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Resumo

A aceleração baseada em plasma (ABP) poderá reduzir significativamente a dimensão e/ou ocusto dos colisores de partículas, que têm sido instrumentais para obter descobertas fundamentaisna física e cujos limites técnicos se está a tornar cada vez mais dispendioso desafiar. Os conceitosde ABP dependem frequentemente da capacidade de manipular interações complexas entre feixee plasma. Num desses conceitos, direcionado a aplicações na física de alta energia e que está aser testado na experiência AWAKE no CERN, a onda de plasma usada para aceleração é impelidapor um feixe de partículas longo e altamente energético. Neste caso as interações em causa sãoas instabilidades de hosing e de auto-modulação. A instabilidade de auto-modulação (IAM) podeser utilizada para produzir campos de esteira (wakefields) de alta amplitude a partir de um feixelongo, que de outra forma não seria adequado para excitar a onda de plasma. A instabilidade dehosing (IH) é indesejada, porque pode deteriorar o feixe e a estrutura do campo de esteira.Nesta dissertação, começamos por rever e alargar a teoria que descreve estas instabilidades.Utilizamos simulações particle-in-cell com o código OSIRIS para testar a robustez da IAM, especi-almente após a sua saturação, a flutuações das condições iniciais. A dependência das taxas decrescimento da IH e da IAM da frequência de perturbação é determinada para um regime adiabáticoe um regime inicial. Durante este regime inicial, mostramos que ambas as instabilidades podem serinterpretadas como osciladores harmónicos forçados, e que é possível controlar o seu crescimentoao "desafinar"a oscilação do plasma em resposta a uma perturbação do envelope (IAM) ou docentroide (IH) do feixe suficientemente cedo. No caso da IAM revelamos ainda um fenómeno deressonância sub-harmónica. Todos estes resultados são validados com simulações. Esta novacompreensão do crescimento de instabilidades feixe-plasma pode ter implicações importantespara os aceleradores baseados em plasma.
Palavras-chave: aceleração baseada em plasma, instabilidade de plasma, teoria de campos deesteira (wakefields), ressonância sub-harmónica, simulações particle-in-cell/PIC
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Abstract

Plasma-based acceleration (PBA) could dramatically reduce the size and/or cost of particlecolliders, which have been at the forefront of fundamental discoveries in physics, and whosetechnical limits it is becoming increasingly costly to push. The success of PBA schemes oftenrelies on the ability to manipulate complex beam-plasma interactions. One such concept, which isgeared towards high-energy-physics applications (implying long propagation distances and highfinal energies), is a single-stage plasma wakefield accelerator driven by a long, highly energeticparticle bunch, and is being tested at the AWAKE facility at CERN. In this case, the key interactionsare the symmetric and asymmetric modes of the transverse two-stream instability, called self-modulation and hosing, respectively. The self-modulation instability (SMI) can be harnessed toproduce high-amplitude wakefields from a long driver, which would otherwise be unfit to excite aplasma wave. The hosing instability (HI) is undesirable due to its potential disruption of the bunchand wakefield structure.In this dissertation, we first review and extend the theory that describes both instabilities.Particle-in-cell simulations with the code OSIRIS are used to test the robustness of the SMI,particularly after its saturation, to input parameter fluctuations. The dependence of the HI and SMIgrowth rates on an arbitrary perturbation frequency is determined for an adiabatic and an early-phase regime, which is particular interesting. During the latter, we show that both instabilities canbe understood as driven harmonic oscillators, and that it is possible to control their growth rates bydetuning the oscillating plasma response to either a bunch radius (SMI) or centroid (HI) perturbationearly enough. For the SMI, in particular, we discover a phenomenon of subharmonic resonance.All of these results are validated with simulations. This novel understanding of the growth ofbeam-plasma instabilities could have important implications for plasma-based accelerators.
Keywords: plasma-based acceleration, plasma instability, wakefield theory, subharmonicresonance, particle-in-cell/PIC simulations
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Chapter 1

Introduction

1.1 What are particle accelerators good for?

The most general association when the topic of particle accelerators is brought up is with high-energy physics. Monumental engineering projects like the Large Hadron Collider (LHC) at theEuropean Organization for Nuclear Research (CERN) cannot fail to capture the general public’sattention. Nevertheless, the vast majority of the roughly 30.000 existing particle acceleratorsworldwide are not used for the advancement of science, but for semiconductor manufacturing,radioisotope production, sterilization of food or medical equipment, plastics manufacturing, medicalimaging, or cancer treatment, among others [1]. The remaining 3% of accelerators with non-commercial purposes constitute crucial but expensive tools for materials science, biochemistry,and, like the LHC, high-energy physics.The engineering underlying these machines has made extraordinary progress during the lastcentury, but we are reaching a technical limit of the order of 100 MV/m in the acceleration gradient [2,3], which means that the acceleration length must be extended in order to reach a higher finalenergy. In the case of circular accelerators, higher energies can also translate into higher inertia(due to relativistic mass increase), which makes it necessary to use higher magnetic fields to bendthe particles into a circular trajectory. Despite the technological breakthrough of superconductingmagnets, there is no prospect of reaching magnetic fields beyond the tens of Teslas [4].Due to these limitations, high-energy-physics projects focused on exploring physics at theenergy frontier have been forced to scale up the size and cost of their proposed machines, suchas the LHC (in operation, circumference of 27 km , construction cost of roughly =C3 billion [5]), theFuture Circular Collider (under study, circumference of 100 km, budget of =C11.8 billion [6]), or theInternational Linear Collider (under study, length of 31 km, budget of almost =C10 billion [7]).
1.2 What is plasma-based acceleration?

The current limitation on the acceleration gradient is due to the breakdown of the materials thatmake up the accelerating elements in conventional machines (radiofrequency cavities) when subjectto a high enough surface electric field. The first idea to use plasma for particle acceleration wasput forward in 1979, which consisted of letting a laser pulse drive a plasma wave and acceleratingtrapped electrons in the ensuing fields [8]. The great promise behind this idea lies in the fact thatan ionized gas, i.e., plasma, is beyond material breakdown, and can thus sustain extremely highelectromagnetic fields.
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Plasma waves, which consist of fluctuations of the plasma electron density and are thereforeassociated with co-propagating electrostatic fields, provide the structure required to contain theparticles we wish to accelerate. In a cold plasma, and approximating the much heavier plasma ionsas an immobile, homogeneous positive background, such a wave can be produced by disturbingthe plasma electrons, which naturally oscillate at the plasma frequency ωp =√e2n0/ε0me, where eis the elementary charge, n0 is the plasma electron density, ε0 is the vacuum permittivity, and meis the electron mass.An estimate of the maximum electric field sustainable by a plasma wave is given by the cold,non-relativistic wavebreaking limit E0 = mecωp/e ≈ 96
√
n0[cm−3] [V/m], where c is the speedof light. For a plasma density of n0 = 1018 cm−3, for example, the wavebreaking field is almost100 GV/m, i.e., three orders of magnitude higher than currently feasible acceleration gradients.Plasma-based acceleration therefore represents a thrilling opportunity for more compact and/orcost-effective particle accelerators.

1.3 Where does the field stand?

Since the first scheme for plasma-based acceleration driven by a laser pulse, commonly referredto as Laser Wakefield Acceleration (LWFA), was proposed, the field has blossomed into a varietyof different configurations and potential applications. A plasma wave may equally be driven bya beam of charged particles, in which case it is commonly called Plasma Wakefield Acceleration(PWFA) [9, 10]. Several experimental milestones have been reached in both broader categories,and occasionally even using both kinds of drivers [11].Advances in the use of plasma as a waveguide for extremely intense (petawatt-level) laserpulses have allowed the demonstration of electron acceleration up to 7.8 GeV in 20 cm (i.e., anacceleration gradient of almost 40 GV/m) [12]. The strength of LWFA setups is indeed accessto extremely high acceleration gradients, albeit for limited propagation lengths in plasma, sincethese setups typically contend with driver divergence, witness dephasing, and driver depletion(for ultrashort laser pulses with current technology). In order to reach interesting final energies fora future lepton collider, for example, it would be necessary to couple several LWFA stages, theprinciple of which has already been proved experimentally [13].Staging nevertheless remains a significant technical challenge, which, coupled with the verylow wallplug efficiency of LWFA driven by short intense pulses [14], makes laser-driven schemesless attractive for high-energy-physics applications from this point of view. By contrast, PWFAexperiments have demonstrated energy-transfer efficiencies (from the plasma to the acceleratedbunch) of 30–40% [15, 16]. In fact, recent experimental efforts suggest that it may be possible tooperate a beam-driven plasma accelerator with a wallplug efficiency of 13% [17], which is similarto current conventional accelerators. Moreover, relativistic particle bunches often carry moreenergy than laser pulses and propagate approximately at c, which delays driver depletion andavoids dephasing. The AWAKE experiment uses 400-GeV proton bunches, which contain almost20 kJ of energy, to demonstrate single-stage, plasma-based acceleration for high-energy-physicsapplications [18, 19]. During its Run 1, electrons were accelerated to 2 GeV in proton-drivenwakefields along a ten-meter-long plasma [20].A beam driver has also been used to accelerate positrons in plasma [21], which remains oneof the most challenging components for a potential plasma-based electron-positron collider. Anenergy-frontier lepton collider is most efficient in the form of a linear machine, since lighter particlesradiate away much more energy on a bent trajectory than heavier particles (such as hadrons), and
2



thus stands to gain the most from a high acceleration gradient, which can make it more compact.The luminosity required for such high-energy-physics facilities poses an additional challenge,which part of the community has begun to tackle by measuring the minimum recovery time of aperturbed plasma and estimating an upper repetition rate limit of the order of MHz [22].

1.4 The pursuit of accelerated bunch quality

Besides the challenges already mentioned, the potential of plasma-based acceleration cannotbe fulfilled without demonstrating a high degree of accelerated bunch quality, which typicallycomprises high bunch charge, low or preserved emittance, and low energy spread. At the time ofwriting, experimental results undergoing peer review appear to successfully demonstrate PWFAwhere the emittance, charge, and energy spread of an injected bunch has been preserved [23].Nevertheless, bunch quality continues to be the crucial concern for most regimes and configurationsof plasma-based acceleration.The emittance of a particle bunch can be preserved as long as the focusing field acting on itgrows linearly along the transverse direction. This is the case for plasma wakefields in the blowoutregime [24, 25], where the driver is dense or intense enough to expel all plasma electrons in its path,instead of merely perturbing the plasma electron density, as in the linear regime (δn/n0 ≪ 1, where
δn is the plasma density perturbation). In any regime, however, the emittance may be increaseddue to undesirable interactions between the bunch and the plasma, such as streaming instabilitiesor the hosing instability (see Ch. 3).In both the linear and nonlinear (δn/n0 ≳ 1) wakefield regimes, the (non-constant) profile ofthe longitudinal wakefields Ez within each wake period inevitably imprints some energy spreadon a trapped bunch. This can be circumvented with beam loading [26], i.e., by acceleratingenough particles that their collective charge is able to flatten Ez locally. This effect applies bothto linear [27] and nonlinear wakefields [28, 29]. The benefits of beam loading can be maximizedby shaping the accelerated bunch into an optimal profile [26, 28], which has been demonstratedexperimentally in beam-driven nonlinear wakefields, using conventional techniques to prepare theinjected bunch [30]. In this regime, however, the injected bunch most commonly consists of plasmaelectrons that become trapped in the “bubble” behind the driver and are subsequently accelerated.There are several techniques to control this so-called self-injection, mostly by changing the plasmaprofile or properties. It is therefore also possible to tailor the shape of a self-injected bunch forbeam loading and to obtain low energy spreads, as has been accomplished experimentally forLWFA [31, 32], most recently with the help of machine learning techniques [33, 34].Alternatively, since Ez is approximately independent of the transverse coordinate in the blowoutregime [24, 25], the imparted energy spread can be considered correlated with the longitudinalcoordinate. It may be possible to reach sub-0.1% energy spreads using additional plasma sectionsto “dechirp” a bunch with such a correlated energy spread, for example by rotating its phase spacebetween two sections [35], and it may even be possible to form a self-correcting mechanism bychaining several of these configurations (plasma, magnetic chicane, plasma) [36].Despite the outstanding challenges, progress on the bunch quality front has reached an ex-tremely important milestone in 2023. Two separate groups experimentally demonstrated free-electron lasing using electron bunches accelerated in plasma (via LWFA [37] and PWFA [38]),thereby asserting the suitability of plasma-based sources for such applications.
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1.5 What are the hosing and self-modulation instabilities?

The work discussed in this doctoral dissertation is oriented toward the AWAKE experiment, whichseeks to demonstrate the acceleration of an electron bunch over a long distance in plasmawakefields driven by a relativistic proton bunch. The experimental setup for the AWAKE Run 1measurement campaign is shown in Fig. 1.1. The experiment’s goal is to produce an electron beamwith enough quality to be suitable for high-energy-physics applications.The driver is a 400-GeV proton bunch with a length of 6–12 cm, which is far longer than thetypical lengths where plasma wakefields reach interesting amplitudes. At the nominal plasmadensity in AWAKE, n0 = 7 × 1014 cm−3, E0 ≈ 2.5 GV/m and the plasma wavelength, defined as
λp = 2πc/ωp, is roughly 1.26 mm. A plasma wave is most effectively excited when there is a densityperturbation at the time scale of the plasma period ω−1

p , or, equivalently, at the length scale of λp.A long driver can therefore only generate modest wakefields. However, the same driver is longenough to sustain several periods of the forces associated with these wakefields, in particulartheir transverse component (for a highly relativistic bunch). Both the hosing and self-modulationinstabilities are a result of the interaction between the long driver and the transverse wakefields.In the linear regime, where the bunch density nb is smaller than the plasma density (nb < n0),the wakefields oscillate harmonically along the co-moving coordinate ζ = z − ct at the naturalplasma wavenumber kp = ωp/c. For a driver that is perfectly axisymmetric with respect to thepropagation axis z, the transverse component of the wakefields gradually acts on the driverparticles, periodically focusing and defocusing them until a train of “bunchlets” sized and spacedat approximately λp is eventually formed [see Fig. 1.2b)]. The more the initially long, smooth bunchprofile acquires this train structure, the more the plasma wave is excited at its natural frequency ωp,and the higher the amplitude of the generated wakefields. This resonant feedback loop constitutesthe self-modulation instability, leading to quasi-exponential growth of the wakefield amplitude.
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Figure 1.1: Schematic drawing of the AWAKE experiment’s setup for its Run 1.
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Figure 1.2: Illustrative representation of the hosing (a) and self-modulation (b) instabilities. The transversecomponent of the wakefields is shown as a blue-to-red color scale, the bunch distributions as yellow-shaded areas outlined by dash-dotted contours, and the centroid (a) and RMS envelope (b) as thick solidred lines. The bunches propagate from left to right.
A saturation phase of the instability is eventually reached, in part because all the bunch chargelocated in defocusing regions has been lost [see Fig. 4.22a) on p. 76].The hosing instability can be explained by the same mechanism, with the exception that thereis no axisymmetry, which is the case for a bunch propagating with a tilt relative to the z-axis. Thisasymmetry translates into uneven focusing or defocusing forces around the axis [see Fig. 1.2a)],which in turn exacerbate the initial asymmetry. Once again, since the wakefields oscillate at kpalong ζ, the upshot is an oscillating bunch centroid with a wavelength of λp and with growingamplitude along both ζ and the propagation distance z, leading to significant emittance growth.Note that many forms of the HI exist, depending on the conditions of the bunch and acceleratingstructure. An overview is shown in Table 1.1, where Lb denotes the longitudinal bunch size and λNpis the nonlinear plasma wavelength [24]. Note that the terms “overdense” and “underdense” areused interchangeably with “linear” and “nonlinear”, respectively. In the following, we will concernourselves exclusively with the strongly-coupled, overdense, long-bunch facet of the HI (and SMI,for that matter).Since the hosing and self-modulation instabilities are dictated by the transverse dynamicsof the bunch particles, their evolution time scale is tied to the betatron period. The betatronfrequency is defined as ωβ = ωb/

√
2γb =

√
nb0q2b/(ε0Mb)/

√
2γb, where nb0 is the peak bunch density,and γb, qb and Mb are the Lorentz factor, charge and mass of the bunch particles, respectively. The

Table 1.1: Overview of the different regimes of hosing-type instabilities in accelerators.
In terms of ... Regime Meaning Examples

Time/space scalesof instability growthand beam evolution
weakly coupled betatron motion cannot beneglected during growth ofinstability conventional accelerators(beam break-up inst. [39])
strongly coupled growth of instability muchfaster than betatron period plasma-based accelerators

Plasma and beamdensity overdense nb < n0 AWAKE [18, 40]underdense nb > n0 FLASHForward [41]
Bunch length andplasma wavelength short bunch Lb ∼ λp or Lb ∼ λNp FLASHForward [41]long bunch Lb ≫ λp AWAKE [18, 40]
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growth of both instabilities has a spatiotemporal character, i.e., it is a function of both ζ and z (or t).Growth rates can be obtained with asymptotic methods [42, 43], which presuppose a long-bunch,early-time approximation (see Eq. 2.118 on p. 34). These growth rates are discussed in more detailin Sec. 2.3.3. Since they are similar for both instabilities, hosing and self-modulation may developat the same time and couple to each other [43], or one may dominate over the other if the seedinglevels are disparate enough [44, 45].
1.6 Which questions are addressed in this dissertation?

The overarching goal of this work is to expand the fundamental knowledge about two specificbeam-plasma instabilities, thereby contributing to a successful demonstration of plasma-basedacceleration (be it along the particular avenue represented by AWAKE or along other avenues).Each chapter aims to answer the following questions.
• Chapter 2: Theoretical models for the hosing and self-modulation instabilities

– What theoretical models exist to describe the HI and SMI?
– What is the mathematical scaffolding behind existing models?
– Under which conditions are these models valid?
– Is it possible to model the early growth phase of these instabilities?

• Chapter 3: Properties of the hosing instability
– Can the hosing instability grow at wavelengths other than the plasma wavelength?
– Is it possible to mitigate hosing in the linear/overdense, long-bunch regime?

• Chapter 4: Properties of the self-modulation instability
– Is the SMI robust to fluctuations of the input parameters after saturation?
– Does self-modulation grow at wavelengths other than the plasma wavelength?
– How can the development of the SMI be influenced using plasma density steps?

1.7 Methods

The doctoral work was partly conducted at the Group of Lasers and Plasmas of Instituto de
Plasmas e Fusão Nuclear (IPFN) at Instituto Superior Técnico – University of Lisbon and partly atthe European Organization for Nuclear Research (CERN). The results presented in this dissertationwere obtained using analytical methods, numerical computation, and numerical simulations basedon the particle-in-cell (PIC) method. The latter were performed with the code OSIRIS [46], with thesupport of several supercomputing grants (see Acknowledgments).OSIRIS is a fully relativistic, massively parallel PIC code developed and maintained by the Osirisconsortium, which consists of the Extreme Plasma Physics (EPP) team in the Group of Lasers andPlasmas and the Particle-in-Cell and Kinetic Simulation Software Center (PICKSC) at University ofCalifornia, Los Angeles.The PIC method is a computationally intensive particle-tracking simulation method, which uses agrid to compute the electromagnetic fields caused by, and acting on, the simulation macroparticles.These macroparticles represent averaged ensembles of real particles. The loop executed at each
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iteration of a PIC simulation is represented in Fig. 1.3. Many algorithmic choices are available foreach step of the loop.The most common discretization of the relativistic equations of motion is the finite-difference,time-centered Boris algorithm [47]. Current deposition schemes typically rely on some order ofsplines (the default order in OSIRIS is quadratic), though it is essential to ensure that the total charge(and Gauss’s law) is conserved. The field equations can be solved with a variety of approaches,though the Yee solver [48] (a finite-difference time-domain scheme with second-order centraldifference) is the most widespread.At the beginning of each simulation, a particle species must be initialized according to somedensity distribution. Care must be taken to accurately translate this input into a distributionof discrete, ensemble-representing macroparticles, while ensuring that low-density regions aresufficiently represented statistically. In OSIRIS, the number of particles per cell is initially fixed anda unique weight is attributed to each macroparticle, such that the overall distribution matches theinput distribution. After t = 0, the macroparticles are allowed to cross cell boundaries and movefreely.Though OSIRIS includes many useful advanced modules, the work in this dissertation requiresonly a few basic capabilities. Besides massive parallelization, we have made use of the 2D, 3D and2D axisymmetric geometries, and of the field initialization for a charged particle beam.
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Chapter 2

Theoretical models for the hosing and
self-modulation instabilities

In this chapter, we will provide an overview of the theory available to describe the hosing and self-modulation instabilities. This overview will include existing work (accompanied by the respectivereference) as well as original contributions.Although the HI and SMI are mathematically and physically closely related (as we shall see),the components of the existing theory for these instabilities are scattered in different publications.In addition, due to the size constraints associated with scientific publications (understandably),pivotal details for the derivation of these theoretical components are often omitted. For thesereasons, and since the calculations behind this theoretical apparatus at times require some nontrivialmathematical sleights of hand, we present a systematic derivation of some equations (both existingand original) that describe hosing and self-modulation.
2.1 Plasma response

In this dissertation, we will always consider the propagation of a relativistic charged-particle bunchin a cold plasma, where we neglect the motion of the plasma ions. The bunch densities consideredare always smaller than the background plasma density (nb < n0), which means that we can uselinear wakefield theory to describe the phenomena in question.The wakefields generated in plasma in response to a particle bunch propagating along z underthe above conditions are dictated by the wake potential equation, which can be derived fromthe cold plasma fluid and Maxwell equations (i.e., the continuity, fluid momentum, and Poissonequations). The normalized wake potential is defined as ψ = ϕ − az, where ϕ = eΦ/mec
2 and

a = eA/mec
2 are the normalized versions of the electric potential Φ and magnetic vector potential

A, respectively (note that vector quantities are denoted by an underline). In the following, we usethe bunch co-moving coordinate ζ = z− ct, or its normalized equivalent ζ̂ = kpζ (denoted by a “hat”sign). The differential equation for the normalized wake potential is
(∂2ζ + 1)(∇2

⊥ − 1) ψ =
qb
e

nb(ζ, x⊥)

n0
, (2.1)

where x⊥ are the transverse coordinates, ∇2
⊥ is the Laplace operator in x⊥, qb is the charge ofthe bunch particles and nb(ζ, x⊥) is the bunch density distribution [9, 10]. The distance quantitiesin Eq. 2.1 (ζ and x⊥) are normalized to the plasma skin depth k−1

p , although the hat notation is
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ommitted. This will generally be the case for distance quantities in all the equations mentionedthroughout this dissertation unless otherwise stated. As an example, the coordinate ζ (assumednormalized) should be understood as kpζ in physical units, and the derivative ∂/∂y as k−1
p ∂/∂y.The specific form of the transverse Laplace operator in Eq. 2.1 will depend on the geometrychosen to approach a problem. It is possible to obtain a general form of the solution for ψ asa function of the bunch distribution nb for different geometries, using Green’s functions. In thefollowing, we will first establish a general form of the solution for the wake potential ψ using Green’sfunctions, in which the specific Green’s functions for different operators (in different geometries)can be later replaced.Once the wake potential potential has been found, it can be translated into a force F acting ona relativistic particle with charge qb:

F

eE0
= −qb

e
∇ψ . (2.2)

2.1.1 General Green’s function solution for the wake potential

The Green’s function method provides us with a general recipe for the solution to Eq. 2.1, where wecan simply plug the bunch profile and choose an appropriate kernel function from a catalog thatwe have calculated beforehand.Let us consider the following general equation, composed of two differential operators Lζ and
L⊥ acting on the function ψ(ζ, x⊥), with the inhomogeneity H(ζ, x⊥), and where the variables ζ and
x⊥ belong to the general domains Dζ and D⊥, respectively:

LζL⊥ψ = H . (2.3)
If we define a new function ψ⊥ = L⊥ψ, then we can write Eq. 2.3 as Lζψ⊥ = H. The Green’sfunction solution for ψ⊥ can be determined by finding the Green’s function that fulfills the equation

LζGζ(ζ, ζ ′) = δ(ζ − ζ ′), where δ(x) is the Dirac delta distribution. The general solution for ψ⊥ willthen be:
ψ⊥(ζ, x⊥) =

∫
Dζ

dζ ′ Gζ(ζ
′, ζ)H(ζ ′, x⊥) . (2.4)

Using our earlier definition, we can now use the same procedure to solve the equation L⊥ψ = ψ⊥,substituting our solution for ψ⊥. The general solution for ψ is therefore:
ψ(ζ, x⊥) =

∫
D⊥

dx′⊥ G⊥(x
′
⊥, x⊥) ϕ⊥(ζ, x

′
⊥) =

∫
D⊥

∫
Dζ

dζ ′dx′⊥ G⊥(x
′
⊥, x⊥)Gζ(ζ

′, ζ)H(ζ ′, x′⊥) , (2.5)
where G⊥(x⊥, x

′
⊥) is the Green’s function that fulfills the equation L⊥G⊥(x⊥, x

′
⊥) = δ(x⊥ − x′⊥). Thegeneral solution in Eq. 2.5 means that we can find the Green’s function for each longitudinal orperpendicular operator and simply replace it, instead of having to solve the full Eq. 2.1 every timefor a different geometry (i.e. for different versions of the operator ∇2

⊥).Given a certain bunch distribution nb(ζ, x⊥), we set H(ζ, x⊥) = nb(ζ, x⊥) in the general recipeEq. 2.5 and obtain the solution for the wake potential in Eq. 2.1
ψ(ζ, x⊥) =

qb
e

∫
D⊥

∫
Dζ

dζ ′dx′⊥ G⊥(x
′
⊥, x⊥)Gζ(ζ

′, ζ)
nb(ζ

′, x′⊥)

n0

= −qb
e

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)

∫
D⊥

dx′⊥G⊥(x
′
⊥, x⊥)

nb(ζ
′, x′⊥)

n0
,

(2.6)
where the appropriate transverse Green’s function G⊥(x

′
⊥, x⊥) must be replaced depending on the
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coordinate system being considered (see below).
Green’s function for the longitudinal plasma operator

We want to find the Green’s function for the operator Lζ = (∂2ζ + 1). For ζ ∈ [0,∞[, and with theboundary conditions ψ(ζ → ∞) = 0 and ∂ζψ(ζ → ∞) = 0, it can be shown that the Green’s functionis [49]
G(ζ, ζ ′) =

0 ζ < ζ ′

sin(ζ − ζ ′) ζ ≥ ζ ′
. (2.7)

Green’s function for the transverse operator in cylindrical coordinates

In cylindrical coordinates (r, θ, z), the Laplace operator along the transverse dimensions reduces to
∇2

⊥ = ∂2r +
1
r∂r for an axisymmetric (θ-independent) function. The transverse operator acting onthe wake potential in Eq. 2.1 therefore becomes L⊥ = (∂2r +

1
r∂r − 1). Since the Green’s function isfound by setting L⊥G(r, r′) = δ(r − r′) = 0 for r < r′ and r > r′, we can multiply this equation by r2and find that it corresponds to the modified Bessel equation for m = 0 (see below), the solutionsto which are known. For r ∈ [0,∞[ and the boundary condition ∂rψ|r→∞ = 0, the Green’s function is

G(r, r′) =

−r I0(r)K0(r
′) r < r′

−r I0(r′)K0(r) r ≥ r′
, (2.8)

where Im(r) and Km(r) are the modified Bessel functions of the first and second kind, respectively.The transverse Green’s function can also be determined for a general, non-axisymmetricright-hand side (i.e. bunch distribution). In that case, the transverse Laplace operator is ∇2
⊥ =

∂2r+
1
r∂r+

1
r2 ∂θ. Given that the equation we wish to solve is L⊥ψ = H, let us assume that we can writethe azimuthal dependence of the inhomogeneity as a cosine series H(r, θ) =

∑∞
m=0 Ĥm(r) cos(mθ).Due to the orthogonality of the cosine modes, the solution must also be a cosine series ψ(r, θ) =∑∞

m=0 ψ̂m(r) cos(mθ). If we apply the transverse operator L⊥ = (∂2r +
1
r∂r +

1
r2 ∂θ − 1) to ψ(r, θ), usingthe fact that ∂2θ cos(mθ) = −m2 cos(mθ), we will have to solve the following differential equation foreach independent mode m:(

∂2r +
1

r
∂r −

m2

r2
− 1

)
ψ̂m(r, ζ) = Ĥm(r, ζ) . (2.9)

As mentioned before, the Green’s function for this operator is found by setting (∂2r + 1
r∂r −

m2

r2 −
1
)
G(r, r′) = 0 for r < r′ and r > r′, and therefore we once again multiply the equation by r2 andarrive at the generalized modified Bessel equation: [r2∂2r + r ∂r − (r2 +m2)

