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In this paper we are concerning with the integro-differential equation of 1-dimensional
neutron transport problem in the stationary case by means of a vectoria variant of the
decomposition method. The numerical test proves excellent agreement between the
approximate solution and exact solution.
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1. INTRODUCTION

The nonlocal differential problems and Nonlinear Evolution Equations
(NLEEs) are very important in Physics, Applied Mathematics, Mathematical
Engineering and other domains. Therefore, different techniques designed to their
analysis were developed in the past years, such as variational iteration method, Lie
symmetry anaysis, G' /G — expansion method, Painleve analysis, homotopy
perturbation method, homotopy analysis method, Adomian decomposition and
several others[1-13].

Among these problems, the neutron transport problem is very significant in
nuclear physics. The fission of the nucleus in a reactor produces high speed
neutrons which are subjected to a decreasing speed process until they becomein an
equilibrium state with the other atoms.

The density of neutrons describes their distribution in the reactor and it is the
solution of an integro-differential equation. This problem — known as neutron
transport problem —was investigated in many works.

The involved methods are [14-20]: homotopy perturbation method, finite
elements, finite differences, the fictitious domain method, Fourier transform,
Laplace transform, splitting technique, truncated Chebyshev series, spectral methods.

In this paper we examine a new technique for computation of the solution:
vectorial decomposition method. The numerical test shows the efficiency of this
procedure.
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The paper is organized in the following way: section 2 contains a short
description of the general decomposition method. The mathematical model of the
problem is given in section 3. Section 4 deals with the resolution of the integro-
differential using the new vectorial decomposition method. Section 5 includes
numerical test and comparison between the approximate and the exact solution.
Finally, some conclusions are presented in section 6.

2. BRIEF DESCRIPTION OF DECOMPOSITION METHOD

The Adomian decomposition method [13, 21-24] became avery efficient and
reliable technique for solving linear and nonlinear ordinary and partial equations.
Some of the reasons are:

—it offers a competitive alternative to the Taylor series method and other

series techniques;

—it has significant advantages comparing with other numerica methods in

providing analytic, rapidly convergent approximation.
In this section we concern with a brief presentation of the method.
Consider the equation

Lu+ Ru+ Nu = g(x) D

with prescribed conditions.

Here, u is the unknown function, L is the highest order derivative assumed to be
easly invertible, R is the remainder linear operator, Nu represents the nonlinear
terms and g is the source term.

Applying the inverse operator L™ on both sides of (1) we deduce
u(x) = f (x) - L'*(Ru) — L™ (Nu) 2

The function f(x) arises from the integration of g(x) and taking into consi-

deration the initial or boundary conditions.
The Adomian decomposition method computes the solution u(x) asthe series

ux) =3 u,(%) 3

n=0

The nonlinear term seriesis calculated by
Nu=> A
n=0

A, arethe Adomian polynomials which are defined by the relation
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It results A, =A,(Ug....u,). The components ug,U;,U,,..are recursively
determined:
Uy (X) = f(x) @
un+1(X):_Lil(Run)_ Lﬁl(A])’ n>0

3. MATHEMATICAL MODEL
The 1-dimensional neutron transport eguation in the stationary case is
described by the relation [14]

1
t22 (et +o(x) = [ olx Ddt+ f(xD) ©
OX 27
where (x,t) €[0]]x[-1]] . The prescribed conditions are

¢o(0,t)=0 fort>0, ot)=0 fort<O (6)
The notations are as follows:

o(x,t) isthe density of neutrons, which migrate in a direction that makes an angle
o withthex axisand t =cosa ;

f (x,t) isagiven radioactive source function.
Similar to [14] we introduce the notations

o (x,t)=(x,t) fort>0 0
¢ (x,t)=¢(x,~t) fort>0

T S
U=§(<p +0), V—2(<p ¢) (8)

1o o0 L1, o
g=(F+ 1) r=2(f"=1) ©)

It results
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, 0% h or
-t %(x,t)Jru(x,t): ! u(x,r)dr+g(x,t)—t&(x,t), 10
for (x,t) €[0,1] x[0,]]
ou
u(0,t) —t—(0,t) = —r (0,t)
O te[0]] (11)

