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Abstract

We examine the entropy of black holes in de Sitter space and black holes surrounded by quintessence. 
These black holes have multiple horizons, including at least the black hole event horizon and a horizon 
outside it (cosmological horizon for de Sitter black holes and “quintessence horizon” for the black holes 
surrounded by quintessence). Based on the consideration that the two horizons are not independent each 
other, we conjecture that the total entropy of these black holes should not be simply the sum of entropies 
of the two horizons, but should have an extra term coming from the correlations between the two horizons. 
Different from our previous works, in this paper we consider the cosmological constant as the variable and 
employ an effective method to derive the explicit form of the entropy. We also try to discuss the thermody-
namic stabilities of these black holes according to the entropy and the effective temperature.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Accelerating expansion of the universe can be accounted by a positive cosmological constant 
or other exotic matter fields such as quintessence, phantom, etc. When black holes exist in these 
backgrounds, they may have multiple horizons. When Schwarzschild black hole or Reissner–
Nordström black hole is embedded into de Sitter space, one has the Schwarzschild–de Sitter 
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(SdS) or Reissner–Nordström–de Sitter (RNdS) black holes. The dynamical and thermodynamic 
properties of these black holes have been studied extensively [1–13]. In addition, if quintessences 
exist, black holes surrounded by them may also be modified. Since Kiselev first studied black 
holes surrounded by quintessence (BHQ) [14], quasinormal modes [15,16], thermodynamic 
properties [17–20] and P − V criticality [21,22] of BHQ were extensively studied.

Taking RNdS black hole as an example, the temperatures at the black hole horizon and cosmo-
logical horizon are not equal in general. Thus, the whole RNdS system cannot be in equilibrium 
thermodynamically. To overcome this problem, one way is to analyze the two horizons separately 
and independently. For instance, one can analyze one horizon and take another one as the bound-
ary or separate the two horizons by a thermally opaque membrane or wall [8,23–25]. Besides, 
one can also take a global view to construct the globally effective temperature and other effective 
thermodynamic quantities by analogy with the first law of thermodynamics [26–29]. However, 
there are two special cases for RNdS black hole, in which the temperatures at the both horizons 
are the same. One case is the so-called Nariai black hole, the other is the lukewarm black hole 
[30–33].

In this paper we are concerned with the entropy of these black holes with multi-horizons. As 
is well known, separately, Schwarzschild black hole and de Sitter space both have the entropy 
proportional to the horizon area, exactly Sb = Ab/4 and Sc = Ac/4 with Ab the black hole event 
horizon, Ac the cosmological horizon. What is the entropy of the whole SdS black hole? As far 
as we know, in [23,32–34] the authors used several different methods to verify the area law of 
the total entropy for de Sitter black holes. Namely, they think that the total entropy of SdS black 
hole is S = Sb + Sc = Ab/4 + Ac/4. However, we have different opinion. We believe that the 
entropy of the whole de Sitter black hole may be not simply the sum of entropy of the black 
hole horizon and that of the cosmological horizon due to two reasons. Firstly, as mentioned 
above, black holes with multiple horizons are in fact in non-equilibrium thermodynamic states. 
Thus the equilibrium thermodynamics may not apply. There may be an extra entropy developed 
internally in the system as a result of being out of equilibrium [35]. Secondly, entropy is usually 
related to the numbers of microscopic states. Although the microscopic origin of black hole 
entropy is still unclear, it should exist. For black holes with multiple horizons, such as SdS black 
hole, the black hole horizon and the cosmological horizon are in fact not independent. There 
may exist some correlations between them. The size of black hole horizon is closely related 
to the size of the cosmological horizon, and the evolution of black hole horizon will lead to 
the evolution of the cosmological horizon. Taking the correlations between the horizons into 
account, the total numbers of microscopic states are not simply the product of those of the two 
horizons (it will be, if the two horizons are isolated). Therefore, the total entropy is no longer 
the sum of the entropies of the two horizons, but should include an extra term coming from the 
contribution of the correlations of the two horizons. Until now, we still do not understand either 
non-equilibrium thermodynamics or microscopic origin of black hole entropy completely. We 
cannot quantitatively derive the explicit form of the corrected term in the total entropy from the 
first principle. Below we will take an effective method to derive an result.

