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ABSTRACT. Nearly every attempt to unify the fundamental forces incorpo-
rates the idea of compact extra dimensions. The notion was introduced by
Kaluza and Klein in the 1920s and is an essential part of contemporary string
theory and M-theory. In most treatments the extra dimensions are static. We
consider the consequences of extra dimensions with time-varying radii. The
radii are modeled by light scalar fields. These may have unusual properties
which produce observable effects, such as non-canonical kinetic energies,
couplings to matter and radiation, and non-minimal coupling to gravity.

Extra dimensions may be responsible for dark energy in the late universe.
The simplest model of dark energy is characterized by its equation of state.
We show that constraints placed on realistic models by the universality of free
fall, variation of fundamental constants and metric tests of gravity are often
stricter than bounds on the equation of state. Testing the equivalence princi-
ple may be an effective way of distinguishing some quintessence models from
a cosmological constant.

In certain dark energy models the speed of sound is much less than the
speed of light. We calculate how this affects the cosmic microwave back-
ground and show that the speed of sound may be measurable, provided dark
energy is sufficiently dense at decoupling. This is another possible signature
of quintessence.

Dynamical extra dimensions may have consequences for the early uni-
verse. In the cyclic model, the universe is described in terms of a series of
contractions and expansions of an extra dimension. The big bang is preceded
by a big crunch and quantum fluctuations of the scalar field produce struc-
ture in universe. We consider how the fluctuations evolve and build over
many cycles and show that there are no observable instabilities or adverse

effects.
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In the cyclic model extra dimensions act as both dark energy and as
an agent to cause contraction and a big crunch. Previous theorems sug-
gested that contraction necessarily leads to chaotic behavior and unaccept-
able inhomogeneity. We show that homogeneous contraction is possible if

the pressure-to-density ratio of the scalar field is sufficiently large.
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CHAPTER 1

Introduction

Cosmology and particle physics are both described, at present, by models in remarkable
agreement with the data. The simple AcpM cosmological model assumes that the universe
was once in a hot, roughly homogeneous and isotropic initial state, with a spectrum of nearly
scale invariant perturbations. In addition to known fundamental physics, the model adds
a cosmological constant (A) and cold dark matter (cpm) [69]. These additions give good
agreement with all the data, notably the cosmic microwave background [167], large scale
structure [175] and nucleosynthesis [144]. Likewise, the standard model of particle physics,
despite its inelegance, is stubbornly in agreement with data from accelerators. High energy
theory - supersymmetry, string theory and M-theory in particular - is a source for a rich
phenomenology beyond this model [89, 90, 152, 153, 192].

The intersection of these two pictures — of particle theory and cosmology - is murky. The
fundamental explanation for dark matter, baryogenesis, dark energy and the initial condi-
tions of the hot big bang [121] is unknown. In part this is because gravity is a crude tool
for particle physics. Conversely, nothing is known about what new gravitational predictions
particle theory will ultimately make. One robust feature is that string theory and M-theory
are consistent only with a number of extra dimensions.

The idea of extra dimensions has a long history in physics. An extra dimension was first
suggested by Nordstrom in 1914 [142] as a way to unify gravity and electromagnetism in
his scalar theory of relativistic gravity. His work was quickly forgotten. In 1919, however,

Kaluza [109] rediscovered this idea in general relativity,* by showing that the vector potential

'For a review of Kaluza-Klein theory, see Overduin and Wesson [145]. Duff [71] discusses Kaluza-
Klein compactification in string theory. A historical review with many relevant reprints, including
modern papers, is Appelquist [7].
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of electromagnetism arises naturally in a five dimensional setting. Since the visible universe
is unmistakably four dimensional, the extra dimension must be difficult to probe. Kaluza
ensured this by imposing translation invariance on the extra dimension. He called this the
“cylinder condition”, and regarded it as mainly a formal innovation. (The “cylinder” refers
to translation invariance, not to a compact topology.)

Oskar Klein [118, 119] - and later Einstein and Bergmann [77] - were the first to ascribe
any physical significance to the extra dimension. Klein thought of it as a circle. He noticed
that momentum was quantized in the extra dimension and that the higher Fourier modes
of the scalar - the “tower” of Kaluza-Klein states — satisty Klein-Gordon equations. Thus, in
1926 he suggested that quantum mechanics and the quantization of charge could arise from

a compact extra dimension of size roughly 10732

meters, the GUT (grand unified theory)
scale.

Kaluza-Klein phenomenology has been extended to non-Abelian gauge groups. Witten
[195] has demonstrated that eleven dimensions is the minimum number necessary to obtain
the standard model group in a Kaluza-Klein theory compactified to four dimensions. De-
spite the auspicious coincidence that the largest supergravity is formulated in eleven dimen-
sions, interest in the Kaluza-Klein program has petered out. Problems with chiral fermions
and constructing theories with flat backgrounds seems to have made Kaluza-Klein theory
an inelegant way to derive Yang-Mills theory from gravity.

However, extra dimensions are an essential element of string theory [89, 90, 152, 153]
for quite different reasons. While Kaluza-Klein theory attempts to unify gravity and gauge
theory by adding extra compact dimensions, string theory already naturally incorporates
both gravity and gauge theory. However, string theory cannot be consistently formulated
in four dimensions: the extra dimensions are required for consistency. Thus, the problem
in string theory is to eliminate the extra dimensions while preserving the appealing aspects
of the theory, such as low energy supersymmetry. An extensive framework in algebraic ge-

ometry has been developed for this purpose. It has been shown that compactification on
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six dimensional Calabi-Yau manifolds [89, 91] allows for low-energy supersymmetry. These
manifolds typically have a large number of internal degrees of freedom, called moduli, which
correspond to massless scalar fields.

Another a priori possibility for reducing a higher dimensional theory - like string theory
- to lower dimensions is to confine the visible universe to a membrane with three spatial
dimensions, a three-brane. This idea, first proposed by Dirac [68], is appealing because
various kinds of branes are part of the string theory menagerie.” By itself, however, the idea
is problematic, because gravity is not confined to the brane and so radical departures from
the inverse square law are predicted. Randall and Sundrum [155] have proposed a geometry
in which gravity is well confined to four dimensions and departures from general relativity
are small. However, it is not known if this idea is compatible with string theory [92], so trying
to construct phenomenologically viable models in string theory usually involves considering
both branes and small compact dimensions.

In heterotic M-theory [95, 96, 196] the four dimensional universe comes from com-
pactified eleven dimensional M-theory [126]. This is an important example because it is
the best known candidate for embedding the standard model of particle physics in string
theory and M-theory. Recent results have been encouraging: it has been shown that the the-
ory has vacua with standard model gauge groups and three families of quarks and leptons
[30, 31, 70].

An important feature of heterotic M-theory is the S' / Z, orbifold: one dimension is com-
pactified on an interval, with distinguished endpoints. The endpoints form spatial bound-
aries, called fixed planes. The fixed planes contain Eg gauge theories and can have branes
trapped at them. The size of the intervening space is modeled - in the low-energy descrip-
tion - by a scalar field, called the radion.

Thus, virtually every attempt to unify the fundamental forces of physics incorporates the

idea of extra dimensions. This thesis considers the idea that compact extra dimensions are

*For a discussion of the role of branes in string theory, see [72, 152, 153]. For reviews of brane
cosmology, see [32, 75, 122].
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dynamical. Rather than being fixed, their sizes are varying in time with the radius modeled
by a scalar field, the radion. Remarkably, the early efforts in Kaluza-Klein theory simply
ignored this scalar mode. Its physical significance was recognized first by Jordan and later
by Einstein and Bergmann [77, 104]. Fierz pointed out that time-varying dimensions could
cause large observable effects [81]. This thesis is motivated by the idea that, if stringent
observational constraints are satisfied, light scalar fields can play a profound role in the evo-
lution of the universe today, as the origin of dark energy [38, 157] and a solution of the
cosmic coincidence problem [10, 173, 198]; and in the early universe, by establishing the
initial conditions for the hot big bang in the inflationary [121, 124], ekpyrotic [114, 115]
and pre-big bang scenarios [86, 87, 184].

A theory in which a dynamical dimension plays a crucial role is the cyclic scenario of
Steinhardt and Turok [170-172]. In the low energy effective action description of heterotic
M-theory, the radion is massless. There does not appear to be a reason, such as a funda-
mental symmetry, that the radion must be massless. It is generally thought that the radion
will acquire a mass from non-perturbative effects such as supersymmetry breaking. The
non-perturbative potential vanishes as the fixed planes approach each other. The ekpyrotic
scenario proposes that, before this happens, the potential has a steep negative exponential
segment. The cyclic scenario proposes that, in addition, the potential has a flat segment
which corresponds to dark energy domination. In these models, the radius of the S'/Z,
orbifold is perpetually changing in a cyclic fashion, going from large values to zero and back
again. In this scenario, the collision between the two orbifold planes generated the radiation
that triggered the hot big bang, so time-varying compact dimensions are an essential aspect
of the model.

This thesis discusses the observational and theoretical ramifications of dynamical extra
dimensions. If the radion is evolving today, then it may be the field responsible for dark en-

ergy. In chapters 3 and 4 we discuss some observational constraints and possibilities. Later,
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we discuss theoretical challenges in such models, such as the chaotic behavior of general
relativity (chapter 5) and constructing cyclic models (chapter 6).

Although we use the idea of compactification as a useful geometrical motivation, many
of the ideas in this thesis are applicable in the more general context of light scalar fields in

the universe.

1. Overview

Chapter 2 reviews some background concepts and notation. Section 1 discusses the
cosmological evolution of a scalar field dominated universe. In section 1, we mention some
results in cosmological perturbation theory. We show how perturbations are generated from
the quantum fluctuations of a scalar field in the inflationary and ekpyrotic scenarios, and dis-
cuss how perturbations in the density of matter and radiation evolve as they reenter the hori-
zon. Section 3 derives the Kaluza-Klein and S'/Z, orbifold compactification, and briefly
describes the Randall-Sundrum and Horava-Witten models from the literature.

Chapters 3 and 4 discuss the observational consequences of the idea that a time-varying
extra dimension might be the source of dark energy. One of the critical problems of modern
cosmology is determining if dark energy is a cosmological constant, with an inexplicably
small value, or has a dynamical origin. Therefore, in these chapters we focus on observa-
tional signatures that might arise from extra dimensions: dark energy with a non-canonical
kinetic energy, or with couplings to matter and radiation, or with Brans-Dicke couplings.

Chapter 3 investigates the speed of sound of quintessence. This is the speed with which
perturbations propagate. In the usual Klein-Gordon scalar field models, the speed of sound
is equal to the speed of light. However a scalar field ¢ may have an action which is of higher
than quadratic order in derivatives: it may contain terms like (9¢)%. These models have a
speed of sound different from unity. We show that, if the dark energy density is at least a few
percent of the critical density at the surface of last scattering, then the cosmic microwave
background anisotropy is sensitive to the sound speed of dark energy at decoupling. Near

tuture observations of the cosmic microwave background, such as those to be performed by
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the Planck mission, should be able to distinguish dark energy with sound speed near zero
to canonical models with sound speed equal to the speed of light. This is a feature of the
k-essence models [10, 11] and potentially of other models with higher derivative terms in
their actions.

Chapter 4 discusses the constraints placed by the equivalence principle on models with
dynamical extra dimensions. We quickly review the tremendous progress made in testing
the equivalence principle - in particular, tests of the universality of free fall, constraints on
variations of the fundamental constants, and precision tests of post-Newtonian gravity — and
point out that many theories, such as the Randall-Sundrum models and heterotic M-theory,
predict violations of the equivalence principle if the radion is unstabilized and evolving on
cosmological time-scales. Improved tests of the equivalence principal can, for some forms
of dynamical dark energy, be a much better way of distinguishing it from a cosmological
constant than only measuring the equation of state.

In chapters 5 and 6, we turn to the effect of dynamical extra dimensions in the early uni-
verse. Chapter 5 is concerned with the the behavior of contracting universes in cosmology.
The pre-big bang, ekpyrotic and cyclic models all envision the universe as contracting before
the big bang. Until recently it was thought that such universes undergo chaotic mixmaster
oscillations due to curvature and anisotropy. These oscillations would destroy the observed
homogeneity of the universe. We show that the chaos can be avoided if the universe is domi-
nated by a fluid with a sufficiently large equation of state. This is the case in the ekpyrotic and
cyclic models, in which the steep negative potential generates an equation of state w > 1. In
this case, the contraction is locally described by the Friedmann equation for a homogeneous
and isotropic universe: this is a “no-hair theorem” for contracting universes, analogous to
the inflationary no-hair theorem [121].

For every combination of matter fields there is a critical scalar field equation of state wi
which, for w > w; ensures a stable, isotropic contraction. In a universe with just a single

scalar field, weit = 1, but if there is a more general combination of p-forms with couplings
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to the scalar field, wit can be larger. However, for each combination of p-forms, there is
always an equation of state sufficiently large that oscillations are suppressed. We show that
Z, orbifold compactification also contributes to suppressing chaotic behavior. In particular,
chaos is avoided in contracting heterotic M-theory models if w > 1 at the crunch.

Chapter 6 discusses the cyclic model of the universe. The model contains an expand-
ing, dark energy phase which transitions to a contracting ekpyrotic phase. The dark energy
phase can be thought of as a sort of very low-energy inflation. Both phases, then, produce a
nearly-scale invariant spectrum of perturbations. We analyze the spectrum of density fluc-
tuations of a simple class cyclic model potentials. Contrary to the intuition from inflation,
the amplitude of modes is not fixed as they cross the horizon; rather modes that exit the
horizon in the expanding phase continue to grow in the contracting phase. The dark energy
modes are amplified by a huge factor in the ekpyrotic phase and ultimately have the same
amplitude as the ekpyrotic modes: the two nearly scale invariant parts of the spectrum are
smoothly joined by a small feature.

Next, we consider the effect of these fluctuations on the structure of the cyclic model
over many cycles. We tabulate the evolution of the scale factor and the horizon H™! in each
phase of the cyclic model. The cyclic model, despite a brief contracting phase, expands by
many e-folds over each cycle. On scales far outside the horizon, modes receive an huge
amplification each cycle. We show that this does not lead to any observable effects, such as
a diverging physical curvature. On metaphysical scales, however, the cyclic model can be
thought of as different Hubble patches cycling asynchronously, continually expanding and
fragmenting into causally disconnected patches.

Finally, we show that a long period of dark energy domination in the cyclic model is
not, as was previously thought, necessary to prevent the fluctuations produced in one cy-
cle of the model from contaminating fluctuations in future cycles. The attractor behavior
of the contracting, ekpyrotic phase, combined with the natural suppression of scalar field

perturbations inside the horizon, is sufficient to prevent any adverse effects.



1. INTRODUCTION 8

2. Conventions

Except where explicitly stated, we use the following conventions. We use reduced Planck
units throughout, with with 877G = ¢ = i = 1, where G is Newton’s constant, ¢ the speed
of light and 7 the reduced Planck constant. The metric has a (- +---+) signature, with a
negative time eigenvalue and positive spatial eigenvalues. Greek indices starting with u are
used for space-time indices: y, v,--- =0, 1, 2, 3. Lowercase Roman indices starting with i
for purely spatial indices: i, j, --- = 1, 2, 3. We will have occasion to use other kinds of indices
in several chapters, and they will be defined as they are used. All repeated tensorial indices

are summed, unless otherwise specified. The Riemann tensor for a metric g, is given by
R¥ypg = 0pTH g — 0oTH,p + THe, T8 g = THg, TY, ), (1.1)

in terms of the connection coeflicients

1
FEW; = Egga[aygva"‘avgya_aagyv]- (1.2)

The Ricci tensor is given by Ry, = R%,4, and the Einstein tensor by G, = Ry, — %gWR-

The scalar curvature is R = tr R, = g*" R,y. The Einstein-Hilbert action S is

S= %Jd‘*xﬁzz, (1.3)

where g is the determinant of the metric. We refer to any metric in which the scalar curvature
appears in this form as in Einstein frame. From this action, the Einstein equations can be
obtained,

1
Gyv:Ryv_ERg‘uv: Tyv; (1.4)

where Ty, is the stress-energy tensor which comes from the variation of the non-

gravitational part of the Lagrangian density Zng,

_ 2 6(/=9Inc)
/’”’_H 6gyv

(1.5)
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where ¢ represents a functional variation. A canonically normalized scalar field ¢ has action
S:Jd4x[—%g”V8H¢av¢—V((p)], (1.6)
where V is the potential. The Friedmann-Lemaitre-Robertson-Walker metric is:
3 . 3 .
ds*=-dt* +at)?* ) (dx")?=a(@)?[-dr* + ) (dx)?], (1.7)
i=1 i=1

where a is the scale factor and the x’ are comoving coordinates; ¢ is proper time, and 7 is

conformal time. They are related by

o
t) = —. .8
) Jam (1.8)

Dots are always reserved for proper time derivatives, whereas primes are often used for con-
formal time derivatives: a and a’, respectively. The Hubble parameter is given by H = a/a =
a'la*. We will occasionally use the “dimensionless Hubble parameter” H = aH = a = a'/a.

The redshift z of something occurring at time ¢ is given by
a
l+z=——1, (1.9)

where a( indicates the scale factor today. The present value of the Hubble parameter is like-
wise written Hy. A wavenumber k is always comoving, so the associated physical wavenum-
ber is k/a. Finally, for a perfect fluid with energy density p and pressure p, the equation of

state w is defined by p = wp.



CHAPTER 2

Scalar fields and compactification

In this chapter, we introduce the fundamental tools that will be used throughout this
dissertation: the scalar field in homogeneous cosmology, cosmological perturbation theory
and some basic results in compactification. This chapter focuses on the elements that are

essential for the issues considered in the thesis.*

1. Cosmological solutions with scalar fields

The most general spatially flat metric compatible with the cosmological principle - that
is, a homogeneous and isotropic spacetime - is the Friedmann-Lemaitre-Robertson-Walker

(FRW) metric. Written in four dimensions in terms of proper time, it is
ds? = —dt* + a(t)* (dx} + dx3 + dx3). (2.1)

The x; are comoving coordinates with no absolute physical meaning, since any dilatation of
the x; can be absorbed by a rescaling of a. The Hubble parameter H = a/a measures the
rate of expansion of the universe. The Hubble length H™!, measures the distance between
two points on a comoving surface whose relative separation is increasing (or decreasing, in
a contracting universe) at the speed of light and measures the horizon, or the largest scale at
which causal interactions occur. However, H™! can also be interpreted as the Hubble time
which measures the time taken for one e-fold of expansion (or contraction). In an expanding

radiation or matter dominated universe, it is roughly the elapsed time since the big bang.
1.1. Perfect fluids. The Einstein equation for this metric is the acceleration equation,

3
6;:—(p+3p):—(1+3w)p, (2.2)

'For a more complete discussion, see [69, 121, 124, 146, 148].

10
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where p(#) is the matter energy density, p(¢) is its pressure and w = p/p is the equation of
state. The expansion or contraction accelerates if w < —1/3.

A perfect fluid has has stress-energy tensor

Tyy=(p+pluytiy+pguy (2.3)

where g, is the background metric and u,, is the unit (u*u, = —1) four-velocity. The only
condition compatible with homogeneity and isotropy is a comoving fluid, u, = (1,0, 0, 0),
sO

—p

T, = . (2.4)

p.

A fluid in an evolving background obeyshthe conservation equation
p=-3H(pp+p)=-3H(1+w)p. (2.5)
The Friedmann equation, which is a constraint on (2.2), is
3H()? = p(t). (2.6)

This is the equation that determines the rate of expansion of a flat universe in terms of its
energy density. The critical density is simply 3 H?: it is the density required for the universe

to be flat. The solution of (2.2), (2.5) and (2.6) for general constant w is

2
5T w1

ax > (2.7)
e w=-1

|t|—3(1+w) w # -1
p X . (2.8)
(constant) w=-1
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In the case w = —1, a cosmological constant, the Hubble parameter H is a constant. Note
that these solutions are valid for a contracting (# < 0 or H < 0) solutions as well as expanding
(t> 0 or H > 0) solutions.

In a universe with multiple non-interacting fluids, these results still hold, where now w
is an average quantity and p and p measure the total energy density and pressure. In this

case,
pP=) px (2.9)
X
P=) px; (2.10)
X

where the sum is over the various fluids. We may define densities relative to the critical

density
Qx =px/p, (2.11)
and the effective equation of state
w= LxPx ZZWXQ)(, (2.12)
LxpPx X

where wx = px/px. In this case, (2.6) and (2.2) hold with the quantities p, p and w defined

asin (2.9), (2.10) and (2.12), respectively. The continuity equation is now
px=-3H(px+px)=-3H(1+wx)px. (2.13)
1.2. Scalar fields. Now consider a scalar field with Lagrangian density
1 2
Lg=-509) - V(9. (2.14)

The stress-energy tensor is given by

2 0(,/=gly) 8Ly
yv = = 2
v=g og* dgt”

+9uvLy (2.15)
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so that

Tuy = =0 0v$ + guv(—3(09)* = V(9)), (2.16)

so assuming that ¢ = ¢ (1),

1.
pg= 5¢2 + V(¢), (2.17)
P = %452 ~-V(¢), (2.18)
132
1¢2-v
W¢, = M, (2-19)

where pg, py and w are the energy density, pressure and equation of state of the scalar field,
respectively. The equation of state generally varies in time. The conservation equation (2.5)
is the equation of motion

¢+3H¢:—V,¢; (2.20)

« »

where the subscript “ 4” denotes a ¢ derivative. This equation can be rewritten in conformal
time

¢N+27{¢,:—azv,¢- (2.21)

The acceleration equation (2.2) becomes
a "
3—=—-¢"+ V(¢). (2.22)
a
The free scalar field, with V = 0, is the simplest case. It has

t1/3 2 t
a:ao‘—‘ , ¢:\/ilog‘—
to 3 to

where ag and t( are constants of integration. The free scalar field has w = 1. Another par-

, (2.23)

ticularly simple case is the exponential potential,

V= Voeb¢, (2.24)
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where b and V| are constants, with Vj > 0. A solution of the equations of motion (2.20),
(2.6) and (2.22) is

t12/b? 2
a:ao‘— , ¢ = —loglt/tyl. (2.25)
to b

The constant ty = Val/z (4/b*-2/b*)1'2 is unimportant. This is known as a scaling solution
since a has a simple power-law behavior. It is valid for any |b| < v/6 and has equation of
state b2 = 3(1+w) (so —1 < w < 1). If b > V/6, the potential energy decreases more quickly
than the kinetic energy, and w — 1 from below as t — oo.

Likewise, we can consider a negative potential
V=-Vye (2.26)
where Vj and c are positive constants, which has scaling solution
t12/c? 2
a:ao‘—‘ s ¢ =—loglt/tyl. (2.27)
to c

Again, t( is an unimportant constant. The solution is valid for any ¢ > v/6 and gives equation
of state ¢ = 3(1 + w), so w = 1. If ¢ < /6, the kinetic energy blue-shifts more quickly than
the potential, so w — 1* from above as t — 0.

These two solutions, a positive exponential with a small constant b < v/6 and a negative
exponential with a large constant ¢ > v/6 are particularly simple solutions of the Einstein
equations in the presence of a scalar field. They have constant equation of state, and the
expression for the scale factor and equation of state take simple forms.

In an expanding universe, the positive potential solution (2.25) is a dynamical attractor:
any set of initial conditions will approach it. This is true even in the presence of matter if
b <« 1, and is known as the inflationary “no-hair” theorem [121]. It is one of the central re-
sults of inflationary cosmology, and explains why the inflationary model solves the problems
of homogeneity, isotropy and flatness. The condition b <« 1 is equivalent to the slow-roll
condition of inflation. In this case the model generates a spectrum of nearly scale-invariant

quantum fluctuations.
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The situation for the contracting, negative potential solution (2.27) is completely analo-
gous. The solutions is a dynamical attractor in a contracting universe, and if ¢ > /6 this is
true even in the presence of matter. This is proved in chapter 5, and establishes a “no-hair”
theorem for contracting universes. Moreover, ¢ > v/6 is equivalent to the fast-roll condi-
tion of the ekpyrotic model [112, 113], so in this case the model generates a spectrum of
nearly-scale invariant fluctuations. This remarkable duality is discussed in [25, 80]. In [88]
it is shown that these solutions are representative of the the only two kinds of stable, cosmo-
logical solutions - w = —1 and expanding, and w > 1 and contracting — which generate the
observed nearly scale-invariant spectrum of fluctuations. The connection between the two
will be discussed further in chapter 6.

An alternative way to understand the properties of these solutions is to rewrite the above

equations in terms of y =loga. The conservation equation (2.5) becomes, simply,

dl
— =-3(p+p) or 08P =-3(1+w). (2.28)

dy

The scalar field case is more complicated. The equations (2.6), (2.2) and (2.20) can be rewrit-

ten
/2_1 12 d¢ 2 2y
3y —Ey (d_y) +e“VV, (2.29)
d¢,\2
n_ _ 2127 2y
3y ==y (dy) +e”7V(¢), (2.30)

—+y'—=+2

d*¢  ,d¢ d¢
12 " Y - _ 2y
iy dy y dy eV (2.31)

The primes here are conformal time derivatives: y' = ay. We can eliminate two variables

from these three equation. Eliminating y’ and y”, we obtain

P (2.32)

(- o))

dy? dy

If V is exponential,

V($) = Ve, (2.33)
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where Vj and c are constants, then we can rewrite this as

d
d—‘y” =3(y—c/VO) (- D(y+1), (2.34)

where d¢/dy = V6 y. From (2.19) and (2.29) the equation of state is given by

1(d¢)2 2
=—|— —-1=2vy" -1, 2.
( 3 y) v (2.35)

so we can see that potentials with |c| = {/3(1 + wg) have an attractor with equations of state
wg. The sign of Vo does not enter into (2.34), but it determines the initial conditions from
the equation of state (2.35). If V) is positive then |y| < 1, whereas if V| is negative then

lw| > 1. For |c| = V6 and V negative, the attractor solution has wg = 1. For [c| = v/6 and

Vo positive, the attractor solution has wy = 1.

