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THE TRANSVERSE MOTION OF THE PARTICLES IN LINEAR ELECTRON ACCELERATOR 
CAUSED BY THE ACTION OF NONSYMMETRIC W A V E 

G. V. Voskressensky and V. I. Korosa 
Radiotechnical Institute, Academy of Sciences, (USSR) 
(Presented by O. A. Valdner) 

1) It was proved in a number of works (1-3) 
that injection current in linear electron accelerator 
is limited. By exceeding the threshold of 
injection current (because of growth of beam 
charge density or increase of injection pulse 
width) electron beam is destroyed. 
Quantitative theoretical and experimental analysis 

of this phenomenon was carried out in 
work (3). 
Calculation in (3) is based on consideration 

of self-consistent problem of interaction of 
weakly modulated beam with non-symmetric 
backward mode. It is similar to linear theory 
of r.f. backward-wave oscillator (4). 
However in linear electron accelerator the pro­

cess of particles bunching by external field of 
accelerating (symmetrical) wave ends rather quickly, 

after which the electrons gathered in separate 
bunches perform limiting motion with practically 
unchanged phase. 
Therefore it is interesting to research the opposite 

limiting case of strong modulation of 
beam. Bearing in mind that velocity of electrons 
is rapidly increasing up to relativistic values we 
will consider the process of beam "expansion" 
on the bases of the research of electromagnetic 
fields excited by beam and analysis of the deflecting 

Fig. 1 - Radial displacement amplitude of the bursts as a function of dimensionless variable y = x √n/2. 

action of the field in assuming predeterminated 
longitudinal motion of particles. The. 
charged bursts moving in a slow-waves accelerator 
structure excited spectrum of various frequencies 
modes (5). The lowest frequency has 
the symmetric mode E01. It's wave length and fields spatial distribution coincide with the corresponding 
external accelerating microwave fields 
characteristics. All the main energetic characteristics 
of the high current electron accelerator 
for various operating conditions (6) may be 
obtained if take into consideration the similar 
type mode excitation. If system axial symmetry 
is disturbed (due to asymmetrical distribution of 
charge in the beam or axial deflection of the 
beam or distriction of the slow-wave structure 
ets) the beam also generates nonsymmetric electromagnetic 
waves frequency of which is high 
than that of the accelerating field. Below we 
apply the method describing the processes in the 
accelerator similar to (6), to account for the 
influence of the nonsymmetric waveguide harmonics 
of the field excited by electron beam. 
2) Nonsymmetric slow waveguide modes existing 

in iris-loaded circular waveguide have complicate 
hybrid character (in contrast to purely 
"electric" or "magnetic" waves with azimuth 
symmetry). 
As usual in considering the periodic structures, 

the mode field on each of the excited frequencies 
is a superposition of space harmonics. All 
the space harmonics corresponding to a given 
mode are characterized by identical azimuth 
symmetry and identical group velocity but differ 
in phase velocity values. Without considering in 
detail the properties of nonsymmetric waves (see, 
for example, (7)) we list expressions for electromagnetic 
field more significant components with 
one azimuth variations in the most interesting 
case, when phase velocity of resonance space 
harmonic (on which' the field interacts with a 
relativistic beam) is close to velocity of light 
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Here e1 and e2 — amplitudes of longitudinal E 
and lateral Eφ electric fields on cylindrical surface 

r = a; fn and — coefficients of Fourier — expansion 
for these fields distributions by harmonies 
eih; D — period of slow-wave structure, 
a — axial channel structure radius. 
Using above cited expressions it is easy to 

compute lateral components of Lorentz force 
which acts on charged particle uniformly moving 
parallel to the structure axis and synchronous 
to nonsymmetrical wave field [1]: 
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[2] 
where ψ — phase constant, determining particle 
position relative to wave maximum, ro and φo — correspond 

to radial and azimuth particle position. 
As it follows from expressions [2] the lateral 
force acting on relativistic particle in wave 
field differs from zero for nonsymmetrical waves 
only /m > 0/. In this case force radial and azimuth 
components have the same value. They 
are shifted by the azimuth at an angle of π/2. 
The dependence of lateral deflecting force radial 
displacement of particle will be (ro/a)m-1 
i.e. mainly determined by power m of wave field 
azimuth asymmetry. Thus, with m = 1 the deflecting 
force is the same throughout the entire 
cross section (r ≤ a) of accelerator channel. With 
m > 1 the force rapidly reduces as it approaches 
the axis. Therefore, if consideration is limited by 
well focused paraxial beams it is necessary in 
the first place to take into account the effect of 
the force connected with the waves which have 
single azimuth variation. We should note also 
that the considered lateral deflecting force does 
not depend on dispersion characteristic sigh of 
eigen waveguide modes. 

