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Abstract We consider deformations of torsion-free G, structures, defined by the
G»-invariant 3-form ¢ and compute the expansion of x¢ to fourth order in the
deformations of ¢. By considering M-theory compactified on a G, manifold, the
G, moduli space is naturally complexified, and we get a Kéhler metric on it. Using
the expansion of x¢, we work out the full curvature of this metric and relate it to
the Yukawa coupling.

1 Introduction

One of the possible approaches to M-theory is to consider compactifications of the
11-dimensional spacetimes of the form M4 x X, where M, is the 4-dimensional
Minkowski space and X is a 7-dimensional manifold. If X is a compact manifold
with G, holonomy, then this gives a vacuum solution of the low-energy effective
theory, and moreover, since X has one covariantly constant spinor, the resulting
theory in 4 dimensions has N = 1 supersymmetry. The physical content of the
4-dimensional theory is given by the moduli of G, holonomy manifolds. Such
a compactification of M-theory is in many ways analogous to Calabi-Yau com-
pactifications in String Theory, where much progress has been made through the
study of the Calabi-Yau moduli spaces. In particular, as it was shown in (1)) and
(2), the moduli space of complex structures and the complexified moduli space of
Kiéhler structures are both in fact, K& hler manifolds. Moreover, both have a spe-
cial geometry - that is, both have a line bundle whose first Chern class coincides
with the Ki hler class. However until recently, the structure of the moduli space
of G, holonomy manifolds has not been studied in that much detail. Generally, it
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turned out that the study of G, manifolds is quite difficult. Firstly, unlike in the
Calabi-Yau case (3)), there is no general theorem for existence of G, manifolds.
Although there are constructions of compact G, manifolds such as those that can
be found in (4) and (5), they are not explicit (a non-compact construction was also
given in (6)). Another difficulty is that the G,-invariant 3-form which defines the
G, -structure and the metric corresponding to it are related in a non-linear fashion.
This makes the study of G, manifolds more difficult from a computational point
of view.

We first start with an overview of G, structures in Sect. [2) where we state the
basic facts about G, manifolds and set up the notation. A G,-structure is defined
by a
Go-invariant 3-form ¢, and in Sect. [3| we review some of the computational prop-
erties of ¢ and its Hodge dual *¢, which we will need later on. Since one of
our main motivations to study G, manifolds comes from physics, in Sect. 4 we
review the role of G, manifolds in M-theory, and in particular we consider the
Kaluza-Klein compactification of the effective M-theory low-energy action on a
G; manifold. It turns out that in the reduced action, the moduli of the M-theory
3-form G, and the G, moduli naturally combine, to effectively give a complex-
ification of the G, moduli space. Moreover, the metric on this complexified space
turns out to be Kihler, and the Kéhler potential is essentially the logarithm of the
volume of the G, manifold.

The aim of this paper is to gain more information about the geometry of the
moduli space, and so the aim is to compute the curvature of this Kdhler met-
ric. This involves calculation of the fourth derivative of the Kéhler potential. The
method which we use for this requires us to know the expansion of *¢ to third
order in the deformations of ¢ . So in section [5] we in fact explicitly give the
expansion of *¢ to fourth order in the deformations of ¢. Previously, only the
full expansion to first order was known (4), and only partially to second order
(). However, there are approaches to calculating higher derivatives of the Kéhler
potential without explicitly computing an expansion of ¢ - for example the third
derivative has been computed by de Boer et al in (8) and by Karigiannis and Leung
in (9).

Finally, in section [§] we use our expansion of *¢ from section [5]to calculate
the full curvature of the G, moduli space, and then the Ricci curvature as well.
As it has already been noted in (8)) and (9), the third derivative of the Kihler
can be interpreted as a Yukawa coupling, and it bears a great resemblance to the
Yukawa coupling encountered in the study of Calabi-Yau moduli spaces. At the
end of section [6] we consider look at some properties of covariant derivatives on
the moduli space.

2 Overview of G, Structures

We will first review the basics of G, structures on smooth manifolds. The main
references for this section are (4;[7) and (10).
The 14-dimensional Lie group G can be defined as a subgroup of GL(7,R)

in the following way. Suppose x', ..., x” are coordinates on R” and let e'/¥ = dx’ A
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dx/ N\ dx*. Then define ¢y to be the 3-form on R given by

— 6123 145 167 246 257 347 356. ()

¢o +e " te " te el —e —e

Then Gy is defined as the subgroup of GL(7,R) which preserves ¢y. Moreover, it
also fixes the standard Euclidean metric

go=(ax")+...+ (ax])’ @)

on R7 and the 4-form ¢y which is the corresponding Hodge dual of ¢y:

4567

5 = 567 4 2367

2345 +el357 —61346 —61256 —61247. (3)

+e

Now suppose X is a smooth, oriented 7-dimensional manifold. A G, structure
Q on X is a principal subbundle of the frame bundle F, with fibre G,. However we
can also uniquely define Q via 3-forms on X. Define a 3-form ¢ to be positiveif
we locally can choose coordinates such that ¢ is written in the form - that is
for every p € X there is an isomorphism between 7,X and R such that ¢| » = P0.
Using this isomorphism, to each positive ¢ we can associate a metric g and a
Hodge dual *¢ which are identified with go and *¢p under this isomorphism,
and the associated metric is written (2). It is shown in (4) that there is a 1 — 1
correspondence between positive 3-forms ¢ and G, structures Q on X.

So given a positive 3-form ¢ on X, it is possible to define a metric g associated
to ¢ and this metric then defines the Hodge star, which in turn gives the 4-form
x(. Thus although *¢ looks linear in @, it actually is not, so sometimes we will
write Y = *¢ to emphasize that the relation between ¢ and *¢ is very non-trivial.

In general, any G-structure on a manifold X induces a splitting of bundles of
p-forms into subbundles corresponding to irreducible representations of G. The
same is of course true for G, -structure. From (4) we have the following decom-
position of the spaces of p-forms A”:

Al = AL (4a)
AT = A2 @AY, (4b)
A=A oA e A, (4c)
A=Al e AT A, (4d)
A’ = A DA7, (4e)
A = A8 (4f)

Here each A,f corresponds to the k-dimensional irreducible representation of G,.

Moreover, for each k and p, A,f’ and Ak7 ~? are isomorphic to each other via Hodge
duality, and also A7p are isomorphic to each other for n = 1,2,...,6. Note that ¢
and x@ are G, -invariant, so they generate the 1-dimensional sectors Af and A14 ,
respectively.

