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Resumo

Corregoes Radiativas em Teoria Quantica

de Campos sob Condicoes de Contorno

Fabricio Augusto Barone Rangel

| Orientador: Carlos Farina de Souza

Co-orientador: Ricardo Moritz Cavalcanti

Resumo da Tese de Doutorado submetida ao Programa de Pés-graduacao em Fisica,
Instituto de Fisica, da Universidade Federal do Rio de Janeiro - UFRJ, como parte dos

requisitos necessarios a4 obtencao do titulo de Doutor em Ciéncias (Fisica).

Nesta tese estudamos a influéncia de condicoes de contorno em alguns fenomenos descritos
pela teoria quantica de campos. Analisamos como as contribui¢oes de correcoes radiativas
em alguns processos fisicos sdo afetadas quando condigbes de contorno sao impostas em
operadores de campo envolvidos nos processos em consideragao.

Esta tese pode ser dividida, em linhas gerais, em duas partes: na primeira, analisamos
alguns efeitos de condigdes de contorno sobre o campo eletromagnético, na segunda, calcu-
lamos as corregoes radiativas a energia de Casimir de um campo escalar com massa com
auto-interacao \¢*.

Na primeira parte desta tese, estudamos como a alteragao sofrida pelo campo de radiacéo,

devido & presenca de placas paralelas, modifica os niveis de energia do 4&tomo de Hidrogénio.
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Estudamos ainda como a velocidade de propagacdo de uma onda eletromagnética é afetada
pela presenca de placas paralelas quando essa onda se propaga entre as mesmas, fenémeno
conhecido como efeito Scharnhorst. Discutimos também como seria o efeito Scharnhorst
para a Eletrodinamica de Born-Infeld.

A segunda parte da tese estd dedicada ao estudo das correcoes radiativas ao efeito Casimir
de um campo escalar com massa e auto-interacio \¢*, sob diversas condicées de contorno.
Trata-se de um cdlculo em primeira ordem na constante de acoplamento A. Calculamos pela
primeira vez tal corregdo para um campo escalar com massa e verificamos explicitamente que
o limite de massa nula coincide com os resultados existentes na literatura. Apresentamos
ainda um célculo alternativo para tais corre¢oes radiativas, no caso de um campo escalar

Sem massa.
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Abstract

Radiative Corrections in Quantum Field

Theory under Boundary Conditions

Fabricio Augusto Barone Rangel

Orientador: Carlos Farina de Souza

Co-orientador: Ricardo Moritz Cavalcanti

Abstract da Tese de Doutorado submetida ao Programa de Pés-graduagio em Fisica,
Instituto de Fisica, da Universidade Federal do Rio de Janeiro - UFRJ, como parte dos

requisitos necessdrios & obtencao do titulo de Doutor em Ciéncias (Fisica).

In this thesis we study the influence of boundary conditions on some phenomena which
are described properly by the quantum field theory. More specifically, we analyse how the
contributions coming from radiative corrections in a few physical processes are affected when
boundary conditions are imposed on the field operators involved in such processes.

This thesis can be divided into two parts: in the first one, we analyse some effects caused
by the consideration of boundary conditions on the electromagnetic field, while in the second
part, we calculate the radiative corrections to the Casimir energy of a massive scalar field
with a polynomial self-interaction of the tipe A¢*.

In the first part, we study how the change in the radiation field due to the presence of

parallel plates modifies the energy levels of a Hydrogen atom. Besides, we study how the

Rio de Janeiro
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propagation velocity of an electromagnetic wave is affected by the presence of parallel plates
when this wave propagates between them, a phenomenon known as Scharnhorst effect. We
also discuss the Scharnhorst effect in the context of the Born-Infeld Electrodynamics.

The second part of this thesis is devoted to the study of radiative corrections to the
Casimir effect of a massive scalar field with self-interaction of the type A¢* under several
boundary conditions. Such a study turns to be a two-loop effect, but in first order in the
coupling constant A. We computed for the first time such a correction for a massive scalar
field and checked explicitly that the zero mass limit coincides with the known results present
in literature. For the particular case of a massless scalar field, we also present an alternative

calculation for such radiative corrections.
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Introducao

Esta tese trata exclusivamente de fendmenos e processos fisicos, todos eles descritos e expli-
cados dentro do contexto da Teoria Quéntica de Campos, que podem ser alterados quando
se considera a interagdo do sistema em questdo com a sua vizinhanca. Obviamente, hd uma
enormidade de tais fendomenos e ndo temos aqui a pretensdo de estudar todos eles, o que
seria uma tarefa impossivel. Temos, sim, a intengdo de abordar alguns deles, escolhidos de
modo que, ao estudé-los, saibamos como proceder em fendémenos andlogos.

A Eletrodindmica Quéntica (EDQ) usual trata de processos que ocorrem no espago livre
(ou de sistemas atoémicos no espago livre). No entanto, isso corresponde apenas a uma
aproximacao para a situacao real, onde o sistema estd, em geral, circundado por superficies
metélicas, dielétricas, etc.. Por exemplo, é um fato conhecido na literatura que a presenca
de placas, ou cavidades de um modo geral, provoca modificacoes nos modos do campo de
radiacdo subjacente. Tais modificagbes, por sua vez, alteram a energia do estado de vacuo
do campo de radiacdo, dando origem a forgas macroscépicas entre as fronteiras, fenémeno
conhecido com o nome de efeito Casimir [1]. Além disso, qualquer modifica¢gio nos mo-
dos do campo de radiacdo, ndo importa a sua origem, pode causar também alteragoes nas
propriedades radiativas de sistemas atémicos que interajam com o campo de radiacao.

Atualmente, tem sido muito importante estudar a influéncia da vizinhanga de um sistema
atémico em suas propriedades radiativas, pois as medidas experimentais de quantidades
atémicas (por exemplo, o fator g — 2 do elétron ou a constante de Rydberg) estdo cada vez
mais precisas e, por conseguinte, a comparacao de tais medidas com as previsoes tedricas
ja exige célculos que levem em consideragio a interagdo dos sistemas com a sua vizinhanga.
Esse tipo de estudo serve também para controlar ou modificar as propriedades radiativas

do sistema atémico em questdo (por exemplo, taxas de decaimento por emissao espontinea




podem ser aumentadas ou até mesmo suprimidas devido & presenca de espelhos a distincias
finitas). Além da largura das raias espectrais sofrerem alteracdes devido & proximidade do
sistema atomico com paredes metdlicas ou fronteiras em geral (fato diretamente relacionado
com a alteracdo na taxa de emissdo espontanea), os proprios niveis de energia de um atomo
se alteram quando este se encontra, por exemplo, dentro de uma cavidade. No caso do
Hidrogénio, diriamos que trata-se da influéncia de cavidades no deslocamento Lamb. Esse
ramo da EDQ é conhecido com o nome de EDQ de cavidades e tem atraido a atencao de
muitos fisicos nos ltimos anos (tanto tedricos quanto experimentais), principalmente devido
ao enorme avanco tecnolégico permitindo que experimentos com alto grau de precisdo possam
ser realizados (para uma revisdo sobre esses assuntos indicamos as referéncias [2, 3, 4, 5]).

A interacao do campo de radiacdo com cavidades é extremamente dificil de ser tratada
exatamente e, por esse motivo, é comum simularmos tal interacao por meio de condigoes de
contorno impostas sobre o campo. Embora as condigoes de contorno usualmente utilizadas
sejam um tanto idealizadas, a imposicio das mesmas sobre o campo ja nos fornece, na
maioria dos casos, bons resultados. E como é usual em fisica, a partir de uma situagao
muito idealizada, podemos comegar a considerar situagoes mais realistas. Por exemplo, no
caso de uma parede metélica, em lugar de tratd-la como fronteira perfeitamente condutora,
podemos passar a tratd-la como tendo uma condutividade finita, usando para isso algum
modelo conveniente.

Muitas vezes, em lugar de tornar mais realista a condicao de contorno, podemos tentar
melhorar o cédlculo perturbativo determinando as primeiras corregoes radiativas relevantes
ao problema em estudo, mas mantendo vélida a condigdo de contorno idealizada (este serd
0 nosso procedimento, por exemplo, no capitulo 3). Essa conduta pode ser interessante
para testar se certas condigbes de contorno geram problemas incuraveis no que diz respeito
a renormalizabilidade da teoria quando considerada em ordens mais altas na constante de
acoplamento. Se esse for o caso, tais condigdes certamente sao idealizadas demais, a tal
ponto que a teoria completa com elas nao faz sentido.

A imposicdo de condigbes de contorno em campos quantizados nao se restringe ao ca-
so do campo de radiacdo, embora nesse caso seja mais intuitivo compreendé-las, uma vez
que o campo eletromagnético existe classicamente e estamos inclusive familiarizados com

as condi¢oes de contorno impostas por superficies metélicas, dielétricas, permedveis, etc..



No entanto, é extremamente relevante estudar de que modo outros campos, como por
exemplo, o campo escalar, ou o campo fermionico, se comportam sob condigbes de con-
torno. A relevancia de tal estudo é mais sutil e muitas vezes esse tipo de estudo serve como
um primeiro passo para o entendimento de problemas mais realistas. Por exemplo, em al-
gumas situagoes, em lugar de considerar o campo eletromagnético, é conveniente considerar
um campo escalar sem massa, evitando assim a complicagdo trazida pelas polarizagoes do
campo eletromagnético (a energia de Casimir para o campo eletromagnético entre duas pla-
cas paralelas perfeitamente condutoras pode ser obtida calculando-se a energia de Casimir
para um campo escalar sem massa, submetido a condigdo de Dirichlet em planos paralelos e
multiplicada por 2, para levar em conta as duas polarizagoes do campo eletromagnético [5]).
Vale mencionar também que no chamado modelo de sacola para os hadrons [6], tanto o cam-
po bosoénico dos glions, quanto o campo fermidnico dos quarks estdo confinados dentro da
sacola, de modo que, dentro desse modelo, condigdes de contorno sobre tais campos surgem
de forma bastante natural. A consideragao de tais condigoes é importante na determinagao
da massa do hadron, pois a energia de Casimir gerada pelo confinamento desses campos
pode chegar a aproximadamente 9% da massa do hddron.

Nesta tese, trataremos especificamente de trés problemas, dois deles envolvendo o campo
de radiacdo, apresentados, respectivamente nos capitulos 1 e 2, e o terceiro envolvendo um
campo escalar, discutido no capitulo 3. No entanto, antes de entrar em mais detalhes a
respeito de cada um dos problemas a serem abordados, gostaria de chamar a atenc¢ao para
o fato de que em todos eles estaremos calculando a influéncia de condigoes de contorno em
contribui¢bes provenientes de corregoes radiativas.

No capitulo 1, analisamos a influéncia de duas placas paralelas entre si, uma delas infini-
tamente permedvel e a outra perfeitamente condutora, nos niveis de energia de um atomo de
Hidrogénio localizado entre as mesmas. O caso em que as duas placas sdo perfeitamente con-
dutoras jé foi tratado na literatura (7, 8, 9, 10]. Desse modo, a obtengéo de novos resultados,
associados a condigbes de contorno envolvendo placas de naturezas diferentes, proporcionou
a comparagao entre resultados calculados com diferentes condigbes de contorno, ajudando
assim no entendimento de sistemas do tipo dtomo-cavidade. Calculamos nosso resultado
usando teoria de perturbagao de segunda ordem, e as fungdes de correlagao relevantes ao

problema sdo regularizadas com o método de separagio de pontos introduzido por Schwinger.



No capitulo 2, estudamos um efeito muito interessante da EDQ de cavidades, mas que
ainda nao foi verificado experimentalmente, por ser muito pequeno: trata-se do chamado
efeito Scharnhorst [11], que consiste na variacdo da velocidade da luz quando esta se propaga
entre duas placas paralelas e perfeitamente condutoras, cuja presenca impoe condigbes de
contorno sobre o campo de radiagdo. A explicacao desse efeito reside no fato de que o campo
dos férmions interage tanto com o campo eletromagnético cldssico, como também com o
campo quantizado. Desse modo, um campo eletromagnético cldssico, como o de uma onda
eletromagnética, pode interagir de forma indireta com o campo de radiagdo, por meio do
laco fermionico (par elétron pésitron). A presenca de placas materiais altera o propagador
do féton, o que é percebido diretamente pelo campo fermiénico (que estd em interagdo com
o campo de radiagdo), e indiretamente pela onda (pois o campo eletromagnético interage
com o campo fermionico), o que acaba influenciando sua propagagao. Note, portanto, que o
efeito Scharnhorst é um efeito a dois lagos. A metodologia a ser empregada no estudo desse
efeito baseia-se numa técnica introduzida por Barton [12], que usa como ponto de partida
a lagrangiana efetiva da EDQ a um laco, a saber, a lagrangiana de Euler-Heisenberg. No
entanto, nesse capitulo, iremos aplicar a técnica de Barton para lagrangianas ligeiramente
mais genéricas, mas que contém, como casos particulares, a lagrangiana de Euler-Heisenberg
e lagrangianas do tipo Born-Infeld. Nossos calculos sao feitos com trés arranjos de placas, o
que significa trés condicoes de contorno diferentes. Mostramos explicitamente que para uma
certa lagrangiana do tipo Born-Infeld nao haveria efeito Scharnohorst, pelo menos na ordem
considerada.

Finalmente, no capitulo 3, discutimos o efeito Casimir. E nesse capitulo que se encontram
os resultados mais relevantes desta tese. Esse efeito, proposto por H.B.G. Casimir em 1948
[1], consiste na atracdo entre duas placas neutras, paralelas e perfeitamente condutoras.
E um efeito intrinsecamente quantico e que pode ser explicado em termos da variagao da
energia de ponto zero associada ao campo eletromagnético quantizado quando duas placas sao
colocadas muito préximas uma da outra. O efeito Casimir foi verificado experimentalmente
pela primeira vez por Sparnaay [13] em 1958 com uma precisdo experimental muito baixa e
somente quatro décadas mais tarde é que experimentos feitos diretamente com metais foram
realizados novamente [14]. Para discussoes detalhadas sobre o efeito Casimir sugerimos as

referéncias [15, 16, 17], enquanto introducdes breves a esse efeito podem ser encontradas nas



referéncias [18, 19].

O efeito Casimir, em sua forma geral, é um ramo de pesquisa bastante ativo nos dias
atuais. Isso é devido em parte a sua caracteristica interdisciplinar, uma vez que ele tem
relevancia nao sé na EDQ, como também em fisica de matéria condensada, teorias com
dimensoes extras compactificadas, gravitacio e cosmologia, fisica matemética e em nanotec-
nologia, na construgao de pequenos dispositivos elétricos.

A interacdo de um campo quantizado, mesmo em seu estado de vacuo, com placas ma-
teriais ji é extremamente complicada, motivo pelo qual simulamos tal interacdo impondo
condigoes de contorno bastante idealizadas sobre os campos. Como conseqiiéncia, mes-
mo quando tratamos um campo ndo interagente, mas sujeito a condigdes de contorno, ji
encontramos um deslocamento da energia do vdcuo de tal campo. Note que nessa aproxi-
magao (campos nao interagentes) nenhuma constante de acoplamento aparece na expressio
da energia de Casimir, apenas constantes universais como 7, ¢ e, obviamente, parimetros
geométricos caracteristicos do sistema em estudo.

No entanto, os campos da natureza sao interagentes e o efeito Casimir deve ser calculado,
em principio, para tais campos. Como isso é extremamente dificil, apela-se para a teoria
de perturbacao e calcula-se, por exemplo, a correcdo em primeira ordem na constante de
acoplamento para o efeito Casimir. No caso da EDQ), a primeira correcdo radiativa ao efeito
Casimir j4 foi calculada [17, 20] e se revelou muito pequena. Os experimentos atuais ainda
nao possuem precisao suficiente para poder detectd-la. Nao obstante, esse é um célculo de
grande importincia do ponto vista tedrico, pois permite, num contexto mais simples, exa-
minar as dificuldades (e eventualmente tentar sani-las) que se interpdem & renormalizagao de
modelos de teoria de campos definidos em espagos-tempos curvos ou com fronteiras, e que por
esse motivo nao exibem invariadncia de Poincaré. Resultados a respeito de correcoes radiativas
ao efeito Casimir para o campo escalar sem massa, com auto-interacdo A\¢*, também podem
ser encontrados na literatura [21, 22, 23, 24, 25].

Outro fato interessante a respeito do efeito Casimir é que a um lago (ordem zero na cons-
tante de acoplamento) ele depende somente das freqiiéncias dos modos normais do campo, e
nao dos seus modos. Em outras palavras, nessa ordem, a energia de Casimir pode ser escrita
simplesmente como a soma da energia de ponto zero dos modos do campo, devidamente

regularizada e renormalizada. Uma conseqiliéncia imediata desse fato é que, a energia de



Casimir em ordem zero de um campo escalar sujeito & condi¢do de Dirichlet em dois planos
paralelos entre si, é exatamente igual aquela calculada com o campo satisfazendo a condicao
de Neumann nos planos. No entanto, em ordens mais altas na constante de acoplamento, era
de se esperar que essa igualdade deixasse de existir. Surpreendentemente, isso nao acontece,
ou seja, as correcoes radiativas em ordem A para a energia de Casimir de um campo escalar
sem massa, mas com auto-interacio A¢?, calculada com ambas as condigdes, continuam
sendo iguais. No capitulo 3, fazemos o cdlculo da primeira correcao radiativa & energia de
Casimir de um campo escalar com essa auto-interagao, mas considerando pela primeira vez
na literatura um campo com massa. Mostramos explicitamente que a igualdade mencionada
émcima, valida para o caso sem massa, deixa de existir. Ainda para um campo escalar com
massa, fazemos o célculo com condigdes mistas (Dirichlet-Neumann). Apresentamos também

|
nesse capitulo uma técnica alternativa para o cdlculo da correcao radiativa a energia de

Casimir de campos escalares sem massa com auto-interacao A¢*.



Capitulo 1

Influéncia de Placas Paralelas no

Espectro do Hidrogenio

Neste capitulo investigamos a influéncia da presenca de placas materiais sobre os niveis de
energia de um &tomo de Hidrogénio nao relativistico, ou seja, estudamos a influéncia de
placas materiais no deslocamento Lamb. Em particular, consideramos a situacao em que o
dtomo se encontra entre duas placas paralelas, sendo uma delas perfeitamente condutora,
e a outra, perfeitamente permedvel. Calculamos explicitamente as correcdes nos niveis de
energia decorrentes das condigdes de contorno impostas sobre o campo de radiagdo pela
presenca das placas. Obtemos ainda os deslocamentos Lamb para um dtomo localizado
préximo a uma tnica placa, quer seja ela permedvel ou condutora. Embora ji existissem
na literatura célculos de deslocamento Lamb para dtomos na presenca de placas materiais,
havia poucos resultados envolvendo placas permeaveis.

Esse capitulo estd estruturado da seguinte forma. Na se¢do 1.1 fazemos uma breve
introducéo sobre o deslocamento Lamb. Na secdo 1.2 discutimos brevemente a teoria de
perturbacdo relevante para os célculos a serem feitos em seguida. A secao 1.3 é destinada
ao calculo das funcoes de correlagio do campo eletromagnético pertinentes ao problema em
consideracdo. Finalmente, na se¢io 1.4 obtemos os deslocamentos Lamb para um dtomo nao
relativistico situado na regido entre duas placas paralelas e de naturezas diferentes, como
descrito acima. Comentéarios finais a respeito dos resultados encontrados sdo apresentados

na segao 1.5.



1.1 Introducao

Ao fazermos um tratamento ndo relativistico do dtomo de Hidrogénio, e desconsiderando
efeitos de spin, somos levados a resolugdo da equagdo de Schriodinger com um potencial
coulombiano, que nos fornece os niveis de energia [26, 27].
4
B — _if_?(_w> | (11)
2R\ -y

Na expressdo anterior, m, e m, sdo as massas do elétron e do préton, respectivamente, e
n =1,2,3,... ¢ o chamado nimero quéntico principal. Como o potencial considerado tem
simetria esférica, esperava-se encontrar 2¢ + 1 estados com um mesmo nivel de energia, com
¢ denotando o niimero quantico de momento angular orbital. Porém, a degenerescéncia

encontrada é dada por

n—1

Y (2t+1)=n?, (1.2)

£=0
maior do que a esperada. Esse resultado é usualmente chamado de degenerescéncia acidental.

O tratamento do 4tomo de Hidrogénio por meio da equagao de Dirac € mais realista, por
levar em conta tanto a relatividade, como o spin do elétron. Os niveis de energia encontrados
por meio desta abordagem sdo dados por [28, 29, 30]

-1/2

ol = mRE [ (n—(j+1/2)+\/(j+1/2)2_a2) ’ (1.3)

onde o = €2 /Fic é a constante de estrutura fina, n = 1,2, 3, ... € o nimero quéntico principal,
e j o ntimero quantico de momento angular total, que satisfaz a restricdo j + (1/2) < ne
pode ter valores inteiros ou semi-inteiros.

Embora a degenerescéncia tenha sido quebrada, pois agora os niveis dependem nao sé de
n, mas também de j = £+ 1/2, ainda existe uma degenescéncia para os niveis com 0 mesmo
valor de n e j. Isso ocorre, por exemplo, para os estados comn =2e j =04 (1/2),en =2
e j =1—(1/2), designados, respectivamente, por 251/, e 2P, 5. Apesar disso, experimentos
realizados a partir dos anos 30 [31, 32] indicavam que as energias desses niveis deveriam ser

diferentes. Em 1947, Lamb e Retherford [33] se basearam no fato de que o estado 2S5;; €



meta-estdvel, com tempo de vida muito grande !, para realizar um experimento mostrando
que o nivel 25;/; estd cerca de 1000MHz acima do nivel 2P, /2. Essa diferenca é conhecida
desde entao pelo nome de deslocamento Lamb. Em 1952, com experimentos mais refinados,
Lamb e Retherford [34] apresentaram o valor 1058,274+1MHz para o deslocamento Lamb,
sendo que atualmente o valor aceito é de 1057,845MHz=+(0,13)% [35].

A explicagao para o deslocamento Lamb é dada pela Eletrodindmica Quaéntica, e decorre
do fato de que os elétrons atomicos estao nao sé submetidos ao potencial coulombiano, como
também em interacdo com o campo de radiagdo, mesmo quando este se encontra no seu
estado de vacuo, ou seja, sem fétons presentes. Fato este desconsiderado tanto no resultado
ndo relativistico (1.1), como no resultado (1.3) obtido pela equagdo de Dirac.

O deslocamento Lamb é um efeito predominantemente nao relativistico, cuja explicagdo
foi dada pela primeira vez por Bethe em 1947 [36], que considerou, na. teoria nao-relativistica
de Schrodinger, o acoplamento do elétron atémico com o campo de radiagdo. Fazendo um
calculo perturbativo, apds subtrair a auto-energia do elétron, Bethe obteve o valor 1040MHz
para o deslocamento Lamb, em excelente acordo com os dados experimentais. Atualmente,
entende-se por deslocamento Lamb qualquer alteracao nos niveis de energia de atomos decor-
rentes da interagdo de seus elétrons com o campo de radiagdo em estado de vacuo.

Podemos encontrar em textos comumente utilizados em cursos de pés-graduacao [37, 38],
cdlculos mais refinados do deslocamento Lamb, considerando outros efeitos da EDQ, como
a correcdo de vértice, o momento anémalo do elétron e a polarizacdo do vacuo (veja figura
1.1). Célculos recentes em mais altas ordens na constante de acoplamento fornecem o valor
de 1057,86240,014MHz para o deslocamento Lamb, em espléndido acordo com os dados
experimentais [30].

Ultimamente, as medicoes efetuadas em sistemas fisicos, ndo sé do deslocamento Lamb,
mas também de outras grandezas relacionadas & EDQ, como o momento anémalo do elétron
e taxas de decaimento atomico, tém atingido tamanha precisao que ja é relevante conside-
rar, no calculo de tais grandezas, a interacdo desses sistemas com a sua vizinhanga (por
exemplo, alguns desses experimentos sio realizados dentro de cavidades). Estudos a respeito

da influéncia causada pela vizinhanga de sistemas atémicos em suas propriedades radiativas

10 estado 25 /2 € meta-estdvel, porque a sua emissdo esponténea para o estado fundamental 151/, pela

emissdo de um tinico féton é proibida, j& que para esta transigao Af = 0.



também podem se revelar titeis no controle dessas propriedades (por exemplo, a presenca de

cavidades pode aumentar, diminuir ou até mesmo suprimir taxas de decaimento espontaneo).

piabd o
e

Figura 1.1: Gréaficos que contribuem para o deslocamento Lamb: (a,b) auto-energia do
elétron; (c) correcdo de vértice; (d,e) contratermo de massa do elétron; (f) auto-energia do

foton.

Nesse capitulo investigamos como os niveis de energia de um atomo de Hidrogénio, nao-
relativistico, sdo alterados quando este se encontra em uma regido entre um par de placas
infinitas e paralelas entre si, cuja presenca impde condigdes de contorno sobre o campo de
radiacdo. Estas alteragdes nos niveis de energia, como apontadas por Power [39] em 1966, sio
decorrentes do fato de que os elétrons do dtomo estdo em interagio com o campo de radiagéo,
e este, por sua vez, tem seus modos distorcidos pelas condicbes de contorno impostas pelas
placas. Nesse sentido, podemos dizer que os elétrons sentem indiretamente a presenca das
placas. Conseqiientemente, a presenga de placas materiais influencia o deslocamento Lamb.

O caso no qual temos duas placas perfeitamente condutoras foi inicialmente discutido por
Barton [7] e, posteriormente, por Liitken e Ravndal [10]. Casos em que se tem somente uma
Unica placa presente também j4 foram discutidos na literatura [40, 41]. Mais recentemente,
ainda para situacoes envolvendo duas placas paralelas, algumas generalizacoes foram feitas
por Barton [8, 9], e Jhe e Nha [42, 43]. H4 também estudos envolvendo superficies dielétricas
[44].

Apesar da influéncia de placas permedveis na taxa de decaimento espontaneo ja ter sido
investigada [45, 46], sua influéncia em niveis de energia atémicos ainda nao havia sido muito

explorada [46, 47]. Tendo isto em mente, vamos considerar neste capitulo o caso especifico de

10



um atomo de Hidrogeénio situado entre duas placas paralelas, sendo uma delas perfeitamente
condutora, e a outra infinitamente permeavel. Daqui por diante, iremos nos referir a estas
condicoes de contorno como condigoes CP.

