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Abstract

The collective field theory technique provides a method of tackling problems with two N × N

matrices in the large N limit. The collective field background from one matrix is first found,

then the second matrix is introduced into this background as an impurity. Within the context

of the AdS/CFT correspondence, this technique can be used to describe gauge theory states in

the BMN limit.

This dissertation starts by developing the collective field theory technique, firstly in general

variables, then for one matrix, and subsequently for two matrices. It goes on to introduce a

Yang-Mills interaction term, where two variable identifications are considered. The first is the

more traditional angular momentum eigenstate model. The second is a model that directly uses

two of the Higgs scalars. This model has been mentioned in the literature, but has not been

considered in great depth. The exact two impurity spectrum is found, and the multi-impurity

spectrum is found to first order. The resulting energy values match a spectrum that has been

found for giant magnons.
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Chapter 1

Introduction

1.1 Background

’t Hooft published a paper in 1974 [1] pointing out an interesting phenomena that arises when

the N in SU(N) gauge theories is treated as a free parameter. When the large N limit is

taken, the Feynman diagrams are arranged in a similar way to that of a string. This paved the

way to a proposed correspondence between gauge theories and string theory. Perhaps the best

recent example of this correspondence is a duality proposed by Maldacena [2], called the Anti-de

Sitter/Conformal Field Theory (AdS/CFT) correspondence. This relates type IIB string theory

involving AdS space (namely AdS5 × S5) and N = 4 Super Yang Mills (SYM) theory. Much

work has been done on developing a “dictionary” allowing one to go from the string theory to

the field theory or vice versa.

One promising area of research within the AdS/CFT correspondence has involved looking at

giant gravitons in AdS × S, and their SYM duals. On the field theory side, 1/2 BPS states and

their interactions can be described in terms of a (single matrix) free fermion model of harmonic

oscillators. This description makes use of a complex matrix in a harmonic potential ([3], [4]).

Later on, Lin, Lunin and Maldacena (LLM) showed that a fermionic droplet configuration

completely describes 1/2 BPS states [5]. [6] reproduced the energy and flux obtained by LLM.

They extended the free fermion matrix model by considering a one dimensional Hermitian matrix

in a bosonic phase space density description.

To consider more interesting cases than free fermions, it is necessary to consider models with

more than one matrix. It is not known how to solve a two matrix model exactly. One way of
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tackling the problem at large N is to solve one of the matrices exactly by introducing a new set

of invariant collective fields. While overcomplete for finite N , the new variables tend towards

independence in the large N limit. The second matrix is treated in a coherent state basis, using

creation and annihilation operators. Creation operators corresponding to the second matrix are

then added as impurities into the background created by the first matrix. Using this technique

on a two matrix model with an harmonic potential, [6] found a sequence of eigenvalue equations

that generalised the results obtained earlier for one matrix [7]. Eigenstates were obtained for a

harmonic oscillator potential for any number of impurities. A 1-1 map was found that relates

these eigenfunctions to a 2D subset of suitable transformed wavefunctions from Supergravity on

AdS × S.

By considering a different set of states, [8] obtained the full free spectrum for two Hermitian

matrices. It went on to introduce the interaction term from the SYM action. This was done

in two different contexts. The first used the traditional angular momentum eigenstates. First

order energy results were found by considering part of the Hamiltonian. The second method

involved modelling the two scalars directly.

This thesis aims firstly to review the work leading up to this point, showing the physical

significance of the collective field theory approach to tackling one and two matrix models. The

context of this work within the AdS/CFT correspondence is given. Secondly, it aims to extend

the field by deriving the energy spectrum that results from the introduction of a Super Yang-Mills

interaction term, for a particular identification of variables corresponding to a direct treatment

of two Higgs.

1.2 Outline

This thesis is organised as follows.

Chapters 2 and 3 contain background material to the AdS/CFT correspondence, which will

motivate the calculations of later chapters. Chapter 2 contains a summary of and motivation

for the AdS/CFT correspondence. The initial motivation for this link came from ’t Hooft in the

context of QCD [1]. His original argument is revisited, and it is shown how the large N limit

yields planar diagrams to leading order in the Feynman expansion. This large N expansion is

of the form of a perturbation expansion in string theory, which provides the first indication that

gauge theories and string theories are linked.
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The two theories on either side of the AdS/CFT correspondence are then examined. Some

of the properties and content of N = 4 Super Yang Mills theory are found by starting with

a conformal field theory, then adding supersymmetry. Anti-de Sitter space is introduced, and

some fundamental properties of type IIB strings defined on AdS5 × S5 are given. On the gauge

theory side, chiral primary are introduced. These are 1/2 BPS operators which are of particular

interest as their dimension does not receive coupling dependent corrections.

Maldacena’s original argument [2] for the identification of N = 4 SYM theory and IIB string

on AdS × S is then explored. N parallel D3-branes are put into a ten dimensional space, and

two different low energy limits are taken. In the first case, the result is free supergravity plus

N = 4 SYM, and in the other case the result is free supergravity plus strings on AdS5 × S5.

The SYM theory and the string theory are therefore identified.

Chapter 3 looks at consistency checks for the AdS/CFT, as well as exploring some of the links

that have found between specific sets of states on either side of the correspondence. Parameters

which are mapped to each other on both sides of the correspondence are identified. The BMN

limit is explored, which relates strings in a plane wave background to single trace operators into

which impurities have been introduced. Spin chains are briefly introduced, together with some

motivation for their study and some basic spin chain results.

Chapters 4, 5, 6 and 7 look at applying the collective field theory technique to matrix models.

Chapter 4 develops the mathematical formalism, using general notation. The change of variables

to invariant collective fields is described, and the Jacobian is found by requiring Hermiticity.

Chapter 5 starts by outlining the physical motivation for examining free single matrix models

using the collective field theory techniques. These models describe 1/2 BPS states – extremal

states whose anomalous dimension (or energy on the string side) is protected by supersymmetry

considerations. The general formalism developed in chapter 4 is then applied to an Hermi-

tian matrix. A Fourier transform is made to an eigenvalue density description and the energy

spectrum of the single matrix Hamiltonian is found.

Chapter 6 goes on to look at the identification of variables from the AdS/CFT correspondence

that leads to matrix models involving two of the SYM scalars. Two possibilities arise, creating

angular momentum eigenstates from the SYM scalars, or directly modelling the two SYM scalars.

These two models will be examined in more detail in chapters 7 and 8. Both involve two

matrix models, which are traditionally difficult to solve. The approach followed is thus to treat
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the first matrix exactly, as described in chapter 5. The second matrix is then expressed in a

creation/annihilation basis, and introduced in the form of impurities into the background created

by the first matrix. The result of adding impurities into the zero-impurity background produced

by the first matrix is then examined. The many-impurity Hamiltonian is found together with

the energy spectrum, using results calculated in the appendices. The eigenfunctions are found

to involve products of Chebyshev polynomials, which have a similar structure to spin chains.

The gYM interaction term is added in chapters 7 and 8. Chapter 7 examines it in terms

of the angular momentum eigenstate in the interaction potential of N = 4 SYM theory, using

the angular momentum variables. This is shown to generate an interaction Hamiltonian. The

resulting first order energy spectrum is reviewed.

Chapter 8 presents new work on the two SYM scalar matrix model. While this model has

been mentioned before in [8], it has not been developed fully. The Hamiltonian is found to

generate a term of the same form as the leading contribution from chapter 7. This leads to a

difference equation. The original derivation in [8] gave energy results for two impurities to first

order by only considering the some of the terms in the difference equation. We take this further

by introducing an ansatz which gives an analytic solution to the complete difference equation for

any number of impurities. We then perform a Bogoliubov transformation. The energy spectrum

resulting from the ansatz is shown to exactly determine the spectrum resulting from the gYM

interaction term for two impurities, and to first order in the t ’Hooft coupling for any number

of impurities. The final energy is shown to be of the same form as a result found recently for

giant magnons.

Chapter 9 is reserved for a discussion of the results, and future outlook.

Appendix A contain details of the calculations of the collective field theory parameters for

many impurities. Appendix B has the calculation of the many-impurity energy spectrum. These

results are used in chapter 6. Appendix C contains a proof for the equivalence of two operators

that is used in chapter 8.
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Chapter 2

AdS/CFT correspondence

The foundations of the AdS/CFT correspondence were laid within the context of understand-

ing the strong force. In fact, string theory was first developed as an attempt to describe the

observed variety of hadrons and mesons, which interact via the strong force. It was not very

successful at this, and this approach was no longer pursued after the development of Quantum

Chromodynamics (QCD), which describes hadrons and mesons as being made up of constituent

quarks. Despite the lack of overall success, string theories retain some of the properties that

make them an attractive candidate for describing the strong force.

The first useful property concerns the relationship between mass and angular momentum.

Within the space of hadrons with a given spin, the hadron with the lowest mass obeys m2 ∼

TJ2 + const, which is satisfied by a rotating relativistic string.

Two other useful properties are asymptotic freedom and confinement. Asymptotic freedom

states that the force between quarks goes to zero at small distances. At large distances the force

increases sharply, so that one is never able to observe a free quark; this is called confinement.

These properties can be understood in a string-like manner. The flux lines between quarks can

be thought of as stretching out in a tube, such that the quarks are always bound to each other.

At small distances the force is not large, but at large distances it increases as the flux tube is

extended. These flux lines are similar to strings with quarks at both ends.

While QCD on the whole has been very successful, it is not easy to do calculations at low

energy scales, where QCD becomes strongly coupled. One of the problems is the lack of a

good dimensionless parameter on which to perform perturbation theory. QCD is defined around

SU(3), in other words quarks come in three colours. t ’Hooft [1] attempted to tackle the strongly
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coupled region by instead taking a gauge theory where the number of colours is N , and then

taking the large N limit. If this simplified the theory, then 1/N corrections could be added to

leading terms, which would allow one to get a perturbative expansion when N → 3. The result

of this approach was an expansion that matched that of free string theory. In this way, the large

N limit gave the first hint that gauge theories are related to string theories, as will be described

in more detail in the next section.

The kind of argument followed by ’t Hooft turns out to be very general, and links can be

found between many different gauge theories and string theories. A general property of dualities

between gauge theories and string theories is that in the region where one is strongly coupled, the

other is weakly coupled, and vice versa. This is useful, as it suggests a way to do calculations in

regions where previously it was very difficult, such as in low energy QCD. It is also problematic,

as it has made proving dualities between theories difficult because the regions where calculations

can be done do not overlap nicely.

Of the dualities, the AdS/CFT correspondence in particular has received much attention in

the literature, and provides the background to this thesis. It involves two highly supersymmetric

theories, relating strings in a space with an Anti-de-Sitter (AdS) component to operators in

Super-Yang-Mills conformal field theory (CFT).

2.1 Large N limit

Following the review in [9], we consider a general theory based on SU(N) with fields Φi
a. For a

less specific version of this argument, involving a general Hermitian matrix M , see [10]. In Φi
a,

a is an index in the adjoint representation of SU(N), and i is another index, such as flavour or

colour. Three point vertices will contribute gYM , and four point vertices g2
YM . After rescaling

by taking φ→ φ/gYM , the Lagrangian is of the form

L =
1

g2
YM

[
Tr(dΦidΦi) + cijkTr(ΦiΦjΦk) + dijklTr(ΦiΦjΦkΦl)

]
(2.1)

The original argument followed ’t Hooft in [1] dealt with the gauge field theory that describes

the strong interaction. The Lagrangian was therefore more complex, involving quark fields and

ghost fields (in the Feynman gauge) in addition to the gauge fields Aµji. The general principles

of the argument are the same, however.
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i
j

g
YM
2

(a) Propagator

1/g
YM
2

(b) Three point vertex

N
i

(c) Closed loop

Figure 2.1: The contributions to g2
Y M and N that arise from various diagrams

We can represent each adjoint field as a direct product of a fundamental and an anti-

fundamental field, so the theory will be built out of objects with two indices, Φi
j . The propagators

(neglecting terms sub-leading in N for some groups) are of the form

〈Φi
jΦ

k
l 〉 ∝ δilδ

j
k

To keep track of the two indices, we introduce a double line notation into the Feynman diagrams,

where the upper indices are denoted by incoming arrows and lower indices by outgoing arrows.

Where arrows join, such as at vertices, the indices are summed. The resulting Feynman diagram

will be a network of directed double lines. This can be viewed as a simplical decomposition of

a surface, where the lines (arrows) are edges or faces in the decomposition.

To see what happens at large N , the scaling of gYM as N → ∞ must be determined.

Requiring that the leading terms of the beta function for SU(N) YM theory scale consistently

at large N (see [9] for details) means that N limit should be taken in such a way as to keep

λ ≡ g2
YMN finite. This is called the ’t Hooft limit.

We determine the gYM and N dependence from the geometrical properties of the surface.

From equation 2.1, vertices will contribute a factor of 1/g2
YM . Propagators (or edges) are

inversely proportional to the quadratic part, and thus contribute a factor of g2
YM . Closed loops

are equivalent to δii, so each closed loop, or face, contributes a factor of N . These cases are

shown in figure 2.1.

A diagram with E edges, V vertices and F faces will be proportional to

NV−E+FλE−V = N2−2gλE−V

where Euler’s formula has been used to introduce the genus, or number of handles, g. (We

are assuming connected diagrams – the extension to disconnected diagrams is easily made by
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adding the terms for the different components.) A full perturbative expansion will be a sum of

terms of the above form, and can be written as

∞∑
g=0

N2−2gfg(λ) (2.2)

where the functions fg capture the λ dependence. The leading terms are the ones with g = 0,

which are diagrams that can be drawn on a plane. The large N limit is thus often referred to as

the “planar limit”. For each handle that is added, the diagram will be suppressed by a factor

of 1/N2.

Equation (2.2) has the same form as the perturbative expansion for closed oriented strings,

if we identify 1/N as the string coupling constant. We therefore see that in the large N limit,

gauge fields are linked to string theories. It should be noted that this connection is based on a

perturbation expansion that does not converge, and can thus not be called a rigorous derivation.

It is thought, however, that it is indicative of a true equivalence between gauge field theories

and string theories.

2.2 Properties of N = 4 SYM and IIB strings on AdS × S

Having given the general motivation for links between gauge theories and string theories, we

now turn to the example of interest, namely the AdS/CFT correspondence. One the string side,

the correspondence involves type IIB string theory on a ten dimensional space that consists of

a 5-sphere and a five dimension Anti-de-Sitter space, i.e. AdS5× S5. This is identified with the

maximally supersymmetric four dimensional conformal field theory, which is N = 4 Super Yang

Mills (SYM) with the gauge group SU(N) [2, 11]. Before giving an outline of the justification for

this link, let us briefly explore the theories on either side of the correspondence, starting with

the SYM field theory.

A conformal field theory (CFT) is a quantum field theory that is invariant at quantum level

under the group of conformal transformations. These transformations preserve the metric up to

an overall (in general x dependant) scaling factor, gµν(x) → Ω2(x)gµν(x), thus preserving angles.

The conformal group is the smallest group that contains both the Poincaré group as well as the

inversion symmetry xµ → xµ/x2. In Minkowski space, the conformal group is generated by

Poincaré transformations, scale transformations and a special conformal transformation given
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by

xµ → xµ + aµx2

1 + 2xνaν + a2x2
(2.3)

For details on the full set of commutators obeyed by the generators of these transformations,

see for example the review in [9]. For now, there are two that are of interest. Denote the

generator of the conformal transformation (2.3) by Kµ, the generator of translations by Pµ and

the scaling operator (also called the dilatation operator), which takes xµ → λxµ, by D. Then,

[D,Kµ] = iKµ and [D,Pµ] = −iPµ (2.4)

Consider now representations that consist of operators that are eigenfunctions of D with

eigenvalue −i∆ where ∆ is referred to as the scaling dimension (or just dimension) of the field.

From the commutators in (2.4), the action of Pµ is to raise the scaling dimension of the field by

one, while Kµ will lower it by one. For example,

D(Pµ(Φ)) = Pµ(D(Φ))− iPµ(Φ)

= −i(∆ + 1)Pµ(Φ)

There is a lower bound on the dimension of the field for unitary field theories. The operators

with lowest scaling dimension are called primary operators, and will be annihilated by Kµ.

We now add supersymmetry to the conformal field theory, to get superconformal field theory.

Supersymmetry relates bosons to fermions, and contains fermionic operators, or supercharges.

We look for the maximally supersymmetric (N = 4) four dimensional Yang-Mills algebra that

includes both the conformal group and the Poincaré group. These constraints are very restrictive,

essentially uniquely determining the field content and the Lagrangian of the theory, up to the

gauge group and the coupling constant. We will take the gauge group to be SU(N), as was the

case in ’t Hooft’s original exploration of the planar limit in the context of QCD. We will briefly

look at the content of this theory, for a more detailed summary see for example the reviews in

[12], [13] and [9].

If no particles with spin greater than one are included, in other words the theory does

not include gravity, the maximum number of supercharges for a free theory is 16. Adding

conformal invariance doubles this number to make 32 supersymmetries. This is because Poincaré

supersymmetries and the transformations Kµ do not commute, yet both are symmetries. The
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result of their commutation must therefore be another conformal symmetry, which is generated

by an additional four supercharges S and their complex conjugates, adding an additional 16

supercharges.

