were not the case on the gauge side, cyclicity of the
trace would make the operator zero. From equation (3.6), in the BMN limit where N,J — oo

with J ~ v/N, the contribution of an impurity with phase n is
(A—J)p,=V1+Nn?

which matches equation (3.3). The AdS/CFT correspondence is thus shown to hold for a class

of states that go beyond the BPS condition.

3.2 Spin Chains

In the BMN limit, the AdS/CFT correspondence was examined by looking at a particular
background in which the string theory could be solved, and finding the corresponding gauge
theory operators. In contrast, Minahan and Zarembo [20] followed the opposite approach. They
proposed starting with a perturbative examination of operators with two or more impurities on
the gauge theory side. The corresponding string spectrum can then be constructed by solving
for the anomalous dimensions of these operators. This lead to a study of spin chain models,
which has received much attention.

[20] started by looking at operators constructed from the six scalars that do not contain
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derivates. They are thus of the form
O] = T (s, .., i)

The renormalisation properties of these operators defines a matrix of anomalous dimensions, I'.
If an operator O, is an eigenvalue of this matrix with eigenvalue ~,, then its correlator is of the

form
const

(On(2)On(y)) = EEEZED)

The (finite-dimensional) Hilbert space of operators with bare dimension L is of the form H =
V1 ®...® Vy where each of the V] is a six dimensional vector that corresponds to an index from
SO(6), the group that rotates the SYM scalars. This Hilbert space is isomorphic to the Hilbert
space of a one dimensional lattice with six lattice sites where the ends are identified. Each lattice
site is home to a six dimensional vector. This describes an (integrable) spin chain, which are
well known from the study of magnetism. The matrix of anomalous dimensions is an operator
in H, and it corresponds to the Hamiltonian of the spin chain. Thus we can find the anomalous
dimensions of operators by finding the energy eigenvalues of spin chains. In [20], Minahan and
Zarembo used this approach to exact results for BMN operators with two impurities, and 1/.J
corrections for BMN operators with many impurities, up to first order.

The relationship between the CF'T and an integrable system raises the interesting possibility
that planar N' = 4 SYM theory is integrable. There is also increasing evidence that free IIB
string theory on AdSs x S5 could be integrable ([21] contains a short summary of developments
in solving the relevant sigma model). If both theories are integrable, then the spectra on both
sides could be calculated exactly. This would make the AdS/CFT correspondence falsifiable —
if the spectra do not match, the conjecture is false, and if they do match then it is supported.

Working on the assumption that both models are completely integrable, Staudacher [21]
reasoned that the S-matrix would be the most appropriate object to consider, as it determines
the spectrum of a quantum system. This is potentially far simpler than calculating the spectra
perturbatively, because integrable systems do not necessarily have simple Hamiltonians. The
proposed technique is based on an application of the Bethe Ansatz [22].

The simplest case to consider is one loop scattering in the SU(2) bosonic sector of planar

N =4 SYM theory. In this sector, operators consist of sums of all possible ordering of states of
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the form Tr¢p™ Z7. These states are re-expressed as spin chains of total length L = M + J. For

instance, the two body states are of the form

W)= > (g, xp)| 27 gz gz )
1<z <wo<L
so that the first impurity is at the z1th lattice site and the second is at the xoth within the spin

chain ket. The Hamiltonian is of the form

L

L
H = Z(l - Px,x+1) - Z

=1 =1

(1 - 5:$ . 5:(:-&-1)

DN

where P, ;41 is the permutation operator which swops the xth and (x + 1)th lattice sites, and
o, is a three dimensional vector of the Pauli matrices at the xth site.

The analysis now follows the standard procedure for the application of the Bethe Ansatz to
the spin 1/2 Heisenberg spin chain model ([23] contains a good introduction to this approach
in a different context). The Hamiltonian leads to two sets of difference equations, depending on

whether the impurities are adjacent or not. For adjacent impurities,

EO\I/(:L'l,:L’Q) = 2\11(331,3;2) — \I/(arl — 1,%2) — \Il(xl,wg + 1)

(3?2 =x1 + 1) (3.7)

and for non-adjacent impurities,

EO\I/(l‘l,aj‘g) = 2\If(x1,m2) — \I/($1 — 1,.1‘2) — \If(.l‘l + 1,.7}2)

(x1 >z +1) + 2V (z1,29) — (w1, 20 — 1) — V(27,29 + 1) (3.8)

Bethe’s ansatz is inspired by one dimensional scattering. The two impurities can be thought
of as excitations which circle around the spin chain with momenta k; and ky. When they meet?
they can either scatter off each other or pass through each other unaffected. The scattering

probability is governed by a scattering amplitude, S(x1, z2), and will exchange the momenta of

2provided that the system is integrable
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the excitations. The ansatz is thus of the form

\I/(wl,fl,’g) = ei(k1x1+k2r2) + S’(xth)ei(klmg—&—kgml)
T 1
(preserve momenta) (swap momenta)

The energy, Ey, can be found by substituting this into the difference equation for non-adjacent

Ey=4 [sm2 ("2) + sin? (’;2)] (3.9)

which generalises easily to more impurities. To find the scattering amplitude, one must then use

impurities (3.8)

the special case for adjacent impurities (3.7). This makes physical sense, because in the absence
of the special case when zo = 21 + 1, the two impurities are unaffected by each other, and hence

no scattering will occur. The solution for S(x1,z9) is

1+ ei(k’l-‘rkz) _ 26ik1
1+ eilhithe) — 9¢ikz

S(xl, 372) =

The spin chain is periodic, so we must identify the (L + 1)th lattice site with the first site.
This, together with the restriction that the second impurity must appear later than the first

leads to the periodic boundary conditions

\If(lL‘l, wg) = \IJ(ZL'Q, xr1 + L) (3.10)

Spin chains are of interest here, because the states that are derived later in this dissertation

resemble spin chains, and much of the “spin chain thinking” will be applicable there.
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Chapter 4

Collective field theory

4.1 Variable change

This chapter contains a general outline of the collective field theory technique; this is applied to
the specific matrix models that are of interest in later chapters. The idea behind the collective
field theory technique [24] is to change variables from the original degrees of freedom to an infinite
new set. These are typically invariant under the symmetries of the system. Because there are
infinitely many, the new variables will be overcomplete when the original theory has finitely
many variables. When N tends to infinity, however, the new variables become independent,
and thus the collective field theory approaches the original theory. The approach was originally
based on well-known techniques used in N-body statistical mechanics problems.

Let the original variables be denoted by ¢;, and the new ones by ¢,. The notation is
intentionally left as general as possible. The values that ¢ and « can take on depends on the
particular case under consideration. For example, if we are dealing with a single matrix M;;,
then i — (i,7), 4,5 = 1,..., N. If there are d matrices, M, a=1,...d, then i — (a,i,7), a =
1,...d, 7,7 =1,...N. « can also take on a variety of values, and could even be a continuous
index in the infinite limit.

Let the conjugate momentum for each coordinate ¢; be P;. A basic Hamiltonian consisting

with an interaction potential V is then

H o= 53 PR+ v(a)]

i?j

1 0?
- 2; [_ dq:0q; V({qi})] -y
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the goal is to express V and the Hamiltonian as a (possibly infinite) combination of functions,
qﬁ({qi}), taking into account the Jacobian that arises from the change in variables. Applying

the chain rule to the first term yields

1 92 1 o (9 O
242 00i0q; _2;%: dq; <6qj 8%)
1 6a 0 Obaddy O
- 22X <aqz-aqj 06a 04 0, aqbaam)

1 0 0?
2 (g, +ns a%aqsﬁ) .

where w and Q have been defined such that

4.2 Jacobian

The functions upon which the Hamiltonian operates were functions of the ¢;, but in the new
formalism we would like them to be functionals of the invariant states that we have introduced.
A change of variables implies the introduction of a Jacobian. Inner products should be conserved
if the coordinate change is valid. Therefore, if 1)(q) are functions of the original variables, and

U(¢) are functionals of the new variables, then we want

/ dql (@) (q) = / (4670 ()T (6) (4.5)

where J is the Jacobian that results from the change in variables.
We would like to absorb the Jacobian by defining ¥ — J'/2®. This however has implications

for operators in the theory, as can be seen by looking at the expectation value of the derivative

8/9¢a.
(3

Do

\112> = /[dqﬁ]Jl/?\If;Jl/?&iJ—1/2J1/2\I/2 (4.6)

«
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This means that (making use of the chain rule)

9 12 9 o1y
aen 7 g
_ 0 119J
 0de  2J 0¢a
0 190InJ
_ 9 1 4,
9on 2 0u (4.7)

In what follows, any repeated indices are regarded as being summed according to Einstein’s
summation convention. The new expression for the derivative (4.7) is substituted into the kinetic
term (4.2) (ignoring the overall factor of —1/2 for now), and 9, is used as a shorthand for 9/0¢,

to produce’

wWaOa + Qa,gaaag
1 1 1
1 1
= Wy0n — §wa(8a In J) + Qaﬁaaaﬁ — Qa,gaa(ﬁg In J) + Eﬂawg(aa In J) (85 In J)
1
= Wy04 — iwa(aa In J) + [aaQa”gaﬁ — (8aQa7ﬁ)a/g]

~ [05(0a03 10.7) + 0 5(9 10 1)00u] + (0 10 T) (D50 ) (4.8)

Because these terms are part of an Hamiltonian, they must be Hermitian, which means that
any non-Hermitian terms must sum to zero. €2, w and derivatives of InJ are not operators,
so they are automatically Hermitian. Also, 0,§2,,305 is Hermitian. This leaves only the other

terms in (4.8) which end in a derivative:

0 = wWaOa — (0a2a,3)03 — Qa0 3(031n J)0,

Oplng = Qlws — Q50,0 (4.9)

Q! has been introduced as the inverse of €, i.e. the function that will satisfy

IThe scope of derivatives will be indicated by the presence or absence of brackets. For example, given 04 In J,
the derivative should be read as acting on InJ as well as everything that follows, whereas in (dalnJ), the
derivative acts only on In J.
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Q1Q4y = bay (4.10)