Tal configuracao de placas foi considerada pela primeira vez por Boyer, no cédlculo do
efeito Casimir dentro do contexto da Eletrodinadmica Estocédstica [48]. As condigdes de
contorno CP tém despertado um interesse especial, pois apresentam algumas propriedades
peculiares, como por exemplo, o fato de que fornecem uma pressdo de Casimir repulsiva
entre as placas [48, 49, 50] (veja a referéncia [51] para correcoes térmicas a este efeito).
Mais recentemente, essa configuracao de placas foi usada no contexto do efeito Scharnhorst
[52, 53, 54].

Para o calculo dos deslocamentos dos niveis atdmicos devido & presenca de placas, vamos
utilizar teoria de perturbagdo de niveis degenerados em segunda ordem. As funcdes de
correlagao do campo de radiacdo, que daqui por diante serdo chamadas simplesmente de
correlatores dos campos, necessérias para nossos cdlculos futuros, serdo calculadas com a
técnica de regularizacio de separagio do tempo imagindrio introduzida por Schwinger 2.
Os resultados obtidos para os deslocamentos dos niveis de energia serao entao comparados
com aqueles ja existentes na literatura para os casos onde as duas placas sdo perfeitamente
condutoras [10] e também quando elas sdo infinitamente permedveis [46, 47]. De agora em
diante, as condigoes de contorno impostas por essas ultimas configuragoes serdo designadas
por condicoes CC e PP respectivamente. Apesar das condigoes CC e PP fornecerem a
mesma pressao de Casimir, é interessante destacar que elas influem de formas diferentes nos
niveis de energia atomicos. Como casos limites dos resultados obtidos, vamos determinar
os deslocamentos nos niveis de energia de um &atomo situado préximo a uma unica placa
infinitamente permedvel, e de um atomo situado proximo a uma tnica placa infinitamente

condutora, estando este 1ltimo resultado presente na literatura [40].

2Qutras técnicas de regularizacio poderiam ter sido empregadas, podemos citar como exemplo o método
da funcdo zeta. Para uma introdugao ao método da funcéo zeta, e sua conexao com o método de tempo

préprio de Schwinger, sugerimos a referéncia [55].
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1.2 A teoria de Perturbacao

Nesta segdo, expomos as linhas gerais do problema abordado ao longo do capitulo e da
teoria de perturbacdo de segunda ordem de nivel degenerado, que nos possibilitard calcular
os deslocamentos Lamb em secbes posteriores.

O sistema que estamos considerando é composto por um dtomo descrito pela equagao de
Schrédinger, e pelo campo eletromagnético no estado de vacuo, mas submetido a determi-
nadas condigoes de contorno, a serem especificadas mais adiante. Vamos efetuar os calculos
considerando sempre a aproximacao de dipolo, ou seja, supondo que as dimensoes do atomo
sejam despreziveis frente ao comprimento de onda do campo de radiagao.

Nos célculos a seguir, © designa a posi¢do do nicleo do atomo no espago, enquanto
7 o operador de posicao do elétron atomico, tendo como origem o nicleo atémico, como
indicado na figura 1.2. Na aproximagao de dipolo, os operadores de campo eletromagnético

sdo aproximadamente constantes e uniformes ao longo de todo o dtomo.

nucleo atdmico
—_
V

al.

/

A hamiltoniana do problema que vamos abordar pode ser escrita na forma 3:

Figura 1.2: Sistema de coordenadas utilizado

H=Hp+ (Hc—evac) + Hr , (1.4)

sendo H 4 a hamiltoniana da parte atémica, He a hamiltoniana do campo eletromagnético,
evac a energia do campo eletromagnético em estado de vécuo, porém na presenca de placas
paralelas, e H; a hamiltoniana de intera¢do do campo de radiagdo com o elétron atémico,
dada por [26, 27, 56|

H; = eF- E(Z) . (1.5)

3Estamos usando unidades onde Ai=1ec=1
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Na expressdo anterior, e é a carga do elétron, e E o operador de campo elétrico. Note que
este ultimo esta calculado no ponto Z, onde se localiza o nicleo atéomico.

Sendo o campo de radiagdo tomado como constante e uniforme ao longo de todo o atomo
(aproximacdo de dipolo), as corregdes nos autovalores de energia atémicos impostas pelas
flutuacoes do campo elétrico E podem ser consideradas como um certo tipo de efeito Stark,
sendo dessa forma proporcionais a E/em, (o que pode ser verificado usando-se a equacdo
(1.5), @ = e*/47 e o fato de que o raio atémico é da ordem de |7] ~ (am,)™!). J4 as corregoes
oriundas das flutuagdes do campo magnético B podem ser consideradas como um certo tipo
de efeito Zeeman, sendo portanto proporcionais a eB/m,.. Em nossas unidades, F e B tém
a mesma ordem de grandeza, sendo assim, temos que E/em, > eB/me, j4 que a carga e é
uma quantidade muito pequena (e < 1). Portanto podemos ignorar a perturbagao causada
pelo campo magnético frente aquela causada pelo campo elétrico.

Ao longo do texto vamos usar |e,) para designar um auto-estado atémico, de autovalor
En, OU S€ja,

Halen) = €nlen) , (1.6)

e |k, \) para designar um estado do campo de radiagdo com um tnico féton presente, com

vetor de onda k e polarizacdo A. Sendo wy a energia desse féton, temos
(He — evac)|k, A) = wilk, ) . (L.7)

Além disso, por questdo de conveniéncia, vamos escrever a hamiltoniana de interacao (1.5)

como

—

Hi=eW , W=+ E@). (1.8)

A interacao dada pela hamiltoniana H; em (1.8) sera considerada como uma perturbagao

no sistema 4tomo mais campo, cuja hamiltoniana nao-perturbada é dada por
Ha+ He —evac - (1.9)

Estando o campo em estado de vdcuo, designado por |0), o estado do sistema nao-

perturbado dtomo mais campo é dado pelo produto direto:

|5n10> = ‘511) ® ‘0> ) (1-10)
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com autovalores de energia dados por

(HA + (He — EVAC)) len, 0) = (HA|en>) ® |0) + €n) ® (Hc = mc) 10)

= BulEn0] (1.11)

ou seja, a energia do sistema nao-perturbado é a prépria energia do dtomo. Portanto, para
encontrar as correcoes nos niveis de energia atdmicos devemos encontrar as corre¢oes nos
niveis de energia do sistema dtomo-campo.

De um modo geral, sistemas quanticos sujeitos a potenciais centrais possuem niveis de
energia £, degenerados, sendo assim, um estado |e,) de energia e, deve ser considerado como

uma combinagao linear de estados:

gn

len) =Y ciPleny) (1.12)

J=1
onde g, designa o grau de degenerescéncia do nivel n, e j designa quaisquer outros numeros

quénticos que determinem os auto-estados |e, ;) da hamiltoniana H4. Temos ainda:
Halen,i) = €nl€ng) - (1.13)

Como feito usualmente em teoria de perturbagio, vamos escrever os autovalores de energia

do sistema como uma série no pardmetro perturbativo e da hamiltoniana de interagao (1.8):

enj(€) = €en + elﬁ(l) 4 e2ﬁ(2) e (1.14)

Com o objetivo de encontrar o parametro ﬁn ; em (1.14), que fornece a primeira corregdo ao

nivel de energia &,, utilizamos teoria de perturbagéo para niveis degenerados, o que nos leva

a equagao matricial
gn
ch (0, En 4|7 - E(Z)|€ne,0) = Zc(n) (0, €njlEnk, 0) - (1.15)
=1

Observando que 7 é um operador atémico, enquanto F é um operador de campo, reescreve-

mos a equacao anterior na forma

2D e eniridend) O1E(@)0) = e (1.16)
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onde usamos a ortonormalidade dos estados atomicos. Utilizando ainda o fato de que o valor

esperado no vacuo do campo é nulo, ou seja, (0| E;|0) = 0, obtemos o seguinte resultado:
Al =0, (1.17)

Nao hé, portanto, corregoes em primeira ordem em e nos niveis de energia atomicos.
Segue das equagoes (1.14) e (1.17) que a primeira corre¢io perturbativa para a energia

do estado &, €, no minimo, quadrética em e
2
Agy 4 1= 8, j(e) —£n &2 ezﬁf(lh)f : (1.18)

A quantidade ﬁ ng) Que fornece a corregdo em segunda ordem para a energia, satizfaz a

equagio
gﬂ.
YoMl o =Bkl (1.19)
=1
onde definimos
M:)E = (O’En,j|M|En,£:0) 3 (120)

sendo M o operador

i mis By N (B, N eml W
M= ZXZ le _Em_wz | (1.21)

m  i=1

Utilizando as definicoes (1.8) e (1.21), podemos reescrever a equagao (1.20) como

T Fy |5m1,k )\)(A Ay Emi|TpEp

MY = 05n,3|[22$ ZZ S |€ne, 0)

m 1=l

wii| Tl EmaEm i TnlEn, (0E|k A)(k A E,|0)
- Sy, Sy el balalnn 0 ,

" (1.22)

onde os indices v, p designam z, vy, z.
Com a expansao do campo elétrico em termos dos operadores de criacao e aniquilacao,
pode-se mostrar que os termos cruzados nos indices p e v sdo nulos (veja Apéndice A). Sendo

assim, reescrevemos a equacdo (1.22) considerando somente os termos onde v = p
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M(n) En,_';l ZZX erplemz cm%|""p Ii_(]l_Ep':—_AiL_é lEn,ff)' (1-23)

m  i=1
Serd mais conveniente, na soma (1.23), separar as contribuicdes oriundas dos estados com
m = n daquelas provenientes dos estados com m # m, ou seja, escrever o elemento de matriz
(1.23) na forma

M(’? = M§§)|DEG + M;T?lNDEG ; (1.24)

onde definimos a contribuicao dos estados com m = n por

r O|E,|k, A
M;;'DEG‘ = 5n,J|ZZ$ ZTp|Enz Enzl'rp '|'<_l_|'i jEn,L’)

Wi
- 2
on |OIE, 1%, )|
e “Z Z(En.jl""p|5n,i)(En,il""plsn,f) Zi_—"q__"' , (1.25)
p Li=1 A k ¥R
e a contribui¢do dos estados com m # n por
\
0|E, |k, A
| INDEG— '-'TL,_’]‘| 222 erp|cmz Emzl P |_<__l___p|__i! | n£> . (126)
En k

m;énz 1 Em

Escolhendo uma base de auto-estados atomicos |e, ;) que diagonalize o operador (1.21),
somente os elementos diagonais em (1.23) serdo nao nulos, sendo assim, suas contribuicoes

(1.25) e (1.26) ser@o dadas respectivamente por

()

- o ; (AL .
ilpEG) _; §<€n,j|7'p|5n,z’) ;igw—; ; (1.27)

-

01,7, N
] ZZ: i1 [, (128

k€n— &Em — Wi

(n) -
M3 sy = T [5

p m#Fn |Li=1

(€n,jlTplEm,i)

Vamos agora nos restringir a dois casos distintos, a saber: (i) quando o atomo se localiza
em uma regido préxima de uma das placas, e (ii) quando ele se encontra em uma regiao

distante das mesmas.
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1.2.1 Atomo Préximo de uma das Placas

Para um dtomo localizado préximo a uma das placas, pode-se mostrar [10, 47| que os termos
dominantes na soma em (1.28) sdo aqueles com w; > &, — €,. Sendo assim, vamos escrever
o denominador em (1.28) como sendo aproximadamente wg, fazendo com que ambas as
contribuigdes (1.27) e (1.28) da matriz M adquiram a mesma forma. Neste caso, em uma

base que diagonalize M, podemos escrever:

M (n)

M = pm® m

Vg oAl

Utilizando a relagdo de completeza dos estados atomicos,

S femiemil = 1, (1.30)

m  i=1

(€nj|TplEm,s)

Q

3|55

m =1

podemos reescrever a expressio (1.29) como

012 1%, )|
. 12 Zi P ‘
P E :(En.J’TplffnJ) - ; g

Com o auxilio das equagoes (1.18) e (1.19), obtemos finalmente os deslocamentos de energia

(1.31)

para um atomo préximo das placas:

2 n
Aep ; ~ 8261(4’; = eQMgij)
perto

perto
- 2
[CEATM

m =Y (enlrilens) ZiE—T . (1.32)
I k

P
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1.2.2 Atomo Distante de Ambas as Placas

Vamos agora considerar a expressdo (1.28) para o caso em que o 4tomo se encontra distante
das placas. Nesta situacdo pode-se mostrar [10, 47] que os termos dominantes na soma em
(1.28) s@o aqueles onde wy < €, — £,,. Sendo assim, podemos escrever a equagao (1.28) de

forma aproximada como:

2
En,j 'Tplsm,i)

7 \(vpEG) Z Z Z ‘ €n — [Zf\: ZSE ‘<O|Ep|E, '\)‘2] - (1.33)

P m#FEn | i=1

(n)

Com o auxilio das polarizabilidades elétricas de freqiiéncia zero, que em ordem mais baixa

sdo dadas por
2

En:.'|7"p|5:rm)

=2¢% )" Z ‘ , (1.34)

m#n i=1

reescrevemos a equagao (1.33) como:

NDEG) — [Zi (AT AM (1.35)

Somando as contribuigoes (1.27) e (1.35) para a matriz M, e utilizando as equagdes (1.18)

(n)

g3

e (1.19), obtemos finalmente os deslocamentos de energia para a situagdo de um atomo longe

das placas:

)
DEG “ INDEG

— 2
_ezzp: {g’(sn,jlrpfsn,i) 2} ;igw n
*E% [Z XE{(OIE;JIE, )‘>|2] : (1.36)

Aey ; ~ ezﬁff; = ¢ (Mg?

Q
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1.3 Campo de Radiacao entre uma Placa Condutora e

uma Permeavel

Nesta se¢ao, vamos considerar o campo de radia¢ao numa regiao do espago entre duas placas
paralelas, uma perfeitamente condutora, situada no plano z = 0 e a outra, perfeitamente
permedvel, situada no plano z = L. Vamos obter explicitamente os correlatores dos campos
pertinentes para a obtencao dos deslocamentos dos niveis atdmicos causados pela presenca
dessas placas.

Essa configuracao de placas impoe as seguintes condigoes de contorno sobre o campo

eletromagnético:

{ 3 x?(t,x,y,(]) =0 {é x_‘ﬁ(t,z,y,L) =0 L
z-B(t,z,y,0) =0 zZ-E(t,z,y,L) =0
Trabalhando no calibre de Coulomb (V - A = 0) e escolhendo A° = 0, uma vez que néo hé
fontes, temos B

. A .

= —— E: _‘. B
E=— V x A (1.38)

Por questao de conveniéncia, vamos escrever, separadamente, expressées para os modos

transversais elétrico (TE) e magnético (TM) do potencial vetor A, como segue:

ATE(z) = VxUFE()

ATM@E) = Vx [V x TEM(@)], (1.39)
onde definimos

ﬁgE(f) = Nz sen(kzz)e“;"j

JIM(@E) = %2008(@2)6"’?"'5, (1.40)

usamos a notagdo na qual & = (Zj, z) e o vetor de onda, para as condigdes (1.37), é dado por

=3 = (??+1/2)7T {km;kyem
B (B, ) = (b ), Hop o I , 1.41
(ky, k2) = (kg, Ky, k2) = I (1.41)
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e as correspondentes freqiiéncias sao dadas por

_. 241/2
e [kﬁ+ (tn+ 1/2)r/L) ] . (1.42)
Ao impormos a condi¢do de normalizagao
/d3 A"*( T) - A"( E) = 47r25;\,\f5nn:5(i_c'“ - E!’I) , (1.43)

nos potenciais (1.39), onde A = E, M, obtemos a constante N = ./ 2/k2L Com isto,

podemos escrever o potencial vetor entre as placas na forma

d k”

)‘121"5(5:')6""“’@ + c.c.] 5 (1.44)

A=TE,TM n=0

| Para quantizarmos o campo cldssico (1.44), substituimos os coeficientes de Fourrier a% e

a’*, respectivamente, pelos operadores de aniquilagio e de construgéo ai e a:r que satisfazem

as relagoes de comutacao

[, 0] = am®8sw 8umd(y — Ky (1.45)

com os outros comutadores sendo nulos. Com isso obtemos o operador potencial vetor

- > 3

A=TETM n=0

d2k| 1

[ QE(F)e + af Ay (@)e 7] . (1.46)

De posse da expressdo (1.46) e com o auxilio de (1.38), encontramos o operador campo

elétrico

d MI Wi

2w~

[ FAR@)e R ~ c-h.] ; (1.47)

A=TETM n=0

0 que nos permite escrever (ver Apéndice A) 4,

4A equagio (1.48) pode parecer uma conseqiiéncia trivial de uma relagao de completeza entre esta-

dos de Fock, mas nao é. Repare que |J€, M) designa um estado com um fnico féton presente, portanto

o X ek AN E A £ T
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SX JoEEN] = 53 IR AE0)

A

= (0|E,E,|0) . (1.48)

Estes correlatores sao divergentes e devem ser devidamente regularizados e renormalizados.
Com este intuito, vamos usar o procedimento de regularizacdo de separagio do tempo ima-

gindrio de Schwinger. Para isso, escrevemos inicialmente os correlatores (1.48) como

{0 2p(2) Ep(2)[0) = lim (0| B, (¢, 2) B, (¢, 2)[0) - (1.49)

Com o auxilio da expressao (1.47) para o campo elétrico, apés algumas manipulacoes, a

equacgao (1.48) pode ser escrita na forma

(012 (2)|0) = (0|Ey(x)I0) =

d2k, k2 ,
- 2L t'_n:Z/ ” —_)SGH (k.z)e wg(t'—t)

Wi

(O|EX(z)|0) = = i Z dgk” 2) cos?(k,z)ex =) | (1.50)
Z L t—t E :
Efetuando a rotacao de Wick t' — t = 47, utilizando as defini¢oes das varidveis
)\=% L e=AT e 0=)z, (1.51)

e das fungoes:

[1 + cos(2k, z)] Lz

it
L
I

NE

3
Il
(=]

[1 =+ cos (27r(n + 1/2)z/L)] e—(n+1/2)e

WK

0

i

1 1 1
2sinh(e/2) * 4 [senh(e/‘z — 10)

+ c.c} : (1.52)
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reescrevemos as equagoes (1.50) como

i 3 1 1
. = (0| E2 = ——1lim(8?-+-8?%)=
{01Ez(2)]0) = (0]E2(2)I0) = S — }1_13%( et 686) (&)
A3 1 1
2 _ : 2- _ T2\
(OlEz(x)’(” - AnL P_I;%(ae € eae)‘—"F(E:g) e=\r

Expandindo as fungdes =, dadas pela expressdo (1.52), em poténcias de €, temos

_ 1 € & i
Ex(e,0) = P ZT:t(Q) 9% (@ ¥ G(B))
onde definimos as funcoes:
1 _ cosf cost
0) = = B
T (0) 6 F sen?f ' &Le) 6sen‘*lﬁ?

Substituindo a expansado (1.54) nas equagdes (1.53), obtemos:

m Iim[4 4
24

(O[E2(2)]0) = (O[E2(2)]0) = 7 lim[5

1. 1 2

wz_[éi 1

, w1
(OIEZ(@)[0) = 77 lim| =+

1 .. 1 2

onde usamos as defini¢des de A e € dadas em (1.51).

Como vimos, foi necessario regularizar os correlatores.

7 %71+ gera

+0(e*) ,

cos @

sen?d

(66)+ 555)]

7
Y R Ry

(60~ 355)]

(G(e) - 3-;—0) .

E=AT

(1.53)

(1.54)

(1.55)

(1.56)

Nossa tarefa no momento é,

portanto, renormaliza-los subtraindo, se possivel, os termos espirios infinitos. Uma inspecao

rapida nas equagoes (1.56) nos mostra que cada um dos correlatores acima foi separado numa

parte finita, dependente dos parametros caracteristicos do problema, no caso L e z, e uma

parte divergente, que depende somente do pardmetro regularizador 7, mas independe de

L e z. Esses termos espurios sao contribui¢oes presentes mesmo quando consideramos o

campo livre, ou seja, sem condigoes de contorno. Como estamos interessados somente na
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influéncia das condicées de contorno nos deslocamentos dos niveis atomicos, vamos descartar

tais termos.
Para calcular as quantidades ), 3z (0| B, |k, A2/ wg em (1.36), usamos inicialmente a

expansao do campo elétrico (1.47), que nos permite escrever

Zi (OB |k, M2 _ Zi 0|E |!~\
A Wk

, o|EQ, t, 2)|k, \) {k, A Eo (', 2)|0)
| — 1

lngf_ =

t'—t

senz(kzz)ei“’ﬁt'—“')

d k” 4 k2:|
Wi

2 L t’—»t

w..

25 (OIEIE NP _ S (OB (6 2)[E, ) (E, A|E. (¢, 2)[0)

P wg t'—t i Wg

d k 4 k2 _
= “ Q= —] cos?(k,z)e st 1
Lt’—rt w~ Wi
(1.57)
Com o uso das definicdes (1.51) e (1.52), reescrevemos as equagdes (1.57) como
Zi |(OIE: %, M) _ Zi (01 By |E, A) 12
X k Wi 3 k Wi
1« o0 10_
. N d s P i e )
22L3[/E B gl O Pl )}’
O|E.|E, A2 = rl ™ )
ig o = 3 L3[ Er(e0)= [ do g+(a:,f9)] , (1.58)

onde definimos g (z,0) = (1/z*)Z4(z,0). Para efetuar as integrais acima, consideramos a

continuacao analitica das fungoes

L.
9+(2,6,p) = .5+(Z,0) (1.59)
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no plano complexo, e integramos g.(Z, #; p) ao longo do contorno fechado indicado na figura

1.3. Usando o teorema do residuo, temos

|
(L + [+ [+ [ )2 ost.6) = 2m5 S Resgs. -

23n+8)i 4
237~ —
22n+ )i~
2(2n-8)i
2n+b)i
2(n-8)i -}

€

X gtmeg)i
L ~2en-8)i

R TP
L -2(37-8)i

X aneg)i

Figura 1.3: Contorno de Integracio

Para os caminhos I'; e I'y podemos escrever, considerando o angulo é pequeno,

oo eié(lfp)
f dZ g.(Z,0;p) —|—f dZ g+(Z,0,p) = / dr = (r(l +i5),9)
1"1 € Tp

I'z

€ il2r—6)(1-p)
+ f dr =——2, ('r(l —i5),9) (1.61)
Tomando o limite § — 0, segue que

; 2 _ ,—2mip =
%1_{% {/1“1 dZg+(z,0) + /I‘z ngi(z,Q)} (1 e ) / dr Tp__i(r, 6)

=S
. [e0]
= (1 - 6‘2’”1’) / dz g+(z,0;p) . (1.62)
No limite p — oo, a integral ao longo do caminho C, se anula, uma vez que o integrando g.
tende a zero suficientemente rdpido. Sendo assim, e também substituindo o resultado (1.62)

em (1.60), podemos escrever
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(1_e_mp) / dz g+ (z,0;p) =}5ir%[— / dz gi(Z;G;p)%—ZﬂiZResgi} . (1.63)
€ T Ce

Ao longo do contorno C, a varidvel Z tem mddulo pequeno, portanto, a funcéo Z.(Z,6;p)

pode ser expandida como

_ R e~ eet?
E+(Z,0,p) = Bu(ce?,bp) = — — —

Esse resultado nos possibilita efetuar a integral ao longo de C.:

Ti1H) . (1.64)

e—'ipé . e—27rip€z'p6 Tﬂ:(g)eggp ) o
' dz Z,0;p) ~ — ( i6(2—p) __ ,—2mip 15(2_19)) 16
/E 9+(Z,6;p) { o e\ e~2Pe . (1.65)

cujo limite 6 — 0 é dado por

lim (fc dZ g+ (Z, 9;p)) = (é + Zi(—?_f;;; + O(e”“")) (1= e 2"P) (1.66)

Utilizando os resultados (1.66) e (B.13) na expressdo (1.63), e tomando o limite p — 3
obtemos

. §® _ 1 Te(6) 1

onde definimos as funcdes

Gi(z) = CH(?),%) +<H(3,~§) MCH(S,}%}

~u(3.5-5)+ (2—5)3 72(Ca3) - Cu(3,1/2) ,  (169)

sendo (p e (; respectivamente as funcdes zeta de Reinman e de Huruwitz dadas pelas
equagdes (B.6). Substituindo as equacoes (1.54) e (1.67) em (1.58), usando a defini¢do de €

dada em (1.51), e tomando o limite 7 — 0, obtemos finalmente,
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X‘& wzi HOIBENE _ 1 1, 1 (2)

+
%2 Wi s wg 3r2r—073  512L3w

(1.69)

(01 E.|E, M) 2 L .. 1 1
WAL = i _(2).
i\,g wi 307 5 T 25600~ )

Analogamente ao que aconteceu para os correlatores (1.56), cada uma das quantidades acima

foi separada numa parte finita, dependente dos parametros caracteristicos do problema,
somada a uma parte divergente, que depende somente do parametro regularizador 7. Esses
termos espurios serao descartados por razoes analogas as que nos levaram a descartar termos

também divergentes em (1.56).

1.4 Correcoes nos Niveis de Energia

Nesta se¢do, vamos nos referir a trés configuracoes de placas diferentes, a saber: (i) uma placa
condutora e uma placa permedvel, (ii) duas placas condutoras e (iii) duas placas permedveis.
Vamos denominar cada uma delas, respectivamente, como configuragoes CP, CC e PP.

De posse dos resultados (1.32), (1.36), (1.56) e (1.69), temos as expressoes que fornecem
as correcoes nos niveis de energia atémicos para a configuragao CP, tanto no caso em que o

4tomo estd proximo a uma das placas, quanto no caso em que estd distante de ambas:
2

e
Aer? lperto = T on L [((En,j|"‘"§|€n,j) + (En,j|T§|En,j))G+(Z)
+2(enIr2len)G- ()] | (1.70)
CP —e? & 2 9
A“:"r.'v,_ji |10’-'198 = 5127“53 Z[(Hsn,jlrx’gn,in + |(En,jerlEn‘i)] )G+(Z)
i=1

+2/(engIrslen) G- (2)]

w2 G(6) T 7
—— (o + ” (— + —) — 'z—] : 1.71

3677 |(@= + o+ as) (T + 7p) — e g; (L)

onde descartamos um termo divergente, porém independente de L, interpretado portanto

como um termo sem significado fisico. Os resultados para as placas CC [10] e PP [47, 46]
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podem ser obtidos na literatura e sdo dados por

62

8o = ~gigs | ({enallens) + (nglrdlens) ) F-(2)

+2(enlrlens) P ()]

—E

2 9n
8el5lmge = gz 2| (IEnslralenddl® + [enslrylens) ) F_(2)
i=1

+2/(englralens) P (2)]

7r2

—W[(am+ay+az)(ﬁ'(9) = ) "'0‘2_2_] )

15 15

62

647 L3

AEE? lperto | ((enslr2lens) + (enslrilens) ) Fa2)

+2(enslrilens) F-(2)] |

2 g
(&
Afiﬂzonge = WZKKEMV:J%,@)F'F|(5n.j|Ty|En,i)|2)F+(z)
=1
+2|(en |7 len ) PF_(2)]

e 1 2
* 9614 [(% +oy +az) (F(B) + E) - a‘ﬁ] ’

onde as fungées F'(f) e F sdo definidas como

(8)  sin?()

Fu(z) = Cal3, /1) + CalB,~2/L) 223 + (2)

(1.72)

(1.73)

(1.74)

(1.75)

(1.76)

(1.77)

Note que a fungao F(f) é estritamente positiva em todo o seu dominio, enquanto a fungao

G(0) adquire tanto valores positivos como negativos, como indicado na figura 1.4. Isso pode

diferenciar bastante o comportamento das corre¢oes nos niveis de energia do 4tomo causadas

pelas placas CP em comparagio com aquelas causadas pelas placas CC e PP.
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Figura 1.4: Gréficos para F(0) e G(6): F é estritamente positiva, enquanto G troca de sinal.