The paper is arranged as follows. In Section 2, we study the entropy of de Sitter black 
holes including RNdS black hole and SdS black hole. And we analyze their thermodynamic 
stability based on the entropy. In Section 3 we will analyze the entropy of black holes sur-
rounded by quintessence. We make some concluding remarks in Section 4. We take the units 
G = h̄ = kB = 1.
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2. Entropy of de Sitter black holes

2.1. RNdS black hole

The line element of the RNdS black hole is given by

ds2 = −h(r)dt2 + h(r)−1dr2 + r2d�2, (1)

where

h(r) = 1 − 2M

r
+ Q2

r2 − �

3
r2. (2)

There are three positive real roots for h(r) = 0. The smallest one r− is the inner/Cauchy horizon, 
the intermediate one r+ is the event horizon of black hole and the largest one is the cosmological 
horizon. Here � = 3/l2 with l the de Sitter radius.

The cosmological constant � can be viewed as a thermodynamic variable in de Sitter black 
holes [36–42]. Thus, the first law of thermodynamics can be established respectively for the black 
hole horizon and the cosmological horizon [43],

dM = T+dS+ + �+dQ + V+d�, dM = −TcdSc + �cdQ + Vcd�. (3)

The minus sign before Tc is due to the negative surface gravity of the cosmological horizon.
As we mentioned above, the two horizons are not independent. The evolution of each horizon 

will lead to the evolution of the other. Especially, the three quantities M, Q, � are common to 
the two horizons. This means that thermodynamic quantities on the both horizons depend on the 
same variables M, Q, �. This further indicates the relations between the two horizons.

Considering the connection between the black hole horizon and the cosmological horizon, we 
write the total entropy of RNdS black hole in the form

S = S+ + Sc + Sex = πr2
c

[
1 + x2 + f (x)

]
, (4)

where x = r+/rc ≤ 1 and f (x) represents the extra entropy coming from the correlation between 
the two horizons. When x = 0, the black hole event horizon vanishes, so in this case f (x) = 0. 
It should be noted that RNdS black hole will not return to the SdS black hole or dS space in the 
x → 0 limit due to the existence of the charge Q.

Employing Eq. (4) and combining the two equations in Eq. (3), we can derive the effective 
first law of black hole thermodynamics:

dM = Teff dS + φeff dQ + Veff d�, (5)

where Teff , �eff , Veff are the corresponding effective thermodynamic quantities.
All thermodynamic quantities can be expressed according to r+, rc, Q. The mass M and the 

cosmological constant � can be written into

M = (x + 1)
(
x2r2

c + Q2x2 + Q2
)

2x
(
x2 + x + 1

)
rc

, � = 3
(
xr2

c − Q2
)

x
(
x2 + x + 1

)
r4
c

(6)

The effective temperature can be derived from Eqs. (4)–(6),
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Teff = ∂M

∂S

∣∣∣∣
Q,�

= ∂(M,�)

∂(S,�)

∣∣∣∣
Q

= ∂(M,�)

∂(x, rc)

∣∣∣∣
Q

/
∂(S,�)

∂(x, rc)

∣∣∣∣
Q

= (x − 1)
[
Q2

(
x2 + 2x + 3

) − x(x + 2)r2
c

] [
x2(2x + 1)r2

c − Q2
(
3x2 + 2x + 1

)]
A(x)

,

(7)

where

A(x) = 4πx
(
x2 + x + 1

)
r3
c

[
x2

(
x2 + x + 1

)
r2
c − 2Q2x

(
x2 + x + 1

)]
f ′(x)