Define the standard inner product on A”, so that for p-forms & and f3,

(a,B)

1
= Eaal.“al,ﬁalmap. (5)
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This is related to the Hodge star, since
an«B = (o, B)vol, (©)

where vol is the invariant volume form given locally by

vol = \/detgdxl/\.../\dx7. 7

Then it turns out that the decompositions are orthogonal with respect to (3)).
This will be seen easily when we consider these decompositions in more detail in
the next section.

As we already know, the metric g on a manifold with G, structure is deter-
mined by the invariant 3-form ¢. It is in fact possible to write down an explicit
relationship between ¢ and g. Let u and v be vector fields on X. Then

1
(u,v)vol = 3 (uap) A(vo@) A . (8)
Here _ denotes interior multiplication, so that

(u—'(»o)bc =u" Pape- 9)

The definition (8) is rather indirect because vol depends on g via (7). To make
more sense of it, rewrite in components

1 A
8ap/detg = m(pamn(/)bpqq)rstgmnpqmt, (10)

where &7P9"! is the alternating symbol with £'>+7 = +1. Define

1 A
By, = m Parmn Popg Prst gmnparst ( 11 )

so that then, after taking the determinant of (I0) we get

g = (detB) ™9 By, (12)

This gives a direct definition, but because dets may be awkward to compute, (12))
is not always the most practical definition. For us, it will be more useful to take
the trace of (I0) with respect to g, which gives and hence

(13)

Although this is also an indirect definition, it is sometimes easier to handle this
expression.

There are in fact a total of 16 torsion classes of G, structures, each of which
places certain restrictions on d@ or d * ¢ (11). One of the most important classes
of manifolds with G, structure are manifolds with G, holonomy. The group G»
appears as one of two exceptional holonomy groups - the other one is Spin (7) for
8-dimensional manifolds. The list of possible holonomy groups is limited and they
were fully classified by Berger (12) . Specifically, if (X, g) is a simply-connected
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Riemannian manifold which is neither locally a product nor is symmetric, the only
possibilities are shown in the table below.

Dimension Holonomy Type of Manifold

2k U (k) Kihler

2k SU (k) Calabi-Yau
4k Sp (k) HyperKéhler
4k Sp(k)Sp(1) Quaternionic
7 G Exceptional
8 Spin(7) Exceptional

It turns out that the holonomy group Hol (X,g) C G if and only if X has a
torsion-free G, structure (4). In this case, the invariant 3-form ¢ satisfies

do=dxp=0 (14)

and equivalently, V¢ = 0, where V is the Levi-Civita connection of g. So in fact,
in this case ¢ is harmonic. Moreover, if Hol (X,g) C G», then X is Ricci-flat.

For a torsion-free G structure, the decompositions (@) carry over to de Rham
cohomology (4)), so that we have

H?*(X,R) = H2 & H, (15a)
H? (X,R) = H; ® H; ©Hy;, (15b)
H*(X,R) = H} @ H © HY,, (15¢)
H® (X,R) = H; ® Hj,. (15d)

Define the refined Betti numbers bf: =dim (H,f ) Clearly, b? = b? =1 and we also

have by = b’; for k = 1,...,6. Moreover, it turns out that b; = 0 if and only if
Hol (X,g) = G,. Therefore, in this case the H¥ component vanishes in .

An example of a construction of a manifold with a torsion-free G, structure

is to consider X =Y x S!, where is a Calabi-Yau 3-fold. Define the metric and a

3-form on X as
gx = d6* x gy, (16)
(17)

where 6 is the coordinate on S!. This then defines a torsion-free G» structure, with
1
*(pziamwfde/\ (18)

However, the holonomy of X in this case is SU (3) C G;. From the Kiinneth for-
mula we get the following relations between the refined Betti numbers of X and
the Hodge numbers of Y:

P =1 fork=1,...,6,

bhy = "' —1 fork = 2,5,

bh, = nt 4 2r3! fork = 3,4.
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3 Properties of ¢

The invariant 3-form ¢ which defines a G, structure on the manifold X has a
number of useful and interesting properties. In particular, contractions of ¢ and
Y = x@ are very useful in computations. From (7;[13)) and (14), we have

(Pabc(Pmnc = Zam&bn — &an&bm + Wabmn (19)
Pave Vinnp =3 (gu[m(pnp]b - gb[m(pnp]a) . (20)

Essentially, these identities can be derived straight from the definitions of ¢ and
v = *¢@ in flat space - (I)) and (3)) respectively. For more details, please refer to (7)
and (L13). Note that we are using a different convention to (13)), and hence some of
the signs are different.

Consider the product W, ¥""'P4. Expanding y as the Hodge star of ¢ and
then using the usual identity for a product of Levi-Civita tensors and then applying

(T9) gives

Wabcd Wmnpq = 2456?" 5[? 5(? 5:1] ! + 72w[ab[mn 55) 55]] a 16(p[ahc(p[mnp qu]] ’ (21

Contracting over d and g gives

Yarea ¥ = 63" 58 + 9y, 1" 81 — puneg™”, (22)

f

which agrees with the expression given in (14). Of course the above relations can
be further contracted to obtain

Pabe P " = 6gam, (23)
Pabe Yinn be = 4(Pamn7 (24
Yabcd Yinn “ = A8am8in — 48an&bm + 2Wabmn- (25)

Contracting even further, we are left with

(Pabc(PabC =42, (26)
(pabcll/mabc =0, (27)
Yabed Vi bed — 24gam, (28)
Wabea W™ = 168. (29)

The relations and both yield |@|* = 7 in the inner product . So in fact
we have

V%/qmw, (30)

where V is the volume of the manifold X.
Now look in more detail at the decompositions (). We are in particular in-
terested in decompositions of 2-forms and 3-forms since the decompositions for
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4-forms and 5-forms are derived from these via Hodge duality. From (7)) and (10)),
we have

A? = {0.9¢ : ® a vector field}, (31)
1

/\124 = {a = 5oza;,a'x“ AdxP (aw) € gz}, (32)

A = {fo: f a smooth function}, (33)

A3 = {wi% ¢ : o avector field} (34)

A ={xe @’ xAp=0andy Ax@=0}. (35)

Following (7), it is enough to consider what happens in R” in order to understand
these decompositions. Consider first the Lie algebra so (7), which is the space of
antisymmetric 7 x 7 matrices. For a vector @ € R’ , define the map Po : R’ —
50(7) by py (@) = w2, and this map is clearly injective. Conversely, define the

map T : 50 (7) — R7 such that 7y ()¢ = £9¢,, . From (23), we get that

To (P(p (w)) =0,

so that 7, is a partial inverse of py. Now the Lie algebra g, can be defined as the
kernel of 7, (13), that is

g2 =kerty = {(x €so(7): (pabcochC = 0}. (36)
This further implies that we get the following decomposition of so (7):