N = 4 supersymmetry in four dimensions has a unique vector multiplet. This contains

complex Weyl fermions, a vector field and six real scalars, φI , I = 1...6. See [9] for a summary

of the action of supersymmetry generators on these fields. The group that rotates the six scalars

into each other is SO(6) (or SU(4)) which is called the R-symmetry. Including the R-symmetry,

N = 4 SYM obeys a global supersymmetry corresponding to the supergroup SU(2, 2|4).

We now turn briefly to the string theory side. AdS5 × S5 consists of a 5-sphere and five

dimensional Anti-de-Sitter (AdS). AdS is the maximally symmetric solution of Einstein’s equa-

tions with a negative cosmological constant. It can be defined by embedding the six dimensional

hyperboloid

X2
−1 +X2

0 −X2
1 −X2

2 −X2
3 −X2

4 = R2 (2.5)

into a space similar to Minkowski space, but with two time-like coordinates:

ds2 = −dX2
−1 − dX2

0 + dX2
1 + dX2

2 + dX2
3 + dX2

4

We now change coordinates such that

(X−1, X0) → R cosh ρ k̂2

(X1, X2, X3, X4) → R sinh ρ k̂4

where k̂2 and k̂4 are the two and four dimensional unit vectors respectively that give the direction

of the two vectors. This can be seen to satisfy the hyperboloid constraint (2.5). The AdS5 metric

is then

ds2 = R2
[
−dt2 cosh2 ρ+ dρ2 + dρ2 sinh ρ dΩ2

3

]
Once a 5-sphere of radius (R) is added, the full metric for AdS5 × S5 is

ds2 = R2
[
−dt2 cosh2 ρ+ dρ2 + dρ2 sinh2 ρ dΩ2

3 + dψ2 cos2 θ + dθ2 + sin2 θdΩ′2
3

]
(2.6)

AdS5×S5 can be shown to be a solution to the type IIB supergravity equations of motion [10].
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These arise from considering an action with a term involving the metric and a term involving

the fiveform field strength,

S =
∫
√
gR+ S2

5

and constraining the field strength to be self-dual. In this solution, the radius of the AdS space

is equal to that of the 5-sphere, and is given by

R = (4πgsN)
1
4 ls (2.7)

where gs is the string coupling constant and ls is the string length. The symmetry group of AdS5

is SO(2, 4), and the symmetry group of S5 is SO(6), thus AdS5 × S5 has an overall symmetry

group of SO(2, 4) × SO(6). In complex terms this is SU(2, 2|4), which is the same as that of

the SYM theory.

2.3 Chiral Primary Operators

We now introduce a particular set of operators within the SYM theory, called chiral primaries,

which are of particular interest because their dimension does not receive coupling dependent

corrections. This makes it easy to compare them to similarly protected states on the string

theory side.

In the previous section, we found that additional supercharges S arise from the introduction

of conformal symmetry. The commutator between the generators S and the generator of the

scaling transformation, D, is [D,S] = i
2S. This means that the generators S act in a similar way

toKµ, in that they reduce the dimension of operators. Primary operators in superconformal field

theory are therefore operators that are annihilated by both Kµ and S. Because the conformal

algebra is a subalgebra of the conformal algebra, in general each primary of the superconformal

algebra will include several primaries of the conformal algebra. These can be found by acting

on the superconformal primary operator with the supercharges Q.

Chiral Primary operators are defined as operators that are annihilated by some combination

of the supercharges Q. Their dimension is uniquely determined by their R-symmetry repre-

sentations and thus cannot receive any quantum corrections. In any given representation, the

chiral primary will always have the lowest dimension; other operators will have a strictly higher

dimension. Representations of the superconformal algebra can be formed by starting with a
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chiral primary, and then generating descendants by acting on it with the operators Q and Pµ.

For Abelian R-symmetry groups, ∆ ≥ a|R| for some constant a, and this bound is saturated by

chiral primary operators. They are 1/2 BPS states, preserving 16 of the 32 supersymmetries.

It is possible to find chiral primaries by looking for components of a primary multiplet that

cannot be written as a supercharge Q acting on another operator, as these will be of lowest

dimension. Any operators built from the fermions or vector fields can be expressed as Q acting

on other fields, and are thus not chiral primary. We therefore look for operators that are built

out of scalar fields, and it turns out that chiral primary operators correspond to symmetric,

traceless combinations of the φI .

2.4 Initial motivation for the AdS/CFT correspondence

Having provided a general explanation of why one expects field theories to be linked to string

theories, we now provide some justification for why in particular we expect N = 4 SU(N) to be

dual to a string theory on AdS5 × S5.

The starting point is type IIB string theory, which is a supersymmetric ten dimensional

string theory. We now introduce D-branes. These are extended objects that can be defined by

the fact that open strings can end on them [14]. They arose from the study of Dirichlet boundary

conditions, where it was realised (in the context of compactification of open string theory) that

they define a hyperplane that is a dynamical object. They are a necessary part of the theory;

attempts to include only Neumann boundary conditions result in Dirichlet boundary conditions

being introduced via the T-duality which links type IIA and IIB string theories.

Specifically, consider IIB string theory on ten dimensional Minkowski space, with N parallel

D3 branes that very close to each other (or even co-incident). There are two different ways of

looking at the low energy limit of this system, and the identification of the results from each will

lead us to the link between strings on AdS and SYM, originally postulated by Maldacena [2].

In the first point of view, perturbative excitations corresponding to both closed and open

strings are examined. Closed strings are not connected to D-branes, and are therefore excitations

of open space. Open strings end on D-branes, and can be viewed as excitations of the D-branes.

At low energies, only massless string states can be excited, and the effective Lagrangian of these

massless modes is of the form

S = Sbulk + Sbrane + Sint (2.8)
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where Sbulk is the Lagrangian in the bulk due to closed string modes, Sbrane is the Lagrangian

on the D-branes to due open string modes and Sint describes the interaction between the bulk

and brane modes.

Sbulk consists of a quadratic part plus higher order interaction terms that disappear at low

energies. We are thus left with only the free part, which includes the graviton and describes free

supergravity in the bulk. It is then useful to take low energy limit by keeping the energy fixed,

and taking ls and α′ to zero. The coupling, given by gsα′2, goes to zero in this limit, and Sint

falls away. Sbrane is the Lagrangian of strings that start and end on one of N different branes,

and therefore describes objects with two indices running from 1 to N , so one might expect a

description in terms of field theory. It turns out to consist of a piece that is the same as (3+1)

dimensional N = 4 U(N) SYM theory, plus higher order terms that also disappear in the low

energy limit. We are thus left with two pieces, free gravity in the bulk and N = 4 SYM which

lives on the world-volume of the D3-branes.

The second point of view looks at D-branes as being a source for supergravity fields, and

looks at a D3 brane solution (see [9]) of the N parrallel D3 branes described above. From the

viewpoint of an observer at infinity, the energy of an object would get smaller and smaller as

it gets closer in to the D-brane. As r → 0, there are two types of low energy excitations that

the observer could see, massless low energy (i.e. very high wavelength) particles in the bulk, or

excitations that are brought close to r = 0. At low energy, the wavelength of bulk particles is

much larger than the brane size, and thus the cross-section goes to zero. From the other side,

near horizon (close to r = 0) excitations find it hard to escape the gravitational potential of the

D-brane at low energy. The two different excitations therefore become decoupled, leaving two

separate pieces, namely free bulk supergravity and the near horizon region, which turns out to

have the same geometry as AdS5 × S5.

We thus have two different low energy solutions, each of which yield free supergravity plus

something else. It is natural to identify the second part in each system, which leads to an

identification of (3+1) dimensional U(N)1 SYM theory with IIB strings on AdS5 × S5. Note

that the claim is not just that there is a similarity between the theories; rather the two theories

are actually identified with each other.

1There is some little flexibility when looking at the near horizon region, where there are some zero modes that
live in the region connecting the near horizon with the bulk. Depending on whether or not these are included,
the AdS correspondence is either with SU(N) or U(N).
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Chapter 3

Testing the AdS/CFT

correspondence – developing a

dictionary

Having found a good reason to want to identify the two theories, we should take a moment to

examine whether this is, in fact, a sensible thing to do. Everything that goes into the conformal

theory should have a matching description on the string side, and vice versa. It turns out

that this is a highly non-trivial problem, and much work over the last several years has gone

into developing this “dictionary”, describing what we should be matching on either side of the

correspondence. [9] contains a good review of the early work on this.

The first obvious objection is that it seems strange to link a four dimensional field theory

to a ten dimensional string theory – it would be more intuitively appealing to link the field

theory to something with the same number of dimensions. This is not possible however, because

string theory is not consistent in four dimensions. The first problem is the Weyl symmetry

(gab → Ωgab). Quantum mechanically, taking gab → eφĝab generates an effective action (the

Liouville action) for φ, and integrating over φ is equivalent to adding a dimension. So we

immediately see that the string theory we are looking for cannot be four dimensional, and

we need a theory that has at least five dimensions. After adding one dimension, it is not so

unreasonable to add another five to get to ten, the critical number of supersymmetric strings.

The correspondence between a ten dimensional theory and a four dimensional theory is an

example of the holographic principle, which states that all the information contained in a volume
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of space can be represented by another theory which lives on the boundary of that volume. From

the “derivation” of the AdS/CFT correspondence given in section 2.4, the SYM theory can be

thought of as living on the four dimensional boundary of the five dimensional AdS space.

We can also see that it is reasonable for the theory to contain an Anti-de Sitter component

by looking at scale invariance [10]. Consider a string theory with 4d Poincaré symmetry, of the

form

ds2 = w(z)2(dxµdxµ + dz2), µ = 0, . . . , 3 (3.1)

At first glance it looks contradictory for it to have scale invariance, because string theories have

a length scale, set by the string tension. The only way for this to make sense is if the scale

transformation is an isometry of the (3.1), which leads to

ds2 = R2dxµdx
µ + dz2

z2

which is five dimensional Anti-de Sitter space. It is therefore not at all strange that the final

string theory that we have arrived at has a five dimensional Anti-de Sitter component.

The next easy area for comparison is the global symmetry of the two theories. From section

2.2 we see that both the SYM theory and the string theory have the same supergroup, SU(2, 2|4).

Matching the SU(2) section on both sides of the correspondence implies that the anomalous

dimension of a state (or operator) in the gauge theory corresponds to the energy of the a string

state.

We now turn to the perturbative behaviour of the two theories. From the section on the

planar limit (section 2.1), we don’t expect this to be too pretty. This is indeed the case – the

regimes where we can trust perturbation theory are completely incompatible. The following

parameters are mapped to each other:

Field theory String theory

g2
YM ↔ gs

g2
YMN ↔ R4/α′2

(3.2)

Field theory perturbation is reliable when g2
YMN � 1. The string theory perturbation is reliable

in the low energy limit when the radius becomes large compared to the string length, therefore

R4/α′2 ∼ g2
YMN � 1. This mismatch allows the identification of two theories which look so
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different without immediate contradiction. It also makes proving the correspondence difficult.

What we would like to do next is find an exact matching between all the states in the two

different theories. This is unfortunately a problem that is still far from being solved. There are

limits in which certain subsets of the states on either side have been matched however. While

it would be beyond the scope of this thesis to provide a comprehensive review of all the work

done on this, there are some examples of particular interest which are discussed next.

3.1 The plane wave solution and the BMN limit

It is not yet known how to obtain the full perturbative string spectrum in AdS5 × S5, in order

to match it to the spectrum of single trace operators in SYM theory. At first, it was only known

how to match strings in the large ’t Hooft limit, in which case the space becomes flat. These

string states correspond to chiral primary operators in the gauge theory. Later on, a more

interesting maximally supersymmetric solution to IIB string theory was found, called the plane

wave background [15, 16], or pp-wave solution. This solution can be found by taking a Penrose

limit of AdS5×S5. It can be thought of as a space which lies between flat space and AdS5×S5,

because it looks like flat space, but with the addition of first order corrections towards the

AdS space. The pp-wave background is interesting because in this background the free string

theory spectrum can be solved exactly in light cone coordinates. Berenstein, Maldacena and

Nastase (BMN)[17] showed how to reproduce this spectrum on the gauge theory side. A good

pedagogical account of this approach can be found in [18].

The approach followed by [17] is to examine the geometry seen by a particle travelling very

fast along the S5. The first step is to examine the AdS5 × S5 metric (2.6), which is reproduced

below.

ds2 = R2
[
−dt2cosh2ρ+ dρ2 + dρ2sinh2ρ dΩ2

3 + dψ2cos2θ + dθ2 + sin2θdΩ′2
3

]
The parameters can be understood as follows:

θ Latitude on S5

ψ Coordinate along the equator of S5

ρ = 0 Centre of AdS5

ρ = ∞ Boundary of AdS5
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We can consider a particle in the centre of AdS5 moving along the equator of S5 by going to

(rescaled) light-cone coordinates

x+ =
1
2
(t+ ψ), x− =

R2

2
(t− ψ), θ =

y

R
, ρ =

r

R

and then enforcing ρ→ 0 and θ → 0 by taking the limit R→∞. For finite x−, the particle goes

along a path where t ∼ ψ. Under these transformations, the metric becomes that of a plane

wave:

ds2 = −4dx+dx− − µ2~z 2dx+2 + d~z 2

where ~z parametrises a point in R8 and µ is a mass parameter that has been introduced.

The free IIB string on a plane wave background is exactly solvable. The momentum can be

decomposed into Fourier modes, where n < 0 indicates right movers and n > 0 indicates left

movers. In terms of these modes, the Hamiltonian can be written as [19], [17]

2p− = −p+ =
n=∞∑
n=−∞

Nn

√
µ2 +

n2

(α′p+)2
(3.3)

Nn counts the occupation number of the nth mode, and is the eigenvalue of a number operator

made from creation and annihilation operators, (aIn)
†(aIn), where I = 1, . . . , 8 labels bosonic

excitations. The spectrum of string states can be generated by these creation operators acting

on a ground state with momenta p− = 0 and p+, denoted |0; p+〉. In order for a string to be

physical, its total momentum must vanish, so the sum of the products (n × Nn) for all modes

must be zero.

We would like to see what states on the gauge theory side match this solution. The S5

originally had SO(6) symmetry; choosing an equator broke this to SO(4) × U(1). U(1) is the

angle in the 1 2 plane of R6, generated by the angular momentum J ≡ −i∂ψ. The SO(6) R-

symmetry on the gauge side that rotates the six scalar fields φI must similarly be broken. This

is done by defining a U(1) subgroup corresponding to rotations of the φ1-φ2 plane1. The charge

of a state under this U(1) rotation is referred to as its R-charge.

We now look at what the light cone coordinate momenta on the string side (p+ and p−)

correspond to. Because energy is mapped to conformal dimension, the energy operator (i∂t)
1There are different conventions over which two SYM scalars are chosen. For the sake of consistency, the plane

defined by φ1 and φ2 will be used throughout this dissertation. BMN originally used φ5 and φ6.
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gets mapped to ∆. Tracing the momenta through to the gauge theory:

2p− = −p− = i(∂t + ∂ψ) ⇐⇒ ∆− J

2p+ = −p− =
i

R2
(∂t − ∂ψ) ⇐⇒ ∆ + J

R2
(3.4)

For finite momenta, we are therefore looking for states where ∆ − J is finite and ∆ + J is of

the same order as R2. Noting that R2 ∝
√
N (equation 2.7) and g2

YMN ∝ R4/α′2 (3.2), the

following quantities are useful:

λ′ =
g2
YMN

J2
and g2 =

J2

N

The limit where these are kept finite is referred to as the BMN limit, and operators with finite

g2 and ∆− J are referred to as BMN operators.

The ground state |0; p+〉 must (by (3.4)) correspond to an operator with ∆−J = 0. Defining

Z = (φ1 + iφ2)/
√

2, the gauge operator which satisfies this is Tr(ZJ). Next, we can look at

operators whose dimension does not depend on coupling parameters. These states are BPS

states. From (3.3), recalling that 2p− = ∆ − J , we can see that on the string side, these are

states where n = 0. On their own, these will generate the flat space spectrum. On the gauge

side, states dual to (aI0)
†|0; p+〉 are created by adding impurities and then summing over all

possible placements within Tr(ZJ). The impurities consist of fields with ∆−J = 1, for example

one of the other scalars (φI where I = 3, . . . , 6), or derivatives with respect to Z. Therefore,

1√
J

∑
Tr[. . . Zφi1Z . . . ZφikZ . . .] ⇐⇒ ai10 a

i2
0 . . . a

ik
0 |0; p+〉 (3.5)

Berenstein, Maldacena and Nastase’s breakthrough in [17] was to extend this to states which

are not BPS, but are still close to BPS in that they consist of a set number of excitations away

from a BPS state. The proposal is that modes with n 6= 0 should correspond to operators where

the impurities are introduced with a position (and n) dependent phase given by exp[2πinl/J ],

where l is the position of the impurity within the trace. So, for instance,

(a8
n)
†|0; p+〉 ⇐⇒ 1√

J

J∑
l=1

1
√
JN

J+1
2

Tr
[
Z lφ4ZJ−l

]
e

2πinl
J

All states with only one impurity disappear, because the trace can be used to move the impurity
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to the front, and the exponentials sum to zero. This is good, because (a8
n)
†|0; p+〉 does not

have total momentum equal to zero, and is thus not a physical state. The simplest states will

therefore need at least two impurities, corresponding to excitations with momenta that cancel.

