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Abstract In this paper, we investigate the concept of cos-
mological constant-roll inflation within the framework of
Finslerian space-time. We approach the theory of cosmic evo-
lution using Finsler geometry, incorporating the parametriza-
tion of the anisotropic parameter by the scalar factor a(t) by
η (t) = a (t)−n , where n is any real number. Our explo-
ration mainly focuses on constant roll inflation, The ana-
lytical expression for Hubble parameter is found by using
constant roll condition, and we derive crucial cosmolog-
ical parameters such as scalar factor a(t), scalar spectral
index (ns), and tensor-to-scalar ratio (r) for the inflationary
universe. By using the analytical expressions for slow-roll
parameters and the number of e-folds number we have found
the values of ns and r . Further, we identify the range of α val-
ues for which the theoretical values of spectral indices align
with the observed Planck’s data. This work significantly con-
tributes to our understanding of inflationary dynamics within
the context of Finsler geometry.

1 Introduction

In standard cosmology, inflation helps to address issues like
the flatness and horizon problems, while quantum fluctu-
ations of the inflaton field impact the universe large-scale
structure and leave imprints on CMB radiation [1,2]. To
tackle these cosmological challenges, it’s essential to have
a sufficient number of e-folds, typically set between 50 to
70 due to uncertainties in the underlying physics. The sim-
plest form of inflation, known as slow-roll inflation, involves
a scalar field slowly descending a nearly flat potential and is
characterized by slow-roll parameters. An intriguing exten-
sion of slow-roll inflation is constant-roll inflation, which
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falls between slow roll and hill-top inflation in terms of its
dynamics [3].

The standard cosmological model treats the universe as an
adiabatically expanding radiation-dominated system. How-
ever, this model falls short in addressing key cosmological
challenges such as the horizon, flatness, and monopole prob-
lems. To address and resolve these issues, Alan H. Guth pro-
posed the concept of inflation in [3]. This inflationary model
involves fluctuations in the scalar field during the universe’s
exponential expansion, leading to scalar density perturba-
tions, as discussed in [4]. In [5], an alternative model for a
large-scale, isotropic, and homogeneous universe was intro-
duced based on the phase transition of the scalar Higgs field.
This model also explores the amplitude of adiabatic pertur-
bations and the duration of the de Sitter stage during universe
expansion. Subsequent researchers, as referenced in [6–13],
further developed and modified these concepts. The formal-
ization of the slow-roll approximation, which defines slow-
roll parameters in terms of the Hubble parameter and the
scalar field’s potential, was presented in [14]. Additionally,
in [15], a broader approach to cosmological inflation, beyond
the scope of the slow-roll approximation, was discussed.

Constant-roll inflation is an intriguing extension of slow-
roll inflation. In slow-roll inflation models, both slow-roll
parameters, which quantify the rate of change of the scalar
field during inflation, are typically smaller than one through-
out the inflationary period. On the other hand, constant-roll
inflation is characterized by a specific condition φ̈ = −αH φ̇,
where α is a real constant. This condition sets it apart from
the traditional slow-roll inflation dynamics. In the context of
inflation, understanding the geometric properties of space-
time is crucial. This includes considerations of curvature,
which is a result of the gravitational field generated by the
universe’s fluid content. The concept of inflation and its
dynamics are also studied within the framework of geom-
etry. Riemannian geometry has been a successful tool in
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explaining various cosmological aspects of the universe. In
this mathematical framework, the geometry of the universe
is described using Riemannian manifolds, which provide
insights into its structure and behavior. When, exploring
inflation in the context of geometry, researchers have con-
sidered modified gravity theories like f (R), f (Q), f (R, T ),
and others within the realm of Riemannian geometry. These
theories propose modifications to Einstein’s general theory
of relativity, incorporating different functions of the Ricci
scalar (R) or other geometric quantities. Such modifications
are discussed to elucidate the phenomenon of constant-roll
inflation and provide alternative explanations for the dynam-
ics of the early universe. These discussions and investigations
are documented in the scientific literature [16–21].

In the literature, specifically in [20], researchers delved
into the concept of constant-roll inflation by utilizing the
background Friedmann equations. They derived various
scalar potentials and comprehensively explored the con-
cepts of scalar and tensor perturbations both analytically
and numerically. This detailed analysis helped in understand-
ing the dynamics of constant-roll inflation. The findings and
implications of constant-roll inflation, particularly the role of
the inflationary constant parameter α, were further examined
in [22]. The study involved a confrontation of these results
with observational data to ascertain the viability and com-
patibility of the model with real-world cosmological obser-
vations. The inflationary constant parameter α was revealed
to significantly influence the inflationary dynamics and was
subjected to scrutiny against observational constraints. More-
over, the concept and implications of constant-roll inflation,
particularly concerning the inflationary constant parameter
α, have been thoroughly explored and discussed in subse-
quent research articles [23–27]. These studies elaborated
on the constraints placed on α using essential cosmologi-
cal parameters such as the scalar spectral index (ns) and the
tensor-to-scalar ratio (r). The interplay between α and these
cosmological parameters helps refine our understanding of
constant-roll inflation and its alignment with observational
data.

