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Abstract We consider deformations of torsion-free G2 structures, defined by the
G2-invariant 3-form ϕ and compute the expansion of ∗ϕ to fourth order in the
deformations of ϕ . By considering M-theory compactified on a G2 manifold, the
G2 moduli space is naturally complexified, and we get a Kähler metric on it. Using
the expansion of ∗ϕ , we work out the full curvature of this metric and relate it to
the Yukawa coupling.

1 Introduction

One of the possible approaches to M-theory is to consider compactifications of the
11-dimensional spacetimes of the form M4 ×X , where M4 is the 4-dimensional
Minkowski space and X is a 7-dimensional manifold. If X is a compact manifold
with G2 holonomy, then this gives a vacuum solution of the low-energy effective
theory, and moreover, since X has one covariantly constant spinor, the resulting
theory in 4 dimensions has N = 1 supersymmetry. The physical content of the
4-dimensional theory is given by the moduli of G2 holonomy manifolds. Such
a compactification of M-theory is in many ways analogous to Calabi-Yau com-
pactifications in String Theory, where much progress has been made through the
study of the Calabi-Yau moduli spaces. In particular, as it was shown in (1) and
(2), the moduli space of complex structures and the complexified moduli space of
Kähler structures are both in fact, Kä hler manifolds. Moreover, both have a spe-
cial geometry - that is, both have a line bundle whose first Chern class coincides
with the Kä hler class. However until recently, the structure of the moduli space
of G2 holonomy manifolds has not been studied in that much detail. Generally, it
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turned out that the study of G2 manifolds is quite difficult. Firstly, unlike in the
Calabi-Yau case (3), there is no general theorem for existence of G2 manifolds.
Although there are constructions of compact G2 manifolds such as those that can
be found in (4) and (5), they are not explicit (a non-compact construction was also
given in (6)). Another difficulty is that the G2-invariant 3-form which defines the
G2 -structure and the metric corresponding to it are related in a non-linear fashion.
This makes the study of G2 manifolds more difficult from a computational point
of view.

We first start with an overview of G2 structures in Sect. 2, where we state the
basic facts about G2 manifolds and set up the notation. A G2-structure is defined
by a
G2-invariant 3-form ϕ , and in Sect. 3 we review some of the computational prop-
erties of ϕ and its Hodge dual ∗ϕ , which we will need later on. Since one of
our main motivations to study G2 manifolds comes from physics, in Sect. 4, we
review the role of G2 manifolds in M-theory, and in particular we consider the
Kaluza-Klein compactification of the effective M-theory low-energy action on a
G2 manifold. It turns out that in the reduced action, the moduli of the M-theory
3-form Cmnp and the G2 moduli naturally combine, to effectively give a complex-
ification of the G2 moduli space. Moreover, the metric on this complexified space
turns out to be Kähler, and the Kähler potential is essentially the logarithm of the
volume of the G2 manifold.

The aim of this paper is to gain more information about the geometry of the
moduli space, and so the aim is to compute the curvature of this Kähler met-
ric. This involves calculation of the fourth derivative of the Kähler potential. The
method which we use for this requires us to know the expansion of ∗ϕ to third
order in the deformations of ϕ . So in section 5, we in fact explicitly give the
expansion of ∗ϕ to fourth order in the deformations of ϕ . Previously, only the
full expansion to first order was known (4), and only partially to second order
(7). However, there are approaches to calculating higher derivatives of the Kähler
potential without explicitly computing an expansion of ∗ϕ - for example the third
derivative has been computed by de Boer et al in (8) and by Karigiannis and Leung
in (9).

Finally, in section 6, we use our expansion of ∗ϕ from section 5 to calculate
the full curvature of the G2 moduli space, and then the Ricci curvature as well.
As it has already been noted in (8) and (9), the third derivative of the Kähler
can be interpreted as a Yukawa coupling, and it bears a great resemblance to the
Yukawa coupling encountered in the study of Calabi-Yau moduli spaces. At the
end of section 6 we consider look at some properties of covariant derivatives on
the moduli space.

2 Overview of G2 Structures

We will first review the basics of G2 structures on smooth manifolds. The main
references for this section are (4; 7) and (10).

The 14-dimensional Lie group G2 can be defined as a subgroup of GL(7,R)
in the following way. Suppose x1, . . . ,x7 are coordinates on R7 and let ei jk = dxi∧
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dx j ∧dxk. Then define ϕ0 to be the 3-form on R7 given by

ϕ0 = e123 + e145 + e167 + e246− e257− e347− e356. (1)

Then G2 is defined as the subgroup of GL(7,R) which preserves ϕ0. Moreover, it
also fixes the standard Euclidean metric

g0 =
(
dx1)2

+ . . .+
(
dx7)2

(2)

on R7 and the 4-form ∗ϕ0 which is the corresponding Hodge dual of ϕ0:

∗ϕ0 = e4567 + e2367 + e2345 + e1357− e1346− e1256− e1247. (3)

Now suppose X is a smooth, oriented 7-dimensional manifold. A G2 structure
Q on X is a principal subbundle of the frame bundle F , with fibre G2. However we
can also uniquely define Q via 3-forms on X . Define a 3-form ϕ to be positiveif
we locally can choose coordinates such that ϕ is written in the form (1) - that is
for every p ∈ X there is an isomorphism between TpX and R7 such that ϕ|p = ϕ0.
Using this isomorphism, to each positive ϕ we can associate a metric g and a
Hodge dual ∗ϕ which are identified with g0 and ∗ϕ0 under this isomorphism,
and the associated metric is written (2). It is shown in (4) that there is a 1− 1
correspondence between positive 3-forms ϕ and G2 structures Q on X .

So given a positive 3-form ϕ on X , it is possible to define a metric g associated
to ϕ and this metric then defines the Hodge star, which in turn gives the 4-form
∗ϕ . Thus although ∗ϕ looks linear in ϕ , it actually is not, so sometimes we will
write ψ = ∗ϕ to emphasize that the relation between ϕ and ∗ϕ is very non-trivial.

In general, any G-structure on a manifold X induces a splitting of bundles of
p-forms into subbundles corresponding to irreducible representations of G. The
same is of course true for G2 -structure. From (4) we have the following decom-
position of the spaces of p-forms Λ p:

Λ
1 = Λ

1
7 , (4a)

Λ
2 = Λ

2
7 ⊕Λ

2
14, (4b)

Λ
3 = Λ

3
1 ⊕Λ

3
7 ⊕Λ

3
27, (4c)

Λ
4 = Λ

4
1 ⊕Λ

4
7 ⊕Λ

4
27, (4d)

Λ
5 = Λ

5
7 ⊕Λ

5
14, (4e)

Λ
6 = Λ

6
7 . (4f)

Here each Λ
p
k corresponds to the k -dimensional irreducible representation of G2.

Moreover, for each k and p, Λ
p
k and Λ

7−p
k are isomorphic to each other via Hodge

duality, and also Λ
p
7 are isomorphic to each other for n = 1,2, . . . ,6. Note that ϕ

and ∗ϕ are G2 -invariant, so they generate the 1-dimensional sectors Λ 3
1 and Λ 4

1 ,
respectively.

Define the standard inner product on Λ p, so that for p -forms α and β ,

〈α,β 〉=
1
p!

αa1...apβ
a1...ap . (5)
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This is related to the Hodge star, since

α ∧∗β = 〈α,β 〉vol, (6)

where vol is the invariant volume form given locally by

vol =
√

detgdx1∧ . . .∧dx7. (7)

Then it turns out that the decompositions (4) are orthogonal with respect to (5).
This will be seen easily when we consider these decompositions in more detail in
the next section.

As we already know, the metric g on a manifold with G2 structure is deter-
mined by the invariant 3-form ϕ . It is in fact possible to write down an explicit
relationship between ϕ and g. Let u and v be vector fields on X . Then

〈u,v〉vol =
1
6

(uyϕ)∧ (vyϕ)∧ϕ. (8)

Here y denotes interior multiplication, so that

(uyϕ)bc = ua
ϕabc. (9)

The definition (8) is rather indirect because vol depends on g via (7). To make
more sense of it, rewrite in components

gab
√

detg =
1

144
ϕamnϕbpqϕrst ε̂

mnpqrst , (10)

where ε̂mnpqrst is the alternating symbol with ε12...7 = +1. Define

Bab =
1

144
ϕamnϕbpqϕrst ε̂

mnpqrst (11)

so that then, after taking the determinant of (10) we get

gab = (detB)−
1
9 Bab. (12)

This gives a direct definition, but because dets may be awkward to compute, (12)
is not always the most practical definition. For us, it will be more useful to take
the trace of (10) with respect to g, which gives and hence

(13)

Although this is also an indirect definition, it is sometimes easier to handle this
expression.