+ 4πx
(
x2 + x + 1

)
r3
c

[
Q2

(
3x2 + 2x + 1

)
− x2(2x + 1)r2

c

]
f (x)

+ 4πx
(
x2 + x + 1

)
r3
c

[
x4r2

c − x2r2
c − Q2(x − 1)(x + 1)3

]
. (8)

Now it is time to determine the function f (x). For RNdS black holes, the temperature on 
the black hole horizon and that on the cosmological horizon are not the same in general, thus 
the globally effective temperature Teff cannot be compared with them. However, in the case of 
lukewarm black hole, the two horizons have the same temperature. We conjecture that in this 
special case the effective temperature should also take the same value. In this way, we can obtain 
the information on the f (x).

In the lukewarm case, for the RNdS black hole there are [31,33,44]

M2 = Q2 = x2r2
c

(x + 1)2 . (9)

Pluging the Q into Eq. (7), we can obtain

Teff = (1 − x)x

π(x + 1)2rc
[(

x2 + 1
)
f ′(x) − 2xf (x)

] . (10)

We also know that for the lukewarm RNdS black hole, the temperature is

T+ = Tc = 1 − x

2π (x + 1)2 rc
. (11)

Equating the two temperatures in Eq. (10) and Eq. (11), we can obtain

f ′(x) − 2x

1 + x2 f (x) = 4x

x3 + x2 + x + 1
. (12)

This differential equation has an exact solution:

f (x) = −
(
x2 + 1

)
ln(x + 1) + 1

2

(
x2 + 1

)
ln

(
x2 + 1

)
+ x(x + 1), (13)

where we have taken the boundary condition f (0) = 0. Therefore the entropy of RNdS black 
hole should be

S = πr2
c

[
2x2 + x + 1 −

(
x2 + 1

)
ln(x + 1) + 1

2

(
x2 + 1

)
ln

(
x2 + 1

)]
. (14)

As is depicted in Fig. 1, f (x) is always positive and increases monotonically. This is ex-
pectable. Because the correlations between the black hole horizon and the cosmological horizon 
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Fig. 1. The left panel: f (x) as the function of x for RNdS black hole. The right panel: plots of entropy as functions of x
for RNdS black hole. The dashed (black) line represents the sum of the two horizon entropy and the solid (blue) curve 
depicts the result in Eq. (14). We have set rc = 1. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

make the total microscopic states greater than isolated black hole horizon and cosmological hori-
zon. Moreover, one can imagine that as the two horizons approach, the correlations between them 
should be more stronger.

We can also derive the effective temperature by substituting f (x) into Eq. (7). Its complete 
expression is lengthy and it is unnecessary to show its exact form here. We find that the effective 
temperature Teff always diverges at x = 0 and tends to zero at x = 1. In the range 0 < x < 1, 
Teff can have three different behaviors for different values of Q. As is shown in Fig. 2(a), Teff

is finite when Q takes values in the region 0.092 < Q < 0.707. Teff has one divergent point 
when Q > 0.707 and has two divergent points when Q < 0.092. In either case, the Teff cannot 
be always positive. In Figs. 2(b)–2(d), we plot the Teff − x curves with different charge Q, 
respectively.

We will mainly focus on the finite temperature, namely the case with Q = 0.5 shown in 
Fig. 2(d). Teff has a minimum (A) and a maximum (C) in the range 0 < x < 1. On the left hand 
side of the minimum point and the right hand side of the maximum point, Teff decreases with the 
increasing of x. While, in the range between the two extrema Teff increases with increasing x. 
Generally, heat capacity can be defined as C = ∂M

∂T
= T ∂S

∂T
. If we also require only positive Teff

is meaningful, we find that only in the section (BC) the heat capacity can be positive. This is an 
unexpected result. This means that when the black hole horizon and the cosmological horizon 
are too far away (small x) or too close (large x), RNdS black hole cannot be thermodynamically 
stable. While RNdS black hole with an intermediate separation between the two horizons may 
be thermodynamically preferred. For the other two cases (Q = 0.05 and Q = 0.75), the RNdS 
black hole is also thermodynamically stable only in a small portion of x.