50(7) = g2 @ py (R7). (37)

The group G, acts via the adjoint representation on the 14 -dimensional vector
space g, and via the natural, vector representation on the 7-dimensional space
Py (R7). This is a G, -invariant irreducible decomposition of so(7) into the rep-

resentations 7 and 14. Hence follows the decomposition of A? and also the
characterizations and (32)).
Following (7)) again, let us look at A§’7 in more detail. Consider Sym? ((R7) *)

- the space of symmetric 2-tensors and define amap iy : Sym? ((R7) *) — A3 ((R7) *)
by

g () ape = il Pocia- (38)
Clearly,
ip (8)abe = Pave-
Now, we can decompose Sym? ((R7)*) = Rg & Sym? ((R7)*>, where Rg is the

set of symmetric tensors proportional to the metric g and Sym(z) ((R7) *> is the set
of traceless symmetric tensors. This is a Gp-invariant irreducible decomposition
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of Sym? ((R7)*) into 1-dimensional and 27 -dimensional components. The map
ip is also G7 -invariant and is injective on each summand of this decomposition.

Looking at the first summand, we get that iy (Rg) = A} ((R7) *) . Now look at the
second summand and consider iy (Sym% ((R7)*)) This is 27-dimensional and
irreducible, so by dimension count it follows easily that i, (Sym% <(R7)*)) =

AS ((R7) *> . All of this carries over to 3-forms on our G, manifold X, and so we
get

A237 = { XEAY: Yupe = h’[ja(pbc]dforhab traceless and symmetric} .39

From the identities for contraction of ¢ and %@, it is possible to see that this is
equivalent to the description of A237. Thus we see that 1-dimensional compo-
nents correspond to scalars, 7-dimensional components correspond to vectors and
27 -dimensional components correspond to traceless symmetric matrices.

Now suppose we have y € A3, then it is always useful to be able to compute
the different projections of y into A3 /\73 and A237. Denote these projections by
7y, 7 and 77, respectively. As shown in Appendix 1, we have the following
relations:

_ _ i abc\ __ 1 2 _ 2
m () = ap where a = 2 (Xarc9™) = 5 (1.9) and |m (1) =7a%,  40)
7 () = W% @ where 0% = —ixmnpwmnﬁa and|m; (x)° = 4|0)?, (41)
. 3 mn 2
To7 (x) = ip (h) where hy, = 2 Xmn{a Py and|my7 (x))* = 5 |h|*. (42)

Here {a b} denotes the traceless symmetric part.

4 G, manifolds in M-Theory

Special holonomy manifolds play a very important role in string and M-theory
because of their relation to supersymmetry. In general, if we compactify string or
M-theory on a manifold of special holonomy X the preservation of supersymme-
try is related to existence of covariantly constant spinors (also known as parallel
spinors). In fact, if all bosonic fields except the metric are set to zero, and a super-
symmetric vacuum solution is sought, then in both string and M-theory, this gives
precisely the equation

VE=0 (43)

for a spinor &. As lucidly explained in (13), condition on a spinor immedi-
ately implies special holonomy. Here & is invariant under parallel transport, and
is hence invariant under the action of the holonomy group Hol (X, g). This shows
that the spinor representation of Hol (X,g) must contain the trivial representa-
tion. For Hol (X, g) = SO (n), this is not possible since the spinor representation
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is reducible, so Hol (X,g) C SO (n). In particular, Calabi-Yau 3-folds with SU (3)
holonomy admit two covariantly constant spinors and G, holonomy manifolds
admit only one covariantly constant spinor.

Consider the bosonic action of eleven-dimensional supergravity (16)), which is
supposed to describe low-energy M-theory:

I N P TRPRRS SV 1/ 1/
5_2./d (@R~ [GriG-— [enang, (44)

where ¢ is the metric on the 11-dimensional space M and C is a 3-form potential
with field strength G = dC. From (4)), the equation of motion for C is found to be

1
d*G:EG/\G. (45)

Suppose we fix M = My x X, where My is the 4-dimensional Minkowski space
and X is a space with holonomy equal to G,. Then M is Ricci flat, so from Ein-
stein’s equation, G has to vanish. However, it turns out that the assumption that
Gx = G| x = 0 is not an obvious one to make. In fact, as explained in (17)), Dirac
quantization on X gives a shifted quantization condition and gives the statement

G A
{2;} ~5 €H' (X.Z), (46)
where [%’;] is the cohomology class of % and A = 1 py (X), where p; (X) is the

first Pontryagin class on X. So if A were not even in H*(X,Z), then the ansatz
Gx = 0 would not be consistent. Nonetheless, it was shown in (18) that if X is a
seven dimensional spin manifold (or in particular G, holonomy manifold), then in
fact A is even, and setting Gy = 0 is consistent.

So overall the simplest, Ricci-flat vacuum solutions are given by

(2) =nxgr, @7)
() =0, (48)
(G) =0, (49)

where (-) denotes the vacuum expectation value and g7 is some metric with G
holonomy while 7 is the standard metric on the four dimensional Minkowski
space. However, we know that a G, structure and hence the metric g7 is defined
by a Gy -invariant 3-form ¢, so we have

(@) = @o. (50)
Now consider small fluctuations about the vacuum,
§= (8 +48, (51)
C=(C)+6C=20C, (52)
¢ =(9)+59=wp+3¢. (53)
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So a Kaluza-Klein ansatz for C can be written as
C= Zc q)N—I—ZA’ x) Aoy, (54)

where {@y } are a basis for harmonic 3-forms on X , {0y} are a basis for harmonic
2-forms on X, ¢V (x) are scalars on My and A’ (x) are 1-forms on My which de-
scribe the fluctuations of C. Also b, and b3 are the Betti numbers of X. Since we
assume that X has holonomy equal to G, by =0, so in we do not have a con-
tribution from harmonic 1-forms on X. Now, deformations of the metric on X are
encoded in the deformations of ¢ and since ¢ is harmonic on X, we parameterize

¢ as
b3
o= 5" (x)¢n. (55)
N=1

Overall, in 4 dimensions we get b3 real scalars ¢ and b3 real scalars s". Together

these combine into b3 massless complex scalars zV:

ZNZ%(SN—i-icN). (56)

In the 4-dimensional supergravity theory this gives b3 massless chiral superfields.
The 1-forms A’ in give rise to by massless Abelian gauge fields, and together
with superpartners arising from the gravitino fields, these form b, massless vector
superfields (L1S5). Thus overall, in four dimensions the effective low energy the-
ory is 4" = 1 supergravity coupled to b, abelian vector supermultiplets and b3
massless chiral supermultiplets. The physical theory is not very interesting from
a phenomenological point of view, since the gauge group is abelian and there are
no charged particles. However the combination (56) proves to be very useful for
studying the moduli space of G, manifolds, since it provides a natural, physically
motivated complexification of the pure G, moduli space—something very similar
to the complexified Kahler cone used in the study of Calabi-Yau moduli spaces.