Finsler geometry is a branch of differential geometry
that doesn’t impose quadratic restrictions on the metric ten-
sor, as highlighted in references [28–31]. Researchers have
explored the application of Finslerian geometry to the study
of the universe, as discussed in [32,33]. This application has
extended the Finslerian framework to incorporate the concept
of inflation, aiming to provide an explanation for the observed
anisotropy in the cosmic microwave background (CMB)
spectra of the universe, as detailed in references [34–36].
Notably, the concept of constant-roll inflation within the con-
text of Finslerian geometry was introduced for the first time
in [37]. This pioneering work involved the use of Finsler–
Rander’s geometry to study the dynamics of constant-roll
inflation, thereby contributing to a deeper understanding of

the early universe inflationary processes within the frame-
work of Finsler geometry.

In this paper, we delve into the concept of constant-roll
inflation within the framework of Finsler geometry. More
precisely, our focus is on exploring the idea of an inflation-
ary universe within the context of Kropina spaces, as detailed
in references [38–40]. Kropina spaces can be categorized as
a type of Finsler spaces, and in our analysis, we employ the
Barthel connection [41–44] to investigate these spaces. Our
approach involves treating the space as an Osculating Rie-
mannian space [45], which draws inspiration from the pio-
neering work conducted by researchers [46,47]. By applying
these mathematical concepts and connections, we aim to gain
a deeper understanding of the dynamics of constant-roll infla-
tion in the unique backdrop of Finsler geometry, specifically
within the framework of Kropina spaces.

The paper is structured as follows: In Sect. 2, we will
present an overview of Finsler spaces, with a particular
emphasis on Kropina spaces, and the Barthel connection. We
will also introduce the fundamentals of cosmological infla-
tion in this section. In Sect. 3, we will introduce our model and
thoroughly explore the dynamics of cosmological inflation.
Section 4 will be dedicated to a comprehensive discussion of
our results in comparison to observational data. Finally, in
Sect. 5, we will summarize and conclude our work presented
in this paper.

2 Finsler geometry and cosmological inflation

Finsler geometry expands upon Riemannian geometry by
considering a broader notion of distance between points in
a space. In Riemannian geometry, distances are defined by
the shortest curve connecting two points. Finsler geometry,
however, allows for a distance function that incorporates both
the direction and magnitude of displacement between points
using the Finsler metric. Thus, Finsler space is a metric gen-
eralization of Riemann geometry

A Finsler space, explored in references [29–31,38,39],
involves a manifold equipped with a Finsler metric function,
denoted as F defined on the tangent bundle T M of the man-
ifold. This function F satisfies the following properties

1. F is a smooth function on T M excluding the zero vectors
and continuous on the null section of the projection π :
T M → M .

2. It exhibits positive homogeneity of order one with respect
to the fiber coordinates.

3. The symmetric bilinear form

gi j (x, y) = 1

2
∂̇i ∂̇ j F

2(x, y) (1)
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derived from F , is non-degenerate and has constant sig-
nature.

A manifold M of dimension n, equipped with the Finsler
metric function F , constitutes a Finsler Space. In a Finsler
space, the Cartan tensor Ci jk plays a crucial role. This ten-
sor is derived from the Finsler metric and is analogous to
the Christoffel symbol in Riemannian geometry. It character-
izes geometric properties and can indicate whether the space
reduces to Riemannian geometry (Ci jk = 0).

Furthermore, the Christoffel symbol in Finsler geometry,
denoted as the γ i

jk(x, y), constructed from the fundamen-
tal tensor gi j (x, y), shares similarities with the Christoffel
symbol in Riemannian geometry �i

jk . Understanding Finsler
geometry allows for a more general description of spaces,
encompassing both Riemannian and non-Riemannian geome-
tries. It provides a framework to study spaces with non-
symmetric or anisotropic properties, offering a broader per-
spective on the geometry of manifolds. Within the realm of
Finsler spaces, you can find various subtypes like Randers
spaces and Kropina spaces among others.

In the field of Finsler geometry, various connections have
been developed to enhance the understanding of these spaces.
However, it’s worth noting that computing geometric prop-
erties in Finsler spaces can be a complex task. To streamline
these calculations and unlock the geometrical possibilities
inherent in Finsler geometry, researchers frequently employ
the osculating approach tailored for Finsler spaces [45]. This
approach is particularly relevant in our investigation, where
we focus on the application of Kropina spaces in gaining
insights into the structure of the universe. Our specific interest
lies in utilizing the Barthel connection within the framework
of Kropina spaces [40]. This paper delves into the exploration
of Finsler geometry, emphasizing its potential applications,
especially in the context of Kropina spaces, as a means to
advance our understanding of the universe’s structural char-
acteristics.