2. Perturbation theory

Cosmological perturbation theory seeks to understand the generation and evolution of
linear perturbations in a background cosmology. The comoving scale of the horizon is mea-
sured by (aH)™!. Since perturbations have fixed comoving scale, in an epoch in which |a H]
is decreasing, such as today, perturbations are entering the horizon. This is the source of
the horizon problem resolved by the inflationary [124] and ekpyrotic [112] cosmologies:
perturbations on the horizon today have never been in causal contact in the standard hot
big bang cosmology. This is resolved by the inflationary or ekpyrotic scenarios, in which the
universe has a period in which [a H |71 is decreasing, so perturbations are exiting the horizon
before the start of the hot big bang. In between, there is a period generically called reheating,
in which the perturbations are converted into long-wavelength adiabatic fluctuations in the
cosmological fluids.

The most general perturbation is

0 1
Guv :9,(43 +9;(u}’ (2.36)
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where g is the background FrRw metric. The perturbation g’ generally contains ten in-
dependent functions. Fortunately, it is possible to reduce this. A fundamental result in cos-
mological perturbation theory is the scalar-vector-tensor (svt) decomposition [124], which
states that the perturbation equations are separable. Perturbations to the FRW metric can be
decomposed into scalar fields, spatial divergence-free vector fields, and traceless, symmet-
ric and divergence-free tensor fields. Each is completely decoupled from the others at linear
order. The vector perturbations vanish in inflation and the ekpyrotic scenario: there is no
coupling between the fluctuations of a scalar field and a divergence-free vector. We focus
exclusively on scalar perturbations to the FRw background. (Ekpyrotic tensor perturbations
are treated in [24]. They are negligible at the scales we consider.)

The most general scalar fluctuation of metric (2.1) are
ds* = —(1+2¥)dt*~2(9;B)dt dx'+a’ (t) [(1-2®)8;j+2(0;0;—18;; V) E]dx' d¥' (2.37)

It is possible to choose a gauge in which B = E = 0. This is a unique gauge choice, called
longitudinal gauge or conformal Newtonian gauge. It can be defined with either proper or
conformal time used as the time variable:
ds*=—(1+2%(x, 0)dt* +a*(B)(1 - 2D (x, 1)) 8;jdx’ dx/ (2.38)
=a’O[-(1+2¥(x, 1))dr* + (1 - 2D(x, 1)d;;dx' dx]. (2.39)

The functions ® and ¥ are called the gravitational potentials. On small scales, they corre-

spond to the Newtonian potential of Newtonian gravity. Specifically, @ satisfies the equation
2 1
VoD = 58/), (2.40)

where p is the density perturbation.
We do not need to consider anisotropic stress (that is, a traceless part of the spatial stress-

energy tensor T;) and so the Einstein equations set ® =¥ [69, 124]. The perturbations to
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the stress-energy tensor are, for a comoving fluid,

8T, = —-6p, (2.41)
ST = (p+p)vi, (2.42)
ST'; = 8pd’;, (2.43)

where dp and §p are the energy density and pressure perturbations, and v; is the veloc-
ity perturbation of the fluid. By the svT decomposition, the relevant part of the velocity
perturbation is determined by a scalar V, so that v; = d; V. These quantities are all gauge
dependent. The sound speed c? of a fluid is defined by

op

5p (2.44)

2 _
C, =

and measures the speed at which perturbations travel. For a canonical scalar field such as
(1.6), c2 is unity. The effect of the sound speed on perturbations will be discussed in chap-

ter 3.

2.1. Generation of perturbations. The primordial perturbations of both the inflation-
ary and ekpyrotic cosmologies arise as perturbations of a scalar field evolving in a cosmo-
logical background. Writing the field as ¢(¢) + §¢(x, t), where ¢(t) solves the background
equation (2.20), it is possible to obtain the first order correction to the scalar-field stress-

energy tensor (2.16). It is
6T00:—¢8¢—V,¢6¢, (2.45)
8T'j=8ij(§ 8¢ -V 45¢) (2.46)

The spatial gradients are all second order in d¢ (since 9;¢(¢) = 0) and do not contribute. If

we write §¢ as a sum of plane waves,

Spx, ) =Y e ¥ 8¢ (1) (2.47)
k
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where k; is the comoving wavenumber, then the conservation of stress-energy gives

5¢+3H5¢+(§)25¢+ V5506 =0, (2.48)
or
8¢"+27{6¢'+(k2+a2V,¢¢)6¢:0. (2.49)

in conformal time. These equations do not include gravitational back-reaction. The beauty
of our gauge choice is that, including back-reaction, the evolution equations for ¢ and ©

reduce to a single second order differential equation in the Newtonian potential [36]:

. 2¢y . . H¢ 2
(D+(H—£)®+2(H—l)(b—v o (2.50)
¢ ¢ a?
The relation between @ and §¢ is
$8¢/2=0+HO. (2.51)

To eliminate the first derivative damping term, we change variables and write the equation

in terms of conformal time and the variable>

u=0/¢p=ad/¢’, (2.52)
to obtain
where
Upot = z(1/2)" and z=ad' I H. (2.54)

This is the equation that we will use to compute perturbations. There are two regimes, de-

pending on which term dominates the left hand side of (2.53). Generically

Upot ~ (aH)Z; (2.55)

*This variable, introduced by Mukhanov is sometimes called v [124, 139].
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$0 Upot is crudely related to the horizon. When a mode has k? > Upots itis inside the horizon
and (2.53) is the equation for an oscillator. When k? « Upot the mode is well outside the
horizon. The approximation (2.55) can, however, be oft by several orders of magnitude (as in
inflation or the ekpyrotic model) and can briefly fail altogether at transitional epochs. This
will be discussed in detail in chapter 6. When we write that a mode is outside or inside the
horizon, then, we refer to the precise relation between k2 and Upot in the evolution equation
for the mode.
We assume that the modes with k? > (aH)? are in their Minkowski vacuum state [20]
given by
Sy ~ e~ R 1(av/2k), (2.56)

up to a random phase. Using the relation a¢’d¢/2 = (¢'u)’ from (2.51) and neglecting ¢”

(which is small in an accelerating universe) this gives
up ~ e *712k)%'2, (2.57)

again up to a phase. Since (aH)? is increasing in this phase, these modes are moving outside
the horizon. For the positive exponential potential considered (2.24) above, (2.25) and (2.54)

give Upot = b2/2772 (for small b). Thus (2.53) reduces to the Bessel equation [2]
u'k':—(kz—(bZ/Z)T_z)uk. (2.58)

For the negative exponential potential (2.26), the situation is very similar: (2.27) and (2.54)
give

ul = —(k* = (c*12) 77 uy. (2.59)

These equations are solved in terms of Hankel functions in [24, 112]. The result is that

(ui) x k_3_2b2/(2_b2) (2.60)
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in the expanding, positive potential case (2.24) and
(ui) o k342 (2.61)

in the contracting case. The angle brackets indicate an ensemble average, as the random
phase in (2.56) implies that the plane waves form a Gaussian random field. A scale invariant

or Harrison-Zeldovich spectrum has
(D3 ~ k3 or (u?y ~ k3. (2.62)

The scalar spectral index n; measures the deviation for scale invariance

_ dIn(®?)

ns—l—W+3. (263)

The spectra (2.60) and (2.61) are nearly scale invariant because #n,—1 is small for small b or
large ¢, respectively. Large scale structure date [167, 175] has confirmed that the observed

spectrum of the universe is nearly scale invariant.

2.2. Reentering the horizon. After reheating, the primordial curvature perturbations
considered in the last section are converted into adiabatic perturbations of the fluids that
make up the present-day cosmology: baryons, radiation, dark matter and, potentially, quin-
tessence. The adiabatic condition for a (perfect) fluid px is

1 5px_ 1 @

= , (2.64)
l+wx px 1+wop

where w is the equation of state of the universe defined by (2.12). This condition ensures
that the fractional entropy perturbation §sx/sx is the same for all species.

It is easiest to understand the evolution of these modes as they come back inside the hori-
zon in terms of their density contrast. This is the fractional perturbation in the background
density. For the fluid X, the density contrast x is

_ dpx

Ox .
px

(2.65)
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The total density contrast J is defined as

Yx0px
== Qxdy. 2.66
Y xpx ; x0x (2.66)

5
Its k-th Fourier mode is related to the Newtonian potential by
20 k2
Ok = _E(E) Oy, (2.67)

from (2.40). The perturbation equations in such a multi-fluid universe have been derived by

Padmanabhan (see [146] equations (4.100))

0px=-3(px+px)0Hx—-3Hdpx—-3H(px—0x3p), (2.68)

_ 1 1 V36 )
SHy=~2HOHy ~dp— s~y PX | Y 6yHy - dHx], (269)
6 3px+px px+px 'y

where § Hy is the “perturbation” in the local Hubble parameter due to density perturbation
8px. It is proportional to the velocity divergence 36H = a~19;v' = V2 V. Also,

+ 1+
:PX PX:Q wx

X . (2.70)
ptp I+w

The first equation (2.68) is the perturbed continuity equation (2.13) while (2.69) comes from
the Raychaudhuri (or Euler) equation for the local expansion of space. In both equations,
the last term on the right hand side vanishes in the case of a single fluid, or for a dominant
fluid in a multi-fluid universe. The gauge invariant expressions for the pressure perturbation

in terms of density and §H are

aH\2 0H
Spx=vidpx+ (T) [(1+wx) (v —wx) + sH! wX]pX?X, (2.71)
PX aH\2 J6Hyx
:v§(8px+(1+wx)(v§(—p—x)(7) px7, (2.72)
where v% is the sound speed of fluid X, and, from the continuity equation (2.13),
) 1H 'w
PX - < - (2.73)

['¢ 3 1+wy
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In the case of a perfect fluid, v% = px/px and so (2.72) reduces to dpx = v% dpx. Using

these expressions, (2.68) and (2.69) may be rewritten in Fourier space

dloga——3(1+Wx)Ax+3WX5x—3[VX5x— Tow ;Vyﬂy5yl
EESILL ST T R C W L
X k X pX X - l+w Y pY YAY]|
dAx 1 1 1k vk
= ——(1-3wAx-=Y Qydy+=[—
dloga 2 WAx 2; YY+3(aH) T+wy X )
. . 2.75
px 1+wy Ir , Px
—322 QyAy—Ax|+=[v:i -] Ay,
Px[; 1+w 0 X] 3[ X /)x] X
where Ay is the contrast
0H
Ax=—7, (2.76)

chosen so that the equations can be written entirely in terms of dimensionless ratios. The
penultimate terms on the right hand sides of (2.74) and (2.75) vanish for perfect fluids. The
last terms of these equations vanish for a single fluid, or for the dominant (Qx = 1) fluid in
a multi-component universe. The dominant fluid evolves independently of the other com-
ponents in the universe, as would be expected. The initial conditions (for perfect fluids) are

adiabatic, from (2.64) and have

1 1
x= § and Ax=-16. (2.77)
1+wyx I+w

4

In a universe with only one fluid, (2.74) and (2.75) reduce to

:(g_gygy_wm,(zw>

where in this equation primes denote derivatives by loga. The equation allows for time-
varying sound speed c2 and equation of state w. The two solutions of this equation are, for a

perfect fluid (so the right hand side vanishes) with w constant and far super-horizon modes
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(k* < (aH)?)

S~ glt3v (growing), (2.79)

8~ g 31-m/2 (decaying). (2.80)

The density contrast for fluids with w < —1/3 does not grow on large scales. The exponents
obtain a small correction — which can be derived from (2.78) and (2.73) - for a general
fluid with ¢2 # w. For example, the dominant mode for a ¢2 = 0 fluid does not grow for
w<—0.35and fora c2 = 1 fluid for w < —0.43.

These equations describe the evolution of structure in the universe until the densities be-
come non-linear, or the effects of anisotropic pressure, such as diffusion or free-streaming
become important. This model of matter and radiation is too simplistic for the cmB calcu-
lations of chapter 3, as it does not account for perturbations to the photon distribution. For

this, the full Boltzmann equations are needed [69, 100, 124].

3. Compactification

We now turn to compactification. While modern high energy theory uses elaborate
technology - algebraic geometry, orbifolds and Calabi-Yau compactifications - to extract
standard model physics from higher dimensional theories, it is instructive to review the

simplest case, the Kaluza-Klein compactification.

3.1. Kaluza-Klein. We derive the Kaluza-Klein action, starting with the five dimen-
sional spacetime. We write the metric Gy (we let uppercase Roman indices run from

1,...,5) in the block form

2y 2y

+e“YA A, e“YA

G= Guv uey ", (2.81)
ez"’AM eV

where A, is a four-vector and v is a scalar field, the radion, which determines the physical

radius of the extra dimension. The matrix is written in this form so that its determinant
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comes out as simply

det G = e*¥ detg. (2.82)

We assume that the x* direction is periodic, with period one, so x* = x* + n, for any integer
n. Since x* is then topologically a circle, this is known as S' compactification. Moreover,
we take h, y and A, to be independent of x*. This corresponds to keeping only the massless
Kaluza-Klein modes, which dominate when the extra dimension is very small: the masses
of the higher modes go as the reciprocal of the Kaluza-Klein radius.

In this case, the five-dimensional scalar curvature R5[G] may be rewritten in terms of

the four dimensional scalar curvature derived from the metric g, R4[g], as
1
Rs5[G] :R4[g]—Z(GW)Z—ZDgW—ZeZV’FMF”", (2.83)

where Fy, = 9, A, —d,A, is the field strength associated with the vector potential A, [is
the four-dimensional covariant dAlembertian, [1; = V¥V, = g#"V,V,, [152]. The Einstein-

Hilbert action reduces to
1 1
Skx = EJdeV—GRﬂG] = EJd4x e‘/’\/—g(R4[g] - 2(311/)2 —2Uy - %eszz)‘ (2.84)

The action can be put in Einstein frame by a conformal transformation [20]. If g,, =

e2Cvp uv with C a constant, then
Rylgl = e 2CY(Ry4lh] - 6 C*(9y)* — 6 CLI, ), (2.85)
where the covariant dAlembertian is now evaluated with the s metric. Note that

Oy = e V0, +2Ce 2V (V) bV, (2.86)
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SO

SKK:Jd4x\/—h(%R4[h]—%(aw)2+%e3w132) (2.87)

= %Jd‘*x\/—h(m[h]—(a¢)2+ie@¢F2), (2.88)

where C = —1/2 and we have integrated by parts to discard the dAlembertian and corrected
the scalar-field normalization, y = v2/3¢.
The original five-dimensional metric (2.81) can now be written

e_m‘/’hw + e‘/m‘/’AHAV e‘/m‘/’Av

G= . (2.89)
6M¢A” e\/ng

If we include some matter fields @; in the five-dimensional theory,
s:Jd5x\/—G(%R+15[®i;GMN]), (2.90)

where 75 is the matter Lagrangian, then the four-dimensional theory will have a matter
sector which includes complicated couplings between the gravitational sector fields ¢ and
Ay. In chapters 4 and 5, we will discuss the relation between these couplings and chaos and

the equivalence principle.

3.2. Orbifolding. A compactification that is in some respects simpler is the S!/Z, orb-
ifold. Orbifolds are manifolds which are identified under the action of a discrete group. Orb-
ifolds have distinguished points, or hypersurfaces, which are the fixed points of the group
action. We consider the S/ Z, orbifold, which is the simplest example, an interval with two
boundary points. It is also very important for high energy physics, as the boundary planes
which arise when a higher dimensional theory is identified under the S!/Z, action are an
essential part of eleven-dimensional Eg x Eg heterotic M theory [95, 96] and are crucial

components of the ekpyrotic and cyclic cosmologies [112, 170].
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4 on a circle, with

To go from five to four dimensions, we identify the fifth dimension x
period two, x* = x* + 2 for integers n. The orbifold identifies x* = —x*, which has two
inequivalent fixed points, at x* = 0 and x* = 1.

The map x* — —x*, however, takes Gus — —Gys or equivalently A, — —A,. Thus, the

orbifolding projects out the constant (i.e. massless) Kaluza-Klein vector mode: A, = 0. The

component Gss survives, however, as Gs5 — +Gs5. The metric (2.89) reduces to

e'm‘phw 0

G= s 2.91
. AT (2.91)

and the action (2.88) to the comparatively simple form
1
Sstyz, = EJd4xV —h(R4[h]—(a¢)2). (2.92)

A theory with matter fields ®@; o and ®; ;, and matter Lagrangians 7 and Z; on the orb-

ifold planes at x* = 0 and 1, respectively, has action

1
S= EJd5x\/—GR5[G] +J6(x4)d4x\ /—detGuy Lol®Di0; Gyl

+J6(x4—1)d4x\/—detGW11[d),-,l;Gw] (2.93)
= Jde\/—h(%Ruh] —10¢)2+e V3L (D 0567V 0Ny,

+6_m¢11[®i,1;e_m¢hyv]): (2.94)

where ¢ is the Dirac delta function. In the second equality, the compactified form of the
action is given. The coupling between the gravitational sector and the matter sector, in this
case, is much simpler than in the Kaluza-Klein sector: the compactified matter sector simply
couples to a different metric e V234 uv- In chapter 4 we discuss the relevance of these
couplings to tests of general relativity. In chapter 5 we mention how the missing vector

modes can turn a chaotic theory into a stable one.
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Neglecting the orbifold plane Lagrangians, the action (2.94) is the action for a free scalar
field coupled to gravity. Thus, in a homogeneous FRw background, the equations of motion
are solved by (2.23). At a collision of the fixed planes, when ¢ — —oo, the scale factor on the
planes, e"V239 42 tends to a constant. This means that when the orbifold planes collide,
the scale factor remains finite, as do all physical quantities on the fixed planes (e.g. temper-
ature and density). This confirms that ignoring the radiation and tension on the branes is
reasonable at the collision. Their contribution to the equations of motion is finite, while the

kinetic energy ¢ diverges.

3.3. Randall-Sundrum scenario. The calculations of the last section were idealized:
the metric in the extra dimension was treated as homogeneous. This is obviously wrong,
because the orbifold planes are localized and we would expect curvature in the extra dimen-
sion. Nonetheless, it is a good approximation in the limit of small brane separations. In
general, however, it is necessary to consider non-factorizable geometries, in which the four
dimensional metric does not depend on the extra dimension through a conformal factor,

but rather has a more complicated dependence. However, it is possible to work out some of

the dynamics by considering models homogeneous in the spatial directions x!, x* and x°.
Such a geometry has metric:
ds? = —n(t, y)2dt* + a(t, ) ((dx")? + (dx*)* + (dx)?) + r(t, ) dy*. (2.95)
A static solution to the Einstein equations, valid on the interval y € [-1, 1], is
ny) =a(y) = e ~kbolyl and r=ro, (2.96)

where r( and k are positive constants. This solution has a bulk negative cosmological con-
stant A, a positive tension brane, with tension T, at y = 0 and a negative tension brane, with

tension — T, at y = 1. These are given by

T =6k, and A =—-6k2. (2.97)
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4D S'/Z, warped orbifold planes

negative
tension
brane

1
- _ 1
distance 1
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1 .
Q@ fluctuations
itive 5D ! ing
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tension non-perturbative |
brane bulk potential V(¢) |
1
1

FIGURE 1. A cartoon of the ingredients of a typical five-dimensional S/Z,
orbifold scenario, such as heterotic M-theory, the Randall-Sundrum sce-
nario, or the cyclic scenario. Three-branes, one with positive tension and
one with negative tension, are trapped at orbifold planes of a five dimensional
bulk (perhaps with a cosmological constant). One of these branes, the vis-
ible brane, contains the matter and radiation observed today. The distance
between the branes at any point is given in the four-dimensional effective
theory by the value of the radion ¢, whose potential V(¢), is determined by
(unknown) non-perturbative effects. Because of the warped geometry, the
positive tension brane has a larger four dimensional scale factor, a. than the

negative tension brane, a_.

The quantity e %7011 is called the warp factor, and measures a scale difference between the
two branes: the metric on the positive tension brane is 7, the Minkowski metric, whereas

the negative tension brane has the effective metric e~2"

Nuv- The tensions are set by the
jump in the derivative of the warp factor at the branes. This solution was discovered by
Randall and Sundrum [156] who used it to solve the electroweak scale hierarchy problem:

scales on the negative tension brane are exponentially suppressed by the warp factor, so krg

can have modest values.
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Csaki et al. have explicitly derived the Einstein equations for (2.95). They arise from the

four-dimensional effective action

6 .2 . . .2
Sps = ——Jdta3((1 —onL k02l 2202l V(r))
k a? ar r2

+ J d4xﬁl+ [Guv] + J d4xﬁ94 1. [ngw]. (2.98)

where

n(t,y)=e <@, (2.99)
a(t,y) = a(t)e k0, (2.100)
r(t,y) =r(t), (2.101)
Q) =e k0, (2.102)

V is the potential from the interaction of orbifold planes, and 7, and Z_ (which couples
to the metric scaled by Q2) are the Lagrangian densities of the positive and negative ten-
sion branes, respectively. We can change variables in (2.98) to write the metric in a more

symmetric form, in terms of the scale factors on the two branes
ar(t)=a(t) and a_(t) =a(®)Q(), (2.103)

which, introducing the lapse function N by the change of variables dt = Na dt, gives the
very simple form
Seﬁ:LJdTN‘%(aE—ai), (2.104)
2k
where we have omitted the potential and the brane actions [110, 112]. The negative tension
brane appears with a positive kinetic energy, whereas the positive tension brane has a kinetic
energy with negative sign.

When the orbifold planes collide, the warp factor 3 — 1 and so the solution reduces

to the S'/Z, solution in which the two scale factors are equal. In the action (2.104), the
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collision corresponds to the line a_ = a,. Moreover, in M-theory, the non-perturbative
potential vanishes as the orbifold planes collide, and so it does not affect the geometry of the
collision discussed in 3.2. This is discussed in detail in [110].

The static scenario was considered by Randall and Sundrum, whereas the ekpyrotic [112]
and cyclic [170, 171] models consider the branes to be dynamical. This is also the case we
consider in this thesis. In figure 1 the general situation considered in much of this thesis is

illustrated: an S'/Z, orbifold with a warped background and a non-perturbative potential.

3.4. Horava-Witten scenario. A compactified theory that comes directly from high en-
ergy theory is heterotic M theory [95, 96]. This theory, compactified from eleven to four di-
mensions, seems to be the best way to extract phenomenologically viable models from string
theory [196]. Gauge theory and quantum gravity can be unified in this framework. Since it
is derived from heterotic M-theory, is a quantum mechanical theory of gravity. Vacua of the
theory have been found with standard model gauge groups and three families of quarks and
leptons [30, 31, 70].

The four-dimensional, low energy effective action of Horava-Witten theory, and its su-
pergravity description [192], has been calculated by Lukas et al. [126]. Because the couplings
will play a role in our discussion in chapter 4, factors of Newton’s constant are retained in
this section. We record the effective action in the full formalism of [126], although it is
principally the interactions of the radion that will be important to us in later chapters.

The action is derived from the full eleven dimensional theory by compactification on the
manifold My x CY3 x S1/Z,, where M is an arbitrary four-manifold and CY3 is a Calabi-
Yau three-fold (i.e. it has six real dimensions). The effective action is complicated, because
it contains contributions from the decomposition of the M theory three form (with a four
form field strength) along various directions, two Eg gauge supermultiplets on the orbifold
planes and moduli from the compactification (the radion and Calabi-Yau moduli).

The action contains a gravity sector, including the radion ¢ and Calabi-Yau volume mod-

ulus a, the GuT sector (which arises from Eg gauge fields in eleven dimensions) and the
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universal hypermultiplet. The action is (from [126] equations (81), (114) and (121))

v
s="F

2 J% ﬁd‘*x[R ~180,a0"a~309,89"e~3(e™" + 3ape "9, Co"C

—3e7%(CPC99,CPO* C1+ CPC10,CPO* C1-2|CI*9,Co* C)

3k?

- (e—ze—6a_%ane—E—lza)(ldpqupcqlz+%(CT1'C)2)]
VvV K \2/3 .
_ - —7 44 6a & tr(F1)2
87‘[K2(47‘[) JM4 gd x((e>" + Eaoe) w(F)

+(e%% = Eaged) tr(F(Z))Z), (2.105)

where we have set two moduli that arise from the bulk three form (¢ and y) to zero. Now
g is the four-dimensional metric, R is the associated scalar curvature, the separation of the
branes is given by mpe‘, the volume of the Calabi-Yau manifold is given by Ve®? and the
modulus & = ¢ + 2a. The C are scalar fields transforming in the 27 of Eg, F') and F'® are
the gauge fields strengths on the fixed planes. The constants are x2, the eleven-dimensional
gravitational coupling, k = 4\/2pn(4n/x)!/?, £ = V2mp/16, the T' (i=1,...,78) are Eg
generators in the fundamental representation of 27, d 4, is the tensor that projects out the

singlet of 27°. Finally, a is the distortion of the Calabi-Yau three-fold X

1 K \2/3
ap = — (—) J wAtrRY AtrRY, (2.106)
V2nVi\4n X

where w is the Kihler form and the Ricci tensor R™) is calculated with respect to X.
Newton’s constant and the GuT coupling for this theory are

K2 (4nk

and aGUT = ——. (2.107)

2y2/3
G=—1
1672 Vp 2V

Phenomenology suggests, roughly, V1/¢/x2/® ~ 2 and np/x?/° ~ 8 [13]. The GUT mass, in
a reasonably isotropic Calabi-Yau manifold is given by Mgyt = V"¢ ~ 10'©GeV. This
suggests k%' ~ 5 x 10716 GeV. Witten [196] has pointed out that in this case, the effective

action (2.105) is an expansion in the parameter ¢ = x%/3p/V?/3. This expansion breaks



2. SCALAR FIELDS AND COMPACTIFICATION 33

down for € ~ 1. In this case, the Calabi-Yau becomes so distorted along the orbifold interval

213 ameliorates the situation

that its volume becomes negative. Including higher terms in x
somewhat [52] but it is not known what effect higher order terms in the scalar curvature
(such as R* terms) will have [6].

