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Abstract. Nearly every attempt to unify the fundamental forces incorpo-

rates the idea of compact extra dimensions. �e notion was introduced by

Kaluza and Klein in the s and is an essential part of contemporary string

theory andM-theory. Inmost treatments the extra dimensions are static. We

consider the consequences of extra dimensions with time-varying radii. �e

radii are modeled by light scalar �elds. �ese may have unusual properties

which produce observable e�ects, such as non-canonical kinetic energies,

couplings to matter and radiation, and non-minimal coupling to gravity.

Extra dimensionsmay be responsible for dark energy in the late universe.

�e simplest model of dark energy is characterized by its equation of state.

We show that constraints placed on realisticmodels by the universality of free

fall, variation of fundamental constants and metric tests of gravity are o�en

stricter than bounds on the equation of state. Testing the equivalence princi-

plemay be an e�ective way of distinguishing somequintessencemodels from

a cosmological constant.

In certain dark energy models the speed of sound is much less than the

speed of light. We calculate how this a�ects the cosmic microwave back-

ground and show that the speed of soundmay be measurable, provided dark

energy is su�ciently dense at decoupling. �is is another possible signature

of quintessence.

Dynamical extra dimensions may have consequences for the early uni-

verse. In the cyclic model, the universe is described in terms of a series of

contractions and expansions of an extra dimension. �e big bang is preceded

by a big crunch and quantum �uctuations of the scalar �eld produce struc-

ture in universe. We consider how the �uctuations evolve and build over

many cycles and show that there are no observable instabilities or adverse

e�ects.
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In the cyclic model extra dimensions act as both dark energy and as

an agent to cause contraction and a big crunch. Previous theorems sug-

gested that contraction necessarily leads to chaotic behavior and unaccept-

able inhomogeneity. We show that homogeneous contraction is possible if

the pressure-to-density ratio of the scalar �eld is su�ciently large.
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CHAPTER 

Introduction

Cosmology and particle physics are both described, at present, by models in remarkable

agreement with the data. �e simple Λcdm cosmological model assumes that the universe

was once in a hot, roughly homogeneous and isotropic initial state, with a spectrum of nearly

scale invariant perturbations. In addition to known fundamental physics, the model adds

a cosmological constant (Λ) and cold dark matter (cdm) []. �ese additions give good

agreement with all the data, notably the cosmic microwave background [], large scale

structure [] and nucleosynthesis []. Likewise, the standardmodel of particle physics,

despite its inelegance, is stubbornly in agreement with data from accelerators. High energy

theory – supersymmetry, string theory and M-theory in particular – is a source for a rich

phenomenology beyond this model [, , , , ].

�e intersection of these two pictures – of particle theory and cosmology – ismurky. �e

fundamental explanation for dark matter, baryogenesis, dark energy and the initial condi-

tions of the hot big bang [] is unknown. In part this is because gravity is a crude tool

for particle physics. Conversely, nothing is known about what new gravitational predictions

particle theory will ultimately make. One robust feature is that string theory and M-theory

are consistent only with a number of extra dimensions.

�e idea of extra dimensions has a long history in physics. An extra dimension was �rst

suggested by Nordström in  [] as a way to unify gravity and electromagnetism in

his scalar theory of relativistic gravity. His work was quickly forgotten. In , however,

Kaluza [] rediscovered this idea in general relativity, by showing that the vector potential

For a review of Kaluza-Klein theory, see Overduin and Wesson []. Du� [] discusses Kaluza-
Klein compacti�cation in string theory. A historical review with many relevant reprints, including
modern papers, is Appelquist [].


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of electromagnetism arises naturally in a �ve dimensional setting. Since the visible universe

is unmistakably four dimensional, the extra dimension must be di�cult to probe. Kaluza

ensured this by imposing translation invariance on the extra dimension. He called this the

“cylinder condition”, and regarded it as mainly a formal innovation. (�e “cylinder” refers

to translation invariance, not to a compact topology.)

Oskar Klein [, ] – and later Einstein and Bergmann [] – were the �rst to ascribe

any physical signi�cance to the extra dimension. Klein thought of it as a circle. He noticed

that momentum was quantized in the extra dimension and that the higher Fourier modes

of the scalar – the “tower” of Kaluza-Klein states – satisfy Klein-Gordon equations. �us, in

 he suggested that quantummechanics and the quantization of charge could arise from

a compact extra dimension of size roughly 10−32 meters, the gut (grand uni�ed theory)

scale.

Kaluza-Klein phenomenology has been extended to non-Abelian gauge groups. Witten

[] has demonstrated that eleven dimensions is theminimumnumber necessary to obtain

the standard model group in a Kaluza-Klein theory compacti�ed to four dimensions. De-

spite the auspicious coincidence that the largest supergravity is formulated in eleven dimen-

sions, interest in the Kaluza-Klein program has petered out. Problems with chiral fermions

and constructing theories with �at backgrounds seems to have made Kaluza-Klein theory

an inelegant way to derive Yang-Mills theory from gravity.

However, extra dimensions are an essential element of string theory [, , , ]

for quite di�erent reasons. While Kaluza-Klein theory attempts to unify gravity and gauge

theory by adding extra compact dimensions, string theory already naturally incorporates

both gravity and gauge theory. However, string theory cannot be consistently formulated

in four dimensions: the extra dimensions are required for consistency. �us, the problem

in string theory is to eliminate the extra dimensions while preserving the appealing aspects

of the theory, such as low energy supersymmetry. An extensive framework in algebraic ge-

ometry has been developed for this purpose. It has been shown that compacti�cation on
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six dimensional Calabi-Yaumanifolds [, ] allows for low-energy supersymmetry. �ese

manifolds typically have a large number of internal degrees of freedom, calledmoduli, which

correspond to massless scalar �elds.

Another a priori possibility for reducing a higher dimensional theory – like string theory

– to lower dimensions is to con�ne the visible universe to a membrane with three spatial

dimensions, a three-brane. �is idea, �rst proposed by Dirac [], is appealing because

various kinds of branes are part of the string theory menagerie. By itself, however, the idea

is problematic, because gravity is not con�ned to the brane and so radical departures from

the inverse square law are predicted. Randall and Sundrum [] have proposed a geometry

in which gravity is well con�ned to four dimensions and departures from general relativity

are small. However, it is not known if this idea is compatiblewith string theory [], so trying

to construct phenomenologically viablemodels in string theory usually involves considering

both branes and small compact dimensions.

In heterotic M-theory [, , ] the four dimensional universe comes from com-

pacti�ed eleven dimensional M-theory []. �is is an important example because it is

the best known candidate for embedding the standard model of particle physics in string

theory andM-theory. Recent results have been encouraging: it has been shown that the the-

ory has vacua with standard model gauge groups and three families of quarks and leptons

[, , ].

An important feature of heteroticM-theory is the S1/Z2 orbifold: onedimension is com-

pacti�ed on an interval, with distinguished endpoints. �e endpoints form spatial bound-

aries, called �xed planes. �e �xed planes contain E8 gauge theories and can have branes

trapped at them. �e size of the intervening space is modeled – in the low-energy descrip-

tion – by a scalar �eld, called the radion.

�us, virtually every attempt to unify the fundamental forces of physics incorporates the

idea of extra dimensions. �is thesis considers the idea that compact extra dimensions are

For a discussion of the role of branes in string theory, see [, , ]. For reviews of brane
cosmology, see [, , ].
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dynamical. Rather than being �xed, their sizes are varying in time with the radius modeled

by a scalar �eld, the radion. Remarkably, the early e�orts in Kaluza-Klein theory simply

ignored this scalar mode. Its physical signi�cance was recognized �rst by Jordan and later

by Einstein and Bergmann [, ]. Fierz pointed out that time-varying dimensions could

cause large observable e�ects []. �is thesis is motivated by the idea that, if stringent

observational constraints are satis�ed, light scalar �elds can play a profound role in the evo-

lution of the universe today, as the origin of dark energy [, ] and a solution of the

cosmic coincidence problem [, , ]; and in the early universe, by establishing the

initial conditions for the hot big bang in the in�ationary [, ], ekpyrotic [, ]

and pre-big bang scenarios [, , ].

A theory in which a dynamical dimension plays a crucial role is the cyclic scenario of

Steinhardt and Turok [–]. In the low energy e�ective action description of heterotic

M-theory, the radion is massless. �ere does not appear to be a reason, such as a funda-

mental symmetry, that the radion must be massless. It is generally thought that the radion

will acquire a mass from non-perturbative e�ects such as supersymmetry breaking. �e

non-perturbative potential vanishes as the �xed planes approach each other. �e ekpyrotic

scenario proposes that, before this happens, the potential has a steep negative exponential

segment. �e cyclic scenario proposes that, in addition, the potential has a �at segment

which corresponds to dark energy domination. In these models, the radius of the S1/Z2

orbifold is perpetually changing in a cyclic fashion, going from large values to zero and back

again. In this scenario, the collision between the two orbifold planes generated the radiation

that triggered the hot big bang, so time-varying compact dimensions are an essential aspect

of the model.

�is thesis discusses the observational and theoretical rami�cations of dynamical extra

dimensions. If the radion is evolving today, then it may be the �eld responsible for dark en-

ergy. In chapters  and  we discuss some observational constraints and possibilities. Later,
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we discuss theoretical challenges in such models, such as the chaotic behavior of general

relativity (chapter ) and constructing cyclic models (chapter ).

Although we use the idea of compacti�cation as a useful geometrical motivation, many

of the ideas in this thesis are applicable in the more general context of light scalar �elds in

the universe.

. Overview

Chapter  reviews some background concepts and notation. Section  discusses the

cosmological evolution of a scalar �eld dominated universe. In section , we mention some

results in cosmological perturbation theory. We showhowperturbations are generated from

the quantum�uctuations of a scalar �eld in the in�ationary and ekpyrotic scenarios, and dis-

cuss how perturbations in the density ofmatter and radiation evolve as they reenter the hori-

zon. Section  derives the Kaluza-Klein and S1/Z2 orbifold compacti�cation, and brie�y

describes the Randall-Sundrum and Hořava-Witten models from the literature.

Chapters  and  discuss the observational consequences of the idea that a time-varying

extra dimensionmight be the source of dark energy. One of the critical problems of modern

cosmology is determining if dark energy is a cosmological constant, with an inexplicably

small value, or has a dynamical origin. �erefore, in these chapters we focus on observa-

tional signatures that might arise from extra dimensions: dark energy with a non-canonical

kinetic energy, or with couplings to matter and radiation, or with Brans-Dicke couplings.

Chapter  investigates the speed of sound of quintessence. �is is the speed with which

perturbations propagate. In the usual Klein-Gordon scalar �eld models, the speed of sound

is equal to the speed of light. However a scalar �eld ϕmay have an action which is of higher

than quadratic order in derivatives: it may contain terms like (∂ϕ)4. �ese models have a

speed of sound di�erent from unity. We show that, if the dark energy density is at least a few

percent of the critical density at the surface of last scattering, then the cosmic microwave

background anisotropy is sensitive to the sound speed of dark energy at decoupling. Near

future observations of the cosmicmicrowave background, such as those to be performed by
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the Planck mission, should be able to distinguish dark energy with sound speed near zero

to canonical models with sound speed equal to the speed of light. �is is a feature of the

k-essence models [, ] and potentially of other models with higher derivative terms in

their actions.

Chapter  discusses the constraints placed by the equivalence principle on models with

dynamical extra dimensions. We quickly review the tremendous progress made in testing

the equivalence principle – in particular, tests of the universality of free fall, constraints on

variations of the fundamental constants, and precision tests of post-Newtonian gravity – and

point out that many theories, such as the Randall-Sundrummodels and heterotic M-theory,

predict violations of the equivalence principle if the radion is unstabilized and evolving on

cosmological time-scales. Improved tests of the equivalence principal can, for some forms

of dynamical dark energy, be a much better way of distinguishing it from a cosmological

constant than only measuring the equation of state.

In chapters  and , we turn to the e�ect of dynamical extra dimensions in the early uni-

verse. Chapter  is concerned with the the behavior of contracting universes in cosmology.

�e pre-big bang, ekpyrotic and cyclic models all envision the universe as contracting before

the big bang. Until recently it was thought that such universes undergo chaotic mixmaster

oscillations due to curvature and anisotropy. �ese oscillations would destroy the observed

homogeneity of the universe. We show that the chaos can be avoided if the universe is domi-

nated by a �uid with a su�ciently large equation of state. �is is the case in the ekpyrotic and

cyclic models, in which the steep negative potential generates an equation of state wÀ 1. In

this case, the contraction is locally described by the Friedmann equation for a homogeneous

and isotropic universe: this is a “no-hair theorem” for contracting universes, analogous to

the in�ationary no-hair theorem [].

For every combination ofmatter �elds there is a critical scalar �eld equation of state wcrit

which, for w > wcrit ensures a stable, isotropic contraction. In a universe with just a single

scalar �eld, wcrit = 1, but if there is a more general combination of p-forms with couplings
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to the scalar �eld, wcrit can be larger. However, for each combination of p-forms, there is

always an equation of state su�ciently large that oscillations are suppressed. We show that

Z2 orbifold compacti�cation also contributes to suppressing chaotic behavior. In particular,

chaos is avoided in contracting heterotic M-theory models if w > 1 at the crunch.

Chapter  discusses the cyclic model of the universe. �e model contains an expand-

ing, dark energy phase which transitions to a contracting ekpyrotic phase. �e dark energy

phase can be thought of as a sort of very low-energy in�ation. Both phases, then, produce a

nearly-scale invariant spectrum of perturbations. We analyze the spectrum of density �uc-

tuations of a simple class cyclic model potentials. Contrary to the intuition from in�ation,

the amplitude of modes is not �xed as they cross the horizon; rather modes that exit the

horizon in the expanding phase continue to grow in the contracting phase. �e dark energy

modes are ampli�ed by a huge factor in the ekpyrotic phase and ultimately have the same

amplitude as the ekpyrotic modes: the two nearly scale invariant parts of the spectrum are

smoothly joined by a small feature.

Next, we consider the e�ect of these �uctuations on the structure of the cyclic model

over many cycles. We tabulate the evolution of the scale factor and the horizon H−1 in each

phase of the cyclic model. �e cyclic model, despite a brief contracting phase, expands by

many e-folds over each cycle. On scales far outside the horizon, modes receive an huge

ampli�cation each cycle. We show that this does not lead to any observable e�ects, such as

a diverging physical curvature. On metaphysical scales, however, the cyclic model can be

thought of as di�erent Hubble patches cycling asynchronously, continually expanding and

fragmenting into causally disconnected patches.

Finally, we show that a long period of dark energy domination in the cyclic model is

not, as was previously thought, necessary to prevent the �uctuations produced in one cy-

cle of the model from contaminating �uctuations in future cycles. �e attractor behavior

of the contracting, ekpyrotic phase, combined with the natural suppression of scalar �eld

perturbations inside the horizon, is su�cient to prevent any adverse e�ects.
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. Conventions

Except where explicitly stated, we use the following conventions. We use reduced Planck

units throughout, with with 8πG = c = ħ = 1, where G is Newton’s constant, c the speed

of light and ħ the reduced Planck constant. �e metric has a (− + ·· ·+) signature, with a

negative time eigenvalue and positive spatial eigenvalues. Greek indices starting with µ are

used for space-time indices: µ, ν, · · · = 0 , 1 , 2 , 3. Lowercase Roman indices starting with i

for purely spatial indices: i , j , · · · = 1 , 2 , 3. Wewill have occasion to use other kinds of indices

in several chapters, and they will be de�ned as they are used. All repeated tensorial indices

are summed, unless otherwise speci�ed. �e Riemann tensor for a metric µν is given by

Rµνρσ = ∂ρΓ
µ
νσ− ∂σΓµνρ+ ΓµξρΓ

ξ
νσ− ΓµξσΓ

ξ
νρ , (.)

in terms of the connection coe�cients

Γξµν =
1

2
ξσ[∂µνσ+ ∂νµσ − ∂σµν]. (.)

�e Ricci tensor is given by Rµν = Rσ µσν and the Einstein tensor by Gµν = Rµν − 1
2 µνR.

�e scalar curvature is R = trRµν = µνRµν. �e Einstein-Hilbert action S is

S = 1

2

∫
d4x

p−R, (.)

where  is the determinant of themetric. We refer to anymetric inwhich the scalar curvature

appears in this form as in Einstein frame. From this action, the Einstein equations can be

obtained,

Gµν = Rµν−
1

2
Rµν = Tµν , (.)

where Tµν is the stress-energy tensor which comes from the variation of the non-

gravitational part of the Lagrangian density LNG,

Tµν =
2

p−
δ(
p−LNG)

δµν
, (.)
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where δ represents a functional variation. A canonically normalized scalar �eld ϕ has action

S =
∫
d4x

[

− 1
2 

µν∂µϕ∂νϕ−V(ϕ)
]

, (.)

where V is the potential. �e Friedmann-Lemaître-Robertson-Walker metric is:

ds2 =−dt2+ a(t)2
3

∑

i=1
(dx i)2 = a(τ)2

[

−dτ2+
3

∑

i=1
(dx i)2

]

, (.)

where a is the scale factor and the x i are comoving coordinates; t is proper time, and τ is

conformal time. �ey are related by

τ(t) =
∫ t dt̂
a(t̂)

. (.)

Dots are always reserved for proper time derivatives, whereas primes are o�en used for con-

formal time derivatives: ȧ and a′, respectively. �eHubble parameter is given by H = ȧ/a =

a′/a2 . We will occasionally use the “dimensionless Hubble parameter” H = aH = ȧ = a′/a.

�e redshi� z of something occurring at time t is given by

1+ z = a0
a(t)

, (.)

where a0 indicates the scale factor today. �e present value of the Hubble parameter is like-

wise written H0. A wavenumber k is always comoving, so the associated physical wavenum-

ber is k/a. Finally, for a perfect �uid with energy density ρ and pressure p, the equation of

state w is de�ned by p = wρ.



CHAPTER 

Scalar �elds and compacti�cation

In this chapter, we introduce the fundamental tools that will be used throughout this

dissertation: the scalar �eld in homogeneous cosmology, cosmological perturbation theory

and some basic results in compacti�cation. �is chapter focuses on the elements that are

essential for the issues considered in the thesis.

. Cosmological solutions with scalar �elds

�emost general spatially �at metric compatible with the cosmological principle – that

is, a homogeneous and isotropic spacetime – is the Friedmann-Lemaître-Robertson-Walker

(frw) metric. Written in four dimensions in terms of proper time, it is

ds2 =−dt2+ a(t)2(dx21+ dx
2
2+ dx

2
3). (.)

�e x i are comoving coordinates with no absolute physical meaning, since any dilatation of

the x i can be absorbed by a rescaling of a. �e Hubble parameter H = ȧ/a measures the

rate of expansion of the universe. �e Hubble length H−1 , measures the distance between

two points on a comoving surface whose relative separation is increasing (or decreasing, in

a contracting universe) at the speed of light and measures the horizon, or the largest scale at

which causal interactions occur. However, H−1 can also be interpreted as the Hubble time

whichmeasures the time taken for one e-fold of expansion (or contraction). In an expanding

radiation or matter dominated universe, it is roughly the elapsed time since the big bang.

.. Perfect �uids. �e Einstein equation for this metric is the acceleration equation,

6
ä

a
=−(ρ+ 3p) =−(1+ 3w)ρ, (.)

For a more complete discussion, see [, , , , ].


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where ρ(t) is the matter energy density, p(t) is its pressure and w = p/ρ is the equation of

state. �e expansion or contraction accelerates if w <−1/3.

A perfect �uid has has stress-energy tensor

Tµν = (ρ+ p)uµuν+ p µν , (.)

where µν is the background metric and uµ is the unit (uµuµ =−1) four-velocity. �e only

condition compatible with homogeneity and isotropy is a comoving �uid, uµ = (1 , 0 , 0 , 0),

so

Tµ ν =





















−ρ

p

p

p





















. (.)

A �uid in an evolving background obeys the conservation equation

ρ̇ =−3H(ρ+ p) =−3H(1+w)ρ. (.)

�e Friedmann equation, which is a constraint on (.), is

3H(t)2 = ρ(t). (.)

�is is the equation that determines the rate of expansion of a �at universe in terms of its

energy density. �e critical density is simply 3H2 : it is the density required for the universe

to be �at. �e solution of (.), (.) and (.) for general constant w is

a∝















|t|
2

3(1+w) w 6= −1

eHt w =−1
, (.)

ρ∝















|t|−3(1+w) w 6= −1

(constant) w =−1
. (.)
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In the case w = −1, a cosmological constant, the Hubble parameter H is a constant. Note

that these solutions are valid for a contracting (t < 0 orH < 0) solutions as well as expanding

(t > 0 or H > 0) solutions.

In a universe with multiple non-interacting �uids, these results still hold, where now w

is an average quantity and ρ and p measure the total energy density and pressure. In this

case,

ρ =
∑

X

ρX , (.)

p =
∑

X

pX , (.)

where the sum is over the various �uids. We may de�ne densities relative to the critical

density

ΩX = ρX/ρ, (.)

and the e�ective equation of state

w =
∑

X pX
∑

X ρX
=

∑

X

wXΩX , (.)

where wX = pX/ρX . In this case, (.) and (.) hold with the quantities ρ, p and w de�ned

as in (.), (.) and (.), respectively. �e continuity equation is now

ρ̇X =−3H(ρX+ pX) =−3H(1+wX)ρX . (.)

.. Scalar �elds. Now consider a scalar �eld with Lagrangian density

Lϕ =−1

2
(∂ϕ)2−V(ϕ). (.)

�e stress-energy tensor is given by

Tµν =
2

p−
δ(
p−Lϕ)

δµν
= 2

δLϕ

δµν
+ µνLϕ (.)
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so that

Tµν =−∂µϕ ∂νϕ+ µν
(

− 1
2 (∂ϕ)2−V(ϕ)

)

, (.)

so assuming that ϕ = ϕ(t),

ρϕ =
1

2
ϕ̇2+V(ϕ), (.)

pϕ =
1

2
ϕ̇2−V(ϕ), (.)

wϕ =
1
2 ϕ̇

2−V(ϕ)

1
2 ϕ̇

2+V(ϕ)
, (.)

where ρϕ, pϕ and wϕ are the energy density, pressure and equation of state of the scalar �eld,

respectively. �e equation of state generally varies in time. �e conservation equation (.)

is the equation of motion

ϕ̈+ 3Hϕ̇ =−V ,ϕ , (.)

where the subscript “,ϕ” denotes a ϕ derivative. �is equation can be rewritten in conformal

time

ϕ′′+ 2Hϕ′ =−a2V ,ϕ . (.)

�e acceleration equation (.) becomes

3
ä

a
=−ϕ̇2+V(ϕ). (.)

�e free scalar �eld, with V = 0, is the simplest case. It has

a = a0
∣

∣

∣

t

t0

∣

∣

∣

1/3
, ϕ =

√

2

3
log

∣

∣

∣

t

t0

∣

∣

∣, (.)

where a0 and t0 are constants of integration. �e free scalar �eld has w = 1. Another par-

ticularly simple case is the exponential potential,

V = V0e
bϕ , (.)
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where b and V0 are constants, with V0 > 0. A solution of the equations of motion (.),

(.) and (.) is

a = a0
∣

∣

∣

t

t0

∣

∣

∣

2/b2

, ϕ = 2

b
log|t/t0|. (.)

�e constant t0 = V−1/2
0 (4/b4−2/b2)1/2 is unimportant. �is is known as a scaling solution

since a has a simple power-law behavior. It is valid for any |b| ≤
p
6 and has equation of

state b2 = 3(1+w) (so −1 ≤ w ≤ 1). If b >
p
6, the potential energy decreases more quickly

than the kinetic energy, and w→ 1 from below as t→∞.

Likewise, we can consider a negative potential

V =−V0e
−cϕ , (.)

where V0 and c are positive constants, which has scaling solution

a = a0
∣

∣

∣

t

t0

∣

∣

∣

2/c2

, ϕ = 2

c
log|t/t0|. (.)

Again, t0 is an unimportant constant. �e solution is valid for any c ≥
p
6 and gives equation

of state c2 = 3(1+w), so w ≥ 1. If c <
p
6, the kinetic energy blue-shi�s more quickly than

the potential, so w→ 1+ from above as t→ 0−.

�ese two solutions, a positive exponential with a small constant b ≤
p
6 and a negative

exponential with a large constant c ≥
p
6 are particularly simple solutions of the Einstein

equations in the presence of a scalar �eld. �ey have constant equation of state, and the

expression for the scale factor and equation of state take simple forms.

In an expanding universe, the positive potential solution (.) is a dynamical attractor:

any set of initial conditions will approach it. �is is true even in the presence of matter if

b¿ 1, and is known as the in�ationary “no-hair” theorem []. It is one of the central re-

sults of in�ationary cosmology, and explains why the in�ationarymodel solves the problems

of homogeneity, isotropy and �atness. �e condition b ¿ 1 is equivalent to the slow-roll

condition of in�ation. In this case the model generates a spectrum of nearly scale-invariant

quantum �uctuations.
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�e situation for the contracting, negative potential solution (.) is completely analo-

gous. �e solutions is a dynamical attractor in a contracting universe, and if cÀ
p
6 this is

true even in the presence of matter. �is is proved in chapter , and establishes a “no-hair”

theorem for contracting universes. Moreover, cÀ
p
6 is equivalent to the fast-roll condi-

tion of the ekpyrotic model [, ], so in this case the model generates a spectrum of

nearly-scale invariant �uctuations. �is remarkable duality is discussed in [, ]. In []

it is shown that these solutions are representative of the the only two kinds of stable, cosmo-

logical solutions – w ≈−1 and expanding, and wÀ 1 and contracting – which generate the

observed nearly scale-invariant spectrum of �uctuations. �e connection between the two

will be discussed further in chapter .

An alternative way to understand the properties of these solutions is to rewrite the above

equations in terms of y = loga. �e conservation equation (.) becomes, simply,

dρ

dy
=−3(ρ+ p) or

d logρ

dy
=−3(1+w). (.)

�e scalar �eld case ismore complicated. �e equations (.), (.) and (.) can be rewrit-

ten

3y′2 = 1

2
y′2

(dϕ

dy

)2
+ e2yV, (.)

3y′′ =−y′2
(dϕ

dy

)2
+ e2yV(ϕ), (.)

y′2
d2ϕ

dy2
+ y′′

dϕ

dy
+ 2y′2

dϕ

dy
=−e2yV ,ϕ . (.)

�e primes here are conformal time derivatives: y′ = aẏ. We can eliminate two variables

from these three equation. Eliminating y′ and y′′, we obtain

2
d2ϕ

dy2
=−

(dϕ

dy
−
V ,ϕ

V

)(

6−
(dϕ

dy

)2)

. (.)

If V is exponential,

V(ϕ) = V0e
cϕ , (.)
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where V0 and c are constants, then we can rewrite this as

dψ

dy
= 3(ψ− c/

p
6)(ψ− 1)(ψ+ 1), (.)

where dϕ/dy =
p
6ψ. From (.) and (.) the equation of state is given by

wϕ =
1

3

(dϕ

dy

)2
− 1 = 2ψ2− 1 , (.)

so we can see that potentials with |c| =
√

3(1+wϕ) have an attractor with equations of state

wϕ . �e sign of V0 does not enter into (.), but it determines the initial conditions from

the equation of state (.). If V0 is positive then |ψ| < 1, whereas if V0 is negative then

|ψ| > 1. For |c| ≤
p
6 and V0 negative, the attractor solution has wϕ = 1. For |c| ≥

p
6 and

V0 positive, the attractor solution has wϕ = 1.