]
G(r, r′) = 0. For thesame domain and assuming the same boundary condition as before, r ∈ [0,∞[ and ∂rψ̂m|r→∞ = 0,the Green’s function for each mode is

G(r, r′) =

−r Im(r)Km(r′) r < r′

−r Im(r′)Km(r) r ≥ r′
. (2.10)

Green’s function for the transverse operator in 2D Cartesian coordinates

Further along this dissertation, we will consider a simplified Cartesian geometry with only onetransverse dimension, so that the overall problem is two-dimensional in (z, y) or (ζ, y). In this
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case, the transverse Laplace operator is simply ∇2
⊥ = ∂2y , and we find the Green’s function for theoperator (∂2y − 1). For y ∈]−∞,∞[, and with the condition ∂yψ|y→0 = 0, the Green’s function is

G(y, y′) =

− 1
2 e

−y′ey y < y′

− 1
2 e

−yey
′

y ≥ y′
. (2.11)

2.2 Differential equations

For the following derivations, we start from the equation of motion for a single particle with massMbpropagating relativistically along the z axis with a Lorentz factor γ. By assuming that the longitudinalvelocity of the particle is constant and approximately equal to the speed of light (vz ≈ c), we maysubstitute the derivative in time (t) with a spatial one according to d
dt = c d

dz :
d(γmv)

dt
= F ⇔ dv

dz
=

F

γMbc
⇔ d2x

dz2
=

F

γMbc2
, (2.12)

where x and z are not normalized. Here, x and v are the position and velocity of the particle,respectively, and F is any force acting on it. We may now normalize the distance quantities xand z to the plasma skin depth k−1
p = c/ωp. We therefore replace the normalized x̂ = x kp and

d/dz = kp d/dẑ, and recast the equation such that a natural normalization for F appears:
d2x̂

dẑ2
=

1

γ Mb

F

c ωp
=

me

γ Mb

F

eE0
=

me

γ Mb
F̂ , (2.13)

where E0 = mecωp/e is the wavebreaking field. For simplicity, the hat symbol characterizingnormalized quantities will be omitted henceforth.The density profile of the bunch is defined as nb(ζ, x⊥) = nb0 · f(ζ) · g(x⊥, ζ), where nb0 is thepeak density and f and g are the normalized longitudinal and transverse profiles, respectively. Thetransverse profile may depend explicitly on the longitudinal coordinate ζ via the bunch centroid orradius. Lastly, and since we will require this later on, we note that the average over the transversebunch profile is defined as
⟨•⟩ =

∫
• nb(ζ, x⊥) dx⊥∫
nb(ζ, x⊥) dx⊥

. (2.14)
2.2.1 Centroid (HI)

The hosing instability results from the misalignment between the propagation axis of a particlebunch and the transverse wakefields. This misalignment ultimately leads to an oscillating bunchcentroid, which feeds back into the wakefield asymmetry and thus forms an instability. Hosingcan be described by setting up an equation for the bunch centroid. We simply take Eq. 2.13 (for asingle bunch particle), and average it transversely over the bunch distribution. A final form of thedifferential equation for the centroid will therefore depend on the choice of coordinate system andon the transverse profile of the bunch.We choose the transverse dimension y to set up the centroid equation (i.e., across which thecentroid will oscillate). Taking the transverse average ⟨•⟩ of the y component of Eq. 2.13, anddefining the centroid yc = ⟨y⟩, we obtain the differential equation for the bunch centroid
d2yc
dz2

=
me

γMb
⟨Fy⟩ . (2.15)
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The transverse force due to the plasma response can be found by taking the transverse averageover the y component of Eq. 2.2:
⟨Fy⟩ = −qb

e
⟨∂yψ⟩ . (2.16)

In the following, we will determine the specific form of the right-hand side of Eq. 2.15 for differentgeometries and transverse bunch profiles.
2D Cartesian, flat-top transverse profile

The right-hand side of the centroid differential equation (Eq. 2.16) consists of several chainedintegrals, which is why we begin by considering the simplest function possible for the transversebunch profile g(y, ζ, z). Let us define
g(y, ζ, z) =

ye(ζ, 0)

ye(ζ, z)
Θ
[
ye(ζ)− |y − yc(ζ)|

]
, (2.17)

where ye(ζ, z) is the bunch envelope and Θ(x) is the Heaviside step function. This profile cor-responds to a flat top with an evolving bunch radius where the charge per slice is conserved(see Fig. 2.1). In 2D Cartesian geometry, the wake potential has the solution (replace the Green’sfunctions Eq. 2.7 and 2.11 in Eq. 2.5)
ψ(ζ, y) =

qb
e

nb0
n0

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′)

∫ ∞

−∞
dy′
(
− 1

2

)
e−y> ey< g(y′, ζ ′)︸ ︷︷ ︸

τ(y, ζ ′)

, (2.18)

where the function τ(y, ζ ′) has been defined for convenience. Using Eq. 2.16, the average transverseforce is therefore given by
⟨Fy⟩ = −

(qb
e

)2 nb0
n0

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′) ⟨∂yτ(y, ζ ′)⟩ . (2.19)
For the sake of brevity, the independent variables of the beam envelope will be omitted in thefollowing calculations: ye ≡ ye(ζ

′, z) and ye0 ≡ ye(ζ
′, z = 0). The derivative of the transverse part ofthe solution for the wake potential τ(y, ζ ′) can be simplified using the product rule and the firstfundamental theorem of calculus:

∂yτ(y, ζ
′) = −1

2
∂y

[
e−y

∫ y

−∞
dy′ ey

′
g(y′, ζ ′) + ey

∫ ∞

y

dy′ e−y
′
g(y′, ζ ′)

]

z = 0

1

ye0

!(ye0 ! yc) 0 yc ye0 + yc

y

g(y)

z > 0

ye0=ye

ye

!(ye ! yc) 0 yc ye + yc

y

g(y)

Figure 2.1: Flat-top transverse profile along y in Cartesian coordinates for a bunch with a centroid yc(ζ, z)and an envelope ye(ζ, z) (Eq. 2.17) at two different times. Note that ye0 corresponds to ye(ζ, z = 0).
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= −1

2

[
−e−y

∫ y

−∞
dy′ ey

′
g(y′, ζ ′) + e−y ∂y

(∫ y

−∞
dy′ ey

′
g(y′, ζ ′)

)
+ ey

∫ ∞

y

dy′ e−y
′
g(y′, ζ ′)− ey ∂y

(∫ y

∞
dy′ e−y

′
g(y′, ζ ′)

)] (2.20)
= −1

2

[
−e−y

∫ y

−∞
dy′ ey

′
g(y′, ζ ′) + g(y, ζ ′) + ey

∫ ∞

y

dy′ e−y
′
g(y′, ζ ′)− g(y, ζ ′)

]
= −1

2

[
−e−y

∫ y

−∞
dy′ ey

′
g(y′, ζ ′) + ey

∫ ∞

y

dy′ e−y
′
g(y′, ζ ′)

]
.

Once the transverse profile is replaced, we obtain
∂yτ(y, ζ

′) = −1

2

ye0
ye

[
ey
∫ ye+yc(ζ

′)

y

dy′ e−y
′
− e−y

∫ y

−ye+yc(ζ′)
dy′ ey

′

]

=
1

2

ye0
ye

(
ey−yc(ζ

′)−ye − e−y+yc(ζ
′)−ye

)
.

(2.21)
Finally, it is necessary to take the average over the transverse profile g(y, ζ, z) of the expression
∂yτ(y, ζ

′). Applying the flat-top profile to the general definition in Eq. 2.14, we may simplify to:
⟨∂yτ(y, ζ ′)⟩ =

nb0 f(ζ)

∫ ∞

−∞
dy g(y, ζ) ∂yτ(y, ζ

′)

nb0 f(ζ)

∫ ∞

−∞
dy g(y, ζ)

=

ye(ζ)

ye0(ζ)

∫ ye(ζ)+yc(ζ)

−ye(ζ)+yc(ζ)
dy ∂yτ(y, ζ

′)

ye(ζ)

ye0(ζ)

∫ ye(ζ)+yc(ζ)

−ye(ζ)+yc(ζ)
dy

=
1

2 ye(ζ)

∫ ye(ζ)+yc(ζ)

−ye(ζ)+yc(ζ)
dy ∂yτ(y, ζ

′) . (2.22)
We may now replace Eq. 2.21 and obtain ⟨∂yτ(y, ζ ′)⟩, being careful to retain the different depen-dences on ζ and ζ ′.

⟨∂yτ(y, ζ ′)⟩ =
1

4

ye0(ζ
′)

ye(ζ) ye(ζ ′)

∫ ye(ζ)+yc(ζ)

−ye(ζ)+yc(ζ)
dy
(
ey−yc(ζ

′)−ye(ζ′) − e−y+yc(ζ
′)−ye(ζ′)

)
=

sinh(ye(ζ))

ye(ζ)
e−ye(ζ

′) ye0(ζ
′)

ye(ζ ′)
sinh(yc(ζ)− yc(ζ

′)) ,

(2.23)
where sinh(x) = 1

2 (e
x − e−x) is the hyperbolic sine function. This latest equation provides themissing piece for the explicit form of the average transverse force:

⟨Fy⟩ = −
(qb
e

)2 nb0
n0

sinh(ye(ζ))

ye(ζ)

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′) e−ye(ζ
′) ye0(ζ

′)

ye(ζ ′)
sinh(yc(ζ)− yc(ζ

′)) . (2.24)
The differential equation for the centroid in 2D Cartesian coordinates for a flat-top transverseprofile [43, 44] is therefore (after replacing Eq. 2.24 in Eq. 2.15):

d2yc
dz2

=− me

γMb

(qb
e

)2 nb0
n0

sinh(ye(ζ))

ye(ζ)∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′) e−ye(ζ
′) ye0(ζ

′)

ye(ζ ′)
sinh(yc(ζ)− yc(ζ

′)) (2.25)
=− 2

k2β
k2p

sinh(ye(ζ))

ye(ζ)

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′) e−ye(ζ
′) ye0(ζ

′)

ye(ζ ′)
sinh(yc(ζ)− yc(ζ

′)) ,

where we used the definition of the betatron wavenumber kβ = ωβ/c =
1

c
√
2γ

√
nb0q2b
ε0Mb

. This result
14
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Figure 2.2: Initial plasma response to a hosing seed for a flat-top transverse profile in 2D Cartesian geom-etry according to simulation (grey) and Eq. 2.24 (red).
matches the one in Refs. [43, 44] (note that the transverse profile g(y, ζ, z) is incorrectly defined inboth of these publications).We can test the validity of the right-hand side of Eq. 2.25 by comparing the initial plasmaresponse to a PIC simulation. In other words, we calculate the average transverse force in Eq. 2.24for an initial centroid yc0(ζ), and we compare this to ⟨Fy⟩ measured at the plasma entrance in asimulation with the same initial conditions. In this case we simulate a long, relativistic electronbunch with a flat-top transverse profile and cosine longitudinal profile in 2D Cartesian geometry,with yc0(ζ) = 0.05 sin(1.07 ζ) (see Table A.1, item A.1.2, in Appx. A for the full simulation details). Theresult is shown in Fig. 2.2. Though this theory captures the plasma response reasonably well, thereis a discrepancy that grows with ζ.
2D Cartesian, Gaussian transverse profile

Here we consider a Gaussian transverse profile, defined as g(y, ζ) = exp
[
− (y−yc(ζ))2

2 σ2
y(ζ,z)

], where σy(ζ, z)is the RMS bunch size in the y direction (its dependence on z will again be ommitted in the nextsteps). In 2D Cartesian coordinates, it is still possible to obtain a plasma response solution for thismore realistic shape. Following the same procedure as before, we replace this transverse profile in
∂yτ(y, ζ

′), defined in Eq. 2.20:
∂yτ(y, ζ

′) =− 1

2

[
−e−y

∫ y

−∞
dy′ exp

(
y′ − (y′ − yc(ζ

′))2

2 σ2
y(ζ

′)

)
+ ey

∫ ∞

y

dy′ exp

(
−y′ − (y′ − yc(ζ

′))2

2 σ2
y(ζ

′)

)]
=− 1

2

√
π

2
σy(ζ

′) exp

(
−y − yc(ζ

′) +
σ2
y(ζ

′)

2

)[
e2y erfc

(
y − yc(ζ

′) + σ2
y(ζ

′)
√
2 σy(ζ ′)

) (2.26)
−e2 yc(ζ

′) erfc

(
yc(ζ

′)− y + σ2
y(ζ

′)
√
2 σy(ζ ′)

)]
,

where erfc(x) = 1− erf(x) is the complementary error function. The average over the transverseGaussian profile simplifies to:
⟨∂yτ(y, ζ ′)⟩ =

∫ ∞

−∞
dy nb(ζ, y) ∂yτ(y, ζ

′)∫ ∞

−∞
dy nb(ζ, y)

=

nb0f(ζ)

∫ ∞

−∞
dy g(y, ζ) ∂yτ(y, ζ

′)

nb0f(ζ)

∫ ∞

−∞
dy g(y, ζ)

=
1√

2π σy(ζ)

∫ ∞

−∞
dy g(y, ζ) ∂yτ(y, ζ

′) .

(2.27)
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The resulting integral, after replacing ∂yτ(y, ζ
′) and the transverse Gaussian profile, is:

⟨∂yτ(y, ζ ′)⟩ =− 1

4

σy(ζ
′)

σy(ζ)
eσ

2
y(ζ

′)/2

∫ ∞

−∞
dy exp

[
− (y − yc(ζ))

2

2 σ2
y(ζ)

]
e−y−yc(ζ

′)

[
e2y erfc

(
y − yc(ζ

′) + σ2
y(ζ

′)
√
2 σy(ζ ′)

)
− e2 yc(ζ

′) erfc

(
yc(ζ

′)− y + σ2
y(ζ

′)
√
2 σy(ζ ′)

)]
,

(2.28)
and can be written as four terms (by expanding the definition of erfc(x)). Two of these terms havethe following solutions:

exp

(
−yc(ζ ′)−

y2c (ζ)

2σ2
y(ζ)

)∫ ∞

−∞
dy exp

[
− y2

2σ2
y(ζ)

+ y

(
1 +

yc(ζ)

σ2
y(ζ)

)]
=

√
2π σy(ζ) exp

(
yc(ζ)− yc(ζ

′) +
σ2
y(ζ)

2

)
,

(2.29)
− exp

(
yc(ζ

′)− y2c (ζ)

2σ2
y(ζ)

)∫ ∞

−∞
dy exp

[
− y2

2σ2
y(ζ)

− y

(
1− yc(ζ)

σ2
y(ζ)

)]
=

−
√
2π σy(ζ) exp

(
yc(ζ

′)− yc(ζ) +
σ2
y(ζ)

2

)
.

(2.30)
The other two terms can be solved using the following identity [50]:

∫ ∞

−∞
exp

(
−az2 + βz

)
erf (a1z + β1) dz =

√
π

a
exp

(
β2

4a

)
erf

[
2aβ1 + a1β

2
√
a2 + aa21

]
, a > 0 . (2.31)

The two remaining terms of the integral in Eq. 2.28 therefore become
∫ ∞

−∞
exp

[
− (y − yc(ζ))

2

2 σ2
y(ζ)

]
e−y−yc(ζ

′) e2 yc(ζ
′) erf

(
yc(ζ

′)− y + σ2
y(ζ

′)
√
2 σy(ζ ′)

)
dy =

√
2π σy(ζ) exp

(
yc(ζ

′)− yc(ζ) +
σ2
y(ζ)

2

)
erf

yc(ζ ′)− yc(ζ) + σ2
y(ζ) + σ2

y(ζ
′)√

2 σ2
y(ζ

′)− 2 σ2
y(ζ)

 , (2.32)

−
∫ ∞

−∞
exp

[
− (y − yc(ζ))

2

2 σ2
y(ζ)

]
e−y−yc(ζ

′) e2y erf

(
y − yc(ζ

′) + σ2
y(ζ

′)
√
2 σy(ζ ′)

)
dy =

−
√
2π σy(ζ) exp

(
yc(ζ)− yc(ζ

′) +
σ2
y(ζ)

2

)
erf

yc(ζ)− yc(ζ
′) + σ2

y(ζ) + σ2
y(ζ

′)√
2 σ2

y(ζ
′) + 2 σ2

y(ζ)

 . (2.33)
Replacing the solutions to the four integrals in Eq. 2.28, we obtain

⟨∂yτ(ζ ′, y)⟩ =−
√
π

8
σy(ζ) exp

(
σ2
y(ζ) + σ2

y(ζ
′)

2

)
eyc(ζ)−yc(ζ′) erfc

yc(ζ)− yc(ζ
′) + σ2

y(ζ) + σ2
y(ζ

′)√
2 σ2

y(ζ) + 2 σ2
y(ζ

′)

 (2.34)
− eyc(ζ

′)−yc(ζ) erfc

yc(ζ ′)− yc(ζ) + σ2
y(ζ) + σ2

y(ζ
′)√

2 σ2
y(ζ

′)− 2 σ2
y(ζ)

 .
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This transverse solution for a Gaussian transverse profile in 2D Cartesian coordinates can nowbe substituted in Eq. 2.19 to obtain the average transverse force
⟨Fy⟩ =

√
π

8

nb0
n0

(qb
e

)2 ∫ ∞

ζ

dζ ′ sin(ζ − ζ ′) f(ζ ′) exp

(
σ2
y(ζ) + σ2

y(ζ
′)

2

)
eyc(ζ)−yc(ζ′) erfc

yc(ζ)− yc(ζ
′) + σ2

y(ζ) + σ2
y(ζ

′)√
2 σ2

y(ζ) + 2 σ2
y(ζ

′)

 (2.35)
− eyc(ζ

′)−yc(ζ) erfc

yc(ζ ′)− yc(ζ) + σ2
y(ζ) + σ2

y(ζ
′)√

2 σ2
y(ζ

′)− 2 σ2
y(ζ)

 .

and subsequently in Eq. 2.15 to arrive at the differential equation for the centroid:
d2yc
dz2

= 2
k2β
k2p

√
π

8

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′) f(ζ ′) exp

(
σ2
y(ζ) + σ2

y(ζ
′)

2

)
eyc(ζ)−yc(ζ′) erfc

yc(ζ)− yc(ζ
′) + σ2

y(ζ) + σ2
y(ζ

′)√
2 σ2

y(ζ) + 2 σ2
y(ζ

′)

 (2.36)
− eyc(ζ

′)−yc(ζ) erfc

yc(ζ ′)− yc(ζ) + σ2
y(ζ) + σ2

y(ζ
′)√

2 σ2
y(ζ

′)− 2 σ2
y(ζ)

 .

Equation 2.36 has not been previously derived or published.
In the case of a constant transverse size σy(ζ) = σy = const, Eq. 2.36 simplifies to
d2yc
dz2

= 2
k2β
k2p

√
π

8
σy exp(σ2

y)

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′) f(ζ ′)

{
exp [yc(ζ

′)− yc(ζ)]

erfc

[
yc(ζ

′)− yc(ζ) + 2 σ2
y

2 σy

]
− exp [yc(ζ)− yc(ζ

′)] erfc

[
yc(ζ)− yc(ζ

′) + 2 σ2
y

2 σy

]}
.

(2.37)

Figure 2.3 shows the initial plasma response for a long electron bunch with a Gaussian transverseprofile, cosine longitudinal profile, and an initial centroid yc0(ζ) = 0.05 sin(1.07 ζ), according toEq. 2.35 and to a 2D Cartesian simulation (see Table A.1, item A.1.1, in Appx. A for the full simulationdetails). The theory matches the numerical data quite well.
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Figure 2.3: Initial plasma response to a hosing seed for a Gaussian transverse profile in 2D Cartesiangeometry according to simulation (grey) and Eq. 2.35 (red).
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2D cylindrical, flat-top transverse profile

The 2D cylindrical model for hosing allows us to more accurately represent the real geometry ofa hosing bunch while avoiding the complexity of an exact three-dimensional description. Thedimensionality of this model is reduced by assuming axisymmetry in cylindrical coordinates, whichseems to preclude any description of hosing (which fundamentally requires some asymmetry alongthe propagation axis). However, the instability may still be represented by taking the approximationof small displacements and by expanding the azimuthal dependence into modes [43].The general procedure will consist of using the axisymmetric cylindrical plasma response (alongwith the first Taylor-expanded azimuthal mode) and replacing it in the basic Cartesian equationfor the centroid (Eq. 2.15). We will show that the existing version of this model [43] is incomplete,though it is accurate when the bunch radius is constant along ζ.In order to keep the calculations workable, the transverse bunch profile is assumed to be a flattop with a small centroid offset along the y direction: g(r, θ, ζ) = ĝ0(r, ζ)− ∂rĝ0(r, ζ) yc(ζ) cos θ [51].The zero-mode (m = 0) flat-top profile is defined as ĝ0(r, ζ) = ( rb0(ζ)rb(ζ)

)2
Θ [rb(ζ)− r], where rb(ζ, z)is the bunch radius (the z dependence has been ommitted for simplicity) and rb0(ζ) = rb(ζ, z = 0).As discussed in Sec. 2.1.1, when the bunch density profile can be expressed as a series ofazimuthal modes, i.e., nb(ζ, r, θ) ∝ ∑∞

m=0 ĝm(r, ζ) cos(mθ), the solution for the wake potential willalso be of the form ψ ∝
∑∞
m=0 ψ̂m(r, ζ) cos(mθ). In this case, we define the transverse profile as asum of the m = 0 and m = 1 modes, i.e.,

g(r, θ, ζ) =

(
rb0(ζ)

rb(ζ)

)2

Θ [rb(ζ)− r]︸ ︷︷ ︸
ĝ0(r, ζ)

+

(
rb0(ζ)

rb(ζ)

)2

δ (rb(ζ)− r) yc(ζ)︸ ︷︷ ︸
ĝ1(r, ζ)

cos θ . (2.38)

Putting together Eqs. 2.6, 2.10 and the profile nb(ζ, r, θ) = nb0 · f(ζ) · g(r, θ, ζ), the wake potentialis given by
ψ(ζ, r, θ) =

qb
e

nb0
n0

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′)

(
rb0(ζ

′)

rb(ζ ′)

)2 [
ψ̂0(r, ζ

′) + ψ̂1(r, ζ
′) cos θ

]
, (2.39)

with
ψ̂0(r, ζ

′) = K0(r)

∫ r

0

dr′ r′ I0(r
′) Θ [rb(ζ

′)− r′] + I0(r)

∫ ∞

r

dr′ r′ K0(r
′) Θ [rb(ζ

′)− r′] ,

ψ̂1(r, ζ
′) =

[
K1(r)

∫ r

0

dr′ r′ I1(r
′) δ (rb(ζ

′)− r′) + I1(r)

∫ ∞

r

dr′ r′ K1(r
′) δ (rb(ζ

′)− r′)

]
yc(ζ

′) .

(2.40)
After computing the integrals in ψ̂0(r, ζ

′) and ψ̂1(r, ζ
′), we obtain

ψ̂0(r, ζ
′) =

rI1(r)K0(r) + I0(r)
[
rK1(r)− rb(ζ

′)K1(rb(ζ
′))
]

:= ψ̂0<(r, ζ
′) r ≤ rb(ζ

′)

rb(ζ
′)I1(rb(ζ

′))K0(r) := ψ̂0>(r, ζ
′) r > rb(ζ

′)
(2.41)

ψ̂1(r, ζ
′) =

I1(r)rb(ζ ′)K1(rb(ζ
′))yc(ζ

′) := ψ̂1<(r, ζ
′) r ≤ rb(ζ

′)

K1(r)rb(ζ
′)I1(rb(ζ

′))yc(ζ
′) := ψ̂1>(r, ζ

′) r > rb(ζ
′) .

(2.42)
Since the radial derivatives of ψ̂0(r, ζ

′) and ψ̂1(r, ζ
′) will be required later, we also note them here.It will prove more convenient for subsequent calculations to write the piecewise functions of thewake potential modes as ψ̂i(r, ζ ′) = Θ[rb(ζ

′)− r] ψ̂i<(r, ζ
′) + Θ[r − rb(ζ

′)] ψ̂i>(r, ζ
′), where i = {0, 1}.In that case the radial derivatives will have the form ∂rψ̂i(r, ζ

′) = −δ(rb(ζ ′) − r) ψ̂i< − Θ[rb(ζ
′) −
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r] ∂rψ̂i< + δ(r − rb(ζ
′)) ψ̂i> +Θ[r − rb(ζ

′)] ∂rψ̂i>. The radial derivatives are therefore:
∂rψ̂0(r, ζ

′) =− δ(rb(ζ
′)− r) ψ̂0< −Θ[rb(ζ

′)− r] rb(ζ
′)K1(rb(ζ

′))I1(r) + δ(r − rb(ζ
′)) ψ̂0>

−Θ[r − rb(ζ
′)]rb(ζ

′)I1(rb(ζ
′))K1(r) ,

(2.43)
∂rψ̂1(r, ζ

′) =− δ(rb(ζ
′)− r) ψ̂1< +Θ[rb(ζ

′)− r] yc(ζ
′)rb(ζ

′)K1(rb(ζ
′)) 12

(
I0(r) + I2(r)

)
+ δ(r − rb(ζ

′)) ψ̂1> −Θ[r − rb(ζ
′)] yc(ζ

′)rb(ζ
′)I1(rb(ζ

′)) 12

(
K0(r) +K2(r)

)
.

(2.44)
To compute the right-hand side of the centroid differential equation (Eq. 2.15), we need todetermine ⟨∂yψ⟩ (see Eq. 2.16). Replacing the bunch profile nb(ζ, r, θ) and the flat-top transversepart ĝ0(r, ζ), the transverse average in cylindrical coordinates can be defined as
⟨•⟩ =

nb0 f(ζ)

∫ ∞

0

∫ 2π

0

dθ dr • r g(ζ, r, θ)

nb0 f(ζ)

∫ ∞

0

∫ 2π

0

dθ dr r g(ζ, r, θ)

=

∫ ∞

0

∫ 2π

0

dθ dr • r
(
ĝ0(r, ζ) + ĝ1(r, ζ) cos θ

)
∫ ∞

0

∫ 2π

0

dθ dr r
(
ĝ0(r, ζ) + ĝ1(r, ζ) cos θ

)

=

∫ ∞

0

∫ 2π

0

dθ dr • r
(
ĝ0(r, ζ) + ĝ1(r, ζ) cos θ

)
2π

∫ ∞

0

dr r ĝ0(r, ζ)

=

∫ ∞

0

∫ 2π

0

dθ dr • r
(
ĝ0(r, ζ) + ĝ1(r, ζ) cos θ

)
2π

(
rb0(ζ)

rb(ζ)

)2 ∫ ∞

0

dr r Θ [rb(ζ)− r]

=
1

πr2b0(ζ)

∫ ∞

0

∫ 2π

0

dθ dr • r
(
ĝ0(r, ζ) + ĝ1(r, ζ) cos θ

)
.

(2.45)

Before proceeding to calculate ⟨∂yψ⟩, we can make some further simplifications by consideringthe azimuthal dependence of ψ and g(ζ, r, θ). The derivative ∂y and the transverse average ⟨•⟩ willonly act on the transverse part of the wake potential ψ⊥ = ψ̂0(r, ζ
′) + ψ̂1(r, ζ

′) cos θ. Using the chainrule, we can translate the Cartesian derivative into ∂y = cos θ ∂r − sin θ/r ∂θ.
∂yψ⊥ = (cos θ ∂r + sin θ δθ)

(
ψ̂0(r, ζ

′) + ψ̂1(r, ζ
′) cos θ

)
= cos θ ∂rψ̂0(r, ζ

′) + cos2 θ ∂rψ̂1(r, ζ
′)− sin2 θ ψ̂1(r, ζ

′)
(2.46)

Since the dependence of ψ on θ is exclusively in the form of trigonometric functions, we canfurther simplify our calculations of ⟨∂yψ⟩ by performing the azimuthal integral over 2π:
⟨∂yψ⊥⟩ ∝

∫ 2π

0

dθ
(
ĝ0(r, ζ) + ĝ1(r, ζ) cos θ

)(
cos θ ∂rψ̂0(r, ζ

′) + cos2 θ ∂rψ̂1(r, ζ
′)− sin2 θ ψ̂1(r, ζ

′)
)

∝
∫ 2π

0

dθ

(
cos θ ĝ0(r, ζ) ∂rψ̂0(r, ζ

′) + cos2 θ ĝ0(r, ζ) ∂rψ̂1(r, ζ
′) +

sin2 θ

r
ĝ0(r, ζ) ψ̂1(r, ζ

′)

+ cos2 θ ĝ1(r, ζ) ∂rψ̂0(r, ζ
′) + cos3 θ ĝ1(r, ζ) ∂rψ̂1(r, ζ

′) +
sin2 θ

r
cos θ ĝ1(r, ζ) ψ̂1(r, ζ

′)

)
∝ π

(
ĝ0(r, ζ) ∂rψ̂1(r, ζ

′) +
ĝ0(r, ζ)

r
ψ̂1(r, ζ

′) + ĝ1(r, ζ) ∂rψ̂0(r, ζ
′)

)
.

