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Abstract

The nature of dark matter is an enigma for physics and astronomy. Ultra-

light dark matter (ULDM) is an axion-like dark matter candidate whose tiny

mass leads to an elegant resolution to a range of small-scale problems en-

countered by the standard cold dark matter (CDM) model, while reproduc-

ing large-scale results that agree with observations. ULDM is predicted to

exist as a non-relativistic quantum matter described by the Schrödinger-

Poisson equation (SPE).

Recent developments in cosmological simulation have provided power-

ful tools to model and constrain the properties and behaviours of dark

matter, as epitomised by simulation software that constantly advance in

scale, precision, and ease of access. My doctoral work contributed to such

advancements for ULDM cosmology. I extend and test PyUltraLight , a

set of numerical pipelines that simulate the behaviour of ULDM. I further

modified AxioNyx , a state-of-the-art computational cosmology package

for ULDM utilising adaptive mesh refinement (AMR) and hydrodynamical

code for baryonic physics.

The nonlinear SPE system, alongside the Madelung formalism of quan-

tum mechanics and SP solitons, is immensely interesting in its own right

as an abstract mathematical system. This thesis provides an overview of

the underlying theory and describes original investigations into dynami-

cal friction from ULDM and multifield ULDM. It also outlines directions

of future research. In the context of cosmological dark matter simulations,

bridges to astronomically observable quantities are critical. This motivates

simulations where ULDM interact withmodels of supermassive black holes

(SMBHs), stars, and baryons.
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Units and Conventions

We refer to “all that is or was or ever will be” (quote due to Carl Sagan)

as the “Universe” or “Cosmos”, which includes ourselves, debating what to

call it. In contrast, particular models of the Universe will be in lower case

“universe” or “cosmos”.

Unless otherwisemarked, wework in natural units where ℏ = c = kB = 1.

Further, we adopt the following conventions.

• The indices in various variables usually start counting from 0;

• Vectors in 3-dimensional space are denoted as x := [x, y, z]T ;

• Vectors in 4-dimensional space-time are denoted as xµ := [t, x, y, z]T ,

with metric signature (−,+,+,+) where relevant;

• The Einstein summation convention is assumed for repeated indices

occurring inside a term, xµy
µ :=

∑3
j=0 xjy

j
;

• Simulation state vectors for the N body system, etc., where relevant,

are denoted as x̄ := [x0, y0, z0, ẋ0, ẏ0, ż0, ...]
T
;

• Fourier-transformed variables are distinguished by a hat, e.g. ψ̂ :=

F(ψ);

• The standardNumpy Fourier transform convention is adopted, where

the normalising factors appear in the inverse Fourier transform;

• Where physical quantities are presented with units missing, they rep-

resent the internal code units as defined in Section 4.1.2.
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1
Introduction

We find ourselves surrounded by a void of infinite, mysterious space.

The story of cosmology is a story of efforts to understand this place. To

some, progress in physics and astronomy instigated unappetising losses in

the certainty of the future human condition. But curiosity and exploration

have inspired wisdom far surpassing what were thought possible: wisdom

to know the place we call home, and to cherish the wonders around us.

Humanity has not only charted the stars and galaxies in the night sky,

but also found evidence for the existence of what we cannot see. Dark

matter, dark energy, and certain relics of the early universe constitute what

is sometimes referred to as the Dark Side of the universe.

1

日月安属？列星安陈？

What hierarchy do the sun and moon hold?

How are stars arranged?

Qu Yuan, Tianwen (Heavenly Questions)
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1.1 The Golden Age of Cosmology

We emerged onto the Cosmic stage, opening our eyes beneath the night

sky, during the golden age of the Universe, an almost ten-billion-year long

period during which sufficient generations of stars have been born and ex-

tinguished to forge the heavy chemical elements that surround and con-

stitute us. At the same time, the Universe is still not too old, with distant

galaxy clusters, though eternally out of reach, remaining visible, enabling

us to probe the large scale structures. Additionally, the cosmic microwave

background (CMB) has not yet red-shifted into absolute obscurity. In 1964,

its accidental first detection as an odd noise signal in Bell Lab’s Holmdel

Horn Antenna [5] was one of the sparks that ignited the field of modern

cosmology.

On the human scale, the golden age of (observational) cosmology started

in the early 1990s, marked by the launch of satellites such as the Cosmic

Background Explorer (COBE, 1989 - 1994) and Hubble Space Telescope

(HST, 1990 - ). They dramatically increased our ability to reach far into

space and back in time, and to test theories of the universe like never be-

fore. Missions such as theWilkinsonMicrowave Anisotropy Probe (WMAP,

2001 - 2010) and Planck (2009 - 2013) made profound progress on con-

straining the properties of the early Universe and the origin of structures. In

more recent times, the launch of the James Webb Space Telescope (JWST,

2021 - ) and Euclid (2023 - ) further extended our vision. These devel-

opments took place alongside the onset of gravitational-wave astronomy,

through grand projects such as the Laser Interference Gravitational Waves

Observatory (LIGO, 2015 - ) and the European Advanced Virgo detector

(2017 - ).
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In the standard framework of cosmology, the universe is regarded as

homogeneous and isotropic at large scales. The geometry of spacetime

can hence be captured by the the Friedmann-Lemaître-Robertson-Walker

(FLRW) metric, which is used throughout this thesis,

ds2 = −c2dt2 + a2(t)

(
dr2

1−Kr2
+ r2dθ2 + r2 sin2 θdϕ2

)
, (1.1)

where a(t) is the cosmic scale factor andK ∈ {0,±1} is linked to the overall
curvature of the universe, discussed later. The scale factor can be used

to determine the proper distance from the origin to a comoving object at

radial coordinate r and time t,

d(r, t) = a(t)

∫ r

0

dr′√
1− kr′2

(1.2)

From Equation 1.2, it can be shown that the rate of change of the distance

between any two comoving observers anywhere in such a universe is

ḋ = d
ȧ(t)

a(t)
, (1.3)

where dots represent derivatives with respect to time. From this we define

the Hubble Parameter,

H(t) ≡ ȧ(t)

a(t)
, (1.4)

and its current observed value is denoted as H0.

Since a(t) seems to always increase with time for our universe, it is some-

times more practical to work with the cosmic redshift, z. The redshift be-

tween times t0 and t1 is

z =
a(t0)

a(t1)
− 1. (1.5)

By substituting the FLRW metric into the Einstein field equations,

Gµν + Λgµν = 8πTµν , (1.6)
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we obtain the equation of motion for a(t), or the Friedmann equations:

(
ȧ

a

)2

+
K

a2
=

8π

3
ρ (1.7a)

3ä

a
= −4π(3p+ ρ), (1.7b)

where p and ρ are the pressure and density of the matter-energy contents.

Some special equations of state are

p =





0 : Dust / Non-relativistic (Cold) Matter,

ρ/3 : Radiation / Relativistic (Hot) Matter,

−ρ : Dark Energy.

The critical density, ρCrit, is the density of matter required to halt the expan-

sion of a matter only universe as t→ +∞,

ρcrit =
3H2

0

8π
. (1.8)

The comparison between the true mean matter density and ρCrit deter-

mines the spatial geometry of the universe.

1.2 The Dark Side of the Universe

To further set the stage, we briefly discuss what we know and do not know

about dark matter, dark energy, and several forms of cosmic horizons. This

thesismainly focusses on the first topic, darkmatter, while some references

will be made to the latter two, which each play a unique and important role

in the evolution of spacetime.

1.2.1 Dark Matter

The light-producing components of galaxies are participants in a complex

environment dominated by dark matter halos. Overall, dark matter makes
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up about 27% of the matter-energy content of the universe, 5 times more

than all baryonic matter combined.

While many competing theories on the origin of dark matter exist within

particle physics, the Cold Dark Matter (CDM) hypothesis is the most stud-

ied and simulated phenomological dark matter model to date. Chapter 2

features a discussion on this topic.

1.2.2 Dark Energy

The bulk motion of distant galaxies shows us that Cosmic expansion is not

only continuing, but accelerating. This phenomenon implies the existence

of an enigmatic component of our universe with negative pressure, often

referred to as dark energy. It contributes about 70% of the matter-energy

content of the universe.

A cosmological constant, denoted by Λ (Equation 1.6), is the most widely

accepted representation of dark energy. The ΛCDM model is currently a

baseline for cosmological studies. It has demonstrated remarkable align-

ment with observations across various aspects of the structure and be-

haviour of the Universe
1
.

1.2.3 Cosmological Horizons

As we look farther out, we also rewind the Universe farther back in time.

A "horizon" refers to a boundary or limit beyond which we cannot directly

receive information.

1
The value of H0 has been successfully measured within the cosmic neighbourhood

using Type-Ia supernovae using distances and redshifts. This method has no dependence

on cosmological models, but the resulting value is currently at great oddswithH0 obtained

from CMBmeasurements and the ΛCDMmodel. This difference, which is greater than 5σ,
is known as the Hubble Tension [4].
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Cosmological horizons are critical for the understanding the limitations

of our observations and theories. It is thus helpful to define and distinguish

the following kinds of horizons.

• Particle Horizon is the boundary of the observable universe, it is the

farthest point from which light could have travelled to us within the

current age of the universe.

• Hubble Horizon, or Hubble sphere, is the present distance at which

objects seem to recede from us at the speed of light.

• Optical Horizon is as far as we are allowed to directly probe through

electromagnetic means. It corresponds to the time the universe first

cooled enough to permit the existence of neutral atoms. The light

that shone through became the CMB that we observe today.

1.3 Outline of this Thesis

Chapter 2 begins with a review of the CDM paradigm and its challenges,

motivating the ULDM model of dark matter. It then goes on to discuss the

properties of ULDM, its possible origins, as well as some interesting ways

to extend the model.

Chapter 3 touches on the relevant physical processes in galactic baryons

and black holes that we consider in models that trace the evolution of

ULDM. It serves as a review of the key concepts and results that our in-

vestigations utilise down the line.

Chapter 4 is a unified technical documentation on modelling ULDM-

containing systems using the libraries PyUltraLight and AxioNyx . It also

features convergence and stability tests on our numerical routines.
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Chapters 5 and 6 are primarily constructed using our published journal

articles, where we discuss ULDM-containing systems across a range of dis-

tance and time scales, and provide prospects for astrophysical signatures

with a potential for indirect ULDM detection.

Finally, discussions and potential future directions are presented in Chap-

ter 7. We also talk about some of the assumptions made in previous chap-

ters and future ways to relax them in order to explore bigger parameter

spaces and model more complex systems.

1.4 Cosmological Parameters

Unless otherwise noted, we adopt the nominal values for the following con-

stants from the Planck 2018 dataset [6].

Symbol Meaning Nominal Value

H0 Hubble parameter 67.4 km/s/Mpc

Ωm0 matter density parameter 0.315
ρcrit critical density 9× 10−27

kg/m
3

Table 1.1: Planck 2018 Parameters used in this thesis





2
Ultralight Axions as Dark Matter

Candidate

First coined by Fritz Zwicky in 1933, the concept of dark matter developed

with our understanding of the structure and evolution of galaxies, and our

ability to measure properties of the Universe over larger and larger scales.

This chapter introduces the quantitative language with which dark matter

is described. In doing so, we offer a walk-through of some observational

results that motivated the current models of dark matter.

9

... in the presence of total Darkness, the mind finds it absolutely necessary to

create light.

Isaac Asimov, Nightfall
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2.1 The Case for Dark Matter

At the turn of the twentieth century, innovations in photography and spec-

trography gave researchers the first hints of a profound cosmic imbalance,

that is, what we see cannot explain what we see – a lot of mass seems to be

missing in the Universe, and the visible matter alone is insufficient to hold

cosmic structures together.

In 1922, Jacobus Kapteyn proposed that any invisible matter in the Uni-

verse can be detected through its gravitational effects. In the 1930s, Fritz

Zwicky found that galaxy clusters had dramatically more mass than sug-

gested by their luminous material. Jan Oort reported similar anomalies in

stellar motion within the Milky Way galactic plane. Since the 1970s, Vera

Rubin and others used galaxy rotational curves, velocities plotted against

their radial separation from galactic core, and published a widely accepted

estimate of the extent of the missing mass problem – galaxy clusters con-

tain about five times more mass than what we directly observe in stars and

gas. A typical rotation curve from a later work for the galaxy Messier 33 is

presented in Figure 2.1.

Around the new millennium, the Bullet Cluster (1E 0657-558) was dis-

covered and studied by both the Hubble Space Telescope and the Chandra

X-rayObservatory [8]. 1.14Gpc away fromEarth, it is the aftermath of a col-

lision between two galaxy clusters, during which their hot gas interacted

to produce a shock wave similar to that produced by a bullet through an

object. As Figure 2.2 shows, a smaller group of galaxies crashed through

the larger one. Clowe et al. found that in this structure, the majority of the

mass, as determined using weak gravitational lensing over the background,
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Figure 2.1: The rotation curve of M 33, adapted from [7], superimposed with a

to-scale render of the galaxy using Celestia.

actually separated from the visible matter. This is seen as direct evidence

for the existence of dark matter [9].

On the other hand, since the discovery of CMB, studies on the large scale

features of the universe also suggests the existence of missing mass. Sky

surveys showed that the distribution of galaxies resembles a "cosmic web",

with filaments and sheets enclosing large void regions. From the 1980s, it

has been demonstrated that such structures in the universe could not form

with the gravitational contributions of visible matter alone [10].

Dark matter was proposed as a potential answer to these anomalous

observations, that a lot of mass is inside galaxies which neither produces

nor absorbs light. The field of dark matter is rife with creativity and ideas.

Figure 2.3 lists some of the salient ideas in the field today, and some of

dark matter’s key properties are summarised on the next page.
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Figure 2.2: A composite photograph of the Bullet Cluster. The blue overlay shows

the distribution of total mass, obtained via weak lensing, while the red overlay

shows the concentration of hot gas, traced using their X-Ray emission. Image

Credit: NASA.
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• Dark:Dark matter does not emit or absorb electromagnetic radiation

like visible light. This not only means we cannot see it, but also points

to the lack of means for dark matter to lose energy through thermal

radiation, precluding its coagulation inside galactic planes.

• Cold: The particles that make up dark matter are expected to move

non-relativistically so as to confine them inside galactic halos and not

disrupt already formed structures. This distinguishes it from hot dark

matter, which moves at relativistic speeds and cannot contribute to

structure formation as well.

• Stable: The effects of dark matter on both the early Universe and

galaxies today suggest that it has persisted over the history of the

Universe. During this time, its fundamental properties, such as the

mass and interaction strengths of the constituent particles, whatever

they may be, have remained constant.
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2.2 The ΛCDM Paradigm and its Challenges

The ΛCDM (Lambda-Cold Dark Matter) model combines two essential

components: Lambda (Λ), the cosmological constant, and CDM, Cold Dark

Matter. CDM is usually modelled as a collisionless ensemble of smooth par-

ticles that gravitate towards each other. We reproduce the relevant Fried-

mann equations,

H2 =
8π

3
ρ− K

a2
+

Λ

3
, (2.1a)

Ḣ = −4π(ρ+ 3p) + Λ. (2.1b)

In this model, the Universe began in an almost uniform state, with tiny

fluctuations. These fluctuations underwent gravitational collapse on the

expanding spacetime background, and seeded all structures that we see in

the sky. The ΛCDM model has been successful in explaining a wide range

of cosmological observations, including characteristics of the CMB [12], to

baryonic acoustic oscillations (BAO) in the early galaxies [13], and proper-

ties of the Lyman-α forest [14]. It provides a largely coherent framework

for understanding the evolution of our Cosmos.