@ty +t 2 L) =r(Ly)
OX

We apply Simpson’s formula of numerical integration in eg. (10), with the division
points t, = kh,k =0,4,h=0.25 and denote u, (X) = u(x,t,) .
Teking into consideration that u,(x) =0, which means in this case the neutrons

move in a perpendicular direction toward the axis Ox, we obtain the differential
system

d2L2J =M U(X)+ S(X) (12)
dx

Here, we denoted

2 8 16 4
3 3 3 3 3
“a(¥ 4 10 41 o
U(x) = uz(X), M=l 3 3 3 3| gy- S2 (%) (13)
Uz (X) 16 8 3 4 S;(%)
u, (x) 27 27 27 27 §4(x)
21111
3 6 3 12 |
where
§K(x)—§(xt)—i[t ﬂ(xt)— (xt)} (14)
- 1tk _ts k@x 1tk g 1Mk

We introduce the matrices
T= diag(tl,tz,t3,t4)
R(X) =[1,(X), 7, (X), 15 (X), r, ()]

with r.(X) =r(xt,),k=14.
The boundary conditions (11) can be written
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U@)-T U'(0)=-R(0O
(0)-T U'(©)=-R() as)
U@d+T U'D=RQ
4. RESOLUTION BY DECOMPOSITION METHOD
We proceed with the computation of the solution using the proposed method.
We rewrite the eq. (12) in operator form
LU =MU +S (16)
d2 X Yy
where L = P Applying L™ :j j () dtdy on both sides of (16) we obtain
X 0 O
U(x) =U(0)+U'(0)x+ L (MU (X) + S(x)) (17)
Implementing the vectorial decomposition method, we deduce
U=y U, (18)
n=0
with
Xy
Us () =U(0)+U’(O)x+ [ | S(t)ctdy (19)
0 0
X Yy
U,()=L"™U,,()=M[ [ U, (t)dtdy (20)
0 0
for n>1.
X Yy
Denote $,(x) = [ S(t)dtay .
00
The egs. (19), (20) provide
X2n X2n+1
U,(x)= M "U (0) + M"U'(0)+M"S (x), n>0 21
2 (%) (2n)! © D) © S.(¥) (21)
In the above relation,
Xy
S0 =] [ S..@dtdy, n>1 (22)
0 0
At this stage, we introduce the square root matrix Q of the matrix M (Q°=M )

which isgivenin Matlab by
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1199/375 -1102/1859 -2563/1791 —-801/1991
ol -551/1859  1868/1073 —818/1187 —757/3666 23)
| —294/1849  -217/1417  1168/1297  -508/3757

—296/2943  —264/2557 -1143/3757  1345/1491
Taking in consideration the equations (18)(21)(23), the solution U(x) can be
expressed as
2n

U(x) = {Z{; ()2() } (0)+ {Zo (mel)!QZ”}u’(ong M"S,(X) (24)

We introduce the matrix functions

ch(A) = exp(A)+exp( A 2 (2n)'

exp(A) — exp( A n°° =
Sh(A) = ; (2n+1)| "
We deduce the function U (x) in the form
U (x) = ch(xQ)U (0) + sh(xQ)Q U '(0) + i M"S, (¥ (26)
The boundary conditions (15) yield
U(0)=TU'(0) - R(0) (27)

and

ch(QU (0) +sh(Q)Q U '(0) + i M"S, @ +

. (28)
T {Sh(Q)QU (0)+ch(QU'(0)+ 3 M"S (1)} =R()
We substitute U (0) in (28) and deduce the linear system
[ ch(QT +sh(Q)Q™ + Tsh(Q)QT +Tch(Q) JU(0) =
(29)

~R@) + hQR(O) - > M"S, () + T(QIQRO) ~TX-M"S; ()

After determining U '(0), U (0) can be found from (27). Finally, U (x) is calculated
through eq. (26).
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The computation of S, (Xx) can be performed in arecursive manner, with the aid of

Simpson or Gauss numerical integration.
Simpson’ s formulawith 4 intervals provides

S 0=[ [ s.Oddy= j l{sn_l(0)+sn_1(y)+2sn_l[¥j+

+4snl[%j+4sn [yﬂ y=s, ()24 144{& (9 +35,, [ j+7sn (2}(30)
o 2] 3] 3. 3 3]

for n>1.
We observethat S ;(0)=0,(V)n>1.

