CERN-THESIS-2023-355

23/01/2024

@)

TECNICO
LISBOA

UNIVERSIDADE DE LISBOA
INSTITUTO SUPERIOR TECNICO

Properties of the hosing and self-modulation instabilities of
long particle beams in overdense plasma

Mariana Azevedo Trocado Moreira

Supervisor: Doctor Jorge Miguel Ramos Domingues Ferreira Vieira
Co-Supervisors: Doctor Patric Muggli
Doctor Bernhard Holzer

Thesis approved in public session to obtain the PhD Degree in
Technological Physics Engineering

Jury final classification: Pass with Distinction and Honour

2024






TECNICO
LISBOA

UNIVERSIDADE DE LISBOA
INSTITUTO SUPERIOR TECNICO

Properties of the hosing and self-modulation instabilities of
long particle beams in overdense plasma

Mariana Azevedo Trocado Moreira

Supervisor: Doctor Jorge Miguel Ramos Domingues Ferreira Vieira
Co-Supervisors: Doctor Patric Muggli
Doctor Bernhard Holzer

Thesis approved in public session to obtain the PhD Degree in
Technological Physics Engineering

Jury final classification: Pass with Distinction and Honour

Jury

Chairperson: Doctor Luis Paulo da Mota Capitdo Lemos Alves, Instituto Superior Técnico,
Universidade de Lisboa

Members of the Committee:

Doctor Robert Bingham, University of Strathclyde Glasgow, United Kingdom

Doctor Alexander Pukhov, Institut fur Theoretische Physik, Heinrich-Heine-Universitat
Dlsseldorf, Germany

Doctor Jorge Miguel Ramos Domingues Ferreira Vieira, Instituto Superior Técnico,
Universidade de Lisboa

Doctor Nelson Manuel Carreira Lopes, Instituto Superior Técnico, Universidade de Lisboa

Funding Institution

Fundacéao para a Ciéncia e a Tecnologia (FCT)

2024






There is only one corner of the universe you can be certain of improving,
and that is your own self.

Aldous Huxley






Acknowledgments

Some people think of their doctoral thesis as a baby. If this is true, then the same piece of wisdom
applies: it takes a village.

Despite what sounds like a logistical nightmare, | consider myself lucky to have had a team of
three supervisors. Their complementing skill sets and easy cooperation formed an extra dense
web of support. My profound thanks to Jorge Vieira, Patric Muggli and Bernhard Holzer for guiding
me and for sharing both their knowledge and resources with me over these years.

The first three years of my PhD were spent at CERN. | initially sat in meetings with the “Run 1”
generation of the AWAKE experiment, who already taught me so much without me realizing: Marlene
Turner, Spencer Gessner, Joshua Moody, Mikhail Martyanov, Fabian Batsch, Anna-Maria Bachmann
and Mathias Huther. It was also a pleasure to work alongside a second generation of students:
Pablo Morales Guzman, Jan Pucek, Kook-Jin Moon and Tatiana Nechaeva.

A special word is reserved for my colleague and friend John Farmer, who, importantly, first
noticed that the SMI equation should in fact be piecewise. What is the word? We will never know.

| have been part of the Group of Lasers and Plasmas (GoLP) and the Extreme Plasma Physics
(EPP) team at IST since the beginning of my (albeit short) scientific career. GoLP contains multitudes
when it comes to knowledge and character, and | am extremely grateful for the people | worked
with (some of whom | consider dear friends) and the resources | was granted. In particular, | want
to acknowledge Marija Vrani¢, Thomas Grismayer, Thales Silva, Ricardo Fonseca, Chiara Badiali,
Roébert Babjak, Rui Torres, Miguel Pardal, Bernardo Malaca, Oscar Amaro and Patricia Estrela. My
gratitude includes some other EPP alumni and friends: Fabio Cruz, (Ligia) Diana Amorim, Dominika
Maslarova, Bertrand Martinez, Joana Alves, Anton Helm, Giannandrea Inchingolo, Fabrizio del
Gaudio, Kevin Schoeffler and Wenlong Zhang.

Leading a team of people seems like an extremely consuming job to me, so | want to express
my heartfelt gratitude to both Luis Oliveira e Silva and Edda Gschwendtner for their availability and
professional support throughout this PhD.

Some people make all the difference in less visible ways. Thank you so much to Claudia Roméao
for making trips to conferences possible and overcoming burocratic hurdles, and always in a gentle,
pragmatic manner. | also want to acknowledge the extremely thoughtful and competent service
provided by Ana Rosa and Sara Teixeira of the Post-Graduation Office at IST, which is the point
of contact with students at the most critical and stressful moments of their PhDs. Lastly, | truly
cannot express how grateful | am for the existence of the Academic Development Unit (NDA) at
IST and for the incredible, high-quality service they offer. The final years of my PhD would have
looked very different without the academic coaching sessions | attended with Patricia Simdes, and
I'm forever grateful for her help and for the fully personalized and effective tool set | acquired.



Stepping outside the institutions (which | occasionally did), | have also benefited from generous
support from my family and friends. | know it has seemed never-ending and repetitive, so thank
you for being present through these years. Love and gratitude to Bonsai, Hans, Diogo, Johnny, Bia,
Paula, Analu, Clara and José Lopes.

One last, very special friend is missing. My partner has often rowed the boat when | couldn't,
even when it had holes and through stormy seas. Thank you, Victor, for your unshakeable support,
patience and love. | can’t believe this long-distance thing worked out.

Thank you to my village!






Vi



Resumo

A aceleragdo baseada em plasma (ABP) podera reduzir significativamente a dimenséao e/ou o
custo dos colisores de particulas, que tém sido instrumentais para obter descobertas fundamentais
na fisica e cujos limites técnicos se esta a tornar cada vez mais dispendioso desafiar. Os conceitos
de ABP dependem frequentemente da capacidade de manipular interagbes complexas entre feixe
e plasma. Num desses conceitos, direcionado a aplicagdes na fisica de alta energia e que esta a
ser testado na experiéncia AWAKE no CERN, a onda de plasma usada para aceleragao é impelida
por um feixe de particulas longo e altamente energético. Neste caso as interagdes em causa sdo
as instabilidades de hosing e de auto-modulagdo. A instabilidade de auto-modulagao (IAM) pode
ser utilizada para produzir campos de esteira (wakefields) de alta amplitude a partir de um feixe
longo, que de outra forma ndo seria adequado para excitar a onda de plasma. A instabilidade de
hosing (IH) é indesejada, porque pode deteriorar o feixe e a estrutura do campo de esteira.

Nesta dissertagdo, comegamos por rever e alargar a teoria que descreve estas instabilidades.
Utilizamos simulagdes particle-in-cell com o cddigo OSIRIS para testar a robustez da IAM, especi-
almente apds a sua saturagao, a flutuagdes das condigdes iniciais. A dependéncia das taxas de
crescimento da IH e da IAM da frequéncia de perturbagéo é determinada para um regime adiabatico
e um regime inicial. Durante este regime inicial, mostramos que ambas as instabilidades podem ser
interpretadas como osciladores harmdnicos forgados, e que é possivel controlar o seu crescimento
ao "desafinar"a oscilagdo do plasma em resposta a uma perturbacédo do envelope (IAM) ou do
centroide (IH) do feixe suficientemente cedo. No caso da IAM revelamos ainda um fendmeno de
ressonancia sub-harmonica. Todos estes resultados sado validados com simulagées. Esta nova
compreensao do crescimento de instabilidades feixe-plasma pode ter implicagdes importantes
para os aceleradores baseados em plasma.

Palavras-chave: aceleragcdo baseada em plasma, instabilidade de plasma, teoria de campos de
esteira (wakefields), ressonancia sub-harmadnica, simulagdes particle-in-cell/PIC






Abstract

Plasma-based acceleration (PBA) could dramatically reduce the size and/or cost of particle
colliders, which have been at the forefront of fundamental discoveries in physics, and whose
technical limits it is becoming increasingly costly to push. The success of PBA schemes often
relies on the ability to manipulate complex beam-plasma interactions. One such concept, which is
geared towards high-energy-physics applications (implying long propagation distances and high
final energies), is a single-stage plasma wakefield accelerator driven by a long, highly energetic
particle bunch, and is being tested at the AWAKE facility at CERN. In this case, the key interactions
are the symmetric and asymmetric modes of the transverse two-stream instability, called self-
modulation and hosing, respectively. The self-modulation instability (SMI) can be harnessed to
produce high-amplitude wakefields from a long driver, which would otherwise be unfit to excite a
plasma wave. The hosing instability (HI) is undesirable due to its potential disruption of the bunch
and wakefield structure.

In this dissertation, we first review and extend the theory that describes both instabilities.
Particle-in-cell simulations with the code OSIRIS are used to test the robustness of the SMI,
particularly after its saturation, to input parameter fluctuations. The dependence of the Hl and SMI
growth rates on an arbitrary perturbation frequency is determined for an adiabatic and an early-
phase regime, which is particular interesting. During the latter, we show that both instabilities can
be understood as driven harmonic oscillators, and that it is possible to control their growth rates by
detuning the oscillating plasma response to either a bunch radius (SMI) or centroid (HI) perturbation
early enough. For the SMI, in particular, we discover a phenomenon of subharmonic resonance.
All of these results are validated with simulations. This novel understanding of the growth of
beam-plasma instabilities could have important implications for plasma-based accelerators.

Keywords: plasma-based acceleration, plasma instability, wakefield theory, subharmonic
resonance, particle-in-cell/PIC simulations
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Chapter1

Introduction

11 What are particle accelerators good for?

The most general association when the topic of particle accelerators is brought up is with high-
energy physics. Monumental engineering projects like the Large Hadron Collider (LHC) at the
European Organization for Nuclear Research (CERN) cannot fail to capture the general public’s
attention. Nevertheless, the vast majority of the roughly 30.000 existing particle accelerators
worldwide are not used for the advancement of science, but for semiconductor manufacturing,
radioisotope production, sterilization of food or medical equipment, plastics manufacturing, medical
imaging, or cancer treatment, among others [1]. The remaining 3% of accelerators with non-
commercial purposes constitute crucial but expensive tools for materials science, biochemistry,
and, like the LHC, high-energy physics.

The engineering underlying these machines has made extraordinary progress during the last
century, but we are reaching a technical limit of the order of 100 MV/m in the acceleration gradient [2,
3], which means that the acceleration length must be extended in order to reach a higher final
energy. In the case of circular accelerators, higher energies can also translate into higher inertia
(due to relativistic mass increase), which makes it necessary to use higher magnetic fields to bend
the particles into a circular trajectory. Despite the technological breakthrough of superconducting
magnets, there is no prospect of reaching magnetic fields beyond the tens of Teslas [4].

Due to these limitations, high-energy-physics projects focused on exploring physics at the
energy frontier have been forced to scale up the size and cost of their proposed machines, such
as the LHC (in operation, circumference of 27 km , construction cost of roughly €3 billion [5]), the
Future Circular Collider (under study, circumference of 100 km, budget of €11.8 billion [6]), or the
International Linear Collider (under study, length of 31 km, budget of almost €10 billion [7]).

1.2 Whatis plasma-based acceleration?

The current limitation on the acceleration gradient is due to the breakdown of the materials that
make up the accelerating elements in conventional machines (radiofrequency cavities) when subject
to a high enough surface electric field. The first idea to use plasma for particle acceleration was
put forward in 1979, which consisted of letting a laser pulse drive a plasma wave and accelerating
trapped electrons in the ensuing fields [8]. The great promise behind this idea lies in the fact that
an ionized gas, i.e., plasma, is beyond material breakdown, and can thus sustain extremely high
electromagnetic fields.



Plasma waves, which consist of fluctuations of the plasma electron density and are therefore
associated with co-propagating electrostatic fields, provide the structure required to contain the
particles we wish to accelerate. In a cold plasma, and approximating the much heavier plasma ions
as an immobile, homogeneous positive background, such a wave can be produced by disturbing
the plasma electrons, which naturally oscillate at the plasma frequency w, = \/e2ng/eome, Where e
is the elementary charge, ng is the plasma electron density, ¢ is the vacuum permittivity, and m,
is the electron mass.

An estimate of the maximum electric field sustainable by a plasma wave is given by the cold,
non-relativistic wavebreaking limit Ey = m.cw,/e ~ 96+/no[cm=3] [V/m], where c is the speed
of light. For a plasma density of ng = 10® cm~3, for example, the wavebreaking field is almost
100 GV/m, i.e., three orders of magnitude higher than currently feasible acceleration gradients.
Plasma-based acceleration therefore represents a thrilling opportunity for more compact and/or
cost-effective particle accelerators.

1.3 Where does the field stand?

Since the first scheme for plasma-based acceleration driven by a laser pulse, commonly referred
to as Laser Wakefield Acceleration (LWFA), was proposed, the field has blossomed into a variety
of different configurations and potential applications. A plasma wave may equally be driven by
a beam of charged particles, in which case it is commonly called Plasma Wakefield Acceleration
(PWFA) [9, 10]. Several experimental milestones have been reached in both broader categories,
and occasionally even using both kinds of drivers [11].

Advances in the use of plasma as a waveguide for extremely intense (petawatt-level) laser
pulses have allowed the demonstration of electron acceleration up to 7.8 GeV in 20 cm (i.e., an
acceleration gradient of almost 40 GV/m) [12]. The strength of LWFA setups is indeed access
to extremely high acceleration gradients, albeit for limited propagation lengths in plasma, since
these setups typically contend with driver divergence, witness dephasing, and driver depletion
(for ultrashort laser pulses with current technology). In order to reach interesting final energies for
a future lepton collider, for example, it would be necessary to couple several LWFA stages, the
principle of which has already been proved experimentally [13].

Staging nevertheless remains a significant technical challenge, which, coupled with the very
low wallplug efficiency of LWFA driven by short intense pulses [14], makes laser-driven schemes
less attractive for high-energy-physics applications from this point of view. By contrast, PWFA
experiments have demonstrated energy-transfer efficiencies (from the plasma to the accelerated
bunch) of 30-40% [15, 16]. In fact, recent experimental efforts suggest that it may be possible to
operate a beam-driven plasma accelerator with a wallplug efficiency of 13% [17], which is similar
to current conventional accelerators. Moreover, relativistic particle bunches often carry more
energy than laser pulses and propagate approximately at ¢, which delays driver depletion and
avoids dephasing. The AWAKE experiment uses 400-GeV proton bunches, which contain almost
20 kJ of energy, to demonstrate single-stage, plasma-based acceleration for high-energy-physics
applications [18, 19]. During its Run 1, electrons were accelerated to 2 GeV in proton-driven
wakefields along a ten-meter-long plasma [20].

A beam driver has also been used to accelerate positrons in plasma [21], which remains one
of the most challenging components for a potential plasma-based electron-positron collider. An
energy-frontier lepton collider is most efficient in the form of a linear machine, since lighter particles
radiate away much more energy on a bent trajectory than heavier particles (such as hadrons), and



thus stands to gain the most from a high acceleration gradient, which can make it more compact.
The luminosity required for such high-energy-physics facilities poses an additional challenge,
which part of the community has begun to tackle by measuring the minimum recovery time of a
perturbed plasma and estimating an upper repetition rate limit of the order of MHz [22].

1.4 The pursuit of accelerated bunch quality

Besides the challenges already mentioned, the potential of plasma-based acceleration cannot
be fulfilled without demonstrating a high degree of accelerated bunch quality, which typically
comprises high bunch charge, low or preserved emittance, and low energy spread. At the time of
writing, experimental results undergoing peer review appear to successfully demonstrate PWFA
where the emittance, charge, and energy spread of an injected bunch has been preserved [23].
Nevertheless, bunch quality continues to be the crucial concern for most regimes and configurations
of plasma-based acceleration.

The emittance of a particle bunch can be preserved as long as the focusing field acting on it
grows linearly along the transverse direction. This is the case for plasma wakefields in the blowout
regime [24, 25], where the driver is dense or intense enough to expel all plasma electrons in its path,
instead of merely perturbing the plasma electron density, as in the linear regime (én/ny < 1, where
dn is the plasma density perturbation). In any regime, however, the emittance may be increased
due to undesirable interactions between the bunch and the plasma, such as streaming instabilities
or the hosing instability (see Ch. 3).

In both the linear and nonlinear (6n/ny > 1) wakefield regimes, the (non-constant) profile of
the longitudinal wakefields E. within each wake period inevitably imprints some energy spread
on a trapped bunch. This can be circumvented with beam loading [26], i.e., by accelerating
enough particles that their collective charge is able to flatten E, locally. This effect applies both
to linear [27] and nonlinear wakefields [28, 29]. The benefits of beam loading can be maximized
by shaping the accelerated bunch into an optimal profile [26, 28], which has been demonstrated
experimentally in beam-driven nonlinear wakefields, using conventional techniques to prepare the
injected bunch [30]. In this regime, however, the injected bunch most commonly consists of plasma
electrons that become trapped in the “bubble” behind the driver and are subsequently accelerated.
There are several techniques to control this so-called self-injection, mostly by changing the plasma
profile or properties. It is therefore also possible to tailor the shape of a self-injected bunch for
beam loading and to obtain low energy spreads, as has been accomplished experimentally for
LWFA [31, 32], most recently with the help of machine learning techniques [33, 34].

Alternatively, since E, is approximately independent of the transverse coordinate in the blowout
regime [24, 25], the imparted energy spread can be considered correlated with the longitudinal
coordinate. It may be possible to reach sub-0.1% energy spreads using additional plasma sections
to “dechirp” a bunch with such a correlated energy spread, for example by rotating its phase space
between two sections [35], and it may even be possible to form a self-correcting mechanism by
chaining several of these configurations (plasma, magnetic chicane, plasma) [36].

Despite the outstanding challenges, progress on the bunch quality front has reached an ex-
tremely important milestone in 2023. Two separate groups experimentally demonstrated free-
electron lasing using electron bunches accelerated in plasma (via LWFA [37] and PWFA [38]),
thereby asserting the suitability of plasma-based sources for such applications.



1.5 What are the hosing and self-modulation instabilities?

The work discussed in this doctoral dissertation is oriented toward the AWAKE experiment, which
seeks to demonstrate the acceleration of an electron bunch over a long distance in plasma
wakefields driven by a relativistic proton bunch. The experimental setup for the AWAKE Run 1
measurement campaign is shown in Fig. 1.1. The experiment’s goal is to produce an electron beam
with enough quality to be suitable for high-energy-physics applications.

The driver is a 400-GeV proton bunch with a length of 6-12 cm, which is far longer than the
typical lengths where plasma wakefields reach interesting amplitudes. At the nominal plasma
density in AWAKE, ny = 7 x 104 cm—3, Ey ~ 2.5 GV/m and the plasma wavelength, defined as
Ap = 2mc/wy, is roughly 1.26 mm. A plasma wave is most effectively excited when there is a density
perturbation at the time scale of the plasma period w, !, or, equivalently, at the length scale of \,,.
A long driver can therefore only generate modest wakefields. However, the same driver is long
enough to sustain several periods of the forces associated with these wakefields, in particular
their transverse component (for a highly relativistic bunch). Both the hosing and self-modulation
instabilities are a result of the interaction between the long driver and the transverse wakefields.

In the linear regime, where the bunch density n, is smaller than the plasma density (n;, < no),
the wakefields oscillate harmonically along the co-moving coordinate ¢ = z — ¢t at the natural
plasma wavenumber k, = w,/c. For a driver that is perfectly axisymmetric with respect to the
propagation axis z, the transverse component of the wakefields gradually acts on the driver
particles, periodically focusing and defocusing them until a train of “bunchlets” sized and spaced
at approximately )\, is eventually formed [see Fig. 1.2b)]. The more the initially long, smooth bunch
profile acquires this train structure, the more the plasma wave is excited at its natural frequency w,,
and the higher the amplitude of the generated wakefields. This resonant feedback loop constitutes
the self-modulation instability, leading to quasi-exponential growth of the wakefield amplitude.
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Figure 1.1: Schematic drawing of the AWAKE experiment’s setup for its Run 1.
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Figure 1.2: lllustrative representation of the hosing (a) and self-modulation (b) instabilities. The transverse
component of the wakefields is shown as a blue-to-red color scale, the bunch distributions as yellow-
shaded areas outlined by dash-dotted contours, and the centroid (a) and RMS envelope (b) as thick solid
red lines. The bunches propagate from left to right.

A saturation phase of the instability is eventually reached, in part because all the bunch charge
located in defocusing regions has been lost [see Fig. 4.22a) on p. 76].

The hosing instability can be explained by the same mechanism, with the exception that there
is no axisymmetry, which is the case for a bunch propagating with a tilt relative to the z-axis. This
asymmetry translates into uneven focusing or defocusing forces around the axis [see Fig. 1.2a)],
which in turn exacerbate the initial asymmetry. Once again, since the wakefields oscillate at k,
along ¢, the upshot is an oscillating bunch centroid with a wavelength of A, and with growing
amplitude along both ¢ and the propagation distance z, leading to significant emittance growth.

Note that many forms of the HI exist, depending on the conditions of the bunch and accelerating
structure. An overview is shown in Table 1.1, where L; denotes the longitudinal bunch size and Ay,
is the nonlinear plasma wavelength [24]. Note that the terms “overdense” and “underdense” are
used interchangeably with “linear” and “nonlinear”, respectively. In the following, we will concern
ourselves exclusively with the strongly-coupled, overdense, long-bunch facet of the HI (and SMI,
for that matter).

Since the hosing and self-modulation instabilities are dictated by the transverse dynamics
of the bunch particles, their evolution time scale is tied to the betatron period. The betatron
frequency is defined as wg = wy/v/2% = \/nwoqi /(0 My)/ /27, Where ny is the peak bunch density,
and v, g, and M, are the Lorentz factor, charge and mass of the bunch particles, respectively. The

Table 1.1: Overview of the different regimes of hosing-type instabilities in accelerators.

Intermsof ... Regime Meaning Examples

betatron motion cannot be .
conventional accelerators

Time/space scales weakly coupled neglected during growth of g

of instability growth instability (beam break-up inst. [39])

and beam evolution strongly coupled growth of instability much lasma-based accelerators
gy P faster than betatron period P

Plasma and beam overdense ny < no AWAKE [18, 40]

density underdense np > no FLASHForward [41]

Bunch length and short bunch Ly ~ Ap OF Ly ~ Anp FLASHForward [41]

plasma wavelength  |ong bunch Ly > Xp AWAKE [18, 40]




growth of both instabilities has a spatiotemporal character, i.e., it is a function of both ¢ and z (or ¢).
Growth rates can be obtained with asymptotic methods [42, 43], which presuppose a long-bunch,
early-time approximation (see Eq. 2.118 on p. 34). These growth rates are discussed in more detail
in Sec. 2.3.3. Since they are similar for both instabilities, hosing and self-modulation may develop
at the same time and couple to each other [43], or one may dominate over the other if the seeding
levels are disparate enough [44, 45].

1.6 Which questions are addressed in this dissertation?

The overarching goal of this work is to expand the fundamental knowledge about two specific

beam-plasma instabilities, thereby contributing to a successful demonstration of plasma-based

acceleration (be it along the particular avenue represented by AWAKE or along other avenues).
Each chapter aims to answer the following questions.

o Chapter 2: Theoretical models for the hosing and self-modulation instabilities

— What theoretical models exist to describe the Hl and SMI?
- What is the mathematical scaffolding behind existing models?
— Under which conditions are these models valid?

- Is it possible to model the early growth phase of these instabilities?
o Chapter 3: Properties of the hosing instability

- Can the hosing instability grow at wavelengths other than the plasma wavelength?

- Is it possible to mitigate hosing in the linear/overdense, long-bunch regime?
o Chapter 4: Properties of the self-modulation instability

- |s the SMI robust to fluctuations of the input parameters after saturation?
- Does self-modulation grow at wavelengths other than the plasma wavelength?

- How can the development of the SMI be influenced using plasma density steps?

1.7 Methods

The doctoral work was partly conducted at the Group of Lasers and Plasmas of Instituto de
Plasmas e Fusado Nuclear (IPFN) at Instituto Superior Técnico — University of Lisbon and partly at
the European Organization for Nuclear Research (CERN). The results presented in this dissertation
were obtained using analytical methods, numerical computation, and numerical simulations based
on the particle-in-cell (PIC) method. The latter were performed with the code OSIRIS [46], with the
support of several supercomputing grants (see Acknowledgments).

OSIRIS is a fully relativistic, massively parallel PIC code developed and maintained by the Osiris
consortium, which consists of the Extreme Plasma Physics (EPP) team in the Group of Lasers and
Plasmas and the Particle-in-Cell and Kinetic Simulation Software Center (PICKSC) at University of
California, Los Angeles.

The PIC method is a computationally intensive particle-tracking simulation method, which uses a
grid to compute the electromagnetic fields caused by, and acting on, the simulation macroparticles.
These macroparticles represent averaged ensembles of real particles. The loop executed at each
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Figure 1.3: Diagram of each iteration of the particle-in-cell simulation method. The p-index denotes a
macroparticle, while the indices ij refer to the grid coordinates. The orange and green boxes represent the
particle pusher and field solver components of the loop, respectively.

iteration of a PIC simulation is represented in Fig. 1.3. Many algorithmic choices are available for
each step of the loop.

The most common discretization of the relativistic equations of motion is the finite-difference,
time-centered Boris algorithm [47]. Current deposition schemes typically rely on some order of
splines (the default order in OSIRIS is quadratic), though it is essential to ensure that the total charge
(and Gauss's law) is conserved. The field equations can be solved with a variety of approaches,
though the Yee solver [48] (a finite-difference time-domain scheme with second-order central
difference) is the most widespread.

At the beginning of each simulation, a particle species must be initialized according to some
density distribution. Care must be taken to accurately translate this input into a distribution
of discrete, ensemble-representing macroparticles, while ensuring that low-density regions are
sufficiently represented statistically. In OSIRIS, the number of particles per cell is initially fixed and
a unique weight is attributed to each macroparticle, such that the overall distribution matches the
input distribution. After ¢t = 0, the macroparticles are allowed to cross cell boundaries and move
freely.

Though OSIRIS includes many useful advanced modules, the work in this dissertation requires
only a few basic capabilities. Besides massive parallelization, we have made use of the 2D, 3D and
2D axisymmetric geometries, and of the field initialization for a charged particle beam.






Chapter 2

Theoretical models for the hosing and
self-modulation instabilities

In this chapter, we will provide an overview of the theory available to describe the hosing and self-
modulation instabilities. This overview will include existing work (accompanied by the respective
reference) as well as original contributions.

Although the HI and SMI are mathematically and physically closely related (as we shall see),
the components of the existing theory for these instabilities are scattered in different publications.
In addition, due to the size constraints associated with scientific publications (understandably),
pivotal details for the derivation of these theoretical components are often omitted. For these
reasons, and since the calculations behind this theoretical apparatus at times require some nontrivial
mathematical sleights of hand, we present a systematic derivation of some equations (both existing
and original) that describe hosing and self-modulation.