An important feature of this solution is that it must have a non-vanishing bulk three form
flux. This prevents the theory from having the anti-de Sitter bulk of the Randall-Sundrum
theory (2.98) and gives, to the order considered by Lukas et al., a linear (Q2(y) o< 1 + a|yl),
rather than exponential warping (Q(y) eCV). Tt [52] it is pointed out that higher order
corrections give a quadratic warp factor. Including higher order scalar curvature terms, such
as R*, also does not give an exponential warp factor [6]. Therefore, it unfortunately does not
seem easy to achieve the Randall-Sundrum solution to the weak hierarchy problem in this
model [92], although it does explain the smaller hierarchy between the gut and Planck
scales in (2.107). The form of the warp factor will be significant for our discussion of the
equivalence principle in chapter 4.

Considerable additional technology has been developed for compactification, particu-

larly sophisticated techniques in algebraic geometry [90, 91]. However these effective ac-

tions provide the broad features we will need for applications to cosmology.



CHAPTER 3

The speed of sound of dark energy

Recent evidence suggests that most of the critical density of the universe is made up
of a component with large, negative pressure. Determining the nature of this dark energy
component is one of the central problems of modern cosmology. It is not known if the
origin of dark energy is a cosmological constant (such as a field theory vacuum density) or
a dynamical component, such as quintessence [198]. Both approaches are beset by difficult
theoretical problems. The cosmological constant, although the simplest theory, is fine-tuned
by roughly 120 orders of magnitude compared to the Planck density expected from field
theory. Barring an anthropic explanation [190] it is not known how such a small constant
could be obtained from fundamental physics. Quintessence has the advantage that the scale
of dark energy can be determined dynamically by “tracker” solutions, but it is unclear how
the theory would be protected from quantum mechanical corrections which would give the
field a large mass and couplings to other fields.

Quintessence is modeled by a scalar field slowly rolling down a flat potential [38, 157,
198]. The scalar field may be regarded as real, or simply as a device for modeling more
general cosmic fluids with negative pressure. These models can be distinguished from a
cosmological constant, at least in principle, by the equation of state w = p/p. A cosmological
constant has w = —1: it has constant energy density. A scalar field generally has w different
from unity and time-varying. Measurements of supernovae [120, 150, 158, 159], large-scale
structure [175] and the cosmic microwave background [167] all constrain the equation of

state.

34
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These observations of dark energy are all indirect, however. The redshift-distance rela-
tion obtained by studying type Ia supernova can, in principle, measure the expansion his-
tory of the universe very precisely. However, this provides only an indirect constraint on the
equation of state. The relationship between redshift z and luminosity distance d; (the ratio

of luminosity to flux for a distant object) is

1+
dy=—2(1 +Qm/QQ)“2J
Hy

1+z dx ~1/2

. %302 [3—2+6XP(3J':C%WQ()/))] > (3.1)

where wq(2) is the equation-of-state of dark energy at redshift z, and Q, and Qq are the
fractional densities (2.11) of matter and quintessence today. This multiple-integral relation-
ship means that the redshift-luminosity relation is principally sensitive to an average, ef-
fective equation of state w, and is quite insensitive to the fine details of its time evolution
[131, 132]. If the equation of state of dark energy is different from —1, there is no reason to
expect it to be constant. Observations of supernovae, then, reveal little detailed information
about the underlying quintessence. This situation may not improve dramatically with better
observations, because even large collections of supernovae are still restricted by underlying
systematic errors. It is possible that current methods will not be able to constrain w to better
than 10% accuracy [182].

Therefore it is important to develop complementary techniques to confront the dark
energy problem. If dark energy in our universe is dynamical, then it is possible that there
are other observable effects that would distinguish it from a cosmological constant. In this
chapter, the effect of another parameter, the sound-speed of dark energy - i.e. the speed with
which dark energy perturbations propagate - is investigated. In the next chapter, the role of
tests of the equivalence principle in constraining dark energy is investigated.

In standard models of quintessence [38, 84, 149, 157, 198] the scalar field ¢ has a canon-
ical kinetic term, X = —1 (9, ¢)%, as in (1.6). A second category consists of models in which
the kinetic energy is not canonical and could be a general function of X. While these have not

often been considered in the literature, they are well-defined Lorentz invariant field theories
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with (nonlinear) second-order equations of motion. They are significant, because they are
corrections that are expected to occur in brane and string models. A well-known example

of such an action is the scalar Born-Infeld action [21],
S:—J'd4x\/—gf(¢)\/1—ocX, (3.2)

where « is a constant and f some function of ¢. This action is used in string theory as a
higher order generalization of p-forms actions (in this case, a 0-form or scalar field). It is
also the action describing the tension of a three dimensional brane displaced in an extra
dimension X* by an amount proportional to X* = ¢.

A prominent class of such models are k-essence models, which are designed to address
the issue of why cosmic acceleration has begun only recently [10, 11]. The equation of state
in k-essence models is positive, and mirrors the background equation of state, until the onset
of matter-domination triggers a change to negative pressure. A key difference between stan-
dard quintessence and k-essence models is the time-evolution of the equation of state. The
equation of state for a k-essence component approaches —1 soon after the onset of matter-
domination and then increases towards a less negative value in the present epoch as the com-
ponent begins to dominate the energy density. In standard quintessence tracker models, the
equation of state is generically monotonically decreasing and approaching —1 today. Quin-
tessence relies on a particular form of the potential for its attractor behavior [173], whereas
these models rely on dynamical attractor behavior that comes from the non-canonical ki-
netic energy density. This feature was discussed in detail in [11].

In this chapter, we focus on a second physical property - the speed of sound - which
also distinguishes standard quintessence from k-essence and, more generally, from other
cosmic fluids described by a non-canonical kinetic energy density. The sound speed greatly
influences the fluctuations of the quintessence fluid and can also, in principle, have an effect
on the cosmic microwave background (cmB) and matter power spectrum. We investigate

how the variable speed of sound influences the fluctuations of the cMB compared to the case
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of standard quintessence where ¢ = 1. In general, the effect is small, but we show that it is
detectable in cases like k-essence models in which the speed of sound is nearly zero during
most of the period between last scattering and the present epoch. This behavior produces
the greatest difference from standard quintessence [98, 99].

After describing how the speed of sound arises in cosmic fluids and scalar field models,
we compare models with exactly the same equation of state as a function of redshift, w(z),
but different sound speed. We find that models with near-zero sound speed today (such as
k-essence models) are distinguishable from models with ¢2 = 1 based on measurements of
the cMB power spectrum, provided the quintessence energy density is greater than a few
percent of the critical density at last scattering. The density requirement, which is satisfied
by typical k-essence models, for example, is needed so that the sound speed has a measurable
effect on the acoustic oscillation peaks of the cMB which are sensitive to conditions at the
last scattering surface. Similar results can be obtained for more general forms of dark energy
[43, 98, 99]. We then consider whether the effect can be mimicked by varying other cosmic
parameters or by introducing a time-varying equation-of-state. To perform the studies, we
introduce a spline technique that is useful in exploring models with time-varying w. Our
conclusion is that the sound speed effect is distinguishable from all other standard parameter
effects. Hence, the cMB can provide a useful constraint on the sound speed of dark energy.

This chapter is largely based on work in [79]. Subsequently, DeDeo et al. [64] showed
that related effects due to the sound speed of quintessence may occur in the matter power
spectrum. Bean and Doré [15] tested the model against wMmAP data but found that it does
not yet clearly discriminate sound speed. Hannestad [93] did a joint analysis with large scale
structure and supernovae and likewise found that current data do not differentiate the sound
speed. Both Hannestad and Bean and Dor¢é have pointed out that the ability to constrain the

sound speed is diminished if w is close to —1.
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1. The sound speed of a scalar field

The perturbed equation of motion for a scalar field against a background ¢ (#) is

—08¢ ==V 44(¢ (1), (3:3)

omitting the back-reaction on the metric. Since the covariant dAlembertian is applied to ¢
it always propagates with the speed of light: ¢2 = 1. A perfect fluid, however, w = 2 if w is

a constant, or, generally (2.73),
w=3H(1+w)(w-c2). (3.4)

This comes from ¢2 = p/p. For a perfect fluid, the behavior of perturbations is closely tied
to the equation of state, which is a property of the background evolution.
Let us now consider a scalar field with a more general Lagrangian density 7 (X, ¢) and

action
where' X = —%(a¢)2. In order for the equations of motion to make sense, 74 must be a

differentiable function of X. The canonical scalar field has 74 = X — V. The stress-energy

tensor is
Tyv = l(ﬁ,Xa‘quavgb - l(,bg‘uv; (3.6)

so comparing with the perfect fluid stress energy tensor (2.3) the field has pressure, energy

density and equation of state

p¢="1y (3.7)
pe=2XLyx— Ly, (3.8)
7T
wg = | (3.9)
2X1¢,X— l(p

'Our definition of X differs from [8-11, 79] because we use the opposite sign convention for the
metric.
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respectively. The general equation of motion is complicated. However, if we assume a ho-

mogeneous background ¢ = ¢(t) and H = H(?), it simplifies considerably:
(Lo x+2XTLgxx)+3HP Ly x+2XLg xp= L0 (3.10)
The perturbed equations of motion about this background are
—(Z¢,X+2X1¢,XX)6E[5+l¢,xa_2V26¢+'--:0, (3.11)

where a is the scale factor and the dots represent terms of lower order in the derivatives.

Thus, the speed of sound of this field is

2= L¢,x
S 1¢,X+2X1¢,XX’

(3.12)

which is equal to unity only when X =0 or Z4 xx = 0, as for a canonical scalar field.

The Born-Infeld action (3.2) reduces, after a field redefinition, to the canonical action in
the slowly varying limit |« X| <« 1. However, when a X is larger, it begins to differ appreciably.
The model has equation of state —1+a X and sound speed 1—aX. Abramo et al. [1] have used
cMB data to try to see if the a Born-Infeld action is preferred over the standard Klein-Gordon
scalar field. They determined that without the specific attractor behavior of k-essence, the
dark energy density at decoupling is insufficient to distinguish the models in a statistically
significant way.

A potential concern is that the sound speed (3.12) can be greater than unity. Indeed,
(3.2) has cf > 1 for @ < 0 in a homogeneous (X > 0) background. If Z4 is not every-
where a convex function of X, then there will be intervals on which ¢2 > 1. Upon closer
examination, one can see that this condition is physically allowed: this means that perturba-
tions of the background scalar field can travel faster than light as measured in the preferred
frame in which the background field has vanishing spatial gradient. For a time dependent
background field, this frame is uniquely defined and means the perturbation theory is not

Lorentz invariant. There is no violation of causality. The underlying theory is manifestly
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FIGURE 1. The propagation of perturbations for a scalar field with canonical
kinetic energy (left) and non-canonical kinetic energy (right). In a homo-
geneous background (top) perturbations of both fields propagate isotropi-
cally. The perturbations of the canonical field propagate on the light cone,
but the non-canonical field has sound speed generically different from the
speed of light (depending on the Lagrangian, either faster or slower than
light). In an inhomogeneous background (bottom) - or a homogeneous,
time-dependent background seen from an accelerated frame — the pertur-
bations of the canonical field still propagate on the light cone. The pertur-
bations of the non-canonical field propagate anisotropically, with the speed
increased in one direction and decreased in the other. Since perturbations
in the ¢2 > 1 version do not propagate along arbitrary spacelike trajectories,

there are no violations of causality from closed causal curves in this model.

40
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Lorentz invariant and it is not possible to transmit information faster than light along arbi-
trary space-like directions or create closed time-like curves. While (3.10), (3.11) and (3.12)
were derived in a preferred frame, in which the background is homogeneous, it is possible
to use Lorentz invariance to see that the field perturbations propagate anisotropically in a
general background. See figure 1. The condition that ¢2 < 1 everywhere is the condition
that Z4 be a convex function of ¢: Ly xx = 0. In this chapter, our results depend only on
the c2 ~ 0 behavior of k-essence at moderate redshifts, and not on any c2 > 1 behavior. For

a more thorough discussion of the stability of these models, see [9].

2. Computing the cosmic microwave background

The cosmic microwave background is a 2.7 Kelvin thermal relic of the big bang. It is
emitted at decoupling, when ions in the primordial plasma combine with free electrons to
form atoms, and the Compton scattering of radiation ceases. This happened at a redshift of
roughly 1, 000. The radiation has traveled relatively unimpeded until today, so the observed
CMB is an image of the last scattering surface, the spherical surface surrounding us at this
large redshift. Minute anisotropies, due to fluctuations in the photon temperature at decou-
pling, are encoded in the cMB. By decomposing the temperature of the cmB into spherical
harmonics, the power spectrum may be studied. The power spectrum comes from a nearly-
scale invariant spectrum of primordial perturbations multiplied by a transfer function de-
scribing the evolution of perturbations after they reenter the horizon. These are described
in section 2 of chapter 2.

The temperature on the sky of the cmMB can be written as Ty (1 + ®), where T is the
background temperature and the fluctuation ® depends on the direction being observed.

But © can be decomposed into spherical harmonics Y;,,,,

I
Z A1m Y im> (3.13)

m=—1

18

@ =

—
I
—
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FIGURE 2. The effect of the speed of sound on scalar field perturbations is

shown, for a model with w = —0.75 and Q0q = 0.71 today. The horizon, at

5000 Mpc, corresponds to the left axis. The scale c¢;/Hj acts as a cutoft for

the quintessence power spectrum. For larger wavenumbers, the spectrum

falls off very rapidly, as 8% ~ k6%, regardless of the equation of state.
where the coeflicients a;,, are independent Gaussian random variables, as the initial condi-
tions discussed in section 2.1 are a Gaussian random field. For fixed [, they are identically
distributed. If this picture is correct, the only information in the cMB is contained in Cj, the
variance of the ay,, for fixed . Since there are only 2/ + 1 of the a;,, for a given /, there is a

fundamental limit, the cosmic variance, to how well this variance C; can be measured from

our observations of the cmB, given by

AC; 2
C;  \20+1°

This is used to compute the absolute likelihood, given perfect observations, of being able to

(3.14)

detect the speed of sound effects.
The effect of the speed of sound on the cMB perturbation equations comes from the fact

that, for ¢2 < 1, k-essence will collapse via gravitational instability into cold dark matter
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(cpM) potentials, whereas in the ¢ ~ 1, the growth of density perturbations is strongl
p s g Y P gly

suppressed. This can be seen from (2.74). The term

) os (3.15)

where § is the density contrast, sets the scale of the Jeans instability: clustering on scales
smaller than ¢,/ H is suppressed by pressure effects. For ¢ = 1, clustering inside the horizon
is heavily suppressed, while for c; = 0 there is no scale on which it is suppressed (figure 2).
The power spectrum for a given cosmological model may be computed by integrating the
Boltzmann equation for the various cosmic fluids. The cMB power spectra for our models
are computed by modifying the standard cMBFAST code 38, 163]. These calculations are

performed in synchronous gauge, which is written
ds® = a*(D)[-d7* + (8;; + hij)dx' dx/], (3.16)

where §;; is the unperturbed spatial metric, and h;; is the metric perturbation. This choice
of gauge is efficient for solving the Boltzmann equations, but has the disadvantage that the
gauge slicing (constant 7 surfaces) is not uniquely defined: the surface v = 0 is arbitrary.
It is usually chosen so that the threading (the lines of constant x) follow the geodesics of
a particular particle species. In the case of cMBFAST, these are the dark matter particles.
The Newtonian interpretation of synchronous gauge is also not as straightforward as in the
longitudinal gauge of section 2. See [100, 130] for a detailed comparison of the two gauges,
and formulae for transforming variables between one and the other.

The modifications of CMBFAST are straightforward. We use & to represent the trace of

the spatial metric perturbation h;;. The effect we are examining is due to the perturbations
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to the k-essence stress-energy in the synchronous gauge for a mode with wavenumber k

5¢ dy _,
Sp=-2p——(p+p)—c, (3.17)
p==2p"~lprp)
d¢ oy
Op=—2p— —(p+p)—= (3.18)
P P¢ p+p y
0= Lkzy&b (3.19)
V2

where y = 1/V/X and the 0 variable of cMBEAST is the divergence of the fluid velocity, so
k'TO; = 0(p + p) (see (2.42)). It is related to the variable §H of section 2.2 of chapter 2 by
0 = 3adH. The density contrast, § = §p/p, obeys the equation
/ 1,/ op
8 =-1+w)(0+3h")-3H 5, W J, (3.20)
p
where the derivative is with respect to conformal time and H = a'/a. The quantity §p/dp
appears, and is generally different from c2 (see chapter 2, section 2.2). In fact it can be

expressed in gauge invariant form by
2 Qp 2 /
6p:c58p+ﬁ[3?—[(l+w)(cs—w)+w], (3.21)

so they agree only on small scales (or for perfect fluids, for which the second term vanishes).

This leads to a simplified evolution equation for the velocity gradient
0 =Bc2-1DHO+c2k*S/(1 +w). (3.22)

Kinetic quintessence is distinguished from regular quintessence, for which ¢2 = 1 in
equations (3.21) and (3.22). Linearized perturbations in k-essence can propagate non-
relativistically, with c2 < 1. We can see in equation (3.22) that a small sound speed will
cause the velocity gradient to decay; with the conventional gauge choice that O¢py = 0, the
inhomogeneities in the k-essence will describe a fluid which is comoving with the cold dark
matter. From equation (3.21), we see that the second term on the right hand side will be

negligible even on scales approaching the horizon. The overall effect is that the pressure
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fluctuations §p are too weak to prevent k-essence collapse via gravitational instability into
the cpm gravitational potentials.

The cMBFAST code takes w(a) and c;(a) as inputs, so it is possible to manually adjust
these functions to have any values (including, of course, c¢; = 1). Once we have computed
the cMB anisotropy for two models, they can be compared by computing their likelihood
difference, the probability that they could be confused due to the cosmic variance in local
measurements of the cMB. Given models A and B, the negative log-likelihood, —logL, is
derived in [101] from (3.14):

(3.23)
IB Cip

C C
—logL=Y (I+ %)(1 _ A +1ogi).
7 C
The condition —log L > 6 corresponds to distinguishability at the 3¢ level. The relative nor-
malization of the spectra is chosen so as to minimize the likelihood difference, including /

up to 1500.

3. Measuring the speed of sound of quintessence

In the case of k-essence the Lagrangian generically has the form Z4 = p(X)/¢?, where
p(X) is some function with p xx # 0. We have chosen a specific form for p for our fidu-
cial model. The conditions p must satisfy are discussed in [11]. The equation of state and
sound speed for this model are shown in figures 3 and 4 respectively; they are expressed
as functions of the scale factor a (a = 1 today) by integrating the equations of motion. To
completely specify the model, we fix the cosmological parameters today to reasonable val-
ues: O =0.05, Qcpm =0.3, Qg =0.65 and hy = 0.5 (where hy is the Hubble parameter
in units of 100 kmsec™! Mpc™1). The energy density as a fraction of the critical density,
Qk-essences is shown in figure 5. While ¢2 > 1 for large redshifts, this is not an important fea-
ture of the model: Q, is reasonably small whenever c2 > 1, so the value of c, at these times
has negligible effect on the cMB. We have verified this by rerunning the calculation after

artificially truncating the speed of sound at ¢; < 1 and comparing the cMB power spectra.
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FIGURE 3. The equation of state for the fiducial model (solid line) and the
closest spline fit (dashed line) quintessence model. The spline fit is chosen
so that the cMB spectrum matches the fiducial model to within the cosmic
variance limit. However, the spline itself is smoother than the actual w(a). As
discussed in the text, there is a large degeneracy in the spline parameters, so
the spline need not mimic the fiducial equation of state very closely to obtain

a good match to the cMB spectrum.
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FIGURE 4. The speed of sound as a function of the scale factor a (aoday = 1)

Note that at ¢2 < 1 near the last scattering surface and at the present epoch.

Moreover, with slightly different parameters, we can obtain a model in which ¢; < 1 which

at early times and which has the same behavior at late times.) The most important feature of
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FIGURE 5. QO essence ad Qq as a function of z for the k-essence (solid line)
and best-fit spline models (dashed line), respectively. Note that Q, falls oft
to zero at large redshifts, whereas O _csence approaches a finite value; w ap-

proaches 1/3 for this model at large redshifts.

the fiducial model is that c2 < 1 whenever k-essence contributes significantly to the energy
density of the universe.

The power spectrum for our fiducial model is given by the solid line in figure 6. We
can see the effect of the unusual speed of sound on this model by computing a new spec-
trum, which has the same equation of state and cosmological parameters, but whose speed of
sound has been set equal to 1 for all a. This corresponds to a quintessence field — with canon-
ical kinetic energy - rolling down a potential. The power spectrum for the model is shown
in figure 6. The two models have log likelihood difference —logL = 127: they are easily
distinguishable. The speed of sound has a significant effect on the cMB anisotropy. Figure 7
compares the dark matter and dark energy contributions for quintessence and k-essence
models. The small sound speed results in distinctive oscillations in the case of k-essence.

Can the effect of the sound speed be distinguished from that of other cosmological pa-
rameters? There is already a large degeneracy [101] in these parameters, so it would not have
been too surprising if allowing a variable speed of sound merely expanded the pre-existing
degeneracy. This problem is addressed by considering, as above, quintessence models which

have cf = 1, but allowing the values of Q,, Qcpm, Qq (quintessence) and h to vary (subject
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FIGURE 6. The cMB power spectrum (with no particular normalization) for
k-essence (solid line), the model with ¢; = 1 (dot-dashed line, —logL = 127)
and the best-fit spline model (dashed, —logL = 28). Models that are distin-
guishable can still fit quite closely. The lower diagram shows A C;/ C; (relative

to the fiducial model) and the cosmic variance envelope.

to the flatness condition Qy + Qcpm + Qq = 1). For the comparison models, the equation
of state, w, is taken to be constant as a function of the scale factor a, but is allowed to vary
from model to model. Minimizing the log-likelihood over these parameters, the best fit
gives —log L = 32, with parameters Qj, = 0.05, Qcpm = 0.35, Qg =0.60, hg =0.48 and
w = —0.78. This fit was found using well known minimization schemes [154]. It seems likely

that —logL = 32 is the best that can be done for this class of models, as the result is quite
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FIGURE 7. Comparison of the power spectra for dark matter (cpm) and
dark energy (Q or K) for models with dark energy in the form of cosmo-
logical constant (A), quintessence (Q) and k-essence (K). All models have
Qcpm = 0.3, Qph? =0.02, and h = 0.65. For models with cosmological
constant, there is no perturbed dark energy component. Note the distinc-
tive oscillations of the k-essence component associated with having ¢; < 1.

These are discussed further by DeDeo et al. [64].

insensitive to the parameter values with which the minimization is started or to which min-
imization algorithm (conjugate gradients or a simplex annealing method) is used. Hence,
the speed of sound is distinguishable.

Thus far, our fiducial model has been compared with two kinds of ¢; = 1 models: one
with all other parameters, including w(a), identical and one with constant w, with the pa-
rameters (including w) adjusted so as to minimize the likelihood difference. In both cases
the fiducial model was easily distinguishable. We next test the possibility that some other
form of quintessence, with general w(a) and canonical kinetic energy, can reproduce the

CMB anisotropy of the time-varying c; model. For this purpose, we consider models with
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an equation of state given by a cubic spline [154]. That is, we introduce six new parameters
into our model: the values of w at a = 1074, 1073, 1072, 107! and w at the two extremes
of a, which lie at a = 107!* and 3.8. (Introducing more spline points has a negligible ef-
fect on our results.) The equation of state at other values of a is then given by a piecewise
cubic (in loga) function whose coefficients are chosen so that it passes through the points
selected above and has a continuous second derivative. We still allow Qy,, Qcpm, Qg and
ho to vary (again enforcing flatness), and now allow, for completeness, the spectral tilt
to vary as well. The model therefore has a total of ten free parameters. The minimum log-
likelihood difference found was —logL = 28, which is not a significant improvement. This
model has Qp, = 0.05, Qcpm = 0.34, Qg =0.61, hg = 0.47, ny = 1.02. The equation of
state is shown in figure 3 (dashed line), Q2 as a function of z in figure 5 (dashed line) the
CMB power spectrum is shown in figure 6 (dotted line).

The spline technique always produces a very smooth looking equation of state, compared
to the rapidly varying equation of state (particularly near a = 0.01) given by the actual k-
essence model. To see that this does not affect the analysis - that the spline equation of
state has sufficient freedom to closely mimic that for the fiducial model - we compare two
models to the fiducial model, one with ¢; = 1 and one with an identical speed of sound to the
k-essence model. The equations of state of these models are allowed to vary using the spline
technique, but the cosmological parameters are fixed to be the same as for the fiducial model.
The minimum —logL for the ¢, = 1 model is 70, whereas the log-likelihood difference for
the model with the fiducial sound speed is much less than one. Thus, the spline technique
appears to do a very good job of modeling the relevant details of the equation of state. Since
the equation of state is constrained so indirectly by cosmological observables such as the
redshift-luminosity relation (3.1), it is not surprising that such a parameterization is good
at exploring the available equations of state.

The cubic spline is a useful method for studying varying a general equation of state w(a)

with a finite number of fitting quantities. The same technique can be extended to include
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general time-varying c;. In this way, near-future observations of the cMB may be used to
constrain general models of quintessence without introducing strong priors into its nature.
A disadvantage of using the spline, however, is that it has such a large parameter degeneracy
that it does not provide a clear way of sorting out which features of the equation of state are
best constrained by a particular set of observations.

