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Abstract

In this thesis, we do investigations related to surface operators in supersymmetric gauge theo-

ries in four dimensions. In the first part of the thesis, we study half-BPS surface operators in

N = 2 pure SU(N) gauge theory following two different approaches. In the first approach we

analyze the chiral ring equations for certain quiver theories in two dimensions coupled to four-

dimensional gauge theory. The chiral ring equations, which arise from extremizing a twisted

chiral superpotential, are solved as power series in the infrared scales of the quiver theories.

In the second approach we use equivariant localization and obtain the twisted chiral superpo-

tential as a function of the Coulomb moduli of the four-dimensional SU(N) gauge theory, and

find a perfect match with the results obtained from chiral ring equations.

In the second-half of the thesis, we study singular time-dependent 1
8-BPS configurations in

the abelian sector of N = 4 Yang-Mills theory that represent BPS string-like defects in R⇥S3

spacetime. Such BPS strings can be described as intersections of the zeros of holomorphic

functions in two complex variables with a 3-sphere. We argue that these BPS strings map to

1
8-BPS surface operators under state-operator correspondence of the conformal field theory.

We show that the string defects are holographically dual to non-compact probe D3 branes in

global AdS5 ⇥S5 that share supersymmetries with a class of dual-giant gravitons. For simple

configurations, we demonstrate how to define a good variational problem for the associated

action principle and propose a regularization scheme that leads to finite energy and global

charges on both sides of the holographic correspondence.
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Synopsis

Introduction

Surface operators are non-local BPS operators in the Supersymmetric gauge theories. They

are a higher dimensional generalization of one-dimensional Wilson and ’t Hooft line operators.

Surface operators were first defined by Gukov and Witten in [8], [9] as a part of the geometric

Langlands program using supersymmetric gauge theories. They are a co-dimension two singu-

lar solution to the generalized Bogomolny equations in [11]. Analogous to the line operators,

surface operators provide essential information about the vacuum structure of supersymmetric

gauge theories [18].

Surface operators have a dual description in gauge theories: on the one hand, they can be

described as monodromy defects in a four-dimensional theory, and on the other hand, they

can be described as coupled 2d/4d systems. In the context of N = 4 SYM, surface operators

were shown to be holographically dual to probe D3 branes in the ten-dimensional AdS5 ⇥ S5

geometry in [12], [13].

The goal of this thesis is two-fold: first, we will study the instanton partition function of the

N = 2 gauge theory in presence of surface operators from which, we extract the low energy

effective-action that governs the dynamics of surface operators. In particular, we will calculate
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the effective-action from the two approaches and relate the parameters associated with surface

operators in the dual descriptions. Second, we will classify 1
8-BPS surface defects in N = 4

SU(N) Super Yang-Mills theory and obtain their holographic duals in the AdS5⇥S5 geometry.

We will compute the energies and global charges of a subclass of solutions that we classify.

Background

Surface operators as Monodromy defects

Surface operators in the SU(N) Susy gauge theory are described by a set of data of M integers:

{n1,n2, . . . ,nM} such that n1 +n2 + . . .+nM = N and a set of real parameters:

{a1, . . . ,aM, . . . ,bM, . . . ,gM, . . . ,hM}. The real parameters are associated with the singularities

of the bosonic fields in the 4-dimensional gauge theory that occur at a codimension-2 surface.

In a theory defined on R4 manifold, surface defects induce a singularity in the profile of gauge

fields in the following way

A =

0

BBBBBBB@

a1 ⌦1n1 0 . . . 0

0 a2 ⌦1n2 . . . 0
...

... . . . ...

0 0 . . . aM ⌦1nM

1

CCCCCCCA

dy . (1)

where y is the polar angle in the plane transverse to the defect, 1ni are unit matrices of rank ni.

Near the location of a surface defect the gauge group G = SU(N) breaks into a Levi subgroup:

L = S[U(n1)⌦ . . .⌦U(nM)]. In the presence of surface defects, one can also introduce two-

dimensional q -angles that couple to the unbroken U(1)s at the defect. In the path integral this
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is represented by the following insertion

exp

 
i

M

Â
l=1

hl

Z

2d
TrF(l)

!
. (2)

In the maximally supersymmetric N = 4 SU(N) theories, surface defects also induce a

singularity in the profile of one of the complex scalar fields:

F =
1
z

0

BBBBBBB@

(b1 + ig1)⌦1n1 0 . . . 0

0 (b2 + ig2)⌦1n2 . . . 0
...

... . . . ...

0 0 . . . (bM + igM)⌦1nM

1

CCCCCCCA

, (3)

z is complex coordinate in the transverse plane.

Surface operators as flavor defects

There is a dual description of surface operators in supersymmetric gauge theories where, a

surface defect supports on its world-volume a two-dimensional gauge theory with a flavour

SU(N) symmetry which is identified with the gauge symmetry group of four-dimensional

theory.

In N = 2 SU(N) theory, when the vacuum solution is obtained from its Coulomb branch,

this combined 2d/4d system is described by two holomorphic functions: the prepotential F

and the twisted-chiral superpotential W. The prepotential governs the dynamics of the bulk

theory and depends on the Coulomb vev’s and the infra-red (IR) scale of the gauge theory in

four dimensions. The twisted-chiral superpotential controls the two-dimensional dynamics on

the surface operator, and is a function of the continuous parameters labeling the defect, the

two-dimensional IR scales, and also of the Coulomb vev’s and the strong-coupling scale of the
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bulk gauge theory. The twisted superpotential thus describes the coupled 2d/4d system.

Gauged Linear sigma models in two dimensions

From the two-dimensional perspective, the effective dynamics is described by a non-linear

sigma model with target-space equal to a coset space: SU(N)/L where L is the Levi sub-

group associated with a surface operator, defined earlier. The 2d sigma model is a Gauged

linear Sigma model with N = (2,2) supersymmetry [36], [37]. In a simpler setup when

L = S[U(1)⌦U(N � 1)] the target space is CPN�1, the 2d sigma model in the UV limit of

energy scale, has a U(1) gauge symmetry with chiral multiplets Q having some SU(N) flavor

symmetry. The kinetic term of the lagrangian is

1
4

Z
d4q

✓
Q†e2V Q� 1

2e2 S†S
◆
, (4)

S is the twisted chiral superfield associated with the U(1) gauge vector multiplet V. In addition,

we have the Fayet-Iliopoulos term: it
4
R

d2q̃ S +h.c. with the complexified coupling t .

In two dimensions there is a special mass-like term which is considered for Q, it is intro-

duced by first gauging the flavor symmetry SU(N) and giving a background value to the scalar

component of the vector superfield, and then setting the fields to be vanishing. This can be

written as

Z
d4q Q†e2V1Q , (5)

where V1 = q Rq̄ L em + h.c. This preserves N = (2,2) supersymmetry only when em is di-

agonalizable, the diagonal components are called twisted masses. The effective low energy

Lagrangian has twisted superpotential:
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We f f =
1
4

"
itS� 1

2p

n

Â
i=1

(S� emi)

✓
log
✓

S� emi

µ

◆
�1
◆#

(6)

To make connection with the low energy effective-action associated with surface operators [16,

17], we identify, the flavor SU(N) symmetry group with the four-dimensional gauge symmetry

group and twisted masses emi with the vevs of the scalar in the 4d N = 2 vector multiplet.

Holographic description of Surface operators

The N = 4 Yang-Mills theory is known to be dual to the ten-dimensional Type IIB super-

gravity from the AdS/CFT correspondence. The type IIB supergravity theory is described

by the vielbein, a complex Weyl gravitino, a real four-form C(4) with self-dual field strength

F(5), a complex two-form C(2), a complex spinor L and a complex scalar F. In the AdS5 ⇥S5

background most of the component fields except the vielbein and the four-form C(4) vanish.

The variation of the gravitino takes the form

dYµ = Dµe � i
480

G nrabl
µ Fnrabl e . (7)

Demanding dYµ = 0 leads to the Killing spinor equations.

k-symmetry of D3 branes in AdS5 ⇥S5

We now consider the action for D3-brane configurations, the action with ’Dirac-Born-Infeld

term’+’Wess-Zumino term’ is invariant under the local fermionic kappa-symmetry transfor-

mations. The necessary constraints are obtained when the ten-dimensional superspace spinor

coordinates Q are set to zero, and their variation d Q are also set to zero [30]. D3-branes

for which the world-volume gauge fields vanish, kappa-symmetry constraint is of the form:

Gk e =±i
p
�dethe . This constraint is imposed on the background Killing spinors e near the
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worldvolume, and Gk is the product of four gamma-matrices on the D3 worldvolume.

Surface operators in N = 4 SYM theories have holographic duals in AdS5 ⇥S5 geometry as

probe D3 branes with non-compact worldvolumes that reach AdS boundary. In the Poincare

patch of coordinates, the D3 branes that reach the AdS boundary and end in R1,1 submani-

fold, in the boundary limit, have their world-volume identified with the ’surface of support’

of half-BPS surface operators. The symmetries and parameters of the 4-dimensional gauge

theory in presence of surface operators are exactly identified with those of the holographic

D3 branes. The complex parameters b + ig are mapped to the constants that appear in the

embedding equation of the non-compact D3 worldvolume solutions. The parameters a and h

are identified with the holonomies of the gauge field A and the dual gauge field Ã living on the

D3-brane worldvolume. The fermionic symmetry of the half-BPS D3 brane solutions can be

verified by doing the k-symmetry analysis.

We use the preserved supersymmetry of several half-BPS branes and find the common

supersymmetries among them. Then we use the common supersymmetries in the k-symmetry

constraint to determine the most general 1
16-BPS equations. From these equations, we obtain

the classical solutions of the holographic duals to 1
8-BPS defects in N =4 SYM theory.

Surface operators in N = 2 theories

A generic co-dimension two surface operator in pure N = 2 SU(N) gauge theory [16], [17]

has a microscopic description as a quiver gauge theory of the type shown in the figure below

k1 k2 . . . kM�1 N
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Here the round nodes, labeled by index I, correspond to U(kI) gauge theories in two dimen-

sions whose field strength is described by a twisted chiral field S(I). The rightmost node rep-

resents the four-dimensional N = 2 gauge theory whose SU(N) gauge group acts as a flavor

group for the last two-dimensional node. The arrows correspond to (bi-)fundamental matter

multiplets that are generically massive. Integrating out these fields leads to an effective action

for the twisted chiral fields which, because of the two-dimensional (2,2)-supersymmetry, is

encoded in a twisted chiral superpotential W. The contribution to W coming from the massive

fields attached to the last node depends on the four-dimensional dynamics of the SU(N) theory

and in particular on its resolvent [16]. The vacuum structure can be determined by the twisted

chiral ring equations, which take the form

exp

 
∂W

∂s (I)
s

!
= 1 (8)

The main idea is that by evaluating W on the solutions to the twisted chiral ring equations one

should reproduce precisely the superpotential calculated using localization.

In the thesis we extended this analysis in the following manner: first of all, we showed

that in the classical limit there is a very specific choice of solutions to the twisted chiral ring

equations that allows us to make contact with the twisted chiral superpotential calculated using

localization. We established the correspondence between the continuous parameters labeling

the monodromy defect and the dynamically generated scales of the two-dimensional quiver

theory. We then showed that quantum corrections in the quiver gauge theory are mapped

directly to corrections in the twisted superpotential(due to ramified instantons), extracted from

the instanton partition function of the four-dimensional theory.

The expression for the effective twisted chiral superpotential associated with a general

surface operator is the following
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W =�
M�2

Â
I=1

kI

Â
s=1

kI+1

Â
t=1

s (I)
s

 
log

s (I)
s �s (I+1)

t
LI

�1

!

+
M�1

Â
I=2

kI

Â
s=1

kI�1

Â
r=1

s (I)
s

 
log

s (I�1)
r �s (I)

s

LI
�1

!

�
kM�1

Â
s=1

⌧
Tr

"⇣
s (M�1)

s �F
⌘ 

log
s (M�1)

s �F
LM�1

�1

!#�
, (9)

s (I) is the adjoint valued scalar in the vector multiplet of the Ith gauge node, subscript indices

s,r and t denote the diagonal components in a rank kI matrix, LI is the complexified I.R. scale

of the Ith node, and F is the adjoint scalar of the 4d SU(N) gauge theory. The angular brack-

ets account for the four-dimensional dynamics of the SU(N) theory. The quantum corrected

vacuum expectation value of F appear in the twisted mass parameters associated with chiral

matter between the last two nodes.

We solve the 2d twisted chiral ring relations to evaluate W on the vacuum solution s?. In

order to solve the chiral ring equations for each node in the quiver that are coupled to each

other, we need to make some ansatz. First, we consider a generic point in the 4d Coulomb

branch parameterized by the classical vev of F and take the diagonal components to be equal

to diag(a1,a2, . . . ,aN). Then, we express the vevs of 2d scalars s (I)
s power series in LI param-

eters around a chosen classical vacuum, with the help of following definitions:

qI =(�1)kI�1LnI+nI�1
I

qM =(�1)NL2N
⇣M�1

’
I=1

qI

⌘�1
(10)

for I = 1, . . . ,M�1. Here L is the four dimensional scale parameter.

Our ansatz chosen for the 2d scalars is the following:
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s (1)
s =as +O(qI)+ . . . for s = 1, . . . ,k1 ,

s (2)
t =at +O(qI)+ . . . for t = 1, . . . ,k2 ,

...

s (M�1)
w =aw +O(qI)+ . . . for w = 1, . . . ,kM�1 .

(11)

This choice of ansatz corresponds to a partition of the classical vev of F given by

{
| {z }

n1

a1, · · · ,an1 ,
| {z }

n2

an1+1, · · · ,an1+n2 , · · · ,
| {z }

nM

akM�1+1, · · · ,aN }

For [1,1,1] surface operator in the SU(3) theory, we calculate the 2d scalars on the vacuum,

and from the twisted superpotential (W?) evaluated on the vacuum, we obtain the following

L1

2
dW?

dL1
= s (1)

? = a1 +
1

a12
L2

1 +
1

a13

L6

L2
1L2

2
� 1

a3
12

L4
1 �

1
a3

13

L12

L4
1L4

2

� 1
a12 a13 a23

⇣
L2

1L2
2 �

L6

L2
1

⌘
+ . . . , (12)

L2

2
dW?

dL2
= Trs (2)

? = a1 +a2 �
1

a23
L2

2 +
1

a13

L6

L2
1L2

2
� 1

a3
23

L4
2 �

1
a3

13

L12

L4
1L4

2

� 1
a12 a13 a23

⇣
L2

1L2
2 +

L6

L2
2

⌘
+ . . . . (13)

these expressions are identified, with the q1- and q2-logarithmic derivatives of the twisted

superpotential extracted from the instanton partition function of the SU(3) theory.
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Localization in 4d

In this subsection, we treat surface operators as monodromy defects. The partition function

for N = 2 theories with surface operators was first derived in [20], using the equivariant lo-

calization technique developed in [24], [25] for N = 2 SU(N) theory. The instanton partition

function for the generic surface operator is given by

Zinst[~n] = Â
{dI}

Z{dI} with Z{dI}[~n] =
M

’
I=1

"
(�qI)

dI

dI!

Z dI

’
s=1

dcI,s
2pi

#
z{dI} . (14)

And

z{dI} =
M

’
I=1

dI

’
s ,t=1

cI,s �cI,t +ds ,t
cI,s �cI,t + e1

⇥
M

’
I=1

dI

’
s=1

dI+1

’
r=1

cI,s �cI+1,r + e1 + ê2

cI,s �cI+1,r + ê2
(15)

⇥
M

’
I=1

dI

’
s=1

nI

’
s=1

1
aI,s �cI,s + 1

2(e1 + ê2)

nI+1

’
t=1

1
cI,s �aI+1,t +

1
2(e1 + ê2)

.

cI,s are parameters on the instanton moduli space. e1, ê2 specify the W-deformed background

which is introduced to localize the integrals over the instanton moduli space. The M vari-

ables qI are ramified instanton weights which, have a one-to-one map with energy scales in

the coupled 2d/4d system, that we also use to show the equivalence of the effective twisted

superpotential computed from the two descriptions.

In the partition function formula (14), M positive integers dI count the number of ramified

instantons in various sectors, with the convention that dM+1 = d1. The notation aI,s indicate

how 4d scalar vev are partitioned in the presence of a surface defect, as shown below:

aI,s ⇢ {
| {z }

n1

a1, · · · ,an1 ,
| {z }

n2

an1+1, · · · ,an1+n2 , · · · ,
| {z }

nM

akM�1+1, · · · ,aN } (16)
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In the vanishing limit of W-deformation, Zinst gives two holomorphic functions: Finst, non-

perturbative part of the prepotential of 4d gauge theory, and Winst, non-perturbative correction

to the effective twisted superpotential of the 2d worldvolume theory coupled to 4d SU(N)

theory. In this limit logarithmic value of Zinst has following expansion:

logZinst =�Finst

e1ê2
+

Winst

e1
+ regular terms (17)

For the [1,1,1] surface operator in SU(3) theory, the quantities: q1
∂Winst
∂q1

and q2
∂Winst
∂q2

are iden-

tified with expressions in (12) and (13), respectively, after considering the relation between the

parameters qI and the scaling parameters LI and L in the 2d/4d quiver theory in equation (10).

Surface operators in the N = 4 SYM theories

We take a Hamiltonian perspective and study (at a classical level) two-dimensional defects in

the maximally supersymmetric N = 4 Yang-Mills theory on S3 ⇥R spacetime as classical

singular solutions that preserve some supersymmetry. We focus our attention on a particularly

interesting class of BPS strings that preserve four supersymmetries. Our goal here on the field

theory side is twofold. Firstly, to show that there is a general characterization of these BPS

strings by describing the equations defining their worldvolume in a compact way. Secondly,

to show that these BPS strings are solutions to the same variational problem as other non-

singular supersymmetric solutions in the theory and to calculate their (regularized) energies

and charges.

We choose a suitable set of supersymmetries that we would like our solutions to preserve.

For this we adopted a bottom-up approach by proposing simple classical half-BPS string solu-

tions and determine their supersymmetries as projection conditions on the conformal Killing

spinors of S3 ⇥R. These half-BPS strings are static configurations, with topology S1 ⇥R. By
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using the state operator correspondence, we show that these BPS strings are the states that cor-

respond to the half-BPS Gukov-Witten surface operators in R4. By using global symmetries,

we find more such half-BPS string solutions and observe that all these defects have two super-

symmetries in common. We use the common supersymmetries to derive a set of non-abelian

BPS equations whose solutions are at least 1
16-BPS. It turns out that these BPS equations co-

incide with the one obtained earlier in the literature in the study of the gauge theory duals of

giant gravitons and dual-giant gravitons in AdS5 ⇥S5 [32], [33]. In fact, we find that the time

dependent non-singular classical configurations dual to half-BPS dual-giants share a common

set of four supersymmetries with the half-BPS strings supported by one complex scalar field.

We then go on to derive the general non-abelian 1
8-BPS equations that bosonic configurations

have to satisfy in order to preserve these four supersymmetries.

The resulting 1
8-BPS equations that the complex scalar fields Zi and the gauge connection field

A satisfy are what we focus on and they are the following

(D0 +D3 + i)Z1 = 0 , (D1 + iD2)Z1 = 0 , F12 +2
h
Z1,Z†

1

i
= 0 ,

F03 = 0 F01 +F31 = 0 , F02 +F32 = 0 , (18)

along with Z2 = Z3 = 0. Da are the gauge covariant and local Lorentz covariant derivatives.

For most of the work, we set all the field strength Fab = 0 and focus on nontrivial abelian scalar

profiles of the Z1 component. In terms of coordinate system1 of choice on S3, the most general

solution of the BPS equations in (18), can be written in terms of a local Laurent series given

below

Z1 = Â
m,n

am,ne�i(m+n+1)t
⇣

cosq eif1
⌘m⇣

sinq eif2
⌘n

. (19)

One of our main results is a simple characterisation of the world-volumes of the time-dependent
1here the metric under consideration is: ds2 =�dt2 +

�
dq 2 + cos2 q df 2

1 + sin2 q df 2
2
�
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1
8-BPS strings, which we shall also refer to as wobbling strings. We show that at any given

time the spatial configuration of the wobbling string is obtained as the intersection of the zeros

of a holomorphic function F(z1,z2) = 0 with the 3-sphere defined by |z1|2 + |z2|2 = 1 with its

time evolution obtained by (z1,z2) by multiplying with a t dependent exponential factor. This

is the general characterization we were after.

Next, we address two problematic issues that arise when one considers such singular BPS

solutions on par with the regular ones: (i) they do not belong to the same variational problem

dSaction = 0 and (ii) they have divergent energies, and other global charges. We overcome these

hurdles by cutting off the spacetime arbitrarily close to the singularities of these solutions and

adding appropriate boundary terms. In particular, we show that it is possible to make dS = 0 as

we vary along the space of solutions that include the regular ones by adding boundary terms.

And demanding that the global charges are rendered finite provides infinitely many conditions

on the allowed set of boundary terms with dS = 0 that essentially fixes them uniquely.

The theory reduces essentially to a conformally coupled complex scalar field on S3 ⇥R,

described by the lagrangian:

L =� 1
g2

Y M

p
�g
⇥
gµn∂µZ∂n Z̄ + Z̄Z

⇤
(20)

When the solutions are singular we cut-off a region around (and arbitrarily close to) the singu-

larities and add to the Lagrangian the boundary term Lbdy.