2.1 Kropina space and osculating Riemannian approach

The fundamental function L = F2

2 of the Finsler metric
which is homogeneous function of degree 1 in F . Here the
α (x, y) Riemannian metric and β(x, y) is the differential 1-

form are defined by α (x, y) =
√
ai j (x)yi y j , β = bi (x) yi ,

is called the (α, β) metric. The space Rn = (Mn, α) is called
associated Riemannian space and the covariant vector field
bi is the associated vector field. The Finsler fundamental
function L(x, y) defined by

L (x, y) = F2

2
= α2

β
= ai j (x) yi y j

bi (x) yi
, (2)

is called Kropina metric. By making the substitution (2) in
(1), we derive the expression for the fundamental metric ten-
sor ĝi j (x, y) of the (α, β) space as follows

ĝi j (x, y) = Lα

α
hi j + Lαα

α2 yi y j

+ Lαβ

α

(
yi b j + y j bi

) + Lββbib j , (3)

with respect to above equation, hi j = α∂2α(x,y)
∂yi ∂y j = ai j − yi y j

α2

is angular metric tensor of the associate Riemannian space.
Li j denotes the partial derivative of L with respect to i, j .

When we introduce the Finsler metric L(x, y) into a physi-
cal system alongside a non-zero vector fieldY (x), we observe
the development of the Y -Riemannian metric g(x) and as the
result Barthel connection [41–44], which simplifies to the
Levi-Civita connection. This sequence of transformations
and connections allows us to investigate the physical sys-
tem from the perspective of Riemannian geometry, providing
a valuable approach for analysis and interpretation. Conse-
quently, the curvature tensor associated with this affine con-
nection, which features local coefficients denoted as (Γ̂ a

bc),
can be expressed as follows

R̂a
bcd = Ra

bcd = ∂�̂a
bd

∂xc
− ∂�̂a

bc

∂xd
+ �̂e

bd �̂
a
ec − �̂e

bc�̂
a
ed . (4)

And the Ricci curvature tensor is given by

R̂bd =
∑
a

(
∂�̂a

bd

∂xa
− ∂�̂a

ba

∂xd
+

∑
E

�̂e
bd �̂

a
ea − �̂e

ba�̂
a
ed

)
. (5)

With a, b, c, d ∈ {0, 1, 2, 3}. And the Ricci tensor and Ricci
scalar are given by

R̂b
d = ĝbc R̂cd , R̂ = R̂a

bad . (6)

The Barthel connection, characterized by its local coeffi-
cients

(
babc

)
, is a type of affine connection and is defined

by

bikh = (γ i
kh − γ r

ksY
sCi

rh).

As such, its curvature tensor can be determined using the
aforementioned curvature formula (4), with the Christoffel
symbols Γ̂ a

bc.

2.2 Cosmological inflation and the osculating
Finsler–Barthel–Kropina geometry approach

In this section, we explore the connection between cosmo-
logical inflation theory and the novel framework of the oscil-
lating Finsler–Barthel–Kropina geometry. This innovative
approach offers a unique perspective on the study of the early
universe and its inflationary processes.

In the context of applying Barthel–Kropina geometry to
cosmological inflation, we incorporate assumptions from
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[46,47]. In this framework, the Riemannian metric ai j (x)
within the Kropina metric α(x, y) is defined by the FLRW
metric

ai j (x) = dt2 − a2(t)(dx2 + dy2 + dz2). (7)

Here, a(t) represents the cosmological scale factor. The
FLRW metric describes a universe that is both homoge-
neous and isotropic, with cosmological time t progressing
uniformly. The Barthel–Kropina metric components depend
solely on cosmological time, aligning with the cosmological
principle that attributes the universe large-scale attributes to
time. This also implies that the 1-form β has components
(bi ) = (η(t), 0, 0, 0), with null spatial components.

Given the Kropina metric tensor described in Eq. (3), we
choose a non-vanishing vector field Y = A, with Ai =
gi j A j . Since the one-form β is defined across the entire
manifold M and A is a globally defined non-vanishing vector
field on M , it follows that the components of β are inherently
non-zero. To address the complexities associated with the
metric tensor, we adopt the Osculating Riemannian geometry
approach. This leads us to the conclusion that y0 = y0 =
η(t), and α =

√
ai j (x) yi y j =

√
ai j (x) Ai A j , resulting

in α2 = ai j (x) Ai A j = A2. Additionally, we observe that
β = Ai yi = Ai Ai = gi j (x) Ai A j = A2 = α2. Its evident
that the metric is non-degenerate as η(t) is non-zero.

This can be expressed as follows

i) β = Ai yi = (
Ai

) = (Ai ) = (η (t) , 0, 0, 0),
ii)

(
ĝi j

) = diag
(
1,−a2 (t) ,−a2 (t) ,−a2 (t)

)
,

iii) α (x, y)
∣∣
y=A(x) = η (t),

iv) β (x, y)
∣∣
y=A(X)

= η (t)2.