Let us now use our Kaluza-Klein ansatz to reduce the 11-dimensional action
(#4) to 4 dimensions. Here we follow (19;120) and (14). The term which interests
us is the kinetic term for the zV. The kinetic term for the ¢V, Ly, (¢) comes from
the reductlon of the G A *G term in (44). After switching to the Einstein frame by
guv —V~ g,w we immediately see this gives us

1 o
Liin (¢) = —WaucM oHeN /X Oy A *Qy. (57)
The kinetic term for the s™ appears from the reduction of the RU'!) term in .
This is less straightforward than the derivation of Ly, (c), but the calculation was

shown explicitly in (14). From the general properties of the Ricci scalar we can
decompose the eleven-dimensional Einstein-Hilbert action as

1
11 RO 11 % (4) 7 W mn
/d /d <R +RY + a4V (augmn‘9 8

(58)
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Then, using deformation properties of the G, metric g, from Sect. [} and switch-
ing to the Einstein frame g,y — y-! guv, we eventually get

1
Lyin (s) = —WausMa“sN /X¢M/\*¢N. (59)

The kinetic term of the dimensionally reduced action is in general given in the
Einstein frame by

Liin = — Gy dud o2, (60)

Comparing with and (39), we can read off the moduli space metric
Gyn as

1
Gus =57 [, 0w Ay, (61)

Note that the Hodge star implicitly depends on the coordinates z¥, so this metric
is quite non-trivial.
The bosonic part of fully reduced 4-dimensional Lagrangian is given in this
case by (21; 20) where Gy is as in (61), and
Fl =9,Al —9,AL.

mn

To get the second equality in (??) we have used that H> = H 124 for manifolds with
G; holonomy and that for a 2 -form «, 2+ 77 (o) — x4 () = o A @. Proof of this
fact can be found in (10).

5 Deformations of G, Structures

As we already know, the G, structure on X and the corresponding metric g are
all determined by the invariant 3 -form ¢. Hence, deformations of ¢ will induce
deformations of the metric. These deformations of metric will then also affect the
deformation of *¢. Since the relationship (8)) between g and ¢ is non-linear, the
resulting deformations of the metric are highly non-trivial, and in general it is not
possible to write them down in closed form. However, as shown by Karigiannis
in (10), metric deformations can be made explicit when the 3 -form deformations
are either in A13 or A73. We now briefly review some of these results.
First suppose

¢=ro. ey
Then from (I0) we get

. = r .,
Zap/detg = 144 Pamn Popg Prst € npgrst

= f3gap\/detg. )

After taking the determinant on both sides, we obtain

detg = [ detg. 3)
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Substituting (3) into (2)), we finally get

2
gab = fjguba (4)
and hence
N 4
5= [3xo. )

Therefore, a scaling of ¢ gives a conformal transformation of the metric. Hence
deformations of ¢ in the direction A]3 also give infinitesimal conformal transfor-
mation. Suppose f = 1+ €a , then to fourth order in €, we can write

4 2 4
Q= (1+3a8+ 9a282—81a383+;3a484+0(85>> * Q. ©6)

Now, suppose in general that ¢ = ¢ + £ for some y € A>. Then using (8 for
the definition of the metric associated with @,

(@) A(va@) A @

(ua@) A (va@) N @)

+ o=

%8 [az) A (va@) A @+ (ua@) A (vax) A @ + (@) A (vap) A
8 1) A (o) A+ (09) A 2) A+ (W) A (v9) A 2]

-1-883 (uay) N (vax) N x.

After some manipulations, we can rewrite this as:

(u,v)vol = — (us@) A (va@) A @ 3)

1
+683 (usg) N(vax) A x.

Rewriting (8) in local coordinates, we get

. /detg 1 1
gabm = 8w+ EEan(a (pb)mn + §82XamnXbpq Wmnpq
1
+ﬁ83XamnXbpq (*%)mnpq . (9)

Now suppose the deformation is in the A73 direction. This implies that

X =0ixQ (10)
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for some vector field @. Look at the first order term. From and we see
that this is essentially a projection onto A13 EBA237—the traceless part gives the A237

component and the trace gives the Al3 component. Hence this term vanishes for

X € A73. For the third order term, it is more convenient to study it in . By looking
at

0 ((uaos% Q) A (va@ix @) Ax@) =0,

we immediately see that the third order term vanishes. So now we are left with

_ 1, .
Zap/detg§ = (gab + gez(’f wdllfcumn depqwmnpq> V/ detg
_ (ga,, (1+32|m|2) —e2wawb) /detg, (11)

where we have used the contraction identity for y ([23) twice. Taking the determi-
nant of (11} gives

(¥}

Vdetg = (1+¢%of) " detg, (12)
((gab(1+82|a)|2)—sza)aa)b>>7 (13)

LI

g = (1+€ o)
and eventually,

1

¢ = (l +€? |co\2)_§ (x@ +x€ (0% @) + 70 (019)). (14)
The details of these last steps can be found in (10). Notice that to first order in &,

both y/detg and g, remain unchanged under this deformation. Now let us exam-
ine the last term in in more detail. Firstly, we have

0Ox (i) = * (oub A (au(p))
and
(a)b A ((I)_I(P))mnp = 30, 0 Qqjnp)
=3ip (0o ), (15)

where (® o ®),, = ,;. Therefore, in (14), this term gives A} and AY;, compo-
nents. So, we can write (14) as

1
5P = (1+82|a)\2> ’ <(1+382|(D|2> *Q
+xe(@ix @)+ xip (wom)y)). (16)

Here (@ o @), denotes the traceless part of ® o @, so that iy (0o ®),) € A}, and
thus, in (T6), the components in different representations are now explicitly shown.
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As we have seen above, in the cases when the deformations were in Al3 or

/\73 directions, there were some simplifications, which make it possible to write
down all results in a closed form. Now however we will look at deformations in
the A237 directions, and we will work to fourth order in €. So suppose we have a
deformation

¢=9+ey,
where y € A§7. Now let us set up some notation. Define
. 1 P
Sab = mﬁ@amn Db pq Prst
. /detg

= 8ab /7detg'

From (I0), the untilded s, is then just equal to g,,. We can rewrite (I8) as

é.mn pqrst ( 1 7)

(18)

A

detg

(gub+6gab) :gab+6sab; (19)

;

detg

where Og,;, is the deformation of the metric and &s,;, is the deformation of s,
which from (9) is given by

1 mn 1 n 1 mn
65ab = ESan(a (pb) =+ §SZXamnXbqum Pe - ﬁej)(amnxbpq (*X) e (20)

Also we introduce the following short-hand notation: where the trace is taken
using the original metric g. From , note that since y € A237, when taking the
trace the first order term vanishes, and hence s; is second-order in €.