21 Plasmaresponse

In this dissertation, we will always consider the propagation of a relativistic charged-particle bunch
in a cold plasma, where we neglect the motion of the plasma ions. The bunch densities considered
are always smaller than the background plasma density (n, < ng), which means that we can use
linear wakefield theory to describe the phenomena in question.

The wakefields generated in plasma in response to a particle bunch propagating along z under
the above conditions are dictated by the wake potential equation, which can be derived from
the cold plasma fluid and Maxwell equations (i.e., the continuity, fluid momentum, and Poisson
equations). The normalized wake potential is defined as v = ¢ — a,, where ¢ = e®/m.c? and
a = eA/m.c? are the normalized versions of the electric potential ® and magnetic vector potential
A, respectively (note that vector quantities are denoted by an underline). In the following, we use
the bunch co-moving coordinate ¢ = z — ct, or its normalized equivalent { = k,¢ (denoted by a “hat”
sign). The differential equation for the normalized wake potential is

@+ 171 - 1)y = L ) (21)
where z | are the transverse coordinates, V2 is the Laplace operator in z, ¢, is the charge of
the bunch particles and n;(¢, z | ) is the bunch density distribution [9, 10]. The distance quantities
in Eq. 2.1 (¢ and z, ) are normalized to the plasma skin depth k;l, although the hat notation is
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ommitted. This will generally be the case for distance quantities in all the equations mentioned
throughout this dissertation unless otherwise stated. As an example, the coordinate ¢ (assumed
normalized) should be understood as k,¢ in physical units, and the derivative 9/dy as k,'9/dy.

The specific form of the transverse Laplace operator in Eq. 2.1 will depend on the geometry
chosen to approach a problem. It is possible to obtain a general form of the solution for ¢ as
a function of the bunch distribution n, for different geometries, using Green’s functions. In the
following, we will first establish a general form of the solution for the wake potential 1) using Green’s
functions, in which the specific Green’s functions for different operators (in different geometries)
can be later replaced.

Once the wake potential potential has been found, it can be translated into a force F acting on
a relativistic particle with charge ¢:

E_ @
L_ g (2.2)

211 General Green'’s function solution for the wake potential

The Green’s function method provides us with a general recipe for the solution to Eq. 2.1, where we
can simply plug the bunch profile and choose an appropriate kernel function from a catalog that
we have calculated beforehand.

Let us consider the following general equation, composed of two differential operators £, and
L, acting on the function (¢, z, ), with the inhomogeneity H(¢,z, ), and where the variables ¢ and
z, belong to the general domains D, and D, respectively:

LoLip=H. (2.3)

If we define a new function ¢, = £, 4, then we can write Eq. 2.3 as L.y, = H. The Green’s
function solution for ¢y, can be determined by finding the Green'’s function that fulfills the equation
L:Ge(¢,¢") =6(¢— "), where §(x) is the Dirac delta distribution. The general solution for ¢, will
then be:

bi(Coz)) = /D d¢' Ge(¢¢) H(C vz, - (2.4)

Using our earlier definition, we can now use the same procedure to solve the equation £, ¢ =1,
substituting our solution for +, . The general solution for 1 is therefore:

W(Cy) = /D dz', G (2, z1) 61(C,2h) = /D /D dc'dey, Gy (2 z,) Gl Q) H(C, ), (2.5)
1 L ¢

where G (z, 2’| ) is the Green’s function that fulfills the equation £, G | (z,2' ) =d(z, —2')). The
general solution in Eq. 2.5 means that we can find the Green’s function for each longitudinal or
perpendicular operator and simply replace it, instead of having to solve the full Eq. 2.1 every time
for a different geometry (i.e. for different versions of the operator V2 ).

Given a certain bunch distribution n,(¢,z, ), we set H({,z ) = np(¢,z, ) in the general recipe
Eq. 2.5 and obtain the solution for the wake potential in Eq. 2.1

()= @/ / d¢'da’, G (2, ,x,) Gc(C’,QM
W . (2.6)
B _% ¢ dc’sin(C — (') /DL da'\ G (2),z,) %fl) ’

where the appropriate transverse Green’s function G (2/,,z, ) must be replaced depending on the
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coordinate system being considered (see below).

Green's function for the longitudinal plasma operator

We want to find the Green’s function for the operator £, = (87 + 1). For ¢ € [0, 0c[, and with the
boundary conditions ¢(¢ — oo) = 0 and 9.4 ({ — co) = 0, it can be shown that the Green’s function

is [49]
O /

G () =1 cs (2.7)
sin(¢ = ¢') ¢ =¢

Green'’s function for the transverse operator in cylindrical coordinates

In cylindrical coordinates (r, 9, z), the Laplace operator along the transverse dimensions reduces to
V2 =92+ %8,, for an axisymmetric (#-independent) function. The transverse operator acting on
the wake potential in Eq. 2.1 therefore becomes £, = (92 + 19, — 1). Since the Green’s function is
found by setting £, G(r,7") = §(r — ') = 0 for r < r" and r > r/, we can multiply this equation by r?
and find that it corresponds to the modified Bessel equation for m = 0 (see below), the solutions
to which are known. For r € [0, o[ and the boundary condition 9,v|, .. = 0, the Green’s function is

Gy = | "I El) <t (2.8)
7 —r IQ(T/)KO(T) r>r ’ )

where I,,,(r) and K,,(r) are the modified Bessel functions of the first and second kind, respectively.

The transverse Green’s function can also be determined for a general, non-axisymmetric
right-hand side (i.e. bunch distribution). In that case, the transverse Laplace operator is V2 =
83+%8,~+Ti289. Given that the equation we wish to solve is £ ¢ = H, let us assume that we can write
the azimuthal dependence of the inhomogeneity as a cosine series H(r,0) =~ _, H,,(r) cos(m).
Due to the orthogonality of the cosine modes, the solution must also be a cosine series ¥(r, §) =
3% m(r) cos(m@). If we apply the transverse operator £, = (82 + 19, + 9y — 1) to 9(r, 0), using
the fact that 92 cos(mf) = —m? cos(m#), we will have to solve the following differential equation for
each independent mode m:

m2

(08420, ~ 25 1) () = () 2.9

As mentioned before, the Green’s function for this operator is found by setting (62 + 19, — T—f —
1)G(r,r") = 0 forr <+’ and r > v/, and therefore we once again multiply the equation by 2 and
arrive at the generalized modified Bessel equation: [r?92 + r 0, — (r? + m?)|G(r,r") = 0. For the
same domain and assuming the same boundary condition as before, r € [0, 00[ and 8Tz/§m|Hoo =0,
the Green’s function for each mode is

G(r,r'") =

{7" I, (MK, r<r (2.10)

—r Iy (P ) K () 72>/ .

Green's function for the transverse operator in 2D Cartesian coordinates

Further along this dissertation, we will consider a simplified Cartesian geometry with only one
transverse dimension, so that the overall problem is two-dimensional in (z,y) or ({,y). In this
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case, the transverse Laplace operator is simply V2 = 85, and we find the Green'’s function for the
operator (92 — 1). For y €] — o0, o0, and with the condition 9,1|, 0 = 0, the Green’s function is

_1 vy /

e e y<y

Gly)=4q 7 = (2.11)
“leve y>y

2.2 Differential equations

For the following derivations, we start from the equation of motion for a single particle with mass M,
propagating relativistically along the z axis with a Lorentz factor 4. By assuming that the longitudinal

velocity of the particle is constant and approximately equal to the speed of light (v, = ¢), we may

substitute the derivative in time (¢) with a spatial one according to % =c %:

d(ymv) R dv _F d*z F

£ - _= 212
a = Az AMye O d2 AMyE (212)

where z and z are not normalized. Here, z and v are the position and velocity of the particle,
respectively, and F is any force acting on it. We may now normalize the distance quantities z
and z to the plasma skin depth k' = ¢/w,. We therefore replace the normalized i = z k, and
d/dz =k, d/dz, and recast the equation such that a natural normalization for F appears:

#z 1 F  me F_ me g
d22  yMycw, ~YMyeEy ~vM,~’

(213)

where E;, = m.cw,/e is the wavebreaking field. For simplicity, the hat symbol characterizing
normalized quantities will be omitted henceforth.

The density profile of the bunch is defined as ny({,z,) = npo - f(¢) - g(z, ), where ny is the
peak density and f and g are the normalized longitudinal and transverse profiles, respectively. The
transverse profile may depend explicitly on the longitudinal coordinate ¢ via the bunch centroid or
radius. Lastly, and since we will require this later on, we note that the average over the transverse
bunch profile is defined as

_ f. ”b(C;&L) dgL
= Sz ) de, (214)

2.21 Centroid (HI)

The hosing instability results from the misalignment between the propagation axis of a particle
bunch and the transverse wakefields. This misalignment ultimately leads to an oscillating bunch
centroid, which feeds back into the wakefield asymmetry and thus forms an instability. Hosing
can be described by setting up an equation for the bunch centroid. We simply take Eq. 2.13 (for a
single bunch particle), and average it transversely over the bunch distribution. A final form of the
differential equation for the centroid will therefore depend on the choice of coordinate system and
on the transverse profile of the bunch.

We choose the transverse dimension y to set up the centroid equation (i.e., across which the
centroid will oscillate). Taking the transverse average (e) of the y component of Eq. 2.13, and
defining the centroid y. = (y), we obtain the differential equation for the bunch centroid

d?y. Me

7 =g B (2.15)
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The transverse force due to the plasma response can be found by taking the transverse average
over the y component of Eq. 2.2:
(Fy)=—-L (0y0) . (2.16)

e

In the following, we will determine the specific form of the right-hand side of Eq. 2.15 for different
geometries and transverse bunch profiles.

2D Cartesian, flat-top transverse profile

The right-hand side of the centroid differential equation (Eq. 2.16) consists of several chained
integrals, which is why we begin by considering the simplest function possible for the transverse
bunch profile g(y, ¢, z). Let us define

Ye(¢,0)
Ye(C, 2)

9(y,¢, 2) = O[ye(C) — ly — (O] (217)
where y.((, 2) is the bunch envelope and ©(z) is the Heaviside step function. This profile cor-
responds to a flat top with an evolving bunch radius where the charge per slice is conserved
(see Fig. 2.1). In 2D Cartesian geometry, the wake potential has the solution (replace the Green’s
functions Eq. 2.7 and 2.11in Eq. 2.5)

e No —00

$(G,y) = B "0 /C dc’sin(¢ — ¢)F(¢) / dy' (—1) ev= b= g(yf.¢') (218)

7(y,¢")

where the function 7(y, ¢’) has been defined for convenience. Using Eq. 2.16, the average transverse
force is therefore given by

(F) == (%) 5 [ actsinic - 1110 0470.C) (219)

For the sake of brevity, the independent variables of the beam envelope will be omitted in the
following calculations: y. = y.(¢’, 2) and y.o = y.(¢’, 2 = 0). The derivative of the transverse part of
the solution for the wake potential 7(y, ¢’) can be simplified using the product rule and the first
fundamental theorem of calculus:

1 g y oo .
oyt (y, () = —5 9 [e‘y/ dy' e g(y’7C’)+e”/ dy' e ¥ g(y',¢")
- )

z=0 z>0
9(y) 9(y)
yin/ye
1 T

1 e R i
I o |
| Ye0 l%

I 5
| i | :

_(yeo - y(;) 0 Ye Ye0 + Ye _(ye - yc) 0 Ye Ye + Ye
Yy Yy

Figure 2.1: Flat-top transverse profile along y in Cartesian coordinates for a bunch with a centroid y.(¢, 2)
and an envelope y.(¢, ) (Eq. 2.17) at two different times. Note that y.o corresponds to y.(¢, z = 0).
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1 Y u’ VY — Y oy v
=3 [—e—y/_oody’ey 9(y',¢) +e v o, (/_Ocdy e g(y7C)>
oo y
+eY dv' eV 1) —e¥ D ( dy e~V N )] (2.20)
e /y y' e ¥ gy,{)—e¥ 0y /Oo v e ¥ gy, ()
1 Yy , o0 ’
—5 | [ e oty e / W e 906, ¢) = ol )

— 00

1 v / = /
=3 [—ey/ dy' e¥ g(y’,C’)+ey/ dy' e g(yﬁc’)} -
— 00 Yy

Once the transverse profile is replaced, we obtain

1 yeo Yetye(C) , y ,
oyT(y, (') = —= = ey/ dy e7¥ — e*y/ dy' e¥
y

2 Ye ° —Yet+ye (')

_ LYo (ey—yc(c’)—ye — e—y+yc(c’)—ye) .
2 Ye

(2.21)

Finally, it is necessary to take the average over the transverse profile ¢(y, ¢, z) of the expression
9y7(y,¢’). Applying the flat-top profile to the general definition in Eq. 2.14, we may simplify to:

00 Ye () +ye(C)
o 1) [ dy 9,08, 8 dy 0,7 (. ¢')

(0,7(y.¢)) = — - Y0 RIGERG
nbo f(C)/ dy g(y,¢) e (¢) / dy
Cw Yeo(€) J e () 4o (0)
:1/ye<o+yc(<> dy O,7(y, ) (2.22)
29e(€) J—y. () ve(0)

We may now replace Eq. 2.21 and obtain (9,7 (y, (’)), being careful to retain the different depen-
dences on ¢ and ¢'.

(O)+ye(€)
(0, r(y, &) = £ —¥eol&) / Ty (e @)
4 Ye(C) Ye(C") Jye( )4y (0) (2.23)

_ sinh(ye(¢)) e~ ve(¢) yeo (<) sin - /
_ ye(c) ye(C/) h(yc(C) Z/c(C )) ,

where sinh(z) = 3(e® — e~®) is the hyperbolic sine function. This latest equation provides the

missing piece for the explicit form of the average transverse force:

(D 2 @sinh(ye(o) o sin(c — ¢! 7 b)) Yeo(¢') sin _ /
() == (%) T S [ acsin = (@) e BEED sinh(u(0) ) - (2.28)

The differential equation for the centroid in 2D Cartesian coordinates for a flat-top transverse
profile [43, 44] is therefore (after replacing Eq. 2.24 in Eq. 2.15):

d’ye __ me (@)2 o sinh(ye(¢))
dz2  yM, \e ng Ye(C)
/ " sin( — ¢)1(¢") e LD Sinh(y(€) - ') (2.25)
_ Smh(ye(C)) —ye(¢) yeO(C) . _ /
~2 5 SEO) [ s = )¢ e D st €)=l
where we used the definition of the betatron wavenumber ks = ws/c = 7= :(’)’3\313 This result
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Figure 2.2: Initial plasma response to a hosing seed for a flat-top transverse profile in 2D Cartesian geom-
etry according to simulation (grey) and Eq. 2.24 (red).

matches the one in Refs. [43, 44] (note that the transverse profile g(y, ¢, z) is incorrectly defined in
both of these publications).

We can test the validity of the right-hand side of Eq. 2.25 by comparing the initial plasma
response to a PIC simulation. In other words, we calculate the average transverse force in Eq. 2.24
for an initial centroid y.(¢), and we compare this to (F,) measured at the plasma entrance in a
simulation with the same initial conditions. In this case we simulate a long, relativistic electron
bunch with a flat-top transverse profile and cosine longitudinal profile in 2D Cartesian geometry,
with y.0(¢) = 0.05 sin(1.07 ¢) (see Table A.1, item A.1.2, in Appx. A for the full simulation details). The
result is shown in Fig. 2.2. Though this theory captures the plasma response reasonably well, there
is a discrepancy that grows with (.

2D Cartesian, Gaussian transverse profile

Here we consider a Gaussian transverse profile, defined as g(y, {) = exp [—%} , Where 0,(¢, 2)
is the RMS bunch size in the y direction (its dependence on z will again be ommitted in the next
steps). In 2D Cartesian coordinates, it is still possible to obtain a plasma response solution for this
more realistic shape. Following the same procedure as before, we replace this transverse profile in

0y7(y, ('), defined in Eq. 2.20:

9y7(y,¢') = — % [ey /y dy' exp (y’ — W) +eY /yoo dy’ exp <y/ _ (y/_yc(gl))zﬂ

. 202(¢) 203(¢’)
1 [, NGNS y —ye(¢) +07(¢)
=—31\3 oy (¢") exp <_y —y(¢") 9 ) |ﬁ erfe ( \/?Uy(cl) ) (2.26)
_e29e(¢) orfe <ye(</) Ut Uz(g/)>1
V20,(¢) 7

where erfc(x) = 1 — erf(z) is the complementary error function. The average over the transverse
Gaussian profile simplifies to:

/ Ty (G y) (5. ) s Q) / "y 9. ©) 0y (y.¢)
@ (y.¢)) === - —eo

/:)o dy ny(¢, ) npo.f(C) /jo dy g(y,¢) (2.27)
1 o0
e — 8 / .
Vo oud) /_Oodyg(y,C) (Y, ()
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The resulting integral, after replacing 9,7(y, (') and the transverse Gaussian profile, is:

g ! 2.1 o0 _ 2 ,
@ﬁ(y,C’)} = - lecrz(é)) ev(¢ )/2/_ dy exp {—@2:;((5)))] e~ Y—ve(C)

[eZy erfc <y —ye(¢) + 05(4/)> — e2ve(¢) orfe (yC(C/) —y+ U?;(CI)>‘| (2.28)
V20, (@) ernrand 1B

and can be written as four terms (by expanding the definition of er fc(x)). Two of these terms have
the following solutions:

o (61 280) [~ om0 (5]

V2m 0y(() exp (yc(C) — (¢ + 2
—exp( "

0) [ g (- 56)] -

2m oy (¢) exp (yc(C’) —ye(0) +

The other two terms can be solved using the following identity [50]:

o] 2
/_Oo exp (—az2 + ﬂz) erf (a12+ B1)dz = \/Zexp (i) erf [m a>0. (2.31)
The two remaining terms of the integral in Eq. 2.28 therefore become
I R 7 (9) i B 47 (O Bl R (O AW
/700 exp [ 205(0 ‘| e Yy e2y erf \/iay(C’) dy =
2 2( 1
V2 ay(¢) exp (yc(c Uy ) [ (O + () + 03¢ )] : (2.32)
\/2 a2(¢") —202(¢)
OO (y—%(é))z «" )
—[mexp [—205@] e YT Ye eV erf o'
2m 0y (C) exp (yc(o ye(<) a C { 7O + (¢ )} . (2.33)
\/2 a2( C’ +202(C)

Replacing the solutions to the four integrals in Eq. 2.28, we obtain

(0y7(¢yy)) =~ \/gay(() exp (W)

e¥e(©)=4e(C) orfe 4e(Q) = ye(¢) + 73(Q) +03(¢) (2.34)
V2930 +203(C)

el O g [ 9 () +oy(Q) +ay(¢) ) |
V203¢) —203(0)
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This transverse solution for a Gaussian transverse profile in 2D Cartesian coordinates can now
be substituted in Eq. 2.19 to obtain the average transverse force

(Fy) = \/Z %Z’OO (%)2 /COO d¢’ sin(¢ — C') f((') exp (W)

eyc(C)—yc(C') orfe yc(C) - yC(CI) + U;(C) + 05(4/) (235)
V2030 +203(¢C)

@@ e [ (€D — Q) + () +oy(C) ) |
V22¢) —203(0)

and subsequently in Eqg. 2.15 to arrive at the differential equation for the centroid:

2 k2 oy
Cfljé“%z\f/ ¢’ sin(¢ - C)f(C)eXP< 70+ 2,¢) <<)>

€ gy [ Yol = 4elSD) +0y(O) + 0y () (2.36)
V2030 +203(¢)

el e©) g [ 9D Q) + oy (O +ay() )
V293¢ —203(0)

Q

Equation 2.36 has not been previously derived or published.

In the case of a constant transverse size o,(¢) = o, = const, Eq. 2.36 simplifies to

} |

Figure 2.3 shows the initial plasma response for a long electron bunch with a Gaussian transverse
profile, cosine longitudinal profile, and an initial centroid y.o(¢) = 0.05 sin(1.07 ¢), according to
Eq. 2.35 and to a 2D Cartesian simulation (see Table A1, item A.1.1, in Appx. A for the full simulation
details). The theory matches the numerical data quite well.

2 i ]€2 oo
C;y; =2 ,75 \/?Uy exp(aj)/ d¢'sin(¢ — ¢') f(¢') {exp [ye(¢") = ye(Q)]

: p V8 ¢ (2.37)
yc(C) B yc(cl) +2 U;

20,

erfc

— exp[ye(C) = ye(¢')] erfe [

20y

[yc(cl) - yc(C) +2 012/

5 X 1075 |
theory
simulation
S
L
EL‘E
_5 L L L L L L
0 20 40 60 80 100 120 140

Figure 2.3: Initial plasma response to a hosing seed for a Gaussian transverse profile in 2D Cartesian
geometry according to simulation (grey) and Eq. 2.35 (red).
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2D cylindrical, flat-top transverse profile

The 2D cylindrical model for hosing allows us to more accurately represent the real geometry of
a hosing bunch while avoiding the complexity of an exact three-dimensional description. The
dimensionality of this model is reduced by assuming axisymmetry in cylindrical coordinates, which
seems to preclude any description of hosing (which fundamentally requires some asymmetry along
the propagation axis). However, the instability may still be represented by taking the approximation
of small displacements and by expanding the azimuthal dependence into modes [43].

The general procedure will consist of using the axisymmetric cylindrical plasma response (along
with the first Taylor-expanded azimuthal mode) and replacing it in the basic Cartesian equation
for the centroid (Eq. 2.15). We will show that the existing version of this model [43] is incomplete,
though it is accurate when the bunch radius is constant along (.

In order to keep the calculations workable, the transverse bunch profile is assumed to be a flat
top with a small centroid offset along the y direction: g(r,0,¢{) = go(r,¢{) — d,-Go(r, ¢) yc({) cos 6 [51].

2
The zero-mode (m = 0) flat-top profile is defined as go(r,¢) = (?f{éf) © [ry(¢) — ], where (¢, 2)

is the bunch radius (the z dependence has been ommitted for simplicity) and r,0(¢) = rp(¢, 2 = 0).

As discussed in Sec. 2.1.1, when the bunch density profile can be expressed as a series of
azimuthal modes, i.e., ny(¢,7,0) o< >0 Gm (. ¢) cos(mb), the solution for the wake potential will
also be of the form v oc S°°_ 4y, (r, ¢) cos(m#). In this case, we define the transverse profile as a

sum of the m = 0 and m = 1 modes, i.e.,

Tb()(C)
75(C)

)2 O [ry(¢) — 1]+ (’:: (<C<)>

Go(r,C) g1(r,C)

2
g(r,0,¢) = ( > 5 (1y(¢) — 1) ye(C) cosh . (2.38)

Putting together Egs. 2.6, 2.10 and the profile ny(¢, r,0) = nyo - £(¢) - g(r, 0, (), the wake potential
is given by
dp b0

BCr8) = 210 [ gergne - ¢) (¢ (

eno_C

2
) [D0(r.¢") 4 ¥ (r,¢") cost] . (2.39)
with

Do(r, ') = Ko(r) /0 a1 I () © [y (¢) — ] + To(r) / T Ko () O [(¢) — 1] |

) N (2.40)
1[11(7", ¢ = {Kl(r) /o dr' " Ii(r") § (rp(¢) — 1) + Il(r)/ dr' " Ki(r') 6 (ry(¢') — r’)} ye(¢') .
After computing the integrals in ¢ (r, ¢') and v (r, ¢'), we obtain
Gty — { RO+ ) rE0) = (OFar(C)] s doc(n€) r<ml€) )
u(C) 1 (r(¢")) Ko(r) = o (1, (') r>1p(¢")
I, ) = Li(r)re (¢ K1 (re(¢)ye(¢)) = j1<(7" ) r<n(d) (2.42)
Ky (r)ry(¢) 1 (re(C)ye(C") = tis(r, (") r > mp(C)

Since the radial derivatives of g@o(r, ¢’)and g@l(r, ¢") will be required later, we also note them here.
It will prove more convenient for subsequent calculations to write the piecewise functions of the
wake potential modes as v;(r, ") = O[ry(¢') — 7] i (1,¢') + Ofr — 13(¢")] s (r, ¢'), where i = {0,1}.
In that case the radial derivatives will have the form 9,¢;(r,¢') = —6(ry(C") — 7) i — Ory(¢) —
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7] Opthic + 0(r — 13(¢")) Yis + Or — 14(¢")] 8,404~ The radial derivatives are therefore:

Oribo(r, (') = = 8(ry(¢') = 1) o< — Olro(¢') = 7] (VK (ro(C)) I (r) + 6(r = 76(¢)) o
= O — ()]s () I (e () K (7)

Bpihr(r,¢') = — 8(rp(¢) — ) e + Oy (¢) — ] ye (¢ () K1 (rp(¢)) 3 (10(7“) + 12(7"))
+0(r = 1(¢)) 1> — Ofr = 1(¢)] ye (o (¢ 1 (re(C') 3 (KO(T) + K2(7’)) ,

(2.43)

(2.44)

To compute the right-hand side of the centroid differential equation (Eq. 2.15), we need to
determine (9,%) (see Eq. 2.16). Replacing the bunch profile n; (¢, r, ) and the flat-top transverse
part go(r, ¢), the transverse average in cylindrical coordinates can be defined as

npo f(C / /%d@ dr e rg(¢,r,0) / /2wd6‘ dr e r (go(r ¢) + g1 (r, C)COSG)
npo f(C / /27r do drr g(¢,r,6) /o /02” dé dr r (gg(r7 ¢)+ g1(r, Q) COSG)

) /0 /OQ’TdQ dr e r (ﬁo(r,()—i—gl(r,o cosH)

27r/ drr go(r, Q) (2.45)
0

(o) =

) /Ooo /Oz’rda dr e r (QO(T,C)JrQl(T,C) cos@)

o (0 > [ arrom© -
1

0 2
- m“ﬁo(C)A o dg dr e r <QO(T7<)+Q1(T7<)COSG) .

Before proceeding to calculate (9,1), we can make some further simplifications by considering
the azimuthal dependence of ¢ and g¢(¢,r, #). The derivative 9, and the transverse average (o) will
only act on the transverse part of the wake potential ¢, = 1o (r, ¢’) + b1 (r, (') cos@. Using the chain
rule, we can translate the Cartesian derivative into 0, = cos 9, — sin6/r 9.

Oy = (cosB O, + sinf dp) (io(r, ¢+ Py (1, ¢') cos 9)
= c0s0 9,4 (r,¢) + cos? 0 0,1) (r, ¢') — sin® 0 ¢y (r,¢')

(2.46)

Since the dependence of ¢ on 0 is exclusively in the form of trigonometric functions, we can
further simplify our calculations of (9,1) by performing the azimuthal integral over 2r:

2 . . .
@) o [ a8(0(r:0)+ 31 (r.C) cos8) (c0s0 8,n(r, ') + cos” 00, (1, ) — sin 6 1 ()

0
sin? 0

27
x / do (cos 0 Go(r,¢) Ortbo(r, ¢') + cos® 0 go(r, ¢) Dybn (r, (') + Go(r,¢) 1 (r,¢)
0

sin? 0

+ COS2 0 gl (’I", C) aTVJJO (7", C/) + COS3 0 gl (Ta C) 81”72)1 (’I", C/) +
gO(Ta C)
T

cos B g1 (r, ¢) 1/;1 (r, C/)>

™ (go (Ta C) 8r1&1 (Tv Cl) + 1[)1 (T5 CI) + gl (T7 C) 87«1[)0 (T’, CI)) .

