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Resumo 

Correções Radiativas em Teoria Quântica 

de Campos sob Condições de Contorno 

Fabricio Augusto Barone Rangel 

Orientador: Carlos Farina de Souza 

Co-orientador: Ricardo Moritz Cavalcanti 

Resumo da Tese de Doutorado submetida ao Programa de Pós-graduação em Física, 

tituto de Física, da Universidade Federal do Rio de Janeiro - UFRJ, como parte dos 

requisitos necessários à obtenção do título de Doutor em Ciências (Física). 

Nesta tese estudamos a influência de condições de contorno em alguns fenômenos descritos 

p a teoria quântica de campos. Analisamos como as contribuições de correções radiativas 

alguns processos físicos são afetadas quando condições de contorno são impostas em 

o eradores de campo envolvidos nos processos em consideração. 

Esta tese pode ser dividida, em linhas gerais, em duas partes: na primeira, analisamos 

al 	efeitos de condições de contorno sobre o campo eletromagnético, na segunda, calcu- 

lamos as correções radiativas à energia de Casimir de um campo escalar com massa com 

auto-interação A04. 

Na primeira parte desta tese, estudamos como a alteração sofrida pelo campo de radiação, 

devido à presença de placas paralelas, modifica os níveis de energia do átomo de Hidrogênio. 
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studamos ainda como a velocidade de propagação de uma onda eletromagnética é afetada 

pela presença de placas paralelas quando essa onda se propaga entre as mesmas, fenômeno 

cDnhecido como efeito Scharnhorst. Discutimos também como seria o efeito Scharnhorst 

para a Eletrodinâmica de Born-Infeld. 

A segunda parte da tese está dedicada ao estudo das correções radiativas ao efeito Casimir 

um campo escalar com massa e auto-interação AO, sob diversas condições de contorno. 

ata-se de um cálculo em primeira ordem na constante de acoplamento A. Calculamos pela 

p imeira vez tal correção para um campo escalar com massa e verificamos explicitamente que 

o ]imite de massa nula coincide com os resultados existentes na literatura. Apresentamos 

nda um cálculo alternativo para tais correções radiativas, no caso de um campo escalar 

s m massa. 
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Abstract 

Radiative Corrections in Quantum Field 

Theory under Boundary Conditions 

Fabricio Augusto Barone Rangel 

Orientador: Carlos Farina de Souza 

Co-orientador: Ricardo Moritz Cavalcanti 

Abstract da Tese de Doutorado submetida ao Programa de Pós-graduação em Física, 

Instituto de Física, da Universidade Federal do Rio de Janeiro - UFRJ, como parte dos 

requisitos necessários à obtenção do título de Doutor em Ciências (Física). 

In this thesis we study the influence of boundary conditions on some phenomena which 

are described properly by the quantum field theory. More specifically, we analyse how the 

contributions coming from radiative corrections in a few physical processes are affected when 

boundary conditions are imposed on the field operators involved in such processes. 

This thesis can be divided into two parts: in the first one, we analyse some effects caused 

by the consideration of boundary conditions on the electromagnetic field, while in the second 

part, we calculate the radiative corrections to the Casimir energy of a massive scalar field 

with a polynomial self-interaction of the tipe AqS4. 

In the first part, we study how the change in the radiation field due to the presence of 

parallel plates modifies the energy leveis of a Hydrogen atom. Besides, we study how the 
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ropagation velocity of an electromagnetic wave is affected by the presence of parallel plates 

hen this wave propagates between them, a phenomenon known as Scharnhorst effect. We 

also discuss the Scharnhorst effect in the context of the Born-Infeld Electrodynamics. 

The second part of this thesis is devoted to the study of radiative corrections to the 

asimir effect of a massive scalar field with self-interaction of the type À4  under several 

boundary conditions. Such a study turns to be a two-loop effect, but in first order in the 

coupling constant A. We computed for the first time such a correction for a massive scalar 

eld and checked explicitly that the zero mass limit coincides with the known results present 

literature. For the particular case of a massless scalar field, we also present an alternative 

c lculation for such radiative corrections. 

Rio de Janeiro 

25 de Março de 2003 
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Introdução 

Esta tese trata exclusivamente de fenômenos e processos físicos, todos eles descritos e expli-

cados dentro do contexto da Teoria Quântica de Campos, que podem ser alterados quando 

se considera a interação do sistema em questão com a sua vizinhança. Obviamente, há uma 

enormidade de tais fenômenos e não temos aqui a pretensão de estudar todos eles, o que 

seria uma tarefa impossível. Temos, sim, a intenção de abordar alguns deles, escolhidos de 

modo que, ao estudá-los, saibamos como proceder em fenômenos análogos. 

A Eletrodinâmica Quântica (EDQ) usual trata de processos que ocorrem no espaço livre 

(ou de sistemas atômicos no espaço livre). No entanto, isso corresponde apenas a uma 

aproximação para a situação real, onde o sistema está, em geral, circundado por superfícies 

metálicas, dielétricas, etc.. Por exemplo, é um fato conhecido na literatura que a presença 

de placas, ou cavidades de um modo geral, provoca modificações nos modos do campo de 

radiação subjacente. Tais modificações, por sua vez, alteram a energia do estado de vácuo 

do campo de radiação, dando origem a forças macroscópicas entre as fronteiras, fenômeno 

conhecido com o nome de efeito Casimir [1]. Além disso, qualquer modificação nos mo-

dos do campo de radiação, não importa a sua origem, pode causar também alterações nas 

propriedades radiativas de sistemas atômicos que interajam com o campo de radiação. 