Further, after taking the trace of using g% and rearranging, we have

|detg 1 1\
—=(1+= 1+ =t 21
dete ( —|—7s1)( +71> ; 1)
1 1 \!
Zab = Sup (1 +7t1> <1 + 7S1> . (22)

As shown in Appendix B, we can also expand detg as

and hence

detg 1 2 1 3
— =14H+=(t] —t¢ — (7 — 3t1tp + 2¢ 23
detg +1+2(1 2)+6(1 11 +213) (23)

1
+52 (t} — 6131y + 313 + 81113 — 6ts) + O (|5g|5) ,
and hence

detg 1 1, 1 1 5 1 1
—= =14+ =t —t7 — —t —17 — =titr + =t 24
“detg +21+<81 42)+<481 812+63> (24)

1, 1, 1, 1 1 5
— i — —=tih+ —=t+ —tts — =t 0(3 )
+<3841 ittt i =gl ) +0([0¢]
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Thus we can equate (2 and . Suppose 7, is first order in €. Then the only
ﬁrst order term in lb is t1, but since s is second-order, the only first order term

ll is —ftl. It therefore follows that first order terms vanish, and so in fact #;
is also second-order in €. This has profound consequences in that we can ignore
some of the terms in (24), as they give terms higher than fourth order:

detg 1 1 1 1, 1 1 1 5
— =1 —t — =1 —t =t 1"t — =1 0( )
detg +<21 42)+63+<81 812+32 84>+ €

(25)

From (22) we can write down &g, to fourth order in € in terms of #; and
quantities related to ds,;, and from this get , t3 and #4 in terms of ¢#; and ds,p. So

we have
B 1o 1, 1
08ab = 8ab <<711 - 7S1> + (49 4951t1>>
+5sub< (11‘1 —s1>) -1—0(85) (26)

and then from this,

1
h=s+s (=st+17+2t150—2515) + O (85> ; 27
3
13 =ss+7(11S2—S1S2)+0(85>> (28)
4 =54+0 (85) . (29)

Substituting, (27)-(29) into (25), we obtain

detg (Lo LN L (L
— = —=S$+ = —s —=S4— =S
detg 4727 )T gt gt T gl

312s2+ 556 )+0( ). (30)

After expanding (2] to fourth order in € and equating with (30)), we are left with
a quadratic equation for #;:

25, (9,1 LY (L, 1!
A SRR 71T 42T g%

11, 1
- 1
RS TR )+0( ) S

Obviously there are two solutions, but it turns out that one of them has a term
which is zero order in &, so this does not fit our assumptions, and hence we are
only left with one solution, which to fourth order in € is given by

2 77 71 1, 7
=514+ — 0( ) 32
S TR Y S3+(363“+815”2 16211 6ag™ )+ (32)
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(21)) we have

detg | (1 LN, Lo (L, 1
— = —s51 — = —=81— =518
detg 9’1 18 ) T 27 T 12 T 162”1

—31—6S4+@ >+0<35). (33)

Using this and (I9) we can immediately get the deformed metric. The precise
expression however is not very useful for us at this stage. What we want is to be
able to calculate the Hodge star with respect to the deformed metric. So let & be a
3-form, and consider the Hodge dual of o with respect to the deformed metric:

I 1

(;Ea)mn = éaderStgmagnbgpcquarst
P4 31 ,/detg
v/det
= \/%(*a)abc 8ma&nb8pc8qd
det
= etg smasnbspcsqd
5
detg 7
B (detg) mnpq 4(*05) [mnp ! 85 ]d+6(*a) 65/7\ 19544

+4 (*Oc)[m 5sn|b‘ 35p/c|084a + (sr)*0cd 5sam5sb,15scp5sdq) .

(S

From 1| the prefactor (gg:g) is given to fourth order by

dets %—I—F —§s —i—is —is—é— >
detg) 01T 18" ) T 275 T\ 36

4
162" g1t 648s2> +0( ) (34)

Finally, consider how *¢ deforms:

(%(hp)mnpq = >T<(pmnpq + 8>T<%mnpq

5
detg 2 ‘
— (S5 (P 4N S5 (0 BBy G

+4(xQ) bed 05,1 05 p|c| O g1a + () ®d 0SamO8pn0cpOSag
+€ (*%)mnpq +4€ (*X)[mnp 55‘1]" +6¢ (*X) 6sl7|“ 6s‘1]d
+4¢€ (*%)[m bed 5sn|b‘5sp‘c‘5sq}d +0 (8 ))

We ignored the last term, because overall it is at least fifth order.
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So far, the only property of A237 that we have used is that it is orthogonal to ¢,

thus in fact, up to this point everything applies to /\73 as well. Now however, let x
be of the form

Xabe = hf, @pela (36)

where h,, is traceless and symmetric, so that y € A237. Let us first introduce some
further notation. Let k1, hy, k3, hg be traceless, symmetric matrices, and introduce
the following shorthand notation:

(Oh1129) 1 = Pabmh {15 Paten, (37)
Ohihahs@ = Qunchi 5 S Quey, (38)
(Whihah3 W),y = Wabem Waepnh S RE RS (39)
Whi o h3ha W = Wapem Wae puh§ ORS¢ HS B (40)

It is clear that all of these quantities are symmetric in the &; and moreover (Qh;h @)
and (yhihah3y),,, are both symmetric in indices m and n . Then, it can be shown
that

mn

mn 4

X(a|mn| (ph) - ghaha
16

mn 4 4
%amn%bpq *Q Pl = _7 ‘X|2gab + 3 (hz){ab} _ § <(Phh(P){ah} )

mn 8
XamnXopq * X" gab — 9 (qothQO) {ab}’

where as before {a b} denotes the traceless symmetric part. Using this and (20),
we can now express 05, in terms of 4: and hence To get the full expression for

5
%@, (72)-(??) have to be substituted into the expression for the prefactor (gztg) :