For many excitations, the general form is

(an1)
† . . . (anm)†|0; p+〉 ⇐⇒ 1√

J

J∑
ll,...,lm=1

1
√
JN

J+m
2

Tr [φ . . . ZφZ . . . ZφZ . . .]×

× e[2πi(n1l1+...+nmlm)]/J (3.6)

where the freedom of the trace has been used to put one of the impurities in the front. The

assumption is always made that J is large, so that the trace behaves like a “dilute gas”, with

many Zs in between each impurity. BMN states of this form, with two impurities, will be of

interest later in this thesis. The condition of zero total momentum means that the values of n for

all the impurities must sum to zero. If this were not the case on the gauge side, cyclicity of the

trace would make the operator zero. From equation (3.6), in the BMN limit where N, J → ∞

with J ∼
√
N , the contribution of an impurity with phase n is

(∆− J)n =
√

1 + λ′n2

which matches equation (3.3). The AdS/CFT correspondence is thus shown to hold for a class

of states that go beyond the BPS condition.

3.2 Spin Chains

In the BMN limit, the AdS/CFT correspondence was examined by looking at a particular

background in which the string theory could be solved, and finding the corresponding gauge

theory operators. In contrast, Minahan and Zarembo [20] followed the opposite approach. They

proposed starting with a perturbative examination of operators with two or more impurities on

the gauge theory side. The corresponding string spectrum can then be constructed by solving

for the anomalous dimensions of these operators. This lead to a study of spin chain models,

which has received much attention.

[20] started by looking at operators constructed from the six scalars that do not contain
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derivates. They are thus of the form

O[ψ] = ψi1,...,iLTr(Φi1 , . . . ,ΦiL)

The renormalisation properties of these operators defines a matrix of anomalous dimensions, Γ.

If an operator On is an eigenvalue of this matrix with eigenvalue γn, then its correlator is of the

form

〈On(x)On(y)〉 =
const

|x− y|2(L+γn)

The (finite-dimensional) Hilbert space of operators with bare dimension L is of the form H =

V1⊗ . . .⊗VL where each of the Vl is a six dimensional vector that corresponds to an index from

SO(6), the group that rotates the SYM scalars. This Hilbert space is isomorphic to the Hilbert

space of a one dimensional lattice with six lattice sites where the ends are identified. Each lattice

site is home to a six dimensional vector. This describes an (integrable) spin chain, which are

well known from the study of magnetism. The matrix of anomalous dimensions is an operator

in H, and it corresponds to the Hamiltonian of the spin chain. Thus we can find the anomalous

dimensions of operators by finding the energy eigenvalues of spin chains. In [20], Minahan and

Zarembo used this approach to exact results for BMN operators with two impurities, and 1/J

corrections for BMN operators with many impurities, up to first order.

The relationship between the CFT and an integrable system raises the interesting possibility

that planar N = 4 SYM theory is integrable. There is also increasing evidence that free IIB

string theory on AdS5×S5 could be integrable ([21] contains a short summary of developments

in solving the relevant sigma model). If both theories are integrable, then the spectra on both

sides could be calculated exactly. This would make the AdS/CFT correspondence falsifiable –

if the spectra do not match, the conjecture is false, and if they do match then it is supported.

Working on the assumption that both models are completely integrable, Staudacher [21]

reasoned that the S-matrix would be the most appropriate object to consider, as it determines

the spectrum of a quantum system. This is potentially far simpler than calculating the spectra

perturbatively, because integrable systems do not necessarily have simple Hamiltonians. The

proposed technique is based on an application of the Bethe Ansatz [22].

The simplest case to consider is one loop scattering in the SU(2) bosonic sector of planar

N = 4 SYM theory. In this sector, operators consist of sums of all possible ordering of states of

26



the form TrφMZJ . These states are re-expressed as spin chains of total length L = M + J . For

instance, the two body states are of the form

|Ψ〉 =
∑

1≤x1<x2<L

Ψ(x1, x2)|Zx1−1φZx2−x1−1φZL−x2〉

so that the first impurity is at the x1th lattice site and the second is at the x2th within the spin

chain ket. The Hamiltonian is of the form

H =
L∑
x=1

(1− Px,x+1) =
L∑
x=1

1
2
(1− ~σx · ~σx+1)

where Px,x+1 is the permutation operator which swops the xth and (x+ 1)th lattice sites, and

σx is a three dimensional vector of the Pauli matrices at the xth site.

The analysis now follows the standard procedure for the application of the Bethe Ansatz to

the spin 1/2 Heisenberg spin chain model ([23] contains a good introduction to this approach

in a different context). The Hamiltonian leads to two sets of difference equations, depending on

whether the impurities are adjacent or not. For adjacent impurities,

E0Ψ(x1, x2) = 2Ψ(x1, x2)−Ψ(x1 − 1, x2)−Ψ(x1, x2 + 1)

(x2 = x1 + 1) (3.7)

and for non-adjacent impurities,

E0Ψ(x1, x2) = 2Ψ(x1, x2)−Ψ(x1 − 1, x2)−Ψ(x1 + 1, x2)

(x1 > x1 + 1) + 2Ψ(x1, x2)−Ψ(x1, x2 − 1)−Ψ(x1, x2 + 1) (3.8)

Bethe’s ansatz is inspired by one dimensional scattering. The two impurities can be thought

of as excitations which circle around the spin chain with momenta k1 and k2. When they meet2

they can either scatter off each other or pass through each other unaffected. The scattering

probability is governed by a scattering amplitude, S(x1, x2), and will exchange the momenta of
2provided that the system is integrable
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the excitations. The ansatz is thus of the form

Ψ(x1, x2) = ei(k1x1+k2x2) + S(x1, x2)ei(k1x2+k2x1)

↑ ↑

(preserve momenta) (swap momenta)

The energy, E0, can be found by substituting this into the difference equation for non-adjacent

impurities (3.8)

E0 = 4
[
sin2

(
k1

2

)
+ sin2

(
k2

2

)]
(3.9)

which generalises easily to more impurities. To find the scattering amplitude, one must then use

the special case for adjacent impurities (3.7). This makes physical sense, because in the absence

of the special case when x2 = x1 +1, the two impurities are unaffected by each other, and hence

no scattering will occur. The solution for S(x1, x2) is

S(x1, x2) = −1 + ei(k1+k2) − 2eik1

1 + ei(k1+k2) − 2eik2

The spin chain is periodic, so we must identify the (L + 1)th lattice site with the first site.

This, together with the restriction that the second impurity must appear later than the first

leads to the periodic boundary conditions

Ψ(x1, x2) = Ψ(x2, x1 + L) (3.10)

Spin chains are of interest here, because the states that are derived later in this dissertation

resemble spin chains, and much of the “spin chain thinking” will be applicable there.
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Chapter 4

Collective field theory

4.1 Variable change

This chapter contains a general outline of the collective field theory technique; this is applied to

the specific matrix models that are of interest in later chapters. The idea behind the collective

field theory technique [24] is to change variables from the original degrees of freedom to an infinite

new set. These are typically invariant under the symmetries of the system. Because there are

infinitely many, the new variables will be overcomplete when the original theory has finitely

many variables. When N tends to infinity, however, the new variables become independent,

and thus the collective field theory approaches the original theory. The approach was originally

based on well-known techniques used in N -body statistical mechanics problems.

Let the original variables be denoted by qi, and the new ones by φα. The notation is

intentionally left as general as possible. The values that i and α can take on depends on the

particular case under consideration. For example, if we are dealing with a single matrix Mij ,

then i→ (i, j), i, j = 1, . . . , N . If there are d matrices, Ma
ij , a = 1, . . . d, then i→ (a, i, j), a =

1, . . . d, i, j = 1, . . . N . α can also take on a variety of values, and could even be a continuous

index in the infinite limit.

Let the conjugate momentum for each coordinate qi be Pi. A basic Hamiltonian consisting

with an interaction potential V is then

H =
1
2

∑
i,j

[
PiPj + V

(
{qi}

)]
=

1
2

∑
i,j

[
− ∂2

∂qi∂qj
+ V

(
{qi}

)]
(4.1)
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the goal is to express V and the Hamiltonian as a (possibly infinite) combination of functions,

φ
(
{qi}), taking into account the Jacobian that arises from the change in variables. Applying

the chain rule to the first term yields

−1
2

∑
i,j

∂2

∂qi∂qj
= −1

2

∑
i,j

∑
α

∂

∂qi

(
∂φα
∂qj

∂

∂φα

)

= −1
2

∑
i,j

∑
α,β

(
∂2φα
∂qi∂qj

∂

∂φα
+
∂φα
∂qi

∂φβ
∂qj

∂2

∂φα∂φβ

)

= −1
2

∑
α,β

(
ωα

∂

∂φα
+ Ωα,β

∂2

∂φα∂φβ

)
(4.2)

where ω and Ω have been defined such that

ωα =
∑
i,j

∂2φα
∂qi∂qj

(4.3)

Ωα,β =
∑
i,j

∂φα
∂qi

∂φβ
∂qj

(4.4)

4.2 Jacobian

The functions upon which the Hamiltonian operates were functions of the qi, but in the new

formalism we would like them to be functionals of the invariant states that we have introduced.

A change of variables implies the introduction of a Jacobian. Inner products should be conserved

if the coordinate change is valid. Therefore, if ψ(q) are functions of the original variables, and

Ψ(φ) are functionals of the new variables, then we want

∫
[dq]ψ?(q)ψ(q) =

∫
[dφ]JΨ?(φ)Ψ(φ) (4.5)

where J is the Jacobian that results from the change in variables.

We would like to absorb the Jacobian by defining Ψ → J1/2Ψ. This however has implications

for operators in the theory, as can be seen by looking at the expectation value of the derivative

∂/∂φα. 〈
Ψ1

∣∣∣∣ ∂

∂φα

∣∣∣∣Ψ2

〉
=
∫

[dφ]J1/2Ψ?
1J

1/2 ∂

∂φα
J−1/2J1/2Ψ2 (4.6)
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This means that (making use of the chain rule)

∂

∂φα
→ J1/2 ∂

∂φα
J−1/2

=
∂

∂φα
− 1

2
1
J

∂J

∂φα

=
∂

∂φα
− 1

2
∂ lnJ
∂φα

(4.7)

In what follows, any repeated indices are regarded as being summed according to Einstein’s

summation convention. The new expression for the derivative (4.7) is substituted into the kinetic

term (4.2) (ignoring the overall factor of −1/2 for now), and ∂α is used as a shorthand for ∂/∂φα

to produce1

ωα∂α + Ωα,β∂α∂β

= ωα

(
∂α −

1
2
(∂α lnJ)

)
+ Ωα,β

(
∂α −

1
2
(∂α lnJ)

)(
∂β −

1
2
(∂β lnJ)

)
= wα∂α −

1
2
ωα(∂α lnJ) + Ωα,β∂α∂β − Ωα,β∂α(∂β lnJ) +

1
4
Ωα,β(∂α lnJ)(∂β lnJ)

= wα∂α −
1
2
ωα(∂α lnJ) + [∂αΩα,β∂β − (∂αΩα,β)∂β]

− [Ωα,β(∂α∂β lnJ) + Ωα,β(∂β lnJ)∂α] +
1
4
Ωα,β(∂α lnJ)(∂β lnJ) (4.8)

Because these terms are part of an Hamiltonian, they must be Hermitian, which means that

any non-Hermitian terms must sum to zero. Ω, ω and derivatives of lnJ are not operators,

so they are automatically Hermitian. Also, ∂αΩα,β∂β is Hermitian. This leaves only the other

terms in (4.8) which end in a derivative:

0 = wα∂α − (∂αΩα,β)∂β − Ωα,β(∂β lnJ)∂α

∂β lnJ = Ω−1
β,αωα − Ω−1

β,α∂γΩγα (4.9)

Ω−1 has been introduced as the inverse of Ω, i.e. the function that will satisfy
1The scope of derivatives will be indicated by the presence or absence of brackets. For example, given ∂α ln J ,

the derivative should be read as acting on ln J as well as everything that follows, whereas in (∂α ln J), the
derivative acts only on ln J .
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Ω−1
αβΩβγ = δαγ (4.10)

Equation (4.9) gives a (differential) expression for the Jacobian J that would otherwise have

been far more difficult to calculate. Substituting this into the remaining Hermitian terms in

(4.8) gives

−1
2
ωα(∂α lnJ) + ∂αΩα,β∂β − Ωα,β(∂α∂β lnJ) +

1
4
Ωα,β(∂α lnJ)(∂β lnJ)

= −1
2
ωα(Ω−1

α,βωβ − Ω−1
α,β∂γΩγβ) + ∂αΩα,β∂β

− Ωα,β(∂β(Ω−1
α,λωλ − Ω−1

α,λ∂γΩγλ))

+
1
4
Ωα,β(Ω−1

α,λωλ − Ω−1
α,λ∂γΩγλ)(Ω−1

β,µωµ − Ω−1
β,µ∂γΩγµ) (4.11)

In the finite case, all of the above terms would need to be taken into account. We, however,

will only be interested in what happens in the large N limit. To make the N dependence explicit,

the following are rescaled:

φα →
√
Nφα

∂α → 1
N
∂α

ωα →
√
Nωα

Ωα,β → 1
N

Ωα,β (4.12)

Looking at (4.9), only the first term in the expression for the Jacobian will contribute as

N → ∞. In (4.11), all the terms are interaction potential terms except for the derivative term

∂αΩα,β∂β. To generate the spectrum plus fluctuations around the spectrum in the large N limit,

we need only keep the interaction terms with highest N dependence, plus the derivative term,

namely:

−1
2
ωαΩ−1

α,βωβ +
1
4
ΩαβΩ−1

αλωλΩ
−1
βµωµ + ∂αΩα,β∂β

= −1
4
ωαΩ−1

α,βωβ + ∂αΩα,β∂β
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Once the overall factor of −1/2 in equation (4.2) is reintroduced, the final kinetic term is

K = −1
2
∂αΩα,β∂β +

1
8
ωαΩ−1

α,βωβ (4.13)

We have derived the necessary ingredients to construct a collective field theory Hamiltonian

in general variables. The form of the potential V will depend on the particular system under

consideration. The next chapter goes on to apply the above formalism to the case of a single

matrix.
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Chapter 5

Free single matrix model

5.1 Physical justification

Having developed the general mathematical formalism of the collective field theory technique,

we now apply it to a model with a single Hermitian matrix. For the purpose of this thesis, this

will be viewed as merely a stepping stone to the more complicated model where another matrix

is introduced as an impurity into the single matrix background. It is worth noting however,

that the single matrix model has been studied as an end in itself, for example when Jevicki and

Sakita [24] developed the collective field theory technique in the form that we will use. They

considered the Langrangian introduced by Bezin, Itzykson, Parisi and Zuber ([25])

L =
1
2
Tr(Ṁ2)− 1

2
Tr(M2)− g

N
Tr(M4) (5.1)

In the Hamiltonian formulation, this is

H = −1
2

N∑
i,j=1

∂2

∂MijMji
+

1
2
Tr(M2) +

g

N
Tr(M4) (5.2)

Using the collective field theory techniques described in this chapter, together with some stan-

dard complex analysis, [24] reproduced the BIPZ energies from [25].

In the context of the AdS/CFT correspondence, it can be shown (see chapter 6) that a single

Hermitian matrix model with an harmonic potential can be used to describe 1/2 BPS states on

the SYM side.
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5.2 Collective field theory

We will be interested in Hamiltonians that have an harmonic potential. The general Hamiltonian

in (4.1) is expressed in terms of an Hermitian matrix M ,

H0 = −1
2

N∑
i,j=1

∂

∂MijMji
+
w2

2
Tr(M2) (5.3)

The subscript 0 denotes that this is the zero-impurity Hamiltonian, in contradistinction to later

Hamiltonians which will contain added impurities.

Let us change variables to the invariant set

Tr(M),Tr(M2), . . . ,Tr(MN ) (5.4)

which is invariant under the unitary transformation M → U †MU . At most N of these are

independent for finite N , but as N → ∞, the Tr(Mn) become independent variables. V can

then be expressed as a combination of infinite sums of the Tr(Mn), of the form

ψk = Tr(eikM )

= N + ikTr(M)− k2

2
Tr(M2) + . . . (5.5)

where k is a real number, which is a specific case of the generic loop index α used in chapter 4.

We now need to re-express the Hamiltonian (5.3) in terms of the new variables ψk. Starting

with the kinetic part, and applying the results of chapter 4 (specifically (4.2) and (4.13)) to the

first term yields

K0 ≡ −
1
2

∂

∂Mij∂Mji
= −1

2

(
ωk

∂

∂ψk
+ Ωk,k′

∂2

∂ψk∂ψk′

)
= −1

2
∂

∂ψk
Ωk,k′

∂

∂ψk′
+

1
8
ωkΩ−1

k,k′ωk′ (5.6)

where ω and Ω are now

ωk =
∑
i,j

∂2ψk
∂Mij∂Mji

(5.7)

Ωk,k′ =
∑
i,j

∂ψk
∂Mij

∂ψk′

∂Mji
(5.8)
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and Ω−1 is the inverse of Ω.