(2.47)

Applying the partial derivative 9, and the transverse average to the wake potential defined in
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Eq. 2.39, and after the previous simplifications, we have that

oo [T p n [ To0(C") 2
0, =22 [ acrsinc~)¢) (5 ) @) (2.48)
with
) =z [ e (3000 0010+ 2D 1,0 01, ) 000 )

i(r,¢)

r

1
3(0)

/Ooo dr r (@ [r5(¢) — 7] 0rth1 (r, ') + © [13(C) — 7] (2.49)

+ yc(() 5(”7(4) - T) 8T1[)O(T7 C)) :

At this point it is necessary to go through the tedious process of calculating each term of the
integral in (9,7, ), being careful to separate r,(¢) and r,(¢’), and minding the piecewise character
of the wake potential modes v, and 1 (see Eqgs. 2.41-2.44). The result for each term will depend
on whether r,(¢) is smaller or larger than r,(¢’) (see Fig. 2.4). The following is a bulleted list of the
results for each term once Eqgs. 2.41-2.44 are replaced in the integral of Eq. 2.49.

| fooo drr © [’r'b(C) - 7”} ardzl(ra C/)

* — [ ZdrrOry(C) — 1] 8(re(¢’) — 1) Yic

= —e(¢") rp(¢") Ka(ry(C')) /OO drr ©[ry(¢) =] 6(rp(¢") = 1) Li(r)

0

= —y(¢") r3(¢") K1(rp(¢) Ti(rp (<)) © [r(C) — 7(¢)] (2.50)

+ — [y drr ©[re(¢) = 7] Olre(¢)) — 7] O

o0

= (€Y K () [ dr r ©1ru() — 1] ©n(¢) — 114 (1) + o)

0
1= Do () + QL] Q) < (<)

= ye(¢") (¢ K (rp(¢
ye(¢') () K (i ”{{1 Io(ra(C) + (VB ((CN)] - 7(Q) > ()

+ 57 drr ©[ry(Q) =) 8(r = (") dr>

= (¢ n(¢) i) [ T r ©[ry(0) — 1] 50— m(C)) Ko (r)

0

= ye(¢) 13(¢) Li(ro(¢") Ka(r3(¢)) © [ru(C) = 76(¢)] (2.52)

This term cancels with Eq. 2.50.
+ fooo drr ©[ry(¢) — 7] B[ — ()] 3Mﬁ1>

oo

= =3¢ 1o(¢) Bir(C) [ dr O [1(Q) — 1] Ol = ry(¢)] 3 (Kolr) + Ka(r))

0 n(¢) < (<)
() To(C) Li(r(¢) [ ) dr v 3 (Ko(r) + Kalr)) - 15(Q) > (<)

Using the identity Ko (r) + K2(r) = =2 K{(r) [52, Eq. 10.29.1] and integrating by parts,
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() > m(¢") m(¢) < mp(¢)

1 1
= — 0 (r—m(("))
=051 05! — O M) -7
0 0
0 (¢ m(C) 0 () m(¢)
T T

Figure 2.4: The two types of Heaviside function that must be integrated over in order to obtain a centroid
differential equation for a flat-top transverse profile in cylindrical geometry, for two different relative cases
for r,(¢) and r,(¢’).

this term simplifies to

Ye(<") ro(¢) Tn(rp(C) |15(C) Ka(ro(€)) — r6(¢) Ka(r(¢")) + Ko(rs(C)) — Ko(?“b(C’))} (2.53)

for T‘b(C) > ’I’b(Cl).

[ | fooo drr ©ry(¢) —r] wl(:’cl)

+ 57 dro[r(¢) =] Olry(¢) — 1] e

= ye(¢) () Kl(?‘b(C'))/ooodV‘G[rb(C) =] Olre(¢") =] In(r)

[ul&) (&) K€1) [Iorul(©) = 1] () < mul€) 250
5e(C) To(C") K (r(¢) [o(ro(C) = 1] a(€) > 14(¢)
+ f57drOn(¢) = 7] Ofr —r(¢)] 1>
=3V (&) B¢ [ dr ©1(0) 1] Ol = ()] K1)
_Jo 7p(C) < 7(C") (2.55)
5el¢') 1(¢') T (¢)) [Kolra(€)) = Ko(ml©)]  7(€) > (<)

This term cancels with the last two terms of Eq. 2.53.
Wy (Q) [y7 drr8(ro(¢) — 7) Opibo(r, ¢')
+ —ye(Q) Jy" dr 7 8(re(Q) — 1) 8(ro(¢') = 7) o<

= —.(C) /Ooo drro(ry(¢) —r) o(rp(¢") —r) |1 (r)Ko(r) + Io(r) |7 Ky (r) — Tb(C')Kl(Tb(C'))H
= —ye(¢) o= Li(re=) Ko(rp=) (2.56)

Here r,— is the radius when r;,(¢) = r,({’).
+ Q) J5T dr r6(ry(Q) — 1) ©lre(¢) — 7] Brtho<

= —0l0) (¢ Ka(l) [ v 3(n(Q) — ) ©lr(¢) — ] Li(r)
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e ) B (€) 1(0) i (€)) - 1(0) < (<) (2.57)
0 rp(¢) > (¢

+ 5e(Q) J drr 8(re(¢) — 1) 8(r = 13(¢")) Bo>

= y(¢) m(¢") Ii(ro(¢1)) /000 dr ro(ry(¢) —7) 6(r — r(¢")) Ko(r)
= y(¢) 2 Ti (rp=) Ko(rp=) (2.58)

This term cancels with Eq. 2.56.

* 5.(Q) [ dr v 8(ry(Q) — 1) ©fr — 1,(C")] Do

= —1e(¢) 1(¢") Li(re(¢)) /OOO dr r0(ry(¢) — ) Ofr — 1(¢")] Ku(r)
_Jo r(¢) < 7(¢) (2.59)
=e(Q) 7(C") i (rp(¢) 76(C) K (15 (C))  75(C) > 716(C7)

Collecting all the terms in Egs. 2.50-2.59 and replacing them in Eq. 2.49 leads to the result

:}jé’)) i (r(¢)) ro(€)) (9e(¢) =) 7(¢) < (<)
0,01 = : (2.60)

Z(é/)) L (¢)) Ki((0) (4e(¢) = 1e()) 70(C) > m(¢)

By putting together Eqgs. 2.60, 2.48, 2.16 and 2.15, we finally arrive at the average transverse
force

oo @\ [T, / N (S /
() == () [ dersin(c =00 B 1) Kar) (3€) —e0) - (26)

and the differential equation for the centroid in 2D cylindrical coordinates for a flat-top transverse
profile:

d2yc o k% OO /s / / rp (CI) /
T =2 A O L s ) K (@) —u@) (262

where r,. (rp) is the smallest (largest) of r,(¢) and 7, (¢").

As mentioned before, the right-hand side of Eq. 2.62 is more general than the one in Ref. [43],
where only the r,(¢) < r,(¢") branch of the piecewise plasma response is considered. Naturally,
this is only important when the bunch radius is not constant, i.e. r, = r(().

This is demonstrated in Fig. 2.5, where we validate the different versions of the theoretical
plasma response in this geometry against 3D PIC simulations (see Table A.2, items A.2.1-A.2.2,
in Appx. A for the full simulation details). Here we consider the initial centroid perturbation
yeo(¢) = 0.01 sin(¢). In Fig. 2.5a), the initial bunch radius is constant (r,o = const), and both
Eqg. 2.61 and Ref. [43] match the simulation data very closely. When we assume a varying initial
bunch radius ryo(¢), however, the average transverse force can only be described accurately
by the full piecewise right-hand side represented by Eq. 2.61, as exemplified in Fig. 2.5b) for
r50(¢) = 0.1[1 + 0.4 cos(¢)].
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Figure 2.5: Initial plasma response to a hosing seed for a flat-top transverse profile in cylindrical coordi-
nates according to a 3D simulation (grey), to Eq. 2.61 (red), and to Ref. [43] (green), with an initial bunch
radius that is either constant (a) or oscillating (b).

2.2.2 Radius (SMI)

Long, relativistic bunches are subject to the focusing forces of the plasma wave driven by them-
selves. These wakefields therefore modulate the envelope of the bunch, in a process designated as
the self-modulation instability. To describe this instability, we require an equation that relates the
beam envelope (in this case, the RMS transverse size) to the forces due to the plasma wakefields.
This equation can be derived by averaging the equation of motion for a bunch particle (Eq. 2.13)
over the transverse bunch profile, such that the equation can be written in terms of the RMS size.

We once again choose the y dimension to set up the envelope differential equation. The RMS
size is therefore defined as o, = \/{(y — y.)?), Where y. = (y) is the bunch centroid. As a first step,
we subtract the term d?y./dz? from the y component of Eq. 2.13.

?y _ me
d2’2 N ’yMb Y
d? Me d?y.
@(y —Ye) = ~ M, VT2 (2.63)
Using the identity 0, (0, f) = 2 (0.f)* + 2 f 02f, we may write the left-hand side as
d? 1 d? ) d 2
22— ye) = T—u) 22 W=ye)” =2 { (v = ve) : (2.64)

d2
dz?

Replacing this expression in Eq. 2.63, rearranging in terms of
transverse bunch profile, we obtain

(y — y.)? and averaging over the

% {(y —ye)?) = 271\72 (y—ye)Fy) =2y — ve) Cfizy; +2 < <d(yd;y0)> > , (2.65)

where the second term on the right-hand side vanishes, since (y — y.) = (y) — y. = 0.

Once again using the identity 9,v/f = 19, f/\/f and thus 0,(9,f) = 2 f=3/2[2 f 02f — (0..f)%,
the left-hand side of Eq. 2.65 may be written as

2

2 2
Ci2<<y—yc>2>=2<(1)2>[4<<y—yc>2>3”jz2 07 (jz«y—yc)%)]

Y—Yc
2o, 1 g d2 d 5\’
)
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Once again, after replacing this expression and rearranging, Eq. 2.65 becomes
Loy _ e ((y —UZC>Fy> . 01 <<d<yd—z y>)> B 4617 (dd") | (2.67)
Using the fact that 9, f? = 2f0, f, the last two terms can be rewritten as
Jg <(d(yéy°)>2> - ﬁ (jz (v —ve) >>2 =
Jlg [<(y —9e)%) <<W>2> - <(y - yc)d%(y - yc)>21 = j’; , (2.68)

where ¢, is the RMS geometric emittance along y. We therefore arrive at the differential equation
for the beam envelope:

Q

Q)

2 2 —
oy &y me (Y —yo)Fy) ) (2.69)

dz2 o M, oy

Similarly to the differential equation for the bunch centroid, the specific form of the right-hand
side in the presence of plasma wakefields will depend on the transverse profile of the bunch. This
calculation has only been done for a flat-top transverse profile, since the required integrals for
more complicated profiles do not have straightforward solutions.

2D cylindrical, flat-top transverse profile

Cylindrical coordinates are the natural choice to describe the self-modulation instability, since it
arises from the axisymmetric component of the wakefields. In order to retain axisymmetry, we
will assume small centroid displacements y.. We therefore have ((y — vy.)F,) ~ (y F,). Due to the
axisymmetry, we can now write o, y and F,, in terms of their radial components in cylindrical
coordinates, e.g. o, = 0, = o, /+/2. Making these substitutions, we obtain

o, 4de me (r F.)

dz2 o3 M, o, (2.70)

where the geometric emittance along y will be simplified later.

The bunch profile is defined as ny({,7) = nyo - £(€) - g(r, <), with g(r, () = (2’:—8)2 O [rp(¢) — 7],

where once again (¢, z) is the bunch radius and r,(¢) = (¢, z = 0). In this case, the average
along the transverse bunch profile is defined as

27
npo f(C // df dr e r g(¢,r) 27r<rb0 )/ dr e 7 ©[ry(¢) — 7]

(€)
o f(C / /Qﬂderrg(C,) Qﬂ(?:((é))/o drr O [ry(¢) — 7]

= %22(0/0 dr e r O[ry(() —7] . (2.71)

In order to express Eq. 2.70 in terms of r,({, 2), we replace the RMS radius of g(r, (), i.e. 0. =
r,/v/2. After some rearranging, we obtain the envelope equation in terms of the flat-top radius

dry €2 2me (r F,)

= 2.72
dz2 1 M, 1 ( )
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where we used the definition for the effective or RMS emittance ¢ = 4 ¢, [53]. This definition of the
emittance is particularly appropriate for beams that are subject to nonlinear forces [as an example,
e, vanishes for an S-shaped distribution in (y,y’) phase space, while € remains finite] [54, 55].

To calculate the right-hand side of Eq. 2.72, we must determine (r F,.) and therefore F,., which
is connected to the wake potential via (see Eq. 2.2)

F=-2454. (2.73)

e

The wake potential for an axisymmetric profile in cylindrical coordinates is given by the Green'’s
function solutions in Egs. 2.8 and 2.6. Replacing the flat-top transverse profile, the wake potential
is therefore

_ 9 Mo > /s ’ i Teo(¢) ’
oter) =220 [ acsic -0 (2457

[Ko(r) /O ! I () O [ry(¢) — ] + To(r) / T KoY 0 — | (274)

Ve (r, C/)

where the radial dependence is confined to what we designated as «..(r,¢{’). The transverse
averaging of the wakefield force only acts on the r-dependent part of F,., i.e., {r F..) o< (r 0,1, (r,(’)).
We will therefore compute these integrals separately and plug them into our desired expression
later, using

)= (%) [T acsnc - yrce) (C?bo(%;))g (r 0., C)) (2.75)

As calculated before in Sec. 2.2.1 (see Egs. 2.41 and 2.43), v, and 9,4, can be written as

oo ) — {m(rmm+Io<r>[rm<r>—m(</>fﬁ<m<<’>>} =telr¢) rSn(@) o

ro(¢) (o (C)) Ko(r) = s (r, (') r>rp(C’)
Orthy(r,¢") = =6(re(¢") = 1) ¥hrc = Olro((') = 1] Orthyc + 0(r = 10(¢)) s> + O — 16(¢)] Orthr> (2.77)

We must now compute the radial integral in Eq. 2.71 for all the terms in 9,4,-(r, ('), once again
carefully distinguishing between r,(¢) and r,(¢’) (see Fig. 2.4 on p. 21).

W [ drr? Or(¢) — 7] 8(ry(C") — 1) Yre

== /Ooo dr 1% © [n(¢) = 1] 8(r(¢") = 1) (L) Ko(r) + Ior) [rE (r) = () K (ro(C))])
= —r3(¢) T(r(¢")) Ko(rs(¢)) O[rs(¢) — 13(¢")] (2.78)

W ["drr? O[ry(¢) — 1] Ory(¢) — 7] Orhrc

= =) Kalnl€) [ dr i ©1n(Q) 1] ©n(¢) =11 1i(r)

0

. {—mc’) K1 (ro(¢)) 12(0) Ta(ro(©)) 76(C) < (¢ (2.79)

=1 (¢") K1 (r(¢")) (7o (<)) r(¢) > ()
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W " drr? O [ry(¢) — ] 8(r —7(C") Yr>

= (&) B(©) [ O1r(Q) — 1] 8 = rf¢) Kolr)

=15(¢") Tu(r5(¢") Ko(r5(¢") O[rv(¢) — 15(¢")] (2.80)

This term cancels with Eq. 2.78.

B [Cdrr? O[r(¢) —r] O — ()] Ortors

= —n(¢) Bl [ dr i ©11(Q) ~ 1] O — ¢ Ka(r)

0

0 5(¢) < 7o(¢)

= 5(C)
{rb@') Bo@) [ e ) ) > i)

The integral has the solution [ dr r?K;(r) = —r? Ky(r) [52, Eq. 10.43.1], which leads to
ro(¢") Tu(rp(¢) [r7(¢) Ka(r(€)) — 15 (<) Ka(rs(¢))] (2.81)

for r4,(¢) > r(¢")-

Collecting all the terms in Eqgs. 2.78-2.81, we obtain

o 2 —7(¢") K1 (r(¢")) m3(¢) Ta(r5(¢)) 7p(C) < 1p(¢")
(r Optpr(r, (")) = 2
73 (C) (¢ [r2(¢) Ka(rp(€)) Ii(ro(¢)) — r6(¢)]  mu(€) > 7ro(¢))

2 . (2.82)
2 1) () Ka(m(©)) =2 ) 1(0) > my(¢1)

{2 r(C') K1 (rp(¢) Ta(r(Q) n(C) < (¢

()

With this result, which we substitute in Eqg. 2.75, we have determined the force that drives the
SMI:

(rF) _ o (@)2 /< ¢ sin(¢ — ¢)F(C)

iy ng \e
TEO(C/)

()75 (C) K1(ro(¢)) I2(r5(¢)) r(C) < (¢

rE(¢) (¢
Tg(f) 75(C)rp(¢)

. (2.83)
Li(ro(€1) Ka(rp(Q)  76(C) > 76(C)

We may now replace this force in Eq. 2.72, thus obtaining the differential equation for the bunch
radius r,(¢, ) in axisymmetric cylindrical coordinates for a flat-top transverse profile.

Pry & ﬁ&(rb(f))
dz2  r} k2 r(C)

7"50@/)
5(¢")

/COO d¢’ sin(¢ —¢") f(¢)) Ki(rp(¢")), for my(¢) <m(¢) (2.84)

dzrb g2 o k% 1 > /s / N .2 (!
d,z’2_1"fg_8/<312,7€’(0/( d¢"sin(¢ — ¢') f(¢") m0(C)

_ ﬁKQ(Tb(C)) > " sin(¢ — ¢! /
S /C ' sin(¢ = )¢ TS
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Figure 2.6: Initial plasma response to an SMI seed for a flat-top transverse profile in axisymmetric cylindri-
cal coordinates according to simulation (grey), to Eq. 2.83 (red), and to Ref. [42] (green), for 4, /ryo = 0.01
(@) and 6, /rv0 = 0.1 (b).

Equation 2.84 corresponds to what is available in the literature [42]. However, we note that the
other branch, Eq. 2.85, of the piecewise differential equation has not been discussed in previous
work. We can evaluate this result by seeding the SMI in an axisymmetric PIC simulation (in 2D
cylindrical coordinates) and comparing the initial plasma response (r F..) /r, to Eq. 2.83. For this we
initialize a long, relativistic positron bunch with a flat-top transverse profile and cosine longitudinal
profile, and with a bunch radius perturbation given by r,({) = ryo + 6, sin(¢ — (), where 4,. is the
perturbation amplitude and ¢, is the location of the bunch front (see Table A.3, items A.3.1-A.3.2,
in Appx. A for the full simulation details).

Figure 2.6 shows the comparison between the initial plasma response according to Eq. 2.83,
Ref. [42], and simulations. The relative perturbation amplitude is ¢, /ryo = 0.01 in Fig. 2.6a) and
0-/m0 = 0.1 in Fig. 2.6b). Although neither of the two versions of the theory can accurately
reproduce the amplitude of the initial plasma response, the full piecewise version in Eq. 2.83 is
able to capture the correct phase, as well as some of the nonlinearity (or harmonics) that appears
for a larger radius perturbation [see non-sinusoidal shape of the red and grey curves in Fig. 2.6b)].
The reason for the discrepancy between theory and simulation is still unclear, although we were
able to rule out the possibility that the assumption of linear wakefields (nyo/no < 1) was not met in
the simulations.

2.3 Asymptotic models

So far we have determined different versions of differential equations that describe the HI and
SMI. We still have no information about the growth rates of these instabilities, or how they evolve
qualitatively along z and ¢. An analytical expression for the centroid y.(¢, z) and the bunch radius
rp(¢, ) can be found using the following prescription:

1. Find a simplified partial differential equation by assuming a long-bunch, adiabatic regime
(where the bunch changes slowly over many betatron periods)

2. Assume a slowly varying envelope and establish a partial differential equation for the envelope
3. Define initial conditions, and Laplace-transform the equation in 2
4. Find the solution for the equation in Laplace space

5. Approximate the inverse Laplace transform of the solution using the method of steepest
descent

27



This is the procedure used in several published works [42-44] where the evolution of the
HI and SMI has been described using asymptotic methods. In this section, we reproduce those
results, including their detailed derivation, and we discuss the advantages and limitations of these
asymptotic models.

2.31 Centroid (HI)

In the following, we will derive the asymptotic model for the evolution of the bunch centroid in 2D
cylindrical geometry for a flat-top transverse profile. Starting from Eq. 2.62, we assume a constant
bunch radius r,(¢) = 740 = const. We therefore have

d2yc > > /. / ' ’
LU — 2 I 1) K (o) /< ¢’ sin(¢ — &) £(¢') (:(¢) ~ ue(0)) (2.86)

where we have defined k% = k3/k2. We may rewrite this equation as
(aﬁ — i / dc’sin(¢ - ¢') f(<'>) 4el(C) = —ph? / 4’ sin(C — ¢') 1(¢) we(¢)
¢ ¢
o (0 Q) 0O = il [ dCsinC ) S w287

where we defined u = 214 (1) K1(rp0). To simplify the left-hand side we used integration by parts:

> ! o3 /! ! / 1\19° !/ /af(cl)
¢’ sin(¢ — — [cos(¢ — — [ d¢ cos(¢ — , (2.88)
/C ¢'sin(¢ = ¢') £(¢') = leos(¢ = CVFC; /C Ceos(¢ =) 755

and assumed a long-bunch adiabatic regime, such that d. f(¢) — 0. This assumption amounts to
considering a very long, smooth bunch with respect to the typical length scale of the development
of the HI (k,!). Further noting that f(¢ — co0) = 0, since the bunch distribution must be finite,
Eq. 2.88 reduces to —f(¢).

We now apply the longitudinal plasma operator (82 +1) (see Sec. 2.1.1) to both sides of Eq. 2.87,
while also setting f(¢) =~ 1 [42, 43] (consistent with the long-bunch adiabatic regime and especially
valid close to the center of the bunch):

(02 4+ 1) (02 + k) we = k3 e (2.89)

where we used the fact that L, fD< d¢’ G(¢',{)F(¢") = F(¢). Note that the minus sign on the
right-hand side cancels because G({’,¢) = sin(¢' — ) = —sin(¢ — ') (for ¢’ > ().

Having obtained a partial differential equation for the centroid y.(¢, z), we will now assume that
the centroid behaves according to y.(¢, 2) = 4./2 - exp(i¢) + c.c., where 4.(¢, z) is the envelope and
c.c. denotes the complex conjugate. Note that we are assuming an oscillation at k,, which is hidden
in the normalized (¢ variable. After replacing our assumed form of the centroid, we are left with an
equation for the envelope §.(¢, z). After some rearranging, and assuming a slowly varying envelope,
i.e., applying the approximations |0:9.| < |g.| and |0, 9. > uk§|gc|, we obtain

020c (D¢ + 2i) e + pk O¢(Oc +2i) o — pk g =0
& 20 (83 +ul%§) e — k2 ge = 0

& <a<a§ + ;,mg) Go=0. (2.90)
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In order to solve Eq. 2.90, we perform a Laplace transform in the z variable, choosing the
following initial conditions: §.(¢ = 0,2) = §.0(2), 9.(¢,z = 0) = 6. and 9. 9.|.—o = 0. These conditions
correspond to a constant offset 4. of the bunch centroid being turned on at z = 0, where the leading
slice of the bunch (at ¢ = 0) remains fixed. The resulting equation for the Laplace-transformed

centroid Y'(¢, s) = £{j.(C, 2)}(C. s) is

k2
oY + Ty, (2.91)
which has the solution .
S i pk3
Y(C )= exp (2824 : (2.92)

To determine the expression for the centroid we would need to find the inverse Laplace transform
of the envelope solution in Eq. 2.92. The inverse Laplace transform can be defined via the Bromwich
integral

Y+ioco
F(t) = L7HE(s)}(t) = i/ etF(s)ds (2.93)

21t S oo

where the real-valued v should be greater than the real part of all singularities of F'(s). Since the
only singularity of Y (¢, s) is at s = 0, v should be greater than zero. In this case, the envelope in

real space is given by
5, [ i uiﬂ%
9e(¢, 2) = i /7_‘ 5 &P (52’ - i?g ds . (2.94)

200

We will use the method of steepest descent [56, Sec. 13.2] to find the approximate solution of
the integral in Eq 2.94. This method approximates an integral along a complex contour C of the
form I(s) = [, f(s)exp [ g(s)] ds, where s € C, X is a large real number, f(s) and g(s) are analytical
functlons and f( ) varies slowly, by deforming the contour C such that an extremum of ¢(s) (a
saddle point in the complex plane) is crossed. All other contributions to the integral besides the
saddle point sy will be exponentially smaller, such that the integral can be approximated as

S0) Lt 2
I(s) = f(s0) e} \/Tcg’ (2.95)

where we have defined %|mo = G} % (in exponential notation), and oy = # determines the
direction of the deformed contour. The larger X is, the better this approximation is.

In this case, we choose:

b 1 =B il (2.96)

2wt s

A=upkj, f(s)=

Setting 5 dg = 0, we find three saddle points for g(s) [see Fig. 2.7a)]:

1/3 1/3 1/3
31_( <|> R (|<|) 6% | s (l<l> & (2.97)

Since s; and s; lie in v < 0, we choose the saddle point sg = s3. Taking the second derivative
of g(s), we have G = 3¢~/3(z/A\)*3 and 6, = /6. The two possible values for o, are therefore
57 /12 and —7x/12. Both of these angles correspond to the white dash-dotted line in Fig. 2.7b), the
difference being the direction in which s3 is crossed. The most sensible way to deform C such that
it crosses the saddle point s3 along the dash-dotted line [see Fig. 2.7b)] is from south to north
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Figure 2.7: Visualization of the function ¢(s) and the contour integral for the method of steepest descent.
a) Real part of g(s) on the complex plane (pink surface) and the three saddle points found for g(s) (colored
spheres). b) Real part of g(s) (color scale and blue contour lines) in the vicinity of ss (blue circle). Dashed
contour lines represent values Re[g(s)] < Re[g(ss)], while solid contour lines correspond to Re[g(s)] >
Re[g(ss3)]. The integration contour from v — ico to v + ico is represented by the solid white vertical arrow. The
dash-dotted white line crossing ss corresponds to the angles ap = 57/12 and ap = —77/12.