Cold DarkMatter obeys the collisionless Boltzmann Equation, also called

the Vlasov equation [15]. In expanding space, it has the form

∂f

∂t
+

1

ma2
p ·∇f −m∇Φ · ∂f

∂p
= 0, (2.2)

where f(x,p, t) is the phase space distribution function, a is the cosmic

scale factor, m stands for mass, p for momentum, and Φ the gravitational

potential.
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2.2.1 Small-Scale Challenges

Though CDM makes successful predictions that agree with observations

across a range of cosmic features, it tends to work best on length scales

above 10kpc or so, and may deviate from observed astrophysical reality on

smaller scales. Key issues include:

No Direct Detection. There has been no direct detection of any dark

matter particle in colliders or detectors, including those expressly built to

look for dark matter particles.

Core-Cusp Problem. CDM, lacking any means to radiate excess energy

away, is predicted to concentrate in galactic nuclei in a “cuspy”, or divergent,

density distribution, usually modelled as a Navarro-Frenk-White (hereafter

NFW) profile [16],

ρ(r) = ρ0
rc

r(1 + r/rc)2
, (2.3)

where ρ0 , the characteristic density, and rc , the scale radius, vary from

halo to halo. While this profile is in good agreement with observations of

the outer regions of galaxies, observations also suggest that the central

densities of galaxies should be cored, or flat [17]. These different density

profiles are illustrated in Figure 2.4.

Satellite Plane Problem. The distributions of satellite galaxies around the
MilkyWay and Andromeda Galaxies seem have a bias away from the galac-

tic disk, which is different from the prediction fromΛCDM that they should

be uniformly distributed across the spherical dark matter halo.

Missing Satellite Problem. The CDMmodel predicts more small satellite

galaxies around large Milky Way-like galaxies than observed.
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r

r 1

r 3
NFW(r) "Cusp"

Observed "Core"

Figure 2.4: A log-log plot of the cuspy NFW and core density profiles. The param-

eter values were arbitrarily chosen for illustrative purposes.

Age of the First Galaxies: The current ΛCDM model favours formation

times of the first large galaxies later than the high-redshift galaxies ob-

served by JWST, such as the object GLASS-z12, which formed merely 350

million years after the Big Bang [18].

2.2.2 Alleviation of the Small-Scale Challenges

The challenges outlined above represent limitations in our knowledge, both

observational and theoretical. It is possible that these inconsistencies will

be resolved over time with better survey sensitivity, better modelling of

baryonic physics or even the breakdown ofNewtonian dynamics at galactic

scales (MOND). Figure 2.5 serves as a summary of the various scales we

have discussed, both where CDM has been successful and where CDM is

less constrained and subject to challenges.
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Figure 2.5: The power spectra of CDM [19] and ULDM in the current universe.

The FDM curve was produced in AxionCamb [20] using the fiducial particle mass

of 10−21
eV.

Another option is that the dark matter has more complicated small-scale

dynamics than described by CDM – collisionless clumps – alone. To this

end, Ultralight DarkMatter (ULDM) has become awidely-studied darkmat-

ter candidate, and we are finally ready to introduce it into the picture.

2.3 Ultralight Dark Matter

2.3.1 The Axion

The axion particle was first proposed as a solution to a problem in quan-

tum chromodynamics (QCD), the theory of how quarks interact via gluons.

The problem is called the strong CP (Charge-Parity) problem [21, 22]. If CP

is conserved in a physical process, a left-hand positively charged particle

should be treated no differently than the corresponding right-hand nega-

tively charged antiparticle. Indeed, experimental observations have shown
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that such a symmetry is remarkably well-conserved in strong nuclear inter-

actions. Without an explicit mechanism to enforce this, it seems to be an

instance of fine-tuning. As such, resolving the strong CP problem is crucial

not only for the internal consistency of the Standard Model, but for un-

derstanding the dominance of matter over antimatter in the universe [23,

24].

By far the most famous solution to this problem is the Peccei-Quinn

mechanism, named after Roberto Peccei andHelenQuinn. This mechanism

introduces a new scalar field, called the axion, which dynamically adjusts

to make the symmetry violations vanish, thereby preserving CP symmetry.

We start with the minimal form of the action of a spinless, massless real

scalar field,

Sϕ =

∫
d4x

√−g
(
1

2
gµν∂µϕ∂νϕ

)
. (2.4)

This action permits the shift symmetry ϕ → ϕ + C , where C is some

constant that does not contribute to the Lagrangian. For very small (but

nonzero) particle mass m, the symmetry becomes approximate. Spin-zero

fields with nonzero mass arise in models with an additional potential func-

tion V (ϕ) that is periodic in ϕ. A natural example of such a potential is

Sϕ =

∫
d4x

√−g
(
1

2
gµν∂µϕ∂νϕ− µ4

(
1− cos

(
ϕ

F

)))
, (2.5)

where µ describes the coupling strength and F controls the shift symmetry

(for example, ϕ → ϕ+ 2πF ). The choices of the periodic potential in Equa-

tion 2.5 and the relevant interaction strengths can vary depending on the

specific motivations. Scalar fields described by this simple action are collec-

tively are known as “axion-like fields”, with the corresponding particles, of

course, called “axion-like particles” (ALPs).

In general, any (pseudo)scalar particle whose dominant interaction is

through gravity, it satisfies the Klein-Gordon equation,
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−□ϕ+m2ϕ = 0, (2.6)

where □ϕ = ∂µ∂µϕ = gµν∂ν∂µϕ is the d’Alembertian, and m2
is the leading

term in the Taylor expansion of the full self-interaction potential as we will

see in Section 2.3.3

2.3.2 Mass of the Ultralight Axion

The mass of the ultralight axion, mA, shapes the cosmological effects of

ULDM, and is consequently the main focus of observational tests and con-

straints. The most commonly considered values for the mass of the ULDM

axion are between 10−21
and 10−22

eV. Some observational and theoretical

bounds are presented in Figure 2.6. We also frequently make use of the

short-handm22,

m22 ≡
mA

10−22eV
. (2.7)

On the face of it, most of the parameter space is excluded. That said, many

constraints rely on observations of a small number of systems, which are

potentially atypical. Furthermore, these constraints apply to the case of a

single, non-interacting axion field, but there are good reasons to relax both

assumptions, producing much more leeway for the underlying hypothesis.
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Figure 2.6: Some recent constraints on the ULDM axion mass. Shaded areas are

excluded.

2.3.3 A Quantum Condensate

The astrophysical scenarios we discuss all involve sub-horizon scales and

nonrelativistic bulk motion. Our regime of interest requires that F is large,

and under this assumption we can transform the cosine term in Equation

2.5 into a purely quadratic minimum, around which our field oscillates,

Sϕ =
1

2

∫
d4x

√−g
(
gµν∂µϕ∂νϕ− µ4

F 2
ϕ2

)
. (2.8)

Varying this action yields an equation of motion of the field,

1√−g∂µ
(√−ggµν∂νϕ

)
= m2

A
ϕ, (2.9)
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wherewe have identifiedmA with the quantity µ
4/F 2

. Regarding the choice

of gµν , recall the FLRWmetric, Equation 1.1. Our discussion at hand regard-

ing non-relativistic dark matter permits the introduction of the Newtonian

Gauge,

ds2 = −(1 + 2Φ)dt2 + a2(t)(1− 2Φ)δabdx
adxb. (2.10)

Substituting this into Equation 2.9, we obtain, to leading order in Φ,

ϕ̈− (1 + 4Φ)∇2ϕ− 4Φ̇ϕ̇+ (1 + 2Φ)m2
A
ψ = 0. (2.11)

In doing so, we have assumed that the structures of interest have decou-

pled from theHubble flow, and the overall expansion of the universe can be

cancelled away. Further simplifications aremade through a process reminis-

cent of the Wentzel - Kramers - Brillouin (WKB) approximation. We write

down an ansatz,

ϕ =
1√
2mA

(
ψe−imAt + ψ∗eimAt

)
, (2.12)

and we assume the field’s dynamics on the timescale of the condensate

oscillations can be safely ignored, i.e.m≫
∣∣∣ψ̇/ψ

∣∣∣. Now, we have

iℏψ̇ =

[
− ℏ2

2mA

∇2 +mAΦ

]
ψ, (2.13a)

∇2Φ = 4πGρ. (2.13b)

This describes a quantum wavefunction, ψ. We are also able to assign a

“mass density” to the probability cloud resulting from ψ, namely,

ρ ≡ mA|ψ|2 − ⟨ρ⟩, (2.14)

where ⟨ρ⟩ is the mean density.

Equations 2.13a and 2.13b are referred to as the Schrödinger-Poisson

equations (SPE), and are a non-linear modifications to the Schrödinger

equation where the wavefunction itself sources a gravitational field. This
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setup has also been used to model (in a phenomenological sense) other

forms of collisionless fluid not motivated by the axion setup, such as in

Refs [25, 26]. For completeness, the full version of Equation 2.13 with cos-

mic expansion, a(t), restored is

iℏ∂t
(
a3/2ψ

)
= a3/2

[
− 1

2m
∇2 +mΦ

]
ψ, (2.15a)

∇2Φ = 4πa2(mA|ψ|2 − ⟨ρ⟩). (2.15b)

In the Madelung picture of quantum mechanics, which we sometimes

reference, the probability density of the wavefunction gives rise to a mass

density, while the condensate’s velocity field is the gradient of the phase,

ψ(r) =
√
ρ(r)eiθ, (2.16a)

v(r) = ∇θ(r). (2.16b)

The minuscule mass of the ULDM axion means that its de Broglie wave-

lengths can often be on the order of kiloparsecs [27]:

λdB
2π

=
1

mAv
= 1.92kpc

(
10−22

eV

mA

)(
10kms

−1

v

)
. (2.17)

Intuitively, this suppresses structure formation on smaller scales, and as

we shall see soon, allows for core-like galaxy density profiles. The charac-

teristics of ULDM are illustrated in Figure 2.7.

The Jeans length is the scale at which the gravitational stability of a sys-

tem bifurcates. At lengths smaller than the Jeans length, structures are

pressure-supported: a small perturbation from equilibrium will initiate os-

cillations; scales larger than the Jeans length are unstable: gravitational at-

traction is stronger than the supporting pressure so a small perturbation

will trigger a collapse.
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The Jeans length of canonical CDM is vanishing since it is pressureless.

For ULDM, however, any attempt to localise a particle past a certain thresh-

old will lead to an increase in the system’s energy. This is what we mean

when we say ULDM structures are “supported by the quantum uncertainty

principle”. An estimate of the Jeans scale for ULDM is given by [27]

λJ ≈ 55

(
10−22

eV

mA

)1/2

kpc. (2.18)

2.4 ULDM Solitons

ULDM solitons are the lowest-energy bound states of a ULDM system.

They are generally assumed to be spherically symmetric. To obtain the ra-

dial density profile of a soliton, we start by making the time derivatives of

ψ vanish,

ψ(x, t) = eiβtf(r), (2.19a)

Φ(x, t) = φ(r) (2.19b)

Figure 2.7: A qualitative sketch of the behaviour of ULDM across various scales
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where r = |x|. If we introduce φ̃ = φ+β, Equations 2.13a and 2.13b reduce

to

0 = −1

2
f ′′(r)− 1

r
f ′(r) + φ̃(r)f(r), (2.20a)

0 = φ̃′′(r) +
2

r
φ̃′(r)− 4πf(r)2, (2.20b)

where primes denote spatial derivatives.

A soliton is the ground state solution to the Schrödinger-Poisson equa-

tions, that is, the solution with no zero-crossings in f(r). Solitons do not

have a convenient analytic form, but it is possible to find numerical solu-

tions that can be used to initialise a 3D configuration. The numerical profile

for a soliton is shown in Figure 2.8.

We are further aided by a simple scaling relation: if eiβtf(r) is a solution

to the SPE, then for an arbitrary real constant α,

ψα(r, t) = αeiαβtf(
√
αr) (2.21)

is a solution as well. For fixed axion particle massmA, it is useful to remem-

ber that if we double a soliton’s mass, its central density will increase by a

factor of 24 = 16, while the core radius decreases by a factor of 2. This is

illustrated in Figure 2.9.

For the “standard” soliton, where f(0) = 1, an empirical profile is some-

times employed [28],

f(r) ≈


 1

1 + 0.091
(

r
rc

)




8

, (2.22)

where rc is a constant determined by a fit on the soliton profile above. In

Chapter 4, we explore ways to impart solitons with phase and momentum.
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Figure 2.8:A numerically generated ULDM soliton profile. The axes are in arbitrary

units.

2.4.1 Higher Order Eigenmodes

Scenarios where the ULDM soliton dominates the gravitational potential

canmake a perturbative treatment of the evolution worthwhile [29]. This is

particularly relevant when there are other objects interacting with the soli-

ton. An analogy to the hydrogen atom is sometimes drawn, where higher

order eigenmodes are labelled by l, and m, analogues to the angular mo-

mentum and magnetic quantum numbers.
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Figure 2.9:A density slice-plot of four ULDM solitons side by side, where themass

decreases by a factor of 2 from left to right

2.4.2 Core and Halo

In Figure 2.7 we have seen that ULDM halos consist of a spherically sym-

metric solitonic core and a “skirt” that roughly follows an NFW profile. It

is of interest to investigate what fraction of ULDM mass reside in the core

for a given halo and how this correlates with different halo masses. This is

the so-called core-halo relation. Work by Schive et al. [30] established that

the central soliton of a ULDM halo has a mass

MSol ∝ a−1/2M
1/3
Halo

, (2.23)
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where a is the scale factor. With a = 1, the empirical relationship is

MSol = 1.25× 109M⊙

(
MHalo

1012M⊙

)(
10−22

eV

mA

)
. (2.24)

Other investigators have found different scaling relationships. For exam-

ple, [31] investigates the core-halo relation through a dynamic approach.

ULDM halos are dynamically formed through the merger of different soli-

tons, and the authors argued that the different merger histories led to dif-

ferent scaling relationships.

2.5 ULDM Extensions

2.5.1 Self-Interacting Fuzzy Dark Matter (SIFDM)

The Ultralight Axion action invites higher order potential terms. This means

there are natural ways to introduce non-gravitational self interactions in a

collection of ULDM particles. The most common modification contains a

quartic term. Depending this term’s sign, the additional self-interaction can

be attractive or repulsive.

Some of the phenomenology of the minimal model reflects in these

self-interacting models too, such as wave interference. However, stabil-

ity and granularity may be greatly altered in the presence of quartic self-

interactions.

2.5.2 Multi-Field ULDM

As we have seen in Figure 2.6,mA, the axion mass, is subject to myriad ob-

servational constraints that while weak, seem to rule out the entire region
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of interest. One avenue out of this contentious situation is the possibility

that ULDM doesn’t exist as an isolated singlet, but a family of particles

with different masses that have similar origin mechanisms. This so-called

Multifield ULDM model significantly alters the resulting cosmological dy-

namics [32]. Our contributions to this idea will be discussed in Chapter 6

Themultifield picture reduces the granularity in a dark matter halo which

in turn weakens several key observational constraints that are sensitive to

the amplitudes of granules around the soliton, e.g. the heating of stellar

orbits in ultrafaint dwarf galaxies.