The addition of the boundary term Lbdy to the action leaves the equation of motion un-

changed, and no new special constraints in the boundary arise as long as we are in a configu-

ration space which is, as big as the space, where Z satisfies the BPS conditions asymptotically

close to the boundary region.

For the remaining analysis, we study the global charges for the scalar solutions of the

following form:
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Z = r0ei(x0�t)
⇣

cosqei(f1�t)
⌘m⇣

sinqei(f2�t)
⌘n

(21)

All the solutions in the current 1
8-BPS sector satisfy the following equations:

C1 = Pq
Z + icosq sinq

⇣
Pf1

Z �Pf2
Z

⌘
=0 ,

C2 =
⇣

Pf1
Z cos2 q +Pf2

Z sin2 q
⌘
�Pt

Z �
i
2

cosq sinq Z̄ =0 . (22)

One of the main results of our work in the thesis, is that we use the freedom allowed by the BPS

constraints (22) in phase-space variables to add another set of boundary terms (L0
bdy) uniquely

that regularize the values of global symmetry charges for the following two subclasses of

solutions in (21):

• when m � 0 and n < 0, we add the boundary term near q = 0

L0
bdy =� i

g2
Y M

�
ZC2 � Z̄C̄2

�m+n+1
n+1

tanq F
�
1,�m,2+n,� tan2 q

�
(23)

• when m < 0 and n � 0, we add the boundary term near q = p
2

L0
bdy =

i
g2

Y M

�
ZC2 � Z̄C̄2

�m+n+1
m+1

cotq F
�
1,�n,2+m,�cot2 q

�
(24)

Here F denotes the hypergeometric function 2F1(a,b,c;z).

Holography of 1
8-BPS strings

We then turn to the holographic approach to the study of these string solutions, by studying

probe D3-branes in AdS5 ⇥ S5. The analysis has been generalized to defects that preserve

fewer number of supersymmetries in [14]. We consider various classes of half-BPS probe

D3-branes in global AdS5 ⇥ S5: the equations that define the worldvolume of these probes
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are largely inspired by the profiles of the scalar fields of the half-BPS strings in the boundary

gauge theory on S3 ⇥R. These are noncompact probe branes that end on the boundary in

S1 ⇥R. The intersection of the D3-brane probe with the boundary is essentially the half-BPS

string of the N = 4 theory.

We then do an analysis similar to that of the boundary theory and perform a k-symmetry

analysis to find the projections on the bulk Killing spinor for the various half-BPS probes.

Remarkably, we find that the set of supersymmetries common to all these static defects coin-

cides precisely with those preserved by the most general giant and dual-giant configurations

in AdS5 ⇥S5. The worldvolumes of such probe branes are known to be described in terms of

zeros of holomorphic functions [32, 33] and they are given below

F(I) �Fi,Z j
�

for I = 1,2,3 , (25)

here the complex coordinates: (F0,F1,F2) represent the embedding of AdS5 in the complex

space C1,2 and the coordinates (Z1,Z2,Z3) describe S5 in C3. For the holographic duals of the

1
8-BPS strings we focus on the solution

Z2 = Z3 = 0 , f (Z1F0,Z1F1,Z1F2) = 0 . (26)

We show that near the boundary of AdS5, the zero locus of the holomorphic function coincides

with the location of the BPS string of the boundary theory and proceed to derive the singular

boundary scalar field profiles from the D3-brane solutions. We thereby recover the general

characterization of the BPS strings from a probe analysis in the bulk dual.

Finally we restrict attention to the D3 branes dual to the monomial type BPS strings of

the CFT. By adding an appropriate set of boundary terms we define a variational problem that

admits all such brane configurations as allowed solutions. We then carry out the holographic

renormalization of energies and charges in an expansion around the large energy limit of the

29



probe brane. We are able to match the expected boundary results in the leading approximation

and we go on to obtain the first order correction to the Yang-Mills results. The holographic

renormalization we carry out in the bulk closely resembles the analogous calculation in the

boundary theory and provides a justification for the regularization we carry out in the boundary

theory.

We give the values of the regularized energy for the following subcases:

• The static case, m+n+1 = 0, as expected the values of energy are zero.

• m = 0 and n < 0: E0,n =
2N
l

⇣
(n+1) R2

0
2l2 +

1
2(n�1)(n+1)2 +O( l

R0
)
⌘

• m+n = 0 and n < 0: E�n,n =
2N
l

⇣
G(1�n)G(1+n) R2

0
2l2 +

n�1
2 +O( l

R0
)
⌘

Upon using the map for the parameters R0 =
2pp

l
l r0 and considering TD3 =

N
2p2l4 , in the limit

l
R0

! 0 the leading order terms match with the answers for energies from the boundary field

theory.

Plan of the Thesis

We will survey various aspects of Surface operators in the Supersymmetric gauge theories in

this thesis. It will contain the following chapters:

• Chapter 1 will provide an introduction of Surface opertors in Supersymmetric gauge

theories.

• Chapter 2 will review various approaches to study Surface operators in Supersymmetric

gauge theories.

• Chapter 3 will discuss half-BPS Surface operators in N = 2 SU(N) gauge theories.
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• Chapter 4 will discuss BPS Strings solutions associated with Surface operators in N = 4

SU(N) gauge theories.

• Chapter 5 will have the conclusion with a discussion of the results.
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Chapter 1

Introduction

This thesis is an exploration of various low energy properties of two dimensional surface de-

fects in supersymmetric gauge theories. Supersymmetric theories have many special properties

and have been of interest to physicists and mathematicians for almost half a century. Super-

symmetry is a symmetry that relates bosonic and fermionic degrees of freedom and it leads to

strong constraints on quantum corrections to observables in the form of non-renormalization

theorems. For instance, with sufficient supersymmetry one can show that the perturbation ex-

pansion truncates at one loop [1]. As a result it is sometimes possible to calculate physical ob-

servables exactly (in the coupling constant) in these theories, often including non-perturbative

effects. Supersymmetric theories often have a rich vacuum structure that was first studied by

Seiberg and Witten for gauge theories in four dimensions with eight supercharges [2,3]. They

showed that on the Coulomb branch of the gauge theory, the low energy effective action can

be completely solved for by solving for the period integrals on an auxiliary Riemann surface.

Traditionally non-local operators have played an important role in providing valuable in-

formation about the vacuum structure of the theory. For example, Wilson line operators and ’t

Hooft line operators distinguish phases of the gauge theory, and they give information about

the phase structure of the gauge theory [5, 6]. These operators are much better studied in the
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the context of supersymmetric gauge theories. Similarly, it is hoped that higher dimensional

defects such as surface defects will shed additional light on the non-perturbative aspects of the

susy gauge theories [7].

Surface operators were first defined in the work of Gukov and Witten [8–10] as codimension-

two singular solutions to the Kapustin-Witten equations [11]. They have many different avatars

and they have been studied from various points of view in supersymmetric gauge theories.

Originally they were described as “monodromy defects”, at whose locations some of the

bosonic fields in the gauge vector multiplet become singular. For instance, their presence

would lead to a non-trivial holonomy for a loop in the transverse plane that encircles the de-

fect. One can also describe “flavour surface defects”, which have a low energy description

as a coupled 2d-4d system. Typically in this case, the gauge group of the four dimensional

theory appears as the flavour group of the 2d theory, which is typically a quiver gauge theory.

Lastly, for gauge theories that admit a holographic dual they have also been studied using the

holographic AdS/CFT correspondence [13, 14] in which certain probe-branes that end on the

boundary on a 2-surface serve as the duals of surface defects on the gravity side.

In this thesis, we study various aspects of surface operators using all three different ap-

proaches stated above. We will look into the coupled 2d-4d description in the context of

N = 2 SU(N) gauge theory, the two-dimensional world-volume theory is a gauged linear

sigma model with N = (2,2) supersymmetry. Due to supersymmetry the low energy effective

action of the combined 2d/4d system is governed by two holomorphic functions: the prepo-

tential which governs the bulk 4d physics and the twisted chiral superpotential, that governs

the 2d/4d physics. Following [16], we calculate the low-energy effective action that governs

the dynamics of the coupled 2d-4d system [17], on the vacuum solution and relate it to the

twisted superpotential extracted from the partition function of the N = 2 SU(N) theory in

presence of the monodromy defect. We establish a one-to-one map between the dynamical

two and four-dimensional coupling parameters and the continuous parameters that label the
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monodromy defect realization of surface operators. Doing this is an important step towards

showing that the 4d theories with the two types of surface operators in the UV regime are

described by the same physics in the IR regime, as [18, 19] discuss. In the 2d/4d setup, the

two-dimensional world-volume theory has a flavor SU(N) symmetry which is the gauge sym-

metry group in the four dimensions. The classical vacua, which are obtained by extremizing

the low-energy effective action associated with the 2d-4d system, also referred to as the flavor

defect, are chosen using the four-dimensional Coulomb branch of the SU(N) gauge theory. In

the presence of a surface operator, the gauge symmetry group SU(N) breaks into a Levi sub-

group: S[U(n1)⌦U(n2)⌦ . . .⌦U(nM)] where the integer set [n1,n2, . . . ,nM] indicates how N

is partitioned, so that n1 + n2 + . . .+ nM = N. Each choice of the integer set gives rise to a

different surface operator, and with the help of which, the choice of classical vacua are made.

A further essential ingredient here is the use of the resolvent [47] in the 4d gauge theory that

allows to incorporate quantum corrections from the Coulomb branch.

In the monodromy defect description, we focus on the instanton partition function of the

4d gauge theory in presence of the surface operator. The instanton partition function gets

contribution from the additional ramified instanton weighting parameters, apart from the 4d-

instanton weights. In N = 2 SU(N) theory, the gauge field gets a prescribed singularity near

the defect which, is defined by introducing a certain set of continuous parameters. The rami-

fied instanton weights are related to the parameters that label the surface defects as described

in [20, 21]. The partition function of the N = 2 theory is calculated using the equivariant lo-

calization technique. The calculation is done on the so-called omega deformed background, as

the integral over the moduli space of instanton for the theory defined on R4 is divergent. This

method for the N = 2 SU(N) theory was developed by Nekrasov and collaborators in [24,25],

and for the theory with surface operators, the formula for the ramified instanton partition func-

tion was given by Kanno and Tachikawa. Our main goal in this part of the analysis is to

describe the relationship between the ramified instanton weights and dynamical parameters

in the 2d-4d description [17], which leads us to match the non-perturbative corrections to the

34



low-energy effective actions computed from the dual-descriptions of surface operators.

In the second part of the thesis we adopt a Hamiltonian perspective and the study codimension-

2 defects in the maximally supersymmetric N = 4 Yang-Mills theory on R⇥ S3 spacetime

as classical singular solutions. We refer to these solutions as BPS strings. We will focus our

attention on a particularly interesting class of BPS strings that preserve four supersymmetries.

Our goal in this work on the field theory side is twofold. Firstly, to find a general characteriza-

tion of these BPS strings by describing the equations defining their worldvolume in a compact

way. Secondly, to show that these BPS strings are solutions to the same variational problem as

other non-singular supersymmetric solutions in the theory and to calculate their (regularized)

energies and charges.

In [27] authors study surface operators of nontrivial topology (other than being defined on

an R2 submanifold) in the 4-dimensional supersymmetric gauge theory. In [27] authors study

these mondromy defects as junctions of surface operators. The surface defects of Gukov and

Witten in [8] were half-BPS and were defined on an R2 subspace of R4. It is natural to assume

that the junctions/networks of defects of [27] would preserve lesser amounts of supersymme-

tries since the additional translational symmetries are broken. Surface operators preserving

lower amounts of supersymmetries were also looked upon by the authors in [10], [14]. In

those 1
4-BPS surface defects the nature of singularities at their location, in the transverse 2d

plane, were more non-trivial than that of simple pole type (⇠ 1
z ). The singularities of higher

order poles (⇠ 1
zn ) were considered for the bosonic fields [10, 14]. In this regard, a complete

classification of surface operators is an important problem to solve and that is what we do in

this thesis, by studying BPS strings on R⇥S3, in the N = 4 SYM theory.

We begin by choosing a suitable set of supersymmetries that we would like our solutions

to preserve. For this we adopt a bottom-up approach by proposing simple classical half-BPS

string solutions and determine their supersymmetries as projection conditions on the conformal

Killing spinors of R⇥ S3. These half-BPS strings are static configurations, with topology
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R⇥ S1. By using the state operator correspondence, we show that these BPS strings are the

states that correspond to the half-BPS Gukov-Witten surface operators in R4. By using global

symmetries, we find more such half-BPS string solutions and observe that all these defects

have two supersymmetries in common. The common supersymmetries can be used to derive

a set of non-abelian BPS equations whose solutions are at least 1
16-BPS. It turns out that these

BPS equations coincide with those of [28, 29] obtained in the study of the gauge theory duals

of giant gravitons and dual-giant gravitons in AdS5 ⇥ S5 [30]. In fact, we find that the time

dependent non-singular classical configurations dual to half-BPS dual-giants share a common

set of four supersymmetries with the half-BPS strings supported by one complex scalar field.

We then go on to derive the general non-abelian 1
8-BPS equations that bosonic configurations

have to satisfy in order to preserve these four supersymmetries.

In the remaining part we work only with the resulting 1
8-BPS equations and we restrict

our analysis to abelian solutions in the scalar sector. One of our main results is a simple

characterisation of the world-volumes of the time-dependent 1
8-BPS strings, which we shall

also refer to as wobbling strings. We show that at any given time the spatial configuration

of the wobbling string is obtained as the intersection of the zeros of a holomorphic function

F(z1,z2) = 0 with the 3-sphere defined by |z1|2 + |z2|2 = 1 with its time evolution obtained

by (z1,z2)! (z1 e�it ,z2 e�it). This is the general characterization that we derive in chapter 4.

Then we show that these BPS strings can be obtained as solutions to a well-defined variational

problem, by adding particular boundary terms at the location of the string. We then focus on

a sub-class of solutions that correspond to functions F(z1,z2) that are of the monomial type.

The energy and global charges of these singular configurations appear to diverge if we directly

use the found solutions in the N = 4 gauge theory Lagrangian. However we show that by

adding further boundary terms (that do not affect the variational problem), the energy and

other global charges of these wobbling string solutions can be made finite. The second set of

boundary terms that we add to remove the divergences in the global charges are unique. They

are directly related to the BPS constraints our BPS strings solutions satisfy.
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We then turn to the holographic approach to the study of these string solutions, by studying

probe D3-branes in AdS5 ⇥ S5. For half-BPS defects in N = 4 SYM in R4, the holographic

duals have been obtained in [12, 13] as both bubbling geometries as well as probe D3-branes.

This has been generalized to defects that preserve fewer number of supersymmetries in [14].

We consider various classes of 1
2-BPS probe D3-branes in global AdS5⇥S5: the equations that

define the worldvolume of these probes are largely inspired by the profiles of the scalar fields

of the half-BPS strings in the boundary gauge theory on R⇥S3. These are noncompact probe

branes that end on the boundary in R⇥ S1. The intersection of the D3-brane probe with the

boundary is essentially the half-BPS string of the N = 4 theory.

We then mirror the analysis of the boundary theory and perform a k-symmetry analysis to

find the projections on the bulk Killing spinor for the various 1
2-BPS probes. Remarkably, we

find that the set of supersymmetries common to all these static defects coincides precisely with

those preserved by the most general giant and dual-giant configurations in AdS5 ⇥S5 derived

in [32, 33]. The worldvolumes of such probe branes are known to be described in terms of

zeros of holomorphic functions. For the holographic duals of the 1
8-BPS wobbling strings, we

show that near the boundary of AdS5, the zero locus of the holomorphic function coincides

with the location of the BPS string of the boundary theory and proceed to derive the singular

boundary scalar field profiles from the D3-brane solutions. We thereby recover the general

characterization of the wobbling strings from a probe analysis in the bulk dual.

Finally we restrict attention to the D3 branes dual to the monomial type BPS strings of

the CFT. By adding an appropriate set of boundary terms we define a variational problem that

admits all such brane configurations as allowed solutions. We then carry out the holographic

renormalization of energies and charges in an expansion around the large energy limit of the

probe brane. We are able to match the expected boundary results in the leading approximation

and we go on to obtain the first order correction to the Yang-Mills results. The holographic

renormalization we carry out in the bulk closely resembles the analogous calculation in the
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boundary theory and provides a justification for the regularization we carry out in the boundary

theory.

The coming chapters of the thesis are organised in the following way: In the second chapter

we review the background for studying surface operators from various points of view. We

look into definition of the flavor defects and their construction from the 2d gauge linear sigma

models. We also give the definition from the monodromy defect point of view, we write and

describe the formula of the instanton partition function of the N = 2 theory. And lastly,

we review about the probe D3 branes, holographic duals of surface operators in AdS5 ⇥ S5

spacetime, and describe the associated k-symmetry. In the third chapter, we analyze surface

operators in N = 2 gauge theory as both flavor defects and monodromy defects and match

the associated low energy effective actions obtained from the two descriptions [17]. In chapter

four, we study the BPS string configurations in the N = 4 gauge theory defined on S3⇥R, we

define a consistent variational problem which includes them alongside with the regular BPS

solutions [26]. We also study the holographic duals of the BPS string solutions in AdS5 ⇥ S5

space and mirror the analysis done in the boundary theory. For simple configurations, we

demonstrate how to define a good variational problem and propose a regularization scheme

that leads to finite energy and global charges on both sides of the holographic correspondence.

In chapter five, we conclude with a discussion of the results.
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Chapter 2

Surface operators and D3 branes

In this chapter, we will review surface operators studied from various points of view. We

will discuss the definition in the monodromy defect description and in the N = 2 theory we

will write down the formula for the ramified instanton partition function. We will discuss the

coupled 2d-4d theory in the context of surface operators in N = 2 theory. And in the last

part of this chapter, we will review about the holographically dual description in terms of D3

branes in AdS5 ⇥S5 background space.

2.1 Surface operators as Monodromy defects

A surface operator in four-dimensional gauge theory is an operator supported on a 2- dimen-

sional submanifold D ⇢ M in the space-time manifold M [18,34]. Surface operators are some-

what special in the context of 4d gauge theory since the degree of the 2-form F matches the

dimension of the tangent as well as normal space to D. We can either write an integral

exp
✓

ih
Z

D
F
◆

(2.1)

39



which defines an electric surface operator analogous to the definition of a Wilson loop in

abelian U(1) gauge theory, or write

F = 2p a dD + . . . (2.2)

where dD is a 2-form delta-function Poincaré dual to D and give the definition of magnetic

surface operators. When the gauge group is G = SU(N), the parameters a and h are in the

Lie algebra of the maximal-torus subgroup of SU(N). Therefore, the gauge field gets the

prescribed singularity of the form given below

A =

0

BBBBBBB@

a1 ⌦1n1 0 . . . 0

0 a2 ⌦1n2 . . . 0
...

... . . . ...

0 0 . . . aM ⌦1nM

1

CCCCCCCA

dy , (2.3)

where y is the polar angle in the plane transverse to D. In the presence of surface operators,

the SU(N) gauge group breaks near the location of D, into a Levi-subgroup L = S[U(n1)⌦

. . .⌦U(nM)] so that n1 + n2 + . . .+ nM = N, as clear from (2.3). And it is also possible to

introduce two-dimensional q -angles that couple to the unbroken U(1)s at the defect. In the

path integral this is represented by the following insertion

exp

 
i

M

Â
l=1

hl

Z

D
TrF(l)

!
. (2.4)

In the maximally supersymmetric N = 4 SU(N) theory, one of the complex scalar fields of
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the N = 4 vector multiplet also becomes singular near the location of the defect

F =
1
z

0

BBBBBBB@

(b1 + ig1)⌦1n1 0 . . . 0

0 (b2 + ig2)⌦1n2 . . . 0
...

... . . . ...

0 0 . . . (bM + igM)⌦1nM

1

CCCCCCCA

, (2.5)

where z is the complex coordinate in the transverse plane. Surface operators in SU(N) gauge

theory are labelled by the following data: a discrete set of integers [n1,n2, . . . ,nM] which label

the breaking of the gauge group and a set of 4M real parameters: {a1, . . . ,aM, . . . ,bM, . . . ,gM, . . . ,hM}.

In N = 2 theories with surface operators, quantum effects may not only renormalize the values

of various associated parameters but can also change their nature. They are introduced in the

4d theory by giving a prescribed singularity for the gauge field, as shown above in equation

(2.3), at a given energy scale. It can be a UV theory, or an IR theory, or some effective theory

at intermediate energy scale, the interesting question is to study about the surface operators

at other energy scales and / or regimes of the parameters. To answer such questions, surface

operators are studied using the other definition where they are supported on D by introducing

additional 2d degrees of freedom, with their own Lagrangian and a flavor symmetry group

SU(N) that becomes gauged upon coupling to 4d degrees of freedom. Upon integrating out

the 2d degrees of freedom we get a singularity, supported on D, for the fields A (and F in the

maximally supersymmetric) of the four-dimensional theory1.