. Perturbation theory

Cosmological perturbation theory seeks to understand the generation and evolution of

linear perturbations in a background cosmology. �e comoving scale of the horizon is mea-

sured by (aH)−1 . Since perturbations have �xed comoving scale, in an epoch in which |aH|

is decreasing, such as today, perturbations are entering the horizon. �is is the source of

the horizon problem resolved by the in�ationary [] and ekpyrotic [] cosmologies:

perturbations on the horizon today have never been in causal contact in the standard hot

big bang cosmology. �is is resolved by the in�ationary or ekpyrotic scenarios, in which the

universe has a period inwhich |aH|−1 is decreasing, so perturbations are exiting the horizon

before the start of the hot big bang. In between, there is a period generically called reheating,

in which the perturbations are converted into long-wavelength adiabatic �uctuations in the

cosmological �uids.

�e most general perturbation is

µν = (0)
µν + (1)

µν , (.)
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where (0) is the background frw metric. �e perturbation (1) generally contains ten in-

dependent functions. Fortunately, it is possible to reduce this. A fundamental result in cos-

mological perturbation theory is the scalar-vector-tensor (svt) decomposition [], which

states that the perturbation equations are separable. Perturbations to the frwmetric can be

decomposed into scalar �elds, spatial divergence-free vector �elds, and traceless, symmet-

ric and divergence-free tensor �elds. Each is completely decoupled from the others at linear

order. �e vector perturbations vanish in in�ation and the ekpyrotic scenario: there is no

coupling between the �uctuations of a scalar �eld and a divergence-free vector. We focus

exclusively on scalar perturbations to the frw background. (Ekpyrotic tensor perturbations

are treated in []. �ey are negligible at the scales we consider.)

�e most general scalar �uctuation of metric (.) are

ds2 =−(1+2Ψ)dt2−2(∂ iB)dt dx i+a2(t)
[

(1−2Φ)δ ij+2(∂ i∂ j− 1
3 δ ij∇

2)E
]

dx i dx j (.)

It is possible to choose a gauge in which B = E = 0. �is is a unique gauge choice, called

longitudinal gauge or conformal Newtonian gauge. It can be de�ned with either proper or

conformal time used as the time variable:

ds2 =−
(

1+ 2Ψ(x, t)
)

dt2+ a2(t)
(

1− 2Φ(x, t)
)

δ ijdx
i dx j (.)

= a2(t)
[

−
(

1+ 2Ψ(x, t)
)

dτ2+
(

1− 2Φ(x, t)
)

δ ijdx
i dx j

]

. (.)

�e functions Φ and Ψ are called the gravitational potentials. On small scales, they corre-

spond to theNewtonian potential of Newtonian gravity. Speci�cally, Φ satis�es the equation

∇2Φ = 1

2
δρ, (.)

where ρ is the density perturbation.

We do not need to consider anisotropic stress (that is, a traceless part of the spatial stress-

energy tensor T ij) and so the Einstein equations set Φ = Ψ [, ]. �e perturbations to
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the stress-energy tensor are, for a comoving �uid,

δT0
0 =−δρ, (.)

δT0
i = (ρ+ p)v i , (.)

δT i j = δpδ i j , (.)

where δρ and δp are the energy density and pressure perturbations, and v i is the veloc-

ity perturbation of the �uid. By the svt decomposition, the relevant part of the velocity

perturbation is determined by a scalar V, so that v i = ∂ iV. �ese quantities are all gauge

dependent. �e sound speed c2s of a �uid is de�ned by

c2s =
δp

δρ
, (.)

and measures the speed at which perturbations travel. For a canonical scalar �eld such as

(.), c2s is unity. �e e�ect of the sound speed on perturbations will be discussed in chap-

ter .

.. Generation of perturbations. �e primordial perturbations of both the in�ation-

ary and ekpyrotic cosmologies arise as perturbations of a scalar �eld evolving in a cosmo-

logical background. Writing the �eld as ϕ(t)+ δϕ(x, t), where ϕ(t) solves the background

equation (.), it is possible to obtain the �rst order correction to the scalar-�eld stress-

energy tensor (.). It is

δT0
0 =−ϕ̇ δϕ̇−V ,ϕδϕ, (.)

δT i j = δ ij(ϕ̇ δϕ̇−V ,ϕδϕ) (.)

�e spatial gradients are all second order in δϕ (since ∂ iϕ(t)= 0) and do not contribute. If

we write δϕ as a sum of plane waves,

δϕ(x, t)=
∑

k

e ik ix
i
δϕk(t) (.)
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where k i is the comoving wavenumber, then the conservation of stress-energy gives

δϕ̈+ 3Hδϕ̇+
( k

a

)2
δϕ+V ,ϕϕδϕ = 0 , (.)

or

δϕ′′+ 2Hδϕ′+ (k2+ a2V ,ϕϕ)δϕ = 0 . (.)

in conformal time. �ese equations do not include gravitational back-reaction. �e beauty

of our gauge choice is that, including back-reaction, the evolution equations for δϕ and Φ

reduce to a single second order di�erential equation in the Newtonian potential []:

Φ̈+
(

H−
2ϕ̈

ϕ̇

)

Φ̇+ 2
(

Ḣ−
Hϕ̈

ϕ̇

)

Φ− ∇2Φ

a2
= 0 . (.)

�e relation between Φ and δϕ is

ϕ̇ δϕ/2 = Φ̇+HΦ . (.)

To eliminate the �rst derivative damping term, we change variables and write the equation

in terms of conformal time and the variable

u =Φ/ϕ̇ = aΦ/ϕ′ , (.)

to obtain

u′′k =−
(

k2−Upot

)

uk , (.)

where

Upot = z(1/z)′′ and z = aϕ′/H . (.)

�is is the equation that we will use to compute perturbations. �ere are two regimes, de-

pending on which term dominates the le� hand side of (.). Generically

Upot ∼ (aH)2 , (.)

�is variable, introduced by Mukhanov is sometimes called v [, ].
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soUpot is crudely related to the horizon. When amode has k2À Upot, it is inside the horizon

and (.) is the equation for an oscillator. When k2 ¿ Upot the mode is well outside the

horizon. �e approximation (.) can, however, be o� by several orders ofmagnitude (as in

in�ation or the ekpyrotic model) and can brie�y fail altogether at transitional epochs. �is

will be discussed in detail in chapter . When we write that a mode is outside or inside the

horizon, then, we refer to the precise relation between k2 and Upot in the evolution equation

for the mode.

We assume that the modes with k2 À (aH)2 are in their Minkowski vacuum state []

given by

δϕk ∼ e−ikτ/(a
√

2k), (.)

up to a random phase. Using the relation aϕ′δϕ/2 = (ϕ′u)′ from (.) and neglecting ϕ′′

(which is small in an accelerating universe) this gives

uk ∼ e−ikτ/(2k)3/2 , (.)

again up to a phase. Since (aH)2 is increasing in this phase, these modes are moving outside

the horizon. For the positive exponential potential considered (.) above, (.) and (.)

give Upot ≈ b2/2τ−2 (for small b). �us (.) reduces to the Bessel equation []

u′′k =−
(

k2− (b2/2)τ−2
)

uk . (.)

For the negative exponential potential (.), the situation is very similar: (.) and (.)

give

u′′k =−
(

k2− (c2/2)τ−2
)

uk . (.)

�ese equations are solved in terms of Hankel functions in [, ]. �e result is that

〈u2k〉∝ k−3−2b
2/(2−b2) (.)
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in the expanding, positive potential case (.) and

〈u2k〉∝ k−3−4/(c2−2) (.)

in the contracting case. �e angle brackets indicate an ensemble average, as the random

phase in (.) implies that the plane waves form a Gaussian random �eld. A scale invariant

or Harrison-Zel’dovich spectrum has

〈Φ2〉 ∼ k−3 or 〈u2〉 ∼ k−3 . (.)

�e scalar spectral index ns measures the deviation for scale invariance

ns− 1 = d ln〈Φ2〉
d lnk

+ 3 . (.)

�e spectra (.) and (.) are nearly scale invariant because ns−1 is small for small b or

large c, respectively. Large scale structure date [, ] has con�rmed that the observed

spectrum of the universe is nearly scale invariant.

.. Reentering the horizon. A�er reheating, the primordial curvature perturbations

considered in the last section are converted into adiabatic perturbations of the �uids that

make up the present-day cosmology: baryons, radiation, dark matter and, potentially, quin-

tessence. �e adiabatic condition for a (perfect) �uid ρX is

1

1+wX

δρX
ρX

= 1

1+w
δρ

ρ
, (.)

where w is the equation of state of the universe de�ned by (.). �is condition ensures

that the fractional entropy perturbation δsX/sX is the same for all species.

It is easiest to understand the evolution of thesemodes as they come back inside the hori-

zon in terms of their density contrast. �is is the fractional perturbation in the background

density. For the �uid X, the density contrast δX is

δX =
δρX
ρX

. (.)
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�e total density contrast δ is de�ned as

δ =
∑

X δρX
∑

X ρX
=

∑

X

ΩXδX . (.)

Its k-th Fourier mode is related to the Newtonian potential by

δk =−2

3

( k

aH

)2
Φk , (.)

from (.). �e perturbation equations in such a multi-�uid universe have been derived by

Padmanabhan (see [] equations (.))

δρ̇X =−3(ρX+ pX)δHX− 3HδρX− 3H(δpX− θXδp), (.)

δḢX =−2HδHX−
1

6
δρ− 1

3

∇2δpX
ρX+ pX

+
ṗX

ρX+ pX

[

∑

Y

θYδHY − δHX

]

, (.)

where δHX is the “perturbation” in the local Hubble parameter due to density perturbation

δρX. It is proportional to the velocity divergence 3δH = a−1∂ iv i =∇2V. Also,

θX =
ρX+ pX
ρ+ p =ΩX

1+wX

1+w . (.)

�e �rst equation (.) is the perturbed continuity equation (.) while (.) comes from

the Raychaudhuri (or Euler) equation for the local expansion of space. In both equations,

the last term on the right hand side vanishes in the case of a single �uid, or for a dominant

�uid in amulti-�uid universe. �e gauge invariant expressions for the pressure perturbation

in terms of density and δH are

δpX = v2XδρX+
(aH

k

)2[
(1+wX)(v2X−wX)+ 1

3H
−1 ẇX

]

ρX
δHX

H
, (.)

= v2XδρX+ (1+wX)
(

v2X−
ṗX
ρ̇X

)(aH

k

)2
ρX

δHX

H
, (.)

where v2X is the sound speed of �uid X, and, from the continuity equation (.),

ṗX
ρ̇X

= wX−
1

3

H−1 ẇX

1+wX
. (.)
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In the case of a perfect �uid, v2X = ρ̇X/ṗX and so (.) reduces to δpX = v2X δρX. Using

these expressions, (.) and (.) may be rewritten in Fourier space

dδX
d loga

=−3(1+wX)∆X+ 3wXδX− 3
[

v2XδX−
1+wX

1+w
∑

Y

v2YΩY δY
]

− 3(1+wX)
(aH

k

)2[(

v2X−
ṗX
ρ̇X

)

∆X−
∑

Y

1+wY

1+w

(

v2Y −
ṗY
ρ̇Y

)

ΩY∆Y

]

,

(.)

d∆X

d loga
=−1

2
(1− 3w)∆X−

1

2

∑

Y

ΩYδY +
1

3

( k

aH

)2 v2X
1+wX

δX

− 3
ṗX
ρ̇X

[

∑

Y

1+wY

1+w ΩY∆Y −∆X

]

+ 1

3

[

v2X−
ṗX
ρ̇X

]

∆X ,

(.)

where ∆X is the contrast

∆X = δHX

H
, (.)

chosen so that the equations can be written entirely in terms of dimensionless ratios. �e

penultimate terms on the right hand sides of (.) and (.) vanish for perfect �uids. �e

last terms of these equations vanish for a single �uid, or for the dominant (ΩX = 1) �uid in

a multi-component universe. �e dominant �uid evolves independently of the other com-

ponents in the universe, as would be expected. �e initial conditions (for perfect �uids) are

adiabatic, from (.) and have

1

1+wX
δX = 1

1+w
δ and ∆X =− 1

4 δ. (.)

In a universe with only one �uid, (.) and (.) reduce to

δ′′+
(

1
2 −

9
2w− w′

1+w

)

δ′+
(

9
2w

2− 3w− 3
2 −

3w′

1+w +
( k

aH

)2
c2s

)

δ

=
(

c2s −
ṗ

ρ̇

)

(

1
3 δ

′−wδ
)

, (.)

where in this equation primes denote derivatives by loga. �e equation allows for time-

varying sound speed c2s and equation of state w. �e two solutions of this equation are, for a

perfect �uid (so the right hand side vanishes) with w constant and far super-horizonmodes
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(k2 ¿ (aH)2)

δ ∼ a1+3w (growing), (.)

δ ∼ a−3(1−w)/2 (decaying). (.)

�e density contrast for �uids with w <−1/3 does not grow on large scales. �e exponents

obtain a small correction – which can be derived from (.) and (.) – for a general

�uid with c2s 6= w. For example, the dominant mode for a c2s = 0 �uid does not grow for

w <−0 .35 and for a c2s = 1 �uid for w <−0 .43.

�ese equations describe the evolution of structure in the universe until the densities be-

come non-linear, or the e�ects of anisotropic pressure, such as di�usion or free-streaming

become important. �is model of matter and radiation is too simplistic for the cmb calcu-

lations of chapter , as it does not account for perturbations to the photon distribution. For

this, the full Boltzmann equations are needed [, , ].

. Compacti�cation

We now turn to compacti�cation. While modern high energy theory uses elaborate

technology – algebraic geometry, orbifolds and Calabi-Yau compacti�cations – to extract

standard model physics from higher dimensional theories, it is instructive to review the

simplest case, the Kaluza-Klein compacti�cation.

.. Kaluza-Klein. We derive the Kaluza-Klein action, starting with the �ve dimen-

sional spacetime. We write the metric GMN (we let uppercase Roman indices run from

1 , . . . , 5) in the block form

G =







µν+ e2ψAµAν e2ψAν

e2ψAµ e2ψ





 , (.)

where Aµ is a four-vector and ψ is a scalar �eld, the radion, which determines the physical

radius of the extra dimension. �e matrix is written in this form so that its determinant
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comes out as simply

detG = e2ψ det. (.)

We assume that the x4 direction is periodic, with period one, so x4 ≡ x4+n, for any integer

n. Since x4 is then topologically a circle, this is known as S1 compacti�cation. Moreover,

we take h, ψ and Aµ to be independent of x4 . �is corresponds to keeping only the massless

Kaluza-Klein modes, which dominate when the extra dimension is very small: the masses

of the higher modes go as the reciprocal of the Kaluza-Klein radius.

In this case, the �ve-dimensional scalar curvature R5[G] may be rewritten in terms of

the four dimensional scalar curvature derived from the metric , R4[], as

R5[G] = R4[]− 2(∂ψ)2 − 2�ψ− 1

4
e2ψFµνF

µν , (.)

where Fµν = ∂µAν− ∂νAµ is the �eld strength associated with the vector potential Aµ , � is

the four-dimensional covariant d’Alembertian, � =∇µ∇µ = µν∇µ∇ν []. �e Einstein-

Hilbert action reduces to

SKK = 1

2

∫
d5x

p
−GR5[G] = 1

2

∫
d4x eψ

p−
(

R4[]− 2(∂ψ)2 − 2�ψ− 1
4 e

2ψF2
)

. (.)

�e action can be put in Einstein frame by a conformal transformation []. If µν =

e2Cψhµν with C a constant, then

R4[] = e−2Cψ
(

R4[h]− 6C2(∂ψ)2− 6C�hψ
)

, (.)

where the covariant d’Alembertian is now evaluated with the h metric. Note that

� = e−2Cψ�h + 2Ce−2Cψ(∇µψ)hµν∇ν , (.)
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so

SKK =
∫
d4x

√

−h
(

1
2R4[h]− 3

4 (∂ψ)2+ 1
8 e

3ψF2
)

(.)

= 1

2

∫
d4x

√

−h
(

R4[h]− (∂ϕ)2+ 1
4 e

p
6ϕF2

)

, (.)

where C =−1/2 and we have integrated by parts to discard the d’Alembertian and corrected

the scalar-�eld normalization, ψ =
p
2/3ϕ.

�e original �ve-dimensional metric (.) can now be written

G =







e−
p
2/3ϕhµν+ e

p
8/3ϕAµAν e

p
8/3ϕAν

e
p
8/3ϕAµ e

p
8/3ϕ





 . (.)

If we include some matter �elds Φ i in the �ve-dimensional theory,

S =
∫
d5x

p
−G

(

1
2R+L5[Φ i ;GMN]

)

, (.)

where L5 is the matter Lagrangian, then the four-dimensional theory will have a matter

sector which includes complicated couplings between the gravitational sector �elds ϕ and

Aµ . In chapters  and , we will discuss the relation between these couplings and chaos and

the equivalence principle.

.. Orbifolding. A compacti�cation that is in some respects simpler is the S1/Z2 orb-

ifold. Orbifolds aremanifolds which are identi�ed under the action of a discrete group. Orb-

ifolds have distinguished points, or hypersurfaces, which are the �xed points of the group

action. We consider the S1/Z2 orbifold, which is the simplest example, an interval with two

boundary points. It is also very important for high energy physics, as the boundary planes

which arise when a higher dimensional theory is identi�ed under the S1/Z2 action are an

essential part of eleven-dimensional E8 × E8 heterotic M theory [, ] and are crucial

components of the ekpyrotic and cyclic cosmologies [, ].
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To go from �ve to four dimensions, we identify the ��h dimension x4 on a circle, with

period two, x4 ≡ x4 + 2n for integers n. �e orbifold identi�es x4 ≡ −x4 , which has two

inequivalent �xed points, at x4 = 0 and x4 = 1.

�e map x4 →−x4 , however, takes Gµ5 →−Gµ5 or equivalently Aµ →−Aµ . �us, the

orbifolding projects out the constant (i.e. massless) Kaluza-Klein vector mode: Aµ = 0. �e

component G55 survives, however, as G55 →+G55 . �e metric (.) reduces to

G =







e−
p
2/3ϕhµν 0

0 e
p
8/3ϕ





 , (.)

and the action (.) to the comparatively simple form

SS1/Z2
= 1

2

∫
d4x

√

−h
(

R4[h]− (∂ϕ)2
)

. (.)

A theory with matter �elds Φ i,0 and Φ i,1 , and matter Lagrangians L0 and L1 on the orb-

ifold planes at x4 = 0 and 1, respectively, has action

S = 1

2

∫
d5x

p
−GR5[G]+

∫
δ(x4)d4x

√

−detGµνL0[Φ i,0;Gµν]

+
∫
δ(x4− 1)d4x

√

−detGµνL1[Φ i,1 ;Gµν] (.)

=
∫
d5x

√

−h
(

1
2R4[h]− 1

2 (∂ϕ)2+ e−
p
8/3ϕL0[Φ i,0; e−

p
2/3ϕhµν]

+ e−
p
8/3ϕL1[Φ i,1; e−

p
2/3ϕhµν]

)

, (.)

where δ is the Dirac delta function. In the second equality, the compacti�ed form of the

action is given. �e coupling between the gravitational sector and the matter sector, in this

case, is much simpler than in the Kaluza-Klein sector: the compacti�edmatter sector simply

couples to a di�erent metric e−
p
2/3ϕhµν . In chapter  we discuss the relevance of these

couplings to tests of general relativity. In chapter  we mention how the missing vector

modes can turn a chaotic theory into a stable one.
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Neglecting the orbifold plane Lagrangians, the action (.) is the action for a free scalar

�eld coupled to gravity. �us, in a homogeneous frw background, the equations of motion

are solved by (.). At a collision of the �xed planes, when ϕ→−∞, the scale factor on the

planes, e−
p
2/3ϕa2 , tends to a constant. �is means that when the orbifold planes collide,

the scale factor remains �nite, as do all physical quantities on the �xed planes (e.g. temper-

ature and density). �is con�rms that ignoring the radiation and tension on the branes is

reasonable at the collision. �eir contribution to the equations of motion is �nite, while the

kinetic energy 1
2 ϕ̇

2 diverges.

.. Randall-Sundrum scenario. �e calculations of the last section were idealized:

the metric in the extra dimension was treated as homogeneous. �is is obviously wrong,

because the orbifold planes are localized and we would expect curvature in the extra dimen-

sion. Nonetheless, it is a good approximation in the limit of small brane separations. In

general, however, it is necessary to consider non-factorizable geometries, in which the four

dimensional metric does not depend on the extra dimension through a conformal factor,

but rather has a more complicated dependence. However, it is possible to work out some of

the dynamics by considering models homogeneous in the spatial directions x1 , x2 and x3 .

Such a geometry has metric:

ds2 =−n(t , y)2dt2+ a(t , y)2
(

(dx1)2 + (dx2)2+ (dx3)2
)

+ r(t , y)2dy2 . (.)

A static solution to the Einstein equations, valid on the interval y ∈ [−1 , 1], is

n(y) = a(y) = e−kb0 |y| and r = r0 , (.)

where r0 and k are positive constants. �is solution has a bulk negative cosmological con-

stant Λ, a positive tension brane, with tension T, at y = 0 and a negative tension brane, with

tension −T, at y = 1. �ese are given by

T = 6k, and Λ =−6k2 . (.)
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 5D
bulk

4D S1/Z2 warped orbifold planes

negative
tension
brane
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tension
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ßuctuations
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non-perturbative
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distance

e√2⁄3φ

Figure . A cartoon of the ingredients of a typical �ve-dimensional S1/Z2

orbifold scenario, such as heterotic M-theory, the Randall-Sundrum sce-

nario, or the cyclic scenario. �ree-branes, one with positive tension and

onewith negative tension, are trapped at orbifold planes of a �ve dimensional

bulk (perhaps with a cosmological constant). One of these branes, the vis-

ible brane, contains the matter and radiation observed today. �e distance

between the branes at any point is given in the four-dimensional e�ective

theory by the value of the radion ϕ, whose potential V(ϕ), is determined by

(unknown) non-perturbative e�ects. Because of the warped geometry, the

positive tension brane has a larger four dimensional scale factor, a+ than the

negative tension brane, a−.

�e quantity e−kr0 |y| is called the warp factor, and measures a scale di�erence between the

two branes: the metric on the positive tension brane is ηµν , the Minkowski metric, whereas

the negative tension brane has the e�ective metric e−2kr0ηµν . �e tensions are set by the

jump in the derivative of the warp factor at the branes. �is solution was discovered by

Randall and Sundrum [] who used it to solve the electroweak scale hierarchy problem:

scales on the negative tension brane are exponentially suppressed by the warp factor, so kr0

can have modest values.
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Csáki et al. have explicitly derived the Einstein equations for (.). �ey arise from the

four-dimensional e�ective action

SRS =−6

k

∫
dt a3

(

(1−Ω2)
ȧ2

a2
+ 2krΩ2 ȧ

a

ṙ

r
− k2 r2Ω2 ṙ

2

r2
−V(r)

)

+
∫
d4x

p−L+[µν]+
∫
d4x

p−Ω4L-[Ω
2µν]. (.)

where

n(t , y) = e−kr(t)y , (.)

a(t , y) = a(t)e−kr(t)y , (.)

r(t , y) = r(t), (.)

Ω(t) = e−kr(t) , (.)

V is the potential from the interaction of orbifold planes, and L+ and L− (which couples

to the metric scaled by Ω2) are the Lagrangian densities of the positive and negative ten-

sion branes, respectively. We can change variables in (.) to write the metric in a more

symmetric form, in terms of the scale factors on the two branes

a+(t) = a(t) and a−(t)= a(t)Ω(t), (.)

which, introducing the lapse function N by the change of variables dt = Na dτ, gives the

very simple form

Se� =
1

2k

∫
dτ N−16(ȧ2−− ȧ2+), (.)

where we have omitted the potential and the brane actions [, ]. �e negative tension

brane appears with a positive kinetic energy, whereas the positive tension brane has a kinetic

energy with negative sign.

When the orbifold planes collide, the warp factor Ω → 1 and so the solution reduces

to the S1/Z2 solution in which the two scale factors are equal. In the action (.), the
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collision corresponds to the line a− = a+. Moreover, in M-theory, the non-perturbative

potential vanishes as the orbifold planes collide, and so it does not a�ect the geometry of the

collision discussed in .. �is is discussed in detail in [].

�e static scenariowas considered byRandall and Sundrum,whereas the ekpyrotic []

and cyclic [, ] models consider the branes to be dynamical. �is is also the case we

consider in this thesis. In �gure  the general situation considered in much of this thesis is

illustrated: an S1/Z2 orbifold with a warped background and a non-perturbative potential.

.. Hořava-Witten scenario. Acompacti�ed theory that comes directly fromhigh en-

ergy theory is heterotic M theory [, ]. �is theory, compacti�ed from eleven to four di-

mensions, seems to be the best way to extract phenomenologically viablemodels from string

theory []. Gauge theory and quantum gravity can be uni�ed in this framework. Since it

is derived from heterotic M-theory, is a quantummechanical theory of gravity. Vacua of the

theory have been found with standard model gauge groups and three families of quarks and

leptons [, , ].

�e four-dimensional, low energy e�ective action of Hořava-Witten theory, and its su-

pergravity description [], has been calculated by Lukas et al. []. Because the couplings

will play a role in our discussion in chapter , factors of Newton’s constant are retained in

this section. We record the e�ective action in the full formalism of [], although it is

principally the interactions of the radion that will be important to us in later chapters.

�e action is derived from the full eleven dimensional theory by compacti�cation on the

manifold M4 ×CY3 × S1/Z2, where M is an arbitrary four-manifold and CY3 is a Calabi-

Yau three-fold (i.e. it has six real dimensions). �e e�ective action is complicated, because

it contains contributions from the decomposition of the M theory three form (with a four

form �eld strength) along various directions, two E8 gauge supermultiplets on the orbifold

planes and moduli from the compacti�cation (the radion and Calabi-Yau moduli).

�e action contains a gravity sector, including the radion c andCalabi-Yau volumemod-

ulus a, the gut sector (which arises from E8 gauge �elds in eleven dimensions) and the
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universal hypermultiplet. �e action is (from [] equations (), () and ())

S =
πρV

κ2

∫
M4

p−d4x
[

R− 18∂µa∂
µa− 3

2 ∂µ ĉ∂
µ ĉ− 3

(

e−ĉ+ 1
3 ξα0e

−6a)∂µC∂
µ C̄

− 3
8 e

−2 ĉ(CpCq∂µ C̄
p∂µ C̄q + C̄p C̄q∂µC

p∂µCq − 2|C|2∂µC∂µ C̄
)

− 3k2

4

(

e−2 ĉ−6a− 1
3 ξα0e

−ĉ−12a)(|dpqrCpCq|2 + 1
8 (C̄T iC)2

)

]

− V

8πκ2

( κ

4π

)2/3
∫
M4

p− d4x
(

(e6a+ ξα0e
ĉ) tr(F(1))2

+ (e6a− ξα0 e
ĉ) tr(F(2))2

)

, (.)

where we have set two moduli that arise from the bulk three form (σ and χ) to zero. Now

 is the four-dimensional metric, R is the associated scalar curvature, the separation of the

branes is given by πρec, the volume of the Calabi-Yau manifold is given by Ve6a and the

modulus ĉ = c+ 2a. �e C are scalar �elds transforming in the 27 of E6 , F(1) and F(2) are

the gauge �elds strengths on the �xed planes. �e constants are κ2 , the eleven-dimensional

gravitational coupling, k = 4
√

2ρπ(4π/κ)1/3 , ξ =
p
2πρ/16, the T i (i = 1 , . . . , 78) are E6

generators in the fundamental representation of 27, dpqr is the tensor that projects out the

singlet of 273 . Finally, α0 is the distortion of the Calabi-Yau three-fold X

α0 =− 1
p
2πV

( κ

4π

)2/3
∫
X
ω∧ trR(X) ∧ trR(X) , (.)

where ω is the Kähler form and the Ricci tensor R(X) is calculated with respect to X.