Ambas as fungoes divergem nas placas, ou seja, divergem em 6 = 0,7

Para fazer uma breve andlise numérica dos resultados obtidos, vamos nos restringir,

de agora em diante, ao caso de um dtomo nao muito excitado. Nessa situag@o, pode-se

mostrar que as contribuigdes relevantes para as corregdes nos niveis atdmicos sdo dadas

pelos estados degenerados [10], ou seja, em uma base que diagonaliza o operador (1.21) os

deslocamentos nos niveis de energia sao dados, aproximadamente, pelos elementos de matriz

(1.27) multiplicados por e*. Sendo assim, temos:

2 gn
€
AP =~ > [ (Ienslralensd + lensirylens)?) G (o)

+2/{enslrsleng)PC-(2)] |

e

64

2 gn
2SS = —=Z > [ (Kenslralend) P + enslrylenddl?) F-(2)
=1

2| (Enslrelens) P (2)]

2 &

Actf = [(Henalrelens)? + Ienslrlendl?) £z

64m L3 =

+20(enslrlens) 2F-(2)] |

para um &atomo localizado préximo ou distante das placas.
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Note que os sinais para estas corregoes sdo determinados pelos sinais das fungdes Fly(z)
e G+(z). Tanto F, como F_ tém sinal positivo, fornecendo corregbes negativas para a
configuracdo CC e positivas para a configuracio PP. E interessante comentar ainda que 0s
papéis das flutuagdes do campo longitudinal e transversal sdo trocados para as configuracoes
CC e PP. As fungoes G+ trocam de sinal ao longo de seus dominios, e isto faz com que as
corregoes aos niveis atémicos para as condigoes CP possam trocar de sinal, em contraste com
0 que ocorre nos casos com condigoes CC e PP.

Podemos comentar a respeito de algumas diferengas entre as correcoes nos niveis de
energia e o efeito Casimir, outra importante manifestacdo das flutuacées do vicuo. No
efeito Casimir, as configuragées PP e CC fornecem a mesma forga atrativa. J4 no caso da
configuragao CP, a forca € repulsiva, porém, com a mesma dependéncia em I encontrada
nos outros dois casos e de mesma ordem de grandeza. Por outro lado, as corregdes nos niveis
‘
de energia tém comportamentos diferentes para as trés condiges consideradas, mesmo para
‘

os casos onde as energias de Casimir sdo iguais (PP e CC) °. Isto é devido, em parte, ao

\
fato de que a pressdao de Casimir é um efeito global, ao passo que as correcdes nos niveis de

\ .
energia dependem da posigdo em que o dtomo se encontra relativamente as placas. E como
se 0 dtomo fosse uma sonda de prova local dos modos do campo.

| Ainda nos restringindo a um dtomo néo muito excitado, mas em uma base de auto-estados

que nao diagonalize a matriz M, as correcoes aos niveis de energia para a configuracao CP

sdo dadas, com o auxilio de (1.18), (1.19) e (1.25), pelos autovalores do operador

W= (el enlre + nlendenslny ) G2+ 2afendenirnG-()] (179

i=1

multiplicados por —e? /512w L3.

Em coordenadas esféricas, os elementos diagonais de W sdo dados por [10]

n2 _ 2
(n,l,m|Win,l,m) = (am)_znz{ ( ; ) [(12 — [ +m?)G. (2) + 20 - mz)G‘_(z)]

ol —1)2I+1

| ©

n? — (14 1)?
@0+ 1)(2l + 3)

SEsta peculiaridade pode deixar de valer para campos em interagiio, como discutido no capitulo 3.

[(F +3l+m®+2)G, (2) +2(12 + 20 — m? + l)G_(z:)] } , (1.80)
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e 0s elementos nao diagonais por

9 -8 2 (2—1)?
(n,l —2,m[Win,l,m) = =(am) 2”2{(2z —1)(2+1) (20 -3)(21 - 1)

4
x (I —m?) [(z —1)2 -~ mz} }1/2 (2G_ (z) — G+(z)) .
(1.81)

onde ! e m sao, respectivamente, os niimeros quénticos angular e azimutal.
No multipleto n = 3 os estados |300) e [320) se misturam, fornecendo as corregdes

—81 e?

Ness = o= (am)™2
esx = ——(am) ™ oo

[4G_ (2) +3G(2) £ (16G’3(z) —8G_(2)Gy(2)+ QGi(z)) 1/2}
(1.82)
Nao ha mais estados que se misturam com n = 1,2, 3. Sendo assim, apresentamos uma
tabela com resultados numéricos, mostrando as corregdes nos niveis de energia mais baixos
do dtomo de Hidrogénio quando este estd interagindo com o campo de radiacdo no estado
de vécuo, submetido a cada uma das trés condiges citadas acima. Por uma questio de
simplicidade, tomamos a posicao do dtomo como sendo o ponto médio entre as placas, isto é,
z = L/2. Os resultados estdo em unidades de (z(3)(am)~?a/32L°%. Os valores apresentados
para as condigdes CC podem ser encontrados em [10]; os resultados para as placas PP estdo

na referéncia [46] e para a configuracdo CP, em [47].

corregoes nos niveis de energia CC PP CpP
Aesgp -1008 1008 0
Aeagg -576 432 -54
Aeoq -216 288 27
Aey -162(25++/241) | 1296(3++/3) | -60,75(1++/33) (1.83)
Ae_ -162(25-v/241) | 1296(3-v/3) | -60,75(1-/33)
Aezg -6156 5184 -364.5
Assq -3726 4212 182,2
Ag30, -1782 1620 -60,75
Agzan -972 1296 121,5
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Para o estado fundamental 100 s6 contribuem para o deslocamento de energia os estados
nao-degenerados. Contribuicoes estas desconsideradas na tabela acima.

Pela tabela acima, vemos que as corregoes para as placas CC e PP sdo da mesma ordem,
enquanto para as placas CP sao uma ordem de magnitude menor.

Vamos agora analisar o caso limite quando o 4tomo estd préximo a uma tnica placa, sendo
esta perfeitamente condutora ou perfeitamente permeével . Para o primeiro caso, basta
tomarmos o limite da equag@o (1.70) para um atomo muito préximo da placa condutora,

isto é, z/L — 0, o que resulta em:

62
AcG; = == [(enal 12+ r¥)lens) + 2enslrtlens)] - (1.84)

Vale mencionar que este resultado pode também ser obtido tomando-se o mesmo limite com
a configuracdo de placas CC [10].

Para o caso do 4tomo estar nas proximidades de uma tnica placa permedavel, seria mais
conveniente para os cdlculos ter uma expressdo para as correcoes nos niveis de energia para
uma placa permedvel em z = 0 e uma placa condutora em z = L. Isto pode ser conseguido
fazendo a substituicdo z — —(z — L) em (1.70):

2

e

[ S -
€ni = T5127L3

[(ensl 72 4+ r2)leng) G(— (2 — L) + 2enslrlens) G—(—(z = L)] . (1.85)

Podemos agora tomar o limite z/L — 0 para um &tomo muito préximo de uma placa

infinitamente permeavel:
2
AcP c

= 2 3 O - T

R; = o [(nal (2 r2)lens) + Hemslrlens)] (1.86)
Esta expressdo poderia também ser obtida tomando-se o limite z/L — 0 na equacio (1.74).
E interessante notar que as correcdes aos niveis de energia para o caso de uma unica placa
infinitamente permedvel tém o mesmo mddulo, e sinal contrédrio, que as corregoes aos niveis

atdmicos para o caso de uma tnica placa perfeitamente condutora.

6Quando consideramos o dtomo préximo de uma das placas, estamos comparando z (distancia do 4tomo
a placa esquerda) e z — L (distancia do dtomo a placa direita) com L (disténcia entre as placas), porém
lembre-se que estamos tomando a aproximagao de dipolo, considerando o raio atémico muito menor do que

os trés pardmetros de distancia mencionados acima.
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1.5 Comentarios Finais

Neste capitulo, pudemos ver que a modificagdo dos modos do campo eletromagnético no
vacuo devido & presenca de placas materiais pode alterar os niveis de energia de um dtomo
que esteja nas vizinhangas das placas, pois este estd em interagdo com o campo eletro-
magnético. Sendo estas alteracées dependentes da distancia que o dtomo se encontra das
placas, podemos dizer que o dtomo funciona como uma particula teste para os modos do
campo eletromagnético, podendo sondé-lo localmente.

Esse fendmeno é de grande importancia sob védrios aspectos. Para a fisica tedrica, ele
d4 mais subsidios para compreendermos melhor conceitos fundamentais da Eletrodindmica
Quaéntica, como por exemplo as flutuagoes de campos quanticos no vacuo e a interagao
da matéria com a radiagao no interior de cavidades. Experimentalmente, fenémenos como
esse tém grande valia, pois permitem testes mais precisos da EDQ. Além disso, medicoes
de constantes fisicas atémicas atualmente tém atingido grande precisao, tornando-se rele-
vante considerar influéncias das vizinhancas dos 4tomos nos dados experimentais para poder
confronta-los com as previsoes tedricas.

Considerar a influéncia de placas permedveis nos niveis de energia atémicos foi de grande
valia, pois nos permitiu a comparacio de novos resultados com os jd existentes na literarura
para placas condutoras e forneceu uma maior variedade de resultados tedricos que podem
ser confrontados com dados experimentais.

Como tltimo comentdrio, gostariamos de ressaltar a importancia de se estudar a in-
fluéncia de placas permedveis em diferentes situagdes fisicas [57, 58] para a nanotecnolo-
gia, pois na escala nanométrica as forgas de Casimir podem se tornar relevantes. Configu-
racoes adequadas utilizando placas permeéveis podem produzir forgas de Casimir repulsivas,

uma vez que forcas puramente atrativas podem impor limites & construgéo de dispositivos

nanométricos.
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Capitulo 2

O Efeito Scharnhorst e a

Eletrodinamica de Born-Infeld

Neste capitulo investigamos como a velocidade da luz é alterada quando uma onda luminosa
se propaga numa regiao entre duas placas paralelas e perfeitamente condutoras, mas supondo
que a dindmica dos campos eletromagnéticos seja descrita por uma densidade de lagrangiana
que generaliza, ligeiramente, a de Euler-Heisenberg (que representa a lagrangiana efetiva da
EDQ a um lago). A densidade de lagrangiana a ser considerada contém, como casos parti-
culares, a de Euler-Heisenberg e a de Born-Infeld. De certa forma, podemos dizer que inves-
tigamos qual seria o efeito Scharnhorst para tais densidades de lagrangiana. Utilizamos uma
técnica de cdlculo introduzida por Barton, que envolve diretamente a determinagao de alguns
correlatores dos operadores de campo eletromagnético, sujeitos as condi¢oes de contorno im-
postas pela presenca das placas. Em particular, recuperamos os resultados encontrados na
literatura para as densidades de lagrangiana de Euler-Heisenberg e Weisskopf-Schwinger e
mostramos, dentro de certas aproximagoes, que para uma densidade de lagrangiana do tipo
Born-Infeld nao haveria variagdo alguma na velocidade da luz entre as placas.

Esse capitulo estd estruturado da seguinte forma: na se¢do 2.1 fazemos uma introdugao
ao efeito Scharnhorst; na secao 2.2 introduzimos a lagrangiana de Born-Infeld; na secao 2.3
obtemos a lagrangiana de Euler-Heisenberg. Na se¢fio 2.4 obtemos as variacoes na velocidade
da luz quando esta se propaga entre placas paralelas e é descrita por uma lagrangiana mais

geral do que a de Euler-Heisenberg. Os comentdrios finais encontram-se na segao 2.5.
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2.1 Introducao

Pela teoria classica do eletromagnetismo, estabelecida por J.C. Maxwell no final do século
XIX, a dindmica dos campos eletromagnéticos no espago livre, mas na presenca de fontes, é

descrita pelas equagoes

V-E= s V-B=0
. - 0B - o - OF
E —_ —_—— B = _— .
V x Y y MK I+ 50 (2.1)
§endo pe 3., respectivamente, a densidade de cargas e a densidade de corrente.
No vécuo, ou seja, na auséncia de fontes externas, tais equagoes se reduzem a
VE=0 , V-B=0
- o BB = o OB
‘ VxE=—— |, B=—, 2.2
| S > V X ; (2.2)
que podem ser obtidas por meio da densidade lagrangiana
| 1 1 8A\’ 2
= (E*-—BY)=Z|( —-VvA" - = —(ﬁ A’) 2.
Lo= 3 ) =75 K v 5 X : (2.3)

?nde as varidveis dindmicas sdo os campos A*(z).

O fato de Ly conter apenas termos quadrdticos nos campos elétrico Ee magnético B
confere a estes a propriedade de obedecerem ao principio da superposi¢do, pois Ly fornece
as equagdes (2.2) que sdo lineares.

No contexto da EDQ (eletrodinamica quantica), tal situagao relativamente comoda muda.
Mesmo no vacuo, temos a possibilidade de criagdo (e subseqiiente aniquilagdo) de pares de
particulas virtuais (elétron-pésitron). Durante suas efémeras existéncias, essas particulas
podem trocar fétons virtuais umas com as outras. Podem, inclusive, emitir um féton virtual
num dado instante e absorvé-lo num instante posterior. Esses fétons, por sua vez, podem
criar novos pares virtuais elétron-pésitron e assim sucessivamente, fazendo com que o estado
de vicuo da EDQ seja muito mais rico do que o estado de vacuo na fisica cldssica, inerte

e incapaz de responder a qualquer estimulo externo (provocado, por exemplo, por campos

externos ou pela presenca de placas materiais).
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Tais processos virtuais podem dar origem a novos fendomenos fisicos, alguns dos quais ja
foram verificados experimentalmente. Em mais baixa ordem na constante de acoplamento,

podemos mencionar alguns desses fendmenos, a saber:

a) Espalhamento féton-féton: a segao de choque deste processo € proporcional a a* (a sendo
a constante de estrutura fina), e por ser extremamente pequena esse processo ainda nao tem

verificagdo experimental.

b) Espalhamento Delbriick: fétons sao espalhados por um campo eletromagnético externo,
geralmente gerado por um nicleo pesado de carga Ze. A segdo de choque desse processo €

proporcional a (Za)*a? e ja existe verificacdo experimental para tal processo.

c) Divisdo de fétons: um tnico féton se “divide” em outros dois, apds ser espalhado por um
campo externo (gerado, por exemplo, por um nicleo de carga Ze como no Espalhamento

Delbriick). Tal processo também j& possui verificacdo experimental.

L—L_Z ,

-

*

L 4

L 4

espalhamento espalhamento divisdo de
foton-foton Delbrick fotons

Figura 2.1: Diagramas de processos de baixa ordem na EDQ que envolvem criagao de pares

virtuais.

Dessa forma, o vicuo da EDQ deixa de ser algo inerte e passa a se comportar como um
meio ativo, onde ocorrem processos virtuais que dao origem a propriedades fisicas reais. Isso
lhe confere propriedades semelhantes aquelas dos meios materiais, como o fato de possuir
uma densidade de energia e de responder a estimulos externos. Esses processos virtuais
também influem na dinidmica dos campos eletromagnéticos cldssicos no vicuo, j& que tais
campos interagem nao sé com as correntes classicas f, mas também com os campos quan-

tizados de matéria, no caso, o campo fermionico. Este comportamento confere ao vdcuo

35




propriedades eletromagnéticas, como uma permissividade magnética e uma polarizabilidade
‘elétrica, de forma andloga ao que acontece em um meio material. Tais propriedades po-
dem ser alteradas, por exemplo, quando aplicamos um campo eletromagnético externo, ou
submetemos o campo de radiacao a condigoes de contorno, ditadas pela presenca de placas
materiais ou cavidades em geral. Uma conseqiiéncia imediata de alteragbes como estas é a
possibilidade de mudanga na velocidade de uma onda eletromagnética que se propague no
vacuo. Em outras palavras, alteragdes nas propriedades eletromagnéticas do vacuo podem
resultar em variagoes na velocidade de propagacgao da luz.

Modificagoes na velocidade da luz no vacuo devido a aplicagao de campos magnéticos
externos foram discutidas inicialmente em 1952 por J. S. Toll [59] e reconsideradas poste-
riormente no inicio dos anos 70 [60, 61, 62] (veja também [63] e referéncias ai contidas).
iPara o caso da EDQ em espagos curvos, o trabalho de Drummond e Hathrell [64] levan-
tou a possibilidade de uma propagagao superluminal (veja também [65] e [66]). Também
podemos encontrar discussoes a respeito da influéncia de efeitos térmicos na propagagao da
luz [67, 68, 12].

Outra situacao ja discutida na literatura, e de especial interesse neste capitulo, é a in-
}ﬂuéncia na velocidade da luz ocasionada pela presenca de placas paralelas. Esse problema
foi abordado em 1990 por Scharnhorst [11] que estudou a propagagido de uma onda eletro-
magnética numa regiao entre placas paralelas e perfeitamente condutoras (que designaremos
por placas de Casimir). Scharnhorst chegou & conclusao de que a componente da velocidade
da onda perpendicular as placas se altera, sendo maior do que a velocidade da luz no vacuo
na auséncia das placas, enquanto a componente da velocidade paralela as placas nao sofre
modificagao alguma. Para compreender esse efeito é necessario ter em mente que ele ocorre
devido a interagao de trés campos:

(1) o campo cldssico de uma onda eletromagnética, cuja velocidade se quer estudar;

(ii) o campo fermidnico quantizado;

(iii) o campo de radiagio submetido as condigdes de contorno impostas pela presenga das
placas.

Ao se propagar no vacuo, a onda eletromagnética interage com o campo fermioénico
quantizado (pares virtuais), que por sua vez interage com o campo de radiagao. A presenga

de placas condutoras faz com que o campo de radiagao tenha seus modos alterados. Essa
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mudanca é percebida diretamente pelo campo fermidnico, pois este estd em interagdo com
o campo de radiagao, e de forma indireta pela onda eletromagnética, que interage com o
campo fermiénico. Esse processo pode, portanto, alterar a velocidade de propagacao da
onda em questao. Resumindo, podemos dizer que o campo cléssico da onda eletromagnética
interage com o campo de radiagido por meio do lago fermiénico. O efeito Scharnhorst, assim
chamado desde entdo, é um efeito da EDQ que se manifesta somente quando consideramos
diagramas de Feynman a partir de dois lagos.

Para obter perturbativamente a variagao na velocidade da luz provocada pelas placas,
Scharnhorst calculou os diagramas a dois lagos que contribuem para a acgéo efetiva do campo
efetromagnético, mas levando em consideragdo no cdlculo do propagador do féton as con-
dicoes de contorno sobre o campo de radiagao. Obteve assim as correcoes relevantes a acao de
Maxwell. De posse dessa agao efetiva, Scharnhorst determinou os tensores de permissividade
elétrica e permeabilidade magnética do vacuo na regido entre as placas, e com eles foi capaz
de obter o indice de refragéo e a correspondente velocidade da luz nessa regiao. Os diagramas
qﬁe dao origem ao termo de corregdo considerado por Scharnhorst estdo representados na

figura 2.2.

G e i~ S
* S

Figura 2.2: Diagramas calculados por Scharnhorst; a dupla linha no propagador do féton

indica que este esta submetido a condicoes de contorno.

O resultado de Scharnhorst foi rederivado por Barton [12] por meio de uma técnica
bem mais simples, baseada na acdo efetiva de Euler-Heisenberg. Essa técnica foi utilizada
posteriormente no cdlculo do efeito Scharnhorst com placas de naturezas diferentes, uma
infinitamente permedvel e outra perfeitamente condutora [52, 53]. Foi também utilizada
num célculo envolvendo a lagrangiana efetiva (a um lago) da EDQ escalar [54].

Em 1995 Latorre, Pascual e Tarrach [68] perceberam que os resultados para variagoes
na velocidade da luz que comentamos até o momento, para as situagdes de espagos sem

curvatura, satisfaziam a chamada “férmula mégica”
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t=1-—a?L (2.4)

sendo ¢ a média sobre as polarizagbes em todas as direcoes da velocidade da onda, m,. a
massa do elétron, « a constante de estrutura fina e p a densidade de energia do vécuo,
alterada pelas mais diversas circunstancias !. A origem dessa férmula mégica foi elucidada
posteriormente por Gies e Dittrich em 1998 [69, 70].

Neste capitulo, estudamos como a velocidade de uma onda eletromagnética se altera
quando ela se propaga entre placas paralelas, mas supondo que a dinimica dos campos
eletromagnéticos seja descrita por uma densidade de lagrangiana ligeiramente mais geral do
que a de Euler-Heisenberg e que contém como um caso particular ndo somente esta tltima,
mas também a densidade de lagrangiana de Born-Infeld. Trabalhamos no regime de campos
de baixa intensidade, o que nos permite tomar a lagrangiana de Born-Infeld expandida em
mais baixa ordem. Obtemos os resultados por meio da técnica empregada por Barton [12]

no calculo do efeito Scharnhorst.

2.2 A Lagrangiana de Born-Infeld

A idéia de se tomar corregoes de ordens superiores & lagrangiana de Maxwell surgiu inicial-
mente dentro da prépria eletrodindmica cldssica (com Mie em 1912 [71], e com Born e Infeld
em 1934 [72]), com o intuito de resolver problemas desta mesma teoria, essencialmente o
problema da existéncia de um elétron estavel. Se este fosse tomado como uma distribuigao
de cargas, seria instavel, devido a repulsao eletrostatica; se fosse tomado como uma car-
ga puntiforme, teria uma auto-energia infinita. Uma saida seria pensar em algum tipo de
saturacao para a energia, sobre algum valor para a intesidade dos campos.

Para construir uma lagrangiana Lpg; que exprimisse este fato, Born e Infeld impuseram
trés condicoes:
(i) Lpr deveria ser um escalar de Lorentz;

(ii) Lpr deveria ser invariante sob transformagoes de calibre;

'Para o vdcuo de Friedmann-Robertson-Walker (espago com curvatura) a férmula mégica (2.4) toma a

forma & = 1 — (44/135)a(Gym2)(p/m?) [68], sendo Gy a constante de Newton.
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(iii) Lps deveria se reduzir & lagrangiana de Maxwell (2.3) para campos de intensidade muito

menor do que um dado valor de saturagéo.

Sendo
1 my 1 2 2
f = ZF“VF = 5(.8 -—E ) y
2 1 s ? 1 1 HUpo ? ho3)\2
G = (FwF") = (Fuwge Fe) = (B.B) (2.5)

os unicos escalares de Lorentz invariantes de calibre da teoria, £p; deve ser uma funcao
somente dessas varidveis. Em vista disso, Born e Infeld postularam a seguinte lagrangiana

para o campo eletromagnético:

Lor = Bf[1—(1+ 22% - %;)1/2]
| _ g [1 B (1 ~ EQJ;SEQ B (EE§)2)1/2J | (26)

onde Ey tem o significado de um valor maximo para a intensidade dos campos. Expandindo
Lpr para F, G < EZ, recuperamos a lagrangiana de Maxwell (2.3). Dessa forma, Ey nio
tem relevancia se nos restringirmos a campos pequenos. A teoria, nao-linear, de Born e
Infeld p6de resolver o problema da existéncia de um elétron estdvel com tamanho e auto-
energia finitos, porém ainda persistiram outros problemas na eletrodindmica cldssica, como
a auto-aceleragao de particulas carregadas, que ela nao foi capaz de resolver. |

Um fato interessante a ser comentado é que a lagrangiana de Born-Infeld (2.6) foi esco-

lhida em analogia com a lagrangiana de uma particula relativistica livre,

L = md? [1 _ (1 _ Z—j) 1/2} , (2.7)

onde ¢ é uma velocidade limite, desempenhando um papel andlogo ao de Ey em Lg;. No
limite v < ¢ recuperamos a lagrangiana nio-relativistica £ = (1/2)mwv?, e ¢ torna-se irrele-
vante.

Entendemos como uma lagrangiana do tipo Born-Infeld aquela com a forma

f=E? [1 - (1 + QE% + 7%;)1/2] , (2.8)
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sendo v uma constante qualquer. Obviamente a equacéo (2.6) é um caso particular de (2.8),
¢om vy = —1.

Expandindo a equagdo (2.8) até a ordem E; 2, obtemos

- L f‘2_ 2
k= f+2E§( "g)
= S(E*-B )+*2E§ (B - B —y(E.BY?| (2.9)

que nada mais é do que a lagrangiana de Maxwell acrescida de uma corregao proporcional a

E;?. Quanto maior for o pardmetro Ey, menor serd a relevincia dessa contribuigio.

2.3 A Lagrangiana de Euler-Heisenberg

Na tentativa de descrever a dindmica do campo eletromagnético classico, levando em conside-
racao os efeitos ocasionados pela criagao de particulas virtuais, podemos tentar obter uma
lagrangiana efetiva, acrescentando & lagrangiana de Maxwell (2.3) corregdes de ordens mais
altasem E e B. Com isso, essa nova lagrangiana ira fornecer equacgoes nao-lineares para esses
campos, deixando assim de valer o principio da superposi¢do. A lagrangiana que desempenha
esse papel é a chamada lagrangiana de Euler-Heisenberg, e sua obtencao é o contetido desta
seciao. Para cumprir nosso objetivo, utilizaremos o procedimento introduzido por Schwinger
em 1951 [73], conhecido como método do tempo proéprio.