Similarly will be accomplished the calculation for S;(x).
On the other hand, S (x) will be computed by

s;(x){snAy)dys%{snl(xwzsnl[ )+4& ( j 4sn1[ ﬂ (31)

The other variant we take into consideration is the numerical integration by Gauss
formula

_b-ag b-a, a+b
j f(x)dszz Af(Tti +Tj (32)

a

Xy X 3
y y y
s.00=] | souwy=] 3 ASn_l(EtiJrE)dyz
2 30 ’ ° (33)
X

<52 AAL +1)Sn_l(§(ti £t +1)]

ij=1

For S, (x) we have

S0=[ S.0y=3>" s[5 +) )
0 i=1
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5. NUMERICAL RESULTS

We shall examine a numerical test for the vectoria decomposition method
which was analyzed in the preceding sections.
Consider the integro-differential equation

1

(220 + ox0) =2 [ o(x1de+ F(x), (k) e[0Ix[1] (35
OX 2

-1
where
f(x0) = t[sinZ(tx)+(x—l)tsin(2tx)}+(x—l)sinZ(tx)+XT_1[%_l] for x=0
0, forx=0

with the conditions ¢(0,t)=0 fort>0, o¢(Lt)=0 fort<O.
The egs. (9) provide

Xx-1

(x—l)sinz(tx)+T[M—

1}, forx=0
2X

g(xt) =
0, forx=0
r(x,t) =tsin?(tx) + (x — )t® sin(2tx)

Also, we obtain

= 1(,0
Sexb) =t—2[ta—;(x,t) - g(x,t)} -

2tsin(2tx)+2tz(x—1)cos(2tx)+12_t—zx[25in2(tx)+snzx—l}, for x£0
—2t?, forx=0
The differential system (12) becomes
(2 8 16 4]
3 3 3 3 3
U 4 10 4 1 ||W| |[S(xt)
LIl 3 3 3 3||UL) |S(xt)
U | | 16 8 32 41U |S(xt)
u; 21 21 21 27| |u,| |S(xt,)
2111 1
3 6 3 12|
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On the other hand, the conditions (15) are in this case

tsin’t,
t,sin’t,
t,sin’t,
t,sin’t,

U(0)-TU'(0)=0, UM)+TU'(D) =

Taking into account the eq.(26) we deduce

0 (xt)

D=0, | x| =ch(xQU0)+ QI U )+ 3 M5, 09 36)
n\"™ =3 k=0
0, (x1,)

The computation was performed on agrid x=0:0.05:1 of theinterval [0,1].
The exact solution of the eg. (35) is ¢(x,t) = (x—1)sin?(tx) , while
u(x,t) =%[(p(x,t) +o(x,—t)] = (x=1) sin?(tx), (x,t) [0,1] x[0,1] (37)
Table 1 contains the errors for different values of n:
E, =max{|u,(%.t.)—u(x,t.)|/x =i/20,i=0,20,t. = j/ 4, =0,4

There are two cases. employing Simpson’s integration (egs. (30), (31)) and Gauss
formula (egs. (33), (34)).

Table 1
Theerrorsfor different values of n
n computation based on egs. (30), (31) computation based on egs. (33), (34)
2 0.01120332338819 0.01129740739601
3 0.00237282709821 0.00222986710352
4 0.000819120728469 0.000241840608410
5 0.000796459953999 0.000117534120375

The numerical solution ug(x,t;),x =i/20,i=0,20,t; = j/4,j=0,4 can be
interpolated on a 2-dimensional grid, for example [Xx,t]=meshgrid
(0:0.05:1,0:0.05:1).

In Fig.1 we obtained the graphica representation of the absolute error
[ug (X, t) —u(x,t) |,(x.t) [0 x[0]], after interpolation.
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Fig.1 — Absolute error.

6. CONCLUSIONS

In this work, the steady 1-dimensiona neutron transport equation was
analyzed. The computation of the approximate solution is accomplished using a
vectorial decomposition algorithm. Both Simpson and Gauss numerical integration
formulas are involved. Comparison between exact and numerical solution proves
very good agreement.

Acknowledgements. The author would like to thank to anonymous reviewers for their suggestions
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