Atualmente, tem sido muito importante estudar a influência da vizinhança de um sistema 

atômico em suas propriedades radiativas, pois as medidas experimentais de quantidades 

atômicas (por exemplo, o fator g — 2 do elétron ou a constante de Rydberg) estão cada vez 

mais precisas e, por conseguinte, a comparação de tais medidas com as previsões teóricas 

já exige cálculos que levem em consideração a interação dos sistemas com a sua vizinhança. 

Esse tipo de estudo serve também para controlar ou modificar as propriedades radiativas 

do sistema atômico em questão (por exemplo, taxas de decaimento por emissão espontânea 



podem ser aumentadas ou até mesmo suprimidas devido à presença de espelhos a distâncias 

finitas). Além da largura das raias espectrais sofrerem alterações devido à proximidade do 

sistema atômico com paredes metálicas ou fronteiras em geral (fato diretamente relacionado 

com a alteração na taxa de emissão espontânea), os próprios níveis de energia de um átomo 

se alteram quando este se encontra, por exemplo, dentro de uma cavidade. No caso do 

Hidrogênio, diríamos que trata-se da influência de cavidades no deslocamento Lamb. Esse 

ramo da EDQ é conhecido com o nome de EDQ de cavidades e tem atraído a atenção de 

muitos físicos nos últimos anos (tanto teóricos quanto experimentais), principalmente devido 

ao enorme avanço tecnológico permitindo que experimentos com alto grau de precisão possam 

ser realizados (para uma revisão sobre esses assuntos indicamos as referências [2, 3, 4, 5]). 

A interação do campo de radiação com cavidades é extremamente difícil de ser tratada 

exatamente e, por esse motivo, é comum simularmos tal interação por meio de condições de 

contorno impostas sobre o campo. Embora as condições de contorno usualmente utilizadas 

sejam um tanto idealizadas, a imposição das mesmas sobre o campo já nos fornece, na 

maioria dos casos, bons resultados. E como é usual em física, a partir de uma situação 

muito idealizada, podemos começar a considerar situações mais realistas. Por exemplo, no 

caso de uma parede metálica, em lugar de tratá-la como fronteira perfeitamente condutora, 

podemos passar a tratá-la como tendo uma condutividade finita, usando para isso algum 

modelo conveniente. 

Muitas vezes, em lugar de tornar mais realista a condição de contorno, podemos tentar 

melhorar o cálculo perturbativo determinando as primeiras correções radiativas relevantes 

ao problema em estudo, mas mantendo válida a condição de contorno idealizada (este será 

o nosso procedimento, por exemplo, no capítulo 3). Essa conduta pode ser interessante 

para testar se certas condições de contorno geram problemas incuráveis no que diz respeito 

à renormalizabilidade da teoria quando considerada em ordens mais altas na constante de 

acoplamento. Se esse for o caso, tais condições certamente são idealizadas demais, a tal 

ponto que a teoria completa com elas não faz sentido. 

A imposição de condições de contorno em campos quantizados não se restringe ao ca-

so do campo de radiação, embora nesse caso seja mais intuitivo compreendê-las, uma vez 

que o campo eletromagnético existe classicamente e estamos inclusive familiarizados com 

as condições de contorno impostas por superfícies metálicas, dielétricas, permeáveis, etc.. 
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No entanto, é extremamente relevante estudar de que modo outros campos, como por 

exemplo, o campo escalar, ou o campo fermiônico, se comportam sob condições de con-

torno. A relevância de tal estudo é mais sutil e muitas vezes esse tipo de estudo serve como 

um primeiro passo para o entendimento de problemas mais realistas. Por exemplo, em al-

gumas situações, em lugar de considerar o campo eletromagnético, é conveniente considerar 

um campo escalar sem massa, evitando assim a complicação trazida pelas polarizações do 

campo eletromagnético (a energia de Casimir para o campo eletromagnético entre duas pla-

cas paralelas perfeitamente condutoras pode ser obtida calculando-se a energia de Casimir 

para um campo escalar sem massa, submetido à condição de Dirichlet em planos paralelos e 

multiplicada por 2, para levar em conta as duas polarizações do campo eletromagnético [5]). 

Vale mencionar também que no chamado modelo de sacola para os hádrons [6], tanto o cam-

po bosônico dos glúons, quanto o campo fermiônico dos quarks estão confinados dentro da 

sacola, de modo que, dentro desse modelo, condições de contorno sobre tais campos surgem 

de forma bastante natural. A consideração de tais condições é importante na determinação 

da massa do hádron, pois a energia de Casimir gerada pelo confinamento desses campos 

pode chegar a aproximadamente 9% da massa do hádron. 

Nesta tese, trataremos especificamente de três problemas, dois deles envolvendo o campo 

de radiação, apresentados, respectivamente nos capítulos 1 e 2, e o terceiro envolvendo um 

campo escalar, discutido no capítulo 3. No entanto, antes de entrar em mais detalhes a 

respeito de cada um dos problemas a serem abordados, gostaria de chamar a atenção para 

o fato de que em todos eles estaremos calculando a influência de condições de contorno em 

contribuições provenientes de correções radiativas. 