Newton’s constant and the gut coupling for this theory are

G = κ2

16π2Vρ
and αGUT = (4πκ2)2/3

2V
. (.)

Phenomenology suggests, roughly, V1/6/κ2/9 ∼ 2 and πρ/κ2/9 ∼ 8 []. �e gutmass, in

a reasonably isotropic Calabi-Yau manifold is given by MGUT = V−1/6 ∼ 1016GeV. �is

suggests κ2/9 ∼ 5× 10−16GeV. Witten [] has pointed out that in this case, the e�ective

action (.) is an expansion in the parameter ε = κ2/3ρ/V2/3 . �is expansion breaks
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down for ε ∼ 1. In this case, the Calabi-Yau becomes so distorted along the orbifold interval

that its volume becomes negative. Including higher terms in κ2/3 ameliorates the situation

somewhat [] but it is not known what e�ect higher order terms in the scalar curvature

(such as R4 terms) will have [].

An important feature of this solution is that itmust have a non-vanishing bulk three form

�ux. �is prevents the theory from having the anti-de Sitter bulk of the Randall-Sundrum

theory (.) and gives, to the order considered by Lukas et al., a linear (Ω(y) ∝ 1+ α|y|),

rather than exponential warping (Ω(y) ∝ eC|y|). It [] it is pointed out that higher order

corrections give a quadratic warp factor. Including higher order scalar curvature terms, such

as R4, also does not give an exponential warp factor []. �erefore, it unfortunately does not

seem easy to achieve the Randall-Sundrum solution to the weak hierarchy problem in this

model [], although it does explain the smaller hierarchy between the gut and Planck

scales in (.). �e form of the warp factor will be signi�cant for our discussion of the

equivalence principle in chapter .

Considerable additional technology has been developed for compacti�cation, particu-

larly sophisticated techniques in algebraic geometry [, ]. However these e�ective ac-

tions provide the broad features we will need for applications to cosmology.



CHAPTER 

�e speed of sound of dark energy

Recent evidence suggests that most of the critical density of the universe is made up

of a component with large, negative pressure. Determining the nature of this dark energy

component is one of the central problems of modern cosmology. It is not known if the

origin of dark energy is a cosmological constant (such as a �eld theory vacuum density) or

a dynamical component, such as quintessence []. Both approaches are beset by di�cult

theoretical problems. �e cosmological constant, although the simplest theory, is �ne-tuned

by roughly 120 orders of magnitude compared to the Planck density expected from �eld

theory. Barring an anthropic explanation [] it is not known how such a small constant

could be obtained from fundamental physics. Quintessence has the advantage that the scale

of dark energy can be determined dynamically by “tracker” solutions, but it is unclear how

the theory would be protected from quantummechanical corrections which would give the

�eld a large mass and couplings to other �elds.

Quintessence is modeled by a scalar �eld slowly rolling down a �at potential [, ,

]. �e scalar �eld may be regarded as real, or simply as a device for modeling more

general cosmic �uids with negative pressure. �ese models can be distinguished from a

cosmological constant, at least in principle, by the equation of state w = p/ρ. A cosmological

constant has w =−1: it has constant energy density. A scalar �eld generally has w di�erent

from unity and time-varying. Measurements of supernovae [, , , ], large-scale

structure [] and the cosmic microwave background [] all constrain the equation of

state.


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�ese observations of dark energy are all indirect, however. �e redshi�-distance rela-

tion obtained by studying type Ia supernova can, in principle, measure the expansion his-

tory of the universe very precisely. However, this provides only an indirect constraint on the

equation of state. �e relationship between redshi� z and luminosity distance dL (the ratio

of luminosity to �ux for a distant object) is

dL =
1+ z

H0
(1+Ωm/ΩQ)1/2

∫ 1+z

1

dx

x3/2

[Ωm

ΩQ
+exp

(

3

∫ x
1

dy

y
wQ(y)

)]−1/2
, (.)

where wQ(z) is the equation-of-state of dark energy at redshi� z, and Ωm and ΩQ are the

fractional densities (.) of matter and quintessence today. �is multiple-integral relation-

ship means that the redshi�-luminosity relation is principally sensitive to an average, ef-

fective equation of state w̄, and is quite insensitive to the �ne details of its time evolution

[, ]. If the equation of state of dark energy is di�erent from −1, there is no reason to

expect it to be constant. Observations of supernovae, then, reveal little detailed information

about the underlying quintessence. �is situation may not improve dramatically with better

observations, because even large collections of supernovae are still restricted by underlying

systematic errors. It is possible that current methods will not be able to constrain w to better

than 10% accuracy [].

�erefore it is important to develop complementary techniques to confront the dark

energy problem. If dark energy in our universe is dynamical, then it is possible that there

are other observable e�ects that would distinguish it from a cosmological constant. In this

chapter, the e�ect of another parameter, the sound-speed of dark energy – i.e. the speed with

which dark energy perturbations propagate – is investigated. In the next chapter, the role of

tests of the equivalence principle in constraining dark energy is investigated.

In standardmodels of quintessence [, , , , ] the scalar �eld ϕ has a canon-

ical kinetic term, X =− 1
2 (∂µϕ)2 , as in (.). A second category consists of models in which

the kinetic energy is not canonical and could be a general functionof X. While these havenot

o�en been considered in the literature, they are well-de�ned Lorentz invariant �eld theories
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with (nonlinear) second-order equations of motion. �ey are signi�cant, because they are

corrections that are expected to occur in brane and string models. A well-known example

of such an action is the scalar Born-Infeld action [],

S =−
∫
d4x

p−f (ϕ)
p
1− αX, (.)

where α is a constant and f some function of ϕ. �is action is used in string theory as a

higher order generalization of p-forms actions (in this case, a 0-form or scalar �eld). It is

also the action describing the tension of a three dimensional brane displaced in an extra

dimension X4 by an amount proportional to X4 = ϕ.

A prominent class of such models are k-essence models, which are designed to address

the issue of why cosmic acceleration has begun only recently [, ]. �e equation of state

in k-essencemodels is positive, andmirrors the background equation of state, until the onset

of matter-domination triggers a change to negative pressure. A key di�erence between stan-

dard quintessence and k-essence models is the time-evolution of the equation of state. �e

equation of state for a k-essence component approaches −1 soon a�er the onset of matter-

domination and then increases towards a less negative value in the present epoch as the com-

ponent begins to dominate the energy density. In standard quintessence tracker models, the

equation of state is generically monotonically decreasing and approaching −1 today. Quin-

tessence relies on a particular form of the potential for its attractor behavior [], whereas

these models rely on dynamical attractor behavior that comes from the non-canonical ki-

netic energy density. �is feature was discussed in detail in [].

In this chapter, we focus on a second physical property – the speed of sound – which

also distinguishes standard quintessence from k-essence and, more generally, from other

cosmic �uids described by a non-canonical kinetic energy density. �e sound speed greatly

in�uences the �uctuations of the quintessence �uid and can also, in principle, have an e�ect

on the cosmic microwave background (cmb) and matter power spectrum. We investigate

how the variable speed of sound in�uences the �uctuations of the cmb compared to the case
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of standard quintessence where c2s = 1. In general, the e�ect is small, but we show that it is

detectable in cases like k-essence models in which the speed of sound is nearly zero during

most of the period between last scattering and the present epoch. �is behavior produces

the greatest di�erence from standard quintessence [, ].

A�er describing how the speed of sound arises in cosmic �uids and scalar �eld models,

we compare models with exactly the same equation of state as a function of redshi�, w(z),

but di�erent sound speed. We �nd that models with near-zero sound speed today (such as

k-essence models) are distinguishable from models with c2s = 1 based on measurements of

the cmb power spectrum, provided the quintessence energy density is greater than a few

percent of the critical density at last scattering. �e density requirement, which is satis�ed

by typical k-essencemodels, for example, is needed so that the sound speed has ameasurable

e�ect on the acoustic oscillation peaks of the cmb which are sensitive to conditions at the

last scattering surface. Similar results can be obtained formore general forms of dark energy

[, , ]. We then consider whether the e�ect can be mimicked by varying other cosmic

parameters or by introducing a time-varying equation-of-state. To perform the studies, we

introduce a spline technique that is useful in exploring models with time-varying w. Our

conclusion is that the sound speed e�ect is distinguishable from all other standard parameter

e�ects. Hence, the cmb can provide a useful constraint on the sound speed of dark energy.

�is chapter is largely based on work in []. Subsequently, DeDeo et al. [] showed

that related e�ects due to the sound speed of quintessence may occur in the matter power

spectrum. Bean and Doré [] tested the model against wmap data but found that it does

not yet clearly discriminate sound speed. Hannestad [] did a joint analysis with large scale

structure and supernovae and likewise found that current data do not di�erentiate the sound

speed. BothHannestad and Bean andDoré have pointed out that the ability to constrain the

sound speed is diminished if w is close to −1.
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. �e sound speed of a scalar �eld

�e perturbed equation of motion for a scalar �eld against a background ϕ(t) is

−�δϕ =−V ,ϕϕ
(

ϕ(t)
)

δϕ, (.)

omitting the back-reaction on the metric. Since the covariant d’Alembertian is applied to ϕ

it always propagates with the speed of light: c2s = 1. A perfect �uid, however, w = c2s if w is

a constant, or, generally (.),

ẇ = 3H(1+w)(w− c2s ). (.)

�is comes from c2s = ṗ/ρ̇. For a perfect �uid, the behavior of perturbations is closely tied

to the equation of state, which is a property of the background evolution.

Let us now consider a scalar �eld with a more general Lagrangian density Lϕ(X, ϕ) and

action

Sϕ =
∫
d4x

p−Lϕ(X, ϕ), (.)

where X = − 1
2 (∂ϕ)2. In order for the equations of motion to make sense, Lϕ must be a

di�erentiable function of X. �e canonical scalar �eld has Lϕ = X−V. �e stress-energy

tensor is

Tµν =Lϕ,X∂µϕ∂νϕ−Lϕµν , (.)

so comparing with the perfect �uid stress energy tensor (.) the �eld has pressure, energy

density and equation of state

pϕ =Lϕ , (.)

ρϕ = 2XLϕ,X−Lϕ , (.)

wϕ =
Lϕ

2XLϕ,X−Lϕ
, (.)

Our de�nition of X di�ers from [–, ] because we use the opposite sign convention for the
metric.
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respectively. �e general equation of motion is complicated. However, if we assume a ho-

mogeneous background ϕ = ϕ(t) and H =H(t), it simpli�es considerably:

ϕ̈(Lϕ,X+ 2XLϕ,XX)+ 3Hϕ̇Lϕ,X+ 2XLϕ,Xϕ =Lϕ,ϕ . (.)

�e perturbed equations of motion about this background are

−(Lϕ,X+ 2XLϕ,XX)δϕ̈+Lϕ,Xa
−2∇2δϕ+·· · = 0 , (.)

where a is the scale factor and the dots represent terms of lower order in the derivatives.

�us, the speed of sound of this �eld is

c2s =
Lϕ,X

Lϕ,X+ 2XLϕ,XX
, (.)

which is equal to unity only when X = 0 or Lϕ,XX = 0, as for a canonical scalar �eld.

�e Born-Infeld action (.) reduces, a�er a �eld rede�nition, to the canonical action in

the slowly varying limit |αX| ¿ 1. However, when αX is larger, it begins to di�er appreciably.

�emodel has equationof state−1+αX and sound speed 1−αX. Abramo et al. [] have used

cmb data to try to see if the a Born-Infeld action is preferred over the standardKlein-Gordon

scalar �eld. �ey determined that without the speci�c attractor behavior of k-essence, the

dark energy density at decoupling is insu�cient to distinguish the models in a statistically

signi�cant way.

A potential concern is that the sound speed (.) can be greater than unity. Indeed,

(.) has c2s > 1 for α < 0 in a homogeneous (X > 0) background. If Lϕ is not every-

where a convex function of X, then there will be intervals on which c2s > 1. Upon closer

examination, one can see that this condition is physically allowed: this means that perturba-

tions of the background scalar �eld can travel faster than light as measured in the preferred

frame in which the background �eld has vanishing spatial gradient. For a time dependent

background �eld, this frame is uniquely de�ned and means the perturbation theory is not

Lorentz invariant. �ere is no violation of causality. �e underlying theory is manifestly
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Figure . �e propagation of perturbations for a scalar �eld with canonical

kinetic energy (le�) and non-canonical kinetic energy (right). In a homo-

geneous background (top) perturbations of both �elds propagate isotropi-

cally. �e perturbations of the canonical �eld propagate on the light cone,

but the non-canonical �eld has sound speed generically di�erent from the

speed of light (depending on the Lagrangian, either faster or slower than

light). In an inhomogeneous background (bottom) – or a homogeneous,

time-dependent background seen from an accelerated frame – the pertur-

bations of the canonical �eld still propagate on the light cone. �e pertur-

bations of the non-canonical �eld propagate anisotropically, with the speed

increased in one direction and decreased in the other. Since perturbations

in the c2s > 1 version do not propagate along arbitrary spacelike trajectories,

there are no violations of causality from closed causal curves in this model.
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Lorentz invariant and it is not possible to transmit information faster than light along arbi-

trary space-like directions or create closed time-like curves. While (.), (.) and (.)

were derived in a preferred frame, in which the background is homogeneous, it is possible

to use Lorentz invariance to see that the �eld perturbations propagate anisotropically in a

general background. See �gure . �e condition that c2s ≤ 1 everywhere is the condition

that Lϕ be a convex function of ϕ: Lϕ,XX ≥ 0. In this chapter, our results depend only on

the c2s ∼ 0 behavior of k-essence at moderate redshi�s, and not on any c2s > 1 behavior. For

a more thorough discussion of the stability of these models, see [].

. Computing the cosmic microwave background

�e cosmic microwave background is a 2 .7 Kelvin thermal relic of the big bang. It is

emitted at decoupling, when ions in the primordial plasma combine with free electrons to

form atoms, and the Compton scattering of radiation ceases. �is happened at a redshi� of

roughly 1 , 000. �e radiation has traveled relatively unimpeded until today, so the observed

cmb is an image of the last scattering surface, the spherical surface surrounding us at this

large redshi�. Minute anisotropies, due to �uctuations in the photon temperature at decou-

pling, are encoded in the cmb. By decomposing the temperature of the cmb into spherical

harmonics, the power spectrummay be studied. �e power spectrum comes from a nearly-

scale invariant spectrum of primordial perturbations multiplied by a transfer function de-

scribing the evolution of perturbations a�er they reenter the horizon. �ese are described

in section  of chapter .

�e temperature on the sky of the cmb can be written as T0(1 +Θ), where T0 is the

background temperature and the �uctuation Θ depends on the direction being observed.

But Θ can be decomposed into spherical harmonics Y lm ,

Θ =
∞
∑

l=1

l
∑

m=−l
a lmY lm , (.)
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Figure . �e e�ect of the speed of sound on scalar �eld perturbations is

shown, for a model with w = −0 .75 and ΩQ = 0 .71 today. �e horizon, at

5000Mpc, corresponds to the le� axis. �e scale cs/H0 acts as a cuto� for

the quintessence power spectrum. For larger wavenumbers, the spectrum

falls o� very rapidly, as δ2 ∼ k−6 .6, regardless of the equation of state.

where the coe�cients a lm are independent Gaussian random variables, as the initial condi-

tions discussed in section . are a Gaussian random �eld. For �xed l, they are identically

distributed. If this picture is correct, the only information in the cmb is contained in C l , the

variance of the a lm for �xed l. Since there are only 2 l+ 1 of the a lm for a given l, there is a

fundamental limit, the cosmic variance, to how well this variance C l can be measured from

our observations of the cmb, given by

∆C l
C l

=

√

2

2 l+ 1
. (.)

�is is used to compute the absolute likelihood, given perfect observations, of being able to

detect the speed of sound e�ects.

�e e�ect of the speed of sound on the cmb perturbation equations comes from the fact

that, for c2s ¿ 1, k-essence will collapse via gravitational instability into cold dark matter
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(cdm) potentials, whereas in the c2s ∼ 1, the growth of density perturbations is strongly

suppressed. �is can be seen from (.). �e term

1

3

( k

aH

)2 c2s
1+w δ, (.)

where δ is the density contrast, sets the scale of the Jeans instability: clustering on scales

smaller than cs/H is suppressed by pressure e�ects. For cs = 1, clustering inside the horizon

is heavily suppressed, while for cs = 0 there is no scale on which it is suppressed (�gure ).

�epower spectrum for a given cosmologicalmodelmay be computed by integrating the

Boltzmann equation for the various cosmic �uids. �e cmb power spectra for our models

are computed by modifying the standard cmbfast code [, ]. �ese calculations are

performed in synchronous gauge, which is written

ds2 = a2(τ)[−dτ2+ (δ ij + h ij)dx i dx j], (.)

where δ ij is the unperturbed spatial metric, and h ij is the metric perturbation. �is choice

of gauge is e�cient for solving the Boltzmann equations, but has the disadvantage that the

gauge slicing (constant τ surfaces) is not uniquely de�ned: the surface τ = 0 is arbitrary.

It is usually chosen so that the threading (the lines of constant x) follow the geodesics of

a particular particle species. In the case of cmbfast, these are the dark matter particles.

�e Newtonian interpretation of synchronous gauge is also not as straightforward as in the

longitudinal gauge of section . See [, ] for a detailed comparison of the two gauges,

and formulae for transforming variables between one and the other.

�e modi�cations of cmbfast are straightforward. We use h to represent the trace of

the spatial metric perturbation h ij . �e e�ect we are examining is due to the perturbations
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to the k-essence stress-energy in the synchronous gauge for a mode with wavenumber k

δρ =−2ρ
δϕ

ϕ
− (ρ+ p)

δy

y
c−2s (.)

δp =−2p
δϕ

ϕ
− (ρ+ p)

δy

y
(.)

θ = 1
p
2
k2yδϕ (.)

where y ≡ 1/
p
X and the θ variable of cmbfast is the divergence of the �uid velocity, so

k iT0
i = θ(ρ+ p) (see (.)). It is related to the variable δH of section . of chapter  by

θ = 3aδH. �e density contrast, δ ≡ δρ/ρ, obeys the equation

δ′ =−(1+w)
(

θ+ 1
2 h

′)− 3H

(

δp

δρ
−w

)

δ, (.)

where the derivative is with respect to conformal time and H ≡ a′/a. �e quantity δp/δρ

appears, and is generally di�erent from c2s (see chapter , section .). In fact it can be

expressed in gauge invariant form by

δp = c2s δρ+
θρ

k2
[

3H(1+w)(c2s −w)+w′] , (.)

so they agree only on small scales (or for perfect �uids, for which the second term vanishes).

�is leads to a simpli�ed evolution equation for the velocity gradient

θ′ = (3c2s − 1)Hθ+ c2s k2δ/(1+w). (.)

Kinetic quintessence is distinguished from regular quintessence, for which c2s = 1 in

equations (.) and (.). Linearized perturbations in k-essence can propagate non-

relativistically, with c2s ¿ 1. We can see in equation (.) that a small sound speed will

cause the velocity gradient to decay; with the conventional gauge choice that θcdm = 0, the

inhomogeneities in the k-essence will describe a �uid which is comoving with the cold dark

matter. From equation (.), we see that the second term on the right hand side will be

negligible even on scales approaching the horizon. �e overall e�ect is that the pressure
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�uctuations δp are too weak to prevent k-essence collapse via gravitational instability into

the cdm gravitational potentials.

�e cmbfast code takes w(a) and cs(a) as inputs, so it is possible to manually adjust

these functions to have any values (including, of course, cs = 1). Once we have computed

the cmb anisotropy for two models, they can be compared by computing their likelihood

di�erence, the probability that they could be confused due to the cosmic variance in local

measurements of the cmb. Given models A and B, the negative log-likelihood, − logL, is

derived in [] from (.):

− logL =
∑

l

(l+ 1
2 )

(

1− C lA
C lB

+ log
C lA
C lB

)

. (.)

�e condition − logL > 6 corresponds to distinguishability at the 3σ level. �e relative nor-

malization of the spectra is chosen so as to minimize the likelihood di�erence, including l

up to 1500.

. Measuring the speed of sound of quintessence

In the case of k-essence the Lagrangian generically has the form Lϕ = p̃(X)/ϕ2 , where

p̃(X) is some function with p̃ ,XX 6= 0. We have chosen a speci�c form for p̃ for our �du-

cial model. �e conditions p̃ must satisfy are discussed in []. �e equation of state and

sound speed for this model are shown in �gures  and  respectively; they are expressed

as functions of the scale factor a (a = 1 today) by integrating the equations of motion. To

completely specify the model, we �x the cosmological parameters today to reasonable val-

ues: Ωb = 0 .05, ΩCDM = 0 .3, ΩQ = 0 .65 and h0 = 0 .5 (where h0 is the Hubble parameter

in units of 100 km sec−1Mpc−1). �e energy density as a fraction of the critical density,

Ωk-essence, is shown in �gure . While c2s > 1 for large redshi�s, this is not an important fea-

ture of the model: ΩQ is reasonably small whenever c2s > 1, so the value of cs at these times

has negligible e�ect on the cmb. We have veri�ed this by rerunning the calculation a�er

arti�cially truncating the speed of sound at cs ≤ 1 and comparing the cmb power spectra.
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so that the cmb spectrum matches the �ducial model to within the cosmic
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the spline need not mimic the �ducial equation of state very closely to obtain
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Figure . �e speed of sound as a function of the scale factor a (atoday = 1).

Note that at c2s ¿ 1 near the last scattering surface and at the present epoch.

Moreover, with slightly di�erent parameters, we can obtain a model in which cs < 1 which

at early times and which has the same behavior at late times.) �emost important feature of
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Figure . Ωk-essence and ΩQ as a function of z for the k-essence (solid line)

and best-�t spline models (dashed line), respectively. Note that ΩQ falls o�

to zero at large redshi�s, whereas Ωk-essence approaches a �nite value; w ap-

proaches 1/3 for this model at large redshi�s.

the �ducial model is that c2s ¿ 1 whenever k-essence contributes signi�cantly to the energy

density of the universe.

�e power spectrum for our �ducial model is given by the solid line in �gure . We

can see the e�ect of the unusual speed of sound on this model by computing a new spec-

trum, which has the same equation of state and cosmological parameters, butwhose speed of

sound has been set equal to 1 for all a. �is corresponds to a quintessence �eld –with canon-

ical kinetic energy – rolling down a potential. �e power spectrum for the model is shown

in �gure . �e two models have log likelihood di�erence − logL = 127: they are easily

distinguishable. �e speed of sound has a signi�cant e�ect on the cmb anisotropy. Figure 

compares the dark matter and dark energy contributions for quintessence and k-essence

models. �e small sound speed results in distinctive oscillations in the case of k-essence.

Can the e�ect of the sound speed be distinguished from that of other cosmological pa-

rameters? �ere is already a large degeneracy [] in these parameters, so it would not have

been too surprising if allowing a variable speed of sound merely expanded the pre-existing

degeneracy. �is problem is addressed by considering, as above, quintessencemodels which

have c2s = 1, but allowing the values ofΩb ,ΩCDM,ΩQ (quintessence) and h0 to vary (subject
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Figure . �e cmb power spectrum (with no particular normalization) for

k-essence (solid line), the model with cs = 1 (dot-dashed line, − logL = 127)

and the best-�t spline model (dashed, − logL = 28). Models that are distin-

guishable can still �t quite closely. �e lower diagram shows ∆C l/C l (relative

to the �ducial model) and the cosmic variance envelope.

to the �atness condition Ωb+ΩCDM+ΩQ = 1). For the comparison models, the equation

of state, w, is taken to be constant as a function of the scale factor a, but is allowed to vary

from model to model. Minimizing the log-likelihood over these parameters, the best �t

gives − logL = 32, with parameters Ωb = 0 .05, ΩCDM = 0 .35, ΩQ = 0 .60, h0 = 0 .48 and

w =−0 .78. �is �twas found usingwell knownminimization schemes []. It seems likely

that − logL = 32 is the best that can be done for this class of models, as the result is quite
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Figure . Comparison of the power spectra for dark matter (cdm) and

dark energy (Q or K) for models with dark energy in the form of cosmo-

logical constant (Λ), quintessence (Q) and k-essence (K). All models have

ΩCDM = 0 .3, Ωbh
2 = 0 .02, and h = 0 .65. For models with cosmological

constant, there is no perturbed dark energy component. Note the distinc-

tive oscillations of the k-essence component associated with having cs ¿ 1.

�ese are discussed further by DeDeo et al. [].

insensitive to the parameter values with which the minimization is started or to which min-

imization algorithm (conjugate gradients or a simplex annealing method) is used. Hence,

the speed of sound is distinguishable.

�us far, our �ducial model has been compared with two kinds of cs = 1 models: one

with all other parameters, including w(a), identical and one with constant w, with the pa-

rameters (including w) adjusted so as to minimize the likelihood di�erence. In both cases

the �ducial model was easily distinguishable. We next test the possibility that some other

form of quintessence, with general w(a) and canonical kinetic energy, can reproduce the

cmb anisotropy of the time-varying cs model. For this purpose, we consider models with
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an equation of state given by a cubic spline []. �at is, we introduce six new parameters

into our model: the values of w at a = 10−4 , 10−3 , 10−2 , 10−1 and w at the two extremes

of a, which lie at a = 10−14 and 3 .8. (Introducing more spline points has a negligible ef-

fect on our results.) �e equation of state at other values of a is then given by a piecewise

cubic (in loga) function whose coe�cients are chosen so that it passes through the points

selected above and has a continuous second derivative. We still allow Ωb, ΩCDM, ΩQ and

h0 to vary (again enforcing �atness), and now allow, for completeness, the spectral tilt ns

to vary as well. �e model therefore has a total of ten free parameters. �e minimum log-

likelihood di�erence found was − logL = 28, which is not a signi�cant improvement. �is

model has Ωb = 0 .05, ΩCDM = 0 .34, ΩQ = 0 .61, h0 = 0 .47, ns = 1 .02. �e equation of

state is shown in �gure  (dashed line), ΩQ as a function of z in �gure  (dashed line) the

cmb power spectrum is shown in �gure  (dotted line).

�e spline technique always produces a very smooth looking equation of state, compared

to the rapidly varying equation of state (particularly near a = 0 .01) given by the actual k-

essence model. To see that this does not a�ect the analysis – that the spline equation of

state has su�cient freedom to closely mimic that for the �ducial model – we compare two

models to the �ducialmodel, onewith cs = 1 and one with an identical speed of sound to the

k-essence model. �e equations of state of these models are allowed to vary using the spline

technique, but the cosmological parameters are �xed to be the same as for the �ducialmodel.

�e minimum − logL for the cs = 1 model is 70, whereas the log-likelihood di�erence for

the model with the �ducial sound speed is much less than one. �us, the spline technique

appears to do a very good job of modeling the relevant details of the equation of state. Since

the equation of state is constrained so indirectly by cosmological observables such as the

redshi�-luminosity relation (.), it is not surprising that such a parameterization is good

at exploring the available equations of state.