(34), and then both (34) and (??) have to be substituted into the expression for
%@ (33). Obviously, the expressions involved quickly become absolutely gargan-
tuan. Thankfully, we were able to use Maple and the freely available package
“Riegeom” (22) to help with these calculations. After all the substitutions, the re-
sulting expression still has dozens of terms which are not of much use. In order for
the expression for ¥ to be useful, the terms in it have to be separated according to
which representation of G, they belong to. Thus the final step is to apply projec-
tions onto Al4 , A;‘ and A§7 —. When applying these projections, many of
the terms have ¢ and y contracted in some way, so the contraction identities (T9)-
(22) have to be used to simplify the expressions. The package ”Riegeom” lacks the
ability to make such substitutions, so a few simple custom Maple programs based
on “Riegeom”had to be written in order to facilitate these calculations. Overall,
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the expansion of *{ to third order is
~ 1
%wzz*w—e*x+82(M¢«¢MW)) MF*¢> @)
et (= (¢hh¢)*¢+~—WX|*x iy (1)
1701 *lo
1 1
+3g *1p ((whhhy), )—|-324u_|*(p) (84),

where (¢hho),, hj and (yhhhy), denote the traceless parts of (¢9hho),,, (h*)
and (yhhhy),, , respectively, and

Ut = Y Prs "R (42)

Although above we did all calculations to fourth order, we will really only
need the expansion of %@ to third order. However for possible future reference
here is the G, singlet piece of the fourth order

ab

. 5
T (@) = 1360801/ hhh W)+m|%\ (43)

In fact, using the homogeneity property of @ A x@, it is possible to relate A§7
terms with a higher order Af term, so calculating higher order terms is also a way
to make sure that all the coefficients are consistent.

Now that we have expansions of ¥¢ for 1- and 27-dimensional deformations,
it is not difficult to combine them together. Suppose we want to combine con-
formal transformation and 27-dimensional deformations. As in the case with 7-
dimensional deformations consider

¢=0+ex,
where ¢ = f¢ and y € A3,. Consider only up to second order in ,
s aA oa 2 L =2 1. s 3
P =4 —ery+e¢ _E“" *q)—i-gﬂ(;,((gohh(p)o) +0(€).

Note that since hg, = % Xmn{a (pb}”’”,

~

3 A
hah = Z%IZ:Z{“%} = ngrngan{a(f)b}rs

= [ ha,
and hence
(@hh®) ;) = Pavm Paenh™h
= £73 (phhg),,
Moreover,

ip ((9hh),) = [~ "ip ((Phhe)y).
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Therefore, overall,

¥ =f <p—8f§*x+ez<—412f‘§|x|2*¢

s g (o)) ) +0 (). (@4

Let f =1+ €a, and expand in powers of € to third order to get

5@ =*0+¢ i* —xx | + € 22 1z
Q=0 3ARP—*X 95’ 4235

1 1
—gas 2+ g vio ((ohig)y)) @)

4 |
w6 (el = ) o - gario (pnie)y)

2 et
~To1 ((phhh(p)*(p—mm*(p) 0(g*).

6 Moduli Space

In Sect. 4| we described how M-theory can be used to give a natural complexifica-
tion of the G, moduli space—denote this space by .#¢. The metric on ¢
arises naturally from the Kaluza-Klein reduction of the M-theory action. As shown
in (19), it turns out that this metric is in fact Kéhler, with the Kéhler potential K
given by

K = —3logV, @))]

where as before, V is the volume of X,

_1/ Ax
=z [ enxe.

Note that sometimes K is given with a different normalization factor. Here we
follow (19), but in (20) and (9), in particular, a different convention is used.

Let us show that K is indeed the Kéhler potential for G,,5. Clearly, V, K and
Gy only depend on the parameters sV for the G, 3-form—that is, only the real
part s of the complex coordinates z/ on .Z¢. So let us for now just look at the

M derivatives. Note that under a scaling s — As¥, ¢ scales as ¢ — A¢ and

from li *( scales as x( — A5 * ¢ , and so V scales as

V — },%V.
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So V is homogeneous of order % in the s, and hence

oV 7
Moy _ !
s osM 3V
1 "
= g/SM(pM/\*(P,
and thus,
1
=3 [ounso. @)
Hence,
0K
= / O A 0. 3)

Here the dependence on the sV is encoded in V and in ¢, which depends non-
linearly on the s¥. Thus we have,

PK 3 ovov 3 o
aMazN V2 8sM dsN  V osMosN

3v2 (/¢MA*<0> </¢N/\*q’> _*/¢M/\8N (x@).

As we know from Sect. [5, the first derivative of ¢ is given by

O (+9) = 3 # (9n) + +717 (9n) 2 (90), @

so therefore,
/(PM/\aN) (x¢) = /(751 (@m) A x71 (@n)) +/ 77 () A 707 (@)

~ [ (o (ow) A5 (o).

Also using @]), we get

3\/2 (/¢MA*‘P) </¢NA*(P> 71 /ﬂl(pr)/\*ﬂl (on). 5)

Thus overall,
2
suioss = (] (o) nom (o)~ [ (31 () o2 ()

+ [ o) 1o () ©
Note that if Hol (X) = G, then all the seven-dimensional components vanish, and
hence we get

9°K 1
W:V/X(PM/\*(PN:GMN’ @)
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as claimed. Since the negative definite part of (6) vanishes, the resulting metric is
positive definite.

In general, there is at least one other good candidate for the metric on the G,
moduli space. The Hessian of V, rather than of logV, can be used as a Kdhler po-
tential and gives a metric with signature (1 , b%7). This metric is in particular used
in (23) and (9). There are some advantages to using V as the Kéhler potential,
because some computations give more elegant results. However if we use the su-
pergravity action as a starting point for the study of the moduli space, our choice
of the Kéhler potential is very natural.

Now we have a complex manifold .Z, equipped with the Kahler metric G,
so it is now interesting to study the properties of this metric, and the geometry
which it gives. We will use the metric G,y to calculate the associated curvature
tensor Zyypp of the manifold .#¢. Note that calculation of the curvature of the
moduli space but for a different choice of metric is done in (24).

