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In this paper we are concerning with the integro-differential equation of 1-dimensional 
neutron transport problem in the stationary case by means of a vectorial variant of the 
decomposition method. The numerical test proves excellent agreement between the 
approximate solution and exact solution. 
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1. INTRODUCTION 

The nonlocal differential problems and Nonlinear Evolution Equations 
(NLEEs) are very important in Physics, Applied Mathematics, Mathematical 
Engineering and other domains. Therefore, different techniques designed to their 
analysis were developed in the past years, such as variational iteration method, Lie 
symmetry analysis, G' /G – expansion method, Painleve analysis, homotopy 
perturbation method, homotopy analysis method, Adomian decomposition and 
several others [1–13]. 

Among these problems, the neutron transport problem is very significant in 
nuclear physics. The fission of the nucleus in a reactor produces high speed 
neutrons which are subjected to a decreasing speed process until they become in an 
equilibrium state with the other atoms. 

The density of neutrons describes their distribution in the reactor and it is the 
solution of an integro-differential equation. This problem – known as neutron 
transport problem – was investigated in many works.  

The involved methods are [14–20]: homotopy perturbation method, finite 
elements, finite differences, the fictitious domain method, Fourier transform, 
Laplace transform, splitting technique, truncated Chebyshev series, spectral methods. 

In this paper we examine a new technique for computation of the solution: 
vectorial decomposition method. The numerical test shows the efficiency of this 
procedure. 
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The paper is organized in the following way: section 2 contains a short 
description of the general decomposition method. The mathematical model of the 
problem is given in section 3. Section 4 deals with the resolution of the integro-
differential using the new vectorial decomposition method. Section 5 includes 
numerical test and comparison between the approximate and the exact solution. 
Finally, some conclusions are presented in section 6. 

2. BRIEF DESCRIPTION OF DECOMPOSITION METHOD 

The Adomian decomposition method [13, 21–24] became a very efficient and 
reliable technique for solving linear and nonlinear ordinary and partial equations. 
Some of the reasons are: 

– it offers a competitive alternative to the Taylor series method and other 
series techniques; 

– it has significant advantages comparing with other numerical methods in 
providing analytic, rapidly convergent approximation. 

In this section we concern with a brief presentation of the method. 
Consider the equation 

 ( )Lu Ru Nu g x+ + =  (1) 

with prescribed conditions. 
Here, u is the unknown function, L is the highest order derivative assumed to be 
easily invertible, R is the remainder linear operator, Nu represents the nonlinear 
terms and g is the source term.  

Applying the inverse operator 1−L  on both sides of (1) we deduce 

 1 1( ) ( ) ( ) ( )u x f x L Ru L Nu− −= − −  (2) 

The function )(xf  arises from the integration of )(xg  and taking into consi-
deration the initial or boundary conditions. 
The Adomian decomposition method computes the solution )(xu  as the series 

 
0
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The nonlinear term series is calculated by 
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nA  are the Adomian polynomials which are defined by the relation 
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It results ),...,( 0 nnn uuAA = . The components ,...,, 210 uuu are recursively 
determined: 
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3. MATHEMATICAL MODEL 

The 1-dimensional neutron transport equation in the stationary case is 
described by the relation [14] 

 
1

1

1( , ) ( , ) ( , )d ( , )
2

t x t x t x f x t
x −

∂ϕ
+ ϕ = ϕ τ τ +

∂ ∫  (5) 

where ]1,1[]1,0[),( −×∈tx . The prescribed conditions are 

 (0, ) 0  for 0,    (1, ) 0  for 0t t t tϕ = > ϕ = <  (6) 

The notations are as follows: 
( , )x tϕ  is the density of neutrons, which migrate in a direction that makes an angle 

α  with the x axis and cost = α ; 
( , )f x t  is a given radioactive source function. 

Similar to [14] we introduce the notations 

 
( , ) ( , )  for 0
( , ) ( , )  for 0
x t x t t
x t x t t

+

−

ϕ = ϕ >

ϕ = ϕ − >
 (7) 

 1 1( ), ( )
2 2

u v+ − + −= ϕ + ϕ = ϕ − ϕ  (8) 

 1 1( ), ( )
2 2

g f f r f f+ − + −= + = −  (9) 

It results  



 Ion Aurel Cristescu 4 182 

 

12
2

2
0

( , ) ( , ) ( , )d ( , ) ( , ),

for ( , ) [0,1] [0,1]

u rt x t u x t u x g x t t x t
x x
x t

∂ ∂
− + = τ τ + −

∂ ∂

∈ ×

∫  (10) 

 
(0, ) (0, ) (0, )

(1, ) (1, ) (1, )

uu t t t r t
x
uu t t t r t
x

∂
− = −

∂
∂

+ =
∂

      , ]1,0[∈t  (11) 

We apply Simpson’s formula of numerical integration in eq. (10), with the division 
points 25.0,4,0, === hkkhtk  and denote ),()( kk txuxu = .  
Taking into consideration that 0)(0 =xu , which means in this case the neutrons 
move in a perpendicular direction toward the axis Ox, we obtain the differential 
system 
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where  

 2

1( ) ( , ) ( , ) ( , )k k k k k
k

rS x S x t t x t g x t
t x

∂⎡ ⎤= = −⎢ ⎥∂⎣ ⎦
 (14) 

We introduce the matrices   

 1 2 3 4diag( , , , )T t t t t=  

 1 2 3 4( ) [ ( ), ( ), ( ), ( )]tR x r x r x r x r x=  

with ( ) ( , ), 1,4.k kr x r x t k= =  
The boundary conditions (11) can be written  
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(0) (0) (0)
(1) (1) (1)