No capitulo 1, analisamos a influência de duas placas paralelas entre si, uma delas infini-

tamente permeável e a outra perfeitamente condutora, nos níveis de energia de um átomo de 

Hidrogênio localizado entre as mesmas. O caso em que as duas placas são perfeitamente con-

dutoras já foi tratado na literatura [7, 8, 9, 10]. Desse modo, a obtenção de novos resultados, 

associados a condições de contorno envolvendo placas de naturezas diferentes, proporcionou 

a comparação entre resultados calculados com diferentes condições de contorno, ajudando 

assim no entendimento de sistemas do tipo átomo-cavidade. Calculamos nosso resultado 

usando teoria de perturbação de segunda ordem, e as funções de correlação relevantes ao 

problema são regularizadas com o método de separação de pontos introduzido por Schwinger. 
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No capítulo 2, estudamos um efeito muito interessante da EDQ de cavidades, mas que 

ainda não foi verificado experimentalmente, por ser muito pequeno: trata-se do chamado 

efeito Scharnhorst [11], que consiste na variação da velocidade da luz quando esta se propaga 

entre duas placas paralelas e perfeitamente condutoras, cuja presença impõe condições de 

contorno sobre o campo de radiação. A explicação desse efeito reside no fato de que o campo 

dos férmions interage tanto com o campo eletromagnético clássico, como também com o 

campo quantizado. Desse modo, um campo eletromagnético clássico, como o de uma onda 

eletromagnética, pode interagir de forma indireta com o campo de radiação, por meio do 

laço fermiônico (par elétron pósitron). A presença de placas materiais altera o propagador 

do fóton, o que é percebido diretamente pelo campo fermiônico (que está em interação com 

9 campo de radiação), e indiretamente pela onda (pois o campo eletromagnético interage 

com o campo fermiônico), o que acaba influenciando sua propagação. Note, portanto, que o 

efeito Scharnhorst é um efeito a dois laços. A metodologia a ser empregada no estudo desse 

efeito baseia-se numa técnica introduzida por Barton [12], que usa como ponto de partida 

a lagrangiana efetiva da EDQ a um laço, a saber, a lagrangiana de Euler-Heisenberg. No 

entanto, nesse capítulo, iremos aplicar a técnica de Barton para lagrangianas ligeiramente 

mais genéricas, mas que contêm, como casos particulares, a lagrangiana de Euler-Heisenberg 

e lagrangianas do tipo Born-Infeld. Nossos cálculos são feitos com três arranjos de placas, o 

que significa três condições de contorno diferentes. Mostramos explicitamente que para uma 

certa lagrangiana do tipo Born-Infeld não haveria efeito Scharnohorst, pelo menos na ordem 

considerada. 

Finalmente, no capítulo 3, discutimos o efeito Casimir. É nesse capítulo que se encontram 

os resultados mais relevantes desta tese. Esse efeito, proposto por H.B.G. Casimir em 1948 

[1], consiste na atração entre duas placas neutras, paralelas e perfeitamente condutoras. 

É um efeito intrinsecamente quântico e que pode ser explicado em termos da variação da 

energia de ponto zero associada ao campo eletromagnético quantizado quando duas placas são 

colocadas muito próximas uma da outra. O efeito Casimir foi verificado experimentalmente 

pela primeira vez por Sparnaay [13] em 1958 com uma precisão experimental muito baixa e 

somente quatro décadas mais tarde é que experimentos feitos diretamente com metais foram 

realizados novamente [14]. Para discussões detalhadas sobre o efeito Casimir sugerimos as 

referências [15, 16, 17], enquanto introduções breves a esse efeito podem ser encontradas nas 
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referências [18, 19]. 

O efeito Casimir, em sua forma geral, é um ramo de pesquisa bastante ativo nos dias 

atuais. Isso é devido em parte à sua característica interdisciplinar, uma vez que ele tem 

relevância não só na EDQ, como também em física de matéria condensada, teorias com 

dimensões extras compactificadas, gravitação e cosmologia, física matemática e em nanotec-

nologia, na construção de pequenos dispositivos elétricos. 

A interação de um campo quantizado, mesmo em seu estado de vácuo, com placas ma-

teriais já é extremamente complicada, motivo pelo qual simulamos tal interação impondo 

condições de contorno bastante idealizadas sobre os campos. Como conseqüência, mes- 

mo quando tratamos um campo não interagente, mas sujeito a condições de contorno, já 

encontramos um deslocamento da energia do vácuo de tal campo. Note que nessa aproxi- 

mação (campos não interagentes) nenhuma constante de acoplamento aparece na expressão 

da energia de Casimir, apenas constantes universais como h, c e, obviamente, parâmetros 

geométricos característicos do sistema em estudo. 

No entanto, os campos da natureza são interagentes e o efeito Casimir deve ser calculado, 

em princípio, para tais campos. Como isso é extremamente difícil, apela-se para a teoria 

de perturbação e calcula-se, por exemplo, a correção em primeira ordem na constante de 

acoplamento para o efeito Casimir. No caso da EDQ, a primeira correção radiativa ao efeito 

Casimir já foi calculada [17, 20] e se revelou muito pequena. Os experimentos atuais ainda 

não possuem precisão suficiente para poder detectá-la. Não obstante, esse é um cálculo de 

grande importância do ponto vista teórico, pois permite, num contexto mais simples, exa-

minar as dificuldades (e eventualmente tentar saná-las) que se interpõem à renormalização de 

modelos de teoria de campos definidos em espaços-tempos curvos ou com fronteiras, e que por 

esse motivo não exibem invariância de Poincaré. Resultados a respeito de correções radiativas 

ao efeito Casimir para o campo escalar sem massa, com auto-interação AO, também podem 

ser encontrados na literatura [21, 22, 23, 24, 25]. 