To discuss the equivalence between the two descriptions in N = 2 theories we will obtain

the expressions for the effective action, at the respective vacuua. In the monodromy defect side,
1 [35], [18] may be referred for a longer discussion and a detailed classification. In [35] authors also demon-

strate in detail the invariance of super-conformal index, in the coupled 2d-4d gauge theory description of surface
operators in N = 2 SQCD, under action of 2d Seiberg duality. We cite these here to indicate the necessity of
studying surface operators from various point of views.
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we focus on the instanton partition function in presence of surface operators. The formula for

the partition function was first obtained in [20], also described in [21], is given below

Zinst[~n] = Â
{dI}

Z{dI} with Z{dI}[~n] =
M

’
I=1

"
(�qI)

dI

dI!

Z dI

’
s=1

dcI,s
2pi

#
z{dI} . (2.6)

And

z{dI} =
M

’
I=1

dI

’
s ,t=1

cI,s �cI,t +ds ,t
cI,s �cI,t + e1

⇥
M

’
I=1

dI

’
s=1

dI+1

’
r=1

cI,s �cI+1,r + e1 + ê2

cI,s �cI+1,r + ê2
(2.7)

⇥
M

’
I=1

dI

’
s=1

nI

’
s=1

1
aI,s �cI,s + 1

2(e1 + ê2)

nI+1

’
t=1

1
cI,s �aI+1,t +

1
2(e1 + ê2)

,

cI,s are parameters on the instanton moduli space. e1, ê2(=
e2
M ) specify the W-deformed back-

ground which is introduced to localize the integrals over the instanton moduli space. The M

variables qI are ramified instanton weights that are related to the continuous parameters ai

and h j that label the surface operator, as described in [21]. In the formula (2.6), M positive

integers dI count the number of ramified instantons in various sectors, with the convention that

dM+1 = d1. The derivation of the formula for the partition function is outside the scope of this

thesis, it was derived in [20] by Kanno and Tachikawa, by considering open strings excitations

of the D3/D(-1)-brane systems in the type IIB string theory where four of the spatial direc-

tions undergo ZM-orbifold projection. Here moduli space of instantons is captured by those

open strings between the D(-1) branes. The parameters cI,s represent open strings that begin

and end on D(-1) branes and correspond to open string moduli. Additionally, the W-deformed

background of Nekrasov [24, 25] is introduced in these calculations to make the moduli space

compact, as the integration over the moduli with the undeformed R4 space is divergent. The

Coulomb vevs haii of the adjoint scalar in N = 2 multiplet are partitioned in the presence of

surface operators and it is represented by the notation aI,s which we clarify with the help of
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the equation:

aI,s ⇢ {
| {z }

n1

a1, · · · ,an1 ,
| {z }

n2

an1+1, · · · ,an1+n2 , · · · ,
| {z }

nM

akM�1+1, · · · ,aN } (2.8)

In the vanishing limit of W-deformation, Zinst has the following expansion [20, 22, 23]

logZinst =�Finst (ai,L)
e1ê2

+
Winst (ai,qi,L)

e1
+ regular terms , (2.9)

here Finst is non-perturbative part of the prepotential of the 4d gauge theory that depends on

Coulomb vevs ai and the 4d scale L. The function Winst that depends on both the 4d Coulomb

branch parameters, as well as continuous parameters of the surface operator, has a simple

physical interpretation: it is the effective twisted superpotential of the 2d N = (2,2) theory

on D.

2.2 Surface operators as Flavor defects

The dual description of surface operators in the gauge theories that we discuss is a coupled

2d-4d system. The world-volume of a surface operator D supports two-dimensional degrees

of freedom. The 2d theory has some flavor symmetry group that is identified with the gauge

symmetry group in the 4-dimensions. The type of theory that exists in the two dimensions

depends on the symmetries preserved by the surface operator. In this thesis, we are interested

in the half-BPS surface operators in the N = 2 theory, and therefore, we will be reviewing

the theories with 2d N = (2,2) supersymmetry in this section. In particular, we will discuss

the IR-physics in a generic massive vacuum of a two-dimensional N = (2,2) Gauge linear

sigma model with flavor symmetry SU(N), and we will obtain the low energy effective twisted

superpotential and use it for our analysis of surface operators as flavor defects.

The two-dimensional model [36, 37] is a gauge theory of the unitary group U(k) of rank
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k, with a chiral matter multiplet Q and, with additional SU(n) flavor symmetry. The fields

associated with gauge multiplet V are a complex scalar s , two complex fermions lL and lR,

a one-form bosonic field A and an auxiliary real field D. Off-shell field content of the chiral

multiplet Q are a complex scalar q, two complex fermions yL and yR and an auxiliary complex

scalar F .

The kinetic term of the Lagrangian is given by

Lkin =
1
4

Z
dq Ldq Rdq Ldq R

✓
Q†e2V Q� 1

e2 Tr
⇣

S†S
⌘◆

, (2.10)

here Sa is the twisted-chiral superfield containing the field strength of the U(k) gauge con-

nection, and transforming in the adjoint representation of the gauge group. It is related to the

gauge vector multiplet V by S = {DL,DR}/2 where Da = e�V DaeV and Da = eV Dae�V .

And Da , Da are the covariant derivatives on the 2d (2,2) superspace. S is twisted-chiral in

the sense that it satisfies

DL S = DR S = 0 , (2.11)

in comparison to the chiral superfield Q which satisfies: DL Q = DR Q = 0. The lowest com-

ponent of S is the complex scalar field s .

Back in (2.10), Lkin has the gauge coupling parameter e with mass dimension. In addition

to Lkin contribution, another term LFI,q is considered, with the Fayet-Iliopoulos and the 2d

theta parameter

LFI,q =
it
4

Z
dq Ldq R TrS + h.c. (2.12)

where t is the complexified parameter: t = ir+ q
2p and classically it has no mass dimension.

For this two-dimensional model, there is a complex-valued mass coupling term which is con-
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sidered by first gauging the flavor symmetry SU(n) and giving a background value to the scalar

component of the associated vector superfield eV , and then setting the fields to be vanishing.

The massive term can be written as

Lem =
Z

dq Ldq Rdq Ldq RQ†e2eV Q , (2.13)

here eV= q Rq L em + h.c.

em is a diagonalizable n⇥ n matrix and called the twisted mass parameter. The real FI

paramater r is renormalized according to the relation [36]

r (µ) = r
�
µ 0�� (n1 �n2) log

µ 0

µ
, (2.14)

where µ & µ 0 are dimension-full scale parameters. n1 is related to the sum of flavor charges

of the chiral multiplet, and for the case of our current disscussion n2 = 0. The action that we

want to consider consists of the following contribution

Saction =
Z

d2x
�
Lkin + LFI,q + Lem

�
(2.15)

Following [37], we now discuss the space of vacua of the 2d model of interest. Here auxilliary

fields F and D in the multiplets Q and V respectively, do not have kinetic terms in the action

Saction and can be integrated out. After integrating out those the potential energy of this system

is

U =
e2

2
Tr
⇣

qq† � r
⌘2

+
1

8e2 Tr [s ,s†]2

+
1
2
ksq�q emk2 +

1
2

���s†q�q em†
���

2
. (2.16)

The space of classical vacua is the space of zeros of U modulo the action of gauge transfor-

mations. And for the second term to be vanishing s must be a diagonalizable k⇥ k matrix.
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The quantum fluctuations around each classical vacuum consist of massless modes and

massive modes which are tangent to and transverse to the space of classical vacua, respectively.

In the limit of IR physics where e2 ! •, the massive modes decouple from the massless

degrees of freedom(we refer to section 2 of [37] for a detailed case by case discussion) and the

system approaches to a supersymmetric non-linear sigma model with target space equivalent

to the space of classical solutions from the equation:

qq† = r (2.17)

modulo the gauge transformations. When twisted masses are turned on, the values of diagonal

components of s must also be tuned at the values of em so that terms in the second line in the

RHS of (2.16) vanish.

When the gauge group is U(1), this target space is the (n� 1)-dimensional complex pro-

jective space CPn�1 which is the space of vectors in Cn of length2 = r modulo the U(1) phase

rotation.

When the gauge group is U(k), the target space is the generalized complex Grassmannian

manifold G(k,n), it is space of k�planes in Cn where there are k vectors v1,v2, . . . ,vk in Cn.

For the sigma model of our interest, these vectors are given by va=
�
qa,i�

i=1,...,n, they are

orthogonal to each other and have length2= r. The modulo action of the U(k) group from the

2d gauge symmetry is considered as the change of basis for the orthogonal k vectors in Cn

such that the k-plane the vectors span in Cn does not change.

In the low-energy effective action, the massive chiral superfield Q can be integrated out

and the effective Lagrangian remains as a functional of the vector superfield. The low energy

dynamics is encoded in the effective twisted-chiral superpotential [38, 39]
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We f f =
1
4

k

Â
a=1

"
it Sa �

1
2p

n

Â
i=1

(Sa � emi)

✓
log
✓

Sa � emi

µ

◆
�1
◆#

, (2.18)

where Sa are the diagonal components of the adjoint valued k⇥ k matrix S, here the values of

the scalar components sa are well separated from each other. GLSMs with k < n are going

to be relevant in order to make the connection to the effective action associated with flavor

defects. Also, the flavor symmetry group SU(n) is identified with the SU(N) 4-dimensional

gauge symmetry group, and twisted masses emi are identified with the vevs of the scalar in the

4d N = 2 vector multiplet.

It is possible to consider a much more general Gauged Linear Sigma Model where the

target space is equivalent to some flag variety, which is a space of flags Ck1 ⇢Ck2 . . .⇢CkM�1 ⇢

Cn, discussed in [16]. The GLSM with this target space can be represented in terms of 2d

linear quiver with gauge groups U(k1)⇥U(k2)⇥ . . .⇥U(kM�1), bifundamentals chiral matter

multiplets between each consecutive pairs of nodes, and n fundamentals at the last node are

represented as the arrowed lines in the quiver diagram, shown below

k1 k2 . . . kM�1 n

Figure 2.1: The general quiver describing a 2d Gauge Linear Sigma Model.

And to make the connection with effective action associated with the flavor defect with discrete

data: [n1,n2, . . . ,nM], the flavor SU(n) symmetry is identified with the 4-d gauge symmetry

group and twisted masses due to flavor SU(n) symmetry with the vevs of the scalar in the 4d

N = 2 vector multiplet. Here the rank kI of each 2d gauge group is related to the integers in

the discrete data as

kI = n1 +n2 + . . .+nI (2.19)
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such that

n1 +n2 + . . .+nM = n = N . (2.20)

The target space of the relevant GLSM is always equal to the coset space: SU(N)/L where L

is Levi subgroup, associated with the surface operator, equal to S[U(n1)⌦ . . .⌦U(nM)]. The

low-energy effective action after integrating out the massive bifundamentals matter multiplets,

for the generic quiver theory in figure 2.1, is given in terms of the twisted-chiral fields S(I) from

each 2d gauge node in the quiver. And because of the two-dimensional (2,2)-supersymmetry,

it is encoded in a twisted-chiral superpotential We f f . The expression for We f f of a GLSM with

a generic 2d quiver theory description is

We f f = 2p i
M�1

Â
I=1

tI(µ)
⇣ kI

Â
s=1

s (I)
s

⌘
�

M�2

Â
I=1

kI

Â
s=1

kI+1

Â
t=1

v
�
s (I)

s �s (I+1)
t

�

�
kM�1

Â
s=1

N

Â
i=1

v
�
s (M�1)

s �Fi
�
,

(2.21)

here we have introduced the function

v(x) = x
⇣

log
x
µ
�1
⌘
, (2.22)

and µ is an arbitrary common UV cut-off scale of the theory. Fi are the twisted masses from

the flavor symmetry of the right-most node which will be identified with the scalar vevs of the

N = 2 vector multiplet when the coupled 2d-4d dynamics is turned on.

Given the twisted superpotential in (2.21), the massive vacua of the theory are obtained by

solving the twisted chiral ring equations

exp

 
∂We f f

∂S(I)
s

!
= 1 . (2.23)
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When the quantum dynamics of the 4d theory is taken into account the terms in the last line of

(2.21) are modified with the contribution from the chiral correlators in the N = 2 theory [16].

We describe this modification with some more details in the next coming chapter. We calculate

We f f on the vacuum of the coupled 2d-4d theory by solving the twisted-chiral ring equations

of a generic quiver theory and obtain the values of the 2d scalars s (I)
? then, we evaluate We f f

on the solutions s (I)
? .

2.3 Holographically dual D3 branes

Surface operators in N = 4 SYM theory are holographic dual to some non-compact D3

branes in AdS5 ⇥ S5 geometry, in the dictionary of AdS/CFT correspondence as desrcibed

in [13, 14, 40], where authors contruct the probe brane solutions in AdS5 ⇥ S5 background

that reach the boundary region of AdS and end there in two dimensional submanifold. The

two-dimensional subspace region are identified with worldvolume of codimension-2 defects

in the four-dimensional SYM gauge theory that lives on the boundary. The dual D3 branes are

considered in the probe limit and do not backreact with the ten-dimensional geometry, they

were first studied in this work [13], where authors also analyzed those dual objects which do

gravitationally backreact in the ten-dimensional supergravity theory.

AdS5 ⇥ S5 geometry comes out as a solution to Equation of motion in type II B supergravity

theory in which the complex Weyl-gravitino YM, complex spinor L, the complex two-form

C(2) and the complex scalar F are zero. The only non-vanishing fields are the vielbein and the

real four-form C(4) with self-dual five-form field strength F(5).

In type IIB supergravity theory, a stack of N number of D3 branes charged under the five-

form field strength F(5) provides a solution to equations of motion, with the metric

ds2 = H� 1
2 dx2

1,3 + H
1
2 dr2 + H

1
2 r2dW2

5 (2.24)
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with the harmonic function H = 1+ 4pNgsl4
s

r4 . Here, r is the radial coordinate transverse to the

D3 branes, ls and gs are the string length and string coupling. In the AdS/CFT correspondence

[41,42], r
l2
s

is held fixed and string length ls is taken to be small and the above metric becomes

of AdS5 ⇥S5 geometry

ds2

l2
s

=
r2

L2 dx2
1,3 +

dr2

r2 + L2 dW2
5 , (2.25)

where we redefined r ! r
l2
s

and L is the radius of S5 equal to (4pNgs)
1
4 .

The supersymmetry of this background with only bosonic fields C(4) & ea
µ turned on, is

preserved by setting the Susy transformation of the fermionic fields to be zero. Here dL is

zero on account of the rest of the bosonic fields C(2) and F being zero, and the variation of the

gravitino takes the form

dYµ = Dµe � i
480

G nrabl
µ F(5)

nrabl e . (2.26)

Demanding dYµ = 0 leads to the Killing spinor equations which, can be written as

Dµe � i
2

g Gµe = 0 ,

Dme � i
2

g̃ Gme = 0 (2.27)

where µ denotes the AdS5 coordinates and m denotes the S5 coordinates. e is the 32-component

spinor in the 10 dimensions. g and g̃ are the products of matrices G0G1G2G3G4 and G5G6G7G8G9,

with the tangent space indices.

The D3 branes preserve half of the 32 supersymmetries as world-volume k-symmetry.

Generally, the supersymmetry preserved by a D brane depends on its orientation and type,

D3 branes that are parallel to each other will preserve the same Susy components and which

are perpendicular in some of their directions would have different susy components. The

50



supersymmetric world-volume brane action is derived by (super-)embedding the brane world-

volume in superspace. In this case, the target-superspace is considered to have 10 bosonic

spacetime coordinates X µ(sm) and 32 fermionic coordinates Qa(sm). In order to have world-

volume supersymmetry, the number of on-shell bosonic2 and fermionic degrees of freedom

must be equal. The local fermionic k-symmetry of the brane action is used to ’gauge’ fix

[30, 42, 43] half of the Q coordinate components3 with the help of the projection condition

(1+G)Q = 0 , (2.28)

where G is the pull-back of product of four 10-dimensional G�matrices:

G =
1p
�h

eµ1µ2µ3µ4

4!
Gµ1Gµ2Gµ3Gµ4

and here h is determinant of the induced world-volume metric on D3. Since Q transform under

both the 10d susy transformation

deQ = e , (2.29)

and k-transformation as

dkQ =
1
2
(1+G)k , (2.30)

with k being some arbitrary spinor parameter. The gauge fixing condition in (2.28) is used to

compensate a supersymmetry transformation with a k-symmetry transformation, with k =�e .

And therefore, the condition for the preservation of world-volume supersymmetry is equivalent
2In case of the D3 branes, there are four world-volume gauge field components Am (s) and six scalar fields

Fa (s) describing the transverse excitations, therefore, there are eight onshell bosonic degrees of freedom.
3and the equation of motion implies that half of the remaining 16 components are independent propagating

degrees of freedom.
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to the constraint

Ge = e , (2.31)

and this will leave 16 susy to be preserved on the D3 brane world-volume. In chapter 4, we will

use the k-symmetry constraint extensively to find the general world-volume solutions which

will be holographic duals of 1
8-BPS surface operators in 4-dimensional N = 4 SYM theory.

The bosonic part of the world-volume action consists of two terms: ’Dirac-Born-Infeld’ term

and ’Wess-Zumino’ term

L = LDBI +LWZ =�TD3
p
�h + TD3 P

h
C(4)

i
, (2.32)

TD3 is the D3 brane tension and the notation P [ . ] denotes that we consider the pullback of the

argument. Here we have considered that no component of the D3 brane world-volume gauge

field is turned on.

N = 4 SYM theories with 2d defects were studied holographically in [40] using two or-

thogonal stacks of ’intersecting’ D3 branes in type IIB supergravity where one of the stacks

was assumed to be in the probe limit compared to the other stack. But the holographic setup

of probe D3 branes in AdS5 ⇥ S5 geometry in the context of surface operators was first con-

sidered in [13] by Drukker, Gomis and Matsuura and subsequently by Koh and Yamaguchi

in [14], where authors analyzed the world-volume solutions which extend to the boundary of

the AdS, ending in two-dimensional surfaces. Reference [14] had analyzed the world-volume

solutions dual to the surface defects preserving less than half supersymmetries of the parent

4-dimensional theory. D3 branes with the world-volume topology of AdS3 ⇥S1, ending in the

boundary in R1,1 or S1⇥R submanifolds, are dual to the half BPS surface operators. The sub-

manifold is R1,1 when the AdS metric is considered in the Poinareé coordinates and it is S1⇥R

in the global AdS coordinates. In the section 4.2.2 of chapter four, we explicitly compute the

worldvolume metric for some half-BPS D3 branes solutions, that we find to be of topology
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AdS3 ⇥S1, in AdS5 ⇥S5 background expressed in global coordinates.

Surface operators with ’wild ramifications’ having higher-order singularities with the bosonic

fields having the behavior F⇠ 1
zn , near the surface defects, were also studied by Witten in [10].

The type IIB supergravity duals of such defects, to some extent, were discussed in [14] and

in general they are 1
4-BPS. The ten-dimensional supergravity background probed by a stack

of n number of parallel D3-branes, such that n ⌧ N, would be dual to the surface operator

with the Levi-subgroup: S[U (n)⌦U (N �n)]. And more generally, for M parallel stacks of

branes will describe surface operators with Levi-subgroup: S[U (n1)⌦U (n2)⌦ . . .⌦U (nM)],

holographically, under the assumption that all the ni are ⌧ N.

In the absence of surface operators, N = 4 SYM is invariant under the PSU(2,2|4) super-

conformal symmetry group. The half-BPS surface defect with 2d world-volume S = R1,1 ⇢

R1,3 breaks the SO(2,4) conformal group into a subgroup. The symmetries left unbroken by

S generate an SO(2,2)⇥ SO(2)23 subgroup of the SO(2,4) conformal group, where SO(2)23

rotates the plane transverse to S in R1,3. The singularity in the classical fields produced is also

invariant under SO(2,2). The N = 4 scalar field F carries charge under an SO(2)R subgroup

of the SO(6) R-symmetry and is therefore SO(4) invariant. The surface operator is therefore

invariant under SO(2,2)⇥SO(2)a ⇥SO(4), where SO(2)a is generated by some combination

of SO(2)23 and SO(2)R. N = 4 SYM has sixteen Poincare supersymmetries and sixteen

conformal super-symmetries, generated by ten dimensional Majorana-Weyl spinors h+ and

h� of opposite chirality. The surface operator for S = R1,1 preserves half of the Poincare and

half of the conformal supersymmetries and is therefore half-BPS.

With the help of these symmetries of surface operators, we can determine the correct

holographic-dual D3 branes in the ten-dimensional geometry.

The broken global bosonic symmetry group: SO(2,2)⇥SO(2)⇥SO(4) is exactly the sym-

metry group associated with the half-BPS D3 brane solution in the AdS5⇥S5 background. And
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the fermionic symmetry can be verified by doing the k-symmetry analysis. This leaves a single

projection condition to be applied on the constant spinors h±, in the Killing spinor

e = h(qi)

✓p
r h++

G4 � r xµGµp
r

h�

◆
, (2.33)

r is the radial coordinate and x0, . . . ,x3 are the remaining coordinates in AdS5 of the Poincaré

patch. h(qi) is some function dependent on the S5 coordinates.