Let us introduce local special coordinates on .Zc. Let o = a@ and ¢, € A3,

for p =1,...,b3;, so s° defines directions parallel to ¢ and s* define directions in
A3 Slnce our metric is K &hler, the expression for %,yp¢ is given by
Riiin = OyOnoLIgK — G (0y19r %K) (ONILIGK) . (8)
Also define
9°K
A === 9
MNR = 92M 9N 92k ®

so that we can rewrite (8] as
Ry = OOnOLIgK — GRS A e Anss. (10)

Now it only remains to work out the third and fourth derivatives of K. Starting
from (@) we find that

Avve ==, [ oA 5 (s Vz(/ﬁbM/\*‘P)(/@v/\ ((p)>
9V3</¢M/\*(P>(/¢N/\*(P>(/¢R/\*(P> (11)

and from the power series expansion of «¢ (@3], we can extract the higher deriva-
tives of x@:

o (+9) = ia*q), 0 (+@) = f%a*(p, (12a)
308#(*(;)):—%61*(])#, 30309, (+) = 2a ‘O, (12b)
Q0 (+9) = —§<¢u,¢v>*<p+§*i¢ (@b )y). (120)
3030y () = <¢#,¢V>*q) 2a>k1(p(((phuhv(p)0)7 (12d)
Iy () = —*<¢ua¢v> O+ **qu ((huhyvhi)o)

1. 4
—¢ *lo (Whuhvhey)o) = s (Phuhvhcg) x 9, (12¢)
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where hy;,hy and hy are traceless symmetric matrices corresponding to the 3-forms
¢u,@y and ¢y, respectively. Using these expressions, we can now write down all
the components of Ayyr:

(13a)
(13b)

(13c)

(13d)

Now also look at the fourth derivative of K. From (12), we get

K
970979979920
*K
079970009 z+

'K _
072007997197
J*K _
07200719zV 7P

424",

:O’

4 a® 4
gv/% N*@y = gasz,
2a

§V ((Phuhvhp (P) vol = 73014,1\/‘3,

(14a)

(14b)

(14c)

(14d)
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9*K 1 11 .
Seeagigam = 3 OmOw +CuxGup) + 5z [ 0cn=0v [ 0nn0p
1
v (("’hkhﬂhvhﬁ ) (14e)
Note that it can be shown using the identity that

whhhhy = 12 (9h*hhe)

Now define

2K

Cun = 5 35 (15)

This is the second derivative of K but with pure indices, rather than the derivative
with mixed indices which gives the metric have

22K 22K

— 16
oMoz Mo (16)
so numerically, Cyv and G5 are in fact equal, and in particular,
1
Cov =1 [ 0unsdv. (17)

So while Cyyy is not technically part of the metric, it inherits some similar prop-
erties. This happens due to the fact that while the complexification of the moduli
space comes naturally, the holomorphic structure is artificial to some extent, be-
cause the G, and C-field moduli do not really mix Using this definition, we can

rewrite l| as Taking into account that G = -1 and G°* = 0, we have enough
information to be able to write down the full expressmns for the components of
the curvature tensor:Let us look at more detail at the expression for Ay y:

Apvp = 27v / Phghvhp@vol

/ Pabe (pmnphamhhnhchOI

27V

Define h“ =ht

i mdx". Then

(pabc(p,nnphﬁmh}",”hcﬁpvol = 6Qupchy ANy N A
and so,
4
Apvp :—W/qoabchf—l/\hi’,/\h%/\*(p. (18)
This is the precise analogue of the Yukawa coupling which is defined on the
Calabi-Yau moduli space. Similar expressions have appeared previously in (255 [8))

and (9). Similarly, we can write

(Whihghyhsw) Vol = WapeaWnnpgh" W' Vol
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— 24 <y/ahcdh‘,‘< N AN >|<1//> vol
= 24Wupeahly Ny NHG NS A @. (19)

Hence, we can rewrite (??) as

Note that because in the A237 directions the first derivative of V vanishes, some
of these terms which appear in the curvature expression can also be expressed as
derivatives of V: So alternatively, we can write

1 5

%Kﬁvﬁ = g (G[LVGK[) + G[chv[)) - GT&AﬁrpAch'r - icﬁﬁckv
3 9
V 02897497V dzP”
Define
Ujp=<s==-% 20
V 9 aN IR 20
Then
3 v : °v :
kU = = | =—mmm=rm GV — AN ) 21
Km =y <azKazMazNazR 9FMINGZR K (1)
We can use this to express the Ricci curvature
1 ;5 1
Rxp = gb (X)— @3 G — okUp, (22)
where b® (X) = b3, + 1 is the third Betti number of X. Also,
Fop = —aApvpG'P = —dpUp, (23)
oo = 2a°0° (X). (24)

Although here we have certain similarities with the structure of the Calabi-
Yau moduli space, we are lacking a key feature of Calabi-Yau moduli space—a
particular line bundle over the moduli space. For example, the holomorphic 3-form
on a Calabi-Yau 3-fold defines a complex line bundle over the complex structure
moduli space. In the G; case, we could try and see what happens if we look at the
real line bundle L defined by ¢ over the complexified G, moduli space .Z¢. So
consider the gauge transformations where each f(z) is a real number. Then, as in
(8), define a covariant derivative & on L by

1
@M(P:aM(P-F?(&MK)(p. (25)
Under the transformation (??),

vV — fiv,
K — K—Tlogf,
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and so
7
oK — oyK — ?QMf

Hence
In® — fIuo. (26)
Moreover, from the expression for dy K , we find that
200 =0 D0 =03,0.
So as noted in (8)), this covariant derivative projects out the G, singlet contri-

bution. It also gives a covariant way in which to extract the 27 contributions so we
can use Zy ¢ when we just need to extract d, @. Also consider

1 1
s (@n05750)) = [ DuonxTxe @)
1
=Gyy — $3MK8NK.
When one of the indices is equal to zero, the whole expression vanishes. However
if both refer to the 27-dimensional components, then we just get G,y. A similar
expression holds for Cyy.

More generally, we can extend the covariant to any quantity which transforms
under (??). Suppose Q (z) is a function on .#¢, which under (??) transforms as

0(z) — f(2)*Q().

Then define the covariant derivative on it by

a

ImQ = omQ+ 7 (duK) Q. (28)
From this we get
94V =0,
14
D (x9) = Oy (+@) + = = (uK) (x¢),

and in particular,

P0(x0) =0 Dy (x¢) = —* (Iu9)
so, in fact

@M (*(p) = — % @M(P

Further we can extend %) to objects with moduli space indices by replacing d
by
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V—the metric-compatible covariant derivative with respect to the moduli space
metric G5, for which the Christoffel symbols are given by

Ly =GV ouGpy = Ay (29)
With these Christoffel symbols the covariant derivative of Cyyy is hence
VoCun = —Agun- (30)

Then we also find that

1 1
DuING = Iu <9N<P t3 (ONK) (P> — AN Zpo + 73MK9N(P

1 1 2

= 7 <CMN — 73MK8NK> (0] —A};VM.@p(p—l- ?B(MK.@N)(P 3D
11 2

= 7;<<9M<P7*9N(P>>(P*A};\IM@P‘P+79(MK9N)<P7 (32)

and for mixed type derivatives, we have

1 2
DiINe = 9y (3N(PJr 7 (OnK) (P) + 73(MK@N)(P

11 2
=3y (Zi 9, xIne)) ¢+ 79(MK9N)‘P

1 2
=3 (GMNQD + 7 (d7KonK) o + a(MKaN)(p> .