There are in fact a total of 16 torsion classes of G2 structures, each of which
places certain restrictions on dϕ or d ∗ϕ (11). One of the most important classes
of manifolds with G2 structure are manifolds with G2 holonomy. The group G2
appears as one of two exceptional holonomy groups - the other one is Spin(7) for
8-dimensional manifolds. The list of possible holonomy groups is limited and they
were fully classified by Berger (12) . Specifically, if (X ,g) is a simply-connected



Local Geometry of the G2 Moduli Space 5

Riemannian manifold which is neither locally a product nor is symmetric, the only
possibilities are shown in the table below.

Dimension Holonomy Type of Manifold
2k U (k) Kähler
2k SU (k) Calabi-Yau
4k Sp(k) HyperKähler
4k Sp(k)Sp(1) Quaternionic
7 G2 Exceptional
8 Spin(7) Exceptional

It turns out that the holonomy group Hol (X ,g) ⊆ G2 if and only if X has a
torsion-free G2 structure (4). In this case, the invariant 3-form ϕ satisfies

dϕ = d ∗ϕ = 0 (14)

and equivalently, ∇ϕ = 0, where ∇ is the Levi-Civita connection of g. So in fact,
in this case ϕ is harmonic. Moreover, if Hol (X ,g)⊆ G2, then X is Ricci-flat.

For a torsion-free G2 structure, the decompositions (4) carry over to de Rham
cohomology (4), so that we have

H2 (X ,R) = H2
7 ⊕H2

14, (15a)

H3 (X ,R) = H3
1 ⊕H3

7 ⊕H3
27, (15b)

H4 (X ,R) = H4
1 ⊕H4

7 ⊕H4
27, (15c)

H5 (X ,R) = H5
7 ⊕H5

14. (15d)

Define the refined Betti numbers bp
k = dim

(
H p

k

)
. Clearly, b3

1 = b4
1 = 1 and we also

have b1 = bk
7 for k = 1, . . . ,6. Moreover, it turns out that b1 = 0 if and only if

Hol (X ,g) = G2. Therefore, in this case the Hk
7 component vanishes in (15).

An example of a construction of a manifold with a torsion-free G2 structure
is to consider X = Y × S1, where is a Calabi-Yau 3-fold. Define the metric and a
3-form on X as

gX = dθ
2×gY , (16)

(17)

where θ is the coordinate on S1. This then defines a torsion-free G2 structure, with

∗ϕ =
1
2

ω ∧ω −dθ∧ (18)

However, the holonomy of X in this case is SU (3) ⊂ G2. From the Künneth for-
mula we get the following relations between the refined Betti numbers of X and
the Hodge numbers of Y :

bk
7 = 1 fork = 1, . . . ,6,

bk
14 = h1,1−1 fork = 2,5,

bk
27 = h1,1 +2h2,1 fork = 3,4.
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3 Properties of ϕ

The invariant 3-form ϕ which defines a G2 structure on the manifold X has a
number of useful and interesting properties. In particular, contractions of ϕ and
ψ = ∗ϕ are very useful in computations. From (7; 13) and (14), we have

ϕabcϕ
c

mn = gamgbn−gangbm +ψabmn, (19)
ϕabcψ

c
mnp = 3

(
ga[mϕnp]b−gb[mϕnp]a

)
. (20)

Essentially, these identities can be derived straight from the definitions of ϕ and
ψ = ∗ϕ in flat space - (1) and (3) respectively. For more details, please refer to (7)
and (13). Note that we are using a different convention to (13), and hence some of
the signs are different.

Consider the product ψabcdψmnpq. Expanding ψ as the Hodge star of ϕ and
then using the usual identity for a product of Levi-Civita tensors and then applying
(19) gives

ψabcdψ
mnpq = 24δ

[m
a δ

n
b δ

p
c δ

q]
d +72ψ

[mn
[ab δ

p
c δ

q]
d] −16ϕ[abcϕ

[mnp
δ

q]
d] . (21)

Contracting over d and q gives

ψabcdψ
mnpd = 6δ

[m
a δ

n
b δ

p]
c +9ψ

[mn
[ab δ

p]
c] −ϕabcϕ

mnp, (22)

which agrees with the expression given in (14). Of course the above relations can
be further contracted to obtain

ϕabcϕ
bc

m = 6gam, (23)

ϕabcψ
bc

mn = 4ϕamn, (24)

ψabcdψ
cd

mn = 4gamgbn−4gangbm +2ψabmn. (25)

Contracting even further, we are left with

ϕabcϕ
abc = 42, (26)

ϕabcψ
abc

m = 0, (27)

ψabcdψ
bcd

m = 24gam, (28)

ψabcdψ
abcd = 168. (29)

The relations (26) and (29) both yield |ϕ|2 = 7 in the inner product (5). So in fact
we have

V =
1
7

∫
ϕ ∧∗ϕ, (30)

where V is the volume of the manifold X .
Now look in more detail at the decompositions (4). We are in particular in-

terested in decompositions of 2-forms and 3-forms since the decompositions for
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4-forms and 5-forms are derived from these via Hodge duality. From (7) and (10),
we have

Λ
2
7 = {ωyϕ : ω a vector field} , (31)

Λ
2
14 =

{
α =

1
2

αabdxa∧dxb : (αab) ∈ g2

}
, (32)

Λ
3
1 = { f ϕ : f a smooth function} , (33)

Λ
3
7 = {ωy∗ϕ : ω a vector field} , (34)

Λ
3
27 =

{
χ ∈ Ω

3 : χ ∧ϕ = 0 andχ ∧∗ϕ = 0
}

. (35)

Following (7), it is enough to consider what happens in R7 in order to understand
these decompositions. Consider first the Lie algebra so(7), which is the space of
antisymmetric 7× 7 matrices. For a vector ω ∈ R7 , define the map ρϕ : R7 −→
so(7) by ρϕ (ω) = ωyϕ , and this map is clearly injective. Conversely, define the
map τϕ : so(7)−→ R7 such that τϕ (αab)

c = 1
6 ϕc

abαab. From (23), we get that

τϕ

(
ρϕ (ω)

)
= ω,

so that τϕ is a partial inverse of ρϕ . Now the Lie algebra g2 can be defined as the
kernel of τϕ (13), that is

g2 = kerτϕ =
{

α ∈ so(7) : ϕabcα
bc = 0

}
. (36)

This further implies that we get the following decomposition of so(7):

so(7) = g2⊕ρϕ

(
R7) . (37)

The group G2 acts via the adjoint representation on the 14 -dimensional vector
space g2 and via the natural, vector representation on the 7-dimensional space
ρϕ

(
R7

)
. This is a G2 -invariant irreducible decomposition of so(7) into the rep-

resentations 7 and 14. Hence follows the decomposition of Λ 2 (4a and also the
characterizations (31) and (32)).

Following (7) again, let us look at Λ 3
27 in more detail. Consider Sym2

((
R7

)∗)
- the space of symmetric 2-tensors and define a map iϕ : Sym2

((
R7

)∗)−→Λ 3
((

R7
)∗)

by

iϕ (h)abc = hd
[aϕbc]d . (38)

Clearly,

iϕ (g)abc = ϕabc.

Now, we can decompose Sym2
((

R7
)∗) = Rg⊕ Sym2

0

((
R7

)∗), where Rg is the

set of symmetric tensors proportional to the metric g and Sym2
0

((
R7

)∗) is the set
of traceless symmetric tensors. This is a G2-invariant irreducible decomposition
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of Sym2
((

R7
)∗) into 1-dimensional and 27 -dimensional components. The map

iϕ is also G2 -invariant and is injective on each summand of this decomposition.

Looking at the first summand, we get that iϕ (Rg) = Λ 3
1

((
R7

)∗). Now look at the

second summand and consider iϕ
(

Sym2
0

((
R7

)∗))
. This is 27-dimensional and

irreducible, so by dimension count it follows easily that iϕ
(

Sym2
0

((
R7

)∗))
=

Λ 3
27

((
R7

)∗). All of this carries over to 3-forms on our G2 manifold X , and so we
get

Λ
3
27 =

{
χ ∈Λ

3 : χabc = hd
[aϕbc]dforhab traceless and symmetric

}
. (39)

From the identities for contraction of ϕ and ∗ϕ , it is possible to see that this is
equivalent to the description (35) of Λ 3

27. Thus we see that 1-dimensional compo-
nents correspond to scalars, 7-dimensional components correspond to vectors and
27 -dimensional components correspond to traceless symmetric matrices.