This yields the following:

ĝ00 = 2α2

β2 + 3α4

β4 η2 − 8α2

β3 y0η + 4

β2 y
2
0 , (8)

ĝio = −4α2

β3 ηyi + 4

β2 yi y0, (9)

ĝi j = −2a2

β2

(
α2 − 2a2yi y j

)
δi j , (10)

where i, j ∈ {1, 2, 3}.
Therefore, by introducing the A-osculating Riemannian

manifold (M, ĝi j (x,Y (x)) on the manifold M, the metric
components can be expressed as,

(
ĝi j (x, y)

)

= diag

(
1

η (t)2 , − 2a2

η (t)2 ,− 2a2

η (t)2 ,− 2a2

η (t)2

)
. (11)

The inverse metric tensor components can be represented as,
(
ĝi j (x, y)

)

= diag

(
η (t)2,−η (t)2

2a2 , −η (t)2

2a2 ,−η (t)2

2a2

)
. (12)

2.3 Constant roll inflation

Inflationary models are characterized by a fundamental
assumption known as the slow-roll assumption [14,22],
where a scalar field gradually rolls down its potential.
These models are described using dimensionless parameters
referred to as slow-roll parameters. The smallness of these
parameters during inflation ensures that the potential energy
remains almost flat. These parameters are defined as follows:

ε1 = − Ḣ

H2 ,

ε2 = ε̇1

Hε1
. (13)

Constant-roll inflation represents a specific class of phe-
nomenological models characterized by a constant rate of
inflaton evolution, which can be expressed as

φ̈ = −αH φ̇. (14)

And we can also write second roll slow-roll parameter as

ε2 = 2α + 2ε1. (15)

and in general, the nth slow roll parameters are given by
εn = ε̇n

Hεn
.

To induce inflation in the early universe, negative pres-
sure is a prerequisite. This inflationary concept involves the
presence of a spatially homogeneous scalar field φ = φ(t),
known as the inflaton. In the initial phases of the universe,
this scalar field assumes a value where the potential V (φ) is
both large and flat. As the scalar field evolves, it gradually
moves down this potential, leading to a gradual reduction in
the Hubble constant. This process triggers a period of infla-
tion in the universe, characterized by an effective equation of
state featuring negative energy and, consequently, negative
pressure. This scalar field is introduced through a Lagrangian
of a specific form [22,37]

Lm = −1

2
gμν∂μφ∂νφ − V (φ) , (16)

where V (φ) represents a certain potential function. Let us
now examine the action governing inflation, which is pro-
pelled by a scalar field φ through minimal coupling. This
action is given by

L =
∫

dx4
√

−ĝ

(
M2

pl

2
R̂ + Lm

)
. (17)
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In this context,
√−ĝ represents the determinant of the

osculating Barthel–Kropina–Finsler metric, and R̂ is the
Ricci scalar associated with the Osculating Finsler–Barthel–
Kropina metric. When we vary the action with respect to the
metric tensor, this procedure yields the Einstein field equa-
tion [1,2], which can be expressed as follows

R̂i j − 1

2
ĝ i j R̂ = kT̂ i j . (18)

Where, R̂i j is the components of Ricci tensor, R̂ is the compo-
nent Ricci scalar of the metric tensor defined by the equation
(16) and k = 1

M2
pl

.

The computation of the various geometric quantities in
the context of cosmological spacetime which is given in
the appendix. With the previously mentioned osculating
Kropina metric, the generalized Friedmann equations can be
expressed as follows

3η̇2 + 3η2H2 − 6ηη̇H = ρ

M2
pl

, (19)

−3η̇2 − 3η2H2 + 4ηη̇H − 2η2 Ḣ + 2ηη̈ = p

M2
pl

. (20)

The equations presented differ from those in [46] due to our
selection of a specific 1-form. However, these equations can
be regained by adopting a particular choice of the 1-form
inherent in the Finslerian Kropina metric.

Finsler geometry provides an extra term η and its deriva-
tives compared to that of Riemannian case which in turn
explain the advantage of Finsler geometry over Riemannian
case. Inflationary models heavily rely on the properties of
spacetime geometry. Introducing a Kropina metric with an
additional 1-form term η(t) alters the geometry of space-
time. Depending on the specific form of η(t), it affects the
expansion rate, curvature, and evolution of the early universe
during inflation. The modification introduced by the Kropina
metric influence the dynamics of inflation. It’s impact on
the scalar field responsible for inflation, altering its potential
or its interactions with other fields. This modification could
lead to variations in the duration and properties of inflation,
affecting the resulting cosmological predictions. Inflationary
models make predictions about observable signatures such as
primordial gravitational waves, density fluctuations, and non-
Gaussianities in the cosmic microwave background. Modi-
fications introduced by the Kropina metric result in distinct
signatures compared to standard inflationary models based
on Riemannian metrics, potentially offering observational
tests to distinguish between different cosmological scenar-
ios.