Using the formula

∂

∂Mij

(
eikM

)
ab

=
∫ 1

0
dα
(
eiαM

)
ai

(ik)
(
ei(1−α)kM

)
jb

(5.9)

ω and Ω become

ωk = ik
∂

∂Mij

(
eikm

)
ij

= −k2

∫ 1

0
dα
(
Tr eiαkM

)(
Tr ei(1−α)kM

)
= −k

∫ k

0
dk′ψk′ψk−k′ (5.10)

Ωk,k′ = ik
(
eikM

)
ji
ik′
(
eik

′M
)
ij

= −kk′ψk+k′ (5.11)

5.3 Density description

It is easier to work with the Fourier transforms of the above operators, rather than using them

in their current form. We thus move from k space to x space, where the invariant operators

become density functions of the eigenvalues of the matrix M . Representing these eigenvalues as

λi, we define ψ(x) as

ψ(x) =
∫
dk

2π
e−ikxψk = Tr(δ(x−M)) =

N∑
i=1

δ(x− λi) (5.12)
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Applying Fourier transforms to (5.10) and (5.11) produces

ω(x) =
∫
dk

2π
e−ikxωk

=
∫
dk

2π
e−ikx(−k)

∫ k

0
dk′ψk′ψk−k′

=
∫
dk

2π
e−ikx(ik)

∑
i6=j

eikλi − eikλj

λi − λj

=
∫
dk

2π
e−ikx(ik)

∫
dy −
∫
dzψ(y)ψ(z)

eiky − eikz

y − z

= −2
∂

∂x

[
ψ(x) −

∫
dz

ψ(z)
x− z

]
(5.13)

Ω(x, y) =
∫
dk

2π

∫
dk′

2π
e−ikxe−ik

′y(−kk′)Tr
(
ei(k+k

′)M
)

(k+k′→l) =
∂

∂x

∂

∂y

∫
dl

2π

∫
dk′

2π
e−i(l−k

′)xe−ik
′y(−kk′)Tr

(
eilM

)
=

∂

∂x

∂

∂y
(ψ(x)δ(x− y)) (5.14)

When expressing the kinetic term (5.6) in the density description, the sums over the indices

become integrals:

K0 =
∫
dx

∫
dy

[
−1

2
∂

∂ψ(x)
Ω(x, y)

∂

∂ψ(y)
+

1
8
ω(x)Ω−1(x, y)ω(y)

]
(5.15)

Substituting in equations (5.13) and (5.14) and integrating by parts gives

K0 =
∫
dx

∫
dy

[
−1

2
∂x

∂

∂ψ(x)
ψ(x)δ(x− y)∂y

∂

∂ψ(y)

+
1
2

(
ψ(x) −

∫
dz

ψ(z)
x− z

)
∂x∂yΩ−1(x, y)

(
ψ(y) −

∫
dv
ψ(v)
y − v

)]

To simplify the second term, we examine the double derivative of the inverse of Ω. In the

density description, (4.10) becomes

∫
dy Ω−1(x, y)Ω(y, z) = δ(x− z)∫

dy Ω−1(x, y)∂y∂zψ(y)δ(y − z) = δ(x− z)

−∂z
(
∂x∂zΩ−1(x, y)ψ(z)

)
= ∂xδ(x− y)

∂x∂zΩ−1(x, z) =
δ(x− z)
ψ(x)

(5.16)
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We will then need to deal with a term that looks like

∫
dx ψ(x)

(
−
∫
dy

ψ(y)
x− y

)2

=
∫
dk1

∫
dk2

∫
dk3 e

−i(k1x+k2y+k3z)
∫
dx −
∫
dy −
∫
dz ψk1

(
ψk2
x− y

)(
ψk3
x− z

)

We note that

−
∫
dy
e−iky

x− y
= iπε(k)e−ikx

where ε(k) = 1 for positive k and −1 for negative k. Adding contour integral contributions

depending on whether each k is positive or negative leads to the following identity:

∫
dx ψ(x)

(
−
∫
dy

ψ(y)
x− y

)2

=
π2

3

∫
dx ψ3(x) (5.17)

Putting it all together, the kinetic term is

K0 = −1
2

∫
dx ∂x

∂

∂ψ(x)
ψ(x)∂x

∂

∂ψ(x)
+
π2

6

∫
dx ψ3(x) (5.18)

Finally, we express the Jacobian, equation (4.9) in the density description. Only the first

term is of leading order in N , which becomes

∂x
∂ lnJ
∂ψ(x)

= ∂x

∫
dy Ω−1(x, y)ω(y)

Using equations (5.13) and (5.16), this is

∂x
∂ lnJ
∂ψ(x)

= 2 −
∫
dy

ψ(y)
x− y

(5.19)

We use equation (5.12) to express the potential in terms of x:

w2

2
Tr(M2) =

w2

2

∫
dxTr(δ(x−M))x2

=
w2

2

∫
dxψ(x)x2 (5.20)
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Adding the kinetic and potential terms yields

H0 = −1
2

∫
dx ∂x

∂

∂ψ(x)
ψ(x)∂x

∂

∂ψ(x)
+
π2

6

∫
dxψ3(x)

+
w2

2

∫
dxψ(x)x2 (5.21)

The matrices that went into creating equation (5.21) were N × N matrices, but this N

dependence is not immediately apparent. The necessary condition on ψ, which can be seen from

(5.12), is ∫
dxψ(x) = N (5.22)

To enforce this constraint, we introduce a Lagrange multiplier µ, and the Hamiltonian becomes

−1
2

∫
dx ∂x

∂

∂ψ(x)
ψ(x)∂x

∂

∂ψ(x)
+
∫
dx

(
π2

6
ψ3(x) + ψ(x)

(
w2x2

2
− µ

))
+ µN (5.23)

To make the N dependence explicit, we rescale according to (4.12), with

x→
√
Nx , ψ →

√
Nψ, µ→ Nµ and − i

∂

∂ψ
≡ Π → 1

N
Π

to get

H0 =
1

2N2

∫
dx ∂xΠ(x)ψ(x)∂xΠ(x)+N2

(∫
dx

π2

6
ψ3(x) + ψ(x)

(
w2x2

2
− µ

))
+µN2 (5.24)

5.4 Energy spectrum

Equation (5.24) has a standard solution (see for example [24], [26], [27] and [6]), obtained

by minimising the effective potential as N → ∞. The second term of equation (5.24) is of

leading order in N . This will therefore generate the background, and the first term will generate

the fluctuations around this background. We will examine these fluctuations by defining the

background φ0 as the result of extremising the second term of (5.24) with respect to ψ(x),

πφ0 =
√

2µ− w2x2 (5.25)
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We then look at small shifts away from this background

ψ(x) = φ0 +
1√
πN

∂xη; ∂xΠ(x) = −
√
πNP (x) (5.26)

η and P are cannonical conjugates, so

[P (x), η(y)] = −iδ(x− y) (5.27)

Because we are in effect expanding around the extremum, the leading contribution to the

small fluctuations will come from the terms that are quadratic in ∂xη and P . The quadratic

terms from equation (5.24) are

H
(2)
0 =

1
2

∫
dxπφ0P

2(x) +
1
2

∫
dxπφ0(∂xη)2

This can be further simplified by introducing a coordinate q, called the “time of flight”, such

that
dx

dq
= πφ0 (5.28)

Looking at equation (5.25), and using the formula for the derivative of arccos, one arrives at

arccos
(√

w

2
x

)
= −wq

and therefore x(q) = −
√

2
w

cos(wq)

and πφ0 =
√

2w sin(wq) (5.29)

for 0 ≤ q ≤ π/w. In terms of q, equation (5.27) becomes

[P (x), η(y)] = −iδ(x− y) = −iδ(q − q′)∣∣∣dxdq ∣∣∣ = −iδ(q − q′)
πφ0

If we therefore define P̄ (q) ≡ πφ0P (x(q)) and η̄(q) ≡ η(x(q)), then P̄ (q) and η̄(q) will also be

cannonical conjugates.
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Changing variables from x to q, the quadratic Hamiltonian is now

H
(2)
0 =

1
2

∫
(dqπφ0)πφ0P

2(x) +
1
2

∫
(dqπφ0)πφ0

(
∂qη

πφ0

)2

=
1
2

∫
dqP̄ 2(q) +

1
2

∫
dq(∂qη̄)2 (5.30)

This is now a standard Klein-Gordon Hamiltonian, and can thus easily be solved. To ensure

that the constraint (5.22) is satisfied consistently at all times, we find the classical turning points

and impose Dirichlet boundary conditions. The spectrum is then

wj = j ; φj = sin(jq). (5.31)
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Chapter 6

Free two matrix model – adding

impurities

We now go in greater detail into the physical reasons for studying the matrix models that we

are considering. This will lead to a two matrix model, rather than the single matrix model

considered in chapter 5.

In the BMN limit, one looks at states that are close to the plane defined by two of the

SYM scalars. The Hamiltonians that one needs to consider will be functions of two of the SYM

scalars, and will typically have an harmonic potential. For example, in the case of SYM defined

on S3 ×R, the positive curvature of S3 leads to an action of the form [28]

R3 Ω3

2g2
YM

∫
dt Tr

(
φ̇1

2
+ φ̇2

2 − 1
R2

(φ2
1 + φ2

2)
)

(6.1)

where Ω3 is the volume of S3 at the boundary of AdS5. The gYM interaction term of the SYM

theory has been neglected for the time being – this will be added in later.

The action in (6.1) can be put in a more general form by dropping the overall factor and

denoting the constant that multiplies the potential by w2. A momentum conjugate to each of

the scalars is introduced, in order to move to the Hamiltonian formulation of (6.1).

Hfree =
1
2
Tr
(
P 2

1 + P 2
2 + w2(φ2

1 + φ2
2)
)

(6.2)

The conjugate momenta and the SYM scalars satisfy cannonical commutation relations. The
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angular momentum J is given by

J =
1
2
Tr(φ2P1 − φ1P2)

6.1 Angular momentum eigenstates

There is more than one way to define the matrices that go into the model. The first is the more

standard approach, which involves creating angular momentum eigenstates. This approach is

followed in [3], [29] and [6]. The initial motivation in [3] was to understand which AdS states

correspond to the chiral primaries in the SYM theory. It was known that 1/2 BPS Kaluza-Klein

modes of the supergravity fields on AdS5 correspond to the chiral primary operators in the SYM

theory. In this identification, the energy of the excited Kaluza Klein modes gets mapped to the

dimension of the chiral primary operator. The picture was complicated by [30] however, which

showed that the same set of quantum numbers is shared by both Kaluza-Klein modes carrying

momentum in S5, and a stable configuration of spherical branes in S5. This raised the question

of which of the two AdS states should correspond to the chiral primaries in SYM, and what the

other state would correspond to. [28] then went on to compound the problem by showing that

there is yet another (1/2 BPS) supergravity state that has the same quantum numbers, namely

a stable configuration of spherical 3-branes in AdS5. Matrix models similar to the ones that we

will look at were therefore used in an attempt to understand the SYM 1/2 BPS states more

fully. While this is not our final goal, the method that was followed will still be relevant.

The approach is to introduce complex matrices by defining (together with their complex

conjugates)

Z =
1√
2

(φ1 + iφ2)

Π =
1√
2

(P1 + iP2)

These are cannonical conjugates, allowing us to introduce creation and annihilation operators,
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following [6, 8, 31]:

Z =
1√
2w

(A+B†) , Π = −i
√
w

2
(A† −B)(

or A =
1√
2

(√
wZ − i√

w
Π†
)
, B =

1√
2

(√
wZ† − i√

w
Π
) )

In terms of these the Hamiltonian and angular momentum operators are

Hfree = w
(
Tr(A†A) + Tr(B†B)

)
and J = Tr(A†A)− Tr(B†B) (6.3)

1/2 BPS states are now states without B excitations. To see this, consider the eigenstates

associated with the Hamiltonian in equation (6.3), which are of the form

Tr
[
(A†)m(B†)n

]
|0〉

The energy and momentum of such a state will be w(m + n) and (m − n) respectively. 1/2

BPS states will saturate the bound that the quantum number corresponding to energy must

be greater or equal to that corresponding to momentum, i.e. E > |J | (taking w = 1 for the

time being). We must therefore have m + n = ±(m − n), so either n or m must be zero. We

arbitrarily choose n = 0, which implies that 1/2 BPS states are states without B impurities.

These are the chiral primaries in the SYM theory.

In the absence of B operators one can define a single N × N matrix M as the Hermitian

matrix associated with the A, A† part1 [6, 8]

M =
1√
2w

(A+A†) , PM = −i
√
w

2
(A−A†) (6.4)

in terms of which the Hamiltonian is

H =
1
2
Tr(P 2

M ) +
w2

2
Tr(M2) (6.5)

1In terms of the original SYM scalars,

M =
1√
2w

(√
wφ1 −

P2√
w

)
PM =

√
w

2

(√
wφ2 +

P1√
2

)
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On the SYM side, 1/2 BPS states thus correspond to the single matrix model that has been

derived in chapter 5.

The link to 1/2 BPS states in AdS is now understood in terms of the free fermionic droplet

picture introduced by Lin, Lunin and Maldacena [5]. They showed that a classical ansatz for

the AdS space could have an equivalent energy and flux content to a general fermionic droplet

configuration. The geometry of the AdS solutions is completely determined by the configuration

of fermionic droplets on a (suitably defined) two dimensional sub-plane of the full ten dimensional

space. [6] contains a summary of the link between the fermionic picture produced by the single

matrix model (as derived in chapter 5) and the LLM Sugra ansatz.

In order to study states beyond the 1/2 BPS restriction, it is necessary to solve the full two

matrix problem corresponding to both A and B excitations. This is in general a very difficult

problem. The approach followed by [6] is thus to apply collective field theory techniques to the

first part of the Hamiltonian involving A excitations to generate a background. B excitations

are then added as “impurities” to perturb this background. We thus add B impurities back into

(6.5). Going to a coherent state basis, B† → B, B → ∂/∂B, produces

Hfree =
1
2
Tr(P 2

M ) +
w2

2
Tr(M2) + wTr

(
B

∂

∂B

)
(6.6)

6.2 Two Higgs scalar model

Another possible physical application is to directly treat the two SYM scalars, φ1 and φ2, as the

matrices that go into the two matrix model.

Introducing creation and annihilation operators for the second scalar, φ2,

φ2 =
1√
2w

(C + C†), P2 = −i
√
w

2
(C − C†)

the Hamiltonian becomes

H =
1
2
Tr(P 2

1 ) +
1
2
w2Tr(φ2

1) + wTr(C†C) (6.7)

Going to a coherent state basis makes this identical to (6.6).

This approach was first mentioned in [8], but it was not developed fully. Chapter 8 will

explore this association of variables in depth, in the presence of a gYM interaction term.
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6.3 Collective field theory Hamiltonian

We wish to arrive at the collective field theory Hamiltonian that results from equation (6.6) (or

(6.7)), taking into account the presence of B (or C) impurities. We review below the method

used in [8]. The approach is similar to that followed in section 5.4, namely looking at small

fluctuations away from the (zero-impurity) background. Firstly, a more general set of invariant

states that take into account B impurities is introduced:

ψ0(k) = Tr(eikM )

ψ1(k1) = Tr(Beik1M )

. . .

ψs(k1, k2, . . . , ks) = Tr

(
s∏
i=1

BeikiM

)
(6.8)

Analogous states to these, without any interaction terms, are of interest in and of themselves.

For instance, [6] applied a transformation which lead to a 1-1 mapping of the spectrum of

the above states to a class of Supergravity wave functions on the AdS × S background. The

wave functions are described in terms of hypergeometric functions. This kind of mapping will

not be the focus of this thesis, however. Rather, we view the many-impurity spectrum as an

intermediate step in the introduction of the gYM interaction term, explored in chapters 7 and 8.

To see what new fluctuations arise around the zero-impurity background, we introduce a

number (s) of impurities. The expectation value of the zero impurity states will be the back-

ground, πφ0, introduced in equation (5.25). The s-impurity states take the form of small fluc-

tations around the zero-impurity background, and will thus not pick up an expectation value.

Because the expectation value is zero for s > 0, we cannot apply an argument analogous to that

in (4.6) and (4.7). Derivatives with respect to states with s > 0 therefore do not pick up factors

involving the Jacobian. The multi-impurity Jacobian is thus the same as the zero impurity

Jacobian, namely equation (5.19).
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The kinetic term (corresponding to (4.13)) of the many impurity Hamiltonian is [6, 8]

Ks = − 1
2

∑
s

∫
dx1 . . . dxsωs(x1, . . . , xs)

∂

∂ψs(x1, . . . , xs)

− 1
2

∑
s,s′

∫
dx1 . . . dxs

∫
dy1 . . . dy

′
sΩs,s′(x1, . . . , xs, y1, . . . , ys)×

× ∂2

∂ψs(x1, . . . , xs)∂ψs′(y1, . . . , ys)
(6.9)

where ωs and Ωs,s′ are generalisations of the ω and Ω that we have considered in the case with

no impurities, defined in k space as

ωs(k1, . . . , ks) =
∂2ψs(k1, . . . , ks)
∂Mij∂Mji

Ωs;s′(k1, . . . , ks; k′1, . . . , k
′
s′) =

∂ψs(k1, . . . , ks)
∂Mij

∂ψs′(k′1, . . . , k
′
s′)

∂Mji
(6.10)

To determine the quadratic Hamiltonian, we look for terms within (6.9) that are quadratic in

fluctuations away from the background. Consider the first term of (6.9). From equation (5.13)

(or equivalently (5.10)), we see that ω splits into two loops when no impurities are present.