�e cubic spline is a useful method for studying varying a general equation of state w(a)

with a �nite number of �tting quantities. �e same technique can be extended to include
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general time-varying cs . In this way, near-future observations of the cmb may be used to

constrain general models of quintessence without introducing strong priors into its nature.

A disadvantage of using the spline, however, is that it has such a large parameter degeneracy

that it does not provide a clear way of sorting out which features of the equation of state are

best constrained by a particular set of observations.

We have seen from our example that it is possible to robustly (much better than 3σ)

distinguish models with cs = 1 dark energy (e.g. scalar �elds with canonical kinetic energy

density) from models with c2s ¿ 1, such as k-essence. Our studies show that distinction

depends on cs ¿ 1 and ΩQ being at least a few percent at the last scattering surface, so that

the scalar �eld �uctuations are signi�cant enough that they a�ect the acoustic peaks, which

can be precisely measured, as well as the large-angular scale anisotropy. If ΩQ is too small

at the last scattering surface, then the speed of sound only a�ects the large angular scale

anisotropy and is di�cult to distinguish because of the large cosmic variance at those scales.

Our results are summarized in .

A positive detection of this sound speed e�ect would be encouraging, as it would provide

de�nitive evidence that dark energy has a dynamical origin. Bean and Doré have looked for

this e�ect, and have found the very tentative 1σ result thatwmap data suggests c2s < 0 .04 at

the surface of last scattering. Hannestad [] extended this analysis to large scale structure

and supernovae and did not �nd any constraint on c2s . However, with improved data –

in particular, better measurements of the high-l power spectrum – it is likely that more

stringent constraints can be placed on c2s . Given the knowndegeneracies in the cosmological

parameters, it is important to continue look for e�ects that make a clear distinction between

dynamical dark energy and a cosmological constant.
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Model Ωb ΩCDM ΩQ h0 ns w cs − logL

Fiducial k-essence 0 .050 0 .300 0 .650 50 .0 1 .00 Fig.  (k-essence) Fig. 

Imposed c2s = 1 0 .050 0 .300 0 .650 50 .0 1 .00 Fig.  (k-essence) 1 127 .7

Best-�t c2s = 1 0 .056 0 .412 0 .532 45 .8 1 .00 Fig.  (k-essence) 1 24 .2

Spline w and c2s = 1 0 .052 0 .336 0 .612 47 .6 1 .02 Fig.  (spline) 1 28 .1

Constant w and c2s = 1 0 .050 0 .351 0 .599 48 .4 1 .00 −0 .778 1 32 .4

Λcdm 0 .041 0 .290 0 .668 53 .2 1 .00 −1 n/a 32 .7

Table . �e �ducial k-essence model (�rst line) is compared against several c2s = 1 models. Simply setting c2s = 1

(second line), holding the other parameters �xed, gives a much worse �t than using minimization methods to get a

best �t (third line). �e best c2s = 1model has the same equation of state as the �ducial model, but di�erent parameters.

�e others, �t with a spline (fourth line), a constant equation of state (��h line) and a cosmological constant (last line)

are somewhat worse.



CHAPTER 

Dark energy and the principle of equivalence

Although most attempts to distinguish whether dark energy is a cosmological constant

or quintessence rely onmeasuring the equation of state, we saw in the last chapter that there

is at least one other characteristic – the speed of sound – that can also be used as a test.

However, dark energy was still modeled as a scalar �eld with no coupling to visible matter

and minimal gravitational coupling. �ere is little reason to think this should be the case.

In the compacti�ed models considered in section  of chapter , the radion had couplings

to matter and gravity. More generally, quantum corrections to scalar �elds can generate

couplings throughout the matter sector.

String theory is expected to contain a large number of scalar �elds –moduli and the dila-

ton – which are light. It is usually argued that these �elds are stabilized by non-perturbative

e�ects, such as symmetry breaking. Since there are strong experimental limits on long-range

scalar interactions in the universe, this is probably the case for most of these �elds. �ere

are sound theoretical reasons, however, for supposing that scalar �elds might play a crucial

role in cosmology, by determining the initial conditions for the hot big bang in the in�a-

tionary [, ], ekpyrotic [, ] and cyclic [–] scenarios, and as a dynamical

solution of the cosmic coincidence problem [, , ]. Damour [, ] and Brax et al.

[, ] have also pointed out that studying equivalence principle violating scalar �elds is

well motivated by brane worlds and other string models.

Our approach is to assume that dark energy is driven by a light quintessence �eld with

interactions that violate the equivalence principle. �is may be a more realistic model of

dynamical dark energy than the idealized, minimally coupled model. We explore the com-

pacti�cations discussed in section  of chapter  and describe the extent to which they agree


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with the equivalence principle. We consider several models including, brie�y, theminimally

coupled scalar �eld [], Brans-Dicke theory [], a more general coupled scalar �eld, the

exponentially warped Randall-Sundrum geometry [, ], four-dimensional heterotic

M-theory [], the cosmic chameleon model [, ] and the runaway dilaton model

[, ]. �ese will be described later in the chapter.

�e early experimental foundation of general relativity rested on twomeasurements: the

gravitational de�ection of light by the sun and the precession of the perihelion of Mercury.

In  a program of precision experimental tests of relativity was initiated, largely at the

impetus ofDicke []. �ese can be thought of in the framework of the equivalence principle

[]. �is included precision tests of the universality of free fall [, , ], bounds on

the variation of the fundamental constants [, , ] and metric tests of gravity [, ,

]. �ese experiments are a powerful incentive to understand the connection between

dark energy and the equivalence principle. By contrast, the equation of state of dark energy

was �rst detected in  [, ] and, as wasmentioned in chapter , there may be limits

on how well it can be measured. We argue that experimental tests of gravity are a better tool

for constraining many models of dynamical dark energy than the equation of state.

�e equivalence principle can be formulated in di�erent ways. In section , we discuss

the di�erent forms of the principle and the present state of experimental tests. In section ,

we discuss universal models, such as Brans-Dicke theory and the S1/Z2 compacti�cation,

which modify gravity in such a way that non-gravitational physics is preserved. In section 

we discussmore general models, such as heteroticM-theory, in which the fundamental con-

stants may vary and the universality of free-fall is violated. Section  discusses our results,

which are summarized in table .

Although we do not discuss it here, Carroll [] has proposed a model in which an ap-

proximate global symmetry (translation invariance in the scalar �eld) might suppress some

scalar �eld couplings enough that they are consistent with observations. Other couplings

(to the derivatives of the scalar �eld) would be present at �rst order. �is could lead to an
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unusual e�ect in which the polarization vector of radiation from cosmological sources is

rotated.

. �e equivalence principles

�e equivalence principle asserts that all particles, regardless of their composition or

structure, fall along the same set of trajectories. �at is, there exists a set of universal, in-

ertial frames in general relativity. More generally, the principle can be taken to imply the

Copernican principle that local experiments should always have an outcome that is inde-

pendent of their velocity or position in space-time. �is principle has been a powerful tool

for testing theories of gravity as part of a program for precision tests of general relativity �rst

laid out by Dicke in  [, ]. �ere are three forms of the equivalence principle in

frequent use.

.. �e weak equivalence principle. �e weak equivalence principle, or universality

of free fall, asserts that uncharged test particles follow identical trajectories, regardless of their

mass, composition or structure. �e universality of free fall is a local statement, so that tidal

forces do not play a role. �is basic principle has been known since Galileo and Newton as

the equivalence of inertial and gravitational mass, but in general relativity it is a consequence

of the geometrical nature of the theory: it is true for all metric theories of gravity, in which

matter is minimally coupled to gravity by the factor of
p− in the action. In such theories,

matter all follows the geodesics of the same metric.

�eweak equivalence principle is tested bymeasuring the di�erential acceleration of two

masses in a gravitational �eld. Departures from the universality of free fall are quanti�ed by

a parameter η, which is the fractional di�erence in acceleration between two masses:

η = 2
|a1 − a2|
|a1 + a2|

. (.)

SeeWill [] for a review of experimental tests of gravity and Brans [] for an interesting historical
discussion.
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It is usually thought that a violation of the weak equivalence principle would show up as the

e�ective mass associated with di�erent forms of energy – say leptons, qcd binding energy,

or electromagnetic binding energy – falling at di�erent rates. In practice, the weak equiva-

lence principle is tested by Eötvös torsion-balance experiments [] testing the di�erential

acceleration of pairs of di�erent metals which have di�erent fractional contributions from

the di�erent kinds of energy. �e pairs are chosen to optimize the di�erence in their energy

compositions []. �e most stringent limits [, ] are set by looking for di�erential ac-

celeration towards the sun. Braginsky and Panov [] have set a limit of η < 10−12 (for a

platinum and aluminum pair). �e Eöt-Wash group [] have set limits at di�erent ranges

and for di�erent kinds of sources. In particular, they have set limits for di�erential accelera-

tion towards the Earth (η < 3×10−12) and darkmatter at the galactic center ηDM < 2×10−3.

A useful way to think of violating the weak equivalence principle is that di�erent sorts

of matter couple to di�erent, but conformally related metrics. If particle X couples to the

metric f (ϕ)µν , then the scalar �eld ϕ will generate a force between two X particles that is

of order (f ′/f )2 times the gravitational force. A theory of gravity is universal if all sources

of energy couple to the geodesics of the same metric, and which therefore satisfy the weak

equivalence principle. Apart from general relativity, another universal theory of gravity is

Brans-Dicke [] theory,

SBD =
∫
d4x

p−
(

ϕR−ωϕ−1(∂ϕ)2+LNG[Ψ i ;µν]
)

, (.)

where Lmatter is the non-gravitational (matter) Lagrangian and the Ψ i are the matter �elds.

�is theory is manifestly universal, because, as in general relativity, the matter sector is min-

imally coupled to the metric through the factor of
p−, and does not couple to the other

gravitational variable ϕ. A�er a change of variables and conformal transformation (.),

the Brans-Dicke action can be written

SBD =
∫
d4x

√

−h
(

1
2Rh−

1
2 (∂ψ)2+ e4βψLNG[Ψ i ; e

2βψhµν]
)

, (.)
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where β = (6+ 4ω)−1/2. �e theory is also universal. �e powers of the metric h and eβψ

match up exactly, so that all matter couples to the same metric µν = e2βψhµν and there is

no di�erential acceleration.

It is useful to write η as a sum of contributions from di�erent types of matter. If we write

the massesm1 and m2 as sums over di�erent kinds of energy m1 ,2 =
∑

Am
A
1 ,2 then we may

write [, ]

η =
∣

∣

∣

∑

A

ηA
(mA

1

m1
−
mA

2

m2

)∣

∣

∣, (.)

where ηA quanti�es the magnitude of the equivalence principle violation for a particular

type of matter. If the matter has Einstein-frame Lagrangian density LA which couples to a

(canonically normalized) scalar �eld ψ, then it is given by []

ηA =
(∂ logLA

∂ψ

)2
. (.)

�is is a measure of the strength of the equivalence principle violation of the �eld ψ. It is

squared because the coupling comes from two bodies, the test mass and the source of the

gravitational �eld.

Consider, for example, platinum and aluminum, the two metals used in the Braginsky

and Panov experiment. If we consider these metals to be composed entirely of fermion

(quarks and leptons) rest mass and gauge �eld energy, the two factors in (.) are very

roughly 3× 10−4 (this is the fractional di�erence of the contribution of lepton and quark

masses to the total mass of the atoms). If these masses are independent of ψ but the gauge

�elds have an equivalence principle violating interaction,

LGUT =− 1

16παGUT
f (ψ)F2 , (.)

�is framework neglects other ways in which the equivalence principle could be violated, such as
accelerations that depend on the aggregate size of the test mass. �e composition dependent e�ects
are the important ones for the theory under consideration.
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then the measured ηGUT for attraction to any object made of nucleons is (f ′/f )2 . In our

example, since η < 10−12 and the fractional mass di�erence in (.) is of order 10−4 the

limit on f is roughly (f ′/f ) < 10−4 .5 .

.. �e Einstein equivalence principle. �e Einstein equivalence principle assumes

that the weak equivalence principle holds, and further asserts that the outcome of any (iner-

tially moving) experiment should be independent of its velocity or position in space-time. �is

applies only to closed, non-gravitational experiments that are su�ciently local that tidal

forces may be neglected.

Schi� [, ] has conjectured that any complete, self-consistent theory of gravity

that satis�es the weak equivalence principle also satis�es the more general Einstein equiva-

lence principle. Nonetheless, the two principles are tested in very di�erent ways. �e weak

equivalence principle is a local statement which is tested in laboratory measurements, while

the Einstein equivalence principle is a global statement and is tested by gravitational red-

shi� experiments, tests of Lorentz invariance and variation of the fundamental “constants.”

We consider only Lorentz invariant theories. Gravitational redshi� experiments test for lo-

cal variation of the fundamental constants in a gravitational potential. We are considering

cases in which the scalar �eld ϕ is unstabilized. In these theories, the strongest observational

constraints come from variation of the fundamental constants on cosmological scales.

In practice, it is dimensionless numbers, such as the gauge coupling constants and the

ratios of masses of fundamental constants, whose variation are constrained. �e best limits

come from the natural Oklo �ssion reactor [], which was active two billion years ago.

Remnant isotopic abundances are extremely sensitive to the fundamental constants. �e

strongest limits are on the variation of the �ne-structure constant, so we consider it exclu-

sively. Damour and Dyson [] found the limit |∆α/α| < 10−7 which is, in terms of the

Hubble parameter, |H−1
0 α̇/α| < 8× 10−7 .

Since the gauge theory action is conformally invariant, there is no way that a term like (.) could
appear in a universal theory like (.).
For a review of tests of the constancy of the constants see Uzan [].
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Webb et al. [, , ] have reported a 4σ detection of a time-varying �ne-structure

constant, corresponding to H−1
0 α̇/α ≈ 9×10−6 , using the absorption lines of distant (z ∼ 2)

quasars observed by Keck/hires, but this is still controversial, with results from vlt/uves

[, , ] suggesting |H−1
0 α̇/α| < 3× 10−6 at 3σ. It also seems di�cult to reconcile the

quasar variation with the Oklo results in any simple �eld-theory model [, ] as together

they suggest spatial variation but no time variation.

.. �e strong equivalence principle. �eEinstein equivalence principle does not ap-

ply to the gravitation of gravitational self-energy (e.g. self-gravitating bodies, like stars and

black holes). �is is considered part of the strong equivalence principle, which the Brans-

Dicke action (.) violates.

�e strong equivalence principle generalizes the above principles to include gravitational

phenomena. It assumes the weak equivalence principle holds, even for self-gravitating bod-

ies, such as stars, black holes and Cavendish experiments. �at is, any uncharged mass,

placed at the same initial event in space-time with the same initial velocity, will follow an iden-

tical trajectory. �ebodiesmust be small enough that tidal forces may be neglected. Further,

it asserts that the outcome of any local experiment, gravitational or non-gravitational, is inde-

pendent of its velocity and its position in space time.

�e strong equivalence principle is the most restrictive principle, and includes the Ein-

stein equivalence principle (which includes the weak equivalence principle). General rela-

tivity is the only theory known to be in complete agreement with this form of the principle.

Weak-�eld, nonrelativistic deviations from the principle are generally described in the pa-

rameterized post-Newtonian framework []. However, we consider only theories that

reduce, in the gravitational sector, to Brans-Dicke theory (.) with a potential. �us, we

consider principally limits on the cosmological evolution of Newton’s constant G and on

the Brans-Dicke parameter ω. We consider only positive ω. In the limit ω→+∞, Brans-

Dicke theory approaches general relativity.

�e general relation between the Brans-Dicke parameter ω and the parameterized post-Newtonian
parameter γ is γ = 1+ω

2+ω , or ω = (1− γ)−1 for γ near the general relativity limit γ = 1.
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�e strong equivalence principle is amenable to both local and cosmological tests. �e

cosmological constraints come from observational limits on the time-variation of New-

ton’s constant G (or, equivalently, coherent variation of all the masses) and are obtained

from planetary science, stellar physics, pulsar timing, laser range�nding and nucleosynthe-

sis []. A tight, relatively model independent limit constrains G to have evolved by no

more than 40% since nucleosynthesis (or H−1
0 |Ġ/G| < 10−2) []. �is is obtained by study-

ing how the expansion rate of the universe at nucleosynthesis a�ects the primordial helium-

abundance.

Many local tests of general relativity constrain the Brans-Dicke parameter. �e classic

test is the Nordtvedt e�ect [], a perturbation on the orbits of astrophysical bodies that

comes from their gravitational self-energies falling at di�erent rates. �is is measured with

precision lunar range�nding, and is a sort of lunar Eötvös experiment, measuring the po-

larization of the Moon’s orbit due to di�erential acceleration of the Moon and the Earth

towards the Sun. �e most recent limit is ω > 1 , 100 []. Better limits are placed by very

long baseline interferometry measurements of the de�ection by the sun of signals from dis-

tant radio sources [], which give ω ≥ 2 , 500, and by the Cassini time-delay experiments

[] which gives the strongest limit ω > 40 , 000.

. Universal models

In this section, we discuss the restricted class ofmodels that satisfy theweak and Einstein

equivalence principles: they are metric theories of gravity. Damour [, ] has pointed out

that in the context of string theory and supergravity, it is unnatural to consider only universal

couplings. Nonetheless, as we have seen in section , the couplings of simple brane models

are universal, at least to leading order.

Since our motivation is to study dark energy, we studymodels with the scaling potential

(.) of section 

V(ϕ) = V0e
bϕ . (.)
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We choose this potential because it gives a constant equation of state in the limit of a scalar

�eld dominated universe. Here, however, we must consider the e�ect of couplings in the

non-gravitational sector.

.. Brans-Dicke. In this section, we investigate the relationship between the compact-

i�ed, universal theories we are considering and Brans-Dicke theory in more detail. Let LNG

be the non-gravitational Lagrangian and the Ψ i the non-gravitational �elds. �e two ac-

tions,

S1 =
∫
d4x

p−
{

1
2R[]− 1

2 (∂ψ)2−V(ψ)+ e4βψLNG[Ψ i ; e
2βψµν]

}

, (.)

in Einstein frame and

S2 =
∫
d4x

√

−h
{

ϕR−ωϕ−1(∂ϕ)2+ 2ϕλ(ϕ)+LNG[Ψ i ;hµν]
}

, (.)

in Brans-Dicke frame, are equivalent up to a conformal transformation and change of vari-

able ϕ = e−2βψ. �e constant

ω =
1− 6β2

4β2
, (.)

and

2λ(ϕ)=−ψV(ψ). (.)

�e e�ective gravitational constant in this theory is []

G = ϕ−1
(4+ 2ω

3+ 2ω

)

, (.)

so for small ω the scalar �eld acts as an additional degree of freedom in the inverse square-

law, and increases the gravitational force. In order for this theory to be compatible with

��h-force constraints (tests of the inverse-square law) and tests of the strong equivalence

�is theory, which is Brans-Dicke theory with a potential, was �rst studied by Bergmann [] and
Wagoner []. �ey considered the more general case where ω is a function of ϕ.
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principle, themass V ′′ must be either large, mÀ (1mm)−1 [], or the Brans-Dicke param-

eter must be large. Since we are interested in a rolling scalar �eld, the theory must satisfy the

observational constraints on ω.

A scaling potential (.) gives a power-law λ =−V0ϕ
n, where

n = 1− b/2c. (.)

�e equations of motion are simplest in Brans-Dicke frame []:

3H2 = ϕ−1(ρ+ 1
2ωϕ

−1 ϕ̇2−ϕλ− 3Hϕ̇
)

, (.)

ϕ̈+ 3Hϕ̇ = 1

3+ 2ω

(

T+ 2(n− 1)V0ϕ
n+1)=

2β

1+ 3β2
(

βT+ bV0ϕ
2−b/2β), (.)

where ρ = T00 is the density associated withLNG and T is the trace of corresponding stress-

energy tensor (in Brans-Dicke frame). Since the e�ective gravitational constant (.) goes

as ϕ−1 , these equations can be integrated to give the time-evolution of the gravitational con-

stant. If b < 0, the potential and the Brans-Dicke couplings conspire to enhance the rate of

change of the gravitational constant. �e cosmological evolution of the ϕ �eld is constrained

by thenucleosynthesis limits on∆G. However, these limits aremuchweaker (roughly |b| < 2

and β < 1/10) than the the equation of state constraints |b|. 1 (i.e. w <−0 .7 from super-

novae [, ]) and the Cassini [] limit β < 1/400, from (.). Together, these obser-

vations suggest that ∆G could have been no more than 2× 10−3 since nucleosynthesis.

�ere is a relation between the Brans-Dicke parameter ω for dark energy, the equation

of state of dark energy w and the cosmological rate of change of the gravitational constant

H−1
0 Ġ/G. Since ω is known to be large, we treat the �eld ψ in (.) as a minimally cou-

pled scalar �eld plus small corrections in β. �en, using the Friedmann equation (.), the

equation of state of a scalar �eld (.) can be rewritten

wψ+ 1 = 1

3
Ω−1

Q (H−1
0 ψ̇)2 , (.)
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where ΩQ is the fractional energy density in the ψ-�eld relative to the critical density. �is

generalizes (.) to a multi-�uid universe. However, since Newton’s constant G∝ ϕ−1 =

e2βψ,
Ġ

G
= 2βψ̇ = ω−1/2 ψ̇, (.)

so

wψ+ 1 = ω

3ΩQ

(d logG

d loga

)2
, (.)

where a is the scale factor. Measurements of w and ω therefore give H−1
0 Ġ/G < 4× 10−3 .

Since most of the variation of the dark energy �eld ψ has occurred in the last e-fold, any cos-

mological variation of the gravitational constant due to a dark energy �uid would be at the

4× 10−3 level or less. �is is two orders of magnitude more stringent than the present ob-

servational limit []. �us, precision solar-system tests of general relativity are much better

for constraining this theory.

.. Randall-Sundrum. �e S1/Z2 orbifold (.) has β = 1/
p
6 (so ω = 0) and man-

ifestly violates the strong equivalence principle. �e warped, non-factorizable compacti�-

cations considered by Randall and Sundrum [] behave very di�erently. Consider their

four-dimensional e�ective action [], which we rewrite in terms of covariant quantities by

integrating (.) by parts

SRS =
1

k

∫
d4x

p−
(

(1−Ω2)R− 3

2k
(∂Ω)2 − 2V(r)

)

+
∫
d4x

p−L+[µν]+
∫
d4x

p−Ω4L-[Ω
2µν]. (.)

�is is not a simple Brans-Dicke theory. Nonetheless, it is possible to derive an e�ective

coupling. A change of variables gives the Brans-Dicke parameter ω+ on the positive tension

brane

ω+(Ω) = 3(1−Ω2)

8Ω2k
. (.)
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Since Ω2 ≈ 10−15 in the scenario, the result is ω+ ≈ 1014 so that gravity on the brane is

well approximated by general relativity. �is is true for the same reason as in the second

Randall-Sundrum model [], in which �ve dimensional gravity reduces to four dimen-

sional gravity on a brane in a warped anti de Sitter background. For the negative tension

brane, the coupling to the metric is much more important than the coupling to the scalar

curvature, which is heavily suppressed. �e e�ective β is given by

β− = (3/2k)1/2 ∂ logΩ

∂Ω
=

( 3

2kΩ2

)1/2
, (.)

so ω− ≈ −3/2 for any Ω ¿ 1. Gravity on the negative tension brane violates the strong

equivalence principle, and additional e�ects (such as radion stabilization) are necessary to

restore Einstein gravity on the brane.

. General models

In this section we considermore general models which contain non-universal couplings

of the form
1

16πα
e−λψF2 , (.)

where F is a Yang-Mills �eld strength. �e gauge couplings vary as α ∼ eλψ , or

α̇

α
= λψ̇,

∆α

α
≈ λ∆ψ, (.)

where ∆ represents the change since some epoch, such as big bang nucleosynthesis. Since we

are considering quintessence, which has undergone most of its variation in the past Hubble

time, we haveH−1
0 ψ̇ ≈ ∆ψ. �e interaction (.) violates the Einstein equivalence principle

– the coupling α varies – and, as we saw in section ., the universality of free fall. �us, just

as we saw for Brans-Dicke theory, they are amenable to both local and cosmological tests:

limits on the variation of the �ne-structure constant and Eövös-experiment limits on the

universality of free fall. �e parameter η = C1λ
2 , where C1 is the fractional mass di�erence

in (.). �e value for C1 depends on the particular test masses and the model of how
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the other coupling constants vary. Values can be computed from the semi-empirical mass

formula and are typically are of order 10−2–10−4 [, , ]. �us, in order for (.)

to be consistent with observations, λ. 10−4 is required. �is is much less than the natural

value for the gravitational coupling, λ ∼ 1.

It is possible to write down the analog of (.) for these interactions, which relates the

equation of state w to the cosmological variation of the �ne-structure constant αEM and the

universality of free fall parameter η (.). From (.) and (.),

wψ+ 1 = 1

3

C

ΩQη

(d logαEM
d loga

)2
. (.)

If wψ+1 ≈ 0 .1 and we substitute the Oklo limit in ., gives η/C ∼ 10−13 , much less than

the current Braginsky and Panov limit η < 10−12. �e strongest limit on these variations

now come from Oklo. However, forthcoming satellite tests of the universality of free fall

[, , ] promises to reduce this limit to η < 10−18 . �us, dramatically improved

limits on such a model can be obtained by testing the equivalence principle.

Of course the coupling (.) also contains violations of the strong equivalence principle.

�is generally imposes a weaker constraint. If the couplings are not universal, not all the

mass of a typical object is coupled to ψ. �e Brans-Dicke parameter implied by (.) is

then

ω = (4C2
2λ

2)−1 À 108 (.)

from (.), where C2 < 1 is the fraction of a typical test mass that couples to ψ.

.. Hořava-Witten. �e four-dimensional low-energy e�ective action of heterotic

M theory, derived by Lukas et al [], couples to the radion c nearly universally, as it de-

rives from a simple S1/Z2 compacti�cation. �e linear warping of the background corrects

this: for example, the vector bosons on the brane couple to the radion, at the second order

in the eleven-dimensional gravitational constant. �e volumemodulus a in the e�ective ac-

tion for heterotic M theory (.) must be stabilized in any realistic model: variation in the
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Calabi-Yau volume a�ects the gauge couplings at the �rst order in the eleven dimensional

gravitational coupling κ2/3. However, the radion is universal at this order.

�us, setting the volume modulus a = 1 conformally rescaling the metric µν = e ĉhµν

in the Lukas-Ovrut-Waldram action (.) yields

S =
πρV

κ2

∫
M 4

√

−hd4x
[

ecR− 0× ec(∂c)2− 3
(

1+ 1
3 ξα0e

c)∂µC∂
µ C̄

− 3
8 e

−cCCC̄C̄− 3k2

4

(

1− 1
3 ξα0 e

c)CCC̄C̄

− V

8πκ2

( κ

4π

)2/3
∫
M 4

p− d4x
(

(1+ ξα0 ec) tr(F(1))2+ (1− ξα0 ec) tr(F(2))2
)

, (.)

V is the Calabi-Yau volume, L = πρec is the S1/Z2 length (ρ is a constant) and κ2 is the

eleven-dimensional gravitational coupling. �e F(i) are the Yang-Mills �eld strengths on the

two branes and the C are scalar �elds. We have written terms quadratic in the C schemati-

cally. Now, the variable C2 is of order κ2/3 as are the parameters α0 and the parameter k−2

(see section .), so to �rst order in κ2/3, the theory is universal. �e Brans-Dicke param-

eter, however, is ω = 0. So in this case, as in the case of the negative tension brane in the

Randall-Sundrum scenario, gravity on the brane is far from general relativity.