Equation (4.9) gives a (differential) expression for the Jacobian J that would otherwise have
been far more difficult to calculate. Substituting this into the remaining Hermitian terms in

(4.8) gives

1 1
—iwa(é?a In J) + 8aﬂa,gag — Qa,g(aaag In J) + ZQaﬁ(aa In J)(ag In J)
1 _ _
= —§WQ(QQ715WB - Qa}ﬁ&yﬂvg) + GaQaﬂag
= Qa,5(95(Q, 3wr — 2,3,0,2,))
1 _ _ _ _
- ZQaﬂ(Qa}/\m —Q.40,2.0) (w0 — Q5,0,2,) (4.11)
In the finite case, all of the above terms would need to be taken into account. We, however,

will only be interested in what happens in the large N limit. To make the N dependence explicit,

the following are rescaled:

Ga — \/N(ba
1
8a — Naa
We — \/Nwa
1
Q —Q 4.12
a,B N a3 ( )

Looking at (4.9), only the first term in the expression for the Jacobian will contribute as
N — oco. In (4.11), all the terms are interaction potential terms except for the derivative term
0af2a,303. To generate the spectrum plus fluctuations around the spectrum in the large N limit,
we need only keep the interaction terms with highest N dependence, plus the derivative term,

namely:

1 _ 1 _ _
_iwaQa,lﬁwﬁ + Zﬂaﬁﬂaiw,\ﬂﬁjw# + 8049&7565

1 _
= —ZwaQa’lﬁwﬁ + 604904”385
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Once the overall factor of —1/2 in equation (4.2) is reintroduced, the final kinetic term is

1 1 1
K = —58019,17@3[3 + gwaﬁaﬁwﬁ (4.13)

We have derived the necessary ingredients to construct a collective field theory Hamiltonian
in general variables. The form of the potential V' will depend on the particular system under

consideration. The next chapter goes on to apply the above formalism to the case of a single

matrix.
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Chapter 5

Free single matrix model

5.1 Physical justification

Having developed the general mathematical formalism of the collective field theory technique,
we now apply it to a model with a single Hermitian matrix. For the purpose of this thesis, this
will be viewed as merely a stepping stone to the more complicated model where another matrix
is introduced as an impurity into the single matrix background. It is worth noting however,
that the single matrix model has been studied as an end in itself, for example when Jevicki and
Sakita [24] developed the collective field theory technique in the form that we will use. They

considered the Langrangian introduced by Bezin, Itzykson, Parisi and Zuber ([25])

1. 1
£ = JTr(MP%) - JTr(M?) — %Tr(M”‘) (5.1)
In the Hamiltonian formulation, this is
N
1 0? 1 g
H=—- — 4 —Tr(M?) + ZTr(M* 5.2
2ijZlaMijMﬂ+2 H(MT) + () (5.2)

Using the collective field theory techniques described in this chapter, together with some stan-
dard complex analysis, [24] reproduced the BIPZ energies from [25].

In the context of the AdS/CFT correspondence, it can be shown (see chapter 6) that a single
Hermitian matrix model with an harmonic potential can be used to describe 1/2 BPS states on

the SYM side.
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5.2 Collective field theory

We will be interested in Hamiltonians that have an harmonic potential. The general Hamiltonian

in (4.1) is expressed in terms of an Hermitian matrix M,

N
1 0 w?
- - 4 Tr(M? 5.3
2 2 DM My 2 HA) (5:3)

Ho=—

The subscript 0 denotes that this is the zero-impurity Hamiltonian, in contradistinction to later
Hamiltonians which will contain added impurities.

Let us change variables to the invariant set
Te(M), Tr(M?),. .., Tr(MY) (5.4)

which is invariant under the unitary transformation M — UYMU. At most N of these are
independent for finite NV, but as N — oo, the Tr(M"™) become independent variables. V' can

then be expressed as a combination of infinite sums of the Tr(M™), of the form

Y = Tr(e™M)

= N +ikTr(M) — k;Tr(MQ) +... (5.5)

where k is a real number, which is a specific case of the generic loop index « used in chapter 4.
We now need to re-express the Hamiltonian (5.3) in terms of the new variables ;. Starting
with the kinetic part, and applying the results of chapter 4 (specifically (4.2) and (4.13)) to the

first term yields

KOE—EL = 1 <wka+ﬂkk'82>
2 OM;;0M; 2\ oYy, " 0Py
= —;&Qk,kfazkl + éWkQ;;i/wk/ (5.6)
where w and ) are now
2
“ = 25 ]\ng‘;%i (5.7)
Qe = Ot O (5.8)




and Q! is the inverse of Q.

Using the formula

9 kM ! iaM i(1—a)kM
OM;, (6 )ab - /0 da (™) ; (ik) (6 )Jb (5.9)
w and Q2 become
WkoT ZkaMZ] (6 )zg

= —k? /1 do <Tr emkM) (Tr ei(l_a)kM)
0

k
— k[ v (5.10)
0
Qe = ik (M) K (eF'M
= —kK'pp (5.11)

5.3 Density description

It is easier to work with the Fourier transforms of the above operators, rather than using them
in their current form. We thus move from k space to z space, where the invariant operators
become density functions of the eigenvalues of the matrix M. Representing these eigenvalues as
i, we define ¢(z) as

N

P(x) = / ;j—f_ e~y = Tr(6(x — M)) = Zé(m - \i) (5.12)

=1
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Applying Fourier transforms to (5.10) and (5.11) produces

dk —ikx
w(z) = /27r KT e

= / ik ek ( / dk i
27T

dk . e'Lk/\ _ek:)\
- /27r (”“).4 No— N

zky _ ikz
- /dk —ikz ;1) /dy][dw it
27
9 Y(z
= 9 1
a [wm fa: 2] (5.13)
Q(l‘,y) _ / / 7zk:x67ik’y(_kk/)Tr (ei(kJrk’)M)
(k+k'—1)  _ —z(l k" —zky / il M
&m 8y / / (—kK')Tx (e )

— G W@ =) (5.14)

When expressing the kinetic term (5.6) in the density description, the sums over the indices

become integrals:

Ky = /d:v/dy [—;&f(x)ﬂ(x,y)aj@—i—;w(x)ﬂ_l(:c,y)w(y) (5.15)

Substituting in equations (5.13) and (5.14) and integrating by parts gives

/d“"/dy[ 3 j(sc) (@)t - )yawa(

ra (v foe) et (v fa )

To simplify the second term, we examine the double derivative of the inverse of €. In the

density description, (4.10) becomes

/ dy O e )y, z) = b —2)

/ dy (2, 1), 000y — 2) = Oz — =)
_az (axazg_l('xvy)w(z)) = 65135('%' - y)

0,0.0 Yz, 2) = (5.16)
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We will then need to deal with a term that looks like

)
- / dky / dks / dkg e~ i(k1zthay+hsz) / dzx ][ dy ][ dz by, <x¢_’“2y> <;p_’“32>

We note that

—iky )
][dy ¢ = ime(k)ek®

r—=y
where €(k) = 1 for positive k and —1 for negative k. Adding contour integral contributions

depending on whether each k is positive or negative leads to the following identity:

/dx () (fdy;/}(_yz)Q _ 7‘; /dx () (5.17)

Putting it all together, the kinetic term is

7.‘.2
Ko = f% /dm axajmw(x)axaj@) + 6/dx ¢ () (5.18)

Finally, we express the Jacobian, equation (4.9) in the density description. Only the first

term is of leading order in N, which becomes

OlnJ

O ) ~

Oz/dy Q Nz, y)w(y)

Using equations (5.13) and (5.16), this is

dlnJ U(y)
8xaw(x) _2][dyx—y (5.19)

We use equation (5.12) to express the potential in terms of x:

w? w?
7Tr(M2) = /mer(é(a:—M))a;2

2
= u;/dx¢(m)x2 (5.20)
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Adding the kinetic and potential terms yields

1 0 0 w2
Hy = —Q/dwaxww(w)azaw@)‘F6/d$¢3(x)
w2
+o /d:}ﬁb(ac)ac2 (5.21)

The matrices that went into creating equation (5.21) were N x N matrices, but this N

dependence is not immediately apparent. The necessary condition on v, which can be seen from
(5.12), is
/d:v P(x) =N (5.22)

To enforce this constraint, we introduce a Lagrange multiplier u, and the Hamiltonian becomes

_% /da: 8x81f(56)¢(x)axaf(x) + /da: <7:1/}3(a:) + () <w22$2 B M)) + uN (5.23)

To make the N dependence explicit, we rescale according to (4.12), with

1

z— VNz , w—u/Nw, w— Np and —i EH—>NH

9
9
to get

w?a?

2

Hy = 27;72 / da 0,T1(2)0b(2)D,T1(x) + N2 ( / dx 7:¢3(x) + () ( _ u)) +uN? (5.24)

5.4 Energy spectrum

Equation (5.24) has a standard solution (see for example [24], [26], [27] and [6]), obtained
by minimising the effective potential as N — oo. The second term of equation (5.24) is of
leading order in N. This will therefore generate the background, and the first term will generate
the fluctuations around this background. We will examine these fluctuations by defining the

background ¢¢ as the result of extremising the second term of (5.24) with respect to ¥ (z),

oo = /21 — w2x? (5.25)
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We then look at small shifts away from this background

W(x) = do + weragm; O, 11(z) = —/ANP(2) (5.26)

n and P are cannonical conjugates, so

[P(z),n(y)] = —id(z —y) (5.27)

Because we are in effect expanding around the extremum, the leading contribution to the
small fluctuations will come from the terms that are quadratic in d,n and P. The quadratic

terms from equation (5.24) are

1 1
H(()Z) - 2/da:7T¢0P2(I) + 2/d337r¢0(3x77)2

This can be further simplified by introducing a coordinate ¢, called the “time of flight”, such

that

d
d% = o (5.28)

Looking at equation (5.25), and using the formula for the derivative of arccos, one arrives at

(v32)
arccos 5:0 = —wq

and therefore x(q) = —/ 2 cos(wq)
w
and Tpo = V2w sin(wgq) (5.29)

for 0 < ¢ < w/w. In terms of ¢, equation (5.27) becomes

[P(ff)w(y)] = —25($ — y) = 4=t 17 _

If we therefore define P(q) = m¢oP(x(q)) and 7(q) = n(x(q)), then P(q) and 7(q) will also be

cannonical conjugates.
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Changing variables from x to ¢, the quadratic Hamiltonian is now

2
H? % / (dqw¢0)77¢op2(x>+% / (dgmo)m o (%)

= 5 [P+ [ dan? (530

This is now a standard Klein-Gordon Hamiltonian, and can thus easily be solved. To ensure
that the constraint (5.22) is satisfied consistently at all times, we find the classical turning points

and impose Dirichlet boundary conditions. The spectrum is then

wj=7j ; ¢j = sin(jq). (5.31)
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Chapter 6

Free two matrix model — adding

impurities

We now go in greater detail into the physical reasons for studying the matrix models that we
are considering. This will lead to a two matrix model, rather than the single matrix model
considered in chapter 5.