And the Klein–Gordon equation of motion is given by

φ̈ + φ̇

(
3H − 4

η̇

η

)
+ Vφ = 0. (21)

And T̂i j is the components of energy momentum tensor,
defined as

T̂i j = −2√−ĝ

δ
(√−ĝLm

)

δĝi j
= ĝi jLm − 2δLm

δĝi j
, (22)

which is equivalent to

T̂ i
j = ĝikφ,kφ, j −

(
1

2
ĝlmφ,lφ,m − V (φ)

)
δij . (23)

The energy density of the cosmological matter and thermo-
dynamical pressure are given respectively as,

ρ = T̂ 0
0 = 1

2
ĝ00φ̇2 + V, (24)

p = T̂ i
i = 1

2
ĝ00φ̇2 − V . (25)

Substituting the above expression for energy density and
pressure the Friedmann equations becomes,

3η̇2 + 3η2H2 − 6ηη̇H = 1

M2
pl

(
1

2
η2φ̇2 + V

)
, (26)

−3η̇2 − 3η2H2 + 4ηη̇H − 2η2 Ḣ + 2ηη̈

= 1

M2
pl

(
1

2
η2φ̇2 − V

)
. (27)

Adding above two equations we get

φ̇2 + 2M2
pl Ḣ + 2M2

pl

(
H

η̇

η
− η̈

η

)
= 0. (28)

The distinctiveness of the Friedmann equations and the equa-
tion of motion, in contrast to the Riemannian scenario, is quite
apparent from Eqs. (26)–(28). And, as η → 1 the equation
these equations reduce to Riemannian case, and the dynamics
of inflation is same as Riemannian case. Thus η(t) deviates
the homogenous, isotropic universe in Riemannian case to
large scale homogeneous, isotropic structure which in small
case is anisotropic. Thus, these variations can be attributed
to the existence of a Finslerian metric that depends on direc-
tion and the introduction of the anisotropic term η(t). The
introduction of η(t) within the Kropina metric can indeed
be interpreted as introducing an anisotropic element into the
geometry of spacetime. Anisotropy refers to variations in dif-
ferent directions within the universe. When η(t) is included
in the Kropina metric, it introduces a direction-dependent
component that varies with time t . This time-dependent term
η(t) modifies the structure of spacetime in a manner that
can be considered anisotropic, especially if it affects differ-
ent spatial directions differently. The anisotropy might man-
ifest as a directional preference or variation in the geometry,
impacting the expansion rate or curvature along specific axes
or directions in space.

Anisotropies can have significant implications, affect-
ing the predictions of observational phenomena such as the
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cosmic microwave background radiation, large-scale struc-
ture formation, and the overall evolution of the universe.
Therefore, interpreting η(t) within the Kropina metric as an
anisotropic term allows for the consideration of scenarios
where the universe’s geometry exhibits direction-dependent
characteristics, potentially deviating from the isotropic prop-
erties usually assumed in standard cosmological models
based on Riemannian metrics.

Obtaining an analytical solution for η(t) directly from the
deductions of the Einstein Field equations or other equa-
tions governing cosmological dynamics in a Finslerian back-
ground is often a challenging task. To facilitate the analysis of
inflationary dynamics in our study, we have proposed a model
in which η(t) takes the form η (t) = a (t)−n [46]. This sim-
plification allows us to streamline the governing equations
and gain insights into the inflationary behavior.

3 The model with η (t) = a (t)−n

In the context of the specified model, the Eq. (28) can be
expressed as

φ̇2 + 2 (1 + n) M2
pl H

′
φ̇ − 2M2

pln (n + 1) H2 = 0, (29)

where we treat H as a function of φ. Where prime denotes
the derivative with respect to φ. Clearly, the above equation
is qudratic in φ̇ and its roots are given by

φ̇ = − (1 + n) M2
pl H

′

±
√

(n + 1)2 M4
pl H

′2 + 2n (n + 1) M2
pl H

2. (30)

Again, differentiating the above expression with respect to
cosmic time and using the constant roll condition, φ̈ =
−αH φ̇, we get

− αH = − (1 + n) M2
pl H

′′

±
H

′ [
(n + 1)2 M2

pl H
′′ + 2n (n + 1) H

]
√

(n + 1)2 M2
pl H

′′ + 2n (n + 1) H2
. (31)

Using the above two solutions we obtain two differential
equations

αH = (n + 1) M2
pl H

′′, (32)

H ′′ = − 2nH

(n+1) M2
pl

. (33)

By considering the above two equations one can find that

n = −α

2
. (34)

Therefore, the differential equation becomes

H ′′ = 2αH

(2 − α) M2
pl

, (35)

the general solution of this equation is given by

Case 1:H (φ) = Me
±

√
2α

2−α
φ

Mpl (36)

Case 2:H (φ) = M cosh
( √

2α

2 − α

φ

Mpl

)
if α ∈ (0, 2) , (37)

H (φ) = M cos
(√

2 |α|
|2 − α|

φ

Mpl

)
if α ∈ (−∞, 0) ∪ (2, ∞) ,

(38)

Case 3:H (φ) = M sinh
( √

2α

2 − α

φ

Mpl

)
if α ∈ (0, 2) , (39)

H (φ) = M sin
( √

2 |α|
|2 − α|

φ

Mpl

)
if α ∈ (−∞, 0) ∪ (2, ∞) .

(40)

Inflation is characterized by the gradual descent of the
inflaton field along its potential energy curve, a condition
expressed as φ̇ (t) � 1 [1,2]. This condition implies that
φ̇ (t)2 is extremely small. Based on this observation, we can
simplify our analysis by approximating φ̇2(t) ≈ 0 during
inflation.