An intriguing attribute of (.) are the so-called threshold corrections to the gauge

couplings. �ese corrections come from the linearwarping of theCalabi-Yaumanifold in the

background solution. �e corrections are proportional to the length of the orbifold interval

L = 27/2ξec times the Calabi-Yau distortion α0 . �ese corrections violate the universality

of free fall and would cause cosmological variation of the gut couplings. �e value of ξα0

is

ξα0 ∼
L

24πV2/3

( κ

4π

)2/3
θ = 4× 10−3

Lκ2/3

V2/3
θ = 4× 10−3θε, (.)

where ε = Lκ2/3/πV2/3 is the expansion parameter of the low-energy e�ective action and

we have rewritten the integral in (.) as V1/3θ, where the dimensionless variable θ is

θ =−V−1/3

∫
X
ω∧ trR(X) ∧ trR(X) , (.)
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an integral over the Calabi-Yau manifold X (the notation is explained below (.)). �e

magnitude of the di�erential acceleration (.) predicted in the Braginsky and Panov exper-

iment [], using the Einstein-frame action (.),

η = 1
3 (ξα0)2× 3× 10−4 = 10−9θ2ε2 . (.)

�e factor of 1/3 comes from the normalization of c and the factor of 3× 10−4 is the dif-

ference, as in (.), for aluminum and platinum, between the contribution of the fermion

masses and gauge �eld binding energy (e.g. electrostatic and qcd). �e calculation of η

(.) assumes that the masses of fermions scale with the radion in a similar (same order of

magnitude, or zero). Since the scalar �elds C do, it seems reasonable to assume that their

super-partners will have similar couplings []. �e parameter ε is expected to be of or-

der unity [, , ] as is the integral θ. �us, for moderately small values of θ ∼ 10−1 ,

the theory predicts equivalence principle violations quite near present observations, with a

signi�cant constraint already placed by the Bragninsky and Panov [] limit η < 10−12 .

Limits on cosmological variation of the gauge coupling constants constrain the cos-

mological evolution of the radion. �e Oklo limit α̇/α < 10−7 at redshi� 2 [] implies

H−1
0 ψ̇ < 10−3 . In the theory without a potential, c couples to the background radiation

density. Because of the suppression of the coupling by ξα0 and the low radiation density

today, this only suggests that the �ne-structure constant will have varied by roughly 10−11 ,

which is four orders of magnitude smaller than the Oklo constraint and is inconsistent with

the variation claimed by Webb et al. [, , ].

.. Runaway dilaton. �e runaway dilaton scenario of [, ] is a string-inspired

model that naturally satis�es the equivalence principle constraints discussed above. In this

model, the string theory dilaton Φ is moving towards in�nity. �is is the strong coupling

limit: the non-perturbative potential and couplings associated with Φ are generally a power

series in Φ. However, in [] Veneziano argued that the couplings and potential may, in

fact, approach �nite limits as Φ → ∞. �is could be a natural explanation for our failure
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to observe equivalence principle violations associated with the dilaton. �e cosmological

consequences are discussed in Damour et al. [, ], where it was shown that deviations

from the universality of free fall near the present experimental threshold are possible. It

predicts that general relativity should hold to high accuracy, as η and ω are related by

|η| ≈ 2 .6× 10−5ω−1 . (.)

For a “dark energy” dilaton with a potential of the form (.), the runaway dilaton model

predicts:
∣

∣

∣

d logα

d loga

∣

∣

∣≈ 6 .2× 10−7
√

1012η. (.)

�ese constraints suggest that ω should be at least two orders of magnitude larger than cur-

rent bounds, but η and α̇ may be well within the reach of future experiments.

(A related scenario is the least coupling scenario of Damour and Polyakov [], in which

the dilaton is attracted to a �nite value.)

.. Chameleon model. Khoury and Weltman have proposed a chameleon model for

dark energy [, ] in which equivalence principle constraints can be avoided for terres-

trial tests of the universality of free fall. It contains a “thin-shell” e�ect: while the universe

contains a light scalar �eld, in dense regions its couplings drive it to a �xed value and give

it a large e�ective mass. In the universe today, this model requires w =−1 to high accuracy

and that variations in the �ne-structure constant should be exponentially suppressed [].

However, because the thin-shell e�ect applies only in high density regions, future space-

based tests of the equivalence principle [, , , ] could detect large – order unity

– deviations from the universality of free fall and measure a vastly di�erent gravitational

constant.

. Discussion

If the potential has a scaling form, as (.), then the equation of state is �xed by the con-

stant equation-of-state attractor solution. Another possibility is that the equation of state is
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Figure . w+1 as a function of the number of e-folds of expansion remain-

ing for the potential (.). �eobservational constraintw. 0 .7 is indicated

by a dashed line. It is satis�ed by all the models with& 0 .5 e-fold remaining.

�e other dashed line is the upper bound on wϕ+1 from (.) if a violation

of the universality of free fall is found at the η = 10−13 level. �is could be

the case in the M-theory model (.).

changing. Wementioned in chapter  that quintessence trackers have a decreasing equation

of state in the late universe and k-essence attractors have an increasing equation of state in

the late universe. It is di�cult to construct models in which which w crosses the w = −1

barrier [, ]. Given that w is presently measured to be near −1, future observations are

probably more sensitive to increasing w, than to w approaching −1 from above. One possi-

bility is that the dark energy potential will eventually become negative and the universe will

begin contracting. �is is discussed in chapters  and .

In [, ], the possibility of using the equation of state to constrain the end of dark

energy domination and the reversal to contraction was discussed. �ey used a linear poten-

tial

V(ϕ) = V0(1+ αϕ), (.)
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where α and V0 are positive constants and found that the 2σ constraint that dark energy

domination end more than two e-folds (24 billion years) from today. We consider the

slightly di�erent potential

V(ϕ) = V0(ebϕ− e−cϕ), (.)

where V0 , b and c are positive constants. �is potential behaves like the constant equation

of state scaling potential (.) at large values of ϕ, but has a cuto� at ϕ = 0 whose severity

is determined by the constant c. �e potential (.), while slightly more complicated than

(.) is relevant to the cyclic model discussed in chapter . We de�ne the number of e-folds

NDE of dark energy domination remaining as the number of e-folds of expansion before the

Hubble parameter vanishes and the universe begins contracting. In �gure  we plot NDE

against the equation of state measured today for a variety of parameters b and c (these are

implicit functions of the value of ϕ today in the attractor solution of (.). �e equation of

state constraints [] impose the limit NDE & 0 .5, which is not particularly strong. �ese

are weaker than the limits on (.) because of the sharp cuto�.

If the strength of equivalence principle violations was known either from a theoretical

model (as in the heterotic M-theory case of section .) or from a measured violation of the

universality of free fall then a much stronger constraint could be placed on w. For example,

if a measurement showed that the universality of free fall was violated at e.g. the η = 10−13

level, then theOklo constraint on the time-variation of α and (.) imply thatw+1 . 10−5 .

Figure  shows that this places a strong constraint on the potential (.) and the number

of e-folds of dark energy domination b. 10−2 and NDE & 20. A similar idea holds for the

relation between w, Ġ and ω (.), but since the constraints on Ġ are comparatively weak,

this could not realistically place a constraint on w.

Our results are summarized in table , which compares the models of dark energy we

have discussed against observational constraints, in the top row. Each model can be com-

pared with observations, to see what the best observational strategy for constraining the

model is.
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w+ 1 |∆GBBN/G| H−1
0 |α̇EM| |η| |ω| tightest constraints

Observations . 0 .3 . 0 .4 . 10−7 . 10−12 & 40 , 000

Scalar �elds

Minimally interacting . 0 .3 — — — — w

Brans-Dicke (§.) . 0 .3 . 2× 10−3 — — & 40 , 000 w, ω

General (§) . 0 .3 . 10−4 . 10−7 . 10−12 & 108 w, η, α̇

Compacti�cations

S1/Z2 (Chapter  §.) . 0 .3 large — — 0 ruled out by ω

Randall-Sundruma (§.), . 0 .3 large — — −3/2 ruled out by ω

positive tension brane . 0 .3 — — — — dark matter EP tests?

String inspired

Heterotic M-theory (§.) . 10−6 large . 10−7 ≈ 10−12 0 η, α̇ (ruled out by ω)

Runaway dilaton (§.) . 0 .3 . 10−4 . 10−7 . 10−13 & 108 w, η, α̇

Cosmic chameleon (§.) — — — . 10−12 b & 1012 η (space-based)

Table . Constraints on light scalar �elds in various models of dark energy. �e constraints come from the equation

of state w and various equivalence principle parameters described in the text. �e �rst row indicates the constraints

imposed by observations. �e models, listed below, are described in the text. Columns for which the e�ect vanishes,

or is many orders of magnitude beyond the present state of observations, are marked with a dash, —. �e last column

indicates the best observational opportunities for constraining a given model.

aNegative tension brane.
bEquivalence principle constraint for ground based experiments. Future space based experiments could give large violations of the equivalence
principle in this scenario.
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Eachmodelsmust have a potential which is su�ciently �at to be consistentwith equation

of state constraints. Other parameters of must be small enough to ensure that they satisfy

observational constraints. �is is natural for some of these models, but in the case of Brans-

Dicke theory and the scalar �eld with general interactions, the couplings must be tuned to

very small values for these simple models to be consistent with observations. �e table is

discussed line-by-line below.

Minimally interacting scalar: �e ideal minimally interacting scalar �eld [, ,

, ], such as that discussed in section  of chapter  is a simple toy model of

quintessence. It is de�ned by one parameter, the equation of state. In chapter , we

saw that an additional parameter which characterizes its perturbations, the speed

of sound, could be measured.

Brans-Dicke theory: �e Cassini constraint [] requires that the Brans-Dicke pa-

rameter ω > 40 , 000 [].

Scalar �eld with general couplings: �emodel with general couplings, discussed in

section , generally violates tests of post-Newtonian gravity and the universality

of free fall if the couplings have their natural, gravitational strength (i.e. are of

order one in Planck units). Since these are local tests, this is true even with a very

�at potential. In special cases, such as the chameleon model, these constraints be

averted, but it is generally necessary to have the coupling in (.) satisfy λ. 10−4 .

Although this is not well motivated, if we nonetheless assume this is the case, we

obtain the �gures in the table.

S1/Z2 orbifold: �e S1/Z2 orbifold of section . of chapter  violates tests of the

strong equivalence principle.

Randall-Sundrum: Even though they interact with the same metric, the conformal

coupling to the radion causes matter on each of the two branes in the Randall-

Sundrummodel [] to have very di�erent gravitational behavior. Like the S1/Z2

orbifold, the negative tension brane strongly violates the equivalence principle, and
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must be stabilized if the model is to succeed. �e positive tension brane, however,

has a large value of ω and gravity behaves very much like general relativity on this

brane [].

Cosmic chameleon: �e best tests of the cosmic chameleonmodel [, , ] are

tests of the equivalence principle in space, which couldmeasure unexpectedly large

deviations. �e chameleon �eld has a quite �at potential, so e�ects due to w and

the time-variation of the fundamental constants are small.

Runaway dilaton: �epredictions of the runaway dilaton model [, , , ] are

the same as the scalar �eld with general suppressed couplings. �e model simply

provides a natural mechanism by which a light scalar �eld might have small, but

still observable, couplings to matter.

Heterotic M-theory: Although the heterotic M-theory scenario we have discussed

violates the strong equivalence principle to a degree that is inconsistentwith present

bounds, it is conceivable that other compacti�cations would look like general rel-

ativity at this order. If, as is likely, the warped background geometry persists, then

the predicted e�ect on the universality of free fall is likely to remain. In this case, the

main constraints would come from time-variation of the �ne structure constant, as

in the table.

In sum, light scalar �elds are important for cosmology and abundant in string theory.

�ey are predicted to have equivalence principle violating interactions. Violations of the

equivalence principle has been very well constrained by an array of precise experiments.

However, there are natural models in which these interactions are suppressed to be consis-

tent with observations, so there is a reason to expect that future experiments may detect

such a violation. �e best way to di�erentiate quintessence from a cosmological constant is

to adopt a multi-pronged approach, in which a program of tests of the equivalence princi-

ple – metric tests of gravity, Eötvös experiments and constraints on the variation of the �ne

structure constant – continues along with measurements of the equation of state.



CHAPTER 

Chaos and contracting universes

A common feature of the pre-big bang [, , ], ekpyrotic [, ] and cyclic

[–] models of brane cosmology is that they match a contracting universe onto an

expanding hot big bang universe. �e behavior of bouncing universes is actively being in-

vestigated in string theory and cosmology. In section . of chapter , we described the

collision of two S1/Z2 orbifold planes, described by the action (.). In this solution, the

Einstein-frame scale factor vanishes as the �xed planes collide, while the brane scale factors

remain �nite.

Understanding the behavior of the universe as it contracts is a key issue in these sce-

narios. In the s, Belinsky, Khalatnikov and Lifshitz (bkl) [, ] showed that chaotic

oscillations generically occur in the approach to a crunch. �is has would destroy the ob-

served homogeneity and isotropy of the universe in the cyclic and ekpyrotic models, and

could have dramatic consequences in the pre-big bang scenario. In this chapter, we show

how chaos can be suppressed by the S1/Z2 orbifold and by scalar �eld in the cyclic model,

which has a large pressure-to-density ratio in the contracting phase.

Previous studies [, , –, , ], have focused on models in which the universe

contains matter and radiation, or, more generally, an energy component whose equation

of state is w ≤ 1 (where w ≡ p/ρ is de�ned as the ratio of the pressure p to the energy

density ρ). If w < 1, a contracting homogeneous and isotropic solution is unstable to small

perturbations in the anisotropy and spatial curvature. As the overall volume shrinks, the

anisotropy causes the universe to expand along one axis and contract along the others, a

state that can be approximated by the anisotropic Kasner solution. �e spatial curvature

causes the axes and rates of contraction to undergo sudden jumps from one Kasner-like

See [, , , , , , ].


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solution to another, an e�ect known as “mixmaster” [, ] behavior. If the curvature is

not spatially uniform, then the chaotic behavior in di�erent regions is not synchronized and

the universe becomes highly inhomogeneous at the big crunch. Hence, mixmaster behavior

could potentially wreak havoc in cosmologicalmodels with a big crunch/big bang transition,

making them inconsistent with the observed large scale homogeneity of the universe.

In this chapter, we show that the behavior of the universe as it approaches the big crunch

is very di�erent if there is an energy component with w > 1. �e chaotic behavior is sup-

pressed and the universe contracts homogeneously and isotropically as it approaches the

singularity. �e reason is that the anisotropy and curvature terms in the Einstein equations

grow rapidly and become dominant if w < 1, but they remain negligible compared to the

energy density if w > 1. In the latter case, the Einstein equations converge to the Friedmann

equations with purely time-dependent terms, a condition sometimes referred to as “ultralo-

cality.” �e e�ect can be viewed as a generalization of the “cosmic no-hair theorem” invoked

in a rapidly in�ating universe. Here we demonstrate analogous behavior in a slowly con-

tracting universe with w > 1. �is chapter is adapted from []. A related result of Dunsby

et al. [, , ] shows that models with 0 < w < 1 but with ρ2 terms in the stress-energy

tensor are also driven towards isotropy. �is is related to our result, because ρ2 ∼ a−6(1+w),

so the contributions from a ρ2 term in the stress energy tensor scale in the same way as a

component with equation of state 1+2w. �e convergence rate of the w ≥ 1 no-hair behav-

ior has since been studied by Coley and Lim [].

�e cosmic no hair theorem for a contracting universe containing a perfect �uid with

w ≥ 1 is discussed in section . A common example of a perfect �uid is a scalar �eld ϕ with

a potential V(ϕ). In section , we consider the interaction of the scalar ϕ with a p-form �eld

Fp+1 through an exponential coupling,

eλϕ F2p+1 , (.)
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where λ is a constant. We consider this case because scalar �elds with exponential couplings

to p-form �elds are common in Kaluza-Klein, supergravity and superstring models. For the

case w = 1, it is known [, ] that the contraction is not chaotic if λ lies within a bounded

interval. Here we show that, for any λ and p, there is a critical value wcrit(λ, p) for which

the chaotic behavior is suppressed if w > wcrit(λ, p).

Our results are of particular importance for the ekpyrotic and cyclic cosmological mod-

els, which have a big crunch/big bang transition with a contraction phase dominated by a

scalar �eld with w ≥ 1 []. �ese results are relevant because they suggests that the uni-

verse can remain homogeneous and isotropic on large scales. Once the evolution becomes

ultralocal, the whole universe is following the same homogeneous and isotropic evolution

all the way to the big crunch. �ese consequences are discussed further in chapter .

In section , we explore how time-variation of w a�ects our conclusions, and in partic-

ular how w approaching wcrit from above may suppress chaotic behavior. In section  we

discuss some speci�c models. In particular, we show how orbifolding can remove p-forms

thatmight induce chaotic behavior and discuss the special case of heteroticM-theory,which,

to leading order in the eleven dimensional gravitational coupling κ, is on boundary between

chaotic and smooth behavior.

. A “cosmic no-hair theorem” for contracting universes

�e cornerstone of the in�ationary paradigm is an argument known as the “cosmic no-

hair theorem”, according to which a universe containing a perfect �uid component with w <

−1/3 will rapidly approach �atness, homogeneity and isotropy at late times, for a wide range

of initial data (namely those for which the space curvature, inhomogeneity and anisotropy

are not very large) []. In the Friedmann equation, the energy density for a component

with equation of state w is proportional to 1/ax, where the exponent x = 3(1 +w). �e

anisotropy term is proportional to a−6 and the spatial curvature term is proportional to a−2 .

As the universe expands, the contribution with the smallest values of x redshi�s away more

slowly than components with larger values of x and so come to dominate the Friedmann
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equation and the components with the smallest value of x overall ultimately dominate. If

the energy component with the smallest value of w has w < −1/3, then x < 2 and this

component dominates. For a wide range of initial data, convergence to a homogeneous and

isotropic expanding universe is assured.

Below, we will present an analogous “cosmic no-hair theorem” for contracting universes.

In a contracting universe, the component with the largest value of x will dominate the Fried-

mann equation. Starting from an inhomogeneous and anisotropic initial state, we will show

that the existence of a perfect �uid with w > 1 (or x > 6) will suppress chaotic behavior, and

enable a smooth and isotropic contraction to the big crunch. We will �nd that curvature

plays a more complicated role compared to the case of expansion. Hence, we �rst obtain

a cosmic no-hair theorem for the case of zero spatial curvature and then generalize to the

case of arbitrary spatial curvature. We intentionally take a pedagogical approach that en-

compasses known results for w ≤ 1 to make our discussion self-contained. Our analysis

assumes the initial inhomogeneity is small; it is possible that the universe evolves towards

other attractors for su�ciently large deviations from homogeneity.

All of our computations are performed in synchronous gauge,

ds2 =−dt2+ hab(t , x)dxa dxb , (.)

where we use our freedom to choose a spatial slicing to ensure that the big crunch occurs

everywhere at t = 0 (dethab → 0 as t→ 0). For a perfect, comoving �uid with equation of

state p = wρ, the Einstein equations are []:

∂

∂t
κ j
j+ κ j kκk j =−

(1+ 3w

2

)

ρ, (.)

∂

∂xa
κ j j−

∂

∂x j
κ j a = 0 , (.)

Pa
b+ 1

p
h

∂

∂t

(
√

hκa
b
)

=+
(1−w

2

)

ρ, (.)
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where Pab is the Ricci tensor on spacelike surfaces, and κab is de�ned by

κab =
1

2

∂

∂t
hab , (.)

κa
b = κajh

jb . (.)

Near the big crunch, the dynamics of the metric (.) are ultralocal [, , , ]. �at

is, the evolution of adjacent spatial points decouples because spatial gradients increasemore

slowly than other terms in the equations of motion. �erefore, analyzing the dynamics of

this metric near the singularity and at �xed spatial coordinate x0 is equivalent to analyzing

the much simpler system

ds2 =−dt2+
∑

ij

e2β ij(t;x0)σ(i)(y;x0)σ(j)(y;x0), (.)

where the σ(i) are y-dependent one-forms that are linearly independent at each point and

form a homogeneous (but possibly curved) space such as Bianchi type ix []. �e β ij ,

which do not depend on y, describe the (generally anisotropic) contraction of this space.

Both the σ(i) and the β ij depend on the parameter x0 , the spatial point being studied. �e

dynamics of the inhomogeneous universe at a �xed spatial point can be approximated, near

t = 0, by the dynamics of a homogeneous (but curved and anisotropic) universe. Di�erences

in curvature and anisotropy between di�erent x0 are encoded in the di�erent σ(i) and β ij

associated with these points.

In eachKasner-like epoch, wemayperforma rotation so that β is diagonal. Furthermore,

we may separate out the trace of β and write it as the “volume scale-factor” a(t), in analogy

to the isotropic Friedman-Robertson-Walker universe, to obtain the metric

ds2 =−dt2+ a2(t)
∑

i

e2β i(t)(σ(i))2 , (.)

β1(t)+ β2(t)+ β3(t) = 0 , (.)
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where the dependence of a(t), the β i and the σ(i) on x0 has been suppressed. �e combi-

nation a eβ i can be thought of as the e�ective scale factor along the ith direction, and the

functions β i then describe the contraction or expansion of each direction relative to the

overall volume contraction. We may use our freedom to rescale the σ to ensure that at some

time t0 , a(t0) = 1, β i(t0) = 0 and det(σ(1) , σ(2) , σ(3)) = 1. Quantities with a subscript zero

(such as ρ0) refer to their values at this �xed time.

�e Einstein equations (.)–(.) close with the equation of energy conservation (.)

for the �uid,
d logρ

d loga
=−3(1+w). (.)

For constant w, this equation has the familiar solution (.),

ρ(a) = ρ0a
−3(1+w) . (.)

While we could have included several perfect �uids, with di�erent equations of state w i, the

�uid with the largest equation of state will always dominate near the crunch, so it is su�cient

to consider only one energy component. We have taken this �uid to be comoving, because

small perturbations of a comoving background are suppressed in a w > 0, contracting uni-

verse. In particular, the T0
i terms that would appear on the right hand side of (.) grow

only as t−2/(1+w), which is slower than the t−2 rate at which the diagonal terms grow 

.. �e curvature-free case. We �rst examine the case of Ricci �at spatial 3-surfaces,

for which Pab = 0. In this case, we write σ(i) = dx i. �en, the Einstein equations (.)-(.)

In fact, in a homogeneous universe, T0
i scales as a−3. In this case, the non-comoving component of

a scalar �eld or perfect �uid never grows to dominate in a cosmology with w > 0. For a universe with
a scalar �eld and negative exponential potential, such as (.), it is possible to show that inhomo-
geneous perturbations to the scaling background may be neglected near the crunch in a contracting
universe.
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reduce to

3
( ȧ

a

)2
− 1

2
(β̇21+ β̇22+ β̇23) = ρ, (.)

β̈ i+ 3
ȧ

a
β̇ i = 0 , (.)

where a dot indicates a derivative with respect to the proper time t. Integration of (.)

gives,

β̇ i = c ia
−3 , (.)

while the constraint (.) implies,

c1+ c2 + c3 = 0 . (.)

Combining these results, equation (.) becomes a Friedmann equation,

3
( ȧ

a

)2
= ρ(a)+ σ2

a6
=

ρ0
a3(1+w)

+ σ2

a6
, (.)

where we de�ne

σ2 = 1

2
(c21+ c

2
2 + c

2
3). (.)

An anisotropic universe has β̇ i 6= 0, i.e. c i 6= 0. �e constant σ2 parameterizes the anisotropic

contribution to the Friedmann equation in (.). �e anisotropy evolves as 1/a6 or x = 6.

We de�ne the fractional energy densities Ωρ and Ωσ as

Ωρ =
ρ(a)

ρ(a)+ σ2/a6
, (.)

Ωσ =
σ2/a6

ρ(a)+ σ2/a6
. (.)

�ese quantities represent the contribution of the perfect �uid and anisotropy to the critical

density for closure of the universe. Since we are neglecting curvature, Ωρ+Ωσ = 1.
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�e solution for the β i as a function of the scale factor a is,

β i(a) = c i
p
3

∫ 1

a

da′

a′
(

ρ(a′)a′6+ σ2
)−1/2

. (.)

�e limits of integration have been chosen to ensure β i(1) = 0. For the remainder of the

chapter, we will assume a universe contracting towards a → 0 as t approaches zero from

below. Let us now examine the behavior of these solutions for various w.

w < 1: When w < 1, the ρ(a) part of the integral (.) is negligible as a→ 0, and so

the solution converges to the vacuum (ρ = 0) Kasner universe during contraction,

a(t)=
( t

t0

)1/3
(.)

β i(t) =
c j

σ
p
3

ln
( t

t0

)

. (.)

�e Kasner universe is parameterized by three Kasner exponents p i ,

p i =
1

3
+

c j

σ
p
3
. (.)

�e scale factors in (.) are powers of t:

aeβ i = |t/t0|p j , (.)

and the relations (.) and (.) become

p1+ p2 + p3 = 1 (.)

p21+ p
2
2 + p

2
3 = 1 , (.)

known as theKasner conditions. �ese describe the intersection of a plane, theKasner plane,

and a unit sphere, the Kasner sphere, as illustrated in Fig. . We will denote the intersection,

which represents the allowed values of the p i , as the Kasner circle. �e outermost circle in

Fig.  corresponds to the limit where w < 1, as the energy density scales away and only a

vacuum, anisotropic universe remains.
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�ere are three degenerate solutions where exactly one of the p i is one, and the other

exponents are zero (the solid black circles in Fig. ). At all other points on the (dashed)

Kasner circle exactly one of the p i is negative. �us, although the geometric mean of the

three scale factors a(t) = |t| is contracting, a single scale factor corresponding to the negative

Kasner exponent is undergoing expansion to in�nity.

For the curvature-free case, the universe becomes increasingly anisotropic near the big

crunch if w < 1. In particular, the isotropic solution, p1 = p2 = p3 = 1/3, is inconsistent

with the Kasner conditions (.) and (.).

w = 1: Inspection of (.) reveals that, when w = 1, the matter density and the

anisotropy terms in the Friedmann equation (.) scale with the same power of a, so Ωρ

and Ωσ remain �xed. �e solutions are

a(t)=
( t

t0

)1/3
(.)

β i(t) =
c j

√

3(σ2 + ρ0)

ln
( t

t0

)

. (.)

�is solution is very similar to the ρ = 0 case, and indeed we may de�ne the Kasner expo-

nents,

p i =
1

3
+

c j

σ
p
3

(

1+
ρ0
σ2

)−1/2
. (.)

�e Kasner conditions are di�erent. If we de�ne

q2 ≡ 2

3

ρ0
σ2 + ρ0

= 2

3
(1−Ωσ) (.)

then the Kasner conditions are

p1 + p2 + p3 = 1 , (.)

p21 + p
2
2 + p

2
3 = 1− q2 = 1

3 +
2
3Ωσ . (.)

�e �rst condition is unchanged from (.) but the right hand side of the second condition

has beenmodi�ed. IncreasingΩσ corresponds to increasing the radius of the Kasner sphere.
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Figure . �eKasner plane p1+p2+p3 = 1 and its intersections (theKasner

circles) with various spheres p21+p
2
2+p

2
3 = 1−q2 where q2 = 2

3 (1−Ωσ); see

(.). �e vacuum solution corresponds to Ωσ = 1 (the outermost circle).