Na eletrodinamica cldssica, os campos eletromagnéticos sao descritos pelas equacoes de

Maxwell, que podem ser obtidas por meio da agao
Sa[A] = So[A] + Sine|A] , (2.10)

onde definimos a agao livre Sy[A] e a de interagdo Sin:[A] por

sld] = [ aia totw) = [ do(=3FuP)

Sult] = [der@aE — FEd=re.

(2.11)
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Como de costume, F,, = 0,A,(z) — 0,A.(z) e j#(z) designa o quadrivetor densidade de
corrente. No vécuo classico, temos auséncia de fontes externas e devemos tomar j* = 0,
restando apenas So[A].

Com o intuito de descrever a dindmica do campo eletromagnético cléssico (ndo-quantizado)
no véacuo, mas levando em conta efeitos originados pela quantizacado do campo fermiénico,
qhe estd acoplado com o campo eletromagnético cldssico (por exemplo, efeitos de polarizagéo
do vécuo), vamos procurar uma agio efetiva Ses[A] que substitua So[A]. Para isso, vamos

nos basear em (2.10) e (2.11), substituindo Si:[A] por uma agao S1[A],

SeslA] = Sold] + S14] , (2.12)
e de tal forma que _
fr — @0, (213

em analogia com a expressdo (2.11). Na expressdo anterior, |0) representa o estado de vicuo

d‘o campo de Dirac e j”(x) corresponde ao operador densidade de corrente do campo de

Dirac, isto é,

~ e. .z ~ [ = ~
#(2) = S[¥(@), ¥*¥(2)] = 5(")as[¥a(@), Ya(2)] , (2.14)
com o operador 1(z) satisfazendo,
‘ P ab(z) + mip(z) =0 T = =00, —efy, , (2.15)
‘ g = S = i
{a(&,2°),95(T,2°)} = 7246(Z — 2) (2.16)
2
e as matrizes gamma satisfazendo §
{1} ==2¢", (2.17)
Guw =0, p#v 5 go=-1; ga=11=12,3. (2.18)

A quantidade S;[A] pode ser vista como um termo de corregao & acdo de Maxwell (2.11)
que descreve efeitos quénticos gerados pelo acoplamento entre o campo eletromagnético
cldssico e o campo quantizado de Dirac, devendo se anular quando F* — 0.

Pela equacao (2.14), temos
(013 (@)10) = e(1*)ap 015 (Sule)ba(@) — Dp(2)Pa()) 0) - (2.19)
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Note que se tomarmos o limite sunetrlco em relacdo a coordenada temporal, ou seja,

tim =5 (tm + m ), e ) 220

20520 z/0<z0 ‘A‘ \ q

do produto cronolégico N ) J
T(Fua)p(@)) = 0a° — )inl@)bs(e) ~ 0 - Wp@bale),  (221)

obtemos exatamente o operador que aparece do lado direito da equacéo (2.19). Sendo assim,

reescrevemos a equagio (2.19) como
(015(2)10) = e slim (*)as (OIT ($a(z')5() ) 0) . (2.22)

Pela defini¢do do propagador da equacdo de Dirac,

Gpa(z,2'|4) = (01T (Dy(2)a(a) ) 10) = —i (01T (Va(e)bal@) )I0),  (2.23)

a equacio (2.22) pode ser escrita na forma

OF@0) = ie Shm (PeoGanlea14) ) )

z/—z

| = ie tr[y*G(z, z|A)] . R ' - \ (2.24)
4 \ v !
A partir das equagées (2.13) e (2.24), obtemos \JQ \o‘ﬁ& \\(p\5
gjl[(i]) =ie tr[y*G(z,z|4)] = 851[4] :i“’/dw 6Au(2)tr[y*G(z, z|4)] . (2.25)
n

O propagador (2.23) satisfaz a equagao diferencial
[(V*7u)ap + Mbap]Gpy(z,2'|A) = bayb(z. — ') | (2.26)

que pode ser interpretada como a representacao de uma equagio de operadores no espaco

de configuragoes:
(v + m)G[A] =1 ; G(x,x'|A) = (x|G]A][x) . (2.27)
Definindo o operador §4,(z) tal que
(z|6A,(z)|2") = 6(z — 2')6A,(x) , (2.28)

42



¢ usando a definigao (2.27), reescrevemos a equagdo (2.25) como:
681[A] = ie Tr(v6AG[A]) , (2.29)

onde Tr designa o trago nos indices de espinores e nas coordenadas continuas de espago
tempo. Considerando o fato de que —ey§A = §(y#) e utilizando a representagdo de tempo

préprio de Schwinger [73] para G[A], a saber,

a4 = —

YT+ m
YT —m

(y#)? — m?
= i(m— 77?)/0 ds exp [—z’s (m2 - (’)‘fr)z):’ . (2.30)

a equagdo (2.29) pode ser reescrita na forma

651[4] = —’I&[(S(ﬁ/’fr)yﬁ /0 "l [wi(mg—('yﬁ')z)sﬂ

- 5{%1&- { /0 ™ dag-hemp [—i (m® - (fyfr)2)s]J } (2.31)

onde usamos o fato de que o trago do produto de um nimero impar de matrizes v se anula.
Integrando essa equagao, obtemos a chamada representagéo de tempo préprio de Schwinger

para Si:

Si[A].= q&B f@ " das~V exp [—z’(m2 - (77?)2)3H rc, (2.32)

onde a constante de integragdo C deve garantir a condicéo de normalizagio S;[A = 0] = 0,

podendo ser infinita se necessario. Escrevendo S;[A] como

A

‘(:5 \i-l‘7 7\‘&(
™

$(4] = / diz Li(z) 4+ C, (2.33)

e comparando com o resultado (2.32), podemos escrever:

£l = / ds s e b (z,255) |\ (2.34)
0 /

onde definimos » )

—

K(z',z";s) = (a'|e " |z") | (2.35)

[N
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W H= (i) =# = oW | o=l (2.36)

& A fung&o K (;E z"; 5) desempenha o papel de um propagador de Feynman nao-relativistico
em 4 + 1 dimensées, ‘com s fazendo o papel de tempo e H o papel de hamlltomana. Por esse
motivo, é comum denominar o operador H de hamiltoniana de tempo préprio.

O tratamento usado até agora foi geral, valendo para campos eletromagnéticos com quais-
quer caracteristicas. No entanto, ndo é possivel calcular exatamente a fungdo K(a/,z";s)
em um caso geral e, se quisermos prosseguir, devemos simplificar o problema. Sendo assim,
vamos nos restringir ao caso em que os campos eletromagnéticos sao lentamente varidveis e

aproximadamente uniformes.

2.3.1 Campos Lentamente Varidveis e Aproximadamente

Uniformes

Vamos calcular £; para campos eletromagnéticos lentamente varidveis e aproximadamente
uniformes, de modo que, em primeira aproximagao, possamos escrever F),, ~ constante.

Existem diversas formas de se calcular propagadores de Feynman. Nesta subsecdo, vamos
obter o propagador (2.35) utilizando um método operatorial introduzido por Schwinger em
1951 [73]. Trata-se de um método elegante e muito conveniente em certos casos, mas que,
talvez por motivos histéricos, tem sido empregado basicamente no cédlculo de funcoes de
Green relativisticas [38, 73, 74, 75, 76, 77]. No entanto, esse método pode ser aplicado
igualmente em problemas nao relativisticos [78, 79, 80, 81, 82]. (Uma discussao introdutéria
desse método pode ser encontrada em [82]. Nessa referéncia, para que o método de Schwinger
pudesse ser comparado com outros encontrados na literatura, o propagador do oscilador
harmoénico foi calculado explicitamente por meio de trés métodos diferentes, a saber: pelo
método de Schwinger, por integrais de Feynman e pelo método algébrico.) Vejamos como
aplicar o método de Schwinger no caso de nosso interesse.

Considere a particula (imagindria) descrita pela hamiltoniana de tempo préprio H, funcao
dos operadores & e 7. A quantidade K (z', 2”; s) pode ser interpretada, como j4 mencionamos,

como um propagador de Feynman num espago com uma dimensdo extra, onde s faz o papel
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}do tempo. A partir da Eq. (2.35), vemos que K (z/,z";s) satisfaz a equagso

5K (59 = (& TR 237)

sendo |2’) e |z") autovetores do operador de posicao :

gy =2y , 2#|a") ==2"|a"). (2.38)

O método de Schwinger baseia-se na observacdo de que se utilizarmos o que seria o
andlogo do quadro de Heisenberg, ou seja, se definirmos operadores dependentes de s tais

que
O(s) = e O0e~Ms | (2.39)

e utilizarmos os autovetores de Z(s) e #(0) com autovalores, respectivamente, dados por z’
e z”, a equacdo diferencial para K(z/,z";s), (2.37), toma uma forma extremamente conve-

niente. Note que definindo
[2(s)) == e™lz)  —  2(s)le'(s)) = 2'la'(s) (2.40)
o propagador K (z',2";s) pode ser escrito como (z'(s)|z”(0)), e a equagfio (2.37) se torna
im~(a'(s)[2"(0)) = (a'(s)|FL(&, 7)[="(0)) . (2.41)

O método de Schwinger consiste entdo em trés etapas, como segue:

(1) Inicialmente, resolvemos as equagdes de Heisenberg para os operadores &, e 7,

i—2 =[5, H] , i=E=[f,H]. (2.42)

(2) De posse dos resultados obtidos em (1), escrevemos a hamiltoniana 7 em fungio somente
dos operadores Z,(0) e Z,(s), de modo que em cada um de seus termos £, (0) apareca sempre
a direita, e Z,(s) sempre a esquerda, o que pode ser feito com o auxilio do comutador

[£,.(0),Z,(s)]. Estando a Hamiltoniana devidamente ordenada, é facil perceber que

(2'(s)|H]z"(0)) = f(a',2"; s)('(5)]a"(0)) , (2.43)
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onde f(z',z";s) ndo contém operadores! Portanto, usando as equacoes (2.41) e (2.43), e

integrando em s, obtemos
(@/(5)1a"(0)) = g(a, ") exp i / 4 f(e',a"9)] (2.44)

onde g(z', ") é uma funcgdo arbitriria de z' e z".

(3) O terceiro e 1iltimo passo consiste em determinar g(z,z"), o que é feito impondo-se as

condigoes

@@)"(0) = —inn(@(5)la"(0)) — edy(a)@(5)la"(0)
0

(@'(s)Au(0)[a"(0)) = iz (a'(s)la"(0) — eAu(z")(z'(s)|2"(0)) . (2.45)

Isto determina g(z’,2") a menos de uma constante multiplicativa, que pode ser encontrada
a0 impormos a condigdo
| lim (z'(s)|z"(0)) = 6*(z’ — 2") , (2.46)

; s—0+

sempre satisfeita por um propagador.

Vamos agora aplicar o método descrito acima para o propagador (2.35), com F),, cons-

tante. Inserindo a hamiltoniana (2.36) nas equagoes (2.42) e usando as relagdes de comutagio

[jﬂ(s)?ﬁ—b’(s)] = [IE#(O),??U(O)] = ig#u 3

[Fu(s), ()] = [7,(0), 7, (0)] = ieF,, , (2.47)
obtemos 5,5 oL
Zu(s) . TulS) EN
= 2u(s) =L =2ebui(s). (2.48)

Definindo as matrizes coluna II e X, e a matrize 4 x 4 F,

D, =#* , Xp=2" |, (F)pw = F’i ) (2.49)

as equagdes (2.48) podem ser reescritas como
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dX(s) . dII(s)

_ — 9P T o
7 2I1(s) s 2eFII(s) , (2.50)
cujas solugoes sao dadas por
II(s) = e*FTI1(0), (2.51)
" e e2ef7‘s -1 N
X(s) - X(0) = (—*)H(O)
eF

= 2(eF)~1eF4senh(eFs)TI(0). (2.52)

Conseqiientemente, podemos expressar II(s) e II(0) em termos de X(s) e X(0):

fi0) — %eﬁ‘e_"jssenh‘l(eﬁ‘s)(f((s)—X(O)),

II(s) = %ef{‘eef“ssenh“l(eli‘s) (}A{(s) - X(O)) : (2.53)
Para ordenar a hamiltoniana ’FL, é conveniente definir as matrizes 4 x 4
@w=0" , (& w=9". (2.54)
Utilizando os resultados (2.53) (2.54), (C.4) e (C.5) na equagdo (2.36), podemos escrever

At SeogF = (s)iu(s) = 17 (5)gTI(s)

( Bﬁ\eaﬁ's
senh(eF's)

oo
2
= (X -%0) K (X(s) - X(0))
= l}A(T(s)gIA{X(S) + X7(0)gKX(0) — X”(s)gKX(0)+
~X7(0)gKX(s) , (2.55)
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onde definimos A
| (-1 _€F
4 sinh®(eFs)
Todos os termos presentes em (2.55) estdo devidamente ordenados, com excegio do ltimo.

A partir do resultado (2.52), das definigdes (2.49) e (2.54), das primeiras relacoes (2.47)

(2.56)

e da equagdo (C.5), podemos calcular o comutador

((R),(0), (K1 (8)] = | (10, (. 01+ (2eB)ePsenbiefs)) 11,0
- i(g_l)“p(Q(BF)—IEEFSSEHh(EFS))Vp
= i Hg‘1 (Q(ef;‘)_leemsenh(ef‘s))TJ
[ 1o eirs (senh(eFs)\ 7T
- z-g 19¢¢F (_(ef‘) )Ly

|
o que nos fornece

X7(0)gKX(s) = (8K)uw(X).(0)(X)u(s)
= (X),_,(s)(KTg)W(X)”(D) + (gK)W[(X)#(D), (X)V(s)]

= XT(s)gKX(0) + 2itr [gKe"’Fs(se—nll(—ﬁe_SUg"lJ . (2.58)
(eF)
Usando a propriedade ciclica do trago e a definicio (2.56) de K, reescrevemos a equacio

(2.58) na forma

T o _'“TS Panr, Ereef‘s EF
X7(0)gKX(s) = X7 (s)gKX(0) + £t [ (—_ﬁsenh(ela‘s))} . (2.59)

F

Considerando o fato de que trF = 0 e eF* = cosh(eF's) + senh(eFs), podemos simplificar o

trago acima, o que nos fornece

XT(0)gKX(s) = X7 (s)gKX(0) + %tr[eﬁ‘ coth(eF's)] . (2.60)
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Desse modo, com a expressdo (2.60) ordenamos o lado direito da equagdo (2.55)

~ ~ A~ ~

- H = XT(s)gKX(s) + XT(0)gKX(0) — 2XT (s)gKX (0)+

. i L
—%tr[eF coth(eF's)] — seogF . (2.61)

Substituindo o resultado (2.61) em (2.43) e (2.44), obtemos respectivamente,

(z/(s)|]2"(0))

FE259) = o)
= %Q(X’ — X")TgF%senh~?(eFs)(X' — X")
it F coth(eF . F 2.62
-5 r[e coth(e s)] — 5¢08 (2.62)
e
(z'(s)|z"(0)) = g(z',2")exp [% (X' — X")TgF coth(eFs)(X' — X”)J
X exp [—%tr In (%)} exp (%eang)

gla',x") . 10 senh(er)] i
= S det {—(EFS) exp (Qecrng) X

X exp [%(X’ — X"\ TgF coth(eFs)(X' — X”)] , (2.63)

onde usamos o fato de que det A = exp[tr(ln A)] e definimos a matriz coluna X analogamente
as defini¢oes (2.49).

Resta-nos agora encontrar g(z’,2"). Com esse objetivo, devemos impor inicialmente as
condicdes dadas pelas equacdes (2.45). Antes, porém, vamos utilizar as expressoes (2.49) e

(2.53) para escrever os operadores 7,(s) e 7,(0) como:
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u(s) = Q#V(fl-[(s))v
= = g (5P sinh™(eFs)) [(X(5)), - (X(0)),]
7(0) = gu(TI0)),
= g (GeFeFsinh ™ (eFs)) [(X(s)), — (X(O))] . (2.64)

vy

Dessa forma, o lado esquerdo das equagdes (2.45) podem ser escritos como

@ (3)[Fu(9)2"(0) = [3gePe™sinh™(eFs)(X' — X")] (/(s)a"(0))

In

(2'(5)|7,(0)[2"(0)) = [égeFe*“smh-l(er)(X'—X")]pms)lm”(o».
(2.65)

Com o intuito de encontrar o lado direito de (2.45), usamos o resultado (2.63) para computar

as derivadas 0,,(z'(s)|z"(0)) e 8(z'(s)|z"(0)). Apés algumas manipulagdes triviais obtemos

' (s)|z"(0)) [ 1 Og(',z") e b et AT
= [g(z,’m,,) oo+ g (EF coth(eFs)(X' — X)) J(a'(s)}a"(0))
Oa'(s)l2"(0) _[_ 1 dg(aa") _ie s g} Tprans
R = [g(m,’m,,) R 5 (SF coth(eFs)(X' — X ))J (z'(s)|z" (0)) .
(2.66)
Com o uso das equagdes (2.45), (2.65) e (2.66), podemos escrever
1 ag(x’? a:”) ¥ ! 1 r "
J@. ) or" ie [A(a: )+ 2gF(X X )]‘[1 ;
1 dg(z',z") . " 1 " '
= ~gF(X" — . 2.
T o ie|A(a") + 5gF(X X)L (2.67)

Escrevendo o lado esquerdo de ambas as equagdes (2.67) como a derivada de um logaritmo,

e integrando-as ao longo de um caminho arbitréario I', com ponto inicial em z” e ponto final
g g ] P

em z’, ou seja
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!

i ol ? s . “ 1 nv
_ —ng‘?—ﬂd‘f“ = & f o [0+ 5(EF)u(e —a™)]aer

/

! dlng(z', €) 3 e 1 ) .
./zﬂ,p oE" &t = e /x",r‘ {Ap(f) + 'i(gF)uV(f -z )] ag” (2.68)

obtemos

I

9@, 2";T) = g(:c",:c";r)exp{a'e / [Ap(£)+%(gF)W(§“—x"“)}df#},

T
Lo e : = i v v
g(',a";T) = g(m,x;r)exp{ze fﬂr[ﬂu(f)Jrg(gF)w(E —a >]d£”}. (2.69)

Derivando a primeira destas equagdes em relagdo a z”* e a segunda em relacdo a z'* obtemos

!

! ", M /. T
dglae!, 2", L)  dgla’,2"T) exp{ief

Y =

[4266) + 3&Euter —m]ae7}

l.r‘l"

—ieg(x', 2", T)[A@@") + ZeF(X" ~X)]
i

I/

! 1, / I, T

ox'™ - oz

[A’r(g) + %(gF)w(gy = w:»)] dg’r}

H:l"

vieg(a', 2", T) [ Ala!) + %(gF)(X’ SR (2.70)

H

Comparando as equagtes (2.67) e (2.70) somos levados & conclusdo de que

89(.’6”,:1’)";11) ag(m.r,xr; F)
e 0o | S 0o (2.71)
e conseqlientemente,
glz”, 2", Ty = g(z', 2"; I') = constante. . (2.72)

Substituindo os resultados acima nas equagoes (2.69), obtemos

'

g’ gl = Cexp{ie/

"
I

[4.0)+ GEm)ute - a)]aer |

gz’ g% I = Cexp{ie/

H’I"

440 + 5EPe -]} @)

a1



Ambas as integrais acima independem do caminho de integragdo, pois os respectivos in-
tegrandos tém rotacional nulo. Portanto, podemos escolher o caminho I' da forma mais
conveniente possivel. Vamos escolher a linha reta que liga os pontos z' e z”. Devido &

propriedade de anti-simetria do tensor F,,, é imediato verificar que

' /

[ (@ —amae = [ @ule ~=aer=o0. (2.74)

", reta z", reta
Com isso, as equagdes (2.73) nos fornecem

’

glz!a") = Cexp (ie /:mm Ap(ﬁ)df“) : (2.75)

Substituindo este resultado na expressdo (2.63), obtemos

(z'(s)|z"(0)) = :—S-Ca'idet"l/2 {SHE_IC}EFTS_)] exp(z'e/q’ A#(ﬁ)dg")x

z' reta

X exp (%eang) exp [%(X’ — X")TgF coth(eFs)(X' — X”)] ;
(2.76)

Resta-nos ainda encontrar a constante C' utilizando a condigdo inicial (2.46). Quando

s — 0™ podemos escrever

—1/2 Sinh((’.’FS) = -1/2 _
det [——(er) ] > det~12(1) =1, (2.77)
F coth(eFs) = woshleby) 2F L | ; (2.78)

sinh(eF's) (eFs) es

Com isso, escrevemos o limite s — 0% da equagédo (2.76) como

/

31_1‘1(1)1<$’(s)|:r:”(0)) = exp (ie /I”‘rem A#(f)df“)

C H 7 / n ! n
xsg%g[s—gexp( [~ =2 + (@ =)+ (@ - 2+ (@ - 2)7))

(2.79)

Comparando a equagdo acima com a representacio da funcdo delta

2

o(y) = ll_l.r(l) 2a\/_ exp (—y ) , | (2.80)
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tomamos C' = —i/(4m)?, de modo que o limite (2.79) forneca

1:[

lim (z'(s)|z"(0)) = &*a' —z")exp (z'e/ Aﬂ(ﬁ)df“)

s—0t =" reta
= &z’ —a"), (2.81)

de acordo com a condigdo (2.46). Com isso, o propagador (2.76) é finalmente escrito como

(@/(s)[2"(0) = ﬁdet‘m [iﬂ%ﬂ - (%e&ng) y

X  exp (z’e/ Ap(f)dg") exp [%(X’ — X")TgF coth(eFs)(X' — X")J :
' reta
(2.82)
Com todos esses resultados, podemos agora voltar atrds e calcular a correcdo £,. Para

i
isso0, substituimos o resultado (2.82) na equacdo (2.34) e fazemos a rotacio de Wick s — —is:

1 3 _mZsa..—1/2]|sin(eFs) : 1
e d 3 _—m?s 1/2 =
Ly 3271_2/0 ss e det ’:——-—EFS ]tr exp (260'FS)
| 1 [ 2 R cosh(esX)
= _ d -3 _—m*s 2 9.
gz J, 0 ¢ [(“) g%cosh(esX)} : (283)

onde usamos os resultados (D.7) e (D.16) do Apéndice D, e definimos X2 = (B +iE)2. A

expressao (2.83) para campos fracos se reduz a

1 o0
872 J,

onde usamos a definicdo (2.5) de F. Acrescentando a £; em (2.83) um termo constante

2
L= dss™le ™" l:l + 5(68)2F:I . (2.84)

(independente de E e E) de modo a fazé-la se anular na auséncia de campos, podemos

escrever a lagrangiana efetiva para o sistema como

f,ef = Lo+ L,
62 = —1_—m?2s
= —|1+ 1272 |, dss e F+
1 ., & .o R cosh(esX) 2
_ dss™Be~™s 22 AT 1 2 2 . 2 .85
872 J, e {(es)g%cosh(esk’) ! 3(68)}- (2.85)

53




Renormalizando os campos e a carga e de modo que

Fren +iGren = (L +Ce(F +iG) , €&, =e*/(1+Ce?), (2.86)

onde definimos a quantidade infinita

1 oo
= /0 dss~tem™ (2.87)

obtemos a chamada lagrangiana de Euler-Heisenberg [73, 83, 84]

o0

_ 1 ey 5~ Jtcosh(esX) 2. <
Lep = —F 52 ), dss™e {(es) g%cosh(esX) 1 3(88).7: . (2.88)

|

|

|

\

| —~ . . . rd . . .

Na expressao anterior suprimimos os indices ren das quantidades renormalizadas.

4

@Hzgﬁ_§%+ (B? — BY? + (BB . (2.89)

‘ Expandindo a lagrangiana (2.88) para campos fracos, obtemos
\

360m2m*
E’or abuso de linguagem (como € feito usualmente na literatura), vamos nos referir & expressao
acima também como lagrangiana de Euler-Heisenberg.

Recuperando as constantes fi e ¢ temos

3
. E2 _ 2 E2 . BZ 2 2
Lo 1 .o .2 T =i
= —(B*— B4 | [(B*— B + - (E.B)?| , 2.90
S = B+ g | 18— B + LB ) (2.90)

onde o = e%/4mhec = 1/137 é a constante de estrutura fina, e

i 271/2
57 me ] (2.91)

Eogn = [——
202 )\%

uma constante com dimensoes de campo elétrico, andloga a Ep na equagio (2.9), sendo

Ac = 27h/me o comprimento de onda Compton.
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2.4 O Efeito Scharnhorst e a Técnica de Barton

Esta secdo tem por meta expor o cédlculo de Barton [12] para o efeito Scharnhorst [11] e
calcular a variacao na velocidade da luz que se propaga numa regiao entre placas paralelas,
mas usando uma lagrangiana efetiva ligeiramente mais geral do que a de Euler-Heisenberg
e que contém, como casos particulares, esta ultima e a de Born-Infeld. Podemos alcancar
esses objetivos simultaneamente, como veremos a seguir.

Note que as lagrangianas (2.89) e (2.9) podem ser escritas de uma forma genérica como

L=Lo+ AL, (2.92)

sendo Ly a lagrangiana de Maxwell (2.3) e AL um termo de corregido que tem a forma

AL = 4&F? + BG?
= &(E? - B%?+B(E- B)?, (2.93)

onde « e [ sdo constantes reais.

Vamos agora utilizar a técnica de Barton para obter a variaciio na velocidade da luz,
supondo que a eletrodinamica seja descrita por uma densidade de lagrangiana com a forma
genérica que acabamos de escrever. Para isso, temos de langar mao do fato, bem conhecido
da eletrodindmica cldssica [12], que uma correcdo AL & lagrangiana de Maxwell leva a criacéo

de um vetor de polarizacdo Pede magnetizagao M dados, respectivamente, por

F = —% , M= —% : (2.94)
A §F AT S§B
Para a expressdo de AL em questéo, (2.93), temos
1 AL 1 [rcs  om R
5 — =~ lag(F? — : , o /3
H = s [4Q(E BYE; + 28(E B)B] (2.95)
_18AL 1 it v _
M, = o= [—4a(E _ BB, —|~2;6’(E.B)Ez] . (2.96)

O passo principal na técnica que estamos empregando consiste em substituir nas expressoes

(2.95) e (2.96) os campos eletromagnéticos EeB por uma soma de dois campos, um cldssico
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e outro quantizado, isto €, fazemos nessas expressoes a substituigéo

E=¢+E , B=bt+B. (2.97)

Sendo e b campos cléssicos que descrevem a onda cuja propagacio desejamos estudar, e
EeB campos quanticos, que serdo tomados, dentro do espirito da teoria de perturbacao,
como operadores de campo livres, sem interagio, exceto pela alteracio de seus modos devido
& presenca das placas. Dentro dessa aproximacao, é valido tomar a expansao dos campos
quantizados em termos de operadores de criagdo e aniquilagdo, como feito usualmente na
EDQ.

