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THE TRANSVERSE MOTION OF THE PARTICLES IN LINEAR ELECTRON ACCELERATOR
CAUSED BY THE ACTION OF NONSYMMETRIC WAVE

G. V. Voskressensky and V. 1. Korosa

Radiotechnical Institute, Academy of Sciences, (USSR)
(Presented by O. A. Valdner)

1) It was proved in a number of works (1-3)
that injection current in linear electron accele-
rator is limited. By exceeding the threshold of
injection current (because of growth of beam
charge density or increase of injection pulse
width) electron beam is destroyed.

Quantitative theoretical and experimental ana-
lysis of this phenomenon was carried out in
work (3).

Calculation in (3) is based on consideration
of self-consistent problem of interaction of
weakly modulated beam with non-symmetric
backward mode. It is similar to linear theory
of r.f. backward-wave oscillator (4).

'However in linear electron accelerator the pro-
cess of particles bunching by external field of
accelerating (symmetrical) wave ends rather quic-
kly, after which the electrons gathered in sepa-
rate bunches perform limiting motion with prac-
tically unchanged phase.

Therefore it is interesting to research the op-
posite limiting case of strong modulation of
beam. Bearing in mind that velocity of electrons
is rapidly increasing up to relativistic values we
will consider the process of beam ” expansion”
on the bases of the research of electromagnetic
fields excited by beam and analysis of the de-

9 f/z 7y fzz'
201
151

1071

-ttt b —— -
210 20 30 40 S50 60 70 80 90 190 0 120 130 f40 150 y=xy7

Fig. 1 - Radial displacement amplitude of the bursts as a
function of dimensionless variable y = x V' n/2.

flecting action of the field in assuming predeter-
minated longitudinal motion of particles. The
charged bursts moving in a slow-waves accelera-
tor structure excited spectrum of various fre-
quencies modes (5). The lowest frequency has
the symmetric mode E«.. It's wave length and
fields spatial distribution coincide with the cor-
responding external accelerating microwave fields
characteristics. All the main energetic charac-
teristics of the high current electron accelerator
for various operating conditions {6) may be
obtained if take into consideration the similar
type mode excitation. If system axial symmetry
is disturbed (due to asymimetrical distribution of
charge in the beam or axial deflection of the
beam or distriction of the slow-wave structure
ets) the beam also generates nonsymmetric elec-
tromagnetic waves frequency of which is high
than that of the accelerating field. Below we
apply the method describing the processes in the
accelerator similar to (6), to account for the
influence of the nonsymmetric waveguide harmo-
nics of the field excited by electron beam.

2) Nonsymmetric slow waveguide modes exi-
sting in iris-loaded circular waveguide have com-
plicate hybrid character (in contrast to purely
" electric” or " magnetic” waves with azimuth
symmietry).

As usual in considering the periodic structures,
the mode field on each of the excited frequen-
cies is a superposition of space harmonics. All
the space harmonics corresponding to a given
mode are characterized by identical azimuth
symmetry and identical group velocity but differ
in phase velocity values. Without considering in
detail the properties of nonsymmetric waves (see,
for example, (7)) we list expressions for electro-
magnetic field more significant components with
one azimuth variations in the most interesting
case, when phase velocity of resonance space
harmonic (on which' the field interacts with a
relativistic beam) is close to velocity of light
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(constant of this harmonic propagation h. = w/Vén = h (w) + (2n/D)n =~ k:
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Here e and e;: — amplitudes of longitudinal E.
and lateral E¢ electric fields on cylindrical sur-
face r = a; f. and f. — coefficients of Fourier —
expansion for these fields distributions by har-
monics e"i; D — period of slow-wave structure,
a — axial channel structure radius.