We expect similar behaviour in the case with impurities, which is confirmed by the calculations

in appendix A.1. In general ωs will split into two loops, with the total number of impurities

summing to s. Most of the terms will therefore be cubic (or higher) in fluctuations away from

the background, with one contribution from each the loops introduced by ωs, and one from

the derivative. The exception is the case where ωs splits into a loop with zero impurities and

one with s impurities. The zero-impurity loop will include a φ0 background term (see equation

(5.26)) and this term will be only quadratic in fluctuations. It is therefore useful to define ω̄ as

the piece of ω that contains one zero-impurity loop and one s-impurity loop, as only this piece

of the Hamiltonian will be present in the quadratic part.

Consider now the second term in equation (6.9). The action of Ω is to combine two loops,

so Ωs,s′ will generate a single loop with s + s′ impurities. It is in general again the case that

terms will be cubic in fluctuations, with one loop from Ω and two derivatives. The exception in

this case is where one of the derivatives is with respect to a zero-impurity loop. Zero impurity

derivatives contain a piece that does not contribute towards fluctuations. This can be seen by
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noting that zero impurity derivatives transform according to equation (4.7):

∂

∂ψ0(x)
→ ∂

∂ψ0(x)
− 1

2
∂ lnJ
∂ψ0(x)

(6.11)

The Jacobian term contains a piece that will depend only on the background φ0. For the

derivatives term therefore, we will keep only the background dependent part of (5.19), i.e.

∂x
∂ lnJ
∂ψ0(x)

→ 2 −
∫
dy
φ0(y)
x− y

or
∂ lnJ
∂ψ0(x)

→ 2
∫ x

0
dq −
∫
dy
φ0(y)
q − y

(6.12)

To ensure that zero impurity loop is present, we set s′ = 0 in equation (6.9). The quadratic

Hamiltonian is thus

H(2)
s = −1

2

∫
dx1, . . . , dxsω̄s({xi})

∂

∂ψs({xi})

+
1
2

∫
dx

∫
dy1 . . . dysΩ0,x(x; {yi})

∂ lnJ
∂ψ0(x)

∂

∂ψs({yi})
(6.13)

To find the spectrum of this Hamiltonian, we now need to find ω̄ and Ω as well as the

Jacobian J in the density description. Some calculation (see appendices A.1 and A.2 for details)

yields:

ω̄(k1, . . . , ks) = −2
s∑
i=1

∫ ki

0
dk′k′φ0(ki − k′)ψs(k1, . . . , ki−1, k

′, ki+1, . . . , ks)

Ω0;s(k0; k1, . . . , ks) = −k0

(
s∑
i=1

kiψs(k1, . . . , ki + k0, . . . , ks)

)
(6.14)

where we have taken ψ0 → φ0 in order to keep only the background term.

We now take the Fourier transform of all the above operators, starting with the set of gauge

invariant states:

ψs(x1, . . . , xs) =
∫
dk1

2π
e−ik1x1 . . .

∫
dks
2π

e−iksxsψs(k1, . . . , ks)

= Tr (Bδ(x1 −M) . . . Bδ(xs −M)) (6.15)
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Further calculation (see appendices A.3 and A.4 for details) gives the final result for ω and Ω as

ω̄({xi}) = −2
s∑
i=1

−
∫
dz ψ0(z)

[
∂

∂xi

(
ψs({xi})
xi − z

)
+
ψs({xi})
(xi − z)2

− δ(z − xi) −
∫
dyi

ψ(x1, . . . , yi, . . . , xs; s)
(yi − z)2

]
(6.16)

Ω0;s(z;x1, . . . , xs) =
s∑
i=1

∂

∂z

∂

∂xi
(δ(z − xi)ψs(x1, . . . , xi, . . . , xs)) (6.17)

We now look at the two terms in equation (6.13) in turn, starting with the second term.

(6.12) states how to deal with the Jacobian term. This, together with (6.17) leads to

1
2

∫
dz

∫
dx1 . . . dxs Ω0;s(z;x1, . . . , xs)

∂ lnJ
∂ψ0(z)

∂

∂ψs(x1, . . . , xs)

=
1
2

∫
dz

∫
dx1 . . . dxs

∑
i

∂

∂z

∂

∂xi
[δ(z − xi)ψs({xi})] 2

∫ z

0
dq −
∫
dy
φ0(y)
q − y

∂

∂ψs({xi})

The derivatives can be performed on the section in square brackets producing

−δ′′(z − xi)ψs({xi}) + δ′(z − xi)∂xiψs({xi})

and the second term of (6.13) becomes

∫
dx1 . . . dxs −

∫
dy
∑
i

[
ψs({xi})
(xi − y)2

− ∂xiψs({xi})
(xi − y)

]
φ0(y)

∂

∂ψs({xi})
(6.18)

Putting this aside for the moment, we turn to the first term of (6.13). When we substitute

the results from (6.16) for ω, we keep only the background pieces of the zero impurity loop by

taking ψ0 → φ0. Consider the first term of (6.16), which is proportional to

∂

∂xi

(
ψs({xi})
xi − z

)

when this term is substituted into (6.13), the result is

∫
dx1 . . . dxs

s∑
i=1

−
∫
dz φ0(z)

[
∂xiψs({xi})

(xi − z)
− ψs({xi})

(xi − z)2

]
∂

∂ψs({xi})
(6.19)

This neatly cancels with (6.18). What remains of the Hamiltonian is therefore the result of
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substituting the other terms in (6.16) into (6.13). The quadratic Hamiltonian is therefore

H(2)
s =

∫
dx1 . . .

∫
dxs −

∫
dz

s∑
i=1

φ0(z)ψs({xi})− φ0(xi)ψs(x1, . . . , z, . . . , xs)
(xi − z)2

∂

∂ψs({xi})
(6.20)

The background grows as N2, so one would expect the fluctuations generated be a quadratic

term to be of order N0 = 1. This can be shown to be the case by extending the rescaling (4.12)

so that

φs({xi}) → N s/2φs({xi})
∂

ψs({xi})
→ 1

N s

∂

ψs({xi})

6.4 Many impurity energy spectrum and states

Following [6] and [8], the spectrum that results from the quadratic Hamiltonian can be solved

by expressing it in turns of a s-impurity kernel. Swopping the xith integral with z in the second

term, (6.20) becomes

H(2)
s =

∫
dx1 . . .

∫
dxsψs({xi}) −

∫
dz

φ0(z)
(xi − z)2

×

×
s∑
i=1

∂

∂ψs({xi})
− ∂

∂ψs(x1, . . . , z, . . . , xs)

=
∫
dx1 . . . dxs

∫
dy1 . . . dysψs({xi})K({xi}, {yi}; s)

∂

∂ψs({yi})
(6.21)

It follows from this that the s-impurity kernel is

Ks({xi}, {yi}) =
s∑
i=1

−
∫
dz

φ0(z)
(xi − z)2

∏
j 6=i

δ(xj − yj)

 (δ(xi − yi)− δ(z − yi)) (6.22)

The form of a general eigenfunctional in ψ space is

∫
. . .

∫
dw1 . . . dwsf(w1, . . . , ws)ψs(w1, . . . , ws). (6.23)

The functions f can be found by solving the eigenvalue problem created by acting the kernel on
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this eigenfunctional. The details of the calculation are given in appendix B. The result is

ε{ni} = w

(
s∑
i=1

ni − s

)

fsn1,...,ns
({xi}) =

s∏
i=1

sin(niwq(xi))√
2w sin(wq(xi))

; ni = 1, 2, . . . (6.24)

Up to this point, we have completely ignored the term in the Hamiltonian (equation (6.6))

that deals with the second matrix. It is not difficulty to correct for this however. Tr(B ∂
∂B ) is

of the form of a number operator – it will simply count the number of B impurities that are

present, namely s. Adding this to the energy eigenvalues gives

ε{ni} = w
s∑
i=1

ni (6.25)

Rodrigues [8] noticed that the eigenfunctions are of the form of Chebyshev polynomials of

the second kind. These are defined by

U0(x) = 1 ; U1(x) = 2 ; Un+1(x) = 2xUn(x)− Un−1(x) (6.26)

They can equivalently be described in terms of trigonometric ratios as

Un(cos θ) =
sin(n+ 1)θ

sin θ
(6.27)

We therefore write (6.24) as

s∏
i=1

sin(niwq(xi))√
2w sin(wq(xi))

=
1√
2w

s∏
i=1

Uni−1(cos(wqi))

=
1√
2w

s∏
i=1

Uni−1

(
−
√
w

2
xi

)

≡
s∏
i=1

uni−1(xi) (6.28)

where the u have been defined in terms of the U to simplify notation.

Going back to (6.23), and using the density description of ψ (equation 6.15) the functionals
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are of the form

〈ψs|{xi}〉 =
∫
. . .

∫
dx1 . . . dxs

(
s∏
i=1

uni−1(xi)

)
Tr (Bδ(x1 −M) . . . Bδ(xs −M))

= Tr(Bun1−1(M)Bun2−1(M) . . . Buns−1(M)) (6.29)

These functions form a complete orthonormal set with respect to the measure (see [8] for more

details) ∫
[dψ] exp

[
−
∫

dx1

πφ0
. . .

∫
dxs
πφ0

|ψs({xi})|2
]

(6.30)

To simplify the notation, we take (ni− 1) → ji, where ji = 0, 1, 2, . . ., leaving states of the form

Tr(Buj1Buj2 . . . Bujs) (6.31)

which have energy equal to w(
∑

i ji + s).

We have thus found both the states associated with the collective field theory of two matrices,

and their associated energies. These states provide a useful way of dealing with two matrix

models. The dependence on the first matrix M is encoded in the polynomials uni−1, and the

second matrix appears as creation operators sandwiched in between the polynomials. We can

now go on to introduce gYM interactions, which is done in the following chapter. The states

that have been derived in this chapter will be the basic building blocks for this.

Note that these states are similar to the spin chain states discussed in section 3.2, where

trace has been used to place the first impurity at the beginning of the chain. The B impurities

play the role of the φ impurities in section 3.1. The parameters j1 and j2 are analogous to the

number of Zs that lie in between impurities. We can think of the spin chain “length” as being

J + s, which is also the free energy.
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Chapter 7

gY M interaction

We now introduce corrections induced by the g2
YM SYM interaction term to the results of chapter

6. We will only look at corrections that are small compared to the overall energy, so we are still

looking at states that are in some sense close to 1/2 BPS states.

The interaction includes all six SYM scalars and is of the form

−g2
YM

∑
i<j

Tr
([
φi, φj

]2)
, i, j = 1, . . . , 6 (7.1)

It is at this point where the identification of variables becomes important. In the section

below, we will consider the angular momentum eigenstate representation from section 6.1. We

give the physical justification, and reviewing some results obtained in [8]. Later, in section 8.4,

we will consider directly modelling φ1 and φ2 (as described in section 6.2) to obtain an energy

spectrum that is valid to all orders.

7.1 Angular momentum eigenstate model

The six SYM scalars are complexified in groups of two:

Z =
1√
2
(φ1 + iφ2) , Y =

1√
2
(φ3 + iφ4) , X =

1√
2
(φ5 + iφ6)

Equation (7.1) has two types of terms, commutators between adjacent fields that are com-

plexified together, such as φ1 and φ2, and commutators between fields from different complexi-
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fications, such as φ1 and φ3. The former all have simple expressions, for example

Tr
([
φ1, φ2

]2) = Tr

([
1√
2
(Z + Z̄),

1√
2i

(Z − Z̄)
]2
)

= Tr
([
Z, Z̄

]2) (7.2)

Commutators between terms from different complexifications. We will work out all the terms

involving both Z and Y here. The terms involving Z and X, and Y and X, are similar. The

commutator between the first and third scalars is

Tr
([
φ1, φ3

]2) =
1
4
Tr
{([

Z, Y
]
+
[
Z, Ȳ

]
+
[
Z̄, Y

]
+
[
Z̄, Ȳ

])2} (7.3)

There will be four of these terms, which we will denote by the numbers of the scalar fields that

are commuted. For example, the above term is (1, 3). When going from the trace between

scalars (1, 3) to (1, 4), (2, 3) or (2, 4), the following rules can be observed:

Going from (1, 3) → (1, 4) : ×(−1) , Ȳ → −Ȳ

(1, 3) → (2, 3) : ×(−1) , Z̄ → −Z̄

(1, 3) → (2, 4) : Ȳ → −Ȳ , Z̄ → −Z̄

Any term which does not involve all four of the complex fields, Z, Z̄, Y and Ȳ will be

positive in two of the commutators, and negative in two, for example any ZY ZY term will be

positive in (1, 3) and (2, 4) and negative in (1, 4) and (2, 3). As a result, terms of this nature

will cancel, and we only need to consider the terms with all four fields, which are positive for all

the commutators.

Working from equation (7.3), the terms we need are

4.
1
4
Tr
{[
Z, Y

][
Z̄, Ȳ

]
+
[
Z, Ȳ

][
Z̄, Y

]
+
[
Z̄, Y

][
Z, Ȳ

]
+
[
Z̄, Ȳ

][
Z, Y

]}
= 2Tr

{
2
[
Z, Y

][
Z̄, Ȳ

]
−
([
Z, Y

][
Z̄, Ȳ

]
+
[
Z, Y

][
Z̄, Ȳ

]) }

Using the identity

Tr
([
a, c
][
b, d
]
) = Tr(

[
a, b
][
c, d
]
) + Tr(

[
a, d
][
b, c
])

(7.4)

this becomes

2Tr
{

2
[
Z, Y

][
Z̄, Ȳ

]
−
[
Z, Z̄

][
Y, Ȳ

]}
(7.5)
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Adding together the terms of the form of equation (7.5) and those of the form of equation (7.2)

gives the result

Hint = 4g2
YM

(
1
4

[
Z, Z̄

][
Z, Z̄

]
+ 1

4

[
Y, Ȳ

][
Y, Ȳ

]
+ 1

4

[
X, X̄

][
X, X̄

]
+1

2

[
Z, Z̄

][
Y, Ȳ

]
+ 1

2

[
Z, Z̄

][
X, X̄

]
+ 1

2

[
Y, Ȳ

][
X, X̄

]
−
[
Z̄, X̄

][
Z,X

]
−
[
Ȳ , X̄

][
Y,X

]
−
[
Z̄, Ȳ

][
Z, Y

] )
This clearly shows a split into D terms, involving commutators between a field and its complex

conjugate, and F terms, involving different fields.

We now introduce creation and annihilation operators for each of the complex fields (those

for Z will be the same as those introduced earlier).

Z → 1√
2w

(A+B†) , Y → 1√
2w

(C +D†) , X → 1√
2w

(E + F †)(
Z̄ → 1√

2w
(A† +B) , Ȳ → 1√

2w
(C† +D) , X̄ → 1√

2w
(E† + F )

)
We are not interested in all the possibilities arising from this interaction though, but rather only

the states which are close to BPS states. To stay within the subspace of loops that are near to

chiral primary operators, we thus use the technique followed by [32, 31], and project

A+B† → A , A† +B → A†

C +D† → C , C† +D → C†

E + F † → E , E† + F → E†

All the D terms are now trivial (to see this explicitly, go to the coherent state basis, e.g.

C → ∂/∂C†), which leaves just the F terms.

Hint = −
g2
YM

w2

([
E†, A†

][
E,A

]
+
[
C†, E†][C,E]+

[
C†, A†

][
C,A

])

We will retain only one of these. The interaction Hamiltonian of interest is thus

Hint = −
g2
YM

w2
Tr
([
A†, C†][A,C]) (7.6)

Again, we define M as the Hermitian matrix associated with the A,A† operators, as in (6.4).
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In terms M and its canonical conjugate PM (using identity (7.4 once more),

Hint = −
g2
YMN

2w
Tr
([
M,C

][
M,C†])+ i

g2
YM

2w2
Tr
([
C,C†][M,PM

])
−

g2
YM

2Nw3
Tr
([
PM , C

][
PM , C

†])
≡ Hint(1) +Hint(2) +Hint(3)

We can act this on the many-impurity collective field theory states found in section 6.4. An

in depth treatment of this is beyond the scope of this dissertation ([8] contains some details) –

we will concern ourselves more with the φ1, φ2 model, which is tackled in chapter 8. In short,

Hint(2) and Hint(3) are of sub-leading order, so Hint(1) determines the spectrum. To first order,

when there are two impurities, the resulting states are linear combinations of the states from

(6.31),

OmJ =
1√
J + 1

J∑
j=0

e
2πim
J+1

jTr(Cuj(M)CuJ−j(M)), m = 0, . . . , J (7.7)

This are of a similar structure to the BMN loops defined in (3.6). Indeed, the states from (6.31)

are only useful in the BMN limit. Their energy is proportional to
∑

i ji + s = J + s, so if we

calculate ∆− J , this will give the number of impurities, s. The BMN limit keeps ∆− J finite,

which corresponds to only considering states with a finite number of impurities.

It is worth noting the form of the operator Hint(1) – this same operator (up to a constant

factor) will determine the spectrum in chapter 8.
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Chapter 8

Two Higgs scalar model

We now develop further the identification of variables introduced in section 6.2. The two matrices

that we will consider are two of the SYM scalars. This identification was first mentioned in [8], for

two impurities, which gave energy results to first order by considering a subset of the Hamiltonian

that contributes to first order, namely the part that preserves J . We will develop this further

by introducing an ansatz which gives an analytic solution to the difference equation that results

from the Hamiltonian. This captures the effect of all the terms in the difference equation, not

only the ones that conserve J . We then give in detail the Bogoliubov transformation mentioned

in [8]. For two impurities, the energies derived from the ansatz are then shown (using a result

proved in appendix C) to completely determine the spectrum resulting from the gYM interaction

term to all orders, not just to first order. These results will be presented in [33].