We can further analyze the globally thermodynamic stability of the RNdS black hole accord-
ing to the Gibbs free energy G = M − Teff S. We also take the Q = 0.5 case as an example. The 
section (BC) in Fig. 3 corresponds to that in Fig. 2(d). Thus, in the section (BC) the higher Teff

state of the RNdS black hole is more stable. As is shown in the G − T plot, on the surface, for 
lower effective temperature there are three different states at a temperature and when the effec-
tive temperature is high, there is only one state at a temperature. Because the heat capacity is 
positive only in the red-curve part, globally speaking, the RNdS black hole will evolve along the 
red curve from the state (B) to the state (C).
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Fig. 2. The panel (a): for 0 < x < 1 Teff is finite only when Q takes values in the shadow region 0.092 < Q < 0.707. 
Other subfigures exhibit the Teff − x curves for RNdS black hole with different Q are also shown. Here we set rc = 1.

Fig. 3. The Gibbs free energy as function of x and Teff for rc = 1, Q = 0.5, respectively. In the right panel, the red/blue 
curve corresponds to the positive/negative heat capacity.

2.2. SdS black hole

When Q = 0, RNdS black hole turns into SdS black hole. For SdS black hole, no lukewarm 
case exists. Thus, we cannot derive the corrected entropy directly in the similar way to that of 
RNdS black hole. However, considering that SdS black hole is just a special case of RNdS black 
hole and the f (x) derived for RNdS black hole is only implicitly dependent on the charge Q, we 
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Fig. 4. The effective temperature Teff as function of x for SdS black hole. We have set rc = 1.

conjecture that the function f (x) should has the same form for SdS black hole. Thus, the entropy 
of SdS black hole also has the form shown in Eq. (14).

The effective temperature Teff for SdS black hole can be derived from two ways. One can start 
from the metric of SdS black hole and express the quantities M, � as functions of r+, rc . Then, 
through the effective first law, one can obtain Teff = ∂M

∂S

∣∣
�

. The other way is more straightfor-
ward. One can set Q = 0 in Eq. (7) to obtain the effective temperature of SdS black hole. One 
can verify that the two ways give the same result. Anyway, we can obtain

Teff = (2x + 1)(2 + x)(1 − x)

4π
(
x2 + x + 1

)
rc

[(
x2 + x + 1

)
f ′(x) − (2x + 1)f (x) + x2 − 1

] . (15)

Substituting f (x) into the above equation, we can then depict the effective temperature of SdS 
black hole.

In Fig. 4, it can be seen that the effective temperature diverges at a point. On the left side of 
the divergent point, Teff is negative. On the right hand side of the divergent point, Teff decrease 
with the increasing of x. This means that SdS black hole is always thermodynamically unstable, 
either with negative temperature or with negative heat capacity.

At last, we discuss the Nariai limit, namely x → 1. In this case, the black hole horizon and 
the cosmological horizon apparently coincide, but the volume between them is not zero. The 
nonzero volume indicates that in this limit the region between the two horizons does not shrink 
into zero. The two horizons are not really coincident, despite r+ = rc = r0 = √

1/� in this case 
[1]. There are two kinds of temperatures for de Sitter black holes based on standard normalization 
and Bousso–Hawking normalization [45]. The standard normalization provide the conventional 
Hawking temperature, which gives T+ = Tc = 0 in the Nariai limit. Bousso–Hawking normal-
ization indicates that the normalization constant γt of timelike Killing vector field K = γt

∂
∂t

cannot set to be γt = 1 as usual, but should be taken as γt = 1√
h(rg)

with rg a reference point. 