Outro fato interessante a respeito do efeito Casimir é que a um laço (ordem zero na cons- 

tante de acoplamento) ele depende somente das freqüências dos modos normais do campo, e 

não dos seus modos. Em outras palavras, nessa ordem, a energia de Casimir pode ser escrita 

simplesmente como a soma da energia de ponto zero dos modos do campo, devidamente 

regularizada e renormalizada. Uma conseqüência imediata desse fato é que, a energia de 
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Casimir em ordem zero de um campo escalar sujeito à condição de Dirichlet em dois planos 

paralelos entre si, é exatamente igual àquela calculada com o campo satisfazendo à condição 

de Neumann nos planos. No entanto, em ordens mais altas na constante de acoplamento, era 

de se esperar que essa igualdade deixasse de existir. Surpreendentemente, isso não acontece, 

ou seja, as correções radiativas em ordem A para a energia de Casimir de um campo escalar 

sem massa, mas com auto-interação AO, calculada com ambas as condições, continuam 

sendo iguais. No capítulo 3, fazemos o cálculo da primeira correção radiativa à energia de 

Casimir de um campo escalar com essa auto-interação, mas considerando pela primeira vez 

na literatura um campo com massa. Mostramos explicitamente que a igualdade mencionada 

acima, válida para o caso sem massa, deixa de existir. Ainda para um campo escalar com 

massa, fazemos o cálculo com condições mistas (Dirichlet-Neumann). Apresentamos também 

nesse capítulo uma técnica alternativa para o cálculo da correção radiativa à energia de 

Casimir de campos escalares sem massa com auto-interação AO. 
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Capítulo 1 

Influência de Placas Paralelas no 

Espectro do Hidrogênio 

Neste capítulo investigamos a influência da presença de placas materiais sobre os níveis de 

energia de um átomo de Hidrogênio não relativístico, ou seja, estudamos a influência de 

placas materiais no deslocamento Lamb. Em particular, consideramos a situação em que o 

átomo se encontra entre duas placas paralelas, sendo uma delas perfeitamente condutora, 

e a outra, perfeitamente permeável. Calculamos explicitamente as correções nos níveis de 

energia decorrentes das condições de contorno impostas sobre o campo de radiação pela 

presença das placas. Obtemos ainda os deslocamentos Lamb para um átomo localizado 

próximo a uma única placa, quer seja ela permeável ou condutora. Embora já existissem 

na literatura cálculos de deslocamento Lamb para átomos na presença de placas materiais. 

havia poucos resultados envolvendo placas permeáveis. 

Esse capítulo está estruturado da seguinte forma. Na seção 1.1 fazemos uma breve 

introdução sobre o deslocamento Lamb. Na seção 1.2 discutimos brevemente a teoria de 

perturbação relevante para os cálculos a serem feitos em seguida. A seção 1.3 é destinada 

ao cálculo das funções de correlação do campo eletromagnético pertinentes ao problema em 

consideração. Finalmente, na seção 1.4 obtemos os deslocamentos Lamb para um átomo não 

relativístico situado na região entre duas placas paralelas e de naturezas diferentes, como 

descrito acima. Comentários finais a respeito dos resultados encontrados são apresentados 

na seção 1.5. 
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E,,,i  = me  c2  
a 

)n — (j + 1/2) + \/(j + 1/2)2  — a2  
(1.3) 

1.1 Introdução 

2.4D fazermos um tratamento não relativístico do átomo de Hidrogênio, e desconsiderando 

e eitos de spin, somos levados à resolução da equação de Schrõdinger com um potencial 

ulombiano, que nos fornece os níveis de energia [26, 27]. 

En 	
n2  2h2 	+ mp  
1 e' memp  

(1.1) 

a expressão anterior, me  e mp  são as massas do elétron e do próton, respectivamente, e 

-= 1, 2, 3, ... é o chamado número quântico principal. Como o potencial considerado tem 

sMetria esférica, esperava-se encontrar 2e + 1 estados com um mesmo nível de energia, com 

e denotando o número quântico de momento angular orbital. Porém, a degenerescência 

e contrada é dada por 
n-1 
E(2e + 1) = n2  , 	 (1.2) 
.e=o 

aior do que a esperada. Esse resultado é usualmente chamado de degenerescência acidental. 

O tratamento do átomo de Hidrogênio por meio da equação de Dirac é mais realista, por 

lêvar em conta tanto a relatividade, como o spin do elétron. Os níveis de energia encontrados 

r meio desta abordagem são dados por [28, 29, 30] 

o de a = e2  hc é a constante de estrutura fina, n = 1, 2, 3, ... é o número quântico principal, 

e j o número quântico de momento angular total, que satisfaz a restrição j + (1/2) < n e 

p • de ter valores inteiros ou semi-inteiros. 

Embora a degenerescência tenha sido quebrada, pois agora os níveis dependem não só de 

n mas também de j = e ± 1/2, ainda existe uma degenescência para os níveis com o mesmo 

✓ lor de n e j. Isso ocorre, por exemplo, para os estados com n = 2 e j = 0 + (1/2), e n = 2 

= 1 — (1/2), designados, respectivamente, por 2S112  e 2P112. Apesar disso, experimentos 

alizados a partir dos anos 30 [31, 32] indicavam que as energias desses níveis deveriam ser 

diferentes. Em 1947, Lamb e Retherford [33] se basearam no fato de que o estado 2S112 é 
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meta-estável, com tempo de vida muito grande 1, para realizar um experimento mostrando 

que o nível 2S112  está cerca de 1000MHz acima do nível 2P112. Essa diferença é conhecida 

desde então pelo nome de deslocamento Lamb. Em 1952, com experimentos mais refinados, 

Lamb e Retherford [34] apresentaram o valor 1058,27±1MHz para o deslocamento Lamb, 

sendo que atualmente o valor aceito é de 1057,845MHz±(0,13)% [35]. 