Substituindo a expressdo (2.97) nas equagdes (2.95) e (2.96), tomando o valor esperado

no véacuo, e separando os termos lineares nos campos classicos & e b, obtemos

(P) = % BY)E;); + ((Ez)n —~ (]§2>Il)ei +2(E;Eq)je; + (€% -5 2)ef]+

(&
2£[<(E B;)Bi) + (B;Bi)e; + bjb”'ej]

—

= ot 7 [((BF — BBy + (27— 5 2)ei] + o [(B,B,)Bay + ey

(2.98)
(M = — (B~ BBy + (B — (B)b — 2(B,Buyb, + (22— F 2o+
;jr [((E B;)E;:) + (B;jBi))b; + eiejbj}
= me— S[(E - BB + (22 5] + 2 ({08, BB +esesh ] . 299)

onde o simbolo (...)| significa que estamos levando em consideracéo as condices de contorno
desejadas. Usamos ainda o fato de que (E;B;); = 0 e definimos 7' e 77 como sendo, respecti-
vamente, os termos da polarizagao elétrica (2.98) e da magnetizagio (2.99) que correspondem
as respostas do vdcuo lineares nos campos cléssicos Estes vetores nos permitem obter as

(e)

polarizabilidades elétrica x;;’ e magnética X ™ do vacuo, como segue:
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1 = o 5] ; e
o= o= [46((B2 - B85+ 2(BE,) ) + 26(BByYy e =xe;,  (2100)
LA — @2 — B2,s. B. oy le — ™
m; = —|4a(—( WO+ 2(BiBy)| ) + 26(E:E;) |6 = xi; b; - (2.101)

De posse das quantidades XE? e XE?) , encontramos a permissividade elétrica ¢;; e permeabili-

dade magnética ;;
\
€j; = (52';,' =+ 47TX£;) = 61':,: + AEij .
i = O +amxi = 6y + Apy; . (2.102)

Utilizando as equagdes (2.100), (2.101) e (2.102), temos

—

‘ . —
‘ Ae;; = 4a(<E2 - BZ)“(S,;J.,- + Z(EiEj)”) +28(B;B;j)| ,

Apy = 4&(—(Ez — B2)) 655 + 2<Bz-Bj)”) + 2B(EE;)| - (2.103)

Corregdes nas expressoes de €; e p,;; provocam uma variagdo no indice de refragao

n = (ep)'/?, dada em primeira ordem por
1
D= §(AE + Ap) . (2.104)

Esta variagao, por sua vez, fornece a velocidade corrigida ¢’ da onda:

- e An\ ¢
c e 7 ( n)n 1—An, ( 5)

onde usamos o fato de que no vacuo livre (sem condicdes de contorno) o indice de refragao
n é igual a unidade, e no nosso sistema de unidades ¢ = 1.

Com essas consideracoes, podemos encontrar entdo qual é a influéncia na velocidade de
propagacio da luz devida & presenca de duas placas infinitas, dispostas uma paralelamente a
outra, supondo que a eletrodindmica seja descrita por uma lagrangiana com a forma (2.92).

De um modo geral, podemos ter uma onda se propagando na direcao perpendicular as
placas, que no nosso sistema de coordenadas corresponde a uma propagacao na direcao de z,

ou uma onda se propagando paralelamente as placas, por exemplo, na dire¢do de Z. Em cada
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um desses casos, existem duas polarizagtes possiveis, com suas respectivas susceptibilidades
elétrica e magnética, e correspondentes variacoes nos indices de refracdo An, que podem ser

obtidos por meio de (2.103) e (2.104), como indicado abaixo:

e Propagacio paralela as placas (k = =|k|2)

1. Polarizagao na direcao :

AE == AEzz

<

€ €9
o . ) 2.106
b= bgz Ap = Apigg ( )
‘ An = 4&((E2E2)H 7 (B3B3>”) + ﬁ((BgB?)H =+ (EgES)H) : (2.107)
2. Polarizagao na diregéao 2:
c=es _,  Ae=Dley (2.108)
b= b9 Ap = Apigy
An = 45 ((EeEs)y + (BsBa)y ) + 8((BsBa)y + (BE)y) - (2.109)
|
e Propagacio perpendicular as placas (k = +|k|2)
1. Polarizagao na diregao Z:
eeap _, DESEEG (2.110)
b= b2y Ap = Apgy
An = 4&((E1E1)E| 4+ (Bng)”) 4 ﬁ((BIBMl + (E2E2>|l) . (2.111)
2. Polarizacao na direcao §:
£= 823} Ag = AEzz
J _— , 2.112
b=uby Ap = Apyq ( )
An = 4&((E2E2)” + (BlBl}H) + ﬁ((Bng)H + (E1E1)||) . (2.113)

Daqui por diante, vamos nos restringir a trés condigoes de contorno distintas.
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(i) Duas Placas Condutoras-(CC)
Esta configuragdo se refere a duas placas perfeitamente condutoras dispostas uma parale-
lamente a outra. Os correlatores dos campos eletromagnéticos submetidos a estas condicoes
podem ser obtidos por meio da mesma técnica empregada na secio 1.3 [10] e sdao dados por
OB @) = OIB@)I0) = ~(01BX=)I0) = - (FO) — =) |
48 L4 15
2

T
4814

(01E5(2)|0) = —(0|B7()|0) = —(0| B3(z)|0) =

(F(9)+%) o (2.114)

sendo a funcdo F(f) e a quantidade 6 definidas em (1.76) e (1.51), respectivamente.
Substituindo os resultados (2.114) nas equagdes (2.107) e (2.109), obtemos variagao nula

ﬂara o indice de refracdo de uma onda se propagando paralelamente as placas:
A =0 (2.115)

sendo assim, nao existe varia¢do na velocidade da luz paralela as placas.
Para uma onda se propagando perpendicularmente as placas, as equagoes (2.114), (2.111)

e (2.113) nos fornecem
™ 1, _

AniCC) _

(ii) Duas Placas Permeaveis-(PP)

Neste caso as duas placas em questdo sdo infinitamente permeaveis. Os correlatores dos

campos eletromagnéticos para esta configuracio de placas sdo dados por [46]

OIE@I0) = (OIE3@)0) = ~(0B3@)I0) = 2= (FO) + 75 )
OIES)0) = —(0lBXx)I0) = ~(OIB3(=)I0) = =g (FO) — ) - (2117

Substituindo os resultados (2.117) nas equagdes (2.107), (2.109), (2.111) e (2.113), obtemos

os mesmos resultados que os encontrados para as condigoes CC

e == (2.118)
(PP) (cc) ™ 1,
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(iii) Uma Placa Condutora e uma Permeével-(CP)

Esta configuracao corresponde a duas placas paralelas, uma perfeitamente condutora,
localizada no plano z = 0, e outra infinitamente permaével, localizada em z = L. Os corre-
latores de campo elétrico, a menos de fatores divergentes, sio dados pelas equacoes (1.56).
Os correlatores de campo magnético podem ser calculados de forma andloga ao que fizemos

para o campo elétrico. Os resultados sio:

| OIE@)I0) =  (O1E@)I0) = ~(0|B3(@)I0) = 5o (C(O) + =)
OIE@I0) = —~(0IBY@)0) = ~(0IBi@I0) = 5 (GO - 5) ,  (2120)

sendo a fungdo G(f) definida em (1.54). Substituindo os resultados (2.120) nas equagdes
(2.107), (2.109), (2.111) e (2.113), obtemos

20" =00, (2.121)
‘ cp 7. (cc Tt 1,
| An{CF) = —-éAn{L ) = e A H B (2.122)

Pelas equagdes (2.115), (2.118) e (2.121) fica claro que para nenhuma das condigoes
de contorno consideradas temos alteragdo na velocidade da luz quando esta se propaga

paralelamente as placas, quaisquer que sejam os coeficientes & e 3.

Para uma propagagao em uma dire¢do arbitréria, fazendo um angulo # com a normal as

placas (diregdo Z), a equagdo (2.105) se torna
¢(0) =1— Any cos®6 . (2.123)

No intuito de encontrar uma “férmula mdgica” para a lagrangiana (2.92), tomamos a

média da velocidade (2.123) nas polarizagGes e em todas as diregoes

2% T
g = 4%/0 /Oc’(ﬂ)sen(ﬁ)dﬂgb

= T (2.124)

3

e calculamos a densidade de energia do campo eletromagnético no vacuo,
1 " .,
p=30 (E2 + 32) 0) . (2.125)
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para as trés condi¢oes de contorno consideradas, o que pode ser feito com o auxilio dos

correlatores (2.114), (2.117) e (2.120),

2 2

_ coc_ pp_ T 1 cp_ T oo_ Tm° 1
=8 29%BI4 0 P T TommIE S

Utilizando as equacdes (2.126), (2.124), (2.116), (2.119) e (2.122), temos que

, 2
g% = 1—5(4a+2,6)p00

, 2
ctf = 1-Z(4a+28)p"F

3
/ 2
e%f = 1- 5(451 +28)p°F | (2.127)
ou de forma geral
2
¢ =1-3(4a+28)p, (2.128)

que ¢ a férmula mégica para a lagrangiana (2.92).

Os coeficientes & e 3 para a lagrangiana de Euler-Heisenberg podem ser encontrados ao

compararmos as equagdes (2.93), (2.92) e (2.89)

B i Bra= "5 (2.129)
T 360m2mit P T YT 360n2me '

Utilizando as equagdes (2.116), (2.119), (2.122) e (2.105), concluimos que a velocidade de
propagacdo ¢/ da luz, quando esta se propaga perpendicularmente 3s placas, para cada uma

das condicoes de contorno consideradas, é dada por

NCC) _ , n(PP) 117?  o?
@)= = 223452 (mL)*
11a? /Io\*

7 117 a2

(Cf)(CP) _ L N
& 8 223452 (mL)*
7762 Ao \*
= 1-_—= (2¢ 2.131
29345272 ( L ) <1 (2.181)
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sendo A\¢ o comprimento de onda Compton Ao = 27 /m.
Ao substituirmos os valores de & e 3 dados em (2.129) na equacdo (2.128) obtemos a
férmula mégica (2.4).

Para uma lagrangiana do tipo Born-Infeld (2.9), os coeficientes & e 3 sao dados por

| L -,
a SE B8 72E§ : (2.132)
Com o auxilio de (2.116), (2.119), (2.122) e (2.105), obtemos
2
n(CC) _ , n(PP) _ m 1
() =) = 1+ agzg (1~ ‘T)W , (2.133)
(@)F) = 1- -Zf-u et (2.134)
- 97325V (EoL?)? ‘

Substituindo os coeficientes apresentados em (2.129) na equagéao (2.128) obtemos a férmula

mdégica para uma lagrangiana do tipo Born-Infeld
|

| d=1—11—mL
g=1 3(1 fy)Eg (2.135)

2.5 Comentarios Finais

Na secao anterior aplicamos a técnica introduzida por Barton [12] para obter a variagao da
velocidade de propagacao da luz ocasionada pela alteragdo do campo de radiacio quando este
fica submetido as condicoes de contorno impostas pela presenga de placas materiais (lembre-
se que o campo cldssico da onda eletromagnética interage, indiretamente, com o campo de
radiacdo, devido a polarizagdo do vdcuo). Discutimos trés configuragoes de placas paralelas
diferentes, envolvendo placas perfeitamente condutoras e perfeitamente permedveis.

Para uma lagrangiana com a forma geral (2.93), vemos pelos resultados (2.115), (2.118) e
(2.121) que a velocidade de uma onda se propagando paralelamente as placas nio se altera.

Para uma propagacdo perpendicular as placas, as condigoes de contorno (CC) e (PP)
fornecem o mesmo resultado para a variagao na velocidade da luz, como indicam as equagoes

(2.116) e (2.119) respectivamente.



Jé para a condi¢do (CP) podemos constatar, pela equagdo (2.122), que a variacio na
velocidade da luz tem sinal oposto ao que encontramos para as outras duas condicdes. Esse
resultado esta relacionado com o que ocorre no efeito Casimir, onde encontramos a mesma
forga atrativa entre as placas para as condigdes (CC) e (PP), e uma forca repulsiva para (CP).
De fato, analisando a relagao existente entre a variacao na velocidade da luz éc e a densidade
de energia do vécuo p, constatada por Latorre e colaboradores [68] e dada pela equacio (2.4)
para o caso da EDQ usual, esse resultado ja era esperado, devido & proporcionalidade entre
6c e p. Uma outra conseqiiéncia imediata dessa proporcionalidade é que a variacdo 6c para
%s condicoes (CP) é —7/8 das variagoes correspondentes com as outras duas condigdes de
contorno, como pode ser verificado comparando as equagoes (2.116), (2.119) e (2.122)
| Ao considerarmos lagrangianas do tipo Born-Infeld, dadas por (2.9) com ~ genérico,

somos levados a um fato interessante: de acordo com (2.133) e (2.134), se tomarmos um

fator v < 1 teremos

<1 = @)= >1 , )P <. (2.136)
J4 no caso em que 7y > 1, obtemos
| 1>1 = (=P <1, )T >1. (2.137)

No entanto, se tomarmos y = 1 néo se constata, na aproximacéao considerada (ordem 1/E?),
nenhuma variacao na velocidade da luz devido & presenga das placas materiais. Ou seja,

temos
y=1 = ()= =) =1 (2.138)

O fato de termos obtido velocidades de propagacdo da luz maiores do que ¢ = 1 nao
estd em desacordo com a causalidade, estas sdo velocidades de fase, e esses resultados valem
somente para baixas freqliéncias. Para fazermos um estudo a esse respeito, deveriamos ter
considerado a propagacao de um pacote de onda, investigando qual seria a velocidade da
frente desse pacote, quantidade esta que nao deve ultrapassar ¢ = 1. Porém, para termos
um pacote com frente bem definida, precisamos considerar suas componentes de Fourrier
em todo o espectro, inclusive nos altos valores de freqiiéncias, situacao onde os resultados

apresentados nao se aplicam mais.
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Como 1iltimo comentdrio, gostariamos de enfatizar que com a técnica de Barton, em-
pregada na segdo anterior, também poderiamos ter obtido a variagdo da velocidade da luz
provocada pelas mais diversas circunstancias, como efeitos térmicos, condigtes de contorno
de outros tipos, etc. Para isso, bastaria tomar o valor esperado do campo eletromagnético

em (2.103) no estado correspondente.

64



Capitulo 3

Correcoes Radiativas ao Efeito

Casimir

Neste capitulo estudamos o efeito Casimir para campos com interacao. Em particular, calcu-
lamos as primeiras corre¢oes radiativas i energia de Casimir de um campo escalar com massa
com auto-interagdo A¢* sujeito a condigdes de contorno em fronteiras planas e paralelas entre
si. Vérias condigoes sdo consideradas, dentre elas a condi¢ao mista (Dirichlet-Neumann), cuja
peculiaridade reside no fato de que mesmo para a configuracio de placas paralelas ela d4
origem a uma forca repulsiva entre as placas. Os limites de massa nula para as corre¢des em
ordem A concordam com os resultados da literatura [24]. J4 os cdlculos envolvendo campos
massivos, revelam um resultado interessante, e um dos mais importantes desta tese, a saber:
embora a energia de Casimir de um campo escalar sem massa calculada com as condicoes de
contorno de Dirichlet seja idéntica aquela calculada com condigdes de contorno de Neumann,
mesmo se incluirmos as primeiras corregdes radiativas (resultado inesperado, pois os modos
do campo sao diferentes), 0 mesmo néo ocorre para campos massivos.

O capitulo est4 organizado da seguinte forma. Na se¢do 3.1 fazemos uma breve introducio
ao efeito Casimir. Na secdo 3.2 apresentamos os célculos do efeito Casimir para o campo
eletromagnético entre placas paralelas e perfeitamente condutoras. Na secio seguinte, cal-
culamos a energia de Casimir de um campo escalar com massa, mas utilizando diretamente
técnicas funcionais. Na segéo 3.4 passamos a discutir as correcdes radiativas ao efeito Casimir

no modelo A¢* e, finalmente, na se¢do 3.5 encontram-se comentdrios finais.
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3.1 Introducao ao Efeito Casimir

O efeito Casimir, assim chamado em homenagem ao fisico holandés Hendrik B. G. Casimir
que o previu teoricamente em 1948 [1], consiste essencialmente na atragio entre duas placas
neutras, paralelas e perfeitamente condutoras — em outras palavras, um capacitor plano
descarregado —, localizadas no vadcuo. Obviamente, tal forca ndo pode ser explicada a
partir da fisica classica. Sua origem é genuinamente quantica. No entanto, a novidade do
resultado de Casimir nao estava no fato de que dois objetos neutros pudessem se atrair, uma
vez que London [85], em 1930, j4 havia explicado com a mecanica quantica a forca de atracao
entre dois 4tomos (ou moléculas) neutros, porém polarizdveis, conhecida como forca de van
der Waals. A novidade de seu o trabalho estava na técnica empregada por ele no célculo
dessa forca, baseada, como veremos, na energia de ponto zero do campo eletromagnético
quantizado na presenca das placas.

| De fato, a histéria do efeito Casimir estd intimamente relacionada com as forcas de van
der Waals; o préprio interesse de Casimir na época néo era a interagado entre duas placas
neutras e condutoras, mas sim como o retardamento causado pela finitude da velocidade da
luz afetava as forcas de London-van der Waals. Esse interesse se originou nos resultados
encontrados por Verwey e Overbeek [86] relacionados ao estudo da estabilidade de certos
sistemas coloidais. Eles chegaram & conclusao de que, para que houvesse acordo entre teoria
e experimentos, o potencial de interacido interatomico deveria cair mais rapidamente do
que 1/r% (potencial previsto por London) para grandes distancias. Mais ainda, chegaram a
conjecturar que a razao para essa mudanca na lei de forca tinha origem no retardamento da
interacdo eletromagnética, cujos efeitos tornavam-se perceptiveis a grandes distancias. Ou
seja, a teoria de London deveria ser modificada para grandes distancias a fim de incorporar
os efeitos do retardamento. Foram justamente Casimir e Polder os primeiros a calcular
explicitamente tais efeitos utilizando métodos perturbativos em eletrodinamica quéntica [87].
Eles mostraram que para distancias interatomicas tais que o tempo de percurso da luz entre
os atomos é da ordem de tempos caracteristicos do atomo, o potencial interatomico passa a se
comportar como 1/77. Na época, esse resultado causou muito mais impacto do que o trabalho
que deu origem ao efeito Casimir. Essa mudanga na lei de poténcia da interacao de van der

Waals quando se passa do regime nao retardado (pequenas separagdes entre os dtomos) ao
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regime retardado (grandes separagdes entre os dtomos) s6 foi verificada experimentalmente
vinte anos apds a sua previsao, por Tabor e Winterton [88]. Usando folhas de mica, eles
verificaram que havia uma mudanca na lei de poténcia da forga interatomica para distancias
da ordem de 150A; essa distancia corresponde aproximadamente ao comprimento de onda
da transicao dominante do material utilizado.

Embora o célculo de Casimir e Polder [87] tenha sido longo e trabalhoso, o resultado final
se revelou relativamente simples. Esse fato sugeriu a eles que deveria haver um procedimento
muito mais simples que fornecesse o mesmo resultado, como fica claro em suas préprias

palavras':

A forma muito simples da Eq. (56) e a férmula andloga (25) sugerem que deveria
‘ser possivel derivar essas expressies, talvez a menos de fatores numéricos, por
meio de consideragoes mais elementares. Isso seria desejavel uma vez que daria
um respaldo fisico maior para o nosso resultado, um resultado que na nossa
opinido € muito notdvel. Até o momento ndo fomos capazes de encontrar tal

argumento stmples.

Foi entao que, numa conversa com Niels Bohr, Casimir ouviu a sugestao de que seu resultado

2. Uma simples sugestao, mas o

poderia ter alguma relagdo com a energia de ponto zero
suficiente para colocar Casimir no caminho certo. Pouco tempo se passou para que Casimir
rederivasse seu resultado utilizando o conceito de energia de ponto zero, num trabalho que
foi publicado apenas em 1949 [91] (maiores detalhes sobre as motivagdes iniciais de Casimir
podem ser encontradas em [92]). A novidade do trabalho de Casimir estava entdo no fato
de que a forca entre dois corpos macroscépicos colocados no vécuo pode ser calculada pela
variacdo da energia de ponto zero (devidamente regularizada e renormalizadada) do campo
eletromagnético quantizado, sujeito as condigdes de contorno impostas pela presenca de tais

corpos. Esse método deve fornecer o mesmo resultado para a forga entre os corpos que aquele

1Traducao feita pelo autor desta tese.
2A energia de ponto zero apareceu na fisica pela primeira vez num trabalho de Max Planck em 1911 [89],

bem antes que a mecénica quantica estivesse bem estabelecida e que a sua derivagéo fosse feita a partir do
formalismo matricial de Heisenberg em 1925. Durante muitos anos, mesmo apds 1925, ainda foi um tema
controvertido nos debates entre os especialistas da fisica quintica. Para maiores detalhes sobre a histéria da

energia de ponto zero, veja, por exemplo, a referéncia [90].
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obtido pela integracao das forgas de van der Waals entre os 4tomos (moléculas) desses corpos,
desde que se leve em consideragao os efeitos de retardamento e a nao-aditividade das forgas
de van der Waals.

As forcas de Casimir em geral sdo muito pequenas. Para se ter uma idéia quantitativa,
a forca por unidade de drea entre duas placas condutoras separadas por uma distancia a,
calculada por Casimir em 1948, é dada por [1]:

F 2
&) _ 7 oyt D
(a/pm)* cm?

L2 240a? (3.1)
|

oonde L? corresponde & drea de cada placa. Para a = 1um, por exemplo, a pressio de Casimir
é aproximadamente 1078 vezes a pressiao atmosférica. Muito embora sejam diminutas tais
forcas, elas podem ser medidas experimentalmente. O primeiro experimento realizado com
o intuito de verificar a existéncia do efeito Casimir foi feito por M. J. Sparnaay em 1958 [13].
No entanto, ele pode apenas afirmar que seus resultados experimentais eram compativeis
com a previsao tedrica feita por Casimir. Quatro décadas se passaram até que novos expe-
:rimentos fossem realizados diretamente com metais (ndo necessariamente com duas placas
\ o . . .- .
paralelas), mas dessa vez com uma acurdcia muito maior [14]. A boa precisdo experimental
!obtida por técnicas modernas — a maior parte dos experimentos recentes foi feita utilizando-
se microscopios de forca atomica — exigiu que a comparagao entre os experimentos e a teoria
fosse feita com férmulas tedricas que j levassem em consideragao efeitos de temperatura, da
rugosidade dos materiais envolvidos e da condutividade finita dos metais. Portanto, podemos
afirmar hoje em dia que o efeito Casimir existe, ou seja, estd muito bem confirmado experi-
mentalmente e trata-se, sem duvida, de um dos efeitos macroscépicos mais espetaculares
com origem na teoria quantica de campos®.

Até 1960, aproximadamente, o efeito Casimir e tépicos relacionados a esse efeito, como
as forcas de van der Waals, eram estudados por um pequeno grupo de pesquisadores, ba-
sicamente na Holanda e na extinta Uniao Soviética. No entanto, nas décadas seguintes, o

efeito Casimir se tornou um campo de pesquisa bastante ativo. A razao para isso reside, em

3Para uma introdugao ao efeito Casimir, sugerimos as referéncias [18, 93], além, é claro, do artigo original
de Casimir(1] (uma tradugéo desse artigo para o portugués pode ser encontrada na Ref. [19]). Para discussoes
mais elaboradas e detalhadas, sugerimos as Refs. [5, 15, 16, 17]. H4a ainda livros que, embora dedicados a

temas mais gerais, contém uma boa discussdo do efeito Casimir [94, 95].
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parte, no fato de que o efeito Casimir, entendido como uma alteragdo da energia do vacuo
de um campo quantico devido a imposicao de condicdes de contorno, néo é uma peculiari-
dade exibida apenas pelo campo eletromagnético. Qualquer campo relativistico, bosénico
ou fermiénico, definido em uma variedade com topologia nao-trivial terd, em principio, sua
densidade de energia no estado de vicuo modificada. Ou seja, a energia de ponto zero tanto
de um campo escalar quanto de um campo fermionico ¢é alterada quando tais campos sdao
submetidos a condigdes de contorno. Isso ampliou bastante o leque de possiveis aplicacoes
desse efeito. Uma das mais notaveis surgiu nos anos 70, a saber, o chamado modelo de sacola
(“bag model”) do MIT (6], no qual os hddrons sao concebidos como sacolas contendo quarks
e glions. O confinamento destas particulas da origem entao a uma energia de Casimir que é
responsavel por até 9% da massa do hddron. Nesse contexto, o efeito Casimir fermiénico foi
calculado pela primeira vez por K. Johnson em 1975 (veja a primeira referéncia em [6]). Vale
citar ainda que nos anos 1970 a energia do vicuo quéantico passou a ser estudada também
em cosmologia.

- O efeito Casimir na sua forma genérica se tornou, portanto, uma drea de pesquisa ex-
tremamente ativa nos dias de hoje. Isso se deve, em grande parte, ao seu carater interdis-
ciplinar, uma vez que esse efeito é relevante nao apenas em eletrodinamica quantica, mas
também na teoria quantica de campos em geral, na fisica da matéria condensada, na fisica
atomica e molecular, na gravitagdo e cosmologia, na fisica matemaética e, por que nao dizer,
na nanotecnologia, na construgdo de dispositivos microeletromecanicos. Na teoria quantica
de campos, as principais aplicagbes desse efeito s@o: (i) no modelo de sacola do MIT, ja
mencionado anterioremente; (ii) em teorias de Kaluza-Klein, nas quais o efeito Casimir pro-
porciona um dos mecanismos mais promissores para explicar a compactificagdo espontanea
das dimensoes espaciais extras, e (iii) na possibilidade de impor restricoes mais fortes so-
bre os pardmetros de interacoes de longo alcance ou na existéncia de particulas elementares
leves previstas por teorias de calibre unificadas, pela supersimetria, supergravidade e teoria
de cordas. J4 na matéria condensada, o efeito Casimir leva a existéncia de forgas entre fron-
teiras materiais muito préximas entre si, e é responsdvel por algumas propriedades de filmes
finos, devendo ser levado em consideracao em calculos de tensdo superficial e calor latente.
Na cosmologia, esse efeito pode ter sido relevante no processo de inflagdo do Universo. Na

fisica matemética, os célculos de energias de Casimir tém estimulado o desenvolvimento de
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novas técnicas de regularizagdo e renormalizacao, como por exemplo o método da funcao
zeta generalizada. (Para maiores detalhes e referéncias mais especificas sobre todas essas
aplicagoes, veja a Ref. [17].)