(ag = 5w/12), rather than north to south (ag = —77/12). We therefore choose oy = 57 /12. Lastly,
we are only missing f(sg) and g(sp), which are given by

f(s0) = O, Nyte 5 g(so) = e %, (2.98)

Ny .
2w A

N W

. 1/3
where we have defined N, = (/\|g\z2)1/3 = (uk%|§|z2> . Putting these results together and after
some simplification, the approximate result of Eq. 2.94 is

5 2

~ 6c 1 4z 3 i 5T
~ N '3 - N e el | ——
GG 2) 5 2Ny e eXP( he )e 3N
b _ 3 3 )
~ N; 1/2 exp [QNh (f + Z) + 21

™

(2.99)

2
VAl 2 2 12

We may now substitute Eq. 2.99 into the assumed form of the centroid y.(¢, z) = §./2 - exp(i¢) +
c.c. = Re[g. - exp(i¢)] and obtain an asymptotic model for the evolution of the centroid [43]:

31/4 €FHI T FHI
Ye(¢,2) = dc E \/? cos <12 +¢— \/§> ) (2.100)
HI

N 1/3
where we defined the HI growth rate I'y; = (3%/2/4)N), = (3%/2/4) (ukgmz?) . Note that the sign
of ¢ in the argument of the cosine differs from Ref. [43] due to ¢ being defined there as ¢ € |—o0, 0],
whereas this formulation is general (¢ may be either positive or negative).

2.3.2 Radius (SMI)

An asymptotic model for the SMI can be established using the same method as above, and making
some stronger assumptions about the bunch radius. We start from the differential equation for the
bunch radius for a flat-top transverse profile Eq. 2.84 (taking only the branch r,(¢) < (¢’) into
account) and assume a small radius perturbation r; around a radius rq which evolves slowly at the
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betatron time scale, with r; /7y < 1. Substituting (¢, 2) = ro(¢, 2) + r1(¢, 2) in Eq. 2.84, we obtain

d2 62 IQ T0—|—T‘1

d2(7=0_|_ r) — szkﬂW/ d¢"sin(¢ —¢') (<)

) i o
o Ki(ro+7ry),  (2201)
where we are using the shorthand r; = r;(¢) and r} = r;({’), with i = {0,1}. Note that, strictly
speaking, r,, corresponds to 7,(¢,0) and should therefore be expressed in terms of the linear
expansion rq(¢,0) + r1(¢,0), which ultimately leads to the same result. We therefore keep the
variable r,o for now and eliminate it later with a more direct approximation. To simplify Eq. 2.101 we
will linearize the following terms as a function of r; /ry < 1.

-3
(1"0+T1)73:7’0_3 (1+T1> zro_g (13“) (2.102)
To To
. .[2 To 1-’-%
Llrotm) _ ( ( )) ~ 2 <1+7”1> + Iy(ro) (2.103)
ro + 71 ro (1 i ;;1) 0 o o
Kper) K000+ R) men o
rt+r! - / r ~ r! - K2(r0) ’I"il (2104)
o™ h (1 + ﬁ) 0 0
The term 92r, is given by the envelope equation itself (Eq. 2.84):
d2 2 I [e%e) ) 2 /
= S i [T acine - sy 8 g (2105)
¢ 0

At this point, we will take a brief detour to demonstrate that we can remove rq from the
integration in ¢’ by assuming that 9,r¢ — 0. Let us consider the integral ff" d¢’ p(¢’) q(ro(¢’)) with
the arbitrary functions p and ¢. Applying integration by parts, this can be written as

> / / ny ’ 771190 > / / 8q(r (C/))
/C 4’ p(¢") alro(¢')) = [P(C') alro(C NI - /C ac'p(¢) S (2.106)

where P({’) is the indefinite integral of p(¢’). Bearing in mind the domain ¢ € [0, oo[ (see Sec. 2.1.1),
we may write P({') = — fc' dr p(7), using the fundamental theorem of calculus and an appropriate
change of variables. By the chain rule of differentiation we know that d.¢(ro) o 9.7 and therefore
0¢q(ro) — 0. We are thus left with

/C T p(¢7) glro(¢)) = P(C — 00) qlrolC — 00)) + a(ro(0)) /ﬁ " p(r)
- /C e () qro(€) = a(ro(C)) /C e p(c) (2107)

where we used the fact that the bunch is finite and that r(¢ — o0) = 0.
We can now replace the expansionsin Egs. 2.102-2.105 in Eq. 2.101 and apply Eq. 2.107, producing

I(ro) K N, @ ?
O+sk22‘(’“°)T%1<TO)/C dsinl¢ = ) () + g = (1-372) =
<o [I2(7 T n [ Ealr r
8k§[2£00) (”Q)”?’ ro) ] / 4’ sin(¢ = ) F(¢) 72 <<>[ {0) g () Tj)]. (2108)

The right-hand side includes a term proportional to Ix(r) K1 (ro)/r3, which cancels with the sec-
ond term on the left-hand side. This leaves five further terms on the right-hand side, two
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of which are proportional to (r1/79)? and which we neglect. Note that one of these terms (x
Ko (ro)I5(ro) r3,(¢") riry/rd) may only be neglected with the added assumption that r1(¢) < 1. We
also neglect the emittance term proportional to 1/, which can be shown graphically to be com-
paratively small. Finally, we assume that, within the fast timescale of the development of the SMI,
ro =~ rpo = (¢, 2 = 0). After some simplification, Eq. 2.108 becomes

2 R e}
% =8 k%lz(m)f@(m)/C d¢’ sin(¢ — ¢V F(¢) 7

+38 ];?;23 Ki(ro) 11 {IQ(TO) + Ig(ro)] /:O d¢’sin(¢ — ¢ f(¢) . (2109)

o
Similarly to the previous section, we assume a long-bunch adiabatic regime, setting f(¢) =~ 1,

and thus replace fg’o d¢'sin(¢ — ) f({') = —f(¢) ~ —1 (see Eq. 2.88 on p. 28). After resetting
Eq. 2.109, we obtain a differential equation for the bunch radius perturbation r(¢, z):

<d2 AR n(62) = =203 [ dsin - ) n(c' )
dz? s 7 g ¢ ’

& (8? + 1) (6? +4 ,<;2l%/23) r1(¢,2) =2 vk% r1(¢, 2) (2.110)

where we defined' k2 = 2 K1 (ro) [I2(r0)/ro + I3(r0)] and v = 4 Ir(rg) K2(ro), and where we applied
the longitudinal plasma operator to both sides of the equation (see Eq. 2.89 on p. 28). Note that
a complete version of Eq. 2.110, where both branches are contemplated (for r,(¢) < r(¢’) and
rp(¢) > 1(¢")), can be found on p. 66.

We now assume that the bunch radius perturbation oscillates at k, and has the form (¢, z) =
/2 - exp(i¢) + c.c., where 7 is a slowly varying envelope, such that |:7| < || and |8.7| > 2 kks|7|.
Applying these assumptions to Eq. 2.110, we obtain after some simplification

020¢ (D¢ + 2i) 7 + 4 k23 O¢ (O¢ + 2i) 7 = 2vk3 7
o 20 (02 +4K%3) P =2ukE
& (002 +ivig) i=0. (2111)

Following the prescription outlined in the introduction to Sec. 2.3, we apply a Laplace transform
in z to Eq. 2.111. With the initial conditions #(¢ = 0, z) = 6,0(z), #(¢, z = 0) = ¢, and 9,#|,—o = 0, where
d, is the initial oscillation amplitude, the Laplace-transformed equation for R(¢,s) = L{#({,2)}(¢, s)
is

k‘2
OR+i—f R=0. (2112)

The solution to this equation is given by

Oy Vl%%
R(¢,8) = —exp | —i —( (2.113)
s s
in Laplace space and by
57" Y+ioco 1 . V]AC[%
(¢, 2) = — / —exp|(sz—i-—(|ds (2114)
278 Sy oo S S

TNote that the definition of 2 in Ref. [42] is incorrect.
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in (¢, z) space, where ~ should be larger than the real singularity of R({,s) at s = 0.
We once again approximate the inverse Laplace transform of the solution, Eq. 2.114, with the
method of steepest descent (see p. 29). Choosing
.1 .
g . g(s)zg—z£7 (2.115)

21t s

A= l//%g . f(s)

we follow the same procedure as in the previous section. Since the calculation details are almost
identical, we allow ourselves to skip to the final result. The asymptotic model for the evolution
of the bunch radius perturbation r1(¢, z) = r({, 2) — rpo(¢) for a flat-top transverse bunch profile
is [42]

31/4  lswmr T Tsmi
=0 — —— — — , 2116
6=t e e o (- 1) (2110

) 1/3
where the SMI growth rate is defined as T'syy = (3%/2/4) Nom = (3%/2/4) (2 ukg\q%)

2.3.3 Discussion

Following the algebraic recipe outlined at the beginning of this section has awarded us with
an analytical expression both for the evolution of the bunch centroid and radius, and for the
spatiotemporal growth rates of both instabilities.

In order to obtain the asymptotic models, it was necessary to make several assumptions. To
recapitulate, we list the approximations underlying the models in this section:

o Linear wakefield theory (dn/ny < 1, where dn is the plasma density perturbation)
» Flat-top transverse bunch profile with bunch radius r;,
» Constant (r, = 7,0 = const) or slowly evolving (9.7, — 0) bunch radius

 Linear stage of instability development (y. < 1, r1/ryo < 1, and r; < 1), meaning for example
that saturation mechanisms are not contemplated

« Initial sinusoidal perturbation at the plasma wavelength (k,)

 Slowly varying envelope: k,|z| > |0, z| and kg|z| < |0, &|, where z is the envelope of a fast
oscillation and ¢, and z, are not normalized (see paragraphs before Egs. 2.90 and 2.111)

e Long-bunch, adiabatic regime (9. f({) — 0 and f(¢) ~ 1)
o Parameter ) for the method of steepest descent (Eq. 2.95) is large (A > 1)

We also point out that this description precludes any coupling between the HI and SMI.
The approximation of a slowly varying envelope, in particular, may be expressed in alternative
terms. If we use the fact that & o ' //T, where T is a growth rate, it follows that

el e’ (2I'-1)9.T
Lo B % o 134T, 2117
O UF ‘ (2117

. 1/3
Both factors y and 2 v are ~ 1 for g < 10 k, !, so we can assume I' ~ (33/2/4) (k§|§\z2) . Taking
the partial derivative of " in ¢, we obtain

3/2
V3 (g NB V3 A
1> e (k’%ZQ) (S < I¢] > e ks |2l
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Figure 2.8: Ratio of the SMI growth rate to the HI growth rate as a function of the initial bunch radius,
according to the asymptotic models.

& l>kslel e k|Gl > ks lad, (2.118)

since (v/3/4)%/? ~ 0.3. The condition in Eq. 2.118 is associated with the so-called long-bunch,
early-time regime, meaning that the asymptotic models above are valid early enough and far
enough along the bunch. In particular, these models are not applicable to the front of the bunch.
(Note that, regardless of how the ¢-domain is defined, the front of the bunch is where ¢ — 0, and
the back of the bunch is in the direction of ( — 4c0.)

We can compare the two spatiotemporal growth rates obtained with the asymptotic approach
for the hosing and self-modulation instabilities. Under the assumptions made above, the ratio
between both growth rates depends simply on the initial bunch radius ry:

Psmi _ (2v 13 (4 LIx(ry0) Ko (r40) 13
P (u) ; ( Iy (reo) K1(7e0) ) ' (2:119)

This dependence is illustrated in Fig. 2.8. In the limits where r,g — 0 and r,y — oo, the ratio in
Eqg. 2119 s 21/3 ~ 1.26 and 2%/3 ~ 1.59, respectively (see dashed lines in Fig. 2.8). This means that,
given equivalent initial conditions, the growth rates for the HI and SMI are of the same order, and
these instabilities are liable to compete with each other, though T'syy is always larger than T'y;.

2.4 Power series model

An alternative model for the onset of the HI and SMI can be found using a power series approach,
which has been utilized before in the context of conventional accelerator physics [57]. This model
has the advantage of being flexible with respect to the initial conditions, as well as applying to
the front of the bunch. On the other hand, its range of validity is relatively limited in terms of the
propagation distance.

In Sections 2.2 and 2.3 we have derived several differential equations to describe different
moments of the bunch profile (e.g. the centroid or the RMS size). For a general moment m(¢, z),
these differential equations may be expressed as

d*>m

S R{m}, (2120)

dz?

where R is an operator in the ¢ variable and contains the plasma response. For the power series
approach to be tractable, R should be a linear function of m. This is always the case when we
assume to be in the linear stage of instability development (y. < 1 or r1/ry0 < 1), since R may

34



then be approximated by the first order of its Taylor expansion in terms of m (i.e., R o< m).
If we write m as a power series in z, m(¢,z) = Y., a,(¢) 2", and substitute this in Eq. 2.120, we
obtain a recurrence relation for the coefficients a,,:

Zan (n—1) ZR{an}z

n=2
& Zan+2 n+2)(n+1 ZR{an}z
n=0
o an, = an} (2121)

(n+2)(n+1)°

Assuming some arbitrary initial conditions, m(¢, z = 0) = mg(¢) and m/({,z = 0) = 9,m|,=0 =
my(¢), we can define the first two coefficients: ag = mo(¢) and a; = m{(¢). This allows us to frame
the recurrence relation in Eq. 2.121 as a general formula that depends on the initial conditions. After
some algebraic consolidation, we can express the evolution of the general moment m(¢, z) and its
z-derivative m’({, z) as

m(C.2) = i 2" {R(g){mo} , mniseven (2122)
’ =™ R(%){mg} , nisodd

m'(¢,z) = i % {R(ifmé)} " ?S sven (2.123)
o | R ) {mp}, nisodd

where the superscript in the operator R signifies consecutive applications (e.g. R {m} =
R{R{m}} and R {m} = m). By truncating Egs. 2.122 and 2.123 at an adequate order, we obtain
an approximate power series model for the evolution of m((, z). Note that truncation at n = 2
corresponds to holding the plasma response to the initial conditions my and m(, constant (the
right-hand side in Eg. 2.120 becomes constant in z and the solution will be proportional to z?).

The right-hand side of the beam moment differential equations in this chapter, which determine
the development of the hosing and self-modulation instabilities, is invariably proportional to kg.
This means that the typical length scale for the evolution of m along z is the betatron period k;l.
Since the power series model in Egs. 2.122 and 2.123 is valid for the linear stage of instability
development, we can conclude that the model is valid for z < kgl.

In the following, we will discuss two specific cases of the right-hand side operator R which can
be used to describe the early evolution of the HI and SMI.

2.41 Centroid (HI)

To demonstrate how the power series model can be applied to hosing, we choose two cases:
2D Cartesian geometry with a Gaussian transverse profile and 2D cylindrical geometry with a
flat-top transverse profile. For simplicity, we assume constant transverse bunch sizes in both
cases (o, = const and r, = const).

2D Cartesian, Gaussian transverse profile

In this case, and bearing in mind the constant beam envelope, the bunch centroid . is described
by Eq. 2.37. The right-hand side operator is therefore
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Figure 2.9: Line-outs of the centroid y. and centroid velocity v. along ¢ at z = 2 kgl (a) and along z at

¢ =30 k:gl (b) for a Gaussian transverse profile in 2D Cartesian geometry according to simulation (dark
grey) and the power series model truncated at different terms (colors). The vertical grey dashed lines
indicate the position of the line-out along the other dimension. Note that the curves forn = 8 and n = 10

overlap almost completely.

R{yc} =2k \/goy exp(oy) /Coo d¢’sin(¢ = ¢') f(¢) {exp [ye(¢") = ()]

Ye(¢) = ye(¢) + 202 —ye(¢) + 207

erfec [ — exp [e(¢) — 4e(C)] enfc [yc(C)

20, 20y

} . (2124)

which is manifestly not a linear function of y.. We must expand R in terms of y. (assuming y. < 1).

To first order, and treating y.(¢") — y.(¢)  y. as the expansion variable,

exp [ye(¢') — ye(C)] exfe [yc“ ) - gofy@“) 29| o 00 — )] exfe [yc«) - yzicy )+ 202
2 /
z[2erfC(Uy)_ﬁ0ye ] (yc(C)—yc(C)). (2.125)

For small centroid displacements, we can therefore define the right-hand side operator as

R{yc} = V2 I} |1 = 7 0, e eric(,)| /C T sin(c - ¢) £ () - 3(0))

(2.126)

Plugging this operator into Egs. 2.122 and 2.123 and truncating at n = 4, for example, we have

2 3 4
5el¢,2) = 9eo(Q) + Vo) 2+ R} - -+ Rfveo} - = + RP {yo} - -

2 3 4
0e(6.2) = veol€) + R{yeo} - =+ Revea} - 5 + RO {weo} - 5 + RP {veo} - 7
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Figure 2.10: Line-outs of the centroid y. and centroid velocity v. along ¢ at z = 2 k;l (a) and along z at

¢ =30k," (b) for a flat-top transverse profile in cylindrical coordinates according to a 3D simulation (dark
grey) and the power series model truncated at different terms (colors). The vertical grey dashed lines
indicate the position of the line-out along the other dimension. Note that the curves forn = 8 and n = 10
overlap almost completely.

where v, = v../c = dy./dz is the normalized centroid velocity (v, . is not normalized), and y.o(¢)
and v (¢) are arbitrary initial conditions for the centroid and centroid velocity, respectively.

Figure 2.9 shows a comparison of the power series model truncated at different series terms
with a PIC simulation in 2D Cartesian geometry, with y.0(¢) = 0.05sin(1.07 ¢) and v.4(¢) = 0 (see
Table A1, item A1, in Appx. A for the full simulation details). For the range in ¢ we are considering,
the truncated solutions are valid up to propagation distances z ~ k:/;l [see Fig. 2.9b)]. As expected,
a larger number of series terms improves the agreement between the model and simulation,
although the improvement seems to saturate at eight series terms (note the overlap between the
curves for n = 8 and n = 10 in Fig. 2.9).

2D cylindrical, flat-top transverse profile

For a flat-top transverse profile, the right-hand side of the centroid differential equation already
depends linearly on vy, (see Eq. 2.62). We can define the operator as

Rised =288 1) Kam) | d€/sinC = )7(€) (4r(0) = l0)) (2129)

and once again replace it in the general model (Egs. 2.122 and 2.123). Note that the branches of
Eq. 2.62 are continuous at r,(¢) = r,(¢’) (which is also the case when r, is constant).

The power series model in this geometry is compared to a 3D PIC simulation in Fig. 2.10, with
the initial conditions y.(¢) = 0.027sin(¢) and v.o(¢) = 0 (see Table A.2, item A.2.1, in Appx. A for the
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full simulation details). Here the accuracy of the model extends to longer distances (both along the
bunch and along the propagation distance) than in Fig. 2.9. Figure 2.10b), for example, indicates
reasonable agreement can be maintained up to z ~ 2 kgl, although some signs of nonlinearity have
begun to appear at this point [see Fig. 2.10a) for ¢ = [0, 20] k;l].

2.5 Comparison of evolution models

In the last two sections, we have presented two analytical models that can describe the evolution
of the bunch centroid as the particle bunch undergoes the HI. Each of these models has different
underlying assumptions, as well as advantages and disadvantages. Here we briefly compare the
asymptotic and power series models to a 3D PIC simulation with parameters that are representative
of the remainder of this dissertation.

It is only possible to compare the asymptotic and power series model directly for a flat-top
transverse profile in cylindrical coordinates, and assuming an initial centroid perturbation at k,. We
once again assume the initial centroid y.(¢) = 0.027 sin(¢).

To quantify the accuracy of the theoretical models, we average the amplitude of the theoretical
(ye,tn) @and numerical (y.sim) centroid oscillation over one period ()\,) and calculate the relative
difference between the simulation and the model. The relative error Aly,| is therefore defined as

<|yc,th|>>\p - <|yc,sim|>)\p

A|yc| =
<|yc7sim|>>\

(2.130)

P

Figure 2.11 displays the relative error obtained in this case for the asymptotic model [Fig. 2.11a)]
and the power series model truncated at n = 8 [Fig. 2.11b)]. Though the asymptotic model
can accurately describe the centroid along most of the (-range we are considering early in the
development of the instability (2 < 0.2 kgl), the oscillation amplitude quickly explodes along the
propagation. We also note that this model diverges at the front of the bunch, as mentioned before
(here, for ¢ — ¢, = 135 k;l). The power series model, on the other hand, can reproduce the
behavior of the centroid to within a few percent accuracy up to z < 2 k;,l.

We may therefore conclude that asymptotic models are extremely useful to understand qual-
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Figure 2.11: Relative error of the asymptotic model (a) and power series model truncated at 8 terms (b) for
the evolution of the bunch centroid from an initial seed with respect to a 3D simulation. The approximate

validity regions for each model are located beneath the cyan dashed lines. Note that the color scale does
not cover the entire range of values in the data.
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itatively and analytically the growth rates and development of the hosing and self-modulation
instabilities. For a more flexible and quantitative modeling, the power series approach should be
the method of choice.
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Chapter 3

Properties of the hosing instability

The development of the hosing instability in a particle bunch leads to an increased emittance, and
hosing has therefore been seen as a major hindrance for high-quality plasma-based acceleration.
In contrast to the self-modulation instability, the unstable oscillation of a bunch centroid can also
arise for short bunches (with respect to the wakefield wavelength). In the (short-bunch) blow-out
regime [58, 59], there is an assortment of proposed mitigation approaches to choose from [60]. In
this regime, hosing may be suppressed through an energy spread (both an initial chirp or inherently
induced by the driven wakefields) [61], ion motion [62], or tailored plasma ramps [61].

Currently, fewer mitigation options have been put forward for hosing in the linear wakefield
regime. For long bunches there is the additional complexity of the self-modulation instability,
which can couple to the long-bunch, linear-wakefield Hl and whose growth rate is comparable
(see Eq. 2.119). Nevertheless, hosing can be avoided in a fully self-modulated bunch. This requires
strongly seeding the SMI [45], which has been accomplished in experiments by letting an ionizing
laser pulse propagate with the proton bunch and create the plasma [63]. In the future, SMI seeding
may be achieved with a preceding short electron bunch, such that the entire proton bunch self-
modulates [40, 64]. When misaligned, this arrangement may seed the growth of hosing. In the
case of a short bunch (e.g. a witness bunch) in a linear wake, it has been shown that the HI will
naturally saturate at modest levels [65]. However, saturation in the long-bunch case is not yet well
understood, both in the presence and absence of the SMI. It would therefore be useful to develop
further mitigation methods for hosing in the linear wakefield regime.

Besides mitigation, there are reasons to believe that we may not yet grasp some aspects of the
long-bunch HI fully, most prominently the fact that a long-wavelength regime of hosing in long
laser pulses was predicted [66] and observed experimentally [67] in the past. Despite some subtle
differences, such as the different driver velocity and evolution, the physical and mathematical
apparatus that describes the HI and SMI in long laser pulses is analogous enough to long particle
bunches that it is worth investigating whether the same conclusions follow.

In this context, the first step in this chapter will be to obtain the dispersion relation for the
long-bunch Hl, a result that should be analogous to the one for long laser pulses [66]. Following
this, we explore the dependence of the hosing growth rate on the seed frequency from a more
dynamic perspective that places particular emphasis on the instability’s onset, using novel methods
and reaching novel conclusions.
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3.1 Adiabatic dispersion relation

Our approach to obtain a dispersion relation for the hosing instability is relatively established in
plasma physics. Starting from a partial differential equation for the instability in question in the
beam co-moving frame, we transform the variables back into the laboratory frame and substitute
a plane wave solution.

In this case we start from Eqg. 2.89, which assumes a constant bunch radius r,(¢) = 750 = const
and the long-bunch, adiabatic regime (9. f(¢) — 0 and f(¢) ~ 1). We would like to note that Eq. 2.89
can be formulated as two coupled equations for the bunch centroid y. and the plasma centroid
vy [45, 68]:

(55 + uff%) ye = 1k} yy
(02+1) yy =v. . (3)
Although this step is not necessary to derive the dispersion relation, this formulation makes it
clear that the HI can be understood as a coupling between the bunch and plasma centroids in the
adiabatic regime and in the limit of small centroid displacements (y. < 1).
The theory presented in Ch. 2 was described in the co-moving coordinates (z, (), given by

¢ =2 —ctand z =2/, where (7, t) are the coordinates in the laboratory frame. Before transforming
Eq. 2.89 into the laboratory frame, we express it in terms of the unnormalized variables (z., ¢.):

(5?* + kfz) (02, + uk3) ye = uk3 k ye - (3.2)

Using the chain rule, we can substitute the derivatives in Eq. 3.2 by

O, = —% O (3.3)
0. =~ 0+ 0. (3.4)

and transform it into the laboratory frame:
(af + wf,) (Clzaf + % 010, + 02 + ukg) Yo = pikf w2 ye . (3.5)

After substituting plane wave solutions of the form y. o exp[i(kz’ —wt)] in Eq. 3.5 and rearranging,
we obtain the HI dispersion relation:

(aﬂ —1) (a;—/%)Q—m%g @2 =0, (3.6)

where & = w/w, and k= k/k, are the normalized angular frequency and wavenumber, respectively.
Note that this dispersion relation is equivalent to the one for the hosing instability in laser pulses [66],
with the exception of the factor ul%g. We remind the reader that this factor depends on the bunch
parameters and is given by

i2 — N A
Hk% = Ta(rio) Ko (o) (6) i (3.7)

We can obtain the growth rate for the HI as a function of the wavenumber k by solving the
dispersion relation for w and taking the imaginary part of w(k). The resulting curve is plotted in
Fig. 3.1 for different bunch parameters, assuming ny/no = 0.001 and 740 ~ 0.266 kp—lz for an electron
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Figure 3.1: Hosing growth rate as a function of the wavenumber for three different bunch parameters,
according to the dispersion relation Eq. 3.6.

bunch with v = 480 (red) and ~ = 100 (blue), and for a proton bunch with ~ = 480 (green). All three
growth rate curves have a maximum at the plasma frequency (k = k,), as expected. In addition,
there is a tail that extends to long wavelengths (k < k,, A > )\,) and which has been described as
long-wavelength hosing in the context of lasers [66]. This tail indicates that oscillations in the
bunch centroid may grow at frequencies other than the plasma frequency.

By assuming that the centroid takes the form of a plane wave, which extends infinitely in
space and whose time and space dependences are factorable, this approach precludes any
spatiotemporal effects (like the ones built into the asymptotic growth rates discussed in Sec. 2.3).
Though the result we obtained in Eq. 3.6 and Fig. 3.1 is significant for the understanding of the
HI in particle bunches, we will show in the next section how this is not a complete picture of the
instability’s frequency response.

