

Cluster radioactive-decay using the Relativistic mean field theory within the preformed cluster model

BirBikram Singh^{1*}, S. K. Patra^{1**}, M. Bhuyan^{1,2} and Raj K. Gupta³

¹*Institute of Physics, Sachivalaya Marg, Bhubaneswar-751 005, India.*

²*School of Physics, Sambalpur University, Jyotivihar-768 019, India*

³*Department of Physics, Panjab University, Chandigarh-160 014, India*

^{*}*singh@iopb.res.in, ^{**}patra@iopb.res.in*

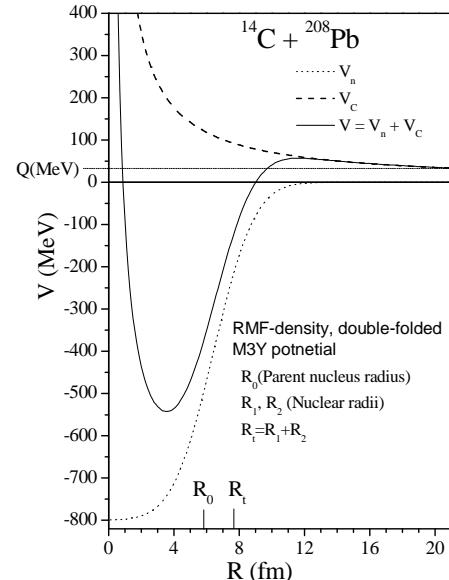
Introduction

Cluster radioactivity is the spontaneous emission of clusters heavier than α -particle. Since its first theoretical prediction [1] in 1980 and experimental confirmation [2] in 1984, this phenomenon is now established for some 26 decays with light to heavy (^{14}C to ^{34}Si) clusters from various actinides (^{221}Fr to ^{242}Cm). Theoretically, two types of models have been advanced, namely i) Unified fission models (UFM), such as the analytic super-asymmetric fission model (ASAFM) [1], and ii) the Preformed cluster models (PCM), like that of Gupta and collaborators based on collective potential energy surfaces [3]. The two models differ from each other for their non-inclusion or inclusion of the pre-formation/ spectroscopic factor(s) of the cluster(s) being born before penetrating the confining interaction barrier. Some effort has also gone in understanding it on the mean-field Hatree-Fock-Bogoliubov theory [4], treating it as an asymmetric fission process.

In this paper, based on PCM, for the first time we use the relativistic mean field (RMF) theory, which is already shown [5] to support the clustering effects in various heavy parents with observed cluster decays. For the present study, we have chosen the parents ^{222}Ra , $^{226,228}\text{Th}$, $^{230,232,234}\text{U}$, $^{236,238}\text{Pu}$, and ^{242}Cm which decay, respectively, in to ^{14}C , $^{18,20}\text{O}$, $^{22,24,26}\text{Ne}$, $^{28,30}\text{Mg}$, and ^{34}Si clusters, having always the doubly magic ^{208}Pb as the daughter nucleus.

Methodology

The decay constant λ (or the decay half-life time $T_{1/2} = \ln 2/\lambda$), in PCM is defined as [3]


$$\lambda_{\text{PCM}} = v_0 P_0 P, \quad (1)$$

which in UFM is simply given by [1]

$$\lambda_{\text{UFM}} = v_0 P, \quad (2)$$

where v_0 is the assault frequency with which the cluster hits the barrier. P_0 is the pre-formation probability of the cluster, and P is the WKB penetrability of preformed cluster in R -motion. An empirical estimate of the pre-formation factor $P_0^{(\text{emp})}$ ($= \lambda_{\text{Expt}} / \lambda_{\text{UFM}}$) can also be obtained [3].

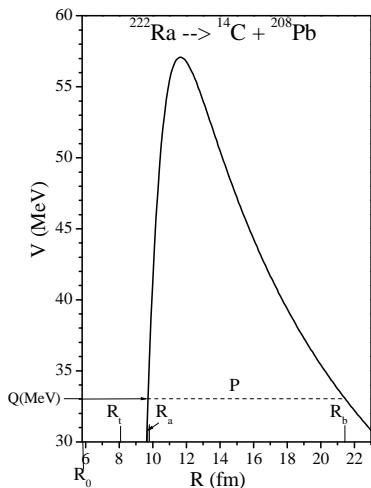

In order to obtain the nuclear interaction potential $V_n(R)$, the double folding procedure [6] is used to fold the density-dependent M3Y interaction potential (DDM3Y) with the RMF calculated nuclear densities of the cluster and daughter nuclei. Then, the total interaction potential $V(R) = V_n(R) + V_C(R)$, where $V_C(R)$ is the Coulomb interaction potential. This allows us to calculate the penetration probability P of the cluster, and hence calculate λ_{UFM} and $P_0^{(\text{emp})}$.