A explicação para o deslocamento Lamb é dada pela Eletrodinâmica Quântica, e decorre 

do fato de que os elétrons atômicos estão não só submetidos ao potencial coulombiano, como 

também em interação com o campo de radiação, mesmo quando este se encontra no seu 

estado de vácuo, ou seja, sem fótons presentes. Fato este desconsiderado tanto no resultado 

não relativístico (1.1), como no resultado (1.3) obtido pela equação de Dirac. 

O deslocamento Lamb é um efeito predominantemente não relativístico, cuja explicação 

foi dada pela primeira vez por Bethe em 1947 [36], que considerou, na teoria não-relativística 

de Schrõdinger, o acoplamento do elétron atômico com o campo de radiação. Fazendo um 

cálculo perturbativo, após subtrair a auto-energia do elétron, Bethe obteve o valor 1040MHz 

para o deslocamento Lamb, em excelente acordo com os dados experimentais. Atualmente, 

entende-se por deslocamento Lamb qualquer alteração nos níveis de energia de átomos decor-

rentes da interação de seus elétrons com o campo de radiação em estado de vácuo. 

Podemos encontrar em textos comumente utilizados em cursos de pós-graduação [37, 38], 

cálculos mais refinados do deslocamento Lamb, considerando outros efeitos da EDQ, como 

a correção de vértice, o momento anômalo do elétron e a polarização do vácuo (veja figura 

1.1). Cálculos recentes em mais altas ordens na constante de acoplamento fornecem o valor 

de 1057,862±0,014MHz para o deslocamento Lamb, em esplêndido acordo com os dados 

experimentais [30]. 

Ultimamente, as medições efetuadas em sistemas físicos, não só do deslocamento Lamb, 

mas também de outras grandezas relacionadas à EDQ, como o momento anômalo do elétron 

e taxas de decaimento atômico, têm atingido tamanha precisão que já é relevante conside-

rar, no cálculo de tais grandezas, a interação desses sistemas com a sua vizinhança (por 

exemplo, alguns desses experimentos são realizados dentro de cavidades). Estudos a respeito 

da influência causada pela vizinhança de sistemas atômicos em suas propriedades radiativas 

10 estado 2S112  é meta-estável, porque a sua emissão espontânea para o estado fundamental 1S1/2  pela 

emissão de um único fóton é proibida, já que para esta transição At = O. 
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ambém podem se revelar úteis no controle dessas propriedades (por exemplo, a presença de 

avidades pode aumentar, diminuir ou até mesmo suprimir taxas de decaimento espontâneo). 

d 

igura 1.1: Gráficos que contribuem para o deslocamento Lamb: (a,b) auto-energia do 

létron; (c) correção de vértice; (d,e) contratermo de massa do elétron; (f) auto-energia do 

ton. 

Nesse capítulo investigamos como os níveis de energia de um átomo de Hidrogênio, não-

lativístico, são alterados quando este se encontra em uma região entre um par de placas 

fitas e paralelas entre si, cuja presença impõe condições de contorno sobre o campo de 

diação. Estas alterações nos níveis de energia, como apontadas por Power [39] em 1966, são 

ecorrentes do fato de que os elétrons do átomo estão em interação com o campo de radiação, 

este, por sua vez, tem seus modos distorcidos pelas condições de contorno impostas pelas 

lacas. Nesse sentido, podemos dizer que os elétrons sentem indiretamente a presença das 

placas. Conseqüentemente, a presença de placas materiais influencia o deslocamento Lamb. 

O caso no qual temos duas placas perfeitamente condutoras foi inicialmente discutido por 

arton [7] e, posteriormente, por Lütken e Ravndal [10]. Casos em que se tem somente uma 

nica placa presente também já foram discutidos na literatura [40, 41]. Mais recentemente, 

*nda para situações envolvendo duas placas paralelas, algumas generalizações foram feitas 

s or Barton [8, 9], e Jhe e Nha [42, 43]. Há também estudos envolvendo superfícies dielétricas 

[:4]. 

Apesar da influência de placas permeáveis na taxa de decaimento espontâneo já ter sido 

i ivestigada [45, 46], sua influência em níveis de energia atômicos ainda não havia sido muito 

C.1 orada [46, 47]. Tendo isto em mente, vamos considerar neste capítulo o caso específico de 

I I 
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um átomo de Hidrogênio situado entre duas placas paralelas, sendo uma delas perfeitamente 

condutora, e a outra infinitamente permeável. Daqui por diante, iremos nos referir a estas 

condições de contorno como condições CP. 

Tal configuração de placas foi considerada pela primeira vez por Boyer, no cálculo do 

efeito Casimir dentro do contexto da Eletrodinâmica Estocástica [48]. As condições de 

contorno CP têm despertado um interesse especial, pois apresentam algumas propriedades 

peculiares, como por exemplo, o fato de que fornecem uma pressão de Casimir repulsiva 

entre as placas [48, 49, 50] (veja a referência [51] para correções térmicas a este efeito). 

Mais recentemente, essa configuração de placas foi usada no contexto do efeito Scharnhorst 

[52, 53, 54]. 

Para o cálculo dos deslocamentos dos níveis atômicos devido à presença de placas, vamos 

utilizar teoria de perturbação de níveis degenerados em segunda ordem. As funções de 

correlação do campo de radiação, que daqui por diante serão chamadas simplesmente de 

correlatores dos campos, necessárias para nossos cálculos futuros, serão calculadas com a 

técnica de regularização de separação do tempo imaginário introduzida por Schwinger 2 . 