We have seen from our example that it is possible to robustly (much better than 30)
distinguish models with ¢; = 1 dark energy (e.g. scalar fields with canonical kinetic energy
density) from models with ¢ < 1, such as k-essence. Our studies show that distinction
depends on ¢; < 1 and Qg being at least a few percent at the last scattering surface, so that
the scalar field fluctuations are significant enough that they affect the acoustic peaks, which
can be precisely measured, as well as the large-angular scale anisotropy. If Q0 is too small
at the last scattering surface, then the speed of sound only affects the large angular scale
anisotropy and is difficult to distinguish because of the large cosmic variance at those scales.
Our results are summarized in 1.

A positive detection of this sound speed effect would be encouraging, as it would provide
definitive evidence that dark energy has a dynamical origin. Bean and Doré have looked for
this effect, and have found the very tentative 10 result that wmap data suggests c2 < 0.04 at

the surface of last scattering. Hannestad [93] extended this analysis to large scale structure

2
5

and supernovae and did not find any constraint on c¢;. However, with improved data -
in particular, better measurements of the high-/ power spectrum - it is likely that more
stringent constraints can be placed on ¢2. Given the known degeneracies in the cosmological
parameters, it is important to continue look for effects that make a clear distinction between

dynamical dark energy and a cosmological constant.



Model Oy Qcom  Qq ho n w cs | —loglL

Fiducial k-essence 0.050 0.300 0.650 50.0 1.00 Fig. 3 (k-essence) Fig. 4
Imposed 2 = 1 0.050 0.300 0.650 50.0 1.00 Fig.3 (k-essence) 1 127.7
Best-fit ¢2 = 1 0.056 0.412 0.532 45.8 1.00 Fig. 3 (k-essence) 1 24.2

Spline w and ¢2 = 1 0.052 0.336 0.612 47.6 1.02  Fig. 3 (spline) 1 28.1
Constant w and ¢2=1{0.050 0.351 0.599 48.4 1.00 -0.778 1 32.4
Acpm 0.041 0.290 0.668 53.2 1.00 -1 N/A 32.7

TaBLE 1. The fiducial k-essence model (first line) is compared against several c2 = 1 models. Simply setting c2 = 1
(second line), holding the other parameters fixed, gives a much worse fit than using minimization methods to get a
best fit (third line). The best c2 = 1 model has the same equation of state as the fiducial model, but different parameters.
The others, fit with a spline (fourth line), a constant equation of state (fifth line) and a cosmological constant (last line)

are somewhat worse.
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CHAPTER 4

Dark energy and the principle of equivalence

Although most attempts to distinguish whether dark energy is a cosmological constant
or quintessence rely on measuring the equation of state, we saw in the last chapter that there
is at least one other characteristic — the speed of sound - that can also be used as a test.
However, dark energy was still modeled as a scalar field with no coupling to visible matter
and minimal gravitational coupling. There is little reason to think this should be the case.
In the compactified models considered in section 3 of chapter 2, the radion had couplings
to matter and gravity. More generally, quantum corrections to scalar fields can generate
couplings throughout the matter sector.

String theory is expected to contain a large number of scalar fields - moduli and the dila-
ton — which are light. It is usually argued that these fields are stabilized by non-perturbative
effects, such as symmetry breaking. Since there are strong experimental limits on long-range
scalar interactions in the universe, this is probably the case for most of these fields. There
are sound theoretical reasons, however, for supposing that scalar fields might play a crucial
role in cosmology, by determining the initial conditions for the hot big bang in the infla-
tionary [121, 124], ekpyrotic [112, 113] and cyclic [170-172] scenarios, and as a dynamical
solution of the cosmic coincidence problem [10, 173, 198]. Damour [53, 54] and Brax et al.
[34, 35] have also pointed out that studying equivalence principle violating scalar fields is
well motivated by brane worlds and other string models.

Our approach is to assume that dark energy is driven by a light quintessence field with
interactions that violate the equivalence principle. This may be a more realistic model of
dynamical dark energy than the idealized, minimally coupled model. We explore the com-

pactifications discussed in section 3 of chapter 2 and describe the extent to which they agree
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with the equivalence principle. We consider several models including, briefly, the minimally
coupled scalar field [157], Brans-Dicke theory [28], a more general coupled scalar field, the
exponentially warped Randall-Sundrum geometry [155, 156], four-dimensional heterotic
M-theory [126], the cosmic chameleon model [116, 117] and the runaway dilaton model
[85, 185]. These will be described later in the chapter.

The early experimental foundation of general relativity rested on two measurements: the
gravitational deflection of light by the sun and the precession of the perihelion of Mercury.
In 1959 a program of precision experimental tests of relativity was initiated, largely at the
impetus of Dicke [66]. These can be thought of in the framework of the equivalence principle
[193]. This included precision tests of the universality of free fall [26, 160, 174], bounds on
the variation of the fundamental constants [3, 56, 166] and metric tests of gravity [19, 165,
194]. These experiments are a powerful incentive to understand the connection between
dark energy and the equivalence principle. By contrast, the equation of state of dark energy
was first detected in 1998 [150, 158] and, as was mentioned in chapter 3, there may be limits
on how well it can be measured. We argue that experimental tests of gravity are a better tool
for constraining many models of dynamical dark energy than the equation of state.

The equivalence principle can be formulated in different ways. In section 1, we discuss
the different forms of the principle and the present state of experimental tests. In section 2,
we discuss universal models, such as Brans-Dicke theory and the S'/Z, compactification,
which modify gravity in such a way that non-gravitational physics is preserved. In section 3
we discuss more general models, such as heterotic M-theory, in which the fundamental con-
stants may vary and the universality of free-fall is violated. Section 4 discusses our results,
which are summarized in table 1.

Although we do not discuss it here, Carroll [40] has proposed a model in which an ap-
proximate global symmetry (translation invariance in the scalar field) might suppress some
scalar field couplings enough that they are consistent with observations. Other couplings

(to the derivatives of the scalar field) would be present at first order. This could lead to an
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unusual effect in which the polarization vector of radiation from cosmological sources is

rotated.

1. The equivalence principles

The equivalence principle asserts that all particles, regardless of their composition or
structure, fall along the same set of trajectories. That is, there exists a set of universal, in-
ertial frames in general relativity. More generally, the principle can be taken to imply the
Copernican principle that local experiments should always have an outcome that is inde-
pendent of their velocity or position in space-time. This principle has been a powerful tool
for testing theories of gravity as part of a program for precision tests of general relativity first
laid out by Dicke in 1959 [66, 67]." There are three forms of the equivalence principle in

frequent use.

1.1. The weak equivalence principle. The weak equivalence principle, or universality
of free fall, asserts that uncharged test particles follow identical trajectories, regardless of their
mass, composition or structure. The universality of free fall is a local statement, so that tidal
forces do not play a role. This basic principle has been known since Galileo and Newton as
the equivalence of inertial and gravitational mass, but in general relativity it is a consequence
of the geometrical nature of the theory: it is true for all metric theories of gravity, in which
matter is minimally coupled to gravity by the factor of \/=g in the action. In such theories,
matter all follows the geodesics of the same metric.

The weak equivalence principle is tested by measuring the differential acceleration of two
masses in a gravitational field. Departures from the universality of free fall are quantified by

a parameter #, which is the fractional difference in acceleration between two masses:

la; —asl
=2— (4.1)
d lai +azl

'See Will [193] for a review of experimental tests of gravity and Brans [29] for an interesting historical
discussion.
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It is usually thought that a violation of the weak equivalence principle would show up as the
effective mass associated with different forms of energy - say leptons, Qcp binding energy,
or electromagnetic binding energy - falling at different rates. In practice, the weak equiva-
lence principle is tested by E6tvos torsion-balance experiments [78] testing the differential
acceleration of pairs of different metals which have different fractional contributions from
the different kinds of energy. The pairs are chosen to optimize the difference in their energy
compositions [53]. The most stringent limits [26, 160] are set by looking for differential ac-
celeration towards the sun. Braginsky and Panov [26] have set a limit of # < 107! (for a
platinum and aluminum pair). The E6t-Wash group [174] have set limits at different ranges
and for different kinds of sources. In particular, they have set limits for differential accelera-
tion towards the Earth ( < 3 x 107!2) and dark matter at the galactic center y°M < 2x 1073,

A useful way to think of violating the weak equivalence principle is that different sorts
of matter couple to different, but conformally related metrics. If particle X couples to the
metric f(¢)guy, then the scalar field ¢ will generate a force between two X particles that is
of order (f'/f)? times the gravitational force. A theory of gravity is universal if all sources
of energy couple to the geodesics of the same metric, and which therefore satisfy the weak
equivalence principle. Apart from general relativity, another universal theory of gravity is

Brans-Dicke [28] theory,

SD :Jd4xﬁ(¢R—w¢_l(a¢)2+1NG[‘I’i;gyv]): (4.2)

where Z patter is the non-gravitational (matter) Lagrangian and the ¥; are the matter fields.
This theory is manifestly universal, because, as in general relativity, the matter sector is min-
imally coupled to the metric through the factor of /=g, and does not couple to the other
gravitational variable ¢. After a change of variables and conformal transformation (2.85),

the Brans-Dicke action can be written

SBp = Jd‘*xv ~h(3Ry - 1@y)? + e*PV LG Y52V Ry ), (4.3)
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where f8 = (6 + 4w)~"/2. The theory is also universal. The powers of the metric & and ef¥
match up exactly, so that all matter couples to the same metric g, = e*PVh uv and there is
no differential acceleration.

It is useful to write # as a sum of contributions from different types of matter. If we write
the masses m and m; as sums over different kinds of energy m; » =Y 4 m’f, , then we may

write [63, 193]

=[Sl -2, (40

where 74 quantifies the magnitude of the equivalence principle violation for a particular
type of matter.” If the matter has Einstein-frame Lagrangian density Z 4 which couples to a

(canonically normalized) scalar field y, then it is given by [54]

dlog 7L 4\2
#) _ (4.5)

Na= ( Iy
This is a measure of the strength of the equivalence principle violation of the field y. It is
squared because the coupling comes from two bodies, the test mass and the source of the
gravitational field.

Consider, for example, platinum and aluminum, the two metals used in the Braginsky
and Panov experiment. If we consider these metals to be composed entirely of fermion
(quarks and leptons) rest mass and gauge field energy, the two factors in (4.4) are very
roughly 3 x 10~ (this is the fractional difference of the contribution of lepton and quark
masses to the total mass of the atoms). If these masses are independent of y but the gauge
fields have an equivalence principle violating interaction,

1
S — .
Lcur 16”“GUTf(V/) (4.6)

*This framework neglects other ways in which the equivalence principle could be violated, such as
accelerations that depend on the aggregate size of the test mass. The composition dependent effects
are the important ones for the theory under consideration.
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then the measured 7SV for attraction to any object made of nucleons is (f'/f)2.3 In our
example, since # < 10712 and the fractional mass difference in (4.4) is of order 10~ the

limit on f is roughly (f'/f) < 10™*>.

1.2. The Einstein equivalence principle. The Einstein equivalence principle assumes
that the weak equivalence principle holds, and further asserts that the outcome of any (iner-
tially moving) experiment should be independent of its velocity or position in space-time. This
applies only to closed, non-gravitational experiments that are sufficiently local that tidal
forces may be neglected.

Schiff [161, 193] has conjectured that any complete, self-consistent theory of gravity
that satisfies the weak equivalence principle also satisfies the more general Einstein equiva-
lence principle. Nonetheless, the two principles are tested in very different ways. The weak
equivalence principle is a local statement which is tested in laboratory measurements, while
the Einstein equivalence principle is a global statement and is tested by gravitational red-
shift experiments, tests of Lorentz invariance and variation of the fundamental “constants”
We consider only Lorentz invariant theories. Gravitational redshift experiments test for lo-
cal variation of the fundamental constants in a gravitational potential. We are considering
cases in which the scalar field ¢ is unstabilized. In these theories, the strongest observational
constraints come from variation of the fundamental constants on cosmological scales.*

In practice, it is dimensionless numbers, such as the gauge coupling constants and the
ratios of masses of fundamental constants, whose variation are constrained. The best limits
come from the natural Oklo fission reactor [166], which was active two billion years ago.
Remnant isotopic abundances are extremely sensitive to the fundamental constants. The
strongest limits are on the variation of the fine-structure constant, so we consider it exclu-
sively. Damour and Dyson [56] found the limit |[Aa/a| < 1077 which is, in terms of the

Hubble parameter, |Hy' &/a| <8 x 1077,

3Since the gauge theory action is conformally invariant, there is no way that a term like (4.6) could
appear in a universal theory like (4.3).
“#For a review of tests of the constancy of the constants see Uzan [183].
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Webb et al. [140, 188, 189] have reported a 40 detection of a time-varying fine-structure
constant, corresponding to Hy' &/ a = 9 x 107°, using the absorption lines of distant (z ~ 2)
quasars observed by Keck/HIRES, but this is still controversial, with results from vLT/UVES
[42, 123, 168] suggesting |H51 a/a) <3 x107% at 30. It also seems difficult to reconcile the
quasar variation with the Oklo results in any simple field-theory model [55, 169] as together

they suggest spatial variation but no time variation.

1.3. The strong equivalence principle. The Einstein equivalence principle does not ap-
ply to the gravitation of gravitational self-energy (e.g. self-gravitating bodies, like stars and
black holes). This is considered part of the strong equivalence principle, which the Brans-
Dicke action (4.3) violates.

The strong equivalence principle generalizes the above principles to include gravitational
phenomena. It assumes the weak equivalence principle holds, even for self-gravitating bod-
ies, such as stars, black holes and Cavendish experiments. That is, any uncharged mass,
placed at the same initial event in space-time with the same initial velocity, will follow an iden-
tical trajectory. The bodies must be small enough that tidal forces may be neglected. Further,
it asserts that the outcome of any local experiment, gravitational or non-gravitational, is inde-
pendent of its velocity and its position in space time.

The strong equivalence principle is the most restrictive principle, and includes the Ein-
stein equivalence principle (which includes the weak equivalence principle). General rela-
tivity is the only theory known to be in complete agreement with this form of the principle.
Weak-field, nonrelativistic deviations from the principle are generally described in the pa-
rameterized post-Newtonian framework [193]. However, we consider only theories that
reduce, in the gravitational sector, to Brans-Dicke theory (4.3) with a potential. Thus, we
consider principally limits on the cosmological evolution of Newton’s constant G and on
the Brans-Dicke parameter w. We consider only positive w. In the limit w — +oo, Brans-

Dicke theory approaches general relativity.®

>The general relation between the Brans-Dicke parameter w and the parameterized post-Newtonian

parameter y is y = 372, or @ = (1 — y)~! for y near the general relativity limit y = 1.
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The strong equivalence principle is amenable to both local and cosmological tests. The
cosmological constraints come from observational limits on the time-variation of New-
ton’s constant G (or, equivalently, coherent variation of all the masses) and are obtained
from planetary science, stellar physics, pulsar timing, laser rangefinding and nucleosynthe-
sis [183]. A tight, relatively model independent limit constrains G to have evolved by no
more than 40% since nucleosynthesis (or H 61 |G/ G| < 1072) [3]. This is obtained by study-
ing how the expansion rate of the universe at nucleosynthesis affects the primordial helium-4
abundance.

Many local tests of general relativity constrain the Brans-Dicke parameter. The classic
test is the Nordtvedt effect [143], a perturbation on the orbits of astrophysical bodies that
comes from their gravitational self-energies falling at different rates. This is measured with
precision lunar rangefinding, and is a sort of lunar E6tvos experiment, measuring the po-
larization of the Moon’s orbit due to differential acceleration of the Moon and the Earth
towards the Sun. The most recent limitis w > 1, 100 [194]. Better limits are placed by very
long baseline interferometry measurements of the deflection by the sun of signals from dis-
tant radio sources [165], which give w = 2, 500, and by the Cassini time-delay experiments

[19] which gives the strongest limit w > 40, 000.

2. Universal models

In this section, we discuss the restricted class of models that satisfy the weak and Einstein
equivalence principles: they are metric theories of gravity. Damour [53, 54] has pointed out
that in the context of string theory and supergravity, it is unnatural to consider only universal
couplings. Nonetheless, as we have seen in section 3, the couplings of simple brane models
are universal, at least to leading order.

Since our motivation is to study dark energy, we study models with the scaling potential
(2.24) of section 1

V() = Ve, (4.7)
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We choose this potential because it gives a constant equation of state in the limit of a scalar
field dominated universe. Here, however, we must consider the effect of couplings in the

non-gravitational sector.

2.1. Brans-Dicke. In this section, we investigate the relationship between the compact-
ified, universal theories we are considering and Brans-Dicke theory in more detail. Let Zng
be the non-gravitational Lagrangian and the ¥; the non-gravitational fields. The two ac-

tions,
51=Jd5nﬁ1H%RML—%@wV—-Vw0+éwwlwﬂTﬁewW@wH, (4.8)

in Finstein frame and
Sy = Jd‘*xx/ —h{¢R—w¢ ' (9¢)> + 2N (¢) + Lng[¥i; hyvl}, (4.9)

in Brans-Dicke frame, are equivalent up to a conformal transformation and change of vari-

able ¢ = e~2A¥ ® The constant

1-6p2
w = 4—[;2, (4.10)
and
20(P) = -y V(y). (4.11)
The effective gravitational constant in this theory is [193]
1412w
G=¢ (3+2w)’ (4.12)

so for small w the scalar field acts as an additional degree of freedom in the inverse square-
law, and increases the gravitational force. In order for this theory to be compatible with

fifth-force constraints (tests of the inverse-square law) and tests of the strong equivalence

®This theory, which is Brans-Dicke theory with a potential, was first studied by Bergmann [18] and
Wagoner [186]. They considered the more general case where w is a function of ¢.
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principle, the mass V” must be either large, m > (1 mm)~! [97], or the Brans-Dicke param-
eter must be large. Since we are interested in a rolling scalar field, the theory must satisfy the
observational constraints on w.

A scaling potential (4.7) gives a power-law A = =V ¢", where
n=1-b/2c. (4.13)

The equations of motion are simplest in Brans-Dicke frame [193]:

3H=¢ '(p+1wg 19> - ¢A-3H), (4.14)
) . 2
$+3H$ = +2w(T+ 2(n—1) V") = — fﬁZ (BT +bVop?b/2F), (4.15)

where p = T is the density associated with Zng and T is the trace of corresponding stress-
energy tensor (in Brans-Dicke frame). Since the effective gravitational constant (4.12) goes
as ¢!, these equations can be integrated to give the time-evolution of the gravitational con-
stant. If b < 0, the potential and the Brans-Dicke couplings conspire to enhance the rate of
change of the gravitational constant. The cosmological evolution of the ¢ field is constrained
by the nucleosynthesis limits on A G. However, these limits are much weaker (roughly |b| < 2
and 8 < 1/10) than the the equation of state constraints |b| < 1 (i.e. w <—0.7 from super-
novae [159, 175]) and the Cassini [19] limit § < 1/400, from (4.10). Together, these obser-
vations suggest that AG could have been no more than 2 x 1072 since nucleosynthesis.
There is a relation between the Brans-Dicke parameter w for dark energy, the equation
of state of dark energy w and the cosmological rate of change of the gravitational constant
H 51 G/G. Since w is known to be large, we treat the field ¥ in (4.9) as a minimally cou-
pled scalar field plus small corrections in 3. Then, using the Friedmann equation (2.6), the

equation of state of a scalar field (2.19) can be rewritten

1
wy+1= EQ;; (Hy'9)?, (4.16)
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where Qq is the fractional energy density in the y-field relative to the critical density. This
generalizes (2.35) to a multi-fluid universe. However, since Newton’s constant G o< ¢! =

2BV

b

G S 12
S =2Bi=0 12y, (4.17)
sO
w (dlogG\2
1= —— .
Wy 3QQ(dloga) (4.18)

where a is the scale factor. Measurements of w and w therefore give Hy' G/G <4 x 107>,
Since most of the variation of the dark energy field v has occurred in the last e-fold, any cos-
mological variation of the gravitational constant due to a dark energy fluid would be at the
4 x 1073 level or less. This is two orders of magnitude more stringent than the present ob-
servational limit [3]. Thus, precision solar-system tests of general relativity are much better

for constraining this theory.

2.2. Randall-Sundrum. The S'/Z; orbifold (2.94) has 8 =1/v/6 (so w = 0) and man-
ifestly violates the strong equivalence principle. The warped, non-factorizable compactifi-
cations considered by Randall and Sundrum [156] behave very differently. Consider their
four-dimensional effective action [51], which we rewrite in terms of covariant quantities by
integrating (2.98) by parts

_ 1 4 2 3 2
SRS_EJ'd x=g((1- 0HR- —00) -2V ()

+Jd4xﬁl+[gw] + J d4x\/§Q4’L_[QZgW]. (4.19)

This is not a simple Brans-Dicke theory. Nonetheless, it is possible to derive an eftective
coupling. A change of variables gives the Brans-Dicke parameter w . on the positive tension

brane
3(1-02%)

w0+ () = =5

(4.20)
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Since Q2 ~ 107!° in the scenario, the result is w, = 10'* so that gravity on the brane is
well approximated by general relativity. This is true for the same reason as in the second
Randall-Sundrum model [155], in which five dimensional gravity reduces to four dimen-
sional gravity on a brane in a warped anti de Sitter background. For the negative tension
brane, the coupling to the metric is much more important than the coupling to the scalar

curvature, which is heavily suppressed. The effective f3 is given by

dlog Q) 3 ,\1/2
_ 1/2 _
B-=3/2k) =2 = (2k92) , (4.21)

so w_ = —3/2 for any ) <« 1. Gravity on the negative tension brane violates the strong
equivalence principle, and additional effects (such as radion stabilization) are necessary to

restore Einstein gravity on the brane.

3. General models

In this section we consider more general models which contain non-universal couplings

of the form
1

Ay 2
e F=, 22
l6na (4.22)

where F is a Yang-Mills field strength. The gauge couplings vary as a ~ !, or

& Aa
—_= ', — = A B .
. Ay - AAy (4.23)

where A represents the change since some epoch, such as big bang nucleosynthesis. Since we
are considering quintessence, which has undergone most of its variation in the past Hubble
time, we have H, ' / & Ay. The interaction (4.22) violates the Einstein equivalence principle
— the coupling « varies - and, as we saw in section 1.1, the universality of free fall. Thus, just
as we saw for Brans-Dicke theory, they are amenable to both local and cosmological tests:
limits on the variation of the fine-structure constant and E6v0s-experiment limits on the
universality of free fall. The parameter # = C; A2, where C; is the fractional mass difference

in (4.4). The value for C; depends on the particular test masses and the model of how
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the other coupling constants vary. Values can be computed from the semi-empirical mass
formula and are typically are of order 1072-10"* [53, 63, 193]. Thus, in order for (4.22)
to be consistent with observations, A < 10™* is required. This is much less than the natural
value for the gravitational coupling, A ~ 1.

It is possible to write down the analog of (4.18) for these interactions, which relates the
equation of state w to the cosmological variation of the fine-structure constant agy and the

universality of free fall parameter # (4.1). From (4.23) and (4.16),

L_C(dlogan)?, (4.24)

wy+1==
Y 3 Qqn

dloga

If wy + 1 = 0.1 and we substitute the Oklo limit in 4.24, gives #/C ~ 107!, much less than
the current Braginsky and Panov limit # < 107!2. The strongest limit on these variations
now come from Oklo. However, forthcoming satellite tests of the universality of free fall
[141, 179, 197] promises to reduce this limit to # < 10718, Thus, dramatically improved
limits on such a model can be obtained by testing the equivalence principle.

Of course the coupling (4.22) also contains violations of the strong equivalence principle.
This generally imposes a weaker constraint. If the couplings are not universal, not all the
mass of a typical object is coupled to y. The Brans-Dicke parameter implied by (4.22) is
then

w= (4C%)L2)_1 > 108 (4.25)

from (4.10), where C;, < 1 is the fraction of a typical test mass that couples to y.

3.1. Horava-Witten. The four-dimensional low-energy effective action of heterotic
M theory, derived by Lukas et al [126], couples to the radion ¢ nearly universally, as it de-
rives from a simple S'/Z, compactification. The linear warping of the background corrects
this: for example, the vector bosons on the brane couple to the radion, at the second order
in the eleven-dimensional gravitational constant. The volume modulus a in the effective ac-

tion for heterotic M theory (2.105) must be stabilized in any realistic model: variation in the
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Calabi-Yau volume affects the gauge couplings at the first order in the eleven dimensional
gravitational coupling /3. However, the radion is universal at this order.
Thus, setting the volume modulus a = 1 conformally rescaling the metric gy, = e‘hyy

in the Lukas-Ovrut-Waldram action (2.105) yields

v
s="F

ps) JM‘* V —hd4x[eCR —0xe(d0)?-3(1+ 3¢age)9,Co+C

__  3k2 .
—%e'CCCCC—T(l—%&xoec)CCCC

V(K

/
4_n)23J V=G A x((1+Eage) tr(FD)2 + (1 - Eage) tr(FP)?), (4.26)
M4

8?2

V is the Calabi-Yau volume, L = mpe® is the S!/Z, length (p is a constant) and «? is the
eleven-dimensional gravitational coupling. The F'”) are the Yang-Mills field strengths on the
two branes and the C are scalar fields. We have written terms quadratic in the C schemati-

3 as are the parameters & and the parameter k™2

cally. Now, the variable C? is of order x2/
(see section 3.4), so to first order in x2/3, the theory is universal. The Brans-Dicke param-
eter, however, is w = 0. So in this case, as in the case of the negative tension brane in the
Randall-Sundrum scenario, gravity on the brane is far from general relativity.