Separately, there is a strong analogy between ULDM dynamics and the

physics of the inflaton condensate in the very early universe [33, 34, 35,

36] and the dynamics of N-field ULDM may be mirrored in the primordial

universe if the cosmic inflation itself was driven by multiple fields [37, 38,

39].



3
Exploring the Physics of Galaxies

An idea attributed to Martin Rees is that cosmology resembles two very

different sports, depending on the epoch. The physics of the very early

universe is abstract yet logical, reminiscent of a game of chess; themoment

neutral atoms formed and baryonic physics began, with its myriad messy

complications, things became more akin to mud wrestling.

We now look into a selection of baryonic physics processes, features

of the observable components of the Universe. Just as the distribution of

galaxies themselves in a CDM/ULDMuniverse is correlatedwith local dark

matter overdensities, many components and phenomena within galaxies

can trace or constrain the properties of dark matter. The review presented

29

如果说那个原始人对宇宙的几分钟凝视是看到了一颗宝石，其后你们所谓的

整个人类文明，不过是弯腰去拾它罢了。

If we’re to say that the caveman saw a gem in his brief gaze into the night sky,

your entire civilisation thereafter is merely the stooping to pick it up.

Liu Cixin, Zhao Wen Dao (Morning, Truth)
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in this chapter constitutes a short glimpse at a few key aspects that directly

inform our modelling effort, as discussed in the later chapters.

3.1 Dynamical Friction and Orbital Decays

As a massive object travels through a diffuse interstellar medium it injects

some of its momentum and energy into the surrounding matter. This is

called dynamical friction. It is not a contact force like the friction or drag

thatwe experience on earth: the overdense “wake” amoving object induces

gives rise to a net gravitational drag on the object opposed to its direction

of motion. This was first systematically studied by Chandrasekhar [40]. The

full expression is an integral over the phase space density of the field of

matter,

dvM

dt
= −16π2(lnΛ)m(M +m)

1

v3M

∫ vM

0

dvv2f(v)vM , (3.1)

where M is the mass of the object entering the medium, m ≪ M is the

mass of each star in the stellar distribution, vM is the velocity of the travel-

ling heavy object in the reference frame where the centre of gravity of the

matter field is initially at rest, ln(Λ) is called the Coulomb logarithm, and

f(v) is the number density distribution of the stars. Chapter 5 contains

explicit evaluations of some of these parameters for an initially uniform

ULDM background, and the reader is referred to [41] and [42] for more

general discussions.

The strength of dynamical friction depends on the incoming object’s

mass and the medium’s density, as well as the object’s speed. For an ini-

tially uniform patch of ULDM, the speed dependence is sketched in Figure

3.1. If the massive object enters slowly (top panel), the gravitational wake

generated will be roughly symmetric around it, providing little net drag. If
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Figure 3.1:A sketch of the dependence of dynamical friction on velocity in ULDM.

A massive object enters a uniform volume of interstellar medium (shaded region)

at three different speeds.

the object traverses too quickly (bottom panel), the background doesn’t

have enough time to react, producing a small drag as well. Consequently,

there is a middle ground where the drag is maximised.

Dynamical friction can manifest across a range of astrophysical scales,

from a single neutron star travelling through a star cluster or dark matter

waves [43, 44], to the bulk motion of clusters themselves around their host

galaxies.
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Globular clusters, consisting of approximately 104 to 107 stars, are densely

packed and gravitationally bound stellar systems orbiting in stable forma-

tions. Conversely, a dwarf spheroidal galaxy, visually resembling a larger

globular cluster, contains a significantly higher proportion of dark matter

compared to the former.

As a globular cluster orbits its host galaxy, dynamical friction exerts a

torque that reduces its radial separation from the centre. In a simplistic

view, by looking at the radial separation of the smaller globular clusters

from the centre of their host galaxies, and comparing this with the galaxy’s

estimated age, a rough estimate can be made about their rate of orbital

migrations, and, in extension, the strength of dynamical friction – due to

stars, interstellar gas, and dark matter [45].

3.2 Black Holes

Physical processes that take place around a black hole, especially a super-

massive black hole (SMBH) which has a mass at least 105 times the mass of

the Sun, are some of themost extreme in the known universe [46]. Herewe

outline two processes of potential interest to our investigations in ULDM

cosmology: accretion and superradiance. In addition, we discuss the Final

Parsec Problem of black hole mergers, which in part motivated the mod-

elling efforts in this thesis.

Furthermore, because relativistic effects become relevant near the edge

of a black hole, we revert to the full Klein-Gordon description of ULDM

where necessary.
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3.2.1 Black Hole Accretion of a Scalar Field

Black holes can absorb both mass and angular momentum from the

medium around them, and ULDM is no exception. The study of Klein-

Gordon systems around a black hole can be traced as far as the 1970s,

where Unruh [47] provided a way to estimate the accretion rate, the num-

ber of particles that cross the event horizon compared to the overall parti-

cle flux. In more recent times, the stationary accretion flow around a black

hole are studied by Clough et al. [48], Hui et al. [49], and Bamber et al. [50].

The reader is referred to the review by Hui [51] for a detailed analysis. In

the parameter space relevant to us, where the mass of each individual dark

matter particle is vanishing, the black hole accretion rate is estimated to be

dMBH

dt
≈ 4× 10−9M⊙yr

−1

(
MBH

109M⊙

)2(
ρHalo

0.1M⊙pc−3

)
, (3.2)

whereMBH is the black hole mass and ρHalo refers to the ambient dark mat-

ter density. The rate is small, as ultralight axions, semiclassically speaking,

readily tunnel across the potential barrier around a black hole, and our sim-

ulations reported in this thesis do not consider accretion effects.

A related problem was considered in 2018 by Avilez et al [52]. They

looked at the process of black hole formation straight from a ULDM halo

collapse process.

3.2.2 Rotating Black Holes and Superradiance

Superradiance is a feature of many dissipitive systems, from lab-based

quantum optics to black hole astrophysics. In our context, it refers to the

amplification of a ULDM axion particle’s energy as it encounters a spinning

black hole, where it “borrows” energy from within the event horizon [53].
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Black-hole superradiance (BHSR) is closely linked to the Penrose process,

tidal forces, and even Hawking radiation, which can be seen as a quantum

version of BHSR. The review by Stott and Marsh [54] provides a detailed

exploration of the subject.

The spacetime around a rotating black hole without electric charge is

described by the Kerr solution. Using the standard Boyer-Lindquist coordi-

nates, it takes the form

ds2 =−
(
1− 2MBHr

Σ

)
dt2 +

Σ

∆
dr2 + Σdθ2

+

(
r2 + a2 +

2MBHrη
2

Σ
sin2 θ

)
sin2 θ dϕ2 − 4MBHrη sin

2 θ

Σ
dt dϕ,

(3.3)

where, for brevity, variables related to the black hole’s angular momentum

J are introduced:

η =
J

M
(3.4a)

Σ = r2 + η2 cos2 θ (3.4b)

∆ = r2 − 2MBHr + η2. (3.4c)

It prescribes the existence of a region known as the ergosphere, where

spacetime is dragged along the rotating black hole and must rotate with

the black hole [55].

The analysis of black hole superradiance comes down to solving the

Klein-Gordon equation in the Kerr background subject to the infalling

boundary condition at the event horizon and the asymptotically vanishing

boundary condition far away.

A cloud of particles surrounding the spinning black hole will have modes

that extract energy and angular momentum from the black hole, making
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these properties time-dependent, opening them to dynamical stability anal-

ysis. This was explored in the paper by Ficarra et al. in 2019 [56].

BHSR provides a powerful bound on mA because the stability of super-

radiance modes are linked closely to the mass and composition of fields

around the black holes. The excluded ranges [54] are

7× 10−14
eV < mA < 2× 10−11

eV,

7× 10−20
eV < mA < 1× 10−16

eV.

Furthermore, a model with multiple axions is excluded if just one compo-

nent species lies in these ranges.

3.2.3 The Final Parsec Problem

The time gap between when two galaxies merge and their central black

holes merge is very hard to fit into the age of the universe. Once two black

holes are already very close, the binary system does lose energy and orbital

separation via gravitational wave radiation; when two black holes are far

apart, they can lose angular momentum through dynamical friction. How-

ever, this effect weakens as the black holes get closer – there is less chance

for a close encounter with another star in a smaller orbit. However, binary

SMBH systems are apparently rare so the mergers must have somehow

taken place. This is known as the “final parsec problem”.

For ULDM cosmology, Hui et al. [57], Bar-Or et al. [58], and Lancaster et

al. [45] considered the effects of ULDM on inspiraling black hole binaries,

and provided characteristic timescales of their orbital decay. The prospect

that ULDMcan bring SMBHbinaries together is amain focus of our current

and future modelling efforts.
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3.3 Baryonic Systems

This section outlines the considerations arising from simulations of bary-

onic physics, following the paper by Almgren et al. [59]. Here, we empha-

sise the parameters available to us for each aspect of baryonic physics.

3.3.1 Basic Gas Dynamics

We take a mixture of hydrogen and helium that follows a γ-law equation

of state, with γ being the usual specific heat ratio,

p = (γ − 1)ρ e, (3.5)

where p is the (comoving) pressure, ρ the (comoving) density, and e stands

for the internal energy. We first write down the continuity equation

a
∂ρb
∂t

= −∇ · (ρbU), (3.6)

where ρb is the comoving baryon density. This enables us to write the mo-

mentum equation as

∂aρbU

∂t
= −∇ · (ρbUU)−∇p− ρb∇Φ, (3.7)

where Φ is the gravitational potential. A simulated gas system’s internal e

and total energies E = e+ U2/2 are separately evaluated.

Assuming they are well-approximated as monoatomic ideal gases, γ =

5/3, we have

∂a2ρbe

∂t
= −a∇ · (ρbUE + pU)− a(ρbU ·∇Φ− ΛHC) (3.8a)

∂a2ρbE

∂t
= −a∇ · (ρbUe)− ap∇ · U + aΛHC , (3.8b)
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where ΛHC are additional terms that account for heating and cooling ef-

fects. And of course, the gravitational potential, Φ, is solved using the Pois-

son equation from the total density,

a∇2Φ = 4π(ρ− ⟨ρ⟩), (3.9)

where ⟨ρ⟩ is the simulation domain’s average density accounting for every-

thing – baryons, dark matter, and stars. AxioNyx is then capable of advanc-

ing this equation in time, subject to a set of well-laid initial conditions.

3.3.2 Star Formation and Feedback

When dense regions of gas clouds in interstellar space undergo further col-

lapse, stars are ignited. Star formation is an epitome of the “mud wrestling”

side of cosmology, full of delayed responses to nonlinear physics that

morph into at best statistical characterisations. It is a fascinating aspect

of the Universe to model and consider, since we are currently orbiting one

star and our bodies are comprised of fragments of others.

Stars alter the environment around them through a series of mechanisms

collectively referred to as feedback, which regulates star formation rates

within galaxies. Near the centre of an active galactic nucleus or a region

with many supernovae, for example, the vast amount of energy released

impacts the interstellar medium, which in turn changes the rate at which

new stars form.

Code that accounts for star formation and evolution is absent from the

work reported in this thesis, but it is the logical next step. It is sometimes

argued that a better understanding of stellar formation and feedbackmech-

anisms may bring a resolution to both the core-cusp problem and the final

parsec problem (in that the stellar distribution of a galaxy post-merger are
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different) without requiring exotic physics. This adds to the necessity for

future cosmological models to account for it.

3.3.3 Stellar Velocity Dispersion

The stellar velocity dispersion of a galaxy, often denoted σ(r), is the vari-

ance in line-of-sight velocity of stars. It is seen as a powerful predictor of

many galactic properties, andmodern observational techniques havemade

data widely available.

As we have established, ULDM halos have granular structures on scales

similar to the de Broglie length of the underlying field. Orbiting stars are

perturbed as they interact with the gravitational potential of these struc-

tures, heating them relative to their motion in a smooth background.



4
Aspects of ULDM Simulation

We now review several numerical routines used to evolve an astrophysical

system containing ULDM. We also outline ways to calculate derived quan-

tities as simulations take place, and discuss their potential errors or limita-

tions. This thesis makes use of the computational frameworks provided by

PyUltraLight [60] and AxioNyx [61], and involves significant modifications

to both. We primarily focus on the former, as we spent the more effort

extending and testing this program.

39

The purpose of computing is insight, not numbers.

Richard Hamming, Numerical Methods for Scientists and Engineers
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4.1 Advancing the SPE in Time

To the lowest order, one can realise the signature “fuzzy” ULDMbehaviours

as a perturbative term on top of existing simulation code for cold dark mat-

ter cosmology, which is often implemented as a collisionless N body sys-

tem [62]
1
. This is valid because ULDM, by construction, should behave like

CDMon large scales. If more robustness is desired, the so-called “quantum-

pressure” associated with ULDM can also be added to sophisticated com-

putational fluid dynamics (CFD) simulators [63].

The gold standard, however, is a purpose-built solver that deals with the

non-linearity of the Schrödinger-Poisson Equations (SPE) directly, either

via finite differencing or pseudo-spectral methods. The finite difference

(FD) method is straight-forward to implement and insensitive to boundary

conditions. However, as we will see, it is subject to stringent constraints on

timestep sizes. The pseudo-spectral (PS) method advances the nonlinear

SPE by manipulating the frequency components in a Fourier transformed

version of the wavefunction.

The pseudo-spectral method works as follows. For a domain of edge

length L and resolution N , the root grid is the set of points

x = −L
2




1

1

1


+

L

N




nx

ny

nz


 , (4.1)

where nx, ny, and nz are integers between 0 and N − 1, and we denote the

tuple of indices as j := (nx, ny, nz). To advance Equations 2.13a and 2.13b,

we approximate the unitary time evolution of the quantum field using the

1
Not to be confused with the massive particle ensembles we shall discuss later.
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symmetrised split-step Fourier method. With the operations applied from

right to left, we can write it as follows:

ψ(t+∆t) = exp

[
−i∆t

2
Φ(t+∆t)

]
×

F−1

{
exp

[−i∆tk2
2

]
F exp

[
−i∆t

2
Φ(t)

]}
ψ(t). (4.2)

F (F−1
) denotes the (inverse) discrete Fourier transform on the root grid.

The ULDM gravitational potential is obtained by solving Poisson equation

in the frequency domain,

ΦU(t+∆t) = 4πF−1

{(
− 1

k2

)
F (ψ∗(t)ψ(t))

}
. (4.3)

This method is correct to second order in time [60]. The resolution of the

root grid limits our ability to resolve the evolution of our simulated ULDM,

and a simulated condensate can deviate significantly from physical reality

under conditions that strain the numerical simplifications or our theoretical

assumptions, and it is important to be cognisant of such limitations, espe-

cially how they scale with resolution and the size of our domain.

4.1.1 Spatial and Temporal Resolution

We recall from Chapter 2 that ULDM velocity is manifest as the gradient

in the phase of ψ. Consequently, if the phases between two neighbouring

cells differ by than π radians, structures will appear to move in the wrong

direction. In the language of Fourier analysis, this is aliasing – when signals

are time-limited, and not band-limited. This is illustrated schematically in

Figure 4.1.