Now suppose we have χ ∈ Λ 3, then it is always useful to be able to compute
the different projections of χ into Λ 3

1 , Λ 3
7 and Λ 3

27. Denote these projections by
π1, π7 and π27, respectively. As shown in Appendix 1, we have the following
relations:

π1 (χ) = aϕ where a =
1

42

(
χabcϕ

abc
)

=
1
7
〈χ,ϕ〉 and |π1 (χ)|2 = 7a2, (40)

π7 (χ) = ωy∗ϕ where ω
a =− 1

24
χmnpψ

mnpa and |π7 (χ)|2 = 4 |ω|2 , (41)

π27 (χ) = iϕ (h) where hab =
3
4

χmn{aϕ
mn

b} and |π27 (χ)|2 =
2
9
|h|2 . (42)

Here {a b} denotes the traceless symmetric part.

4 G2 manifolds in M-Theory

Special holonomy manifolds play a very important role in string and M-theory
because of their relation to supersymmetry. In general, if we compactify string or
M-theory on a manifold of special holonomy X the preservation of supersymme-
try is related to existence of covariantly constant spinors (also known as parallel
spinors). In fact, if all bosonic fields except the metric are set to zero, and a super-
symmetric vacuum solution is sought, then in both string and M-theory, this gives
precisely the equation

∇ξ = 0 (43)

for a spinor ξ . As lucidly explained in (15), condition (43) on a spinor immedi-
ately implies special holonomy. Here ξ is invariant under parallel transport, and
is hence invariant under the action of the holonomy group Hol (X ,g). This shows
that the spinor representation of Hol (X ,g) must contain the trivial representa-
tion. For Hol (X ,g) = SO(n), this is not possible since the spinor representation
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is reducible, so Hol (X ,g)⊂ SO(n). In particular, Calabi-Yau 3-folds with SU (3)
holonomy admit two covariantly constant spinors and G2 holonomy manifolds
admit only one covariantly constant spinor.

Consider the bosonic action of eleven-dimensional supergravity (16), which is
supposed to describe low-energy M-theory:

S =
1
2

∫
d11x(−ĝ)

1
2 R(11)− 1

4

∫
G∧∗G− 1

12

∫
C∧G∧G, (44)

where ĝ is the metric on the 11-dimensional space M and C is a 3-form potential
with field strength G = dC. From (44), the equation of motion for C is found to be

d ∗G =
1
2

G∧G. (45)

Suppose we fix M = M4 ×X , where M4 is the 4-dimensional Minkowski space
and X is a space with holonomy equal to G2. Then M is Ricci flat, so from Ein-
stein’s equation, G has to vanish. However, it turns out that the assumption that
GX = G|X = 0 is not an obvious one to make. In fact, as explained in (17), Dirac
quantization on X gives a shifted quantization condition and gives the statement[

GX

2π

]
− λ

2
∈ H4 (X ,Z) , (46)

where
[

GX
2π

]
is the cohomology class of GX

2π
and λ = 1

2 p1 (X), where p1 (X) is the

first Pontryagin class on X . So if λ were not even in H4 (X ,Z), then the ansatz
GX = 0 would not be consistent. Nonetheless, it was shown in (18) that if X is a
seven dimensional spin manifold (or in particular G2 holonomy manifold), then in
fact λ is even, and setting GX = 0 is consistent.

So overall the simplest, Ricci-flat vacuum solutions are given by

〈ĝ〉 = η ×g7, (47)
〈C〉 = 0, (48)
〈G〉 = 0, (49)

where 〈·〉 denotes the vacuum expectation value and g7 is some metric with G2
holonomy while η is the standard metric on the four dimensional Minkowski
space. However, we know that a G2 structure and hence the metric g7 is defined
by a G2 -invariant 3-form ϕ0, so we have

〈ϕ〉= ϕ0. (50)

Now consider small fluctuations about the vacuum,

ĝ = 〈ĝ〉+δ ĝ, (51)
C = 〈C〉+δC = δC, (52)
ϕ = 〈ϕ〉+δϕ = ϕ0 +δϕ. (53)
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So a Kaluza-Klein ansatz for C can be written as

C =
b3

∑
N=1

cN (x)φN +
b2

∑
I=1

AI (x)∧αI , (54)

where {φN} are a basis for harmonic 3-forms on X , {αI} are a basis for harmonic
2-forms on X , cN (x) are scalars on M4 and AI (x) are 1-forms on M4 which de-
scribe the fluctuations of C. Also b2 and b3 are the Betti numbers of X . Since we
assume that X has holonomy equal to G2, b1 = 0, so in (54) we do not have a con-
tribution from harmonic 1-forms on X . Now, deformations of the metric on X are
encoded in the deformations of ϕ and since ϕ is harmonic on X , we parameterize
ϕ as

ϕ =
b3

∑
N=1

sN (x)φN . (55)

Overall, in 4 dimensions we get b3 real scalars cN and b3 real scalars sN . Together
these combine into b3 massless complex scalars zN :

zN =
1
2

(
sN + icN)

. (56)

In the 4-dimensional supergravity theory this gives b3 massless chiral superfields.
The 1-forms AI in (54) give rise to b2 massless Abelian gauge fields, and together
with superpartners arising from the gravitino fields, these form b2 massless vector
superfields (15). Thus overall, in four dimensions the effective low energy the-
ory is N = 1 supergravity coupled to b2 abelian vector supermultiplets and b3
massless chiral supermultiplets. The physical theory is not very interesting from
a phenomenological point of view, since the gauge group is abelian and there are
no charged particles. However the combination (56) proves to be very useful for
studying the moduli space of G2 manifolds, since it provides a natural, physically
motivated complexification of the pure G2 moduli space—something very similar
to the complexified Kähler cone used in the study of Calabi-Yau moduli spaces.

Let us now use our Kaluza-Klein ansatz to reduce the 11-dimensional action
(44) to 4 dimensions. Here we follow (19; 20) and (14). The term which interests
us is the kinetic term for the zN . The kinetic term for the cN , Lkin (c) comes from
the reduction of the G∧∗G term in (44). After switching to the Einstein frame by
gµν −→V−1gµν we immediately see this gives us

Lkin (c) =− 1
4V

∂µ cM
∂

µ cN
∫

X
φM ∧∗φN . (57)

The kinetic term for the sM appears from the reduction of the R(11) term in (44).
This is less straightforward than the derivation of Lkin (c), but the calculation was
shown explicitly in (14). From the general properties of the Ricci scalar we can
decompose the eleven-dimensional Einstein-Hilbert action as∫

d11x(−ĝ)
1
2 R(11) =

∫
d11x(−ĝ)

1
2 V

(
R(4) +R(7) +

1
4V

(
∂µ gmn∂

µ gmn

(58)



Local Geometry of the G2 Moduli Space 11

Then, using deformation properties of the G2 metric gmn from Sect. 5, and switch-
ing to the Einstein frame gµν −→V−1gµν , we eventually get

Lkin (s) =− 1
4V

∂µ sM
∂

µ sN
∫

X
φM ∧∗φN . (59)

The kinetic term of the dimensionally reduced action is in general given in the
Einstein frame by

Lkin =−GMN̄∂µ zM
∂

µ z̄N . (60)

Comparing (60) with (57) and (59), we can read off the moduli space metric
GMN̄ as

GMN̄ =
1
V

∫
X

φM ∧∗φN̄ . (61)

Note that the Hodge star implicitly depends on the coordinates zM , so this metric
is quite non-trivial.

The bosonic part of fully reduced 4-dimensional Lagrangian is given in this
case by (21; 20) where GMN̄ is as in (61), and

F I
mn = ∂mAI

n−∂nAI
m.

To get the second equality in (??) we have used that H2 = H2
14 for manifolds with

G2 holonomy and that for a 2 -form α , 2∗π7 (α)−∗π14 (α) = α∧ϕ . Proof of this
fact can be found in (10).

5 Deformations of G2 Structures

As we already know, the G2 structure on X and the corresponding metric g are
all determined by the invariant 3 -form ϕ . Hence, deformations of ϕ will induce
deformations of the metric. These deformations of metric will then also affect the
deformation of ∗ϕ . Since the relationship (8) between g and ϕ is non-linear, the
resulting deformations of the metric are highly non-trivial, and in general it is not
possible to write them down in closed form. However, as shown by Karigiannis
in (10), metric deformations can be made explicit when the 3 -form deformations
are either in Λ 3

1 or Λ 3
7 . We now briefly review some of these results.