The labeling parameters b ,g for surface defects can be recovered in the holographically

dual side, their complex combinations bl + igl are mapped to the constants that appear in

the embedding equation of the non-compact D3 world-volume solutions [13]. And the other

continuous parameters a , h are identified with the holonomies of the gauge field A and the

dual gauge field Ã living on the D3-brane world-volume. The holonomies are computed along

the non-contractable S1

a =
I A

2p
, h =

I Ã
2p

. (2.34)

In chapter four, we will discuss the holographic probe D3 branes in the global AdS5 ⇥ S5

spacetime. The holographic dual D3 branes in the global coordinates always end in a S1 ⇥R

subspace in the boundary where S1 is a closed 1d curve. For half-BPS solutions S1 is a

circle. We will show how to use the supersymmetry of several half-BPS branes by finding the

common supersymmetries among them, and then substitute the common supersymmetries in

the k-symmetry constraint equation (2.31) to determine the most general 1
16-BPS equations.

From these equations, we obtain the classical solutions of the holographic duals to 1
8-BPS

defects in N =4 SYM theory.
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Chapter 3

Surface operators in N = 2 theories

In this chapter we calculate the low-energy effective action for surface operators in pure

N = 2 SU(N) supersymmetric gauge theories in four dimensions. First we focus on the

two-dimensional world-volume theory on the surface operator and compute the associated

effective twisted chiral superpotential W which governs the dynamics of the coupled 2d-4d

system. With the vacuum structure determined by the twisted chiral ring equations in (2.23).

In the second part we go to the localization part of the calculation where the ramified in-

stanton partiton function is calculated. The effective twisted chiral superpotential is extracted

from Zinst and matched with the one obtained in the first description after establishing the map

between various parameters in the two sides.
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3.1 Twisted superpotential for coupled 2d/4d theories

3.1.1 SU(2) gauge theory

In the beginning we work with the SU(2) theory to illustrate our method and we consider the

simple surface operator represented by the partition [1,1]. First, we assume the case in which

the quantum effects of the SU(2) theory are neglected. We consider a generic point in the

Coulomb branch parameterized by the vev’s a1 = a2 = a of the adjoint SU(2) scalar field F in

the vector multiplet. The expression for W takes the form

W = 2pit(µ)s �Tr

(s �F)

✓
log

s �F
µ

�1
◆�

. (3.1)

Using the RG running relation of the complexified ’FI’ coupling1, for convenience, we set the

scale L1 for our analysis at which t (L1) = 0 and the expression for W becomes

W =�Tr

(s �F)

✓
log

s �F
L1

�1
◆�

. (3.2)

As pointed out in [16], the effect of 4d quantum dynamics can be accounted by considering

the following superpotential:

W =�
⌧

Tr

(s �F)

✓
log

s �F
L1

�1
◆��

. (3.3)

The angular brackets signify taking the quantum corrected vev of the chiral observable in the

four-dimensional SU(2) theory. The twisted chiral ring equation using (3.3), is equivalent to

exp
⌧

Tr log
s �F

L1

�
= 1 . (3.4)

12pit(µ 0) = 2pit(µ)�2 log µ 0

µ , here µ and µ 0 are complexified as well
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As explained in [16], the left-hand side of (3.4) is simply the integral of the resolvent of the

pure N = 2 SU(2) theory in four dimensions which takes the form [47]

exp
⌧

Tr log
s �F

L1

�
= log

0

@P2 (s)+
q

P2 (s)2 �4L4

2L2
1

1

A . (3.5)

Here L is the four-dimensional strong coupling scale of the SU(2) theory and

P2(s) = s2 �u (3.6)

is the characteristic polynomial appearing in the Seiberg-Witten solution where

u =
1
2
hF2i= a2 +

L4

2a2 +
5L8

32a6 + . . . (3.7)

We obtain the following two solutions for the scalar at the vacuum

s±
? =±

s

u+L2
1 +

L4

L2
1

(3.8)

The purely two-dimensional result can be recovered by taking the L ! 0 limit.

The proposal in [16] was that W evaluated at s±
? should reproduce the twisted superpo-

tential calculated using localization methods and we shall explicitly verify this later in the

chapter. Now we mention an essential simplification in this calculation that occurs when we

are at vacuum, that is when ∂W
∂s

���
s+
?

= 0. The logarithmic derivative of twisted superpotential

simply becomes

L1
dW+

?

dL1
= L1

∂W+
?

∂L1

���
s+
?

= 2s+
? . (3.9)

And upon using the explicit form of the solution given in (3.8), in the the weak coupling limit
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expansion of u from (3.7) we obtain

1
2

L1
dW+

?

dL1
= a+

1
2a

✓
L2

1 +
L4

L2
1

◆
� 1

8a3

✓
L4

1 +
L8

L4
1

◆
+ . . . (3.10)

we will show later that this result precisely matches the derivative of the twisted effective

superpotential calculated using localization for the simple surface operator in the SU(2) gauge

theory, provided we suitably relate the dynamically generated scale L1 of the two-dimensional

theory to the ramified instanton counting parameter in presence of the monodromy defect.

3.1.2 Twisted chiral ring in quiver gauge theories

We will now show that the procedure described above can be generalized for any surface

operator in the SU(N) theory labelled by a partition of N. However, for surface operator other

than of kind [1,N � 1] partition it will not be possible to exactly solve the twisted chiral ring

equations. We develop a systematic perturbative approach in order to obtain a semi-classical

expansion for the twisted chiral superpotential around a particular classical vacuum. As earlier

in the case of SU(2) theory, we again find that the derivatives of the twisted superpotential with

respect to various scales have simple expression in terms of combinations of the twisted chiral

field s evaluated in the appropriately chosen vacuum.

The general two-dimensional quiver gauge theory is

U(k1)⇥U(k2)⇥ . . .⇥U(kM�1) (3.11)

with (bi)-fundamental matter between successive nodes, coupled to a pure N = 2 theory in

four dimensions with gauge group SU(N) acting as a flavor symmetry for the rightmost factor

in (3.11). All this was represented in Fig. 3.1. We choose an ordering such that the ranks kI

follow
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k1 k2 . . . kM�1 N

Figure 3.1: The general quiver describing a surface operator.

k1 < k2 < k3 . . . < kM�1 < N (3.12)

which was also suggestive in (2.19). Our first goal is to obtain the twisted chiral ring of this

2d/4d system. Only the diagonal components of s are relevant for this purpose [37], and thus

for the I-th gauge group we take

s (I) = diag
⇣

s (I)
1 ,s (I)

2 , . . . ,s (I)
kI

⌘
(3.13)

The (bi)-fundamental matter fields are massive and their (twisted) mass is proportional to the

difference in the expectation values of the s ’s in the two nodes connected by the matter multi-

plet. In order to minimize the potential energy, the twisted chiral field s (I) gets a vev and this

in turn leads to a non-vanishing mass for the (bi)-fundamental matter. Integrating out these

massive fields, we obtain the following effective twisted superpotential

W = 2p i
M�1

Â
I=1

tI(µ)
⇣ kI

Â
s=1

s (I)
s

⌘
�

M�2

Â
I=1

kI

Â
s=1

kI+1

Â
t=1

v
�
s (I)

s �s (I+1)
t

�

�
kM�1

Â
s=1

D
Trv

�
s (M�1)

s �F
�E

,

(3.14)

where v(x) is the function defined in (2.22). As done in the SU(2) theory example, the RG

running of the tI can be used again to set for the scale LI where tI (LI) = 0 and the effective

twisted superpotential becomes
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W =�
M�2

Â
I=1

kI

Â
s=1

kI+1

Â
t=1

s (I)
s

 
log

s (I)
s �s (I+1)

t
LI

�1

!

+
M�1

Â
I=2

kI

Â
s=1

kI�1

Â
r=1

s (I)
s

 
log

s (I�1)
r �s (I)

s

LI
�1

!

�
kM�1

Â
s=1

⌧
Tr

"⇣
s (M�1)

s �F
⌘ 

log
s (M�1)

s �F
LM�1

�1

!#�
, (3.15)

The term with I = 1 in the first line above is the result of integrating out the massive fundamen-

tal fields attached to the first node of the quiver; the terms with I = 2, . . . ,M�2 in the first and

in the second line of (3.15) are obtained by integrating out the (bi)-fundamental fields between

the nodes I and (I+1), and finally, the terms with I = M�1 in the second line and the last line

of (3.15) are the result of integrating out the fundamental and anti-fundamental fields attached

to the last gauge node of the quiver. The angular brackets account for the four-dimensional

dynamics of the SU(N) theory. One can easily verify that for N = M = 2, the expression in

(3.15) reduces to (3.3).

The twisted chiral ring

The twisted chiral ring relations are given by

exp

 
∂W

∂s (I)
s

!
= 1 . (3.16)

For I = 1, . . . ,M�2, the equations are independent of the four-dimensional theory, and read

QI+1 (z) = (�1)kI�1 LnI+nI+1
I QI�1 (z) (3.17)

60



with a new definiton of

QI (z) =
kI

’
s=1

⇣
z�s (I)

s

⌘
. (3.18)

Here z = s (I)
s for each s, and it is understood that Q0 = 1 and k0 = 0. For I = M � 1, the

presence of the four-dimensional SU(N) gauge theory affects the last two-dimensional node

of the quiver, and the corresponding chiral ring equation is

exp
D

Trlog
z�F
LM�1

E
= (�1)kM�2 LnM�1+nM�N

M�1 QM�2(z) (3.19)

with z = s (M�1)
s for each s. We now use the fact that the resolvent of the four-dimensional

SU(N) theory, which captures all information about the chiral correlators, is given by 2

T (z) :=
⌧

Tr
1

z�F

�
=

P0
N (z)q

PN (z)2 �4L2N
(3.20)

where PN(z) is the characteristic polynomial of degree N encoding the Coulomb vev’s of the

SU(N) theory. Since we are primarily interested in the semi-classical solution of the chiral

ring equations, we exploit the fact that PN(z) can be written as a perturbation of the classical

gauge polynomial in the following way:

PN(z) =
N

’
i=1

(z� ei) (3.21)

2This result was established in [47] for the N = 2 theory, where the topological property of the chiral cor-
relators TrhFki was used to derive it. In the appendix A.1 we compute the correlators TrhFki for the SU(2) and
SU(3) theories using the localization method.
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where ei are the quantum vev’s of the pure SU(N) theory given by [46]

ei = ai �L2N ∂
∂ai

 

’
j 6=i

1
(ai �a j)2

!
+O

�
L4N� (3.22)

Integrating the resolvent (3.20) with respect to z and exponentiating the resulting expression,

one finds

exp
D

Trlog
z�F
LM�1

E
=

PN(z)+
p

PN(z)2 �4L2N

2LN
M�1

(3.23)

Using this, we can rewrite the twisted chiral ring relation (3.19) associated to the last node of

the quiver in the following form:

PN(z)+
q

PN(z)2 �4L2N = 2(�1)kM�2 LnM�1+nM�N
M�1 QM�2(z) , (3.24)

where z = s (M�1)
s . With further simple manipulations, we obtain

PN(z) = (�1)kM�2 LnM�1+nM�N
M�1 QM�2(z)+

L2N

(�1)kM�2 LnM�1+nM�N
M�1 QM�2(z)

. (3.25)

In the limit L ! 0 which corresponds to turning off the four-dimensional dynamics, we obtain

the expected twisted chiral ring relation of the last two-dimensional node of the quiver. Equa-

tions (3.17) and (3.25) are the relevant chiral relations which we are going to solve order by

order in the LI’s to obtain the weak-coupling expansion of the twisted chiral superpotential.

Solving the chiral ring equations

We now provide a systematic procedure to solve the twisted chiral ring equations we have just

derived and to find the effective twisted superpotential of the 2d/4d theory. As illustrated in the
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simplest SU(2) example, we shall do so by evaluating W on the solutions of the twisted chiral

ring equations. Each choice of vacuum therefore corresponds to a different surface operator.

The last point can be clarified by solving the classical chiral ring equations, which are

obtained by setting LI and L to zero keeping their ratio fixed, i.e. by considering the theory at

a scale much bigger than LI and L. Thus, in this limit the right-hand sides of (3.17) and (3.25)

vanish. A possible choice that solve chiral ring equations in this classical limit is:

s (1)
s =as + O(LI) for s = 1, . . . ,k1 ,

s (2)
t =at + O(LI) for t = 1, . . . ,k2 ,

...

s (M�1)
w =aw + O(LI) for w = 1, . . . ,kM�1 .

(3.26)

This is equivalent to assuming that the classical expectation value of s for the I-th node is

s (I) = diag(a1,a2, . . . ,akI) . (3.27)

This is also the choice appropriate to describe a surface defect that breaks the gauge group

according to the Levi decomposition SU(N)! S[U(n1)⌦U(n2)⌦ . . .⌦U(nM)].

When we turn on the quantum dynamics, we make an ansatz for s (I) as a power series in

the various LI’s around the chosen classical vacuum. From the explicit expressions (3.17) and

(3.25) of the chiral ring equations, it is easy to see that there is a natural set of parameters in

terms of which these power series can be written; they are given by

qI = (�1)kI�1LnI+nI+1
I (3.28)

for I = 1, . . . ,M�1. The chiral ring equations (3.25) of the last two-dimensional node of the

quiver requires the definition of another parameter. It is related to the four-dimensional scale
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L and hence to the four-dimensional instanton action. This remaining expansion parameter is

qM = (�1)N L2N

 
M�1

’
I=1

qI

!�1

. (3.29)

In this thesis our proposal is to solve the chiral ring equations (3.17) and (3.25) as a simul-

taneous power series in all the qI’s, including qM, which ultimately will be identified with

the Nekrasov-like counting parameters in the ramified instanton computations which will be

described later in the chapter.

We will explicitly illustrate these ideas in some examples in the next subsection, but first let

us look in full generality how the logarithmic derivatives with respect to LI are directly related

to the solution s (I)
? of the twisted chiral ring equations (3.17) and (3.25). At on-shell value i.e.

when ∂W
∂s

���
s?

= 0 the twisted superpotential W? ⌘W (s?) depends on LI only explicitly. Using

the expression of W in (3.15) it is easy to find

LI
dW?

dLI
= LI

∂W?

∂LI

���
s?

= (nI +nI+1) trs (I)
? . (3.30)

This relation written in terms of the parameters qI defined in (3.28), is as follows

qI
dW?

dqI
= trs (I)

? . (3.31)

The solution s? of the chiral ring equations can be expressed as the classical solution (3.26)

plus quantum corrections, and we find

q1
dW?

dq1
= a1 + . . .+an1 + corr.ns ,

q2
dW?

dq2
= a2 + . . .+an1+n2 + corr.ns (3.32)

64



and so on. This corresponds to a partition of the classical vev’s of the SU(N) theory given by

{
| {z }

n1

a1, · · · ,an1 ,
| {z }

n2

an1+1, · · · ,an1+n2 , · · · ,
| {z }

nM

akM�1+1, · · · ,aN } , (3.33)

which is interpreted as a breaking of the gauge group SU(N) according to the Levi decompo-

sition.

We now illustrate our method in a few examples.

3.1.3 In SU(3) theory

We consider the surface operators in the SU(3) theory. There are two distinct partitions,

namely [1,2] and [1,1,1], which we now discuss in detail.

SU(3)[1,2]

The two-dimensional theory is a U(1) gauge theory with three flavors, represented by the

quiver in figure below

1 3

Figure 3.2: The quiver corresponding to the surface operator SU(3)[1,2].

The single chiral ring equation from (3.25) is given by

P3(s) = L3
1 +

L6

L3
1

(3.34)
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where the gauge polynomial is defined in (3.21). We solve this equation order by order in L1

and L, using the ansatz

s? = a1 + Â
`1,`2

c`1,`2 q`1
1 q`2

2 (3.35)

where the expansion parameters, defined in (3.28) and (3.29), for the case in hand are

q1 = L3
1 , q2 =�L6

L3
1
. (3.36)

Inserting (3.35) into (3.34), we can recursively determine the coefficients c`1`2 and, at the first

orders, find the following result

s? = a1 +
1

a12 a13

⇣
L3

1 +
L6

L3
1

⌘
�
⇣ 1

a3
12 a2

13
+

1
a2

12 a3
13

⌘⇣
L6

1 +
L12

L6
1

⌘
+ . . . (3.37)

where ai j = ai�a j. According to (3.31), this solution coincides with the q1-logarithmic deriva-

tive of the twisted superpotential. We will verify this statement by comparing (3.37) against

the result obtained via localization methods.

SU(3)[1,1,1]

The two-dimensional theory is represented by the quiver below Since M = 3, there are now

1 2 3

Figure 3.3: The quiver diagram representing the surface operator SU(3)[1,1,1].

two sets of twisted chiral ring equations. For the first node, from (3.17) we find

2

’
s=1

�
s (1)�s (2)

s
�
= L2

1 , (3.38)
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while for the second node, from (3.25) we get

P3
�
s (2)

s
�
=�L2

2
�
s (2)

s �s (1)�� L6

L2
2
�
s (2)

s �s (1)
� (3.39)

for s = 1,2. This configuration corresponds to a surface operator specified by the partition of

the Coulomb vev’s {{a1},{a2},{a3}}. The ansatz for solving the quantum equations (3.38)

and (3.39) takes the following form:

s (1)
? = a1 + Â

`1,`2,`3

d`1,`2,`3 q`1
1 q`2

2 q`3
3 ,

s (2)
?,1 = a1 + Â

`1,`2,`3

f`1,`2,`3 q`1
1 q`2

2 q`3
3 ,

s (2)
?,2 = a2 + Â

`1,`2,`3

g`1,`2,`3 q`1
1 q`2

2 q`3
3 ,

(3.40)

with

q1 = L2
1 , q2 =�L2

2 , q3 =
L6

L2
1L2

2
. (3.41)

Solving the coupled equations (3.38) and (3.39) order by order in qI , we find the following

result:

s (1)
? = a1 +

1
a12

L2
1 +

1
a13

L6

L2
1L2

2
� 1

a3
12

L4
1 �

1
a3

13

L12

L4
1L4

2

� 1
a12 a13 a23

⇣
L2

1L2
2 �

L6

L2
1

⌘
+ . . . , (3.42)

Trs (2)
? = a1 +a2 �

1
a23

L2
2 +

1
a13

L6

L2
1L2

2
� 1

a3
23

L4
2 �

1
a3

13

L12

L4
1L4

2

� 1
a12 a13 a23

⇣
L2

1L2
2 +

L6

L2
2

⌘
+ . . . . (3.43)

According to (3.31) these expressions should be identified, respectively, with the q1- and q2-

67



logarithmic derivatives of the twisted superpotential. We will verify this relation later in the

chapter using localization.

Above we have exhibited our method in detail for the SU(3) theory, similarly, surface de-

fects can be analyzed in the higher rank SU(N) theories. This method of solving the twisted

chiral ring equations has proved to be very efficient and it quickly leads to very explicit re-

sults. One important feature of this approach is the choice of classical extrema of the twisted

superpotential which has allowed to make direct contact with the localization calculations of

the superpotential for Gukov-Witten defects in four-dimensional gauge theories. A further

essential ingredient is the use of the quantum corrected resolvent in four dimensions, which

plays a crucial role in obtaining the higher-order solutions of the twisted chiral ring equations

of the two-dimensional quiver theory.

3.2 Localization in 4d

In this section we treat the surface operators as monodromy defects D. Four-dimensional man-

ifold R4 ' C2 is parametrized by complex variables (z1,z2) and the location of D is at z2 = 0.

The presence of the surface operator induces a singular behavior in the gauge connection A as

discussed in the previous chapter in (2.3). A detailed derivation of the localization results for a

generic surface operator has been given in [20,21], following some earlier mathematical work

in [48–50]. The resulting formula of instanton partition function for a surface operator in (2.6)

we had described in the previous chapter.

The contribution to the partition function coming from the one-instanton sector is of the

form

Z1�inst =�
M

Â
I=1

Z dcI

2pi
qI

e1

nI

’
s=1

1�
aI,s �cI +

1
2(e1 + ê2)

�
nI+1

’
t=1

1�
cI �aI+1,t +

1
2(e1 + ê2)

� . (3.44)
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This is a sum over M terms, each of which has dI = 1 for I = 1, . . . ,M. Since the partition func-

tion is dimensionless and cI carries the dimension of a mass, we deduce that mass dimension

of qI is
⇥
qI
⇤
= nI +nI+1 = bI . (3.45)

Another important dimensional constraint follows once we extract the non-perturbative con-

tributions to the prepotential F and to the twisted effective superpotential W from Zinst using

logZinst =�Finst (ai,L)
e1ê2

+
Winst (ai,qi,L)

e1
+ regular terms . (3.46)

The prepotential extracted this way depends only on the product of all the qI , and the instanton

contributions to F are organized at weak coupling as a power series expansion in L2N where

L is the dynamically generated scale of the four-dimensional theory and 2N is the one-loop

coeffcient of the gauge coupling b -function. Thus, it is natural to write

M

’
I=1

qI = (�1)NL2N . (3.47)

The mass-dimensions (3.45) attributed to each of the qI are perfectly consistent with this rela-

tion, since the integers nI form a partition of N. We therefore find that we can use exactly the

same parametrization used in the effective field theory and given in (3.28) and (3.29), which

we rewrite here for convenience

qI = (�1)kI�1 LnI+nI+1
I for I = 1, . . . ,M�1 ,

qM = (�1)N L2N
⇣M�1

’
I=1

qI

⌘�1
.