(2.47)
Applying the partial derivative ∂y and the transverse average to the wake potential defined in
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Eq. 2.39, and after the previous simplifications, we have that
⟨∂yψ⟩ =

qb
e

nb0
n0

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′)

(
rb0(ζ

′)

rb(ζ ′)

)2

⟨∂yψ⊥⟩ , (2.48)
with

⟨∂yψ⊥⟩ =
1

r2b0(ζ)

∫ ∞

0

dr r

(
ĝ0(r, ζ) ∂rψ̂1(r, ζ

′) +
ĝ0(r, ζ)

r
ψ̂1(r, ζ

′) + ĝ1(r, ζ) ∂rψ̂0(r, ζ
′)

)
=

1

r2b (ζ)

∫ ∞

0

dr r

(
Θ [rb(ζ)− r] ∂rψ̂1(r, ζ

′) + Θ [rb(ζ)− r]
ψ̂1(r, ζ

′)

r

+ yc(ζ) δ(rb(ζ)− r) ∂rψ̂0(r, ζ
′)

)
.

(2.49)

At this point it is necessary to go through the tedious process of calculating each term of theintegral in ⟨∂yψ⊥⟩, being careful to separate rb(ζ) and rb(ζ
′), and minding the piecewise characterof the wake potential modes ψ̂0 and ψ̂1 (see Eqs. 2.41–2.44). The result for each term will dependon whether rb(ζ) is smaller or larger than rb(ζ ′) (see Fig. 2.4). The following is a bulleted list of theresults for each term once Eqs. 2.41–2.44 are replaced in the integral of Eq. 2.49.

■
∫∞
0
dr r Θ [rb(ζ)− r] ∂rψ̂1(r, ζ

′)

✦ −
∫∞
0
dr r Θ [rb(ζ)− r] δ(rb(ζ

′)− r) ψ̂1<

= −yc(ζ ′) rb(ζ ′) K1(rb(ζ
′))

∫ ∞

0

dr r Θ [rb(ζ)− r] δ(rb(ζ
′)− r) I1(r)

= −yc(ζ ′) r2b (ζ ′) K1(rb(ζ
′)) I1(rb(ζ

′)) Θ [rb(ζ)− rb(ζ
′)] (2.50)

✦ −
∫∞
0
dr r Θ [rb(ζ)− r] Θ[rb(ζ

′)− r] ∂rψ̂1<

= yc(ζ
′) rb(ζ

′)K1(rb(ζ
′))

∫ ∞

0

dr r Θ [rb(ζ)− r] Θ[rb(ζ
′)− r] 12

(
I0(r) + I2(r)

)
= yc(ζ

′) rb(ζ
′)K1(rb(ζ

′))


[
1− I0(rb(ζ)) + rb(ζ)I1(rb(ζ))

]
rb(ζ) < rb(ζ

′)[
1− I0(rb(ζ

′)) + rb(ζ
′)I1(rb(ζ

′))
]

rb(ζ) > rb(ζ
′)

(2.51)
✦
∫∞
0
dr r Θ [rb(ζ)− r] δ(r − rb(ζ

′)) ψ̂1>

= yc(ζ
′) rb(ζ

′) I1(rb(ζ
′))

∫ ∞

0

dr r Θ [rb(ζ)− r] δ(r − rb(ζ
′)) K1(r)

= yc(ζ
′) r2b (ζ

′) I1(rb(ζ
′)) K1(rb(ζ

′)) Θ [rb(ζ)− rb(ζ
′)] (2.52)

This term cancels with Eq. 2.50.
✦
∫∞
0
dr r Θ [rb(ζ)− r] Θ[r − rb(ζ

′)] ∂rψ̂1>

= −yc(ζ ′) rb(ζ ′) I1(rb(ζ ′))
∫ ∞

0

dr r Θ [rb(ζ)− r] Θ[r − rb(ζ
′)] 1

2

(
K0(r) +K2(r)

)
=

0 rb(ζ) < rb(ζ
′)

−yc(ζ ′) rb(ζ ′) I1(rb(ζ ′))
∫ rb(ζ)
rb(ζ′)

dr r 1
2

(
K0(r) +K2(r)

)
rb(ζ) > rb(ζ

′)

Using the identity K0(r) +K2(r) = −2 K ′
1(r) [52, Eq. 10.29.1] and integrating by parts,
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Figure 2.4: The two types of Heaviside function that must be integrated over in order to obtain a centroiddifferential equation for a flat-top transverse profile in cylindrical geometry, for two different relative casesfor rb(ζ) and rb(ζ
′).

this term simplifies to
yc(ζ

′) rb(ζ
′) I1(rb(ζ

′))
[
rb(ζ) K1(rb(ζ))− rb(ζ

′) K1(rb(ζ
′)) +K0(rb(ζ))−K0(rb(ζ

′))
] (2.53)

for rb(ζ) > rb(ζ
′).

■
∫∞
0
dr r Θ [rb(ζ)− r] ψ̂1(r,ζ

′)
r

✦
∫∞
0
drΘ [rb(ζ)− r] Θ[rb(ζ

′)− r] ψ̂1<

= yc(ζ
′) rb(ζ

′) K1(rb(ζ
′))

∫ ∞

0

dr Θ [rb(ζ)− r] Θ[rb(ζ
′)− r] I1(r)

=

yc(ζ
′) rb(ζ

′) K1(rb(ζ
′))
[
I0(rb(ζ))− 1

]
rb(ζ) < rb(ζ

′)

yc(ζ
′) rb(ζ

′) K1(rb(ζ
′))
[
I0(rb(ζ

′))− 1
]

rb(ζ) > rb(ζ
′)

(2.54)
✦
∫∞
0
drΘ [rb(ζ)− r] Θ[r − rb(ζ

′)] ψ̂1>

= yc(ζ
′) rb(ζ

′) I1(rb(ζ
′))

∫ ∞

0

dr Θ [rb(ζ)− r] Θ[r − rb(ζ
′)] K1(r)

=

0 rb(ζ) < rb(ζ
′)

yc(ζ
′) rb(ζ

′) I1(rb(ζ
′))
[
K0(rb(ζ

′))−K0(rb(ζ))
]

rb(ζ) > rb(ζ
′)

(2.55)
This term cancels with the last two terms of Eq. 2.53.

■ yc(ζ)
∫∞
0
dr r δ(rb(ζ)− r) ∂rψ̂0(r, ζ

′)

✦ −yc(ζ)
∫∞
0
dr r δ(rb(ζ)− r) δ(rb(ζ

′)− r) ψ̂0<

= −yc(ζ)
∫ ∞

0

dr r δ(rb(ζ)− r) δ(rb(ζ
′)− r)

[
rI1(r)K0(r) + I0(r)

[
rK1(r)− rb(ζ

′)K1(rb(ζ
′))
]]

= −yc(ζ) r2b= I1(rb=) K0(rb=) (2.56)
Here rb= is the radius when rb(ζ) = rb(ζ

′).
✦ −yc(ζ)

∫∞
0
dr r δ(rb(ζ)− r) Θ[rb(ζ

′)− r] ∂rψ̂0<

= −yc(ζ) rb(ζ ′) K1(rb(ζ
′))

∫ ∞

0

dr r δ(rb(ζ)− r) Θ[rb(ζ
′)− r] I1(r)
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=

−yc(ζ) rb(ζ ′) K1(rb(ζ
′)) rb(ζ) I1(rb(ζ)) rb(ζ) < rb(ζ

′)

0 rb(ζ) > rb(ζ
′)

(2.57)
✦ yc(ζ)

∫∞
0
dr r δ(rb(ζ)− r) δ(r − rb(ζ

′)) ψ̂0>

= yc(ζ) rb(ζ
′) I1(rb(ζ

′))

∫ ∞

0

dr r δ(rb(ζ)− r) δ(r − rb(ζ
′)) K0(r)

= yc(ζ) r
2
b= I1(rb=) K0(rb=) (2.58)

This term cancels with Eq. 2.56.
✦ yc(ζ)

∫∞
0
dr r δ(rb(ζ)− r) Θ[r − rb(ζ

′)] ∂rψ̂0>

= −yc(ζ) rb(ζ ′) I1(rb(ζ ′))
∫ ∞

0

dr r δ(rb(ζ)− r) Θ[r − rb(ζ
′)] K1(r)

=

0 rb(ζ) < rb(ζ
′)

−yc(ζ) rb(ζ ′) I1(rb(ζ ′)) rb(ζ) K1(rb(ζ)) rb(ζ) > rb(ζ
′)

(2.59)
Collecting all the terms in Eqs. 2.50–2.59 and replacing them in Eq. 2.49 leads to the result

⟨∂yψ⊥⟩ =


rb(ζ

′)

rb(ζ)
K1(rb(ζ

′)) I1(rb(ζ))
(
yc(ζ

′)− yc(ζ)
)

rb(ζ) < rb(ζ
′)

rb(ζ
′)

rb(ζ)
I1(rb(ζ

′)) K1(rb(ζ))
(
yc(ζ

′)− yc(ζ)
)

rb(ζ) > rb(ζ
′)

. (2.60)

By putting together Eqs. 2.60, 2.48, 2.16 and 2.15, we finally arrive at the average transverseforce
⟨Fy⟩ = −nb0

n0

(qb
e

)2 ∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′)
r2b0(ζ

′)

rb(ζ ′)rb(ζ)
I1(rb<)K1(rb>)

(
yc(ζ

′)− yc(ζ)
) (2.61)

and the differential equation for the centroid in 2D cylindrical coordinates for a flat-top transverseprofile:
d2yc
dz2

= −2
k2β
k2p

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′)
r2b0(ζ

′)

rb(ζ ′)rb(ζ)
I1(rb<)K1(rb>)

(
yc(ζ

′)− yc(ζ)
)
, (2.62)

where rb< (rb>) is the smallest (largest) of rb(ζ) and rb(ζ
′).As mentioned before, the right-hand side of Eq. 2.62 is more general than the one in Ref. [43],where only the rb(ζ) < rb(ζ

′) branch of the piecewise plasma response is considered. Naturally,this is only important when the bunch radius is not constant, i.e. rb = rb(ζ).This is demonstrated in Fig. 2.5, where we validate the different versions of the theoreticalplasma response in this geometry against 3D PIC simulations (see Table A.2, items A.2.1–A.2.2,in Appx. A for the full simulation details). Here we consider the initial centroid perturbation
yc0(ζ) = 0.01 sin(ζ). In Fig. 2.5a), the initial bunch radius is constant (rb0 = const), and bothEq. 2.61 and Ref. [43] match the simulation data very closely. When we assume a varying initialbunch radius rb0(ζ), however, the average transverse force can only be described accuratelyby the full piecewise right-hand side represented by Eq. 2.61, as exemplified in Fig. 2.5b) for
rb0(ζ) = 0.1[1 + 0.4 cos(ζ)].
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Figure 2.5: Initial plasma response to a hosing seed for a flat-top transverse profile in cylindrical coordi-nates according to a 3D simulation (grey), to Eq. 2.61 (red), and to Ref. [43] (green), with an initial bunchradius that is either constant (a) or oscillating (b).
2.2.2 Radius (SMI)

Long, relativistic bunches are subject to the focusing forces of the plasma wave driven by them-selves. These wakefields therefore modulate the envelope of the bunch, in a process designated asthe self-modulation instability. To describe this instability, we require an equation that relates thebeam envelope (in this case, the RMS transverse size) to the forces due to the plasma wakefields.This equation can be derived by averaging the equation of motion for a bunch particle (Eq. 2.13)over the transverse bunch profile, such that the equation can be written in terms of the RMS size.We once again choose the y dimension to set up the envelope differential equation. The RMSsize is therefore defined as σy =
√
⟨(y − yc)2⟩, where yc = ⟨y⟩ is the bunch centroid. As a first step,we subtract the term d2yc/dz

2 from the y component of Eq. 2.13.
d2y

dz2
=

me

γMb
Fy

⇔ d2

dz2
(y − yc) =

me

γMb
Fy −

d2yc
dz2

(2.63)
Using the identity ∂x(∂xf) = 2 (∂xf)

2 + 2 f ∂2xf , we may write the left-hand side as
d2

dz2
(y − yc) =

1

2 (y − yc)

[
d2

dz2
(y − yc)

2 − 2

(
d

dz
(y − yc)

)2
]
. (2.64)

Replacing this expression in Eq. 2.63, rearranging in terms of d2

dz2 (y − yc)
2 and averaging over thetransverse bunch profile, we obtain

d2

dz2
〈
(y − yc)

2
〉
=

2 me

γMb
⟨(y − yc)Fy⟩ − 2 ⟨y − yc⟩

d2yc
dz2

+ 2

〈(
d(y − yc)

dz

)2
〉
, (2.65)

where the second term on the right-hand side vanishes, since ⟨y − yc⟩ = ⟨y⟩ − yc = 0.Once again using the identity ∂x√f = 1
2∂xf/

√
f and thus ∂x(∂x√f) = 1

4f
−3/2[2 f ∂2xf − (∂xf)

2],the left-hand side of Eq. 2.65 may be written as
d2

dz2
〈
(y − yc)

2
〉
=

1

2 ⟨(y − yc)2⟩

[
4
〈
(y − yc)

2
〉3/2 d2

dz2

√
⟨(y − yc)2⟩+

(
d

dz

〈
(y − yc)

2
〉)2

]

⇔ d2

dz2
σ2
y =

1

2σ2
y

[
4 σ3

y

d2

dz2
σy +

(
d

dz
σ2
y

)2
]
. (2.66)
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Once again, after replacing this expression and rearranging, Eq. 2.65 becomes
d2σy
dz2

=
me

γMb

⟨(y − yc)Fy⟩
σy

+
1

σy

〈(
d(y − yc)

dz

)2
〉

− 1

4σ3
y

(
d

dz
σ2
y

)2

. (2.67)
Using the fact that ∂xf2 = 2f∂xf , the last two terms can be rewritten as
σ2
y

σ3
y

〈(
d(y − yc)

dz

)2
〉

− 1

4σ3
y

(
d

dz

〈
(y − yc)

2
〉)2

=

1

σ3
y

[〈
(y − yc)

2
〉〈(d(y − yc)

dz

)2
〉

−
〈
(y − yc)

d

dz
(y − yc)

〉2
]
=
ε2y
σ3
y

, (2.68)
where εy is the RMS geometric emittance along y. We therefore arrive at the differential equationfor the beam envelope:

d2σy
dz2

−
ε2y
σ3
y

=
me

γMb

⟨(y − yc)Fy⟩
σy

. (2.69)
Similarly to the differential equation for the bunch centroid, the specific form of the right-handside in the presence of plasma wakefields will depend on the transverse profile of the bunch. Thiscalculation has only been done for a flat-top transverse profile, since the required integrals formore complicated profiles do not have straightforward solutions.
2D cylindrical, flat-top transverse profile

Cylindrical coordinates are the natural choice to describe the self-modulation instability, since itarises from the axisymmetric component of the wakefields. In order to retain axisymmetry, wewill assume small centroid displacements yc. We therefore have ⟨(y − yc)Fy⟩ ≈ ⟨y Fy⟩. Due to theaxisymmetry, we can now write σy, y and Fy in terms of their radial components in cylindricalcoordinates, e.g. σy = σx = σr/
√
2. Making these substitutions, we obtain

d2σr
dz2

−
4 ε2y
σ3
r

=
me

γMb

⟨r Fr⟩
σr

, (2.70)
where the geometric emittance along y will be simplified later.The bunch profile is defined as nb(ζ, r) = nb0 · f(ζ) · g(r, ζ), with g(r, ζ) =

(
rb0(ζ)
rb(ζ)

)2
Θ [rb(ζ)− r],where once again rb(ζ, z) is the bunch radius and rb0(ζ) = rb(ζ, z = 0). In this case, the averagealong the transverse bunch profile is defined as

⟨•⟩ =
nb0 f(ζ)

∫ ∞

0

∫ 2π

0

dθ dr • r g(ζ, r)

nb0 f(ζ)

∫ ∞

0

∫ 2π

0

dθ dr r g(ζ, r)

=

2π

(
rb0(ζ)

rb(ζ)

)2 ∫ ∞

0

dr • r Θ [rb(ζ)− r]

2π

(
rb0(ζ)

rb(ζ)

)2 ∫ ∞

0

dr r Θ [rb(ζ)− r]

=
2

r2b (ζ)

∫ ∞

0

dr • r Θ [rb(ζ)− r] . (2.71)
In order to express Eq. 2.70 in terms of rb(ζ, z), we replace the RMS radius of g(r, ζ), i.e. σr =

rb/
√
2. After some rearranging, we obtain the envelope equation in terms of the flat-top radius

d2rb
dz2

− ε2

r3b
=

2 me

γMb

⟨r Fr⟩
rb

, (2.72)
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where we used the definition for the effective or RMS emittance ε = 4 εy [53]. This definition of theemittance is particularly appropriate for beams that are subject to nonlinear forces [as an example,
εy vanishes for an S-shaped distribution in (y, y′) phase space, while ε remains finite] [54, 55].To calculate the right-hand side of Eq. 2.72, we must determine ⟨r Fr⟩ and therefore Fr, whichis connected to the wake potential via (see Eq. 2.2)

Fr = −qb
e
∂rψ . (2.73)

The wake potential for an axisymmetric profile in cylindrical coordinates is given by the Green’sfunction solutions in Eqs. 2.8 and 2.6. Replacing the flat-top transverse profile, the wake potentialis therefore
ψ(ζ, r) =

qb
e

nb0
n0

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′)

(
rb0(ζ

′)

rb(ζ ′)

)2

[
K0(r)

∫ r

0

dr′ r′ I0(r
′) Θ [rb(ζ

′)− r′] + I0(r)

∫ ∞

r

dr′ r′ K0(r
′) Θ [rb(ζ

′)− r′]

]
︸ ︷︷ ︸

ψr(r, ζ
′)

, (2.74)

where the radial dependence is confined to what we designated as ψr(r, ζ
′). The transverseaveraging of the wakefield force only acts on the r-dependent part of Fr, i.e., ⟨r Fr⟩ ∝ ⟨r ∂rψr(r, ζ ′)⟩.We will therefore compute these integrals separately and plug them into our desired expressionlater, using

⟨r Fr⟩ = −nb0
n0

(qb
e

)2 ∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′)

(
rb0(ζ

′)

rb(ζ ′)

)2

⟨r ∂rψr(r, ζ ′)⟩ . (2.75)
As calculated before in Sec. 2.2.1 (see Eqs. 2.41 and 2.43), ψr and ∂rψr can be written as

ψr(r, ζ
′) =

rI1(r)K0(r) + I0(r)
[
rK1(r)− rb(ζ

′)K1(rb(ζ
′))
]

:= ψr<(r, ζ
′) r ≤ rb(ζ

′)

rb(ζ
′)I1(rb(ζ

′))K0(r) := ψr>(r, ζ
′) r > rb(ζ

′)
, (2.76)

∂rψr(r, ζ
′) = −δ(rb(ζ ′)− r) ψr< −Θ[rb(ζ

′)− r] ∂rψr< + δ(r − rb(ζ
′)) ψr> +Θ[r − rb(ζ

′)] ∂rψr> .(2.77)
We must now compute the radial integral in Eq. 2.71 for all the terms in ∂rψr(r, ζ ′), once againcarefully distinguishing between rb(ζ) and rb(ζ

′) (see Fig. 2.4 on p. 21).
■ −

∫∞
0
dr r2 Θ [rb(ζ)− r] δ(rb(ζ

′)− r) ψr<

= −
∫ ∞

0

dr r2 Θ [rb(ζ)− r] δ(rb(ζ
′)− r)

(
rI1(r)K0(r) + I0(r)

[
rK1(r)− rb(ζ

′)K1(rb(ζ
′))
])

= −r3b (ζ ′) I1(rb(ζ ′)) K0(rb(ζ
′)) Θ[rb(ζ)− rb(ζ

′)] (2.78)
■ −

∫∞
0
dr r2 Θ [rb(ζ)− r] Θ[rb(ζ

′)− r] ∂rψr<

= −rb(ζ ′) K1(rb(ζ
′))

∫ ∞

0

dr r2 Θ [rb(ζ)− r] Θ[rb(ζ
′)− r] I1(r)

=

−rb(ζ ′) K1(rb(ζ
′)) r2b (ζ) I2(rb(ζ)) rb(ζ) < rb(ζ

′)

−r3b (ζ ′) K1(rb(ζ
′)) I2(rb(ζ

′)) rb(ζ) > rb(ζ
′)

(2.79)
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■
∫∞
0
dr r2 Θ [rb(ζ)− r] δ(r − rb(ζ

′)) ψr>

= rb(ζ
′) I1(rb(ζ

′))

∫ ∞

0

dr r2 Θ [rb(ζ)− r] δ(r − rb(ζ
′)) K0(r)

= r3b (ζ
′) I1(rb(ζ

′)) K0(rb(ζ
′)) Θ[rb(ζ)− rb(ζ

′)] (2.80)
This term cancels with Eq. 2.78.

■
∫∞
0
dr r2 Θ [rb(ζ)− r] Θ[r − rb(ζ

′)] ∂rψr>

= −rb(ζ ′) I1(rb(ζ ′))
∫ ∞

0

dr r2 Θ [rb(ζ)− r] Θ[r − rb(ζ
′)] K1(r)

=


0 rb(ζ) < rb(ζ

′)

−rb(ζ ′) I1(rb(ζ ′))
∫ rb(ζ)

rb(ζ′)

dr r2 K1(r) rb(ζ) > rb(ζ
′)

The integral has the solution ∫ dr r2K1(r) = −r2 K2(r) [52, Eq. 10.43.1], which leads to
rb(ζ

′) I1(rb(ζ
′))
[
r2b (ζ) K2(rb(ζ))− r2b (ζ

′) K2(rb(ζ
′))
] (2.81)

for rb(ζ) > rb(ζ
′).

Collecting all the terms in Eqs. 2.78–2.81, we obtain
⟨r ∂rψr(r, ζ ′)⟩ =

2

r2b (ζ)

−rb(ζ ′) K1(rb(ζ
′)) r2b (ζ) I2(rb(ζ)) rb(ζ) < rb(ζ

′)

rb(ζ
′)
[
r2b (ζ) K2(rb(ζ)) I1(rb(ζ

′))− rb(ζ
′)
]

rb(ζ) > rb(ζ
′)

=


−2 rb(ζ

′) K1(rb(ζ
′)) I2(rb(ζ)) rb(ζ) < rb(ζ

′)

2 rb(ζ
′) I1(rb(ζ

′)) K2(rb(ζ))− 2
r2b (ζ

′)

r2b (ζ)
rb(ζ) > rb(ζ

′)
. (2.82)

With this result, which we substitute in Eq. 2.75, we have determined the force that drives theSMI:
⟨r Fr⟩
rb

= 2
nb0
n0

(qb
e

)2 ∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′)
r2b0(ζ

′)

rb(ζ)rb(ζ ′)
K1(rb(ζ

′)) I2(rb(ζ)) rb(ζ) < rb(ζ
′)

r2b0(ζ
′)

r3b (ζ)
− r2b0(ζ

′)

rb(ζ)rb(ζ ′)
I1(rb(ζ

′)) K2(rb(ζ)) rb(ζ) > rb(ζ
′)

. (2.83)
We may now replace this force in Eq. 2.72, thus obtaining the differential equation for the bunchradius rb(ζ, z) in axisymmetric cylindrical coordinates for a flat-top transverse profile.
d2rb
dz2

− ε2

r3b
= 8

k2β
k2p

I2(rb(ζ))

rb(ζ)

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′)
r2b0(ζ

′)

rb(ζ ′)
K1(rb(ζ

′)) , for rb(ζ) < rb(ζ
′) (2.84)

d2rb
dz2

− ε2

r3b
= 8

k2β
k2p

1

r3b (ζ)

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′) r2b0(ζ
′)

− 8
k2β
k2p

K2(rb(ζ))

rb(ζ)

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′)
r2b0(ζ

′)

rb(ζ ′)
I1(rb(ζ

′)) , for rb(ζ) > rb(ζ
′)

(2.85)
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Figure 2.6: Initial plasma response to an SMI seed for a flat-top transverse profile in axisymmetric cylindri-cal coordinates according to simulation (grey), to Eq. 2.83 (red), and to Ref. [42] (green), for δr/rb0 = 0.01(a) and δr/rb0 = 0.1 (b).
Equation 2.84 corresponds to what is available in the literature [42]. However, we note that theother branch, Eq. 2.85, of the piecewise differential equation has not been discussed in previouswork. We can evaluate this result by seeding the SMI in an axisymmetric PIC simulation (in 2Dcylindrical coordinates) and comparing the initial plasma response ⟨r Fr⟩ /rb to Eq. 2.83. For this weinitialize a long, relativistic positron bunch with a flat-top transverse profile and cosine longitudinalprofile, and with a bunch radius perturbation given by rb(ζ) = rb0 + δr sin(ζ − ζs), where δr is theperturbation amplitude and ζs is the location of the bunch front (see Table A.3, items A.3.1–A.3.2,in Appx. A for the full simulation details).Figure 2.6 shows the comparison between the initial plasma response according to Eq. 2.83,Ref. [42], and simulations. The relative perturbation amplitude is δr/rb0 = 0.01 in Fig. 2.6a) and

δr/rb0 = 0.1 in Fig. 2.6b). Although neither of the two versions of the theory can accuratelyreproduce the amplitude of the initial plasma response, the full piecewise version in Eq. 2.83 isable to capture the correct phase, as well as some of the nonlinearity (or harmonics) that appearsfor a larger radius perturbation [see non-sinusoidal shape of the red and grey curves in Fig. 2.6b)].The reason for the discrepancy between theory and simulation is still unclear, although we wereable to rule out the possibility that the assumption of linear wakefields (nb0/n0 ≪ 1) was not met inthe simulations.
2.3 Asymptotic models

So far we have determined different versions of differential equations that describe the HI andSMI. We still have no information about the growth rates of these instabilities, or how they evolvequalitatively along z and ζ. An analytical expression for the centroid yc(ζ, z) and the bunch radius
rb(ζ, z) can be found using the following prescription:

1. Find a simplified partial differential equation by assuming a long-bunch, adiabatic regime(where the bunch changes slowly over many betatron periods)
2. Assume a slowly varying envelope and establish a partial differential equation for the envelope
3. Define initial conditions, and Laplace-transform the equation in z
4. Find the solution for the equation in Laplace space
5. Approximate the inverse Laplace transform of the solution using the method of steepestdescent
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This is the procedure used in several published works [42–44] where the evolution of theHI and SMI has been described using asymptotic methods. In this section, we reproduce thoseresults, including their detailed derivation, and we discuss the advantages and limitations of theseasymptotic models.
2.3.1 Centroid (HI)

In the following, we will derive the asymptotic model for the evolution of the bunch centroid in 2Dcylindrical geometry for a flat-top transverse profile. Starting from Eq. 2.62, we assume a constantbunch radius rb(ζ) = rb0 = const. We therefore have
d2yc
dz2

= −2 k̂2β I1(rb0)K1(rb0)

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′) f(ζ ′)
(
yc(ζ

′)− yc(ζ)
)
, (2.86)

where we have defined k̂2β = k2β/k
2
p. We may rewrite this equation as(

∂2z − µk̂2β

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′) f(ζ ′)

)
yc(ζ) = −µk̂2β

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′) f(ζ ′) yc(ζ
′)

⇔
(
∂2z + µk̂2β f(ζ)

)
yc(ζ) = −µk̂2β

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′) f(ζ ′) yc(ζ
′) , (2.87)

where we defined µ = 2I1(rb0)K1(rb0). To simplify the left-hand side we used integration by parts:∫ ∞

ζ

dζ ′ sin(ζ − ζ ′) f(ζ ′) = [cos(ζ − ζ ′)f(ζ ′)]
∞
ζ −

∫ ∞

ζ

dζ ′ cos(ζ − ζ ′)
∂f(ζ ′)

∂ζ ′
, (2.88)

and assumed a long-bunch adiabatic regime, such that ∂ζf(ζ) → 0. This assumption amounts toconsidering a very long, smooth bunch with respect to the typical length scale of the developmentof the HI (k−1
p ). Further noting that f(ζ → ∞) = 0, since the bunch distribution must be finite,Eq. 2.88 reduces to −f(ζ).We now apply the longitudinal plasma operator (∂2ζ + 1) (see Sec. 2.1.1) to both sides of Eq. 2.87,while also setting f(ζ) ≈ 1 [42, 43] (consistent with the long-bunch adiabatic regime and especiallyvalid close to the center of the bunch):(