Using above cited expressions it is easy to
compute lateral components of Lorentz force
which acts on charged particle uniformly moving
parallel to the structure axis and synchronous
to nonsymmetrical wave field [1]:
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where ¢ — phase constant, determining ‘particle

position relative to wave maximum, r. and ¢, —
correspond to radial and azimuth particle posi-
tion. As it follows from expressions [2] the la-
teral force acting on relativistic particle in wave
field differs from zero for nonsymmetrical waves
only /m > 0/. In‘this case force radial and azi-
muth components have the same value. They
are shifted by the azimuth at an angle of =/2.
The dependence of lateral deflecting force ra-
dial displacement of particle will be (r./a)™’
i.e. mainly determined by power m of wave field
azimuth asymmetry. Thus, with m =1 the de-
flecting force is the same throughout the entire
cross section (r < a) of accelerator channel. With
m > 1 the force rapidly reduces as it approaches
the axis, Therefore, if consideration is limited by
well focused paraxial beams it is necessary in
the first place to take into account the effect of
the force connected with the waves which have
single azimuth variation. We should note also
that the considered lateral deflecting force does
not depend on dispersion -characteristic sigh of
eigen waveguide modes.

3) We determine amplitudes of eigen wave-
guide modes excited by the charge moving paral-
lel to the slowing structure axis with the help of
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power method which is similar fo that considered
in (5).

Taking into account the connection of energy
density with the energy flux value averaged by
time, we have amplitude value of resonant (ie.
moving synchronous with the particle) space har-

monic:
q ( To )"‘ ( Io )‘“ 1
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Here coefficient p:, characterizing the distribu-
tion of field through the cross section is de-
termined by the formula

‘1

where N. — power flux through a cross-section
of the structure. The coefficient p has the same
meaning as in work (5).

It is necessary to note that in deduction the
expression [3] for resonant harmonic amplitude
approximate field formulas [1] were used wich
are true for particle relativistic velocities.
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4) Now, let us consider the particle radial dis-
placement under the action of nonsymmetric
harmonic of radiated field. The electron beam
is treated as consisting of equivalent bursts tra-
velling with constant velocity and following each
other by equal distances X {(coincide with acce-
lerating microwave field wavelength) begins to
inject at the moment of t=0; we consider
that azimuth position of all bursts is the same.
The radial motion equation of burst number n
travelling in radiation field of n of previous
bursts (n = 0 corresponds to the forward burst)
will be:

d
— (mr,) = Fa
dt

[5]
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Disregarding for simplicity the change of par-
ticle energy along section we may rewrite the
equation as follows:

d?n. a
= — X Mu-xsink Y 6]
(1X1 k-1

1:(Z)
where dimensionless values are used: m =

To

— burst relative radial displacement (1o = r.(0) —
initial deflection, which we assume constant for
all the bursts) and x=zVC=tv VvC — dimen-
sionless- distance along section. The constant C
with dimension of backward area is determined
by the expression:

eq Ve
C= [71
2ka’mv?  p; (1 — Vg/V)

Value k¢ in the equation [6] determines phase
of the field emitted by the burst with number
(n - k) at the point of the considered burst po-
sition, minus sign in the right part {6] corres-
ponds to phase reading in the direction oppo-
site to that of propagation.
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Fig. 2 - Radial displacement amplitude of the bursts as a
function of the injection pulse length (the attenuation is
neglected).
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Solution of the equation [6] with initial con-
ditions: m.(0) =1, m.(0) =0, (i.e. with absence
of beam radial divergence at the entrance to
the accelerator) can be represented as follows:

XZm

(=1, [8]
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m=0 2.) !

m,

where the constant coefficients am. are determined
by the recursion formulas

h-m4+1

aon = 1, Amm = kZl sink @ am-1, acx. [9]

Values a.. with m 2 1 can be represented as
polynoms by n power (m — 1). Combinations of
trigonometric functions from ¢ limited in value
serve as their coefficients. At large values of n
it is more convenient to use instead of exact
formulas [9] the approximate expressions for
am (corresponding to retention of polynom se-
nior powers by n):
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In the last expression substitution ¢ =3n + 3
(18} < ®) is used accounting that for slowing
structures used in accelerators relation of fre-
quencies of nonsymmetric and accelerating sym-
metric modes is close to 3/2.

Solution of radial motion equation [6] in cases
of large n according to [8] and [10] will be:
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In expression [11], [12] new variable is intro-
duced y = x Vn/2), whereas f; and f: are determi-
ned by rapidly converging sums
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Formula [11] represents relative radial displa-
cement of burst as oscillating function of burst
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number n with amplitude depending on n value,
parameters of accelerator C and distance along
the section from the point of injection z.