(3.48)

The integrations over cI in (2.6) and (3.44) have to be suitably defined and regularized, and

we will describe this in detail, next.
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3.2.1 Residues and contour prescriptions

The standard prescription to evaluate the integrals is to consider aI,s to be real and then close

the integration contours in the upper-half cI,s -planes with the choice

Im ê2 � Ime1 > 0 . (3.49)

With this prescription the multi-dimensional integrals receive contributions from a subset of

poles of z{dI}, which are in one-to-one correspondence with a set of Young diagrams Y =

{YI,s}, with I = 1, . . . ,M and s = 1, . . .n.

We briefly illustrate this for SU(2), for which there is only one allowed partition, namely

[1,1], and hence one single surface operator to consider. In Tab. 3.1 we list the explicit results

for this case, including the location of the poles and the contribution due to all the relevant

Young tableaux configurations up to two boxes.
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weight poles Y ZY

q1 c1,1 = a+ 1
2 (e1 + ê2) ( ,•) 1

e1(2a+e1+ê2)

q2 c2,1 =�a+ 1
2 (e1 + ê2) (•, ) 1

e1(�2a+e1+ê2)

q1q2
c1,1 = a+ 1

2 (e1 + ê2)

c2,1 =�a+ 1
2 (e1 + ê2)

( , ) � 1
e2

1(4a2�ê2
2)

q1q2
c1,1 = a+ 1

2 (e1 + ê2)

c2,1 = c1,1 + ê2
( ,•) � 1

2e1ê2(2a+ê2)(2a+e1+ê2)

q1q2
c2,1 =�a+ 1

2 (e1 + ê2)

c1,1 = c2,1 + ê2
(•, ) � 1

2e1ê2(ê2�2a)(�2a+e1+ê2)

q2
1

c1,1 = a+ 1
2 (e1 + ê2)

c1,2 = c1,1 + e1

⇣
,•
⌘

1
2e2

1 (2a+e1+ê2)(2a+2e1+ê2)

q2
2

c2,1 =�a+ 1
2 (e1 + ê2)

c2,2 = c2,1 + e1

⇣
•,

⌘
1

2e2
1 (�2a+e1+ê2)(�2a+2e1+ê2)

Table 3.1: We list the weight factors, the locations of the poles, the corresponding Young
diagrams, and the contribution to the partition function in all cases up to two boxes for the
SU(2) theory. Here we have set a1 =�a2 = a.
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The instanton partition function takes the following form

Zinst[1,1] = 1+
q1

e1 (2a+ e1 + ê2)
+

q2

e1 (�2a+ e1 + ê2)

+
q2

1
2e2

1 (2a+ e1 + ê2)(2a+2e1 + ê2)
+

q2
2

2e2
1 (�2a+ e1 + ê2)(�2a+2e1 + ê2)

+q1q2
e1 + ê2

e2
1 ê2 (�2a+ e1 + ê2)(2a+ e1 + ê2)

+ . . . (3.50)

The prepotential and the twisted effective superpotential are extracted according to (3.46) and

using the map (3.48). For the twisted superpotential Winst, we find the expression

q1
dWinst

dq1
=

1
2a

⇣
L2

1 +
L4

L2
1

⌘
� 1

8a3

⇣
L4

1 +
L8

L4
1

⌘
+ . . . . (3.51)

This precisely matches, up to two instantons, the non-perturbative part of the result (3.10)

obtained by solving the twisted chiral ring equations for the quiver theory representing the

surface defect in SU(2). The agreement at higher instanton orders can also be checked.

However, there are many other possible choices of contours that one can make. One way to

classify these distinct contours is using the Jeffrey-Kirwan (JK) prescription [51]. In this way

of computation, the set of poles chosen for the residues is described by a JK parameter h ,

which is a particular linear combination of the cI,s; the prescription chooses a set of factors

D from the denominator of z{dI} such that, if we only consider the cI,s-dependent terms of

these chosen factors, then, h can be written as a positive linear combination of these. The

prescription in (3.49) corresponds to choosing

h =�
M

Â
I=1

cI (3.52)

A detailed discussion of this method in the context of ramified instantons is given in [44]
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and [53] where different JK prescriptions are shown to be mapped to different quiver realiza-

tions(related to each other by Seiberg duality) of the surface operator.

For example the prescription corresponding to a JK parameter of the form

h =�
M�1

Â
I=1

zIcI +z cM , (3.53)

where the first three zI are the real part of the parameters Re(tI (µ)) of the three 2d nodes

which are related to the magnitude of the corresponding strong coupling scales LI since

����
LI

µ

����
nI+nI+1

= e�2pzI , (3.54)

and z is some positive large number. In this notation, this corresponds to closing the integra-

tion contours in the upper half-plane as before for the first (M�1) variables, and in the lower

half plane for cM . Applying this new prescription to the SU(2) theory, we find a different set

of poles that contribute. They are explicitly listed in Tab. 3.2.
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weight poles ZY

q1 c1,1 = a+ 1
2 (e1 + ê2)

1
e1(2a+e1+ê2)

q2 c2,1 = a� 1
2 (e1 + ê2)

1
e1(�2a+e1+ê2)

q1q2
c1,1 = c2,1 + ê2

c2,1 =�a� 1
2(e1 +3ê2)

� 1
2e1ê2(2a+ê2)(2a+e1+ê2)

q1q2
c1,1 = c2,1 + ê2

c2,1 = a� 1
2(e1 + ê2)

e1+2ê2
2e2

1 ê2(2a+ê2)(�2a+e1+ê2)

q2
1

c1,1 = a1 +
1
2 (e1 + ê2)

c1,2 = c1,1 + e1

1
2e2

1 (2a+e1+ê2)(2a+2e1+ê2)

q2
2

c2,1 = a� 1
2 (e1 + ê2)

c2,2 = c2,1 � e1

1
2e2

1 (�2a+e1+ê2)(�2a+2e1+ê2)

Table 3.2: We list the weight factors, the pole structure and the contribution to the partition
function in all cases up to two boxes for the SU(2) theory using the contour prescription cor-
responding to the JK parameter (3.53).

Comparing with Tab. 3.1, we see that the only set of residues that give a seemingly different

answer is the one with d1 = d2 = 1 with weight q1q2. As opposed to the earlier case, where

there were three contributions, now there are only two terms proportional to q1q2. However,

it is easy to see that if we sum these contributions, we find an exact match between the two

prescriptions. This fact does not come as a surprise since it is a simple consequence of the

residue theorem applied to the c2 integral. Therefore, all results that follow from the instanton

partition function (and in particular the twisted superpotential) are the same in the two cases.

But this feature play a fundamental role in the 3d/5d extension, which we also discuss later

in [17], and in [52] with greater details.
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Next we list our findings obtained by using the second residue prescription in (3.53) for

the SU(3) theory, we give the answer upto two-ramified-instanton terms. In the case of the

surface operator corresponding to the partition [1,2] we get

Zinst[1,2] =1+
q1

e1 (a12 + e1 + ê2)(a13 + e1 + ê2)
+

q2

e1 (a21 + e1 + ê2)(a31 + e1 + ê2)

+
q2

1
2e2

1 (e1 + e2 +a12)(2e1 + e2 +a12)(e1 + e2 +a13)(2e1 + e2 +a13)

+
q2

2
2e2

1 (e1 + ê2 �a12)(2e1 + ê2 �a12)(e1 + ê2 �a13)(2e1 + ê2 �a13)

+
(e1 + ê2)

2 (3e1 +4ê2)�2e1a2
1 � (e1 + ê2)

�
a2

2 +a2
3
�

e2
1 ê2

⇣
(e1 + ê2)

2 �a2
12

⌘⇣
(e1 + ê2)

2 �a2
13

⌘⇣
(e1 +2ê2)

2 �a2
23

⌘q1q2 + . . . .

(3.55)

while for the surface operator described by the partition [1,1,1] we obtain

Zinst[1,1,1] =1+
q1

e1 (a12 + e1 + ê2)
+

q2

e1 (a23 + e1 + ê2)
+

q3

e1 (a31 + e1 + ê2)

+
q2

1
2e2

1 (e1 + e2 +a12)(2e1 + e2 +a12)
+

q2
2

2e2
1 (e1 + e2 +a23)(2e1 + e2 +a23)

+
q2

3
2e2

1 (e1 + e2 +a31)(2e1 + e2 +a31)
+

(2(e1 + e2)+a13)q1q2

e2
1 (e1 + e2 +a12)(e1 +2e2 +a13)(e1 + e2 +a23)

+
(2(e1 + e2)�a23)q1q3

e2
1 (e1 + e2 +a12)(e1 + e2 �a13)(e1 +2e2 �a23)

+
(2(e1 + e2)�a12)q2q3

e2
1 (e1 +2e2 �a12)(e1 + e2 �a13)(e1 + e2 +a23)

+ . . . .

(3.56)

Winst can be extracted by applying (3.46) and we find that qI-logarithmic derivatives of the

twisted superpotential for the two partitions perfectly match the non-perturbative pieces of the

solutions (3.37) and (3.42), (3.43), for the respective surface operators.

To summarize, in this chapter we looked at the two ways in which surface operators can be

studied in 4d N = 2 SU(N) pure gauge theories. In the first description surface operators are

studied as a coupled 2d/4d systems (also referred as flavor defects) where a two dimensional
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gauge theory with SU(N) flavor symmetry that is gauged in 4 dimensions is considered to be

defined on a 2d submanifold. In the second description surface operators are introduced in the

gauge theory by giving a prescribed singular behaviour to the gauge fields near the location of

the defect. We study the ramified instanton partition function in this second part from [20, 21]

and analyze it by considering various contour prescriptions for the integration over moduli pa-

rameters cI . We extract the effective twisted superpotential which governs the dynamics due

to 2d defect. We show a map between the parameters in both the descriptions in (3.48), and

in (3.26) we establish a one-to-one correspondence between the choice of massive vacua in

the two dimensional theory and the monodromy defects of the SU(N) gauge theory labelled

by the partition [n1, . . . ,nM] with n1 + . . .+ nM = N . And this helps us in getting a match of

the effective twisted superpotential computed from the two descriptions of surface operator

establishing their equivalence.

The equivalence of the effective-twisted superpotential was also discussed in the [19] where

using M5 branes and M2 branes constructions it was proposed that 6d (2,0) gauge theories,

one with the codimension-2 defects and another codimension-4 defects (after dimensional

reductions they become the two types of surface operators in the 4d theory) are described by

the same physics in the IR regime, i.e. they are related by an IR duality.
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Chapter 4

Surface operators in N = 4 theories

In this chapter we study some 1/8-BPS string solutions in the N = 4 Super Yang-Mills theory

on S3 ⇥R manifold, which have co-dimension two singularity. We derive a simple characteri-

sation for these solutions and make the variational problem for them well defined so that their

treatment become on par with the regular solutions of BPS equations. In the second part of the

chapter we look at the holographic duals of the strings solution in N = 4 SYM theory and do

the similar analysis to complete.

4.1 1/8-BPS strings

We begin with the action of N = 4 Yang-Mills theory on R⇥S3.

S =
1

g2
Y M

Z
d4xeTr

✓
� 1

4
F2

ab �
1
2

DaXABDaXAB +
1
4
[XAB,XCD][XAB,XCD]

� 1
2

XABXAB � il̄+AGaDal A
+� l̄+A[XAB,l�B]� l̄ A

�[XAB,l B
+]

◆
.

(4.1)
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Here Fab are the field strenth for the gauge connection field A with tangent space indices and

l is the gaugino field. We use the convention in [54], so that XAB denotes the three complex

scalars where the notation is such that X is an anti-symmetric matrix given below

X =

0

BBBBBBB@

0 Z†
3 �Z†

2 Z1

�Z†
3 0 Z†

1 Z2

Z†
2 �Z†

1 0 Z3

�Z1 �Z2 �Z3 0

1

CCCCCCCA

. (4.2)

The entries of this matrix will be denoted XAB, where the indices A,B 2 {1,2,3,4} are in the

fundamental representaion of SU(4), the R-symmetry group. This is related to the matrix XAB

with raised indices by the relation

XAB =
1
2

eABCDXCD , (4.3)

where the e is the completely anti-symmetric tensor. We have expressed all vector quantities

in terms of the tangent space indices, using the vierbein

Aµ = ea
µAa , gµ = eµ

a Ga , Dµ = ea
µDa ,etc. (4.4)

4.1.1 Geometry of R⇥S3

We choose the following metric on R⇥S3

ds2 =�dt2 + l2 �dq 2 + cos2 q df 2
1 + sin2 q df 2

2
�

(4.5)

These are the natural coordinates that arise while taking the boundary limit of the bulk metric

in (4.80). In our analysis we will also use another coordinates which will be of convenience
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for studying our solutions. We define the angles y = f1 + f2, j = f1 � f2 and J = 2q , ,in

terms of which the metric takes the form

ds2 =�dt2 +
l2

4
�
(dy + cosJ dj)2 +dJ 2 + sin2 J dj2� . (4.6)

In the above the three sphere is considered as a Hopf fibration over the two sphere where y

is the Hopf-fibre coordinate and (J ,j) specify the directions of the two sphere. We will use

both these two coordinate systems interchangeably.

We use the following frame vielbein for the coordinate system we consider

e1 =
l
2
(�siny dJ + cosy sinJ dj) , e2 =

l
2
(cosy dJ + siny sinJ dj) ,

e3 =
l
2
(cosJ dj +dy) , and e0 = dt .

(4.7)

For the remaining of this section we assume a scaling for the time-like coordinate t ! t
l and

take the length parameter l to be equal to 1. In the next section, where we do the holographic

analysis we identify this l with the radius of sphere S5, also denoted by l, when we reproduce

the metric in (4.5) from the AdS5 metric in the boundary limit.

The SU(4) invariant form of the action and susy variations become apparent after decomposing

the ten dimensional Majorana-Weyl spinor in an appropriate manner. We refer the reader

to [54] for details and we merely present the results. The ten dimensional spinor is decomposed

as follows:

e =

0

B@
eA
+

eA
�

1

CA (4.8)

where eA
� is the charge conjugate of eA

+. The ± subscript indicates the four-dimensional chi-

rality of the spinors, g5e± =±e±.
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The action (4.1) is invariant under the following supersymmetry variations and we shall present

these in our SU(4) notation:

dAa = i(l̄+AGaeA
+� ē+AGal A

+)

dXAB = i(�ēA
�l B

++ ēB
�l A

++ eABCDl̄+Ce�D)

dl A
+ =

1
2

FabGabeA
++2DaXABGae�B +XABGa—ae�B +2i[XAC,XCB]eB

+

dl�A =
1
2

FabGabe�A +2DaXABGaeB
++XABGa—aeB

++2i[XAC,XCB]e�B .

(4.9)

The e±,A are conformal Killing spinors on R⇥ S3. The subscript ± refers to the four di-

mensional chirality and the SU(4) index A indicates that there are four such spinors of each

chirality. Each of the epsilons account for four independent real parameters and thus, the

N = 4 gauge theory has 32 supersymmetries which can equivalently be encoded in the ten

dimensional Majorana-Weyl spinor.

The conformal Killing spinor (CKS) of negative 4d chirality satisfies the following equa-

tion [54]

—ae(±)
�A =± i

2
GaG0e(±)

�A , (4.10)

where e(±)
�A satisfy the chirality relation: iG0123e(±)

�A = e(±)
�A . The expression for CKS that solve

(4.10) for the frame in (4.7) are

e(�)
�A = e�

it
2 h(�)

A , (4.11a)

e(+)
�A = N ·h(+)

A = e
it
2 e�

G12
2 y e�

G31
2 J e�

G12
2 jh(+)

A , (4.11b)

here h(±)
A are the constant spinors that satisfy the 4d chirality relation iG0123 h(±)

A = h(±)
A .
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4.1.2 1
2-BPS Configurations

The following is a (singular) classical configuration:

Z1 =
c1

cosq eif1
= c1 sec

J
2

e�
i
2 (j+y)

Fab = Z2 = Z3 = 0 ,

(4.12)

it preserves the half of the 32 supersymmetries of the four-dimensional Yang-Mills theory.

Here c1 is a Cartan generator of the gauge group, and we have expressed the solution in the

two different sets of coordinates. These abelian solutions satisfies the following BPS equations

D0Z1 = 0 , (D3 + i)Z1 = 0 , (D1 + iD2)Z1 = 0 . (4.13)

For these purely bosonic and abelian solution, the number of supersymmetry preserved can be

checked by putting the gaugino variation in (4.9) to zero.

The susy preserved by the half-BPS solution in (4.12) is determined in terms of the non-

zero components of the killing spinor. We find the non-zero components by making use of the

BPS constraint dl = 0 in (4.9) and for the abelian solution in (4.12) it becomes

2DaXABGae�B +XABGa—ae�B = 0 . (4.14)

For the first killing spinor solution in (4.11a), we find the following projections on the constant

spinor:

(1+G03)h(�)
A = 0 for A = 1,4

(1�G03)h(�)
A = 0 for A = 2,3 .

(4.15)

And for the second killing spinor in (4.11b), we find the following projections on the constant

spinor:
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(1�G03)h(+)
A = 0 for A = 1,4

(1+G03)h(+)
A = 0 for A = 2,3 .

(4.16)

It can be counted that only half of the components in e±�A are non-zero and hence the solution

(4.12) is half-BPS.

�1

� = �
2

�
� = 0

Figure 4.1: The topology of the space transverse to the defect is a disk. At the center of the
disk we have q = p

2 and at the boundary of the disk we have q = 0.

The solution in (4.12) can be interpreted as a monodromy defect on R⇥S3, analogous to

the Gukov-Witten defect in R4. The defect is extended along the (t,f2) directions while the

two directions transverse to the defect are parametrized by (q ,f1) coordinates. The transverse

space has the topology of a disk, as shown in Figure 4.1. The constant matrix c1 that appears in

the classical solution encodes the (b ,g) parameters that appears in the Gukov-Witten solution.
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In the U(N) theory, we can write down the following generalized solution for the scalar profile:

Z1 =

0

BBBBBBB@

c1,1 In1 0 · · · 0

0 c1,2 In2 · · · 0
...

... . . . ...

0 0 · · · c1,M InM

1

CCCCCCCA

1
cosq eif1

. (4.17)

In addition, it is possible to turn on an independent parameter for the gauge field that corre-

sponds to a non-trivial holonomy for the gauge field, with A = a df1, where a is an element

of the Cartan subalgebra that breaks the U(N) to the subgroup U(n1)⇥U(n2)⇥ . . .U(nM). The

a-parameters encode the monodromy of the four dimensional gauge field around the location

of the stringy defect. In the rest of our discussions in both the super-Yang-Mills theory and the

holographic bulk theory, we shall not turn these parameters on and focus mostly on the scalar

profiles.

More defects in the First class

One can get two more defects in the same class by using an SU(3) rotation change the scalar Z1

to one of the others, either Z2 or Z3. The derivation of the projection conditions follows along

the same lines and we present these projection conditions on the killing spinor components

below:

• For the defect corresponding to the scalar profile Z2 = c2 sec J
2 e�

1
2 (j+y), the half-BPS

projections are given by

(1±G03)h(⌥)
A = 0 for A = 2,4

(1⌥G03)h(⌥)
A = 0 for A = 1,3 .

(4.18)
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• For the defect corresponding to the scalar profile Z3 = c3 sec J
2 e�

1
2 (j+y), we find the

following projections:

(1±G03)h(⌥)
A = 0 for A = 3,4

(1⌥G03)h(⌥)
A = 0 for A = 1,2 .

(4.19)

Second Class of half-BPS defects

There exist another class of solutions where the location of the singularity differs from the

three solutions discussed above and the transverse direction are also different. The singularity

profile is given by

Z1 =
c1

sinq eif2
= c1 csc

J
2

e�
i
2 (y�j)

Fab = Z2 = Z3 = 0 .

(4.20)

As before, the non-zero components in the killing spinor due to the half-BPS property of this

solution can be found by putting the constraint dl = 0 in (4.9). The first set of projections on

the spinor h(�)
A , are identical to the projections in (4.15) for the first class of defects:

(1+G03)h(�)
A = 0 for A = 1,4

(1�G03)h(�)
A = 0 for A = 2,3 .

(4.21)

However, on the h(+)
A , a different set of supersymmetries is preserved and we find the following

projections:

(1+G03)h(+)
A = 0 for A = 1,4

(1�G03)h(+)
A = 0 for A = 2,3 .

(4.22)
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projection on h for A = I,4 projection on h for A 6= I,4

ZI =
cI

cosq eif1 (1±G03)h(⌥)
A = 0 (1⌥G03)h(⌥)

A = 0

ZI =
cI

sinq eif2 (1+G03)h(⌥)
A = 0 (1�G03)h(⌥)

A = 0

Table 4.1: We list the projection conditions on the constant spinor that make half of the com-
ponents in the killing spinor e(±)

�A zero for the six singular half-BPS solutions we discuss. Here
index I takes values 1,2 or 3 so that we have three solutions in each class where only one
scalar from Z1, Z2 or Z3 is non-zero.

More defects in the Second Class

As before, one can obtain two more defects in the same class by performing an SU(3) rotation.

• For the defect corresponding to the scalar profile Z2 = c2 csc J
2 e�

i
2 (y�j), we find that

the half-BPS projections are given by

(1+G03)h(⌥)
A = 0 for A = 2,4

(1�G03)h(⌥)
A = 0 for A = 1,3 .

(4.23)

• For the defect corresponding to the scalar profile Z3 = c3 csc J
2 e�

i
2 (y�j), we find the

following projections:

(1+G03)h(⌥)
A = 0 for A = 3,4

(1�G03)h(⌥)
A = 0 for A = 1,2 .