Concluimos esta secao comentando sobre um 1iltimo tema de pesquisa sobre o efeito
Casimir, e que corresponde justamente & parte principal deste capitulo, a saber: o cilculo
de suas primeiras corregoes radiativas. Em comparacdao com o que ja foi feito para o caso
de campos nédo interagentes, o nmimero de trabalhos que consideram o efeito Casimir em
campos com interacao é extremamente reduzido, como veremos. No caso da eletrodinamica
quéntica, a primeira correcao radiativa ao efeito ja foi discutida [17, 20], e se revelou muito
pequena. Os experimentos atuais ainda nao possuem precisao suficiente para detecta-la.
Apesar disso, esse ¢ um calculo de grande importancia do ponto vista tedrico, pois permite,
num contexto mais simples, examinar as dificuldades que se interpdem a renormalizagao de
modelos de teoria de campos definidos em espagos-tempos curvos ou com fronteiras, e que
por esse motivo ndo exibem invariancia de Poincaré. Neste capitulo obteremos resultados
apenas para as correcoes radiativas de um campo escalar com massa com auto-interagao

quéartica (o modelo \¢*).

3.2 O Efeito Casimir Eletromagnético

Nesta secdo apresentamos explicitamente o célculo da energia de Casimir para o campo
eletromagnético na presenca de duas placas neutras, paralelas e perfeitamente condutoras —
a configuracdo investigada originalmente por Casimir [1]. Nosso procedimento serd andlogo
ao das referéncias [1, 38]. O célculo a ser apresentado tem relevancia nio apenas histérica,
mas ser4 Util para estabelecer notagoes e introduzir alguns conceitos fundamentais, tais como
as idéias de regularizagdo e renormalizac¢do no contexto do efeito Casimir.

Por conveniéncia, vamos escolher os eixos cartesianos de modo que uma das placas esteja
localizada em z = 0 e a outra em z = a. As condicdes de contorno impostas por esta

configuracao de placas sobre o campo eletromagnético sao dadas por

{2xE(t,m,y,0)26 {2><E"(t,:c,y,a)=6

b - (32)
2. Bit, z,40) =0 2B,z el =10
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Tais condicoes restringem as freqiiéncias dos modos do campo eletromagnético a:

2
wE=C\/k§+k§+(%) ; =0, 1, 2 s cu5 (3.3)

sendo que para n = 0 s existe um estado de polarizacdo para o campo. Desse modo, a

energia do campo no estado de vacuo, contida na regido entre as placas, é dada formalmente

por:
1
P = Sy
ﬁc d. k” - = 2 n27r2 172
= f 2 )2 l>|k|i| + 22 (k” + 7 y (34)
n=1

onde E” = R B kg, L? é a area de cada placa, e o denota o estado de polarizacio do
campo.

Como a energia de Casimir é definida como a variagao da energia do campo no estado de
vécuo devido & imposicdo de condi¢oes de contorno, devemos subtrair da expressao (3.4) a

energia do campo na regido entre as placas, porém sem a presenca das mesmas %, dada por

he [ ok [ dk,
- 2
Hy f e /_ Tl e
2 2
_ f ‘”"“] dn 24k + - (3.5)

na qual fizemos a transformagdo de varidvel n := ak,/m. Sendo assim, a energia de Casimir

por unidade de drea é dada por

E—E,
L2

he [ Ky = n2m? /‘x’ n2r2
= — dky ky | = + k24 —— — dny/k? + ——
o [, IR [2 ; 1T ), ™VET Tz

Esta expressio ainda carece de significado fisico, uma vez que se trata da subtragdo de duas

E(a) =

quantidades divergentes. Devemos entdo adotar um procedimento de regularizagéo a fim de

4Na verdade, deverfamos ter considerado também as contribuicdes das regides exteriores as placas. No
entanto, como as fregiiéncias dos modos do campo nio se alteram nestas regides com a presenca das placas,

tais contribuicdes se cancelam no processo de subtragao.
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extrair um resultado finito e dotado de interpretagao fisica. Como para altas freqiiéncias as
placas se tornam transparentes para os modos do campo, é natural introduzir uma funcao de
corte que elimine os modos de alta freqiiéncia, eliminando assim a divergéncia ultravioleta

na equacgio (3.6). Procedendo dessa maneira, obtemos:

E(a) = he—— 8 oodu{iz—a (gx/'t—t)-l-imf(g\/m)

| 4 a3 <
n=

_ f dnvu+n2 f (gm)} , (3.7)

0
onde fizemos a transformacao de varidvel u = agk /7r e introduzimos a fungao de corte f.
Esta fungdo deve ser tal que f(kj) = 1 para kj < k. e f(kj) = 0 para kj > ky,, onde &y, €
da ordém do inverso do raio atomico. Em lugar de apresentarmos a fungao f explicitamente,
vamos somente impor que ela ainda satisfaca as seguintes propriedades: (i) f(0) = 1, e (ii)
todas as suas derivadas se anulam na origem.
Definindo a nova fungao

F(n) = / " dua i f (gm) (3.8)

0

a equacao (3.7) pode ser escrita como

1

Ela)= Fie—— {—F(O)+F(1)+F(2)+---—-/.;man(n)}. (3.9)
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E conveniente, neste momento, utilizarmos a férmula de Euler-MacLaurin, dada por
1 e B2 1 4 7
EF(O) +F)+F@2)+---— dnF(n) = F(O) I F"0)+---, (3.10)
0 .

onde os niimeros de Bernoulli B, sdo definidos por por meio da série de Taylor da funcao

g(y) =y/(e¥ = 1):

m

Z m__.. (Jy| < 27). (3.11)

eyﬂl

A fim de calcular as derivadas de F', reescrevemos esta fun¢do numa forma mais adequada:
F(n) = / du/u f ( \/_) (3.12)
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Desse modo, temos
F'(n)=-2n2f(2Z) | :
(n) = ~2nf (=) (3.13)
Utilizando entao as propriedades da funcéo f, € simples mostrar que F'(0) = 0, F"(0) = —4,

e que todas as outras derivadas de ordem superior séo nulas na origem. Conseqiientemente,

a energia de Casimir por unidade de drea é dada por

_ hem? By B w2hc

| €)= = 0m (314}
!
onde usamos o fato de que By = —1/30. Podemos agora calcular a pressio sobre as placas
utilizando a relagao

F o&

2 " 3a° (3.15)

chegando assim ao resultado obtido por Casimir em 1948, dado pela equacao (3.1).
Poderiamos ter calculado a pressdo de Casimir utilizando outros métodos de regula-

rizacdo. Vale enfatizar, contudo, que um resultado fisico ndo deve depender do procedimento

de regularizacao adotado. Célculos explicitos com outros métodos podem ser encontrados

na referéncia [17], e reproduzem o resultado (3.14).

3.3 Método Funcional para o Campo Escalar Livre

Nesta secao, vamos reobter o resultado ja conhecido para a energia de Casimir de um campo
escalar com massa sujeito a condigdes de contorno de Dirichlet em dois planos paralelos entre
si. Em principio, esse resultado pode ser obtido por um procedimento totalmente andlogo
ao da secdo anterior. No entanto, vamos utilizar aqui um método funcional, introduzido por
Bordag et al. (veja a primeira referéncia em [20]), mas ainda ndo empregado no problema
que vamos abordar. Além disso, utilizaremos essa mesma técnica no célculo da primeira
correcio radiativa & energia de Casimir no modelo A¢* sem massa, a ser apresentado na
proxima secao.

O funcional gerador de fungoes de Green de um campo escalar livre ¢, de massa m, é

dado por
Wil =N [ Do en {i [ do[£06(e), 0u0(0) + T@0(2)] (3.16)
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onde NV ¢ um fator de normalizagéo, escolhido de tal forma que W[0] = 1, e £ é a densidade

lagrangiana da teoria °,
1
L(¢,0.0) = 5(@‘?53“@5 — m?¢?). (3.17)

A energia desse campo, no estado de vdcuo, pode ser obtida por meio da integragao, em

todo o espago, do valor esperado no vécuo da componente 00 do tensor de energia-momento:

E = / &3 (T%(z))

- %iﬂ‘i &°F (g 5rfayp + mz) (T (¢(2)o(y))) (3.18)

onde usamos regularizac¢do por separacao de pontos.

As condigbes de contorno impostas sobre o campo escalar sio dadas por
¢(t, %),z =0)=0, ¢t Z),z°=a)=0, (3.19)

onde Z = (2!, z?). Daqui em diante chamaremos estas condicoes de Dirichlet-Dirichlet, ou
de forma abreviada, de condicées DD.

Vamos entao obter o funcional gerador Wpp[J] do campo escalar submetido as condigbes
de contorno (3.19). Com esse objetivo, note que a integral funcional (3.16) do campo livre
(sem condicdes de contorno) é efetuada considerando todas as configuragdes de campo ¢.
Para a situagdo em que estamos interessados, temos de restringir essa integragido somente
sobre as configuracoes de campo que satisfacam a condicdo de contorno que estamos con-
siderando, ou seja, devemos fazer a integral somente sobre os campos ¢ que satisfacam a

condigdo (3.19):

WpplJ] = N/Dd)’DD exp {z’/d‘% [L(p(z), Bud(z)) + J(m)qﬁ(:c)]} ; (3.20)

A restrigao as fungdes ¢ em (3.20) pode ser efetuada por meio da insercdo de funcionais
delta

Woold) =N [ D olusca]Sllurmd exp {i [ a'alea) + @] . (s

SConvencgées: i = ¢ = 1, Ty = Ny, &, Ny, = diag(+1, -1, -1, -1); indices gregos variam de 0 a 3, e

subentende-se uma soma quando houver indices repetidos: z,y* = 1,,@*y” = z%° — gly! — 2%y — 233
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Esses funcionais delta, por definicdo, vao fazer com que sejam nulas as contribuigoes para
a integral oriundas de configuracdes de campo que nao satisfacam as condigoes de contorno

(3.19). A representacao integral para cada um desses funcionais ¢ dada por

§[@|o3=a,] = / DBkexp(z' / diz §(2° —ak)Bk(sc")gﬁ(:c)) , B=12; (3.22)

onde a; = 0, a3 = a, 7 = (z°,2',2%,0) e B¥(z)) é um campo auxiliar cujo dominio é o
plano z° = a;. Note que ndo existe soma em k no lado direito de (3.22).

Substituindo a expressdo (3.22) na equacao (3.21), obtemos:

WonlJd] = N f Dy DB DB’ exp {z ] &'z [6(z° — ax) B*(2))9(z) + L(z) + J(a:)qﬁ(:z:)(]g}z?:)

onde estd implicita uma soma no indice k.

| A expressdo (3.23) tem uma interpretacdo interessante: o integrando na primeira expo-
nencial pode ser visto como uma densidade lagrangiana Ls(z) = §(z® — a) B*(z))¢(z) que
simula a presenca das superficies z° = a; (k = 1,2) onde o campo se anula.

A fim de escrever a integral (3.23) em uma forma gaussiana, fazemos a seguinte translagéo

no campo ¢:
8(z) — (z) - / dy 6(° — ax) B* () Dz — 1) , (3.24)

onde D(z — y) é o propagador do campo livre, que satisfaz a equagao
(8,0* +m*)D(z —y) = —6W(z — y). (3.25)

Tendo em vista que o jacobiano de uma translagdo é igual & unidade, apds a transformagao

(3.24) o funcional (3.23) toma a forma

WpplJ] = N/Tqu’)ZDBIDB2 exp {z’/d% [—%q&(m)(tﬁp@“ + m?)o(z) + J(:c)qb(:c)} }

x eXP{ = if/d4$ d'y [%Bk(ﬂfu)ﬂfc?’ — ax)D(z — y)6(y* — @) B'(y))

(@)D -8~ a)B )| | (3.26)
onde temos somas implicitas em & e .
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Note que o funcional acima foi separado em duas integrais gaussianas, uma no campo ¢,
e outra nos campos B¥. A integral em ¢ fornece o conhecido funcional gerador do campo

escalar,

WJ] = exp{—% / / diz dby J(z)D(z — y)J(y)} , (3.27)

enquanto a integral em B* fornece (veja Apéndice E)

WoplJ] =em{—%f/d4md4y J(w)B(:v,y)J(y)} ) (3.28)
onde definimos
= d3k 1 ;
D=3 = = [ G Abnat s e, (329)
Ak 2°,y°) = tr {R(DD)(k”,ﬁ,ys)hulz.(k')}, (3.30)
R,&?D)(k”,azg,yS) = exp{zL ) (|2% — ax| + |3 —a;[)} (3.31)
Lk)) = (/kf—m?= v (k0)2 — — (k2)2 — m2, (3.32)
(h™) g (k1) = é—se—;@;)[(e'“‘“ﬂ) b —1] (3.33)

e usamos a notagao na qual kj(z) —y) = Zi:o R~y )»

Com o auxilio dos resultados (3.27) e (3.28), podemos escrever a equagdo (3.26) como

WpplJ] = W|[J] Wpp[J] = exp {—% //.d‘lm d*y J(x) [D(:a: —y)+ D(m,y)] J(y)}
(3.34)
Note que este funcional gerador tem a mesma estrutura que o funcional para o caso em que
0 campo nao estd submetido a condigdes de contorno, dado pela equagéo (3.27). No entanto,
ao invés do propagador D(z —y), temos agora a soma D(z—y)+ D(z,y). Portanto, podemos
desenvolver toda a teoria quéntica para o campo escalar sob as condigoes DD em estreita

analogia com o caso do campo livre.
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De posse do funcional (3.34), obtemos diretamente o produto de tempo ordenado do

campo ¢(z) sob condigoes DD:

2 2
— (To()9(y))"” = G) 5% I=0

Para o célculo da energia de Casimir, utilizamos a expressdo acima e a equagao (3.18):

=i [D(z —y) + D(z,y)] . (3.35)

ngifds (Z Szrdyr ) [D(z —y) + D(z,y)] . | (3.36)

A integral que envolve o propagador do campo livre D(z — y) fornece um resultado indepen-
dente da distancia a, que nada mais é do que a energia do campo livre no estado de vacuo.
Como ja dito, esta quantidade infinita nao nos interessa e sera eliminada.

Utilizando a representacio de Fourier para D(z,y), a equagdo (3.29), e tomando o limite

y — z ao longo do eixo z%, a equagdo (3.36) se torna

d’ky 1 142 212 2 o T
Bt im, [~ [ SR 0074 (7 + 0+ + 55 Al )
(3.37)

onde A representa a drea das superficies onde o campo se anula.

Usando a definicdo de A, dada por (3.30), tomando o limite 3* — 2%, e integrando em

z3, obtemos

E = _EA/ gk)'g 21L{ [(% + a)—f— — ase‘j(i;)} [(K%)? + (k)% + (K*)* + m?]

(502w

Esta integral fornece uma parte divergente, independente de a e proporcional & drea A, que

é interpretada como a auto-energia das placas, e pode ser eliminada. Com isto, e usando a
definicdo de L, dada por (3.32), escrevemos, apés algumas manipulagoes algébricas, a energia

de Casimir por unidade de drea como

= =— —— —(k")“. 3.39
g(a’) A a’/ (27!')3 L ezLa, _ e—zLa( ) ( )

Para efetuarmos essa integral, fazemos uma rotagao de Wick:

kU oy ,ipﬂ’ kl — pl, k,? S p2 1 (340)
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que implica
kg — id’p, L —ivVri4+m?, (3.41)

onde definimos a quantidade r = /(p°)2 + (p!)? + (p?)2. Substituindo esses resultados na

integral (3.39), passando para coordenadas esféricas e integrando a parte angular, obtemos

E(a) = & [Oo g rt exp (—av/r? + m?) -
3 (2m)? VT2 +m? exp (.m/r2 +m?2) — exp (_am) ' y

Mudando a varidvel de integracdo de r para z = v/r? + m2/m, chegamos a

—ZIma

£la) = -2 L /1 Cdr@t o1 (3.43)

3 (27]-)2 etma _ o—Ima

A razdo envolvendo as exponenciais acima pode ser escrita como

—mma

—2zman
6a:ma — pg—Tma - Z ? (344)

0 que fornece para a integral (3.43) a expressao

Sam Zf dz (22 — 1)3/2¢~2eman (3.45)

Utilizando a representacao para a fungao de Bessel modificada K, (z) [96],

71.1/2 v poo
KV(Z) = m(%) [ dx (.’132 = 1)1/—1/26—2:1: y (346)

obtemos, finalmente, a energia de Casimir por unidade de drea para o problema em questao:

Elg) =

1 1 m?
- - (3.47
£ 52 a ,,E n2K2 (2man) , (3.47)

em pleno acordo com os resultados da literatura [15].

Como tiltimo comentdrio, gostariamos de chamar a atencgao para o fato de que, embora
tenhamos calculado apenas a energia de Casimir do campo sob condigoes DD, poderiamos
também ter calculado qualquer outra quantidade referente a este campo sob estas condicoes,
como por exemplo, fungdes de Green mais genéricas, uma vez que estabelecemos o funcional

gerador da teoria sob condigoes DD.
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3.4 Correcoes Radiativas ao Efeito Casimir

Nesta segao, calcularemos explicitamente as primeiras corre¢oes radiativas ao efeito Casimir
de um campo escalar com auto-interacio A¢*. Iniciaremos com o célculo para um campo de
massa nula sob condi¢goes DD. Em seguida, abordaremos o problema mais complexo de um
campo escalar massivo, incluindo, nesse caso, outras condigoes de contorno.

A interacdo de um campo quantizado, mesmo em seu estado de vicuo, com placas ma-
teriais j4 é extremamente complicada, motivo pelo qual simulamos tal interagdo impondo
condi¢des de contorno bastante idealizadas. Como conseqiiéncia, mesmo quando tratamos
um campo nao interagente, mas sujeito a condigdes de contorno, encontramos um desloca-
mento da energia do vacuo de tal campo, como ja mencionado em se¢oes anteriores. Portanto,
éurgem forgas entre corpos macroscépicos colocados no vicuo, referidas muitas vezes como
forgas de Casimir. Note que, nesta aproximacdo (campos nao interagentes), nenhuma cons-
tante de acoplamento aparece na expressao da forga, apenas constantes universais como 7,
c e obviamente parametros geométricos caracteristicos do sistema em estudo.

No entanto, os campos da Natureza sdo interagentes e o efeito Casimir deve ser calculado,
em principio, para tais campos em todas as ordens. Como essa ¢ uma tarefa extremamente
dificil, recorre-se a teoria de perturbagao e calcula-se, por exemplo, a correcao em primeira
ordem na constante de acoplamento ao efeito Casimir. Apesar de existir uma vasta literatura
sobre efeito Casimir, é surpreendente que ndo se tenha considerado, com maior fregiiéncia,
campos em interacdo no estudo de tal efeito. No caso da EDQ), a primeira corregao radiativa
ja foi discutida [20, 17], e se revelou muito pequena. O caso de campos escalares também foi
discutido na literatura [21, 23, 24, 25, 97, 98, 99, 100].

Os experimentos atuais ainda ndo tém precisao suficiente para poder detectar corregoes
radiativas as forcas de Casimir. Apesar disso, esse é um célculo de grande importéancia do
ponto vista teérico, pois permite, num contexto mais simples, examinar as dificuldades —
e eventualmente tentar sana-las — que se interpéem & renormalizagdo de modelos de teoria
de campos definidos em espagos-tempos curvos ou com fronteiras, e que por esse motivo nao
exibem invariancia de Poincaré.

Um fato interessante a respeito do efeito Casimir é que a um lago (ordem zero em A) ele

depende somente das freqiiéncias do campo, e ndo dos seus modos. Em outras palavras, em
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ordem zero na constante de acoplamento a energia de Casimir pode ser escrita simplesmente
como a energia de ponto zero do campo, devidamente regularizada e renormalizada. Uma
consequéncia imediata desse fato é que, nessa ordem, a energia de Casimir de um campo
escalar sujeito a condigoes de Dirichlet é exatamente igual aquela calculada com condicdes
de Neumann. No entanto, em ordens mais altas na constante de acoplamento, era de se
esperar que essa igualdade deixasse de existir. Surpreendentemente, isso néo acontece para
o caso de um campo escalar sem massa, pelo menos em primeira ordem na constante de
acoplamento [24].

- Até o momento, ndo havia nenhum célculo na literatura para o campo escalar com massa
com auto-interagdo A¢* e ndo se sabia, portanto, se esta igualdade permanecia valida ainda
para o caso de um campo com massa. Nesta se¢fo, mostraremos explicitamente que tal

igualdade deixa de ser vélida em tal caso [99].

3.4.1 Campo Escalar sem Massa

Nesta subsegéo apresentaremos o célculo da primeira corregio radiativa a energia de Casimir,

para o caso de um campo escalar sem massa, com auto-interagio descrita pela densidade de

lagrangiana
1 1 A
L=350,40"¢+ 3 m2¢? —S ¢* 4Ly , (3.48)
: ~- e
Lo Ly

onde L. contém os contratermos de renormalizacdo. Por conveniéncia, vamos considerar

inicialmente que o campo ¢ tenha massa e, no momento oportuno, vamos tomé-la como

sendo nula.

E um resultado bem estabelecido da TQC que a energia do campo escalar pode ser obtida
pela expressao [30, 101]
i T/2
E = lim — m{qus exp [zf dz’ / &z L(d(z), Q@(az))] } ; (3.49)
onde, a fim de garantir a convergéncia da integral funcional, acrescenta-se uma parte imagi-
ndria negativa a massa, m — m — Ge€.
Se quisermos trabalhar com o campo escalar submetido as condigdes de contorno (3.19),

devemos considerar na integral funcional acima somente os campos que satisfacam tais con-
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dicdes, ou seja

= lim — ln{ / Do|pp exp[ / ://22 dz® f d3fﬂ(qﬁ($),aﬂq§(z))}} ; (3.50)

Como veremos a seguir, em primeira ordem em teoria de perturbacgao, somente a massa

¢ renormalizada, por isso s6 vamos precisar do contratermo de massa em L:
2
Ly = ———¢°. (3.51)

Como usualmente é feito em teoria de perturbacio na TQC, sendo L; e L.; dependentes

somente dos campos ¢, podemos reescrever a equagio(3.50) como

£- 15*30?1“{8"1’[ Lo [ 22 (e:(75) + (7)) WDD””“’“”}’

onde

WoolT, 1= [ Doloners(s [ w0 [ #aeso), ) + T@e@])  (359)

T/2

é o funcional gerador de funcdes de Green a tempo finito da teoria livre (isto é, sem interacéo),

mas satisfazendo as condicdes de contorno DD nos planos z2 = 0 e 2% = a.

Expandindo a exponencial que envolve £; e L. em (3.52) até primeira ordem em A e

ém?, obtemos

E=E’+E', (3.54)
onde o primeiro termo,
E qllm = 1Il WDD[T 0] (355)

fornece a energia de Casimir em ordem A° (veja a equacio (3.47)), e o segundo termo,

R AT e e

fornece a primeira corregio radiativa a energia de Casimir.

Note que, a menos de uma constante de normaliza¢do, Wpp[T — oo, J] coincide com o

funcional gerador Wpp[J] definido na Segdo 3.3 pela equagdo (3.20). Assim, utilizando a
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expressdo (3.34) para Wpp|J] e as expressoes explicitas de L; e L., definidas em (3.48) e

(3.51), obtemos os seguintes resultados:

- WDD[O]_lﬁj(iéj(m)) WoplJ]|j=0 = —%3(%) [D(0) + D(z,2)]* ,  (3.57)
WDD[O]_lﬂct (EJ&(?)-) Wop|J])|j=0 = —6%?: [D('D) an D(.’B,:E)] : (3.58)

Levando estes resultados em (3.56), tendo em mente que D(0) ndo depende de z e que

'D(z,z) s6 depende da terceira coordenada espacial 7, obtemos

§m? -

B = A/d:{:S (—% [D(0) + D(=, 9:)]2 + 1—2— [D(0) + Dz, :c)]) ; (3.59)

onde A = [ d?Z é a drea das placas onde o campo se anula.

A corregao a energia de Casimir por unidade de &rea, em ordem A, é entdo dada por

EYa) = —fdm3 (AD(O)ﬁi6ﬂ2)D(O)—/a!:::3 (AD(G)—ié—mf)ﬁ(m,x)——)\—/deDQ(a:,x) :
8 2 4 2 8
(3.60)
O primeiro termo no lado direito da equagdo (3.60) fornece uma contribuicdo para a
energia proporcional ao volume espacial A [ dz3, e nada mais é do que a correcéo & energia
do campo, no estado de vdcuo, mas sem a consideracao das condigdes de contorno, podendo,
portanto, ser descartada.
O fator de renormalizacdo de massa §m?, que aparece no segundo termo no lado direito
da equagéo (3.60), é fixado impondo-se que a auto-energia do campo seja finita. Em primeira
ordem na constante de acoplamento, ela é dada por

i\ -

N(z,7) = 3 [D(0) + D(z,z)] + 6m* . (3.61)

Para eliminar a parte divergente que aparece na expressao (3.61) devemos escolher ém?* de

tal forma que '
%D(O) +om?=p’ <. (3.62)

Levando este resultado em (3.61), tomando o limite a — oo e usando o fato de que nesse

limite D(z,z) — 0 longe das placas, obtemos

lim %(z,z) = p? . (3.63)

a—0oC
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A constante p® pode ser fixada impondo-se ainda que ¥ — 0 quando a — oo. Com essa
condigdo, obtemos um valor nulo para a constante 1. Conseqiientemente, o contratermo de
massa em (3.62) é dado por
P
Sm? = iz-D(O) , (3.64)
fazendo com que o segundo termo do lado direito da equagio (3.60) seja nulo. Assim, a

energia de Casimir por unidade de drea, devidamente renormalizada €, é dada por

Ela) = H%/‘dm?’f)z(m,:c) . (3.65)

Com o auxilio da representagio de Fourier de D(z,y), dada pela equacdo (3.29), temos

A 2
Ea) = ~33 de® [I(2%,a)]” , (3.66)
onde definimos a integral
Bk 1 h= (k)
3 — I (DD) 3.3 I
I(z°, a) f an)? —L'(k") tr [R (ky,z°, )——1 ] : (3.67)

Utilizando as definigdes (3.30)-(3.33), podemos calcular explicitamente o traco acima,

obtendo

-1 k
tr [R(DD)(k||,$3,m3)h ( Fl)}

i
L ~iL ( %Ll ~a1] | 2illai—aa| L (2 —a1 | +]o" —azl)
- iLa 'zxa+ zzag)_Qezmal zazji. 368
2sen(La) [e ¢ - (3.68)
Substituindo esse resultado na integral (3.67) e fazendo uma rotagdo de Wick, descrita em
(3.40), obtemos

d3p 1 3 3 (g3 — 3_
i la ( ~2l—ar] | ~2lz —ﬂzl) _ ge-Ulz-al+le GZD] (3.69
I(z",a) 3/ (2m)3 2 sh(la) [e (e e ) i

onde definimos [ := 1/p? + m?2.