By default, the integration step length, ∆t, is chosen using the Courant-

Friedrichs-Lewy (CFL) condition, such that an object with the highest speed
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Figure 4.1: The grid-based nature of our simulations imposes an effective speed

limit, above which motion is interpreted incorrectly. In this 1D example, the real

x-velocity (gradient of the yellow lines) increases from the top panel to the bottom

panel, while the simulated velocity based on the values on the grid (white dots),

reaches a maximum value and then turns the wrong way.

resolvable by the grid travels exactly one grid interval during one time

step [64],

∆t =
L2

πN2
. (4.4)

The CFL condition is a qualitative requirement, since the Schrödinger-

Poisson equation is not hyperbolic, but it provides a useful baseline
2
. For

our practical use, except for simulations where the time-step lengths are

determined byNbody or hydrodynamical constraints, as discussed in Chap-

ter 5, the main performance bottleneck is the three-dimensional Fourier

transforms that advance the wavefunction over the base grid.

PyUltraLight accepts any positive even integer as grid resolution and au-

tomatically chooses the next “fast” one, where necessary, as evaluated by

2
In a hyperbolic system, such a condition on the timesteps enforces causality.
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the function scipy.fft.next_fast_len()3. In this thesis, we favour the

following resolutions: 643, 1283, 1923, 2563, 3843, 5123, and 10243. The com-

plexity involved in each FFT operation is at least O(3N3 logN). For exam-

ple, if we increase the mesh resolution by a power of two, from 1283 to

2563, the simulation requires 22 = 4 times the number of steps to complete,

with each step costing as much as 23 = 8 more memory and disk space, in

addition to taking about 9 times longer for each step. The number of steps

and simulation time lengths for a simple ULDM simulation on the author’s

personal Mac Studio computer
4
is presented in Figure 4.2.

The performance figures illustrate that simulations achieve optimal re-

sults when utilising a large box and high spatial resolution. However, it

is important to note that this approach can rapidly escalate in cost. This

N5
dependence on resources

5
motivates the use of SPE solvers with adap-

tive mesh refinement to resolve finer structures in larger-scale simulations,

which we attempt with AxioNyx.

3
The FFT algorithms are fast because they employ a recursive divide and conquer

strategy. Signal lengths with with small prime factors should be used.

4
This machine has 8 high-performance CPU “P-cores” at a base clock speed of 3.2GHz,

and 64 gigabytes of RAM. PyUltraLight is mainly designed to facilitate intermediate ex-

ploration of ULDM dynamics, whereas AxioNyx focuses on large-scale computation.

5
Note additionally that, in practice, the scaling will be exacerbated by delays due to

initialisation and I/O operations.



44 Aspects of ULDM Simulation

A (2×) B (2×)

C (4×) D (4×)

Time

99.95%

100.00%

100.05%

E
(t

)/E
(0

)

N L Eff. Resol. Steps Time taken (s)
A 128 2 1x 644 32

B 256 2 2x 2574 867

C 128 4 0.5x 161 10

D 256 4 1x 644 267

Figure 4.2: Simulated scattering of two equal-mass solitons with an initial phase

difference of π. The contour lines show the evolution of densities on the x − y
plane over time, while the colour overlays represent the phase information at the

moment of closest approach. Information on systems’ total energy conservation

and simulation time on the author’s Mac Studio is presented for four different

settings.
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4.1.2 PyUltraLight Code Units

It is practical to use units that absorb quantities such asH0,G, ℏ and c. The

units that we adopt for massMc, time Tc, and length Lcare thus,

Mc =
1

G

4

√
3H2

0Ωm0

8π

(
ℏ
mA

) 3
2

≈ 70.4

(
10−23

eV

mA

) 3
2

M⊙

(4.5)

Tc =
√

8π

3H2
0Ωm0

≈ 75.1Gyr, (4.6)

Lc =
4

√
8πℏ2

3m2
A
H2

0Ωm0

≈ 121

√
10−23eV

mA

kpc, . (4.7)

PyUltraLight can translate a variety of physical quantities between code

units and physical units, including time, length, and mass, but also acceler-

ation, momentum, density, and energy.

4.1.3 Simulation Boundary Conditions

The Fourier integrator naturally endows our simulation with periodicity in

all three directions, which can drive our simulations away from reality over

long runs, and violate the conservation of energy and momentum. This can

either be due to “crosstalk”, where the wavefunction near the boundary is

influenced by the neighbouring image of the simulation domain, or “wrap-

ping”, where matter ejected from one end of the simulation domain spuri-

ously returns from the opposite end instantaneously.

In our discussion of ULDM dynamical friction, Section 5, we take advan-

tage of the periodicity and set the simulation domain to be an exact multi-

ple of the ULDM de Broglie wavelength, achieving a much larger effective

simulation domain.
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For general simulations, it is, however, imperative thatwe keep themajor-

ity of the mass density and energy density sufficiently far from the simula-

tion domain, and implement variations on the default boundary to improve

the realism, efficacy, or stability of our simulations. The three boundary

conditions currently implemented in PyUltraLight are shown in Figure 4.3.

Regular Periodic

D
en

si
ty

Dispersive Sponge

L/2 7L/16 L/4 0 L/4 7L/16
x

Reflective

Figure 4.3: A soliton moving from the origin to the right, with the three kinds of

boundary conditions discussed in text
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4.1.3.1 Reflective Boundary

The reflective boundary condition prevents any ULDM from escaping the

simulation domain by establishing an infinite potential well around a region

of interest. This is achieved by setting the wavefunction amplitude outside

a subdomain (of any shape) to zero, effectively causing repulsion effects

when ULDM approaches.

4.1.3.2 Dispersive Sponge Boundary

For simulations that eject matter outwards, it can be more beneficial if we

repress the outgoing matter in a more sophisticated manner than simply

bouncing it back. This helps prolong the duration of simulation validity

while avoiding increasing the size of the simulation domain.

The sponge boundary condition in PyUltraLight is enforced by adding

an imaginary component to the system potential.

ψDS(x, t+∆t) = ψ(x, t+∆t)e−∆tD(r), (4.8a)

D(r) = 0.3

(
2− tanh

(
1 + s

2(1− s)

)
+ tanh

(
2r

L(1− s)
− 1 + s

2(1− s)

))
,

(4.8b)

where s controls the size of the sponge. The default value PyUltraLight

takes is s = 0.5.
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4.1.4 Isolated Potential

The isolated potential (I.P.) numerical routine is computational trick where

we effectively double the simulation region when calculating Φ by padding

the domainwith zero in all directions [65]. This is helpful for high-resolution

runs where further enlargement of the domain resolution is infeasible, as

well as simulations where significant ULDM moves towards the boundary.

An example of this is shown in Figure 4.4, where we can see as a soli-

ton drifts to the right, its ghost image emerging from the left boundary is

significantly suppressed when the I.P. routine is enabled. Additionally, the

two methods give different values for Φ due to the different choices for

the surface of zero potential. Nonetheless, they yield practically the same

relative shape.

G
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n
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Isolated Potential OFF (Default)

x

Isolated Potential ON

Figure 4.4: The gravitational field produced by a soliton moving from the origin to

the right, without and with I.P. enabled. The 2D slice plots of the final snapshot

are presented in the right column. Observe how the I.P. effectively suppressed the

ghost image arising from the periodic boundary.
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4.2 Coupling ULDM to an N Body System

When the ULDM is coupled to particles, the equations of motion become

iℏψ̇ =

[
− ℏ2

2mA

∇2 +mA(ΦU + ΦN)

]
ψ, (4.9a)

∇2ΦU = 4πGmA|ψ|2, (4.9b)

ΦN =
n∑

j

ΦNj
, (4.9c)

ẍj = −
n∑

k ̸=j

∇ΦNk
(xj)−∇ΦU(xj). (4.9d)

Here ϕi is the gravitational field due to the i-th point mass. Equations 4.9d

and 4.9c simply describe a rigid
6
, point-based N body system, which the

program handles using an explicit RK4 integrator. The flowchart of a PyUl-

traLight simulation is shown in Figure 4.5.

6
For large particle ensembles, say N ≥ 105, we have a grid-based routine where the

N body potential is discretised before we evaluate gradients, the same way we evaluate

ΦU.

Halt 
Conditions

Initialiser

Terminate

x
E

Φ
Ψ

∇Φ
Output

ψ(t) x(t)

ΦU(t + Δt)

x(t + Δt)
Φ(t + Δt)

Start

Φ(t)

ψ(t + Δt)

Memory / IO

Computation

Figure 4.5: The loop logic of PyUltraLight , with details on how each step is taken.
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Figure 4.6: In this 2D version of the interpolating problem, to estimate the local

gradient from information on nearby grid points our linear interpolation scheme

uses grid information on the surrounding 42 grid points.

4.2.1 From Mesh to Force

The N body system moves over R3
while the ULDM field that it interfaces

with is only defined over a discretised grid. In order to advance the parti-

cles in sync with the pseudo-spectral ULDM simulation an efficient inter-

polation scheme had to be implemented. After some experimentation and

background research, we make use of a local trilinear interpolation.

We show the algorithm for one dimension on the grid, and an illustration

for the two-dimensional equivalent is presented in Figure 4.6. The 2-D and

3-D equivalents simply means applying the 1-D algorithm once for each

axis. For our grid there are N equi-distant mesh grids covering a physical

interval of
[
−L

2
, L
2

)
. For a mass mj at position x = xj , we first find the grid

interval in the ULDM mesh that encloses it,




nj =

⌊
N

(xj

L
+ 1

2

)⌋
,

rj = N
xj−xnj

L
,
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where xnj
is the coordinate of the nj-th grid point. Then, we read the values

of gravitational potential,ΦU, at grid points nj−1, nj, nj+1, and nj+2. Their

values allow us to compute a first-order approximation to the gradient via

central differencing,

Φ′
U
(xj) ≈ rjΦ

′
nj+1 + (1− rj)Φ

′
nj

≈ N

2L

[
rj(Φnj+2 − Φnj

) + (1− rj)(Φnj+1 − Φnj−1)
]
. (4.10)

In the beginning of the project, an attempt was made where we interpo-

lated using the plane wave components obtained from the FFT in the main

PyUltraLight loop. However, given that the convergence of FFT is only

guaranteed at mesh grids, so this did not deliver a reliable way to interpo-

late Ψ or ΦU in general.

4.2.2 Smoothed Gravitational Potential

The finest physical length scale achieved by our simulations is on the order

of parsecs, at which it is reasonable to treat the N body particles as point

masses, regardless of their physical structures. However, the 1/r potential

associated with an idealised point can compromise the numerical stability

of our simulations: a point mass approaching arbitrarily close to a grid point

will induce an arbitrarily deep potential well, causing the ULDM ψ to break

down during the Fourier transform.

We thus smooth the potential by modelling the particles as Plummer

spheres with variable sizes [66]. The Plummer potential is given by

ΦP(r) = − M√
r2 + r2

P

, (4.11)

where rP is known as the Plummer radius. Figure 4.7 outlines how the

smoothed potential compares with the 1/r potential, as well as the default

settings for rP employed by PyUltraLight.
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Figure 4.7: A comparison between a Coulomb potential and a typical Plummer po-

tential. The lower panel highlights a set of simulation grids to illustrate the default

PyUltraLight setting, where the Plummer HWHM is equal to the length of one

grid.
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The particle-particle gravitational force in simulations is obtained by dif-

ferentiating Equation 4.11, though we note that the classical gravitational

equation often suffices: for two massesM1 andM2

F12 = −M1M2

|r12|3
r12. (4.12)

4.2.3 Pre-Relaxed Solitons

The soliton is a delicate equilibrium state between self-gravity and quan-

tum pressure means we have to be “gingerly” when setting up a simulation.

Initial conditions where a soliton is placed close to a considerable external

gravitational potential can be problematic because they, like a compressed

spring, proceed to oscillate around a new equilibrium until the excess en-

ergy is released, and it settles to a new ground state.

Such a nonlinear response makes it tricky to analyse many situations.

To counter this, PyUltraLight can now compute soliton radial profiles that

account for a massive particle embedded in its centre, and use the altered

radial profile to initialise the simulation. The density profile of one such

“pre-relaxed” soliton with a mass of 9 (code units) and an embedded point

particle with mass 0.9 (code unit) is shown in Figure 4.8.

The numerical module we employ is called PyUltraRound, a 1-D SPE

solver that assumes spherical symmetrywritten by LilianGuo. The code can

find soliton profiles with arbitrary numbers of nodes. It employs a shooting

method reminiscent of the tool we used to solve Equation 2.20 and gener-

ate the regular soliton in Chapter 2, and the reader is referred to Chapter

3 of [67] for a detailed discussion of the assumptions and algorithm.

As before the solver returns the f(r) that satisfies the boundary condi-

tion f(0) = 1. From this, the other solitons can be recovered using the
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scaling relationship (Equation 2.21). However, this means that α is also a

variable that we have to solve for: for a given central potential, the mass of

the soliton computed around it by PyUltraRound is not known a priori.

PyUltraLight uses a two-pass trial-and-error system to evaluate the soli-

ton profile given an embedded mass. In the first pass, the code solves the

SPE with a range of central black hole masses at a low resolution, and

computes the resulting soliton’s mass. Once a close match to the given

mass ratio is found, the same parameters are fed into a repeat run with

higher resolution and lower error tolerance. This method is robust for

MBH/MSoliton ≤ 0.5. The central potentials used in this process are Plum-

mer spheres of user-specified diameters, and simple radial scaling of the

soliton may occasionally violate this assumption.

A simple example is shown in Figure 4.9, where a standard soliton and a

10% point mass (Default), a suitably pre-relaxed soliton for the same point

mass (Pre-Relaxed), and a default soliton on its own (BH Absent), travel in
a straight line. The changes in their kinetic and gravitational energies are

plotted over roughly one period in the left panels, and their density changes

are illustrated using the contours in the right panels. It can be seen that the

first configuration exhibits far more variation in both density and energy

components, suggesting that it is displaced from equilibrium.
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Figure 4.8: A ground state soliton profile computed in the presence of an embed-

ded particle compared with the PyUltraLight default soliton that contains the

same overall mass of ULDM.
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Figure 4.9: A simple evolution of embedded soliton-particle systems. The left pan-

els show the ULDM energy components (solid line for EKQ and dashed line for

EGP , as defined in Section 4.3.1). The right panels are individual density contours

of the three setups described in text. We use the same scale across the three pan-

els for the density contours.
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4.3 Derived Quantities

4.3.1 Components of ULDM Energy

We approach ULDM energies from the perspective of the system’s govern-

ing equations of motion, following the discussion in [60]. Over the entirety

of spacetime, the action S whose variation over Φ, ψ, and ψ∗
(and their

respective time derivatives) that yields the SPEs can be written as

S[Φ, ψ, ψ∗] = −1

2

∫
dt

∫

R3

d3x
(
|∇Φ|2 + 2Φψψ∗ +∇ψ∇ψ∗ + i(ψψ̇∗ − ψ̇ψ∗)

)
.