Figure 1 represents in logarithmic scale rela-
tion A =A(y) which permits to determine the
relative displacement from the axis of n-th burst
with the given values of §, C and z. It is more
convenient to use the family of curves F =
=1g (1+A/n) = F (n) plotted for various values of
parameter 8 = x/ V2 =z V'C/2 which is determined
by the geometry of accelerator section (see Fig. 2).

Curves F =F (n, 8 = const) determine directly
burst maximum deflection from the axis in func-
tion of injection pulse length t (t = h/v, where
vo — frequency of accelerating field). As it fol-
lows from cited diagrams nonsymmetrical har-
monic radiation field action leads to the increase
of particle deflection from the axis in injection
time function according to the law which is some-
what slower than the exponential law.

5) Losses in slow-wave structure of the acce-
lerator result in radiated field amplitude expo-
nential attenuation as the distance from the
source with attenuation coefficient e, = a(V,/V-V,)
increase (¢ — attenuation constant of appropriate
waveguide mode). As before we search solution
in form (8). As it was done in the lossless pro-
blem we may receive at large values of n the
following expression of coefficient am:
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where Y = aui Ao — the nonsymmetric wave field
attenuation at the distance between the adjacent
bursts.

The second term turns into the expression [12]
in the limit case of v — 0; account. of first item
which is independent of n (and small in compa-
rison with the value [10]) is necessary because
the second term decrease exponentially with the
increase of n. The resulting displacemente of the
burst will be: '
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Fig. 3 - Radial displacement amplitude of the bursts as a
function of the injection pulse length (the attenuation is
taken into account).
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Value B(x,8) determines the limit value of
n — o« the relative displacement of n-th burst.
As follows from [16] it depends considerably on
sign 5(with & > 0 B(x,8) increases exponentially
with the increase of argument). The second item
in [15] differs from radial deflection amplitude
without account of damping A(y) by exponen-
tial factor e yn. This factor limited considerably
the increase of beam lateral dimensions with
time. To illustrate the character of dependence

. of beam lateral dimension from time the dia-

grams of the variable part of lateral displacement
in the function of burst number n for various
values of parameter B with y = 0,001, a=0.35
np/m,, B, = 0,028, .. = 0,1 m, are shown in Fig. 3.
We are deeply thankful to E. L. Burshtein for
unfailing attention to our work and discussions.
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DISCUSSION

CrowLEY-MILLING: Have the calculations been carried out
for waveguides with varying parameters, or only for wave-
guides with uniform dimensions?

VALDNER: The calculations have been carried out for uni-

form structure. However this theory inable us to calculate
any case, because the formula has been obtained without
serious limitations.
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INTERACTION OF A BUNCHED BEAM WITH TRANSVERSE MODES IN r.f. CAVITIES *
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(Presented by R. L. Gluckstern)

High current proton linear accelerators are
being designed for use both as injectors for high-
energy synchrotrons and as facilities for direct
experimentation with mesons and nucleons. It
is well known that traveling wave electron linacs
exhibit a beam-cavity interaction which leads to
transverse beam blow-up (1). We have studied
the interaction of high-current proton beams
with transverse modes in a standing wave linear
accelerator in order to determine the seriousness
of this phenomenon for present designs.

The theory of the interaction of a bunched
beam with transverse modes in a cavity has
been developed (2, 3) in analogy with Wilson’s
treatment for the traveling wave electroi ma-
chine. The modes of the first transverse band
are assumed to be oscillating with a (normalized)
magnetic field amplitude H; at frequency w;/2w,

*.Work supported in part by the National Science Founda-
tion and the U.S. Atomic Energy Commission.

with z dependence given by the wave number k;.
As a narrow beam pulse traverses the cavity it
contributes to the transverse field because of its
transverse displacement, but it also responds
dynamically to the existing transverse field. This
change in transverse motion generates further
changes in the field amplitudes which are of
course proportional to those already present.

The amplitude after the traversal of the m®
beam pulse can then be written as

Hm e 0r = H™ (1 — €) + 58 [wik H™ — Wa H‘,:“”’:[

- i(xm —1K; x')e"“i”
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where L is the average beam current, At = 2n/w,
is the beam bunch separation, L is the cavity

Here

[2]