8.1 gYM interaction

We take the Hamiltonian from (6.2), and add the gYM interaction term from (7.1).

H =
1
2
Tr(P 2

1 ) +
1
2
Tr(P 2

2 ) +
1
2
w2Tr(φ2

1) +
1
2
w2Tr(φ2

2)− g2
YMTr([φ1, φ2][φ1, φ2]) (8.1)

We will treat φ1 exactly, and φ2 as an impurity introduced into the background created by φ1.

To this end, creation and annihilation operators are defined for φ2:

φ2 =
1√
2w

(C + C†), P2 = −i
√
w

2
(C − C†)
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and the Hamiltonian becomes

H =
1
2
Tr(P 2

1 ) +
1
2
w2Tr(φ2

1)︸ ︷︷ ︸+wTr(C†C)

Hφ1

−
g2
YM

2w
Tr
(
[φ1, C]2 + 2[φ1, C

†][φ1, C] + [φ1, C
†]2
)

(8.2)

Even though we will only consider bosonic degrees of freedom, we will assume that the theory

is part of a supersymmetric theory, so that we do not need to be concerned with normal ordering

terms.

The first two terms describe the background created by φ1. This is not too interesting – we

would rather see the fluctuations on top of this background that arise from the introduction of

the gYM interaction term. The Hamiltonian we will use is therefore not the full Hamiltonian,

but rather

HC = H −Hφ1 = wTr(C†C)−
g2
YM

2w
Tr
(
[φ1, C]2 + 2[φ1, C

†][φ1, C] + [φ1, C
†]2
)

(8.3)

It is worth taking a moment to consider the physical implications of the choice of variables.

In the collective field theory approach, the first matrix is treated in the large N limit. A finite

number of impurities of the second matrix are then introduced. In the angular momentum

eigenstate model, this corresponds to states with large J near the φ1-φ2 plane, i.e. states that

fall within the BMN limit. In the φ1, φ2 model, the picture is different. The states under

consideration are now states where φ1 is large and φ2 is small. By considering HC = H −Hφ1 ,

we are doing the analogue of considering ∆− J in the angular momentum eigenstate model.

We define H(1) as the term in (8.3) containing φ1, C and C†, and in the spirit of (4.12),

rescale φ1 →
√
Nφ1:

H(1) = −
g2
YMN

w
Tr
(
[φ1, C

†][φ1, C]
)

(8.4)

Note that this term has the same form (up to a factor of 2) as Hint(1) from section 7.1. It turns

out (after performing a Bogoliubov transformation, which will be done in section 8.4) that this

term is sufficient to determine the spectrum for two impurities. The term involving only creation

operators, [φ1, C]2, and the term involving only annihilation operators, [φ1, C
†]2, will determine

the factors in the Bogoliubov transformation.
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8.2 Difference equation generated by H(1)

We will derive here the spectrum of H(1). We move to the coherent state basis, letting (C†)ij →

Cij and (C)ij →
(
∂
∂C

)
ji
. The two-impurity result is derived first and this is later generalised to

more impurities.

For two impurities, the Hamiltonian will act on states of the form derived in the section 6.4.

〈j1, j2|ψ〉 = Tr(Cuj1(M)Cuj2(M))

For notational convenience, we will denote these states by simply |j1, j2〉.

Consider the first term, H(1), in (7.7). After multiplying out the commutators,the cyclic

freedom of the trace means the ∂/∂C terms can be moved to the end, yielding

H(1)|j1, j2〉 = −
g2
YMN

w
Tr
[(

2MCM −M2C − CM2
) ∂
∂C

]
Tr(Cuj1(M)Cuj2(M))

The action of a derivative with respect to C on one of the states is

∂

∂Cij
Tr(Cuj1Cuj2) = (uj1Cuj2)ji + (uj2Cuj1)ji (8.5)

yielding

H(1)|j1, j2〉 = −
g2
YMN

w
Tr
[
4CMuj1CMuj2 − 2Cuj1CM

2uj2 − 2CM2uj1Cuj2

]
(8.6)

For any number of impurities, the notation becomes cumbersome. We thus label states by

how many Ms follow each C:

Tr(CMauj1CM
buj2 . . . CM

zujs) → (a, b, . . . , z)

Equation (8.6) generalises to

H(1)(0, . . . , 0) = −2
g2
YMN

w
Tr
{

(1, 1, 0, . . . , 0) + (0, 1, 1, 0, . . . , 0) + . . . (cyclic permutations)

− (2, 0, . . . , 0)− (0, 2, 0, . . . , 0)− . . . (cyclic permutations)
}

(8.7)
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The recurrence relation that defines the Chebyshev polynomials (6.26) means that

MUj =
1
2

(Uj+1 + Uj−1)

M2Uj =
1
4

(Uj+2 + 2Uj + Uj−2)

From the definition of u in terms of U , contained in (6.28), it follows that

Muj = − 1√
2w

(uj+1 + uj−1)

M2uj =
1

2w
(uj+2 + 2uj + uj−2) (8.8)

which allows us to absorb the extra factors of M , and recover states of the original form. This

leads to a difference equation. For two impurities,

H(1)|j1, j2〉 =
g2
YMN

w2

{
4|j1, j2〉 − 2|j1 + 1, j2 − 1〉 − 2|j1 − 1, j2 + 1〉

−2|j1 + 1, j2 + 1〉+ |j1 + 2, j2〉+ |j1, j2 + 2〉

−2|j1 − 1, j2 − 1〉+ |j1 − 2, j2〉+ |j1, j2 − 2〉
}

(8.9)

This generalises for more impurities to

H(1)|j1, j2, . . . , js〉 =
g2
YMN

w2

{
(2s)|j1, j2, . . . , js〉 − |j1 + 1, j2 + 1, . . .〉 − |j1 + 1, j2 − 1, . . .〉

− |j1 − 1, j2 + 1, . . .〉 − |j1 − 1, j2 − 1, . . .〉

+ |j1 + 2, j2, . . .〉+ |j1 − 2, j2, . . .〉

+ . . . (all cyclic permutations, j1 → j2, j2 → j3 etc.)
}

(8.10)

It is interesting to see how this difference equation affects the “length” of the states. To

show this explicitly for two impurities, we take j1 → j and j2 → J − j, and move from j1, j2

space to J, j space by defining |J, j〉 ≡ 〈J, j|ψ〉 = Tr(CMujCMuJ−j). In terms of these states,

H(1)|J, j〉 =
g2
YMN

w2

{
4|J, j〉 − 2|J, j + 1〉 − 2|J, j − 1〉

−2|J + 2, j + 1〉+ |J + 2, j + 2〉+ |J + 2, j〉

−2|J − 2, j − 1〉+ |J − 2, j − 2〉+ |J − 2, j〉
}

(8.11)
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A† B†B† A†

A†

A†

A† A†B† B†

Figure 8.1: An operator that takes |2, j〉 → |1, j + 1〉, preserving J .

This shows how the interaction Hamiltonian splits into three parts. The first line consists of

terms that preserve J . The second and third lines consist of terms that move into a different

J subspace, adding or subtracting two respectively. We will call the J-preserving terms the

“diagonal” part, HD
(1), and the other (“non-diagonal”) terms H+

(1) and H−
(1). Thus we can write

(8.11) as H(1) = HD
(1) +H+

(1) +H−
(1).

Operators that act on states |j1, j2〉 can be understood in a diagrammatic sense, imported

from spin chains. The spin chain analogous to uj(A†) is a string of j A†s. B† impurities are

placed between these. For example, the state |2, 1〉 ≡ Tr(B†u2B
†u1) would be represented as

B†A†A†B†A†.

To see the effect of an operator on a state then, the initial state is placed above the final state,

and lines are drawn in corresponding to the summation of indices. For example, an operator

that takes |2, j〉 → |1, j+1〉 would be represented by the diagram in figure 8.1. The J preserving

terms in the difference equation (8.11) will all look similar to this.

The terms that do not preserve J are not something that would typically be seen in a spin

chain however. For J to change, it means that new A†s must be being created or annihilated. The

term that takes J → J + 2 would then have to look something like figure 8.2. There is nothing

preventing these diagrams in the φ1, φ2 model. In the angular momentum model however, these

are problematic, as the angular momentum charge must be preserved. We cannot therefore have

an operator that creates new A†s, and diagrams like figure 8.2 are forbidden.

Equation (8.11) is the analogue of the difference equations treated in the literature, given by

equations (3.7) and (3.8).
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A† A† A†

A† A†

A†

Figure 8.2: An operator that takes J → J + 2.

8.3 Eigenstate ansatz and energy spectrum

The two impurity case is treated first. In order to solve equation (8.9) we introduce energy

eigenstates fλ1,λ2(j1, j2) (or just f(j1, j2) for short) by making the ansatz

fλ1,λ2 (j1, j2) ∝ λj11 λ
j2
2

we will require these states to satisfy the difference equation in (8.9), so that

Eλ1,λ2(j1, j2)f(j1, j2) =
g2
YMN

w2

{
4f(j1, j2)− 2f(j1 + 1, j2 − 1)− 2f(j1 − 1, j2 + 1)

−2f(j1 + 1, j2 + 1) + f(j1 + 2, j2) + f(j1, j2 + 2)

−2f(j1 − 1, j2 − 1) + f(j1 − 2, j2) + f(j1, j2 − 2)
}

(8.12)

which leads to

Eλ1,λ2f(j1, j2) =
g2
YMN

w2

{
4− 2

λ1

λ2
− 2

λ2

λ1
− 2λ2λ1 + λ2

1 + λ2
2 − 2

1
λ1λ2

+
1
λ2

1

+
1
λ2

2

}
f(j1, j2)

By demanding Hermiticity of the eigenvalues, we can see that two conditions which must be

satisfied are

λ2
1 +

1
λ2

1

= λ∗1
2 +

1
λ∗1

2 and λ2
2 +

1
λ2

2

= λ∗2
2 +

1
λ∗2

2
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We thus ensure that λ∗1 = 1
λ1

and λ∗2 = 1
λ2

by setting

λ1 = eiα λ2 = eiβ

The energy eigenvalues are then given by

Eα,β =
2g2
YMN

w2

(
2− 2 cos(α− β)− 2 cos(α+ β) + cos(2α) + cos(2β)

)
(8.13)

=
4g2
YMN

w2

(
cos2 α+ cos2 β − cos2 α cos2 β − cos2 β cos2 α

)
This is the form that generalises most easily to more impurities. For example, the 3-impurity

ansatz is

fλ1,λ2,λ3(j1, j2, j3) → fα,β,γ(j1, j2, j3) ∝ eiαj1eiβj2eiγj3

and the solution to the difference equation in (8.10) is

Eα,β,γ =
4g2
YMN

w2

(
cos2 α+ cos2 β + cos2 γ − cos2 α cos2 β − cos2 β cos2 γ − cos2 γ cos2 α

)
For n impurities, the energy is

E{αi} =
4g2
YMN

w2

n∑
i=1

(
cos2 αi − cos2 αi cos2 αi+1

)
; αn+1 ≡ αi (8.14)

The two-impurity case is of special interest, for reasons that will become apparent in section

8.4. For two impurities, equation (8.13) can be simplified further. We define q = α + β, and

p = α− β. Then,

Ep,q =
2g2
YMN

w2

(
2− 2 cos q − 2 cos p+ cos(p+ q) + cos(p− q)

)
=

2g2
YMN

w2

(
2− 2

(
1− 2 sin2

(q
2

))
− 2

(
1− 2 sin2

(p
2

))
+

+ (cos p cos q − sin p sin q) + (cos p cos q + sin p sin q)
)

=
16g2

YMN

w2
sin2

(p
2

)
sin2

(q
2

)
Ep,β =

16g2
YMN

w2
sin2

(p
2

)
sin2

(p
2

+ β
)

(8.15)

63



We can give a physical meaning to the variables p and β by returning to the eigenstates,

eiαj1eiβj2 = eipj1eiβ(j1+j2) ≡ fβ,p(j1, j2) (8.16)

In terms of J and j, rather than j1 and j2, this is eipjeiβJ .

For finite J , we can apply spin chain thinking. J is related to the length of the chain. We

have used the cyclicity of the trace to lock the first impurity at the beginning of the chain. We

can therefore think of the second impurity as free to go to any position within J , determined

by the value of j. The states with j = 0 and j = J are the same, so we can identify the two

ends. The “chain” is then a circle, obeying periodic boundary conditions so that j + J ↔ j.

This implies that exp[ipJ ] = 1, or p = 2kπ/J , for integral k.

The eigenstate fβ,k(j1, j2) ≡ ei2πkj1eiβ(j1+j2) thus has energy

Ek,β =
16g2

YMN

w2
sin2

(
kπ

J

)
sin2

(
kπ

J
+ β

)

In the large J limit, it is more sensible to think of p as a continuous variable with the energy

given by (8.15).

8.4 Bogoliubov transformation

We now return to the Bogoliubov transformation mentioned in section 8.1, which was suggested

in [8]. We can eliminate the term involving only creation operators, [φ1, C]2, and the term

involving only annihilation operators, [φ1, C
†]2, by taking

Cij → a(ij)C̃ij − b(ij)C̃
†
ij

1

Note that φ1 is an Hermitian matrix, and can therefore be diagonlised by an unitary matrix

U . If we denote the (real) eigenvalues of φ1 by λi, then [U †φ1U,C]ij = (λi − λj)Cij . We define

1There is no sum over the i and j indices here – a(ij) is understood as being the coefficient that multiplies the

(i, j)th element of C̃
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C̄ ≡ U †C̃U . Then,

Tr([φ1, C̃]2) = Tr
(
[U †φ1U, U

†C̃U ]2
)

=
N∑

i,j=1

−(λi − λj)2C̄ijC̄ji

Tr([φ1, C̃
†][φ1, C̃]) =

N∑
i,j=1

−(λi − λj)2C̄
†
ijC̄ji (8.17)

Putting these results into equation (8.3) (suppressing indices) gives

wTr(C†C)−
g2
YMN

2w
Tr
(
[φ1, C]2 + 2[φ1, C

†][φ1, C] + [φ1, C
†]2
)

= wTr((aC̃ − bC̃†)(aC̃† − bC̃))

+
g2
YMN

2w
(λi − λj)2︸ ︷︷ ︸ Tr

(
(aC̃ − bC̃†)2 + (aC̃† − bC̃)(aC̃ − bC̃†) + (aC̃† − bC̃)2

)
X (8.18)

We group the terms in terms of C and C†:

(
− wab+Xaa− 2Xab+Xbb

)
C̄C̄

+
(
− wab+Xaa− 2Xab+Xbb

)
C̄†C̄†

+
(
waa+ wbb+ 2Xaa+ 2Xbb− 4Xab

)
C̄†C̄ (8.19)

For the first two lines to disappear, we see that

X(a(ij)a(ji) + b(ij)b(ji)) = (w + 2X)a(ij)b(ji)

We take a(ij) ≡ cosh(θij) and b(ij) ≡ sinh(θij) to give

tanh(2θij) =
2X

w + 2X
=

g2Y MN
w (λi − λj)2

w + g2Y MN
w (λi − λj)2

(8.20)

The Hamiltonian is then 2

HC =
N∑

i,j=1

[
(w + 2X) cosh(2θij)− 2X sinh(2θij)

]
C̄†
ijC̄ji

2Again neglecting normal ordering terms
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From equation (8.20),

cosh(2θij) =
w + 2X√

(w + 2X)2 − (2X)2

sinh(2θij) =
2X√

(w + 2X)2 − (2X)2

and the Hamiltonian becomes

HC =
N∑

i,j=1

[
(w + 2X)2 − (2X)2√
(w + 2X)2 − (2X)2

]
C̄†
ijC̄ji

=
N∑

i,j=1

√
w2 + 2g2

YMN(λi − λj)2C̄
†
ijC̄ji (8.21)

The square root can be expanded: (in the following, An is the numerical constant preceding

the nth term in the expansion i.e.
√

1 + x = 1 +A1x+A2x
2 + . . .)

N∑
i,j=1

√
w2 + 2g2

YMN(λi − λj)2C̄
†
ijC̄ji =

∞∑
n=0

Anw

(
2g2
YMN

w2

)n N∑
i,j=1

C̄†
ij(λi − λj)2nC̄ji

Repeated use of equation (8.17) makes this

∞∑
n=0

Anw

(
2g2
YMN

w2

)n
(−1)n Tr

(
[φ1, [φ1, . . . [φ1, C̃

†] . . .︸ ︷︷ ︸]] [φ1, [φ1, . . . [φ1, C̃] . . .︸ ︷︷ ︸]])
n times nested commutators (8.22)

8.5 Two impurity spectrum

Up to this point, the derivation has been applicable to states with any number of impurities.

The restriction is now made to states with two impurities. In this case, the action of this term

on |j1, j2〉 ≡ Tr(C†uj1(M)C†uj2(M)) is shown in appendix C to be the same as the operator
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H(1) (up to a constant) introduced in chapter 7, applied n times. Using equation (C.1),

w

(
2g2
YMN

w2

)n
(−1)n Tr

(
[φ1, [φ1, . . . [φ1, C̃

†] . . .]][φ1, [φ1, . . . [φ1, C̃] . . .]]
)
|j1, j2〉

= 2w
(

2g2
YMN

w2

)n
(−1)n

(
1
2
Tr[M, C̃†][M, C̃]

)n
|j1, j2〉

= 2w
(

1
w

)n(
−
g2
YMN

w
Tr
(
[φ1, C̃

†][φ1, C̃]
))n

|j1, j2〉

= 2w
(
H(1)

w

)n
|j1, j2〉 (8.23)

for n ≥ q.