3.2 Dynamic amplitude response

In Sec. 2.4 we discussed the general form of the differential equations for the beam moments m(¢, 2)
associated with the Hl and SMI and we pointed out that the right-hand side of these equations
is always proportional to m(¢, z) when we assume to be in the initial stage of the instability (see
p. 34). More specifically, the integral over ¢’ in the right-hand side will consist of two terms that are
proportional to either m(¢) or m(¢’") (see Eq. 2.62 or Eq. 2.109). This means that these equations
can be written in the form of a harmonic oscillator in z. For hosing in cylindrical geometry and a
flat-top transverse profile, for example, we can write Eq. 2.62 as
d2

(45 + 062 ) el 2) = Pl (38)
where k% (¢, z) corresponds to a natural frequency (note that k may be interpreted as a frequency
via f = k<) and F(¢, 2, y.) to a driving force. In this case these quantities are given by

c
2

. oo 2 /

Ko (C.2) = —2 72 /< d¢’sin(¢ — <’>f<<’>7m L (roe) K () (3.9)
N o0 2 /

F(C2ye) = —202 /< d¢ sin(C — c’>f<<’)m L(ree) Ka(ros) we(C) . (310)

Strictly speaking, Eq. 3.8 corresponds to a parametric oscillator, i.e., a harmonic oscillator whose
system parameters (resonance frequency and/or damping) are allowed to vary periodically. This
degree of freedom can lead to amplifying or damping behavior, depending on the tuning of the

43



system parameter oscillation.

On the other hand, if we decouple the bunch and the plasma (see Eq. 3.1), and purely consider
the initial plasma response to a bunch density perturbation, we can identify the simpler case of a
sinusoidally driven harmonic oscillator. To demonstrate this, let us recall that the plasma density
perturbation én/ng induced by the presence of a particle bunch is given by [9]:

2
<d+1> n_ut (311)
0

If we assume that the bunch profile n, contains an initial centroid perturbation of the form y.(¢)
sin(k ¢), this dependence will be encoded in the right-hand side to Eqg. 3.11, which will act as a
sinusoidal force driving the harmonic oscillator dn (with its resonant frequency k,). By varying the
frequency of the driving force in such a system, once again, it is possible to obtain different growth
behaviors (amplifying or damping).

Both of these interpretations of the theory that describes the HI motivate us to map the
dependence of the oscillation amplitude on a hosing seed frequency. Before we explore this
dependence using a different, transient approach with respect to the previous section, we would
like to briefly revisit some key properties of the sinusoidally driven harmonic oscillator.

3.21 Sinusoidally driven damped harmonic oscillator

Consider the case of a simple damped harmonic oscillator driven by a sinusoidal force with
frequency w:
(07 + 2D 9, + w§) z(t) = A cos(wt) , (3.12)

where D is the damping constant, wy is the resonant frequency of the oscillator, z(t) is the position,
and A is the amplitude of the driving force. The solution for large ¢ is given by (see for example [69,
pp. 111-115])

(1) = ATI(w) cos (wt - qb(w)) , (313)

where the amplitude response II(w) and the phase shift ¢(w) are defined by

1
H(W) = 2 5 (314)
Vi) + 2D w)
tang = 200 (3.15)
wy —w
B by T
— 4r
j =)
< 3t .
2 — /2t
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Figure 3.2: Amplitude response (a) and phase shift (b) of a sinusoidally driven damped harmonic oscillator,
for a damping constant D/wo = 0.1.
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When the driving frequency matches the resonant frequency (w = wy), the oscillation amplitude
is of course maximum [see Fig. 3.2a)] and the oscillation lags the driving force by /2 [see Fig. 3.2b)].
Note that the “phase jump” illustrated in Fig. 3.2b), from 0 to 7, is characteristic of this system.

3.2.2 The hosing amplitude response

Our goal is to measure the amplitude response (or growth rate) of the HI as a function of the seed
frequency. We will again consider a sinusoidal hosing seed, y.o(¢, k) = 0.05sin(¢ k/k,), Where k is
an arbitrary wavenumber. In order to measure the Hl amplitude response, we calculate the ratio
between the centroid after the propagation distance z and the initial centroid. The measured
amplitude response is therefore defined as

_ fL ch(z,C)I g

Mk 2) = G R dC

(3.16)
where L is the length of some region of interest along the bunch. Here we will consider a window
measuring L = 140 k;l, which represents around 22 \,,. Note that this amplitude response does
not correspond to the one defined in Eqg. 3.14, which contains no information about the phase (as
opposed to Eq. 3.16).

We can determine the amplitude response II(k, z) theoretically as long as we can describe the
evolution of the centroid and replace it for y.(z, ¢). During the initial propagation in plasma, we can
assume a constant (z-independent) plasma response, which we can designate (F),), driven by the
centroid perturbation y.9. The solution to Eq. 2.15 (the differential equation for the bunch centroid)
is then simply:

Ye(C,2) = yeo(C) + % 22 (r;n]\;b <Fy0>> . (317)

Note that this corresponds to the power series model described in Sec. 2.4 truncated to first order
(at n = 2). This assumption is valid within the typical timescale for bunch evolution, given by the
betatron period k' = c/wg.

For our analysis of the transient amplitude response we will consider a relativistic (y = 480)
electron bunch with n, = 0.001 ng in 2D Cartesian geometry and with a Gaussian transverse profile,
with the RMS transverse size o, ~ 0.27 k;l. The longitudinal component of the bunch profile
(G y) = mvo - f(C) - gy, C) is defined as

f(C)z% (1+cos< WC_CC)) , (318)

2 o,

where o, ~ 160 kz;l is the RMS longitudinal size, ¢, = ¢, — V270 is the location of the bunch center,
(s =135 k;l is the location of the bunch front, and f(¢) is bounded by the limits ¢ = ++/270, + (..
In this case, and assuming that the bunch envelope stays constant at ¢, the plasma response is
given by (see p. 17)

(F,) = \/?jfj () 0, exp(o?) /4 "¢ sin(c - ¢) £(¢)

€
yc(c/) - yc(C) +2 0—5
20,

{eXP [QC(C/) — ()] erfc [

—exp [ye(¢) — ya(gl)} erfc

20,

|fUc(<) —ye(¢) +2 ‘773

} . (319)
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Figure 3.3: Hosing amplitude response as a function of seed wavenumber and propagation distance
according to theory: full evolution (a) and line-outs at different distances (b), where the grey dash-dotted
line represents the dispersion relation Eqg. 3.6 in arbitrary units.

The resulting amplitude response I1(k, z) according to theory (calculated numerically) is shown in
Fig. 3.3a), where 1 has been subtracted from the data in order to clearly distinguish between areas
where the initial oscillation amplitude has grown (red) or decreased (blue). This damping effect
for short wavelengths (k > k,), in fact, has not been previously predicted, either in the context
of the HI in particle beams or laser pulses. As expected, the maximum growth is progressively
observed at the plasma frequency (k = k,), which is also evident in the line-outs of Fig. 3.3b) (see
blue curve).

The amplitude response corresponding to the adiabatic dispersion relation in Eq. 3.6, which is
proportional to exp[Im(w)], has been included in Fig. 3.3b) as a grey dash-dotted line for comparison.
Although this method of computing the hosing amplitude response has equally yielded a long-
wavelength tail, there are obvious differences between this amplitude response at later times
[see blue curve in Fig. 3.3b)] and the adiabatic dispersion relation, which, for example, does not
predict a damping regime (II(k, z) < 1). Additionally, note that the late-time curve for II(k, z) (at
z=2 kﬁ‘l) bears both similarities and differences with respect to the harmonic oscillator case in
Fig. 3.2a): though both amplitude responses peak at the resonance frequency and are unity for a
zero frequency, the Hl amplitude response does not converge to zero for infinitely large frequencies
[see blue curve in Fig. 3.3b) as & — oc].

A particularly interesting aspect of Fig. 3.3b) is the shape of the early amplitude response
(z < k3!, red and green curves). We take a closer look at this regime in Fig. 3.4a), and validate the
curve at z = kzgl against 2D Cartesian PIC simulations with the same bunch parameters as above
(see Table A1, item A3, in Appx. A for the full simulation details). There is excellent agreement
between theory and simulations. We note that an identical theoretical curve can be obtained
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Figure 3.4: a) Hosing amplitude response according to theory (green line) and simulations (red crosses) at
z = kgl, where each cross symbol represents a simulation initialized with a centroid perturbation at k. b)

Comparison of the amplitude response along z according to theory and simulations (interpolated linearly

along k).
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in cylindrical coordinates (assuming y. < 1), but a comparison to 3D simulations would have
been much more computationally expensive. These effects are therefore not limited to a 2D slab
geometry and in fact we use 3D simulations later in this dissertation to explore the implications of
this result.

In contrast to later times, the magnitudes of maximum growth (II(k,z) > 1) and damping
(IT(k, ) < 1) in Fig. 3.4a) are identical, and their locations on the &k spectrum in close proximity. This
means that these two radically different growth regimes are potentially accessible with only a small
amount of detuning, or frequency shift (in k). After some propagation in plasma not only does the
magnitude of resonant growth (k = k,) become several times that of maximum damping, but the
locations of both extrema, kmax and kmin, shift with increasing z, with knax — &, and ki, — oo [see
Fig. 3.3a)]. A further observation is that the maximum growth is not attained for k& = &, (as generally
assumed for the HI) during this initial phase of propagation, but at a slightly lower value (k ~ 0.98 k,,,
estimated numerically). Note that the location of this maximum depends on the particular bunch
and plasma parameters, and moves along the propagation distance.

Figure 3.4b) demonstrates that the power-series-based theoretical model can accurately
reproduce the amplitude response up to two betatron periods of propagation. Note that the
simulation data, which is very sparse along the k axis, has been interpolated linearly to render a
comparable image.

The explanation for the behavior displayed on Fig. 3.4a) is connected to the phases of the
oscillations of the bunch centroid and the plasma response, which will be demonstrated in the
following section.

3.2.3 The hosing phase response

To understand the early amplitude response of the HI, we can study the immediate plasma response
to a centroid perturbation, i.e., (F,o). We are particularly interested in the relative phase shift
between this oscillation and the “force” driving it (the initial perturbation y.q).

Figure 3.5a) shows the initial centroid and the initial plasma response (F,,) for three different
seed wavenumbers, as obtained from the 2D PIC simulations represented in Fig. 3.4. These three
wavenumbers illustrate the three different growth regimes we can identify in the hosing amplitude
response [see Figs. 3.3 and 3.4]:

* slow growth (k < k),
 resonant growth (k = k,),
o damping (k > k,).

For k = 0.9 k, (slow growth), the plasma response is almost in phase with the centroid per-
turbation [see Fig. 3.5a), top]. Conversely, (F,o) is almost fully out of phase for £ = 1.1 k,, [see
Fig. 3.5a), bottom], thus acting in the opposite direction of the perturbation y., at every slice
and justifying the damping effect. For k = k, (resonant growth), the wakefield response lags
the centroid perturbation by 7/2, which we might expect based on the phase behavior of the
sinusoidally driven damped harmonic oscillator (see p. 44).

Since (F,) initially oscillates at & (along ¢), a phase shift A¢ between both periodic curves can
be measured straightforwardly. The relationship between A¢ and k is shown in Fig. 3.5b), as
obtained from the 2D simulations and the theoretical (F,q), using a cross-correlation method (see
Appx. B for further details).
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Figure 3.5: a) Initial centroid (dark grey) and average transverse force (red) for three different seed
wavenumbers, obtained from 2D simulations at z = 0. b) Phase shift between the initial y. and (F,) as
a function of the seed wavenumber, obtained from theory (green) and simulations (red cross symbols).

There is excellent agreement between theory and simulations for & > 0.5 k,. The simulation data
points for k < 0.5 k, [grey cross symbols in Fig. 3.5b)] are not valid, since the simulation window
length becomes comparable to the perturbation wavelength (L/\ < 10). The theoretical curve was
obtained by scaling the nominal window and bunch lengths (L = 140 k;l and o, ~ 160 kzjl) by 1/k,
thereby encompassing several periods in the analysis.

The three growth regimes are again evident in Fig. 3.5b): two asymptotes at A¢p =0 and A¢ =,
corresponding to the slow growth and damping regimes, respectively, and a transition region
where A¢ crosses 7/2, corresponding to the resonant regime. Note that the phase behavior of the
sinusoidally driven damped harmonic oscillator illustrated in Fig. 3.2b) is identical to the phase
shift curve obtained in Fig. 3.5b).

3.3 A new mitigation method

Figure 3.3 suggests that there is a range of wavenumbers where the amplitude response is, either
temporarily or consistently, below one. This leads to the following immediate question: can this
damping regime be used to suppress the hosing instability?

One might consider operating exclusively in the damping regime, thereby not only preventing
the growth of hosing but also even reducing the initial seed amplitude. This does not work, however,
as we demonstrate in the following.

Let us assume that that the centroid evolves as y.(¢, z) = A(z) sin[k¢ — ¢(2)], where A(z) and
©(z) are a time-evolving oscillation amplitude and phase shift, respectively. The corresponding
(normalized) centroid velocity, defined as v. = v, ./c = dy./dz, would therefore evolve according to

ve(C, 2) = A'(2) sin[k¢ — ¢(2)] = A(2) ¢'(2) cos[kC — p(2)]

= A'(2) sin[k¢ — p(2)] + A(2) ¢'(2) sin[kC — p(2) — g] , (3.20)

where the prime denotes a derivative in 2. Early in the propagation, the amplitude varies slowly
and we can neglect the first term in Eq. 3.20. The centroid velocity v, o sin[k{ — ¢(z) — 5] and
the centroid y. « sin[k{ — ¢(2)] are therefore shifted with respect to each other by 7. Since what
determines the growth regime is the relative phase shift between each quantity and (), this
means that the initial plasma response will impact y. and v, differently. Along the propagation, the
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phase-shifted term of v. (second term of Eq. 3.20) may become less dominant.

Naturally, we have not avoided the HI by eliminating the centroid displacement yet allowing
significant transverse momentum to build (in the form of the centroid velocity). The reasoning
above demonstrates that we must alternate between the two non-resonant growth regimes in
order for an attempt at mitigation to work, such that we can suppress both y. and v.. To evaluate
the degree of hosing mitigation, we must define a measure that takes both of these quantities into
account.

An energy conservation equation can be obtained by multiplying Eq. 3.8 by v,

d

—(302¢2) + F ko6, 2) 4G 2) ) = vel,2) FIG 2w (3.21)
S
5kin(<7 Z) 8pot (<7 Z)

which allows us to define a kinetic and a potential energy &, and &, respectively, in analogy
with a conventional harmonic oscillator. The energy source term (the right-hand side of Eq. 3.21)
represents an effective force acting on each slice of the bunch centroid, which moves with v.. In
reality, energy conservation is not guaranteed by Eqg. 3.21 due to the same assumptions underlying
Eqg. 3.8, namely that k&, kg and the bunch density profile do not change over time. This equation is
nevertheless useful to us since it provides an overall measure of the transverse energy associated
with the growth of the HI, defined as

5(<a ,Z) = gkin(<7 Z) + gpot(<7 Z)
= 102(¢,2) + 3 ko (G, 2) y2(C,2) - (3.22)

The ensuing issue is how to access the different growth regimes. In a realistic set-up, although
we might conceivably choose the seed wavenumber (the initial perturbation frequency), we cannot
control k£ as the bunch evolves in the plasma. However, we can control the local plasma density
and therefore the ratio of k (fixed in the centroid perturbation) to the local plasma wavenumber &,
thereby operating in different growth regimes.

For this shifted perspective, let us consider a reference plasma density ng (e.9. ng = 0.5 -
10~ e¢cm—2) and a bunch with fixed, physical-unit parameters (e.g. o, = 12 cm), seeded with a
centroid perturbation at the plasma frequency corresponding to ng, which we can define as k, ¢. If
we now vary the density n, of the plasma in which this bunch propagates, the seed at &, o will be
either above or below the resonant wavenumber k, given by n,, which means that we can probe
the amplitude response at different frequencies in that plasma. Note that the normalized bunch
parameters will equally scale with n, (e.g. ’% + ’;—b(f or kpo. # kpoo.), which impacts the wakefield
properties.

We can obtain the theoretical amplitude response as a function of the local plasma density n,
using the same procedure as in Fig. 3.3. Here, the bunch has the parameters described on p. 45
at a plasma density ny = 0.5 - 10~* cm~3. The amplitude of the initial centroid perturbation is the
only quantity which is not fixed in physical units, and is instead kept at the same normalized value
(0.01 k,) for all densities n,. The result is shown in Fig. 3.6a). The shape of the early amplitude
response is visible in Fig. 3.6b), where line-outs were taken at z = 0.5 kgl (red) and z = k:gl [green,
compare with Fig. 3.4a)]. Note that the locations of the maximum growth and maximum damping at
z= kgl are more asymmetric with respect to the resonance as a function of n, than as a function
of k [Fig. 3.4a)].

As argued above, a mitigation set-up would require propagating the hosed or seeded bunch
through plasma sections with different densities. In fact, “plasma density detuning” has been
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Figure 3.6: Hosing amplitude response as a function of relative plasma density and propagation distance
according to theory: full evolution (a) and line-outs at different distances (b).

mentioned before as a way to potentially mitigate the Hl in laser pulses [70] and, more specifically,
the use of a plasma density step has been proposed to control the SMI in particle bunches [71, 72].

The power series model can be applied to a varying plasma density n, as long as we assume
that the density does not change at the length scale of kgl. Our goal is to treat the plasma density
changes as instant and therefore neglect the dependence of n, on z. In that case, we can normalize
the entire model to the local plasma density in each section, and use it to estimate the optimal
density profile for mitigation purposes. If we assume a simple step-like profile, for example, the
free parameters are the “height” of each step, An,, its length, Az;, and the total number of steps.
A set of optimal parameters can be found through a numerical parameter scan based on the power
series model, although there is a significant limitation in the fact that the model is only valid for
z < kgl.

As a proof of concept, we present two configurations based on one and two pairs of plasma
density steps, shown in the inset of Fig. 3.7a). The parameters for these density steps were
found by experimenting with the power series model. In order to test the effect of these density
profiles, we simulate the propagation of an electron bunch seeded at &, ¢ either through the density
steps or through resonant plasma (at the constant density ng) in 3D geometry (see Table A.2,
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Figure 3.7: Centroid data obtained from three OSIRIS 3D simulations. a) Transverse energy of the bunch
relative to the initial value along the plasma (integrated over the simulation domain): plasma at no (grey),
with two density steps (red), and with four density steps (green). Inset: plasma density profiles of the two
density step configurations. The vertical dash-dotted lines indicate the boundaries of each density step.
b) Centroid phase space at two neighboring positions along the bunch, ¢ ~ 1.5 k; ! and ¢ ~ 4.7 k", for all
three cases, up to either z = 2.4 kgl (grey and green curves) or z = 1.5 lcgl (red curve). The unfilled circles
represent the beginning of the plasma (grey) and the locations of each density step (red and green). Inset:
magnified view of central region.
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items A.2.1-A.2.3, in Appx. A for the full simulation details). The bunch profile is transversely
a flat top with ryy =~ 0.27 k;é and longitudinally cosinusoidal, and the inital centroid is given by
Yeo(€) = 0.027sin(¢) (note that ¢ is normalized to k:;é). Note that, for an arbitrarily shaped initial
centroid, the fastest growing mode is sinusoidal, which means that this strategy would suppress
the growing component of any seed. Once again, the simulation domain comprises only the head
of the bunch, with a length L = 140 k;;l, corresponding to around 22 A, .

Figure 3.7a) displays the the resulting transverse energy as a function of the propagation
distance. The wavenumber k7, (¢, z), necessary for obtaining £(¢, z) (see Eq. 3.22), is computed
directly from the z-evolving simulation data. In this geometry, k%, (¢, 2) is given by Eq. 3.9, where
the normalized longitudinal profile f({’, z) is measured on axis. For a complete picture of the beam
at every time step, we normalize £((, z) to the initial energy &£y(¢) and integrate this along ¢ over
the simulation window.

After two density steps [compare grey and red curves in Fig. 3.7a), at z = 1.5 kgl], the energy
is smaller than in the resonant case by almost two orders of magnitude (and lower than &, the
initial value associated with the seed). It is possible to extend this suppressive effect by stacking
a further pair of density steps with specific parameters, as demonstrated by the green curve in
Fig. 3.7a), where the transverse energy has been lowered even further after four density steps. The
full bunch distribution as well as the centroid after each pair of density steps is visible in Fig. 3.8
(first three rows). Note the increasing effect of self-focusing after z ~ 2 kgl (see xz projections in
Fig. 3.8).

The effect each detuned section has on the bunch centroid and centroid velocity is illustrated in
Fig. 3.7b), where the evolution of these quantities along the density steps is plotted as a “centroid
phase space”. Two locations along the bunch are represented in Fig. 3.7b), corresponding to a
consecutive peak and trough in the initial centroid oscillation (shown in Fig. 3.8 as two grey dashed
lines in the xy projection at z = 0). The first density step prevents some growth in v., while the
second step decreases the amplitudes of both y. and v. [compare grey and red curves in the
magnified inset of Fig. 3.7b)]. A third density step can suppress some of the centroid displacement
at the expense of a small momentum increase, but it is clear that the fourth step is approaching
the limits of this suppression mechanism, since the momentum is now allowed to rise quickly [see
green curves in the magnified inset of Fig. 3.7b)].

After both density step configurations, however, the growth rate tends to be exacerbated and
saturation is reached at similar transverse energy levels as in the resonant case, as made obvious
in Fig. 3.7a) or Fig. 3.8 (bottom row).

3.3.1 Limitations

The analysis performed in Fig. 3.7 suggests that the growth of the Hl is temporarily delayed rather
than fully avoided. To try to understand the reason for this, we can analyze the behavior of the
plasma response along the propagation.

The transition from the density steps back to resonant plasma seems to be associated with a
sudden increase of the average transverse force acting on the bunch centroid, as demonstrated in
Fig. 3.9a) (solid lines). This field increase can be at least partly explained by the higher degree of
self-focusing observed with any of the density step configurations in comparison to the constant-
density case [see dashed curves in Fig. 3.9a)].

A further explanation for the increase likely stems from the realignment of the “suppressed”
centroid with the plasma response after each density step configuration, at an ideally resonant
phase shift of =/2. This is visible in Fig. 3.9b), which displays the relative phase shift between (F,)
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Figure 3.8: Bunch distribution data from three OSIRIS 3D simulations. Isosurfaces (pink volume) and pro-
jections (grey color scale) of the bunch density at four different propagation distances (rows) in resonant
plasma (left column, yellow curves), with two density steps (center column, red curves), and with four
density steps (right column, green curves). The centroid for each case is plotted on the zy projection. The
two grey dashed lines in the zy projection at z = 0 mark the positions along ¢ at which the centroid phase
space of Fig. 3.7b) is measured.
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Figure 3.9: Analysis of the transverse wakefield forces in three OSIRIS 3D simulations: resonant plasma
(dark grey curves), two-step density profile (red curves) and four-step density profile (green curves). a)
Amplitude of (F,) (solid lines), and RMS bunch size along y (dashed, semi-opaque lines), both averaged
longitudinally over the simulation domain. b) Relative phase shift between (F,) and the centroid y.. The
vertical dash-dotted lines indicate the density-step transitions in the plasma density profile.
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Figure 3.10: Impact of a two-step configuration for hosing mitigation [see inset of Fig. 3.7a), red line] on
a self-modulated bunch, measured in four OSIRIS 2D cylindrical simulations. Average amplitude of the
longitudinal wakefields (a) and relative bunch charge (b) along the plasma, with (solid lines) and without
(dashed lines) the two-step configuration, and with (purple) and without (blue) an early SMI-optimizing
density step. The vertical grey dashed lines delimit the two density steps (for hosing mitigation). The
average of | E.| is taken longitudinally over the simulation domain and up to a radius r = k; ! and the bunch
charge is summed up to r = k, .
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and y. along the propagation, at z = 1.5 kgl for the two-step configuration (red line) and z = 2.4 kgl
for the four-step configuration (green line). Eventually, however, saturation is reached, and this
seems to be associated with the phase shift converging to = [compare with the energy saturation
levels observed in Fig. 3.7a)].

A realistic set-up where linear, long-bunch hosing would need to be suppressed would likely
involve the self-modulation instability as a desirable method to manipulate the wakefield driver.
It would therefore be important for this mitigation approach not to have a large impact on the
benefits brought on by the SMI. However, this is not exactly the case, according to Fig. 3.10a), and
this therefore constitutes a further limitation of this hosing mitigation approach.

Using simulations in 2D cylindrical axisymmetric geometry, where hosing is unobservable, we
can test the direct impact of the two-step configuration [red line in the inset of Fig. 3.7a)] on a
self-modulated bunch. We let the electron bunch self-modulate approximately until the instability’s
saturation and then traverse the two density steps. The simulation parameters are identical as
before, with the exception of the bunch profile (transversely Gaussian, cut abruptly at the bunch
center to emulate an ionization front) and the longitudinal window size (L = 280 k;l) (see Table A.4
in Appx. A for the full simulation details). We also consider the case where a small density step is
introduced early in the SMI development with the purpose of extending the high field amplitude
after its saturation [71, 72].

The resulting accelerating field amplitude is plotted in Fig. 3.10a) for all cases. Even though the
average amplitude recovers after the steps (bounded by the vertical dashed lines), there is still
a decrease of around 36% (blue curves, no SMI optimization) or even 44% (purple curves, with
SMI-optimizing density step) by the end of the simulation. Part of this fall could be due to the
loss of bunch electrons previously in focusing phases of the wakefields. Surprisingly, however,
Fig. 3.10b) suggests that the impact of the density steps on the bunch charge is rather limited.
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Chapter 4

Properties of the self-modulation
instability

Self-modulation was initially observed in simulations of long, intense laser pulses propagating
in plasma [73, 74]. The resonant excitation mechanism it entails, whereby the envelope of the
driver becomes modulated, leads to very high wakefield amplitudes, which can be exploited
for acceleration. Though self-modulated laser drivers have meanwhile fallen out of favor’, the
self-modulation instability in long, highly energetic, relativistic particle bunches is currently being
explored as an option for plasma-based acceleration.

The onset of an instability can be due either to noise or to a seed, i.e., a signal of higher
amplitude than the noise level. When the SMI begins to grow from noise, both the phase of the
wakefields along the bunch as well as their amplitude vary randomly from event to event and
thus prevent the reliable acceleration of injected particles. In principle, seeding the instability is
a means to fix the final phase and amplitude of the wakefields once the process has saturated.
Seeded self-modulation was demonstrated by the AWAKE experiment both using a relativistic
ionization front (RIF) [63, 77], which is created by an optical laser, and a short electron bunch as
the seed [64].

The development of the SMI in a particle bunch carries an important drawback. Although the
driver propagates relativistically through the plasma, it has been shown both theoretically [42] and
through numerical simulations [78] that the phase velocity of the wakefields sinks below ¢ during
the instability’s growth. This makes it unworkable to accelerate electrons from the beginning of the
plasma, since they can easily slip into defocusing or decelerating phases and be lost. Electrons
must therefore be externally injected near or after saturation of the SMI, when the wakefield phase
velocity has converged to the driver velocity [42, 78].

In the first part of this chapter, we investigate how the seeded SMI is impacted by noisy initial
conditions, where there is a direct connection with the AWAKE experiment and its parameters. In
the second part, we delve into more fundamental aspects of the instability, where the goal is to
map out its response, or growth, as a function of arbitrary perturbation frequencies.