Os resultados obtidos para os deslocamentos dos níveis de energia serão então comparados 

com aqueles já existentes na literatura para os casos onde as duas placas são perfeitamente 

condutoras [10] e também quando elas são infinitamente permeáveis [46, 47]. De agora em 

diante, as condições de contorno impostas por essas últimas configurações serão designadas 

por condições CC e PP respectivamente. Apesar das condições CC e PP fornecerem a 

mesma pressão de Casimir, é interessante destacar que elas influem de formas diferentes nos 

níveis de energia atômicos. Como casos limites dos resultados obtidos, vamos determinar 

os deslocamentos nos níveis de energia de um átomo situado próximo a uma única placa 

infinitamente permeável, e de um átomo situado próximo a uma única placa infinitamente 

condutora, estando este último resultado presente na literatura [40]. 

2Outras técnicas de regularização poderiam ter sido empregadas, podemos citar como exemplo o método 

da função zeta. Para uma introdução ao método da função zeta, e sua conexão com o método de tempo 

próprio de Schwinger, sugerimos a referência [55]. 
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1.2 A teoria de Perturbação 

esta seção, expomos as linhas gerais do problema abordado ao longo do capítulo e da 

teoria de perturbação de segunda ordem de nível degenerado, que nos possibilitará calcular 

os deslocamentos Lamb em seções posteriores. 

O sistema que estamos considerando é composto por um átomo descrito pela equação de 

chrõdinger, e pelo campo eletromagnético no estado de vácuo, mas submetido a determi-

adas condições de contorno, a serem especificadas mais adiante. Vamos efetuar os cálculos 

onsiderando sempre a aproximação de dipolo, ou seja, supondo que as dimensões do átomo 

.ejam desprezíveis frente ao comprimento de onda do campo de radiação. 

Nos cálculos a seguir, designa a posição do núcleo do átomo no espaço, enquanto 

o operador de posição do elétron atômico, tendo como origem o núcleo atômico, como 

ditado na figura 1.2. Na aproximação de dipolo, os operadores de campo eletromagnético 

ao aproximadamente constantes e uniformes ao longo de todo o átomo. 

núcleo atômico 

Figura 1.2: Sistema de coordenadas utilizado 

A hamiltoniana do problema que vamos abordar pode ser escrita na forma 3: 

H = HA+ (Hc -EVAC)+ 	, 
	 (1.4) 

 

endo HA a hamiltoniana da parte atômica, Hc a hamiltoniana do campo eletromagnético, 

VAC a energia do campo eletromagnético em estado de vácuo, porém na presença de placas 

&raleias, e H/  a hamiltoniana de interação do campo de radiação com o elétron atômico, 

ada por [26, 27, 56] 

  

HI  = 	( 	. 	 (1.5) 

3Estamos usando unidades onde h= 1 e c = 1 
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a expressão anterior, e é a carga do elétron, e É o operador de campo elétrico. Note que 

e te último está calculado no ponto g, onde se localiza o núcleo atômico. 

Sendo o campo de radiação tomado como constante e uniforme ao longo de todo o átomo 

( proximação de dipolo), as correções nos autovalores de energia atômicos impostas pelas 

fi tuações do campo elétrico É podem ser consideradas como um certo tipo de efeito Stark, 

s ndo dessa forma proporcionais a E I eme  (o que pode ser verificado usando-se a equação 

( .5), a = 62 /47r e o fato de que o raio atômico é da ordem dei/ (ame)-'). Já as correções 

o iundas das flutuações do campo magnético /g podem ser consideradas como um certo tipo 

ciL efeito Zeeman, sendo portanto proporcionais a eB /me. Em nossas unidades, E e B têm 

a mesma ordem de grandeza, sendo assim, temos que E leme  » eBlme, já que a carga e é 

a quantidade muito pequena (e « 1). Portanto podemos ignorar a perturbação causada 

p lo campo magnético frente àquela causada pelo campo elétrico. 

Ao longo do texto vamos usar len) para designar um auto-estado atômico, de autovalor 

, ou seja, 

HAlen) ==EnIE.) 	 (1.6) 

e 1Ú, À) para designar um estado do campo de radiação com um único fóton presente, com 

✓ tor de onda Tc' e polarização À. Sendo wk a energia desse fóton, temos 

(Hc  — E V AC)117: A) = 11-ji , À) . 	 (1.7) 

leni disso, por questão de conveniência, vamos escrever a hamiltoniana de interação (1.5) 

cimo 

= eW , W = f' • É(£) . 	 ( 1.8) 

A interação dada pela hamiltoniana Hl. em (1.8) será considerada como uma perturbação 

sistema átomo mais campo, cuja hamiltoniana não-perturbada é dada por 

HA+ Hc EVAC 
	 (1.9) 

Estando o campo em estado de vácuo, designado por 10), o estado do sistema não-

perturbado átomo mais campo é dado pelo produto direto: 

len, O) = len) 010) , 	 (1.10) 
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om autovalores de energia dados por 

(HA + (Hc — EvAc))IEn, 	= (HAlen)) 010) + En) (5) (HG,  — Ev Ac) 10) 

= cn cn, O) , 	 (1.11) 

ou seja, a energia do sistema não-perturbado é a própria energia do átomo. Portanto, para 

ncontrar as correções nos níveis de energia atômicos devemos encontrar as correções nos 

'veis de energia do sistema átomo-campo. 