In this way, the Bousso–Hawking temperature can be calculated along with the new normaliza-

tion as T BH+ = h′(r+)

4π
√

h(rg)
and T BH

c = h′(rc)
4π

√
h(rg)

. One can easily find that the Bousso–Hawking 

temperature is not zero in the Nariai limit, but T BH+ = T BH
c =

√
�

2π
.

In either case, the temperatures on the both horizons are the same. In our opinion, in this time 
the effective temperature Teff should also take the same value. In Fig. 2 and Fig. 4, it is shown 
that Teff always tends to zero when x → 1. It seems that our effective temperature favors the 
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standard normalization and does not favor the Bousso–Hawking normalization. This conclusion 
is similar to that in [7].

3. Entropy of black holes with quintessence

For static spherically symmetric charged black hole surrounded by quintessence (BHQ), the 
metric function h(r) in Eq. (1) takes the form [14]

h(r) = 1 − 2M

r
+ Q2

r2 − α

r3ωq+1 , (16)

and M is the mass parameter, Q is the electric charge, α is a normalization factor and ωq is the 
state parameter of quintessence which is confined in the range −1 < ωq < −1/3. Besides, the 

parameter α is related to the energy density, ρq = −α
2

3ωq

r3(1+ωq ) . Because ρq is positive, α must 
take positive values.

In the following, we will choose ωq = −2/3 for simplicity. In this case, Eq. (16) becomes

h(r) = 1 − 2M

r
+ Q2

r2 − αr. (17)

It is found that there are three positive real roots for h(r) = 0 only if 6αM < 1 [46]. Among the 
three roots, the smallest one, r−, corresponds to the black hole Cauchy/inner horizon, the inter-
mediate one, r+, corresponds to the black hole event horizon, and the largest one, rq , corresponds 
to the “quintessence horizon”.

Although this metric is different from the RNdS metric in the last term, one can treat the 
parameter α in the similar way to the cosmological constant �. When the black hole horizon 
and the quintessence horizon are viewed as independent each other, there are also respective first 
laws of thermodynamics:

dM = T+dS+ + �+dQ + �+dα, dM = −TqdSq + �qdQ + �qdα, (18)

where �+ and �q are electric potentials corresponding to the two horizons. �+ and �q are the 
conjugate quantities of α on the two horizons.

Similarly, one can derive the effective first law for the charged black hole surrounded by 
quintessence:

dM = Teff dS + �eff dQ + �eff dα. (19)

According to r+, rq and Q, we can express M and α as

M = x2r2
q + Q2x2 + Q2x + Q2

2x(x + 1)rq
, α = xr2

q − Q2

x(x + 1)r3
q

. (20)

The entropy can also be taken as the form in Eq. (4). Thus, the effective temperature can be 
derived

Teff = ∂M

∂S

∣∣∣∣
Q,α

= ∂(M,α)

∂(S,α)

∣∣∣∣
Q

=
(x − 1)

[
Q2(x + 2) − xr2

q

][
x2r2

q − Q2(2x + 1)
]
, (21)
B(x)
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Fig. 5. The solid (blue) curve corresponds to the entropy in Eq. (27) and the dashed (black) curve corresponds to the sum 
of the two horizon entropy. We have set rq = 1.

where

B(x) = 2πx(x + 1)r3
q

[
x2(x + 1)r2

q − 3Q2x(x + 1)
]
f ′(x)

+ 4πx(x + 1)r3
q

[
Q2(2x + 1) − x2r2

q

]
f (x)

+ 2πx(x + 1)r3
q

[
2(x − 1)x2r2

q − 2Q2
(
x3 + 2x2 − 2x − 1

)]
. (22)

In the lukewarm case, M and Q should satisfy [46,47]

M = xr2
q

(
xrq + rq

)
x2r2

q + 3xr2
q + r2

q

, Q2 = x2r4
q

x2r2
q + 3xr2

q + r2
q

. (23)

And the temperatures at black hole horizon and the quintessence horizon are

T+ = Tq = 1 − x

4π
(
x2 + 3x + 1

)
rq

. (24)