(4.24)

We have also listed the supersymmetries preserved by all the six BPS solutions discussed

so far at one place in a compact form, in the table (4.1) above.
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4.1.3 Classical BPS equations

In the previous subsection we have discussed six half-BPS solutions. Together, these six sin-

gular solutions preserve two supersymmetries in common which correspond to the projection

condition

(1+G03)h(�)
4 = 0 . (4.25)

The remaining h(±)
A spinors are projected out. Substituting this projection into the supersym-

metry variation of the gaugino dl A
+, we obtain the following BPS equations:

(D0 +D3 + i)Z j = 0 , (D1 + iD2)Z j = 0 for j = 1,2,3 . (4.26)

A similar calculation for the variation dl�A leads to the BPS equations:

F12 +2
3

Â
j=1

h
Z j,Z†

j

i
= 0 ,

⇥
Zi,Z j

⇤
= 0 ,

F03 = 0 , F01 +F31 = 0 , F02 +F32 = 0 .

(4.27)

It is important to emphasize that the Da are gauge and local Lorentz covariant derivatives on the

R⇥S3 background in the frame basis and these are the general non-abelian 1
16-BPS equations.

They were also obtained in [28] where the Bogomolny method of writing the energy of the

Yang-Mills on R⇥S3 as a sum of squares, to derive these equations. They were also derived

in [29] by performing a supersymmetry analysis of 1
16-BPS states
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Time dependent solution and 1
8 -BPS Equations

We now introduce another class of half-BPS classical configurations, which were very well

studied as dual of a dual-giant graviton and is given by

Z1 = c e�it , and Z2 = Z3 = Fab = 0 . (4.28)

This time-dependent classical configuration satisfies the differential constraints

(D0 + i)Z1 = 0 DaZ1 = 0 . (4.29)

The common supersymmetries preserved by this configuration along with defects in the first

and second class in (4.12) and (4.20) that have non-trivial Z1 profile, are given by the following

projections:

(1+G03)h(�)
A = 0 for A = 1,4 , (4.30)

with the other h(�)
A , for A = 2,3 and all the h(+)

A set to zero. These leave 4 unbroken super-

charges for a 1
8-BPS configuration.

The 1
8-BPS equations that can be derived for the supersymmetries left unbroken by the

projections in (4.30) are

(D0 +D3 + i)Z1 = 0 , (D1 + iD2)Z1 = 0 ,

Z2 = Z3 = 0 , F12 +2
h
Z1,Z†

1

i
= 0 ,

F03 = 0 , F01 +F31 = 0 , F02 +F32 = 0 .

(4.31)
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Equations of Motion and Bianchi Identities

For half-BPS equations in (4.13), (4.29), it turns out that the equations of motion and the

Bianchi identities are automatically satisfied. However for the 1
8-BPS equations in (4.31) the

agreement with these set of equations leads to some additional differential constraints.

The equation of motion for the single non-zero scalar field is given by

DaDaZ +2[Z, [Z,Z†]]�Z = 0 . (4.32)

The above is satisfied with no additional constraint if the BPS equations in (4.31) are solved.

For the gauge field the equations of motion and Bianchi identities are give by

DaFab +2i
⇣
[Z†,DbZ]� [DbZ†,Z]

⌘
= 0 , D[aFbc] = 0 . (4.33)

We show that the agreement with the above eight equations (four component: equations of

motion and the Bianchi identities) require some additional constraints on the 1
8-BPS solutions

from (4.31). The constraint equations are given by

(D0 +D3 + i)(F01 � iF02) = 0 , (4.34)

(D1 + iD2)(F01 � iF02) =�4i[D0Z†,Z] . (4.35)

For the remaining part we shall focus on abelian solutions in the scalar sector in which we

set the gauge fields to zero. For these solutions, the differential constraints on Fab which we

derived in this section will not play any role. However, there are also defect-like solutions to

the 1
8-BPS equations involving only the gauge field in which we set the scalar field to zero.

Such pure glue defects are outside the main focus of our work and we refer the reader to [26]
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where we discuss the classical solutions and their charges briefly in the Appendix.

4.1.4 Time dependent Wobbling Strings

In the 1
8-BPS scalar sector, the BPS equations take the simplified form:

(D0 +D3 + i)Z = 0 , (D1 + iD2)Z = 0 . (4.36)

In terms of the coordinates on the sphere, these differential constraints are given by

�
∂t +2∂y + i

�
Z = 0 and

�
i∂J +(cscJ∂f � cotJ∂y)

�
Z = 0 . (4.37)

The solutions to the above can be written down as a local Laurent series given below

Z = Â
m,n

am,ne�i(m+n+1)t
✓

cos
J
2

e
i
2 (y+f)

◆m ✓
sin

J
2

e
i
2 (y�f)

◆n
. (4.38)

We will also obtain a nice characterization of the most general solution to these equations in

more general terms and to do so it will be convenient to define

n0 = eit , n1 = cos
J
2

e
i
2 (y+f) , n2 = cos

J
2

e
i
2 (y�f) . (4.39)

Now we can write the general solution in a compact form as follows:

Z n0 = g
✓

n1

n0
,
n2

n0

◆
. (4.40)

This includes both regular as well as singular solutions depending on the analytic properties

of the function g(z1,z2). The scalar field is singular at the location of the worldvolume of

such a wobbling strings which means that for any given time t , the scalar field should have a
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singularity along a one-dimensional path in S3. To clarify our analysis in further steps it will

be useful to introduce the following scale-invariant variables:

z0 = Z n0 , z1 =
n1

n0
, and z2 =

n2

n0
. (4.41)

Thus time translation corresponds simply to scaling the ni for i = 1,2 and Z by a phase. And

now we can consider a solution of the BPS equations of the form

z0 F(z1,z2)�G(z1,z2) = 0 . (4.42)

Here both F and G are analytic functions of their arguments. At the zeros of the function F ,

the scalar field has a singularity. The locus of such points is a set K given by the intersection

of

F(z1,z2) = 0 and |z1|2 + |z2|2 = 1 . (4.43)

Thus we have a simple characterization of the solutions to the 1
8-BPS equations in the scalar

sector that allows for a co-dimension two singularity in the solution for the Z-profile. The

solutions to the equations in (4.43) are known to be algebraic links [55]. Thus at a given

instant in time, the spatial configuration of the wobbling BPS string corresponds to a link in

S3.

Further, in order to address the singular behaviour of each diagonal entry of the adjoint

valued N ⇥N matrix Z we relax our assumption that z0 is single-valued. Therefore, to obtain

such a solution we consider zeros of functions in the scale-invariant variables H(z0,z1,z2)= 0.

This holomorphic function can at most be of degree N in z0, which is factorizable in z0 and

near each of its zeros, the general polynomial would factor into terms of the form in (4.42). In

the holographic dual analysis we shall recover this general description of a wobbling string in

a very natural way, later in the chapter.
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Relation to Gukov-Witten defects on R4

The coordinate metric on the manifold S3 ⇥R : �dt2 +dW2
3 is related to the metric on R4 '

C2: ds2
C2 = |dz1|2+ |dz2|2 by a wick rotation t ! itE followed by a coordinate transformation

so that (z1,z2) = etE (cosq eif1 ,sinq eif2). Therefore the metric ds2
C2 also has the following

form

ds2
C2 = e2tE (dt2

E +dW2
3) . (4.44)

The factor etE is known as the Weyl factor. The scalar fields Z(zi, z̄i) in C2 can be transformed

into fields Z(t,q ,fi) on S3 ⇥R by using the fact that these scalars have Weyl weight 1:

Z0(x0) = W�1Z(x) , (4.45)

where W is the Weyl factor. In chapter 2, we define the Gukov-Witten defect with the topology

of a complex plane C ⇢ C2. It is extended along the complex plane parametrized by z2 and

the scalar field Z has a singular profile in the plane transverse to the defect, given by:

ZC2 =
c
z1

(4.46)

This scalar field solution can be transformed into a solution ZS3⇥R(t,q ,fi) on S3 ⇥R space-

time by following the steps outlined above. Here we have

ZS3⇥R(t,q ,fi) = (e�tE )�1ZC2(zi, z̄i) (4.47)

= etE
c
z1

=
c

cosq eif1
. (4.48)

Therefore, we see that our half-BPS string in SYM on S3⇥R which we studied in (4.12) maps
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to the Gukov-Witten solution in SYM on C2.

Similarly our wobbling string solutions in the theory on S3 ⇥R can be related to configu-

rations in C2. The solutions in (4.40), ZS3⇥R = 1
n0

g
⇣

n1
n0
, n2

n0

⌘
= 1

n0
ZC2 , therefore for the scalar

profile on C2, we get:

ZC2 = g(z1,z2) . (4.49)

Thus we conclude that our 1
8-BPS configurations in SYM on S3⇥R translate into Z = g(z1,z2)

in the Euclidean theory on R4. Such surface defects preserving less than half of the supersym-

metries have been described previously in [14].

4.1.5 Some comments on Wobbling Strings

The 1
8-BPS strings with relation to the algebraic link solutions in the equation (4.43) which

include an important class of solutions when the function F(z1,z2) has a singularity structure

at the origin. This topological type of the link solution stabilizes near the origin and the

intersection is known to give rise to a knot in S3. For example, for the function

F(z1,z2) = zp
1 + zq

2 , (4.50)

the solution to (4.43) is known (see for instance [59]) to be the torus knot Tp,q (for p,q � 2

with p and q coprime). In [60] surface defects were studied in a four dimensional topological

gauge theory with boundary. The surface defect had an embedding such that they end in the

3-dimensional boundary along a 1-d curve K. The curve K could be of non-trivial nature and

may be a knot solution like given in (4.50). Therefore, surface operators were used to study

the homology of knot invariants in such setup of TQFTs. Also in [61–63], the gauge theory

on a four dimensional half space were shown to have solutions of the generalized Bogomolny
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equations [11] that correspond to codimension two defects with singular boundary conditions

along a knot can be useful in studying topological invariants associated to the knot such as the

Jones polynomial and play an important role in the programme of categorification [60,61,64].

It seems promising that the Hamiltonian analysis of the supersymmetric sector that in-

cludes these 1
8-BPS strings in this physical N = 4 theory on R⇥ S3 would also come to be

useful in these efforts.

4.1.6 New variational problem with inclusion of Wobbling Strings

Now we discuss two problematic issues when the singular solutions are treated on par with the

regular ones. Firstly, they do not belong to the same variational problem dS = 0. And at the

second, they have divergent energies, angular momenta and R-charges.

We show that both these hurdles are handled by cutting off the spacetime arbitrarily close

to the singularities of these solutions and adding appropriate boundary terms. In particular we

show that for a generic class of singular BPS solutions:

• By adding boundary terms we can make dS = 0 as we vary along the space of solutions

that include regular ones. But now this leaves a lot of ambiguity in the possible boundary

terms.

• We show that by demanding that the global charges are rendered finite provides infinitely

many conditions on the allowed set of boundary terms with dS = 0 that essentially fixes

the charges uniquely.
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On-shell Action and Boundary Terms

In an abelian sector of the theory with a single complex scalar field Z, the theory is described

by a lagrangian of conformally coupled complex scalar field on R⇥S3:

L =� 1
g2

Y M

p
�g
⇥
gµn∂µZ∂n Z̄ + Z̄ Z

⇤
. (4.51)

The line element on S3 ⇥R we work with for the rest of the chapter is

ds2 =�dt2 +(dq 2 + cos2 q df 2
1 + sin2 q df 2

2 ) . (4.52)

The Lagrangian evaluated on the solutions:

Z = eitg(bn1,bn2) , Z̄ = e�it ḡ
⇣
b̄n1, b̄n2

⌘
, (4.53)

with bni = ni/n0, comes out to be

L

���
onshell

=
1
2

∂µ
⇣

Z Pµ
Z + Z̄Pµ

Z̄

⌘
(4.54)

where Pµ
Z are the conjugate momenta: Pµ

Z = dL

d (∂µ Z) and Pµ
Z̄ = dL

d (∂µ Z̄) . The argument in the

RHS of (4.54) can be written in terms of the function g as follows

Z Pq
Z + Z̄Pq

Z̄ =� 1
g2

Y M
cosq sinq [g∂q ḡ+ ḡ∂q g] ,

Z Pf1
Z + Z̄Pf1

Z̄ =
i

g2
Y M

tanq
h
gb̄n1∂b̄n1

ḡ� ḡbn1∂bn1
g
i
,

Z Pf2
Z + Z̄Pf2

Z̄ =
i

g2
Y M

cotq
h
gb̄n2∂b̄n2

ḡ� ḡbn2∂bn2
g
i
,

Z Pt
Z + Z̄Pt

Z̄ = cos2 q (Z Pf1
Z + Z̄Pf1

Z̄ )+ sin2 q (Z Pf2
Z + Z̄Pf2

Z̄ ) .

(4.55)
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When the solutions are singular a region around(and arbitrarily close to) is cut-off and the

following boundary term is added to the Lagrangian the

Lbdy =�1
2
bnµ
⇣

Z Pµ
Z + Z̄Pµ

Z̄

⌘
, (4.56)

where bnµ is the unit outward normal to the boundary. And now the Lagrangian evaluates to

zero for all solutions – regular as well as the singular ones – thus making all the solutions

belong to the same variational problem.

To fix the energies and other global charges we restrict ourselves to a class of solution

where function g(bn1,bn2) = cmnbnm
1 bnn

2 . These are natural (time-dependent) generalizations of

the simple (static) surface defect. In terms of the coordinates on R⇥ S3 in (4.52), the scalar

profile takes the following form:

Z = r0 ei(x0�t)
⇣

cosq ei(f1�t)
⌘m⇣

sinq ei(f2�t)
⌘n

(4.57)

For this ’monomial’ class solutions, Z Pµ
Z + Z̄ Pµ

Z̄ vanishes for µ = t,f1,f2.

The general solutions in (4.53) also satisfy the following constraint equations

Pq
Z + i cosq sinq (Pf1

Z �Pf2
Z ) = 0 ,

(Pf1
Z cos2 q +Pf2

Z sin2 q)�Pt
Z �

i
2

cosq sinq Z̄ = 0 .
(4.58)

These are nothing but the consequence of the BPS equations written in field-momentum phase

space.

The solution (4.57) is singular at q = 0 (q = p/2) for negative values of n (m). The La-
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grangian density (4.51) evaluated on (4.57) gives:

L (r0,m,n) =
2r2

0
g2

Y M
cos2m q sin2n q

⇥
(m+n)(m+n+1) cosq sinq �m2 tanq �n2 cotq

⇤

(4.59)

which can be written as

L (r0,m,n) =
d

dq

✓
r2

0
g2

Y M
cos2m+1 q sin2n+1 q (m tanq �n cotq)

◆
. (4.60)

This Lagrangian density in (4.59) when integrated over q between 0 and p/2 vanishes for

non-negative m and n, which in turn means that we have dS = 0 when we vary along the

space of solutions (4.57) by changing the parameters 0  r0,m,n < •. But for m < 0 or n < 0

this integral here diverges. In particular for n < 0 (m < 0) the singularities come from q = 0

(q = p
2 ) region. As we have discussed in generality, to include these BPS defects into the

same variational problem we made a proposal to cut-off the region around the surface defect

and add the boundary term in (4.56). For the monomial solutions with n < 0, this corresponds

to adding

Lbdy,0+ =
1
2
(Z Pq

Z + Z̄ Pq
Z̄) (4.61)

at q = 0+ e , and for those solutions with m < 0

Lbdy, p
2 � =�1

2
(Z Pq

Z + Z̄ Pq
Z̄) (4.62)

at q = p
2 � e .
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There is still a lot of freedom left in the possible boundary terms even after making dS =

0 with a redefined variational probelm. For example, any term that is proportional to the

constraints (4.58) can be added:

fC (Z,P
µ
Z )C (Z,Pµ

Z )+ c.c , (4.63)

where C (Z,Pµ
Z ) is one of the constraints in (4.58) and these terms vanish identically on-shell.

Next, we show how this freedom is exploited to regularize the energy and other charges.

4.1.7 Regularization of Charges

The theoretical description of a single conformally coupled scalar we are considering on S3⇥R

has four conserved global charges E, S1, S2, J due to translational invariance under t, f1, f2

coordinates and global U(1) R-symmetry. The Hamiltonian density evaluated on the solution

in (4.57) is

E (r0,m,n) =
2r2

0
g2

Y M
cos2m q sin2n q

⇥
(m+n+1) cosq sinq +m2 tanq +n2 cotq

⇤
(4.64)

For m,n � 0 this gives the energy E is equal to :

E(r0,m,n) = 4p2 2r2
0

g2
Y M

(m+n+1)
2

G(1+m)G(1+n)
G(m+n+1)

=
4p2

g2
Y M

r2
0 (m+n+1)2 B(m+1,n+1) ,

(4.65)

where B(a,b) is the Euler Beta function. The other charges for m,n � 0 can be computed from
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the stress tensor

J(r0,m,n) =
4p2 r2

0
g2

Y M
(m+n+1)B(m+1,n+1),

S1(r0,m,n) =�
4p2 r2

0
g2

Y M
(m+n+1)mB(m+1,n+1),

S2(r0,m,n) =�
4p2 r2

0
g2

Y M
(m+n+1)nB(m+1,n+1) .

(4.66)

It is easy to check that the charges satisfy the linear BPS relation: E +S1 +S2 = J.

For negative m or n we have divergent answers for the energy (E) and the other charges

(S1,S2,J). In the coming steps we show how to remove the divergences from the energy in a

way so that answer in (4.65) becomes valid for negative m or n. We next wish to highlight the

nature of these singularities.

The energy density (4.64) can be rewritten in the form:

g2
Y M

2r2
0
E (r0,m,n) = cos2m q sin2n q

⇥
(m+n+1) cosq sinq +m2 tanq +n2 cotq

⇤

= (m+n+1)2 cos2m+1 q sin2n+1 q � d
dq


1
2

cos2m q sin2n q (m sin2 q �n cos2 q)
�
.

(4.67)

Upon integration this becomes

g2
Y M

2r2
0

Z
dq E (r0,m,n)+

1
2

cos2m q sin2n q (m sin2 q �n cos2 q)

=(m+n+1)2
Z

dq cos2m+1 q sin2n+1 q ⌘ I

(4.68)

which we define to be equal to the notation I . The second term in the second line of (4.67)

is responsible for the leading divergence in the bulk contribution to the energy as, near q ! 0.

It diverges as q 2n for n < 0. A similar power law divergence appears for m < 0 as q ! p
2 . In

fact, these divergences get cancelled by the energy contributions from the boundary terms in
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(4.61) and (4.62) respectively.

Therefore, after taking into the contribution from the boundary terms: Lbdy,0+ in (4.61)

(when n < 0) and Lbdy, p
2 � in (4.62) (when m < 0) we have the energy expression after evalu-

ating the integral in (4.68)

I =

8
>><

>>:

� (m+n+1)2

2(m+1) cos2m+2 q F(1+m,�n,2+m,cos2 q) , if m � 0 and n < 0.

(m+n+1)2

2(n+1) sin2n+2 q F(1+n,�m,2+n,sin2 q) , if m < 0 and n � 0.
(4.69)

Here F denotes the hypergeometric function 2F1(a,b,c;z). We will consider the cases (m >

0,n < 0) and (m < 0,n > 0) differently in what follows.

For the (m > 0,n < 0) cases, the contribution of I to the energy leads to power law (and

in some special cases logarithmic) divergences near q = 0. And for the (m < 0,n > 0) cases,

the contribution of I to the energy leads to such divergences near q = p
2 . In order to cancel

these divergences in the energy, in addition to the boundary terms Lbdy,0+ in (4.61) or Lbdy, p
2 �

in (4.62), we add the second boundary terms of the form

L0
bdy = f (m,n,q) i

g2
Y M

(Z C � Z̄ C̄ ) , (4.70)

where C is one of the constraint we saw in (4.58)

C = (Pf1 cos2 q +Pf2 sin2 q)�Pt � i
2

cosq sinq Z̄ , (4.71)

and C̄ its complex conjugate and f (m,n,q) is a real function of Z, Z̄,Pfi
Z ,P

fi
Z̄ obtained by the

following replacements:
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m �!�i2g2
Y M cotq

 
Pf1

Z
Z̄

�
Pf1

Z̄
Z

!
, n �!�i2g2

Y M tanq

 
Pf2

Z
Z̄

�
Pf2

Z̄
Z

!
. (4.72)

Such a term does not alter the property that the on-shell action vanishes, but it does contribute

to the energy a term proportional to 2r2
0

g2
Y M

times

1
2
(m+n+1) cos2m+1 q sin2n+1 q f (m,n,q) (4.73)

to the energy. Now by using the Pfaff transformation

F(a,b,c;z) = (1� z)�b F
�
c�a,b,c, ;

z
z�1

�
, (4.74)

we can write the terms on the r.h.s in (4.69) as:

I =

8
>><

>>:

� (m+n+1)2

2(m+1) cos2m+2 q sin2n q F(1,�n,2+m,�cot2 q) , if m � 0 and n < 0.