∂2ζ + 1
)(

∂2z + µk̂2β

)
yc = µk̂2β yc , (2.89)

where we used the fact that Lζ ∫Dζ
dζ ′ G(ζ ′, ζ)F (ζ ′) = F (ζ). Note that the minus sign on theright-hand side cancels because G(ζ ′, ζ) = sin(ζ ′ − ζ) = − sin(ζ − ζ ′) (for ζ ′ ≥ ζ).Having obtained a partial differential equation for the centroid yc(ζ, z), we will now assume thatthe centroid behaves according to yc(ζ, z) = ŷc/2 · exp(iζ) + c.c., where ŷc(ζ, z) is the envelope and

c.c. denotes the complex conjugate. Note that we are assuming an oscillation at kp, which is hiddenin the normalized ζ variable. After replacing our assumed form of the centroid, we are left with anequation for the envelope ŷc(ζ, z). After some rearranging, and assuming a slowly varying envelope,i.e., applying the approximations |∂ζ ŷc| ≪ |ŷc| and |∂z ŷc| ≫ µk̂2β |ŷc|, we obtain
∂2z∂ζ(∂ζ + 2i) ŷc + µk̂2β ∂ζ(∂ζ + 2i) ŷc − µk̂2β ŷc = 0

⇔ 2i ∂ζ

(
∂2z + µk̂2β

)
ŷc − µk̂2β ŷc = 0

⇔
(
∂ζ∂

2
z +

i

2
µk̂2β

)
ŷc = 0 . (2.90)
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In order to solve Eq. 2.90, we perform a Laplace transform in the z variable, choosing thefollowing initial conditions: ŷc(ζ = 0, z) = δcΘ(z), ŷc(ζ, z = 0) = δc and ∂z ŷc|z=0 = 0. These conditionscorrespond to a constant offset δc of the bunch centroid being turned on at z = 0, where the leadingslice of the bunch (at ζ = 0) remains fixed. The resulting equation for the Laplace-transformedcentroid Y (ζ, s) = L{ŷc(ζ, z)}(ζ, s) is
∂ζY +

i

2

µk̂2β
s2

Y = 0 , (2.91)
which has the solution

Y (ζ, s) =
δc
s
exp

(
− i

2

µk̂2β
s2

ζ

)
. (2.92)

To determine the expression for the centroid we would need to find the inverse Laplace transformof the envelope solution in Eq. 2.92. The inverse Laplace transform can be defined via the Bromwichintegral
f(t) = L−1{F (s)}(t) = 1

2πi

∫ γ+i∞

γ−i∞
estF (s)ds , (2.93)

where the real-valued γ should be greater than the real part of all singularities of F (s). Since theonly singularity of Y (ζ, s) is at s = 0, γ should be greater than zero. In this case, the envelope inreal space is given by
ŷc(ζ, z) =

δc
2πi

∫ γ+i∞

γ−i∞

1

s
exp

(
sz − i

2

µk̂2β
s2

ζ

)
ds . (2.94)

We will use the method of steepest descent [56, Sec. 13.2] to find the approximate solution ofthe integral in Eq. 2.94. This method approximates an integral along a complex contour C of theform I(s) =
∫
C
f(s) exp [λ g(s)] ds, where s ∈ C, λ is a large real number, f(s) and g(s) are analyticalfunctions and f(s) varies slowly, by deforming the contour C such that an extremum of g(s) (asaddle point in the complex plane) is crossed. All other contributions to the integral besides thesaddle point s0 will be exponentially smaller, such that the integral can be approximated as

I(s) ≈ f(s0) e
λg(s0)eiα0

√
2π

λ G′′
0

, (2.95)
where we have defined d2g

ds2 |s=s0 = G′′
0 e

iθ0 (in exponential notation), and α0 = −θ0±π
2 determines thedirection of the deformed contour. The larger λ is, the better this approximation is.In this case, we choose:

λ = µk̂2β , f(s) =
δc
2πi

1

s
, g(s) =

sz

λ
− i

2

ζ

s2
. (2.96)

Setting dg
ds = 0, we find three saddle points for g(s) [see Fig. 2.7a)]:

s1 =

(
λ
|ζ|
z

)1/3

ei
π
2 , s2 =

(
λ
|ζ|
z

)1/3

ei
7π
6 , s3 =

(
λ
|ζ|
z

)1/3

ei
11π
6 . (2.97)

Since s1 and s2 lie in γ ≤ 0, we choose the saddle point s0 = s3. Taking the second derivativeof g(s), we have G′′
0 = 3 ζ−1/3(z/λ)4/3 and θ0 = π/6. The two possible values for α0 are therefore

5π/12 and −7π/12. Both of these angles correspond to the white dash-dotted line in Fig. 2.7b), thedifference being the direction in which s3 is crossed. The most sensible way to deform C such thatit crosses the saddle point s3 along the dash-dotted line [see Fig. 2.7b)] is from south to north
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Figure 2.7: Visualization of the function g(s) and the contour integral for the method of steepest descent.a) Real part of g(s) on the complex plane (pink surface) and the three saddle points found for g(s) (coloredspheres). b) Real part of g(s) (color scale and blue contour lines) in the vicinity of s3 (blue circle). Dashedcontour lines represent values Re[g(s)] < Re[g(s3)], while solid contour lines correspond to Re[g(s)] ≥
Re[g(s3)]. The integration contour from γ − i∞ to γ + i∞ is represented by the solid white vertical arrow. Thedash-dotted white line crossing s3 corresponds to the angles α0 = 5π/12 and α0 = −7π/12.
(α0 = 5π/12), rather than north to south (α0 = −7π/12). We therefore choose α0 = 5π/12. Lastly,we are only missing f(s0) and g(s0), which are given by

f(s0) =
δc
2π
z N−1

h e−i
π
3 , g(s0) =

3

2

Nh
λ
e−i

π
6 , (2.98)

where we have defined Nh =
(
λ|ζ|z2

)1/3
=
(
µk̂2β |ζ|z2

)1/3. Putting these results together and aftersome simplification, the approximate result of Eq. 2.94 is
ŷc(ζ, z) ≈

δc
2π
z N−1

h e−i
π
3 exp

(
3

2
Nh e

−iπ6

)
ei

5π
12

√
2π

3 z2N−1
h

≈ δc√
6π

N
−1/2
h exp

[
3

2
Nh

(√
3

2
+
i

2

)
+ i

π

12

]
. (2.99)

We may now substitute Eq. 2.99 into the assumed form of the centroid yc(ζ, z) = ŷc/2 · exp(iζ) +
c.c. = Re[ŷc · exp(iζ)] and obtain an asymptotic model for the evolution of the centroid [43]:

yc(ζ, z) = δc
31/4√
8π

eΓHI

√
ΓHI

cos

(
π

12
+ ζ − ΓHI√

3

)
, (2.100)

where we defined the HI growth rate ΓHI = (33/2/4)Nh = (33/2/4)
(
µk̂2β |ζ|z2

)1/3. Note that the signof ζ in the argument of the cosine differs from Ref. [43] due to ζ being defined there as ζ ∈ ]−∞, 0],whereas this formulation is general (ζ may be either positive or negative).

2.3.2 Radius (SMI)

An asymptotic model for the SMI can be established using the same method as above, and makingsome stronger assumptions about the bunch radius. We start from the differential equation for thebunch radius for a flat-top transverse profile Eq. 2.84 (taking only the branch rb(ζ) < rb(ζ
′) intoaccount) and assume a small radius perturbation r1 around a radius r0 which evolves slowly at the
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betatron time scale, with r1/r0 ≪ 1. Substituting rb(ζ, z) = r0(ζ, z) + r1(ζ, z) in Eq. 2.84, we obtain
d2

dz2
(r0 + r1)−

ε2

(r0 + r1)3
= 8 k̂2β

I2(r0 + r1)

r0 + r1

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′)
r2b0(ζ

′)

r′0 + r′1
K1(r

′
0 + r′1) , (2.101)

where we are using the shorthand ri = ri(ζ) and r′i = ri(ζ
′), with i = {0, 1}. Note that, strictlyspeaking, rb0 corresponds to rb(ζ, 0) and should therefore be expressed in terms of the linearexpansion r0(ζ, 0) + r1(ζ, 0), which ultimately leads to the same result. We therefore keep thevariable rb0 for now and eliminate it later with a more direct approximation. To simplify Eq. 2.101 wewill linearize the following terms as a function of r1/r0 ≪ 1.

(r0 + r1)
−3 = r−3

0

(
1 +

r1
r0

)−3

≈ r−3
0

(
1− 3

r1
r0

) (2.102)
I2(r0 + r1)

r0 + r1
=
I2

(
r0

(
1 + r1

r0

))
r0

(
1 + r1

r0

) ≈ I2(r0)

r0

(
1 +

r1
r0

)
+ I3(r0)

r1
r0

(2.103)
K1(r

′
0 + r′1)

r′0 + r′1
=
K1

(
r′0

(
1 +

r′1
r′0

))
r′0

(
1 +

r′1
r′0

) ≈ K1(r
′
0)

r′0
−K2(r

′
0)
r′1
r′0

(2.104)
The term ∂2zr0 is given by the envelope equation itself (Eq. 2.84):

d2r0
dz2

=
ε2

r30
+ 8 k̂2β

I2(r0)

r0

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′)
r2b0(ζ

′)

r′0
K1(r

′
0) . (2.105)

At this point, we will take a brief detour to demonstrate that we can remove r0 from theintegration in ζ ′ by assuming that ∂ζr0 → 0. Let us consider the integral ∫∞
ζ
dζ ′ p(ζ ′) q(r0(ζ

′)) withthe arbitrary functions p and q. Applying integration by parts, this can be written as∫ ∞

ζ

dζ ′ p(ζ ′) q(r0(ζ
′)) = [P (ζ ′) q(r0(ζ

′))]
∞
ζ −

∫ ∞

ζ

dζ ′P (ζ ′)
∂q(r0(ζ

′))

∂ζ ′
, (2.106)

where P (ζ ′) is the indefinite integral of p(ζ ′). Bearing in mind the domain ζ ∈ [0,∞[ (see Sec. 2.1.1),we may write P (ζ ′) = −
∫∞
ζ′
dτ p(τ), using the fundamental theorem of calculus and an appropriatechange of variables. By the chain rule of differentiation we know that ∂ζq(r0) ∝ ∂ζr0 and therefore

∂ζq(r0) → 0. We are thus left with∫ ∞

ζ

dζ ′ p(ζ ′) q(r0(ζ
′)) = P (ζ ′ → ∞) q(r0(ζ

′ → ∞)) + q(r0(ζ))

∫ ∞

ζ

dτ p(τ)

⇔
∫ ∞

ζ

dζ ′ p(ζ ′) q(r0(ζ
′)) = q(r0(ζ))

∫ ∞

ζ

dζ ′ p(ζ ′) , (2.107)
where we used the fact that the bunch is finite and that r0(ζ → ∞) = 0.We can now replace the expansions in Eqs. 2.102–2.105 in Eq. 2.101 and apply Eq. 2.107, producing
ε2

r30
+ 8 k̂2β

I2(r0)K1(r0)

r20

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′) r2b0(ζ
′) +

d2r1
dz2

− ε2

r30

(
1− 3

r1
r0

)
=

8 k̂2β

[
I2(r0)

r0

(
1 +

r1
r0

)
+ I3(r0)

r1
r0

] ∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′) r2b0(ζ
′)

[
K1(r0)

r0
−K2(r0)

r′1
r0

]
. (2.108)

The right-hand side includes a term proportional to I2(r0)K1(r0)/r
2
0, which cancels with the sec-ond term on the left-hand side. This leaves five further terms on the right-hand side, two
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of which are proportional to (r1/r0)
2 and which we neglect. Note that one of these terms (∝

K2(r0)I3(r0) r
2
b0(ζ

′) r1r
′
1/r

2
0) may only be neglected with the added assumption that r1(ζ) ≪ 1. Wealso neglect the emittance term proportional to r1/r40, which can be shown graphically to be com-paratively small. Finally, we assume that, within the fast timescale of the development of the SMI,

r0 ≈ rb0 = rb(ζ, z = 0). After some simplification, Eq. 2.108 becomes
d2r1
dz2

= −8 k̂2βI2(r0)K2(r0)

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′) r′1

+ 8 k̂2β K1(r0) r1

[
I2(r0)

r0
+ I3(r0)

] ∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′) . (2.109)
Similarly to the previous section, we assume a long-bunch adiabatic regime, setting f(ζ) ≈ 1,and thus replace ∫∞

ζ
dζ ′ sin(ζ − ζ ′)f(ζ ′) ≈ −f(ζ) ≈ −1 (see Eq. 2.88 on p. 28). After resettingEq. 2.109, we obtain a differential equation for the bunch radius perturbation r1(ζ, z):(

d2

dz2
+ 4 κ2k̂2β

)
r1(ζ, z) = −2 νk̂2β

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′) r1(ζ
′, z)

⇔
(
∂2ζ + 1

)(
∂2z + 4 κ2k̂2β

)
r1(ζ, z) = 2 νk̂2β r1(ζ, z) (2.110)

where we defined1 κ2 = 2K1(r0) [I2(r0)/r0 + I3(r0)] and ν = 4 I2(r0)K2(r0), and where we appliedthe longitudinal plasma operator to both sides of the equation (see Eq. 2.89 on p. 28). Note thata complete version of Eq. 2.110, where both branches are contemplated (for rb(ζ) < rb(ζ
′) and

rb(ζ) > rb(ζ
′)), can be found on p. 66.We now assume that the bunch radius perturbation oscillates at kp and has the form r1(ζ, z) =

r̂/2 · exp(iζ) + c.c., where r̂ is a slowly varying envelope, such that |∂ζ r̂| ≪ |r̂| and |∂z r̂| ≫ 2 κk̂β |r̂|.Applying these assumptions to Eq. 2.110, we obtain after some simplification
∂2z∂ζ (∂ζ + 2i) r̂ + 4 κ2k̂2β ∂ζ (∂ζ + 2i) r̂ = 2 νk̂2β r̂

⇔ 2i ∂ζ

(
∂2z + 4 κ2k̂2β

)
r̂ = 2 νk̂2β r̂

⇔
(
∂ζ∂

2
z + i νk̂2β

)
r̂ = 0 . (2.111)

Following the prescription outlined in the introduction to Sec. 2.3, we apply a Laplace transformin z to Eq. 2.111. With the initial conditions r̂(ζ = 0, z) = δrΘ(z), r̂(ζ, z = 0) = δr and ∂z r̂|z=0 = 0, where
δr is the initial oscillation amplitude, the Laplace-transformed equation for R(ζ, s) = L{r̂(ζ, z)}(ζ, s)is

∂ζR+ i
νk̂2β
s2

R = 0 . (2.112)
The solution to this equation is given by

R(ζ, s) =
δr
s
exp

(
−i

νk̂2β
s2

ζ

) (2.113)
in Laplace space and by

r̂(ζ, z) =
δr
2πi

∫ γ+i∞

γ−i∞

1

s
exp

(
sz − i

νk̂2β
s2

ζ

)
ds (2.114)

1Note that the definition of κ2 in Ref. [42] is incorrect.
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in (ζ, z) space, where γ should be larger than the real singularity of R(ζ, s) at s = 0.We once again approximate the inverse Laplace transform of the solution, Eq. 2.114, with themethod of steepest descent (see p. 29). Choosing
λ = νk̂2β , f(s) =

δr
2πi

1

s
, g(s) =

sz

λ
− i

ζ

s2
, (2.115)

we follow the same procedure as in the previous section. Since the calculation details are almostidentical, we allow ourselves to skip to the final result. The asymptotic model for the evolutionof the bunch radius perturbation r1(ζ, z) = rb(ζ, z)− rb0(ζ) for a flat-top transverse bunch profileis [42]
r1(ζ, z) = δr

31/4√
8π

eΓSMI

√
ΓSMI

cos

(
π

12
+ ζ − ΓSMI√

3

)
, (2.116)

where the SMI growth rate is defined as ΓSMI = (33/2/4)Nsm = (33/2/4)
(
2 νk̂2β |ζ|z2

)1/3.
2.3.3 Discussion

Following the algebraic recipe outlined at the beginning of this section has awarded us withan analytical expression both for the evolution of the bunch centroid and radius, and for thespatiotemporal growth rates of both instabilities.In order to obtain the asymptotic models, it was necessary to make several assumptions. Torecapitulate, we list the approximations underlying the models in this section:
• Linear wakefield theory (δn/n0 ≪ 1, where δn is the plasma density perturbation)
• Flat-top transverse bunch profile with bunch radius rb
• Constant (rb = rb0 = const) or slowly evolving (∂ζrb0 → 0) bunch radius
• Linear stage of instability development (yc ≪ 1, r1/rb0 ≪ 1, and r1 ≪ 1), meaning for examplethat saturation mechanisms are not contemplated
• Initial sinusoidal perturbation at the plasma wavelength (kp)
• Slowly varying envelope: kp|x̂| ≫ |∂ζ∗ x̂| and kβ |x̂| ≪ |∂z∗ x̂|, where x̂ is the envelope of a fastoscillation and ζ∗ and z∗ are not normalized (see paragraphs before Eqs. 2.90 and 2.111)
• Long-bunch, adiabatic regime (∂ζf(ζ) → 0 and f(ζ) ≈ 1)
• Parameter λ for the method of steepest descent (Eq. 2.95) is large (λ≫ 1)
We also point out that this description precludes any coupling between the HI and SMI.The approximation of a slowly varying envelope, in particular, may be expressed in alternativeterms. If we use the fact that x̂ ∝ eΓ/

√
Γ, where Γ is a growth rate, it follows that

eΓ√
Γ

≫ eΓ√
Γ

(2Γ− 1) ∂ζΓ

2Γ
⇔ 1 ≫ ∂ζΓ . (2.117)

Both factors µ and 2 ν are ∼ 1 for rb0 ≲ 10 k−1
p , so we can assume Γ ≈ (33/2/4)

(
k̂2β |ζ|z2

)1/3. Takingthe partial derivative of Γ in ζ, we obtain
1 ≫

√
3

4

(
k̂2βz

2
)1/3

|ζ|−2/3 ⇔ |ζ| ≫

(√
3

4

)3/2

k̂β |z|
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Figure 2.8: Ratio of the SMI growth rate to the HI growth rate as a function of the initial bunch radius,according to the asymptotic models.
⇔ |ζ| ≫ k̂β |z| ⇔ kp |ζ∗| ≫ kβ |z∗| , (2.118)

since (
√
3/4)3/2 ≈ 0.3. The condition in Eq. 2.118 is associated with the so-called long-bunch,early-time regime, meaning that the asymptotic models above are valid early enough and farenough along the bunch. In particular, these models are not applicable to the front of the bunch.(Note that, regardless of how the ζ-domain is defined, the front of the bunch is where ζ → 0, andthe back of the bunch is in the direction of ζ → ±∞.)We can compare the two spatiotemporal growth rates obtained with the asymptotic approachfor the hosing and self-modulation instabilities. Under the assumptions made above, the ratiobetween both growth rates depends simply on the initial bunch radius rb0:

ΓSMI

ΓHI
=

(
2ν

µ

)1/3

=

(
4 I2(rb0)K2(rb0)

I1(rb0)K1(rb0)

)1/3

. (2.119)
This dependence is illustrated in Fig. 2.8. In the limits where rb0 → 0 and rb0 → ∞, the ratio inEq. 2.119 is 21/3 ≈ 1.26 and 22/3 ≈ 1.59, respectively (see dashed lines in Fig. 2.8). This means that,given equivalent initial conditions, the growth rates for the HI and SMI are of the same order, andthese instabilities are liable to compete with each other, though ΓSMI is always larger than ΓHI.

2.4 Power series model

An alternative model for the onset of the HI and SMI can be found using a power series approach,which has been utilized before in the context of conventional accelerator physics [57]. This modelhas the advantage of being flexible with respect to the initial conditions, as well as applying tothe front of the bunch. On the other hand, its range of validity is relatively limited in terms of thepropagation distance.In Sections 2.2 and 2.3 we have derived several differential equations to describe differentmoments of the bunch profile (e.g. the centroid or the RMS size). For a general moment m(ζ, z),these differential equations may be expressed as
d2m

dz2
= R{m} , (2.120)

where R is an operator in the ζ variable and contains the plasma response. For the power seriesapproach to be tractable, R should be a linear function of m. This is always the case when weassume to be in the linear stage of instability development (yc ≪ 1 or r1/rb0 ≪ 1), since R may
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then be approximated by the first order of its Taylor expansion in terms of m (i.e., R ∝ m).If we write m as a power series in z, m(ζ, z) =
∑∞
n=0 an(ζ) z

n, and substitute this in Eq. 2.120, weobtain a recurrence relation for the coefficients an:
∞∑
n=2

an n(n− 1) zn−2 =

∞∑
n=0

R{an} zn

⇔
∞∑
n=0

an+2 (n+ 2)(n+ 1) zn =

∞∑
n=0

R{an} zn

⇔ an+2 =
R{an}

(n+ 2)(n+ 1)
. (2.121)

Assuming some arbitrary initial conditions, m(ζ, z = 0) = m0(ζ) and m′(ζ, z = 0) = ∂zm|z=0 =

m′
0(ζ), we can define the first two coefficients: a0 = m0(ζ) and a1 = m′

0(ζ). This allows us to framethe recurrence relation in Eq. 2.121 as a general formula that depends on the initial conditions. Aftersome algebraic consolidation, we can express the evolution of the general moment m(ζ, z) and its
z-derivative m′(ζ, z) as

m(ζ, z) =

∞∑
n=0

zn

n!

R(n
2 ){m0} , n is even

R(n−1
2 ){m′

0} , n is odd , (2.122)
m′(ζ, z) =

∞∑
n=0

zn

n!

R(n
2 ){m′

0} , n is even
R(n+1

2 ){m0} , n is odd , (2.123)
where the superscript in the operator R signifies consecutive applications (e.g. R(2){m} =

R{R{m}} and R(0){m} = m). By truncating Eqs. 2.122 and 2.123 at an adequate order, we obtainan approximate power series model for the evolution of m(ζ, z). Note that truncation at n = 2corresponds to holding the plasma response to the initial conditions m0 and m′
0 constant (theright-hand side in Eq. 2.120 becomes constant in z and the solution will be proportional to z2).The right-hand side of the beam moment differential equations in this chapter, which determinethe development of the hosing and self-modulation instabilities, is invariably proportional to k2β .This means that the typical length scale for the evolution of m along z is the betatron period k−1

β .Since the power series model in Eqs. 2.122 and 2.123 is valid for the linear stage of instabilitydevelopment, we can conclude that the model is valid for z ≲ k−1
β .In the following, we will discuss two specific cases of the right-hand side operator R which canbe used to describe the early evolution of the HI and SMI.

2.4.1 Centroid (HI)

To demonstrate how the power series model can be applied to hosing, we choose two cases:2D Cartesian geometry with a Gaussian transverse profile and 2D cylindrical geometry with aflat-top transverse profile. For simplicity, we assume constant transverse bunch sizes in bothcases (σy = const and rb = const).
2D Cartesian, Gaussian transverse profile

In this case, and bearing in mind the constant beam envelope, the bunch centroid yc is describedby Eq. 2.37. The right-hand side operator is therefore
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Figure 2.9: Line-outs of the centroid yc and centroid velocity vc along ζ at z = 2 k−1
β (a) and along z at

ζ = 30 k−1
p (b) for a Gaussian transverse profile in 2D Cartesian geometry according to simulation (darkgrey) and the power series model truncated at different terms (colors). The vertical grey dashed linesindicate the position of the line-out along the other dimension. Note that the curves for n = 8 and n = 10overlap almost completely.

R{yc} = 2 k̂2β

√
π

8
σy exp(σ2

y)

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′) f(ζ ′)

{
exp [yc(ζ

′)− yc(ζ)]

erfc

[
yc(ζ

′)− yc(ζ) + 2 σ2
y

2 σy

]
− exp [yc(ζ)− yc(ζ

′)] erfc

[
yc(ζ)− yc(ζ

′) + 2 σ2
y

2 σy

]}
, (2.124)

which is manifestly not a linear function of yc. We must expand R in terms of yc (assuming yc ≪ 1).To first order, and treating yc(ζ
′)− yc(ζ) ∝ yc as the expansion variable,

exp [yc(ζ
′)− yc(ζ)] erfc

[
yc(ζ

′)− yc(ζ) + 2 σ2
y

2 σy

]
− exp [yc(ζ)− yc(ζ

′)] erfc

[
yc(ζ)− yc(ζ

′) + 2 σ2
y

2 σy

]

≈
[
2 erfc (σy)−

2√
π σy

e−σ
2
y

](
yc(ζ

′)− yc(ζ)
)
. (2.125)

For small centroid displacements, we can therefore define the right-hand side operator as
R{yc} =

√
2 k̂2β

[
1−

√
π σy e

σ2
y erfc(σy)

] ∫ ∞

ζ

dζ ′ sin(ζ − ζ ′) f(ζ ′)
(
yc(ζ

′)− yc(ζ)
)
. (2.126)

Plugging this operator into Eqs. 2.122 and 2.123 and truncating at n = 4, for example, we have
yc(ζ, z) = yc0(ζ) + vc0(ζ) · z +R{yc0} ·

z2

2
+ R{vc0} ·

z3

6
+R(2){yc0} ·

z4

24
, (2.127)

vc(ζ, z) = vc0(ζ) +R{yc0} · z +R{vc0} ·
z2

2
+R(2){yc0} ·

z3

6
+R(2){vc0} ·

z4

24
, (2.128)
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Figure 2.10: Line-outs of the centroid yc and centroid velocity vc along ζ at z = 2 k−1
β (a) and along z at

ζ = 30 k−1
p (b) for a flat-top transverse profile in cylindrical coordinates according to a 3D simulation (darkgrey) and the power series model truncated at different terms (colors). The vertical grey dashed linesindicate the position of the line-out along the other dimension. Note that the curves for n = 8 and n = 10overlap almost completely.

where vc = vc,∗/c = dyc/dz is the normalized centroid velocity (vc,∗ is not normalized), and yc0(ζ)and vc0(ζ) are arbitrary initial conditions for the centroid and centroid velocity, respectively.Figure 2.9 shows a comparison of the power series model truncated at different series termswith a PIC simulation in 2D Cartesian geometry, with yc0(ζ) = 0.05 sin(1.07 ζ) and vc0(ζ) = 0 (seeTable A.1, item A.1.1, in Appx. A for the full simulation details). For the range in ζ we are considering,the truncated solutions are valid up to propagation distances z ≈ k−1
β [see Fig. 2.9b)]. As expected,a larger number of series terms improves the agreement between the model and simulation,although the improvement seems to saturate at eight series terms (note the overlap between thecurves for n = 8 and n = 10 in Fig. 2.9).