Daqui para a frente, vamos nos restringir ao caso de massa nula, m = 0. Tomando a; =0

e a; = a, passando para coordenadas esféricas, e integrando no adngulo sélido, escrevemos a

integral (3.69) como

5Na verdade, como veremos a seguir, é necessario fazer ainda uma renormalizagéo aditiva na expressao

(3.65)
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1 pdp 3 3 3 3
2p|z?| —2p|z°—a] p(|z3|+|z al):|
I(z?,a) = 2 f h(pa) [e’m (e +e ) — 2e . {3.70)

Devido & presenga dos médulos na integral acima, temos de considerar trés possibilidades

separadamente:
1. Regido com z° < 0:
Para tal situagéo, a equag@o (3.70) é escrita na forma
—9ma =
I(z*ya) —z-—/ 2Sh ) [€7* (1+e7%) — 2¢7P%] . (3.71)

Fazendo ainda algumas manipulagbes algébricas no integrando e efetuando a inte-

gragao, obtemos

1 = 3 1 1
- e —2plad| _ _ .
e, &) = 227r2 ] dppe P* | = i35 @) (3.72)
2. Regido com z° > a:
Neste caso, a equagdo (3.70) se torna
) 1 22 6_2P(I —a) . .

I(z3, a) = -12_7;5/0‘ pdpm [€7 (7% + 1) — 2779 (3.73)

e, de forma andloga ao caso anterior, obtemos

1 [= 3 1 1

3 — = d —2p|a:: —GI —_— . . . 4
I{z°, a) 127r2/0 bpe 533 @ —a)? (3.74)

3. Regido com 0 < z° < a:

Para esta regido, a equagdo (3.70), apds algumas manipulagdes algébricas, toma a

forma

1 e~Pa 3 3
3 . —2p(z®—a) 2pz )
I(:C ,a)——?,—z fpdpm———zs = (e + e —-2). (3.75)

Note que 1/sh(pa) pode ser escrita em termos de uma série, a saber,

oo

1 2 1
= =QePa___ = —pa —2pan
sh(pa) T ePa _ e—pa Ae 1 — e—2pa 2e § :6 ] (376)

n=0
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Dessa forma, a integral (3.75) é dada por

1 & [
I(z%a) = . > ]0 dpp e 2Pa(nt1) (e“"P(Ia‘“) + 27’ _ 2)
n=0
— . L = = d —2p[z3+(n—1)a]
T ppe
n=1 0
%+ f dppe'z’”(““_za) — 2/ dpp 8_2”"“] , (3.77)
0 0

onde alteramos o indice de soma na segunda linha. Efetuando as integrais, obtemos

I(z% a) = i—— 5 [( = } ! } .

an)? N (z3 4+ (n — 1)a)? B (z° — na)? (3.78)

Substituindo os resultados (3.72), (3.74) e (3.78) na equacao (3.66), obtemos

A O g 1 o 1
£ = 2“vr4{/_md‘“ i |, P

-|~f0“dm3 [i ((ai)z (3 + (nl_ Da)? @ _lm)Q)r} . (3.79)

n=1

As duas primeiras integrais fornecem contribuigoes divergentes, porém independentes da
distancia a entre as placas, e portanto podem ser descartadas, pois nao contribuem para a
forca de Casimir. Se pensarmos na energia propriamente dita, £! = £ A, essas contribuigdes
serao proporcionais & drea A das placas, e podem ser interpretadas como sua auto-energia.

A energia de Casimir por unidade de drea é dada entao por

2@ = g [ @[ (mp - wromr w0

n=1

Note que o somatério pode ser reescrito como

i [(ni)z (@ + (nl —1)a)?  (z° —1 na)z}

1 = 2 1 1
T ; [(n +12 [(#3/a)+n2  [(z%/a) — (n+ 1)12}
- i [29/(1) - ¥'(c%/a) — ¢'(1 — 2*/a)] , (3.81)
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sendo 9 a funcdo digamma [96, 25]. A combinacido de derivadas da funcdo digamma que

aparece em (3.81) pode ser expressa em termos de funcdes trigonométricas [25]:

] 3
| 2¢/(1) — ¢'(z%/a) — '(1 — 2%/a) = —7° [csc(%) - —:ﬂ ; (3.82)
Com isto, reescrevemos a equagdo (3.80) na forma
gl(a)——’\—ilim gt e [P ’ 3.83
| —] 211 a4 Sy ) CcsC 7 g 3 ( s )

onde usamos um fator de regularizacio € nos limites de integracio, de modo a poder identi-

ficar eventuais divergéncias. A integral (3.83) pode ser facilmente resolvida, fornecendo

1
EXa) = AL lim [E cot (%) csc? (-1;) + %a — ge] ; (3.84)

Expandindo as fungdes trigonométricas acima em poténcias de €, obtemos

Ay = 1'm(?-‘fi £ = O(e)). (3.85)

T oligieno\3rted | 9
O primeiro termo da expressao acima, apesar de divergente, ndo depende da distancia a,
e de forma andloga ao que foi dito a respeito das duas primeiras integrais na expressao (3.79),
esse termo também estd associado & auto-energia das fronteiras, podendo ser desprezado por
nio ter relevancia fisica. Com estas consideragoes chegamos, finalmente, & primeira correcao

radiativa & energia de Casimir por unidade de drea para o campo escalar neutro sem massa:

£'(a) = A1l

= omga 3" (3.86)

Esse resultado coincide com os apresentados na literatura, obtidos por outros métodos
[23, 24]. Procedendo da mesma forma, nds calculamos a primeira correcao radiativa a energia
de Casimir com o campo satisfazendo condigdes de Neumann nas fronteiras, e chegamos ao
mesmo resultado (3.86) para o campo satisfazendo condicdes de Dirichlet. No entanto, como

veremos a seguir, tal igualdade nao serd mais vélida para o caso de um campo com massa.

3.4.2 Campo Escalar com Massa

Nesta subsecdo vamos calcular a primeira correcao radiativa & energia de Casimir para cam-

pos com massa em D = d+1 dimensdes e salientar as principais diferencas em relagao ao caso
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de campos sem massa, discutido anteriormente. Abordaremos explicitamente trés condicoes

de contorno diferentes, a saber:

1._Condigoes Dirichlet-Dirichlet (DD):

(.b(m)l:rd:(l = 0: ¢'(‘T)|zd:a = 0; (387)

2. Condigdes Neumann-Neumann (NN):

9¢(z)|  _ d¢(x)|  _
B | 0, 5a |, = (3.88)
3. Condigoes Dirichlet-Neumann (DN):
9¢(z)
¢(‘T)|zd=0 =0, Hzd e, =0. (389)

Diferentemente do que fizemos até agora, nesta subsecdo iremos trabalhar na versao
euclidiana da teoria de campos. De forma andloga ao que fizemos para obter a equagao
(3.59), podemos escrever a primeira correcao radiativa a energia de Casimir, para as trés

condicoes de contorno mencionadas, como
a 2
£l(a) =f da? l:%GQE(I,m) + %GE(I‘,.’L') . (3.90)
0

sendo Gg(z,z') a fungio de Green euclidiana do campo escalar submetido as condigoes de
contorno apropriadas. Em termos de diagramas de Feynman, a contribuicdo em ordem A &

energia de Casimir é dada pelos diagramas mostrados na figura 3.1.

> D

A B

Figura 3.1: Diagramas que contribuem para a primeira correcao radiativa: (A) contribuigdo

de dois lagos, (B) contratermo de massa.

Analogamente ao que foi feito na se¢do anterior, a integragdo nas regides exteriores as

fronteiras (z¢ < 0 e ¢ > 0) foram descartadas, pois embora estas fornecam resultados

87




divergentes, eles sdo independentes da distancia a entre as fronteiras (veja a equagao (3.79))
e nao tém relevancia fisica.
Para cada uma das condigoes de contorno consideradas, na regido do espaco situada entre

as fronteiras localizadas em 2% = 0 e 2% = a, o propagador euclidiano pode ser expresso como

dd 1k " d’
Gola, o) = [ (dw | e R eale) o

2m) J (2m)%= w? + k + m2 + (Kkd)2

onde Z = (z', ..., z971) denota as coordenadas espaciais paralelas as placas, e as autofungoes

@, (z%) e os momentos quantizados k% sdo dados em cada caso por

2
DD: ¢, (z% = \/;sen(kﬁa:d), k= g-n, n=1223.... (3.92)
NN: o, (z%) = 2=5n0) cos(kdz?), kS = gn, o =0,1,2... (393
a

2 1
DN: o, (z%) = \/;sen(kg:cd), k= il (n + 5) g n=01.2... (394

a

Tomando pontos coincidentes, a fungdo de Green é escrita na forma

3 dwd?~1k; 1
GE(m?x) == Z(/ (ZW)d w? 4+ k'” +UJ2> ( )(Pn( ) ’ (395)

n

onde definimos
wn = /m? + (k3)? . (3.96)

A integral em (3.95) diverge para d > 2, mas pode ser definida por continuacao analitica

do resultado para d < 2. Obtemos, assim [30],

Ggle,®) = L -d/2) de 20, (M) k(z?) . (3.97)

471. d/2

Tendo em mente que as funcdes ,,(z?) sio normalizadas,

[ entatena =1, (3.98)
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podemos escrever

* _ P-d/2) s
/Od:c Cs(z2) = —mam Zw , (3.99)

a 1 — d 2)
] dz? G%(z,2) = / Zde Wi A (3.100)

0

onde definimos
A = ] dz o, (29 o1 (2% 0, (%) 03 (%) . (3.101)

Com os resultados (3.99) e (3.100) reescrevemos a equagio (3.90) como

AT 1—d/2 5m21" (1—4d/2)
1 d-2,, d—2 d-2
o)~ T St ta+ I S (e
Vamos neste ponto voltar a atengao para o contratermo de renormalizacdo ém?. A funcdo

de Green que aparece em (3.90) pode ser expressa na forma
Gg(z,z') = Gpolz,z') + Ge(z,2') , (3.103)

onde Ggo(z,z’) é a fungdo de Green euclidiana para o campo livre (sem condicoes de con-
torno), e Gg(z, ') uma corregdo introduzida pelas condi¢des de contorno, que se anula para
a — oo. Note que na secdo anterior calculamos G(z, z') para as condigoes DD.

O uso de (3.103) em (3.90) resulta em

a A Sm?2 A sm2\ = .
£Y(a) =f dz? | ( 2Go(z, z) + == ) Go(x, 7) + [ 2Go(z,z) + —— | G(z, z) + SG(z, z)
0 8 2 4 2 8
(3.104)
O primeiro termo do lado direito fornece uma contribui¢do uniforme para a densidade de
energia de Casimir e, por esse motivo, apesar de ser divergente, pode ser ignorado.

O contratermo de massa ém? é obtido de forma andloga ao que foi feito na segdo anterior:

§m* = —%Go(w,x) , (3.105)

Com isso, o segundo termo no lado direito de (3.90) se anula.

Usando agora a representagdo espectral da funcdo de Green do campo livre [17],
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dw [ d% . s
Go(z,2') = / —— f e-wﬁ-”e*k-(w-m)—l——, (3.106)

(2m) J (2m) w? + k2 4+ m?
e definindo o vetor k = (w, k', ..., k%), reescrevemos o contratermo de massa (3.105) na forma
A by 1
Sm?=—-= . .
m 5 f ) Rt m? (3.107)

A integral acima é divergente para d > 1, mas pode ser definida por continuagao analitica
|

do resultado para d < 1, obtemos assim [30],

o _ ATA—-(d+1)/2) 4,

B = (3.108)

De agora em diante, discutiremos cada uma das condigoes de contorno, DD, NN e DN,

separadamente.
i
Condicoes Dirichlet-Dirichlet (DD)

Com as defini¢oes das autofungoes (3.92), podemos calcular explicitamente os fatores A;,

definidos em (3.101), obtendo

1 1
Bgulop = - (1 N 55-,n) . (3.109)

Com este resultado, a soma dupla presente no primeiro termo de (3.102) se torna

oo - 2 1 oo -
() +2 22

N

Ang

;sE;l:.

EM

=T

(v

'S

I

Q|

n=1 j=1
= —|F (2—d,a)+§F(4ﬁ2d,a) , (3.110)
a
onde a fungao F' é definida como
2 (V] w1 111
F(s,a) '=§ [m + (?)} , (s) > 1. (3.111)

A extensdo analitica de F(s,a) para R(s) < 1, necesséria para que a equagao (3.110) faga
sentido em d > 1, é discutida no Apéndice F.

Expressando também o somatério no segundo termo do lado direito da equagéo (3.102)

em termos da func¢ao F', obtemos
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AT2(1 —d/2)1 §m2T(1 — d/2)

Ehala] = STa [F2(2 d,a)+ = F(4 2d, )} 2 @) F(2—-d,a)
X [T —d/2) 2a6m2)®  (6m?2)?
= {——(zhr)d/z F(2-d,a)+ ;) } A
A T2%(1—d/2)
o F(4—2d,a) . (3.112)

O termo (ém?)%a/2) na expressdo acima, por ser proporcional & distincia entre as placas,
pode ser descartado por argumentos ja discutidos anteriormente. Substituindo no restante
da expressdo acima a fungio F por sua forma alternativa (F.7), e ém? por (3.108), chegamos

finalmente ao resultado

| 2
A 4am®! Kg_1y/2(2man) 10(1 —d/2)
| . (d—1)/2 1 d—2
€pp(a) 8a |i(47r)(d+1)/2 21 (man)(@-1)/2 2 (4m)d/2

+1;5\a FZ((E)?Q){ ;mzd o+ %\rﬁzd_g d) [ (3;22@)

K (2
+4Z 2492 man)”. (3.113)

(man)@d-3)/2

Obviamente, o caso de maior interesse é quando temos d = 3 dimensdes espaciais, quando

entdo a expressao acima fornece

i _ 4am?® S~ K1(2man) 11(-1/2) 2 X\ I%(—1/2) m?
SDD(a)rd:3 N [ QZ (man) 2 (4m)3/2 m} 16a (4m)? 2
Am 2 Ki(2man .
- W[(l—{_;;%) +1}. (3.114)

A expressdo (3.114) fornece, assim, a primeira corre¢ao radiativa & energia de Casimir (por
unidade de 4rea das placas) de um campo escalar com massa em trés dimensdes espaciais

submetido as condig¢bes DD.
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Condicoes Neumann-Neumann (NN)

Substituindo as autofungoes (3.93) na expressao (3.101), obtém-se
1 1
Anjlvy = . {1 +3 (6,5 — ‘5n,05j,0):| - (3.115)

Sendo assim, a soma dupla do primeiro termo da equacédo (3.102) é escrita como

00 oo 1 oo 2 i 00
Z Z wi_zwf_z)An,j = = l:( Z wi_z) + 3 Z wﬁd_“]
n=0 n=1

n=0 j=0

= 1{[F(2~d,a)+md—2]2+%F(4—2d,a)} (3.116)

a

O somatério presente no segundo termo do lado direito de (3.102) também pode expresso

em termos da funcgéo F' definida em (3.111):
Y wi?=m* 4+ F(2—d,a). (3.117)

Substituindo as equagoes (3.116) e (3.117) em (3.102), obtém-se, aps algumas manipu-

lagbes algébricas,

2y 2
Ehnle) = o g P2 ) +m 7] 4 2270}
m2 2 201 —
- (62)\) ot 12@ : ((147r)(j/2) F(4~2d,a). R LIE)

O segundo termo do lado direito da equacgao (3.118) pode ser descartado, pelas mesmas razoes
apresentadas ao analisarmos a equagdo (3.112). Substituindo no restante da expressao acima

a funcdo F por sua forma alternativa (F.7), e ém? por (3.108), temos finalmente

o0 %
£l (a) _ i 4am?1! K(d—l)/2 (Zman) l]—‘(]_ = d/g)mdAQ
NN 8a | (4m)(d+D)/2 — (man)(d—l)/z 2 (4m)i/2

. = &

+4Z B (aa-ypn zman)” . (3.119)

(man)@d-3)/2
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No caso de trés dimensoes espaciais, d = 3, obtemos

g =2 [(1 .2 i K—“MY o 1] , (3.120)

d=3 2%m? T n
n=1

A expressdao (3.120) fornece a primeira corre¢io radiativa & energia de Casimir, por

unidade de drea, para o campo escalar com massa submetido as condicoes NN.

Condigoes Dirichlet-Neumann (DN)

Para estas condigoes de contorno, os fatores (3.101) sao obtidos a partir de (3.94):

1 1
Anjlpy = s (1 He ién,j) : (3.121)
Com este resultado, a dupla soma presente no primeiro termo do lado direito de (3.102) é
dada por
[s <IN <] ) 1 oo 54 2 1 [e%e] ods
nwi Ay =~ 2) 45 4 3.122
| Sttty =g |(Sut) g e (3122)

|
A fim de expressar o resultado acima em termos da fun¢do F', notemos que no caso das

condigdes DN tem-se

gw? _ f; [m +@ns1)? (E)j o
- S[rer )] - St ()]
= F(s,2a) — F(s,a) . (3.123)

Assim, podemos reescrever a equacao (3.102) como

— adm?)?
£l (a) = %{W[F(Q—d,2a)—f‘(2—d,a)]+2i }

_(6m2)2a+ A T?(1-d/2)

2\ 16a  (4m)¢ [F(4 —2d,2a) — F(4 —2d,a)] . (3.124)

Finalmente, substituindo F por (F.7) ¢ ém? por (3.108) na equacdo acima, obtemos
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A 4dam K (4amn) =K (2amn)\ 1>
" _ (d— 1)/2 (d-1) /2
Epnla) = 80;{ P (d+1)/2( Z (2amn)@=1/2 Z_; (amn)d-1)/2 )}

am24-3  T%(1-d/2) 3—2d
T 16(@m™Z T2 - d) [F ( 2 )

oo

K (4 K ina_5/a(2
+4(22 (2d-3)/2(4amn) _y Ko 3)/2( amn))], (3.125)

— (2amn)@4-3)/2 (amn)2=3)/2

n=1
onde, tal como fizemos nos casos DD e NN, descartamos o segundo termo do lado direito da
equagao (3.124).

Tomando d = 3 na expressao acima, obtemos finalmente a primeira corregéo radiativa a
energia de Casimir, por unidade de drea, para o campo escalar em trés dimensdes espaciais,

submetido as condigoes DN.

EJ]DN(G’) — 24

d=3 n

am? /S K (dman) — K1(2man)\ 2

(Z 1(4man) — K3 (2ma )) . (3.126)
n=1

Com o objetivo de comparar as primeiras corregoes radiativas a energia de Casimir para as

trés condicdes de contorno consideradas, escrevemos os resultados (3.114), (3.120) e (3.126)

como
£ Y (3.127)
DD(G‘) —3 - 297243 Dp(ma), :
En - 2 .F 3.128
NN(G‘) d=3 = 99,243 NN(ma‘)J ( . )
Er - 2 F 3.129
DN(a’) d=3 = 2971243 DN(ma)! ( : )
onde definimos as fungoes
[ 2 &, Ki(2man)\? ]
— 2 zZ o) =
Fpp(ma) = (ma) _(l + - E_l - ) ld ; (3.130)
[ 2 S Ki(2man)\® ]
— 2 z bt & bbbt TR
Fyy(ma) = (ma) -(1 = ng_l - ) ld ; (3.131)
2 <~ K (4man) — K1 (2man) #
— -_— " . 2
Fpy(ma) (ma) (W E - (3.132)




0,064 -

0,08 #
i

i F A (ma)

Figura 3.2: Gréficos das fun¢des Fpp(ma), Fyn(ma) e Fpy(ma)

A figura 3.2 exibe os gréficos das fungées Fpp, Fny € Fpn-

Note que a correcdo & energia de Casimir para as condigdes DD e DN é estritamente
positiva, enquanto para a condi¢do NN ela torna-se negativa para ma 2 0, 2.

Finalizamos esta secao analisando os limites de massa pequena (ma < 1) e massa grande
(ma > 1) nas expressoes obtidas para a energia de Casimir por unidade de érea calculadas
com as condicoes de contorno DD, NN e DN, dadas respectivamente pelas equagdes (3.114),

(3.120) e (3.126).

A fim de obter o limite de massa pequena, usamos o resultado (ver Apéndice G)
=1 7 7 1 Z 1 3
= e e o e fadl _Z b
E nKl(nz) & 2 4{111(4”) +F 2]2+O(z ¥ (3.133)

n=1

vélido para 0 < z < 1, nas equagdes (3.114), (3.120) e (3.126), o que nos fornece

A 12(ma)? T 5
glljD(a')‘d=3 = m{l — T) {ln(ma) + 111(5) + v+ 5}

+0 [(ma)* In®(ma)] } , (3.134)
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Exnn(a) s 511—;\%—3{1 = 2477?@ — 12(;2@)2 {ln(ma) . ln(%) +7- 1?9}

+0 [(ma)* In(ma)] } , | (3.135)
SEN(G)L::; - 2133;%3{1 + @ [ln(ma) +1n(27) + v — %}

+0 [(ma)* In*(ma)] } : (3.136)

Em particular, quando a massa do campo é nula, as expressoes acima se tornam

ws = oiigrgse  Son(a)| = omsas (3.137)

Ebpla)| _ = Ekn(@)

em plena concordancia com os resultados encontrados na literatura [23, 24]. Note que, de
acordo com a equagdo (3.137), a primeira corregao radiativa a energia de Casimir do campo
escalar sem massa é a mesma nos casos DD e NN. No entanto, de acordo com os resultados
(8.114) e (3.120), essa igualdade deixa de valer quando o campo possui massa. Isso pode ser

constatado claramente na figura 3.2.

Para grandes valores de massa (ma >> 1), usamos o limite assintético das fungoes de

Bessel K, (z) [96],
K,(z) ~ \/—21:6“z [1+0(z"Y)] (z — o0), (3.138)

nas equagoes (3.114), (3.120) e (3.126), o que nos permite escrever

. i )\m3/2 5
SDD(CL)‘d:3 = —SNN(CL)‘dzg ~ W exp(—2ma), (3].3 )
Ebw(a)| _ ~ R (3.140)

DNAY 41— 297342

Note que a correcdo & energia de Casimir para as condi¢des DN cai bem mais rapido em
comparacdo com as outras duas condigoes DD e NN. E interessante notar também que no
limite de grandes valores de massa, a corregao & energia de Casimir para as condicoes DD &

oposta a que encontramos no caso NIN.
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3.5 Comentarios Finais

Neste capitulo, rederivamos a primeira correcdo radiativa & energia de Casimir para um
campo escalar sem massa com auto-interagao A¢* utilizando a técnica de integrais funcionais,
até entdo nao empregada para esse caso. Embora ela nido apresente nenhuma vantagem
aparente no caso de fronteiras planas, suspeitamos de que essa técnica forneca uma maneira
sistematica de se calcular a forca de Casimir entre fronteiras curvas (por exemplo, entre um
plano e uma esfera).

" Em seguida, obtivemos o resultado mais importante desta tese: calculamos pela primeira
vez a correcdo radiativa em ordem A & energia de Casimir para um campo escalar com
massa, também com auto-interacdo A¢*. Nesse caso, os célculos foram feitos considerando-
se trés condicées de contorno diferentes, a saber, as condigoes DD, NN e DN, definidas
anteriormente. Analisando os resultados (3.114) e (3.120), constatamos que a igualdade que
existe entre a primeira correcdo radiativa a energia de Casimir de um campo escalar sem
massa submetido as condigdes DD e NN (veja a equagao (3.137)) deixa de existir no caso de
campos com massa. Finalmente, analisando as equagoes (3.134)—(3.136) podemos constatar
que as condigoes NN sdo as mais sensiveis & massa do campo, se pensarmos nesta como uma

pequena perturbacdo a teoria sem massa.
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Conclusoes e Perspectivas

Finalizamos esta tese resumindo os principais resultados apresentados em cada capitulo, e
apontando algumas perspectivas para futuros trabalhos relacionados aos tépicos aqui abor-
dados.

Em linhas gerais, fizemos nesta tese um estudo a respeito da influéncia de cavidades
em fendmenos perturbativos da Teoria Quéntica de Campos. Abordamos problemas envol-
vendo desde um campo escalar com auto-interagao A¢?, até problemas relacionados com a
Eletrodindmica Quéntica e com a Eletrodindmica de Born-Infeld. Em todos esses casos,
correcdes radiativas foram calculadas supondo que os campos em questdo estivessem sub-
metidos a condicdes de contorno em planos paralelos entre si. Resultados foram obtidos para
diversas condigoes de contorno.

No Capitulo 1 estudamos a influéncia causada pela presenga de placas paralelas no espec-
tro de energia de um 4tomo de Hidrogénio. Usando teoria de perturbagéo de segunda ordemni,
obtivemos os deslocamentos nos niveis de energia do dtomo quando este estd localizado na
regido entre as placas. Os correlatores do campo eletromagnético relevantes foram calculados
por meio do método de separacdo de tempo imaginédrio de Schwinger. Consideramos, em
particular, o caso no qual uma das placas é perfeitamente condutora, e a outra, infinitamente
permeével, configuracdo & qual nos referimos por CP. Comparamos nossos resultados com
0s j4 existentes na literatura para outras configuraces, como 0s casos em que as duas pla-
cas sdo perfeitamente condutoras ou infinitamente permedveis, configuragdes denominadas,
respectivamente, por CC e PP. Observamos algumas peculiaridades, como o fato de que
apesar de os deslocamentos nos niveis de energia atomicos para as placas CC e PP terem
sempre um sinal determinado, sendo positivo para CC e negativo para PP, para o caso da

configuragdo CP nio é possivel prever de antemao o sinal dos deslocamentos de energia, que
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podem adquirir tanto valores positivos quanto negativos.

A partir dos resultados obtidos, encontramos também os deslocamentos nos niveis de
energia de um atomo localizado perto de uma unica placa, sendo esta perfeitamente con-
dutora ou infinitamente permedvel. E interessante ressaltar que, ao compararmos os deslo-
camentos nos niveis de energia para estes dois casos, vemos que eles tém o mesmo médulo,
mas sinais contrarios.