(m+n+1)2

2(n+1) cos2m q sin2n+2 q F(1,�m,2+n,� tan2 q) , if m < 0 and n � 0.
(4.75)

Next we use the following for the factor f (m,n,q) in the second boundary term L0
bdy in (4.70),

with a valid justification

f (m,n,q) =

8
>><

>>:

�m+n+1
n+1 tanq F(1,�m,2+n,� tan2 q) , if m � 0 and n < 0.

m+n+1
m+1 cotq F(1,�n,2+m,�cot2 q) , if m < 0 and n � 0.

(4.76)

One of the reasons for making use of the boundary terms in this form is that the hypergeometric

terms have a sensible power series expansion near the respective boundaries. Combining now

the bulk and boundary contributions we see that value, the energy of the wobbling string takes,

is simply the analytic continuation of the energy value E(r0,m,n) in (4.65) to negative values
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of either n or m.

For other charges (S1,S2,J), the same set of boundary terms that allow us to include the

defects to the class of dual-giant like solutions also regularize these charges, and maintain the

linear BPS relation: E +S1 +S2 = J between the charges are valid for these solutions as well.

We collect our answers for a few cases in the appendix B.1.

This prescription to subtract away the (coordinate-dependent) divergences in the charges of

the BPS string solutions is not very different to those methods adopted earlier in the literature

which use renormalization procedure for the Euclidean action for Wilson line or surface defect

operators to regularize the expectation values of those non-local operators, as done in [12, 13,

56]. And it will become clear from the dual holographic analysis that our prescription here is

nothing more than the standard UV renormalization.

Recently, in [58] defect operators of various co-dimensions were constructed and analyzed

in a topologically twisted version of N = 4 SYM theory. The defect operators belonged to

the cohomology of the chosen QBRST operator. The QBRST is nilpotent when restricted to a

special sphere submanifold S2
Y M, as [58] describes.

4.2 D3-brane Probes in AdS5⇥S5

The holographic description of the wobbling strings can be given by considering probe D3-

brane solutions in global AdS5 ⇥ S5. In [13, 14] the holographic duals of surface operators

that preserve some fraction of the supersymmetry with topology R2 ⇢ R4 were shown to be

described by probe D3-branes ending on the boundary in two dimensional surfaces. In this

section we will begin the discussion with the holographic duals of half-BPS strings. We will

analyze the probe branes that end on the boundary on surfaces with topology R⇥S1 ⇢R⇥S3.
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4.2.1 The type IIB background

The AdS5⇥S5 background is defined as the following locus in the twelve-dimensional ambient

space:

�|F0|2 + |F1|2 + |F2|2 =�l2 and |Z1|2 + |Z2|2 + |Z3|2 = l2 . (4.77)

Here we use the definition of the coordintes in the complex space:

(F0,F1,F2,Z1,Z2,Z3) 2 C1,2 ⇥C3 . (4.78)

We work with global coordinates in AdS5 and this corresponds to the parametrization:

F0 = l coshr eif0 F1 = l sinhr cosq eif1 F2 = l sinhr sinq eif2 .

Z1 = l sina eix1 Z2 = l cosa sinb eix2 Z3 = l cosa cosb eix3 .
(4.79)

The metric on AdS5⇥S5 is then simply inherited from the flat metric of the ambient space and

takes the following form in global coordinates:

ds2

l2 =�cosh2 r df 2
0 +dr2 + sinh2 r (dq 2 + cos2 q df 2

1 + sin2 q df 2
2 )

+da2 + sin2 a dx 2
1 + cos2 a (db 2 + sin2 b dx 2

2 + cos2 b dx 2
3 ) , (4.80)

where f0 = t
l . We choose the frame vielbein that make U(1) Hopf fibration over a Kaehler

manifold CP2(or fCP
2
) for the S5 and AdS5 parts become apparent. The frame for the AdS5
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part is

e0 = l[cosh2 r df0 � sinh2 r (cos2 qdf1 + sin2 qdf2)],

e1 = l dr , e2 = l sinhr dq ,

e3 = l coshr sinhr (cos2 q df01 + sin2 q df02)

e4 = l sinhr cosq sinq df12

(4.81)

where fi j = fi �f j. For the S5 part, we choose the frame

e5 = l da, e6 = l cosa db ,

e7 = l cosa sina (sin2 b dx12 + cos2 b dx13),

e8 = l cosa cosb sinb dx23,

e9 = l (sin2 a dx1 + cos2 a sin2 b dx2 + cos2 a cos2 b dx3)

(4.82)

where xi j = xi �x j.

The Killing spinor for the AdS5 ⇥ S5 background adapted to the above frame is given

by [33]:

e = e�
1
2 (G79�iG5 g̃)ae�

1
2 (G89�iG6g̃)b e

1
2 x1G57 e

1
2 x2G68 e

i
2 x3G9 g̃

⇥ e
1
2 r (G03+iG1 g) e

1
2 q (G12+G34) e

i
2 f0 G0 g e�

1
2 f1G13 e�

1
2 f2G24 e0 ⌘ M · e0 ,

(4.83)

where e0 is an arbitrary 32-component Weyl spinor satisfying G0 · · ·G9e0 = �e0 and we have

denoted g = G01234 and g̃ = G56789.

103



4.2.2 1
2-BPS D3-brane Probes

We consider various classes of 1
2-BPS probe D3-branes which end on the boundary in a two

dimensional surface. In the first class, we consider D3-branes described by the equations:

F1 Z1 =C1 , Z2 = Z3 = 0 . (4.84)

The embedding equation is inspired by the profile of the complex scalar Z1 in (4.12). The

coefficient that appears in the probe equation and the constant c1 in the profile of the scalar

field (see equation (4.12)) are related in a following way

c1 =

p
l

2p
C1 , (4.85)

where l = g2
Y MN is the ’t Hooft coupling of the gauge theory. The relative factor in the

normalization is due to an overall factor in the probe D3 brane action that is the tension of the

D3 brane given by TD3 =
N

2p2 l4 . This map of parameters is essential to match the energies and

charges computed in the bulk and boundary theories, in the leading order expansion in l .

In terms of the real coordinates introduced in the previous subsection, the embedding of

the probe D3-brane is given by the following real conditions:

sinhr cosq =
R0

l
, a =

p
2
, f1 +x1 = x (0)

1 . (4.86)

We have chosen to write the complex constant C1 = R0 eix (0)
1 in a particularly convenient man-

ner. We see that as r ! •, we have q ! p
2 so as to keep the first equation consistent, and the

D3-brane ends on the circle parametrized by f1 on the boundary, while being extended along

the f0-direction. The (q ,f2) coordinates parametrize the directions transverse to the boundary

limit of the probe, exactly as for the corresponding string defect. We choose the static gauge
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in which the world-volume coordinates are identified as follows:

(t,s1,s2,s3) = (f0,q ,f1,f2) . (4.87)

The induced metric on the world-volume, of topology AdS3 ⇥S1, is given by:

ds2

l2

����
D3

=�
✓

R2
0 + l2 cos2 q
l2 cos2 q

◆
df 2

0 +
R2

0(R
2
0 + l2)sec2 q

l2(R2
0 + l2 cos2 q)

dq 2 +
R2

0 + l2

l2 df 2
1 +

R2
0

l2 tan2 qdf 2
2 .

(4.88)

The k-symmetry analysis

We now classify the set of supersymmetries preserved by this probe D3-brane. The k-symmetry

equation that guarantees the supersymmetry of the worldvolume theory is given by

gts1s2s3e =± i
p
�deth e . (4.89)

Here, the world-volume g-matrices are defined by

gi = ea
i Ga , (4.90)

where the ea
i = ea

µ∂iX µ is obtained by the pullback of the one-form ea
µ . For the probe D3-brane

under consideration in (4.84), the world-volume gamma matrices are as follows:

gt = l cosh2 r G0 + l sinhr coshr G3 ,

gs1 = l tanhr tanq G1 + l sinhr G2 ,

gs2 =�l sinh2 r cos2 q G0 � l sinhr coshr cos2 q G3 + l sinhr cosq sinq G4 � l G9 ,

gs3 =�l sinh2 r sin2 q G0 � l sinhr coshr sin2 q G3 � l sinhr cosq sinq G4 .

(4.91)
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The product of four g matrices is

1
l4 gts1s2s3 = sinh2 r coshr

�
sinhr(G0234 +G2349)� coshr G0249

�
cosq sinq �G0239 sin2 q

�

+ sinh2 r sin2 q


sinhr (G0134 +G1349)� coshr G0149 � tanq G0139

�
.

(4.92)

In order to check the k-symmetry equation, we need to commute the four-gamma products

through the matrix M defined in (4.83). After doing some tedious G-matrix commutation al-

gebra through the exponential factor M in (4.83), the k-symmetry constraint reduces to the

following simple expression:

1
l4 gts1s2s3 ·M · e0 =M coshr sinh3 r e�if0G0g ef1G13(G0234 +G3968) · e0

� iM sin2 q sinh4 r ef1G13 ef2G24(G12 +G014968) · e0

+ iM tanq sinh2 r(1+ cos2 q sinh2 r)G024968 · e0 .

(4.93)

Using the embedding equation in (4.86) and the 10d chirality constraint, we find that the k-

symmetry constraint in (4.89) is satisfied with the choice of (�) sign if the following projection

constraint is imposed on the constant spinor e0:

G1357 e0 = e0 . (4.94)

We have thus shown that the probe D3-brane preserves half of the bulk supersymmetries.

More 1
2 -BPS Probes from SU(3) Rotations

The choice of coordinates and frame in (4.80) and (4.81), (4.82) make possible for us to find

other probe D3-branes that are closely related to the one we have analyzed so far, and whose

supersymmetry can be checked by a minor modification of our previous analysis. These probes

are obtained by using an SU(3) rotation acting on the Zi variables and as a result the induced
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metric remains the same as in (4.88).

From the k-symmetry analysis we find that

F1 Z2 =C2 and Z1 = Z3 = 0 (4.95)

is half-BPS and preserves the supersymmetries that survive the following projection:

G1368e0 = e0 . (4.96)

Similarly the probe D3-brane

F1 Z3 =C3 and Z1 = Z2 = 0 . (4.97)

preserves half the supersymmetries if we impose the projection

G0924e0 = ie0 . (4.98)

A second class of 1
2 -BPS D3 branes

There exist another set of D3 brane probes that are obtained by an SU(2) rotation that acts on

the complex Fi variables. The expression for the probe brane solution is

F2Z1 = D1 and Z2 = Z3 = 0 . (4.99)

In terms of the real coordinates we now have the defining equations:

sinhr sinq =
R0

l
a =

p
2

f2 +x1 = x (0) . (4.100)
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The induced metric on the worldvolume, of AdS3 ⇥S1 topology, is given by

ds2

l2

����
D3

=�
 

R2
0 + l2 sin2 q
l2 sin2 q

!
df 2

0 +
R2

0(R
2
0 + l2)csc2 q

l2(R2
0 + l2 sin2 q)

dq 2 +
R2

0 + l2

l2 df 2
1 +

R2
0

l2 cot2 qdf 2
2 .

(4.101)

We have shown the details of the k-symmetry analysis in the appendix B.2. Here we write the

result of the projection condition on constant spinor e0

G2457 e0 = e0 . (4.102)

On doing an SU(3) rotation on the Zi variables as before the other two half-BPS probe D3-

branes can be obtained. We collect this information in the table (4.2) below

Probe Solution projection on e0

1. F2Z1 = D1 and Z2 = Z3 = 0 G2457 e0 = e0

2. F2Z2 = D2 and Z3 = Z1 = 0 G2468 e0 = e0

3. F2Z3 = D3 and Z1 = Z2 = 0 G0913 e0 = e0

Table 4.2: We list the probe solutions in the second class along with the projection condition
due to the k-symmetry constraint.

4.2.3 1
16-BPS D3-brane Probes

Each of the six different probe D3-branes in the previous subsection that we have classified

into two distinct classes depending on whether it wraps the f1 circle or the f2 circle on the

boundary, preserve half of the ten-dimensional background supersymmetries. Following our
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analysis of the singular solutions on the boundary theory, we now give the projections that

preserve the common set of supersymmetries amongst all these probe D3-branes.

G13e0 = G24e0 =�ie0 , G09e0 =�e0 , G57e0 = G68e0 = ie0 . (4.103)

These projections preserve exactly two out of the 32 supersymmetries of the bulk background.

Remarkably, these projection conditions have been encountered previously in the context

of studying giant-gravitons and dual giant-gravitons in AdS5⇥S5 [33]. Hence, we have shown

that the set of two supersymmetries that the various probe branes share (and which are dual to

stringy defects in the gauge theory), is the same set of supersymmetries shared by the D3-brane

probes that describe giants and dual-giants.

In the appendix B.3, we review briefly the derivation of the constraints on the D3-brane

worldvolume which was done in [33] from the projections in (4.103). The most general 1
16-

BPS solution to these constraint equations were given by Kim and Lee [32] in terms of three

holomorphic functions:

F(I)(Fi,Z j) = 0 for I = 1,2,3 , (4.104)

where the Fi and Z j are defined in (4.79) and the functions each satisfy a scaling condition:

2

Â
i=0

∂fiF
(I)�

3

Â
i=1

∂xiF
(I) = 0 . (4.105)

There are four sub-classes of solutions to these equations here that preserve 1
8th of the bulk

supersymmetry which were listed in [33], some of these were previously obtained in [31, 57].

They are either point-like in the AdS5 directions (giants) or point-like in the S5 (dual-giants)

and they carry spins (J1,J2,J3) only along the S5 or they carried two spins along the AdS5

109



directions and one spin along the S5, which we denote (S1,S2,J).

All the particular solutions that were considered in [33] had compact world-volume and

none of these extended to the boundary. What we show here is that the same set of BPS equa-

tions admit another completely different class of probe D3-branes that have an interpretation

as holographic duals of string like defects, and whose world-volume ends on the conformal

boundary R⇥S3 along two directions, one of which is the time direction. In the coming part,

we present a deeper analysis of the constraints that holomorphy places on the spatial direction

of the boundary component of the probe brane.

4.2.4 Boundary profile of the bulk 1
8-BPS Probes

The solutions from (4.104) which are the holographic duals of the wobbling stringy solutions

in the boundary field theory have charges (S1,S2,J). Their world-volume which preserve 1
8th

of the bulk susy is described by

Z2 = Z3 = 0 and f (Z1F0,Z1F1,Z1F2) = 0 . (4.106)

The above is invariant under the scaling

Fi ! l Fi and Z1 ! l�1Z1 .

In this subsection, we want to show that the zero locus in (4.106) precisely coincides with the

locus in the boundary theory where the profile of the scalar field has a singularity. For this

purpose, it is useful to use the following for the coordinates Fi 2 C1,2 of the ambient space:

F0 =
p

r2 + l2 n0, F1 = r n1, F2 = r n2 (4.107)
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where n0 = eif0 , n1 = cosq eif1 and n2 = sinq eif2 . Near the boundary region of AdS these

take the form

F0 = r n0, F1 = r n1, F2 = r n2 , (4.108)

and become coordinates on a null-cone �|F0|2 + |F1|2 + |F2|2 = 0. The induced metric on

this cone is of the form what we have seen in for the boundary field theory in (4.52) ( of R⇥S3

manifold) times the scaling factor r2. Also near the boundary the function in (4.106) becomes

f (Z r n0,Z rn1,Z r n2). Therefore, the worldvolume of the D3 brane intersects the boundary at

the zeros of the functions

f (l n0,l n1,l n2) = 0 ,

where l = r eix for arbitrary l 2 C?. With such scaling properties, it is possible to show that

above zero locus is equivalent to the holomorphic condition

F(z1,z2) = 0

where zi = ni/n0 2 C2. And thus we reproduce the characterising property of the BPS strings

in the boundary theory using the constraining conditions of the D3 world-volume.

We have shown that if the worldvolume of the probe D3-brane is described as the zero locus

of an arbitrary holomorphic function f (ZF0,ZF1,ZF2), then we see that for those probes that

reach the boundary, the world-volume, as it approaches the boundary is two dimensional and

at a given instant in time, it is given by the locus K , which is obtained by the intersection of

a holomorphic function in C2 with the 3-sphere.

F(z1,z2) = 0 \ |z1|2 + |z2|2 = 1 . (4.109)

The curve K is an algebraic link in S3. To complete this part of the analysis in the bulk, we

need to derive this boundary profile from the zeros of the holomorphic function. The holomor-
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phic function in (4.106) could be written in a manner suggestive of the boundary solutions, as

functions of the form g(ZF0,F1/F0,F2/F0).

Since this function g is considered to be a polynomial in the variable ZF0 of degree, say,

p  N, it can be factorised as

g(ZF0,F1/F0,F2/F0) =
p

’
r=1

h
(ZF0)F

(1)
r (F1/F0,F2/F0) � F(0)

r (F1/F0,F2/F0)
i

(4.110)

From the discussion of the boundary limits of the coordinates Fi, we infer that near the bound-

ary, this function becomes

g(ZF0,F1/F0,F2/F0)�! (ln0)
p

p

’
r=1

F(1)
r (n1/n0,n2/n0) (4.111)

Here l = r eix is a field on the probe brane that determines the radial and angular profile of the

probe brane and we will identify it with the complex scalar field denoted by Z in the boundary

theory. The defects on the boundary are therefore given by zero-sets of F(1)
r (n1/n0,n2/n0).

So far we reproduced the conclusion of the bulk analysis.

As a first step towards deriving the boundary profile, let us set p = 1 for simplicity. Then

the bulk solution g(ZF0,F1/F0,F2/F0) is of unit degree in Z:

g(ZF0,F1/F0,F2/F0) = ZF0 F(1) (F1/F0,F2/F0) � F(0) (F1/F0,F2/F0) = 0 (4.112)

and very near (but not exactly at) the boundary this is equivalent to

ln0 =
F0 (n1/n0,n2/n0)

F1 (n1/n0,n2/n0)
. (4.113)
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From a single probe brane one therefore infers the boundary profile that corresponds to one

of the eigenvalues of the scalar field Z of the boundary theory. For degree p > 1 and for

generic polynomials, it follows that the resulting holomorphic function can be factorized, as

in equation (4.110), and each of the linear factors lead to profiles for p of the eigenvalues of

the matrix valued field Z. Given that Z is an N ⇥N matrix, this leads to p  N and is referred

to as the stringy exclusion principle [33, 57].

4.2.5 Holographic Wobbling Strings

In this part we focus on the holographic description of the monomial type defect solutions

in the N = 4 gauge theory and compute the holographically renormalized energies from the

probe D3-brane point of view. It will be convenient to use the redefined radial coordinate

r = l sinhr , and work with the following metric on AdS5 ⇥S5:

ds2
AdS5

=�V (r)dt2 +
dr2

V (r)
+ r2(dq 2 + cos2 q df 2

1 + sin2 q df 2
2 ) , (4.114)

where V (r) = 1+ r2

l2 . The Ramond-Ramond 4-form is given by

C(4) =�r4

l
cosq sinq dt ^dq ^df1 ^df2 . (4.115)

The Lagrangian density for a probe D3-brane is:

L =�TD3
p
�h+TD3 P[C(4)] (4.116)

where h is the determinant of the induced metric on the worldvolume and P[·] refers to the

pullback of a spacetime differential form onto the worldvolume.

The probe D3-branes of interest are described by the following monomial type solution:
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(Z1F0) = h
✓

F1

F0

◆m ✓F2

F0

◆n
, and Z2 = Z3 = 0 . (4.117)

The worldvolume coordinates are (f0 = t
l ,q ,f1,f2), and r = r(q), x = x (f0,f1,f2) are the

fluctuating fields on the worldvolume. The defining equation of the probe D3-brane in terms

of the real 10-dimensional coordiantes are given by:

✓
l
r

◆m+n ✓
1+

r2

l2

◆ 1
2 (m+n+1)

=
R0

l
cosm q sinn q ,

x �x0 = mf1 +nf2 � (m+n+1)f0 ,

(4.118)

where we set the parameter h = R0 eix0 .

It is not possible to solve for r(q) and get a closed form expression. But for a few cases it is

possible to do so. For the remaining part we will be mostly discussing the following cases:

• The static case, for which m+n+1 = 0 and we shall consider n < 0. For this case we

have

r(q) = R0 secq cot|n|q . (4.119)

• When m = 0 and n < 0, for this case r(q) can be expanded order by order in l
R0

as

follows:

r(q) = R0 sin�|n|q
✓

1� (n+1)l2

2R2
0

sin2|n|q � (n+1)(3n+1)l4

8R4
0

sin4|n|q + . . .

◆

(4.120)
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• When m+n = 0 with n < 0, for this case r(q) has an exact expression from the defining

equation in (4.118), given by

r(q) =
q

R2
0 cot2|n|q � l2 . (4.121)

On-shell Action and the Variational Problem

Now we address the complications in the variational problem when all the solutions in (4.117)

are considered together. For the negative values of powers m and n, we have non-compact

D3 branes and this will involve adding appropriate boundary terms near the boundary of AdS5

(equivalently near q = 0 or q = p
2 ).