An intriguing attribute of (4.26) are the so-called threshold corrections to the gauge
couplings. These corrections come from the linear warping of the Calabi- Yau manifold in the
background solution. The corrections are proportional to the length of the orbifold interval
L = 27/2&e¢ times the Calabi-Yau distortion ao. These corrections violate the universality
of free fall and would cause cosmological variation of the GuT couplings. The value of &«
is
L2/3

AR 0=4x10°0e, (4.27)

Eag L ( K

)2/3 f=4x10"3
~N —_— | — o X

247 V23 \4n

where & = Lx?/?/7V?’3 is the expansion parameter of the low-energy effective action and
we have rewritten the integral in (2.106) as V139, where the dimensionless variable  is

9:—V_1/3J w AtrRY AtrR®, (4.28)
X
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an integral over the Calabi-Yau manifold X (the notation is explained below (2.106)). The
magnitude of the differential acceleration (4.1) predicted in the Braginsky and Panov exper-

iment [26], using the Einstein-frame action (2.105),
nz%(&xo)%dx 1074 =10726%¢2. (4.29)

The factor of 1/3 comes from the normalization of ¢ and the factor of 3 x 10~ is the dif-
ference, as in (4.4), for aluminum and platinum, between the contribution of the fermion
masses and gauge field binding energy (e.g. electrostatic and Qcp). The calculation of 7
(4.29) assumes that the masses of fermions scale with the radion in a similar (same order of
magnitude, or zero). Since the scalar fields C do, it seems reasonable to assume that their
super-partners will have similar couplings [192]. The parameter ¢ is expected to be of or-
der unity [13, 127, 196] as is the integral 6. Thus, for moderately small values of 6 ~ 1071,
the theory predicts equivalence principle violations quite near present observations, with a
significant constraint already placed by the Bragninsky and Panov [26] limit 7 < 10712,
Limits on cosmological variation of the gauge coupling constants constrain the cos-
mological evolution of the radion. The Oklo limit &/a < 1077 at redshift 2 [56] implies
Hy'y < 1073, In the theory without a potential, ¢ couples to the background radiation
density. Because of the suppression of the coupling by {a and the low radiation density
today, this only suggests that the fine-structure constant will have varied by roughly 10711,
which is four orders of magnitude smaller than the Oklo constraint and is inconsistent with

the variation claimed by Webb et al. [140, 188, 189].

3.2. Runaway dilaton. The runaway dilaton scenario of [85, 185] is a string-inspired
model that naturally satisfies the equivalence principle constraints discussed above. In this
model, the string theory dilaton ® is moving towards infinity. This is the strong coupling
limit: the non-perturbative potential and couplings associated with ® are generally a power
series in @. However, in [185] Veneziano argued that the couplings and potential may, in

fact, approach finite limits as @ — oo. This could be a natural explanation for our failure
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to observe equivalence principle violations associated with the dilaton. The cosmological
consequences are discussed in Damour et al. [61, 62], where it was shown that deviations
from the universality of free fall near the present experimental threshold are possible. It

predicts that general relativity should hold to high accuracy, as # and w are related by
|11|z2.6><10_5w_1. (4.30)
For a “dark energy” dilaton with a potential of the form (4.7), the runaway dilaton model

dloga _7
~6.2x1077,/101%y. .
dloga‘ * 1 (431)

These constraints suggest that w should be at least two orders of magnitude larger than cur-

predicts:

rent bounds, but 77 and & may be well within the reach of future experiments.
(A related scenario is the least coupling scenario of Damour and Polyakov [63], in which

the dilaton is attracted to a finite value.)

3.3. Chameleon model. Khoury and Weltman have proposed a chameleon model for
dark energy [116, 117] in which equivalence principle constraints can be avoided for terres-
trial tests of the universality of free fall. It contains a “thin-shell” effect: while the universe
contains a light scalar field, in dense regions its couplings drive it to a fixed value and give
it a large effective mass. In the universe today, this model requires w = —1 to high accuracy
and that variations in the fine-structure constant should be exponentially suppressed [33].
However, because the thin-shell effect applies only in high density regions, future space-
based tests of the equivalence principle [4, 141, 179, 197] could detect large — order unity
— deviations from the universality of free fall and measure a vastly different gravitational

constant.

4. Discussion

If the potential has a scaling form, as (4.7), then the equation of state is fixed by the con-

stant equation-of-state attractor solution. Another possibility is that the equation of state is
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FIGURE 1. w+1 asa function of the number of e-folds of expansion remain-
ing for the potential (4.33). The observational constraint w < 0.7 is indicated
by a dashed line. It is satisfied by all the models with 2> 0.5 e-fold remaining.
The other dashed line is the upper bound on w + 1 from (4.24) if a violation
of the universality of free fall is found at the # = 10713 level. This could be
the case in the M-theory model (4.29).

changing. We mentioned in chapter 3 that quintessence trackers have a decreasing equation
of state in the late universe and k-essence attractors have an increasing equation of state in
the late universe. It is difficult to construct models in which which w crosses the w = —1
barrier [37, 39]. Given that w is presently measured to be near —1, future observations are
probably more sensitive to increasing w, than to w approaching —1 from above. One possi-
bility is that the dark energy potential will eventually become negative and the universe will
begin contracting. This is discussed in chapters 5 and 6.

In [108, 187], the possibility of using the equation of state to constrain the end of dark
energy domination and the reversal to contraction was discussed. They used a linear poten-
tial

V(g) = Vo(l +ad), (4.32)
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where a and V) are positive constants and found that the 20 constraint that dark energy
domination end more than two e-folds (24 billion years) from today. We consider the
slightly different potential

V(g) = Vo(e" —e9), (4.33)

where V), b and ¢ are positive constants. This potential behaves like the constant equation
of state scaling potential (4.7) at large values of ¢, but has a cutoff at ¢ = 0 whose severity
is determined by the constant c. The potential (4.33), while slightly more complicated than
(4.32) is relevant to the cyclic model discussed in chapter 6. We define the number of e-folds
NpE of dark energy domination remaining as the number of e-folds of expansion before the
Hubble parameter vanishes and the universe begins contracting. In figure 1 we plot Npg
against the equation of state measured today for a variety of parameters b and c (these are
implicit functions of the value of ¢ today in the attractor solution of (4.33). The equation of
state constraints [175] impose the limit Npg 2 0.5, which is not particularly strong. These
are weaker than the limits on (4.32) because of the sharp cutoff.

If the strength of equivalence principle violations was known either from a theoretical
model (as in the heterotic M-theory case of section 3.1) or from a measured violation of the
universality of free fall then a much stronger constraint could be placed on w. For example,
if a measurement showed that the universality of free fall was violated at e.g. the = 10713
level, then the Oklo constraint on the time-variation of & and (4.24) imply that w+1 < 107>,
Figure 1 shows that this places a strong constraint on the potential (4.33) and the number
of e-folds of dark energy domination b < 1072 and Npg = 20. A similar idea holds for the
relation between w, G and w (4.18), but since the constraints on G are comparatively weak,

this could not realistically place a constraint on w.

Our results are summarized in table 1, which compares the models of dark energy we
have discussed against observational constraints, in the top row. Each model can be com-
pared with observations, to see what the best observational strategy for constraining the

model is.



w+1 |AGeN/G| H 51 [aeMml 171 |lw] tightest constraints

Observations <0.3 <0.4 <1077 <107'2 >40,000
Scalar fields

Minimally interacting 0.3 — — — — w

Brans-Dicke (§2.1) <0.3 <2x107? — — 240,000 | w, w
General (§3) <03 <10 <1077 <1071? >10% |w,na

Compactifications

S'/Z, (Chapter 2 §3.2) | <0.3 large — — 0 ruled out by w
Randall-Sundrum® (§2.2), | <0.3 large — — —3/2 | ruled out by w

positive tension brane <0.3 — — — — dark matter EP tests?
String inspired
Heterotic M-theory (§3.1) | <107¢ large <1077 ~ 10712 0 1, & (ruled out by w)

Runaway dilaton (§3.2) | <0.3  <107* <1077 <1073 >10% |w,na
Cosmic chameleon (§3.3) — — — <10712 b >10'2 | 5 (space-based)

TaBLE 1. Constraints on light scalar fields in various models of dark energy. The constraints come from the equation
of state w and various equivalence principle parameters described in the text. The first row indicates the constraints
imposed by observations. The models, listed below, are described in the text. Columns for which the effect vanishes,
or is many orders of magnitude beyond the present state of observations, are marked with a dash, —. The last column

indicates the best observational opportunities for constraining a given model.

“Negative tension brane.
PEquivalence principle constraint for ground based experiments. Future space based experiments could give large violations of the equivalence
principle in this scenario.

ADNATVAINOHA 40 ATdIONIYd HHI ANV XADYANT MI4vd ‘v

1z
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Each models must have a potential which is sufficiently flat to be consistent with equation
of state constraints. Other parameters of must be small enough to ensure that they satisfy
observational constraints. This is natural for some of these models, but in the case of Brans-
Dicke theory and the scalar field with general interactions, the couplings must be tuned to
very small values for these simple models to be consistent with observations. The table is

discussed line-by-line below.

Minimally interacting scalar: The ideal minimally interacting scalar field [38, 149,
157, 198], such as that discussed in section 1 of chapter 2 is a simple toy model of
quintessence. It is defined by one parameter, the equation of state. In chapter 3, we
saw that an additional parameter which characterizes its perturbations, the speed
of sound, could be measured.

Brans-Dicke theory: The Cassini constraint [19] requires that the Brans-Dicke pa-
rameter w > 40,000 [28].

Scalar field with general couplings: The model with general couplings, discussed in
section 3, generally violates tests of post-Newtonian gravity and the universality
of free fall if the couplings have their natural, gravitational strength (i.e. are of
order one in Planck units). Since these are local tests, this is true even with a very
flat potential. In special cases, such as the chameleon model, these constraints be
averted, but it is generally necessary to have the coupling in (4.22) satisfy A < 1074,
Although this is not well motivated, if we nonetheless assume this is the case, we
obtain the figures in the table.

S1/Z, orbifold: The S'/Z, orbifold of section 3.2 of chapter 2 violates tests of the
strong equivalence principle.

Randall-Sundrum: Even though they interact with the same metric, the conformal
coupling to the radion causes matter on each of the two branes in the Randall-
Sundrum model [156] to have very different gravitational behavior. Like the S!/Z,

orbifold, the negative tension brane strongly violates the equivalence principle, and
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must be stabilized if the model is to succeed. The positive tension brane, however,
has a large value of w and gravity behaves very much like general relativity on this
brane [155].

Cosmic chameleon: The best tests of the cosmic chameleon model [33, 116, 117] are
tests of the equivalence principle in space, which could measure unexpectedly large
deviations. The chameleon field has a quite flat potential, so effects due to w and
the time-variation of the fundamental constants are small.

Runaway dilaton: The predictions of the runaway dilaton model [61, 62, 85, 185] are
the same as the scalar field with general suppressed couplings. The model simply
provides a natural mechanism by which a light scalar field might have small, but
still observable, couplings to matter.

Heterotic M-theory: Although the heterotic M-theory scenario we have discussed
violates the strong equivalence principle to a degree that is inconsistent with present
bounds, it is conceivable that other compactifications would look like general rel-
ativity at this order. If, as is likely, the warped background geometry persists, then
the predicted effect on the universality of free fall is likely to remain. In this case, the
main constraints would come from time-variation of the fine structure constant, as

in the table.

In sum, light scalar fields are important for cosmology and abundant in string theory.
They are predicted to have equivalence principle violating interactions. Violations of the
equivalence principle has been very well constrained by an array of precise experiments.
However, there are natural models in which these interactions are suppressed to be consis-
tent with observations, so there is a reason to expect that future experiments may detect
such a violation. The best way to differentiate quintessence from a cosmological constant is
to adopt a multi-pronged approach, in which a program of tests of the equivalence princi-
ple — metric tests of gravity, E6tvos experiments and constraints on the variation of the fine

structure constant — continues along with measurements of the equation of state.



CHAPTER s

Chaos and contracting universes

A common feature of the pre-big bang [86, 87, 184], ekpyrotic [114, 115] and cyclic
[170-172] models of brane cosmology is that they match a contracting universe onto an
expanding hot big bang universe. The behavior of bouncing universes is actively being in-
vestigated in string theory and cosmology'. In section 3.2 of chapter 2, we described the
collision of two S'/Z, orbifold planes, described by the action (2.94). In this solution, the
Einstein-frame scale factor vanishes as the fixed planes collide, while the brane scale factors
remain finite.

Understanding the behavior of the universe as it contracts is a key issue in these sce-
narios. In the 1970s, Belinsky, Khalatnikov and Lifshitz (BkL) [16, 17] showed that chaotic
oscillations generically occur in the approach to a crunch. This has would destroy the ob-
served homogeneity and isotropy of the universe in the cyclic and ekpyrotic models, and
could have dramatic consequences in the pre-big bang scenario. In this chapter, we show
how chaos can be suppressed by the S'/Z, orbifold and by scalar field in the cyclic model,
which has a large pressure-to-density ratio in the contracting phase.

Previous studies [16, 17, 57-60, 65, 125], have focused on models in which the universe
contains matter and radiation, or, more generally, an energy component whose equation
of state is w < 1 (where w = p/p is defined as the ratio of the pressure p to the energy
density p). If w < 1, a contracting homogeneous and isotropic solution is unstable to small
perturbations in the anisotropy and spatial curvature. As the overall volume shrinks, the
anisotropy causes the universe to expand along one axis and contract along the others, a
state that can be approximated by the anisotropic Kasner solution. The spatial curvature
causes the axes and rates of contraction to undergo sudden jumps from one Kasner-like

'See [14, 49, 133, 151, 177, 178, 180].
74
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solution to another, an effect known as “mixmaster” [136, 138] behavior. If the curvature is
not spatially uniform, then the chaotic behavior in different regions is not synchronized and
the universe becomes highly inhomogeneous at the big crunch. Hence, mixmaster behavior
could potentially wreak havoc in cosmological models with a big crunch/big bang transition,
making them inconsistent with the observed large scale homogeneity of the universe.

In this chapter, we show that the behavior of the universe as it approaches the big crunch
is very different if there is an energy component with w > 1. The chaotic behavior is sup-
pressed and the universe contracts homogeneously and isotropically as it approaches the
singularity. The reason is that the anisotropy and curvature terms in the Einstein equations
grow rapidly and become dominant if w < 1, but they remain negligible compared to the
energy density if w > 1. In the latter case, the Einstein equations converge to the Friedmann
equations with purely time-dependent terms, a condition sometimes referred to as “ultralo-
cality” The effect can be viewed as a generalization of the “cosmic no-hair theorem” invoked
in a rapidly inflating universe. Here we demonstrate analogous behavior in a slowly con-
tracting universe with w > 1. This chapter is adapted from [80]. A related result of Dunsby
et al. [44, 45, 73] shows that models with 0 < w < 1 but with p2 terms in the stress-energy
tensor are also driven towards isotropy. This is related to our result, because p? ~ a6 +"),
so the contributions from a p? term in the stress energy tensor scale in the same way as a
component with equation of state 1 + 2w. The convergence rate of the w = 1 no-hair behav-
ior has since been studied by Coley and Lim [46].

The cosmic no hair theorem for a contracting universe containing a perfect fluid with
w = 1 is discussed in section 1. A common example of a perfect fluid is a scalar field ¢ with
a potential V(¢). In section 2, we consider the interaction of the scalar ¢ with a p-form field

Fp+1 through an exponential coupling,

M2, (5.1)
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where A is a constant. We consider this case because scalar fields with exponential couplings
to p-form fields are common in Kaluza-Klein, supergravity and superstring models. For the
case w = 1, it is known [16, 60] that the contraction is not chaotic if A lies within a bounded
interval. Here we show that, for any A and p, there is a critical value wit (A, p) for which
the chaotic behavior is suppressed if w > writ(A, p).

Our results are of particular importance for the ekpyrotic and cyclic cosmological mod-
els, which have a big crunch/big bang transition with a contraction phase dominated by a
scalar field with w = 1 [115]. These results are relevant because they suggests that the uni-
verse can remain homogeneous and isotropic on large scales. Once the evolution becomes
ultralocal, the whole universe is following the same homogeneous and isotropic evolution
all the way to the big crunch. These consequences are discussed further in chapter 6.

In section 3, we explore how time-variation of w affects our conclusions, and in partic-
ular how w approaching wi; from above may suppress chaotic behavior. In section 4 we
discuss some specific models. In particular, we show how orbifolding can remove p-forms
that might induce chaotic behavior and discuss the special case of heterotic M-theory, which,
to leading order in the eleven dimensional gravitational coupling «, is on boundary between

chaotic and smooth behavior.

1. A “cosmic no-hair theorem” for contracting universes

The cornerstone of the inflationary paradigm is an argument known as the “cosmic no-
hair theorem”, according to which a universe containing a perfect fluid component with w <
—1/3 will rapidly approach flatness, homogeneity and isotropy at late times, for a wide range
of initial data (namely those for which the space curvature, inhomogeneity and anisotropy
are not very large) [121]. In the Friedmann equation, the energy density for a component
with equation of state w is proportional to 1/a*, where the exponent x = 3(1 + w). The
anisotropy term is proportional to % and the spatial curvature term is proportional to a 2.

As the universe expands, the contribution with the smallest values of x redshifts away more

slowly than components with larger values of x and so come to dominate the Friedmann



5. CHAOS AND CONTRACTING UNIVERSES 77

equation and the components with the smallest value of x overall ultimately dominate. If
the energy component with the smallest value of w has w < —1/3, then x < 2 and this
component dominates. For a wide range of initial data, convergence to a homogeneous and
isotropic expanding universe is assured.

Below, we will present an analogous “cosmic no-hair theorem” for contracting universes.
In a contracting universe, the component with the largest value of x will dominate the Fried-
mann equation. Starting from an inhomogeneous and anisotropic initial state, we will show
that the existence of a perfect fluid with w > 1 (or x > 6) will suppress chaotic behavior, and
enable a smooth and isotropic contraction to the big crunch. We will find that curvature
plays a more complicated role compared to the case of expansion. Hence, we first obtain
a cosmic no-hair theorem for the case of zero spatial curvature and then generalize to the
case of arbitrary spatial curvature. We intentionally take a pedagogical approach that en-
compasses known results for w < 1 to make our discussion self-contained. Our analysis
assumes the initial inhomogeneity is small; it is possible that the universe evolves towards
other attractors for sufficiently large deviations from homogeneity.

All of our computations are performed in synchronous gauge,
ds? = —dt* + hgp(t, %) dx” dx?, (5.2)

where we use our freedom to choose a spatial slicing to ensure that the big crunch occurs
everywhere at t = 0 (deth,, — 0 as t — 0). For a perfect, comoving fluid with equation of

state p = wp, the Einstein equations are [125]:

‘ ‘ 1+3
557+l == (=5 e, 53)
5 . 9 .
S - ﬁxfu =0, (5.4)
L Vi) =+ () (5:5)
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where P,? is the Ricci tensor on spacelike surfaces, and «,, is defined by

10
=——hgp, .6
Kab 2ot ab (5 )
K0 = Kajhjb. (5.7)

Near the big crunch, the dynamics of the metric (5.2) are ultralocal [5, 17, 59, 60]. That
is, the evolution of adjacent spatial points decouples because spatial gradients increase more
slowly than other terms in the equations of motion. Therefore, analyzing the dynamics of
this metric near the singularity and at fixed spatial coordinate x( is equivalent to analyzing
the much simpler system

ds?> = —dt* + Z 2Pij(tx0) 5D (y; xg) oV (y; x0), (5.8)

ij

where the ¢! are y-dependent one-forms that are linearly independent at each point and
form a homogeneous (but possibly curved) space such as Bianchi type 1x [138]. The B,
which do not depend on vy, describe the (generally anisotropic) contraction of this space.
Both the 0" and the B;; depend on the parameter xo, the spatial point being studied. The
dynamics of the inhomogeneous universe at a fixed spatial point can be approximated, near
t = 0, by the dynamics of a homogeneous (but curved and anisotropic) universe. Differences
in curvature and anisotropy between different x, are encoded in the different ¢” and f;;
associated with these points.

In each Kasner-like epoch, we may perform a rotation so that 8 is diagonal. Furthermore,
we may separate out the trace of # and write it as the “volume scale-factor” a(t), in analogy

to the isotropic Friedman-Robertson-Walker universe, to obtain the metric
ds® :—dt2+a2(t)Zezﬁi(t)(a(i))2, (5.9)
i

B1()+B2(t)+B3() =0, (5.10)
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where the dependence of a(t), the B; and the ¢'? on x has been suppressed. The combi-
nation a efi can be thought of as the effective scale factor along the i direction, and the
functions ; then describe the contraction or expansion of each direction relative to the
overall volume contraction. We may use our freedom to rescale the o to ensure that at some
time tg, a(ty) = 1, Bi(to) = 0 and det(c'V, 6@, ¢®) = 1. Quantities with a subscript zero
(such as py) refer to their values at this fixed time.

The Einstein equations (5.3)-(5.5) close with the equation of energy conservation (2.5)

for the fluid,

dl
CO8P _ 3014w, (5.11)
dloga

For constant w, this equation has the familiar solution (2.8),

=3(1+w)

p(a) =poa (5.12)

While we could have included several perfect fluids, with different equations of state w;, the
fluid with the largest equation of state will always dominate near the crunch, so it is sufficient
to consider only one energy component. We have taken this fluid to be comoving, because
small perturbations of a comoving background are suppressed in a w > 0, contracting uni-
verse. In particular, the T°; terms that would appear on the right hand side of (5.4) grow

only as t~2/(1+") which is slower than the ¢~2 rate at which the diagonal terms grow 2

1.1. The curvature-free case. We first examine the case of Ricci flat spatial 3-surfaces,

for which P,? = 0. In this case, we write ¢'? = dx. Then, the Einstein equations (5.3)-(5.5)

*In fact, in a homogeneous universe, T?; scales as a~>. In this case, the non-comoving component of
a scalar field or perfect fluid never grows to dominate in a cosmology with w > 0. For a universe with
a scalar field and negative exponential potential, such as (5.40), it is possible to show that inhomo-
geneous perturbations to the scaling background may be neglected near the crunch in a contracting
universe.
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reduce to

a\2 1 . . .
3(;) —5(/3%+/3§+/3§)=p, (5.13)

ﬁi+3g/3i=0; (5.14)

where a dot indicates a derivative with respect to the proper time ¢. Integration of (5.14)
gives,

Bi=cia™>, (5.15)

while the constraint (5.10) implies,
c1+cy+c3=0. (5.16)

Combining these results, equation (5.13) becomes a Friedmann equation,

2 2

a2 o Po o
3(;) —P(a)'i‘g——aﬂ“w) +E’ (5.17)
where we define
1
02:5(c§+c§+c§). (5.18)

An anisotropic universe has /3 i #0,i.e. c; #0. The constant ¢ parameterizes the anisotropic
contribution to the Friedmann equation in (5.17). The anisotropy evolves as 1/a® or x = 6.

We define the fractional energy densities 2, and Q as

B p(a)
P~ pla)+02/a®’ (5.19)
0*/a®
(5.20)

o pla)+a2/ab

These quantities represent the contribution of the perfect fluid and anisotropy to the critical

density for closure of the universe. Since we are neglecting curvature, Q, + Q; = 1.
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The solution for the f; as a function of the scale factor a is,

1
-1/2

Bi(a) = ci\/§J (5.21)

da'

a
a
The limits of integration have been chosen to ensure ;(1) = 0. For the remainder of the
chapter, we will assume a universe contracting towards a — 0 as t approaches zero from
below. Let us now examine the behavior of these solutions for various w.

w < 1: When w < 1, the p(a) part of the integral (5.21) is negligible as a — 0, and so

the solution converges to the vacuum (p = 0) Kasner universe during contraction,

a(t) = (%)”3 (5.22)
Bilt) = ai_jrsln(%)' (5.23)

The Kasner universe is parameterized by three Kasner exponents p;,

1
==+ ——. .
pi=3 e (5.24)
The scale factors in (5.9) are powers of ¢:
aePi=|t1tolP), (5.25)
and the relations (5.16) and (5.18) become
p1+p2+p3=1 (5.26)
pr+pi+pi=1, (5.27)

known as the Kasner conditions. These describe the intersection of a plane, the Kasner plane,
and a unit sphere, the Kasner sphere, as illustrated in Fig. 1. We will denote the intersection,
which represents the allowed values of the p;, as the Kasner circle. The outermost circle in
Fig. 1 corresponds to the limit where w < 1, as the energy density scales away and only a

vacuum, anisotropic universe remains.
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There are three degenerate solutions where exactly one of the p; is one, and the other
exponents are zero (the solid black circles in Fig. 1). At all other points on the (dashed)
Kasner circle exactly one of the p; is negative. Thus, although the geometric mean of the
three scale factors a(t) = || is contracting, a single scale factor corresponding to the negative
Kasner exponent is undergoing expansion to infinity.

For the curvature-free case, the universe becomes increasingly anisotropic near the big
crunch if w < 1. In particular, the isotropic solution, p; = p, = p3 = 1/3, is inconsistent
with the Kasner conditions (5.26) and (5.27).

w = 1: Inspection of (5.12) reveals that, when w = 1, the matter density and the
anisotropy terms in the Friedmann equation (5.17) scale with the same power of a, so 2,

and Q, remain fixed. The solutions are

t )1/3 (528)

a(t) = (%
2 ln(i). (5.29)

V362 +pg) PO

This solution is very similar to the p = 0 case, and indeed we may define the Kasner expo-

Bi(t) =

nents,
1 Cj Po -1/2
==+ —1+—= . .30
pi=3 0\/5( 02) (5.30)
The Kasner conditions are different. If we define
2 po 2
2 _
=— =—(1-Q .31
1 =3021 3 o) (5.31)
then the Kasner conditions are
p1+p2+p3=1, (5.32)
pr+pr+p3=1-9"=5+3Q0 (5.33)

The first condition is unchanged from (5.27) but the right hand side of the second condition

has been modified. Increasing ), corresponds to increasing the radius of the Kasner sphere.
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FIGURE 1. The Kasner plane p; +p,+p3 = 1 and its intersections (the Kasner
circles) with various spheres p? + p3 + p% = 1 — g* where q> = £(1 - Q,); see
(5.31). The vacuum solution corresponds to Q, = 1 (the outermost circle).
The inner circles are relevant to the case where w = 1 and Q, < 1. In the
white regions, the Kasner exponents are all positive (corresponding to con-
traction); in gray regions, one exponent is negative (expanding). If the spatial
curvature is non-zero, points along the circles in the white region (thick parts
of circles) are stable but points in the gray regions (dashed parts of circles)
are unstable, jumping to new values after a short period of contraction. If
a model (i.e. a circle) has an open set of stable points (the three innermost
circles but not the outermost circle), the contracting phase does not exhibit
chaotic mixmaster behavior.