2D cylindrical, flat-top transverse profile

For a flat-top transverse profile, the right-hand side of the centroid differential equation alreadydepends linearly on yc (see Eq. 2.62). We can define the operator as
R{yc} = 2 k̂2β I1(rb)K1(rb)

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′)
(
yc(ζ)− yc(ζ

′)
)
, (2.129)

and once again replace it in the general model (Eqs. 2.122 and 2.123). Note that the branches ofEq. 2.62 are continuous at rb(ζ) = rb(ζ
′) (which is also the case when rb is constant).The power series model in this geometry is compared to a 3D PIC simulation in Fig. 2.10, withthe initial conditions yc0(ζ) = 0.027 sin(ζ) and vc0(ζ) = 0 (see Table A.2, item A.2.1, in Appx. A for the
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full simulation details). Here the accuracy of the model extends to longer distances (both along thebunch and along the propagation distance) than in Fig. 2.9. Figure 2.10b), for example, indicatesreasonable agreement can be maintained up to z ≈ 2 k−1
β , although some signs of nonlinearity havebegun to appear at this point [see Fig. 2.10a) for ζ = [0, 20] k−1

p ].
2.5 Comparison of evolution models

In the last two sections, we have presented two analytical models that can describe the evolutionof the bunch centroid as the particle bunch undergoes the HI. Each of these models has differentunderlying assumptions, as well as advantages and disadvantages. Here we briefly compare theasymptotic and power series models to a 3D PIC simulation with parameters that are representativeof the remainder of this dissertation.It is only possible to compare the asymptotic and power series model directly for a flat-toptransverse profile in cylindrical coordinates, and assuming an initial centroid perturbation at kp. Weonce again assume the initial centroid yc0(ζ) = 0.027 sin(ζ).To quantify the accuracy of the theoretical models, we average the amplitude of the theoretical(yc,th) and numerical (yc,sim) centroid oscillation over one period (λp) and calculate the relativedifference between the simulation and the model. The relative error ∆|yc| is therefore defined as
∆|yc| =

⟨|yc,th|⟩λp
− ⟨|yc,sim|⟩λp

⟨|yc,sim|⟩λp

. (2.130)
Figure 2.11 displays the relative error obtained in this case for the asymptotic model [Fig. 2.11a)]and the power series model truncated at n = 8 [Fig. 2.11b)]. Though the asymptotic modelcan accurately describe the centroid along most of the ζ-range we are considering early in thedevelopment of the instability (z ≲ 0.2 k−1

β ), the oscillation amplitude quickly explodes along thepropagation. We also note that this model diverges at the front of the bunch, as mentioned before(here, for ζ → ζs = 135 k−1
p ). The power series model, on the other hand, can reproduce thebehavior of the centroid to within a few percent accuracy up to z ≲ 2 k−1

β .We may therefore conclude that asymptotic models are extremely useful to understand qual-
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itatively and analytically the growth rates and development of the hosing and self-modulationinstabilities. For a more flexible and quantitative modeling, the power series approach should bethe method of choice.
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Chapter 3

Properties of the hosing instability

The development of the hosing instability in a particle bunch leads to an increased emittance, andhosing has therefore been seen as a major hindrance for high-quality plasma-based acceleration.In contrast to the self-modulation instability, the unstable oscillation of a bunch centroid can alsoarise for short bunches (with respect to the wakefield wavelength). In the (short-bunch) blow-outregime [58, 59], there is an assortment of proposed mitigation approaches to choose from [60]. Inthis regime, hosing may be suppressed through an energy spread (both an initial chirp or inherentlyinduced by the driven wakefields) [61], ion motion [62], or tailored plasma ramps [61].
Currently, fewer mitigation options have been put forward for hosing in the linear wakefieldregime. For long bunches there is the additional complexity of the self-modulation instability,which can couple to the long-bunch, linear-wakefield HI and whose growth rate is comparable(see Eq. 2.119). Nevertheless, hosing can be avoided in a fully self-modulated bunch. This requiresstrongly seeding the SMI [45], which has been accomplished in experiments by letting an ionizinglaser pulse propagate with the proton bunch and create the plasma [63]. In the future, SMI seedingmay be achieved with a preceding short electron bunch, such that the entire proton bunch self-modulates [40, 64]. When misaligned, this arrangement may seed the growth of hosing. In thecase of a short bunch (e.g. a witness bunch) in a linear wake, it has been shown that the HI willnaturally saturate at modest levels [65]. However, saturation in the long-bunch case is not yet wellunderstood, both in the presence and absence of the SMI. It would therefore be useful to developfurther mitigation methods for hosing in the linear wakefield regime.
Besides mitigation, there are reasons to believe that we may not yet grasp some aspects of thelong-bunch HI fully, most prominently the fact that a long-wavelength regime of hosing in longlaser pulses was predicted [66] and observed experimentally [67] in the past. Despite some subtledifferences, such as the different driver velocity and evolution, the physical and mathematicalapparatus that describes the HI and SMI in long laser pulses is analogous enough to long particlebunches that it is worth investigating whether the same conclusions follow.
In this context, the first step in this chapter will be to obtain the dispersion relation for thelong-bunch HI, a result that should be analogous to the one for long laser pulses [66]. Followingthis, we explore the dependence of the hosing growth rate on the seed frequency from a moredynamic perspective that places particular emphasis on the instability’s onset, using novel methodsand reaching novel conclusions.
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3.1 Adiabatic dispersion relation

Our approach to obtain a dispersion relation for the hosing instability is relatively established inplasma physics. Starting from a partial differential equation for the instability in question in thebeam co-moving frame, we transform the variables back into the laboratory frame and substitutea plane wave solution.In this case we start from Eq. 2.89, which assumes a constant bunch radius rb(ζ) = rb0 = constand the long-bunch, adiabatic regime (∂ζf(ζ) → 0 and f(ζ) ≈ 1). We would like to note that Eq. 2.89can be formulated as two coupled equations for the bunch centroid yc and the plasma centroid
yψ [45, 68]: (

∂2z + µk̂2β

)
yc = µk̂2β yψ(

∂2ζ + 1
)
yψ = yc . (3.1)

Although this step is not necessary to derive the dispersion relation, this formulation makes itclear that the HI can be understood as a coupling between the bunch and plasma centroids in theadiabatic regime and in the limit of small centroid displacements (yc ≪ 1).The theory presented in Ch. 2 was described in the co-moving coordinates (z, ζ), given by
ζ = z′ − c t and z = z′, where (z′, t) are the coordinates in the laboratory frame. Before transformingEq. 2.89 into the laboratory frame, we express it in terms of the unnormalized variables (z∗, ζ∗):(

∂2ζ∗ + k2p

) (
∂2z∗ + µk2β

)
yc = µk2β k

2
p yc . (3.2)

Using the chain rule, we can substitute the derivatives in Eq. 3.2 by
∂ζ∗ = −1

c
∂t (3.3)

∂z∗ =
1

c
∂t + ∂z′ (3.4)

and transform it into the laboratory frame:
(
∂2t + ω2

p

)( 1

c2
∂2t +

2

c
∂t∂z′ + ∂2z′ + µk2β

)
yc = µk2β ω

2
p yc . (3.5)

After substituting plane wave solutions of the form yc ∝ exp[i(kz′−ωt)] in Eq. 3.5 and rearranging,we obtain the HI dispersion relation:(
ω̂2 − 1

)(
ω̂ − k̂

)2
− µk̂2β ω̂

2 = 0 , (3.6)
where ω̂ = ω/ωp and k̂ = k/kp are the normalized angular frequency and wavenumber, respectively.Note that this dispersion relation is equivalent to the one for the hosing instability in laser pulses [66],with the exception of the factor µk̂2β . We remind the reader that this factor depends on the bunchparameters and is given by

µk̂2β = I1(rb0)K1(rb0)
nb0
n0

(qb
e

)2 me

Mb

1

γ
. (3.7)

We can obtain the growth rate for the HI as a function of the wavenumber k by solving thedispersion relation for ω and taking the imaginary part of ω(k). The resulting curve is plotted inFig. 3.1 for different bunch parameters, assuming nb0/n0 = 0.001 and rb0 ≈ 0.266 k−1
p : for an electron
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Figure 3.1: Hosing growth rate as a function of the wavenumber for three different bunch parameters,according to the dispersion relation Eq. 3.6.
bunch with γ = 480 (red) and γ = 100 (blue), and for a proton bunch with γ = 480 (green). All threegrowth rate curves have a maximum at the plasma frequency (k = kp), as expected. In addition,there is a tail that extends to long wavelengths (k < kp, λ > λp) and which has been described aslong-wavelength hosing in the context of lasers [66]. This tail indicates that oscillations in thebunch centroid may grow at frequencies other than the plasma frequency.By assuming that the centroid takes the form of a plane wave, which extends infinitely inspace and whose time and space dependences are factorable, this approach precludes anyspatiotemporal effects (like the ones built into the asymptotic growth rates discussed in Sec. 2.3).Though the result we obtained in Eq. 3.6 and Fig. 3.1 is significant for the understanding of theHI in particle bunches, we will show in the next section how this is not a complete picture of theinstability’s frequency response.
3.2 Dynamic amplitude response

In Sec. 2.4 we discussed the general form of the differential equations for the beam momentsm(ζ, z)associated with the HI and SMI and we pointed out that the right-hand side of these equationsis always proportional to m(ζ, z) when we assume to be in the initial stage of the instability (seep. 34). More specifically, the integral over ζ ′ in the right-hand side will consist of two terms that areproportional to either m(ζ) or m(ζ ′) (see Eq. 2.62 or Eq. 2.109). This means that these equationscan be written in the form of a harmonic oscillator in z. For hosing in cylindrical geometry and aflat-top transverse profile, for example, we can write Eq. 2.62 as(
d2

dz2
+ k2HO(ζ, z)

)
yc(ζ, z) = F (ζ, z, yc) , (3.8)

where k2HO(ζ, z) corresponds to a natural frequency (note that k may be interpreted as a frequencyvia f = k c
2π ) and F (ζ, z, yc) to a driving force. In this case these quantities are given by

k2HO(ζ, z) = −2 k̂2β

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′)
r2b0(ζ

′)

rb(ζ ′)rb(ζ)
I1(rb<)K1(rb>) (3.9)

F (ζ, z, yc) = −2 k̂2β

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′)
r2b0(ζ

′)

rb(ζ ′)rb(ζ)
I1(rb<)K1(rb>) yc(ζ

′) . (3.10)
Strictly speaking, Eq. 3.8 corresponds to a parametric oscillator, i.e., a harmonic oscillator whosesystem parameters (resonance frequency and/or damping) are allowed to vary periodically. Thisdegree of freedom can lead to amplifying or damping behavior, depending on the tuning of the
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system parameter oscillation.On the other hand, if we decouple the bunch and the plasma (see Eq. 3.1), and purely considerthe initial plasma response to a bunch density perturbation, we can identify the simpler case of asinusoidally driven harmonic oscillator. To demonstrate this, let us recall that the plasma densityperturbation δn/n0 induced by the presence of a particle bunch is given by [9]:(
d2

dζ2
+ 1

)
δn

n0
= qb

nb
n0

. (3.11)
If we assume that the bunch profile nb contains an initial centroid perturbation of the form yc0(ζ) ∝
sin(k ζ), this dependence will be encoded in the right-hand side to Eq. 3.11, which will act as asinusoidal force driving the harmonic oscillator δn (with its resonant frequency kp). By varying thefrequency of the driving force in such a system, once again, it is possible to obtain different growthbehaviors (amplifying or damping).Both of these interpretations of the theory that describes the HI motivate us to map thedependence of the oscillation amplitude on a hosing seed frequency. Before we explore thisdependence using a different, transient approach with respect to the previous section, we wouldlike to briefly revisit some key properties of the sinusoidally driven harmonic oscillator.
3.2.1 Sinusoidally driven damped harmonic oscillator

Consider the case of a simple damped harmonic oscillator driven by a sinusoidal force withfrequency ω: (
∂2t + 2D ∂t + ω2

0

)
x(t) = A cos(ωt) , (3.12)

where D is the damping constant, ω0 is the resonant frequency of the oscillator, x(t) is the position,and A is the amplitude of the driving force. The solution for large t is given by (see for example [69,pp. 111-115])
x(t) = AΠ(ω) cos

(
ωt− ϕ(ω)

)
, (3.13)

where the amplitude response Π(ω) and the phase shift ϕ(ω) are defined by
Π(ω) =

1√
(ω2

0 − ω2)
2
+ (2D ω)

2
, (3.14)

tanϕ =
2D ω

ω2
0 − ω2

. (3.15)
a) b)

Figure 3.2: Amplitude response (a) and phase shift (b) of a sinusoidally driven damped harmonic oscillator,for a damping constant D/ω0 = 0.1.
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When the driving frequency matches the resonant frequency (ω = ω0), the oscillation amplitudeis of course maximum [see Fig. 3.2a)] and the oscillation lags the driving force by π/2 [see Fig. 3.2b)].Note that the “phase jump” illustrated in Fig. 3.2b), from 0 to π, is characteristic of this system.
3.2.2 The hosing amplitude response

Our goal is to measure the amplitude response (or growth rate) of the HI as a function of the seedfrequency. We will again consider a sinusoidal hosing seed, yc0(ζ, k) = 0.05 sin(ζ k/kp), where k isan arbitrary wavenumber. In order to measure the HI amplitude response, we calculate the ratiobetween the centroid after the propagation distance z and the initial centroid. The measuredamplitude response is therefore defined as
Π(k, z) =

∫
L
|yc(z, ζ)| dζ∫

L
|yc0(ζ, k)| dζ

, (3.16)
where L is the length of some region of interest along the bunch. Here we will consider a windowmeasuring L = 140 k−1

p , which represents around 22 λp. Note that this amplitude response doesnot correspond to the one defined in Eq. 3.14, which contains no information about the phase (asopposed to Eq. 3.16).We can determine the amplitude response Π(k, z) theoretically as long as we can describe theevolution of the centroid and replace it for yc(z, ζ). During the initial propagation in plasma, we canassume a constant (z-independent) plasma response, which we can designate ⟨Fy0⟩, driven by thecentroid perturbation yc0. The solution to Eq. 2.15 (the differential equation for the bunch centroid)is then simply:
yc(ζ, z) = yc0(ζ) +

1
2 z

2 ·
(
me

γMb
⟨Fy0⟩

)
. (3.17)

Note that this corresponds to the power series model described in Sec. 2.4 truncated to first order(at n = 2). This assumption is valid within the typical timescale for bunch evolution, given by thebetatron period k−1
β = c/ωβ .For our analysis of the transient amplitude response we will consider a relativistic (γ = 480)electron bunch with nb0 = 0.001 n0 in 2D Cartesian geometry and with a Gaussian transverse profile,with the RMS transverse size σy ≈ 0.27 k−1

p . The longitudinal component of the bunch profile
nb(ζ, y) = nb0 · f(ζ) · g(y, ζ) is defined as

f(ζ) =
1

2

(
1 + cos

(√
π

2

ζ − ζc
σz

))
, (3.18)

where σz ≈ 160 k−1
p is the RMS longitudinal size, ζc = ζs −

√
2πσz is the location of the bunch center,

ζs = 135 k−1
p is the location of the bunch front, and f(ζ) is bounded by the limits ζ = ±

√
2πσz + ζc.In this case, and assuming that the bunch envelope stays constant at σy, the plasma response isgiven by (see p. 17)

⟨Fy⟩ =
√
π

8

nb0
n0

(qb
e

)2
σy exp(σ2

y)

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′) f(ζ ′){
exp [yc(ζ

′)− yc(ζ)] erfc

[
yc(ζ

′)− yc(ζ) + 2 σ2
y

2 σy

]

− exp [yc(ζ)− yc(ζ
′)] erfc

[
yc(ζ)− yc(ζ

′) + 2 σ2
y

2 σy

]}
. (3.19)
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Figure 3.3: Hosing amplitude response as a function of seed wavenumber and propagation distanceaccording to theory: full evolution (a) and line-outs at different distances (b), where the grey dash-dottedline represents the dispersion relation Eq. 3.6 in arbitrary units.
The resulting amplitude response Π(k, z) according to theory (calculated numerically) is shown inFig. 3.3a), where 1 has been subtracted from the data in order to clearly distinguish between areaswhere the initial oscillation amplitude has grown (red) or decreased (blue). This damping effectfor short wavelengths (k > kp), in fact, has not been previously predicted, either in the contextof the HI in particle beams or laser pulses. As expected, the maximum growth is progressivelyobserved at the plasma frequency (k = kp), which is also evident in the line-outs of Fig. 3.3b) (seeblue curve).The amplitude response corresponding to the adiabatic dispersion relation in Eq. 3.6, which isproportional to exp[Im(ω)], has been included in Fig. 3.3b) as a grey dash-dotted line for comparison.Although this method of computing the hosing amplitude response has equally yielded a long-wavelength tail, there are obvious differences between this amplitude response at later times[see blue curve in Fig. 3.3b)] and the adiabatic dispersion relation, which, for example, does notpredict a damping regime (Π(k, z) < 1). Additionally, note that the late-time curve for Π(k, z) (at

z = 2 k−1
β ) bears both similarities and differences with respect to the harmonic oscillator case inFig. 3.2a): though both amplitude responses peak at the resonance frequency and are unity for azero frequency, the HI amplitude response does not converge to zero for infinitely large frequencies[see blue curve in Fig. 3.3b) as k → ∞].A particularly interesting aspect of Fig. 3.3b) is the shape of the early amplitude response(z ≲ k−1
β , red and green curves). We take a closer look at this regime in Fig. 3.4a), and validate thecurve at z = k−1

β against 2D Cartesian PIC simulations with the same bunch parameters as above(see Table A.1, item A.1.3, in Appx. A for the full simulation details). There is excellent agreementbetween theory and simulations. We note that an identical theoretical curve can be obtained
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Figure 3.4: a) Hosing amplitude response according to theory (green line) and simulations (red crosses) at
z = k−1

β , where each cross symbol represents a simulation initialized with a centroid perturbation at k. b)Comparison of the amplitude response along z according to theory and simulations (interpolated linearlyalong k).
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in cylindrical coordinates (assuming yc ≪ 1), but a comparison to 3D simulations would havebeen much more computationally expensive. These effects are therefore not limited to a 2D slabgeometry and in fact we use 3D simulations later in this dissertation to explore the implications ofthis result.In contrast to later times, the magnitudes of maximum growth (Π(k, z) > 1) and damping(Π(k, z) < 1) in Fig. 3.4a) are identical, and their locations on the k spectrum in close proximity. Thismeans that these two radically different growth regimes are potentially accessible with only a smallamount of detuning, or frequency shift (in k). After some propagation in plasma not only does themagnitude of resonant growth (k ≈ kp) become several times that of maximum damping, but thelocations of both extrema, kmax and kmin, shift with increasing z, with kmax → kp and kmin → ∞ [seeFig. 3.3a)]. A further observation is that the maximum growth is not attained for k = kp (as generallyassumed for the HI) during this initial phase of propagation, but at a slightly lower value (k ≈ 0.98 kp,estimated numerically). Note that the location of this maximum depends on the particular bunchand plasma parameters, and moves along the propagation distance.Figure 3.4b) demonstrates that the power-series-based theoretical model can accuratelyreproduce the amplitude response up to two betatron periods of propagation. Note that thesimulation data, which is very sparse along the k axis, has been interpolated linearly to render acomparable image.The explanation for the behavior displayed on Fig. 3.4a) is connected to the phases of theoscillations of the bunch centroid and the plasma response, which will be demonstrated in thefollowing section.
3.2.3 The hosing phase response

To understand the early amplitude response of the HI, we can study the immediate plasma responseto a centroid perturbation, i.e., ⟨Fy0⟩. We are particularly interested in the relative phase shiftbetween this oscillation and the “force” driving it (the initial perturbation yc0).Figure 3.5a) shows the initial centroid and the initial plasma response ⟨Fy0⟩ for three differentseed wavenumbers, as obtained from the 2D PIC simulations represented in Fig. 3.4. These threewavenumbers illustrate the three different growth regimes we can identify in the hosing amplituderesponse [see Figs. 3.3 and 3.4]:
• slow growth (k < kp),
• resonant growth (k = kp),
• damping (k > kp).
For k = 0.9 kp (slow growth), the plasma response is almost in phase with the centroid per-turbation [see Fig. 3.5a), top]. Conversely, ⟨Fy0⟩ is almost fully out of phase for k = 1.1 kp [seeFig. 3.5a), bottom], thus acting in the opposite direction of the perturbation yc0 at every sliceand justifying the damping effect. For k = kp (resonant growth), the wakefield response lagsthe centroid perturbation by π/2, which we might expect based on the phase behavior of thesinusoidally driven damped harmonic oscillator (see p. 44).Since ⟨Fy⟩ initially oscillates at k (along ζ), a phase shift ∆ϕ between both periodic curves canbe measured straightforwardly. The relationship between ∆ϕ and k is shown in Fig. 3.5b), asobtained from the 2D simulations and the theoretical ⟨Fy0⟩, using a cross-correlation method (seeAppx. B for further details).
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Figure 3.5: a) Initial centroid (dark grey) and average transverse force (red) for three different seedwavenumbers, obtained from 2D simulations at z = 0. b) Phase shift between the initial yc and ⟨Fy⟩ asa function of the seed wavenumber, obtained from theory (green) and simulations (red cross symbols).
There is excellent agreement between theory and simulations for k > 0.5 kp. The simulation datapoints for k ≤ 0.5 kp [grey cross symbols in Fig. 3.5b)] are not valid, since the simulation windowlength becomes comparable to the perturbation wavelength (L/λ ≲ 10). The theoretical curve wasobtained by scaling the nominal window and bunch lengths (L = 140 k−1

p and σz ≈ 160 k−1
p ) by 1/k,thereby encompassing several periods in the analysis.The three growth regimes are again evident in Fig. 3.5b): two asymptotes at ∆ϕ = 0 and ∆ϕ = π,corresponding to the slow growth and damping regimes, respectively, and a transition regionwhere ∆ϕ crosses π/2, corresponding to the resonant regime. Note that the phase behavior of thesinusoidally driven damped harmonic oscillator illustrated in Fig. 3.2b) is identical to the phaseshift curve obtained in Fig. 3.5b).

3.3 A new mitigation method

Figure 3.3 suggests that there is a range of wavenumbers where the amplitude response is, eithertemporarily or consistently, below one. This leads to the following immediate question: can thisdamping regime be used to suppress the hosing instability?One might consider operating exclusively in the damping regime, thereby not only preventingthe growth of hosing but also even reducing the initial seed amplitude. This does not work, however,as we demonstrate in the following.Let us assume that that the centroid evolves as yc(ζ, z) = A(z) sin[kζ − φ(z)], where A(z) and
φ(z) are a time-evolving oscillation amplitude and phase shift, respectively. The corresponding(normalized) centroid velocity, defined as vc = vc,∗/c = dyc/dz, would therefore evolve according to

vc(ζ, z) = A′(z) sin[kζ − φ(z)]−A(z) φ′(z) cos[kζ − φ(z)]

= A′(z) sin[kζ − φ(z)] +A(z) φ′(z) sin[kζ − φ(z)− π

2
] , (3.20)

where the prime denotes a derivative in z. Early in the propagation, the amplitude varies slowlyand we can neglect the first term in Eq. 3.20. The centroid velocity vc ∝ sin[kζ − φ(z) − π
2 ] andthe centroid yc ∝ sin[kζ − φ(z)] are therefore shifted with respect to each other by π

2 . Since whatdetermines the growth regime is the relative phase shift between each quantity and ⟨Fy⟩, thismeans that the initial plasma response will impact yc and vc differently. Along the propagation, the
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phase-shifted term of vc (second term of Eq. 3.20) may become less dominant.Naturally, we have not avoided the HI by eliminating the centroid displacement yet allowingsignificant transverse momentum to build (in the form of the centroid velocity). The reasoningabove demonstrates that we must alternate between the two non-resonant growth regimes inorder for an attempt at mitigation to work, such that we can suppress both yc and vc. To evaluatethe degree of hosing mitigation, we must define a measure that takes both of these quantities intoaccount.An energy conservation equation can be obtained by multiplying Eq. 3.8 by vc:
d

dz

(
1
2 v

2
c (ζ, z)︸ ︷︷ ︸

Ekin(ζ, z)

+ 1
2 k

2
HO(ζ, z) y

2
c (ζ, z)︸ ︷︷ ︸

Epot(ζ, z)

)
= vc(ζ, z) F (ζ, z, yc) , (3.21)

which allows us to define a kinetic and a potential energy Ekin and Epot, respectively, in analogywith a conventional harmonic oscillator. The energy source term (the right-hand side of Eq. 3.21)represents an effective force acting on each slice of the bunch centroid, which moves with vc. Inreality, energy conservation is not guaranteed by Eq. 3.21 due to the same assumptions underlyingEq. 3.8, namely that kp, kβ and the bunch density profile do not change over time. This equation isnevertheless useful to us since it provides an overall measure of the transverse energy associatedwith the growth of the HI, defined as
E(ζ, z) = Ekin(ζ, z) + Epot(ζ, z)

= 1
2 v

2
c (ζ, z) +

1
2 k

2
HO(ζ, z) y

2
c (ζ, z) . (3.22)

The ensuing issue is how to access the different growth regimes. In a realistic set-up, althoughwe might conceivably choose the seed wavenumber (the initial perturbation frequency), we cannotcontrol k as the bunch evolves in the plasma. However, we can control the local plasma densityand therefore the ratio of k (fixed in the centroid perturbation) to the local plasma wavenumber kp,thereby operating in different growth regimes.For this shifted perspective, let us consider a reference plasma density n0 (e.g. n0 = 0.5 ·
10−14 cm−3) and a bunch with fixed, physical-unit parameters (e.g. σz = 12 cm), seeded with acentroid perturbation at the plasma frequency corresponding to n0, which we can define as kp,0. Ifwe now vary the density np of the plasma in which this bunch propagates, the seed at kp,0 will beeither above or below the resonant wavenumber kp given by np, which means that we can probethe amplitude response at different frequencies in that plasma. Note that the normalized bunchparameters will equally scale with np (e.g. nb0

np
̸= nb0

n0
or kpσz ≠ kp,0σz), which impacts the wakefieldproperties.We can obtain the theoretical amplitude response as a function of the local plasma density npusing the same procedure as in Fig. 3.3. Here, the bunch has the parameters described on p. 45at a plasma density n0 = 0.5 · 10−14 cm−3. The amplitude of the initial centroid perturbation is theonly quantity which is not fixed in physical units, and is instead kept at the same normalized value(0.01 kp) for all densities np. The result is shown in Fig. 3.6a). The shape of the early amplituderesponse is visible in Fig. 3.6b), where line-outs were taken at z = 0.5 k−1

β (red) and z = k−1
β [green,compare with Fig. 3.4a)]. Note that the locations of the maximum growth and maximum damping at

z = k−1
β are more asymmetric with respect to the resonance as a function of np than as a functionof k [Fig. 3.4a)].As argued above, a mitigation set-up would require propagating the hosed or seeded bunchthrough plasma sections with different densities. In fact, “plasma density detuning” has been
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Figure 3.6: Hosing amplitude response as a function of relative plasma density and propagation distanceaccording to theory: full evolution (a) and line-outs at different distances (b).
mentioned before as a way to potentially mitigate the HI in laser pulses [70] and, more specifically,the use of a plasma density step has been proposed to control the SMI in particle bunches [71, 72].The power series model can be applied to a varying plasma density np as long as we assumethat the density does not change at the length scale of k−1

β . Our goal is to treat the plasma densitychanges as instant and therefore neglect the dependence of np on z. In that case, we can normalizethe entire model to the local plasma density in each section, and use it to estimate the optimaldensity profile for mitigation purposes. If we assume a simple step-like profile, for example, thefree parameters are the “height” of each step, ∆ni, its length, ∆zi, and the total number of steps.A set of optimal parameters can be found through a numerical parameter scan based on the powerseries model, although there is a significant limitation in the fact that the model is only valid for
z ≲ k−1

β .As a proof of concept, we present two configurations based on one and two pairs of plasmadensity steps, shown in the inset of Fig. 3.7a). The parameters for these density steps werefound by experimenting with the power series model. In order to test the effect of these densityprofiles, we simulate the propagation of an electron bunch seeded at kp,0 either through the densitysteps or through resonant plasma (at the constant density n0) in 3D geometry (see Table A.2,
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Figure 3.7: Centroid data obtained from three OSIRIS 3D simulations. a) Transverse energy of the bunchrelative to the initial value along the plasma (integrated over the simulation domain): plasma at n0 (grey),with two density steps (red), and with four density steps (green). Inset: plasma density profiles of the twodensity step configurations. The vertical dash-dotted lines indicate the boundaries of each density step.b) Centroid phase space at two neighboring positions along the bunch, ζ ≈ 1.5 k−1
p and ζ ≈ 4.7 k−1

p , for allthree cases, up to either z = 2.4 k−1
β (grey and green curves) or z = 1.5 k−1

β (red curve). The unfilled circlesrepresent the beginning of the plasma (grey) and the locations of each density step (red and green). Inset:magnified view of central region.
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items A.2.1–A.2.3, in Appx. A for the full simulation details). The bunch profile is transverselya flat top with rb0 ≈ 0.27 k−1
p,0 and longitudinally cosinusoidal, and the inital centroid is given by

yc0(ζ) = 0.027 sin(ζ) (note that ζ is normalized to k−1
p,0). Note that, for an arbitrarily shaped initialcentroid, the fastest growing mode is sinusoidal, which means that this strategy would suppressthe growing component of any seed. Once again, the simulation domain comprises only the headof the bunch, with a length L = 140 k−1

p , corresponding to around 22 λp,0.Figure 3.7a) displays the the resulting transverse energy as a function of the propagationdistance. The wavenumber k2HO(ζ, z), necessary for obtaining E(ζ, z) (see Eq. 3.22), is computeddirectly from the z-evolving simulation data. In this geometry, k2HO(ζ, z) is given by Eq. 3.9, wherethe normalized longitudinal profile f(ζ ′, z) is measured on axis. For a complete picture of the beamat every time step, we normalize E(ζ, z) to the initial energy E0(ζ) and integrate this along ζ overthe simulation window.After two density steps [compare grey and red curves in Fig. 3.7a), at z = 1.5 k−1
β ], the energyis smaller than in the resonant case by almost two orders of magnitude (and lower than E0, theinitial value associated with the seed). It is possible to extend this suppressive effect by stackinga further pair of density steps with specific parameters, as demonstrated by the green curve inFig. 3.7a), where the transverse energy has been lowered even further after four density steps. Thefull bunch distribution as well as the centroid after each pair of density steps is visible in Fig. 3.8(first three rows). Note the increasing effect of self-focusing after z ∼ 2 k−1