Note that here the covariant derivatives commute, so this connection is in fact flat.
Now look at the third covariant derivative of @:

(DRDIMDNG, x9)) = DR (D DNP,*@)) — (DM DN, DR * P))
= DR DmP.xDIn@)) + (DuDNG,*TrP)).  (33)

First look at the second term in . Since Zr¢ € A§7, we basically get the pro-
jection 7 (9}\/[.@1\/([))2

2
(DuDno,=Tr0)) = A\ (Dp@,xTr0)) + 73(MK<<9N)<P7*9R<P>>
1 2 2
= 7AMNR+?A§,1N(9RK8PK+?CR(N(')M)K*@9RK8MK8NK.
In the first term of (33)), we have
1
(90 59x9)) =V (3 (g sv0)) )

=VVr{(Zu@,*Zno))
_vy (VRCMN - %VR (8MK8NK)>
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2 2
= V (—ARMN - ?CR(MaN)K—i_ 7APR(M8N>K8PK> .
Combining, we overall obtain

1 2 3
v (DRDM DN, +9)) = —2ARMN — EaRK(?MK&NK-F 7A(MNP3R)K9PK-
(34)

Decomposing this into components, we have

1
% (Lo ZuDve.,x9)) = —2Apuv,
1
v (20T Pv9,%9)) = 2Cuv,
1
v ((D0DoZvo,+@)) = 0,

1
v (D020 Zoe,+9)) = 0.

Therefore, the quantitys ((Zp 2y Zv@,*@)) essentially gives the Yukawa cou-
pling, again giving a result analogous to the case of Calabi-Yau moduli spaces.

7 Concluding Remarks

In this paper, we have computed the curvature of the complexified G, moduli
space and found that while it has terms which are similar to the curvature of the
Calabi-Yau moduli, there are a number of new terms. In future work it would be
interesting to interpret these new terms geometrically. If we consider a 7-manifold
of the form CY3 x S!, where CY3 is a Calabi-Yau 3-fold, then we can define a
torsion-free G, structure on it. The relationship between the Calabi-Yau moduli
space and the G, moduli space is however very non-trivial, because the complex
structure moduli and the Kihler structure moduli become intertwined with each
other. So it could turn out to be illuminating to try and relate the curvature of
the G, moduli space to the curvatures of complex and K& hler moduli spaces. In
that case, however, b% = 1, so in fact the second derivative of our Kéhler potential
would give a pseudo-Kihler metric with signature (—+...+) @) Moreover, the
ansatz for the C-field (54)) would also have to be different. Understanding how the
Calabi-Yau moduli space is related to the G, moduli space could also enable us
to find a manifestation of mirror symmetry from the G, perspective. Moreover, it
would be interesting to see how existing approaches to mirror symmetry on G»
manifolds (such as (26))) affect the geometric structures on the moduli space.
Another possible direction for further research is to look at G, manifolds in a
slightly different way. Suppose we have type /1A superstrings on a non-compact
Calabi-Yau 3-fold with a special Lagrangian submanifold which is wrapped by a
D6 brane which also fills My4. Then, as explained in (27)), from the M-theory per-
spective this looks like a S! bundle over the Calabi-Yau which is degenerate over
the special Lagrangian submanifold, but this 7-manifold is still a G, manifold. The
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moduli space of this manifold will then be determined by the Calabi-Yau moduli
and the special Lagrangian moduli. This possibly could provide more information
about mirror symmetry on Calabi-Yau manifolds (28).

A Appendix A: Projections of 3-Forms

Here will prove the formulae {@0) to (#2) which give the projections of 3-forms into 1-dimensional,
7 -dimensional and 27-dimensional components. Let y € A3. Since /\13,A73 and A237 are all or-
thogonal to each other, we immediately get

1 . 1
7 (x) = ag where a = -5 (Xabc(PabL) =5 (2.9) and |m ()} =74
To work out 77 (), suppose

o] (%) =usxQ,

then consider

(uax @) Ax(vax @) = (uax@)ANQAY
= 41’ AV =4 (u,v)vol. (1)

So this gives
m () = 4]0l )

However (T) can also be expressed as

1
(uax @) Ax(vax@) = 671:7 (X)mnp Va Yol

1
= =77 () WP Vv, @)
Equating (T) and (3), we get
1
ut = _ﬂﬂﬁ (x)mnp Yt = ot

Finally we look at my7 (). Consider
Xabe = T (X)abc + 7 (%)abc + hﬁ,‘Pbc]w
Then,

o (X)mn{a q)b}mn = a(pmn{aq)br}ym = 6g{ab} =0, )
B Lo 0" = O Vot = 4By =0 o

Therefore,

3 mn 3 d mn
Z%mn{a(pb} = Zh[m(pn{u]d(Pb}

mn

1 mn l
= Ehi(pn{a\d\q)b} +Z(Pmndh?a(pb}

1 d m m m 3
= Ehm <g{ah}5d = 638b}a — Yiap}a ) + Ehab

= hab (6)
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as required. Moreover,
1
|77 () = ghﬁ;(Phc]dhm(Pbce
1 .1
= ﬁh;’ Poeah® @, + §h? Panah® 9",
71h2—1hdhea S5¢ _ 5¢ C
73' | 9 c (agde 8ae q+*(pade)

_ 2.
—9W~ 7

B Appendix B: Determinants

In this section, we will review deformations of determinants. Let / be the n x n identity matrix,
and let & be a symmetric n X n matrix. Suppose 41, ..., A, are eigenvalues of 4. Then

I
=

det(I+eh) = [[(1+¢A) ey
=1
=l1+eY L+ Y Lr+e Y Al

i<j i<j<k

+et Y Mdhd+0(ed).

i<j<k<l

Define Then from Newton’s identities we know that

Zli =11,

1
Y Aidi =5 (1 —n),
i<j
1
Z A.ilj)tk = 6 (l‘13 —3[1t2+2[3) s
i<j<k

1
Z liljlkl[ = — (l‘;1 — 6[1212 +3l‘22 + 8113 — 6[4) s

i<j<k<l 24
and so we obtain
1 1
det(I+€h) = 1+t + 582 (it —n)+ 683 (5 = 3t112 +213) )
1
+ﬁ84 ([i‘ — 62‘122‘2 + 32‘% + 81113 — 6t4) +0 <55> .

Now, for a metric g, we get

det(g+€h)

L oo 1 3.3
=l4en+- B —n)+- ([ -3tn+2
doig +€1+2€(1 2)+6s(, 11 +213)

1
+ﬁ84 (1} — 6631, + 363 + 81113 — 614) + O <£5> ,

where the traces are now with respect to the metric g.
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