First suppose

ϕ̃ = f ϕ. (1)

Then from (10) we get

g̃ab
√

det g̃ =
1

144
ϕ̃amnϕ̃bpqϕ̃rst ε̂

mnpqrst

= f 3gab
√

detg. (2)

After taking the determinant on both sides, we obtain

det g̃ = f
14
3 detg. (3)
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Substituting (3) into (2), we finally get

g̃ab = f
2
3 gab, (4)

and hence

∗̃ϕ̃ = f
4
3 ∗ϕ. (5)

Therefore, a scaling of ϕ gives a conformal transformation of the metric. Hence
deformations of ϕ in the direction Λ 3

1 also give infinitesimal conformal transfor-
mation. Suppose f = 1+ εa , then to fourth order in ε , we can write

∗̃ϕ̃ =
(

1+
4
3

aε +
2
9

a2
ε

2− 4
81

a3
ε

3 +
5

243
a4

ε
4 +O

(
ε

5
))

∗ϕ. (6)

Now, suppose in general that ϕ̃ = ϕ +εχ for some χ ∈Λ 3. Then using (8) for
the definition of the metric associated with ϕ̃ ,

〈̃u,v〉ṽol =
1
6

(uyϕ̃)∧ (vyϕ̃)∧ ϕ̃

=
1
6

(uyϕ)∧ (vyϕ)∧ϕ (7)

+
1
6

ε [(uyχ)∧ (vyϕ)∧ϕ +(uyϕ)∧ (vyχ)∧ϕ +(uyϕ)∧ (vyϕ)∧χ]

+
1
6

ε
2 [(uyχ)∧ (vyχ)∧ϕ +(uyϕ)∧ (vyχ)∧χ +(uyχ)∧ (vyϕ)∧χ]

+
1
6

ε
3 (uyχ)∧ (vyχ)∧χ.

After some manipulations, we can rewrite this as:

〈̃u,v〉ṽol =
1
6

(uyϕ)∧ (vyϕ)∧ϕ (8)

+
1
2

ε [(uyχ)∧∗(vyϕ)+(vyχ)∧∗(uyϕ)]

+
1
2

ε
2 (uyχ)∧ (vyχ)∧ϕ

+
1
6

ε
3 (uyχ)∧ (vyχ)∧χ.

Rewriting (8) in local coordinates, we get

g̃ab

√
det g̃√
detg

= gab +
1
2

εχmn(aϕ
mn

b) +
1
8

ε
2
χamnχbpqψ

mnpq

+
1
24

ε
3
χamnχbpq (∗χ)mnpq . (9)

Now suppose the deformation is in the Λ 3
7 direction. This implies that

χ = ωy∗ϕ (10)
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for some vector field ω . Look at the first order term. From (40) and (42) we see
that this is essentially a projection onto Λ 3

1 ⊕Λ 3
27—the traceless part gives the Λ 3

27
component and the trace gives the Λ 3

1 component. Hence this term vanishes for
χ ∈Λ 3

7 . For the third order term, it is more convenient to study it in (8). By looking
at

ωy((uyωy∗ϕ)∧ (vyωy∗ϕ)∧∗ϕ) = 0,

we immediately see that the third order term vanishes. So now we are left with

g̃ab
√

det g̃ =
(

gab +
1
8

ε
2
ω

c
ω

d
ψcamnψdbpqψ

mnpq
)√

detg

=
(

gab

(
1+ ε

2 |ω|2
)
− ε

2
ωaωb

)√
detg, (11)

where we have used the contraction identity for ψ (25) twice. Taking the determi-
nant of (11) gives

√
det g̃ =

(
1+ ε

2 |ω|2
) 2

3 √
detg, (12)

g̃ab =
(

1+ ε
2 |ω|2

)− 2
3
((

gab

(
1+ ε

2 |ω|2
)
− ε

2
ωaωb

))
, (13)

and eventually,

∗̃ϕ̃ =
(

1+ ε
2 |ω|2

)− 1
3 (
∗ϕ +∗ε (ωy∗ϕ)+ ε

2
ωy∗ (ωyϕ)

)
. (14)

The details of these last steps can be found in (10). Notice that to first order in ε ,
both

√
detg and gab remain unchanged under this deformation. Now let us exam-

ine the last term in (14) in more detail. Firstly, we have

ωy∗ (ωyϕ) = ∗
(

ω
[∧ (ωyϕ)

)
and (

ω
[∧ (ωyϕ)

)
mnp

= 3ω[mω
a
ϕ|a|np]

= 3iϕ (ω ◦ω) , (15)

where (ω ◦ω)ab = ωaωb. Therefore, in (14), this term gives Λ 4
1 and Λ 4

27 compo-
nents. So, we can write (14) as

∗̃ϕ̃ =
(

1+ ε
2 |ω|2

)− 1
3
((

1+
3
7

ε
2 |ω|2

)
∗ϕ

+∗ ε (ωy∗ϕ)+ ε
2 ∗ iϕ ((ω ◦ω)0)

)
. (16)

Here (ω ◦ω)0 denotes the traceless part of ω ◦ω, so that iϕ ((ω ◦ω)0) ∈Λ 3
27 and

thus, in (16), the components in different representations are now explicitly shown.
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As we have seen above, in the cases when the deformations were in Λ 3
1 or

Λ 3
7 directions, there were some simplifications, which make it possible to write

down all results in a closed form. Now however we will look at deformations in
the Λ 3

27 directions, and we will work to fourth order in ε . So suppose we have a
deformation

ϕ̃ = ϕ + εχ,

where χ ∈Λ 3
27. Now let us set up some notation. Define

s̃ab =
1

144
1√

detg
ϕ̃amnϕ̃bpqϕ̃rst ε̂

mnpqrst (17)

= g̃ab

√
det g̃√
detg

. (18)

From (10), the untilded sab is then just equal to gab. We can rewrite (18) as

(gab +δgab)
√

det g̃√
detg

= gab +δ sab, (19)

where δgab is the deformation of the metric and δ sab is the deformation of sab,
which from (9) is given by

δ sab =
1
2

εχmn(aϕ
mn

b) +
1
8

ε
2
χamnχbpqψ

mnpq +
1

24
ε

3
χamnχbpq (∗χ)mnpq . (20)

Also we introduce the following short-hand notation: where the trace is taken
using the original metric g. From (20), note that since χ ∈ Λ 3

27, when taking the
trace the first order term vanishes, and hence s1 is second-order in ε .

Further, after taking the trace of (19) using gab and rearranging, we have√
det g̃
detg

=
(

1+
1
7

s1

)(
1+

1
7

t1

)−1

, (21)

and hence

g̃ab = s̃ab

(
1+

1
7

t1

)(
1+

1
7

s1

)−1

. (22)

As shown in Appendix B, we can also expand det g̃ as

det g̃
detg

= 1+ t1 +
1
2

(
t2
1 − t2

)
+

1
6

(
t3
1 −3t1t2 +2t3

)
(23)

+
1

24
(
t4
1 −6t2

1 t2 +3t2
2 +8t1t3−6t4

)
+O

(
|δg|5

)
,

and hence√
det g̃
detg

= 1+
1
2

t1 +
(

1
8

t2
1 −

1
4

t2

)
+

(
1

48
t3
1 −

1
8

t1t2 +
1
6

t3

)
(24)

+
(

1
384

t4
1 −

1
32

t2
1 t2 +

1
32

t2
2 +

1
12

t1t3−
1
8

t4

)
+O

(
|δg|5

)
.
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Thus we can equate (21) and (24). Suppose t1 is first order in ε . Then the only
first order term in (24) is 1

2 t1, but since s1 is second-order, the only first order term
in (21) is − 1

7 t1. It therefore follows that first order terms vanish, and so in fact t1
is also second-order in ε . This has profound consequences in that we can ignore
some of the terms in (24), as they give terms higher than fourth order:√

det g̃
detg

= 1+
(

1
2

t1−
1
4

t2

)
+

1
6

t3 +
(

1
8

t2
1 −

1
8

t1t2 +
1
32

t2
2 −

1
8

t4

)
+O

(
ε

5
)

.