In the BMN limit, one looks at states that are close to the plane defined by two of the
SYM scalars. The Hamiltonians that one needs to consider will be functions of two of the SYM
scalars, and will typically have an harmonic potential. For example, in the case of SYM defined

on $3 x R, the positive curvature of S3 leads to an action of the form [28]

o [am (6746 - i+ ) (6.1)

9y m

where 23 is the volume of S5 at the boundary of AdS5. The gy s interaction term of the SYM
theory has been neglected for the time being — this will be added in later.

The action in (6.1) can be put in a more general form by dropping the overall factor and
denoting the constant that multiplies the potential by w?. A momentum conjugate to each of

the scalars is introduced, in order to move to the Hamiltonian formulation of (6.1).
1
Hiree = 5 Tr (PP + P3 + w? (6] + 63)) (6.2)

The conjugate momenta and the SYM scalars satisfy cannonical commutation relations. The
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angular momentum J is given by

J = %Tf(@l:ﬁ — 01 P)

6.1 Angular momentum eigenstates

There is more than one way to define the matrices that go into the model. The first is the more
standard approach, which involves creating angular momentum eigenstates. This approach is
followed in [3], [29] and [6]. The initial motivation in [3] was to understand which AdS states
correspond to the chiral primaries in the SYM theory. It was known that 1/2 BPS Kaluza-Klein
modes of the supergravity fields on AdS5 correspond to the chiral primary operators in the SYM
theory. In this identification, the energy of the excited Kaluza Klein modes gets mapped to the
dimension of the chiral primary operator. The picture was complicated by [30] however, which
showed that the same set of quantum numbers is shared by both Kaluza-Klein modes carrying
momentum in S5, and a stable configuration of spherical branes in S5. This raised the question
of which of the two AdS states should correspond to the chiral primaries in SYM, and what the
other state would correspond to. [28] then went on to compound the problem by showing that
there is yet another (1/2 BPS) supergravity state that has the same quantum numbers, namely
a stable configuration of spherical 3-branes in AdSs. Matrix models similar to the ones that we
will look at were therefore used in an attempt to understand the SYM 1/2 BPS states more
fully. While this is not our final goal, the method that was followed will still be relevant.

The approach is to introduce complex matrices by defining (together with their complex

conjugates)

Z = S (oi+io)

1
II = — (P +:iP
\/5(1 2)

These are cannonical conjugates, allowing us to introduce creation and annihilation operators,
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following [6, 8, 31]:

_L T — Wt _
Z—m(A—I-B), II= \/;(A B)

(o am (o). -y o) )

In terms of these the Hamiltonian and angular momentum operators are
Hivoo = w (Tr(AT A) + Te(B B)) and  J = Tr(ATA) - Te(BIB) (6.3)

1/2 BPS states are now states without B excitations. To see this, consider the eigenstates

associated with the Hamiltonian in equation (6.3), which are of the form
T [ (A" (BT)"] Jo)

The energy and momentum of such a state will be w(m + n) and (m — n) respectively. 1/2
BPS states will saturate the bound that the quantum number corresponding to energy must
be greater or equal to that corresponding to momentum, i.e. E > |J| (taking w = 1 for the
time being). We must therefore have m + n = +(m — n), so either n or m must be zero. We
arbitrarily choose n = 0, which implies that 1/2 BPS states are states without B impurities.
These are the chiral primaries in the SYM theory.

In the absence of B operators one can define a single N x N matrix M as the Hermitian

matrix associated with the A, AT part! [6, 8]

1

M = (A+ AT, Py = i\/g(A — AT (6.4)

2w

in terms of which the Hamiltonian is

1 9 w? 9
In terms of the original SYM scalars,
1 P
M = — _
7 (Voo - )
SN (A
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On the SYM side, 1/2 BPS states thus correspond to the single matrix model that has been
derived in chapter 5.

The link to 1/2 BPS states in AdS is now understood in terms of the free fermionic droplet
picture introduced by Lin, Lunin and Maldacena [5]. They showed that a classical ansatz for
the AdS space could have an equivalent energy and flux content to a general fermionic droplet
configuration. The geometry of the AdS solutions is completely determined by the configuration
of fermionic droplets on a (suitably defined) two dimensional sub-plane of the full ten dimensional
space. [6] contains a summary of the link between the fermionic picture produced by the single
matrix model (as derived in chapter 5) and the LLM Sugra ansatz.

In order to study states beyond the 1/2 BPS restriction, it is necessary to solve the full two
matrix problem corresponding to both A and B excitations. This is in general a very difficult
problem. The approach followed by [6] is thus to apply collective field theory techniques to the
first part of the Hamiltonian involving A excitations to generate a background. B excitations
are then added as “impurities” to perturb this background. We thus add B impurities back into
(6.5). Going to a coherent state basis, B — B, B — 0/0B, produces

H, —ET(P2)+“)—2T(M2)+ (B2 (6.6)
free—2 'Ly 9 r wAir OB :

6.2 Two Higgs scalar model

Another possible physical application is to directly treat the two SYM scalars, ¢ and ¢2, as the
matrices that go into the two matrix model.

Introducing creation and annihilation operators for the second scalar, ¢o,

2w

1 CJw
gbg:iﬁ(CjLCT), sz—l,/E(C—CT)
the Hamiltonian becomes
1 2 L 5 2 T
H = QTr(Pl) +ow Tr(¢7) + wTr(C'C) (6.7)

Going to a coherent state basis makes this identical to (6.6).
This approach was first mentioned in [8], but it was not developed fully. Chapter 8 will

explore this association of variables in depth, in the presence of a gy s interaction term.
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6.3 Collective field theory Hamiltonian

We wish to arrive at the collective field theory Hamiltonian that results from equation (6.6) (or
(6.7)), taking into account the presence of B (or C) impurities. We review below the method
used in [8]. The approach is similar to that followed in section 5.4, namely looking at small
fluctuations away from the (zero-impurity) background. Firstly, a more general set of invariant

states that take into account B impurities is introduced:

do(k) = Tr(e™M)

@ZJl(k‘l) = Tl“(BeiklM)

Vs(ki ko, .. k) = Tr (H Be“%M> (6.8)
=1

Analogous states to these, without any interaction terms, are of interest in and of themselves.
For instance, [6] applied a transformation which lead to a 1-1 mapping of the spectrum of
the above states to a class of Supergravity wave functions on the AdS x S background. The
wave functions are described in terms of hypergeometric functions. This kind of mapping will
not be the focus of this thesis, however. Rather, we view the many-impurity spectrum as an
intermediate step in the introduction of the gy js interaction term, explored in chapters 7 and 8.

To see what new fluctuations arise around the zero-impurity background, we introduce a
number (s) of impurities. The expectation value of the zero impurity states will be the back-
ground, m@, introduced in equation (5.25). The s-impurity states take the form of small fluc-
tations around the zero-impurity background, and will thus not pick up an expectation value.
Because the expectation value is zero for s > 0, we cannot apply an argument analogous to that
in (4.6) and (4.7). Derivatives with respect to states with s > 0 therefore do not pick up factors
involving the Jacobian. The multi-impurity Jacobian is thus the same as the zero impurity

Jacobian, namely equation (5.19).
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The kinetic term (corresponding to (4.13)) of the many impurity Hamiltonian is [6, 8]

1 0
K= — = dxyi...dvsws(x1,. .., T
2;/ o Zots (71 x)f)ws(xl,...,xs)
1
— 2Z/dxl...dazs/dyl...dngSVS/(:cl,...,azs,yl,...,ys)><

32
X
Os(x1, ..., x5)00g (Y1, -+, Ys)

(6.9)

where w, and (), ¢ are generalisations of the w and ) that we have considered in the case with

no impurities, defined in k space as

0P (ky, ..., ks)

Wolkrs s k) OM,;0M;;
(k.. ks) O (KL, k)
1 / - ) ) y g
Qe (b1, oo ks Ky B = L, oM (6.10)

To determine the quadratic Hamiltonian, we look for terms within (6.9) that are quadratic in
fluctuations away from the background. Consider the first term of (6.9). From equation (5.13)
(or equivalently (5.10)), we see that w splits into two loops when no impurities are present.
We expect similar behaviour in the case with impurities, which is confirmed by the calculations
in appendix A.l. In general ws will split into two loops, with the total number of impurities
summing to s. Most of the terms will therefore be cubic (or higher) in fluctuations away from
the background, with one contribution from each the loops introduced by ws, and one from
the derivative. The exception is the case where w; splits into a loop with zero impurities and
one with s impurities. The zero-impurity loop will include a ¢y background term (see equation
(5.26)) and this term will be only quadratic in fluctuations. It is therefore useful to define w as
the piece of w that contains one zero-impurity loop and one s-impurity loop, as only this piece
of the Hamiltonian will be present in the quadratic part.