�e inner circles are relevant to the case where w = 1 and Ωσ < 1. In the

white regions, the Kasner exponents are all positive (corresponding to con-

traction); in gray regions, one exponent is negative (expanding). If the spatial

curvature is non-zero, points along the circles in the white region (thick parts

of circles) are stable but points in the gray regions (dashed parts of circles)

are unstable, jumping to new values a�er a short period of contraction. If

a model (i.e. a circle) has an open set of stable points (the three innermost

circles but not the outermost circle), the contracting phase does not exhibit

chaotic mixmaster behavior.

�e w = 1 model allows us to explore the behavior of the contracting universe as a

function of Ωσ . �e perfectly isotropic case corresponds to Ωσ = 0, which is the usual �at

Friedmann-Robertson-Walker solution (innermost circle, in the limit where the circle has
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shrunk to a point, in Fig. ). Unlike the vacuumKasner case, all of the Kasner exponents are

positive (i.e. lie within the white region of Fig. ) provided that Ωσ < 1/4 (within the larger,

solid circle inscribed in the triangle). For this range, none of the scale factors is increas-

ing during the contraction, although they are decreasing at di�erent rates. When Ωσ > 1/4

(third largest circle), then some points on the Kasner circle have a negative Kasner exponent

(dashed part of circle) and other points may have all positive Kasner exponents (solid, thick

parts of circle).

�us, ignoring the curvature, the w = 1 case with non-zero Ωσ contracts smoothly but

anisotropically to the crunch. In the special case where Ωσ = 0, the contraction is isotropic.

w > 1: For w > 1, the energy density dominates (Ωρ → 1) as a → 0, and the metric

approaches the approximate form

a(t) =
( t

t0

)2/3(1+w)
, (.)

β i(t) = c j
2

√

3ρ0

1

w− 1

[( t

t0

) w−1
w+1 − 1

]

, (.)

where we have chosen the constants of integration so β i = 0 at t = t0 . �e crucial feature is

that the time-varying part of the β i is proportional to tα where α is positive if w > 1. �is

means that the β i approach a constant and the universe becomes isotropic at the crunch

�is simple result is a “no-hair theorem” for universes without spatial curvature: When

w > 1, an initially anisotropic universe becomes isotropic (Ωσ → 0) near the big crunch.

�e w > 1 case is stable under anisotropic perturbations. For w < 1, the universe becomes

increasingly anisotropic in the sense that Ωσ → 1 as a→ 0. For w = 1, Ωσ remains �xed as

a→ 0. Evolution is smooth (no mixmaster behavior) in all cases, and is well-approximated

as a Kasner metric with constant coe�cients for su�ciently small a.

Conversely, when w < 1, α is negative and the β i grow rapidly. �us even if the energy density ρ is
dominant initially, the anisotropy grows and eventually dominates near the crunch, a result consistent
with our earlier analysis.
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.. Curvature and chaos. Complex behavior can arise when there is non-zero spatial

curvature in a contracting universe. �ismay seem surprising at �rst, since the spatial curva-

ture for a homogeneous and isotropic universe grows as 1/a2 , which increases more slowly

than either the anisotropy or the energy density of a component with w >−1/3. However,

we have seen above that the contracting phase for w ≤ 1 is anisotropic. We will show below

that this can produce rapidly growing curvature perturbations and chaotic behavior. On

the other hand, we will see that chaotic behavior is suppressed if w > 1 and the contraction

approaches isotropy as a→ 0.

We now allow the σ(i) to have an x-dependence and consider a curved manifold. �e

spatial Ricci tensor for the metric (.) has the form []

Pa
b = 1

a2
∑

ijk

Sa
b
ijk(σ)e2(β i−β j−βk ) . (.)

�e functions Sab ijk depend only on the σ
i and their space derivatives, and are independent

of time.

�e expression (.) reveals a crucial connection between the behavior of anisotropy

and curvature near the big crunch. In the isotropic limit, β i = 0 and (.) reduces to the

homogeneous and isotropic 1/a2 scaling discussed above. However, the terms in (.)

are essentially ratios of scale factors. �us, if the anisotropy is growing as a → 0, some

terms – involving ratios of expanding and contracting scale factors – will grow, and the

corresponding curvature components will scale faster than 1/a2 . For w < 1 the anisotropy

dominates near the crunch, and, as we will discuss below, this causes the curvature to grow

and induce chaos. By contrast, in the w > 1 model, the anisotropy vanishes at the crunch,

and the curvature scales as the usual 1/a2 , which may be neglected.

w < 1: In this case, we begin by assuming that the behavior near the crunch is described

by the vacuumKasner solution, with Kasner conditions (.) and (.). Using the Kasner

solution, it is readily seen that the Einstein equation (.) contains a leading order term with

time dependence t−2 .
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�e second Einstein equation (.) is a consistency check for our assumption of ultralo-

cality. For an appropriate choice of the σ(i) – a basis for one of the Bianchi universes – this

equation vanishes identically and the metric (.) solves the Einstein equations.

�e third Einstein equation (.) indicates that the simple Kasner solutions must break

down near the big crunch. If we order the Kasner exponents as p1 ≤ p2 ≤ p3 , then the most

divergent term in the third Einstein equation comes from terms in the spatial curvature

(.), with leading time dependence,

t−2(1−2p1) . (.)

�e leading term is more divergent than t−2 , since the Kasner conditions (.) and (.)

imply p1 is always negative. �erefore, our smoothly contracting solutions are not stable to

perturbations in the spatial 3-curvature. A small amount of curvature will grow and come

to dominate the dynamics before the big crunch.

�e behavior of the universe in this regime has been extensively studied and is known

to be chaotic [, , –, ]. �e spatial curvature terms cause the Kasner exponents p i

and the principal directions σ i to become time-dependent during contraction.

More precisely, the exponents and principal directions are nearly constant for stretches of

Kasner-like contraction, during which the curvature is negligible. �ese Kasner-like epochs

are punctuated by short intervals when the curvature momentarily dominates. �e ex-

ponents and principal directions suddenly jump to new values, and then a new stretch of

Kasner-like contraction begins during which the curvature terms are again negligible. �e

universe undergoes an in�nite number of such jumps before the big crunch. �e chaotic,

non-integrable evolution is equivalent to that of a billiard ball [], which experiences free

motion interrupted by collisions with walls. Models with this oscillatory behavior are called

chaotic.

�is presents a problem for cosmologicalmodels, as one expects curvature perturbations

in any realistic universewill cause the local value of the curvature to vary frompoint to point.
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If each spatial point evolves independently and chaotically, the evolution of nearby points

diverges very quickly as contraction continues, and the universe rapidly becomes highly

inhomogeneous as a→ 0. If w < 1 throughout the contracting phase, it seems unlikely that

the observed homogeneous universe could emerge from this state a�er the bounce to an

expanding phase [].

w = 1: �e chaotic behavior is mitigated in the w = 1 case. Recalling our discussion

of the curvature-free scenario, it is clear that there are regions of non-zero measure on the

Kasner circle for which all of the p i are positive. We will refer to these points as stable. All

choices of p i whenΩσ < 1/4 are stable. If the universe begins at a stable point, the curvature

term remains negligible as a→ 0 and the contraction is smoothly Kasner-like.

However, when Ωσ > 1/4, some choices of the p i will have one p i < 0. If the universe

begins at one of these points, the curvature term will grow and become dominant, causing

the values of p i and the principal axes σ i to change. We refer to these points as unstable. A

more complete analysis [] reveals that, a�er a �nite number of jumps, the universe hits a

point in the open set of stable p i . From this point onwards, the universe contracts smoothly

and without any further jumps.

We call these models non-chaotic, since the universe is guaranteed to arrive at a stable

point as a→ 0. Non-chaotic models (Kasner circles) may contain both stable and unstable

points, but they will always oscillate only a �nite number of times before arriving in the set

of stable points, a�er which the behavior is integrable.

w > 1: For w > 1, curvature does not a�ect the contraction. �e key is the time-

dependence of the β i in (.) and (.), which approach zero as a positive power of t

as t→ 0. Consequently, the exponential factors eβ i in the metric approach constants. �e

leading order time-behavior of Pab is simply that of a homogeneous and isotropic universe,

P ∼ 1

a2
∼ |t|−

4
3(1+w) . (.)
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�is is always less divergent that t−2 for w > 1. �us, even in the presence of initial

anisotropy and curvature, the solution for w > 1 converges to the isotropic solution rep-

resented by the central point on the Kasner sphere in Fig. .

We can generalize our cosmic no-hair theorem (described at the end of section .) to

include models with spatial curvature. �e Einstein equations for a contracting universe

with anisotropy and inhomogeneous spatial curvature converge to the Friedmann equation

for a homogeneous, �at and isotropic universe if it contains energy with w > 1, and that

for a homogeneous, �at but anisotropic universe if w = 1. �e w < 1 case becomes highly

inhomogeneous and the no-hair theorem is inapplicable.

. Coupling to p-forms

In section , we assumed that the evolution of the universe was dominated by an energy

component with �xed equation of state evolving independently of other matter in the uni-

verse. �e component could have been a scalar �eld or a perfect �uid. We found chaotic

behavior for w < 1 in the presence of curvature but non-chaotic behavior for w ≥ 1.

In this section, we want to consider how the behavior for w ≥ 1 can change if the �uid

is imperfect or couples to other components. In many theories, including Kaluza-Klein,

supergravity and superstring models, the relevant energy consists of a scalar �eld that is

coupled to p-forms. Consequently, we will focus on this important example, as others have

in the past [, –].

To determine the e�ect of the coupling to p-forms on chaotic behavior, our approach is

similar to our analysis for spatial curvature, where we assume an initial state in which the

spatial curvature is negligible and then check that it remains small. Here we assume that the

p-form �eld strength is initially negligible and ask how its contribution evolves relative to

the energy density with equation of state w. Our action is

S =
∫
d4x

p−
(

1
2R− 1

2 (∂ϕ)2−V(ϕ)− 1
2(p+1)!

eλϕFµ1 ···µp+1
2), (.)
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where  is the metric, R is the scalar curvature, V is a potential for the scalar �eld ϕ, p is the

rank of the p-form, F is the associated �eld strength tensor and λ is the coupling constant.

�e potential V(ϕ) is chosen to give �xed equation of state w ≥ 1 in the absence a p-form

coupling, as in (.):

V(ϕ) =−V0e
−
p
3(1+w)ϕ , (.)

where V0 is a positive constant. �roughout this chapter, we assume without loss of gener-

ality that ϕ→−∞ as a→ 0.

For a given equation of state w and p-form rank, the behavior of the system as t → 0

depends on the coupling λ. We can extend the terminology introduced earlier to describe

the properties for a given λ. We classify the p-form coupling parameter λ as supercritical

if the p-form terms grow relative to the scalar �eld energy density. We call these models

supercritical, as opposed to chaotic, because ifw > 1 it is not knownwhether chaos occurs or

whether the p-formsmerely play a non-negligible role in integrable dynamics. In the special

case w = 1, chaos is known to occur, and we call these models chaotic [–]. Values of

λ for which the contracting solution with negligible p-forms is stable are called non-chaotic

(some authors use subcritical). �ese two cases are analogous to those introduced in section

. If λ is on the boundary between supercritical and non-chaotic, we call λ critical. �e

behavior of critical models may be novel, and will be discussed at the end of this section.

We are assuming that initially the spatial curvature, the anisotropy and the p-form terms

are small, and then we check if these conditions are maintained as the universe contracts.

Since we are considering models where w ≥ 1, the model is non-chaotic if the p-forms

are negligible. �e universe may be approximated initially by the homogeneous isotropic

Friedmann-Robertson-Walker form in (.) with β i ≈ 0 and σ(i) = dx i. If w > 1 and the p-

form terms are negligible, Ωσ → 0 as the crunch approaches. For w = 1, Ωσ remains small

but �nite. If the isotropic case is unstable, then adding anisotropy cannot restore stability;

just as in section ., the isotropic scale factors are the most stable.
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It can be shown that the p-form terms involving the spatial gradients of F grow slower

than the leading homogeneous time-derivative terms, another example of the ultralocal be-

havior discussed previously. Hence, we neglect all spatial derivatives of the �eld strength.

�e components of F with purely spatial indices, F i1 ···ip+1 are called magnetic and the

components with one time index, F0 i1 ···ip , are called electric, in analogy with the Maxwell

action. We will use the labels E and B to indicate their respective contributions. F has a van-

ishing exterior derivative dF = 0. In coordinate notation, neglecting the spatial derivatives

of F, this corresponds to

∂[0F i1 ···ip+1 ] = 0 , (.)

where the brackets [· · · ] indicate antisymmetrization. �us, the magnetic components are

constant,

F i1 ···ip+1 = (constant) (.)

�e equation of motion for F is

∇µ(eλϕFµµ2 ···µp+1 ) = ∂µ(eλϕFµµ2 ···µp+1 )+ Γµµσ e
λϕFσµ2 ···µp+1 = 0 . (.)

Only one set of Christo�el symbols appears due to the antisymmetry of F. Since Γµµ0 =
∂
∂t log

p− and Γµµi = 0, we can integrate to �nd,

F0 i1 ···ip = e−λϕ
p− × (constant). (.)

�e p-form part of the stress-energy tensor is

Tµν =
eλϕ

(p+ 1)!

(

(p+ 1)Fµµ2 ···µp+1 Fν
µ2 ···µp+1 − 1

2 µνF
2). (.)
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Decomposing (.) into electric and magnetic components, and including factors of the

metric, we compute the energy density for the p-forms ρp =−T0
0 , which is,

ρp =
eλϕ

(p+ 1)!

( p+1
2 F0 i1 ···ip F0 j1 ···jp  i1 j1 · · ·  ip jp + 1

2 F i1 ···ip+1 F j1 ···jp+1 
i1 j1 · · ·  ip+1 jp+1

)

(.)

= e−λϕ

a2(3−p)
α2E+

eλϕ

a2(p+1)
α2B , (.)

where the positive constants α2E and α
2
B represent themagnitude of the electric andmagnetic

energy, respectively. We can now de�ne a new set of fractional energy densities,

Ωϕ = ρ−1
(

ϕ̇2/2+V(ϕ)
)

, (.)

ΩE = ρ−1
e−λϕ

a2(3−p)
α2E , (.)

ΩB = ρ−1
eλϕ

a2(p+1)
α2B , (.)

ρ = 1
2 ϕ̇

2+V(ϕ)+ e−λϕ

a2(3−p)
α2E+

eλϕ

a2(p+1)
α2B . (.)

whereΩϕ is the energy density in the scalar �eld andΩE andΩM are the energy densities in

electric and magnetic modes. We are assuming that the anisotropy is negligible, so Ωσ ≈ 0.

�e scaling solution for a ϕ-dominated universe with equation of state w is (.),

ϕ = q ln|t|, q =
√

4

3(1+w)
, (.)

and a = |t/t0|2/3(1+w). Substituting in (.), two terms in ρp may be written as

ρp = α2E |t|
pE + α2B |t|

pB , (.)

where pE and pB are called the electric and magnetic exponents, respectively. �ey are,

pE =−
4(3− p)

3(1+w)
− λ

√

4

3(1+w)
, (.)

pB =−
4(p+ 1)

3(1+w)
+ λ

√

4

3(1+w)
. (.)
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Note that these expressions are invariant under a duality transformation, which takes p→

2− p, interchanges the electric and magnetic modes, and takes ϕ→−ϕ.

In the Friedmann equation, the scalar �eld energy density scales as t−2 . Consequently,

Ωϕ → 1 and ΩE,B → 0 as the universe contracts if both pE and pB are both greater than

−2. In this case, the p-form contribution is negligible and λ is non-chaotic. Alternatively,

if either pE or pB is less than −2, the respective p-form terms become large and alter the

dynamics.

For w = 1, the non-chaotic values of λ are






























−
p
8/3 < λ < 0 p = 0

−
p
2/3 < λ <

p
2/3 p = 1

0 < λ <
p
8/3 p = 2

(.)

Increasing w causes the interval of non-chaotic couplings to grow, as shown in Fig. . In

particular, for any p and λ, there exists a critical valuewcrit(λ, p) such that, for w > wcrit(λ, p)

the p-form terms remains negligible. For any set of p-forms and couplings there exists a

w̄crit, the maximum of 1 (the critical equation of state for curvature) and the wcrit(λ, p) for

each p and λ. �en the contraction is non-chaotic if w > w̄crit.

�e behavior can be understood in terms of an e�ective equation of state for the action

(.), using the conservation equation

ρ̇ =−3 ȧ
a

(1+we�)ρ, (.)

where ρ is given by (.). Using (.)–(.), the equation of motion for ϕ and the Fried-

mann equation, we �nd

we� = wϕΩϕ+ 3−2p
3 ΩE + 2p−1

3 ΩB , (.)

where

wϕ =
ϕ̇2/2−V(ϕ)

ϕ̇2/2+V(ϕ)
(.)
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Figure . �e four dimensional electric andmagnetic couplings λ as a func-

tion of the critical equation of state for p = 0 , 1 , 2. �e upper and lower three

curves represent the critical electric andmagnetic exponents, respectively. A

form with given p and λ is stable in a universe with equation of state w if the

point (w, λ) lies between the two curves for the given p.

is the equation of state for the decoupled scalar �eld and Ωϕ+ΩE+ΩB = 1. �e expression

(.) is exact, valid for all values of the Ω i assuming the background is homogeneous, �at

and isotropic. For the electric andmagnetic contributions, we can introduce wE = 3−2p
3 and

wB = 2p−1
3 , respectively. �e we� is just the Ω-weighted average of wϕ, wE and wB.

All the λ dependence of we� is contained in the time evolution of the Ω i ; wϕ , wE and

wB do not depend on λ. Both wE and wB are always less than or equal to unity, and at least

one is strictly less.

If the p-form coupling λ is non-chaotic, the behavior is simple. �e quantities ΩE and

ΩB rapidly approach zero asΩϕ approaches one, and the universe is dominated by the scalar

�eld, with the equation of state wϕ. �is is the non-chaotic case, discussed in section .
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Alternatively, if the p-form coupling is supercritical, ΩE and ΩB grow. �e averaging

of the E and B component ensures we� < wϕ . If wϕ = 1 then we� < 1. In this case, the

anisotropy grows and chaotic oscillations occur. It is not known if this happens in the wϕ >

1 case. If in addition, the p-form coupling is critical (so wcrit = 1), it turns out that the

model is equivalent to an in�nite-dimensional hyperbolic Toda system. �ere are an in�nite

number of jumps from one Kasner-like solution to the next, but the systemmay be formally

integrable [, ]. It is not clear what the physical rami�cations of this behavior are.

. Time-varying equation of state

In a realistic cosmological model, the equation of state will not be constant, but will

depend on the scale factor and approach some limiting value w→ w̄ as a→ 0. If w̄ 6= wcrit,

none of the above analysis changes substantially. �e model is supercritical if w̄ < wcrit or

non-chaotic if w̄ > wcrit. �e critical case, w̄ = wcrit, ismore subtle, and the time dependence

of w̄ can be signi�cant. In this section, we assume wcrit = 1, as this is the most important

case, and analyze what happens when wϕ → 1 at the crunch. We can expand wϕ as

wϕ(a) = 1+ γ(a), (.)

where γ is a small function of the scale factor such that γ→ 0 as a→ 0.

If there is no p-form with critical coupling, then using (.) and (.), it can be shown

that if γ(a) loga approaches a constant as a→ 0, then the behavior is essentially the same

as the w = 1 case, i.e. non-chaotic. �e radius of the Kasner circle in �gure  shrinks, if

w→ 1+, or expands, if w→ 1−. If γ→ 0 so slowly that γ(a) loga diverges as a→ 0, then

the anisotropy is eliminated if γ approaches zero from above or the chaos is restored if γ

approaches from below.

Alternatively, if the model has a p-form with critical coupling, the Kasner contraction

will be stable if the p-form contribution to the equations of motion remain subdominant, or,

equivalently, if the ratio of the p-form terms to the other terms vanishes in the a→ 0 limit.
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For magnetic modes with critical coupling λcrit < 0, we �nd:

log
ΩM

Ωϕ
= log

eλcritϕ/a2(p+1)

ϕ̇2/2+V(ϕ)
∼−C

∫ a0
a

da′

a′
γ(a′), (.)

where C is a positive constant and by ∼ we mean up to terms �nite in the a→ 0 limit. �e

behavior is identical if the electric modes have critical coupling. If γ → 0 very slowly, for

example

γ(a) ∼ |loga|−1 (.)

so that the integral diverges as a→ 0, then the ratio goes to zero andΩM becomes negligible

in the a → 0 limit. �is ensures that the term is small, and never grows to in�uence the

dynamics.

Let us investigate what conditions on the potential will give us a γ of this form. If we

combine the Friedmann equation and equation of motion for ϕ, we obtain (.)

dψ

d loga
= 3

(

ψ−
V ,ϕp
6V

)

(ψ− 1)(ψ+ 1), (.)

where , ϕ denotes a derivative by ϕ and

p
6ψ =

dϕ

d loga
. (.)

�e equation of state (.) can be expressed in terms of ψ,

wϕ = 1+ γ = 2ψ2− 1 . (.)

We can obtain wϕ → 1+ as a→ 0 for any negative potential which is bounded (for large

negative values of ϕ) by −Ce−
p
6ϕ , where C is a positive constant (see (.)). �e kinetic

energy increasesmore rapidly than the potential energy in these cases, and so wϕ approaches

unity at the crunch. In particular, the potential need not be bounded below. In general, any

potential which can be expressed in the form

V(ϕ) = 2W ′(ϕ)2− 3W(ϕ)2 (.)
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satis�es positive energy []. Hertog et al. [] have shown that the potential

−V0e
−cϕ , (.)

where V0 and c are positive constants, can be expressed in this formprovided c <
p
6, and so

satis�es positive energy. For c ≥
p
6, solutions exist with totaladm energy that is unbounded

below.

For the potential (.), V ,ϕ/V = c. In the case c <
p
6, we �nd

γ∝ ay , (.)

where y is a positive constant. Consequently, γ loga → 0 as a → 0 and the p-form with

critical coupling is not suppressed. However, when c =
p
6, the solution to the equations

of motion show that γ loga approaches a constant, so the p-form can be suppressed when

positive energy is violated.

�e potential

V(ϕ) =−V0e
−
p
6ϕ|ϕ|n , (.)

(or more generally, an exponential times any �nite order polynomial) satis�es positive en-

ergy (i.e. can be expressed in the form (.)) for n ≤ −1. Solving the equation of motion

(.) for large ϕ, we �nd that for n ≤ −1 the p-form with critical coupling is not sup-

pressed. Surprisingly, for n >−1 the ratio (.) goes to zero, and the solution is stable. For

the broad class of potentials (.) and (.), the parameters for which they satisfy positive

energy turn out to be exactly those which do not suppress the p-form. It is an open ques-

tion whether any potential can be constructed which will suppress the wcrit = 1 p-form and

satisfy positive energy.

. Extra dimensions and orbifolds

In models in which gravity is fundamentally higher dimensional, the detailed global

structure of the extra dimensions can suppress or enhance chaos in the four dimensional
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theory. We consider two simple compacti�cations of �ve dimensional gravity, on S1 and

S1/Z2. In the �rst, the chaotic nature of pure �ve dimensional gravity descends to the four

dimensional theory. In the second, the chaotic behavior is suppressed. Models of quantum

gravity also generally include additional matter �elds in the extra dimensions. As an ex-

ample, we discuss the compacti�cation of heterotic M-theory to four dimensions and �nd

that its behavior during gravitational contraction is on the borderline between smooth and

chaotic.

Consider a �ve-dimensional, �at universewithoutmatter �elds. Weknow from the study

of general Kasner universes [] that it will exhibit chaotic behavior. Now compactify one

dimension on S1 . We know that the four-dimensional e�ective theory describes Einstein

gravity coupled to a free scalar �eld. �e scalar �eld describes the volume of the S1 – it is a

simple example of a moduli �eld. As all of our preceding arguments regarding gravitational

contraction are local in nature, we expect that the resulting system should be chaotic as well.

However, a free scalar �eld has equation of state w = 1. According to our analysis in section

, one might think that the behavior should be non-chaotic. What has happened to the

chaos?

�e resolution comes from the fact that we have neglected the Kaluza-Klein one-form.

�e dimensionally reduced action (.),

S =
∫
d4x

p−
(

1
2R− 1

2 (∂ϕ)2− 1
4 e

p
6ϕF2

)

, (.)

describes a vector �eld coupled to a free scalar and to gravity. �e coupling λ =
p
6 is outside

the stable range for a one-form in four dimensions. �erefore, the four dimensional theory

is chaotic, as we would have guessed, but we have to include the interactions with p-forms

to see that this is so.

If, instead of compactifying the ��h dimension on S1, we compactify on the orbifold

S1/Z2 we obtain the action (.), which has the Kaluza-Klein one-form projected out: it
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sets Aµ = 0 in (.). �e absence of this vector �eld in the e�ective action thus implies that

the four dimensional theory is no longer chaotic.

While orbifolding suppresses some gauge �elds and p-forms that would cause chaotic

behavior, in some models there are additional p-forms in the bulk. �ese p-forms, a�er

dimensional reduction, may themselves lead to chaotic behavior. An illustrative example

is heterotic M-theory, which includes a three-form �eld. To zeroth order in the eleven di-

mensional gravitational coupling κ, the low-energy four dimensional e�ective action is from

(.) and []:

S(0) =
πρV

κ2

∫
dx4

p−
(

R− (∂a)2− (∂c)2− e−
p
8/3c(∂χ)2− e−

p
8a(∂σ)2

)

, (.)

where we have rescaled the �elds in the action so the kinetic energies are canonically nor-

malized. �e scalar �eld c is the radion, which governs the brane separation. �eCalabi-Yau

volumemodulus a and scalar �eld σ (which comes from the eleven dimensional three-form)

do not couple to c, and so can be ignored. However, the three-form modulus χ couples to

c and the exponent is critical λ =−
p
8/3. Hence, the theory does not lead to stable Kasner

contraction. Including the �rst order (κ2/3) correction to the action does not change the re-

sult. As we discussed in section . of chapter , the Yang-Mills gauge �elds have a coupling

to the radion proportional to 1± ξα0ec. Damour et al. [, ] have shown that Yang-Mills

one-forms have the same asymptotic behavior as the Abelian case considered here. Since

the radion c→−∞, the e�ective λ = 0 and according to (.), the gauge theories on the

�xed planes do not cause chaos.

As heteroticM-theory is critical, it is quite conceivable that higher order corrections will

lead to a di�erent behavior during cosmological contraction. �ere are a number of kinds

of corrections to (.) that could push the theory away from criticality and render it either

chaotic or non-chaotic; but, it is not yet known which behavior occurs.
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Wesley et al. [] consider the consequences of compacti�cations on more complex

manifolds, and show that the chaotic properties are determined by the cohomology and

Killing vectors of the compact manifold.

�e new results presented in this chapter build on over three decades of preceding re-

search on the behavior of cosmological models contracting to a big crunch. �e classic work

focused on cases where the equation of state of the dominant energy component is w ≤ 1

and w is constant. �e essential results in this case are:

• For a perfect �uid with w < 1, the contraction is smooth and anisotropic in the

absence of curvature and chaotic mixmaster if there is non-zero curvature.

• For a perfect �uid with w = 1, the contraction is smooth and anisotropic in the

absence of curvature. With curvature, the contraction is anisotropic also, although,

depending on the initial anisotropy, the contraction may undergo a �nite number

of jumps from one Kasner-like behavior to another.