Then the above equation yields that

2 (n + 1) M2
pl Ḣ φ̇ − 2M2

pln (n + 1) H2 = 0. (41)

Which gives us the expression for φ̇ as

φ̇ = −α

2

H (φ)2

H ′
(φ)

. (42)

By substituting the expressions for H (φ) from Eqs. (37)–
(41) we obtain expressions for φ (t).

More importantly in this paper we discuss the Hubble
function of the form (39)

H (φ) = M cos

(√
2 |α|

|2 − α|
φ

Mpl

)
if α ∈ (−∞, 0) ∪ (2,∞) .

Then the cosmological parameters are given by

φ (t) =
√

|2 − α|
|2α| arcsec

( |α| Mt

2

)
, (43)

H (t) = 2
(
M2α2t2 − 2

)

αt
(
M2α2t2 − 4

) . (44)

Graphs representing the dynamics of H(t) and a(t) have
been plotted for a specific α value of −0.005, as illustrated
in the Figs. 1 and 2.

The conventional method for analyzing inflation is through
the use of the slow-roll approximation, where we define
the slow-roll parameters as described in Eq. (13). During
this approximation, it is assumed that these parameters are
exceedingly small, satisfying the condition |εn| � 1. Once
the slow-roll parameters approach unity, the inflationary
expansion comes to an end.
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Fig. 1 The variation of hubble parameter (H) with the cosmic time (t)

Fig. 2 The variation of scalar factor (a(t)) with the cosmic time (t)

These parameters, in turn, provide us with two key infla-
tionary parameters one is the scalar spectral index(ns) and
another one is the tensor-to-scalar ratio (r) and they are given
by [28]

ns = 1 − 2ε1 − ε2, (45)

r = 16ε1. (46)

In our model, we have calculated the first two slow-roll
parameters using the expression for H(t) as described ear-
lier. These parameters have been depicted graphically in the
figure. Notably, it can be observed that for α = −0.005, the
inflationary slow-roll parameters approach zero, indicating
the presence of inflationary phenomena.

Assessing slow-roll parameters precisely at the horizon
crossing (k = a H), where the wave vector aligns with the
product of the scale factor and the Hubble parameter is crit-

Fig. 3 The variation of first slow-roll parameter (ε1) with the cosmic
time (t)

Fig. 4 The variation of second slow-roll parameter (ε2) with the cos-
mic time (t)

Fig. 5 Scalar spectral index (ns) vs tensor-to-scalar ratio (r) for the
data given in table 1
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Table 1 Values of scalar-spectral index (ns) and scalar-to-tensor ratio (r) for α ∈ [−0.001,−0.0001]
N = 60 N = 65 N = 70
α ns r ns r ns r

−0.0001 0.96738265 0.12654348 0.96988911 0.11673104 0.97203938 0.1083199

−0.0002 0.96756555 0.12509758 0.97006531 0.11540087 0.97220974 0.10709287

−0.0003 0.96770881 0.12434338 0.97020357 0.11473497 0.97234353 0.10650564

−0.0004 0.96783175 0.12394529 0.97032229 0.11441097 0.97245847 0.10624763

−0.0005 0.96794164 0.12377375 0.97042841 0.11430444 0.97256118 0.10619901

−0.0006 0.96804208 0.12376253 0.97052531 0.11435179 0.97265487 0.10629853

−0.0007 0.96813505 0.12387241 0.97061487 0.11451537 0.9727413 0.10650994

−0.0008 0.96822188 0.12407788 0.97069834 0.11477072 0.97282167 0.10680972

−0.0009 0.96830337 0.12436132 0.9707765 0.11510091 0.9728967 0.10718156

−0.001 0.96838014 0.12470992 0.97084988 0.11549366 0.97296691 0.10761367

Table 2 Values of scalar-spectral index (ns) and scalar-to-tensor ratio (r) for α ∈ [−0.01,−0.001]
N = 60 N = 65 N = 70
α ns r ns r ns r

−0.0001 0.96838014 0.12470992 0.97084988 0.11549366 0.97296691 0.10761367

−0.0002 0.96894883 0.13038452 0.9713796 0.12152484 0.97345927 0.11396325

−0.0003 0.96923437 0.13820373 0.97161459 0.12962379 0.97364545 0.12231352

−0.0004 0.96928884 0.14716662 0.97160894 0.13883331 0.97358215 0.13174638

−0.0005 0.96914484 0.15689672 0.97139825 0.14879399 0.97330809 0.14191757

−0.0006 0.96882844 0.16720558 0.97101104 0.15932593 0.97285418 0.15265472

−0.0007 0.9683613 0.17798324 0.97047076 0.170324 0.97224546 0.16385684

−0.0008 0.96776157 0.18915875 0.96979671 0.18172009 0.9715023 0.17545814

−0.0009 0.96704439 0.20068283 0.96900487 0.19346652 0.97064133 0.18741218

−0.001 0.96622252 0.21251916 0.96810848 0.20552785 0.96967622 0.19968402

ical in inflationary cosmology. This moment marks the shift
of quantum fluctuations in the scalar field from smaller to
cosmologically significant scales. These fluctuations freeze
as they leave the horizon during inflation, imprinting charac-
teristics on the evolving universe. Studying slow-roll param-
eters here is crucial for understanding how primordial den-
sity perturbations form, evolve, and shape large-scale cosmic
structures. This assessment facilitates the determination of
power spectra, aiding in the comparison between theoretical
predictions and empirical observations, thereby validating
or constraining various inflationary models. Consequently,
the evaluation of slow-roll parameters at the horizon cross-
ing point is foundational in corroborating the consistency and
viability of inflationary theories while unraveling the myster-
ies of the universe’s early evolution and structure formation
[1]. Thus, we assume that inflation initiates at the moment
when field fluctuations become crucial during the horizon
crossing. Therefore, the number of e−foldings, denoted as
N and determining the extent of inflation, can be expressed

as [25],

N =
∫ te

t∗
H (t) dt . (47)