Equation (8.21) can thus be expressed as

HC = wC̄†
ijC̄ji + 2w

∞∑
n=1

An

(
H(1)

w

)n
(8.24)

The C̄†
ijC̄ji term is of the form of a number operator, and counts the impurities, which is 2

in this case. Applying the above equation to the energy eigenstates fβ,p(j1, j2) (8.16) gives the

spectrum

2w + 2w
∞∑
n=1

An

(
16g2

YMN

w3
sin2

(p
2

)
sin2

(
β +

p

2

))n
(8.25)

This can be re-expressed in terms of a square root:

EgY M = 2w

√
1 +

16g2
YMN

w3
sin2

(p
2

)
sin2

(
β +

p

2

)
(8.26)

This approach does not work for more than two impurities, because in this case the operator

equivalence proved in appendix C does not apply for all n.

8.6 Strong and weak coupling limits

In the strong coupling limit, where g2
YMN/w

2 � 1, only the second term of (8.26) will contribute,

and the two impurity energy is

EgY M ≈

∣∣∣∣∣4gYM
√
N

w
sin
(p

2

)
sin
(
β +

p

2

)∣∣∣∣∣
At weak coupling, where g2

YMN/w
2 � 1, only the first term in the expansion contributes.
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The two operators from appendix C are trivially the same when n = 1, for any number of

impurities. We can therefore find the weal coupling spectrum for any number of impurities. The

energies for respectively two impurities and many impurities are therefore

EgY M (2 imp.) ≈ 2w +
16g2

YMN

w2
sin2

(p
2

)
sin2

(
β +

p

2

)
(8.27)

EgY M (n imp.) ≈ 2w +
4g2
YMN

w2

n∑
i=1

(
cos2 αi − cos2 αi cos2 αi+1

)
; αn+1 ≡ αi

8.7 Similarity to Giant Magnon results

In [34], Hofman and Maldacena found a bound state of two giant magnons at weak coupling

that has energy (to first order in the coupling strength) given by

2 +
λ

2π2
2 cos2

(p
2

)
sin2

(p
2

)
(8.28)

To first order in the ’t Hooft coupling, the energy we have obtained (in (8.27)) is

2 + 16λ sin2
(p

2

)
sin2

(
β +

p

2

)

where the ’t Hooft coupling λ = g2
YMN and w → 1. For the particular value of β = π/2 (plus

nπ), this is

2 + 16λ cos2
(p

2

)
sin2

(p
2

)
(8.29)

which is identical to (8.28) up to redefinition of the Yang-Mills coupling constant.
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Chapter 9

Conclusions

This dissertation has had two major drives. The first has been to show the power of the collective

field thechnique by reviewing the work that has been on solving matrices in the large N limit.

This began with the relevant background within the context of the AdS/CFT correspondence.

This correspondence, while not yet rigorously proven or completely understood, is one of the

most interesting recent discoveries in high energy physics. It couples two very different theories,

both of which have had much work on them. It therefore offers a unique window to study both

string and gauge theories. A description of the theories on either side of this correspondence, and

motivation for the correspondence were given. Some of the links between states on either side

of the correspondence were mentioned. The work done by Berenstein, Maldacena and Nastase

on the plane wave limit, and the analysis of spin chains, were of particular interest.

The collective field theory technique was developed in a systematic manner. The basic

formalism was developed initially in general coordinates. This was applied to a single matrix

with an harmonic potential, and the spectrum was found. The physical motivation for the

study of matrix models in the context of the Higgs scalars in the Super-Yang-Mills theory was

then explored. Two possible identifications of variables were explored. The first corresponds

to angular momentum eigenstates. In this picture, 1/2 BPS states are described by a single

matrix model. The results for 1/2 BPS states have been found to agree with those found by

Lin, Lunin and Maldacena [5]. The second variable identification involves treating two Higgs

directly, rather than complexifying and creating angular momentum eigenstates. While this

approach has been mentioned in the literature, it has not been thoroughly developed.

In order to study states beyond 1/2 BPS states in either picture, it is necessary to be able
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to solve a model with two matrices. The full two matrix solution is very difficult. It is here that

the power of the collective field theory technique becomes apparent. The second matrix can be

introduced in a creation/annihilation operator basis as impurities into the background created

by the first matrix. Using this approach, the spectrum and the states that result from using

this technique with two matrices and an harmonic potential were found.

The work that has been done on introducing a Super-Yang-Mills interaction term in the

angular momentum eigenstate model was then reviewed. This used the states that result from

the two matrix model, with two impurities. A Hamiltonian was found, and resulting first order

states were given. These states resemble the structure of BMN loops.

The second goal of this dissertation was to cover new territory by exploring more deeply the

model that results from considering two of the Higgs scalars, and introducing the Super-Yang-

Mills interaction term. The advantage of using the two Higgs scalar model is that it provides

a way to calculate the spectrum (once the background has been subtracted) of a set of states,

when a gYM interaction term has been included. The disadvantage is that the mechanics of the

collective field theory technique mean that one matrix is treated in the large N limit, whereas

only a finite number of impurities of the second matrix are included. This had a nice physical

explanation in the angular momentum eigenstate representation, where the zero impurity states

are 1/2 BPS states, and states with a finite number of impurities are therefore states that are

close to BMN states, or close to the plane defined by the two Higgs scalars. In the two Higgs

scalar model however, there is no prior reason to treat the two matrices asymmetrically. By

considering only a finite number of one matrix therefore, we are thus restricting ourselves to

states near the axis of that scalar.

Within the two Higgs model, the background was subtracted from the full Hamiltonian

(analogously to considering ∆− J). A Bogoliubov transformation was applied to the resulting

Hamiltonian. The operator that determines the spectrum of this Hamiltonian is of the same

form as the leading operator found in the angular momentum eigenstate model. This operator

was shown to generate a difference equation, which can be solved for any number of impurities.

In the case of two impurities, this determines the spectrum exactly to all orders. For more than

two impurities, the operator does not determine the spectrum exactly beyond first order, hence

the results will only be a good approximation in the weak coupling limit.

The spectrum is one of the most important properties of any theory, and there are no
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indications that the spectrum that we have obtained is not positive definite. One may con-

jecture that the spectrum may be the same as that for angular momentum eigenstates in a

non-supersymmetric setting. Some indication that this may be the case is provided by the fact

that the spectrum that has been obtained can be made to agree with non-supersymmetric giant

magnon results in the literature.

9.1 Directions for future research

There are several possibilities for further work in this area. The first is to use the results

obtained for the two Higgs scalar model to derive the spectrum in the angular momentum

eigenstate model. This model could potentially be more interesting than the two scalar model,

as it ties in to the work has been done in the BMN limit. The similarity to giant magnon results

suggest that the spectrum that has been found for the two scalar model could indeed be linked

to the angular momentum eigenstate spectrum.

The second avenue for further research would be to understand the link to giant magnons

more clearly. An in-depth comparison of the two models could lead to understanding the signif-

icance of the link. It could also possibly also explain why there is extra freedom in the spectrum

that we have derived, before the arbitrary setting of a parameter to get agreement with magnon

results.

Thirdly, one could consider higher order terms than merely quadratic fluctuations. It would

be interesting to see how cubic or higher order terms impact the spectrum.

Lastly, one could look at a three matrix model, i.e. a model with two different types of

impurities. This model would describe states in a three-dimensional space, rather than the two

dimensional plane considered so far. This offers the possibility of a link to QCD which lives in

3+1 dimensions.
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Appendix A

Calculations of collective field theory

parameters

A.1 Calculation of ω̄ in k space

Starting from the definition, (6.10), ω can be found by repeated application of (5.9)

ω(k1, ..., ks) =
∂2

∂Mij∂Mji
Tr
(
Beik1M ...BeiksM

)
=
∫ 1

0
dα

∂

∂Mij

{ (
e(1−α)ik1MBeik2M ... BeiksMBeαik1M

)
ij

+ . . .

+
(
e(1−α)iksMBeik1M ... Beiks−1MBeαiksM

)
ij

}
=
∫ 1

0
dβ

∫ 1

0
dα
{

−(1− α)k1
2Tr

(
eβ(1−α)ik1M

)
Tr
(
e(1−β)(1−α)ik1MBeik2M ...BeiksMBeαik1M

)
+ (terms that involve no impurity-free traces)

−αk1
2Tr

(
e(1−α)ik1MBeik2M ...BeiksMBeβαik1M

)
Tr
(
e(1−β)αik1M

)
. . .

−(1− α)ks2Tr
(
eβ(1−α)iksM

)
Tr
(
e(1−β)(1−α)iksMBeik1M ...Beiks−1MBeαiksM

)
+ (terms that involve no impurity-free traces)

−αks2Tr
(
e(1−α)iksMBeik1M ...Beiks−1MBeβαiksM

)
Tr
(
e(1−β)αiksM

) }
Only the terms with zero impurity loops are necessary, so all the terms that contain no

impurity-free traces can be neglected. If one changes α→ (1− α) in the first term for each ki,
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and β → (1− β) in the second term for each ki, then

ω(k1, ..., ks) =

= −2
∫ 1

0
dα

∫ 1

0
dβ
{

αk1
2ψ0(βαk1)ψs((1− αβ)k1, k2, ..., ks)

. . .

αks
2ψ0(k1)ψs((1− αβ)k1, k2, ..., (1− αβ)ks)

}
Working on the first term, and letting k′′ = αk1 and k′ = αβk1:

∫ 1

0
dα

∫ 1

0
dβ αk1

2ψ0(βαk1)ψs((1− αβ)k1, k2, ..., ks)

=
∫ k1

0
dk′′

∫ k′′

0
dk′ ψ0(k′)ψs(k1 − k′, k2, ..., ks)

To remove the k′′ integral, we swop the order of integration and take k′ → k1 − k′, obtaining

∫ k1

0
dk′
∫ k1

k′
dk′′ ψ0(k′)ψs(k1 − k′, k2, ..., ks)

=
∫ k1

0
dk′ k′ψ0(k1 − k′)ψs(k′, k2, ..., ks)

The other terms work similarly to the k1 term, so the final answer is

ω̄(k1, ..., ks) = −2
s∑
i=1

∫ ki

0
dk′k′ψ0(ki − k′)ψs(k1, ..., ki−1, k

′, ki+1, ..., ks) (A.1)

A.2 Calculation of Ω in k space

Ω0;s(k0; k1, ..., ks) = Tr

(
∂ψ0(k0)
∂Mij

∂ψs(k1, ..., ks)
∂Mji

)
=

∂

∂Mij
Tr
(
eik0M

) ∂

∂Mji
Tr
(
Beik1M ...BeiksM

)
= ik0

(
eik0M

)
ji

∫ 1

0
dα

(
e(1−α)ik1MBeαik2M ...BeiksMBeαik1M

)
ij

+ . . .

+ ik0

(
eik0M

)
ji

∫ 1

0
dα

(
e(1−α)iksMBeαik1M ...Beiks−1MBeαiksM

)
ij

= −k0

(
s∑
i=1

kiψs(k1, ..., ki + k0, ..., ks)

)
(A.2)
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A.3 Calculation of ω in x space

To calculate the value of ω in position space, it is first useful to express ψ in a different form.

Because M is Hermitian, it can be diagonalised, such that V †MV = Λ, where Λ is a diagonal

matrix containing the eigenvalues of M :

V †MV = Λ =



λ1 0 ... 0

0 λ2 ... 0
. . .

0 0 ... λs


(A.3)

It follows from (A.3) that (
V †eikMV

)
nm

= δnme
ikλn (A.4)

This allows one to express ψ as follows:

ψs(k1, ..., ks) = Tr
(
V †BV V †eik1MV ... V †BV V †eiksMV

)
=

N∑
n1=1

...
N∑

ns=1

(V †BV )n1n2e
ik1λn1 ... (V †BV )nsn1e

iksλns

ψs(x1, ..., xs) =
N∑

n1=1

....
N∑

ns=1

δ(x1 − λn1)(V
†BV )n1n2 × ...×

× δ(xs − λns)(V
†BV )nsn1 (A.5)
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Therefore, from (6.14),

ω̄({ki}) =

= −2
s∑
i=1

∫ ki

0
dk′k′

∑
m

ei(ki−k′)λm ×

×
∑

n1,...,ns

(
V †BV

)
n1n2

eik1λn1 ...
(
V †BV

)
nini+1

eik
′λni ...

(
V †BV

)
nsn1

eiksλns

= −2
s∑
i=1

∫ ki

0
dk′k′

∫
dz

∫
dy1...

∫
dys e

i(ki−k′)z
∑
m

δ(z − λm)×

×
N∑

n1=1

....
N∑

ns=1

δ(y1 − λn1)(V
†BV )n1n2 ... δ(ys − λns)(V

†BV )nsn1 ×

× eik1y1 ... eiki−1yi−1 eik
′yi eiki+1yi+1 ... eiksys

= −2
s∑
i=1

∫
dz

∫
dy1...

∫
dys

∫ ki

0
dk′k′e−ik

′(z−yi)eikiz ×

× ψ0(z) ψs(y1, ..., ys)
N∏
j=1
(j 6=i)

ekjyj (A.6)

The k′ integration can now be done using integration by parts.

∫ ki

0
dk′k′e−ik

′(z−yi)eikiz =
ikie

ikiyi

(z − yi)
+

eikiyi

(z − yi)2
− eikiz

(z − yi)2
(A.7)

This finally leaves us in the position where we can apply a Fourier transformation, which converts

the exponentials to delta functions. Integrals should obey the principal value prescription in what

follows.

ω̄({xi}) =
∫
dk1

2π
e−ik1x1 ...

∫
dks
2π

e−iksxs ω̄(ki)

= −2
s∑
i=1

∫
dk1...

∫
dks

∫
dz

∫
dy1...

∫
dys ψ0(z) ψs(y1, ..., ys)×

×

[
∂
∂yi
δ(xi − yi)

(z − yi)
+
δ(xi − yi)
(z − yi)2

− δ(xi − z)
(z − yi)2

]
N∏
j=1
(j 6=i)

δ(xj − yj)

= −2
s∑
i=1

∫
dzψ0(z)

∂

∂xi

(
ψs({xi})
xi − z

)

−2
s∑
i=1

∫
dzψ0(z)

[
ψs({xi})
(xi − z)2

− δ(z − xi)
∫
dyi

ψ(x1, ..., yi, ..., xs; s)
(yi − z)2

]
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A.4 Calculation of Ω in x space

Calculation of Ω from (6.14):

Ω0;s(z;x1, ..., xs) =
∫
dk0

2π
e−ik0z

∫
dk1

2π
e−ik1x1 ...

∫
dks
2π

e−iksxsΩ0;s(k0, k1, ..., ks)

=
∫
dk0

2π
e−ik0z

∫
dk1

2π
e−ik1x1 ...

∫
dks
2π

e−iksxs ×

× − k0

(
s∑
i=1

kiψs(k1, ..., ki + k0, ..., ks)

)
(A.8)

Letting ki → ki + k0 yields

Ω0;s(z;x1, ..., xs) =
s∑
i=1

∂

∂z

∂

∂xi

∫
dk0

2π
e−ik0(z−xi)ψs(x1, ..., xs)

=
s∑
i=1

∂

∂z

∂

∂xi
(δ(z − xi)ψs(x1, ..., xi, ..., xs)) (A.9)
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Appendix B

Calculation of eigenvalues and

eigenfunctions for many impurities

We derive here the eigenvalues and eigenfunctions for the multi-impurity kernel (equation 6.22)

acting on the functionals given by equation (6.23). The derivation below follows the method

used in [6]. When the kernel acts upon the functionals, the result is

s∑
i=1

∫
dz

φ0(z)
(xi − z)2

(f(x1, ..., xs)− f(x1, .., z, ..., xs)) (B.1)

=
s∑
i=1

[(
− d

dxi

∫
dz
φ0(z)
xi − z

)
f(x1, .., xs) +

d

dxi

∫
dz
φ0(z)f(x1, .., z, ..., xs)

xi − z

]

This is a sum of kernels of the form found by Marchesini and Onofri ([7]). All integrals in this

section should be understood in the principal value prescription.

We will look at the action of the ith term in the sum, then multiply the eigenfunctions that

result to obtain the complete eigenfunction. Looking at the first term, the equation we want to

solve is

−∂xi

∫
dz
φ0(z)
xi − z

f = εif (B.2)

The quadratic potential that we are dealing with obeys the equation found by Brezin, Itzykson,

Parisi and Zuber [25], ∫
dz
φ0(z)
xi − z

= wx . (B.3)

This can be seen by applying the identity in equation (5.17) to the background Hamiltonian
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(5.24), so that the potential is

N2

2

∫
dxφ0(x)

[(∫
dy
φ0(y)
x− y

)2

− w2x2

2

]

and (B.3) results from minimisation with respect to φ0. The solution of (B.2) is then trivial:

−w = εi. (B.4)

Turning to the second term in (B.1), the equation we want to solve is

∂xi

∫
dz
φ0(z)f(x1, ..., z, ..., xs)

xi − z
= εif(x1, ..., xi) (B.5)

In what follows, we will move to the “time of flight” coordinates introduced in section 5.4, so

that
dx

dq
= πφ0 , x(q) = −

√
2
w

cos(wq) and πφ0 =
√

2w sin(wq) .