Consider now the second term in equation (6.9). The action of € is to combine two loops,
so Q¢ will generate a single loop with s + ' impurities. It is in general again the case that
terms will be cubic in fluctuations, with one loop from 2 and two derivatives. The exception in
this case is where one of the derivatives is with respect to a zero-impurity loop. Zero impurity

derivatives contain a piece that does not contribute towards fluctuations. This can be seen by
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noting that zero impurity derivatives transform according to equation (4.7):

o 9 19mJ
Oo(w)  OYo(x) 2 0vo(x)

(6.11)

The Jacobian term contains a piece that will depend only on the background ¢g. For the

derivatives term therefore, we will keep only the background dependent part of (5.19), i.e

OlnJ ooy oo(y)

“ 0o () Yo Y
OlnJ z oo(y)
or T00(@) — 2/0 dg  dy— (6.12)

To ensure that zero impurity loop is present, we set ' = 0 in equation (6.9). The quadratic

Hamiltonian is thus

HO _1/dx1,.. d:vsws({ﬂfz})awsgxl})
OlnJ 0
/ do / gy -y @ L)) g s s (6.13)

To find the spectrum of this Hamiltonian, we now need to find @ and £ as well as the

Jacobian J in the density description. Some calculation (see appendices A.1 and A.2 for details)

yields:
Skt k) = —22/ KK o (ks — K)bs (bt ki 1y K it s )
QD;S(kO;klv"'ykS) = —k‘O <Zki¢s(kla”'aki+k07"°7k5)> (614)
i=1

where we have taken vy — ¢q in order to keep only the background term.
We now take the Fourier transform of all the above operators, starting with the set of gauge
invariant states:

o dkl —ik1x1 dks —iksxs
Vs(x1, ..., x5) = /27‘(‘6 .. /27T Ys(k1, ..., ks)

= Tr(Bé(x1 —M)...Bé(zs — M)) (6.15)
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Further calculation (see appendices A.3 and A .4 for details) gives the final result for w and Q as

o({z;}) = —QZS: ][dz to(2) [88931 <W)

¢s({$z Z—ZE@ ][d xla"-ayh')Q xs;s) (616)

(wz—z

.9 9
Qo.s(2; 21, .. ., ) _28281‘ (6(2 — )5 (1, .o oy Ty, T6)) (6.17)

We now look at the two terms in equation (6.13) in turn, starting with the second term.

(6.12) states how to deal with the Jacobian term. This, together with (6.17) leads to

1 OlnJ 0
2/dz/dx1...dxs Qo;S(Z’Il’.."x8)8¢0(z)8¢5(m17"',§s)

_ 1 z T x gi z— T Z; do(y) 0
=3 [ [, 5 5, 0~ vl D2 [Cdnf s

The derivatives can be performed on the section in square brackets producing
—0"(z — z)¥s({wi}) + 0'(2 — i) 0, s ({2i})

and the second term of (6.13) becomes

{xz} 8ﬂcz¢8({$z}) 0
[ dordo f dyz[x—y @-v | Y@y (6.18)

Putting this aside for the moment, we turn to the first term of (6.13). When we substitute
the results from (6.16) for w, we keep only the background pieces of the zero impurity loop by

taking ¥y — ¢g. Consider the first term of (6.16), which is proportional to

0 <W>

or; \ x;— 2

when this term is substituted into (6.13), the result is

J e Z][ B R R | et S 0

This neatly cancels with (6.18). What remains of the Hamiltonian is therefore the result of
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substituting the other terms in (6.16) into (6.13). The quadratic Hamiltonian is therefore

~ [dn... [dn f a:

d)O ws {xz}) ¢0($z) (xlv"'vza"wa) 0
Z (% — 2)? s ({wi})

(6.20)

The background grows as N2, so one would expect the fluctuations generated be a quadratic
term to be of order N = 1. This can be shown to be the case by extending the rescaling (4.12)

so that

os({zi}) — NY2¢({zi})
o 19
¥s({xi}) N* s ({wi})

6.4 Many impurity energy spectrum and states

Following [6] and [8], the spectrum that results from the quadratic Hamiltonian can be solved
by expressing it in turns of a s-impurity kernel. Swopping the x;th integral with z in the second

term, (6.20) becomes

H? = / dz; .. / dz s ({zi}) ][ dz e ())
o

26% {zi}) aws(xl,...,z,...,xs)
- / dz; ... dz, / dyr - dystbs () K ({eh (i ) =

0
oy o2

It follows from this that the s-impurity kernel is

Ko({wih () Z ][dz W) TTos —w) | G —w) oG —w)) (622

J#i

The form of a general eigenfunctional in v space is

/.../dw1...dwsf(wl,...,ws)ws(wl,...,ws). (6.23)

The functions f can be found by solving the eigenvalue problem created by acting the kernel on
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this eigenfunctional. The details of the calculation are given in appendix B. The result is

€n;} = w (i n; — S)

sin(n;wq(z;))

forom i) = Hrsm (wq(z)

ponp=1,2,... (6.24)

Up to this point, we have completely ignored the term in the Hamiltonian (equation (6.6))
that deals with the second matrix. It is not difficulty to correct for this however. Tr(B 8B)
of the form of a number operator — it will simply count the number of B impurities that are

present, namely s. Adding this to the energy eigenvalues gives

E{nz} = wZni (625)
=1

Rodrigues [8] noticed that the eigenfunctions are of the form of Chebyshev polynomials of
the second kind. These are defined by

Usz)=1; Ui(z)=2; Upti(z)=22U,(x) — Uy—1(x) (6.26)

They can equivalently be described in terms of trigonometric ratios as

_sin(n +1)0
We therefore write (6.24) as
sin(n;wq(z;)) 1 £
= — U,,._1(cos(wg;
H 1 V2wsin(wq(z;)) \/2w£[1 1 (cos(we))

1 £ w

S | O e
2wy < 2 )

= () (6.28)

where the u have been defined in terms of the U to simplify notation.

Going back to (6.23), and using the density description of ¢ (equation 6.15) the functionals
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are of the form

(Wel{a}) = /.../dafl L das <Hum_1(xi)> Tr (BS(x1 — M) ... B(xs — M)

= Tr(Bup,—1(M)Buy,—1(M)...Bu,,_1(M)) (6.29)

These functions form a complete orthonormal set with respect to the measure (see [8] for more

details)
dxq / dzs 2}
dylexp |— | — ... | —|v¥s({x; 6.30
Jiasienn |~ [ 20 2 ) (6.0
To simplify the notation, we take (n; — 1) — j;, where j; = 0,1,2, ..., leaving states of the form

Tr(Buj, Buj, ... Bu;,) (6.31)

which have energy equal to w(>_, j; + s).

We have thus found both the states associated with the collective field theory of two matrices,
and their associated energies. These states provide a useful way of dealing with two matrix
models. The dependence on the first matrix M is encoded in the polynomials u,,_1, and the
second matrix appears as creation operators sandwiched in between the polynomials. We can
now go on to introduce gy s interactions, which is done in the following chapter. The states
that have been derived in this chapter will be the basic building blocks for this.

Note that these states are similar to the spin chain states discussed in section 3.2, where
trace has been used to place the first impurity at the beginning of the chain. The B impurities
play the role of the ¢ impurities in section 3.1. The parameters j; and jy are analogous to the
number of Zs that lie in between impurities. We can think of the spin chain “length” as being

J 4 s, which is also the free energy.
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Chapter 7

gy \s interaction

We now introduce corrections induced by the g% u SYM interaction term to the results of chapter
6. We will only look at corrections that are small compared to the overall energy, so we are still
looking at states that are in some sense close to 1/2 BPS states.

The interaction includes all six SYM scalars and is of the form
2 ..
_g%/MZTI'([QZ)“(ZSJ] ) ) 1,] :17"‘76 (71)
1<j

It is at this point where the identification of variables becomes important. In the section
below, we will consider the angular momentum eigenstate representation from section 6.1. We
give the physical justification, and reviewing some results obtained in [8]. Later, in section 8.4,
we will consider directly modelling ¢1 and ¢ (as described in section 6.2) to obtain an energy

spectrum that is valid to all orders.

7.1 Angular momentum eigenstate model

The six SYM scalars are complexified in groups of two:

1
V2

1

(1 +ip2), Y 7

(p3+ids), X (¢5 +icds)

1
Z=—
V2
Equation (7.1) has two types of terms, commutators between adjacent fields that are com-

plexified together, such as ¢ and ¢2, and commutators between fields from different complexi-
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fications, such as ¢; and ¢3. The former all have simple expressions, for example

2 1 = 1 17 =12
Tr( , >:Tr [Z+Z,Z—Z] :Tr(Z,Z ) 7.2
Commutators between terms from different complexifications. We will work out all the terms
involving both Z and Y here. The terms involving Z and X, and Y and X, are similar. The

commutator between the first and third scalars is
1 _ _ _
Tr ([o1,00]°) = 7B {([2.Y] + [2.7] + [2.Y] + [2.¥))*} (7.3)

There will be four of these terms, which we will denote by the numbers of the scalar fields that
are commuted. For example, the above term is (1,3). When going from the trace between

scalars (1,3) to (1,4), (2,3) or (2,4), the following rules can be observed:

Going from (1,3) — (1,4): x(-1), Y - Y
(1,3) = (2,3): x(-1), Z—-Z

(1,3) — (2,4) : Y - -Y

)

Any term which does not involve all four of the complex fields, Z, Z, Y and Y will be
positive in two of the commutators, and negative in two, for example any ZY ZY term will be
positive in (1,3) and (2,4) and negative in (1,4) and (2,3). As a result, terms of this nature
will cancel, and we only need to consider the terms with all four fields, which are positive for all
the commutators.

Working from equation (7.3), the terms we need are

Z
=21{2(2.Y][2.7] - ([2.Y][2.Y] + [2.Y][2.Y]) }

Using the identity
Tr ([a, ¢] [b,d]) = Tx([a, b] [c, d]) + Tx([a, d] [b,c]) (7.4)

this becomes



Adding together the terms of the form of equation (7.5) and those of the form of equation (7.2)
gives the result

How =103 412.2)[2.2) + 1Y) [v.¥] + 3%, X] [x. K]
Y,

This clearly shows a split into D terms, involving commutators between a field and its complex

conjugate, and F' terms, involving different fields.

We now introduce creation and annihilation operators for each of the complex fields (those

for Z will be the same as those introduced earlier).

Z — (A+B), v - —

2w

_ 1
A'4+B), V- —
(4" +5B) Vaw

5|5 -
S S

(2~
We are not interested in all the possibilities arising from this interaction though, but rather only

the states which are close to BPS states. To stay within the subspace of loops that are near to

chiral primary operators, we thus use the technique followed by [32, 31], and project

A+Bt - A, At+B— Af
C+D'—-cC, Ct+D—Cf
E+Fl -E, Et4+F - El

All the D terms are now trivial (to see this explicitly, go to the coherent state basis, e.g.