(25)

From (22) we can write down δgab to fourth order in ε in terms of t1 and
quantities related to δ sab and from this get t2, t3 and t4 in terms of t1 and δ sab. So
we have

δgab = gab

((
1
7

t1−
1
7

s1

)
+

(
1
49

s2
1−

1
49

s1t1

))
+δ sab

(
1+

(
1
7

t1−
1
7

s1

))
+O

(
ε

5
)

(26)

and then from this,

t2 = s2 +
1
7

(
−s2

1 + t2
1 +2t1s2−2s1s2

)
+O

(
ε

5
)

, (27)

t3 = s3 +
3
7

(t1s2− s1s2)+O
(

ε
5
)

, (28)

t4 = s4 +O
(

ε
5
)

. (29)

Substituting, (27)-(29) into (25), we obtain√
det g̃
detg

= 1+
(
−1

4
s2 +

1
2

t1

)
+

1
6

s3 +
(
−1

8
s4−

1
8

s2t1 +
1
28

s2
1

+
1

32
s2

2 +
5

56
t2
1

)
+O

(
ε

5
)

. (30)

After expanding (21) to fourth order in ε and equating with (30), we are left with
a quadratic equation for t1:

27
392

t2
1 + t1

(
9

14
+

1
49

s1−
1
8

s2

)
+

(
−1

7
s1−

1
4

s2 +
1
6

s3

−1
8

s4 +
1
28

s2
1 +

1
32

s2
2

)
+O

(
ε

5
)

. (31)

Obviously there are two solutions, but it turns out that one of them has a term
which is zero order in ε , so this does not fit our assumptions, and hence we are
only left with one solution, which to fourth order in ε is given by

t1 =
2
9

s1 +
7

18
s2−

7
27

s3 +
(

7
36

s4 +
1

81
s1s2−

11
162

s2
1 +

7
648

s2
2

)
+O

(
ε

5
)

. (32)



16 S. Grigorian, S.-T. Yau

(21) we have√
det g̃
detg

= 1+
(

1
9

s1−
1
18

s2

)
+

1
27

s3 +
(

1
162

s2
1−

1
162

s1s2

− 1
36

s4 +
1

648
s2

2

)
+O

(
ε

5
)

. (33)

Using this and (19) we can immediately get the deformed metric. The precise
expression however is not very useful for us at this stage. What we want is to be
able to calculate the Hodge star with respect to the deformed metric. So let α be a
3-form, and consider the Hodge dual of α with respect to the deformed metric:

(∗̃α)mnpq =
1
3!

1√
det g̃

ε̂
abcdrst g̃mag̃nbg̃pcg̃qdαrst

=
√

detg√
det g̃

(∗α)abcd g̃mag̃nbg̃pcg̃qd

=
(

detg
det g̃

) 5
2
(∗α)abcd s̃mas̃nbs̃pcs̃qd

=
(

detg
det g̃

) 5
2 (

(∗α)mnpq +4(∗α) d
[mnp δ sq]d +6(∗α) cd

[mn δ sp|c|δ sq]d

+4(∗α) bcd
[m δ sn|b|δ sp|c|δ sq]d +(∗α)abcd

δ samδ sbnδ scpδ sdq

)
.

From (33), the prefactor
(

detg
det g̃

) 5
2

is given to fourth order by

(
detg
det g̃

) 5
2

= 1+
(
−5

9
s1 +

5
18

s2

)
− 5

27
s3 +

(
5

36
s4

− 25
162

s1s2 +
25

162
s2

1 +
25
648

s2
2

)
+O

(
ε

5
)

. (34)

Finally, consider how ∗ϕ deforms:

(∗̃ϕ̃)mnpq = ∗̃ϕmnpq + ε ∗̃χmnpq

=
(

detg
det g̃

) 5
2 (

(∗ϕ)mnpq+4(∗ϕ) d
[mnp δ sq]d+6(∗ϕ) cd

[mn δ sp|c|δ sq]d (35)

+4(∗ϕ) bcd
[m δ sn|b|δ sp|c|δ sq]d +(∗ϕ)abcd

δ samδ sbnδ scpδ sdq

+ε (∗χ)mnpq +4ε (∗χ) d
[mnp δ sq]d +6ε (∗χ) cd

[mn δ sp|c|δ sq]d

+4ε (∗χ) bcd
[m δ sn|b|δ sp|c|δ sq]d +O

(
ε

5
))

We ignored the last term, because overall it is at least fifth order.
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So far, the only property of Λ 3
27 that we have used is that it is orthogonal to ϕ ,

thus in fact, up to this point everything applies to Λ 3
7 as well. Now however, let χ

be of the form

χabc = hd
[aϕbc]d , (36)

where hab is traceless and symmetric, so that χ ∈Λ 3
27. Let us first introduce some

further notation. Let h1,h2,h3,h4 be traceless, symmetric matrices, and introduce
the following shorthand notation:

(ϕh1h2ϕ)mn = ϕabmhad
1 hbe

2 ϕden, (37)

ϕh1h2h3ϕ = ϕabchad
1 hbe

2 hc f
3 ϕde f , (38)

(ψh1h2h3ψ)mn = ψabcmψde f nhad
1 hbe

2 hc f
3 , (39)

ψh1h2h3h4ψ = ψabcmψde f nhad
1 hbe

2 hc f
3 hmn

4 . (40)

It is clear that all of these quantities are symmetric in the hi and moreover (ϕh1h2ϕ)mn
and (ψh1h2h3ψ)mn are both symmetric in indices m and n . Then, it can be shown
that

χ(a|mn|ϕ
mn

b) =
4
3

hab,

χamnχbpq ∗ϕ
mnpq = −4

7
|χ|2 gab +

16
9

(
h2)

{ab}−
4
9

(ϕhhϕ){ab} ,

χamnχbpq ∗χ
mnpqgab−

8
9

(
ϕhh2

ϕ
)
{ab} ,

where as before {a b} denotes the traceless symmetric part. Using this and (20),
we can now express δ sab in terms of h: and hence To get the full expression for

∗̃ϕ̃, (??)-(??) have to be substituted into the expression for the prefactor
(

detg
det g̃

) 5
2

(34), and then both (34) and (??) have to be substituted into the expression for
∗̃ϕ̃ (35). Obviously, the expressions involved quickly become absolutely gargan-
tuan. Thankfully, we were able to use Maple and the freely available package
”Riegeom” (22) to help with these calculations. After all the substitutions, the re-
sulting expression still has dozens of terms which are not of much use. In order for
the expression for ∗̃ϕ̃ to be useful, the terms in it have to be separated according to
which representation of G2 they belong to. Thus the final step is to apply projec-
tions onto Λ 4

1 , Λ 4
7 and Λ 4

27 (40)-(42). When applying these projections, many of
the terms have ϕ and ψ contracted in some way, so the contraction identities (19)-
(22) have to be used to simplify the expressions. The package ”Riegeom” lacks the
ability to make such substitutions, so a few simple custom Maple programs based
on ”Riegeom”had to be written in order to facilitate these calculations. Overall,
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the expansion of ∗̃ϕ̃ to third order is

∗̃ϕ̃ = ∗ϕ − ε ∗χ + ε
2
(

1
6
∗ iϕ ((φhhφ)0)−

1
42

|χ|2 ∗ϕ

)
(41)

−ε
3
(

2
1701

(ϕhhhϕ)∗ϕ +
5

24
|χ|2 ∗χ − 1

18
∗ iϕ

(
h3

0
)

+
1

36
∗ iϕ ((ψhhhψ)0)+

1
324

uy∗ϕ

)
+O

(
ε

4) ,

where (φhhφ)0, h3
0 and (ψhhhψ)0 denote the traceless parts of (φhhφ)ab,

(
h3

)
ab

and (ψhhhψ)ab , respectively, and

ua = ψ
a
mnpϕrsthmrhnshpt . (42)

Although above we did all calculations to fourth order, we will really only
need the expansion of ∗̃ϕ̃ to third order. However for possible future reference
here is the G2 singlet piece of the fourth order

π1 (∗̃ϕ̃)|
ε4 =

5
13608

(ψhhhhψ)+
25

2016
|χ| (43)

In fact, using the homogeneity property of ϕ ∧ ∗ϕ , it is possible to relate Λ 4
27

terms with a higher order Λ 4
1 term, so calculating higher order terms is also a way

to make sure that all the coefficients are consistent.
Now that we have expansions of ∗̃ϕ̃ for 1- and 27-dimensional deformations,

it is not difficult to combine them together. Suppose we want to combine con-
formal transformation and 27-dimensional deformations. As in the case with 7-
dimensional deformations consider

ϕ̃ = ϕ̂ + εχ,

where ϕ̂ = f ϕ and χ ∈Λ 3
27. Consider only up to second order in (41),

∗̃ϕ̃ = ∗̂ϕ̂ − ε ∗̂χ + ε
2
(
− 1

42
|̂χ|

2
∗̂ϕ̂ +

1
6
∗̂iϕ̂

((
ϕ̂ ĥĥϕ̂

)
0

))
+O

(
ε

3) .