(4.13)

The integrand of Equation 4.13 is the Lagrangian density, L. We can use it

to obtain an expression for the system energy,

EULDM =

∫

R3

d3x

(
∂L
∂ψ̇

ψ̇ +
∂L
∂ψ̇∗

ψ̇∗ +
∂L
∂Φ̇

Φ̇− L
)

=

∫

R3

d3x

(
1

2
Φ|ψ|2 − 1

2
ψ∗∇2ψ

)
(4.14)

≈ VCell
∑

Box

EGP,j + EKQ,j, (4.15)

where j are tuples of indices that run over the entire simulation domain.

The two non-vanishing terms in the integrand of Equation 4.14 are

named thusly because the first is associatedwith the gravitational potential

energy of the ULDM, whilst the second result from the combined contri-

butions of the wavefunction’s “kinetic effects” and “quantum pressure”.

This quantity is not equivalent to the expectation value of the SPEHamil-

tonian
7
, which one can read off from Equation 2.13a,

⟨H⟩ =
∫

R3

d3x

(
Φ|ψ|2 − 1

2
ψ∗∇2ψ

)
. (4.16)

7
The action that we used to derive the full SP system of equations is not the same as

the action which we use to derive the common Schrödinger equation, so the conserved

quantities which we call energy will have different functional forms.
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When we introduce other sources of mass, they will also contribute to

the potentialΦ. Hencewe furthermake the distinction between self gravita-

tional potential energy and external gravitational potential energies, where

relevant, in the next chapter. An example energy breakdown is shown in

Figure 4.10.

Time
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Figure 4.10: Energy components for the process shown in Figure 4.2 (B)

4.3.2 Momenta, Angular Momenta, and Vortices

The ULDMwavefunction encodes information for both density and speed,

and the need to evaluatemomentum, both globally and per-cell, arose from

our interest in the simulation of black hole binaries inside a ULDMmedium,

as we discuss in the next chapter. For a fluid distribution with density ρ(r)

and velocity field v(r), the total momentum is

p =

∫

R3

d3rρ(r)v(r). (4.17)

When we model this system over a uniform mesh grid, this discretises to

p ≈ VCell
∑

Box

ρjvj. (4.18)

We begin with the Madelung picture, Equation 2.16. Explicit evaluation of

v = ∇θ is disfavoured due to the cyclic nature of θ ∈ [−π, π). Rather, we
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can evaluate∇ψ in the frequency domain,

∇ψ = F−1 (ikF(ψ)) . (4.19)

Temporarily denoting the wavefunction amplitude as A :=
√
ρ for clarity,

we evaluate the following spatial gradient,

∇ψ = (∇A)eiθ + i(∇θ)Aeiθ

= (∇A)
ψ

A
+ i (∇θ)ψ. (4.20)

Rearranging to get the velocity term, we observe that

∇θ = i
∇A

A
− i

∇ψ

ψ

= i
∇A

A
− i

1

A2
ψ∗∇ψ. (4.21)

If we substitute this back to Equation 4.18, we obtain an estimate of the

momentum,

p ≈ VCell
∑

Box

A2
j(∇θ)j

= VCell
∑

Box

[iA∇A− iψ∗∇ψ]j . (4.22)

An example momentum evaluation is presented in Figure 4.11, where a

particle scatters off aULDM soliton, and the two objects exchangemomen-

tum. The error in momenta remains sub-percent even when conducted at

a rather lightweight 1283 resolution.

To compute the total angular momentum of a system, say, for a moving

soliton, one can simply take the cross product of p at each cell with a set

of position vectors,

L =
∑

Box

r′j × pj, (4.23)

where r′j are a set of position vectors with respect to an arbitrary point. In

PyUltraLight, this can either be the origin of the simulation domain, or the



Derived Quantities 59

1.0 0.5 0.0 0.5 1.0
x / kpc

1.5

1.0

0.5

0.0

0.5

y 
/ 

kp
c

0 20 40 60 80 100 120
Time / Myr

150

100

50

0

50

100

150

M
o

m
en

tu
m

 /
 M

M
km

s
1

ULDM py

ULDM px

Particle py

Particle px

|p|

Particle Trajectory

ULDM Centre of Mass

Figure 4.11: PyUltraLight simulation of a two-body scattering process between

an equal-mass pair of a soliton and a particle. The top plot shows the trajectory

and four snapshots of the ULDM density, while the inset shows the exchange

between their momenta.
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ULDM centre of mass. This functionality has been useful in the study of

systems comprising of multiple solitons orbiting each other, an example of

which is presented in Figure 4.12.

The simulated ULDM velocity field is irrotational by construction (the

curl of a gradient vanishes). This actually reflects a defining characteristic

of matter in superfluid state: irrotational and frictionless [27]. When angu-

lar momentum is imparted to a halo through, for example, merger dynam-

ics, instead of making the entire ULDM structure rotate homogeneously,

it excites inhomogeneous, quantised vortices instead. Works such as [68]

discuss the stabilisation of such (SI)FDM vortices with a central potential.

For our uses, it is important to note the conservation of angular mo-

mentum is only respected until any ejected matter reaches the simulation

boundary, because when a clump of ULDM “wraps around” the simulation

domain, any angular momentum it carries with respect to the origin of the

simulation domain will change sign, contributing incorrectly to the total

angular momentum. Long runs that need angular momentum evaluation

should be conducted in large boxes with sponge boundary conditions.
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Figure 4.12: A toy model where four equal-mass solitons orbit each other. The

program-evaluated angular momentum relative to the centre of mass (inset panel)

indeed behaves as expected, with Lxx and Lyy vanishingly small compared with

Lzz . This figure showsmultiple overlapping snapshots, where later-time snapshots

are more opaque.
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4.3.3 Re-sampling ULDM Density and Tracking Bulk

Motion

In many circumstances, we want to output Ψ in a region of interest, which

may move within the simulation volume as the system evolves. However,

saving the full 3D grid information of PyUltraLight simulations is often

computationally expensive. We therefore evaluate the centre-of-mass co-

ordinates of ULDM during runtime. PyUltraLight then uses a linear inter-

polator on the real and imaginary parts of ψ to return ψ information in any

subsection of the domain. Centre-of-mass velocity vCOM is also estimated

using central differencing, and the re-sampled ULDMwavefunction can be

corrected to remove this velocity,

ψR(x
′, t) = e−ix′·vCOMψ(x′, t). (4.24)

A rudimentary example of this is shown in Figure 4.13.

4.3.4 Dipole and Quadrupole Moments

In 3-dimensional space, the quadrupole moment of a distribution of mass

ρ(x, y, z) is a 3-by-3 matrix whose elements are

Qab =

∫
d3rρ(r)

(
3rarb − |r|2δab

)
, (4.25)

where the indices a and b run over x, y, and z, and δab is the Kronecker delta.

Figures 4.13 and 4.14 provide a pair of test cases for quadrupole evalua-

tions. The first quantifies the tidal disruption during the scattering process

presented in Figure 4.11, while the second deals with the interesting topic

of soliton phases.

In the top panel of Figure 4.14, one can read off the system’s approxi-

mate period from the Q time series. In the lower panels, the excitation of



Derived Quantities 63

Time = 0.0 Myr Time = 29.9 Myr Time = 59.7 Myr Time = 89.6 Myr Time = 119.4 Myr

0 20 40 60 80 100 120
Time / Myr

500000

0

500000

Q
 /

 C
o

d
e 

U
n

it
s

Qxx Qyy Qzz Qxy Qxz Qyz

Figure 4.13: The same run as Figure 4.11, resampled in the rest frame of the soli-

ton, alongside the quadrupole moment time series for each independent compo-

nent. The colour scales for the two figures are the same.

the resulting ULDM structure is evident. We can further confirm that all

simulated bulk motion are indeed in the x-y plane sinceQxz andQyz vanish

in both Figures.

The quadrupole moment measured from the centre of mass can quantify

the degree to which a soliton is disrupted, and this may be linked to the

generation of gravitational waves, which we explore in future work [69].
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Figure 4.14: In the top panel, we have a pair of equal-mass solitons with a π differ-

ence in phase bounce off each other in the x-y plane. When this phase difference

is reduced, however, the two solitons merge and become “excited” to varying ex-

tents, shown in the lower panels. The three series of density contour plots use the

same colour scale.
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4.3.5 Numerical Soliton Eigenmode Decomposition

For a simulation, assuming our dynamical evolution is perturbative in ψ and

produce no significant impact on the system’s total (time-averaged) gravita-

tional potential ⟨Φ⟩, it is possible to calculate an eigenbasis of the potential,
and project our wavefunction into distinct quasinormal modes that each

have an associated natural frequency. Discretised over grids, this manifests

as an eigenvalue problem,







χ(r1) · · · · · · · · · 0

0 χ(r2) · · · · · · 0
...

. . .
. . .

. . .
...

0
. . . 0 χ(rn−1) 0

0 · · · 0 0 χ(rn)




− 1

∆r2




−2 1 0 · · · 0

1 −2 1 · · · 0
...

. . .
. . .

. . .
...

0
. . . 1 −2 1

0 · · · 0 1 −2










u1

u2
...

un−1

un




= 2Enl




u1

u2
...

un−1

un




,

(4.26)

where χ(r) ≡ 2⟨Φ⟩(r) − l(l + 1)/r2 is the gravitational potential with the

centrifugal barrier, and Enℓ the eigenenergy. For the isolated soliton, its

first few eigenbasis is shown in Figure 4.15. As with standard quantum

mechanics, the expansion coefficients of a particular state can be obtained

as inner products of the simulated wavefunction and this eigenbasis.
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Figure 4.15: The first eigenmodes of the isolated soliton, adapted from [29]

4.3.6 ULDM Halo Construction

In 1979, M. Schwarzschild outlined a way to self-consistently approximate

the phase-space distribution of stars inside an elliptical galaxy with a given

density profile [70]:

1. take the target density profile and compute its corresponding gravi-

tational potential,

2. generate a library of single-particle trajectories moving inside the po-

tential for extended time,

3. assign appropriate weights to the orbits to recover the original den-

sity profile.

This method has been successfully generalised to construct dark matter

halos for dynamical simulations as well. For ULDM, however, soliton eigen-
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modes take the place of individual particle trajectories. This is described in

detail by Yavetz et al. [71], and stands as an economic parallel to the “tradi-

tional” approach where halos are dynamically formed from soliton mergers.

This method is employed in Section 6.3 to generate ULDM halos.

4.3.7 Correlation and Smoothness

We can easily obtain the spherically-averaged density profiles ρ̄(r) around

the ULDM centre of mass, which only depends on the distance r = |x|
from that point. The overdensity field is then defined as

δ(x) =
ρ(x)− ρ̄(r)

ρ̄(r)
. (4.27)

This quantity is sampled at n random points with coordinates x inside a

spherical domainwith radius rmax.We nowdefine the two-point correlation

function [72]

ξ(d) = ⟨δ(x)δ(x+ d)⟩

=
1

V

∫
d3xδ(x)δ(x+ d) ,

(4.28)

which quantifies the smoothness of the density field.
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4.4 AxioNyx: Baryonic Physics

4.4.1 Outline of Algorithm

Our work developed a modified version of AxioNyx with the capability

to simulate ULDM and gas dynamics together. AxioNyx has two different

pseudo-spectral schemes to solve the SPE: one at second order, the same

as used in PyUltraLight , and another at sixth order. Absorbing coefficients

into tuples labelled {cα, dα} as summarised in Table 1 of [61], we can write

down the schemes as

ψ(t+∆t) =
∏

α

exp

(
−i∆t

(
cα

k2

2mAa2
+ dαmAVα(x)

))
ψ(t). (4.29)

On the hydrodynamical side, Nyx represents the simulation state of the

gas as

Ū = [ρb, aρbU, a
2ρbE, a

2ρbe], (4.30)

and the flux vector is defined as

F = [1/a, ρbU, ρbUU, a(ρbUE + pU), aρbUe]. (4.31)

Denoting the local gravitational field as −∇Φ = g, the time-evolution

terms for internal energy, gravity, and heating-cooling are

Se = [0, 0, 0,−ap∇ · U ] (4.32a)

Sg = [0, ρbg, aρbU · g, 0] (4.32b)

SHC = [0, 0, aΛHC , aΛHC ] (4.32c)

Following Equation 3.7, the overall gas evolution equation is now,

∂Ū

∂t
= −∇ · F+ Se + Sg + SHC , (4.33)

where the divergence is evaluated per-variable. The algorithm for one step

(at a given level of refinement) is given in Figure 4.16
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Figure 4.16: Breakdown of one simulation step of AxioNyx , based on [59, 61].

The ULDM advance itself employs either the pseudospectral (root grid) or finite

difference (refined grid) numerical routines.

4.4.2 Adaptive Mesh Refinement

Adaptive mesh refinement (AMR) using block structures was introduced

by Berger and Oliger in the 1980s [73] and has seen use in a wide va-

riety of computational applications. The AMR methodology employed by

Nyx/AxioNyx uses a nested hierarchy of rectangular grids with refinement

of the grids in space by a factor of two between levels. Furthermore, refine-

ment in the lengths of time steps between levels is dictated by the subcy-

cling algorithm. The program default requires that∆t be halved for a region

of 2× refinement, for example.
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Refinement is triggered by pre-set criteria related to the simulation state.

The one we use the most commonly is a density threshold, while it is also

possible to set triggers based on density gradient, (gas) temperature, and

momentum. Due to the way ULDM velocities are defined, rapid flows re-

quire refinement to faithfully simulate, even if the density is low. However,

we assume that the detailed behaviour of low-density high-speed flows

does not significantly alter the overall dynamics.



5
ULDM Dynamical Friction1

We analyse a point-like massive particle interacting with self-gravitating

quantum matter. The overall investigation is motivated by the dynamics

of super-massive black holes (SMBH) moving inside Ultralight Dark Matter

(ULDM) halos.

This chapter is complementary to that of Lancaster et al. [45] who give

numerical and analytic treatments of both point-like and extended masses

moving through a ULDM background. We provide more numerical detail,

but focus on point masses. The uniform background case is primarily a test

for our code, recovering known analytic solutions (which are analogous to a

1
This chapter is based on the publication [74], with some updates to better fit in the

context of further investigations that it has since influenced.

71

Autour de nous, les étoiles continuaient leur marche silencieuse, dociles comme

un grand troupeau.

Around us, the stars continued their silent march, docile like a great flock.

Alphonse Daudet, Les Étoiles (The Stars)
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much older problem in electron propagation [41]) in the limit where the self-

gravity of the quantum matter is ignored and the point mass moves with

constant velocity. However, a point mass moving in an otherwise undis-

turbed ULDM background leaves an elongated overdensity in its wake,

which eventually undergoes gravitational collapse. The deep potential of

the resulting overdensity then brings the moving mass to a rapid standstill.

Conversely, when a black hole interacts with a ULDM halo the central

soliton has already collapsed and is supported by “quantum pressure”. We

consider a the idealised scenario of a mass in an initially circular orbit

around an unperturbed soliton. We broadly confirm simple estimates of

the timescales over which an orbiting mass sinks to the centre of the halo.

However, the moving mass excites oscillations in the soliton independently

of the dynamical friction, and the resulting motion can be complicated and

stochastic. In particular, we see possible evidence that an orbiting black

hole will be “reheated” as it interacts with the now-dynamical soliton for

some parameter combinations. This appears to increase the likelihood of

core-stalling in SMBH mergers in a ULDM dominated universe in a way

that is distinct from the heating of black hole binaries by the granular na-

ture of ULDM halos, described by Bar-Or et al. [58]. Consequently for

both uniform backgrounds and solitonic configurations we find that non-

perturbative backreaction introduces qualitatively new phenomena into

ULDM dynamics.