β (see xz projections inFig. 3.8).The effect each detuned section has on the bunch centroid and centroid velocity is illustrated inFig. 3.7b), where the evolution of these quantities along the density steps is plotted as a “centroidphase space”. Two locations along the bunch are represented in Fig. 3.7b), corresponding to aconsecutive peak and trough in the initial centroid oscillation (shown in Fig. 3.8 as two grey dashedlines in the xy projection at z = 0). The first density step prevents some growth in vc, while thesecond step decreases the amplitudes of both yc and vc [compare grey and red curves in themagnified inset of Fig. 3.7b)]. A third density step can suppress some of the centroid displacementat the expense of a small momentum increase, but it is clear that the fourth step is approachingthe limits of this suppression mechanism, since the momentum is now allowed to rise quickly [seegreen curves in the magnified inset of Fig. 3.7b)].After both density step configurations, however, the growth rate tends to be exacerbated andsaturation is reached at similar transverse energy levels as in the resonant case, as made obviousin Fig. 3.7a) or Fig. 3.8 (bottom row).
3.3.1 Limitations

The analysis performed in Fig. 3.7 suggests that the growth of the HI is temporarily delayed ratherthan fully avoided. To try to understand the reason for this, we can analyze the behavior of theplasma response along the propagation.The transition from the density steps back to resonant plasma seems to be associated with asudden increase of the average transverse force acting on the bunch centroid, as demonstrated inFig. 3.9a) (solid lines). This field increase can be at least partly explained by the higher degree ofself-focusing observed with any of the density step configurations in comparison to the constant-density case [see dashed curves in Fig. 3.9a)].A further explanation for the increase likely stems from the realignment of the “suppressed”centroid with the plasma response after each density step configuration, at an ideally resonantphase shift of π/2. This is visible in Fig. 3.9b), which displays the relative phase shift between ⟨Fy⟩
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Figure 3.8: Bunch distribution data from three OSIRIS 3D simulations. Isosurfaces (pink volume) and pro-jections (grey color scale) of the bunch density at four different propagation distances (rows) in resonantplasma (left column, yellow curves), with two density steps (center column, red curves), and with fourdensity steps (right column, green curves). The centroid for each case is plotted on the xy projection. Thetwo grey dashed lines in the xy projection at z = 0 mark the positions along ζ at which the centroid phasespace of Fig. 3.7b) is measured.
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Figure 3.9: Analysis of the transverse wakefield forces in three OSIRIS 3D simulations: resonant plasma(dark grey curves), two-step density profile (red curves) and four-step density profile (green curves). a)Amplitude of ⟨Fy⟩ (solid lines), and RMS bunch size along y (dashed, semi-opaque lines), both averagedlongitudinally over the simulation domain. b) Relative phase shift between ⟨Fy⟩ and the centroid yc. Thevertical dash-dotted lines indicate the density-step transitions in the plasma density profile.
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Figure 3.10: Impact of a two-step configuration for hosing mitigation [see inset of Fig. 3.7a), red line] ona self-modulated bunch, measured in four OSIRIS 2D cylindrical simulations. Average amplitude of thelongitudinal wakefields (a) and relative bunch charge (b) along the plasma, with (solid lines) and without(dashed lines) the two-step configuration, and with (purple) and without (blue) an early SMI-optimizingdensity step. The vertical grey dashed lines delimit the two density steps (for hosing mitigation). Theaverage of |Ez| is taken longitudinally over the simulation domain and up to a radius r = k−1
p and the bunchcharge is summed up to r = k−1

p .
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and yc along the propagation, at z = 1.5 k−1
β for the two-step configuration (red line) and z = 2.4 k−1

βfor the four-step configuration (green line). Eventually, however, saturation is reached, and thisseems to be associated with the phase shift converging to π [compare with the energy saturationlevels observed in Fig. 3.7a)].A realistic set-up where linear, long-bunch hosing would need to be suppressed would likelyinvolve the self-modulation instability as a desirable method to manipulate the wakefield driver.It would therefore be important for this mitigation approach not to have a large impact on thebenefits brought on by the SMI. However, this is not exactly the case, according to Fig. 3.10a), andthis therefore constitutes a further limitation of this hosing mitigation approach.Using simulations in 2D cylindrical axisymmetric geometry, where hosing is unobservable, wecan test the direct impact of the two-step configuration [red line in the inset of Fig. 3.7a)] on aself-modulated bunch. We let the electron bunch self-modulate approximately until the instability’ssaturation and then traverse the two density steps. The simulation parameters are identical asbefore, with the exception of the bunch profile (transversely Gaussian, cut abruptly at the bunchcenter to emulate an ionization front) and the longitudinal window size (L = 280 k−1
p ) (see Table A.4in Appx. A for the full simulation details). We also consider the case where a small density step isintroduced early in the SMI development with the purpose of extending the high field amplitudeafter its saturation [71, 72].The resulting accelerating field amplitude is plotted in Fig. 3.10a) for all cases. Even though theaverage amplitude recovers after the steps (bounded by the vertical dashed lines), there is stilla decrease of around 36% (blue curves, no SMI optimization) or even 44% (purple curves, withSMI-optimizing density step) by the end of the simulation. Part of this fall could be due to theloss of bunch electrons previously in focusing phases of the wakefields. Surprisingly, however,Fig. 3.10b) suggests that the impact of the density steps on the bunch charge is rather limited.
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Chapter 4

Properties of the self-modulation
instability

Self-modulation was initially observed in simulations of long, intense laser pulses propagatingin plasma [73, 74]. The resonant excitation mechanism it entails, whereby the envelope of thedriver becomes modulated, leads to very high wakefield amplitudes, which can be exploitedfor acceleration. Though self-modulated laser drivers have meanwhile fallen out of favor1, theself-modulation instability in long, highly energetic, relativistic particle bunches is currently beingexplored as an option for plasma-based acceleration.
The onset of an instability can be due either to noise or to a seed, i.e., a signal of higheramplitude than the noise level. When the SMI begins to grow from noise, both the phase of thewakefields along the bunch as well as their amplitude vary randomly from event to event andthus prevent the reliable acceleration of injected particles. In principle, seeding the instability isa means to fix the final phase and amplitude of the wakefields once the process has saturated.Seeded self-modulation was demonstrated by the AWAKE experiment both using a relativisticionization front (RIF) [63, 77], which is created by an optical laser, and a short electron bunch asthe seed [64].
The development of the SMI in a particle bunch carries an important drawback. Although thedriver propagates relativistically through the plasma, it has been shown both theoretically [42] andthrough numerical simulations [78] that the phase velocity of the wakefields sinks below c duringthe instability’s growth. This makes it unworkable to accelerate electrons from the beginning of theplasma, since they can easily slip into defocusing or decelerating phases and be lost. Electronsmust therefore be externally injected near or after saturation of the SMI, when the wakefield phasevelocity has converged to the driver velocity [42, 78].
In the first part of this chapter, we investigate how the seeded SMI is impacted by noisy initialconditions, where there is a direct connection with the AWAKE experiment and its parameters. Inthe second part, we delve into more fundamental aspects of the instability, where the goal is tomap out its response, or growth, as a function of arbitrary perturbation frequencies.

1Note that a recently proposed scheme called “plasma-modulated plasma accelerator” (P-MoPA) [75, 76] aims togenerate wakefields resonantly by modulating a long laser pulse in plasma. This modulation technique, however, isbased on photon acceleration (i.e., spectral modulation) and dispersive optics, which is entirely different from the self-modulation instability.
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4.1 Influence of proton bunch parameters on the saturated SMI

One of the key requirements for high-energy-physics accelerators is reliability. Every machineis subject to fluctuations, but for a mechanism based on the development of an instability, theimmediate question is whether reasonable fluctuations of the initial conditions can disable theaccelerator. In the case of AWAKE, the characteristics and timing of the driver bunch may varyfrom shot to shot, which could impact the development of the SMI and the resulting acceleratingstructure.It is therefore crucial to ensure the stability of the wakefield amplitude and phase in thepresence of input fluctuations. Phase stability is especially critical since the accelerated electronsmay otherwise slip into defocusing and decelerating regions of the wakefields and be lost. Thetransverse component of the wakefields lags the longitudinal component by a fourth of a period,which is a consequence of the Panofsky-Wenzel theorem [79]. This means that the regions of thewakefields which are both accelerating and focusing are only λp/4 long (in the linear regime).In this section, we will focus on the effects of bunch parameter and plasma radius fluctuationson the amplitude and phase of the wakefields after saturation of the SMI, where acceleration overa long distance can in principle start. We then use test electron calculations to infer the sameeffects on the energy of the accelerated electrons, and to study the optimal injection conditionsthat lead to the highest acceleration.
4.1.1 Methodology and simulation parameters

The effects of initial bunch parameter variations are studied through PIC simulations in two-dimensional, axisymmetric cylindrical coordinates. The values of a set of proton bunch parametersare varied independently and the respective simulations are compared to a baseline simulationwith parameters similar to those of AWAKE. Note that the hosing instability, which may competewith the seeded SMI, cannot be described in a cylindrical, axisymmetric geometry. We thereforeassume here that the self-modulation seed is large enough to prevent the growth of the HI [45]within 10 m of propagation.In the simulations used for this work, a moving window approximately 33 cm long and 1.6 mmhigh moves at c, containing a proton bunch (moving at ∼ c) as the latter propagates through theten-meter-long plasma. The proton beam has a Lorentz factor γb ≈ 480 (corresponding to 450 GeV),an energy spread of 0.035%, and a normalized emittance of 2.5 mm mrad. The RIF seeding ismodeled as a sharp rising edge at the center of the proton bunch density profile, which is given by
nb(ζ, r) =

nb0
2

[
1 + cos

(√
π

2

ζ − ζc
σzb

)]
e−r

2/σ2
rb , (4.1)

for ζc−√
2πσzb ≤ ζ ≤ ζs, where ζc is the position of the center of the bunch, ζs is the position of theRIF, and σzb and σrb are the RMS bunch length and radius, respectively. When the RIF is located atthe center of the profile, ζs = ζc. The plasma fills the simulation window up to the ionization radius

rp = 1.5 mm. The remaining simulation parameters can be found in Table A.5, item A.5.1, in Appx. A.The following physical parameters were used in the simulations: n0 = 7×1014 cm−3, σzb = 12.6 cm,and σrb = 283 µm. The peak density in Eq. 4.1 is calculated by rearranging the fully integratedbunch profile (which equals the total number of bunch particles Nb), i.e.,
nb0 =

2Nb
(2π)3/2 σ2

rb σzb
, (4.2)
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giving nb0 ≈ 1.89× 1012 cm−3 for the proton bunch population Nb = 1.5× 1011.Although we have chosen parameters that are representative of the AWAKE experiment, thefindings reached here should be general. We have confirmed that this is the case by performingadditional simulations with a different set of initial conditions (e.g. double the bunch charge).The following parameters were independently varied by ±5%: σzb, σrb, Nb and rp. The RMStiming jitter of the proton bunch with respect to the ionizing laser pulse ∆twas also varied by ±15 ps.Note that ∆t in practice constitutes a shift in the longitudinal bunch profile, thus encompassingeither more or less driving charge. Here we will assume that the plasma density and thus thefrequency of the wakefields do not vary. The plasma source developed for AWAKE is capable ofpreserving a constant density along the entire propagation distance to within 0.2% [80]. Largerdensity variations will be studied in Sec. 4.2.
4.1.2 Effects on the wakefield amplitude

Both the wakefield amplitude and the SMI growth rate depend on the bunch density. The wakefieldsdriven by each self-modulated microbunch can reach an amplitude of the order of Ez = E0(nb0/n0)(in the linear regime). Since nb0 is given by Eq. 4.2, we expect to observe a general dependence ofthe wakefield variation according to Ez ∝ Nb/(σzbσ
2
rb).To quantify this variation, we compare the average absolute value of the longitudinal fieldcomponent ⟨|Ez|⟩ along the propagation distance z for each input parameter variation. The average

⟨·⟩ is computed for the entire simulation window up to a radius of one plasma skin depth (k−1
p ≈

201 µm for n0 = 7× 1014 cm−3). The resulting data is shown in Fig. 4.1 for the baseline parametersand for variations in the bunch population Nb. In all three cases, the average fields grow rapidlyuntil around z = 4 m, after which the self-modulation process saturates and the overall wakefieldamplitude gradually decreases. As expected, more (less) bunch charge leads to a higher (lower)field amplitude.The effects can be better visualized by normalizing the measured amplitude at each z to thebaseline case. This relative deviation, defined as δ ⟨|Ez|⟩ = (⟨|Ez|⟩ − ⟨|Ez,baseline|⟩) / ⟨|Ez,baseline|⟩, isplotted in Fig. 4.2 for all parameter variations. In general, the effects are maximum during thegrowth of the SMI (z < 4 m), reaching δ ⟨|Ez|⟩ ≈ 26% at z ≈ 2.8 m for 0.95 σrb. However, aftersaturation of the SMI (z ≳ 6 m) all cases converge to the baseline amplitude within ±2%.During the growth phase of the SMI, where linear wakefield theory is still valid (z ≲ 4 m), thetrends in Fig. 4.2 are roughly consistent with our expected scaling Ez ∝ Nb/(σzbσ
2
rb): an increase of
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Nb by 5% produces higher values for ⟨|Ez|⟩, for example, and the variations in σzb and σrb causeinversely proportional effects, with the σrb parameter variations causing the largest effects. Thereis also a distinct effect on the growth rate, as evinced by the different slopes up to z = 3 m inFig. 4.2.Since the timing jitter ∆t is small when compared to the bunch duration we expect its main effectto be associated with an increase or decrease in total charge driving the wakefields (correspondingto Nb ± 2.85%). Finally, a rp ± 5% variation seems to have no significant effect on the wakefieldamplitude, at least for our choice of the baseline plasma radius. A smaller plasma radius canenhance the wakefield’s focusing force and hence the SMI’s growth rate by hindering the plasma’sshielding response to the charge in the drive bunch [81]. However, this effect only becomesprominent when rp approaches σrb, which, despite the variations of ±5%, is not the case here.
4.1.3 Effects on the wakefield phase

We now turn our attention to the behavior of the wakefield phase. Both numerical and theoreticalwork has shown that, during the growth of the SMI, the phase velocity of the wakefields variesalong the plasma and along the bunch, eventually converging towards the driver velocity aftersaturation [42, 78]. This is exemplified in Fig. 4.3, where the on-axis line-outs of the longitudinalwakefields for each z are stacked and represented in a color scale. Since the simulation windowmoves at c, a negative slope in this graph means that the phase velocity of the wakefields issubluminal, while a positive slope indicates that it is superluminal. The relativistic proton bunchmoves at approximately the speed of light, so its velocity would correspond to a vertical line inFig. 4.3 (more precisely, ∆z/∆ζ ≈ −2 γ2 for bunch particles).As demonstrated in Fig. 4.3, the wakefields are slower than c during the growth of the SMI,i.e., for z < 4 m (see negative slope). After saturation, however, the wakefield velocity behavesdifferently for different regions along the bunch. Far behind the RIF [around −2.5 σzb, Fig. 4.3(a)]the phase velocity is superluminal for z > 5 m, while around ζ ≈ −σzb it is subluminal (not shown).The ideal region to inject witness electrons would therefore be around 1.5 σzb or 18.9 cm behindthe RIF [see Fig. 4.3(b)] in this case. Experimentally, the injection position along the bunch can bescanned so as to find the optimal ζ position for maximum electron acceleration.The effects of the parameter variations on the wakefield phase are studied quantitatively byfitting the function f(ζ) = A sin [kp (ζ − ζs) + ϕ] (expected for linear wakefields) to 2.5-λp-long
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segments (starting at ζs) of Ez on axis (see Fig. 4.3), where A and ϕ are the fitting parameters. Thevalue of ϕ is always relative to the seed position ζs.As an example, the fit to a segment located around ζ ≈ −1.5 σzb is shown in Fig. 4.4 for threedifferent propagation distances. The fit is worst around the saturation point of the SMI (see curvesfor z = 5 m), where the fields show signs of nonlinearity (wave steepening). However, the purposeof the fit is to define a local phase shift with respect to ζs, which is accomplished if the phases ofboth curves match, as is the case.The result of this analysis is shown in Fig. 4.5 for three different positions along the bunch. Notethat the burgundy and black curves correspond to the same locations as in Fig. 4.3. Figure 4.5again suggests that the region around 1.5 σzb behind the RIF is particularly suitable for electroninjection, since the phase velocity (and ϕ) remains stable after saturation and is approximately c.The position ζ ≈ −1.5 σzb was chosen for the comparison of the effects from the parameter fluc-tuations, shown in Fig. 4.6. We may estimate a theoretical scaling for the phase shift using an asymp-totic model for the SMI, which is valid for kp|ζ| ≫ kβz (long-bunch, early-time regime; see Eq. 2.118on p. 34). The longitudinal wakefield component then behaves as Ez ∝ cos
[
kp ζ − π

4 + φ(ζ, z)
], withthe phase shift φ(ζ, z) ∝ n

1/3
b0 [42]. The condition above is fulfilled for ζ ≈ −1.5 σzb and z ∼ 10 m,with kp|ζ| ≈ 940.4 and kβz ≈ 1.9. Nevertheless, the phase shift in Fig. 4.6 only displays a relationshipof the form ϕ ∝ N

1/3
b /

(
σzbσ

2
rb

)1/3 (where we used Eq. 4.2) roughly between z = 3.5–5 m.The largest effects on the wakefield phase are again observed before the saturation of theSMI, at z = 2–3 m (see Fig. 4.6). Here, the largest difference is of roughly 2π/20 for 0.95 σrb at
z ≈ 2.5 m. After this point, phase variations are limited to ±0.4 rad (corresponding to approximately
λp/16), an estimate constrained by simulation noise. Moreover, the phase becomes constant after
z ≈ 6 m in all cases, which is also the point after which the wakefield amplitude becomes essentiallyindependent of the input parameter variations (see Fig. 4.2).
4.1.4 Behavior of accelerated electrons

The characteristics of the accelerated electron bunch are the most important experimental outputin the AWAKE experiment, and they are non-trivially dependent on several factors besides thewakefields themselves, such as the electrons’ initial velocity or the injection point along the plasma.Consequently, the wakefield effects reported above are not sufficient to infer possible effects onthe accelerated bunches.To estimate the effects of input fluctuations on accelerated electrons, we devise a simple,one-dimensional diagnostic where the transverse dynamics of the problem are put aside, but
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where dephasing is contemplated. This diagnostic essentially assumes that the electrons stay onthe axis at all times, feeling zero transverse forces. Since Ez peaks on the axis and decays radially,an electron performing any transverse motion about the axis is subject to weaker longitudinalforces than if it is propagating exclusively along it (the most effective trajectory in terms of energygain). This approach thus provides a best-case scenario for the energy gained by acceleratedelectrons.Using the on-axis accelerating wakefield Ez obtained in the simulations, we place test particlesall along ζ and at every available propagation distance, and calculate their one-dimensional evolutionup to z = 10 m with a particle-pushing Boris algorithm. The output is the energy gain acquired byan electron (γf ) as a function of its injection point along the plasma (zinj) and its initial positionalong the bunch (ζ0). The initial energy of the test electrons is γ0 = 39.1, or approximately 20 MeV,which is the maximum range of the electron injector commissioned for AWAKE Run 1 [18]. Thespatial resolution of these results is limited to the resolution of the simulation box in the ζ direction(which in this case means that at most 38 evenly-spaced test electrons can be tracked for every
λp/2), while the temporal resolution is limited to the number of simulation file dumps (in this case300 over the entire propagation, giving a maximum resolution for zinj of 3.55 cm).The result is shown in Fig. 4.7(a) for the baseline simulation. Note that the white pixels cor-respond to test electrons that lose enough energy at some point along z so as to slip out of the33-centimeter-long simulation window, and hence do not reach the end of the plasma. The generalfeatures of the accelerating field [see Fig. 4.3(b)] are visible in the point density of Fig. 4.7(a).Regions with few test electrons correspond to decelerating regions. In regions where the field isaccelerating (Ez < 0, for example −19.00 < ζ0 [cm] < −18.95), all the test electrons reach the end ofthe plasma. As expected, the final energies decrease as electrons are injected later along z (shorteracceleration distances), though this is also because the wakefield amplitude decreases after
z ≈ 5 m (see Fig. 4.1). Figure 4.7(a) also implies that some electrons injected in the deceleratingphase of the wakefields survive energy loss and dephasing to ultimately reach large energies,including for zinj < 4 m (see scattered red pixels).The comparison between different parameter fluctuations was performed by selecting themaximum final energy (γf,max) attained in the same wakefield period for each different case. Thechosen range is −18.990 ≤ ζ0 [cm] ≤ −18.956 (approximately λp/4 long). Figure 4.8 shows γf,maxas a function of the variation amplitude δ for the parameters that caused the largest effects, i.e.,
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σzb, σrb and Nb. We find trends consistent with γf,max ∝ Nb/(σzbσ
2
rb), which is justifiable by the factthat the energy gain by trailing particles directly depends on the amplitude of Ez. The resultingmaximum final energies vary at most between roughly -3% and +5% (the corresponding injectionpoints lie between 4.15 m and 4.52 m along the plasma).To validate the diagnostic described above, we performed a further baseline simulation inwhich test electrons are injected at 41 equally spaced injection points between 3.5 and 7.6 m(see Table A.5, item A.5.2, in Appx. A). These test electrons have zero emittance and are initiallyuniformly distributed in space (both longitudinally and radially). The resulting data is represented inFig. 4.7(b) for electrons injected close to the axis (r0 < 0.5 k−1

p ) that reached the end of the plasma.We naturally observe the influence of the transverse wakefields and dynamics in Fig. 4.7(b) in theform of clear-cut regions where all test electrons were lost. The periodic regions with the mostsurviving electrons in both figures [i.e. accelerating phases in Fig. 4.7(a) and focusing phasesin Fig. 4.7(b)] are roughly phase-shifted by around λp/4 [note the shaded superposition of thesimulation data in Fig. 4.7(a)], as would be expected from the Panofsky-Wenzel theorem [79].Otherwise, there is reasonable agreement between both datasets.A more quantitative comparison between the 1D diagnostic and the simulation results is dis-played in Fig. 4.9, consisting of the average (red curves) and maximum (blue curves) values of γfwithin the ζ0 region contemplated in Fig. 4.7. The peak energies in the 2D simulation results aregenerally lower than the 1D results (compare dashed and solid blue curves in Fig. 4.9), as expected,since the 1D diagnostic represents a best-case scenario, but both curves follow a very similarevolution after saturation (z ≳ 5 m). Disagreeing trends are expectable for zinj < 5.5 m, whichis the region where we expect the most variation of the wakefield phase and therefore particledefocusing. The average energies in turn show very good agreement along the entire zinj regionprobed (see red curves).The peak final energies obtained from the simulation with test electrons (see dashed bluecurve in Fig. 4.9) suggest an optimum injection point between 5–6 m. Since this data only includeselectrons injected close to the axis (r0 < 0.5 k−1
p ), we might wonder whether a different optimalinjection point applies to other initial radii. Figure 4.10 offers a more complete picture of the finalenergy distribution measured in the simulation. Whether we consider the average [Fig. 4.10(a)] orpeak [Fig. 4.10(b)] value of the energies attained for each ζ0, the highest energy gain is met for

zinj = 5− 6 m.Figure 4.10(b) furthermore indicates that some electrons reach high energies despite being
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injected before saturation of the SMI (zinj < 5 m), as previously suggested by the simple 1Ddiagnostic results. By separating the analysis of the peak final energies from the simulation intotwo radial regions above and below r = 1.5 k−1
p ≈ 0.3 m, we find that it is the electrons further awayfrom the axis that reach the highest energies when injected before saturation [compare Fig. 4.10(c)and (d)].This difference is due to the fact that the phase velocity of the wakefields varies along r as wellas along ζ and z. This is demonstrated in Fig. 4.11, which depicts stacked line-outs of the transversewakefield component Er − cBθ (responsible for focusing and defocusing) at two different radialpositions. For z < 6 m, for example, the phase velocity closer to the axis [see Fig. 4.11(a), at r = k−1

p ]behaves as expected during the growth of the SMI and as previously discussed in Fig. 4.3. At alarger radius, however, the phase is approximately stable between 4–5.5 m [see Fig. 4.11(b), at
r = 3 k−1

p ]. This would explain why electrons starting before z = 5 m at smaller radii tend to belost (as they slip into defocusing half-periods due to the rapidly changing wakefield phase), whileelectrons further away from the axis may fall into a stable wakefield phase and benefit from theaccelerating fields over a larger distance.In general, the optimal injection point along the plasma will be determined by the start of thesaturation of the SMI, which takes place earlier with either larger n0 or Nb. The position with themost stable phase along the bunch can also be scanned for different parameters, and it tendsto be closer to the seed point for higher n0 and smaller Nb. The increase of either of these twoparameters will further lead to higher wakefield amplitudes, and hence to larger energy gains bytrailing electrons.
4.1.5 Comparison to subsequent experimental results

The purpose of the work above was to study the potential of the AWAKE experiment to be successfulin its stated goal of electron acceleration. For the parameter variations we considered (±5% and±15 ps), we found that the wakefield properties converge to similar values after saturation of theSMI, within a few percents for the amplitude and the equivalent of less than λp/8 (12.5% of a period)for the phase. Based on simulations, we also found that the optimal injection coordinates for ourparameters (n0 = 7× 1014 cm−3 and Nb = 1.5× 1011) are 5–6 m into the plasma and around 1.5 σzbbehind the RIF. For injections in this range, electrons close to the axis can reach energies of theorder of 1.5 GeV over the last 4–5 m of plasma. Comparable final energies are also attained wheninjection takes place before saturation (z < 5 m), but by electrons far from the axis instead.Several experimental results have been published by the AWAKE Collaboration after the com-pletion of this work, which we can briefly compare to the findings above. The experiment has forexample demonstrated the acceleration of electrons up to 2 GeV [20]. In particular, a final energy
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of approximately 1.5 GeV was attained with a constant plasma density of n0 = 6.6× 1014 cm−3 andwhere the electrons were located around σzb behind the ionizing laser pulse, which is generallyconsistent with the peak energy observed in our witness electron simulation (see Fig. 4.9). Notethat the electron beam was injected at an angle in the experiment, its trajectory crossing the protonbeam’s at around z = 2 m. Due to the electron beam’s emittance and waist location at the plasmaentrance, the injected electrons were effectively sprayed over a range in ζ and z, which makes itdifficult to compare the injection coordinates directly.The phase stability of seeded self-modulation has also been studied using experimentaldata [63]. This analysis of streak camera images of the proton bunch after 10 m found an RMSvariation of up to 7% of a period, though this result is limited by several uncertainties in the inputparameters and the measurements. Notwithstanding, the experimental finding is in agreementwith our post-saturation maximum phase variation of ±0.4 rad, or ±6.4% of a period.
4.2 Detuning effects on the SMI

In Ch. 3, we explored the evolution of the hosing instability as to how it reacts to mismatchesbetween the instability’s resonant frequency and a seed frequency in a particle bunch, and wepainted a much richer picture of the instability’s physics than the one prevailing. At this point,it behooves us to notice, once again, that the self-modulation instability and the HI are closelyrelated, in both mathematical and physical terms. It is therefore worth investigating whether, byapplying an analogous approach to the one in Ch. 3, we may discover new properties of the SMI.Besides this, it is known that a density gradient effectively delays or hastens the growth of theSMI, though this effect has been discussed in the context of asymptotic models that assume smallgradients [82], or of the saturation phase of the SMI [83, 84]. We thus have every indication thatfrequency detuning (via the plasma density) may play an important role in the SMI.
4.2.1 Adiabatic dispersion relation

We once again follow a relatively established prescription to obtain a dispersion relation for theSMI in long particle bunches. In this case, where the equations describe the evolution of the RMSbunch radius, we must make a stricter set of approximations to arrive at a starting point where themathematical methods become tractable.As such, we consider a bunch with a transverse flat-top profile, where rb is the radial edge ofthe bunch, and assume a small perturbation r1 around an equilibrium radius r0, i.e., rb = r0 + r1with r1/r0 ≪ 1. This approximation yields a differential equation for the radius perturbation, whichis simplified further in the long-bunch adiabatic regime, i.e., assuming f(ζ) ≈ 1 and ∂ζf(ζ) → 0 forthe longitudinal profile f(ζ). A dispersion relation for the growing modulation of r1 can be obtainedfrom the resulting partial differential equation, Eq. 2.110:(
∂2ζ + 1

)(
∂2z + 4 κ2k̂2β

)
r1(ζ, z) = 2 νk̂2β r1(ζ, z) ⇔(

∂2ζ∗ + k2p

) (
∂2z∗ + 4 κ2k2β

)
r1 = 2 νk2β k

2
p r1 , (4.3)

where the asterisk subscript indicates a variable that is not normalized. Let us recall that theconstants κ2 and ν depend exclusively on the equilibrium radius r0 and are defined as (see p. 32)
κ2 = 2K1(r0)

[
I2(r0)

r0
+ I3(r0)

]
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Figure 4.12: SMI growth rate as a function of the wavenumber for two different betatron periods, accord-ing to the dispersion relation Eq. 4.5.
ν = 4 I2(r0)K2(r0) .