Note that since hab = 3
4 χmn{aϕ mn

b} ,

ĥab =
3
4

χ
mn
mn{aϕ̂b} =

3
4

ĝmrĝms
χmn{aϕ̂b}rs

= f−
1
3 hab,

and hence (
ϕ̂ ĥĥϕ̂

)
ab = ϕ̂abmϕ̂denĥad ĥbe

= f−
4
3 (ϕhhϕ)ab .

Moreover,

iϕ̂
((

ϕ̂ ĥĥϕ̂
)

0

)
= f−1iϕ ((ϕhhϕ)0) .
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Therefore, overall,

∗̃ϕ̃ = f
4
3 ∗ϕ − ε f

1
3 ∗χ + ε

2
(
− 1

42
f−

2
3 |χ|2 ∗ϕ

+
1
6

f−
2
3 ∗ iϕ ((ϕhhϕ)0)

)
+O

(
ε

3) . (44)

Let f = 1+ εa, and expand in powers of ε to third order to get

∗̃ϕ̃ = ∗ϕ + ε

(
4
3

a∗ϕ −∗χ

)
+ ε

2
((

2
9

a2− 1
42

|χ|2
)
∗ϕ

−1
3

a∗χ +
1
6
∗ iϕ ((ϕhhϕ)0)

)
(45)

+ε
3
((

1
63

a |χ|2− 4
81

a3
)
∗ϕ − 1

9
a∗ iϕ ((ϕhhϕ)0)

+
(

1
9

a2− 5
24

|χ|2
)
∗χ

)
+ε

3
(

1
18

∗ iϕ
(
h3

0
)
− 1

36
∗ iϕ ((ψhhhψ)0)

− 2
1701

(ϕhhhϕ)∗ϕ − 1
324

uy∗ϕ

)
+O

(
ε

4) .

6 Moduli Space

In Sect. 4 we described how M-theory can be used to give a natural complexifica-
tion of the G2 moduli space—denote this space by MC. The metric (61) on MC
arises naturally from the Kaluza-Klein reduction of the M-theory action. As shown
in (19), it turns out that this metric is in fact Kähler, with the Kähler potential K
given by

K =−3logV, (1)

where as before, V is the volume of X ,

V =
1
7

∫
ϕ ∧∗ϕ.

Note that sometimes K is given with a different normalization factor. Here we
follow (19), but in (20) and (9), in particular, a different convention is used.

Let us show that K is indeed the Kähler potential for GMN̄ . Clearly, V, K and
GMN̄ only depend on the parameters sM for the G2 3-form—that is, only the real
part sM of the complex coordinates zM on MC. So let us for now just look at the
sM derivatives. Note that under a scaling sM −→ λ sM , ϕ scales as ϕ −→ λϕ and
from (5), ∗ϕ scales as ∗ϕ −→ λ

4
3 ∗ϕ , and so V scales as

V −→ λ
7
3 V.
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So V is homogeneous of order 7
3 in the sM , and hence

sM ∂V
∂ sM =

7
3

V

=
1
3

∫
sM

φM ∧∗ϕ,

and thus,

∂V
∂ sM =

1
3

∫
φM ∧∗ϕ. (2)

Hence,

∂K
∂ sM =− 1

V

∫
φM ∧∗ϕ. (3)

Here the dependence on the sM is encoded in V and in ∗ϕ , which depends non-
linearly on the sM . Thus we have,

∂ 2K
∂ zM∂ z̄N =

3
V 2

∂V
∂ sM

∂V
∂ sN − 3

V
∂ 2V

∂ sM∂ sN

=
1
3

1
V 2

(∫
φM ∧∗ϕ

)(∫
φN ∧∗ϕ

)
− 1

V

∫
φ(M ∧∂N) (∗ϕ) .

As we know from Sect. 5 , the first derivative of ∗ϕ is given by

∂N (∗ϕ) =
4
3
∗π1 (φN)+∗π7 (φN)−∗π27 (φN) , (4)

so therefore,∫
φ(M ∧∂N) (∗ϕ) =

4
3

∫
(π1 (ϕM)∧∗π1 (ϕN))+

∫
(π7 (ϕM)∧∗π7 (ϕN))

−
∫

(π27 (ϕM)∧∗π27 (ϕN)) .

Also using (40), we get

1
3

1
V 2

(∫
φM ∧∗ϕ

)(∫
φN ∧∗ϕ

)
=

7
3

1
V

∫
π1 (ϕM)∧∗π1 (ϕN) . (5)

Thus overall,

∂ 2K
∂ zM∂ z̄N =

1
V

(∫
(π1 (ϕM)∧∗π1 (ϕN))−

∫
(π7 (ϕM)∧∗π7 (ϕN))

+
∫

(π27 (ϕM)∧∗π27 (ϕN))
)

. (6)

Note that if Hol (X) = G2 then all the seven-dimensional components vanish, and
hence we get

∂ 2K
∂ zM∂ z̄N =

1
V

∫
X

φM ∧∗φN̄ = GMN̄ , (7)
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as claimed. Since the negative definite part of (6) vanishes, the resulting metric is
positive definite.

In general, there is at least one other good candidate for the metric on the G2
moduli space. The Hessian of V , rather than of logV , can be used as a Kähler po-
tential and gives a metric with signature

(
1,b3

27
)
. This metric is in particular used

in (23) and (9). There are some advantages to using V as the Kähler potential,
because some computations give more elegant results. However if we use the su-
pergravity action as a starting point for the study of the moduli space, our choice
of the Kähler potential is very natural.

Now we have a complex manifold MC, equipped with the Kähler metric GMN̄ ,
so it is now interesting to study the properties of this metric, and the geometry
which it gives. We will use the metric GMN̄ to calculate the associated curvature
tensor RMN̄PQ̄ of the manifold MC. Note that calculation of the curvature of the
moduli space but for a different choice of metric is done in (24).

Let us introduce local special coordinates on MC. Let φ0 = aϕ and φµ ∈ Λ 3
27

for µ = 1, . . . ,b3
27, so s0 defines directions parallel to ϕ and sµ define directions in

Λ 3
27. Since our metric is K ähler, the expression for RMN̄PQ̄ is given by

RK̄LM̄N = ∂M̄∂N∂L∂K̄K−GRS̄ (∂M̄∂R∂K̄K)(∂N∂L∂S̄K) . (8)

Also define

AMNR =
∂ 3K

∂ zM∂ zN∂ zR (9)

so that we can rewrite (8) as

RK̄LM̄N = ∂M̄∂N∂L∂K̄K−GRS̄AM̄RK̄ANLS̄. (10)

Now it only remains to work out the third and fourth derivatives of K. Starting
from (3) we find that

AMNR = − 1
V

∫
φM ∧ ∂ 2

∂ sN∂ sR (∗ϕ)+
1

V 2

(∫
φ(M ∧∗ϕ

)(∫
φN ∧

∂

∂ sR) (∗ϕ)
)

− 2
9V 3

(∫
φM ∧∗ϕ

)(∫
φN ∧∗ϕ

)(∫
φR∧∗ϕ

)
, (11)

and from the power series expansion of ∗ϕ (45), we can extract the higher deriva-
tives of ∗ϕ:

∂0∂0 (∗ϕ) =
4
9

a2 ∗ϕ, ∂0∂0∂0 (∗ϕ) =− 8
27

a3 ∗ϕ, (12a)

∂0∂µ (∗ϕ) = −1
3

a∗φµ , ∂0∂0∂µ (∗ϕ) =
2
9

a2 ∗φµ , (12b)

∂µ ∂ν (∗ϕ) = − 1
21

〈
φµ ,φν

〉
∗ϕ +

1
3
∗ iϕ

((
ϕhµ hν ϕ

)
0

)
, (12c)

∂0∂µ ∂ν (∗ϕ) =
2

63
a
〈
φµ ,φν

〉
∗ϕ − 2

9
a∗ iϕ

((
ϕhµ hν ϕ

)
0

)
, (12d)

∂µ ∂ν ∂κ (∗ϕ) = −5
4

〈
φµ ,φν

〉
∗φκ +

1
3
∗ iϕ

(
(hµ hν hκ)0

)
−1

6
∗ iϕ

((
ψhµ hν hκ ψ

)
0

)
− 4

567
(
ϕhµ hν hκ ϕ

)
∗ϕ, (12e)
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where hµ ,hν and hκ are traceless symmetric matrices corresponding to the 3-forms
φµ ,ϕν and φκ , respectively. Using these expressions, we can now write down all
the components of AMNR:

A0̄00̄ = −14a3, (13a)
A0̄0µ̄ = 0, (13b)

A0̄µν̄ = −2a
V

∫
φµ ∧∗φν̄ =−2aGµν̄ , (13c)

Aµ̄νρ̄ = − 2
27V

∫ (
ϕhµ̄ hν hρ̄ ϕ

)
dV. (13d)

Now also look at the fourth derivative of K. From (12), we get

∂ 4K
∂ z0∂ z̄0∂ z0∂ z̄0 = 42a4, (14a)

∂ 4K
∂ z0∂ z̄0∂ z0∂ z̄µ

= 0, (14b)

∂ 4K
∂ z0∂ z̄0∂ zµ ∂ z̄ν

=
4
3

a2

V

∫
φµ ∧∗φν̄ =

4
3

a2Gµν̄ , (14c)

∂ 4K
∂ z0∂ z̄µ ∂ zν ∂ z̄ρ

=
2
9

a
V

∫ (
ϕhµ hν hρ ϕ

)
vol =−3aAµ̄νρ̄ , (14d)
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∂ 4K
∂ zκ ∂ z̄µ ∂ zν ∂ z̄ρ

=
1
3

(
Gµ̄ν Gκρ̄ +Gµ̄κ Gνρ̄

)
+

1
3

1
V 2

∫
φκ ∧∗φν

∫
φµ̄ ∧∗φρ̄

+
1

27V

∫ ((
ψhκ hµ̄ hν hρ̄ ψ

)
(14e)

Note that it can be shown using the identity (21) that

ψhhhhψ = 12
(
ϕh2hhϕ

)
Now define

CMN =
∂ 2K

∂ zM∂ zN . (15)

This is the second derivative of K but with pure indices, rather than the derivative
with mixed indices which gives the metric have

∂ 2K
∂ zM∂ zN =

∂ 2K
∂ zM∂ z̄N (16)

so numerically, CMN and GMN̄ are in fact equal, and in particular,

Cµν =
1
V

∫
φµ ∧∗φν . (17)

So while CMN is not technically part of the metric, it inherits some similar prop-
erties. This happens due to the fact that while the complexification of the moduli
space comes naturally, the holomorphic structure is artificial to some extent, be-
cause the G2 and C-field moduli do not really mix. Using this definition, we can
rewrite (14e) as Taking into account that G00̄ = 1

7a2 and G0µ̄ = 0, we have enough
information to be able to write down the full expressions for the components of
the curvature tensor:Let us look at more detail at the expression for Aµν̄ρ̄ :

Aµ̄νρ̄ = − 2
27V

∫
ϕhµ̄ hν hρ̄ ϕvol

= − 2
27V

∫
ϕabcϕmnpham

µ̄ hbn
ν hcp

ρ̄
vol.

Define ha
µ = h a

µ mdxm. Then

ϕabcϕmnpham
µ̄ hbn

ν hcp
ρ̄

vol = 6ϕabcha
µ̄ ∧hb

ν ∧hc
ρ̄ ∧∗ϕ

and so,

Aµ̄νρ̄ =− 4
9V

∫
ϕabcha

µ̄ ∧hb
ν ∧hc

ρ̄ ∧∗ϕ. (18)

This is the precise analogue of the Yukawa coupling which is defined on the
Calabi-Yau moduli space. Similar expressions have appeared previously in (25; 8)
and (9). Similarly, we can write(

ψhκ hµ̄ hν hρ̄ ψ
)

vol = ψabcdψmnpqham
κ hbn

µ̄ hcp
ν hdq

ρ̄
vol
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= 24
〈

ψabcdha
κ ∧hb

µ̄ ∧hc
ν ∧hd

ρ̄ ,∗ψ

〉
vol

= 24ψabcdha
κ ∧hb

µ̄ ∧hc
ν ∧hd

ρ̄ ∧ϕ. (19)

Hence, we can rewrite (??) as
Note that because in the Λ 3

27 directions the first derivative of V vanishes, some
of these terms which appear in the curvature expression can also be expressed as
derivatives of V : So alternatively, we can write

Rκµ̄νρ̄ =
1
3

(
Gµ̄ν Gκρ̄ +Gµ̄κ Gνρ̄

)
−Gτσ̄ Aµ̄τρ̄ Aκνσ̄ −

5
21

Cµ̄ρ̄Cκν

− 3
V

∂ 4V
∂ zκ ∂ z̄µ ∂ zν ∂ z̄ρ

.

Define

UM̄ =
3
V

∂ 3V
∂ z̄M∂ zN∂ z̄R GNR̄. (20)

Then

∂KUM̄ =
3
V

(
∂ 4V

∂ zK∂ z̄M∂ zN∂ z̄R GNR̄− ∂ 3V
∂ z̄M∂ zN∂ z̄R A NR̄

K

)
. (21)

We can use this to express the Ricci curvature

Rκµ̄ =
(

1
3

b3 (X)− 1
63

)
Gκµ̄ −∂κUµ̄ , (22)

where b3 (X) = b3
27 +1 is the third Betti number of X . Also,

R0µ̄ = −aAµ̄νρ̄ Gνρ̄ =−∂0Uµ̄ , (23)

R00̄ = 2a2b3 (X) . (24)

Although here we have certain similarities with the structure of the Calabi-
Yau moduli space, we are lacking a key feature of Calabi-Yau moduli space—a
particular line bundle over the moduli space. For example, the holomorphic 3-form
on a Calabi-Yau 3-fold defines a complex line bundle over the complex structure
moduli space. In the G2 case, we could try and see what happens if we look at the
real line bundle L defined by ϕ over the complexified G2 moduli space MC. So
consider the gauge transformations where each f (z) is a real number. Then, as in
(8), define a covariant derivative D on L by

DMϕ = ∂Mϕ +
1
7

(∂MK)ϕ. (25)

Under the transformation (??),

V −→ f
7
3 V,

K −→ K−7log f ,
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and so

∂MK −→ ∂MK− 7
f

∂M f .

Hence

DMϕ −→ f DMϕ. (26)

Moreover, from the expression for ∂MK (3), we find that

D0ϕ = 0 Dµ ϕ = ∂µ ϕ.

So as noted in (8), this covariant derivative projects out the G2 singlet contri-
bution. It also gives a covariant way in which to extract the 27 contributions so we
can use DMϕ when we just need to extract ∂µ ϕ . Also consider

1
V
〈〈DMϕ,∗DN̄ϕ〉〉 =

1
V

∫
DMϕ ∧∗DN̄ϕ (27)

= GMN̄ −
1
7

∂MK∂N̄K.

When one of the indices is equal to zero, the whole expression vanishes. However
if both refer to the 27-dimensional components, then we just get Gµν̄ . A similar
expression holds for CMN .

More generally, we can extend the covariant to any quantity which transforms
under (??). Suppose Q(z) is a function on MC, which under (??) transforms as

Q(z)−→ f (z)a Q(z) .

Then define the covariant derivative on it by

DMQ = ∂MQ+
a
7

(∂MK)Q. (28)

From this we get

DMV = 0,

DM (∗ϕ) = ∂M (∗ϕ)+
1
7

4
3

(∂MK)(∗ϕ) ,

and in particular,

D0 (∗ϕ) = 0 Dµ (∗ϕ) =−∗
(
∂µ ϕ

)
so, in fact

DM (∗ϕ) =−∗DMϕ.

Further we can extend DM to objects with moduli space indices by replacing ∂

by
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∇—the metric-compatible covariant derivative with respect to the moduli space
metric GMN̄ , for which the Christoffel symbols are given by

Γ
N

M Q = GNP̄
∂MGP̄Q = AN

MQ. (29)

With these Christoffel symbols the covariant derivative of CMN is hence

∇QCMN =−AQMN . (30)

Then we also find that

DMDNϕ = ∂M

(
∂Nϕ +

1
7

(∂NK)ϕ

)
−AP

NMDPϕ +
1
7

∂MKDNϕ

=
1
7

(
CMN −

1
7

∂MK∂NK
)

ϕ −AP
NMDPϕ +

2
7

∂(MKDN)ϕ (31)

=
1
7

1
V
〈〈DMϕ,∗DNϕ〉〉ϕ −AP

NMDPϕ +
2
7

∂(MKDN)ϕ, (32)

and for mixed type derivatives, we have

DM̄DNϕ = ∂M̄

(
∂Nϕ +

1
7

(∂NK)ϕ

)
+

2
7

∂(M̄KDN)ϕ

=
1
7

1
V
〈〈DM̄ϕ,∗DNϕ〉〉ϕ +

2
7

∂(M̄KDN)ϕ

=
1
7

(
GM̄Nϕ +

2
7

(∂M̄K∂NK)ϕ +∂(M̄K∂N)ϕ

)
.