This work rests on numerical solutions of the coupled Schrödinger-

Poisson equation. In what follows we set the axion mass to 10−22
eV for

the idealised scenario of a point mass moving in a uniform ULDM back-

ground. This system has no direct astrophysical analogue and could be

treated as dimensionless However, this value is often adopted as a fidu-

cial ULDM mass [27] and providing concrete numbers contextualises the
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Figure 5.1: The analytic density profile for a Coulomb scattering process involving

a mass travelling to the right (with back-reaction neglected). The overdense tail

extends infinitely behind it. The numerical scales are omitted since the underlying

equation is linear.

results. When looking at interactions between point masses and ULDM

solitons we setm = 10−21
eV, given that larger values are broadly preferred

by the data although our overall focus here is the underlying dynamics of

these systems, not their detailed astrophysics.

We use periodic spatial boundary conditions. For the case of a black hole

moving in a uniformULDMbackgroundwe limit the duration of simulations

to

tMax =
L

2vrel
, (5.1)

so that the ULDM wake is prevented from “wrapping round” the periodic

boundary. This is less of an issue when the black hole interacts with a soli-

ton.
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5.1 Steady State Gravitational Wakes

In the limit that the self-gravity of the wake is negligible and the point mass

travels at a constant velocity, the problem reduces to Coulomb scatter-

ing [41, 57] in the reference frame in which a stationary mass is subject

to an “axion wind”. Consequently, we assume the particle of massM is at

the origin immersed in an axion flow with velocity v = −vrelx̂ and density

ρ when undisturbed.

Ignoring axion self-gravity and denoting the radial coordinate r = xx̂ +

yŷ + zẑ, the system obeys the time-independent Schrödinger equation

Eψ = Ĥψ, [
mv2

2
+
GMm

r
+

ℏ2

2m
∇2

]
ψ(r) = 0. (5.2)

This has an analytical solution in the form of a confluent hypergeometric

function,

ψ(r) =
√
ρeπβ/2+2πix/λdB|Γ(1− iβ)|×

M

[
iβ, 1; i

2π(r + x)

λdB

]
. (5.3)

In Equation 5.3, λdB = h/(mvrel) is the axion de Broglie wavelength and the

inverse quantum Mach number is

β = 2π
GM

v2λdB
, (5.4)

and we have

M(a, b; z) =
∞∑

n=0

a(n)zn

b(n)n!
, (5.5)

where p(q) is the Pochhammer symbol,

p(q) ≡ Γ(p+ q)

Γ(p)
. (5.6)

Figure 5.1 illustrates a typical density profile.
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The dynamical friction is supplied by the gravitational field of the over-

dense wake. However, a naive integral of the source overR3
diverges since

the overdensity approaches a non-zero constant value at arbitrary large

distances behind the moving mass. This problem (which stems from the

unphysical assumption that the semi-infinite wake can be generated at a

constant velocity within finite time) is solved by introducing a spatial cutoff

scale, b, the distance traveled by the mass relative to the medium. It is also

helpful to expresses b in units of the axion de Broglie wavelength, denoted

as b̃,

b̃(t) =
2πb

λdB
=
mvrel(t)

ℏ

∫ t

0

vrel(t
′)dt′, (5.7)

If the mass travels at constant velocity, the dynamical friction is [57, 45]

FDF = 4πρ̄C(b̃)

(
GM

vrel

)2

, (5.8)

where C(b̃) is a friction coefficient. The gravitational force on the mass is

−M∂ΦU/∂x, so approximately we have

C(b̃) =
v2
rel

4πρ̄G2M

∣∣∣∣
∂ΦU

∂x

∣∣∣∣ . (5.9)

When β ≪ 1 we can extract C(b̃) from the wavefunction, Equation 5.2,

C(b̃) = Cin(2b̃) + sinc(2b̃)− 1 +O(β), (5.10)

where Cin(x) ≡
∫ x

0
[(1− cos(t))/t] dt and sinc(x) ≡ sin(x)/x. In the limit

that b̃≪ 1, one evaluates

C(b̃) ≈ 1

3
b̃2. (5.11)

5.2 Simulation Without Self-Gravity

We begin with simulations without ULDM self-gravity. As before, we as-

sume a mass moving along the x axis in an initially uniform ULDMmedium
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Figure 5.2: A slice of the simulated overdensity at 1923 resolution without self-

gravity versus the analytical Coulomb scattering result (Equation 5.3). The length

unit are in kiloparsecs, and the circle overlays represent instantaneous values of

λdB (black) and b (green).

at a constant velocity. Unless noted otherwise, the simulations shown in
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this section are produced with:

L = 4λdB ≈ 9.63 kpc ,

ρ0 = 107ρcrit ≈ 1.27M⊙/pc
3 ,

MBH = 107M⊙ ,

vrel = 50 km/s

rP = 48 pc ,

β = 0.0449 ,

m22 = 1 .

These quantities can be calibrated against expectations for the central

solitonic condensations of ULDM halos [75]:

ρc = 2.94× 10−3M⊙pc
−3

(
Mvir

109M⊙

)4/3

m2
22, (5.12a)

rc = 1.6kpc

(
Mvir

109M⊙

)−1/3

m−1
22 , (5.12b)

where ρc and rc are the central density and HWHM radius of a halo with

virialised massMvir. The background density in our simulations is similar to

that of the solitonic core of a 1011M⊙ halo, but our uniform-density simu-

lated volume is substantially larger than the soliton. In Fig. 5.2 we compare

a simulation (with axion self-gravity disabled) to the steady state Coulomb

solution. There is good qualitative overlap between the two solutions in

the the vicinity of the mass point. However, the wake is truncated in the

numerical simulation as a consequence of the finite duration of the calcu-

lation.

We can work with two inertial frames, the ULDM frame and the initially

comoving frame. In the former, the mass has initial velocity vm = vrelx̂ in

a stationary ULDM background. In the latter, the mass is initially at rest,
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Figure 5.3: The overdensity along the x-axis in the co-moving (green) and the

ULDM (yellow) frames, as described in the text. The analytical density profile due

to Equation 5.3 is superimposed on the final snapshot.

embedded in a ULDM background moving with velocity −vrelx̂. Fig. 5.3
illustrates that our simulations are consistent between these frames.

If the dynamical friction does not alter vrel significantly, Equation 5.7 re-

duces to

b̃ =
mv2

rel

ℏ
t. (5.13)

EvaluatingC(b̃) via Equation 5.10, we can quantitatively compare the simu-

lationwith the analytical results, as shown in Fig. 5.4. The simulation results

are obtained via Equation 5.9, which is a direct measure of the force. This

is a nontrivial test of the code in that it demonstrates that using a “cut-off”

to compute the dynamical friction is a good match to that given by the

time-dependent wake.
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Figure 5.4: The dynamical friction coefficient, C , extracted from a canonical sim-

ulation without self-gravity, plotted against time. A theoretical result obtained by

substituting b = vrelt into Equation 5.10 is superimposed.

5.3 Simulations with Self-Gravity

We now enable ULDM self-gravity, and allow the travelling mass to slow

down in response to the ULDM potential. In this case, the wake under-

goes gravitational collapse forming a high-density region behind the par-

ticle. The resulting gravitational potential greatly increases the dynamical

friction, bringing the particle to a rapid halt.

Fig. 5.5 illustrates the time-evolution of such an overdensity. It initially

tracks the previous case, but eventually tips over into a runaway collapse.

We plot C and b̃ for our representative solution in Fig. 5.6. Once the col-

lapse is well underway, v decreases, causing b̃ to similarly decrease.

In Fig. 5.7, we show the energy transfer between the moving mass and

the background medium in the two reference frames. In the initially co-

moving frame the total kinetic energy is larger since a much greater mass

of ULDM is moving toward the black hole, in contrast to the ULDM rest
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Figure 5.5: Time evolution of a gravitational wake behind the test mass (red), com-

pared with simulation result without self-gravity (dark gray). With all gravitational

interactions enabled the overdense wake undergoes collapse, and the mass falls

backwards (in the comoving frame) into the resulting potential.

frame in which only the black hole is moving initially. In both cases we find

good energy conservation, but the total amount of energy is not invariant

under the Galilean transformation. In the lower plot we see that energy

conservation improves with resolution as we would expect. Conservation

appears to be better in comoving frame. However, this is a byproduct of

the axion flow carrying more kinetic energy than the moving mass, rather

than a physical distinction.
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Figure 5.6: Dynamical friction coefficient C with gravitational backreaction for a

representative case (red), compared with a simulation where backreaction is ne-

glected (black). Initially, b̃ tracks the perturbative solution and the increases as the
collapse begins; the decreasing velocity reduces the de Broglie wavelength and b̃.
The solid arrows represent the flow of time in each scenario.

Fig. 5.8 shows the dependence on mesh resolution and the Plummer ra-

dius. We see that decreasing the Plummer radius increases the friction and

decreases stopping distance, as expected [45]. We also verify that a sub-

grid Plummer radius can be chosen without inducing numerical instability.

Conversely, if we fix the Plummer radius relative to the grid spacing, de-

creasingN effectively makes the potential more diffuse, and stopping time

increases asN is reduced. However, one can extrapolate to the continuum

limit without difficulty.

When the self-gravity term in the Schrödinger-Poisson equation is small

the Coulomb scattering approximation is typically sufficient to compute the

force on a moving particle. However, once the wake becomes gravitation-

ally unstable the particle rapidly slows down. To illustrate this we surveyed



82 ULDM Dynamical Friction

Figure 5.7: Upper Row: The energy transfer between the travelling mass and

ULDM, in units of the object’s initial kinetic energy in the ULDM frame, with

N = 256. After 20 Myr the mass is sensibly at rest. Lower Row: Net change in

system energy for N = 128, 192 and 256.

a range of initial particle masses between 0.1 and 100 million solar masses

and ULDM densities between 105 and 108ρcrit. In almost all cases the mov-

ing mass came to halt after traveling less than 3.5 kpc and within 100 Myr.

For large black holes in a very dense ULDM background the stopping dis-

tance can be on the order of O(10) parsecs. This result is illustrated in Fig.

5.9.

Physically, however, this scenario is unlikely to be encountered in prac-

tice - the densest parts of a ULDM are the central soliton, which need

not behave in the same way as a uniform ULDM background. Conceivably

conditions close to this scenario could exist in the early universe (recall-
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Figure 5.8: The stopping distances of the 10M⊙ object as a function of its Plummer

Radius, simulated at 4 mesh resolutions.

ing that ρ ≈ 109ρcrit at recombination) but in that scenario the moving ob-

ject would necessarily be a primordial black hole, formed in a much earlier

epoch. Moreover, in this scenario axion collapse may lead to the formation

of a black hole, as studied in Ref. [76].

5.4 Physical Configuration

We now consider a mass moving in an initially circular orbit around (and

inside) a Schrödinger-Poisson soliton and analyse the decay of its orbital

radius and energy. SMBH dynamics after a galactic merger are obviously a
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key motivation for this work but we focus on a single, displaced SMBH in

this initial treatment.

The simulations in this Section make use of a soliton with the parameters

MSoliton = 1.2× 107M⊙,

m22 = 10,

r50 = 279.7pc,

where r50 is the radius which encloses 50% of the soliton mass. The cho-

sen axion mass (10−21
eV) is broadly compatible with current astrophysical

bounds (although see [77]); the mass of the central soliton is consistent

with that expected for a ∼ 1010M⊙ halo [28, 57]. The simulations are per-

Figure 5.9: Stopping distance interpolated using 13 object masses and 9 density

values, all with vRel = 50 km/s. The simulations were conducted at 1283 resolution
in the ULDM frame.
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Figure 5.10:ULDM configuration in a black hole-soliton pair with an initial separa-

tion of 300pc andMBH/MSoliton = 0.08. Density is shown on a log scale, calibrated
against the value at the initial location, ρ0 ≈ 0.0295M⊙/pc−3

. The de Broglie wave-

length is plotted for reference.

formed in a box L = 4.5kpc on a side and the Plummer radius is set to be

half of the grid-spacing.

Our simulations begin with the black hole embedded in an undisturbed

soliton. Fig. 5.10 shows the ULDM configuration at four different times

for a mass ratio of MBH/MSoliton = 0.08. There is no obvious wake, since

the ULDM background responds to both quantum pressure, and its own

confining gravitational potential, but the overall soliton is disturbed by the

passage of the black hole.

Fig. 5.11 shows the trajectories of two black holes (from separate simu-

lations) with masses 6× 104 and 9.6× 105M⊙ in initially circular orbits; the

more massive black hole feels a larger dynamical friction and quickly sinks

towards the centre. The centre of mass is at the origin, so the more massive

black hole has a smaller initial radial position.
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5.5 Numerical Considerations

These simulations are performed in PyUltraLight with periodic boundary

conditions; to suppress artifacts arising from interactions with the bound-

ary the simulation volume is necessarily much larger than the soliton. How-

ever, our results are largely insensitive to the spatial resolution of the

ULDM simulation and energy conservation scales as expected with reso-

lution, as shown in Fig. 5.12.

Figure 5.11: Trajectories from two simulations with initial black hole-soliton sepa-

ration of 300 pc with respect to the individual system centres of mass. The orbital

decay of the smaller black hole is significantly slower.
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Figure 5.12: The black hole trajectory (top) and energy conservation (bottom) is

shown for a mass ratio of 8% and an initial separation of 80pc for a range of reso-

lutions.

The resolution-independence of these simulations is perhaps surprising,

given that the whole trajectory in Fig. 5.12 fits into a region only a few

mesh grids across for N = 128. However, this welcome result makes phys-

ical sense given that dynamical friction arises from a collective interaction

between the black hole and the overall soliton, in contrast to drag forces

associated with the mechanical displacement of a medium which are thus

largely local phenomena. Consequently, provided the soliton is adequately

resolved our simulations quickly reach a resolution-independent limit asN

is increased. Recall too that the black hole position varies continuouslywith

the lattice on which the wavefunction ψ is obtained. With N = 384, lattice
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points are about 11pc apart, which is on the order of the minimum radial

separation attained after the black hole has sunk toward the centre of the

soliton.

5.6 Dynamical Friction

Fig. 5.13 shows the trajectories for five black holemasses and two different

starting radii. The black holes all initially sink toward the centre but their

kinetic energies need not decrease monotonically, due to their interactions

with the newly disturbed soliton.

For circular motion the dynamical friction applies a torque on the mov-

ing mass, which gives the rate of change in the angular momentum. This

implicitly defines a (rough) timescale for the orbital lifetime [57]

τ ≡ L
r|FDF |

=
1

C

M(r)3/2

4πρM
√
Gr3

, (5.14)

where L is the initial orbital angular momentum and M(r) is the ULDM

mass inside the radius r. We invoke Equation 5.11 to write

C ≈ 1

3
b̃2 ≈ 1

3

Gm2rM(r)

ℏ2
. (5.15)

which yields

τ ≈ 3ℏ2M(r)1/2

4πm2ρ(r)M
√
G3r5

, (5.16)

where we have explicitly denoted the density is function of r. Hui et al. [57]

assume that the black hole is near the centre of the soliton and replace ρ

with its maximum value; after this substitution it is immediately clear that

τ → ∞ as r → 0.