In addition, please note that Eq. 2.110 can be interpreted as a coupling between two radiusperturbations, similarly to the HI: one associated with the plasma density perturbation, rψ1, andanother with the particle bunch, r1:(
∂2z + 4 κ2k̂2β

)
r1 = 2 νk̂2β rψ1(ζ, z)(

∂2ζ + 1
)
rψ1 = r1 .

The derivatives in the unnormalized, co-moving variables (z∗, ζ∗) in Eq. 4.3 can be replacedwith laboratory frame coordinates (z′, t) using the chain rule of differentiation (see Eqs. 3.3–3.4 onp. 42): (
∂2t + ω2

p

)( 1

c2
∂2t +

2

c
∂t∂z′ + ∂2z′ + 4 κ2k2β

)
r1 = 2 νk2β ω

2
p yc . (4.4)

As shown in Sec. 3.1, we obtain a dispersion relation after replacing plane wave solutions
r1 ∝ exp[i(kz′ − ωt)] into Eq. 4.4 and after some rearrangement:(

ω̂2 − 1
)(

ω̂ − k̂
)2

− 4 κ2k̂2β ω̂
2 = 2 k̂2β(ν − 2κ2) , (4.5)

where ω̂ = ω/ωp and k̂ = k/kp are the normalized angular frequency and wavenumber, respectively.Once again, note that we recover the laboratory frame dispersion relation for the SMI in laserpulses with different constant parameters [68]. In this case, the general parameters defined inRef. [68] correspond to Γ1 = 4 k2βκ
2, Γ2 = 2 k2βν and Γ3 = 1.By solving Eq. 4.5 for ω̂ and taking its imaginary part, we obtain the adiabatic growth rate forthe SMI, shown in Fig. 4.12 for two different betatron periods. These two values for k−1

β resultfrom the choice of a proton bunch (Mb/me = 1836.153, green) and a bunch of artificially light,positive particles (Mb/me = 50, red) with the following parameters: nb0/n0 ≈ 0.0397, γ = 427,and rb0 ≈ 0.53 k−1
p . Similarly to the HI, the curves in Fig. 4.12 peak at k = kp and feature a tailfor wavelengths longer than λp. A crucial difference, however, is that this tail does not becomezero at infinite wavelengths (k = 0) for the SMI. This finite growth rate in the absence of a seedperturbation is fully consistent with the properties of the SMI, which eventually develops in a longbunch or laser pulse propagating in plasma, with or without seed.Once again, note that the approach taken above does not accommodate any spatiotemporaleffects, due to the assumption of a plane wave perturbation. In the following section, we apply thesame methodology as in Sec. 3.2 to unveil a fuller picture of the SMI’s growth dynamics.
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4.2.2 Dynamic amplitude response

In Sec. 3.2 we argued that the hosing instability can be seen as a harmonic oscillator whoseproperties vary in time. The same can be shown for the SMI, but only in the approximation of asmall perturbation of the slowly evolving bunch radius rb (for a flat-top transverse profile). Thisis due to the highly nonlinear evolution of rb, dictated by the envelope equation (see Eqs. 2.84and 2.85).
Equation 2.110 describes the evolution of the radius perturbation r1 for a bunch with a longitudinalprofile f(ζ) and a flat-top transverse profile (and where the second branch of the right-hand sidein Eqs. 2.84–2.85, for r1(ζ) < r1(ζ

′), is neglected). Written as a parametric oscillator, we obtain theequation: (
d2

dz2
+ k2HO(ζ, z)

)
r1(ζ, z) = F (ζ, z, r1) , (4.6)

where k2HO(ζ, z) and F (ζ, z, r1) are given by
k2HO(ζ, z) = −4 κ2k̂2β

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′) , (4.7)
F (ζ, z, r1) = −2 νk̂2β

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′) r1(ζ
′, z) . (4.8)

Since the misleadingly simple structure of Eq. 4.6 conceals a variety of interesting transienteffects from the interaction of the driving frequency and the oscillation amplitude, we once againexplore the amplitude response of a self-modulating radius perturbation to a seed frequency. Wewill also see that disregarding the second branch (i.e., for rb(ζ) < rb(ζ
′)) of the right-hand side[

F (ζ, z, r1)− r1(ζ, z) k
2
HO(ζ, z)

] has important consequences.
In this analysis of the properties of the SMI we will consider a positive-charge particle beamwith γb = 427, an RMS length σz = 12 cm, an RMS radius σr = 200 µm, a beam populationNb = 3 ·1011,and a cosine-shaped longitudinal profile (see Eq. 3.18 on p. 45). The mass of the beam particlesis artificially defined as mb = 50 me, such that the normalized betatron skin depth of the beamis k̂−1
β ≈ 1500. This value is large enough to separate the time scales of self-focusing (or beampinching) [85] and of the growth of the SMI, such that we can study the SMI before beam pinchingdominates, yet low enough to save some computational time in the PIC simulations. The plasmadensity is n0 = 2 · 1014 cm−3, and the window considered for the analysis is L = 280 k−1

p long(∼ 44 λp), with the front edge of the beam located at ζs = 275 k−1
p .

The theory available to describe the SMI assumes a flat-top transverse profile where r0 is inequilibrium. In the PIC simulations, however, this is not the case since the bunch profile varieslongitudinally and hence there is a different equilibrium condition at every ζ. Furthermore, since atransversely flat bunch was observed to pinch much faster than one with a Gaussian transverseprofile, the latter was chosen to extend the time scale of self-focusing as much as possible.This bunch profile corresponds to a peak beam density nb0/n0 ≈ 0.02. For the same amount ofbunch charge, the theoretical, flat-top transverse profile corresponds to a peak beam density
nb0/n0 ≈ 0.04. The normalized emittance of the beam in the simulations is εN = 3.5 mm mrad, whichis the nominal value for the proton bunch driver in the AWAKE experiment. Lastly, the initial radiusperturbation is defined as r10(ζ) = δr r0 sin[k(ζ − ζs)], with a relative amplitude δr = 0.1.
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How the amplitude response is measured

Following the same principle as in Sec. 3.2, we measure the amplitude response by defining a ratiobetween the radius perturbation after a propagation distance z and the initial radius perturbation
r10, which has a well-defined frequency, i.e., r10 ∝ sin(kζ). Since these quantities vary along thebunch (along ζ), we eliminate this dependence by integrating the absolute value of both along ζ.The resulting amplitude response therefore provides information about the entire section of thebeam we are considering (with length L), and evolves along the propagation distance:

Π(k, z) =

∫
L
|r1(z, ζ)| dζ∫

L
|r10(ζ, k)| dζ

. (4.9)
The theoretical evolution for r1 is found by considering the initial plasma response to theperturbation r10 and its effect on the radius perturbation, or, in other words, by applying the powerseries model (see Sec. 2.4) up to n = 2:

r1(z, ζ) = r10(ζ) +R{r10} 1
2 z

2 . (4.10)
We introduce R{r1} to symbolize the right-hand side of the differential equation for r1 (see forexample Eq. 2.109), which can be expressed more generally as

d2r1
dz2

= R{r1} . (4.11)
If we choose to neglect the branch rb(ζ) > rb(ζ

′) of the envelope equation for a flat-top transverseprofile (Eqs. 2.84–2.85 on p. 26), R is given by
R{r1} = −2 k̂2β

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′) f(ζ ′)
[
ν r1(ζ

′)− 2 κ2 r1(ζ)
]
, (4.12)

which corresponds to Eq. 2.109 rewritten with the constants ν and κ2.Otherwise, we can apply the same linearization procedure that led to the result above (describedin pp. 30–32) to the complete envelope equation and arrive at
R{r1} = −2 k̂2β

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′) f(ζ ′)


[
2 κ2< r1(ζ)− ν r1(ζ

′)
]

r1(ζ) ≤ r1(ζ
′)[

2 κ2> r1(ζ) + ν r1(ζ
′)
]

r1(ζ) > r1(ζ
′)

, (4.13)
where κ2< = κ2 = 2 K1(r0)

[
I2(r0)
r0

+ I3(r0)
], κ2> = 2 I1(r0)

[
K2(r0)
r0

+K3(r0)
], and where we used theidentity I1(r)K2(r) + I2(r)K1(r) = 1/r [52, Eq. 10.28.2]. We will contemplate both versions of R inthe following.We will likewise seek to validate the theoretical result by comparing it to simulation data. Herewe can exploit the axisymmetry implied in the SMI theory and carry out PIC simulations in 2D(axisymmetric) cylindrical geometry. A direct comparison, however, is not straightforward. In areal particle bunch, there is the slow, added effect of self-focusing [85]. In our theoretical modelthe radius perturbation r1 is supposed to evolve on top of a constant bunch radius2, which shouldtherefore find itself in equilibrium, or matched, with the plasma.A simple matching condition for r0 can be found in the long-bunch adiabatic regime (f(ζ) ≈ 1and ∂ζf → 0) by setting dr0/dz = 0 in the envelope equation for r0 (see Eq. 2.105 on p. 31) and

2Allowing r0 to evolve would result in a system of two coupled differential equations for r0 and r1, which is signifi-cantly more difficult to solve.
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assuming a slowly evolving r0, i.e., ∂ζr0 → 0. Under these assumptions, Eq. 2.105 reduces to thematching condition
ε2 = 8 k̂2β r

3
0 K1(r0) I2(r0) . (4.14)

(Note that the intermediate steps for this derivation are justified in Eqs. 2.106–2.107 and Eq. 2.88.)However, simulating the cosinusoidal longitudinal profile mentioned above (see second paragraphafter Eq. 4.8) means that the long-bunch adiabatic assumption and thus the matching condition inEq. 4.14 are no longer strictly met. For a non-constant profile f(ζ) the actual matching conditionis a function of ζ and would be given by a complicated expression. The particle bunch in the 2Dcylindrical simulations is therefore unmatched and has a Gaussian transverse shape, for whichthe time scale for self-focusing is longer than for a flat top. Note that, in the comparison betweentheory and simulations, we guarantee that the RMS radial size is the same for both transverseprofiles, i.e, rb =
√
2 σr (see Table A.6, items A.6.1 and A.6.4, in Appx. A for the full simulationdetails).Our theoretical model describes exclusively the radius perturbation r1, so we must extract thisquantity from the simulation data in order to perform a comparison. This is achieved by subtractingthe slowly evolving (or adiabatic) component of the bunch radius σr,adiab(ζ, z), which is obtainedfrom a simulation with no SMI seed (see Fig. 4.13, top). Figure 4.13 (bottom) exemplifies the resultingradius perturbation, taken at z ≈ 2 k−1

β from a simulation seeded at 0.8 kp. This definition of theradius perturbation is valid until the bunch in the unseeded simulation begins to self-modulatefrom noise, which introduces a fluctuation at kp to σr,adiab. The simulation data discussed below istaken long before this point is reached. The amplitude response for the 2D cylindrical simulationsis therefore defined as
Π(k, z) =

∫
dζ |σr,k(ζ, z)− σr,adiab(ζ, z)|∫
dζ|σr,k(ζ, 0)− σr,adiab(ζ, 0)|

. (4.15)
The SMI amplitude response and subharmonic resonance according to theory

The theoretical amplitude response for the SMI along the propagation distance, given by Eqs. 4.9–4.13, is depicted in Fig. 4.14. As expected, both versions of the theory indicate that the growth ofthe SMI is maximized for k = kp, although the two solutions exhibit different time scales [note thediffering z-axes between Fig. 4.14(a-b) and Fig. 4.14(c-d)]. It is not yet clear why this differencecomes about.The early line-outs in Figs. 4.14b) and d) display a consistent shape around k = kp (see red and
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Figure 4.13: Example of the measurement of the RMS radius perturbation from PIC simulations, taken at
z ≈ 2 k−1

β . Top: bunch radius along ζ in two simulations, one where the SMI is seeded at k = 0.8 kp (blue)and one without a seed (grey). Bottom: bunch radius perturbation obtained from the subtraction of thegrey curve from the blue curve in the top plot.
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a) b)

c) d)

Figure 4.14: SMI amplitude response as a function of seed wavenumber and propagation distance accord-ing to two versions of the theory: Eq. 4.12 (a-b) and Eq. 4.13 (c-d), replaced in Eq. 4.10. The evolution alongtime is shown in a) and c), with line-outs taken at different propagation distances in b) and d). Note thatthe scale of the z-axis is different for the top and bottom rows. The normalized outline of the amplituderesponse corresponding to the dispersion relation Eq. 4.5 has been included in b) and d) as a grey dash-dotted curve. Note that the color scale in a) and c) is saturated for values |Π(nj , z)− 1| > 3.
green curves). Once again, we can identify a distinctive regime where the maximum damping andmaximum growth reach similar magnitudes, as in the case of hosing. However, a crucial differenceis that the dynamic amplitude response of the SMI is antisymmetric with respect to the HI, i.e., eachnon-resonant growth regime applies to opposite regions of k [compare Fig. 4.14b) to Fig. 3.3b)].Most obvious in Fig. 4.14, though, is the difference between the two versions of the theory: theincomplete version (Eq. 4.12) in Fig. 4.14(a-b), and the complete version (Eq. 4.13) in Fig. 4.14(c-d).The latter exhibits multiple peaks of the amplitude response, in contrast to the single peak inFig. 4.14a) [see also the line-outs in Fig. 4.14b)]. As discernible in Fig. 4.14d), these peaks arelocated at unit fractions of the plasma wavenumber, i.e., k = kp/N where N ∈ N+.The phenomenon of subharmonic resonance can arise in parametric oscillators and nonlinearoscillating systems, where N commonly corresponds to the order of the nonlinearity [86] (e.g.an additional term proportional to xN (t) in Eq. 3.12). We note that no superharmonic resonanceswere observed when we extended the theoretical calculation beyond k > 2 kp, and that thisphenomenon is not observed for the hosing instability when the complete, piecewise centroidequation is considered (Eq. 2.62).Indeed, the explanation for the peaks found here can be attributed to the nonlinear characterof the plasma response driving the SMI (Eq. 4.13). Contemplating the overall structure of Eq. 4.11,we immediately see that it is in fact a nonlinear differential equation when the right-hand side isgiven by Eq. 4.13, i.e., is a piecewise function of r1. We can therefore expect the evolution of r1along z to be nonlinear. For any seed frequency k0 > 0, this nonlinear evolution translates intoa progressive distortion of the initially sinusoidal bunch radius perturbation, and therefore intothe emergence of harmonics of k0 in the Fourier space of r1. Therefore, for seed frequencies thatcorrespond to unit fractions of the plasma frequency, i.e., k0 = kp/M , the Mth harmonic of k0 bydefinition corresponds to kp, which allows this harmonic to grow resonantly. As an example, for
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a) b)
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Figure 4.15: SMI amplitude response as a function of plasma density and propagation distance accordingto the complete theory (Eq. 4.13). In a)–b) the normalized propagation distance is kept constant for eachplasma density nj . The isoparametric curves in a) indicate edges in the data where the absolute propaga-tion distance is fixed (expressed in terms of the betatron period, which does not depend on nj). The datais plotted as a function of the absolute propagation distance in c)–d). Note that the color scale in a) and c)is saturated for values |Π(nj , z)− 1| > 30.
the seed frequency k0 = 1

3kp, the third harmonic (M = 3) corresponds to the plasma frequencyand can thus grow resonantly.This explanation justifies several properties of the subharmonic peaks: why they emerge alongthe propagation (since the growth of harmonics is tied to the development of the SMI), why theiramplitude decreases with increasing M (higher-order harmonics have lower amplitudes), and whyno peaks are observed for the incomplete version of the right-hand side Eq. 4.12 and for the hosinginstability (the instability’s right-hand side is linear in z).If we considered a different frame of reference for the current study, where the initial pertur-bation wavenumber was held constant (as previously explored for the HI in Fig. 3.6 and in theaccompanying text), we would expect to observe peaks of SMI growth as the plasma density isvaried away from the resonant n0.Until now we have assumed a plasma with a fixed, constant density n0, which determines theresonant plasma frequency ωp,0 = c kp0 . In order to map out the amplitude response, we thenvaried the perturbation wavelength λ = 2π/k in an incoming bunch, whereby the observed physicsdepends on the ratio k/kp,0. However, we could equally consider a fixed perturbation wavelength
λp,0 of the incoming bunch, defined for a reference plasma density n0 (for which the SMI would growresonantly) and vary the plasma density nj where the bunch propagates instead. We must observethe same physics in both cases, though the determining quantity in the latter case is now kp,0/kp,j .We can switch between both reference frames via the relationship k̂ = 1/

√
n̂j , where n̂j = nj/n0,which follows from the equality of both wavenumber ratios. Note that this correspondence is notstrictly true, since in the second case we effectively alter the normalized bunch parameters aswell, which should lead to different wakefields and growth rates.Let us consider the seed frequency kp,0 of a perturbed bunch propagating in plasma with density

n0 (resonant growth). The nonlinear evolution of the bunch radius oscillation then translates intothe emergence of harmonics of kp,0 in Fourier space, i.e., into growing signals at 2 kp,0, 3 kp,0, and
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so on. Now, consider that each of these harmonics, kH =Mkp,0 for M ∈ {2, 3, . . . }, corresponds tothe fundamental plasma frequency for a plasma density nH , which is given by:
kH
kp,0

=M =

√
nH
n0

⇔ nH =M2 n0 . (4.16)
Whereas we found the subharmonic peaks in the fixed-density reference frame at kSH = kp/M , inthe fixed-perturbation frame we therefore expect the peaks to be located at nSH =M2n0.This is confirmed in Fig. 4.15, where the theoretical amplitude response was computed in thefixed-perturbation frame. The normalized bunch parameters were updated and the equationswere renormalized for each value of nj . In Fig. 4.15a) the propagation distance is normalized to
k−1
p,j , the plasma skin depth associated with each value of nj , which allows us to observe severalsubharmonic peaks at nj = {4, 9, 16, 25, . . . } n0 [see Fig. 4.15b)], as expected from Eq. 4.16. In arealistic experimental set-up, however, the propagation distance might be fixed while the plasmadensity is scanned. The expected growth observation in this case is shown in Figs. 4.15c–d) as afunction of zk−1

β , which is fixed for a set of bunch parameters and independent of nj . Note theprediction of faster growth to be observed at subharmonic multiples of the reference density insuch a set-up.We will now proceed to the validation of the theoretical predictions described above using PICsimulations.
The SMI amplitude response and subharmonic resonance according to PIC simulations

The SMI amplitude response obtained from the simulations is shown in Fig. 4.16 for two differentphases of its evolution. The theoretical expectation (both versions) was added for a qualitativecomparison, at arbitrary propagation distances that best seem to approach the simulation data.A quantitative discrepancy is to be expected here due to the different transverse profiles of thebunch and the extensive assumptions underlying the theory.The shape of the early amplitude response [see Fig. 4.16a), red cross symbols] agrees withthe two versions of the theory, although it seems to feature a negative offset. This offset couldbe due to some nonlinear component of the self-focusing effect that could not be removed bythe subtraction of the seedless case (σr,adiab) alone, and which would decrease the amplitude ofthe radius perturbation independently of its frequency. In any event, this early regime displays
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the same characteristics as in the case of hosing (see p. 46), with the obvious exception of theantisymmetry with respect to the axis k = kp.At later times there is worse agreement with the theoretical models, with a persisting negativeoffset in the simulation data [see Fig. 4.16b), red cross symbols]. However, crucially for thiscomparison, the subharmonic peak at k = 1
2kp grows noticeably before z = 3 k−1

β , although itsrelative magnitude is smaller than the full theory would predict for a flat-top bunch (by a factor of
∼ 5.5 versus ∼ 2). This implies that, even for a smooth transverse bunch profile (Gaussian-shaped),there is some degree of nonlinearity in the plasma response driving the SMI.From this, we could assume that the nonlinearity of the plasma response is determined by howquickly the transverse profile varies along the transverse coordinate. In that case, the flat topwould represent one extreme of this sliding scale, varying infinitely quickly and leading to infinitedegrees of nonlinearity. The opposite extreme would consist of a wide-bunch limit where thetransverse profile could be considered infinitely smooth (i.e., where ∂g(r)/∂r could be neglected).Enforcing this limit in the envelope equation, however, leads to the result that ⟨rFr⟩ = 0 and thusthat the SMI does not develop. We must therefore conclude that the plasma response driving theSMI is always nonlinear to some degree.The hypothesis that steeper profiles increase the nonlinearity of the SMI can be tested byreplacing the transverse profile in the simulations with a super-Gaussian formula,

g(r, ζ) = exp

[
−
(

r2

σ2
r(ζ)

)p]
, (4.17)

with increasing powers p. We choose the exponents p = 2 and p = 4, taking care to adjust eachstandard deviation of the super-Gaussian profiles σr,p=2 and σr,p=4 such that the charge per slicein ζ is conserved between the three cases. The resulting profiles are shown in Fig. 4.17a), with
σr,p=2/σr =

√
2/π1/4 ≈ 1.06 and σr,p=4/σr = 2/

√
Γ(1/4) ≈ 1.05. All other simulation parameters aremaintained (see Table A.6, items A.6.6–A.6.7, in Appx. A for the full simulation details). Note thehigher frequency content along r for the steeper profiles, evident in Fig. 4.17b) via the Fouriertransforms of each profile.Figure 4.18 (p = 1, top) represents the same simulation data discussed in Fig. 4.16, i.e., fora purely Gaussian transverse bunch profile. Though the simulations were conducted at closelyspaced seed wavenumbers to resolve potential peaks, there is no evidence of growth of the secondsubharmonic (k = kp/3) up to z = 3 k−1

β .As we increase the steepness of the transverse profile, however, both the first (k = kp/2) andsecond subharmonic resonance peaks become more prominent and emerge earlier (compare
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Figure 4.17: Transverse shape of the bunch density profiles used in the 2D axisymmetric simulations (a),and their Fourier transforms along the radial coordinate (b).
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with Fig. 4.18, p = 2 and p = 4). This could be justified by the higher frequency content of thesuper-Gaussian profiles [see Fig. 4.17b)] and of the respective initial plasma responses ⟨rFr⟩ /σr(not shown). Transfiguring g(r) closer to a flat top additionally seems to have an effect on theamplitude response away from the fundamental resonance after some propagation, both for k → 0and k → ∞, whereby the radius modulation is further decreased (Π(k, z) < 1).The quantity shown in Fig. 4.18 and previous figures conveys information about how muchthe oscillation in the beam envelope grows, but not at which frequency (or frequencies). At thesubharmonic resonance peaks, for example, is it truly the M th harmonic corresponding to kp thatis contributing to the increased growth factor?A naive look at the bunch radius line-outs along ζ for k = 1
2kp and k = 1

3kp, shown in Fig. 4.19,seems to suggest a positive answer. After propagating 0.7 m in plasma, we see evidence of a radiusmodulation in the super-Gaussian bunch (p = 4) at double the initial perturbation frequency whichseems to be growing along the bunch (see Fig. 4.19, top). The same applies for the super-Gaussianbunch seeded at k = 1
3kp, where this time the growing modulation seems to correspond to threetimes the initial frequency and exhibits a smaller amplitude at the same propagation distance.We can repeat this analysis systematically by computing the fast Fourier transform of thebunch radius perturbation along ζ at a given z and comparing the Fourier-space signals to each
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initial perturbation frequency. The result of this procedure is shown in Fig. 4.20 for three differentinputs (corresponding to each row): the theoretical data, and simulation data for two transverseprofiles (Gaussian and super-Gaussian with p = 4). The horizontal axis for each plot (k0) representsthe initial perturbation frequency. For each k0, the Fourier spectrum of the bunch radius at z isplotted along the vertical axis as a function of the transform variable k̃, the spectrum values beingrepresented by the color scale.At z = 0 (see left-hand column of Fig. 4.20) we naturally expect to observe a direct correlation
k̃(k0) = k0, since the bunch radius is initially sinusoidally modulated at k0. As the bunch propagatesand the SMI evolves, we would expect to observe harmonics of k0 in the Fourier spectra of the radius,i.e., zero-crossing lines with increasing slope. This is indeed what we observe in Fig. 4.20b) (thetheoretical, flat-top case), though we note the absence of the lines k̃(k0) =Mk0 for odd harmonics
M . As it stands we have not been able to find an explanation for why this is so. Nevertheless, theintegrated Fourier spectra (along k̃) in Fig. 4.20b) still exhibit subharmonic peaks at all k0 = kp/M(including for odd M ), similarly to the curves shown in Fig. 4.14d).In the case of the simulations, in Figs. 4.20d) and f), we see evidence of the growth of severalharmonics, even or odd. This is most clearly visible for the super-Gaussian transverse profile:notice the signals at k̃(k0 = kp) = 3kp, k̃(k0 = 1

3kp) = 3 1
3kp, and k̃(k0 = 1

2kp) = 3 1
2kp in Fig. 4.20f).Interestingly, some additional signatures are visible in the simulation data, once again most percep-tibly in Fig. 4.20f) (see faint diagonals). These homogeneous Fourier-space signals are visible at

k̃(k0) = ±(kp ± k0), and represent a beat between the seed frequency k0 and the plasma frequency
kp. More importantly, however, the simulation data seems to confirm our initial supposition thatmost of the growth observed in the subharmonic resonances is associated with a kp-oscillatingcomponent of the radius perturbation.
The SMI phase response

If we interpret the SMI as an oscillator (the bunch radius) driven by a periodic, sinusoidal force, weexpect to see a particular behavior in the phase shift between the oscillator and the periodic force,as discussed in Sec. 3.2.1. The envelope equation in cylindrical coordinates (see p. 24),
d2σr
dz2

−
ε2y
2 σ3

r

=
me

γMb

⟨r Fr⟩
σr

, (4.18)
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Figure 4.20: Discrete Fourier transform of the perturbation radius (r1 for the theory and σr − σr,adiab for thesimulations) as a function of the seed wavenumber k0, at z = 0 (left-hand column) and at z = k−1
β (right-hand column), according to theory (a–b), and to simulations with a Gaussian (c–d) and a super-Gaussian(e–f) transverse profile. Each column of data in each plot corresponds to the Fourier spectrum obtainedfor an initial radius perturbation at k0. Horizontal guide lines (grey) help locate the plasma frequency in thetransform-variable axis k̃. Note that each dataset is normalized to its maximum value at z = 0, and that therange of the color scale is limited to this value (values above 1 are indistinguishable).
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tells us that two effects play a role in the evolution of the RMS size: one associated with the bunchemittance (second term on the left-hand side) and one associated with the plasma response(right-hand side). Here, the quantity ⟨rFr⟩ /σr corresponds to the force driving the oscillator. Wetherefore compare its early relationship to the RMS bunch size σr, which is illustrated in Fig. 4.21a)with curves obtained from the 2D axisymmetric simulations at z ≈ 0. We once again observe threedistinct phase shifts between σr and ⟨r Fr⟩ /σr, depending on the seed frequency k relative to kp.A comprehensive picture of the phase shift ∆ϕ as a function of seed frequency is given inFig. 4.21b), based on the theory for a flat-top transverse profile as well as the simulation data. Thetheoretical phase shift is measured between r1 and the first-order plasma response FSM,1, whichfollows from the assumption of a small radius perturbation, such that ⟨rFr⟩ /rb = FSM,0 + FSM,1.These two plasma response components can be found by writing out the sum of d2r0/dz2 (Eq. 2.105)and d2r1/dz
2 (the right-hand side in Eq. 4.13):

d2

dz2
(r0 + r1)−

ε2

r30
=

2me

γMb
(FSM,0 + FSM,1) , (4.19)

with
FSM,0 = 2

nb0
n0

(qb
e

)2
I2(r0)K1(r0)

∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′) , (4.20)
FSM,1 = −1

2

nb0
n0

(qb
e

)2 ∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f(ζ ′)


[
2 κ2< r1(ζ)− ν r1(ζ

′)
]

r1(ζ) ≤ r1(ζ
′)[

2 κ2> r1(ζ) + ν r1(ζ
′)
]

r1(ζ) > r1(ζ
′)
. (4.21)

By contrast, in the simulations ∆ϕ is measured between σr and ⟨rFr⟩ /σr, though the adiabaticcomponent of the plasma response is discarded by the phase shift measurement proceduredescribed in Appx. B.The result of the phase shift analysis in Fig. 4.21b) demonstrates excellent agreement betweentheory and simulations, despite the different transverse bunch profiles in each case. The physics ofthis lag between driving force and radius oscillation thus seems to be independent of the bunch’stransverse characteristics. Note that the two versions of the theory, piecewise (green curve) andsingle-branch (yellow curve) overlap completely. It therefore makes sense that there is also noimpact on the result when the two versions of the theory are considered, since this discrepancy
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stems from the algebra associated with the averaging over the transverse profile.
4.2.3 Understanding the effect of a plasma density step