In the above equation, t∗ and te denote the horizon crossing
time and the end of inflation time, respectively. In terms of
the scalar field, the equation can be expressed as

N =
∫ φe

φ∗

H

φ̇
dφ. (48)

In order to determine the value of N at the conclusion of infla-
tion, we initiate the calculation at the moment of horizon
crossing φ∗ by evaluating the slow-roll parameters. These
calculated values are subsequently employed in the afore-
mentioned equation.

4 Results and discussion

In this section, we discuss some important outcomes of our
model. According to the latest data from Planck [48], the
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Fig. 6 The behavior of the scalar-spectral index (ns) parameter is rep-
resented. We have choosen the range of |α| to be in [0.0001, 0.0005]
and N to be [50, 70]

Fig. 7 The behavior of the scalar-to-tensor ratio (r) parameter is rep-
resented. We have choosen the range of |α| to be in [0.0001, 0.0005]
and N to be [50, 70]

range of the scalar spectral index parameter and the tensor-
to-scalar ratio is as follows

ns = 0.968 ± 0.006 and r < 0.12. (49)

Inflation theory informs us that inflation concludes when
the first slow-roll parameter ε1 = 1 i.e., ε1 (φend) = 1. By
utilizing the inflationary parameters and the definition of ε1

as given in Eq. (13), we can calculate the value of φend .
Additionally, we determine the value of the inflaton at the
horizon crossing by employing Eq. (48), which provides us
with the value of φ∗ in terms of the number of e-folding
numbers (N ). To compute the values of ns and r , we evaluate
ε1 and ε2 at φ = φ∗. Subsequently, using these expressions,
we calculate the values of ns and r for various N values.

Figure 1 illustrates the behavior of the Hubble parame-
ter (H) for α = −0.005. The plot clearly shows that the
Hubble parameter approaches zero as time evolves, which is
a characteristic signature of the inflationary phase. Further-
more, the scalar factor follows an evolution pattern akin to
de-Sitter spacetime. In Fig. 2, we can observe that the uni-
verse is experiencing an accelerating expansion. Further we
examine the slow-roll parameters, as shown in Figs. 3 and 4
for α = −0.005. These plots reaffirm the essence of slow-roll
inflation, with the slow-roll parameters remaining negligible
throughout the inflationary period.

Figure 5 presents the relationship between the scalar spec-
tra index(ns) against scalar-to-tensor ratio (r) for differ-
ent e-folding numbers (N = 60, 65, 70) and for α val-
ues spanning from −0.01 to −0.001. Strikingly, the results
exhibit a remarkable agreement with the values of ns and r
specified in Equation (49). Furthermore, we assess the val-
ues of ns and r at the horizon crossing. Across a range of
values for α within the interval [−0.01,−0.001], we have
computed and presented the spectral index (ns) and tensor-
to-scalar ratio (r) in the accompanying graphs. Remark-
ably, our proposed model exhibits a substantial agreement
with the established values of ns and r given in equation
(50). This observation underscores the validity of our model
within the context of the scalar factor parametrization of
the anisotropic parameter, particularly within the osculating
Barthel-Kropina-Finslerian background, for this α the n val-
ues fall within the range of n ∈ [−0.005,−0.0005].

Tables 1 and 2 offer a quantitative summary of our
results. Table 1 lists the precise values of ns and r for
α ∈ [−0.001, −0.0001] across various N values. Table 2
extends this analysis to encompass α ∈ [−0.001, −0.01].
Notably, the values in Table 1 exhibit a closer alignment with
observed data, reaffirming the robustness of our model. For
more visual representation, we have included the graphical
evidence in Figs. 6 and 7 for the range of α values within
[−0.001, −0.0001]

5 Conclusion

In this paper, we have extensively explored the concept
of constant-roll inflation within the framework of Finsler
geometry, with a particular focus on the Kropina space,
one of the significant Finsler spaces. This investigation
involved embedding the crucial Finslerian connection, the
Barthel connection, within the context of Osculating Rie-
mannian spaces. We derived important cosmological dynam-
ics through this approach. By imposing the condition for
constant-roll inflation and parametrizing the anisotropic
parameter using the scalar factor, we obtained cosmologi-
cal parameters that have not been previously explored in the
study of the cosmological structure of the Universe. We fur-
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ther examined the impact of these parameters on the slow-roll
parameters and utilized standard expressions for the scalar
spectral index and the tensor-to-scalar ratio. Additionally, we
incorporated the expression for the number of e-folding in
inflation to calculate cosmological spectral indexes for vari-
ous values of N . The analysis revealed the range of α values
for which our model aligns with the standard values of ns
and r . Remarkably, our results demonstrated a high degree
of consistency with the standard Planck’s data, highlighting
the potential of Finslerian Kropina spaces as a framework for
describing the evolution of the Universe.