C — 0/0CT), which leaves just the F' terms.

Hos =~ 521 (51, 41)[B, 4] + [¢1, B) [C. B] + [c*, 4] [C, 4))

We will retain only one of these. The interaction Hamiltonian of interest is thus

mﬁﬁﬁymmuﬂMﬁD (7.6)

Again, we define M as the Hermitian matrix associated with the A, AT operators, as in (6.4)
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In terms M and its canonical conjugate Py (using identity (7.4 once more),

Hyy = —9‘2/2MN Tr([M,C] [M,CT})+z'g2WTr([C,CT] [M,PM])

w 2uw?

9
— Ay <[PM, ) [Py, CT])

= Hiya) + Hinee) + Him(s)

We can act this on the many-impurity collective field theory states found in section 6.4. An
in depth treatment of this is beyond the scope of this dissertation ([8] contains some details) —
we will concern ourselves more with the ¢, o model, which is tackled in chapter 8. In short,
Hing(2) and Hjpy(3) are of sub-leading order, so Hjy (1) determines the spectrum. To first order,
when there are two impurities, the resulting states are linear combinations of the states from

(6.31),

2mim

e T+ Tr(Cuy (M) Cuy—j(M)), m=0,...,J (7.7)

o = ﬁ Z
This are of a similar structure to the BMN loops defined in (3.6). Indeed, the states from (6.31)
are only useful in the BMN limit. Their energy is proportional to ), ji +s = J + s, so if we
calculate A — J, this will give the number of impurities, s. The BMN limit keeps A — J finite,
which corresponds to only considering states with a finite number of impurities.

It is worth noting the form of the operator Hi, (1) — this same operator (up to a constant

factor) will determine the spectrum in chapter 8.
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Chapter 8

Two Higgs scalar model

We now develop further the identification of variables introduced in section 6.2. The two matrices
that we will consider are two of the SYM scalars. This identification was first mentioned in [8], for
two impurities, which gave energy results to first order by considering a subset of the Hamiltonian
that contributes to first order, namely the part that preserves J. We will develop this further
by introducing an ansatz which gives an analytic solution to the difference equation that results
from the Hamiltonian. This captures the effect of all the terms in the difference equation, not
only the ones that conserve J. We then give in detail the Bogoliubov transformation mentioned
in [8]. For two impurities, the energies derived from the ansatz are then shown (using a result
proved in appendix C) to completely determine the spectrum resulting from the gy s interaction

term to all orders, not just to first order. These results will be presented in [33].

8.1 gy interaction
We take the Hamiltonian from (6.2), and add the gy s interaction term from (7.1).

H = STR(P?) + STR(PE) + JuPTe(6d) + L’ TH(8) — g Trl(on, dull6n, éal)  (8.)

We will treat ¢; exactly, and ¢2 as an impurity introduced into the background created by ¢;.

To this end, creation and annihilation operators are defined for ¢o:

_ f _ i %t
¢2_\/%(C+C), PQ— Z\/;(C C)
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and the Hamiltonian becomes

H = %Tr(Pf)Jr%wQTr(cb%)—i—wTr(CTC)

H¢1

~ By [y, OF 1 2fon, i, €] + [0, CTP) (8.2)

2w

Even though we will only consider bosonic degrees of freedom, we will assume that the theory
is part of a supersymmetric theory, so that we do not need to be concerned with normal ordering
terms.

The first two terms describe the background created by ¢;. This is not too interesting — we
would rather see the fluctuations on top of this background that arise from the introduction of
the gy s interaction term. The Hamiltonian we will use is therefore not the full Hamiltonian,

but rather
2
He = H — Hy, = wTr(CT0) — g;—wMTr([dn, CP + 2[¢1, Cl][p1, C] + 61, CTP?) (8.3)

It is worth taking a moment to consider the physical implications of the choice of variables.
In the collective field theory approach, the first matrix is treated in the large N limit. A finite
number of impurities of the second matrix are then introduced. In the angular momentum
eigenstate model, this corresponds to states with large J near the ¢1-¢2 plane, i.e. states that
fall within the BMN limit. In the ¢1, ¢2 model, the picture is different. The states under
consideration are now states where ¢; is large and ¢2 is small. By considering Hc = H — Hy,,
we are doing the analogue of considering A — J in the angular momentum eigenstate model.
We define H(;y as the term in (8.3) containing ¢, C' and Ct, and in the spirit of (4.12),
rescale ¢1 — VNoi:
gy uN
H(l) = —TTT([%?CT][%,C]) (8.4)

Note that this term has the same form (up to a factor of 2) as Hi,g(q) from section 7.1. It turns
out (after performing a Bogoliubov transformation, which will be done in section 8.4) that this
term is sufficient to determine the spectrum for two impurities. The term involving only creation
operators, [¢1, C]?, and the term involving only annihilation operators, [¢1, CT]?, will determine

the factors in the Bogoliubov transformation.
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8.2 Difference equation generated by H )

We will derive here the spectrum of H (). We move to the coherent state basis, letting (CMij —
Cij and (C)i; — (%)ji. The two-impurity result is derived first and this is later generalised to
more impurities.

For two impurities, the Hamiltonian will act on states of the form derived in the section 6.4.
(1, J2l¥) = Tr(Cugy (M) Cugy (M)

For notational convenience, we will denote these states by simply |j1, j2).
Consider the first term, H(j), in (7.7). After multiplying out the commutators,the cyclic

freedom of the trace means the 9/9C terms can be moved to the end, yielding

2
o gé o N 0
Hlj1, j2) = —%Tr (2MCM — M*C — CMZ)% Tr(Cuj, (M)Cuj,(M))

The action of a derivative with respect to C' on one of the states is

0
0C};

Tr(CUj10Uj2) = (uﬁoujz)ji + (ujzcujl )ji (8.5)
yielding
o gyuN 2 2
Hyljr, j2) = —TTr [4C'Muj10Muj2 — 2Cuj, CM*uj, — 2CM*“uj, Cuj, (8.6)

For any number of impurities, the notation becomes cumbersome. We thus label states by

how many Ms follow each C:
Tr(C M, CM°uj, ...CM*u;,) — (a,b,...,2)
Equation (8.6) generalises to

2
N
Hp)(0,...,0) = —QQY%Tr{ (1,1,0,...,0) + (0,1,1,0,...,0) + ... (cyclic permutations)

- (2,0,...,0) —(0,2,0,...,0) — ... (cyclic permutations) } (8.7)
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The recurrence relation that defines the Chebyshev polynomials (6.26) means that

MU; = o (Up +Uj)

B =N

M?U; = - (Ujyz +2U; + Uj-2)

From the definition of u in terms of U, contained in (6.28), it follows that

1
Mu]' = —7%211} (Uj+1 + Ujfl)
1
MQUJ' % (Uj+2 + 2u]' + Ujfg) (8.8)

which allows us to absorb the extra factors of M, and recover states of the original form. This

leads to a difference equation. For two impurities,

2
o 9y uN . . . . .
Hylji,j2) = Yu];/‘; {4|J17]2>—2|J1+1,]2—1>—2|]1—1732+1>

—2|71 + 1,52 + 1) + [j1 + 2, j2) + |41, 72 + 2)

20y = 1,2 = 1) +j1 = 2,52) + i1 2 — 2) | (8.9)

This generalises for more impurities to

2
o . 9y N o . . . . .
Hy g1, g2, -5 0s) = Yﬂ% {(23)|317]27---a]s>_|.71+1a.72+17~">_’J1+1732_17-~->
_’j1_17j2+17-">_ ’jl_lva_la-">
+|j1+27]27>+|jl_2’]27>

+ ... (all cyclic permutations, j; — jo2, jo — Jj3 etc.)} (8.10)

It is interesting to see how this difference equation affects the “length” of the states. To
show this explicitly for two impurities, we take j; — j and jo — J — j, and move from j, jo

space to J, j space by defining |J,j) = (J, j|¢) = Tr(CMu;CMuy_;). In terms of these states,

. g%/MN . . .
H(l)“LJ) = T{ 4‘Ja]>_2|‘]7]+1>_2"]7.7_1>
20T+ 2,5+ 1)+ [T +2,5+2)+|J+2,5)

2T = 2,j — D)+ T =2, - +|T-2.5) } (8.11)
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Bf At At Bf At

Bf Af Bf Af Af

Figure 8.1: An operator that takes |2,5) — |1,j + 1), preserving J.

This shows how the interaction Hamiltonian splits into three parts. The first line consists of
terms that preserve J. The second and third lines consist of terms that move into a different
J subspace, adding or subtracting two respectively. We will call the J-preserving terms the
“diagonal” part, H (%, and the other (“non-diagonal”) terms H (J;) and H (_1). Thus we can write
(8.11) as Hqy = Hfy + Hiy + Hpy).

Operators that act on states |ji, j2) can be understood in a diagrammatic sense, imported
from spin chains. The spin chain analogous to u; (A?) is a string of j Afs. BT impurities are
placed between these. For example, the state |2,1) = Tr(BfusBfu;) would be represented as
BYATATBT AT,

To see the effect of an operator on a state then, the initial state is placed above the final state,
and lines are drawn in corresponding to the summation of indices. For example, an operator
that takes |2, 7) — |1,j+1) would be represented by the diagram in figure 8.1. The J preserving
terms in the difference equation (8.11) will all look similar to this.

The terms that do not preserve J are not something that would typically be seen in a spin
chain however. For J to change, it means that new Afs must be being created or annihilated. The
term that takes J — J + 2 would then have to look something like figure 8.2. There is nothing
preventing these diagrams in the ¢1, ¢o model. In the angular momentum model however, these
are problematic, as the angular momentum charge must be preserved. We cannot therefore have
an operator that creates new A's, and diagrams like figure 8.2 are forbidden.