U T U R
U T U R

′− = −
′+ =

 (15) 

4. RESOLUTION BY DECOMPOSITION METHOD 

We proceed with the computation of the solution using the proposed method. 
We rewrite the eq. (12) in operator form 

 SMULU +=  (16) 

where 
2

2

d
d

L
x

= . Applying 1

0 0

(.)d d
yx

L t y− = ∫ ∫  on both sides of (16) we obtain 

 ( )1( ) (0) (0) ( ) ( )U x U U x L MU x S x−′= + + +  (17) 

Implementing the vectorial decomposition method, we deduce  

 )()(
0

xUxU n
n
∑
∞

=

=  (18) 

with 

 0
0 0

( ) (0) (0) ( )d d
yx

U x U U x S t t y′= + + ∫ ∫  (19) 

 1
1 1

0 0

( ) ( ) ( )d d
yx

n n nU x L MU x M U t t y−
− −= = ∫ ∫  (20) 

for 1≥n . 

Denote 0
0 0

( ) ( )d d
yx

S x S t t y= ∫ ∫ . 

The eqs. (19), (20) provide 

 
2 2 1

( ) (0) '(0) ( ), 0
(2 )! (2 1)!

n n
n n n

n n
x xU x M U M U M S x n
n n

+

= + + ≥
+

 (21) 

In the above relation,  

 1
0 0

( ) ( )d d , 1
yx

n nS x S t t y n−= ≥∫ ∫  (22) 

At this stage, we introduce the square root matrix Q of the matrix M ( 2Q M= ) 
which is given in Matlab by 
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1199/375      –1102/1859     –2563/1791     –801/1991  
–551/1859      1868/1073      –818/1187     –757/3666  
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 (23) 

Taking in consideration the equations (18)(21)(23), the solution )(xU can be 
expressed as 
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We introduce the matrix functions  
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We deduce the function )(xU in the form 
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0
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n
n

U x xQ U xQ Q U M S x
∞

−

=
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The boundary conditions (15) yield 

 (0) (0) (0)U TU R′= −  (27) 

and  

   

1

0

0
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We substitute )0(U  in (28) and deduce the linear system 

 

1

0 0

ch( ) sh( ) sh( ) ch( ) (0)

(1) ch( ) (0) (1) sh( ) (0) (1)n n
n n

n n
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R Q R M S T Q QR T M S

−
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 (29) 

After determining (0), (0)U U′ can be found from (27). Finally, ( )U x  is calculated 
through eq. (26). 
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The computation of )(xSn  can be performed in a recursive manner, with the aid of 
Simpson or Gauss numerical integration.  
Simpson’s formula with 4 intervals provides 
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(30) 

for 1n ≥ . 
We observe that 1 (0) 0, ( ) 1nS n− = ∀ ≥ . 
Similarly will be accomplished the calculation for 0 ( )S x .  
On the other hand, )(xSn′  will be computed by 

 1 1 1 1 1
0

3( ) ( )d ( ) 2 4 4
12 2 4 4

x

n n n n n n
x x x xS x S y y S x S S S− − − − −
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The other variant we take into consideration is the numerical integration by Gauss 
formula 
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For ( )nS x′  we have 
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5. NUMERICAL RESULTS 

We shall examine a numerical test for the vectorial decomposition method 
which was analyzed in the preceding sections. 

Consider the integro-differential equation 
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with the conditions (0, ) 0  for 0,    (1, ) 0  for 0t t t tϕ = > ϕ = < . 
The eqs. (9) provide 
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Also, we obtain 
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The differential system (12) becomes 
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On the other hand, the conditions (15) are in this case 
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The computation was performed on a grid 0 : 0.05 :1x =  of the interval [0,1]. 
The exact solution of the eq. (35) is 2( , ) ( 1) sin ( )x t x txϕ = − , while 

 21( , ) [ ( , ) ( , )] ( 1) sin ( )
2

u x t x t x t x tx= ϕ + ϕ − = − , ( , ) [0,1] [0,1]x t ∈ ×   (37) 

Table 1 contains the errors for different values of n: 

 max{| ( , ) ( , ) | / / 20, 0, 20, / 4, 0, 4}n n i j i j i jE u x t u x t x i i t j j= − = = = =  

There are two cases: employing Simpson’s integration (eqs. (30), (31)) and Gauss 
formula (eqs. (33), (34)). 

Table 1 

The errors for different values of n 

n computation based on eqs. (30), (31) computation based on eqs. (33), (34) 
2 0.01120332338819 0.01129740739601 
3 0.00237282709821 0.00222986710352 
4 0.000819120728469 0.000241840608410 
5 0.000796459953999 0.000117534120375 

 

The numerical solution 4,0,4/,20,0,20/),,(5 ==== jjtiixtxu jiji  can be 
interpolated on a 2-dimensional grid, for example [ , ]x t meshgrid=  
(0 : 0.05 :1, 0 : 0.05 :1) . 

In Fig.1 we obtained the graphical representation of the absolute error 
]1,0[]1,0[),(|,),(),(| 5 ×∈− txtxutxu , after interpolation. 
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Fig.1 – Absolute error. 

6. CONCLUSIONS 

In this work, the steady 1-dimensional neutron transport equation was 
analyzed. The computation of the approximate solution is accomplished using a 
vectorial decomposition algorithm. Both Simpson and Gauss numerical integration 
formulas are involved. Comparison between exact and numerical solution proves 
very good agreement. 
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