"Note that a recently proposed scheme called “plasma-modulated plasma accelerator” (P-MoPA) [75, 76] aims to
generate wakefields resonantly by modulating a long laser pulse in plasma. This modulation technique, however, is
based on photon acceleration (i.e., spectral modulation) and dispersive optics, which is entirely different from the self-
modulation instability.
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4.1 Influence of proton bunch parameters on the saturated SMI

One of the key requirements for high-energy-physics accelerators is reliability. Every machine
is subject to fluctuations, but for a mechanism based on the development of an instability, the
immediate question is whether reasonable fluctuations of the initial conditions can disable the
accelerator. In the case of AWAKE, the characteristics and timing of the driver bunch may vary
from shot to shot, which could impact the development of the SMI and the resulting accelerating
structure.

It is therefore crucial to ensure the stability of the wakefield amplitude and phase in the
presence of input fluctuations. Phase stability is especially critical since the accelerated electrons
may otherwise slip into defocusing and decelerating regions of the wakefields and be lost. The
transverse component of the wakefields lags the longitudinal component by a fourth of a period,
which is a consequence of the Panofsky-Wenzel theorem [79]. This means that the regions of the
wakefields which are both accelerating and focusing are only ), /4 long (in the linear regime).

In this section, we will focus on the effects of bunch parameter and plasma radius fluctuations
on the amplitude and phase of the wakefields after saturation of the SMI, where acceleration over
a long distance can in principle start. We then use test electron calculations to infer the same
effects on the energy of the accelerated electrons, and to study the optimal injection conditions
that lead to the highest acceleration.

411 Methodology and simulation parameters

The effects of initial bunch parameter variations are studied through PIC simulations in two-
dimensional, axisymmetric cylindrical coordinates. The values of a set of proton bunch parameters
are varied independently and the respective simulations are compared to a baseline simulation
with parameters similar to those of AWAKE. Note that the hosing instability, which may compete
with the seeded SMI, cannot be described in a cylindrical, axisymmetric geometry. We therefore
assume here that the self-modulation seed is large enough to prevent the growth of the HI [45]
within 10 m of propagation.

In the simulations used for this work, a moving window approximately 33 cm long and 1.6 mm
high moves at ¢, containing a proton bunch (moving at ~ ¢) as the latter propagates through the
ten-meter-long plasma. The proton beam has a Lorentz factor ~, ~ 480 (corresponding to 450 GeV),
an energy spread of 0.035%, and a normalized emittance of 2.5 mm mrad. The RIF seeding is
modeled as a sharp rising edge at the center of the proton bunch density profile, which is given by

ny(¢,r) = % [1 + cos ( gC — CC)} e (4.7)

O2b

for ¢, — 2o, < ¢ < ¢, Where (. is the position of the center of the bunch, ¢, is the position of the
RIF, and o, and o, are the RMS bunch length and radius, respectively. When the RIF is located at
the center of the profile, ¢, = (.. The plasma fills the simulation window up to the ionization radius
rp, = 1.5 mm. The remaining simulation parameters can be found in Table A.5, item A.5.1, in Appx. A.

The following physical parameters were used in the simulations: ng = 7x 104 cm=3, 0., = 12.6 cm,
and o,, = 283 um. The peak density in Eq. 4.1 is calculated by rearranging the fully integrated
bunch profile (which equals the total number of bunch particles N), i.e.,

2Ny
n = =75 5
b0 (27.(.)3/2 072'b b

(4.2)
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Figure 4.1: Average absolute value of E. forr < k,*
as a function of the propagation distance for the
baseline simulation and for +£5% variations of the
bunch population.

Figure 4.2: Relative deviation of the average abso-
lute value of E, for all the parameter variations.

giving nyo ~ 1.89 x 10'2 em =2 for the proton bunch population N, = 1.5 x 101,

Although we have chosen parameters that are representative of the AWAKE experiment, the
findings reached here should be general. We have confirmed that this is the case by performing
additional simulations with a different set of initial conditions (e.g. double the bunch charge).

The following parameters were independently varied by £5%: o,;, 0,4, Ny and r,. The RMS
timing jitter of the proton bunch with respect to the ionizing laser pulse At was also varied by 15 ps.
Note that At in practice constitutes a shift in the longitudinal bunch profile, thus encompassing
either more or less driving charge. Here we will assume that the plasma density and thus the
frequency of the wakefields do not vary. The plasma source developed for AWAKE is capable of
preserving a constant density along the entire propagation distance to within 0.2% [80]. Larger
density variations will be studied in Sec. 4.2.

41.2 Effects on the wakefield amplitude

Both the wakefield amplitude and the SMI growth rate depend on the bunch density. The wakefields
driven by each self-modulated microbunch can reach an amplitude of the order of E, = Ey(nyo/no)
(in the linear regime). Since ny is given by Eq. 4.2, we expect to observe a general dependence of
the wakefield variation according to E, o< N,/(0.402,).

To quantify this variation, we compare the average absolute value of the longitudinal field
component (|E.|) along the propagation distance z for each input parameter variation. The average
(-) is computed for the entire simulation window up to a radius of one plasma skin depth (k;1 ~
201 pm for ng = 7 x 10'* cm~3). The resulting data is shown in Fig. 4.1 for the baseline parameters
and for variations in the bunch population N,. In all three cases, the average fields grow rapidly
until around z = 4 m, after which the self-modulation process saturates and the overall wakefield
amplitude gradually decreases. As expected, more (less) bunch charge leads to a higher (lower)
field amplitude.

The effects can be better visualized by normalizing the measured amplitude at each z to the
baseline case. This relative deviation, defined as ¢ (|E.|) = ((|E.|) — (| E: basetine|)) / {| Ez baseline|), IS
plotted in Fig. 4.2 for all parameter variations. In general, the effects are maximum during the
growth of the SMI (2 < 4 m), reaching ¢ (|E.|) =~ 26% at z = 2.8 m for 0.95 o,,. However, after
saturation of the SMI (» > 6 m) all cases converge to the baseline amplitude within +2%.

During the growth phase of the SMI, where linear wakefield theory is still valid (z < 4 m), the
trends in Fig. 4.2 are roughly consistent with our expected scaling E, o« N,/(c.,02,): an increase of
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Figure 4.4: Examples of the harmonic fit to a seg-
ment of E, located around ¢ ~ —1.5 o, at three
different positions along the plasma. The solid lines
correspond to the data (smoothed) and the dashed
lines to the fits.

N, by 5% produces higher values for (|E,|), for example, and the variations in ¢.;, and o, cause
inversely proportional effects, with the o, parameter variations causing the largest effects. There
is also a distinct effect on the growth rate, as evinced by the different slopes up to z = 3 m in
Fig. 4.2.

Since the timing jitter At is small when compared to the bunch duration we expect its main effect
to be associated with an increase or decrease in total charge driving the wakefields (corresponding
to N, £ 2.85%). Finally, a r, + 5% variation seems to have no significant effect on the wakefield
amplitude, at least for our choice of the baseline plasma radius. A smaller plasma radius can
enhance the wakefield’s focusing force and hence the SMI's growth rate by hindering the plasma’s
shielding response to the charge in the drive bunch [81]. However, this effect only becomes
prominent when r, approaches o,;,, which, despite the variations of £5%, is not the case here.

41.3 Effects on the wakefield phase

We now turn our attention to the behavior of the wakefield phase. Both numerical and theoretical
work has shown that, during the growth of the SMI, the phase velocity of the wakefields varies
along the plasma and along the bunch, eventually converging towards the driver velocity after
saturation [42, 78]. This is exemplified in Fig. 4.3, where the on-axis line-outs of the longitudinal
wakefields for each z are stacked and represented in a color scale. Since the simulation window
moves at ¢, a negative slope in this graph means that the phase velocity of the wakefields is
subluminal, while a positive slope indicates that it is superluminal. The relativistic proton bunch
moves at approximately the speed of light, so its velocity would correspond to a vertical line in
Fig. 4.3 (more precisely, Az/A( ~ —2~2 for bunch particles).

As demonstrated in Fig. 4.3, the wakefields are slower than ¢ during the growth of the SMI,
i.e., for < 4 m (see negative slope). After saturation, however, the wakefield velocity behaves
differently for different regions along the bunch. Far behind the RIF [around —2.5 o, Fig. 4.3(a)]
the phase velocity is superluminal for z > 5 m, while around ¢ =~ —o; it is subluminal (not shown).
The ideal region to inject witness electrons would therefore be around 1.5 ¢.;, or 18.9 cm behind
the RIF [see Fig. 4.3(b)] in this case. Experimentally, the injection position along the bunch can be
scanned so as to find the optimal ¢ position for maximum electron acceleration.

The effects of the parameter variations on the wakefield phase are studied quantitatively by
fitting the function f(¢) = A sin[k, (¢ — ¢s) + ¢] (expected for linear wakefields) to 2.5-),-long
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Figure 4.5: Wakefield phase shift along the propa- Figure 4.6: Wakefield phase shift along the prop-
gation distance, at three different locations along agation distance for all parameter variations, at
the proton bunch. ¢~ —1.5 0.

segments (starting at () of E, on axis (see Fig. 4.3), where A and ¢ are the fitting parameters. The
value of ¢ is always relative to the seed position (.

As an example, the fit to a segment located around ¢ =~ —1.5 o,; is shown in Fig. 4.4 for three
different propagation distances. The fit is worst around the saturation point of the SMI (see curves
for z = 5 m), where the fields show signs of nonlinearity (wave steepening). However, the purpose
of the fit is to define a local phase shift with respect to ¢,, which is accomplished if the phases of
both curves match, as is the case.

The result of this analysis is shown in Fig. 4.5 for three different positions along the bunch. Note
that the burgundy and black curves correspond to the same locations as in Fig. 4.3. Figure 4.5
again suggests that the region around 1.5 0., behind the RIF is particularly suitable for electron
injection, since the phase velocity (and ¢) remains stable after saturation and is approximately c.

The position ¢ ~ —1.5 o, was chosen for the comparison of the effects from the parameter fluc-
tuations, shown in Fig. 4.6. We may estimate a theoretical scaling for the phase shift using an asymp-
totic model for the SMI, which is valid for k,|(| > kszz (long-bunch, early-time regime; see Eq. 2.118
on p. 34). The longitudinal wakefield component then behaves as E. o cos [k, ¢ — § + ¢((, )], with
the phase shift (¢, z) « njs® [42]. The condition above is fulfilled for ¢ ~ —1.5 0., and z ~ 10 m,
with k,[(| =~ 940.4 and kgz ~ 1.9. Nevertheless, the phase shift in Fig. 4.6 only displays a relationship
of the form ¢ o N/?/ (0.402,)"/* (where we used Eq. 4.2) roughly between z = 3.5-5 m.

The largest effects on the wakefield phase are again observed before the saturation of the
SMI, at z = 2-3 m (see Fig. 4.6). Here, the largest difference is of roughly 27/20 for 0.95 o, at
z ~ 2.5 m. After this point, phase variations are limited to +0.4 rad (corresponding to approximately
A\p/16), an estimate constrained by simulation noise. Moreover, the phase becomes constant after
z ~ 6 m in all cases, which is also the point after which the wakefield amplitude becomes essentially
independent of the input parameter variations (see Fig. 4.2).

41.4 Behavior of accelerated electrons

The characteristics of the accelerated electron bunch are the most important experimental output
in the AWAKE experiment, and they are non-trivially dependent on several factors besides the
wakefields themselves, such as the electrons’ initial velocity or the injection point along the plasma.
Consequently, the wakefield effects reported above are not sufficient to infer possible effects on
the accelerated bunches.

To estimate the effects of input fluctuations on accelerated electrons, we devise a simple,
one-dimensional diagnostic where the transverse dynamics of the problem are put aside, but
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Figure 4.7: Final energy of on-axis test electrons at Figure 4.8: Maximum final energy found through
2z = 10 m as a function of their injection point and the 1D diagnostic of Fig. 4.7(a) for three different
initial position along the bunch, as obtained from (a) parameter variations (§ = 0 corresponds to the
the 1D pusher and (b) a PIC simulation (peak value, baseline parameters).

for electrons initially at r < 0.5 k;l). White areas

correspond to lost electrons. The shaded areas in

(a) correspond to the data in (b).

where dephasing is contemplated. This diagnostic essentially assumes that the electrons stay on
the axis at all times, feeling zero transverse forces. Since E, peaks on the axis and decays radially,
an electron performing any transverse motion about the axis is subject to weaker longitudinal
forces than if it is propagating exclusively along it (the most effective trajectory in terms of energy
gain). This approach thus provides a best-case scenario for the energy gained by accelerated
electrons.

Using the on-axis accelerating wakefield E, obtained in the simulations, we place test particles
all along ¢ and at every available propagation distance, and calculate their one-dimensional evolution
up to z = 10 m with a particle-pushing Boris algorithm. The output is the energy gain acquired by
an electron () as a function of its injection point along the plasma (zi,;) and its initial position
along the bunch (¢y). The initial energy of the test electrons is vy = 39.1, or approximately 20 MeV,
which is the maximum range of the electron injector commissioned for AWAKE Run 1 [18]. The
spatial resolution of these results is limited to the resolution of the simulation box in the ¢ direction
(which in this case means that at most 38 evenly-spaced test electrons can be tracked for every
Ap/2), while the temporal resolution is limited to the number of simulation file dumps (in this case
300 over the entire propagation, giving a maximum resolution for z;,; of 3.55 cm).

The result is shown in Fig. 4.7(a) for the baseline simulation. Note that the white pixels cor-
respond to test electrons that lose enough energy at some point along z so as to slip out of the
33-centimeter-long simulation window, and hence do not reach the end of the plasma. The general
features of the accelerating field [see Fig. 4.3(b)] are visible in the point density of Fig. 4.7(a).
Regions with few test electrons correspond to decelerating regions. In regions where the field is
accelerating (F, < 0, for example —19.00 < ¢, [cm] < —18.95), all the test electrons reach the end of
the plasma. As expected, the final energies decrease as electrons are injected later along z (shorter
acceleration distances), though this is also because the wakefield amplitude decreases after
z ~ 5 m (see Fig. 4.1). Figure 4.7(a) also implies that some electrons injected in the decelerating
phase of the wakefields survive energy loss and dephasing to ultimately reach large energies,
including for z;,; < 4 m (see scattered red pixels).

The comparison between different parameter fluctuations was performed by selecting the
maximum final energy (v max) attained in the same wakefield period for each different case. The
chosen range is —18.990 < ¢, [em] < —18.956 (approximately \,/4 long). Figure 4.8 ShOWS 7 max
as a function of the variation amplitude § for the parameters that caused the largest effects, i.e.,
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Figure 4.9: Maximum (blue) and average (red) final Figure 4.10: Radially averaged (a) and peak (b-d)
energies for the region shown in Fig. 4.7 according final energies of injected electrons as a function
to the 1D diagnostic (solid lines) and a PIC simula-  of their initial position ¢, and injection point zi,;,

tion with test electrons (dashed lines). obtained from the PIC simulation. The peak energies
are shown for (b) all ro, (c) 7o < 1.5 k., and (d)
ro > 1.5 kpo'

o2, orp @and Ny, We find trends consistent With v max o< Np/(0.502,), Which is justifiable by the fact
that the energy gain by trailing particles directly depends on the amplitude of E,. The resulting
maximum final energies vary at most between roughly -3% and +5% (the corresponding injection
points lie between 4.15 m and 4.52 m along the plasma).

To validate the diagnostic described above, we performed a further baseline simulation in
which test electrons are injected at 41 equally spaced injection points between 3.5 and 7.6 m
(see Table A.5, item A.5.2, in Appx. A). These test electrons have zero emittance and are initially
uniformly distributed in space (both longitudinally and radially). The resulting data is represented in
Fig. 4.7(b) for electrons injected close to the axis (ry < 0.5 kz;l) that reached the end of the plasma.
We naturally observe the influence of the transverse wakefields and dynamics in Fig. 4.7(b) in the
form of clear-cut regions where all test electrons were lost. The periodic regions with the most
surviving electrons in both figures [i.e. accelerating phases in Fig. 4.7(a) and focusing phases
in Fig. 4.7(b)] are roughly phase-shifted by around \,/4 [note the shaded superposition of the
simulation data in Fig. 4.7(a)], as would be expected from the Panofsky-Wenzel theorem [79].
Otherwise, there is reasonable agreement between both datasets.

A more quantitative comparison between the 1D diagnostic and the simulation results is dis-
played in Fig. 4.9, consisting of the average (red curves) and maximum (blue curves) values of ~
within the ¢, region contemplated in Fig. 4.7. The peak energies in the 2D simulation results are
generally lower than the 1D results (compare dashed and solid blue curves in Fig. 4.9), as expected,
since the 1D diagnostic represents a best-case scenario, but both curves follow a very similar
evolution after saturation (» > 5 m). Disagreeing trends are expectable for z;,; < 5.5 m, which
is the region where we expect the most variation of the wakefield phase and therefore particle
defocusing. The average energies in turn show very good agreement along the entire z;,; region
probed (see red curves).

The peak final energies obtained from the simulation with test electrons (see dashed blue
curve in Fig. 4.9) suggest an optimum injection point between 5-6 m. Since this data only includes
electrons injected close to the axis (ry < 0.5 k;l), we might wonder whether a different optimal
injection point applies to other initial radii. Figure 4.10 offers a more complete picture of the final
energy distribution measured in the simulation. Whether we consider the average [Fig. 4.10(a)] or
peak [Fig. 4.10(b)] value of the energies attained for each ¢y, the highest energy gain is met for
Zinj = 5 — 6 m.

Figure 4.10(b) furthermore indicates that some electrons reach high energies despite being
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Figure 4.11: Stacked line-outs of the transverse wakefield component, taken at (a) r = k;el and (b) r =
3 kpe

injected before saturation of the SMI (zi,; < 5 m), as previously suggested by the simple 1D
diagnostic results. By separating the analysis of the peak final energies from the simulation into
two radial regions above and below r = 1.5 k;l ~ 0.3 m, we find that it is the electrons further away
from the axis that reach the highest energies when injected before saturation [compare Fig. 4.10(c)
and (d)].

This difference is due to the fact that the phase velocity of the wakefields varies along r as well
as along ¢ and z. This is demonstrated in Fig. 4.11, which depicts stacked line-outs of the transverse
wakefield component E,. — ¢ By (responsible for focusing and defocusing) at two different radial
positions. For z < 6 m, for example, the phase velocity closer to the axis [see Fig. 4.11(a), atr = k;l]
behaves as expected during the growth of the SMI and as previously discussed in Fig. 4.3. At a
larger radius, however, the phase is approximately stable between 4-5.5 m [see Fig. 4.11(b), at
r=3 kzjl]. This would explain why electrons starting before » = 5 m at smaller radii tend to be
lost (as they slip into defocusing half-periods due to the rapidly changing wakefield phase), while
electrons further away from the axis may fall into a stable wakefield phase and benefit from the
accelerating fields over a larger distance.

In general, the optimal injection point along the plasma will be determined by the start of the
saturation of the SMI, which takes place earlier with either larger ny or N,. The position with the
most stable phase along the bunch can also be scanned for different parameters, and it tends
to be closer to the seed point for higher ng and smaller N,. The increase of either of these two
parameters will further lead to higher wakefield amplitudes, and hence to larger energy gains by
trailing electrons.

41.5 Comparison to subsequent experimental results

The purpose of the work above was to study the potential of the AWAKE experiment to be successful
in its stated goal of electron acceleration. For the parameter variations we considered (+5% and
+15 ps), we found that the wakefield properties converge to similar values after saturation of the
SMI, within a few percents for the amplitude and the equivalent of less than ), /8 (12.5% of a period)
for the phase. Based on simulations, we also found that the optimal injection coordinates for our
parameters (ng = 7 x 10" cm =2 and N, = 1.5 x 10'!) are 5-6 m into the plasma and around 1.5 o,
behind the RIF. For injections in this range, electrons close to the axis can reach energies of the
order of 1.5 GeV over the last 4-5 m of plasma. Comparable final energies are also attained when
injection takes place before saturation (z < 5 m), but by electrons far from the axis instead.
Several experimental results have been published by the AWAKE Collaboration after the com-
pletion of this work, which we can briefly compare to the findings above. The experiment has for
example demonstrated the acceleration of electrons up to 2 GeV [20]. In particular, a final energy
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of approximately 1.5 GeV was attained with a constant plasma density of ng = 6.6 x 10'* cm—2 and
where the electrons were located around o, behind the ionizing laser pulse, which is generally
consistent with the peak energy observed in our witness electron simulation (see Fig. 4.9). Note
that the electron beam was injected at an angle in the experiment, its trajectory crossing the proton
beam’s at around >z = 2 m. Due to the electron beam’s emittance and waist location at the plasma
entrance, the injected electrons were effectively sprayed over a range in ¢ and z, which makes it
difficult to compare the injection coordinates directly.

The phase stability of seeded self-modulation has also been studied using experimental
data [63]. This analysis of streak camera images of the proton bunch after 10 m found an RMS
variation of up to 7% of a period, though this result is limited by several uncertainties in the input
parameters and the measurements. Notwithstanding, the experimental finding is in agreement
with our post-saturation maximum phase variation of 0.4 rad, or +6.4% of a period.

4.2 Detuning effects on the SMI

In Ch. 3, we explored the evolution of the hosing instability as to how it reacts to mismatches
between the instability’s resonant frequency and a seed frequency in a particle bunch, and we
painted a much richer picture of the instability’s physics than the one prevailing. At this point,
it behooves us to notice, once again, that the self-modulation instability and the HI are closely
related, in both mathematical and physical terms. It is therefore worth investigating whether, by
applying an analogous approach to the one in Ch. 3, we may discover new properties of the SMI.

Besides this, it is known that a density gradient effectively delays or hastens the growth of the
SMI, though this effect has been discussed in the context of asymptotic models that assume small
gradients [82], or of the saturation phase of the SMI [83, 84]. We thus have every indication that
frequency detuning (via the plasma density) may play an important role in the SMI.

4.21 Adiabatic dispersion relation

We once again follow a relatively established prescription to obtain a dispersion relation for the
SMI in long particle bunches. In this case, where the equations describe the evolution of the RMS
bunch radius, we must make a stricter set of approximations to arrive at a starting point where the
mathematical methods become tractable.

As such, we consider a bunch with a transverse flat-top profile, where r;, is the radial edge of
the bunch, and assume a small perturbation r; around an equilibrium radius rg, i.e., 7, = 19 + 1
with r /ry < 1. This approximation yields a differential equation for the radius perturbation, which
is simplified further in the long-bunch adiabatic regime, i.e., assuming f(¢) ~ 1 and o, f(¢) — 0 for
the longitudinal profile f(¢). A dispersion relation for the growing modulation of r; can be obtained
from the resulting partial differential equation, Eq. 2.110:

(8? + 1) (822, +4 /4;21%2) r1(¢,z) =2 ul%é ri(¢,z) &
(83* + ki) (92 +4 Iigk%) r=2vkj kg r, (4.3)

where the asterisk subscript indicates a variable that is not normalized. Let us recall that the
constants 2 and v depend exclusively on the equilibrium radius rq and are defined as (see p. 32)

IQ (7'0)
To

K2 =2 K (ro) [ + Ig(ro)}

63



Th|—Fk;'~236m ]
k;' ~0.39 m

0 I I I
0 0.2 0.4 0.6 0.8

k (k]

Figure 4.12: SMI growth rate as a function of the wavenumber for two different betatron periods, accord-
ing to the dispersion relation Eq. 4.5.

vV = 4 IQ(T‘Q)KQ(T'()) .

In addition, please note that Eq. 2.110 can be interpreted as a coupling between two radius
perturbations, similarly to the HI: one associated with the plasma density perturbation, r,, and
another with the particle bunch, r;:

(63 +4 H2IA€%) ry =2 1//%% ry1(¢, 2)
(32 + 1) Tyl =T1 -

The derivatives in the unnormalized, co-moving variables (z., (,) in Eq. 4.3 can be replaced
with laboratory frame coordinates (2, ¢) using the chain rule of differentiation (see Eqgs. 3.3-3.4 on
p. 42):

1 2
(af + wf,) (628,? + 2 010, + 0% + 4 H%g) =2 k% W g . (4.4)

As shown in Sec. 3.1, we obtain a dispersion relation after replacing plane wave solutions
r1 < expli(kz’ — wt)] into EQ. 4.4 and after some rearrangement:

((1)2—1) (@—15)2—4/{2121[23 @2 :212:/23(1/—2112) , (4.5)

where & = w/w, and k= k/k, are the normalized angular frequency and wavenumber, respectively.

Once again, note that we recover the laboratory frame dispersion relation for the SMl in laser
pulses with different constant parameters [68]. In this case, the general parameters defined in
Ref. [68] correspond to I'; = 4 k%nz, Iy =2 k%u andI's = 1.

By solving Eq. 4.5 for @ and taking its imaginary part, we obtain the adiabatic growth rate for
the SMI, shown in Fig. 4.12 for two different betatron periods. These two values for kﬁ‘l result
from the choice of a proton bunch (M;,/m. = 1836.153, green) and a bunch of artificially light,
positive particles (M,/m., = 50, red) with the following parameters: ny,/ng =~ 0.0397, v = 427,
and 7y ~ 0.53 k;l. Similarly to the HI, the curves in Fig. 412 peak at k = k, and feature a tail
for wavelengths longer than \,. A crucial difference, however, is that this tail does not become
zero at infinite wavelengths (k = 0) for the SMI. This finite growth rate in the absence of a seed
perturbation is fully consistent with the properties of the SMI, which eventually develops in a long
bunch or laser pulse propagating in plasma, with or without seed.

Once again, note that the approach taken above does not accommodate any spatiotemporal
effects, due to the assumption of a plane wave perturbation. In the following section, we apply the
same methodology as in Sec. 3.2 to unveil a fuller picture of the SMI's growth dynamics.
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4.2.2 Dynamic amplitude response

In Sec. 3.2 we argued that the hosing instability can be seen as a harmonic oscillator whose
properties vary in time. The same can be shown for the SMI, but only in the approximation of a
small perturbation of the slowly evolving bunch radius r, (for a flat-top transverse profile). This
is due to the highly nonlinear evolution of r;, dictated by the envelope equation (see Eqgs. 2.84
and 2.85).

Equation 2.110 describes the evolution of the radius perturbation r; for a bunch with a longitudinal
profile f(¢) and a flat-top transverse profile (and where the second branch of the right-hand side
in Egs. 2.84-2.85, for r1(¢) < r1(¢’), is neglected). Written as a parametric oscillator, we obtain the
equation:

2
(5 + Ho(6:2)) () = FlGor). (456)
where k% (¢, 2) and F(¢, z,r1) are given by
Ko(¢,) = —4w%H [ dcsin(C = )50 (4.7)
F(¢, z,m) = =2 1/]2:[23/< d¢'sin(¢ — ¢ f(C) ri(¢2) . (4.8)

Since the misleadingly simple structure of Eq. 4.6 conceals a variety of interesting transient
effects from the interaction of the driving frequency and the oscillation amplitude, we once again
explore the amplitude response of a self-modulating radius perturbation to a seed frequency. We
will also see that disregarding the second branch (i.e., for r,(¢) < r(¢’)) of the right-hand side
[F(¢,2,m1) —11(¢, 2) ko (¢, 2)] has important consequences.