De um modo geral, sistemas quânticos sujeitos a potenciais centrais possuem níveis de 

nergia en, degenerados, sendo assim, um estado len) de energia en  deve ser considerado como 

a combinação linear de estados: 
gn 

( 
1E71) = E jn) 

 i En,i
\ 

 
j=1 

(1.12) 

  

onde gr, designa o grau de degenerescência do nível n, e j designa quaisquer outros números 

quânticos que determinem os auto-estados lenj) da hamiltoniana HA. Temos ainda: 

HAIEN;) = Enien,i) • 	 (1.13) 

Como feito usualmente em teoria de perturbação, vamos escrever os autovalores de energia 

o sistema como uma série no parâmetro perturbativo e da hamiltoniana de interação (1.8): 

sn,i (e) = coen eifinMi e2fin(2)i  (1.14) 

om o objetivo de encontrar o parâmetro j3' em (1.14), que fornece a primeira correção ao 

'vel de energia E n,, utilizamos teoria de perturbação para níveis degenerados, o que nos leva 

equação matricial 

9n 	 gn 
La 	(o, E nálf.' • É W)Ient  e, O) = 0Q )i E C(kn)  (O E n , j1En,k, O) . 	 (1.15) (n) 

e=i 	 k=1 

bservando quer é um operador atômico, enquanto É.  é um operador de campo, reescreve-

os a equação anterior na forma 

3 

E (n)  (E n  jirilEn,p) (01Ei(Z)10) --= fi(nl, n 
	

(1.16) 
i=1 £=1 
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nde usamos a ortonormalidade dos estados atômicos. Utilizando ainda o fato de que o valor 

sperado no vácuo do campo é nulo, ou seja, (01E10) = 0, obtemos o seguinte resultado: 

= o . (1.17) 

Não há, portanto, correções em primeira ordem em e nos níveis de energia atômicos. 

Segue das equações (1.14) e (1.17) que a primeira correção perturbativa para a energia 

o estado en  é, no mínimo, quadrática em e 

:= Enj  (e) 	En ti  ,2,q(2) 
lj ná • (1.18) 

quantidade /32, que fornece a correção em segunda ordem para a energia, satizfaz a 

quação 

 

g. 
A 	ce  = (n) (n) 	0(2) Ci(n) 

,,/v I  (1.19) 

nde definimos 
P=1 

 

Mr) =  (O En, JIA/11E1M 	, 	 (1.20) 

sendo .A4 o operador 

M EE 
À) (re,  A, Em,i W 

m i=1 	
En  — Em —  Wk• 

tilizando as definições (1.8) e (1.21), podemos reescrever a equação (1.20) como 

(1.21) 

M ) 	 E n,3 

	 9rn  
) (k, A, sm,i irpEp  

Sn — t‘' m i =1  

O) 

  

p,v À 

	 (c.,i1r,Igm,i)(Em,i17plE-n,P)(01Evii) A)(k)3 lEp10)  
3 

m i=1 	 En 	(.4) 

(1.22) 

nde os índices v,p designam x, y, z. 

Com a expansão do campo elétrico em termos dos operadores de criação e aniquilação, 

ode-se mostrar que os termos cruzados nos índices p e v são nulos (veja Apêndice A). Sendo 

sim, reescrevemos a equação (1.22) considerando somente os termos onde v = p 
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2 

(DEC) 
(1.27) 

(01Epire , )01 

Wj (end I rpien,i) 

mçn l
3,7 (NDEG) p mOn i=1 En Em (Á) Tc  

2 

. 	(1.28) 
(01.EpiÚ, A) 

2 

i(n) 
-1" j,e = kEnj I 

 

771 

1(01Ep fe,A)12  
lEn,e) 	(1.23) 

En — Em — il>k 

    

Será mais conveniente, na soma (1.23), separar as contribuições oriundas dos estados com 

= n daquelas provenientes dos estados com m m, ou seja, escrever o elemento de matriz 

{1 .23) na forma 

Mire 
 n 	A  A  (n) A  

= 	IDEG 	
A 

j  ,
) 

DEG 

onde definimos a contribuição dos estados com m = n por 

(1.24) 

n A () 
'vim I DEG 

	

iolEpir, 	)012  
(en,, E E 	, rplE„,i)(En,iirp 	 len,e) 

i 	
—w- P À 

g. 
— E [E(En,irpiEn,i)(E„,ilrpien,e)] E 

p i=i 

a contribuição dos estados com m n por 

101411";,A)121 

CL7— 
, (1.25) 

A 4(n) 
INDEG = (E71,3 I E E 

P 

9m 

rplEm4(cm,iirp 1(01Epik, 

En — Em 
(1.26) 

Escolhendo uma base de auto-estados atômicos len,i) que diagonalize o operador (1.21), 

s s mente os elementos diagonais em (1.23) serão não nulos, sendo assim, suas contribuições 

(i .25) e (1.26) serão dadas respectivamente por 

Vamos agora nos restringir a dois casos distintos, a saber: (i) quando o átomo se localiza 

e uma região próxima de uma das placas, e (ii) quando ele se encontra em uma região 

distante das mesmas. 
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(OlEpiú, À) 

W- k 
. 	(1.29) 

2\ 

1.2.1 Átomo Próximo de uma das Placas 

P a um átomo localizado próximo a urna das placas, pode-se mostrar [10, 47] que os termos 

d minantes na soma em (1.28) são aqueles com wk » En  —  em.  Sendo assim, vamos escrever 

o denominador em (1.28) como sendo aproximadamente wk., fazendo com que ambas as 

ci ntribuições (1.27) e (1.28) da matriz M adquiram a mesma forma. Neste caso, em uma 

b e que diagonalize M, podemos escrever: 

A.4(n) 	AA(TL) 
'11' 1- já 	v  

(n) 

(DEG) (NDEG) 

 

(Enálrp i Env. 