Fig. 1 The RMF densities double folded M3Y potential V_n , Coulomb V_C and total interaction potential V as a function of the radial separation between the cluster and daughter nuclei.

Results and Discussions

In Fig. 1, the total interaction potential $V(R)$ between the preformed cluster ^{14}C and daughter nucleus ^{208}Pb is shown as a solid line. The strong attractive part, the nuclear potential V_n (the dotted line), is the double folded DDM3Y and the repulsive part is the Coulomb potential V_C (the dashed line). The total interaction potential $V(R)$ is used for calculating the penetrability P , in the following.

Fig. 2 Same as Fig. 1 for the total interaction potential $V(R)$, illustrating the penetration process of the cluster with an energy equal to Q -value of the decay.

Fig. 2 illustrates the decay path for WKB penetrability P through the total interaction potential $V(R)$ for ^{14}C cluster decay of ^{222}Ra with an energy Q . For turning points R_a and R_b , $V(R_a) = V(R_b) = Q$ -value. The calculated P and the empirically estimated $P_0^{(\text{emp})}$ are given in Table 1 for the measured cluster decays from different parent nuclei having the daughter ^{208}Pb in each case. The $P_0^{(\text{emp})}(C)$ for clusters is given in terms of the α -particle $P_0^{(\text{emp})}(\alpha)$, i.e., as $P_0^{(\text{emp})}(C)/P_0^{(\text{emp})}(\alpha)$. It is relevant to mention here that for the α -decays of all the parent nuclei mentioned above, we obtain very large $P_0^{(\text{emp})}(\alpha)$ in comparison to the corresponding $P_0^{(\text{emp})}(C)$ values for cluster decays. Note in Table 1 that the $P_0^{(\text{emp})}(C)/P_0^{(\text{emp})}(\alpha)$ decreases as the size of the cluster increases, in the line with previous studies based on PCM [3].

Table 1: The WKB penetrability P and the ratio $P_0^{(\text{emp})}(C)/P_0^{(\text{emp})}(\alpha)$ for various cluster decays ^{14}C , $^{18,20}\text{O}$, $^{22,24,26}\text{Ne}$, $^{28,30}\text{Mg}$, and ^{34}Si with ^{208}Pb as the daughter product of parents ^{222}Ra , $^{226,228}\text{Th}$, $^{230,232,234}\text{U}$, $^{236,238}\text{Pu}$, and ^{242}Cm , respectively. The impinging frequency $v_0 \sim 10^{21} \text{ s}^{-1}$ in each case. The Q -value is calculated by using the experimental binding energies [7].

Cluster Decay	Q -value (MeV)	P	$P_0^{(\text{emp})}(C)/P_0^{(\text{emp})}(\alpha)$
^{14}C	33.050	2.933×10^{-25}	9.197×10^{-07}
^{18}O	45.727	2.540×10^{-29}	4.315×10^{-07}
^{20}O	44.723	1.541×10^{-31}	1.821×10^{-10}
^{22}Ne	61.388	3.154×10^{-29}	3.792×10^{-10}
^{24}Ne	62.311	2.696×10^{-28}	2.920×10^{-13}
^{26}Ne	59.465	1.659×10^{-32}	1.246×10^{-13}
^{28}Mg	79.670	1.802×10^{-26}	3.631×10^{-16}
^{30}Mg	76.824	7.262×10^{-30}	9.970×10^{-17}
^{34}Si	96.511	1.090×10^{-25}	3.101×10^{-18}

Summary and Conclusions

The present study based on RMF formalism, using the double folded M3Y interaction, shows the importance of pre-formation factor P_0 for the process of cluster radioactive-decay, which has so far been explored on the PCM based on Quantum Mechanical Fragmentation theory [3]. Though at present the factor P_0 is adjusted only empirically, it will be highly interesting to see how this quantity can be treated within the RMF theory. Work in this direction is in progress.

References

- [1] A. Săndulescu, *et al.*, Sov. J. Part. Nucl. **11**, 528 (1980).
- [2] H.J. Rose and G.A. Jones, Nature (London) **307**, 245 (1984).
- [3] S.S. Malik and R.K. Gupta, Phys. Rev. C **39**, 1992 (1989); *ibid* **55**, 218 (1997).
- [4] L.M. Robledo and M. Warda, Int. J. Mod. Phys. E **17**, 204 (2008).
- [5] S.K. Patra, *et al.*, J. Phys. G: Nucl. Part. Phys. **34**, 2073 (2007).
- [6] G.R. Satchler and W.G. Love, Phys. Reports **55**, 183 (1979); D. T. Khoa, *et al.*, Phys. Rev. C **49**, 1652 (1994).
- [7] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. **A729**, 337 (2003).