From the general analysis of the k-symmetry constraint presented in Appendix B.2 we

have seen that the BPS constraint equations in (B.17) simplify the on-shell Lagrangian to take

the following form (see equation (B.21) for the volume form on the D3-brane):

L
��
on-shell =�P

⇥
e09 ^ (e13 + e24)

⇤
+P

h
C(4)

i
. (4.122)

We work with the ansatz x = x (f0,f1,f2) and r = r(q) suitable for the monomial solution

and denote the conjugate momenta as follows:

Pµ
r =

∂L

∂ (∂µr)
, Pµ

x =
∂L

∂ (∂µx )
. (4.123)

The Lagrangian density (4.122) evaluated on these is given by
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L = l2 r ∂q r(sin2 q ∂f1x � cos2 q ∂f2x )+ r2 �(l2 + r2)(∂f1x +∂f2x )+ r2∂f0x
�

cosq sinq

+ r4 cosq sinq ,

(4.124)

After taking the general expression for monomial solutions in (4.117) into consideration the

lagrangian density becomes

L = l2 r ∂q r(m sin2 q �n cos2 q)+(m+n) l2 r2 cosq sinq

= ∂q

h l2

2
(m sin2 q �n cos2 q)r2

i
= ∂q

h1
2

r Pq
r

i
.

(4.125)

Therefore the modified Lagrangian density L � ∂q

h
1
2r Pq

r

i
vanishes on-shell for any (m,n)

locally. Equivalently, a boundary term can be added at near q = 0 region or at q = p
2 region

L
(1)

bdy =±1
2

r Pq
r . (4.126)

This complete our discussion of the variational problem associated with the classical solutions

in the set given in (4.117). These solutions satisfy some constraints in the field-momentum

phase space very similar to those encountered for the classical solutions in the field theory due

to the BPS conditions. These are given by

C1 : cos2 q Pf1
x + sin2 q Pf2

x �Pt
x � l2r2 sinq cosq = 0 ,

C2 : r Pq
r

✓
1+

l2

r2 �
1
r4 (cotq Pf1

x + tanq Pf2
x )

◆
+ sinq cosq(Pf1

x �Pf2
x ) = 0 .

(4.127)

As in the boundary theory these are very useful in regularizing the energies.
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Renormalized Energies

We now show how to perform the holographic renormalization procedure for the energy of the

probe D3 branes. It is possible to perform for a subset of cases we listed earlier in the beginning

of this subsection. In particular, we add some more boundary terms that are proportional to the

phase space constraints (so that the vanishing result for the on-shell action is unaffected), in

order to regulate the energies for a number of cases. This analysis, to some extent, is parallel

to the one that we carried out in the Yang-Mills theory in the previous section.

The static case m+n+1 = 0

We begin with the static solution with m+ n+ 1 = 0 and we set m > 0 and n < 0. For this

time-independent case the energy coincides with the on-shell action and the value of energy

is zero. This is perfectly consistent with the results of the boundary theory discussed in the

appendix B.1.

The probes of type (0,n)

For the case: (0,n) with n< 0, the integral of the energy density is singular due to power diver-

gent terms as q ! 0. In the limit of l
R0

! 0, the probe brane profie r(q) exactly coincides with

the boundary profile |Z| for the particular solution under consideration. Also, for the case of

the (0,n) BPS string, the boundary action was particularly simple (see equation (B.3)). Given

these, the following boundary term is proposed for this case:

L
(2)

bdy =
1
2

tanq C1 , (4.128)
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where C1 is the constraint defined in (4.127). The vanishing of the action on-shell is unaffected

by the addition of this term as the phase space combination in C1 vanishes on-shell. And this

additional boundary term does modify the energy and, after including the overall factors of

the tension of the D3-brane TD3 =
N

2p2l4 and the 4p2 coming from the angular integration the

energy for the (0,n) case takes the following value:

l E0,n

4p2 =
N

2p2

✓
(n+1)

R2
0

2l2 +
1
2
(n�1)(n+1)2 +O(

l
R0

)

◆
(4.129)

The map between the parameters of the probe brane and the gauge theory results that was

discussed for the half-BPS case in (4.85). In this case of monomial solution we have the

following

R0 =
2pp

l
l r0 , (4.130)

And with the use of this map the value of the energy can be re-written in terms of gauge theory

paramaters:

l E0,n

4p2 =
1

g2
Y M

✓
(n+1)r2

0 +
l

4p2 (n�1)(n+1)2 + . . .

◆
(4.131)

The leading term exactly matches with the result for the energy in (B.4) and in addition, there

is the leading O(l ) quantum correction.
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The probes of type (�n,n)

For the (�n,n) case r(q) has the exact form given by:

r(q) =
q

R2
0 cot2|n|q � l2 . (4.132)

The energy contribution of the bulk after integration over q is (upto the factor 4p2 TD3)

l E(�n,n,q) = 1
2

cos2 q (n)
0 �

R2
0

2l2(1�n)
cos2�2n q (n)

0 F(1�n,�n,2�n,cos2 q (n)
0 )

� 1
2

cos2 q +
R2

0
2l2(1�n)

cos2�2n q F(1�n,�n,2�n,cos2 q)
⌘
. (4.133)

where q (n)
0 = arctan

⇣
R0
l

⌘ 1
|n| with 0 < q < q0.

In the corresponding boundary theory problem, an additional boundary term contribution in

(B.5) cancelled the power law divergences in this case. Here the proposal of the following

boundary term takes care of the divergence problem

L
(2)

bdy =
1
l3 f (n,q)C1 , (4.134)

where C1 is the constraint in (4.127) and the function f (n,q) is of the following form (inspired

largely by the corresponding boundary theory term in (4.76))

f (n,q) = 1
2(1+n)

tanq F(1,n,2+n,� tan2 q) . (4.135)

The value of energy after taking the contribution from this additional boundary term is given
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by

l E�n,n =
n�1

2
+

R2
0

2l2 G(1�n)G(1+n)

+
1
2

cos2 q (n)
0 �

R2
0

2l2(1�n)
cos2�2n q (n)

0 F(1�n,�n,2�n,cos2 q (n)
0 ) . (4.136)

The above result tends to the value obtained for the result of the boundary theory in (B.6), after

taking the limit in which l
R0

! 0. In this limit, the profile of the D3 brane r(q) coincides with

boundary profile |Z| of the boundary theory. This in turn corresponds to q (n)
0 ! p

2 which sets

the terms in the second line of (4.136) to zero.

For the fractional values of n, we write the result in terms of gauge theory parameters by

taking into account the map (4.130), and restoring the factor of 4p2TD3, as follows:

✓
l E�n,n

4p2

◆

n=� (2p+1)
2

= (�1)p p (2p+1)
2g2

Y M
r2

0 +
N

4p2 (n�1) (4.137)

=
1

g2
Y M

✓
(�1)p p (2p+1)

2
r2

0 +
l

4p2 (n�1)
◆

. (4.138)

Therefore, we have a perfect match at the leading order with the boundary gauge theory answer

in (B.6) and in addition to it we have the first quantum correction to the energy of the BPS

string.

Comments on the energy results

The holographic renormalization that we carried out for the probe brane provides a justification

for the regularisation of the energies that was done on the CFT side in the previous section

4.1.7 . There are a few important questions that are left open. While our regularization does
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indeed cancel all coordinate dependent power law divergences there is a certain ambiguity in

the finite part of the charges. The boundary terms are added such that the expression (4.65) that

gives the energy answers for cases with (m > 0,n > 0) also gives the energy after an analytic

continuation in the (m,n) parameters that appear in the monomial defining the BPS string, for

which one of m or n is negative. Further, the interpretation of the finite energy Em,n remains an

open problem. Given that the sign of the energy can be either positive or negative it is possible

that these can be interpreted as Casimir energies of some effective theory on the BPS string

and more work would be needed to clarify this.

We next come to the limitations of our analysis. For the case of m+ n = 0, the analytic

continuation of the energy in (4.65) to negative integer values of n leads to divergent results.

On a careful examination, it turns out that, while the power law divergences do cancel, there

are additional singularities that could be interpreted as logarithmic singularities. Similar di-

vergences also appear for m and n both sufficiently negative. As it stands, for those cases for

which the analytic continuation does not lead to a finite result, it would appear that more work

needs to be done to completely regularize the energy and charges of the BPS strings.
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Chapter 5

Conclusion

In this thesis, we discussed surface operators in the four-dimensional N = 2 theory and the

maximally supersymmetric N = 4 SYM theory. In N = 2 theory, we focused on the low

energy dynamics of the theory with half-BPS surface defects and how distinct descriptions

lead to identical low energy effective actions. Whereas, in N = 4 SYM, we studied lower

supersymmetric 1
8-BPS monodromy defects in the Hamiltonian formalism and gave a general

charectrization of such BPS strings.

In N = 2 theory, our objective was to calculate the effective-twisted chiral superpotential

associated with the surface operator from the two dual descriptions [16,19]. We extended in the

line of approach taken in [16], we showed that there exists a precise correspondence between

the choice of massive vacua in two dimensions and the Gukov-Witten defects of the SU(N)

gauge theory labeled by the partition [n1, ...,nM]. We had also described the relation between

the (M�1) dynamically generated scales LI associated to the Fayet-Iliopoulos (FI) parameters

for the two-dimensional nodes and the (M � 1) dimensionful parameters that naturally occur

in the ramified instanton counting problem [20,21,23]. An important and non-trivial check of

this proposal was provided by the perfect agreement in the quantum corrections in the quiver

gauge theory and the corrections in the twisted superpotential due to ramified instantons of the
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four-dimensional theory.

In the second part of the thesis, we studied lower super-symmetric versions of monodromy

defects in N = 4 SU(N) theory in R⇥S3 manifold. The 1
8-BPS wobbling strings on R⇥S3

we discussed here are related by Wick rotation and Weyl transformation to 1
8-BPS defects

associated with surface operator in R4. One of the main result of the work in this part of

the thesis is to show a characterization of the general BPS string solution that preserves four

supercharges. The location of such a BPS string at any instant of time is obtained as the

intersection of zeros of holomorphic functions in C2 with S3 ⇢ C2. This description of the

string solution can also be recovered from the holographic side by analyzing the worldvolume

constraints on probe D3-branes in AdS5 ⇥ S5 and studying the limiting behaviour near the

boundary of AdS5.

The holographic duals of the 1
8-BPS strings preserve precisely the same supersymmetries

as the (S1,S2,J) giants of [57] and the dual-giants of [33]. By the addition of appropriate

boundary terms, we showed that the abelian solutions that are regular (and which are holo-

graphically dual to the dual-giants), as well as the singular string solutions of the CFT, can be

made to belong to the same variational problem. We then showed that the singularities in the

classical expressions of the energy and other charges can be systematically “renormalized” by

including additional boundary terms on the CFT side. The holographic dual of this procedure

was carried out for the monomial type D3-brane probes. The analysis of the probe brane the-

ory paralleled that in the Yang-Mills theory and the leading order results for the energy and

charges could be matched once the parameters of the solution were appropriately mapped to

each other.

Our prescription to subtract away the (coordinate-dependent) divergences in the charges of

the BPS string solutions were justified by the procedure in the dual holographic analysis for

the monomial type D3-brane probes. It tells that this prescription here is nothing more than

the standard UV renormalization. Similar prescriptions were discussed in [13, 56] where the
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renormalization of the Euclidean action for Wilson line or surface defect operators gives rise

to finite expectation values of those non-local operators. In addition to this, the cases that we

considered for the BPS strings to compute the energy have values either positive or negative.

The interpretation of these values is unclear at this juncture. It is likely that these could be

interpreted as a Casimir energies of the worldvolume theories on the stringy defects.

While we obtained a general characterization of the wobbling BPS strings in terms of the

mathematical algebraic links, it would be important to have a more detailed understanding

of the space of solutions to these equations as it could have interesting consequences for the

physics of these defects. This is especially interesting in the context of work relating four

dimensional gauge theory and knot theory in the Euclidean context. In the gauge theory on a

four dimensional half space, the connections between the singular solutions of the generalized

Bogomolny equations [11] and knot solutions that lives along the three dimensional boundary

have been made in [61–63]. These knot solutions have been used to study associated topolog-

ical invariants such as the Jones polynomial and play an important role in the programme of

categorification [60, 61, 64].
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Appendix A

A.1 Chiral correlators for the SU(N) theory

In this appendix, we briefly review the calculation of the chiral correlators using the equivariant

localization technique [65–67], we use the notations set in [68]. The partition function of the

pure SU(N) N = 2 theory with multi-instanton contribution was calculated in [24, 25] (also

refer to [65] for exposition with a few more details) in the omega-deformed background where

the SO(4) isometry group is deformed to the SO(2)⇥SO(2) group. This modification makes

the parameter space over which the instanton moduli take their value compact and the value of

partition function becomes without having any divergences. In the limit of vanishing omega-

background parameters this calculation gives the partition function on the R4 space manifold.

In the weak-coupling regime, the partition function with instanton contribution can be written

as a power series expansion

Zinst = Â
k=0

qkZk (A.1)

where the parameter

q = e2pit = (�1)N L2N , (A.2)
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here t = q
2p + i 4p

g2
Y M

, and L is the dynamically generated scale of the four-dimensional theory

that we use in the third chapter. Zk is the contribution from the k-th instanton sector and is

obtained by doing the following multi-dimensional contour integral:

Zk =
I k

’
I=1

dcI

2p i
zk (A.3)

the integrand is given by

zk =
(�1)k

k!

✓
e1 + e2

e1 e2

◆k D(0)D(e1 + e2)

D(e1)D(e2)

k

’
I=1

1
P
�
cI +

e1+e2
2
�

P
�
cI � e1+e2

2
� (A.4)

with

P(x) =
N

’
i=1

(x�ai) D(x) =
k

’
I<J

�
x2 �c2

IJ
�
. (A.5)

The contour integrals are computed by closing the contours in the upper half planes of the cI

variables, assigning imaginary part to the e’s with prescription

Ime2 � Ime1 > 0 . (A.6)

This method can be used to used to compute the chiral correlators, which are known to receive

quantum corrections from all instanton sectors. The generating function of all chiral correla-

tors of the form hTrFli is

hTrezFi=
N

Â
i=1

ezai � 1
Zinst

Â
k=1

qk
Z k

’
I=1

dcI

2p i
zk O (z,cI) (A.7)

where O is the following observable
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O (z,cI) =
k

Â
I=1

ezcI (1� eze1)(1� eze2) . (A.8)

For the SU(2) gauge theory, this calculation give the following answer for the correlator

hTrF2i= 2a2 � q
a2 +

5
16a6 q2 � 9

32a10 q3 + . . . , (A.9)

where a1 =�a2 = a.

For the SU(3) theory, we have the following answer for the correlators (with notation ai j =

ai �a j):

hTrF2i=a2
1 +a2

2 +a2
3 �
✓

1
(a12)2(a13)2 +

1
(a12)3a13

+
1

(a12)2(a23)2 �
1

(a12)3a23

◆
4q

+

✓
5

(a12)4(a13)6 +
10

(a12)5(a13)5 +
14

(a12)6(a13)4

+
17

(a12)7(a13)3 +
28

(a12)8(a13)2 +
56

(a12)9a13

◆
4q2

+

✓
5

(a21)4(a23)6 +
10

(a21)5(a23)5 +
14

(a21)6(a23)4

+
17

(a21)7(a23)3 +
28

(a21)8(a23)2 +
56

(a21)9a23

◆
4q2 + . . .

(A.10)
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hTrF3i=a3
1 +a3

2 +a3
3 �
✓

2a1

(a12)2(a13)2 +
2a2

(a21)2(a23)2 +
a3

(a12)2 a13 a23

◆
6q

+

✓
10a1

(a12)4(a13)6 +5
2a1 �a3

(a12)5(a13)5 +2
4a1 �5a3

(a12)6(a13)4

+2
3a1 �7a3

(a12)7(a13)3 +
6a1 �25a3

(a12)8(a13)2 �
56a3

(a12)9a13

◆
6q2

+

✓
10a2

(a21)4(a23)6 +5
2a2 �a3

(a21)5(a23)5 +2
4a2 �5a3

(a21)6(a23)4

+2
3a2 �7a3

(a21)7(a23)3 +
6a2 �25a3

(a21)8(a23)2 �
56a3

(a21)9a23

◆
6q2 + . . .

(A.11)
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Appendix B

B.1 Energy values for some BPS string configurations

In this section we focus on a few cases and demonstrate our ideas discussed in the main section

4.1 by writing the energy values.

B.1.1 The static case m+n+1 = 0:

In this case, the solutions are time independent and for m > 0 and n < 0 profile for the scalar

field takes the form

Z = r0 eix0(cosq eif1)�n�1(sinq eif2)n . (B.1)

The on-shell momenta Pt
Z vanishes and the requirement that the energy be finite reduces

to requiring that the on-shell action be finite. The simple 1
2-BPS defects, which correspond to

the (0,�1) and (�1,0) cases fall into this category and we find that the on-shell action and

energy vanish with the boundary terms.
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B.1.2 The strings of type (0,n)

These are the time dependent solutions of the form

Z = r0 ei(x0�t)
⇣

sinq ei(f2�t)
⌘n

, (B.2)

with n < 0. The function f (0,n,q) reduces to unity and the boundary action becomes of the

form:

Lbdy,0++L0
bdy =

1
2
(Z Pq

Z + Z̄ Pq
Z̄)+

i
2

tanq (Z C � Z̄ C̄ ) , (B.3)

where C is the constraint in (4.58). The renormalized energy in this case is equal to

E0,n

4p2 =
(n+1)

g2
Y M

r2
0 . (B.4)

B.1.3 The strings of type (�n,n)

The boundary term has full contribution from both terms in (4.61) and (4.70), we give the

expression in particular for when n < 0:

Lbdy,0++L0
bdy =

1
2
(Z Pq

Z + Z̄ Pq
Z̄)+

i
2
(Z C � Z̄ C̄ ) f (�n,n,q) . (B.5)

For fractional (rational) values of n, the finite result for the energy is

E�n,n

4p2

����
n=� (2p+1)

2

= (�1)p p (2p+1)
2g2

Y M
r2

0 . (B.6)
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B.2 k-symmetry of the Second Class of probe branes

We discuss the k-symmetry of second class of D3 probe branes, that are obtained by an SU(2)

rotation that acts on the complex Fi variables. For the solution

F2Z1 = D1 and Z2 = Z3 = 0 , (B.7)

the product of four world-volume g matrices is

1
l4 gts1s2s3 =� cos2 q sinh2 r (cotqG0139 � coshr(G0149 +G0239)+ sinhr(G0134 +G1349))

� sinq cosq coshr sinh2 r(coshrG0249 � sinhr(G0234 +G2349)) .

(B.8)

In order to check the k-symmetry equation, as before, we need to commute the four-gamma

products through the matrix M defined in (4.83). After performing the relevant G-matrix alge-

bra, we finally obtain

1
l4 gts1s2s3 ·M · e0 =iM sinh3 r cosq

h
icoshre�if0G0gef2G24(G0134 �G4968))

+sinhr cosqef1G13 ef2G24(G12 �G023968)
i
· e0

+ iM cotq sinh2 r(1+ sin2 q sinh2 r)G013968 · e0

(B.9)

We thus find that the D3-brane preserves one half of the bulk supersymmetries if the following

projection is imposed on the constant spinor:

G2457 e0 = e0 . (B.10)
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More 1
2-BPS Probes in the second class

On doing an SU(3) rotation on the Zi variables as before and we obtain two other half-BPS

probe D3-branes in this same class. The following solutions

F2Z2 = D2 and Z3 = Z1 = 0 , (B.11)

preserves half the supersymmetries if the following projection is imposed on the constant

spinor:

G2468 e0 = e0 . (B.12)

Similarly, the D3-brane described by

F2Z3 = D3 and Z1 = Z2 = 0 , (B.13)

preserves half the supersymmetries if the following projection is imposed on the constant

spinor:

G0913 e0 = ie0 . (B.14)
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B.3 Review: Constraints on the 1
16-BPS D3-brane worldvol-

ume

The five projection conditions in (4.103) leads to a simplification where the exponential factor

M reduces to a mere phase in the Killing spinor, which now takes the form:

e = e
i
2 (f0+f1+f2+x1+x2+x3) e0 . (B.15)

We substitute the Killing spinor (B.15) into the k-symmetry equation (4.89) and use the projec-

tion conditions (4.103) to reduce the l.h.s. into a linear combination of independent structures

of the form Ga1,a2...e0. The coefficient of each such structure is set to zero except the constant

one, which is equated to the r.h.s.

In order to write these BPS constraint equations we make use of definition of the following

complex 1-forms:

E1 = e1 � ie3 E2 = e2 � ie4 E5 = e5 + ie7 E6 = e6 + ie8 , (B.16)

The k-symmmetry constraints that follow by setting to zero the coefficient of Ga1,...ane0 are

equivalent to the vanishing of the pullback of the following 4-forms onto the D3 world-volume:

EABCD = 0

(e09 + i(w̃ �w))^EAB = 0 for A,B = 0,1,2,5,6 . (B.17)

Here we have also defined the following real 2-forms:
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w̃ = e13 + e24 =� i
2

⇣
E1 ^E1 +E2 ^E2

⌘
(B.18)

w = e57 + e68 =
i
2

⇣
E5 ^E5 +E6 ^E6

⌘
. (B.19)

Substituting the equations in (B.17) into the k-symmetry constraint and equating the coeffi-

cient of e0 on both sides, we find that for D3 probes that have a time-like world-volume we

have

(w � w̃)^ (w � w̃) = 0 (B.20)

e09 ^ (w̃ �w) =±
��e09 ^ (w̃ �w)

��=±dvol4 . (B.21)

The above formula is an important one for the discussion of the on-shell actions for our probe

brane solutions. We have been brief in reviewing the derivation of the constraints that give the

general BPS solutions in (4.104), the complete step by step procedure is given in [33].
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