For a particle with mass MBH orbiting this specific soliton at r50 the re-

sulting timescale is

τ ≈ 160.18Myr

(
106M⊙
MBH

)
, (5.17)
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Figure 5.13: Black hole orbital radii for five mass ratios. The initial radii are 80

and 300 pc in the upper and lower panels respectively; all simulations run for 1.2

billion years.

recalling that 106M⊙ is 8% of the soliton mass, the largest ratio we consider.

Fig. 5.14 plots the characteristic timescale for a range of masses and radii,

rescaled by MBH/10
6
. As noted above, τ diverges at small r, since the cir-

cular velocity decreases at the centre of a spherical mass distribution, and

likewise at large r when the density of the medium and and velocity both

decrease with radius, but it is roughly constant for intermediate radii.

The derivation of the timescale in Equation 5.16 implicitly assumes a lin-

ear and steady decrease in angularmomentumbut the simulated black hole

orbital radii are clearly non-monotonic. We obtain an empirical timescale

for comparison purposes from the interval over which the black hole angu-
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Figure 5.14: Orbital decay timescales for a 106M⊙ black hole. The solid curve

is based on Equation 5.16; the dashed curve results from fixing the density to

the central value. The data points show the timescales obtained from simulations,

scaled by 106M⊙/MBH.

lar momentum with respect to origin decreases by 20%
2
, and then rescale

to the obtain the projected time to reach L = 0.

There is reasonable agreement between our dynamical estimates and the

computed value of τ , given that it is, at best, an indicative value rather than

a detailed prediction. Consequently, these results can be seen as a numeri-

cal verification of the semi-analytic treatments of the dynamical friction ex-

perienced by point masses interacting with ULDM solitons, even through

the classical wakes seen in the previous Section do not form in these sys-

tems.

2
In the simulations with the smallest black holes starting from the largest radii this

threshold is never actually reached; for these cases we extrapolate.
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Figure 5.15: Kinetic energy as a function of time (relative to the initial value) for

black holes with an initial radius of 80 pc.

5.7 Soliton Backreaction

In principle, the approximation in Equation 5.16 could be improved by inte-

grating the instantaneous torque to yield the time taken to move between

any two given radii. This would be less valuable in practice, given that in

many cases the orbits are far from circular. For our chosen configuration,

the black hole faces a force opposed to its initial velocity causing it to “fall”

toward the centre, accelerating as it does so, as illustrated in Fig. 5.15.More

massive black holes follow a clearly spiral trajectory toward the centre, as

seen in Fig. 5.11, and can undergo effectively stochastic motion upon their

arrival in the central region of the soliton. This motion resembles the “re-

heating” experienced by a massive particle when it is introduced to the

centres of an already excited soliton [78].

The individual components of the total energy for a simulation with

r0 = 300 pc and MBH/MSoliton = 0.08 are shown in Fig. 5.16. The overall
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Figure 5.16: Components of the total energy for a simulation with r0 = 300 pc and
MBH/MSoliton = 0.08. The top panel shows a component-wise breakdown of the

ULDM energies, relative to the system’s total energy. The bottom panel shows the

changes in ULDM, BH, and total energies.

energy of the black hole decreases as it sinks towards the centre of the

soliton. However, we also see the onset of a persistent oscillation in the

soliton itself, even though its total energy is constant, outside of the en-

ergy injected by the moving black hole. This is attributable to our chosen

initial configuration which puts a stationary, spherically symmetric soliton

in the potential of an adjacent black hole. This is a small perturbation to

the overall gravitational potential of the soliton, but it means that it is no

longer in its ground state configuration. The soliton is also relatively “com-

pressible” – the overall change in its self-potential is several times larger
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Figure 5.17: An idealised representation of the ULDM soliton’s breathing be-

haviour, as excited by our massive particle of 8%MS , initially orbiting 80 parsecs

away from the soliton’s centre. The soliton’s density profile oscillates between the

two solid lines on this graph, while the dashed line corresponds to the unperturbed

soliton profile. The solid-line profiles were obtained from the simulations, via ra-

dial averaging around the ULDM centre of mass.

than the potential energy of the black hole. The impact of the breathing

mode on the potential is illustrated in Fig. 5.18, which shows the trajecto-

ries of black holes for a series of different starting radii.

Physically, this is a breathing mode, where a soliton’s radial density os-

cillates, as illustrated in Fig. 5.17. Although the oscillation an orbiting

black hole excites likely lacks perfect spherical symmetry, given the off-

centre position of the external gravitational field. The oscillations persist on

timescales much longer than those over which the black hole orbit decays

as there is no mechanism to remove this energy from the system. More-

over, they persist even if the black hole is deleted from the simulation after

it has completed a number of orbits.
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Figure 5.18: Radius as a function of time for a 0.5%MS black hole

Beyond the stochastic motion seen at the centre of the soliton, for cer-

tain parameter choices the breathingmode “reheats” black holes orbiting at

some distance from the centre. This is illustrated in Fig. 5.18, which shows

a set of trajectories in which the radial distance of the black hole steadily

increases over a number of orbits. Physically, this behaviour appears to be

driven by a resonance between the soliton breathing mode and the orbital

period; a similar situation is described in Ref. [79]. It is more pronounced

for small black holes (since it has to work against the dynamical friction,

which increases with mass) and depends non-linearly on the initial radius,

which fixes the specific form of the breathing mode. This behaviour (which

is reminiscent of a stone skipped across a pond) is responsible for much of

the scatter seen in Fig. 5.14.

We have presented simulations of (large) point masses interacting with

ultralight dark matter (ULDM), and focused on two scenarios – a uniform

background of ULDM and the soliton found at the centre of a ULDM galac-

tic halo. In the former, the wake left by the moving point mass can collapse

under its self-gravity, dramatically enhancing the dynamical friction. We
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then simulate the dynamics of a super-massive black hole in an initially

circular orbit about (and inside of) a ULDM soliton. The black hole sinks

towards the centre of the soliton. We confirm simple estimates of the rele-

vant timescale within O(1) but also see novel “stone skipping” trajectories

at certain large initial radii, where the black hole does not monotonically

approach the centre. Once near the centre, black holes undergo stochastic

motion, migrating back out to radii of 10s of parsecs in the examples we

study. Both the stone skipping and the stochastic trajectories are driven by

excitations to the soliton sourced by its interactions with black hole.

Astrophysically, there may be few circumstances in which a point mass

will encounter a uniform and otherwise unperturbed background, although

one can imagine possible scenarios involving primordial black holes or

very early universe physics [34, 36]. Conversely, a massive object inside a

Schrödinger-Poisson soliton maps directly to the dynamics of SMBH at the

centre of a galactic halo, and these systems have a wide range of astrophys-

ical consequences. Identifying the ways in which the distinctive properties

of ULDM modify our expectations for these interactions could be key to

testing the scenario, given the potential of pulsar timing experiments [80,

81] and the upcoming LISA mission [82].

The present results complement suggestions by Bar-Or et al. [58] that

black hole binaries will be “heated” by interactions with a granular ULDM

halo. In the present case the ULDM is initially uniform and large scale os-

cillations are induced as the soliton-SMBH system orbits its common cen-

tre of mass. In a post-merger halo, the central soliton may be far from its

ground state, suggesting that these effectsmight be substantially enhanced

in astrophysical settings, resulting in the outward diffusion of light objects

residing in the centre of the soliton [78]. In addition, the coupling and im-

pulsive heating associated with a single SMBH-soliton interaction could be
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analysed in detail using eigenstate expansions of the soliton potential [29],

facilitating the semi-analytic treatment of these systems.

Perhaps surprisingly it seems that the interactions between ULDM soli-

tons and the black hole motion are well-modelled even at low grid resolu-

tions. This rather fortunate outcome arises from the difficulty of establish-

ing large density gradients in ULDMon scales significantly shorter than the

de Broglie wavelength; the black hole effectively interacts with the over-

all soliton, rather than just the matter in its immediate locality. That said,

there is clear value in high-resolution simulations. However, we are obliged

to simulate a large volume to prevent the soliton from being disrupted by

boundary effects so the black hole trajectory is confined to a small fraction

of the total simulation region. Consequently, implementing the combina-

tion of a hard N-body solver coupled to a Schrödinger-Poisson solver in a

scheme that supports adaptive mesh refinement (e.g. Ref. [61]) is a logical

next step.

We see interesting interactions at larger radii driven by “breathing

modes” of the soliton excited by its interaction with the black hole. In these

cases black holes at relatively large distances do not sink monotonically to-

ward the centre of the soliton. These “stone skipping” trajectories differ

from previous work on the dynamical friction in ULDM (e.g. [45, 58] in that

they represent interactions between the point mass and the overall soli-

ton, and point to further novel behaviours associated with SMBH-ULDM

dynamics.

The breathingmodes driving the stone skipping solutions are reminiscent

of quasinormal modes arising from displacements of a Schrödinger-Poisson

system away from its equilibrium configuration [83, 29]. These analyses can

presumably be generalised to the asymmetric states seen here, allowing a

more quantitative understanding of these trajectories.
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5.8 Tidal Stripping by a ULDM Soliton

The scenarios we analysed in the previous section have neglected the in-

ternal dynamics and structure of the massive particles themselves. In doing

so we left an interesting physical effect out of the picture, the tidal force.

The tidal force arises when different parts of an object experiences differ-

ing gravitational field strengths. Using the ability to evolve entire particle

ensembles built in PyUltraLight, we can sketch a scenario where a globu-

lar cluster scatters off a soliton, and compare simulations with and without

ULDM backreaction. Future modifications to improve the realism of this

model are also outlined.

5.8.1 BH-Dominated Globular Cluster

We replace the single smoothed particle in the previous sectionwith a “clus-

ter”, a 1000-particle structure with a central object that dominates in mass

(∼ 95%). The other particles are randomly distributed around this central

object in 3 dimensions, and are given small random3-velocities. The cluster

is set up with a radius of 60pc. And, in order to maximise the tidal effects,

the cluster is positioned so the impact parameter is equal to the soliton’s

HWHM. Figure 5.19 sketches the initial condition on the plane z = 0.
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Figure 5.19: Sketch of the initial conditions on the x−y plane. The soliton’s velocity
is set up so that the system centre of mass stays in the middle of the simulation

domain. The arrows arising form individual particle velocity dispersion are omitted.

Other relevant parameters are,

MSoliton = 107M⊙,

MCluster = 8× 105M⊙,

σ0Cluster ≈ 2km/s

m22 = 10,

b = r50 = 284pc,

x0 = 800pc,

v0 = 10km/s,

where σ0 is the initial velocity dispersion, x0 is the initial separation in the x

direction, and v0 is the initial relative speed, which we set up to be parallel

to the x axis. It is also assumed that the stars reach a reasonable degree of

equilibrium by the time approach happens.

The first simulation of the model was conducted at a resolutionN = 256

for a duration of 1 gigayear. A corresponding simulation without ULDM
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backreaction is also implemented, with the soliton placed at the origin at

rest and the initial positions and speeds of the particles adjusted suitably

so the particles in these two runs can be identified and directly compared.

Figure 5.20 shows the trajectories of all particles in the x − y plane

from the full simulation, while highlighting the trajectory of one star. Figure

5.21 shows the trajectories of three representative stars with and without

ULDM backreaction, alongside the central black holes. We can also see

that after the encounter with a soliton, the cluster simulated with back-

reaction has a larger variance in positions and velocities, suggesting it has

been heated and distorted to a bigger extent. A sizeable proportion of stars

are stripped from the cluster by the ULDM wake, seen as the small region

with an overdensity of 102 code units in Figure 5.20. This is reminiscent of

the heating effect on stellar streams when they encounter ULDM granules.
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Figure 5.20: Trajectories of all simulated particles. The velocity history (measured

relative to the central mass) of a representative star is mapped to colours, and the

trajectory of the central black hole is plotted in bold. The ULDM density contours

are given in logarithmic scale.
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Figure 5.21: 3 dimensional view of the trajectories of 3 particles alongside their

counterparts from a simulation without ULDM backreaction. The distributions of

relative speeds at the end of the simulation (t = 1Gyr) is printed in the inset.
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5.8.2 “Virialised” Globular Cluster

We modify the previous model so the 1000 stars have equal mass mP =

50M⊙, and follow the method outlined in [84] to give them initial velocities

that satisfy the Virial theorem,

⟨K⟩ = −1

2

N∑

j=1

⟨Fj · rj⟩ , (5.18)

Figure 5.22 shows the statistics of an initialised cluster in code units. The

particle system is then placed in isolation and evolved for 70 Myr to check

its stability. The histograms in Figure 5.22 show the initial and final distri-

butions of positions and speed.
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Figure 5.22: Distribution of stellar motion in the virialised cluster.
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Other relevant parameters are,

m22 = 10,

MSoliton = 107M⊙,

MCluster = 5× 104M⊙,

σCluster = 0.4km/s,

vRel,Median = 0.8km/s,

v0 = 10km/s,

The resulting particle trajectories in the first simulation are presented in

Figure 5.23. The conditions of the encounter are so extreme that the clus-

ter becomes spread out after half an orbit, but the centre of mass follows a

different trajectory from a single particle with the same mass as the cluster.

These simulations are a proof of concept. To further construct more real-

istic simulations of tidal stripping, one should start with a dynamic halo, set

the cluster going in a less extreme orbit, and account for other components

of the interstellar medium, such as other stars and gas. This possibility will

be examined in future work.
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Figure 5.23: Trajectories of all simulated particles, with centre-of-mass trajectory

compared with the simulation where all mass is concentrated in one particle. The

ULDM density contours are given in logarithmic scale.



6
Multi-field ULDM1

Most of the arguments used to justify the existence of a single ULDM

field do not typically predict the existence of just one field. Consequently,

there is considerable motivation for considering multifield models.

We can modify our programs to account for more than one wavefunc-

tions that interact with each other via a common Φ, calculated from the

aggregate density of all fields. The time step, ∆t, is set to equal the slow-

est required value of the set, i.e. the timescale associated with the ULDM

species with the highestmA.

1
This chapter is based on [32], where simulations are conducted with modified ver-

sions of both PyUltraLight andAxioNyx. Results fromAxioNyx runs (Figures 6.5 through
6.8) are due to Dr Mateja Gosenca, reproduced with permission.

105

That all the world will be in love with night

And pay no worship to the garish sun.

William Shakespeare, Romeo and Juliet, Act 3, Scene 2
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6.1 Solitons: Equal Mass

The first scenario we investigate is a two-field model where the two ax-

ion species have equal mass. Each component behaves according to the

Schrödinger-Poisson equations as before, but the two components only in-

teract with each other via the combined gravitational field.

As for the test case, we present a variation of the scenario showcased

in Figure 4.14. We set up two solitons that approach each other at a low

relative speeds. As one would expect, this setup maintains the “quantum

pressure” supporting each soliton, but turns off interference effects related

to phase differences between the two solitons. As a result, the two solitons

pass through each other and become asymmetrically excited. The system

should eventually relax into a single soliton by dumping excitations to in-

finity, but our chosen boundary conditions could not support such a long

simulation duration.