Consider now the following integral for n > 0:

∫ π/w

−π/w

dq

π
πφ0(q)

einiwq

x(q0)− x(q)
= 2

∫ π

−π

dq

π
sin(q)

einiq

cos(q)− cos(q0)
, (B.6)

where ni is a positive (non-zero) integer. This integral can be performed via complex analysis.

We take the contour integral along the path shown in figure B.1. The function is periodic, with

a period of 2π, so the vertical paths will cancel. Poles will occur at q = ±q0 +2kπ where k is an

integer. Only two of these poles will occur in any period of 2π. We choose the “time of flight”

variables such that the poles occur at q = ±q0. These poles lie along the path of integration,

so we will take the principal value prescription, picking up half the value of the residue of each

pole.

The residues can easily be found by noting that (B.6) is equal to

2
∫ π

−π

dq

π
sin(q)

einiq

−2 sin
( q+q0

2

)
sin
( q−q0

2

) .
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x
Re[q]

Im[q]

π−π

−q q00

Figure B.1: The contour followed to solve equation B.6. The principal value prescription is taken at the
poles, −q0 and q0.

The residues are thus

res(q0) = −1
2

sin(q0)
einiq0

sin(q0)
= −e

iniq0

π
,

res(−q0) = −e
−iniq0

π
.

The solution to the integral is therefore

πi [res(q0) + res(−q0)] = −2i cos(niq0) (B.7)

Returning to (B.6), note that if one expands exp[iniq] = cos(niq) + i sin(niq), the cos term

is antisymmetric and falls away, leaving

∫ π/w

0

dq

π
πφ0(q)

sin(niwq)
x(q0)− x(q)

= − cos(niq0)

We now move to x space, taking x(q0) → z and x(q) → xi.

∫ −
√

2/w

−
√

2/w
dz

sin(niq(z))
xi − z

= − cos(niq(xi)) (B.8)
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Taking a derivative with respect to xi puts this into the same form as (B.5).

∂xi

∫ −
√

2/w

−
√

2/w
dz

sin(niq(z))
xi − z

= ni sin(niq(xi))∂xiq(xi)

∂xi

∫ −
√

2/w

−
√

2/w
dz
πφ0

sin(niq(z))
πφ0

xi − z
= ni

sin(niq(xi))
πφ0

(B.9)

We thus identify a family of suitable eigenfunctions f , for each value of ni

fni({xi}) ≡ sin(niq(xi))
πφ0

=
sin(niq(xi))√
2 sin(q(xi))

(B.10)

The eigenvalues are

εi = ni

Multiplying together all the eigenvalues from both the first and second term in equation (B.1)

gives

ε{ni} = w

(
s∑
i=1

ni − s

)
(B.11)

The complete eigenfunctions are products of the eigenfunctions we have just found:

s∏
i=1

sin(niwq(xi))√
2w sin(wq(xi))

(B.12)

These are the eigenvalues and eigenfunctions that appear in equation (6.24) in the main text.
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Appendix C

Equivalence of two operators for two

impurities

This appendix contains the proof of the equivalence of two operators (when applied to the

2-impurity states that we are dealing with) that is used in section 8.4 (equation (8.23)). To

simplify notation, we will denote the n times nested commutator of an operator by (n) after the

commutator, for example

[M, [M, . . . [M,C†] . . .︸ ︷︷ ︸]] [M, [M, . . . [M,C] . . .︸ ︷︷ ︸]] ≡ [M,C†](n) [M,C](n)

n times nested commutators

The statement of the proof is then that

Tr
(
[M,C†](n)[M,C](n)

)
Tr(C†MujC

†Muk) = 2
(

1
2
Tr[M,C†][M,C]

)n
Tr(C†MujC

†Muk)

(C.1)

for n ≥ 1. In a coherent state basis, C† → C, C → ∂/∂C,

Tr
(
[M,C](n)[M,∂/∂C](n)

)︸ ︷︷ ︸Tr(CMujCMuk) = 2

(
1
2
Tr[M,C][M,∂/∂C]︸ ︷︷ ︸

)n
Tr(CMujCMuk)

Ôn Ĥ1

ÔnTr(CMujCMuk) = 2Ĥ1
n
Tr(CMujCMuk) (C.2)
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C.1 Action of Ôn

First note that

Tr[M,x][M,y] = −Tr
([
M, [M,x]

]
y
)

This can be applied repeatedly to show that

Tr[M,C](n)

[
M,

∂

∂C

]
(n)

= −Tr[M,C](n+1)[M,∂/∂C](n−1)

= (−1)nTr
(

[M,C](2n)
∂

∂C

)
(C.3)

Secondly, it can be shown inductively that

[M,C](k) =
k∑
i=0

(−1)i
(
k

i

)
Mk−iCM i (C.4)

This clearly holds for k = 1,

[M,C](1) = MC − CM

If one assumes that it holds for k, then

[M,C](k+1) =

[
M,

k∑
i=0

(−1)i
(
k

i

)
Mk−iCM i(−1)i

]

=
k∑
i=0

(−1)i
(
k

i

)(
Mk−i+1CM i −Mk−iCM i+1

)
=

k+1∑
i=0

(−1)iMk+1−iCM i

[(
k

i

)
+
(

k

i− 1

)]
(where

(
a

b

)
is understood as 0 for b < 0 or b > a)

=
k+1∑
i=0

(−1)iMk+1−iCM i

(
k + 1
i

)

Using (C.3) and (C.4), we see that

Tr
(
[M,C](n)[M,∂/∂C](n)

)
= (−1)n

2n∑
i=0

(−1)i
(

2n
i

)
Tr(M2n−iCM i∂/∂C) (C.5)
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The above operator is then applied to a state Tr(CujCuk), using (8.5), to yield

Tr
(
[M,C](n)[M,∂/∂C](n)

)
Tr(CMujCMuk)

= (−1)n
2n∑
i=0

(−1)i
(

2n
i

)
(M2n−iCM i)ab(ujCuk + ukCuj)ba

= 2(−1)n
2n∑
i=0

(−1)i
(

2n
i

)
Tr(CM iujCM

2n−iuk)

(C.6)

C.2 Action of Ĥ1
n

We prove inductively that

(Tr([M,C][M,∂/∂C]))k Tr(CMujCMuk) = (−1)k2k
2k∑
i=0

(−1)i
(

2k
i

)
Tr(CM iujCM

2k−iuk)

(C.7)

For k = 1, equation (8.6) shows that

Tr([M,C][M,∂/∂C])Tr(CMujCMuk) = −2Tr
(
CujCM

2uk − 2CMujCMuk + CM2ujCuk
)
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To show that it holds for k + 1:

Tr[M,C][M,∂/∂C](−1)k2k
2k∑
i=0

(−1)i
(

2k
i

)
Tr(CM iujCM

2k−iuk)

= (−1)k2k
2k∑
i=0

(−1)iTr
(

(2MCM −MMC − CMM)
∂

∂C

)
Tr(CM iujCM

2k−iuk)

= (−1)k2k
2k∑
i=0

(−1)i(2MCM −MMC − CMM)ab ×

×
(
(M iujCM

2k−iuk)ba + (M2k−iuk)bq(CM iuj)qa
)

= 2(−1)k2k
2k∑
i=0

(−1)iTr(−CM i+2ujCM
2k−i + 2CM i+1ujCM

2k−i+1 − CM iujCM
2k−i+2)

= (−1)k2k+1Tr

{[
−
(

2k
0

)]
CM0ujCM

2k+2uk + (−1)
[
−2
(

2k
0

)
−
(

2k
1

)]
CM1ujCM

2k+1uk

+ (−1)2
[
−
(

2k
0

)
− 2
(

2k
1

)
−
(

2k
2

)]
CM2ujCM

2kuk + . . .

}

= (−1)k2k+1
2k+2∑
i=0

(−1)i
[
−
(

2k
i− 2

)
− 2
(

2k
i− 1

)
−
(

2k
i

)]
Tr(CM iujCM

2k+2−iuk)

(where
(
a

b

)
is understood as 0 for b < 0 or b > a)

= (−1)k+12k+1
2k+2∑
i=0

(−1)i
(

2k + 2
i

)
Tr(CM iujCM

2k+2−iuk) (C.8)

which proves (C.7).

We then see that

(
1
2
Tr([M,C][M,∂/∂C])

)n
Tr(CMujCMuk) = (−1)n

2n∑
i=0

(−1)i
(

2n
i

)
Tr(CM iujCM

2n−iuk)

which is half of (C.6). Thus result (C.2) is proved.

C.3 More than two impurities

The equality fails for more than two impurities. For three impurities, the results are different for

n ≥ 3. For four or more impurities, they are different for n ≥ 2. This is shown in table C.3. The

notation used is the same as that in section 8.2, where the numbers correspond to how many

Ms appear after each C in the state Tr(CMauj1CM
buj2 . . .). For n = 1, the two operators are

trivially the same for any number of impurities.
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(a) Three impurities, with n = 3

Term 2Ĥ1
3

Ô3

(0, 0, 6) −2 −2
(0, 1, 5) 6 6
(0, 2, 4) −12 −15
(0, 3, 3) 14 20
(0, 4, 2) −12 −15
(0, 5, 1) 6 6
(0, 6, 0) −2 −2
(1, 0, 5) 6 6
(1, 1, 4) −6 0
(1, 2, 3) 6 0
(1, 3, 2) 6 0
(1, 4, 1) −6 0
(1, 5, 0) 6 6
(2, 0, 4) −12 −15
(2, 1, 3) 6 0
(2, 2, 2) −18 0
(2, 3, 1) 6 0
(2, 4, 0) −12 −15
(3, 0, 3) 14 20
(3, 1, 2) 6 0
(3, 2, 1) 6 0
(3, 3, 0) 14 20
(4, 0, 2) −12 −15
(4, 1, 1) −6 0
(4, 2, 0) −12 −15
(5, 0, 1) 6 6
(5, 1, 0) 6 6
(6, 0, 0) −2 −2

(b) Four impurities with n = 2

Term 2Ĥ1
2

Ô2

(0, 0, 2, 2) 6 6
(0, 0, 3, 1) −4 −4
(0, 0, 1, 3) −4 −4
(0, 0, 4, 0) 2 2
(0, 0, 0, 4) 2 2
(0, 1, 2, 1) 4 0
(0, 1, 3, 0) −4 −4
(0, 1, 1, 2) −4 0
(0, 2, 1, 1) −4 0
(0, 2, 2, 0) 6 6
(0, 2, 0, 2) 4 0
(0, 3, 1, 0) −4 −4
(0, 4, 0, 0) 2 2
(1, 0, 1, 2) 4 0
(1, 0, 2, 1) −4 0
(1, 0, 0, 3) −4 −4
(1, 1, 1, 1) 8 0
(1, 1, 2, 0) −4 0
(1, 1, 0, 2) −4 0
(1, 2, 1, 0) 4 0
(1, 2, 0, 1) −4 0
(1, 3, 0, 0) −4 −4
(2, 0, 1, 1) −4 0
(2, 0, 2, 0) 4 0
(2, 0, 0, 2) 6 6
(2, 1, 1, 0) −4 0
(2, 1, 0, 1) 4 0
(2, 2, 0, 0) 6 6
(3, 0, 0, 1) −4 −4
(3, 1, 0, 0) −4 −4
(4, 0, 0, 0) 2 2

Table C.1: 2Ĥ1
n

and Ôn applied to states with three or four impurities, showing that the
operators are not equal.

85



References

[1] G. ’t Hooft, “A Planar Diagram Theory For Strong Interactions,” Nucl. Phys. B 72, 461

(1974).

[2] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,”

Adv. Theor. Math. Phys. 2, 231 (1998) [arXiv:hep-th/9711200].

[3] S. Corley, A. Jevicki and S. Ramgoolam, “Exact correlators of giant gravitons from dual

N=4 SYM theory,” Adv. Theor. Math. Phys. 5, 809 (2002) [arXiv:hep-th/0111222].

[4] D. Berenstein, “A toy model for the AdS/CFT correspondence,” JHEP 0407, 018 (2004)

[arXiv:hep-th/0403110].

[5] H. Lin, O. Lunin and J. Maldacena, “Bubbling AdS space and 1/2 BPS geometries,” JHEP

0410, 025 (2004) [arXiv:hep-th/0409174].

[6] A. Donos, A. Jevicki and J. P. Rodrigues, “Matrix model maps in AdS/CFT,” Phys. Rev.

D 72, 125009 (2005) [arXiv:hep-th/0507124].

[7] G. Marchesini and E. Onofri, “Planar Limit For SU(N) Symmetric Quantum Dynamical

Systems,” J. Math. Phys. 21, 1103 (1980).

[8] J. P. Rodrigues, “Large N spectrum of two matrices in a harmonic potential and BMN

energies,” JHEP 0512, 043 (2005) [arXiv:hep-th/0510244].

[9] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field theories,

string theory and gravity,” Phys. Rept. 323, 183 (2000) [arXiv:hep-th/9905111].

[10] J. M. Maldacena, “TASI 2003 lectures on AdS/CFT,” arXiv:hep-th/9711200.

[11] E. Witten, “Anti-de Sitter Space and Holography,” Adv. Theor. Math. Phys. 2 253 (1998)

[hep-th/9802150].

86



[12] E. D’Hoker and D. H. Phong, “Lectures on supersymmetric Yang-Mills theory and inte-

grable systems,” arXiv:hep-th/9912271.

[13] E. D’Hoker and D. Z. Freedman, “Supersymmetric gauge theories and the AdS/CFT cor-

respondence,” arXiv:hep-th/0201253.

[14] J. Polchinski, “Lectures on D-branes,” arXiv:hep-th/9611050.

[15] M. Blau, J. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, “A new maximally super-

symmetric background of IIB superstring theory,” JHEP 0201 (2002) 047 [arXiv:hep-

th/0110242].

[16] M. Blau, J. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, “Penrose limits and maximal

supersymmetry,” Class. Quant. Grav. 19 (2002) L87 [arXiv:hep-th/0201081].

[17] D. Berenstein, J. M. Maldacena and H. Nastase, “Strings in flat space and pp waves from

N = 4 super Yang Mills,” JHEP 0204, 013 (2002) [arXiv:hep-th/0202021].

[18] M. Spradlin and A. Volovich, “Light-cone string field theory in a plane wave,” arXiv:hep-

th/0310033.

[19] R. R. Metsaev, “Type IIB Green-Schwarz superstring in plane wave Ramond-Ramond back-

ground,” Nucl. Phys. B 625, 70 (2002) [arXiv:hep-th/0112044].

[20] J. A. Minahan and K. Zarembo, “The Bethe-ansatz for N = 4 super Yang-Mills,” JHEP

0303, 013 (2003) [arXiv:hep-th/0212208].

[21] M. Staudacher, “The factorized S-matrix of CFT/AdS,” JHEP 0505, 054 (2005)

[arXiv:hep-th/0412188].

[22] H. Bethe, “Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der Linearen Atom-

kette,” Z. Physik 71 (1931), 205.

[23] M. Karbach and G. Mller, “Introduction to the Bethe ansatz I,” Computers in Physics 11

(1997), 36-43. [arXiv:cond-mat/9809162].

[24] A. Jevicki and B. Sakita, “The Quantum Collective Field Method And Its Application To

The Planar Limit,” Nucl. Phys. B 165, 511 (1980).

87



[25] E. Brezin, C. Itzykson, G. Parisi and J. B. Zuber, “Planar Diagrams,” Commun. Math.

Phys. 59, 35 (1978).

[26] S. R. Das and A. Jevicki, “String Field Theory And Physical Interpretation Of D = 1

Strings,” Mod. Phys. Lett. A 5, 1639 (1990).

[27] K. Demeterfi, A. Jevicki and J. P. Rodrigues, “Perturbative results of collective string field

theory,” Mod. Phys. Lett. A 6, 3199 (1991).

[28] A. Hashimoto, S. Hirano and N. Itzhaki, “Large branes in AdS and their field theory dual,”

JHEP 0008, 051 (2000) [arXiv:hep-th/0008016].

[29] R. de Mello Koch, A. Jevicki and J. P. Rodrigues, “Collective string field theory of matrix

models in the BMN limit,” Int. J. Mod. Phys. A 19, 1747 (2004) [arXiv:hep-th/0209155].

[30] J. McGreevy, L. Susskind and N. Toumbas, “Invasion of the giant gravitons from anti-de

Sitter space,” JHEP 0006, 008 (2000) [arXiv:hep-th/0003075].

[31] J. P. Rodrigues, “’Non-renormalization’ without supersymmetry,” arXiv:hep-th/0611037.

[32] R. de Mello Koch, A. Donos, A. Jevicki and J. P. Rodrigues, “Derivation of string field the-

ory from the large N BMN limit,” Phys. Rev. D 68, 065012 (2003) [arXiv:hep-th/0305042].

[33] M. Cook and J. P. Rodrigues, “Strong coupling, large N spectrum of two matrices coupled

via a Yang-Mills interaction,” in preparation.

[34] D. M. Hofman and J. M. Maldacena, “Giant magnons,” J. Phys. A 39, 13095 (2006)

[arXiv:hep-th/0604135].

88