Substituting Q in Eq. (23) into Eq. (21), we can get

Teff = (1 − x)x

2π
(
x2 + 3x + 1

)
rq

[(
x2 + 1

)
f ′(x) − 2xf (x)

] . (25)

Requiring the temperatures in Eq. (24) and Eq. (25) to be the same, we can obtain

f ′(x) − 2x

x2 + 1
f (x) = 2x

x2 + 1
. (26)

This differential equation has a simple solution: f (x) = x2, if taking the boundary condition 
f (0) = 0. So, the entropy takes the form

S = πr2
c

(
1 + 2x2

)
. (27)

In this case, the entropy has been depicted in Fig. 5.
In Fig. 6, we depict the effective temperature for the uncharged and charged black holes 

surrounded by quintessence. Clearly, although the metrics of de Sitter black holes and the BHQ 
are different, their effective temperatures have the similar behaviors. Thus, the thermodynamic 
stability of BHQ is also similar to that of de Sitter black holes studied in the above section.
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Fig. 6. Teff of BHQ as functions of x in the uncharged case (Q = 0) and the charged case (Q = 0.3). We also set rq = 1.

4. Concluding remarks

In the present paper, we mainly studied the entropy of de Sitter black holes and black holes 
surrounded by quintessence. Incidently, we analyzed the thermodynamic stability of these black 
holes. The principle results are as follows.

Firstly, we simply repeat our ideas to derive the entropy. For these black holes with multi-
horizons, the black hole event horizon and the cosmological or quintessence horizon are not 
independent. Thus, we conjecture that the total entropy should take the form of Eq. (4). To de-
rive the function f (x), we use an effective method to obtain an effective temperature Teff . In 
the lukewarm case, the two horizons have the same temperature. We conjecture that Teff also 
takes that value. In this way, we can obtain an differential equation about f (x). It can be solved 
exactly.

Secondly, it is found that f (x) is always positive and monotonically increases with the in-
creasing of x. This can be understandable because the correlations between the two horizons 
should be more stronger as they get closer and closer. According to the general definition of heat 
capacity, we find that the SdS black hole and uncharged BHQ are always thermodynamically 
unstable due to negative heat capacity. While RNdS black hole and the charged BHQ can be 
thermodynamically stable only in an intermediate region of x with positive heat capacity.

Finally, we considered the temperature of black holes with multiple horizons. Taking the 
SdS black hole as an example, in the Nariai case the black hole horizon and the cosmologi-
cal horizon have the same temperature. According to the standard normalization, it should be 
zero, and nonzero according to Bousso–Hawking normalization. In the Nariai limit (x → 1), 
Teff = 0. Because we require the effective temperature should equal to the temperatures of the 
both horizons in the lukewarm and Nariai cases, the standard normalization for the temperatures 
of multi-horizons black holes is more preferred according to our results.

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China 
(Grant Nos. 11605107, 11475108) and by the Natural Science Foundation of Shanxi (Grant 
No. 201601D021022).

References

[1] P. Ginsparg, M.J. Perry, Nucl. Phys. B 222 (1983) 245–268.

http://refhub.elsevier.com/S0550-3213(18)30089-0/bib47696E73706172672D31393833s1


Y. He et al. / Nuclear Physics B 930 (2018) 513–523 523
[2] R.B. Mann, S.F. Ross, Phys. Rev. D 52 (4) (1995) 2254–2265.
[3] V. Balasubramanian, J. de Boer, D. Minic, Phys. Rev. D 65 (12) (2002) 123508.
[4] A.M. Ghezelbash, R.B. Mann, J. High Energy Phys. 2002 (2002) 005.
[5] S. Shankaranarayanan, Phys. Rev. D 67 (8) (2003) 084026.
[6] T.R. Choudhury, T. Padmanabhan, Gen. Relativ. Gravit. 39 (2007) 1789–1811.
[7] Y.S. Myung, Phys. Rev. D 77 (10) (2008) 104007.
[8] H. Saida, Prog. Theor. Phys. 122 (2009) 1515–1552.
[9] M. Eune, W. Kim, Phys. Lett. B 723 (2013) 177–181.