For acceleration purposes, the self-modulation instability proves itself an extremely useful mech-anism, since it provides high wakefield amplitudes for drivers that would otherwise be unfit forthat purpose. Nevertheless, the phase of resonant growth associated with the instability’s de-velopment eventually reaches a saturation point [see Fig. 4.22a), solid grey curve at z ≈ 5 m].Left to its own devices, the particle charge in each microbunch is then continuously eroded by abackwards-slipping wakefield, due to a residual difference between the wakefield phase velocityand the bunch velocity (≈ c). The wakefield amplitude therefore drops after the saturation peak[see Fig. 4.22a), grey curves for z ≳ 5 m].Previous work based on 2D axisymmetric quasistatic PIC simulations suggests that a smallstep in the plasma density profile, located relatively early along the development of the SMI,leads to a stable wakefield amplitude after saturation and thus makes it possible to sustain anapproximately constant, elevated acceleration gradient [71, 72]. This effect is exemplified inFig. 4.22a) for a plasma density step increase of 3% (solid red curve). This solution is thereforeextremely interesting for the AWAKE experiment, which aims to leverage the self-modulationundergone by a long relativistic proton bunch for electron acceleration, and will be put to the testduring the experiment’s future program.It is generally understood that the plasma density step implies a change of the plasma frequency,and therefore a sudden shift of the wakefields with respect to the modulating structure of thebunch. In particular, a positive step (i.e., the plasma density is increased above n0) readjusts theplasma wavelength such that more bunch charge is caught in focusing fields, as demonstratedin Fig. 4.22b) (left-hand graph, red curve). This may be part of the reason why a high wakefieldamplitude can be sustained long after the saturation point when a positive density step is used.Additionally, the positive density step seems to ensure that more energy is transferred from thebunch to the wakefields (i.e., more charge finds itself in decelerating wakefields) after saturationof the SMI [see Fig. 4.22b), right-hand graph].To thoroughly understand the striking wakefield-sustaining effect behind the plasma density
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Figure 4.22: a) Average longitudinal wakefield amplitude (solid lines) and total driver bunch charge(dashed lines) within a radius of 1 k−1
p from the propagation axis, with plasma density steps [red and green,see legend in b)] and without (grey). b) Total driver bunch charge within r ≤ k−1

p located in focusing (left)and decelerating (right) wakefields, with and without a step in the plasma density profile. The densitysteps are located at z = 2.17 m, indicated by the dash-dotted vertical lines, and they are implemented overa one-centimeter-long (∼ 50 k−1
p ) ramp. Data obtained from OSIRIS 2D cylindrical simulations with nominalparameters for the AWAKE experiment (see simulation details in Table A.5, items A.5.3–A.5.5, in Appx. A).
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step, however, it would be necessary to establish a theoretical model for the saturation phase of theSMI, which has so far not been accomplished by the scientific community (to the best of the author’scurrent information). Nevertheless, we can at least verify whether the theoretical frameworkdescribed in the previous sections of this chapter is consistent with the effects associated withthe density step before saturation comes into play.For our density step case study, we perform three simulations with the same bunch parametersas before: we simulate a 280-k−1
p -long section of the front of a bunch composed of artificiallylight protons (Mb = 50me) propagating in plasma with the baseline density n0 = 2× 1014 cm−3. Wechoose a step with a height of ∆ns/n0 = 4%, both above and below n0, located at z = 0.5 k−1

β , andwe compare both results to the baseline simulation, where there is no step. In all three cases, theSMI is seeded with a bunch radius perturbation at kp,0.One of the implications of the theoretical analysis is that each growth regime is associated witha specific phase shift between bunch radius and plasma response. When the plasma density np islarger than n0 (or, equivalently, when k < kp,0) we expect a phase shift of π and negative growthin the bunch radius modulation. Conversely, when np < n0 (or k > kp,0) we expect ∆ϕ = π and aregime of “slow growth” [compare with Figs. 4.14, 4.15 and 4.21].We can easily verify whether this is the case in the density step simulations by plotting thebunch radius and plasma response immediately after the step. This is shown in Fig. 4.23a). Withouta density step, we observe the 3π/2 phase shift associated with resonant growth of the SMI, asexpected [compare Fig. 4.23a), top, to Fig. 4.21a), middle, on p. 75]. With a positive step, however,the plasma response is shifted forwards, although the observed phase shift does not perfectlycorrespond to π [compare Fig. 4.23a), middle, to Fig. 4.21a), top]. This is perhaps due to therelatively late placement of the density step along z. The opposite density step leads to a phaseshift of 2π [see Fig. 4.23a), bottom], as predicted earlier.The effect of each density step on the development of the SMI is illustrated in Fig. 4.23b), usingthe average amplitude of the wakefield component Ez to quantify the growth of the instability.The configuration chosen for this case study is not optimized to demonstrate the potential meritsof the density step concept: not much wakefield growth can be observed along the limitedregion considered here, with a smoothly rising bunch, and the significant wakefield amplitude lossundergone when the step is introduced might be minimized by choosing a more adequate steplocation and height. Nevertheless, it is possible to see a plateauing of the wakefield amplitude
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Figure 4.24: SMI amplitude response obtained from OSIRIS 2D cylindrical simulations (a) and from thetheoretical model for a flat-top transverse bunch profile (b), for propagation in a plasma with and without adensity step. The vertical dash-dotted lines mark the location of the density step.
after saturation (z ≈ 2.5k−1

β ) for ∆ns = +4% in Fig. 4.23b).Note that this plasma density, np = 1.04 n0, corresponds to a regime of negative growth, whichmay seem counterintuitive in the context of optimizing the SMI for acceleration purposes. If weconsider that the natural development of the SMI is associated with a gradual loss of driving charge(see Fig. 4.22), however, it may make sense to suddenly “slow down” its development such that astable post-saturation state is found.We can take a closer look at the growth of the bunch radius modulation from the simulationdata by computing the amplitude response Πsim(z) =
∫
dζ|σr,1(z)|/

∫
dζ|σr,1(0)|, shown in Fig. 4.24a).For this set of simulations, the oscillatory component of the bunch radius σr,1 was obtained bysubtracting the moving average of σr with a window length of λp,0. Note that the positive stepresults in an initially slower growth rate (z < 2 k−1

β ) which later surpasses even the resonant rate[compare the red and dark grey curves in Fig. 4.24a) for z ∼ 3 k−1
β ].We can also compare Πsim(z) with a theoretical prediction for the amplitude response, shown inFig. 4.24b). This amplitude response is defined as Πth(z) =

∫
dζ|r1(z)|/

∫
dζ|r1(0)|, where r1(z) iscalculated with a renormalized version of the model in Eqs. 4.10 and 4.13, such that the local plasmadensity can be varied. Moreover, the plasma response R(r1) was scaled by an arbitrary factor of

0.015, such that the theoretical data can be compared with the simulation data on equal scales.There is qualitative agreement for z ≲ 2 k−1
β (roughly the range of validity of the theoretical model):slower growth for ∆ns = +4%, and briefly faster growth for ∆ns = −4% before it is overtaken bythe resonant case (see green and dark grey curves in Fig. 4.24).With this we can conclude that our understanding of the SMI (discussed in the previous sections)is consistent with the early effects observed when a plasma density step is introduced. This doesnot include post-saturation effects, since a general theoretical model that for this regime does notyet exist.
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Chapter 5

Conclusion

This doctoral work set out to contribute to the understanding of the hosing and self-modulationinstabilities, particularly in the regime of long particle bunches and linear wakefields. This wasaccomplished with a combination of analytical and numerical approaches.The theoretical apparatus was introduced in Chapter 2. We presented a systematic and detailedderivation of the equations that are used to treat the HI and SMI in the long-bunch, overdenseregime analytically. This included a derivation, discussion and comparison of evolution models(both existing and novel) for both instabilities.
Original results in Chapter 2:

• differential equation for the bunch centroid in 2D Cartesian coordinates for a Gaussiantransverse profile (Eq. 2.36 on p. 17), which allows us to study the HI theoretically (inplanar geometry) for a more realistic bunch shape
• correction to the differential equations for the bunch centroid and radius for a flat-toptransverse profile in cylindrical coordinates (Eqs. 2.62 and 2.85 on p. 22), which revealedpreviously unknown phenomena related to the development of the SMI
• power series model to describe the bunch centroid and radius as a function of ζ and zduring early instability development (Eqs. 2.122–2.123 on p. 35), providing an analyticaltool to study both instabilities in a regime that is partly not contemplated in existingevolution models

At the end of Chapter 2, we concluded that the power series model is especially useful at thefront of the bunch during the instabilities’ growth, where asymptotic models are not valid. Boththis and the other original results were crucial to studying novel phenomena of the HI and SMI inthe rest of this dissertation. Nevertheless, there is still much to explore in terms of the theory.
Future work ideas related to Chapter 2:

• understand the reason for the different amplitudes of the theory for the SMI and thesimulation data (Fig. 2.6 on p. 27)
• investigate the importance of the assumption r1 ≪ 1 when modeling the SMI via a bunch
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radius perturbation (p. 31)
• develop an asymptotic theory for the SMI that takes the full piecewise plasma responseinto account, thereby possibly leading to a different result for the growth rate (at kp)
• develop theoretical models to describe the saturation phase of both instabilities, butmost importantly the SMI

In Chapter 3 we aimed to understand the dependence of the growth of hosing on a perturbationfrequency. After obtaining a dispersion relation for the HI in particle beams with establishedtechniques, we then explored a different approach that takes the onset of the instability intoaccount (using the power series model), and found a different growth behavior than the dispersionrelation would predict. We made use of a simple physical model, consisting of a sinusoidally drivenharmonic oscillator, to better understand the early amplitude response we found with the powerseries model.Our result showed different growth regimes (including damping) as a function of differentseed frequencies, and was validated with PIC simulations. Lastly, we attempted to exploit theseproperties to devise a hosing mitigation method consisting of steps in the plasma density profile,i.e., in effect detuning the oscillator system. The limitations of this method were discussed, findingthat the HI seems to be delayed rather than suppressed, and that the density steps may have asizeable impact on the amplitude of the wakefields (36–44% decrease) when the bunch is alsoself-modulated.
Original results in Chapter 3:

• adiabatic dispersion relation for beam hosing in the long-bunch, overdense regime(Eq. 3.6 on p. 42), which fundamentally demonstrates that longer-wavelength modes ofthis instability may grow
• hosing amplitude response as a function of an arbitrary perturbation wavenumber, validin particular during early instability development (Figs. 3.3 and 3.4 on p. 46), showingthat it is possible to manipulate the instability’s development via detuning techniques
• hosing mitigation method based on plasma density steps (Fig. 3.7 on p. 50), therebyexpanding our understanding of hosing suppression in a long plasma-based accelerator

Though the mitigation setup we proposed does not seem to eliminate the hosing instability, itmay be useful in affording the SMI enough time to dominate and thus making any further hosinggrowth impossible. Nevertheless, several questions remain to be answered.
Future work ideas related to Chapter 3:

• obtain an analytical expression for the amplitude response Π(k, z) (Eq. 3.16 on p. 45)
• study the exchange of energy during the instability’s development
• explore further plasma density profiles to control the development of hosing
• study the evolution of the phase response (Fig. 3.5 on p. 48) along propagation

80



• study the early amplitude response for hosing in other regimes (short bunch, nonlinearwakefields, etc.)
In the first part of Chapter 4, we demonstrated the robustness of the saturated SMI to fluctua-tions of the initial conditions. This included an analysis of the potential impact of these fluctuationson accelerated electrons, whereby we also tried to find optimal conditions for injection of theseelectrons. We then made a brief comparison of the results to subsequent experimental datapublished by the AWAKE Collaboration, which was consistent with our findings.

Original results in Chapter 4, Sec. 4.1:

• simulation-based evidence that the seeded SMI is resistant to input parameter fluctu-ations (Figs. 4.2 on p. 57 and 4.6 on p. 59), proving its suitability as a plasma-basedacceleration mechanism
• finding that electrons injected before SMI saturation may remain trapped and reach highenergies after 10 m when they are initially located far from the axis (Fig. 4.10 on p. 61),which is consistent with experimental results

In the second section of Chapter 4, we once again investigated how instability growth relatesto a perturbation frequency, this time for the SMI. After obtaining the adiabatic dispersion relationfor the SMI, we used the same approach as in Chapter 3 to predict its early amplitude responseand found some unexpected behavior by considering the complete differential equation for thebunch radius found in Chapter 2. This behavior, which we termed “subharmonic resonance”, wasconfirmed with simulation data and is more pronounced the steeper the transverse bunch profileis. Finally, we interpreted the effects of a single plasma density step on the development of theSMI, proposed in Refs. [71, 72], from the perspective of the early amplitude response found above,and concluded that these effects are consistent with the framework developed in this section.
Original results in Chapter 4, Sec. 4.2:

• adiabatic dispersion relation for the SMI in the long-bunch, overdense regime (Eq. 4.5on p. 64), which fundamentally demonstrates that longer-wavelength modes of thisinstability may grow
• amplitude response of the SMI as a function of an arbitrary perturbation wavenumber,valid in particular during early instability development (Figs. 4.14 on p. 68 and 4.16 onp. 70), showing that it is possible to manipulate the instability’s development via detuningtechniques
• phenomenon of subharmonic resonance in the SMI (Figs. 4.15 on p. 69 and 4.18 on p. 72),which constitutes an entirely new aspect of the SMI to be explored
• understanding of the (early) effects of a plasma density step based on fundamentalproperties of the SMI (Figs. 4.23 and 4.24 on p. 77), which may contribute to an improvedcontrol over SMI-generated wakefields
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Besides some of the ideas for future investigation mentioned in the context of the HI, whichalso apply to the SMI, the work in this chapter opens several avenues of inquiry. For example,our theoretical model suggests that the modulation of a bunch at the natural plasma frequency(in a plasma with density n0) may be unaffected when propagating through plasma at a differentdensity, as long as one of the subharmonic resonances is targeted (e.g. at 4 n0). But there may beother interesting ramifications from this work.
Future work ideas related to Chapter 4:

• understand why the amplitude response of the SMI is antisymmetric to the HI
• investigate how the early amplitude response and its shifting maximum could impact themodulation frequency observed after saturation, which may not correspond to kp exactly
• explore potential applications of the phenomenon of subharmonic resonance

The main theme emerging in the work developed for this dissertation is the idea of the hosingand self-modulation instabilities as systems that can be detuned and therefore influenced. Thoughthis idea is not at all novel, the detailed implications of this approach have led us to surprisinggrowth regimes and to the possibility of using the plasma density as a lever to manipulate thedevelopment of these instabilities. We hope that this proves fertile ground for further research.
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Appendix A

Simulation details

The algorithm employed to solve Maxwell’s equations numerically in all simulations in this work isthe Yee (finite-difference time-domain) solver. Smoothing of the electromagnetic fields was notapplied unless explicitly mentioned. The particle interpolation in all simulations is quadratic.The boundary conditions for the electromagnetic fields and the simulation particles are the samewithin each simulation geometry. By default, all boundaries are “open”. For the electromagneticfields, this corresponds to an absorbing, perfectly-matched-layer algorithm [87]. In both two-dimensional geometries (Cartesian and axisymmetric cylindrical), the electromagnetic boundariesin the transverse direction were set to perfect electrical conductors, since this minimized spuriousfield phenomena at the boundary. Note that there is always a vacuum gap between the transversewindow boundaries and any plasma (except for the axial boundary in cylindrical geometry, whichalso has a specific type of boundary).The emittance and energy spread of a particle bunch can be contemplated in the simulationsimperfectly by introducing an uncorrelated thermal distribution of the velocity along any direction.For the emittance, this corresponds to assuming that the bunch is at its waist. As input for thethermal distribution, we simply require the standard deviation of the Maxwellian distribution uth,i,where i is the coordinate. Note that u represents a proper velocity and is normalized to c, i.e.,
û = u/c = γv/c.For the transverse emittance, a simple correspondence to ûth can be found by assuming that
px,y/pz ≪ 1, where x and y are the transverse coordinates and z is the longitudinal coordinate, anda bi-Gaussian phase space distribution given by (e.g. along x):

f(x, x′) =
1

2πσxσx′
exp

(
− x2

2σ2
x

)
exp

(
− x′2

2σ2
x′

)
, (A.1)

where x′ = tan(px/pz), and σx and σx′ are the RMS position and angle, respectively. In this case,the geometric emittance is
εx =

√
⟨x2⟩ ⟨x′2⟩ − ⟨xx′⟩2 =

√
σ2
xσ

2
x′ − 0 = σxσx′ . (A.2)

Note that the transverse angle can be approximated as x′ ≈ px/pz due to our small-angle assump-tion, and therefore σx′ ≈ σpx/σpz . Replacing this in Eq. A.2 and solving for σpx , we obtain
σpx = εx

pz
σx

⇔ σpx
mc

= εx
pz
mc

1

σx
, (A.3)

where we divided the equation by mc. Noticing that the momentum divided by mc corresponds to
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a proper velocity, we can rewrite σpx/(mc) = γσvx/c = ûth,x and pz/(mc) = γσvz/c = γβ. Thus thevalue for the thermal velocity component (in the lab frame) corresponding to an energy spread oremittance is determined via
ûth,x =

εN,x [mmmrad]

σx [mm]
, (A.4)

where we also used the definition of the normalized emittance, εN = γβε.The complete parameters for the different sets of simulations are given in the tables below. Foreach set, there is a table of parameters that are common to all the simulations in the set, and atable for the differing parameters, featuring an item reference for each individual simulation.With the exception of simulation A.5.2, where many test electrons are distributed along thebunch, there are always two particle species: the plasma electrons and the driving bunch particles.The positive, immobile plasma ions are taken into account implicitly, since the code assumes thatthere is net charge neutrality at t = 0. This poses an issue when a charged particle bunch ispresent at the beginning of the simulation (since the net charge should not be zero in reality). Thisinaccuracy is minimized by computing the initial electric field associated with the bunch charge,and having it propagate for the length of one simulation window in vacuum.The longitudinal shape of the driving bunch is consistent throughout all simulations, and is givenby:
f(ζ) =

1

2

[
1 + cos

(√
π

2

ζ − ζc
σz

)]
, (A.5)

where the RMS length σz was generally taken as 12 cm, with the exception of the simulations inSec. A.5, where σz = 12.6 cm.The number of particles per cell for the plasma electrons and the bunch particles is sym-bolized as Nppc,pl and Nppc,b, respectively. The grid and window sizes are indicated in terms oflength×width(×depth). The shape of the transverse bunch profile is specified according to theinitials G (Gaussian), FT (flat top) and SG (super-Gaussian).
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A.1 Hosing studies – 2D Cartesian geometry

Table A.1: Parameters of simulations in 2D Cartesian geometry.
Common parameters

n0 [1014 cm−3] 0.5
nb0 [n0] 0.001
γb 480Bunch particles e−Seeding yc0 = 0.05 sin(1.07 ζ)

Grid size 1750×270Window size [k−1
p × k−1

p ] 140×4
∆t [ω−1

p ] 0.0095
Nppc,pl 2
Nppc,b 4
#CPUs 2400ave. CPUh 200

Differing parameters

Item g(y) Bunch transv. size [k−1
p ] tmax [ω−1

p ]A.1.1 G σy0 = 0.266 6405A.1.2 FT rb0 = 0.266 (σRMS = 0.188) 6405A.1.3 G σy0 = 0.266 2135
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A.2 Hosing studies – 3D geometry

Table A.2: Parameters of simulations in 3D geometry.
Common parameters

n0 [1014 cm−3] 0.5
nb0 [n0] 0.001
γb 480
g(x⊥) FTBunch particles e−

Window size [k−1
p × k−1

p × k−1
p ] 140×2×2

Nppc,b 2
Differing parameters

Item Bunchtransv. size
[k−1

p ]

Seeding Grid size ∆t [ω−1
p ] tmax [ω−1

p ] Nppc,pl #CPUs ave.CPUh
A.2.1 rb0 = 0.1 yc0 = 0.01 sin(ζ) 1750×6602 0.0019 140 3 7680 33100
A.2.2 rb0 = 0.1(osc.) yc0 = 0.01 sin(ζ)

r10 = 0.4 cos(ζ)
1750×6602 0.0019 140 3 7680 33100

A.2.1 rb0 = 0.266 yc0 = 0.027 sin(1ζ) 1750×2502 0.005 3880 2 2400 44040A.2.2 rb0 = 0.266 yc0 = 0.027 sin(ζ) 1750×2502 0.005 3880 2 2400 46430A.2.3 rb0 = 0.266 yc0 = 0.027 sin(1ζ) 1750×2502 0.005 3880 2 2400 46330
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A.3 Comparison to SMI theory – 2D axisymmetric geometry

Table A.3: Parameters of simulations in 2D axisymmetric geometry for comparisons to SMI theory.
Common parameters

n0 [1014 cm−3] 2
nb0 [n0] 0.039684
γb 427
g(r) FTBunch particles e+Bunch transv. size [k−1

p ] rb0 = 0.75222 (σRMS = 0.5319)Other detailsWindow size [k−1
p × k−1

p ] 140×4
tmax [ω−1

p ] 300
Nppc,pl 4
Nppc,b 4#CPUs 2400

Differing parameters

Item Seeding Grid size ∆t [ω−1
p ] ave. CPUh

A.3.1 r10 = 0.1 sin(ζ − ζs) 2800×400 0.008 30A.3.2 r10 = 0.01 sin(ζ − ζs) 2800×1200 0.003 100
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A.4 Effect of hosing mitigation on SMI – 2D axisym. geometry

Two cases for the self-modulated bunch were considered: one with a density step of +4% at
z = 0.5 k−1

β and one without. For each of these cases, two simulations were performed: one with atwo-step configuration for hosing mitigation and one without. This corresponds to four simulationsin total.

Table A.4: Parameters of simulations in 2D axisymmetric geometry for the effect of hosing mitigation onthe SMI.
Common parameters

n0 [1014 cm−3] 0.5
nb0 [n0] 0.001
γb 480
g(r) GBunch particles e−Bunch transv. size [k−1

p ] σr0 = 0.266Seeding RIF at ζcGrid size 5600×300Window size [k−1
p × k−1

p ] 280×3
∆t [ω−1

p ] 0.008
tmax [ω−1

p ] 7000
Nppc,pl 4
Nppc,b 4#CPUs 4096ave. CPUh 950
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A.5 AWAKE-related studies – 2D axisymmetric geometry

In these simulations, a five-pass binomial smoothing algorithm is applied to the electromagneticfields for particle interpolation at every time step. More specifically, a 1, 2, 1 stencil is appliedfour times, followed by a -5, 14, 5 stencil. Note that this smoothing does not affect the actualelectromagnetic fields used in the field solver.

Table A.5: Parameters of simulations in 2D axisymmetric geometry for AWAKE-related studies.
Common parameters

n0 [1014 cm−3] 7
nb0 [n0] 0.0027
g(r) GBunch particles p+Bunch transv. size [k−1

p ] σr0 = 1.41Seeding RIF at ζcGrid size 20063×425Window size [k−1
p × k−1

p ] 1663×8
∆t [ω−1

p ] 0.012
tmax [ω−1

p ] 53000
Nppc,pl 4
Nppc,b 4

Differing parameters

Item γb Other details #CPUs ave.CPUh
A.5.1 480 2400 20000A.5.2 480 Electrons injected along bunch 4608 95000A.5.3 427 8192 17190A.5.4 427 Step down 3% over ∆z = 50 k−1

p at z = 2.5 m 8192 16960A.5.5 427 Step up 3% over ∆z = 50 k−1
p at z = 2.5 m 8192 16810
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A.6 Self-modulation studies – 2D axisymmetric geometry

Table A.6: Parameters of simulations in 2D axisymmetric geometry for self-modulation studies.
Common parameters

n0 [1014 cm−3] 2
nb0 [n0] 0.01984
γb 427Bunch particles qb = e, Mb = 50meGrid size 5600×300Window size [k−1

p × k−1
p ] 280×3

∆t [ω−1
p ] 0.008

tmax [ω−1
p ] 5280

Nppc,pl 4
Nppc,b 4

Differing parameters

Item g(r)

Bunchtransv. size
[k−1

p ]

Seeding Other details #CPUs ave.CPUh
A.6.1 G σr0 = 0.53 – 4096 600A.6.2 G σr0 = 0.53 r10 = 0.1 sin[0.8(ζ − ζs)] 4096 600A.6.3 G σr0 = 0.53 r10 = 0.1 sin[ 1

3
(ζ − ζs)] 4096 600A.6.4 G σr0 = 0.53 r10 = 0.1 sin[k(ζ − ζs)] 4096 600A.6.5 G σr0 = 0.53 r10 = 0.1 sin[0.5(ζ − ζs)] 4096 600A.6.6 SG (p = 2) σRMS = 1.06 r10 = 0.1 sin[k(ζ − ζs)] 4096 600A.6.7 SG (p = 4) σRMS = 1.05 r10 = 0.1 sin[k(ζ − ζs)] 4096 600A.6.8 SG (p = 4) σRMS = 1.05 r10 = 0.1 sin[k(ζ − ζs)] 4096 600A.6.9 SG (p = 4) σRMS = 1.05 r10 = 0.1 sin[k(ζ − ζs)] 4096 600

A.6.10 G σr0 = 0.53 r10 = 0.1 sin(ζ − ζs)
Step down 4%at z = 0.5 k−1

β

2400 550
A.6.11 G σr0 = 0.53 r10 = 0.1 sin(ζ − ζs)

Step up 4% at
z = 0.5 k−1

β

2400 550
A.6.12 G σr0 = 0.53 r10 = 0.1 sin(ζ − ζs) 2400 550
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Appendix B

Phase shift measurement method

Our objective is to measure the phase shift between two periodic curves with the same oscillatingfrequency. We use a cross-correlation of both curves to achieve this, which could be understood asshifting them with respect to each other and finding the amount of shift where their superpositionis maximized.As an example, Fig. B.1 shows the initial centroid and initial plasma response from a 2D simulationwhere the wavenumber for the centroid perturbation is 0.9 kp. The cross-correlation for these twocurves is defined as
(yc ⋆ ⟨Fy⟩) (ζ ′) =

∫ ∞

−∞
yc(ζ) ⟨Fy⟩ (ζ + ζ ′) dζ , (B.1)

or, for a finite region L,
(yc ⋆ ⟨Fy⟩) (ζ ′) =

∫ L

−L
yc(ζ) ⟨Fy⟩ (ζ + ζ ′) dζ . (B.2)

The cross-correlation for the curves in Fig. B.1 is shown in Fig. B.2a). We are interested infinding the amount of shift ζ ′ within one wavelength λ = 2π/k that leads to the most superpositionbetween both curves, i.e., that maximizes the cross-correlation. We therefore find the locationof the maximum of (yc ⋆ ⟨Fy⟩) within ζ ′ = [0, λ], as illustrated in Fig. B.2b). The red dotted linedenotes the shift ζ ′max found in this case. The final phase shift in radians is calculated according to
∆ϕ = 2π · ζ ′max/λ. In Fig. B.2, for example, ζ ′max = 0.32 k−1

p and λ ≈ 6.98 k−1
p , which yields the phaseshift ∆ϕ ≈ 0.29 rad.This measurement method is also applied to simulation data related to the self-modulationinstability. Whereas the hosing plasma response is purely oscillatory, the plasma response thatdrives the SMI, given by ⟨rFr⟩ /σr, typically consists of an adiabatic component FSM,0 and anoscillatory component FSM,1. Since the slowly-varying component may confound our interpretationof the cross-correlation, it is subtracted from the raw data before evaluating the cross-correlation.To obtain FSM,0, a moving average is performed with a centered window measuring one oscillationperiod (λ = 2π/k).An example of the original plasma response data and the obtained adiabatic component isgiven in Fig. B.3a). The oscillating component remaining from the subtraction is shown in Fig. B.3b)(blue curve), along with the initial RMS radius of the bunch (black curve). The cross-correlation ofthese two curves is displayed in Fig. B.4. Once again, the phase shift is determined by finding themaximum of the cross-correlation within the first oscillation wavelength [see red dotted line inFig. B.4b)].
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Figure B.1: Initial centroid (black line) and initial average transverse force (blue line) from a 2D slab particle-in-cell simulation.
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Figure B.2: Cross-correlation of the curves in Fig. B.1: a) full data and b) detail. The dashed grey linesindicate the limits ζ′ = {0, λ} and the red dotted line indicates the location of the maximum within thisregion.
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Figure B.3: a) Initial SMI-driving plasma response (blue curve) and its adiabatic component (dashed greycurve), obtained with a moving average. b) Initial RMS radius of the bunch (black curve) and oscillatorycomponent of the initial plasma response (blue curve). Data obtained from a 2D cylindrical particle-in-cellsimulation.
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Figure B.4: Cross-correlation of the curves in Fig. B.3b): full data (a) and detail (b). The dashed grey linesindicate the limits ζ′ = {0, λ} and the red dotted line indicates the location of the maximum within thisregion.
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