3) We determine amplitudes of eigen waveguide 
modes excited by the charge moving parallel 
to the slowing structure axis with the help of 

power method which is similar to that considered 
in (5). 
Taking into account the connection of energy 

density with the energy flux value averaged by 
time, we have amplitude value of resonant (i.e. 
moving synchronous with the particle) space harmonic : 
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[3] 
e1 D = 2 ( a )m p1 (1 - Vg/V) 

= 2 ( a )m p(1 - Vg/V) [3] 
Here coefficient p1, characterizing the distribution 

of field through the cross section is determined 
by the formula 

p1 ≡ pVg= 
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where Nm — power flux through a cross-section 
of the structure. The coefficient p has the same 
meaning as in work (5). 
It is necessary to note that in deduction the 

expression [3] for resonant harmonic amplitude 
approximate field formulas [1] were used wich 
are true for particle relativistic velocities. 
4) Now, let us consider the particle radial displacement 

under the action of nonsymmetric 
harmonic of radiated field. The electron beam 
is treated as consisting of equivalent bursts travelling 
with constant velocity and following each 
other by equal distances λ0 (coincide with accelerating 
microwave field wavelength) begins to 
inject at the moment of t = 0; we consider 
that azimuth position of all bursts is the same. 
The radial motion equation of burst number n 
travelling in radiation field of n of previous 
bursts (n = 0 corresponds to the forward burst) 
will be: 

d (mrn) = Frn [5] dt (mrn) = Frn [5] 
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Disregarding for simplicity the change of par­
ticle energy along section w e m a y rewrite the 
equation as follows: 
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where dimensionless values are used: η = 
rn(z) η = 
rο 

— burst relative radial displacement (ro = rn(0) — 
initial deflection, which w e assume constant for 
all the bursts) and x = z√C = t v √C — dimen­
sionless distance along section. The constant C 
with dimension of backward area is determined 
by the expression: 

c = eq vg [7] c = 
2ka2 mv 2 P1 (1 - Vg/V) 
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Value kψ in the equation [6] determines phase 
of the field emitted by the burst with number 
(n - k) at the point of the considered burst po­
sition, minus sign in the right part [6] corres­
ponds to phase reading in the direction oppo­
site to that of propagation. 

Fig. 2 - Radial displacement amplitude of the bursts as a 
function of the injection pulse length (the attenuation is 
neglected). 

Solution of the equation [6] with initial con­
ditions: ηn(0) = 1, ηn(0) = 0, (i.e. with absence 
of beam radial divergence at the entrance to 
the accelerator) can be represented as fallows : 
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where the constant coefficients amn are determined 
by the recursion formulas 
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Values amn with m ≥ 1 can be represented as 
polynoms by η power ( m - 1). Combinations of 
trigonometric functions from ψ limited in value 
serve as their coefficients. At large values of n  
it is more convenient to use instead of exact 
formulas [9] the approximate expressions for 
amn (corresponding to retention of polynom se­
nior powers by n): 
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In the last expression substitution ψ = 3π + δ 
(|δ| < π) is used accounting that for slowing 
structures used in accelerators relation of fre­
quencies of nonsymmetric and accelerating sym­
metric modes is close to 3/2. 

Solution of radial motion equation [6] in cases 
of large n according to [8] and [10] will be: 
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In expression [11], [12] n e w variable is intro­
duced y = χ √n/2), whereas f1 and f2 are determi­
ned by rapidly converging sums 
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Formula [11] represents relative radial displa­
cement of burst as oscillating function of burst 
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number n with amplitude depending on n value, 
parameters of accelerator C and distance along 
the section from the point of injection z. 
Figure 1 represents in logarithmic scale rela­

tion A — A (y) which permits to determine the 
relative displacement from the axis of n-th burst 
with the given values of δ, C and z. It is more 
convenient to use the family of curves F = 

lg(1+A/n) = F ( n ) plotted for various values of 
parameter β = x/ √2 — z √C/2 which is determined 
by the geometry of accelerator section (see Fig. 2). 