Equation (8.11) is the analogue of the difference equations treated in the literature, given by

equations (3.7) and (3.8).
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@

Af Af AT Al

Figure 8.2: An operator that takes J — J + 2.
8.3 Eigenstate ansatz and energy spectrum

The two impurity case is treated first. In order to solve equation (8.9) we introduce energy

eigenstates fi, x,(Jj1,j2) (or just f(j1,j2) for short) by making the ansatz
P (1, 52) o< AP XD

we will require these states to satisfy the difference equation in (8.9), so that

2
o o gy N o . . . .
B (1, 42) (1, J2) = Yfz {4f(]l7]2)—Qf(]l+17]2—1)—2f(11—17.72+1)
—2f(j1+ 1,52+ 1) + f(j1 + 2,52) + f(j1, 52 + 2)

“2f (= Lja = 1)+ fU1 = 2.02) + Sz —2) | (812)

which leads to

9

@2, N AN 1 1) ..
Exi . f(j1,72) = Yﬁ {4—2)\;—2>\j—2>\2)\1+>\%+>\§—2>\1>\2+)\2+)\2}f(]17]2)
1 5

By demanding Hermiticity of the eigenvalues, we can see that two conditions which must be

satisfied are
1

*2
)‘2

1 1 1
—2:)\”{2%—— and M4+ =

— )\*2
A3 Ap2 N

2+
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We thus ensure that A\} = - and \j = )%2 by setting

1

/\1 = €m )\2 = ew

The energy eigenvalues are then given by

2g% ;N
Eap WT%(? — 2cos(a — 3) — 2cos(a + ) + cos(2cr) + cos(203)) (8.13)
4% N
gyij‘;[ ( cos? o+ cos? § — cos? a cos? 3 — cos? 3 cos? a)
w

This is the form that generalises most easily to more impurities. For example, the 3-impurity
ansatz is

f/\l,/\z,)\g(j1>j21j3) - foz,ﬁ,'y(jlaj%jfi) X eiocj1eiﬁjzei’yj3
and the solution to the difference equation in (8.10) is

4g%, N
_ YM 2 2 2 2 2 2 2 2 2
Eoé,@7 = 7102 (cos a + cos” B+ cos” v — cos® a cos” B — cos® B cos”y — cos“y cos a)

For n impurities, the energy is

n

Z (cos2 a; — cos® o cos? Oéi+1); Qpi1 = (8.14)
i=1

The two-impurity case is of special interest, for reasons that will become apparent in section
8.4. For two impurities, equation (8.13) can be simplified further. We define ¢ = o + 3, and

p=a— (. Then,

292, N
E,y = 1;)71\24(2—QCosq—2cosp+cos(p+q)—i—cos(p—q))
292, N
- 9Y7M<2—2(1—2sin2(€))—2(1—2sin2(3))+
w? 2 2

+ (cospcosq — sinpsing) + (cospcosq + sinpsinq) >

SN e (B a2 (2)

w? 2 2
1692 ;N
e (g) sin2 (§+ﬂ) (8.15)
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We can give a physical meaning to the variables p and 3 by returning to the eigenstates,
eiaj1eiﬁj2 — eipjleiﬁ(j1+j2) = fﬁp(jl,j?) (816)

In terms of J and j, rather than j; and jo, this is e"7e?87.

For finite J, we can apply spin chain thinking. J is related to the length of the chain. We
have used the cyclicity of the trace to lock the first impurity at the beginning of the chain. We
can therefore think of the second impurity as free to go to any position within J, determined
by the value of j. The states with j = 0 and j = J are the same, so we can identify the two
ends. The “chain” is then a circle, obeying periodic boundary conditions so that j + J < j.
This implies that exp[ipJ] = 1, or p = 2kw/J, for integral k.

The eigenstate f3x(j1,72) = €2™101+52) thus has energy

16g%,,N k k
Erpg= gzufiéwsiﬁ <;r> sin? (; + ﬂ)

In the large J limit, it is more sensible to think of p as a continuous variable with the energy
given by (8.15).
8.4 Bogoliubov transformation

We now return to the Bogoliubov transformation mentioned in section 8.1, which was suggested
in [8]. We can eliminate the term involving only creation operators, [¢1,C]?, and the term

involving only annihilation operators, [¢1, C1]?, by taking
Cij = aiyCij — by Ol

Note that ¢ is an Hermitian matrix, and can therefore be diagonlised by an unitary matrix

U. If we denote the (real) eigenvalues of ¢1 by \;, then [UTg U, Clij = (A — A\j)Cij. We define

!There is no sum over the i and j indices here — a(ijy is understood as being the coefficient that multiplies the
(4,7)th element of C'
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C =U'CU. Then,

Tr([¢1,CP) = Te([UTe U, UTCUP)

—()\z — )\j)QC‘ijC*ji
1

.

|
.MZ

sJ

Tr([¢1, CM[¢1, C)) =

:MZ

—(\i = X)*ClCii
1

,L’]

Putting these results into equation (8.3) (suppressing indices) gives

2
wTr(C'C) ~ DTy (191, O + 21, O, O + [61,C'P?)

— wTr((aC — bCT)(aCt = bC))

2 ~ ~ ~ ~ ~ ~ ~ ~
+ M(Ai —A)? Tr((aC = bCT)? + (aCt — bC) (aC — bCT) + (aCT — bC)?)

2w

X
We group the terms in terms of C' and CT:

(— wab + Xaa — 2Xab+Xbb)CC
+ (— wab + Xaa — 2Xab-f—Xbb)C_'JfC_'Jr
_|_

(waa + wbb + 2X aa + 2Xbb — 4Xab)CTC
For the first two lines to disappear, we see that
X(aggagi) +bajba) = (w +2X)ag;bei)
We take a(;;) = cosh(f;;) and b(;;) = sinh(0;;) to give

2 uN
2X WM (N — Aj)?

w

tanh(29ij) = =
w4+ 2X w_,_g%ng()\i_/\jp

The Hamiltonian is then 2

N

He = Z [(w +2X) cosh(26;;) — 2X sinh(QGij)] C_’;er_'ji

i.j=1

2 Again neglecting normal ordering terms
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From equation (8.20),

w+ 2X
cosh(265) = V(w1 2X)2 _ (2X)?
sinh(29ij) = 2X

V(w+2X)2 — (2X)2
and the Hamiltonian becomes

(w+2X)? — (2X)? oo
Vw+2X)2—(2x)2| 7

N
HCZZ

1,j=1

N
= 37w 262, N\ - 0)2CH G (8.21)
ij=1

The square root can be expanded: (in the following, A, is the numerical constant preceding

the nth term in the expansion i.e. /1 + 2 =1+ Az + Agz? +..))

N
> \/w2+2g§MN(Ai—A 2CL.Cyi _ZA (29YM ) Z A2 Ci

i,j=1 3,j=1

Repeated use of equation (8.17) makes this

] 2 n - ~
ZAnw <29YMN> (=)™ Tr([¢1, [b1,- .- [¢1,CT].. )] [61, [¢1,-- - [61,C] .. ]])

n times nested commutators (8.22)

8.5 Two impurity spectrum

Up to this point, the derivation has been applicable to states with any number of impurities.
The restriction is now made to states with two impurities. In this case, the action of this term

on |j1,j2) = Tr(CTuj, (M)Ctuy,(M)) is shown in appendix C to be the same as the operator

66



H(1y (up to a constant) introduced in chapter 7, applied n times. Using equation (C.1),

o (P52 1 (o, 61, €] o s 61,01 Dl )
_— (29%24]\7 ) (-1)" (;Tr[M, e, C*]>n 1o do)
9w (;) (—Wﬁ(m,é*][m,@))n 1, j2)

— 2 (52 i (5.23)

for n > gq.

Equation (8.21) can thus be expressed as
,,'_ — o H(l) n
He = wClCji + 2w Zl A, <w> (8.24)
n—=

The C_';er_’ji term is of the form of a number operator, and counts the impurities, which is 2

in this case. Applying the above equation to the energy eigenstates fg,(ji,j2) (8.16) gives the

spectrum
oo n
16g% ;N
2w+ 2wy A, <ng§4 sin <§> sin? (ﬁ + ‘Z)) (8.25)
n=1
This can be re-expressed in terms of a square root:
1665 N . 5 (DY . p
E,,, = 2w\/1 + M in? (§> sin2 (ﬁ + 5) (8.26)

This approach does not work for more than two impurities, because in this case the operator

equivalence proved in appendix C does not apply for all n.

8.6 Strong and weak coupling limits

In the strong coupling limit, where g2 ,,N/w? >> 1, only the second term of (8.26) will contribute,

and the two impurity energy is

9 (5) s (4 5)

E ~

9y M

At weak coupling, where g%, ulN/ w? < 1, only the first term in the expansion contributes.
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The two operators from appendix C are trivially the same when n = 1, for any number of
impurities. We can therefore find the weal coupling spectrum for any number of impurities. The

energies for respectively two impurities and many impurities are therefore

1663 N . 5 (DY .. p
EQYM (2imp.) ~ 2w + % sin? <§> sin? (ﬁ + 5) (8.27)
462 N «—
EQYM (n imp.) ~ 2w+ 1/;)7]\24 Z (COS2 o — COS2 (675 COS2 OtH_l); Apt1 = QO
=1

8.7 Similarity to Giant Magnon results

In [34], Hofman and Maldacena found a bound state of two giant magnons at weak coupling

that has energy (to first order in the coupling strength) given by

A
2+ ﬁ2 cos? (g) sin? (g) (8.28)

To first order in the 't Hooft coupling, the energy we have obtained (in (8.27)) is
2 + 16\ sin2 <g) sin? (ﬁ n g)

where the 't Hooft coupling A = g%, N and w — 1. For the particular value of 8 = 7/2 (plus

nm), this is
2 + 16 cos? (g) sin? (g) (8.29)

which is identical to (8.28) up to redefinition of the Yang-Mills coupling constant.

68



Chapter 9

Conclusions

This dissertation has had two major drives. The first has been to show the power of the collective
field thechnique by reviewing the work that has been on solving matrices in the large N limit.
This began with the relevant background within the context of the AdS/CFT correspondence.
This correspondence, while not yet rigorously proven or completely understood, is one of the
most interesting recent discoveries in high energy physics. It couples two very different theories,
both of which have had much work on them. It therefore offers a unique window to study both
string and gauge theories. A description of the theories on either side of this correspondence, and
motivation for the correspondence were given. Some of the links between states on either side
of the correspondence were mentioned. The work done by Berenstein, Maldacena and Nastase
on the plane wave limit, and the analysis of spin chains, were of particular interest.