• For a free scalar �eld coupled to p-forms with coupling eλϕ , the contraction is

chaotic mixmaster if the coupling λ is outside a �nite interval of non-chaotic λ.

�emixmaster case is non-integrable and the critical case may be integrable.

In this chapter, we have extended this work to include cases where w > 1, a situation that

arises naturally in some recent models with a big crunch/big bang transition, such as the

cyclic and ekpyrotic models. We have added the following results:

• For perfect �uid with w > 1, the contraction is smooth and converges to isotropic

at the crunch. �e Einstein equations converge to ultralocal, homogeneous and

isotropic Friedmann equations.

• For a scalar �eld coupled to p-forms, there exists a wcrit such that the contraction

is smooth and isotropic for w > wcrit.

• If w is time-varying and approaches one from above su�ciently slowly the con-

traction is smooth and non-chaotic, even in the presence of a p-form with critical

equation of state wcrit = 1.
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• In models with an extra dimension, compacti�cation generically produces a scalar

�eld and p-forms. Z2 orbifolding forces some p-forms to zero and, thereby, sup-

presses their contributions to chaos.

In this chapter we have studied how chaoticmixmaster behaviormay be suppressed inmod-

els involving a big crunch/big bang transition. In particular, the ekpyrotic and cyclic models

already include some of the required ingredients including a scalar �eld with w > 1 and Z2

orbifolding.



CHAPTER 

Ekpyrotic and cyclic applications

Nearly scale invariant cosmological perturbations are an important ingredient of mod-

ern cosmology. Observations of the cosmic microwave background [] and large scale

structure [] suggest that the spectrum of initial perturbations must be scale invariant to

about one part in ten. It has recently been shown that there are only two stable mechanisms

for generating nearly scale invariant perturbations, depending on the equation of state of

the universe w: an expanding universe with w ≈−1 and a contracting universe with wÀ 1

[]. �ese are called the in�ationary [] and ekpyrotic [, , ] mechanisms, re-

spectively.

In this chapter, we examine what happens to perturbations during a transition between

these two regimes. A contracting universe cannot begin expanding without undergoing a

bounce, which generically involves either a singularity or a violation of the null energy con-

dition []. However, it is quite simple to construct models that move from an expanding

phase to a contracting phase: a scalar �eld with a potential that crosses zero is all that is

required.

�is is particularly relevant to the cyclic scenario [–] which contains a scalar �eld,

the radion, whichmodels both the accelerating, dark energy epoch and the contracting ekpy-

rotic phase. We study the full perturbation spectrum of this model, including the transition

from expansion to contraction, and point out that the modes generated in the dark energy

epoch continue to grow, even when they are far outside the horizon, and have roughly the

same amplitude as the modes produced in the ekpyrotic phase. �is is surprising because

the dark energy and ekpyrotic phases in the cyclic model are generated at vastly di�erent


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energy scales: the dark energy scale is 10−3 eV whereas the ekpyrotic scale must be many

GeV.

�e growth of dark energy modes when far outside the horizon seems to contradict the

usual intuition from in�ation, in which modes do not grow outside the horizon. We point

out that this is due to a choice of the variable ζ , the comoving curvature perturbation, which

projects out the growing mode we are interested in. �e Newtonian potential Φ does grow,

and whether this growth is physically important depends on the details of the theory under

consideration.

We show that the modes produced in the dark energy phase are not observationally

relevant in the model. �emodel requires that the visible perturbations are produced in the

ekpyrotic phase, leaving the perturbations produced in the dark energy epoch far outside the

horizon. It is possible to tune the ekpyrotic (but not the cyclic) model so that dark energy

modes, or even the transition feature, are part of the observable spectrum, although there is

no reason to prefer such a model.

We also discuss the behavior of the cyclicmodel over longer intervals. Over the course of

each cycle, the scale factor is multiplied by some exponentially large factor eN . A large band

of dark energy and ekpyrotic perturbations are produced and exit the horizon. Some fraction

of these modes reenter during the kinetic energy and radiation dominated expansion.

We show that dark energy domination is not necessary for the global consistency of the

cyclic model. �e original treatment of cyclic model [] pointed out that sixty e-folds of

dark energy domination ensures that there was less than one particle per Hubble volume

at the transition to the ekpyrotic phase. �is is su�cient to ensure that �uctuations in one

cycle do not interfere with the quantum generation of perturbations in the next. However,

we show that the classical suppression of scalar �eld �uctuations inside the horizon ensures

that the model is consistent without any dark energy domination.

We discuss the global structure of the model, and show that once perturbations exit

the horizon for the last time, they are continually ampli�ed and grow to ever larger scales.
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�is means that superhorizon perturbations quickly become nonlinear, and that once two

patches fall out of causal contact they become asynchronous over the course of one cycle.

�is is a purely metaphysical issue, however, as physical observable, such as the curvature

perturbation inside a Hubble patch, do not grow.

In section  we brie�y review the cyclic model and the ekpyrotic mechanism for gener-

ating nearly scale invariant perturbations. In section  we discuss the transition from dark

energy domination to the ekpyrotic phase, including a qualitative discussion and numeri-

cal results. In section , we discuss constraints on the cyclic model parameters and show

that the feature generated at the transition must be far outside the horizon. In section  we

discuss the global features of the cyclic model.

. �e ekpyrotic and cyclic models

�eekpyrotic scenario [, ] is a cosmological scenario that reproducesmany of the

successes of in�ation in a very di�erent context. �e crucial di�erence is that the primor-

dial density perturbations are produced in a contracting phase by a scalar �eld with a steep

potential, rather than an expanding phase with a �at potential. In terms of the equation of

state, the ekpyrotic universe is contracting with w À 1, whereas the in�ationary universe

is expanding with w ≈ −1. In chapter , we saw that these regimes are both attractors, to

which no-hair theorems apply. Gratton et al. [] have shown, moreover, that these are the

only two stable regimes which produce nearly scale-invariant perturbations.

In order to match the ekpyrotic phase onto the hot big bang, it is necessary for the

empty, homogeneous contracting universe to bounce: that is, the big crunch needs to match

onto a big bang. �e ekpyrotic model is essentially higher-dimensional, and implements

the bounce by assuming that the bounce comes from colliding branes in a universe with

additional dimensions. Because of the interest in constructing phenomenologically viable

string models from Horǎva-Witten theory [, , ], a particularly interesting way to

implement the theory is the collision of two S1/Z2 orbifold �xed planes. �e scenario, in its

simplest form, consists of a �ve-dimensional bulk spacetime bounded by four-dimensional
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S1/Z2 orbifold planes. Branes trapped at each �xed plane contain the matter and radiation

of the universe. �e �ve-dimensional geometry is similar to the Randall-Sundrum model

[], in which one brane has positive tension and the other has negative tension, with a

cosmological constant in the bulk. Near the brane collision, e�ects due to a warped bulk go

away. Moreover, non-perturbative string e�ects should vanish, as the string coupling s → 0

as the separation between the branes vanishes (ϕ→−∞). �us, the geometry simpli�es to

a �ve dimensional Milne universe:

ds2 =−dt2+ dx21+ dx22+ dx23+|vt|2dy2 , (.)

where y ∈ [0 , 1] is the orbifold direction and v is the velocity with which the branes collide.

�e bounce is a singular event. In �ve dimensions, a dimension instantaneously vanishes

when the branes are coincident. In four dimensions, it is a big crunch: the scale factor

vanishes instantaneously. Results about the bounce di�er widely depending on what pre-

scription for regulating the singularity is used [, , , , , , , , , , ,

, , , ]. Regulating in four dimensions is problematic, because a nonsingular

bounce invariably violates the null energy condition [] whereas it is di�cult to know

what matching rule to apply at a singular bounce. We assume the results of Tolley et al.

[, ] (see also []) which assume that a �ve-dimensional Milne-like bounce occurs

inM-theory and use unitarity tomatch incoming and outgoingmodes across the singularity.

Note that in the S1/Z2 model (.), the temperature on the orbifold planes remains �nite

at the bounce, even though the bulk scale factor goes to zero: this is because the orbifold

planes couple to the metric e−
p
2/3ϕhµν , and the bulk scale factor and radion conspire to

keep the brane scale factor from contracting to zero.

One brane, the visible brane, has the standardmodel on it. It is assumed that �elds on the

other, hidden brane, do not interact with the visible brane, other than gravitationally. Away

from the bounce, the ekpyrotic model may be described by an e�ective four dimensional
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theory. �e separation of the branes is given by a canonically normalized scalar �eld ϕ, and

goes as as L ∼ e
p
2/3ϕ (just as in the S1/Z2 compacti�cations of chapter  section ).

�e branes have an interaction that is modeled in four dimensions by a potential ϕ.

�is is the force that draws them together and causes the collision. It is put in by hand, but it

should ultimately be derivable fromM-theory, perhaps from the exchange ofM2-branes be-

tween M5-branes, the exchange of strings between D-branes, e�ects from interacting mod-

uli, or other dynamics in the bulk. �emost important feature of the potential is that it needs

a steep, negative segment in order for the ekpyrotic mechanism to operate (see section .

of chapter ). �e simplest such potential is just a negative exponential

V(ϕ) =−V0e
−cϕ , for ϕend< ϕ < 0 , (.)

where c and V0 are positive constants, with c À 1. Nearly scale-invariant perturbations

are produced by a scalar �eld with rolling down this potential. �e universe is very slowly

contracting, with wÀ 1. �e magnitude of the Hubble parameter is rapidly increasing, so

(aH)2 is growing rapidly andmodes are exiting the horizon. Some authors have argued that

the perturbations produced in the Newtonian potential do not produce physical curvature

perturbations [, , ] but in the Tolley et al. prescription, this is not the case, and the

Newtonian potential is converted into �uctuations in the density of radiation at the bounce.

�e cyclic model is a more ambitious version of the basic ekpyrotic scenario in which

the orbifold planes collide periodically throughout history. �e solution is an attractor, and

thus explains the initial condition problem in cosmology. �e potential for the radion, V(ϕ),

illustrated in �gure , has three basic regions (the point ϕ = 0 is �xed arbitrarily):

ϕ > 0: A region where V(ϕ) is �at and has a small, positive value. �is is the “dark

energy” region, which accounts for the dark energy density observed today. Other

forms of this potential, such as a metastable minimum, may also be possible.

0 > ϕ > ϕend: A very steep region in which V(ϕ) is negative. �is is called the ekpy-

rotic phase. �e potential must satisfy the “fast-roll” conditions, that 1
2 (V ′/V)2 À 1
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Figure . A schematic plot of the scalar �eld potential in the cyclic model.

�e motion of the scalar �eld (illustrated by a ball rolling down from the

plateau) during the course of a cycle is illustrated. �e di�erent phases are

marked along with the equation of state w. �e arrows show the direction

of motion of the scalar �eld in that phase. To the right represents a growing

separation between the orbifold planes; to the le� represents a decreasing

separation.

and |VV ′′/(V ′)2 − 1| ≈ 0. �e value of the potential when these conditions cease

to be satis�ed is V(ϕend) =−Vend.

ϕend > ϕ: String theory seems to require that V(ϕ) → 0 as ϕ → −∞, as non-

perturbative e�ects shut o� at small separations. However, consistency of themodel

only requires only the weaker condition, that V(ϕ)e
p
6ϕ → 0 as ϕ→−∞. (�is im-

plies w→ 1+ as ϕ→−∞.)
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�e constraints on the potential are discussed in detail in []. In our analysis, we assume

a particularly simple form for V(ϕ):

V(ϕ) = V0(ebϕ− e−cϕ)F(ϕ), (.)

where c À 1 and 0 ≥ b ¿ 1. �e function F cuts o� the potential at ϕend: F(ϕ) → 1 for

ϕÀ ϕend and F(ϕ) → 0 rapidly for ϕ¿ ϕend. �e particular form of F is not important for

our analysis, as its shapewill only correct the amplitude of the overall spectrum by a factor of

order unity. A potential exception is when analyzing the conditions for chaos, as discussed

in chapter .

A cycle goes as follows. Starting today, shortly a�er the start of dark energy domination,

the universe remains dark energy dominated for some number of e-foldings, labeled NDE.

In this epoch, the universe has w ≈−1.

A�er the period of dark energy domination, the potential crosses the point ϕ = 0 and

V = 0 and turns negative. In the Friedmann equation,

3H2 = ρ+ 1
2 ϕ̇

2+V(ϕ), (.)

with V < 0, matter will continually redshi�s away, as V decreases, until H = 0. At this time,

ϕ̇ begins to grow rapidly until the wÀ 1 ekpyrotic attractor – in which 1
2 ϕ̇

2 ≈ −V(ϕ) – is

very quickly reached.

In both the dark energy and ekpyrotic regimes, |aH|2 is increasing and so modes are

exiting the horizon. �is occurs for quite di�erent reasons in the two regimes. In the dark

energy epoch, H is nearly constant and a is increasing exponentially, whereas in the ekpy-

rotic epoch, a is nearly constant and the magnitude of H is rapidly increasing.

When ϕ ≈ ϕend, the ekpyrotic phase ends, and the kinetic energy ϕ̇2/2 dominates over

the negative potential. �is phase has equation of state w = 1. In a short time, ϕ → −∞

and the four dimensional scale factor a→ 0. A small amount of radiation is produced on

the branes at the big crunch. For our purposes, this is parameterized by TRH the “reheat




.
e
k
p
y
r
o
t
ic

a
n
d
c
y
c
l
ic

a
p
p
l
ic
a
t
io
n
s





dark energy
expanding

ekyprotic
contracting

KE
contracting

KE
expanding

radiation/matter
expanding

dark energy
expanding

ekyprotic
contracting

KE
contracting

KE
expanding

radiation/matter
expanding

crunch/bang crunch/bang
+1

scale

factor (a)
grows by e

NDE ~ constant net growth by e
18

grows by e
27

grows by e
NDE ~ constant net growth by e

18
grows by e

27

Hubble

radius (H -1)
shrinks by e

109
~ constant net growth by e

55
grows by e

54
shrinks by e

109
~ constant net growth by e

55
grows by e

54

# modes 

(exit or enter)
~109 exitN

DE
 exit ~37 re-enter ~27 re-enter ~109 exitN

DE
 exit ~37 re-enter ~27 re-enter

today

mode exits
that re-enters

today

modes exit
that re-enter

one cycle from now
“today”

-1
“today”

+1

ktran exits kend exits

Figure . Time-line for two complete cycles in the cyclic model, with time running from le� to right. Typical values

of the reheat temperature TRH = 1GeV and potential minimum Vend = 1012GeV were used.
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temperature.” �is is the temperature at which the densities of kinetic energy and radiation

are equal. In order to cycle correctly [, ] the velocity of the branes coming out of the

bounce must be greater than that going in. �is is possible only because one of the branes

has negative tension.

�e kinetic phase is nearly symmetric, with the contraction going into the bounce can-

celed by the expansion coming out of it. However, since the scalar �eld has more kinetic

energy coming out of the bounce, the universe remains kinetic energy dominated as the

scalar �eld crosses the ekpyrotic part of the potential and reaches the dark energy plateau.

�is asymmetry causes a net expansion during this epoch.

Radiation domination begins at the reheat temperature, which must be greater than the

temperature of big bang nucleosynthesis in order for the successes of the regular hot big bang

model to be reproduced in the cyclic model. As the universe expands, matter domination

eventually begins and structures form. Eventually, dark energy domination begins. �is

marks the completion of one cycle.

At somepoint, the �eld rolling up the plateau turns around and begins rolling back down

Whether this happens during radiation, matter or dark energy domination is immaterial.

�e complete time-line is reproduced in �gure , with some notes about the relevant scales.

�ese will be analyzed in section . First, we focus on the transition from expansion to

contraction.

. �e transition from expansion to contraction

In this section, we study the production of perturbations in universes that move from

an expanding, dark energy epoch to a contracting, ekpyrotic epoch. We use the potential

V(ϕ) = V0(ebϕ− e−cϕ), (.)

where V0 , b and c are positive constants. �e solution for ϕ > 0 is the dark energy attractor,

whereas for ϕ < 0 it is the ekpyrotic attractor. �us, we require 0 ≤ b¿ 1 and cÀ 1. It is
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possible to analytically describe the evolution of modes in these attractor regimes in terms

of Bessel functions. �e dark energy phase is really very low energy in�ation, and can be

treated using the same techniques. However, we are also interested in the transition regime,

where a numerical solution is necessary. First, however, we discuss qualitative expectations

for the spectrum.

We follow the perturbations in the Mukhanov variable [] u = Φ/ϕ̇, where Φ is the

Newtonian potential. �e evolution equation is given in Fourier space by (.)

u′′k =−
(

k2−Upot

)

uk , (.)

where Upot is (.)

Upot = z(1/z)′′ and z = aϕ′/H , (.)

andwe use primes to denote conformal time derivatives throughout this chapter. We assume

modes start in theirMinkowski ground state (.), so that |uk |2 = (2k)−3 . �is assumption

should be valid for modes at su�ciently small scales in the dark energy epoch.

.. Qualitative expectations. When k2 À Upot in (.), the modes are well within the

horizon and oscillate, uk ∼ e±ikτ . However, for long-wavelength modes, with k2 ¿ Upot,

the explicit solutions to (.) are

u1(τ) = z(τ)−1 , (.)

u2(τ) = 1

z(τ)

∫ τ
dτ′ z(τ′)2 . (.)

In general, one of these modes will be dominant. For dark energy domination, where z is

roughly constant, it is the second (.) whereas in the ekpyrotic phase, the magnitude of H

is growing rapidly and it is (.). When modes are outside the horizon, they all evolve in

concert according to these solutions. �e limits of integration on u2 should be de�ned to
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make the integral �nite. In the dark energy dominated epoch, the growing mode is

u2 ,DE(τ) = 1

z(τ)

∫ τ
−∞

dτ′ z(τ′)2 . (.)

�e ekpyrotic decaying mode is

u2 ,ek(τ) =− 1

z(τ)

∫ 0

τ
dτ′ z(τ′)2 , (.)

where τ is negative and τ → 0 corresponds to the crunch. �e modes (.) and (.)

have �nite, equal limits as H→ 0 (i.e. z→±∞). However, their derivatives do not match,

which demonstrates that the dark energy growing mode does not entirely match onto the

ekpyrotic decaying mode, but rather must match on to a combination of the growing and

decaying modes.

�e usual intuition from in�ationary perturbation theory – that the amplitude of modes

is conserved outside the horizon – breaks down. Instead, the amplitude continue to grow,

while the shape of the spectrum is preserved, and modes produced at radically di�erent

energy scales, the dark energy and in�ationary scales, smoothly match. �e con�ict arises

because the in�ationary result is derived using the variable ζ , the canonical conjugate to Φ:

ζ = 2

3a2(1+w)

( Φ

a′/a3

)′
= 2

3a2(1+w)
(zu)′ . (.)

�e 1/z mode is thus projected out by ζ . In an expanding universe, this is the decaying

mode of Φ, while the growing mode is preserved. However, in a contracting universe, the

two modes are interchanged, and the 1/z mode is the growing mode. �us, the variable ζ ,

while it is conserved outside the horizon, is incapable of seeing the growth of perturbations

in the contracting phase, because it is orthogonal to the growing mode.

As we alluded in chapter , Upot is only loosely connected to the horizon, whose comov-

ing scale is given by aH. In fact, Upot can di�er from (aH)2 by several orders of magnitude:

in the expanding phase the scale is much larger than the horizon, Upot/(aH)2 ∼ b2 , whereas
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Figure . Plot of Upot/(aH)2 against ϕ for the potential V0(e0 .1ϕ− e−10ϕ).

In the attractor regimes, Upot takes values which di�er from the horizon scale

aH by two orders of magnitude in each direction. �e value of ϕ for which

the Hubble parameter vanishes, ϕ =−0 .31, is marked.

in the contracting phase it is much smaller, Upot/(aH)2 ∼ c2 (see �gure ). �us, in this sec-

tionwe use the terms “outside the horizon” and “inside the horizon” loosely to refer tomodes

that satisfy the conditions k2 ¿Upot and k2 À Upot, respectively.

We have seen that Upot increases without limit during contraction, and so all modes

eventually leave the horizon. If Upot increasesmonotonically, we can associate a critical time

τk with each mode, de�ned implicitly through k2 =Upot(τk), marking the mode exiting the

horizon. If this transition occurs while the universe is in the dark energy epoch, we call

the mode a dark energy mode one. If it occurs well into the contracting phase, we call the

mode ekpyrotic. In between we have transition modes. �e dark energy modes necessarily

have the longest wavelengths; the ekpyrotic ones the shortest. If Upot does not increase

monotonically, or even goes negative, these labels are not so well de�ned. �is does not

pose any practical problem interpreting the spectrum, as any decrease in Upot is typically

brief and quite severe, and thus will only a�ect the shape of the spectrum for modes that le�
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the horizon very recently. Moreover, Upot increases without limit as ϕ→−∞, so each mode

has a time at which it last moves outside the horizon.

Well a�er τk , anymode behaves like the k= 0 growingmode (.); it “freezes out”. Hence

the spectrum of frozen-out dark energy modes at a given time preserves its shape as time

passes, even through the transition from dark energy domination to decelerating expansion

to contraction. �is is useful since it allows us to apply some results from in�ationary theory

to predict the shape of this part of the spectrum. Likewise, we can use ekpyrotic calculations

to predict the shape of the spectrum of ekpyrotic modes. �e amplitude of modes, however,

is not conserved outside the horizon in the ekpyrotic phase; rather, modes grow as 1/z(τ) =

H/aϕ′. �e scalar spectral index is de�ned as

ns− 1 = d ln|u|2

d lnk
+ 3 . (.)

Analytic calculations (see section . of chapter ) give the spectral index for our poten-

tial (.) in the two scaling regimes. For the dark energy modes, ns − 1 is −2b2/(2− b2),

whereas it is −4/(c2 − 2) for the ekpyrotic modes. Both slopes are the same if we set

c2 = 4/b2 . (An interesting duality between the scalar spectrum of expanding and contract-

ing phases is discussed in [].) �ese qualitative arguments demonstrate that we would

expect two nearly scale-invariant parts of the spectrum to be joined by a transition feature.

We now analyze the shape of this feature.

.. Numerical results. We rewrite Upot in terms of the potential and proper time, to

obtain

Upot = a2
(

1
2 ϕ̇

2+ 2V+
8HV ,ϕ

ϕ̇
+
2V2

,ϕ

ϕ̇2
+V ,ϕϕ

)

. (.)

We use this expression when evaluating Upot numerically. By rescaling V(ϕ) and τ by di-

mensionless variables such that τ2V(ϕ) is �xed, the form of (.) is preserved and we can

set V0 to 1 in (.). In �gure , we show parametric plots of Upot/a
2 against ϕ for the at-

tractor solutions with potentials of the form (.) with c = 10. We have plotted Upot against

ϕ rather than t or τ in order to ease comparison between the models.
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Figure . A plot of Upot/a
2 against ϕ for the attractor solutions with poten-

tials of the form V0(ebϕ− e−10ϕ), with b ranging from 0 .0 to 0 .5 in steps of

0 .1. In the solutions with b& 0 .2, Upot takes negative values.

With c = 10, as in the �gure, Upot stops behaving monotonically if b& 0 .2. �is is be-

cause the V ,ϕϕ term in Upot (.) can dominate over the other terms at the transition. �is

term can even make Upot go negative. In this case, just as (aH)2 instantaneously vanishes

at the transition, our notion of the horizon, de�ned by Upot, temporarily breaks down. �is

has no e�ect on the modes that le� the horizon many e-folds before the transition, as the

terms in the de�nition of Upot are roughly of order a2V0 and the k2 ¿ a2V0 term in the

evolution of uk (.) is still negligible. However, the feature can a�ect the overall amplitude

of the spectrum and the shape of a moderate band of wavenumbers. When Upot is negative

(.) is an equation for a time-dependent harmonic oscillator. �e frequency is changing

rapidly, not adiabatically: (ϕ′)2 ∼ a2V0 ∼ k2tran, where ktran is the transition wavenumber.

Since the feature in �gure  spans a range of ∆ϕ ∼ 0 .5, the transitionmodeswill not oscillate

more than once at the transition. For such a short switch the amplitude of uk may simply

begin to decrease.
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To compute the power spectrum of u, it is su�cient to know its modulus r. We solve for

r directly. �is is helpful, as it removes the rapidly changing phase from u. Set

uk = rke
iθk/(2k)3/2 , (.)

where we have absorbed the initial condition (.) into r, so that r = 1 at early times. In

these units, the spectral index is ns−1 = d ln r2/d lnk, and scale invariance corresponds to r

independent of k. Substituting into (.) and integrating the imaginary part gives r2θ′ =−k.

Substituting this into the real part leaves

r′′ = k2
( 1

r3
− r

)

+Upotr. (.)

�us, r behaves like a ball rolling in a time-dependent potential, resting at r = 1 in the far

past where Upot is negligible. As Upot changes slowly from zero, but remains much less

than k2, r stays nestled at the slowly-moving minimum of its time-dependent potential. In

integrating (.), we start suitably early that |Upot| ¿ k2 , where taking r = 1 and ṙ = 0

su�ces.

We integrate from a time when Upot ¿ k2 to a time when Upot À k2 , for a large range of

k2 . To do this e�ciently, we tabulate the solutions to the background equations of motion.

Since both conformal and proper time vary over many orders of magnitude, ϕ is treated as

the independent variable. We use (.) to integrate r over the range of ϕ between the initial

and �nal time, and to construct a table of r versus k. �is technique is quite e�cient, and

can be used to quickly compute the spectrum for a wide range of potentials. �e background

evolution needs only be solved once for each potential, and the r for each k need only be

integrated over the relevant range of ϕ, when Upot ∼ k2 (otherwise r is either constant or

behaves identically to the k = 0 mode). �ese techniques work quite generally, so the code

could also be used to compute the spectra associated with various in�ationary potentials in

models without a contracting phase.
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Figure . Plots of ln r2
k
(equivalently, ln|uk |2 − 3 lnk) against lnk for po-

tentials of the form V0(ebϕ − e−cϕ). �e background evolves according to

the attractor. For de�niteness, we have chosen the normalization so that the

modes with k2 = Upot when H = 0 coincide for each of the solutions. �e

plots on the le� have �xed c = 10 and those on the right have �xed b = 0.

�e slope gives the spectral index: a horizontal line corresponds to a scale-

invariant spectrum.

We plot ln r2 against lnk in �gure . for the attractor solutions with potentials of

the form (.). �e observed scale and amplitude of the �uctuations depend on other

parameters, discussed in section . Here, we rescale the curves to put the mode with

k2 = Upot(H = 0) at the origin. At large k all curves tend to their expected ekpyrotic limit,

and similarly at small k those corresponding to b > 0 go to their power-law in�ation limit.

�ere is a feature in the power spectrum for thosemodeswhich leave the horizonnearH = 0,

at the transition between expansion and contraction in all models. �is also corresponds to

the modes that exit the horizon in the transition between the dark energy and ekpyrotic

epochs. �e models with larger b have a more abrupt change in V and Upot, and hence a

more pronounced feature. Solutions for which Upot goes negative have spectra which are

not monotonically decreasing: as discussed above, the modes that leave the horizon near

H = 0 have time to begin an oscillation.
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In the cyclic scenario perturbations are produced in the expanding phase, when the uni-

verse is dark-energy dominated. �is phase can be thought of as a phase of ultra-low energy

in�ation: the height of the potential is the cosmological constant, 10−120 in Planck units.