The w = 1 model allows us to explore the behavior of the contracting universe as a
function of Q. The perfectly isotropic case corresponds to Q, = 0, which is the usual flat

Friedmann-Robertson-Walker solution (innermost circle, in the limit where the circle has
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shrunk to a point, in Fig. 1). Unlike the vacuum Kasner case, all of the Kasner exponents are
positive (i.e. lie within the white region of Fig. 1) provided that Q, < 1/4 (within the larger,
solid circle inscribed in the triangle). For this range, none of the scale factors is increas-
ing during the contraction, although they are decreasing at different rates. When Q, > 1/4
(third largest circle), then some points on the Kasner circle have a negative Kasner exponent
(dashed part of circle) and other points may have all positive Kasner exponents (solid, thick
parts of circle).

Thus, ignoring the curvature, the w = 1 case with non-zero (), contracts smoothly but
anisotropically to the crunch. In the special case where (), = 0, the contraction is isotropic.

w > 1: For w > 1, the energy density dominates (2, — 1) as a — 0, and the metric

approaches the approximate form

a(t) = (%)mmm, (5.34)
== () 1) 535

where we have chosen the constants of integration so f3; = 0 at t = t(. The crucial feature is
that the time-varying part of the f; is proportional to t* where « is positive if w > 1. This
means that the 3; approach a constant and the universe becomes isotropic at the crunch?
This simple result is a “no-hair theorem” for universes without spatial curvature: When
w > 1, an initially anisotropic universe becomes isotropic (25 — 0) near the big crunch.
The w > 1 case is stable under anisotropic perturbations. For w < 1, the universe becomes
increasingly anisotropic in the sense that Q; — 1 as a — 0. For w = 1, Q, remains fixed as
a — 0. Evolution is smooth (no mixmaster behavior) in all cases, and is well-approximated

as a Kasner metric with constant coefficients for sufficiently small a.

3Conversely, when w < 1, « is negative and the f3; grow rapidly. Thus even if the energy density p is
dominant initially, the anisotropy grows and eventually dominates near the crunch, a result consistent
with our earlier analysis.
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1.2. Curvature and chaos. Complex behavior can arise when there is non-zero spatial
curvature in a contracting universe. This may seem surprising at first, since the spatial curva-
ture for a homogeneous and isotropic universe grows as 1/a?, which increases more slowly
than either the anisotropy or the energy density of a component with w > —1/3. However,
we have seen above that the contracting phase for w < 1 is anisotropic. We will show below
that this can produce rapidly growing curvature perturbations and chaotic behavior. On
the other hand, we will see that chaotic behavior is suppressed if w > 1 and the contraction
approaches isotropy as a — 0.

We now allow the ¢ to have an x-dependence and consider a curved manifold. The
spatial Ricci tensor for the metric (5.9) has the form [125]

Pt = %Zsabijk(a)t?Z(ﬁi_ﬁf_ﬂk). (5.36)
a” ik
The functions S ,° ijk depend only on the o' and their space derivatives, and are independent
of time.

The expression (5.36) reveals a crucial connection between the behavior of anisotropy
and curvature near the big crunch. In the isotropic limit, ; = 0 and (5.36) reduces to the
homogeneous and isotropic 1/a? scaling discussed above. However, the terms in (5.36)
are essentially ratios of scale factors. Thus, if the anisotropy is growing as a — 0, some
terms — involving ratios of expanding and contracting scale factors — will grow, and the
corresponding curvature components will scale faster than 1/a2. For w < 1 the anisotropy
dominates near the crunch, and, as we will discuss below, this causes the curvature to grow
and induce chaos. By contrast, in the w > 1 model, the anisotropy vanishes at the crunch,
and the curvature scales as the usual 1/a2, which may be neglected.

w < 1: In this case, we begin by assuming that the behavior near the crunch is described
by the vacuum Kasner solution, with Kasner conditions (5.26) and (5.27). Using the Kasner
solution, it is readily seen that the Einstein equation (5.3) contains a leading order term with

time dependence t 2.
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The second Einstein equation (5.4) is a consistency check for our assumption of ultralo-
cality. For an appropriate choice of the ¢'? - a basis for one of the Bianchi universes - this
equation vanishes identically and the metric (5.9) solves the Einstein equations.

The third Einstein equation (5.5) indicates that the simple Kasner solutions must break
down near the big crunch. If we order the Kasner exponents as p; < p, < p3, then the most
divergent term in the third Einstein equation comes from terms in the spatial curvature

(5.36), with leading time dependence,

(-22e, (5.37)

The leading term is more divergent than t~2, since the Kasner conditions (5.26) and (5.27)
imply p; is always negative. Therefore, our smoothly contracting solutions are not stable to
perturbations in the spatial 3-curvature. A small amount of curvature will grow and come
to dominate the dynamics before the big crunch.

The behavior of the universe in this regime has been extensively studied and is known
to be chaotic [16, 17, 57-59, 65]. The spatial curvature terms cause the Kasner exponents p;
and the principal directions ¢ to become time-dependent during contraction.

More precisely, the exponents and principal directions are nearly constant for stretches of
Kasner-like contraction, during which the curvature is negligible. These Kasner-like epochs
are punctuated by short intervals when the curvature momentarily dominates. The ex-
ponents and principal directions suddenly jump to new values, and then a new stretch of
Kasner-like contraction begins during which the curvature terms are again negligible. The
universe undergoes an infinite number of such jumps before the big crunch. The chaotic,
non-integrable evolution is equivalent to that of a billiard ball [59], which experiences free
motion interrupted by collisions with walls. Models with this oscillatory behavior are called
chaotic.

This presents a problem for cosmological models, as one expects curvature perturbations

in any realistic universe will cause the local value of the curvature to vary from point to point.
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If each spatial point evolves independently and chaotically, the evolution of nearby points
diverges very quickly as contraction continues, and the universe rapidly becomes highly
inhomogeneous as a — 0. If w < 1 throughout the contracting phase, it seems unlikely that
the observed homogeneous universe could emerge from this state after the bounce to an
expanding phase [147].

w = 1: The chaotic behavior is mitigated in the w = 1 case. Recalling our discussion
of the curvature-free scenario, it is clear that there are regions of non-zero measure on the
Kasner circle for which all of the p; are positive. We will refer to these points as stable. All
choices of p; when ), < 1/4 are stable. If the universe begins at a stable point, the curvature
term remains negligible as a — 0 and the contraction is smoothly Kasner-like.

However, when Q, > 1/4, some choices of the p; will have one p; < 0. If the universe
begins at one of these points, the curvature term will grow and become dominant, causing
the values of p; and the principal axes o; to change. We refer to these points as unstable. A
more complete analysis [16] reveals that, after a finite number of jumps, the universe hits a
point in the open set of stable p;. From this point onwards, the universe contracts smoothly
and without any further jumps.

We call these models non-chaotic, since the universe is guaranteed to arrive at a stable
point as a — 0. Non-chaotic models (Kasner circles) may contain both stable and unstable
points, but they will always oscillate only a finite number of times before arriving in the set
of stable points, after which the behavior is integrable.

w > 1: For w > 1, curvature does not affect the contraction. The key is the time-
dependence of the f; in (5.34) and (5.35), which approach zero as a positive power of ¢
as t — 0. Consequently, the exponential factors ef in the metric approach constants. The

leading order time-behavior of P, is simply that of a homogeneous and isotropic universe,

1 __ 4
P~ — ~ |t 5w, (5.38)
a
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This is always less divergent that ™2 for w > 1. Thus, even in the presence of initial
anisotropy and curvature, the solution for w > 1 converges to the isotropic solution rep-
resented by the central point on the Kasner sphere in Fig. 1.

We can generalize our cosmic no-hair theorem (described at the end of section 1.1) to
include models with spatial curvature. The Einstein equations for a contracting universe
with anisotropy and inhomogeneous spatial curvature converge to the Friedmann equation
for a homogeneous, flat and isotropic universe if it contains energy with w > 1, and that
for a homogeneous, flat but anisotropic universe if w = 1. The w < 1 case becomes highly

inhomogeneous and the no-hair theorem is inapplicable.

2. Coupling to p-forms

In section 1, we assumed that the evolution of the universe was dominated by an energy
component with fixed equation of state evolving independently of other matter in the uni-
verse. The component could have been a scalar field or a perfect fluid. We found chaotic
behavior for w < 1 in the presence of curvature but non-chaotic behavior for w = 1.

In this section, we want to consider how the behavior for w = 1 can change if the fluid
is imperfect or couples to other components. In many theories, including Kaluza-Klein,
supergravity and superstring models, the relevant energy consists of a scalar field that is
coupled to p-forms. Consequently, we will focus on this important example, as others have
in the past [16, 57-60].

To determine the effect of the coupling to p-forms on chaotic behavior, our approach is
similar to our analysis for spatial curvature, where we assume an initial state in which the
spatial curvature is negligible and then check that it remains small. Here we assume that the
p-form field strength is initially negligible and ask how its contribution evolves relative to

the energy density with equation of state w. Our action is

S= Jd4x\/—g(%R -10¢)*-V(g)- mewﬂ”w“ %), (5.39)
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where g is the metric, R is the scalar curvature, V is a potential for the scalar field ¢, p is the
rank of the p-form, F is the associated field strength tensor and A is the coupling constant.
The potential V(¢) is chosen to give fixed equation of state w = 1 in the absence a p-form
coupling, as in (2.24):

V(g) = —Voe V3UITWE, (5.40)

where V) is a positive constant. Throughout this chapter, we assume without loss of gener-
ality that ¢ — —ocoasa — 0.

For a given equation of state w and p-form rank, the behavior of the system as t — 0
depends on the coupling A. We can extend the terminology introduced earlier to describe
the properties for a given 1. We classify the p-form coupling parameter A as supercritical
if the p-form terms grow relative to the scalar field energy density. We call these models
supercritical, as opposed to chaotic, because if w > 1 itis not known whether chaos occurs or
whether the p-forms merely play a non-negligible role in integrable dynamics. In the special
case w = 1, chaos is known to occur, and we call these models chaotic [57-60]. Values of
A for which the contracting solution with negligible p-forms is stable are called non-chaotic
(some authors use subcritical). These two cases are analogous to those introduced in section
1. If A is on the boundary between supercritical and non-chaotic, we call A critical. The
behavior of critical models may be novel, and will be discussed at the end of this section.

We are assuming that initially the spatial curvature, the anisotropy and the p-form terms
are small, and then we check if these conditions are maintained as the universe contracts.
Since we are considering models where w = 1, the model is non-chaotic if the p-forms
are negligible. The universe may be approximated initially by the homogeneous isotropic
Friedmann-Robertson-Walker form in (5.9) with 3; = 0 and ¢ = dx’. If w > 1 and the p-
form terms are negligible, O ; — 0 as the crunch approaches. For w = 1, Q, remains small
but finite. If the isotropic case is unstable, then adding anisotropy cannot restore stability;

just as in section 1.2, the isotropic scale factors are the most stable.
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It can be shown that the p-form terms involving the spatial gradients of F grow slower
than the leading homogeneous time-derivative terms, another example of the ultralocal be-
havior discussed previously. Hence, we neglect all spatial derivatives of the field strength.

The components of F with purely spatial indices, F; are called magnetic and the

17 ip+1
components with one time index, FO'1"i», are called electric, in analogy with the Maxwell
action. We will use the labels E and B to indicate their respective contributions. F has a van-
ishing exterior derivative dF = 0. In coordinate notation, neglecting the spatial derivatives

of F, this corresponds to

a[OFil...ipH] =0, (5.41)

where the brackets [---] indicate antisymmetrization. Thus, the magnetic components are
constant,

F = (constant) (5.42)

i1 +ipel

The equation of motion for F is
V(M Frb by = 9 (M FHB2Hpety L TH oM EORE B 2 (5.43)

Only one set of Christoffel symbols appears due to the antisymmetry of F. Since I'* o =

% log\/=g and I'¥ ;; = 0, we can integrate to find,

-1
Foirip = £ ’

x (constant). (5.44)

The p-form part of the stress-energy tensor is

et?

3 Uy 1 2
Ty = m((l” D) Fupiyopipy Fy#2 7407 = 39,0 F7). (5.45)
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Decomposing (5.45) into electric and magnetic components, and including factors of the

metric, we compute the energy density for the p-forms p, = — T, which is,
P gy y p Pp

e? PH1 20iy iy 01 -] 1 i1j1 ip+1jp+1
pP:m(TF PF PginjrGipjp T 3 Firipe Fjiojprr @0 g 77" ) (5.46)
1 1¢
_ € 2 € 2

where the positive constants cx% and 05123 represent the magnitude of the electric and magnetic

energy, respectively. We can now define a new set of fractional energy densities,

Qy=p 1 ($*12+ V(¢), (5.48)
-1¢
_ 1.7 9
Qp=p" —G55 % (5.49)
A
_ -1_¢ 2
QB—P W(XB; (550)
¢ A
52 ¢ 2 ¢ 2
p:%qﬁ +V(¢)+a2(3_p) (xE+a2(P+U ap. (5.51)

where Q4 is the energy density in the scalar field and Qf and Q p; are the energy densities in
electric and magnetic modes. We are assuming that the anisotropy is negligible, so Q; = 0.

The scaling solution for a ¢-dominated universe with equation of state w is (2.25),

/ 4
¢_qln|t|’ q= m: (552)

and a = |t/tg]?/30+W), Substituting in (5.47), two terms in p, may be written as
= agltlPE + g )PP (5.53)
Pp ‘xEl | +(XB| |FB, 5.53

where pg and pp are called the electric and magnetic exponents, respectively. They are,

_4B-p) 4

PE= =30+ w A\/ 31+ w) (5:54)
4+ 4

pB= 3(1+W)+/\\/3(1+W). (5.55)
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Note that these expressions are invariant under a duality transformation, which takes p —
2 — p, interchanges the electric and magnetic modes, and takes ¢ — —¢.

In the Friedmann equation, the scalar field energy density scales as t~2. Consequently,
Q¢ — 1 and Qg g — 0 as the universe contracts if both pg and pp are both greater than
—2. In this case, the p-form contribution is negligible and A is non-chaotic. Alternatively,
if either pg or pp is less than —2, the respective p-form terms become large and alter the
dynamics.

For w = 1, the non-chaotic values of A are

-V8/3<1<0 p=0
1 —-V2/3<A<v2/3 p=1 (5.56)

0<A<Vv8/3 p=2

Increasing w causes the interval of non-chaotic couplings to grow, as shown in Fig. 2. In
particular, for any p and A, there exists a critical value wit (A, p) such that, for w > weit (A, p)
the p-form terms remains negligible. For any set of p-forms and couplings there exists a
Werit, the maximum of 1 (the critical equation of state for curvature) and the wit(A, p) for
each p and A. Then the contraction is non-chaotic if w > Wyt

The behavior can be understood in terms of an effective equation of state for the action

(5.39), using the conservation equation

a
p==3—(1+wep, (5.57)

where p is given by (5.51). Using (5.48)-(5.51), the equation of motion for ¢ and the Fried-

mann equation, we find
3-2 2p-1
Weff = W¢Q¢+TPQE+PTQB, (5.58)

where
_$r2-V(¢)

W¢ = m (5.59)
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FIGURE 2. The four dimensional electric and magnetic couplings A as a func-
tion of the critical equation of state for p = 0, 1, 2. The upper and lower three
curves represent the critical electric and magnetic exponents, respectively. A
form with given p and A is stable in a universe with equation of state w if the
point (w, A) lies between the two curves for the given p.

is the equation of state for the decoupled scalar field and Q4 + Qf +Qp = 1. The expression
(5.58) is exact, valid for all values of the Q; assuming the background is homogeneous, flat
and isotropic. For the electric and magnetic contributions, we can introduce wg = % and
Wp = ZPT_I, respectively. The weg is just the Q-weighted average of wg, wg and wjp.

All the A dependence of weg is contained in the time evolution of the Q;; wg, wg and
wp do not depend on A. Both wg and wp are always less than or equal to unity, and at least
one is strictly less.

If the p-form coupling A is non-chaotic, the behavior is simple. The quantities Qg and

Qp rapidly approach zero as Q4 approaches one, and the universe is dominated by the scalar

field, with the equation of state w. This is the non-chaotic case, discussed in section 2.
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Alternatively, if the p-form coupling is supercritical, Qf and Qp grow. The averaging
of the E and B component ensures weg < wg. If wg = 1 then weg < 1. In this case, the
anisotropy grows and chaotic oscillations occur. It is not known if this happens in the wy >
1 case. If in addition, the p-form coupling is critical (so wit = 1), it turns out that the
model is equivalent to an infinite-dimensional hyperbolic Toda system. There are an infinite
number of jumps from one Kasner-like solution to the next, but the system may be formally

integrable [59, 60]. It is not clear what the physical ramifications of this behavior are.

3. Time-varying equation of state

In a realistic cosmological model, the equation of state will not be constant, but will
depend on the scale factor and approach some limiting value w — w as a — 0. If W # writ,
none of the above analysis changes substantially. The model is supercritical if W < wi; or
non-chaotic if w > wjt. The critical case, W = wit, is more subtle, and the time dependence
of w can be significant. In this section, we assume wi; = 1, as this is the most important

case, and analyze what happens when wg — 1 at the crunch. We can expand wy as
we(a)=1+y(a), (5.60)

where y is a small function of the scale factor such that y — 0 as a — 0.

If there is no p-form with critical coupling, then using (5.11) and (5.21), it can be shown
that if y(a)loga approaches a constant as a — 0, then the behavior is essentially the same
as the w = 1 case, i.e. non-chaotic. The radius of the Kasner circle in figure 1 shrinks, if
w — 1%, or expands, if w — 17. If y — 0 so slowly that y(a)loga diverges as a — 0, then
the anisotropy is eliminated if y approaches zero from above or the chaos is restored if y
approaches from below.

Alternatively, if the model has a p-form with critical coupling, the Kasner contraction
will be stable if the p-form contribution to the equations of motion remain subdominant, or,

equivalently, if the ratio of the p-form terms to the other terms vanishes in the a — 0 limit.
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For magnetic modes with critical coupling At < 0, we find:

Q Acrit¢/ 2(P+1) a0 d /
log—2 = loge.—a ~— J —ay(a'), (5.61)
O 212+ V() a'

a

where C is a positive constant and by ~ we mean up to terms finite in the a — 0 limit. The
behavior is identical if the electric modes have critical coupling. If y — 0 very slowly, for
example

y(a) ~ |loga|™! (5.62)

so that the integral diverges as a — 0, then the ratio goes to zero and () ); becomes negligible
in the a — 0 limit. This ensures that the term is small, and never grows to influence the
dynamics.

Let us investigate what conditions on the potential will give us a y of this form. If we
combine the Friedmann equation and equation of motion for ¢, we obtain (2.34)

d1// _ V)¢
dloga 3(1//_ VeV

)(w— D(y+1), (5.63)

where , ¢ denotes a derivative by ¢ and

d¢

6y = . .6
Véy dloga (5.64)
The equation of state (5.59) can be expressed in terms of v,

wg=1+y=2y"-1. (5.65)

We can obtain wg — 17 as a — 0 for any negative potential which is bounded (for large
negative values of ¢) by —C e-\/&p’ where C is a positive constant (see (5.40)). The kinetic
energy increases more rapidly than the potential energy in these cases, and so w4 approaches
unity at the crunch. In particular, the potential need not be bounded below. In general, any

potential which can be expressed in the form

V() =2W'(¢)? -3 W(¢)> (5.66)
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satisfies positive energy [22]. Hertog et al. [94] have shown that the potential
~Voe ™, (5.67)

where V and c are positive constants, can be expressed in this form provided ¢ < v/6, and so
satisfies positive energy. For ¢ = v/6, solutions exist with total ADM energy that is unbounded
below.

For the potential (5.67), V,4/V = c. In the case c < V6, we find
yo< a’, (5.68)

where y is a positive constant. Consequently, yloga — 0 as a — 0 and the p-form with
critical coupling is not suppressed. However, when ¢ = v/6, the solution to the equations
of motion show that yloga approaches a constant, so the p-form can be suppressed when
positive energy is violated.
The potential
V($) ==Voe Vo gl", (5.69)

(or more generally, an exponential times any finite order polynomial) satisfies positive en-
ergy (i.e. can be expressed in the form (5.66)) for n < —1. Solving the equation of motion
(5.63) for large ¢, we find that for n < —1 the p-form with critical coupling is not sup-
pressed. Surprisingly, for n > —1 the ratio (5.61) goes to zero, and the solution is stable. For
the broad class of potentials (5.67) and (5.69), the parameters for which they satisfy positive
energy turn out to be exactly those which do not suppress the p-form. It is an open ques-
tion whether any potential can be constructed which will suppress the wit = 1 p-form and

satisfy positive energy.

4. Extra dimensions and orbifolds

In models in which gravity is fundamentally higher dimensional, the detailed global

structure of the extra dimensions can suppress or enhance chaos in the four dimensional
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theory. We consider two simple compactifications of five dimensional gravity, on S! and
S'/Z,. In the first, the chaotic nature of pure five dimensional gravity descends to the four
dimensional theory. In the second, the chaotic behavior is suppressed. Models of quantum
gravity also generally include additional matter fields in the extra dimensions. As an ex-
ample, we discuss the compactification of heterotic M-theory to four dimensions and find
that its behavior during gravitational contraction is on the borderline between smooth and
chaotic.

Consider a five-dimensional, flat universe without matter fields. We know from the study
of general Kasner universes [65] that it will exhibit chaotic behavior. Now compactify one
dimension on S!. We know that the four-dimensional effective theory describes Einstein
gravity coupled to a free scalar field. The scalar field describes the volume of the S! - itisa
simple example of a moduli field. As all of our preceding arguments regarding gravitational
contraction are local in nature, we expect that the resulting system should be chaotic as well.
However, a free scalar field has equation of state w = 1. According to our analysis in section
1, one might think that the behavior should be non-chaotic. What has happened to the
chaos?

The resolution comes from the fact that we have neglected the Kaluza-Klein one-form.

The dimensionally reduced action (2.88),
S:Jd4x\/—g(%R—%(agb)z—ie‘/g‘sz), (5.70)

describes a vector field coupled to a free scalar and to gravity. The coupling A = v/6 is outside
the stable range for a one-form in four dimensions. Therefore, the four dimensional theory
is chaotic, as we would have guessed, but we have to include the interactions with p-forms
to see that this is so.

I, instead of compactifying the fifth dimension on S!, we compactify on the orbifold

S'/Z, we obtain the action (2.94), which has the Kaluza-Klein one-form projected out: it
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sets A, = 0in (5.70). The absence of this vector field in the effective action thus implies that
the four dimensional theory is no longer chaotic.

While orbifolding suppresses some gauge fields and p-forms that would cause chaotic
behavior, in some models there are additional p-forms in the bulk. These p-forms, after
dimensional reduction, may themselves lead to chaotic behavior. An illustrative example
is heterotic M-theory, which includes a three-form field. To zeroth order in the eleven di-
mensional gravitational coupling «, the low-energy four dimensional effective action is from

(2.105) and [126]:

14
s©=ZP de‘*ﬁ(R ~ (@02 - (30)* —eVEP a2 — e VB (90)2), (5.71)

where we have rescaled the fields in the action so the kinetic energies are canonically nor-
malized. The scalar field c is the radion, which governs the brane separation. The Calabi-Yau
volume modulus a and scalar field o (which comes from the eleven dimensional three-form)
do not couple to ¢, and so can be ignored. However, the three-form modulus y couples to
¢ and the exponent is critical A = —v/8/3. Hence, the theory does not lead to stable Kasner
contraction. Including the first order (x2/3) correction to the action does not change the re-
sult. As we discussed in section 3.1 of chapter 4, the Yang-Mills gauge fields have a coupling
to the radion proportional to 1 + £xge. Damour ef al. [59, 60] have shown that Yang-Mills
one-forms have the same asymptotic behavior as the Abelian case considered here. Since
the radion ¢ — —oo, the effective A = 0 and according to (5.56), the gauge theories on the
fixed planes do not cause chaos.

As heterotic M-theory is critical, it is quite conceivable that higher order corrections will
lead to a different behavior during cosmological contraction. There are a number of kinds
of corrections to (5.71) that could push the theory away from criticality and render it either

chaotic or non-chaotic; but, it is not yet known which behavior occurs.
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Wesley et al. [191] consider the consequences of compactifications on more complex
manifolds, and show that the chaotic properties are determined by the cohomology and

Killing vectors of the compact manifold.

The new results presented in this chapter build on over three decades of preceding re-
search on the behavior of cosmological models contracting to a big crunch. The classic work
focused on cases where the equation of state of the dominant energy component is w < 1

and w is constant. The essential results in this case are:

e For a perfect fluid with w < 1, the contraction is smooth and anisotropic in the
absence of curvature and chaotic mixmaster if there is non-zero curvature.

e For a perfect fluid with w = 1, the contraction is smooth and anisotropic in the
absence of curvature. With curvature, the contraction is anisotropic also, although,
depending on the initial anisotropy, the contraction may undergo a finite number
of jumps from one Kasner-like behavior to another.

o For a free scalar field coupled to p-forms with coupling e*¢, the contraction is
chaotic mixmaster if the coupling A is outside a finite interval of non-chaotic A.

The mixmaster case is non-integrable and the critical case may be integrable.