Note that here the covariant derivatives commute, so this connection is in fact flat.
Now look at the third covariant derivative of ϕ:

〈〈DRDMDNϕ,∗ϕ〉〉 = DR 〈〈DMDNϕ,∗ϕ〉〉−〈〈DMDNϕ,DR ∗ϕ〉〉
= DR 〈〈DMϕ,∗DNϕ〉〉+ 〈〈DMDNϕ,∗DRϕ〉〉 . (33)

First look at the second term in (33). Since DRϕ ∈ Λ 3
27, we basically get the pro-

jection π27 (DMDNϕ):

〈〈DMDNϕ,∗DRϕ〉〉 = −AP
NM 〈〈DPϕ,∗DRϕ〉〉+ 2

7
∂(MK

〈〈
DN)ϕ,∗DRϕ

〉〉
= −AMNR+

1
7

AP
MN∂RK∂PK+

2
7

CR(N∂M)K−
2
49

∂RK∂MK∂NK.

In the first term of (33), we have

DR 〈〈DMϕ,∗DNϕ〉〉 = VDR

(
1
V
〈〈DMϕ,∗DNϕ〉〉

)
= V ∇R 〈〈DMϕ,∗DNϕ〉〉

= V
(

∇RCMN −
1
7

∇R (∂MK∂NK)
)
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= V
(
−ARMN −

2
7

CR(M∂N)K +
2
7

AP
R(M∂N)K∂PK

)
.

Combining, we overall obtain

1
V
〈〈DRDMDNϕ,∗ϕ〉〉=−2ARMN −

2
49

∂RK∂MK∂NK +
3
7

A P
(MN ∂R)K∂PK.

(34)

Decomposing this into components, we have

1
V

〈〈
DρDµDν ϕ,∗ϕ

〉〉
= −2Aρµν ,

1
V

〈〈
D0DµDν ϕ,∗ϕ

〉〉
= 2Cµν ,

1
V
〈〈D0D0Dν ϕ,∗ϕ〉〉 = 0,

1
V
〈〈D0D0D0ϕ,∗ϕ〉〉 = 0.

Therefore, the quantity 1
V

〈〈
DρDµDν ϕ,∗ϕ

〉〉
essentially gives the Yukawa cou-

pling, again giving a result analogous to the case of Calabi-Yau moduli spaces.

7 Concluding Remarks

In this paper, we have computed the curvature of the complexified G2 moduli
space and found that while it has terms which are similar to the curvature of the
Calabi-Yau moduli, there are a number of new terms. In future work it would be
interesting to interpret these new terms geometrically. If we consider a 7-manifold
of the form CY3 × S1, where CY3 is a Calabi-Yau 3-fold, then we can define a
torsion-free G2 structure on it. The relationship between the Calabi-Yau moduli
space and the G2 moduli space is however very non-trivial, because the complex
structure moduli and the Kähler structure moduli become intertwined with each
other. So it could turn out to be illuminating to try and relate the curvature of
the G2 moduli space to the curvatures of complex and Kä hler moduli spaces. In
that case, however, b3

7 = 1, so in fact the second derivative of our Kähler potential
would give a pseudo-Kähler metric with signature (−+ . . .+) (6). Moreover, the
ansatz for the C-field (54) would also have to be different. Understanding how the
Calabi-Yau moduli space is related to the G2 moduli space could also enable us
to find a manifestation of mirror symmetry from the G2 perspective. Moreover, it
would be interesting to see how existing approaches to mirror symmetry on G2
manifolds (such as (26)) affect the geometric structures on the moduli space.

Another possible direction for further research is to look at G2 manifolds in a
slightly different way. Suppose we have type IIA superstrings on a non-compact
Calabi-Yau 3-fold with a special Lagrangian submanifold which is wrapped by a
D6 brane which also fills M4. Then, as explained in (27), from the M-theory per-
spective this looks like a S1 bundle over the Calabi-Yau which is degenerate over
the special Lagrangian submanifold, but this 7-manifold is still a G2 manifold. The
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moduli space of this manifold will then be determined by the Calabi-Yau moduli
and the special Lagrangian moduli. This possibly could provide more information
about mirror symmetry on Calabi-Yau manifolds (28).

A Appendix A: Projections of 3-Forms

Here will prove the formulae (40) to (42) which give the projections of 3-forms into 1-dimensional,
7 -dimensional and 27-dimensional components. Let χ ∈ Λ 3. Since Λ 3

1 ,Λ 3
7 and Λ 3

27 are all or-
thogonal to each other, we immediately get

π1 (χ) = aϕ where a =
1
42

(
χabcϕ

abc
)

=
1
7
〈χ,ϕ〉 and |π1 (χ)|2 = 7a2.

To work out π7 (χ), suppose

π7 (χ) = uy∗ϕ,

then consider

(uy∗ϕ)∧∗(vy∗ϕ) = (uy∗ϕ)∧ϕ ∧ v[

= 4∗u[∧ v[ = 4〈u,v〉vol. (1)

So this gives

|π7 (χ)|2 = 4 |ω|2 . (2)

However (1) can also be expressed as

(uy∗ϕ)∧∗(vy∗ϕ) =
1
6

π7 (χ)mnp vaψ
amnpvol

= −1
6

π7 (χ)mnp ψ
mnpavavol. (3)

Equating (1) and (3), we get

ua =− 1
24

π7 (χ)mnp ψ
mnpa = ω

a.

Finally we look at π27 (χ). Consider

χabc = π1 (χ)abc +π7 (χ)abc +hd
[aϕbc]d .

Then,

π1 (χ)mn{a ϕ
mn

b} = aϕmn{aϕ
mn

b} = 6g{ab} = 0, (4)

π7 (χ)mn{a ϕ
mn

b} = ω
p
ψpmn{aϕ

mn
b} = 4vp

ϕp{ab} = 0. (5)

Therefore,

3
4

χmn{aϕ
mn

b} =
3
4

hd
[mϕn{a]dϕ

mn
b}

=
1
2

hd
mϕn{a|d|ϕ

mn
b} +

1
4

ϕmndhd
{aϕ

mn
b}

=
1
2

hd
m

(
g{ab}δ

m
d −δ

m
{agb}d −ψ

m
{ab}d

)
+

3
2

hab

= hab (6)
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as required. Moreover,

|π27 (χ)|2 =
1
6

hd
[aϕbc]dhea

ϕ
bc

e

=
1
18

hd
aϕbcdhea

ϕ
bc

e +
1
9

hd
c ϕabdhea

ϕ
bc

e

=
1
3
|h|2− 1

9
hd

c hea (
δ

c
a gde−gaeδ

c
q +∗ϕ

c
ade

)
=

2
9
|h|2 . (7)

B Appendix B: Determinants

In this section, we will review deformations of determinants. Let I be the n×n identity matrix,
and let h be a symmetric n×n matrix. Suppose λ1, . . . ,λn are eigenvalues of h. Then

det(I + εh) =
n

∏
i=1

(1+ ελi) (1)

= 1+ ε ∑
i

λi + ε
2
∑
i< j

λiλ j + ε
3

∑
i< j<k

λiλ jλk

+ε
4

∑
i< j<k<l

λiλ jλkλl +O
(

ε
5
)

.

Define Then from Newton’s identities we know that

∑
i

λi = t1,

∑
i< j

λiλ j =
1
2

(
t2
1 − t2

)
,

∑
i< j<k

λiλ jλk =
1
6

(
t3
1 −3t1t2 +2t3

)
,

∑
i< j<k<l

λiλ jλkλl =
1
24

(
t4
1 −6t2

1 t2 +3t2
2 +8t1t3−6t4

)
,

and so we obtain

det(I + εh) = 1+ εt1 +
1
2

ε
2 (

t2
1 − t2

)
+

1
6

ε
3 (

t3
1 −3t1t2 +2t3

)
(2)

+
1

24
ε

4 (
t4
1 −6t2

1 t2 +3t2
2 +8t1t3−6t4

)
+O

(
ε

5
)

.

Now, for a metric g, we get

det(g+ εh)
detg

= 1+ εt1 +
1
2

ε
2 (

t2
1 − t2

)
+

1
6

ε
3 (

t3
1 −3t1t2 +2t3

)
+

1
24

ε
4 (

t4
1 −6t2

1 t2 +3t2
2 +8t1t3−6t4

)
+O

(
ε

5
)

,

where the traces are now with respect to the metric g.
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