Inflation, a period of rapid cosmic expansion preceding
Big Bang nucleosynthesis, is believed to be driven by an
inflaton scalar field. While there’s been speculation about the
inflaton being a form of dark energy, practical evidence shows
the inflaton decays during inflation, making this unlikely.
However, the dynamics of dark energy can be explored by
using the equations describing inflationary scenarios. Numer-
ous studies in the literature have investigated the relationship
between dark energy and inflation [49–51]. Future research
will delve into the connection between dark energy and infla-
tion within the framework of Finslerian geometry, as previ-
ously explored by researchers [46,52,53]. Further this study
opens up new avenues for exploring the Universe’s dynam-
ics within the context of Finsler geometry, offering a fresh
perspective on cosmology.
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Appendix

Computation geometrical properties of Osculating
Finsler–Barthel–Kropina metric

The fundamental metric tensor of the Kropina metric is given
by

ĝi j (x, y) = Lα

α
hi j+ Lαα

α2 yi y j

+ Lαβ

α

(
yi b j+y j bi

) +Lββbib j . (A1)

with respect to above equation, hi j=α∂2α(x,y)
∂yi ∂y j =ai j− yi y j

α2 is
angular metric tensor of the associate Riemannian space. Li j

denotes the partial derivative of L with respect to i, j .
The Riemannian metric tensor α is given by the metric

tensor

(
ai j (x)

) =

⎛
⎜⎜⎝

1 0 0 0
0 −a2(t) 0 0
0 0 −a2(t) 0
0 0 0 −a2(t)

⎞
⎟⎟⎠ . (A2)

And the one form of the Kropina metric as discussed is
given by

β = (η (t) , 0, 0, 0).

Utilizing the osculating Riemannian approach outlined in
Sect. 2, the previously mentioned metric tensor simplifies
into the osculating Barthel–Kropina metric given by

ĝi j (x) =
{

η2 i f i = j = 0

− η2

2a2 δi j i f i = j = 1, 2, 3
, (A3)

(
ĝi j (x, y)

)
= diag

(
η2,− η2

2a2 , − η2

2a2 ,− η2

2a2

)
. (A4)

Calculation of Finslerian geometrical quantities of
Barthel–Kropina spaces

Christoffel symbol

The Finslerian Christoffel symbol is calculated with the help
of Riemannian Christoffel symbol �i

jk as we discussed above
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and is given by,

γi jk (x, y) =1

2

[
∂g jk

∂xi
+∂gki

∂x j
−∂gi j

∂xk

]
. (A5)

Now gi j is replaced by the metric tensor ĝi j . From the
theory of Barthel connection, the Christoffel symbol of the
osculating Barthel–Kropina metric is given by

�i
jk=γ i

jk=
1

2
gli

(
∂ ĝlk
∂x j

+∂ ĝl j
∂xk

−∂ ĝ jk

∂xl

)
(A6)

And after further simplification we have

�̂i
jk = �i

jk

=

⎧
⎪⎪⎨
⎪⎪⎩

− η̇
η

i f i = j = k = 0.

− 2a( η̇a−ȧη)
η

δ jk i f i = 0, j = k = 1, 2, 3.

ȧη−η̇a
ηa δ jk i f i=1, 2, 3, j = k = 1, 2, 3.

(A7)

Ricci tensor

The Ricci tensor is calculated using the Christoffel symbols
and is given by,

R̂bd = Rbd=
∑
a

(
∂�a

bd

∂xa
−∂�a

ba

∂xd

+
∑
E

�e
bd�

a
ea−�e

ba�
a
ed

)
. (A8)

This leads to

R̂00 = R00 =
(−3äη2+3η̈ηa + 3η̇ȧη − 3η̇2a

)

aη2 , (A9)

R̂i j = Ri j

= 2äaη2−2η̈ηa2+4ȧη2−10ȧη̇ηa + 6η2a2

η2 δi j . (A10)

The generalized Friedmann equations

The Einstein Field equations are given by

Ĝi j = R̂i j−1

2
gi j R, (A11)

Eq. (A10) gives

Ĝ00 = 3 ( η̇a−ȧη)2

η2a2 , (A12)

Ĝi j = −4η2aä−2η2ȧ2+4ηa2η̈+8ηaȧη̇−6a2η̇2

η2 δi j .

(A13)

The expression for generalized Friedmann equations is
given by

Ĝ00 = 1

M2
pl

ĝooρ, Ĝii = 1

M2
pl

ĝiiρ. (A14)

Using Eqs. (A4)

3η̇2+3η2H2−6ηη̇H = ρ

M2
pl

, (A15)

−3η̇2−3η2H2+4ηη̇H − 2η2 Ḣ+2ηη̈ = p

M2
pl

. (A16)
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