The collective field theory technique was developed in a systematic manner. The basic
formalism was developed initially in general coordinates. This was applied to a single matrix
with an harmonic potential, and the spectrum was found. The physical motivation for the
study of matrix models in the context of the Higgs scalars in the Super-Yang-Mills theory was
then explored. Two possible identifications of variables were explored. The first corresponds
to angular momentum eigenstates. In this picture, 1/2 BPS states are described by a single
matrix model. The results for 1/2 BPS states have been found to agree with those found by
Lin, Lunin and Maldacena [5]. The second variable identification involves treating two Higgs
directly, rather than complexifying and creating angular momentum eigenstates. While this
approach has been mentioned in the literature, it has not been thoroughly developed.

In order to study states beyond 1/2 BPS states in either picture, it is necessary to be able
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to solve a model with two matrices. The full two matrix solution is very difficult. It is here that
the power of the collective field theory technique becomes apparent. The second matrix can be
introduced in a creation/annihilation operator basis as impurities into the background created
by the first matrix. Using this approach, the spectrum and the states that result from using
this technique with two matrices and an harmonic potential were found.

The work that has been done on introducing a Super-Yang-Mills interaction term in the
angular momentum eigenstate model was then reviewed. This used the states that result from
the two matrix model, with two impurities. A Hamiltonian was found, and resulting first order
states were given. These states resemble the structure of BMN loops.

The second goal of this dissertation was to cover new territory by exploring more deeply the
model that results from considering two of the Higgs scalars, and introducing the Super-Yang-
Mills interaction term. The advantage of using the two Higgs scalar model is that it provides
a way to calculate the spectrum (once the background has been subtracted) of a set of states,
when a gy s interaction term has been included. The disadvantage is that the mechanics of the
collective field theory technique mean that one matrix is treated in the large N limit, whereas
only a finite number of impurities of the second matrix are included. This had a nice physical
explanation in the angular momentum eigenstate representation, where the zero impurity states
are 1/2 BPS states, and states with a finite number of impurities are therefore states that are
close to BMN states, or close to the plane defined by the two Higgs scalars. In the two Higgs
scalar model however, there is no prior reason to treat the two matrices asymmetrically. By
considering only a finite number of one matrix therefore, we are thus restricting ourselves to
states near the axis of that scalar.

Within the two Higgs model, the background was subtracted from the full Hamiltonian
(analogously to considering A — J). A Bogoliubov transformation was applied to the resulting
Hamiltonian. The operator that determines the spectrum of this Hamiltonian is of the same
form as the leading operator found in the angular momentum eigenstate model. This operator
was shown to generate a difference equation, which can be solved for any number of impurities.
In the case of two impurities, this determines the spectrum exactly to all orders. For more than
two impurities, the operator does not determine the spectrum exactly beyond first order, hence
the results will only be a good approximation in the weak coupling limit.

The spectrum is one of the most important properties of any theory, and there are no
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indications that the spectrum that we have obtained is not positive definite. One may con-
jecture that the spectrum may be the same as that for angular momentum eigenstates in a
non-supersymmetric setting. Some indication that this may be the case is provided by the fact
that the spectrum that has been obtained can be made to agree with non-supersymmetric giant

magnon results in the literature.

9.1 Directions for future research

There are several possibilities for further work in this area. The first is to use the results
obtained for the two Higgs scalar model to derive the spectrum in the angular momentum
eigenstate model. This model could potentially be more interesting than the two scalar model,
as it ties in to the work has been done in the BMN limit. The similarity to giant magnon results
suggest that the spectrum that has been found for the two scalar model could indeed be linked
to the angular momentum eigenstate spectrum.

The second avenue for further research would be to understand the link to giant magnons
more clearly. An in-depth comparison of the two models could lead to understanding the signif-
icance of the link. It could also possibly also explain why there is extra freedom in the spectrum
that we have derived, before the arbitrary setting of a parameter to get agreement with magnon
results.

Thirdly, one could consider higher order terms than merely quadratic fluctuations. It would
be interesting to see how cubic or higher order terms impact the spectrum.

Lastly, one could look at a three matrix model, i.e. a model with two different types of
impurities. This model would describe states in a three-dimensional space, rather than the two
dimensional plane considered so far. This offers the possibility of a link to QCD which lives in

3+1 dimensions.
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Appendix A

Calculations of collective field theory

parameters

A.1 Calculation of & in k space

Starting from the definition, (6.10), w can be found by repeated application of (5.9)

k k) = 82 T B iki M B iks M
w(ki, ..., ks) oL.onr, L\ Be™ T ..Be
ij ji

1
I { (cl=e)ibaM peikaM _ peiksM peaitid)
o OM;; ij

+

+ (e(l—a)ikSMBeikﬂ\/[ Beiks_lMBeaiksM)

1 1 i }
_ / a3 / da{
0 0
(1 - Q)k2Tr (eﬁ(l—a)ik1M> Ty (e(l—ﬁ)(l—a)z‘lqMBeikgM.“BeiksMBeaiklM)

+ (terms that involve no impurity-free traces)

— ki 2Tr (e(l—a)ikleBeik:gM.“BeiksMBeﬁoaiklM) Tr (e(l—ﬁ)aik1M>

(- a)kSQTT <€,6(1—a)ik:SM) Tr (e(l—ﬁ)(l—a)iksMBeiklM_'.Beiks_lMBeaiksM)
+ (terms that involve no impurity-free traces)

—ak2Tr (e(lfa)iksMBeiklM.._Beiks_lMBeﬁon'ksM) Tr (e(lfﬁ)aiksM> }

Only the terms with zero impurity loops are necessary, so all the terms that contain no

impurity-free traces can be neglected. If one changes o — (1 — «) in the first term for each k;,
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and 3 — (1 — 3) in the second term for each k;, then
w(kzl, PN k‘s) =

1 1
- /0 da /0 ag{ ok 200 (Baki (1~ aB)kr. s, ... k)

aes200 (k1 ) (1 — af)kr, ko, ooy (1 — aB)ks) }

Working on the first term, and letting k" = aky and k' = afk;:
1 1
| da [ d akun(Bak)i(1 - aBk e k)
0 0

k1 k!
= [ [k i~ K )
0 0

To remove the k” integral, we swop the order of integration and take k' — ki — k&, obtaining

k1
/ dk:,/ dk” o k:, Vs (k1 — k,,kzg, vy k)

_/ Ak Ko (ky — KV bs (K Koy ooy )

0

The other terms work similarly to the k; term, so the final answer is

k1, ko _—22/ AR E'po (ki — K )bs(ky ooy ki1, B i1y oo Kis) (A1)

A.2 Calculation of {2 in £ space

. - 81/10(]{70) 87/’5(]?17---7]5 )
QO;s(k())kl?"'?kS)_T < 8MZ] 8M]Z

0 ; 0 ;
_ T ( szM) T (B MM g zksM)
oM, e oM, r | Be e

— iko (ez’koM> /1 dev (e(l—a)z’klMBeaikgM'”BeiksMBeaiklM>
JjiJo
+ ...

+ ik (eik0M> /1 dov (e(l—a)iksMBeaiklM.“Beiks_lMBeaiksM>
JiJo

ij

ij

—ko <Z ks (K, ..., ki + ko,...,k:s)) (A.2)
=1
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A.3 Calculation of w in z space

To calculate the value of w in position space, it is first useful to express ¢ in a different form.

Because M is Hermitian, it can be diagonalised, such that VIMV = A, where A is a diagonal

matrix containing the eigenvalues of M:

AN OO 0
A 0

ViMYy = A = 2
0 0 Ay

It follows from (A.3) that
(VT eikMV> = 5, e

nm

This allows one to express ¢ as follows:

d}s(kﬁl, ceny ks) = Tr (VTBV VTe’UClMV VTBV VTelkst)

N N
= Y D (VIBV)mee™ A (VIBY )y, e 2ne
ni=1 ng=1
N N
Gs(@1, o) = Y e Y621 = A )(VIBV )ymy X o X
ni=1 ns=1

X (x5 — An,) (VIBV ) pins
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Therefore, from (6.14),

w({ki}) =
_—22/ k'K etk

X Z (VTBV> ek Any (VTBV> oy (VU%’V) oiksAns

ni,. nin2 MiMNG41 nsni
:—22/ dkk://dz/dyl /dy etk k)zz52—
x Z Z (1 — M) (VIBY )iy o 6(ys — An)(VIBV ), X
ni=1 ns=1

% eiklyl eiki71y2‘71 eiklyi eik¢+1y¢+1 eiksys

5 kl 17 .
=2 / dz / dy... / dys / dk' K e =) gikiz
i=1 0

N
X ?JJO(Z) ws(yla"wys) H ekjyj (A6)
)

The k' integration can now be done using integration by parts.

k; . ) 1. o1k Y tkiyi tkiz
/ dK' kK e~k (z=yi) gikiz _ Zkle_ ~ + e_ — — e_ <5 (A7)
0 (z—wy) (2—u) (z —vi)

This finally leaves us in the position where we can apply a Fourier transformation, which converts
the exponentials to delta functions. Integrals should obey the principal value prescription in what

follows.

sl = [ Gren [ Seetn i

— —2Z/dk:1 /dk /dz/dyl /dys Yo(2) ¥s(y1, - Ys) X

75(561_%) (5@— i
[6?]1 : + ( yz)_ Z_y H(S _y]

(z — i) (z — i)

_ _Qi/dzwo(z)ai. <w>

(2

_2Z/dz¢ [ws({l'z}) 5(2—1’2) dyil/J(wh...,yi,...,:L's;s)

(zi — 2)? (yi — 2)?