Uma extensao desse estudo seria calcular as alteragoes nos niveis de energia de um atomo
localizado entre placas paralelas, mas considerando também que este esteja em um banho
térmico a uma determinada temperatura. Dessa forma, estariamos considerando também
os efeitos que a radiagio de corpo negro confinada entre as placas exerce sobre os niveis
atomicos. Do ponto de vista técnico, bastaria trocar os correlatores calculados na tese
por “correlatores térmicos”, ou seja, médias térmicas de correlatores dos campos. Seria
interessante investigar também a influéncia de outros tipos de cavidades nos niveis de energia
atomicos, como por exemplo, cavidades cilindricas e retangulares.

Ainda nessa linha de pesquisa a respeito de como certas propriedades radiativas de sis-
temas fisicos sao afetadas pela sua vizinhanga, é nossa intencdo investigar também a in-
fluéncia de cavidades no momento anémalo do elétron, mesmo porque a medida mais precisa
da EDQ € a do fator g — 2. Pretendemos considerar especificamente o caso em que temos
duas placas paralelas, sendo pelo menos uma delas infinitamente permedvel, e comparar os
resultados com os ja existentes para placas condutoras.

No capitulo 2 estudamos como a velocidade da luz é alterada quando esta se propaga
em uma regiao entre placas paralelas. Consideramos as mesmas configuracoes de placas
empregadas no estudo dos deslocamentos dos niveis de energia atémicos do Capitulo 1. Em-
pregamos a técnica desenvolvida por Barton no contexto do efeito Scharnhorst para encontrar
as alteracdes na velocidade da luz devido & presenga das placas, considerando a dinadmica
do campo eletromagnético descrita por uma lagrangiana que generaliza, ligeiramente, a la-
grangiana de Euler-Heisenberg, e que tem como caso particular a lagrangiana de Born-Infeld.
No caso desta 1iltima lagrangiana, mostramos que ndo hé variagdo alguma na velocidade da
luz até a ordem considerada. Esse é um fato curioso pois, mesmo sem levar em conta efeitos
quanticos, a lagrangiana de Born-Infeld também fornece variagdo nula para a velocidade de

propagacédo da luz [102, 103].
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Utilizando a técnica de Barton, pretendemos calcular a variagdo na velocidade da luz
percebida por um referencial com aceleracdo prépria constante (movimento hiperbdlico) e
comparar o resultado com o obtido para um referencial de Lorentz, porém imerso em um
banho térmico a uma temperatura determinada, ou seja, considerando o campo de radiacio
satisfazendo a distribuigao de Planck. A motivacdo para isso é o chamado efeito Unruh-
Davies [104, 105], que consiste no fato de que a distribuigdo de ocupagdo de estados de
particulas observada por um referencial de Lorentz, a temperatura finita, é igual & observada
por um referencial em movimento hiperbdlico, mas a temperatura zero, se relacionarmos a
temperatura do primeiro referencial com a aceleragao do segundo de forma apropriada. Nosso
objetivo é constatar, ou nao, se algo semelhante acontece entre os dois referenciais para a
variagao na velocidade da luz.

No Capitulo 3 fizemos um estudo sobre o efeito Casimir para o campo escalar. Em par-
ticular, calculamos a energia de Casimir para o campo escalar com massa, e sua primeira
correcao radiativa para o campo sem massa, mas com auto-interacio A¢*. Em ambos os ca-
sos, consideramos o campo submetido a condi¢des de Dirichlet em planos paralelos. Apesar
desses resultados jé existirem na literatura, empregamos, nesse cdlculo, uma técnica fun-
cional ainda néo utilizada para o campo escalar. Por meio de outra técnica, envolvendo
regularizacdo dimensional e extensao analitica, obtivemos pela primeira vez na literatura as
éorregées radiativas & energia de Casimir para um campo escalar com massa e auto-interagao
M¢*. Consideramos trés condicoes de contorno, e os resultados obtidos nos levaram a eluci-
dar a questdo da igualdade entre as primeiras corre¢oes radiativas ao efeito Casimir para o
campo escalar sem massa submetido s condigdes de Dirichlet e de Neumann. Verificamos
explicitamente que esta igualdade nao persiste no caso do campo escalar com massa.

Mesmo no caso de campos escalares interagentes, hd algumas questoes que nao estao
muito claras. Por exemplo, quando consideramos um campo escalar com auto-interagao do
tipo A¢* e impomos condigdes de contorno de Neumann em planos paralelos, podem ocorrer,
dependendo do esquema de regularizacdo, divergéncias no célculo da energia de Casimir que,
aparentemente, ndo podem ser absorvidas com a renormalizagao da massa, da constante de
acoplamento ou da funcdo de onda. Dependendo da regularizagao empregada, parece ser
necessario introduzir contratermos de superficie &4 lagrangiana do sistema. A partir de nossos

resultados, pretendemos responder a questoes como essa.
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Pretendemos ainda calcular as primeiras correcdes radiativas a energia de Casimir para
0 campo escalar com massa na teoria A¢* para duas outras condigoes de contorno, a saber:
condigdes periddicas e anti-periédicas. O objetivo aqui é verificar se a razao entre tais energias
de Casimir é a mesma que a encontrada no caso sem massa. Esse tipo de estudo pode ajudar
a elucidar a influéncia da massa no efeito Casimir. Embora saibamos que o efeito Casimir
se anula quando a massa do campo tende a infinito, pois esse limite corresponde ao limite
cléssico, uma vez que nesse caso cessam as flutuagdes quénticas, a maneira como a energia
de Casimir varia com a massa nao é trivial.

Por fim, pretendemos calcular as correcoes radiativas ao efeito Casimir no modelo de
Schwinger, isto €, na EDQ bidimensional com férmions de massa nula. Como se trata de um
modelo exatamente solivel, esperamos encontrar um resultado exato para essa correcao, o

que pode vir a esclarecer alguns pontos e ajudar no entendimento de modelos mais realistas

em 3+1 dimensoes.
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Apéndice A

Demonstrando (1.23) e (1.48)

Para demonstrar que os termos cruzados em (1.22) sdo nulos, consideramos inicialmente que

(Ola|k,\) = 4728y x6nnb(k) — K))
(B, MaT0) = 4726 y6nwb(ky — K))

(B, Ala3|0) = (0la} |k, A) =0

Com a expansdo do campo elétrico (1.47) e as equagdes (A.1) temos

<0|Ep(f, :, ><k AIE (Z,¢)|0) _

N Z Z/ : k” 2 En —Em —wg 2 (AA( ))p(gg*(f))veﬁwg(t_f) '

A=TE,TM n=0

Com as defini¢oes (1.39) e (1.40), temos para os termos cruzados

(0|E,(Z |A AVE, M Ey (&, ¢)]0) _
Z ik,\ _Em_wk

(A.2)

a2k 2 2 KR
- > 3 [ R ket ragenn an
VP en—tm—wp 2 \WZ

A=TETM n=0
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(0| Ex(Z |k N (kA B, (&,)[0)
Z ik,\ n— &m — Wg -

dk _. N 2 « '
- T3 / ) B sen) cos(ha)e ) ()

A=TE,TM n=0 m — Wi 2wg

(0| By (& Ik A (kA EL(Z,£)|0)
Z ik)\ n — Em — Wg B

- Z 2/ k) (=9) [N kitk.kysen(k,z) cos(k.z)e” F-t) (AL5)

In)2 gy — e —wy 2y
A=TE,TM n=0 )? en m k

Escrevendo as integrais nas expressoes (A.3), (A.4) e (A.5) em coordenadas esféricas, ou

seja, fazendo
dZE” — k” dk||d¢k|| 5 kx = k” COS(.(ﬁ) 5 k:y = k”sen(r,a’)) y Wp = (kﬁ = kg)lﬂ y (A.ﬁ)

e integrando na varidvel angular ¢, verificamos que as integrais (A.3), (A.4) e (A.5) se
anulam; sendo assim, os termos cruzados em (1.22) sdo nulos, o que demonstra a equagao
(1.23).

Para demonstrar a equagdo (1.48), consideramos a expansao (1.47) para o campo elétrico

em ambos os lados de (1.48), e utilizamos as equacbes (A.1), o que fornece

= f2 o
;zghmEplk, /\>’ = Zi..(OIEpIk, A><k,)\!Ep|O> _
= Z Z/ dzk‘l ‘-‘-’E f))p(‘;{%* (f))pe_wﬁ(t_t’)

A=TE,TM n=0

= (0|E,E,[0) (A7)
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Apéndice B
Soma de Residuos

Neste apéndice vamos calcular a soma dos residuos (1.60) internos ao contorno de integragao

indicado na figura 1.3. Considerando as expressdes (1.59) e (1.52) temos que

Z—Pe—42/2 1 [ZPe—(2/2+i0)  7-p—(Z/2—-i0)
9+(Z,0;p) = 12 5 |q_ gtz + 1 _e—(Z-20) | ° (B-1)

As funcoes g4 tém pdlo em Z = 0, mas este ponto estd fora do contorno 1.3 e deve ser

desconsiderado.

O primeiro termo de (B.1) tem pdlos simples internos ao contorno 1.3 em Z = 2nmi,

n = +1,42, 43, ..., fornecendo para cada um o residuo

Z—Pe 2/ 1 (-1)"
ResZ:ani( 1_ e 2 ) = (27_‘_?’)13 ne . (B2)

O segundo termo de (B.1) tem pélos simples em Z = 2nzi — 246, n = 0,£1,+2, 43, ...,

o que resulta em

Z—pe—(Z/2+i9} 1 . 0 —-Pp
ReSZ=2i(n‘n’ﬁ9) (m) = W;(—l) (ﬂ == ;) . (BB)

Finalmente, para o terceiro termo em (B.1) temos os pélos simples Z = 2nmi+2i0 , n =

0,+1,+2 43, ..., com os residuos
7 o—(Z/2-i6) 1 . 0\ P
ReSZ_Qi(nﬂ—i—B)(Tm) = W(—l) (n + ;) . (B.4)
A soma dos residuos dados por (B.2) é efetuada facilmente como segue:
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oo 7—Pe—2/2 =9 ZPe—2Z/2
ZRGSZ=2nm' (W) - Z RBSz:%m(w) =

1 [0 S EDn
= (27i)P {; ne +n§1 w ]
~ 2myp [; ( ni") +=1) p; ( ”p) }
L g g e S iR
= (271_2_);0[14-( 1) ][; (2n)? +;(2n+l)p}

- —(2;-);0%[1 +(-17(Calp) - Calp1/2)) . (BS)

onde usamos as definigdes das funcoes zeta de Riemann e de Hurwitz, dadas respectivamente

pelas expressoes

Crlp) = ;% , Calpa)= ;_[,ijT)?’ ; (B.6)

Por questao de conveniéncia, vamos efetuar as somas dos residuos dados pelas equacoes

(B.3) e (B.4) em conjunto, como segue:
|

oo Z_pe—(Z/Q—iB) Z—pe—(Z/2+i9)
Z [RGSZ=21'(mT+g) (m‘) -+ RBSZ=2i(n7r—9) (m)} —
i = g 6\ 7]
— —1 n —_— _]. i -— =
G 2 7) +Xe(r)

+(2;)p [i(—l)”(n_ %) *P+ f(q)“(n _ _g) —p] _—

trocando n — —n nas segunda e quarta somas do lado direito da equagéo (B.7), temos que
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i Z-pe—(Z/2-i6) 7-Pe—(2/2+i0)
Z [ReSZ:Zi(mr-{-B) (m) + RGSZ:QI'(”.”*B) (m):l —

—0oC

| +§(F1)“ (n — %) i (-1)7* i(—l)“ (n-i— %) _p] ; (B.8)

completendo as segunda e terceira somas de modo a faze-las iniciarem de n = 0, reescrevemos

a equagio (B.8) como

e Z—pe—(Z/QﬁiG) Z—pe—(Z/2+£9)
Z [RGSZ=2i(mr+9) (]___-e"(z-TW)) + ReSZ:2i(mr—9) (m)} =

—00

- BpEer(ed) s S (-y)’
Iy (n . %) 7 (e i::(—l)"(n > %)_p

Ser(erd)”-(2)7]. ®9

n=0

Separando em cada somatdrio os termos com n par e n impar temos que
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oo 7= pe (Z/2—10) Z—pe—(2/2+i6)
Z [Resz:m'(mrw)( 1 — —(Z 2i) ) + ReSZ=2i(nw—9) ( 1 — e—(Z+2i0) ):| =

=00

-t regen(n-2)”

n=0
n 1\ 77 A
—I—Z 2+1(2n+1)—;) —|—Z (2n+w)

n=0 =0

+§ 2”+1(2n+1)+—g)-p— (?9)_1,]

=0

- @t z)
- (n+%—%)_é+g(n+g)_p

g 2 = (B.10
n+ -+ — - | — . .

2 27 ™ )
Usando as defini¢des (B.6) chegamos finalmente a expressao

(s <]

Z—pe—(Z/Q——iG) 7 Pe Z[2+448)
Z |:ReSZ—2i(n7r+9) (m) = ResZz?i(nw—G) (m)} =
1. 1 0 -0
—N _1\~-P i e

bt ubi D)@ e

Com os resultados (B.5) e (B.11), escrevemos a soma dos residuos de (B.1) como

> Resa(2,6:0) = g1+ )| (Cale) = Cur 1/2)

s3[ca(pme) +a(p32) ~cu(p3+3s) ~Su(r5-25) - ()] @
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onde, por conveniéncia, usamos que —1 = €™ e consideramos p como um nimero inteiro,
possibilitando escrever (—1)7P = ™™,

Podemos agora tomar o limite

. 2m 2t 1 (.. 14e™P
s (——1 —w 2 B2, “’?P)) = Gmp % (135“ 1—_“—)
1 0 —6
(a0 = Ga(3,1/2) £ 5 e (3.2 ) +cu(3.52)

—Cx (3, % + 3%) —Cy (3, % - %) + (g)SH : (B.13)

Usando a regra de L’Hospital no lado direito da equacdo acima, obtemos

_ 2ms 1
lim (——gm > Resgu(Z, 6’;;0)) = Figaaer®l » (B.14)

p—3\ 1 — e~

onde definimos G+ (z) em (1.68) e usamos a definigdo de 6 em (1.51).
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Apéndice C

Resultados para Manipular a Equacao

(2.55)

Neste apéndice estabelecemos resultados que nos permitem escrever a equagdo (2.55).

Pelas definiges (2.49) de F e g podemos mostrar que

A

FT = _ghkg™!. (C.1)
Iterando a equagao (C.1) temos
(FT)* = (-1)"g(F)"g = F' = (-1)"g ' (FT)"g . (C.2)

Sendo assim, para uma dada funcdo J(z) = > - a,z™, podemos escrever

o0 oo oo
JE) =D "aF) = D an(F)+ an (FT)"
n=0 n=0,24,... n=1,3,5,...
o0 . oo .
_ g[ S - S F}g (©3)
n=0,2,4,... n=1,3,5,...

Fazendo J(z) = e®** e J(z) = ex/senh(exs) na equagéo (C.3), obtemos respectivamente os

resultados (C.4) e (C.5):

eeﬁ‘ng _ ge—ef‘s ’ g—leef‘Ts _ e—eﬁ‘sg—l (04)

(senlfiﬁ‘s))Tg N g(ﬁ%) & (%) T: (%)g_l (C.5)
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Apéndice D

Calculo do Traco e do Determinante

Presentes na Equagao (2.83)

D.1 Caélculo do Traco da Equagao (2.83)

Neste apéndice calculamos o trago presente na equagao (2.83), para isso precisamos encontrar

os autovalores de (1/2)o F. Com esse intuito consideremos inicialmente o produto:

(G,u.vg,\p + G_Apapv)FquAp

B | =

1
E{Unw Ot sy =

1
= _2’ (UuquvJ)\pFAp + UApFApJpVFpu)
2
= (UWFW) . (D.1)
Usando a propriedade
1 s PVAp
5{0#“ Tap} = Ourbup — Oppbun + 1€ 5 (D.2)
onde:
15 =—V7VY = k=1, (D.3)

e a equagdo (D.1), temos:
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1 . 1/1 _
QG;WF.W = 1 5{0#1”0‘\9} FuvFap

1 Lf3
= Z(F#UFFI, = Fquvp) + 5 (526# APFAP) "}’SF“,, . (D4:)

Com as definigoes (2.5), a equagdo (D.2) e a propriedade de anti-simetria de F,,, podemos

escrever:

() = (o) =279 2z

que nos fornece quatro autovalores para (1/2)a F
+[2(F +iG)]V2 . (D.6)
De posse da equagdo (D.6) podemos finalmente calcular o trago:
trexp (%eoFs) = 4Re cosh es[2(F + iG)]"/? = 4RecoshesX , (D.7)
onde definimos
X? = (B+iE)?. (D.8)
D.2 Cilculo do Determinante da Equagao (2.83)

Neste apéndice calculamos o determinante presente na equacdo (2.83).

De inicio precisamos calcular os autovalores de F'. Para isso consideramos as relagoes:

FF}, = -6, (D.9)
FoFy, — FunFyy, = 20" F (D.10)

e a equagdo de autovalores
F.v, = av, , (D.11)

onde definimos v como um autovetor de F', com autovalor a.

Utilizando a equacao (D.11) e a relagdo (D.9) temos
F v, =—(1/a)Gv, . (D.12)
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Iterando a equacéo (D.11) e a equagdo (D.12), obtemos respectivamente

2

EaxFw, = @9,

FF;, = (1/a)%Gu, .

Substituindo os as expressdes (D.13) na relagio (D.10) obtemos a equacao

a*+2Fa®> -G =0,

que fornece os autovalores a = +a(;) e a = *a(y), sendo:

Gy

a(2)

G/ V2)[(F +1iG)Y? + (F —iG)V?]

(i/V2)[(F +1iG)Y? — (F —ig)Y? .

(D.13)

(D.14)

(D.15)

Utilizando as equagdes (D.15), apds algumas manipulagoes, obtemos finalmente o determi-

nante:

det™1/2 [

com X definido em (D.8).

sen(eF's)
(eFs)

- e st
— (eS)QImCOSi(eSX) )

112

(D.16)



Apéndice E
Calculo do Funcional (3.28)

O funcional Wpp[J] é dado por (veja a equacdo (3.26))

WpplJ] = J.N/ms’lms’2 exp { ~ z']/d‘ix d*y l:J(:c)D(as — )6(y® — ar)B*(y))
1

+3 B*(z))6(z® — ax)D(z — y)6(3° — az)Bl(yl)} } : (E.1)

Efetuando as integrais em z® e y* obtemos

WDD[J] = N’f‘DBI DB2 exp{—%//d‘q’m” dSy” Bk(a:”)D(:nH — Y, %%k — ag)Bl(y”)

) f d>y { / d*z J(z)D(z) — yy, 2% — ak)} Bk(y”)} . (E.2)

A integral funcional (E.2) é gaussiana, cuja solugao é conhecida [30, 106, 107, 108]; o resultado
é

Wpp[J] Zexp{éffds-%“n &y Te(z))WH (2 —yu)Jz('yu)}: (E.3)

onde definimos

Te(z)) = /d4z J(2)D(z) — =y, 2° — ax), (E.4)

e WH(z — y,) é definido como o inverso de D(z) — y),2° — ax), ou seja,
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/ &y D(x) — yy, ax — a)) W™y — 2) = 6emd" (z) = 2) - (E.5)
Para encontrar W'™(y — z||), consideramos inicialmente a representacao de Fourier do

propagador,

dik | .
= Y = —ik(z—y)
D(z —y) f L . (E.6)

Integrando em k*, e tomando o limite & — 0, obtemos
D(zy —yp,z° — ) = f_dsﬂ_—% LIz —v?| =ik (z)—y) (E.7)

onde L(k;) estd definido em (3.32). Em particular, podemos escrever

d3k _7‘ —ik(z)—
D(I“ — Yok — al) = / (27‘_)”3 mhkl(k")e k) (z)—yy) ) (E8)
onde definimos
hi(ky) = el (E.9)

E agora imediato verificar que a solugio de (E.5) é dada por

WH (g —y)) = f (C.‘irk)“ss 2L (k) (W™ )a(ky) e~ *1 =2 (E.10)

onde A1 é a inversa da matriz h definida em (E.9); seus elementos sdo dados explicitamente

em (3.33).
Substituindo as representacdes de Fourier (E.10) e (E.7) nas equagdes (E.3) e (E.4),

obtemos

WpplJ] = exp{%f/d“zd‘le(z)J(w)

3 . .
Xf dakll / d3k|!| /dk’{ —? QZL(;CH) _T’” e#ikhzneikil’w”
@n? ) @re ) @mi2Lie) 2L (k]

" Z e;‘L(kl’,)Izs—akl (h—l)k[(kH)BiL(kﬁf)[wﬂ—a”
ki

X / Bz e FIF f dy, e—f“ﬂ’#kn)w} _ (E.11)

Integrando sucessivamente em zj, y, k| e kj, obtemos finalmente
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onde definimos

Woolt] = exp{ =5 [ [ dzatu TP u)I(w) |,

3 —ik — -1
D(z,w) = _/ i e > ettt —anlHu~al) (™ )m( )_’“‘(kll)..

(271')3 2L(k“) 0 7
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iAp(’—i-lrldice F
Extensao Analitica de F'(s,a)

Este apéndice é destinado & obtengao da extensdo analitica, para R(s) < 1, da funcéo F(s,a)
definida em (3.111), cujo dominio esté restrito a R(s) > 1. Vamos proceder de acordo com
a referéncia [109].

Reescrevendo a equagéo (3.111) como

1 ., 1 9 nmw\ 2]~
F(s,a):-§m —|—§ Z m* + ey ; (F.1)
n=—oo

e usando a identidade [96] .

£ = . dr z°le ™, (F.2)
I'(s) Jo
podemos reescrever a funcao F' como
F(s,a) = ~1m_5 + 1 /00 dpatl?lgme i gl (F.3)
2 2T(s/2) Jo =

Utilizando a férmula de Poisson,

i G- _ \/g i o (_4?2), ()

n=—oo n=—0o0

na equagao (F.3), obtemos

Fi5,a) = ! s s fmdzx(s‘S)/ze_mzm i ex ﬁﬂ.2a2
$4) = T5M T 5 m(s/2) J 2 TP T
1 am'=* o % .
= o e [ dbt et 12 — , (F.5
2" +2\/7?F(3/2)f0 il ;‘”{p i (0]
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onde, na segunda linha, fizemos a mudanga de varidvel de integragio m?z — t. Finalmente,
usando as identidades (F.2) e [96]

o0 2
/ dtt¥ exp ( t— ?t_) = MR TRB), (F.6)
0

onde K,(z) é a func@o de Bessel modificada, e o fato de que K_,(z) = K,(z), obtemos a

seguinte expressao alternativa para a funcao F'(s,a):

1 am!~* G | K{l s)/2(2man)
F sy +4 E ; F.
(s,0) = =5 M+ 5 /T s/2) [ ( ) (man) (=972 (B7)

Apesar da expressdo acima ter sido obtida sob a hipdtese de que R(s) > 1, ela é bem

definida para qualquer s complexo, exceto nos pontos s = 1,—1,—3,—5,..., onde possui
pdlos simples. Sendo assim, a equagao (F.7) constitui a extensdo analitica de F(s,a) para o

plano-s complexo.
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Apéndice G

Expansao de > °°  n!Kj(nz) em Série

de Poténcias de z

Neste apéndice vamos deduzir a expansio (3.133) para a funcio

por meio da transformada de Mellin [110].

A transformada de Mellin de uma funcdo f(z) é definida por

P - [ () de

sendo a respectiva transformada inversa dada por

flz) = £ / o zPF(p)dp ,

2m c—100

onde ¢ é uma constante arbitrdria que deve ser tomada a direita dos pdlos de F(p).

A transformada de Mellin fornece uma maneira de reescrever uma série infinita como

uma integral no plano complexo. Para ilustrar como isso é feito, consideremos a série

S=Y"f(n).

Substituindo f(n) por (G.3) em (G.4), podemos reescrever S como
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c+ico

1
== S— _p
S E e -/c. n~PF(p)dp

—100

c+i00 oo

- ﬁ » F(p)(;ﬂ‘p) dp

1 =1

~ L ™ rocwe. (@5)

2mi c—100

sendo ((p) a funcdo zeta de Riemann.
A expressio (G.5) é conhecida como férmula da soma de Mellin [110]. Para o caso em

que estamos interessados, temos

Ki(nz
flmsz) = 222 (©6)
Sua transformada (G.2) é dada por
F(p; z) =/ P2 K (z2) dz . (G.7)
0

A integral acima é tabulada [111, férmula 6.561.16], fornecendo

F(p; 2) = zp—BzP-lr(;—’)r(g = 1) (R(p) > 2, R(z)>0). (G.8)

Substituindo a expressio (G.8) na férmula da soma de Mellin, Eq. (G.5), obtemos

S(:) = / j: (g)pr (g) r(g - 1) ) dp . (G.9)

O integrando possui pélos simples em p = 2 e p = 1, e pdlos de segunda ordem em

p =0,—-2,—4,.... Como o pdlo mais & direita estd em p = 2, devemos tomar ¢ > 2 na
integral (G.9).
Para efetuar a integral (G.9), consideramos outro contorno de integracdo, como indicado

na figura G.1, e utilizamos o teorema dos residuos para escrever
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=+ L)) B (5-1)cwa

4

3 [Res(p =2) + Res(p=1) + Res(p =0) + iRes(p = —2n)] . (G.10)

O integrando acima tende a zero suficientemente rdpido quando |p| — oo e | arg(p)| < m, de
modo a fazer a integracdo ao longo do caminho I' se anular. Sendo assim, as integrais (G.9)

e (G.10) s@o iguais, e podemos escrever

S(z) = g [Res(p =2)+Res(p=1)+Res(p=0) + ZRes(p = —2n)] . (G.11)
Re(p)

Figura G.1: Contorno de Integracao.

O calculo dos trés primeiros residuos na equacio acima fornece

47?
R =2) = —
es(p = 2) L
4
Res(p=1) = s :
VA
Res(p=0) = —2|ln ° )+ ! (G.12)
. B 4 1 2| ’
Os residuos em p = —2n (n = 1,2,...) sdo proporcionais a z2", sendo portanto despreziveis

suas contribui¢des para pequenos valores de z. Substituindo os resultados (G.12) na ex-

pressdo (G.11), obtemos a equacéo (3.133).
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Para finalizar, gostariamos de comentar que o procedimento utilizado neste apéndice

permite obter o resultado mais genérico [112]

Syt = 3ot -ore-0 () + GG - )

1
(@) aggle(@)-foown

( ) 44 11-|-+n2—t v) 1{‘(41_ _2:”71)(_ )" (ﬁ)zn ’ (G.13)

vélido para v > —1/2 e 0. < z < 1. Fazendo v = 1 e tomando os termos em ordem mais

baixa em z, obtemos o resultado (3.133).
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