In this analysis of the properties of the SMI we will consider a positive-charge particle beam
with 7, = 427, an RMS length ¢, = 12 cm, an RMS radius o, = 200 zm, a beam population N, = 3-10'1,
and a cosine-shaped longitudinal profile (see Eq. 3.18 on p. 45). The mass of the beam particles
is artificially defined as m; = 50 m., such that the normalized betatron skin depth of the beam
is l%gl ~ 1500. This value is large enough to separate the time scales of self-focusing (or beam
pinching) [85] and of the growth of the SMI, such that we can study the SMI before beam pinching
dominates, yet low enough to save some computational time in the PIC simulations. The plasma
density is ng = 2-10'* em™3, and the window considered for the analysis is L = 280 k,' long
(~ 44 ),), with the front edge of the beam located at ¢, = 275 k'

The theory available to describe the SMI assumes a flat-top transverse profile where rq is in
equilibrium. In the PIC simulations, however, this is not the case since the bunch profile varies
longitudinally and hence there is a different equilibrium condition at every ¢. Furthermore, since a
transversely flat bunch was observed to pinch much faster than one with a Gaussian transverse
profile, the latter was chosen to extend the time scale of self-focusing as much as possible.
This bunch profile corresponds to a peak beam density ny/no = 0.02. For the same amount of
bunch charge, the theoretical, flat-top transverse profile corresponds to a peak beam density
npo/no ~ 0.04. The normalized emittance of the beam in the simulations is ey = 3.5 mm mrad, which
is the nominal value for the proton bunch driver in the AWAKE experiment. Lastly, the initial radius
perturbation is defined as r1¢(¢) = 4, rosin[k(¢ — (s)], with a relative amplitude ¢, = 0.1.
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How the amplitude response is measured

Following the same principle as in Sec. 3.2, we measure the amplitude response by defining a ratio
between the radius perturbation after a propagation distance z and the initial radius perturbation
r10, Which has a well-defined frequency, i.e., 1o x sin(k¢). Since these quantities vary along the
bunch (along ¢), we eliminate this dependence by integrating the absolute value of both along ¢.
The resulting amplitude response therefore provides information about the entire section of the
beam we are considering (with length L), and evolves along the propagation distance:

[y Iz QL d¢

~ oG R dC (4.9)

II(k, 2)

The theoretical evolution for r; is found by considering the initial plasma response to the

perturbation r1g and its effect on the radius perturbation, or, in other words, by applying the power
series model (see Sec. 2.4) upton = 2:

r1(2,¢) = r10(¢) + R{rio} § 2% . (4.10)

We introduce R{r;} to symbolize the right-hand side of the differential equation for r; (see for
example Eq. 2.109), which can be expressed more generally as
d2T1 o

If we choose to neglect the branch r,(¢) > r,(¢’) of the envelope equation for a flat-top transverse
profile (Egs. 2.84-2.85 on p. 26), R is given by

R{r) = 273 /g T sin(C— &) F(C) [rr(¢) 2821 (Q)] (412)

which corresponds to Eq. 2.109 rewritten with the constants v and «2.
Otherwise, we can apply the same linearization procedure that led to the result above (described
in pp. 30-32) to the complete envelope equation and arrive at

. 262 () —rr()] M) <n(C)
Rin} =243 / d¢’ sin(¢ — ¢') £(C') , (413)
‘ 262 11(C) + v ()] Q) > ri(¢)

where k2 = 2 = 2 K, (ro) [Izﬁgo) + .[3(7'0)}, K2 =2 I (ro) {%ﬂ”’) + Kg(’f‘o):|, and where we used the
identity I (r)Ka(r) + Iy(r) K1 (r) = 1/r [52, Eq. 10.28.2]. We will contemplate both versions of R in
the following.

We will likewise seek to validate the theoretical result by comparing it to simulation data. Here
we can exploit the axisymmetry implied in the SMI theory and carry out PIC simulations in 2D
(axisymmetric) cylindrical geometry. A direct comparison, however, is not straightforward. In a
real particle bunch, there is the slow, added effect of self-focusing [85]. In our theoretical model
the radius perturbation r; is supposed to evolve on top of a constant bunch radius?, which should
therefore find itself in equilibrium, or matched, with the plasma.

A simple matching condition for r, can be found in the long-bunch adiabatic regime (f(¢) ~ 1

and 9. f — 0) by setting dro/dz = 0 in the envelope equation for r, (see Eq. 2.105 on p. 31) and

2Allowing o to evolve would result in a system of two coupled differential equations for ro and 1, which is signifi-
cantly more difficult to solve.
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assuming a slowly evolving ro, i.e., 9:r9 — 0. Under these assumptions, Eq. 2.105 reduces to the
matching condition
52 =38 ]21% ’I“S’ Kl(To) 12(7"0) . (414)

(Note that the intermediate steps for this derivation are justified in Egs. 2.106-2.107 and Eq. 2.88.)
However, simulating the cosinusoidal longitudinal profile mentioned above (see second paragraph
after Eq. 4.8) means that the long-bunch adiabatic assumption and thus the matching condition in
Eq. 4.14 are no longer strictly met. For a non-constant profile f(¢) the actual matching condition
is a function of ¢ and would be given by a complicated expression. The particle bunch in the 2D
cylindrical simulations is therefore unmatched and has a Gaussian transverse shape, for which
the time scale for self-focusing is longer than for a flat top. Note that, in the comparison between
theory and simulations, we guarantee that the RMS radial size is the same for both transverse
profiles, i.e, r, = V2 0, (see Table A.6, items A.6.1 and A.6.4, in Appx. A for the full simulation
details).

Our theoretical model describes exclusively the radius perturbation r;, so we must extract this
quantity from the simulation data in order to perform a comparison. This is achieved by subtracting
the slowly evolving (or adiabatic) component of the bunch radius o, .qian (¢, 2), Which is obtained
from a simulation with no SMI seed (see Fig. 4.13, top). Figure 4.13 (bottom) exemplifies the resulting
radius perturbation, taken at z ~ 2 k; ' from a simulation seeded at 0.8 k,. This definition of the
radius perturbation is valid until the bunch in the unseeded simulation begins to self-modulate
from noise, which introduces a fluctuation at &, to o, .qiab. The simulation data discussed below is
taken long before this point is reached. The amplitude response for the 2D cylindrical simulations

is therefore defined as
de ‘UTJC(CvZ) - Unadiab(Cvz)l (415)

1) = a1, 1(€.0) — o C.0)]

The SMI amplitude response and subharmonic resonance according to theory

The theoretical amplitude response for the SMI along the propagation distance, given by Eqgs. 4.9-
413, is depicted in Fig. 4.14. As expected, both versions of the theory indicate that the growth of
the SMI is maximized for k = k,, although the two solutions exhibit different time scales [note the
differing z-axes between Fig. 4.14(a-b) and Fig. 4.14(c-d)]. It is not yet clear why this difference
comes about.

The early line-outs in Figs. 4.14b) and d) display a consistent shape around k = k&, (see red and
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Figure 4.13: Example of the measurement of the RMS radius perturbation from PIC simulations, taken at
z 2 Icgl. Top: bunch radius along ¢ in two simulations, one where the SMI is seeded at k = 0.8 k,, (blue)
and one without a seed (grey). Bottom: bunch radius perturbation obtained from the subtraction of the
grey curve from the blue curve in the top plot.
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Figure 4.14: SMI amplitude response as a function of seed wavenumber and propagation distance accord-
ing to two versions of the theory: Eq. 4.12 (a-b) and Eq. 4.13 (c-d), replaced in Eq. 4.10. The evolution along
time is shown in a) and c), with line-outs taken at different propagation distances in b) and d). Note that
the scale of the z-axis is different for the top and bottom rows. The normalized outline of the amplitude
response corresponding to the dispersion relation Eq. 4.5 has been included in b) and d) as a grey dash-
dotted curve. Note that the color scale in a) and c) is saturated for values |II(n;,z) — 1] > 3.

green curves). Once again, we can identify a distinctive regime where the maximum damping and
maximum growth reach similar magnitudes, as in the case of hosing. However, a crucial difference
is that the dynamic amplitude response of the SMI is antisymmetric with respect to the HI, i.e., each
non-resonant growth regime applies to opposite regions of k [compare Fig. 4.14b) to Fig. 3.3b)].

Most obvious in Fig. 4.14, though, is the difference between the two versions of the theory: the
incomplete version (Eq. 4.12) in Fig. 4.14(a-b), and the complete version (Eq. 4.13) in Fig. 4.14(c-d).
The latter exhibits multiple peaks of the amplitude response, in contrast to the single peak in
Fig. 4.14a) [see also the line-outs in Fig. 4.14b)]. As discernible in Fig. 4.14d), these peaks are
located at unit fractions of the plasma wavenumber, i.e., k = k,/N where N € N*.

The phenomenon of subharmonic resonance can arise in parametric oscillators and nonlinear
oscillating systems, where N commonly corresponds to the order of the nonlinearity [86] (e.g.
an additional term proportional to 2% (¢) in Eq. 3.12). We note that no superharmonic resonances
were observed when we extended the theoretical calculation beyond & > 2 k,, and that this
phenomenon is not observed for the hosing instability when the complete, piecewise centroid
equation is considered (Eq. 2.62).

Indeed, the explanation for the peaks found here can be attributed to the nonlinear character
of the plasma response driving the SMI (Eq. 4.13). Contemplating the overall structure of Eq. 4.11,
we immediately see that it is in fact a nonlinear differential equation when the right-hand side is
given by Eq. 413, i.e., is a piecewise function of r;. We can therefore expect the evolution of r,
along z to be nonlinear. For any seed frequency ko > 0, this nonlinear evolution translates into
a progressive distortion of the initially sinusoidal bunch radius perturbation, and therefore into
the emergence of harmonics of kg in the Fourier space of r;. Therefore, for seed frequencies that
correspond to unit fractions of the plasma frequency, i.e., ko = k,/M, the Mth harmonic of k; by
definition corresponds to k,, which allows this harmonic to grow resonantly. As an example, for
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Figure 4.15: SMI amplitude response as a function of plasma density and propagation distance according
to the complete theory (Eq. 4.13). In a)-b) the normalized propagation distance is kept constant for each
plasma density n,. The isoparametric curves in a) indicate edges in the data where the absolute propaga-
tion distance is fixed (expressed in terms of the betatron period, which does not depend on n;). The data
is plotted as a function of the absolute propagation distance in c)-d). Note that the color scale in a) and c)
is saturated for values |II(n;, z) — 1] > 30.

the seed frequency ko = 1k,, the third harmonic (M = 3) corresponds to the plasma frequency
and can thus grow resonantly.

This explanation justifies several properties of the subharmonic peaks: why they emerge along
the propagation (since the growth of harmonics is tied to the development of the SMI), why their
amplitude decreases with increasing M (higher-order harmonics have lower amplitudes), and why
no peaks are observed for the incomplete version of the right-hand side Eq. 4.12 and for the hosing
instability (the instability’s right-hand side is linear in z).

If we considered a different frame of reference for the current study, where the initial pertur-
bation wavenumber was held constant (as previously explored for the Hl in Fig. 3.6 and in the
accompanying text), we would expect to observe peaks of SMI growth as the plasma density is
varied away from the resonant n.

Until now we have assumed a plasma with a fixed, constant density ny, which determines the
resonant plasma frequency w, o = ck,,. In order to map out the amplitude response, we then
varied the perturbation wavelength A = 27/k in an incoming bunch, whereby the observed physics
depends on the ratio k/k, . However, we could equally consider a fixed perturbation wavelength
Ap,0 Of the incoming bunch, defined for a reference plasma density n, (for which the SMI would grow
resonantly) and vary the plasma density n,; where the bunch propagates instead. We must observe
the same physics in both cases, though the determining quantity in the latter case is now k, o /kp ;.
We can switch between both reference frames via the relationship k= 1/\/773-, where 7; = n;/no,
which follows from the equality of both wavenumber ratios. Note that this correspondence is not
strictly true, since in the second case we effectively alter the normalized bunch parameters as
well, which should lead to different wakefields and growth rates.

Let us consider the seed frequency k, ( of a perturbed bunch propagating in plasma with density
ng (resonant growth). The nonlinear evolution of the bunch radius oscillation then translates into
the emergence of harmonics of &, o in Fourier space, i.e., into growing signals at 2 k, ¢, 3 k0, and
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so on. Now, consider that each of these harmonics, kg = Mk, for M € {2,3,...}, corresponds to
the fundamental plasma frequency for a plasma density ny, which is given by:

k—H:M: LN ng = M?ng . (4.16)

kpo ng
Whereas we found the subharmonic peaks in the fixed-density reference frame at ksy = k,/M, in
the fixed-perturbation frame we therefore expect the peaks to be located at ngy = M?2n,.

This is confirmed in Fig. 4.15, where the theoretical amplitude response was computed in the
fixed-perturbation frame. The normalized bunch parameters were updated and the equations
were renormalized for each value of n;. In Fig. 4.15a) the propagation distance is normalized to
k;;, the plasma skin depth associated with each value of n;, which allows us to observe several
subharmonic peaks at n; = {4,9,16,25,...} no [see Fig. 4.15b)], as expected from Eq. 4.16. In a
realistic experimental set-up, however, the propagation distance might be fixed while the plasma
density is scanned. The expected growth observation in this case is shown in Figs. 4.15¢c-d) as a
function of zkgl, which is fixed for a set of bunch parameters and independent of n;. Note the
prediction of faster growth to be observed at subharmonic multiples of the reference density in
such a set-up.

We will now proceed to the validation of the theoretical predictions described above using PIC
simulations.

The SMI amplitude response and subharmonic resonance according to PIC simulations

The SMI amplitude response obtained from the simulations is shown in Fig. 4.16 for two different
phases of its evolution. The theoretical expectation (both versions) was added for a qualitative
comparison, at arbitrary propagation distances that best seem to approach the simulation data.
A quantitative discrepancy is to be expected here due to the different transverse profiles of the
bunch and the extensive assumptions underlying the theory.

The shape of the early amplitude response [see Fig. 4.16a), red cross symbols] agrees with
the two versions of the theory, although it seems to feature a negative offset. This offset could
be due to some nonlinear component of the self-focusing effect that could not be removed by
the subtraction of the seedless case (o, .qaiap) alone, and which would decrease the amplitude of
the radius perturbation independently of its frequency. In any event, this early regime displays
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Figure 4.16: Qualitative comparison of the amplitude response obtained from OSIRIS 2D axisymmetric
simulations and two versions of the theory at an early (a) and late (b) phase of the evolution. Note that the

vertical axis in b) scales logarithmically.



the same characteristics as in the case of hosing (see p. 46), with the obvious exception of the
antisymmetry with respect to the axis k = k,,.

At later times there is worse agreement with the theoretical models, with a persisting negative
offset in the simulation data [see Fig. 4.16b), red cross symbols]. However, crucially for this
comparison, the subharmonic peak at k = 3k, grows noticeably before z = 3 kz!, although its
relative magnitude is smaller than the full theory would predict for a flat-top bunch (by a factor of
~ 5.5 versus ~ 2). This implies that, even for a smooth transverse bunch profile (Gaussian-shaped),
there is some degree of nonlinearity in the plasma response driving the SMI.

From this, we could assume that the nonlinearity of the plasma response is determined by how
quickly the transverse profile varies along the transverse coordinate. In that case, the flat top
would represent one extreme of this sliding scale, varying infinitely quickly and leading to infinite
degrees of nonlinearity. The opposite extreme would consist of a wide-bunch limit where the
transverse profile could be considered infinitely smooth (i.e., where dg(r)/dr could be neglected).
Enforcing this limit in the envelope equation, however, leads to the result that (rF,.) = 0 and thus
that the SMI does not develop. We must therefore conclude that the plasma response driving the
SMI is always nonlinear to some degree.

The hypothesis that steeper profiles increase the nonlinearity of the SMI can be tested by
replacing the transverse profile in the simulations with a super-Gaussian formula,

g(r, ) = exp [ <U;ﬂ(20>p} : (417)

with increasing powers p. We choose the exponents p = 2 and p = 4, taking care to adjust each
standard deviation of the super-Gaussian profiles ¢, ,—2 and o, ,—4 such that the charge per slice
in ¢ is conserved between the three cases. The resulting profiles are shown in Fig. 4.17a), with
Orpea/0r = \/2/71/* 2 1.06 and o, ,—s /0, = 2/+/T(1/4) = 1.05. All other simulation parameters are
maintained (see Table A.6, items A.6.6-A.6.7, in Appx. A for the full simulation details). Note the
higher frequency content along r for the steeper profiles, evident in Fig. 4.17b) via the Fourier
transforms of each profile.

Figure 418 (p = 1, top) represents the same simulation data discussed in Fig. 4.16, i.e., for
a purely Gaussian transverse bunch profile. Though the simulations were conducted at closely
spaced seed wavenumbers to resolve potential peaks, there is no evidence of growth of the second
subharmonic (k = k,/3) up to z = 3 k'

As we increase the steepness of the transverse profile, however, both the first (k = k,/2) and
second subharmonic resonance peaks become more prominent and emerge earlier (compare

400
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Figure 4.17: Transverse shape of the bunch density profiles used in the 2D axisymmetric simulations (a),
and their Fourier transforms along the radial coordinate (b).
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with Fig. 4.18, p = 2 and p = 4). This could be justified by the higher frequency content of the
super-Gaussian profiles [see Fig. 4.17b)] and of the respective initial plasma responses (rF,) /o,
(not shown). Transfiguring g(r) closer to a flat top additionally seems to have an effect on the
amplitude response away from the fundamental resonance after some propagation, both for ¥ — 0
and k£ — oo, whereby the radius modulation is further decreased (II(k, z) < 1).

The quantity shown in Fig. 4.18 and previous figures conveys information about how much
the oscillation in the beam envelope grows, but not at which frequency (or frequencies). At the
subharmonic resonance peaks, for example, is it truly the Mth harmonic corresponding to k, that
is contributing to the increased growth factor?

A naive look at the bunch radius line-outs along ¢ for k = 1k, and k = k,, shown in Fig. 4.19,
seems to suggest a positive answer. After propagating 0.7 m in plasma, we see evidence of a radius
modulation in the super-Gaussian bunch (p = 4) at double the initial perturbation frequency which
seems to be growing along the bunch (see Fig. 4.19, top). The same applies for the super-Gaussian
bunch seeded at k£ = %kp, where this time the growing modulation seems to correspond to three
times the initial frequency and exhibits a smaller amplitude at the same propagation distance.

We can repeat this analysis systematically by computing the fast Fourier transform of the
bunch radius perturbation along ¢ at a given z and comparing the Fourier-space signals to each

II(k, z) 1]

z2=05k;'
z=20ky'
z=3.0kj'

II(k, z) [1]

0.5

0 0.5 1 1.5 2
k [kp]
Figure 4.18: Amplitude response of the SMI measured from the OSIRIS 2D axisymmetric simulations for
different transverse bunch profiles, defined by the super-Gaussian exponent p (top to bottom), and at

different propagation distances (line and symbol colors, see legend). Each circle symbol on a given curve
represents the data from one simulation. Note the logarithmic scaling of the vertical axis.
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Figure 4.19: Normalized bunch radius perturbation for a Gaussian (red, p = 1) and a super-Gaussian
(green, p = 4) transverse profile after propagating 0.7 k', and for the first (k = 1k,, top) and second
(k = %kp, bottom) subharmonic resonances. The initial perturbation is shown in the background in grey
(hardly visible due to its overlap with the red curves). Results from OSIRIS 2D cylindrical simulations.

initial perturbation frequency. The result of this procedure is shown in Fig. 4.20 for three different
inputs (corresponding to each row): the theoretical data, and simulation data for two transverse
profiles (Gaussian and super-Gaussian with p = 4). The horizontal axis for each plot (kq) represents
the initial perturbation frequency. For each kj, the Fourier spectrum of the bunch radius at z is
plotted along the vertical axis as a function of the transform variable k, the spectrum values being
represented by the color scale.

At z = 0 (see left-hand column of Fig. 4.20) we naturally expect to observe a direct correlation
k(ko) = ko, since the bunch radius is initially sinusoidally modulated at k. As the bunch propagates
and the SMI evolves, we would expect to observe harmonics of kg in the Fourier spectra of the radius,
i.e., zero-crossing lines with increasing slope. This is indeed what we observe in Fig. 4.20b) (the
theoretical, flat-top case), though we note the absence of the lines k(ko) = Mk, for odd harmonics
M. As it stands we have not been able to find an explanation for why this is so. Nevertheless, the
integrated Fourier spectra (along k) in Fig. 4.20b) still exhibit subharmonic peaks at all kg = &, /M
(including for odd M), similarly to the curves shown in Fig. 4.14d).

In the case of the simulations, in Figs. 4.20d) and f), we see evidence of the growth of several
harmonics, even or odd. This is most clearly visible for the super-Gaussian transverse profile:
notice the signals at k(ko = k,) = 3kp, k(ko = 3k,) = 31k, and k(ky = Lk,) = 31k, in Fig. 4.20f).
Interestingly, some additional signatures are visible in the simulation data, once again most percep-
tibly in Fig. 4.20f) (see faint diagonals). These homogeneous Fourier-space signals are visible at
k(ko) = +(k, = ko), and represent a beat between the seed frequency &, and the plasma frequency
k,. More importantly, however, the simulation data seems to confirm our initial supposition that
most of the growth observed in the subharmonic resonances is associated with a k,-oscillating
component of the radius perturbation.

The SMI phase response

If we interpret the SMI as an oscillator (the bunch radius) driven by a periodic, sinusoidal force, we
expect to see a particular behavior in the phase shift between the oscillator and the periodic force,
as discussed in Sec. 3.2.1. The envelope equation in cylindrical coordinates (see p. 24),

d?o, 85 me (r F.)

dz2 203 My o, (4.18)
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Figure 4.20: Discrete Fourier transform of the perturbation radius (r, for the theory and o, — o+ agiab for the
simulations) as a function of the seed wavenumber kg, at z = 0 (left-hand column) and at z = k;l (right-
hand column), according to theory (a-b), and to simulations with a Gaussian (c-d) and a super-Gaussian
(e—f) transverse profile. Each column of data in each plot corresponds to the Fourier spectrum obtained
for an initial radius perturbation at ky. Horizontal guide lines (grey) help locate the plasma frequency in the
transform-variable axis k. Note that each dataset is normalized to its maximum value at z = 0, and that the

range of the color scale is limited to this value (values above 1 are indistinguishable).
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tells us that two effects play a role in the evolution of the RMS size: one associated with the bunch
emittance (second term on the left-hand side) and one associated with the plasma response
(right-hand side). Here, the quantity (rF,) /o, corresponds to the force driving the oscillator. We
therefore compare its early relationship to the RMS bunch size o,, which is illustrated in Fig. 4.21a)
with curves obtained from the 2D axisymmetric simulations at z ~ 0. We once again observe three
distinct phase shifts between o, and (r F,.) /o,, depending on the seed frequency k relative to k,.

A comprehensive picture of the phase shift A¢ as a function of seed frequency is given in
Fig. 4.21b), based on the theory for a flat-top transverse profile as well as the simulation data. The
theoretical phase shift is measured between r; and the first-order plasma response Fgy; 1, which
follows from the assumption of a small radius perturbation, such that (rF,.) /r, = Fsmo + Fsmi-
These two plasma response components can be found by writing out the sum of d?r/dz? (Eg. 2.105)
and d?ry/dz? (the right-hand side in Eq. 4.13):

2 2 m
T8 0+ ) = 5 = 20 (P + Fone) (419)
with
Foso =222 (L) 1(ro)Ka(ro) [ " sin(c -~ ) (4.20)
’ ng \e ¢

Lngo (qu\% [ . oo ) [2EZ71(C) —v ()] 71(¢) < ()
Fsmp=—5 =~ d¢’sin(¢ — () f(¢ (4.21)

SM.1 2 ng (e) /C sin( 2 ){[2/<;2> Tl(C)-f—I/Tl(C/)] r1(¢) > r1(¢)

By contrast, in the simulations A¢ is measured between ¢, and (rF,) /o, though the adiabatic
component of the plasma response is discarded by the phase shift measurement procedure
described in Appx. B.

The result of the phase shift analysis in Fig. 4.21b) demonstrates excellent agreement between
theory and simulations, despite the different transverse bunch profiles in each case. The physics of
this lag between driving force and radius oscillation thus seems to be independent of the bunch’s
transverse characteristics. Note that the two versions of the theory, piecewise (green curve) and
single-branch (yellow curve) overlap completely. It therefore makes sense that there is also no
impact on the result when the two versions of the theory are considered, since this discrepancy

theory, Eq. 4.12
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L simulations
g
Tal &
< S
S =
k [ky]

Figure 4.21: a) Initial RMS bunch radius (dark grey) and SMI-driving plasma response (red) for three dif-
ferent seed wavenumbers, obtained from OSIRIS 2D axisymmetric simulations at = = 0. b) Phase shift
between the initial o, and (r F.) /o, (simulations, red cross symbols) or r; and Fsum,1 (theory, green) as a
function of the seed wavenumber, according to simulations and to two versions of the theory.
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stems from the algebra associated with the averaging over the transverse profile.

4.2.3 Understanding the effect of a plasma density step

For acceleration purposes, the self-modulation instability proves itself an extremely useful mech-
anism, since it provides high wakefield amplitudes for drivers that would otherwise be unfit for
that purpose. Nevertheless, the phase of resonant growth associated with the instability’s de-
velopment eventually reaches a saturation point [see Fig. 4.22a), solid grey curve at z ~ 5 m].
Left to its own devices, the particle charge in each microbunch is then continuously eroded by a
backwards-slipping wakefield, due to a residual difference between the wakefield phase velocity
and the bunch velocity (=~ ¢). The wakefield amplitude therefore drops after the saturation peak
[see Fig. 4.22a), grey curves for z > 5 m].

Previous work based on 2D axisymmetric quasistatic PIC simulations suggests that a small
step in the plasma density profile, located relatively early along the development of the SMI,
leads to a stable wakefield amplitude after saturation and thus makes it possible to sustain an
approximately constant, elevated acceleration gradient [71, 72]. This effect is exemplified in
Fig. 4.22a) for a plasma density step increase of 3% (solid red curve). This solution is therefore
extremely interesting for the AWAKE experiment, which aims to leverage the self-modulation
undergone by a long relativistic proton bunch for electron acceleration, and will be put to the test
during the experiment’s future program.