�e perturbations, however, are ampli�ed throughout the ekpyrotic phase, when the asso-

ciated energy scale is much larger. At the bounce, while the dark energy perturbations are

onmuch larger physical scales, their magnitude is comparable to those produced during the

ekpyrotic phase.

�e spectral index in this model is of the sort marginally preferred by recent surveys of

large scale structure [, ] (but see also []). However, we will see in the next section

that these modes are far outside the horizon in the cyclic model, so that the feature is not, in

general, visible.

. Scales and the cyclic model

In order to understand how the cyclic model behaves over multiple cycles, we record

some scales in terms of the fundamental parameters governing the model. �ese are the

value of the potential at the end of the ekpyrotic phase Vend (de�ned to be positive) and the

reheat temperature TRH, which determines how much radiation is produced at the bounce

and sets the scale at which scalar �eld kinetic energy density and radiation density are equal.

�e collision velocity of the branes, vcoll, is a �ve dimensional parameter which is deter-

mined by Vend and the condition fromobservations that the spectrum of perturbations have

amplitude 10−5 . �e constraints on these parameters were considered in detail in [] and

are summarized in �gure .

�e cyclic model has four phases: the dark energy phase, the ekpyrotic phase, the kinetic

energy dominated phase and the radiation and matter dominated phase. We consider the

change of the scale factor a and the comoving horizon aH in each of those phases. Our

notation for the subscripts and results are summarized in table  and in the time-line �gure

. Note, in particular that we use the subscript 1 to denote quantities evaluated today, and

the subscript 0 to denote quantities evaluated “today, one cycle ago.”
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Figure . Constraints on two cyclic model parameters: the reheat tempera-

ture TRH andVend, the value of the potential at the end of the ekpyrotic phase.

�e latter parameter can be written in terms of the collision velocity vcoll of

the two orbifold planes. �e shaded region shows the allowed parameters for

fast-roll parameter ε = 10−2 andwarping scale 3×104 Planck units. �e bbn

constraint comes from the condition that themodel is radiation dominated at

big bang nucleosynthesis temperatures. �e cycling constraint comes from

the constraint that the scalar �eld reach the dark energy plateau before re-

heating. �e gravity wave constraint comes from the requirement that no

more than  of the critical density be made up by gravitational waves at

bbn. Adapted with permission from [].

We assume that there are NDE e-folds of expansion in the dark energy phase. Since the

Hubble parameter H is approximately constant, the ratio of scale factors before and a�er

aDE/a0 ≈ eNDE and likewise for the horizon (aH)DE/(aH)0 ≈ eNDE .

�e ekpyrotic phase has equation of state wÀ 1. From (.) and (.), we see that

aend
aDE

=
( V0

Vend

)1/c2

, (.)
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scale factor expansion horizon example value

epoch initial �nal af/ai (aH)f/(aH)i ln
af
ai

ln
(aH)f
(aH)i

dark energy a0 atran NDE NDE NDE NDE

ekpyrotic atran aend
(Vend
V0

)−1/c2 (Vend
V0

)1/2 ≈ 1 111

kinetic energy aend aRH
(V1/4

end
TRH

)2/3 (V1/4
end

TRH

)−4/3
18 −37

matter/radiation aRH a1
TRH

V1/4
0

( TRH

V1/4
0

)−1 27 −27

Table . �e scale factor notation and approximate evolution of the scale

factor and horizon in the cyclic model in terms of the reheat temperature

TRH, the potential at the end of the ekpyrotic phaseVend and the scale of dark

energy V0 . �e illustrative values at the right of the table take TRH = 1GeV,

Vend = 1012GeV and V0 = 10−3 eV.

which is a very small contraction, typically 1–2 e-folds. Moreover,

eNek = (aH)end

(aH)DE
≈ Hend

HDE
=

(Vend

V0

)1/2
= 1 .6× 1023

(V1/4
end

GeV

)2
, (.)

which is very large, so an exponentially large number, Nek of modes are generated in the

ekpyrotic phase.

�e w = 1 kinetic energy dominated phase is symmetric between contracting and ex-

panding phases for ϕ < ϕend. However, we have seen that the ekpyrotic contraction is neg-

ligible and does not compensate the expansion that occurs when ϕ is in the interval before

reheating, ϕend < ϕ < ϕRH. In this interval, the energy density of the universe goes from ap-

proximately Vend to π2T4
RH/30, where  is the number of relativistic species at reheating.

Since ρ∝ a−6 :
aRH
aend

=
(V1/4

end

TRH

)2/3
, (.)

and
(aH)RH

(aH)end
=

( TRH

V1/4
end

)4/3
, (.)

where we have omitted the constants, which make a di�erence of only a few e-folds.
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Finally the results for the radiation and matter dominated phase can be extracted from

the ratio of the cmb temperature and the reheat temperature:

a1
aRH

= TRH

T0

( Teq

Tdec

)1/2
= 1 .4× 1013

TRH

GeV
, (.)

where the small square root term is from the slower rate of cooling T ∝ a−1/2 between

matter-radiation equality and decoupling. �e corresponding result for the comoving hori-

zon is
(aH)1

(aH)RH
=

(aRH
a1

)( a1
aeq

)1/2
= 4 .2× 10−12

( TRH

GeV

)−1
, (.)

where again we have corrected for the di�erent rate of expansion in matter domination.

We have derived a complete history of the scale factor and Hubble constant over a cycle.

�e Hubble constant returns to the same value a�er each cycle, H1 = H0 . �e aggregate

expansion in the model over the course of the cycle is then

Ntot = log
(aH)1

(aH)0
= log

a1
a0

≈ 30+NDE+
2

3
log

V1/4
end

GeV
+ 1

3
log

TRH

GeV
(.)

�is is also the number of e-folds outside the horizon today themode thatwas on the horizon

in the last cycle is. Since the only contraction is due to the ekpyrotic phase, this net expansion

is an irrevocable feature of the cyclic model. �is is important, because it dilutes entropy

generated each cycle. For the parameters used in table , Ntot ≈ 48 +NDE. �erefore if

NDE = 0, then the horizon next cycle has physical scale, today, of roughly 100km.

�e transition (H = 0) mode produced in the last cycle has scale

Ntran =− log
ktran

(aH)1
= log

(aH)1

(aH)DE
= 27+ 1

3
log

TRH

GeV
+ 2

3
log

V1/4
end

GeV
, (.)

which is much larger than the horizon today for any reasonable parameters. �e number of

visible e-folds of ekpyrotic modes is

Nvis = log
kend

(aH)1
=− log

(aH)1

(aH)end
= 26+ 4

3
log

V1/4
end

GeV
− 1

3
log

TRH

GeV
, (.)
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Figure . A typical spectrum of primordial perturbations for the cyclic

model, with roughly 110 e-folds of ekpyrotic modes. �e potential has

Vend ≈ 1012GeV. �e mode that le� the horizon when the universe moved

from expansion to contraction (H = 0) has wavenumber labeled by ktran,

where k2tran = Upot(H = 0). �e wavenumber that is on the horizon today is

labeled k1 and is calculated with TRH = 1GeV. All modes with k > k1 are in-

side the horizon, including the last ekpyrotic mode to exit the horizon, when

V =−Vend, kend. �e steep fallo� for k > kend is from modes that exit in the

kinetic energy dominated phase.

�is is a positive number for any allowed parameters. �us, the cyclic model robustly pre-

dicts that the visiblemodes should all be ekpyrotic. �e smallest scale ekpyroticmode visible

today (i.e. produced in the last ekpyrotic phase) has a physical wavelength of roughly 10 cm

today, for the parameters in table .

Figure  shows all the modes, including those that exit the horizon in the kinetic phase.

Modes continue to exit in this phase, although they are not scale-invariant. �e kinetic

modes go as |u|2 ∼ k−4 and so have deeply red spectral index ns − 1 = −1. In the kinetic
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Mode k/(aH)1 physical scale

Horizon last cycle e−Ntot 1024Mpc

Largest ekpyrotic mode e−Ntran 1024Mpc

Horizon today 1 5000Mpc

Largest ekpyrotic, next cycle eNtot−Ntran 5000Mpc

Horizon next cycle eNtot 100km

Smallest ekpyrotic mode eNvis 10 cm

Planck mode eNvis+Nkin 1Å

Smallest ekpyrotic, next cycle eNtot+Nvis 10−22m

Table . Physical scales in the cyclic model evaluated today. �ey are com-

puted with Vend = 1012GeV, TRH = 1GeV and NDE ≈ 0.

phase, aH ∼ ρ1/3, so a band of

Nkin = 60− 4

3
log

V1/4
end

GeV
(.)

modes are produced before ρ ∼ 1 (in Planck units). Whether these modes are physical de-

pends on the details of the bounce, and in particular what e�ect it has on short wavelength

modes. �ey have scales of atmost a few centimeters, which is too small to produce structure

in the universe. All the physical scales are summarized in table .

�e largest visible ekpyrotic mode – the mode on the horizon today – le� the horizon in

the ekpyrotic phase when V = −Vende
−2Nvis . Equations (.) and (.) indicate that the

mode on the horizon today was produced very roughly halfway through the ekpyrotic epoch

V(ϕ) ∼ −
√

V0Vend. If V1/4
end

> TRH, as in most of the allowed parameter region (�gure ),

then there aremore visible ekpyroticmodes than ekpyroticmodes outside the horizon today.

�is is illustrated in �gure .

In the ekpyrotic scenario with the potential (.) V0 need not be the density of dark

energy today, since it is assumed that the potential turns o� a�er the big crunch, and dark

energy has some other origin. In this case, the relation (.) becomes considerably more
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Figure . �eperturbation spectrum for two potentials with cut-o�s. �ere

is a �at, in�ationary spectrum for small k; a transition feature; a �at, ekpy-

rotic spectrum for intermediate k; and a steep fallo� at large k for modes

that leave the horizon in the kinetic-dominated phase. Two models are

shown, both with b = 0 .1. �e model with the “bump” feature has c = 20,

V0 = 102GeV4 , Vend = 1045GeV4 , ϕend = −10 and Nek = 50; the model

with the “step” feature has c = 10, V0 = 10−3GeV4 , Vend = 1029GeV4 ,

ϕend = −15 and Nek = 37. �e two models are normalized so the dark en-

ergy modes have equal amplitude, and k = ktran corresponds to the mode

that leaves the horizon when H = 0. �e scale of a mode of these particular

models relative to the horizon today is shown on the top axis. �is is for a re-

heat temperature of 109GeV; how the axis would shi� by varying the reheat

temperature within the allowed range of 10−2–1014GeV is indicated with a

horizontal bar.
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�exible, and it is possible to have the transition mode inside the horizon provided the con-

dition

− log
ktran

(aH)1
=−26+ 1

3
log

TRH

GeV
+ 2

3
log

V1/4
end

GeV
− 2 log

V1/4
0

GeV
< 0 (.)

is satis�ed. Adjusting V0 is equivalent to changing the scale of the transition from dark

energy epoch to the ekpyrotic epoch, whichmoves the transition feature to higher k. Figure 

illustrates an example of such a mixed model. �ere is no cycling constraint (the upper line

in �gure ) for this model. However, in order to avoid forming gutmonopoles at reheating,

we require TRH . 1016GeV. While this model has a natural feature in the spectrum, which

may be marginally suggested by observations, such a model would need to be �ne tuned for

the feature to be visible at the correct wavenumber.

In the following chapter, we consider the e�ect of the ekpyrotic ampli�cation has on the

global structure of the model.

. �e global structure of the cyclic model

We now turn to the global structure of the cyclic model. In the previous section, we

considered the scales of variousmodes. Here, we study how themodel behaves overmultiple

cycles: how the scales relate, and how the amplitude of themodes behave. First, we will show

that there is no constraint on the number of e-folds of dark energy domination required by

the cyclic model. �e suppression of dark energy �uctuations inside the horizon and the

attractor behavior of the contracting phase – discussed, respectively, in chapters  and  –

prevent �uctuations from one cycle from contaminating the next.

Next, we discuss the global structure of the model, the structure on scales much greater

than the horizon. In particular, as modes pass outside the horizon for the last time, their

amplitudes diverge. We show that this has no physical rami�cations for the model, and

merely suggests that a �xed gauge choice over such huge distances makes no sense over

multiple cycles.
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In this section, we again use the Newtonian potential, which is related to the variable u

by u =Φ/ϕ̇. �e superhorizon solutions (.) and (.) then become

Φ1(t) = H

a
, (.)

Φ2(t) = H

a

∫ t
0
dt′ a(t′)

(

w(t′)+ 1
)

, (.)

where w is the equation of state. Again, the integral mode (.) is the dominant mode

in the dark energy epoch. It is constant (for the scaling solution (.)), whereas the mode

(.) decays rapidly. �is is consistent with the in�ationary expectation thatΦ is conserved

outside the horizon.

�e ekpyrotic growing mode, (.), grows as 1/|t| where t→ 0−, from (.), whereas

(.) is constant. As with the u variables, the dark energy growing mode matches onto a

linear combination of the ekpyrotic growing and decaying modes at the reversal from ex-

pansion to contraction.

.. �edark energy epoch. In [] it was pointed out that sixty e-folds of dark energy

dominationwere su�cient to reduce the visible universe to less than one particle perHubble

volume, and so would prevent the possibility of physical perturbations in our universe from

disturbing the quantum mechanical generation of �uctuations for the next cycle. �is is a

very conservative limit on the number of e-folds required, since we are concerned about the

horizon (aH)1 which has a much smaller scale than the horizon a cycle previously (aH)0 .

Moreover, in chapter  we saw that the w À 1 ekpyrotic solution was an attractor. It

satis�es a no-hair theorem that says that, since matter and radiation blueshi� much slower

than the scalar �eld in the ekpyrotic phase, they make a negligible contribution to the dy-

namics well into this phase. In voids, the dark energy density is already higher than in dense

regions. However, a�er the reversal to contraction, the horizon will shrink and the increas-

ing scalar �eld energy will rapidly suppress matter e�ects in even highly non-linear regions,
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such as galaxies. �erefore, it is only scalar �eld perturbations – not matter perturbations –

that contribute deep in the ekpyrotic phase, as they are the perturbations which grow.

If dark energy �uctuations have a sound speed c2s > 0 then they are suppressed by a

factor 〈δ2ϕ〉∝ k−6 .6 inside the horizon (see chapter , in particular, �gure ). �is is robust,

and holds for any w <−1/3 and c2s > 0. Reducing the sound speedmerely changes the scale,

relative to the horizon, at which this rapid fallo� begins. Since the Newtonian potential is

related to the density contrast by the Poisson equation (.) and (.), this gives 〈Φ2
ϕ〉 ∼

k−10 .6 today, where the subscript indicates we are only considering contributions from the

scalar �eld perturbation δϕ. Since the mode on the horizon today has amplitude 2× 10−5 ,

〈Φ2
ϕ〉 ≈ 4× 10−10

( k

(aH)0

)−10 .6
, (.)

where (aH)0 is the horizon scale. �is is the amplitude today. �is mode will receive some

ampli�cation in the ekpyrotic phase. �e ekpyrotic ampli�cation depends on when it exits

the horizon. From (.), a mode is ampli�ed by a factor of k/kend, where kend, which

receives no ampli�cation, is the last mode to leave at the end of the ekpyrotic phase. �us

(.) becomes

〈Φ2〉ϕ=ϕend ≈ 4× 10−10
Vend

V0

( k

(aH)0

)−8 .6
, (.)

using (.). �ematter perturbations are negligible at the end of the ekpyrotic epoch. �is

spectrum is deeply red, so the largest mode will be that which is on the horizon today, which

has k = (aH)1 . �us, we require

4× 10−10
Vend

V0

( (aH)1

(aH)0

)−8 .6
≈ 10−75

(V1/4
end

GeV

)−1 .7( TRH

GeV

)−2 .9
¿ 4× 10−10 , (.)

from (.) withNDE = 0. �e right hand side of the inequality comes from the contribution

of the ekpyrotic modes visible today. �is neglects the contribution of the amplitude factor

at the bounce, which changes the constraint on the right hand side. However, since the

amplitude of perturbations is reduced in the bounce studied by Tolley et al. [, ],

this will only increase the right hand side of (.) and weaken the constraint. However,
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the inequality is easily satis�ed for all the parameters allowed in �gure , and thus there is

no circumstance in which dark energy domination is necessary to separate the ekpyrotic

perturbations from one cycle from the perturbations of the next cycle.

.. �e horizon. Each cycle involves an exponentially large range of modes. We ana-

lyze what happens in terms of the comoving wavenumber k. Recalling the notation of sec-

tion , over the course of a cycle, the horizon shi�s to larger values of k by a large number

Ntot of e-folds (.). In a cycle, a band of NDE+Nek e-folds of nearly scale-invariant modes

are generated by the in�ationary and ekpyrotic mechanisms. �ese modes pass outside the

horizon. However, Ntot e-folds reenter, of which Nvis are nearly scale-invariant ekpyrotic

modes. �e remaining modes are part of the red spectrum of kinetic modes.

From (.) and (.) it can be seen that the total number of e-folds of nearly scale-

invariant �uctuations satis�es an inequality:

Nek+NDE . 2Ntot . (.)

IfNDE is comparable toNek, this inequality is easily satis�ed and amodewill exit the horizon

at most twice. Some modes will exit the horizon �rst in the ekpyrotic phase, reenter the

radiation dominated universe and exit again in the dark energy phase, a�er which it will

never again reenter the horizon. Other modes, which exit near the transition from dark

energy domination to radiation domination will never be visible in the radiation dominated

epoch, and will merely exit the horizon once. �is is illustrated in �gure .

�e situation is di�erent if the universe has a very small number of e-folds of dark energy

domination, NDE = 0. In this case,

Nek− 2Ntot ≈
2

3
log

V1/4
end

TRH
, (.)

and some modes will exit the horizon three times, in the �rst cycle as small scale modes

produced at the end of the ekpyrotic phase, when V ≈−Vende; in the second cycle as modes

produced roughly halfway down the ekpyrotic potential, visible today near but just inside
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Figure . How the comoving wavenumbers evolve over a cycle. In each

cycle, the comoving horizon shi�s to the le� by Ntot e-folds, because the scale

factor increases and H returns to the same value. Over each cycle, a band of

Nek+NDE e-folds of nearly scale-invariant perturbations is also produced. If

NDE is small, the same comoving wavenumber will leave the horizon up to

three times. However, if NDE is large, this will only happen twice before the

mode is permanently on superhorizon scales.

the horizon; and �nally, asmodeswhich exit near the top of the potential and are never again

reenter. We saw that these scalar �eld �uctuations are heavily suppressed in the dark energy

phase, and so the modes of one cycle are not a�ected by the previous cycle: each time they

leave the horizon, except perhaps the last, they form new, independent Gaussian random

perturbations for the big bang of the next cycle. Moreover, (.) is small compared to the

total number ofmodes generated. �usmostmodes exit the horizon only twice (and reenter

only once). �is situation is also illustrated in �gure .
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.. Beyond the horizon. As modes move beyond the horizon for the last time, they

continue expanding to ever larger scales, as their physical wavelength grows by eNtot each

cycle. �ey evolve in concert, according to the exact solutions for the superhorizon behavior

(.) and (.). While the dominant mode in the expanding phase, the integral mode

(.), is roughly constant, themodes receive a contribution from the dominantmode in the

contracting phase (.). �is mode grows by the large factor
√

Vend/V0 each cycle, which

is between 1025 and 1055 (from �gure ). When cyclic modes reenter the horizon, they

do not receive a net ampli�cation from cycle to cycle, as pressure e�ects rapidly smooth out

inhomogeneities. However, when modes become acausal, they receive a huge ampli�cation

each cycle. Since the modes have amplitude Φ ∼ 10−5 , they will be non-linear only one

cycle a�er last exiting.

Such a huge ampli�cation factor is necessary because the scale of quantum perturbations

is set by the Hubble constant. �e amplitude of scalar �eld �uctuations, before they exit the

horizon, is of order the Hubble parameter, or roughly δϕ ∼H ∼
p
V. Likewise Φ ∼

p
V. In

the in�ationary mechanism, the amplitude is therefore set by the potential. In the ekpyrotic

mechanism, however, the potential begins at the tiny dark energy scale, 10−120 in Planck

units. Since the spectrum is nearly scale-invariant, this means that the dark energy modes

must be ampli�ed by 1055 once the exit the horizon.

�is can be interpreted as the cyclic model becoming very inhomogeneous on super-

horizon scales. If two disjoint Hubble patches reach the ekpyrotic epoch at slightly di�er-

ent times, the time delay will be ampli�ed by a huge factor. However, with superhorizon

modes there is no causalmechanism to suppress the growth of inhomogeneities in themodel

so causally disconnected Hubble patches become more and more asynchronous. �us, on

metaphysical scales, the cyclic model can be interpreted as a series of uncorrelated patches,

expanding and fragmenting into yet more asynchronous Hubble patches.

It is clear that these large superhorizonmodes are irrelevant for observations. Physically,

these modes do not a�ect the conditions inside our horizon because the physical curvature
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goes as
( k

a

)2
Φ∝ e−2M(Ntot+Nek) , (.)

where M is the number of cycles. Since 2Ntot & Nek, the contribution of a mode to the

physical curvature perturbation diminishes. �us, this is a purely metaphysical issue.



Conclusion

�is year, , is the centenary of Einstein’s annus mirabilis. Much as in , we have

an enormously successful physical theory – the standard model of particle physics – that

is beginning to show some cracks. Although the di�culty of reconciling gravity with the

standard model is notorious, we cannot conduct experiments to investigate this directly.

It is auspicious, then, that there are new cosmological observations – dark matter and dark

energy – that indicate that our understanding of gravity, or of particle physics, is incomplete.

Moreover, there are now two competing, testable solutions of the initial condition problem

of the hot big bang, the in�ationary and ekpyrotic scenarios. Future experimental tests of

gravity, cosmic microwave background polarization measurements and particle physics at

the Large Hadron Collider promise to improve this situation.

Perhaps the most exciting development of recent years has been the  discovery of

dark energy [, ]. Nothing is presently known about dark energy except that it is very

homogeneous, has an equation of state near −1 and unaccountably makes up roughly seven

tenths of the critical density of the universe. A potential explanation is Einstein’s cosmo-

logical constant. �e �eld theory values predicted for this constant are around 120 orders

of magnitude too large. It has recently been proposed that string theory contains a very

large “discretuum” of metastable vacua corresponding to di�erent choices of form �uxes on

a Calabi-Yau compacti�cation []. If the discretuum is large enough (i.e. there are more

than 10120 vacua), as seems likely, then some of the vacua have a vacuum density of the

right order to account for dark energy. Anthropic arguments [, ] then suggest that we

live in such a universe (�gure ).


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Figure . �emultitude of vacua inM-theory provide su�cient freedom to

explain all known physics as well as many exciting extensions.

Such an explanation is an abstract possibility. Apart from the metaphysical issues raised

by the anthropic principle, however, it is probably premature to adopt such a position. If

dark energy is dynamical, then it could be a rich source of new physical observations which

help us understand physics beyond the standard model. In this thesis, we have explored

some of the possibilities a�orded by dynamical extra dimensions.

Jordan, Einstein and Bergmann [, ] were the �rst to take the Kaluza-Klein scalar

– the radius of the extra dimension – seriously: previous authors �xed the size of the extra

dimension. Fierz, in , pointed out that a time-varying extra dimension would lead

to unacceptably large violations of the equivalence principle. �is led to the emphasis on

“metric theories” of gravity, such as Brans-Dicke theory [] in which matter is minimally

coupled to the gravitational degrees of freedom, by the determinant of the metric
p−.

�e modern perspective has changed. Tests of the equivalence principle have improved

to the pointwhere post-Newtonian tests of gravity [, , ] are of comparable precision

to tests of the universality of free-fall [, , ] and constraints on the variation of the

fundamental constants [, , ]. Surprisingly, these measurements do not rule out

observable equivalence principle violations in the universe. In string theory, there must be

corrections to general relativity at some level. In chapter , we described a number of realistic

scenarios in which violations can occur with magnitudes near current observational limits.

�ese ideas will be tested by future experiments, including improved metric tests of gravity
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from lunar and potentially martian ranging [], satellite tests of the universality of free-fall

[, , ], quasar tests of the variation of the �ne-structure constant [, , , ],

sub-millimeter ��h-force searches [] and space-based Cavendish experiments []. Each

of these experiments provides a potential window into physics beyond the standard model.

An intriguing possibility to consider is if darkmatter violates the equivalence principle

[]. In brane models, such as the S1/Z2 orbifold, it is possible to have visible matter on

one brane and dark matter on the other. In this scenario, they would chie�y interact gravi-

tationally. In the discussion of the Randall-Sundrum model in section . of chapter , we

pointed out that gravity on the two branes of the model behaves very di�erently if the ra-

dion is not stabilized. Gravity on the positive tension brane approaches general relativity

in a highly warped background, whereas gravity on the negative tension brane approaches

Brans-Dicke theory with parameter ω = −3/2. Instead of viewing the Randall-Sundrum

geometry as a solution to the hierarchy problem [] in which matter is on a negative ten-

sion brane, if visible matter is on the positive tension brane, then we do not see violations of

the equivalence principle because the warp factor causes gravity on the to behave very much

like general relativity, as in the second Randall-Sundrum scenario []. In this scenario,

dark matter on the negative tension brane will generally have large equivalence principle

violations.

In the early universe, the cosmicmicrowave background is another window on new fun-

damental physics. Chapter  demonstrated that under certain conditions cosmicmicrowave

backgroundmeasurements can discriminate the presence of dark energy perturbations. �e

B-mode polarization of the cosmic microwave background allows primordial gravitational

waves to bemeasured [, ]. �ese observations allow in�ation to be distinguished from

the cyclic and ekpyrotic scenarios discussed in chapter  []. Moreover, if in�ation is the

correct theory, they determine its energy scale.

Many fundamental questions in string cosmology have yet to be resolved. Chapters 

and  touched on some of these. In chapter  we discussed the global structure of the cyclic
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model, and showed that dark energy domination is not necessary for consistency. On vast,

superhorizon scales the model was shown to become ever more asynchronous, as slight dif-

ferences between adjacent Hubble patches were exponentially ampli�ed each cycle. Since

two asynchronous patches are never again in causal contact, this does not create any insta-

bility inside the horizon. An important issue for the cyclic model is the origin of the steep,

non-perturbative potential that gives rise to the ekpyrotic phase. Little is known about the

interaction of branes in string [, ] or M-theory [].

Chapter  showed that the ekpyrotic attractor is instrumental in the cyclic model, not

only for generating a spectrum of scale-invariant perturbations, but also for ensuring that

the homogeneity and isotropy of the universe are preserved as the crunch is approached.

When the cyclic model potential vanishes near the brane collision, the large suppression of

curvature and anisotropy in the ekpyrotic phasemay be su�cient to suppress chaos until the

Planck epoch. �is seems particularly likely given the intriguing fact that heteroticM-theory

is only critically chaotic for w = 1, so chaotic contributions to curvature and anisotropy grow

much more slowly than they do in supercritical theories. �is idea is discussed in detail by

Wesley et al. [].

What happens when the Planck epoch is reached? Toy models of quantum gravity –

such as the homogeneous minisuperspace approximations – have been used to scrutinize

the quantummechanical behavior of the big crunch, starting with the work ofMisner [].

However, string theory in time dependent backgrounds is still quite poorly understood. Al-

though some progress has been made, there is still much work to be done understanding

gravitational singularities and collisions of orbifold planes in string theory [, , –

, ]. �e resolution of these problems will be important for understanding how ad-

vances in particle theory relate to cosmology.
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