[10] D. Kubiznak, F. Simovic, Class. Quantum Gravity 33 (2016) 245001.
[11] L.C. Zhang, R. Zhao, M.S. Ma, Phys. Lett. B 761 (2016) 74–76.
[12] H.F. Li, M.S. Ma, L.C. Zhang, R. Zhao, Nucl. Phys. B 920 (2017) 211–220.
[13] P. Kanti, T. Pappas, Phys. Rev. D 96 (2017) 024038, arXiv :1705 .09108.
[14] V.V. Kiselev, Class. Quantum Gravity 20 (2003) 1187.
[15] S.B. Chen, J.L. Jing, Class. Quantum Gravity 22 (2005) 4651.
[16] Y. Zhang, Y. Gui, Class. Quantum Gravity 23 (2006) 6141.
[17] S.B. Chen, B. Wang, R.K. Su, Phys. Rev. D 77 (12) (2008) 124011.
[18] Y.H. Wei, Z.H. Chu, Chin. Phys. Lett. 28 (2011) 100403.
[19] M. Azreg-Aïnou, M.E. Rodrigues, J. High Energy Phys. 2013 (2013), 1–26.
[20] M. Azreg-Aïnou, Phys. Rev. D 91 (6) (2015) 064049.
[21] G.Q. Li, Phys. Lett. B 735 (2014) 256–260.
[22] M. Azreg-Aïnou, Eur. Phys. J. C 75 (2015) 1–13.
[23] B.B. Wang, C.G. Huang, Class. Quantum Gravity 19 (2002) 2491.
[24] A. Gomberoff, C. Teitelboim, Phys. Rev. D 67 (10) (2003) 104024.
[25] Y. Sekiwa, Phys. Rev. D 73 (8) (2006) 084009.
[26] M. Urano, A. Tomimatsu, H. Saida, Class. Quantum Gravity 26 (2009) 105010.
[27] H.H. Zhao, L.C. Zhang, M.S. Ma, R. Zhao, Phys. Rev. D 90 (6) (2014) 064018.
[28] L.C. Zhang, M.S. Ma, H.H. Zhao, R. Zhao, Eur. Phys. J. C 74 (2014) 1–10.
[29] M.S. Ma, H.H. Zhao, L.C. Zhang, R. Zhao, Int. J. Mod. Phys. A 29 (2014) 1450050.
[30] F. Mellor, I. Moss, Class. Quantum Gravity 6 (1989) 1379.
[31] L. Romans, Nucl. Phys. B 383 (1992) 395–415.
[32] D. Kastor, J. Traschen, Phys. Rev. D 47 (12) (1993) 5370–5375.
[33] R.G. Cai, J.Y. Ji, K.S. Soh, Class. Quantum Gravity 15 (1998) 2783.
[34] S. Bhattacharya, Eur. Phys. J. C 76 (2016) 1–12.
[35] C. Eling, R. Guedens, T. Jacobson, Phys. Rev. Lett. 96 (12) (2006) 121301.
[36] C. Teitelboim, Phys. Lett. B 158 (1985) 293–297.
[37] J. Brown, C. Teitelboim, Phys. Lett. B 195 (1987) 177–182.
[38] J. Brown, C. Teitelboim, Nucl. Phys. B 297 (1988) 787–836.
[39] S. Wang, S.Q. Wu, F. Xie, L. Dan, Chin. Phys. Lett. 23 (2006) 1096.
[40] D. Kastor, S. Ray, J. Traschen, Class. Quantum Gravity 26 (2009) 195011.
[41] B.P. Dolan, Class. Quantum Gravity 28 (2011) 235017.
[42] B.P. Dolan, Class. Quantum Gravity 28 (2011) 125020.
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