It is generally understood that the plasma density step implies a change of the plasma frequency,
and therefore a sudden shift of the wakefields with respect to the modulating structure of the
bunch. In particular, a positive step (i.e., the plasma density is increased above ny) readjusts the
plasma wavelength such that more bunch charge is caught in focusing fields, as demonstrated
in Fig. 4.22b) (left-hand graph, red curve). This may be part of the reason why a high wakefield
amplitude can be sustained long after the saturation point when a positive density step is used.
Additionally, the positive density step seems to ensure that more energy is transferred from the
bunch to the wakefields (i.e., more charge finds itself in decelerating wakefields) after saturation
of the SMI [see Fig. 4.22b), right-hand graph].

To thoroughly understand the striking wakefield-sustaining effect behind the plasma density

b 1 1
) z [ky'] 10 step z [kﬂ ]
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Figure 4.22: a) Average longitudinal wakefield amplitude (solid lines) and total driver bunch charge
(dashed lines) within a radius of 1k, ' from the propagation axis, with plasma density steps [red and green,
see legend in b)] and without (grey). b) Total driver bunch charge within r < k;l located in focusing (left)
and decelerating (right) wakefields, with and without a step in the plasma density profile. The density
steps are located at z = 2.17 m, indicated by the dash-dotted vertical lines, and they are implemented over
a one-centimeter-long (~ 50 k;l) ramp. Data obtained from OSIRIS 2D cylindrical simulations with nominal
parameters for the AWAKE experiment (see simulation details in Table A.5, items A.5.3-A.5.5, in Appx. A).
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step, however, it would be necessary to establish a theoretical model for the saturation phase of the
SMI, which has so far not been accomplished by the scientific community (to the best of the author’s
current information). Nevertheless, we can at least verify whether the theoretical framework
described in the previous sections of this chapter is consistent with the effects associated with
the density step before saturation comes into play.

For our density step case study, we perform three simulations with the same bunch parameters
as before: we simulate a 280-k, '-long section of the front of a bunch composed of artificially
light protons (M, = 50 m,.) propagating in plasma with the baseline density ng = 2 x 10 cm™3. We
choose a step with a height of Ang/ng = 4%, both above and below n, located at z = 0.5 kgl, and
we compare both results to the baseline simulation, where there is no step. In all three cases, the
SMI is seeded with a bunch radius perturbation at &, o.

One of the implications of the theoretical analysis is that each growth regime is associated with
a specific phase shift between bunch radius and plasma response. When the plasma density n,, is
larger than ng (or, equivalently, when k < k, o) we expect a phase shift of = and negative growth
in the bunch radius modulation. Conversely, when n, < ng (or k > k, () we expect A¢p =7 and a
regime of “slow growth” [compare with Figs. 4.14, 415 and 4.21].

We can easily verify whether this is the case in the density step simulations by plotting the
bunch radius and plasma response immediately after the step. This is shown in Fig. 4.23a). Without
a density step, we observe the 37/2 phase shift associated with resonant growth of the SMI, as
expected [compare Fig. 4.23a), top, to Fig. 4.21a), middle, on p. 75]. With a positive step, however,
the plasma response is shifted forwards, although the observed phase shift does not perfectly
correspond to = [compare Fig. 4.23a), middle, to Fig. 4.21a), top]. This is perhaps due to the
relatively late placement of the density step along z. The opposite density step leads to a phase
shift of 2x [see Fig. 4.23a), bottom], as predicted earlier.

The effect of each density step on the development of the SMI is illustrated in Fig. 4.23b), using
the average amplitude of the wakefield component E, to quantify the growth of the instability.
The configuration chosen for this case study is not optimized to demonstrate the potential merits
of the density step concept: not much wakefield growth can be observed along the limited
region considered here, with a smoothly rising bunch, and the significant wakefield amplitude loss
undergone when the step is introduced might be minimized by choosing a more adequate step
location and height. Nevertheless, it is possible to see a plateauing of the wakefield amplitude
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Figure 4.23: a) Initial RMS bunch radius (dark grey) and SMI-driving plasma response (red) at z = 0.5 k;l
for three different cases: with no density step, and with a step of +4% (n,, indicates the current plasma
density). b) Average longitudinal wakefield amplitude within » < k, ' along the propagation distance for the
three different cases. Data obtaind from OSIRIS 2D axisymmetric simulations.
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Figure 4.24: SMI amplitude response obtained from OSIRIS 2D cylindrical simulations (a) and from the
theoretical model for a flat-top transverse bunch profile (b), for propagation in a plasma with and without a
density step. The vertical dash-dotted lines mark the location of the density step.

after saturation (z = 2.5k51) for An, = +4% in Fig. 4.23b).

Note that this plasma density, n,, = 1.04 ny, corresponds to a regime of negative growth, which
may seem counterintuitive in the context of optimizing the SMI for acceleration purposes. If we
consider that the natural development of the SMI is associated with a gradual loss of driving charge
(see Fig. 4.22), however, it may make sense to suddenly “slow down” its development such that a
stable post-saturation state is found.

We can take a closer look at the growth of the bunch radius modulation from the simulation
data by computing the amplitude response Il (z) = [ d¢|oy1(2)|/ [ d¢|o,1(0)|, shown in Fig. 4.24a).
For this set of simulations, the oscillatory component of the bunch radius o, ; was obtained by
subtracting the moving average of o, with a window length of ), . Note that the positive step
results in an initially slower growth rate (2 < 2 klgl) which later surpasses even the resonant rate
[compare the red and dark grey curves in Fig. 4.24a) for z ~ 3 kgl].

We can also compare Il;,,, (z) with a theoretical prediction for the amplitude response, shown in
Fig. 4.24b). This amplitude response is defined as Iy, (z) = [ d¢|r1(z)|/ [ d¢|r1(0)|, where r1(z) is
calculated with a renormalized version of the model in Egs. 4.10 and 4.13, such that the local plasma
density can be varied. Moreover, the plasma response R(r;) was scaled by an arbitrary factor of
0.015, such that the theoretical data can be compared with the simulation data on equal scales.
There is qualitative agreement for z < 2 kgl (roughly the range of validity of the theoretical model):
slower growth for An, = +4%, and briefly faster growth for An, = —4% before it is overtaken by
the resonant case (see green and dark grey curves in Fig. 4.24).

With this we can conclude that our understanding of the SMI (discussed in the previous sections)
is consistent with the early effects observed when a plasma density step is introduced. This does
not include post-saturation effects, since a general theoretical model that for this regime does not
yet exist.
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Chapter 5

Conclusion

This doctoral work set out to contribute to the understanding of the hosing and self-modulation
instabilities, particularly in the regime of long particle bunches and linear wakefields. This was
accomplished with a combination of analytical and numerical approaches.

The theoretical apparatus was introduced in Chapter 2. We presented a systematic and detailed
derivation of the equations that are used to treat the HI and SMI in the long-bunch, overdense
regime analytically. This included a derivation, discussion and comparison of evolution models
(both existing and novel) for both instabilities.

Original results in Chapter 2:

« differential equation for the bunch centroid in 2D Cartesian coordinates for a Gaussian
transverse profile (Eg. 2.36 on p. 17), which allows us to study the HI theoretically (in
planar geometry) for a more realistic bunch shape

e correction to the differential equations for the bunch centroid and radius for a flat-top
transverse profile in cylindrical coordinates (Egs. 2.62 and 2.85 on p. 22), which revealed
previously unknown phenomena related to the development of the SMI

e power series model to describe the bunch centroid and radius as a function of ¢ and z
during early instability development (Eqgs. 2.122-2.123 on p. 35), providing an analytical
tool to study both instabilities in a regime that is partly not contemplated in existing
evolution models

At the end of Chapter 2, we concluded that the power series model is especially useful at the
front of the bunch during the instabilities’ growth, where asymptotic models are not valid. Both
this and the other original results were crucial to studying novel phenomena of the Hl and SMl in
the rest of this dissertation. Nevertheless, there is still much to explore in terms of the theory.

Future work ideas related to Chapter 2:

« understand the reason for the different amplitudes of the theory for the SMI and the
simulation data (Fig. 2.6 on p. 27)

 investigate the importance of the assumption r; << 1 when modeling the SMI via a bunch
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radius perturbation (p. 31)

« develop an asymptotic theory for the SMI that takes the full piecewise plasma response
into account, thereby possibly leading to a different result for the growth rate (at k,)

» develop theoretical models to describe the saturation phase of both instabilities, but
most importantly the SMI

In Chapter 3 we aimed to understand the dependence of the growth of hosing on a perturbation
frequency. After obtaining a dispersion relation for the HI in particle beams with established
techniques, we then explored a different approach that takes the onset of the instability into
account (using the power series model), and found a different growth behavior than the dispersion
relation would predict. We made use of a simple physical model, consisting of a sinusoidally driven
harmonic oscillator, to better understand the early amplitude response we found with the power
series model.

Our result showed different growth regimes (including damping) as a function of different
seed frequencies, and was validated with PIC simulations. Lastly, we attempted to exploit these
properties to devise a hosing mitigation method consisting of steps in the plasma density profile,
i.e., in effect detuning the oscillator system. The limitations of this method were discussed, finding
that the HI seems to be delayed rather than suppressed, and that the density steps may have a
sizeable impact on the amplitude of the wakefields (36-44% decrease) when the bunch is also
self-modulated.

Original results in Chapter 3:

« adiabatic dispersion relation for beam hosing in the long-bunch, overdense regime
(Eq. 3.6 on p. 42), which fundamentally demonstrates that longer-wavelength modes of
this instability may grow

» hosing amplitude response as a function of an arbitrary perturbation wavenumber, valid
in particular during early instability development (Figs. 3.3 and 3.4 on p. 46), showing
that it is possible to manipulate the instability’s development via detuning techniques

» hosing mitigation method based on plasma density steps (Fig. 3.7 on p. 50), thereby
expanding our understanding of hosing suppression in a long plasma-based accelerator

Though the mitigation setup we proposed does not seem to eliminate the hosing instability, it
may be useful in affording the SMI enough time to dominate and thus making any further hosing
growth impossible. Nevertheless, several questions remain to be answered.

Future work ideas related to Chapter 3:

obtain an analytical expression for the amplitude response II(k, z) (Eq. 3.16 on p. 45)
« study the exchange of energy during the instability’s development
« explore further plasma density profiles to control the development of hosing

» study the evolution of the phase response (Fig. 3.5 on p. 48) along propagation
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« study the early amplitude response for hosing in other regimes (short bunch, nonlinear
wakefields, etc.)

In the first part of Chapter 4, we demonstrated the robustness of the saturated SMiI to fluctua-
tions of the initial conditions. This included an analysis of the potential impact of these fluctuations
on accelerated electrons, whereby we also tried to find optimal conditions for injection of these
electrons. We then made a brief comparison of the results to subsequent experimental data
published by the AWAKE Collaboration, which was consistent with our findings.

Original results in Chapter 4, Sec. 4.1:

» simulation-based evidence that the seeded SMI is resistant to input parameter fluctu-
ations (Figs. 4.2 on p. 57 and 4.6 on p. 59), proving its suitability as a plasma-based
acceleration mechanism

« finding that electrons injected before SMI saturation may remain trapped and reach high
energies after 10 m when they are initially located far from the axis (Fig. 4.10 on p. 61),
which is consistent with experimental results

In the second section of Chapter 4, we once again investigated how instability growth relates
to a perturbation frequency, this time for the SMI. After obtaining the adiabatic dispersion relation
for the SMI, we used the same approach as in Chapter 3 to predict its early amplitude response
and found some unexpected behavior by considering the complete differential equation for the
bunch radius found in Chapter 2. This behavior, which we termed “subharmonic resonance”, was
confirmed with simulation data and is more pronounced the steeper the transverse bunch profile
is. Finally, we interpreted the effects of a single plasma density step on the development of the
SMI, proposed in Refs. [71, 72], from the perspective of the early amplitude response found above,
and concluded that these effects are consistent with the framework developed in this section.

Original results in Chapter 4, Sec. 4.2:

« adiabatic dispersion relation for the SMI in the long-bunch, overdense regime (Eq. 4.5
on p. 64), which fundamentally demonstrates that longer-wavelength modes of this
instability may grow

o amplitude response of the SMI as a function of an arbitrary perturbation wavenumber,
valid in particular during early instability development (Figs. 4.14 on p. 68 and 4.16 on
p. 70), showing that it is possible to manipulate the instability’s development via detuning
techniques

o phenomenon of subharmonic resonance in the SMI (Figs. 4.15 on p. 69 and 4.18 on p. 72),
which constitutes an entirely new aspect of the SMI to be explored

» understanding of the (early) effects of a plasma density step based on fundamental
properties of the SMI (Figs. 4.23 and 4.24 on p. 77), which may contribute to an improved
control over SMI-generated wakefields

81



Besides some of the ideas for future investigation mentioned in the context of the HI, which
also apply to the SMI, the work in this chapter opens several avenues of inquiry. For example,
our theoretical model suggests that the modulation of a bunch at the natural plasma frequency
(in a plasma with density ng) may be unaffected when propagating through plasma at a different
density, as long as one of the subharmonic resonances is targeted (e.g. at 4 ng). But there may be
other interesting ramifications from this work.

Future work ideas related to Chapter 4:

o understand why the amplitude response of the SMI is antisymmetric to the HI

« investigate how the early amplitude response and its shifting maximum could impact the
modulation frequency observed after saturation, which may not correspond to k, exactly

» explore potential applications of the phenomenon of subharmonic resonance

The main theme emerging in the work developed for this dissertation is the idea of the hosing
and self-modulation instabilities as systems that can be detuned and therefore influenced. Though
this idea is not at all novel, the detailed implications of this approach have led us to surprising
growth regimes and to the possibility of using the plasma density as a lever to manipulate the
development of these instabilities. We hope that this proves fertile ground for further research.
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Appendix A

Simulation details

The algorithm employed to solve Maxwell's equations numerically in all simulations in this work is
the Yee (finite-difference time-domain) solver. Smoothing of the electromagnetic fields was not
applied unless explicitly mentioned. The particle interpolation in all simulations is quadratic.

The boundary conditions for the electromagnetic fields and the simulation particles are the same
within each simulation geometry. By default, all boundaries are “open”. For the electromagnetic
fields, this corresponds to an absorbing, perfectly-matched-layer algorithm [87]. In both two-
dimensional geometries (Cartesian and axisymmetric cylindrical), the electromagnetic boundaries
in the transverse direction were set to perfect electrical conductors, since this minimized spurious
field phenomena at the boundary. Note that there is always a vacuum gap between the transverse
window boundaries and any plasma (except for the axial boundary in cylindrical geometry, which
also has a specific type of boundary).

The emittance and energy spread of a particle bunch can be contemplated in the simulations
imperfectly by introducing an uncorrelated thermal distribution of the velocity along any direction.
For the emittance, this corresponds to assuming that the bunch is at its waist. As input for the
thermal distribution, we simply require the standard deviation of the Maxwellian distribution wy, ;,
where i is the coordinate. Note that u represents a proper velocity and is normalized to ¢, i.e.,
i =ufc=yv/c.

For the transverse emittance, a simple correspondence to 1, can be found by assuming that
Psy/P- < 1, Where z and y are the transverse coordinates and z is the longitudinal coordinate, and
a bi-Gaussian phase space distribution given by (e.g. along z):

1 Z‘Q .13/2
N N _ Al
o) = g (5 o 203), (A1)

where 2’ = tan(p,/p.), and o, and o, are the RMS position and angle, respectively. In this case,
the geometric emittance is

€y = \/<x2> (27?) — (za')? = \/o20%, —0=0,0, . (A.2)

Note that the transverse angle can be approximated as =’ = p,/p, due to our small-angle assump-
tion, and therefore o,/ =~ 0, /o,.. Replacing this in Eq. A.2 and solving for o,,, we obtain

P= o T P2 1 (A.3)

=€y — — =gy —— —

Op x )
O mc mc oy

x

where we divided the equation by mc. Noticing that the momentum divided by mc corresponds to
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a proper velocity, we can rewrite o, /(mc) = vo,, /¢ = e and p,/(mec) = vo,, /c = vB. Thus the
value for the thermal velocity component (in the lab frame) corresponding to an energy spread or
emittance is determined via

€N,z [mm mrad]

) (A.4)

ﬂth T
0 [mm]

where we also used the definition of the normalized emittance, ey = vfe¢.

The complete parameters for the different sets of simulations are given in the tables below. For
each set, there is a table of parameters that are common to all the simulations in the set, and a
table for the differing parameters, featuring an item reference for each individual simulation.

With the exception of simulation A.5.2, where many test electrons are distributed along the
bunch, there are always two particle species: the plasma electrons and the driving bunch particles.
The positive, immobile plasma ions are taken into account implicitly, since the code assumes that
there is net charge neutrality at ¢t = 0. This poses an issue when a charged particle bunch is
present at the beginning of the simulation (since the net charge should not be zero in reality). This
inaccuracy is minimized by computing the initial electric field associated with the bunch charge,
and having it propagate for the length of one simulation window in vacuum.

The longitudinal shape of the driving bunch is consistent throughout all simulations, and is given

by:
f(():% {1+COS< ;TC_CCH 7 (A.5)

Oz

where the RMS length o, was generally taken as 12 cm, with the exception of the simulations in
Sec. A.5, where o, = 12.6 cm.

The number of particles per cell for the plasma electrons and the bunch particles is sym-
bolized as Nppc p1 @nd Ny 1, respectively. The grid and window sizes are indicated in terms of
lengthxwidth(xdepth). The shape of the transverse bunch profile is specified according to the
initials G (Gaussian), FT (flat top) and SG (super-Gaussian).
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A1 Hosing studies - 2D Cartesian geometry

Table A.1: Parameters of simulations in 2D Cartesian geometry.

Common parameters

no [10M* cm ™3] 0.5
npo [1o] 0.001
Yo 480

Bunch particles

e

Seeding Yeo = 0.05 sin(1.07 ¢)
Grid size 1750x270
Window size [k, ' x k'] 140x4
N 0.0095
Nppc,pl 2
Nope,b 4
#CPUs 2400
ave. CPUh 200
Differing parameters
ltem g(y) Bunch transv. size [k, '] tmax [Wp ']

A1l G oy =0.266

6405

A12 FT Tvo = 0.266 (URMS = 0.188) 6405

Al3 G oy =0.266

2135
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A.2 Hosing studies - 3D geometry

Table A.2: Parameters of simulations in 3D geometry.

Common parameters

no [10'* cm™3) 0.5
npo [10] 0.001
- 480
glz,) FT
Bunch particles e~
Window size [k, ' x k, ' x k, '] 140x2x2
Nppe,b 2
Differing parameters
Bunch ave
Item  transv. size Seeding Grid size At [wp '] tmax [wp '] Nppept #CPUs CPUh
[ky ']
A21 1y =0.1 Yeo = 0.01 sin(¢) 1750x660%2 0.0019 140 3 7680 33100
= 0.1 .0 = 0.01 si
A22 ™ Yeo SO 175046602 0.0019 140 3 7680 33100
(osc.) r10 = 0.4 cos(Q)
A.21 1y = 0.266 Yeo = 0.027 sin(1¢) 1750x250% 0.005 3880 2 2400 44040
A.2.2 1y = 0.266 Yeo = 0.027 sin(¢) 1750%x250% 0.005 3880 2 2400 46430
A.2.3 7190 = 0.266 Yeo = 0.027 sin(1¢) 1750x250% 0.005 3880 2 2400 46330
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A.3 Comparison to SMI theory - 2D axisymmetric geometry

Table A.3: Parameters of simulations in 2D axisymmetric geometry for comparisons to SMI theory.

Common parameters

no [10'* cm ™3]

Mo [10]

Vo

g(r)

Bunch particles

Bunch transv. size [k, ']
Other details

2
0.039684
427

FT

N

e

Tho = 0.75222 (O'RMS = 0.5319)

Window size [k; ' x k'] 140x4

tmax [wp '] 300

Nppe,pi 4

Nppc,b 4

#CPUs 2400

Differing parameters

ltem  Seeding Grid size At [w, '] ave. CPUh
A31 rip=01sin(¢(—-¢) 2800x400 0.008 30
A3.2 r;p=0.01sin(¢ —¢) 2800x1200 0.003 100
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A.4 Effect of hosing mitigation on SMI - 2D axisym. geometry

Two cases for the self-modulated bunch were considered: one with a density step of +4% at
z=0.5 kgl and one without. For each of these cases, two simulations were performed: one with a
two-step configuration for hosing mitigation and one without. This corresponds to four simulations
in total.

Table A.4: Parameters of simulations in 2D axisymmetric geometry for the effect of hosing mitigation on
the SMI.

Common parameters

no [10'* cm™3) 0.5

Mo [10] 0.001

b 480

g(r) G

Bunch particles e~

Bunch transv. size [k, '] o0 = 0.266
Seeding RIF at ¢,
Grid size 5600x300
Window size [k, ! x k, '] 280x3

At [wy'] 0.008

tmax [wp '] 7000
Nppe,pi 4

Nppe,b 4

#CPUs 4096

ave. CPUh 950
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A.5 AWAKE-related studies - 2D axisymmetric geometry

In these simulations, a five-pass binomial smoothing algorithm is applied to the electromagnetic
fields for particle interpolation at every time step. More specifically, a 1, 2, 1 stencil is applied
four times, followed by a -5, 14, 5 stencil. Note that this smoothing does not affect the actual
electromagnetic fields used in the field solver.

Table A.5: Parameters of simulations in 2D axisymmetric geometry for AWAKE-related studies.

Common parameters

no [10'* cm ™3] 7

npo [10] 0.0027
g(r) G
Bunch particles pt

Bunch transv. size [k, ']  oq0 = 1.41

Seeding RIF at ¢,
Grid size 20063x425
Window size [k, x k,'] 1663x8

At [wy ] 0.012

tmax [wp '] 53000
Nppe,pl 4

Nppe,b 4

Differing parameters

. ave.
ltem Other details #CPUs
CPUh
A51 480 2400 20000
A.5.2 480 Electrons injected along bunch 4608 95000
A.5.3 427 8192 17190

A5.4 427 Stepdown3%over Az =50k,  atz=25m 8192 16960
AS5S5 427 Stepup 3% over Az =50 k;l atz=2.5m 8192 16810
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A.6 Self-modulation studies - 2D axisymmetric geometry

Table A.6: Parameters of simulations in 2D axisymmetric geometry for self-modulation studies.

Common parameters

no [10'* cm™3) 2

npo [no) 0.01984

Yo 427

Bunch particles q = e, My =50me.
Grid size 5600x300
Window size [k; ' x k'] 280x3

At [wy ] 0.008

tmax [wp '] 5280

Nppe,pl 4

Nppe,b 4

Differing parameters

Bunch ave
Item g(r) transv. size  Seeding Other details #CPUs ’
. CPUh
[k ]
AB1 G oro = 0.53 - 4096 600
AB2 G oro = 0.53 r10 = 0.1 sin[0.8(¢ — ¢s)] 4096 600
AB3 G oro = 0.53 r10 = 0.1 sin[(¢ — ()] 4096 600
A6.4 G o0 = 0.53 ri0 = 0.1 sin[k(¢ — ¢s)] 4096 600
ABS5S G oro = 0.53 r10 = 0.1 sin[0.5(¢ — ¢5)] 4096 600
A.6.6 SG (p = 2) ORMS = 1.06 T10 = 0.1 Sin[k‘(( — Cb)] 4096 600
AB7 SG(p=4) orms =105 rio=0.1sin[k(¢— )] 4096 600
A.6.8 SG (p = ) ORMS — 1.05 T10 = 0.1 Sin[k‘(( — Cb)] 4096 600
AB9 SG(p=4) orms=105 1r10=0.1sin[k(¢— ()] 4096 600
Step d 4%
A610 G oo =053 110 = 0.1 sin(C — C) PN T 2400 550
atz=0.5 k:ﬁ
. Step up 4% at
AB611 G o0 = 0.53 r10 = 0.1 sin(¢ — () 1 2400 550
z=20.5 kﬂ
AB12 G oro = 0.53 r10 = 0.1 sin(¢ — () 2400 550
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Appendix B

Phase shift measurement method

Our objective is to measure the phase shift between two periodic curves with the same oscillating
frequency. We use a cross-correlation of both curves to achieve this, which could be understood as
shifting them with respect to each other and finding the amount of shift where their superposition
is maximized.

As an example, Fig. B.1 shows the initial centroid and initial plasma response from a 2D simulation
where the wavenumber for the centroid perturbation is 0.9 k,. The cross-correlation for these two
curves is defined as

(e * (F) (¢') = / T 0e) (B () dC (B2)

oo

or, for a finite region L,
L

(e % (F)) (¢') = / U0 (B ¢+ de (B.2)

The cross-correlation for the curves in Fig. B.1 is shown in Fig. B.2a). We are interested in
finding the amount of shift ¢/ within one wavelength A = 27 /k that leads to the most superposition
between both curves, i.e., that maximizes the cross-correlation. We therefore find the location
of the maximum of (y.  (F})) within ¢’ = [0, ], as illustrated in Fig. B.2b). The red dotted line
denotes the shift ¢, found in this case. The final phase shift in radians is calculated according to
A¢ =27 - (/. /A InFig. B.2, for example, (/.. = 0.32 k, ' and XA =~ 6.98 k!, which yields the phase
shift Ag ~ 0.29 rad.

This measurement method is also applied to simulation data related to the self-modulation
instability. Whereas the hosing plasma response is purely oscillatory, the plasma response that
drives the SMI, given by (rF,) /o, typically consists of an adiabatic component Fgy o and an
oscillatory component Fsy 1. Since the slowly-varying component may confound our interpretation
of the cross-correlation, it is subtracted from the raw data before evaluating the cross-correlation.
To obtain Fgy,0, @ moving average is performed with a centered window measuring one oscillation
period (A = 27 /k).

An example of the original plasma response data and the obtained adiabatic component is
given in Fig. B.3a). The oscillating component remaining from the subtraction is shown in Fig. B.3b)
(blue curve), along with the initial RMS radius of the bunch (black curve). The cross-correlation of
these two curves is displayed in Fig. B.4. Once again, the phase shift is determined by finding the
maximum of the cross-correlation within the first oscillation wavelength [see red dotted line in
Fig. B.4b)].
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Figure B.1: Initial centroid (black line) and initial average transverse force (blue line) from a 2D slab particle-
in-cell simulation.
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Figure B.2: Cross-correlation of the curves in Fig. B.1: a) full data and b) detail. The dashed grey lines
indicate the limits ¢’ = {0, A} and the red dotted line indicates the location of the maximum within this

region.
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Figure B.3: a) Initial SMI-driving plasma response (blue curve) and its adiabatic component (dashed grey
curve), obtained with a moving average. b) Initial RMS radius of the bunch (black curve) and oscillatory
component of the initial plasma response (blue curve). Data obtained from a 2D cylindrical particle-in-cell

simulation.
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Figure B.4: Cross-correlation of the curves in Fig. B.3b): full data (a) and detail (b). The dashed grey lines

indicate the limits ¢’ = {0, A\} and the red dotted line indicates the location of the maximum within this
region.
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