In this chapter, we have extended this work to include cases where w > 1, a situation that
arises naturally in some recent models with a big crunch/big bang transition, such as the

cyclic and ekpyrotic models. We have added the following results:

e For perfect fluid with w > 1, the contraction is smooth and converges to isotropic
at the crunch. The Einstein equations converge to ultralocal, homogeneous and
isotropic Friedmann equations.

o For a scalar field coupled to p-forms, there exists a wcyit such that the contraction
is smooth and isotropic for w > wit.

o If w is time-varying and approaches one from above sufficiently slowly the con-
traction is smooth and non-chaotic, even in the presence of a p-form with critical

equation of state wyjt = 1.
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o In models with an extra dimension, compactification generically produces a scalar
field and p-forms. Z, orbifolding forces some p-forms to zero and, thereby, sup-

presses their contributions to chaos.

In this chapter we have studied how chaotic mixmaster behavior may be suppressed in mod-
els involving a big crunch/big bang transition. In particular, the ekpyrotic and cyclic models
already include some of the required ingredients including a scalar field with w > 1 and Z,

orbifolding.



CHAPTER 6

Ekpyrotic and cyclic applications

Nearly scale invariant cosmological perturbations are an important ingredient of mod-
ern cosmology. Observations of the cosmic microwave background [167] and large scale
structure [175] suggest that the spectrum of initial perturbations must be scale invariant to
about one part in ten. It has recently been shown that there are only two stable mechanisms
for generating nearly scale invariant perturbations, depending on the equation of state of
the universe w: an expanding universe with w = —1 and a contracting universe with w > 1
[88]. These are called the inflationary [124] and ekpyrotic [110, 112, 113] mechanisms, re-
spectively.

In this chapter, we examine what happens to perturbations during a transition between
these two regimes. A contracting universe cannot begin expanding without undergoing a
bounce, which generically involves either a singularity or a violation of the null energy con-
dition [110]. However, it is quite simple to construct models that move from an expanding
phase to a contracting phase: a scalar field with a potential that crosses zero is all that is
required.

This is particularly relevant to the cyclic scenario [170-172] which contains a scalar field,
the radion, which models both the accelerating, dark energy epoch and the contracting ekpy-
rotic phase. We study the full perturbation spectrum of this model, including the transition
from expansion to contraction, and point out that the modes generated in the dark energy
epoch continue to grow, even when they are far outside the horizon, and have roughly the
same amplitude as the modes produced in the ekpyrotic phase. This is surprising because

the dark energy and ekpyrotic phases in the cyclic model are generated at vastly different
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energy scales: the dark energy scale is 1073 eV whereas the ekpyrotic scale must be many
GeV.

The growth of dark energy modes when far outside the horizon seems to contradict the
usual intuition from inflation, in which modes do not grow outside the horizon. We point
out that this is due to a choice of the variable {, the comoving curvature perturbation, which
projects out the growing mode we are interested in. The Newtonian potential ® does grow,
and whether this growth is physically important depends on the details of the theory under
consideration.

We show that the modes produced in the dark energy phase are not observationally
relevant in the model. The model requires that the visible perturbations are produced in the
ekpyrotic phase, leaving the perturbations produced in the dark energy epoch far outside the
horizon. It is possible to tune the ekpyrotic (but not the cyclic) model so that dark energy
modes, or even the transition feature, are part of the observable spectrum, although there is
no reason to prefer such a model.

We also discuss the behavior of the cyclic model over longer intervals. Over the course of
each cycle, the scale factor is multiplied by some exponentially large factor eV. A large band
of dark energy and ekpyrotic perturbations are produced and exit the horizon. Some fraction
of these modes reenter during the kinetic energy and radiation dominated expansion.

We show that dark energy domination is not necessary for the global consistency of the
cyclic model. The original treatment of cyclic model [171] pointed out that sixty e-folds of
dark energy domination ensures that there was less than one particle per Hubble volume
at the transition to the ekpyrotic phase. This is sufficient to ensure that fluctuations in one
cycle do not interfere with the quantum generation of perturbations in the next. However,
we show that the classical suppression of scalar field fluctuations inside the horizon ensures
that the model is consistent without any dark energy domination.

We discuss the global structure of the model, and show that once perturbations exit

the horizon for the last time, they are continually amplified and grow to ever larger scales.
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This means that superhorizon perturbations quickly become nonlinear, and that once two
patches fall out of causal contact they become asynchronous over the course of one cycle.
This is a purely metaphysical issue, however, as physical observable, such as the curvature
perturbation inside a Hubble patch, do not grow.

In section 1 we briefly review the cyclic model and the ekpyrotic mechanism for gener-
ating nearly scale invariant perturbations. In section 2 we discuss the transition from dark
energy domination to the ekpyrotic phase, including a qualitative discussion and numeri-
cal results. In section 3, we discuss constraints on the cyclic model parameters and show
that the feature generated at the transition must be far outside the horizon. In section 4 we

discuss the global features of the cyclic model.

1. The ekpyrotic and cyclic models

The ekpyrotic scenario [110, 112] is a cosmological scenario that reproduces many of the
successes of inflation in a very different context. The crucial difference is that the primor-
dial density perturbations are produced in a contracting phase by a scalar field with a steep
potential, rather than an expanding phase with a flat potential. In terms of the equation of
state, the ekpyrotic universe is contracting with w > 1, whereas the inflationary universe
is expanding with w = —1. In chapter 5, we saw that these regimes are both attractors, to
which no-hair theorems apply. Gratton et al. [88] have shown, moreover, that these are the
only two stable regimes which produce nearly scale-invariant perturbations.

In order to match the ekpyrotic phase onto the hot big bang, it is necessary for the
empty, homogeneous contracting universe to bounce: that is, the big crunch needs to match
onto a big bang. The ekpyrotic model is essentially higher-dimensional, and implements
the bounce by assuming that the bounce comes from colliding branes in a universe with
additional dimensions. Because of the interest in constructing phenomenologically viable
string models from Horava-Witten theory [95, 96, 126], a particularly interesting way to
implement the theory is the collision of two S'/Z, orbifold fixed planes. The scenario, in its

simplest form, consists of a five-dimensional bulk spacetime bounded by four-dimensional
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S1/Z, orbifold planes. Branes trapped at each fixed plane contain the matter and radiation
of the universe. The five-dimensional geometry is similar to the Randall-Sundrum model
[156], in which one brane has positive tension and the other has negative tension, with a
cosmological constant in the bulk. Near the brane collision, effects due to a warped bulk go
away. Moreover, non-perturbative string effects should vanish, as the string coupling g; — 0
as the separation between the branes vanishes (¢ — —o0). Thus, the geometry simplifies to

a five dimensional Milne universe:
ds® = —dt* + dx? + dx} + dx} +|vt]*dy?, (6.1)

where y € [0, 1] is the orbifold direction and v is the velocity with which the branes collide.
The bounce is a singular event. In five dimensions, a dimension instantaneously vanishes
when the branes are coincident. In four dimensions, it is a big crunch: the scale factor
vanishes instantaneously. Results about the bounce differ widely depending on what pre-
scription for regulating the singularity is used [14, 27, 41, 74, 76, 82, 106, 107, 111, 113, 128,
133, 134, 151, 180]. Regulating in four dimensions is problematic, because a nonsingular
bounce invariably violates the null energy condition [110] whereas it is difficult to know
what matching rule to apply at a singular bounce. We assume the results of Tolley et al.
[177, 178] (see also [180]) which assume that a five-dimensional Milne-like bounce occurs
in M-theory and use unitarity to match incoming and outgoing modes across the singularity.
Note that in the S!/Z, model (2.94), the temperature on the orbifold planes remains finite
at the bounce, even though the bulk scale factor goes to zero: this is because the orbifold
planes couple to the metric e V23¢9, uv> and the bulk scale factor and radion conspire to
keep the brane scale factor from contracting to zero.

One brane, the visible brane, has the standard model on it. It is assumed that fields on the
other, hidden brane, do not interact with the visible brane, other than gravitationally. Away

from the bounce, the ekpyrotic model may be described by an effective four dimensional
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theory. The separation of the branes is given by a canonically normalized scalar field ¢, and

V2/3¢ (just as in the S!/Z, compactifications of chapter 2 section 3).

goesasas L ~e

The branes have an interaction that is modeled in four dimensions by a potential ¢.
This is the force that draws them together and causes the collision. It is put in by hand, but it
should ultimately be derivable from M-theory, perhaps from the exchange of M2-branes be-
tween M5-branes, the exchange of strings between D-branes, effects from interacting mod-
uli, or other dynamics in the bulk. The most important feature of the potential is that it needs

a steep, negative segment in order for the ekpyrotic mechanism to operate (see section 2.1

of chapter 2). The simplest such potential is just a negative exponential
V(g)=-Voe ™, for  ¢ena<¢ <0, (6.2)

where ¢ and V) are positive constants, with ¢ > 1. Nearly scale-invariant perturbations
are produced by a scalar field with rolling down this potential. The universe is very slowly
contracting, with w > 1. The magnitude of the Hubble parameter is rapidly increasing, so
(aH)? is growing rapidly and modes are exiting the horizon. Some authors have argued that
the perturbations produced in the Newtonian potential do not produce physical curvature
perturbations [49, 102, 129] but in the Tolley et al. prescription, this is not the case, and the
Newtonian potential is converted into fluctuations in the density of radiation at the bounce.

The cyclic model is a more ambitious version of the basic ekpyrotic scenario in which
the orbifold planes collide periodically throughout history. The solution is an attractor, and
thus explains the initial condition problem in cosmology. The potential for the radion, V(¢),

illustrated in figure 1, has three basic regions (the point ¢ = 0 is fixed arbitrarily):

¢ > 0: A region where V(¢) is flat and has a small, positive value. This is the “dark
energy’ region, which accounts for the dark energy density observed today. Other
forms of this potential, such as a metastable minimum, may also be possible.

0> ¢ > pena: A very steep region in which V(¢) is negative. This is called the ekpy-

rotic phase. The potential must satisfy the “fast-roll” conditions, that %(V’ 1V)2>1
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FIGURE 1. A schematic plot of the scalar field potential in the cyclic model.
The motion of the scalar field (illustrated by a ball rolling down from the
plateau) during the course of a cycle is illustrated. The different phases are
marked along with the equation of state w. The arrows show the direction
of motion of the scalar field in that phase. To the right represents a growing
separation between the orbifold planes; to the left represents a decreasing

separation.

and |VV"/(V")? - 1| = 0. The value of the potential when these conditions cease

to be satisfied is V(¢end) = — Vend-

Gend > ¢: String theory seems to require that V(¢) — 0 as ¢ — —oo, as non-

perturbative effects shut off at small separations. However, consistency of the model

only requires only the weaker condition, that V(gb)e‘/g‘/’ — 0 as ¢ — —oo. (Thisim-

plies w — 1" as ¢ — —o0.)
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The constraints on the potential are discussed in detail in [115]. In our analysis, we assume

a particularly simple form for V(¢):
V($) = Vo(e" - e N F(¢), (6.3)

where ¢ > 1 and 0 = b <« 1. The function F cuts off the potential at ¢enq: F(¢p) — 1 for
¢ > Peng and F(¢) — 0 rapidly for ¢ < ¢eng. The particular form of F is not important for
our analysis, as its shape will only correct the amplitude of the overall spectrum by a factor of
order unity. A potential exception is when analyzing the conditions for chaos, as discussed
in chapter 5.

A cycle goes as follows. Starting today, shortly after the start of dark energy domination,
the universe remains dark energy dominated for some number of e-foldings, labeled Npg.
In this epoch, the universe has w = —1.

After the period of dark energy domination, the potential crosses the point ¢ = 0 and

V =0 and turns negative. In the Friedmann equation,
3H>=p+1¢2+V(g), (6.4)

with V < 0, matter will continually redshifts away, as V decreases, until H = 0. At this time,
¢ begins to grow rapidly until the w > 1 ekpyrotic attractor - in which 2 ¢* =~ —V(¢) - is
very quickly reached.

In both the dark energy and ekpyrotic regimes, |a H|? is increasing and so modes are
exiting the horizon. This occurs for quite different reasons in the two regimes. In the dark
energy epoch, H is nearly constant and a is increasing exponentially, whereas in the ekpy-
rotic epoch, a is nearly constant and the magnitude of H is rapidly increasing.

When ¢ = ¢eng, the ekpyrotic phase ends, and the kinetic energy ¢2/2 dominates over
the negative potential. This phase has equation of state w = 1. In a short time, ¢ — —oco
and the four dimensional scale factor a — 0. A small amount of radiation is produced on

the branes at the big crunch. For our purposes, this is parameterized by Try the “reheat
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temperature” This is the temperature at which the densities of kinetic energy and radiation
are equal. In order to cycle correctly [115, 171] the velocity of the branes coming out of the
bounce must be greater than that going in. This is possible only because one of the branes
has negative tension.

The kinetic phase is nearly symmetric, with the contraction going into the bounce can-
celed by the expansion coming out of it. However, since the scalar field has more kinetic
energy coming out of the bounce, the universe remains kinetic energy dominated as the
scalar field crosses the ekpyrotic part of the potential and reaches the dark energy plateau.
This asymmetry causes a net expansion during this epoch.

Radiation domination begins at the reheat temperature, which must be greater than the
temperature of big bang nucleosynthesis in order for the successes of the regular hot big bang
model to be reproduced in the cyclic model. As the universe expands, matter domination
eventually begins and structures form. Eventually, dark energy domination begins. This
marks the completion of one cycle.

At some point, the field rolling up the plateau turns around and begins rolling back down
Whether this happens during radiation, matter or dark energy domination is immaterial.
The complete time-line is reproduced in figure 2, with some notes about the relevant scales.
These will be analyzed in section 3. First, we focus on the transition from expansion to

contraction.

2. The transition from expansion to contraction

In this section, we study the production of perturbations in universes that move from

an expanding, dark energy epoch to a contracting, ekpyrotic epoch. We use the potential
V(g) = Vo(e"? —e™%), (6.5)

where V), b and c are positive constants. The solution for ¢ > 0 is the dark energy attractor,

whereas for ¢ < 0 it is the ekpyrotic attractor. Thus, we require 0 < b < 1 and ¢ > 1. Itis
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possible to analytically describe the evolution of modes in these attractor regimes in terms
of Bessel functions. The dark energy phase is really very low energy inflation, and can be
treated using the same techniques. However, we are also interested in the transition regime,
where a numerical solution is necessary. First, however, we discuss qualitative expectations
for the spectrum.

We follow the perturbations in the Mukhanov variable [139] u = ®/ (b, where @ is the

Newtonian potential. The evolution equation is given in Fourier space by (2.53)

where Upqy is (2.54)
Upot = z(1/2)" and z=ad' I H, (6.7)

and we use primes to denote conformal time derivatives throughout this chapter. We assume
modes start in their Minkowski ground state (2.57), so that |uy|? = (2k) 3. This assumption

should be valid for modes at sufficiently small scales in the dark energy epoch.

2.1. Qualitative expectations. When k2 > Upot in (6.6), the modes are well within the
horizon and oscillate, u; ~ e****. However, for long-wavelength modes, with k? <« Upots

the explicit solutions to (6.6) are

ur(n)=z(n) ", (6.8)
uy(1) = LJ’ dt z(7)?. (6.9)
z(1)

In general, one of these modes will be dominant. For dark energy domination, where z is
roughly constant, it is the second (6.9) whereas in the ekpyrotic phase, the magnitude of H
is growing rapidly and it is (6.8). When modes are outside the horizon, they all evolve in

concert according to these solutions. The limits of integration on u, should be defined to
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make the integral finite. In the dark energy dominated epoch, the growing mode is
1 T
ur pe(T) = —J dt' z(7)?. (6.10)
z(7) J_o
The ekpyrotic decaying mode is

0
Uy ek(7) = —LJ dr' z(1)?, (6.11)
’ z(1) ),

where 7 is negative and 7 — 0 corresponds to the crunch. The modes (6.10) and (6.11)
have finite, equal limits as H — 0 (i.e. z — +o00). However, their derivatives do not match,
which demonstrates that the dark energy growing mode does not entirely match onto the
ekpyrotic decaying mode, but rather must match on to a combination of the growing and
decaying modes.

The usual intuition from inflationary perturbation theory - that the amplitude of modes
is conserved outside the horizon - breaks down. Instead, the amplitude continue to grow,
while the shape of the spectrum is preserved, and modes produced at radically different
energy scales, the dark energy and inflationary scales, smoothly match. The conflict arises

because the inflationary result is derived using the variable {, the canonical conjugate to ®:

3 2 ( D )/_ 2
T 3a2(1+w) T 3a2(1+w)

¢ (zu)'. (6.12)

a'la®
The 1/z mode is thus projected out by {. In an expanding universe, this is the decaying
mode of @, while the growing mode is preserved. However, in a contracting universe, the
two modes are interchanged, and the 1/z mode is the growing mode. Thus, the variable (,
while it is conserved outside the horizon, is incapable of seeing the growth of perturbations
in the contracting phase, because it is orthogonal to the growing mode.

As we alluded in chapter 2, Upo is only loosely connected to the horizon, whose comov-
ing scale is given by a H. In fact, Upo can differ from (aH)? by several orders of magnitude:

in the expanding phase the scale is much larger than the horizon, Upet/ (a H)? ~ b?, whereas
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FIGURE 3. Plot of Upot/(aH)2 against ¢ for the potential Vo (e® 1¢ _ o=10¢y,
In the attractor regimes, Upo takes values which differ from the horizon scale
aH by two orders of magnitude in each direction. The value of ¢ for which

the Hubble parameter vanishes, ¢ = —0.31, is marked.

in the contracting phase it is much smaller, Upot/(aH)2 ~ ¢ (see figure 3). Thus, in this sec-
tion we use the terms “outside the horizon” and “inside the horizon” loosely to refer to modes
that satisfy the conditions k? <« Upot and k2 > Upot, respectively.

We have seen that U, increases without limit during contraction, and so all modes
eventually leave the horizon. If Up increases monotonically, we can associate a critical time
7 with each mode, defined implicitly through k* = Upot(7x), marking the mode exiting the
horizon. If this transition occurs while the universe is in the dark energy epoch, we call
the mode a dark energy mode one. If it occurs well into the contracting phase, we call the
mode ekpyrotic. In between we have transition modes. The dark energy modes necessarily
have the longest wavelengths; the ekpyrotic ones the shortest. If U, does not increase
monotonically, or even goes negative, these labels are not so well defined. This does not
pose any practical problem interpreting the spectrum, as any decrease in Up is typically

brief and quite severe, and thus will only affect the shape of the spectrum for modes that left



6. EKPYROTIC AND CYCLIC APPLICATIONS 113

the horizon very recently. Moreover, Uy increases without limit as ¢ — —oo, so each mode
has a time at which it last moves outside the horizon.

Well after 74, any mode behaves like the k = 0 growing mode (6.8); it “freezes out”. Hence
the spectrum of frozen-out dark energy modes at a given time preserves its shape as time
passes, even through the transition from dark energy domination to decelerating expansion
to contraction. This is useful since it allows us to apply some results from inflationary theory
to predict the shape of this part of the spectrum. Likewise, we can use ekpyrotic calculations
to predict the shape of the spectrum of ekpyrotic modes. The amplitude of modes, however,
is not conserved outside the horizon in the ekpyrotic phase; rather, modes grow as 1/z(1) =
H/lag'. The scalar spectral index is defined as

_ dlInjul?

ns— = Ik + (6.13)

Analytic calculations (see section 2.1 of chapter 2) give the spectral index for our poten-
tial (6.5) in the two scaling regimes. For the dark energy modes, ns— 1 is —2b%/(2 — b?),
whereas it is —4/(c? — 2) for the ekpyrotic modes. Both slopes are the same if we set
¢? = 4/b?. (An interesting duality between the scalar spectrum of expanding and contract-
ing phases is discussed in [25].) These qualitative arguments demonstrate that we would
expect two nearly scale-invariant parts of the spectrum to be joined by a transition feature.

We now analyze the shape of this feature.

2.2. Numerical results. We rewrite Uyt in terms of the potential and proper time, to

obtain ,
8HV,, 2V,
+ ¢2 + V’¢¢). (6.14)

We use this expression when evaluating Uyt numerically. By rescaling V(¢) and 7 by di-

Upot = a2(§¢2+2V+

mensionless variables such that 72 V(¢) is fixed, the form of (6.6) is preserved and we can
set Vo to 1 in (6.5). In figure 4, we show parametric plots of Upot/a2 against ¢ for the at-
tractor solutions with potentials of the form (6.5) with ¢ = 10. We have plotted Up, against

¢ rather than f or 7 in order to ease comparison between the models.
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FIGURE 4. A plot of Upet/a” against ¢ for the attractor solutions with poten-
tials of the form Vo (e?? — e71%9), with b ranging from 0.0 to 0.5 in steps of

0.1. In the solutions with b 2 0.2, Uy takes negative values.

With ¢ = 10, as in the figure, Upot stops behaving monotonically if b 2 0.2. This is be-
cause the V 44 term in Upot (6.14) can dominate over the other terms at the transition. This
term can even make Upot go negative. In this case, just as (aH)? instantaneously vanishes
at the transition, our notion of the horizon, defined by Upq, temporarily breaks down. This
has no effect on the modes that left the horizon many e-folds before the transition, as the
terms in the definition of Up are roughly of order a?Vy and the k? <« a?V, term in the
evolution of uy (6.6) is still negligible. However, the feature can affect the overall amplitude
of the spectrum and the shape of a moderate band of wavenumbers. When Up, is negative
(6.6) is an equation for a time-dependent harmonic oscillator. The frequency is changing

rapidly, not adiabatically: (¢")? ~ a?V, ~ k2

tran> Where kiap is the transition wavenumber.

Since the feature in figure 4 spans a range of A¢ ~ 0.5, the transition modes will not oscillate
more than once at the transition. For such a short switch the amplitude of u; may simply

begin to decrease.
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To compute the power spectrum of u, it is sufficient to know its modulus r. We solve for

r directly. This is helpful, as it removes the rapidly changing phase from u. Set
uk:rkeiek/(Zk)3/2, (6.15)

where we have absorbed the initial condition (2.57) into 7, so that » = 1 at early times. In
these units, the spectral index is n;— 1 = dInr?/dIn k, and scale invariance corresponds to r
independent of k. Substituting into (6.6) and integrating the imaginary part gives 20’ = —k.
Substituting this into the real part leaves

1

_ 12
! =k (r3 - r) + UpotT- (6.16)

Thus, r behaves like a ball rolling in a time-dependent potential, resting at » = 1 in the far
past where Upot is negligible. As Upor changes slowly from zero, but remains much less
than k2, r stays nestled at the slowly-moving minimum of its time-dependent potential. In
integrating (6.16), we start suitably early that |Upe| < k?, where taking r = 1 and # = 0
suffices.

We integrate from a time when Upqy < k? to a time when Upot > k2, for a large range of
k2. To do this efficiently, we tabulate the solutions to the background equations of motion.
Since both conformal and proper time vary over many orders of magnitude, ¢ is treated as
the independent variable. We use (6.16) to integrate r over the range of ¢ between the initial
and final time, and to construct a table of r versus k. This technique is quite efficient, and
can be used to quickly compute the spectrum for a wide range of potentials. The background
evolution needs only be solved once for each potential, and the r for each k need only be
integrated over the relevant range of ¢, when Upot ~ k2 (otherwise r is either constant or
behaves identically to the k = 0 mode). These techniques work quite generally, so the code
could also be used to compute the spectra associated with various inflationary potentials in

models without a contracting phase.
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FIGURE 5. Plots of In ri (equivalently, In|u > = 3Ink) against Ink for po-
tentials of the form Vi (e?? — e=¢?). The background evolves according to
the attractor. For definiteness, we have chosen the normalization so that the
modes with k2 = pot when H = 0 coincide for each of the solutions. The
plots on the left have fixed ¢ = 10 and those on the right have fixed b = 0.
The slope gives the spectral index: a horizontal line corresponds to a scale-

invariant spectrum.

We plot Inr? against Ink in figure 2.2 for the attractor solutions with potentials of
the form (6.5). The observed scale and amplitude of the fluctuations depend on other
parameters, discussed in section 4. Here, we rescale the curves to put the mode with
k? = Upot(H = 0) at the origin. At large k all curves tend to their expected ekpyrotic limit,
and similarly at small k those corresponding to b > 0 go to their power-law inflation limit.
There is a feature in the power spectrum for those modes which leave the horizon near H = 0,
at the transition between expansion and contraction in all models. This also corresponds to
the modes that exit the horizon in the transition between the dark energy and ekpyrotic
epochs. The models with larger b have a more abrupt change in V and U, and hence a
more pronounced feature. Solutions for which U, goes negative have spectra which are
not monotonically decreasing: as discussed above, the modes that leave the horizon near

H = 0 have time to begin an oscillation.
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In the cyclic scenario perturbations are produced in the expanding phase, when the uni-
verse is dark-energy dominated. This phase can be thought of as a phase of ultra-low energy
inflation: the height of the potential is the cosmological constant, 10~2% in Planck units.
The perturbations, however, are amplified throughout the ekpyrotic phase, when the asso-
ciated energy scale is much larger. At the bounce, while the dark energy perturbations are
on much larger physical scales, their magnitude is comparable to those produced during the
ekpyrotic phase.

The spectral index in this model is of the sort marginally preferred by recent surveys of
large scale structure [103, 167] (but see also [162]). However, we will see in the next section
that these modes are far outside the horizon in the cyclic model, so that the feature is not, in

general, visible.

3. Scales and the cyclic model

In order to understand how the cyclic model behaves over multiple cycles, we record
some scales in terms of the fundamental parameters governing the model. These are the
value of the potential at the end of the ekpyrotic phase V.4 (defined to be positive) and the
reheat temperature Try, which determines how much radiation is produced at the bounce
and sets the scale at which scalar field kinetic energy density and radiation density are equal.
The collision velocity of the branes, v, is a five dimensional parameter which is deter-
mined by V4 and the condition from observations that the spectrum of perturbations have
amplitude 107°. The constraints on these parameters were considered in detail in [115] and
are summarized in figure 6.