Curves F = F (n, β = const) determine directly 
burst m a x i m u m deflection from the axis in func­
tion of injection pulse length t (t = h/v0, where 
Vo — frequency of accelerating field). As it fol­
lows from cited diagrams nonsymmetrical har­
monic radiation field action leads to the increase 
of particle deflection from the axis in injection 
time function according to the law which is some­
what slower than the exponential law. 

5) Losses in slow-wave structure of the acce­
lerator result in radiated field amplitude expo­
nential attenuation as the distance from the 
source with attenuation coefficient α1 = α(Vg/V-Vg) 
increase (α — attenuation constant of appropriate 
waveguide mode). As before w e search solution 
in form (8). As it was done in the lossless pro­
blem w e m a y receive at large values of n the 
following expression of coefficient amn : 
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where γ = α1 λ0 — the nonsymmetric wave field 
attenuation at the distance between the adjacent 
bursts. 

The second term turns into the expression [12] 
in the limit case of γ → 0; account of first item 
which is independent of n (and small in compa­
rison with the value [10]) is necessary because 
the second term decrease exponentially with the 
increase of n. The resulting displacemente of the 
burst will be: 

ηn = Β (x, δ) + 
(-1)n 

A1 (y) cos (nδ + φ1), [15] ηn = Β (x, δ) + 
n 

A1 (y) cos (nδ + φ1), [15] 

Fig. 3 - Radial displacement amplitude of the bursts as a 
function of the injection pulse length [the attenuation is 
taken into account). 
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Value Β (χ, δ) determines the limit value of 
n → ∞ the relative displacement of n-th burst. 
As follows from [16] it depends considerably on 
sign δ(with δ > 0 Β (χ, δ) increases exponentially 
with the increase of argument). The second item 
in [15] differs from radial deflection amplitude 
without account of damping A(y) by exponen­
tial factor e-γn. This factor limited considerably 
the increase of b e a m lateral dimensions with 
time. To illustrate the character of dependence 
of beam lateral dimension from time the dia­
grams of the variable part of lateral displacement 
in the function of burst number n for various 
values of parameter β with γ = 0,001, α = 0.35 
np/m„ βg = 0,028, λo = 0,1 m , are shown in Fig. 3. 
W e are deeply thankful to E. L. Burshtein for 
unfailing attention to our work and discussions. 
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DISCUSSION 
CROWLEY-MILLING: Have the calculations been carried out 
for waveguides with varying parameters, or only for wave­
guides with uniform dimensions? 
VALDNER: The calculations have been carried out for uni­

form structure. However this theory inable us to calculate 
any case, because the formula has been obtained without 
serious limitations. 
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INTERACTION OF A BUNCHED BEAM WITH TRANSVERSE MODES IN r.f. CAVITIES * 

R. L. Gluckstern 
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(Presented by R. L. Gluckstern) 

High current proton linear accelerators are 
being designed for use both as injectors for high-energy 
synchrotrons and as facilities for direct 
experimentation with mesons and nucleons. It 
is well k n o w n that traveling wave electron linacs 
exhibit a beam-cavity interaction which leads to 
transverse beam blow-up (1). W e have studied 
the interaction of high-current proton beams 
with transverse modes in a standing wave linear 
accelerator in order to determine the seriousness 
of this phenomenon for present designs. 
The theory of the interaction of a bunched 

beam with transverse modes in a cavity has 
been developed (2, 3) in analogy with Wilson's 
treatment for the traveling wave electron ma­
chine. The modes of the first transverse band 
are assumed to be oscillating with a (normalized) 
magnetic field amplitude Hj at frequency ωj/2π, 

with z dependence given by the wave number kj. As a narrow beam pulse traverses the cavity it 
contributes to the transverse field because of its 
transverse displacement, but it also responds 
dynamically to the existing transverse field. This 
change in transverse motion generates further 
changes in the field amplitudes which are of 
course proportional to those already present. 

The amplitude after the traversal of the beam pulse can then be written as 

Hj(m+1) e-iωjt = H(m)j (1 - εj) + ∑kSk [Wik H(m)k - H(m)*k 

-i(Xm - iKjx'm)eiaj/2 [1] Here 

Ej = 
πωj , Sk = const 

IoL2 Rk [2] Ej = ωOQj 
, Sk = const 

Ρ Qk 
[2] 

where Io is the average beam current, Δt = 2π/ωo  is the beam bunch separation, L is the cavity 
* W o r k supported in part by the National Science Founda­
tion and the U.S. Atomic Energy Commission. 