(J#Z)
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A.4 Calculation of () in = space

Calculation of €2 from (6.14):

Qos(z5 21, .0y 25) = /C;]jroe_ikoz/cg:e_iklm.../ng:e_ik

= /dkoe—ikoz/dkle—z’klxlm/dklee_ih .
27 2 21T

SwSQo;S(k‘Q, ki, ...

x —ko (Z kiths(k1s ooy ki + ko, o ks)>

=1

Letting k; — k; + kg yields

0 0 [dko (o,

QO;S(Z;mla'“;xs) - 2828%/27‘?6 ko( z)w
i=1 @
.9 9

= &%(5(2—9%)%(:61,...
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Appendix B

Calculation of eigenvalues and

eigenfunctions for many impurities

We derive here the eigenvalues and eigenfunctions for the multi-impurity kernel (equation 6.22)
acting on the functionals given by equation (6.23). The derivation below follows the method

used in [6]. When the kernel acts upon the functionals, the result is

i/dz%(f(:cl,...,xs) — f(x1, .2y x)) (B.1)
S [( 2L s 4 e [

This is a sum of kernels of the form found by Marchesini and Onofri ([7]). All integrals in this

section should be understood in the principal value prescription.
We will look at the action of the ith term in the sum, then multiply the eigenfunctions that
result to obtain the complete eigenfunction. Looking at the first term, the equation we want to

solve is

0, / dz %(_z)z f=ef (B.2)

T

The quadratic potential that we are dealing with obeys the equation found by Brezin, Itzykson,

/dzjo(_z)z =wr . (B.3)

This can be seen by applying the identity in equation (5.17) to the background Hamiltonian

Parisi and Zuber [25],
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(5.24), so that the potential is

2 ooy

and (B.3) results from minimisation with respect to ¢g. The solution of (B.2) is then trivial:

—w = €. (B.4)

Turning to the second term in (B.1), the equation we want to solve is

ami/dz%(z)f(“”’“"z’""xs) = eif(@1, . 2i) (B.5)

r; — 2

In what follows, we will move to the “time of flight” coordinates introduced in section 5.4, so

that

Z =ngo, z(q) = —\/zcos(wq) and 7wy = V2wsin(wq) .

Consider now the following integral for n > 0:

m/w injw ™ in;
| ot =2 [ Rl s (5.6

—rjw T x(qo) — x e T cos(q) — cos(qo)

where n; is a positive (non-zero) integer. This integral can be performed via complex analysis.
We take the contour integral along the path shown in figure B.1. The function is periodic, with
a period of 27, so the vertical paths will cancel. Poles will occur at ¢ = £qg + 2k7 where k is an
integer. Only two of these poles will occur in any period of 2w. We choose the “time of flight”
variables such that the poles occur at ¢ = +¢qp. These poles lie along the path of integration,
so we will take the principal value prescription, picking up half the value of the residue of each
pole.

The residues can easily be found by noting that (B.6) is equal to

0 s dq ) einiq
/ﬂ ) o (5
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Im[q]

L A
-4, q,
R
DL ol
I T

Figure B.1: The contour followed to solve equation B.6. The principal value prescription is taken at the
poles, —qo and qq.

The residues are thus

1. emiqo eMiqo
reS(QO) - _5 Sln(qo) Sln(QO) - T )
e~ niqo
res(—qo) = —
m
The solution to the integral is therefore
mi [res(qo) + res(—qo)] = —2icos(niqo) (B.7)

Returning to (B.6), note that if one expands explin;q] = cos(n;q) + isin(n;q), the cos term

is antisymmetric and falls away, leaving

—T

- 0 MZ—COS(WQO)

T /w d . )
q sin(n;wq)
/ ()
0
We now move to x space, taking x(qo) — z and z(q) — ;.

V2w sin(nig(z
/ dzw = —cos(n;q(x;)) (B.8)

—\/2/w Ty — 2
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Taking a derivative with respect to x; puts this into the same form as (B.5).

= n; Sin(niq(xi))aziQ(fUi)

— Q/w . )
axi / dZSln(an(Z))
2

Jw T, — =
_ w sin(n;q(z)) .
5 / 2/ dzﬂ¢07w¢o _ n'sm(niq(:vi))
i 2/w Ty — = ! 7T¢0

We thus identify a family of suitable eigenfunctions f, for each value of n;

o _ sin(niq(z;)) _ sin(n;q(x;))
fni({zi}) - V2 sin(q(z1))

The eigenvalues are

€ = Ny

(B.10)

Multiplying together all the eigenvalues from both the first and second term in equation (B.1)

gives

€n} = w (ZS: n; — S)
1=1

The complete eigenfunctions are products of the eigenfunctions we have just found:

sin(n;wq(x;))
H L 3w sin(wq(z:)

(B.11)

(B.12)

These are the eigenvalues and eigenfunctions that appear in equation (6.24) in the main text.
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Appendix C

Equivalence of two operators for two

impurities

This appendix contains the proof of the equivalence of two operators (when applied to the
2-impurity states that we are dealing with) that is used in section 8.4 (equation (8.23)). To
simplify notation, we will denote the n times nested commutator of an operator by (n) after the

commutator, for example

[M,[M,...[M,C"...]] [M,[M,... [y, C).. ]| = [M,CY ) [M,Cl

n times nested commutators
The statement of the proof is then that

. 1 "
TI'([M, CT](n) [M, C](n))TI‘(CTM’U,jCTMUk) =2 <2TI‘[M, CTHM, C]) Tr(CTMujCTMuk)
(C.1)
for n > 1. In a coherent state basis, Ct — C, C — 9/0C,

Te([M, C)iy[M, /0C) ) Te(CMu;CMuy) = 2<;Tr[M,C][M,8/8C]> Tr(CMuyC Mug)

On Hl

O, Tr(CMu;CMuy,) = 2ﬁ1nTr(CMujCMuk) (C.2)
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C.1 Action of On

First note that

Tr[M, z|[M,y] = —Tr([M, [M, :E]]y)

This can be applied repeatedly to show that

0
TI'[M, C](n) |:M, :| = —TI'[M, C](n+1) [M, 8/80] (n—1)
(n)

— (1" (1M, Cliany )

Secondly, it can be shown inductively that
k k
M =) (| MEFroM!
M.y = S (e
This clearly holds for k =1,

[M,C)y = MC —CM

If one assumes that it holds for k, then
(M, Cljy1)y = [M,Z(—l)’@)MkZCMZ(—l)Z]
i=0

k
— Z(_l)z <k> (Mk—i+1CMi . Mk—iCMi+1)
=0

- Sy Kk) i ( ! 1”

=0

(where (Z) is understood as 0 for b < 0 or b > a)

k+1
_ Z(_l)z’MkJrlfiCMi (k + 1)

X 1
=0

Using (C.3) and (C.4), we see that

2n
T (M, Cln[,0/0C) ) = (1" S_(-1) (7 ) mar-earajoc)

- 1
=0
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The above operator is then applied to a state Tr(Cu;jCuy), using (8.5), to yield

Tr([M, C)(n)[M,0/0C] (1)) Tr(CMu;C Muy,)
2n

n 2n n—i )
=(~1) ;;(—1) <z >(M2 CM")p(ujCug + urCj)pa (C.6)
2n /o, ‘ .
= 2(—1)" Z(—w( . )Tr(CMZujCMQ”’uk)
=0

C.2 Action of }Ln

We prove inductively that

(Tr([M, C|[M, d/dC)))* Tr(CMu;C Muy) = 2kz < ) (CMiu;C M iy
(C.7)

For k =1, equation (8.6) shows that

Tr([M, C][M, d/0C]) Tr(C Mu;CMug) = —2Tr(Cu; CM?uy, — 2C MujC Muy, + CM?u;Cuy,)
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To show that it holds for k + 1:

Te[M, O)[M, 8/0C](~ ka ( )Tr (CM u;CM )

0

5 C) Tr(CMu; C M uy,)

2’“2 <2MCM MMC — CMM)

zkz "2MCM — MMC — CMM)g, %
x ((M w My )+ (M gy (C M) )

QkZ MZ+2u CMZk‘ i —|—2CM7'+1’LL CMQk i+1 CMiujCMZk—H-Q)
= (—1)k2k+1Tr{ [— <2Ok>] CM u;CM* 2y + (—1) [—2 <20k> - (21’“)] CM u;CM*Hy,

D {_ <2ok ) - 2(21k) - (22k>] O CM +}
e () () (e
=0

(where (Z) is understood as 0 for b < 0 or b > a)

2k+2
2 2 . .
1)kHightl Z < k+ ) (CMin;C M2y, (C.8)

which proves (C.7).

We then see that
<1T (M, C][M 8/80])>nTr(CM M )—(—1)"2(—1)i<2“> (CMiu,C M)
5 (M, , u;CMuy) = 4 u;

which is half of (C.6). Thus result (C.2) is proved.

C.3 DMore than two impurities

The equality fails for more than two impurities. For three impurities, the results are different for
n > 3. For four or more impurities, they are different for n > 2. This is shown in table C.3. The
notation used is the same as that in section 8.2, where the numbers correspond to how many
Ms appear after each C' in the state Tr(CM“ujIC'Mbujg ...). For n =1, the two operators are

trivially the same for any number of impurities.
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(b) Four impurities with n =2

(a) Three impurities, with n =3

N N O F 1 O N 1O N OO N —TM 1TONOH O IO NO—HO OO
NN TSN AT NSO~ O "N~ NS TS NSO~ S
S~ 1 AN AN FSToOoo It 1 NN NS 1 NS = S
=l === e e I T e T T T T T i P pi R S R A by X N N S B BN R S S S

e e e e e S S S e e e e S e e e e S e e e e S S e e N S S S

0 _ o 10 10 YRV
& o o~ o o A
L) Ll i i i i
QlleTa e |eocococooocoRoog o oo

3]
N o, S B~ ~ ™
< 9_~6_IiMﬂ6464664646464M66M4%4664

Term | 2H;4

P R R o e s e R T e s e R N e s s R e s s e s e e e e R

O MmN Ao LY M AN ~o Y M AN ~om NN —~Ao N Ao oo
ST AN FIT o TN F IS T AN FS TN NS A NS A S
S T i A AN NN S < s S

e e e e e e S e e e e S e e e e e S e e e N N N e N N

A~

and O, applied to states with three or four impurities, showing that the

n
operators are not equal.

~

Table C.1: 2H;
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