The cyclic model has four phases: the dark energy phase, the ekpyrotic phase, the kinetic
energy dominated phase and the radiation and matter dominated phase. We consider the
change of the scale factor a and the comoving horizon aH in each of those phases. Our
notation for the subscripts and results are summarized in table 1 and in the time-line figure
2. Note, in particular that we use the subscript 1 to denote quantities evaluated today, and

the subscript 0 to denote quantities evaluated “today, one cycle ago.”
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F1GURE 6. Constraints on two cyclic model parameters: the reheat tempera-
ture Try and Vepg, the value of the potential at the end of the ekpyrotic phase.
The latter parameter can be written in terms of the collision velocity v o of
the two orbifold planes. The shaded region shows the allowed parameters for
fast-roll parameter ¢ = 10~2 and warping scale 3 x 10* Planck units. The BBN
constraint comes from the condition that the model is radiation dominated at
big bang nucleosynthesis temperatures. The cycling constraint comes from
the constraint that the scalar field reach the dark energy plateau before re-
heating. The gravity wave constraint comes from the requirement that no
more than 10% of the critical density be made up by gravitational waves at

BBN. Adapted with permission from [115].

We assume that there are Npg e-folds of expansion in the dark energy phase. Since the
Hubble parameter H is approximately constant, the ratio of scale factors before and after
apg/ag =~ eNPE and likewise for the horizon (a H)pg/(aH)g =~ eNPE,

The ekpyrotic phase has equation of state w > 1. From (2.27) and (2.26), we see that

(6.17)

dend ( Vo )1/52
aDpE Vend
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scale factor | expansion horizon | example value
epoch | initial final agl a; (aH)¢/ (aH); an—if Ezll?)f
darkenergy | ao  Atan Npg Npg Npe  Npg
. Vend\—1/¢2 Vend1/2
ekpyrotic | @Ggran  dend (V—Od) ¢ (V—Od) ~1 111
o [ RVIE Vit -4/3
kinetic energy | aend  arn | (722) (r2d) 18 37
matter/radiation | aryg = a1 5‘},}}1 ( glﬁ )71 27 -27
0 0
TABLE 1. The scale factor notation and approximate evolution of the scale
factor and horizon in the cyclic model in terms of the reheat temperature
Tru, the potential at the end of the ekpyrotic phase V4 and the scale of dark
energy V. The illustrative values at the right of the table take Tryy = 1 GeV,
Vend=10'2GeVand Vy=10"3eV.
which is a very small contraction, typically 1-2 e-folds. Moreover,
N (aH)end Hend Vend 1/2 23 V;riéll 2
o = ~ :( ) ~1.6x10 (—) , (6.18)
(a H ) DE H DE V() GeV

which is very large, so an exponentially large number, Nk of modes are generated in the
ekpyrotic phase.

The w = 1 kinetic energy dominated phase is symmetric between contracting and ex-
panding phases for ¢ < ¢.,q. However, we have seen that the ekpyrotic contraction is neg-
ligible and does not compensate the expansion that occurs when ¢ is in the interval before
reheating, ¢.nq < ¢ < ¢ry. In this interval, the energy density of the universe goes from ap-

roximately Vie,q to 729 T2../30, where g is the number of relativistic species at reheating.
p Y Vend 9 1iru g P g

Since p x a~°:
g V14 53
Aend TrH
and
(aH)ru _ ( Tru )4/3 (6.20)
(aH)end ’ .

1/4
Vend

where we have omitted the constants, which make a difference of only a few e-folds.
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Finally the results for the radiation and matter dominated phase can be extracted from

the ratio of the cMB temperature and the reheat temperature:

TrRH
GeV

ai _ TRH( Teq

1/2
) —1.4x10"3
Tdec

, (6.21)
arg  To

where the small square root term is from the slower rate of cooling T oc a~!/? between
matter-radiation equality and decoupling. The corresponding result for the comoving hori-

Zon is

(T -
(;a;);;=(af)(;—;)”2:4.2x10 12(%) g (6.22)

where again we have corrected for the different rate of expansion in matter domination.

We have derived a complete history of the scale factor and Hubble constant over a cycle.
The Hubble constant returns to the same value after each cycle, H; = Hy. The aggregate
expansion in the model over the course of the cycle is then

1/4
(aH)1 a 2 Vend 1
=log— =30+ Npg + —log—— + —log—— 6.
@Hyo 84 PET 398 Gev T3 8 Gev (623)

Ntot = log

This is also the number of e-folds outside the horizon today the mode that was on the horizon
in the last cycle is. Since the only contraction is due to the ekpyrotic phase, this net expansion
is an irrevocable feature of the cyclic model. This is important, because it dilutes entropy
generated each cycle. For the parameters used in table 1, Nyt = 48 + Npg. Therefore if
NpE = 0, then the horizon next cycle has physical scale, today, of roughly 100 km.

The transition (H = 0) mode produced in the last cycle has scale
1/4

Tru L2 Vend

ktran (aH);
=log———— og——,
GeV 3 GeV

1
T =27+ -log
(aH), (aH)pg 3

Niran = —log (6.24)

which is much larger than the horizon today for any reasonable parameters. The number of

visible e-folds of ekpyrotic modes is

k H 4 1T
end :—logM:26+—log&d——logﬂ, (6.25)
(aH), (aH)end 3 GeV 3 GeV

Nvis = lOg
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FIGURE 7. A typical spectrum of primordial perturbations for the cyclic
model, with roughly 110 e-folds of ekpyrotic modes. The potential has
Vend = 1012 GeV. The mode that left the horizon when the universe moved
from expansion to contraction (H = 0) has wavenumber labeled by kiran,
tzran = Upot(H = 0). The wavenumber that is on the horizon today is
labeled ki and is calculated with Try = 1 GeV. All modes with k > k; are in-

side the horizon, including the last ekpyrotic mode to exit the horizon, when

where k

V = = Vend> kend- The steep falloff for k > kg is from modes that exit in the

kinetic energy dominated phase.

This is a positive number for any allowed parameters. Thus, the cyclic model robustly pre-
dicts that the visible modes should all be ekpyrotic. The smallest scale ekpyrotic mode visible
today (i.e. produced in the last ekpyrotic phase) has a physical wavelength of roughly 10 cm
today, for the parameters in table 1.

Figure 3 shows all the modes, including those that exit the horizon in the kinetic phase.
Modes continue to exit in this phase, although they are not scale-invariant. The kinetic

modes go as |u|*> ~ k=% and so have deeply red spectral index n; —1 = —1. In the kinetic
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Mode k/(aH); physical scale
Horizon last cycle e Neot 1024 Mpc
Largest ekpyrotic mode e~ Nuan 1024 Mpc
Horizon today 1 5000 Mpc
Largest ekpyrotic, next cycle | eNwtr=Nuan 5000 Mpc
Horizon next cycle Nt 100km
Smallest ekpyrotic mode eNvis 10cm
Planck mode eMNvis+Niin 1A
Smallest ekpyrotic, next cycle | eNwt+Nvis 10722m

TABLE 2. Physical scales in the cyclic model evaluated today. They are com-
puted with Ve,q = 1012GeV, Try = 1 GeV and Npg = 0.

phase, aH ~ p'/3, s0 a band of
1/4

Nkin =60- glog% (626)

modes are produced before p ~ 1 (in Planck units). Whether these modes are physical de-
pends on the details of the bounce, and in particular what effect it has on short wavelength
modes. They have scales of at most a few centimeters, which is too small to produce structure
in the universe. All the physical scales are summarized in table 2.

The largest visible ekpyrotic mode - the mode on the horizon today - left the horizon in

2Nvis | Equations (6.24) and (6.25) indicate that the

the ekpyrotic phase when V = =V qe”
mode on the horizon today was produced very roughly halfway through the ekpyrotic epoch
Vig) ~ —\/m. If V; r{ 3 > TRy, as in most of the allowed parameter region (figure 6),
then there are more visible ekpyrotic modes than ekpyrotic modes outside the horizon today.
This is illustrated in figure 3.

In the ekpyrotic scenario with the potential (6.3) V need not be the density of dark

energy today, since it is assumed that the potential turns off after the big crunch, and dark

energy has some other origin. In this case, the relation (6.24) becomes considerably more
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F1IGURE 8. The perturbation spectrum for two potentials with cut-offs. There
is a flat, inflationary spectrum for small k; a transition feature; a flat, ekpy-
rotic spectrum for intermediate k; and a steep falloff at large k for modes
that leave the horizon in the kinetic-dominated phase. Two models are
shown, both with b = 0.1. The model with the “bump” feature has ¢ = 20,
Vo =102GeV*, Vepg = 104 GeV?, $eng = —10 and Nk = 50; the model
with the “step” feature has ¢ = 10, Vo = 1073 GeV?, Vg = 1029 GeV?,
$end = —15 and Nex = 37. The two models are normalized so the dark en-
ergy modes have equal amplitude, and k = ko corresponds to the mode
that leaves the horizon when H = 0. The scale of a mode of these particular
models relative to the horizon today is shown on the top axis. This is for a re-
heat temperature of 10° GeV; how the axis would shift by varying the reheat
temperature within the allowed range of 1072-10!* GeV is indicated with a

horizontal bar.
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flexible, and it is possible to have the transition mode inside the horizon provided the con-
dition
1/4 1/4

ktran 1 TRH 2 end 0
=-26+—-log——+ =1 -21
(aH); 3 o8 GeV 3 o8 GeV °8 GeV

<0 (6.27)

is satisfied. Adjusting V| is equivalent to changing the scale of the transition from dark
energy epoch to the ekpyrotic epoch, which moves the transition feature to higher k. Figure 3
illustrates an example of such a mixed model. There is no cycling constraint (the upper line
in figure 6) for this model. However, in order to avoid forming GUT monopoles at reheating,
we require Try < 1016 GeV. While this model has a natural feature in the spectrum, which
may be marginally suggested by observations, such a model would need to be fine tuned for
the feature to be visible at the correct wavenumber.

In the following chapter, we consider the effect of the ekpyrotic amplification has on the

global structure of the model.

4. The global structure of the cyclic model

We now turn to the global structure of the cyclic model. In the previous section, we
considered the scales of various modes. Here, we study how the model behaves over multiple
cycles: how the scales relate, and how the amplitude of the modes behave. First, we will show
that there is no constraint on the number of e-folds of dark energy domination required by
the cyclic model. The suppression of dark energy fluctuations inside the horizon and the
attractor behavior of the contracting phase — discussed, respectively, in chapters 3 and 5 -
prevent fluctuations from one cycle from contaminating the next.

Next, we discuss the global structure of the model, the structure on scales much greater
than the horizon. In particular, as modes pass outside the horizon for the last time, their
amplitudes diverge. We show that this has no physical ramifications for the model, and
merely suggests that a fixed gauge choice over such huge distances makes no sense over

multiple cycles.
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In this section, we again use the Newtonian potential, which is related to the variable u

by u = ®/¢. The superhorizon solutions (6.8) and (6.9) then become

1=, (6.28)
a
H ' / / /
Oy(1) = — dt' a(t)(w(t) +1), (6.29)
0

where w is the equation of state. Again, the integral mode (6.29) is the dominant mode
in the dark energy epoch. It is constant (for the scaling solution (2.25)), whereas the mode
(6.28) decays rapidly. This is consistent with the inflationary expectation that @ is conserved
outside the horizon.

The ekpyrotic growing mode, (6.28), grows as 1/|¢| where t — 07, from (2.27), whereas
(6.29) is constant. As with the u variables, the dark energy growing mode matches onto a
linear combination of the ekpyrotic growing and decaying modes at the reversal from ex-

pansion to contraction.

4.1. Thedark energyepoch. In[171]it was pointed out that sixty e-folds of dark energy
domination were sufficient to reduce the visible universe to less than one particle per Hubble
volume, and so would prevent the possibility of physical perturbations in our universe from
disturbing the quantum mechanical generation of fluctuations for the next cycle. This is a
very conservative limit on the number of e-folds required, since we are concerned about the
horizon (aH); which has a much smaller scale than the horizon a cycle previously (a H)o.

Moreover, in chapter 5 we saw that the w > 1 ekpyrotic solution was an attractor. It
satisfies a no-hair theorem that says that, since matter and radiation blueshift much slower
than the scalar field in the ekpyrotic phase, they make a negligible contribution to the dy-
namics well into this phase. In voids, the dark energy density is already higher than in dense
regions. However, after the reversal to contraction, the horizon will shrink and the increas-

ing scalar field energy will rapidly suppress matter effects in even highly non-linear regions,
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such as galaxies. Therefore, it is only scalar field perturbations — not matter perturbations -
that contribute deep in the ekpyrotic phase, as they are the perturbations which grow.

If dark energy fluctuations have a sound speed ¢ > 0 then they are suppressed by a
factor (6$> o k7% inside the horizon (see chapter 3, in particular, figure 2). This is robust,
and holds for any w < —1/3 and ¢2 > 0. Reducing the sound speed merely changes the scale,
relative to the horizon, at which this rapid falloff begins. Since the Newtonian potential is
related to the density contrast by the Poisson equation (2.40) and (2.67), this gives (@i) ~
k~10-6 today, where the subscript indicates we are only considering contributions from the

scalar field perturbation 8¢. Since the mode on the horizon today has amplitude 2 x 107>,

k )—10.6’ (630)

2 ~10
(@2) = 4x 10 (—(aH)O

where (aH)y is the horizon scale. This is the amplitude today. This mode will receive some
amplification in the ekpyrotic phase. The ekpyrotic amplification depends on when it exits
the horizon. From (6.28), a mode is amplified by a factor of k/k.pg, where kepg, which
receives no amplification, is the last mode to leave at the end of the ekpyrotic phase. Thus

(6.30) becomes

10 Vend k \-8.6
DOy ~4x1071052 , 6.
< >¢_¢end x VO ((aH)()) ( 31)

using (6.18). The matter perturbations are negligible at the end of the ekpyrotic epoch. This
spectrum is deeply red, so the largest mode will be that which is on the horizon today, which

has k = (aH),. Thus, we require

4x 10‘10@(@)_8'6 ~ 10—75(%)'1‘7(ﬁ

)_2'9 < 4x10710 (6.32)
x , 32
Vo Y(aH)y GeV GeV 3

from (6.23) with Npg = 0. The right hand side of the inequality comes from the contribution
of the ekpyrotic modes visible today. This neglects the contribution of the amplitude factor
at the bounce, which changes the constraint on the right hand side. However, since the
amplitude of perturbations is reduced in the bounce studied by Tolley et al. [115, 178],

this will only increase the right hand side of (6.32) and weaken the constraint. However,
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the inequality is easily satisfied for all the parameters allowed in figure 6, and thus there is
no circumstance in which dark energy domination is necessary to separate the ekpyrotic

perturbations from one cycle from the perturbations of the next cycle.

4.2. The horizon. Each cycle involves an exponentially large range of modes. We ana-
lyze what happens in terms of the comoving wavenumber k. Recalling the notation of sec-
tion 3, over the course of a cycle, the horizon shifts to larger values of k by a large number
Niot of e-folds (6.23). In a cycle, a band of Npg + Nei e-folds of nearly scale-invariant modes
are generated by the inflationary and ekpyrotic mechanisms. These modes pass outside the
horizon. However, Ny e-folds reenter, of which Nyj, are nearly scale-invariant ekpyrotic
modes. The remaining modes are part of the red spectrum of kinetic modes.

From (6.23) and (6.18) it can be seen that the total number of e-folds of nearly scale-

invariant fluctuations satisfies an inequality:
Nek+ NpE S 2Ntot. (6.33)

If Npg is comparable to N, this inequality is easily satisfied and a mode will exit the horizon
at most twice. Some modes will exit the horizon first in the ekpyrotic phase, reenter the
radiation dominated universe and exit again in the dark energy phase, after which it will
never again reenter the horizon. Other modes, which exit near the transition from dark
energy domination to radiation domination will never be visible in the radiation dominated
epoch, and will merely exit the horizon once. This is illustrated in figure 9.

The situation is different if the universe has a very small number of e-folds of dark energy
domination, Npg = 0. In this case,

1/4
end

Ne— 2Nyt = —log——, 6.
ek tot 3 og Tru (6.34)

and some modes will exit the horizon three times, in the first cycle as small scale modes
produced at the end of the ekpyrotic phase, when V = —V,4e; in the second cycle as modes

produced roughly halfway down the ekpyrotic potential, visible today near but just inside
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FIGURE 9. How the comoving wavenumbers evolve over a cycle. In each
cycle, the comoving horizon shifts to the left by Ny e-folds, because the scale
factor increases and H returns to the same value. Over each cycle, a band of
Nek + NpE e-folds of nearly scale-invariant perturbations is also produced. If
NpE is small, the same comoving wavenumber will leave the horizon up to
three times. However, if Npg is large, this will only happen twice before the

mode is permanently on superhorizon scales.

the horizon; and finally, as modes which exit near the top of the potential and are never again
reenter. We saw that these scalar field fluctuations are heavily suppressed in the dark energy
phase, and so the modes of one cycle are not aftected by the previous cycle: each time they
leave the horizon, except perhaps the last, they form new, independent Gaussian random
perturbations for the big bang of the next cycle. Moreover, (6.34) is small compared to the
total number of modes generated. Thus most modes exit the horizon only twice (and reenter

only once). This situation is also illustrated in figure 9.
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4.3. Beyond the horizon. As modes move beyond the horizon for the last time, they
continue expanding to ever larger scales, as their physical wavelength grows by eMet each
cycle. They evolve in concert, according to the exact solutions for the superhorizon behavior
(6.28) and (6.29). While the dominant mode in the expanding phase, the integral mode
(6.28), is roughly constant, the modes receive a contribution from the dominant mode in the
contracting phase (6.29). This mode grows by the large factor v/ Vena/ Vo each cycle, which
is between 102> and 10°° (from figure 6). When cyclic modes reenter the horizon, they
do not receive a net amplification from cycle to cycle, as pressure effects rapidly smooth out
inhomogeneities. However, when modes become acausal, they receive a huge amplification
each cycle. Since the modes have amplitude ® ~ 107>, they will be non-linear only one
cycle after last exiting.

Such a huge amplification factor is necessary because the scale of quantum perturbations
is set by the Hubble constant. The amplitude of scalar field fluctuations, before they exit the
horizon, is of order the Hubble parameter, or roughly §¢ ~ H ~ V'V. Likewise ® ~ V. In
the inflationary mechanism, the amplitude is therefore set by the potential. In the ekpyrotic
mechanism, however, the potential begins at the tiny dark energy scale, 107120 in Planck
units. Since the spectrum is nearly scale-invariant, this means that the dark energy modes
must be amplified by 10°° once the exit the horizon.

This can be interpreted as the cyclic model becoming very inhomogeneous on super-
horizon scales. If two disjoint Hubble patches reach the ekpyrotic epoch at slightly differ-
ent times, the time delay will be amplified by a huge factor. However, with superhorizon
modes there is no causal mechanism to suppress the growth of inhomogeneities in the model
so causally disconnected Hubble patches become more and more asynchronous. Thus, on
metaphysical scales, the cyclic model can be interpreted as a series of uncorrelated patches,
expanding and fragmenting into yet more asynchronous Hubble patches.

It is clear that these large superhorizon modes are irrelevant for observations. Physically,

these modes do not affect the conditions inside our horizon because the physical curvature
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goes as

kr 2
(5) O o e 2MWNior+Nek) (6.35)

where M is the number of cycles. Since 2Nyt 2 Nei, the contribution of a mode to the

physical curvature perturbation diminishes. Thus, this is a purely metaphysical issue.



Conclusion

This year, 2005, is the centenary of Einstein’s annus mirabilis. Much as in 1905, we have
an enormously successful physical theory - the standard model of particle physics - that
is beginning to show some cracks. Although the difficulty of reconciling gravity with the
standard model is notorious, we cannot conduct experiments to investigate this directly.
It is auspicious, then, that there are new cosmological observations — dark matter and dark
energy — that indicate that our understanding of gravity, or of particle physics, is incomplete.
Moreover, there are now two competing, testable solutions of the initial condition problem
of the hot big bang, the inflationary and ekpyrotic scenarios. Future experimental tests of
gravity, cosmic microwave background polarization measurements and particle physics at
the Large Hadron Collider promise to improve this situation.

Perhaps the most exciting development of recent years has been the 1998 discovery of
dark energy [150, 158]. Nothing is presently known about dark energy except that it is very
homogeneous, has an equation of state near —1 and unaccountably makes up roughly seven
tenths of the critical density of the universe. A potential explanation is Einstein’s cosmo-
logical constant. The field theory values predicted for this constant are around 120 orders
of magnitude too large. It has recently been proposed that string theory contains a very
large “discretuum” of metastable vacua corresponding to different choices of form fluxes on
a Calabi-Yau compactification [105]. If the discretuum is large enough (i.e. there are more
than 10'2% vacua), as seems likely, then some of the vacua have a vacuum density of the
right order to account for dark energy. Anthropic arguments [23, 190] then suggest that we

live in such a universe (figure 1).
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FIGURE 1. The multitude of vacua in M-theory provide sufficient freedom to

explain all known physics as well as many exciting extensions.

Such an explanation is an abstract possibility. Apart from the metaphysical issues raised
by the anthropic principle, however, it is probably premature to adopt such a position. If
dark energy is dynamical, then it could be a rich source of new physical observations which
help us understand physics beyond the standard model. In this thesis, we have explored
some of the possibilities afforded by dynamical extra dimensions.

Jordan, Einstein and Bergmann [77, 104] were the first to take the Kaluza-Klein scalar
— the radius of the extra dimension - seriously: previous authors fixed the size of the extra
dimension. Fierz, in 1956, pointed out that a time-varying extra dimension would lead
to unacceptably large violations of the equivalence principle. This led to the emphasis on
“metric theories” of gravity, such as Brans-Dicke theory [28] in which matter is minimally
coupled to the gravitational degrees of freedom, by the determinant of the metric ,/=g.

The modern perspective has changed. Tests of the equivalence principle have improved
to the point where post-Newtonian tests of gravity [19, 165, 194] are of comparable precision
to tests of the universality of free-fall [26, 160, 174] and constraints on the variation of the
fundamental constants [56, 166, 183]. Surprisingly, these measurements do not rule out
observable equivalence principle violations in the universe. In string theory, there must be
corrections to general relativity at some level. In chapter 4, we described a number of realistic
scenarios in which violations can occur with magnitudes near current observational limits.

These ideas will be tested by future experiments, including improved metric tests of gravity
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from lunar and potentially martian ranging [181], satellite tests of the universality of free-fall
[141, 179, 197], quasar tests of the variation of the fine-structure constant [42, 123, 140, 168],
sub-millimeter fifth-force searches [97] and space-based Cavendish experiments [4]. Each
of these experiments provides a potential window into physics beyond the standard model.

An intriguing possibility to consider is if dark matter violates the equivalence principle
[83]. In brane models, such as the S'/Z, orbifold, it is possible to have visible matter on
one brane and dark matter on the other. In this scenario, they would chiefly interact gravi-
tationally. In the discussion of the Randall-Sundrum model in section 2.2 of chapter 4, we
pointed out that gravity on the two branes of the model behaves very differently if the ra-
dion is not stabilized. Gravity on the positive tension brane approaches general relativity
in a highly warped background, whereas gravity on the negative tension brane approaches
Brans-Dicke theory with parameter w = —3/2. Instead of viewing the Randall-Sundrum
geometry as a solution to the hierarchy problem [156] in which matter is on a negative ten-
sion brane, if visible matter is on the positive tension brane, then we do not see violations of
the equivalence principle because the warp factor causes gravity on the to behave very much
like general relativity, as in the second Randall-Sundrum scenario [155]. In this scenario,
dark matter on the negative tension brane will generally have large equivalence principle
violations.

In the early universe, the cosmic microwave background is another window on new fun-
damental physics. Chapter 3 demonstrated that under certain conditions cosmic microwave
background measurements can discriminate the presence of dark energy perturbations. The
B-mode polarization of the cosmic microwave background allows primordial gravitational
waves to be measured [50, 164]. These observations allow inflation to be distinguished from
the cyclic and ekpyrotic scenarios discussed in chapter 6 [25]. Moreover, if inflation is the
correct theory, they determine its energy scale.

Many fundamental questions in string cosmology have yet to be resolved. Chapters 5

and 6 touched on some of these. In chapter 6 we discussed the global structure of the cyclic
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model, and showed that dark energy domination is not necessary for consistency. On vast,
superhorizon scales the model was shown to become ever more asynchronous, as slight dif-
ferences between adjacent Hubble patches were exponentially amplified each cycle. Since
two asynchronous patches are never again in causal contact, this does not create any insta-
bility inside the horizon. An important issue for the cyclic model is the origin of the steep,
non-perturbative potential that gives rise to the ekpyrotic phase. Little is known about the
interaction of branes in string [12, 135] or M-theory [180].

Chapter 5 showed that the ekpyrotic attractor is instrumental in the cyclic model, not
only for generating a spectrum of scale-invariant perturbations, but also for ensuring that
the homogeneity and isotropy of the universe are preserved as the crunch is approached.
When the cyclic model potential vanishes near the brane collision, the large suppression of
curvature and anisotropy in the ekpyrotic phase may be sufficient to suppress chaos until the
Planck epoch. This seems particularly likely given the intriguing fact that heterotic M-theory
is only critically chaotic for w = 1, so chaotic contributions to curvature and anisotropy grow
much more slowly than they do in supercritical theories. This idea is discussed in detail by
Wesley et al. [191].

What happens when the Planck epoch is reached? Toy models of quantum gravity -
such as the homogeneous minisuperspace approximations — have been used to scrutinize
the quantum mechanical behavior of the big crunch, starting with the work of Misner [137].
However, string theory in time dependent backgrounds is still quite poorly understood. Al-
though some progress has been made, there is still much work to be done understanding
gravitational singularities and collisions of orbifold planes in string theory [47, 48, 176-
178, 180]. The resolution of these problems will be important for understanding how ad-

vances in particle theory relate to cosmology.
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