Solitons: Equal Mass 107

t = 0 Myr

t = 246.9 Myr

t = 493.8 Myr

t = 987.5 Myr

Figure 6.1: The scattering of two solitons from two ULDM species with equalm22.

ULDM species A is shown in the left column, B in the right column, and the centre

column shows their combined density. Compared with Figure 4.14, interference

effects are completely absent.
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6.2 Solitons: Different Mass

For the nextmodel, we superimposed 8 stationary solitonwavefunctions at

the centre of the simulation domain from axion species whose m22 values

range from 7 to 14. Each ULDM density distribution is scaled by a factor of

1/8, such that the combined mass of all ULDM in the domain equals that

of one soliton in a single-field simulation.

We set this system to evolve, and focus on at the time-evolution of the

central density, which undergoes nonlinear oscillations shown in Figure 6.2.

This is further broken down to show the contributions from each ULDM

field, and we Fourier transformed the resulting time series. The heaviest

ULDM species has the smallest and densest soliton by radius, and as such

hasmore localised contribution to the gravitational field. Likewise, the light-

est ULDM species oscillates at the lowest amplitude. The Fourier analysis

shows that some slow-varying peaks are aligned, which suggests correla-

tions between the different fields that develop via gravitational coupling.

Another astrophysically interesting quantity that varieswithULDMmass

is the entire condensate’s granularity [78, 85]. This is evident in the 2D

density slices over time in Figure 6.3.

In Figure 6.4, the total
2
(EGP + EKQ) energies of each ULDM species is

plotted. During the initial transient phase, the heavier axion species tended

to spread outwards, and in doing so pulled the more diffuse lighter ULDM

solitons inwards, setting the oscillations in motion.

Due to the scaling we applied and the external gravitational influence of

its neighbours, none of the component ULDM distributions started off in

2EGP here refers to the potential energy due to the combined gravitational field.
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Figure 6.2: Time evolution of the central density of the 8-field soliton and the

Fourier spectrum of each components’ central densities. Initial transients are ex-

cluded from the Fourier analysis.

an equilibrium configuration, so radial excitations in each field are quickly

induced.
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m22 = 14.0 t = 17.41 Myr m22 = 10.0

m22 = 13.0 m22 = 9.0

m22 = 12.0 m22 = 8.0

m22 = 11.0 m22 = 7.0

m22 = 14.0 t = 2455 Myr m22 = 10.0

m22 = 13.0 m22 = 9.0

m22 = 12.0 m22 = 8.0

m22 = 11.0 m22 = 7.0

Figure 6.3: Aggregate density slices of the 8-field simulation at two points in time,

with the densities of each field shown in the smaller boxes
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Figure 6.4: Component energy changes over time in the 8-field setup

6.3 Halos: Same Mass

We can generate multifield halos directly by adapting the eigenmode

method described in Section 4.3.6 in which the initial configuration is con-

structed by decomposing the halo density profile into radial eigenfunctions

and multiplying each of them with a random phase. We extend this to the

multifield case by using the same radial eigenfunctions for the density but

a different set of random phases for each field.

We assume that each field has a central soliton and a surrounding NFW

halo with a combined density profile

ρ(r) =




ρSol(r) if ρSol > ρNFW

ρNFW(r) e[−(r/rvir)
2/2]

otherwise.

(6.1)

The extra exponential term suppresses the density outside the virial radius

rvir to minimise interactions at the periodic boundaries of the box. Accord-

ing to convention, we define the virial radius as the radius at which the
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average density in the enclosed sphere is 200 times the critical density of

the Universe, which also sets the virial mass within this region,Mvir.

For a single field, the standard central soliton is the same as in Chapter

4. We use the virial halo mass Mvir to determine the core radius rc of the

soliton applying the core-halo relation introduced in [28],

rc = 1.6× 1

m22

(
Mvir

109M⊙

)−1/3

kpc. (6.2)

This relation has become contested in recent times, but we assume that it

is a sensible estimate of core size in this initial investigation. Finally, we are

free to choose the NFW scale radius between rc and the virial radius and

this choice does not significantly affect the dynamics of the halo.

For the sake of definiteness, we choose the dwarf galaxy Eridanus II as

a template for the halo as it has been widely used to test ULDM. Eridanus

II has a half-light radius r1/2 = 300 pc [86] and half-light massM1/2 = 1.2×
107M⊙ [87]. According to Ref. [88], the half-light radius and the virial radius

are related by r1/2 ≃ 0.015 rvir, corresponding to rvir = 20 kpc and Mvir =

4π/3× 200 ρ̄ r3vir ≃ 3× 108M⊙. This results in the core radius rc ≃ 0.5 kpc

and we choose rs = 2kpc for the scale radius.

We performed simulations with ULDM massm22 = 5 and one, two, and

four ULDM fields. Each field in the multifield simulations is initialised with

the same radial eigenfunctions, but different random phases. The granules

of the different fields are thus initially uncorrelated. We evolve this system

through O(30) oscillation periods, or roughly 5Gyr. Transients associated

with the relaxation of the initial state roughly decay over the first three

oscillations.

The ULDM densities in the plane z = 0 at t = 1.6Gyr are shown in Figure

6.5. As the number of fields increases, the solitonic core retains its shape
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Figure 6.5: Total density around the centre of the halo for the simulations involv-

ing one field, two fields, and four fields. The total density becomes progressively

smoother as the number of fields increases.
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one field (top), two fields (middle), and four fields (bottom). We show densities of

individual constituents ρi, as well as the total density ρtot.

because there is a central overdensity in each of the constituent fields. At

the same time, the granular overdensities in the surrounding halo are visibly

smoothed out.

Figure 6.6 shows the evolution of the central density of the solitons over

time. In all cases we see oscillations in the solitonic core [89, 83], along

with an initial transient. In the multifield scenarios, the central oscillations

in constituent fields become synchronised. This is presumably enabled by

their mutual gravitational coupling.

The two-point correlation function for the equal-mass simulations is

shown in Figure 6.7. It is calculated at an arbitrary time during the simu-
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Figure 6.7: Two-point correlation function of the total overdensity for the three

equal-mass simulations at an arbitrary time. We see that ξ ∼ 1/N and that the

fields are fully uncorrelated at scales much larger than the de Broglie length.

lations. The value of ξ(r) is close to zero for scales much larger than the

de Broglie wavelength. Critically, ξ(r) demonstrates a 1/N dependence,

from which we can infer that the amplitude of the overdensity decreases

in proportion to

√
N , i.e. in the multifield case δ(x) → δ(x)/

√
N .

This scaling is also consistent with simulations of vector dark matter [90]

which, without no self-interactions, has three independent components

and interference is suppressed by 1/
√
3, relative to the standard ULDM

model.
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Figure 6.8:Densities of the two constituent fields in the two-field multi-mass sce-

nario (m22 = 10 left andm22 = 5 center), as well as the total density (right).

6.4 Halos: Different Mass

We lastly examine a two-field scenario with m22 = 10 and m22 = 5. Figure

6.8 shows the density for both constituent fields and the total density at

a representative time. The different de Broglie wavelengths of the fields

are clearly visible and the combined density is again qualitatively smoother

than either of the individual fields. This verifies that the suppression of

small-scale structure seen in the equal-mass case carries over to the multi-

mass scenario.

Clearly, such trends would break down in the limit of an extreme mass

ratio – if one field has a de Broglie wavelength much larger than the others,

it constitutes a smooth background relative to the structure present in the

more massive fields. However, for mass differences ofO(1), the qualitative

dynamics do not appear to depend on whether we have strictly equal or

merely similar masses.





7
Future Investigations

In this chapter, we sketch several lines of enquiry that are opened up by

the numerical tools developed in this thesis, and provide avenues for future

investigations.

7.1 Simulations with Dynamic Black Hole Mass

We saw in Chapter 3 how to estimate the accretion rate of axions by a

black hole, and PyUltraLight has been built such that the particle mass

(alongside its smoothing parameter rP , for that matter) can change over

time. The other end of the equation needs more attention – how should
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the ULDM ψ react to the accretion process and lose the commensurate

amount of amplitude / mass as accretion takes place?

Similar to the one used to enforce the dispersive sponge boundary con-

dition, an imaginary potential term seems to be the answer. Chapter 5 of

Ref. [67] employs an imaginary Gaussian potential to remove mass from a

soliton in PyUltraRound. There, assuming spherical symmetry and neglect-

ing higher-order ULDM self-interaction, the equations of motion are

iΨ̇(r, t) = −1

2

∂2Ψ(r, t)

∂r2
+

(
V

r
− MBH

r
− iA exp

(
− r2

2w2

))
Ψ(r, t) (7.1a)

∂2V (r, t)

∂r2
= 4π

|Ψ(r, t)|2
r

, (7.1b)

where we have introduced the variables Ψ = rψ and V = rΦ, and the

parameters A and w characterise the amplitude and width of the Gaussian,

respectively. The ULDM density has a rate of change

ρ̇ =
i

2

(
Ψ∗∂

2Ψ

∂r2
−Ψ

∂2Ψ∗

∂r2

)
− 2A exp

(
− r2

2w2

)
ρ. (7.2)

Integrated over all space, we have the rate of mass loss,

ṀULDM = −8πA

∫ ∞

0

dr exp

(−r2
2w2

)
ρ(r)r2. (7.3)

The main difficulty in the implementation of a 3D version of the framework

above is again interpolation – as the particle moves between grid points,

how can we make the imaginary potential fairly “felt” by ULDM data? Mak-

ing the peak too narrowwill lead to an underestimation of ρ̇ due to sampling

error, and making the peak too wide will compromise the assumption that

accretion happens locally, at scales far smaller than the simulation grids.

More testing is required to make this physically consistent. In general more

research is required in establishing a viable parameter space over which

black hole accretion is interesting and relevant.
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7.2 Better Understanding Soliton-BH Systems

Recent work [91] explores the radial dynamical friction of a black hole

around a ULDM soliton. It extends the content first shown in Section 5.7

and analyses the motion of a particle as it plunges radially through a soliton.

A semi-analytic treatment of dynamical friction (and stone skipping modes)

in this context is also being developed.

The eigenmode decomposition method discussed earlier requires a

spherically symmetric potential whose centre coincides with the centre of

mass of the soliton. When a black hole orbits the soliton in a near-circular

orbit, however, it provides an external potential that is neither symmetric

nor static, and this strains our assumptions in the current framework.

The problem is less severe when the point mass starts near the centre of

the soliton, where orbital periods are short and the average position over

long durations seem to smear out this misalignment. More work needs to

be done to make this a robust tool for analysis.
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Figure 7.1: 3D render of a ULDM soliton after a massive particle has stirred it up,

alongside the colour transfer function, which makes certain density values appear

opaque.
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7.3 ULDM, CDM, Baryons

Consider a two-field dark matter scenario where one kind of the con-

stituent particles is massive and well-described by the standard collision-

less CDM framework, while the other exhibits wave-like behaviour gov-

erned by the Schrödinger-Poisson equation. Furthermore, as Chapter 3 has

been building up, we are also interested in the roles that baryonic matter

plays in the cosmic structure history. This means that simulations with dark

matter and baryonicmatter combinedwill be the central focus of our future

ULDM investigations.

AxioNyx was originally released with the capacity to simulate mixed

FDM-CDM systems, andwe have restored the ability (described in the orig-

inal Nyx code) to simulate rudimentary baryonic physics, so a logical step

is to simulate all three at once, and explore new parameter spaces such as

the CDM/FDM ratio against more realistic models of galactic halos.

Our first effort is the investigation of the spherical collapse of a mixed

Baryon-ULDM system. The initial conditions we picked for the first test run

are comparable to the choice of Kendall et al. [92], which looked at pure

ULDM halos, except we keep the initial overdensity spherical. It follows a

Gaussian,

ρ0(x) = ρ0

(
1 + δ exp

(
− r2

r2
Ch

))
, (7.4)

where ρ0 is the background density, δ is the amplitude of the overdensity,

and rCh is a character radius of the overdensity.

H0 is set to 0, and so cosmic expansion is turned off. There are two param-

eters controlling the behaviour of the baryonic matter, which we assume

to be purely hydrogen, γ, and fB , the fraction of baryon density in the initial
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Figure 7.2: 3D visualisations of baryon and axion densities in the initial AxioNyx
simulation grid.

overdense clump. The initial condition for such a run is sketched in Figure

7.2, where ρULDM/ρBaryon = 4.

For the first simulation, we have plotted the spherically averaged densi-

ties for ULDM and baryons in Figure 7.3. As time passes, we see that the

central densities of both ULDM and baryons increase dramatically, which
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Figure 7.3: Radial density over time. Time runs from green to orange.

triggers higher and higher refinement levels within AxioNyx . The central

density of the baryons quickly peak and a wave pushes materials outwards.

This is reflected in the shape of the ULDM distribution as well, which now

features a more pronounced “shoulder” as well as a sharper central peak

than the standard ULDM soliton.

This is an compelling beginning to cosmological simulations that en-

rich the phenomenology of ULDM behaviour in dramatically more realistic

galactic environments.





8
Summary

Ultralight dark matter consists a class of hypothetical particles that

exist as quantum condensates in the current universe, governed by

the Schrödinger-Poisson equations. ULDM has gained significant interest

thanks to their elegance and ability to explain several apparent observa-

tional challenges to the standard ΛCDM cosmological model.

Extensions to and constraints on the ULDM model usually involve the

mass of the ultralight axion (mA), the strength of the non-gravitational self-

interaction (if any), and the possibility that more than one axion fields exist

that all interact gravitationally with each other.

The presence of ULDM in galactic halos can be roughly divided into two

regions, the “core”, which resembles a Schrödinger-Poisson soliton and is
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roughly static between its self gravity and “quantum pressure”, and the

“skirt”, which exhibits constant density fluctuations and wavelike interfer-

ence effects on the order of the particles’ de Broglie wavelengths.

In this thesis, we have presented the numerical methodology behind ef-

fective simulations of ULDM in astrophysical contexts through the exten-

sively modified programs PyUltraLight and AxioNyx . We also outlined

some ways such simulations can interface with astrophysical systems that

are more feasible to observe and test.

Chapter 5 reported simulations of the interaction between a compact

object (black hole or globular cluster) with a distribution of ULDM. We

focused on the lowest-order model where a massive particle (or tightly

packed star cluster) orbited a ground state soliton in initially circular orbits.

For the case of one particle orbiting the soliton, “stone-skipping” modes

were one of the features identified, where under some conditions the or-

bital decay of the massive particle is impeded early on, and the rate of its

inward migration is outstandingly low. This has prompted us to look into

the language of eigenstates to model this system, given that such a mode

may be evidence that the orbital motion and certain excitation modes are

in resonance.

Chapter 6 was based on our next paper, which looked at the multi-field

ULDM model. We looked into the qualitative behaviours of solitons and

halos in various multifield setups, and, by comparing them with single-field

counterparts, shed light on the possibility that multifield ULDM can relieve

some tensions in the bounds onmA, and provide a better fit with astrophys-

ical observations.

One other integral aspect of this thesis is the pioneering of simulations

that incorporate both ULDM and gas (baryonic) physics. The inclusion of
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baryons, given their pivotal role in Cosmic history and the complexity they

introduce across the scales, represents a significant advancement. This the-

sis marks a critical first step in this direction, showcasing the initial results

from the AxioNyx runs in Section 7.3. These early runs lay a strong foun-

dation for future research.
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