 

p 

  

U ilizando a relação de completeza dos estados atômicos, 

E E 	= 1, 
m i=1 

demos reescrever a expressão (1.29) como 

(1.30) 

     

(01Epilti À)12  

Wk 

 

      

      

A  4(n) 

  

j i 
i

p  
2 I 

nj 

 

(1.31) 
perto 

  

 

p 

   

       

       

C•m o auxílio das equações (1.18) e (1.19), obtemos finalmente os deslocamentos de energia 

a um átomo próximo das placas: 

perto 
e2p on(2,)i  e2m () 

2' 2  perto 

—e2  E  (En,i irp2IEN.7 
p 

 

(01Ep lE, À) 

2 

(1.32) 
A 
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2 gn 

E 
2 

(01.Epik,),) 
(enj1rP16.11,i) 

W k 

2 

_  e  2 

2 
p 

(1.36) (o l Epirc, A) 

1.2.2 Átomo Distante de Ambas as Placas 

amos agora considerar a expressão (1.28) para o caso em que o átomo se encontra distante 

as placas. Nesta situação pode-se mostrar [10, 47] que os termos dominantes na soma em 

1.28) são aqueles onde wic. <G en  — Cm.  Sendo assim, podemos escrever a equação (1.28) de 

rma aproximada como: 

    

2 -' 

   

       

 

gm 

i=1 

 

(ndirP16.772,i) 

     

M2'2 (NDEG) 	p rnrz,  

    

(olEpik:,A) (1.33) 

     

 

En erra 

   

      

          

om o auxílio das polarizabilidades elétricas de freqüência  zero, que em ordem mais baixa 

ío  dadas por 

ai  = 2 
I rp 

Era En 
(1.34) 

reescrevemos a  equação (1.33) como: 

 

ap  [E(N DEG)  2e2 k  
(0IEp l 1-Ç., À) 12 	. 

 

A if  (n) 
' 13,3 (1.35) 

  

Somando as contribuições (1.27) e (1.35) para a matriz  M,  e utilizando as equações (1.18) 

(1.19), obtemos finalmente os deslocamentos de energia para a situação de um átomo longe 

as  placas: 

e2f3,,,2)  = e2  ( \  jáM(n) 	+M (n) I I DEG 	lá NDEG) Image 
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1.3 Campo de Radiação entre uma Placa Condutora e 

uma Permeável 

esta seção, vamos considerar o campo de radiação numa região do espaço entre duas placas 

aralelas, uma perfeitamente condutora, situada no plano z = O e a outra, perfeitamente 

ermeável, situada no plano z = L. Vamos obter explicitamente os correlatores dos campos 

ertinentes para a obtenção dos deslocamentos dos níveis atômicos causados pela presença 

essas placas. 

Essa configuração de placas impõe as seguintes condições de contorno sobre o campo 

letromagnético: 

{ x È(t,x,y,0) = O 

. ./13.(t, x, y, 0) = O 	

= O 

2 • É(t, x,y, L) = 	
(1.37) 

2  

abalhando no calibre de Coulomb (V • A = O) e escolhendo A° = O, uma vez que não há 

ntes, temos 

È = —
at 

= x Ã . 	 (1.38) 

Por questão de conveniência, vamos escrever, separadamente, expressões para os modos 

t ansversais elétrico (TE) e magnético (TM) do potencial vetor Á, como segue: 

  

nde definimos 

ir:1■1  (g) -= V X rer  X (VA 1(A1) 

Uk E(x) = N2 sen(kzz)ei4'.  

(1.39) 

(7- M  ("A cos(k,z)eik-IP 
iwk• 

(1.40) 

samos a notação na qual x = (gii ,z) e o vetor de onda, para as condições (1.37), é dado por 

(n, 1/2)7r 
Ã; = 	(kx,ky,kz) , kz  = 	L 

f kx,ky  E IR 

n=0,1,2.. 
(1.41) 
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e as correspondentes freqüências são dadas por 

21  1/2 
Wic• = [F4 ((n + 1/2)7r/L) 

o impormos a condição de normalização 

(1.42) 

* (g) • .R.: (g) = 47r26),),' nn,6(rcii - 	, 	 (1.43) 

os potenciais (1.39), onde À = E, M, obtemos a constante N = 21-11,. Com isto, 

odemos escrever o potencial vetor entre as placas na forma 

Ax) = Ef  d2k„ 	1 
1-ctie'.(Je)e-iwrt  + c.c.] , 	(1.44) (2702 .127.-41  k k 

À=TE,TM n=0 

Para quantizarmos o campo clássico (1.44), substituimos os coeficientes de Fourrier cà. e 

, respectivamente, pelos operadores de aniquilação e de construção a e akA-t, que satisfazem 

relações de comutação 

47r2  Sul (5nne (5(4 - k i) 	 (1.45) 

m os outros comutadores sendo nulos. Com  isso obtemos o operador potencial vetor 

00 
v"‘ 	"11 	1 

wk a
_ Aï.x(,),-1-. 	t + Ak  (x)e 

	

E L._, (2,02 	[ 	2.(j  
À=TE,TM n=0 

De posse da expressão (1.46) e com o auxilio de (1.38), encontramos o operador campo 

elétrico 

È(x) 	E E si &k11 	[aU.(g)e-iwi=t  - c.h.] 	 (1.47) (2702 vriji_c. k k  

que nos permite escrever (ver Apêndice A) 4, 

A equação (1.48) pode parecer uma conseqüência trivial de uma relação de completeza entre esta-

dos de Fock, mas não é. Repare que líj, À) designa um estado com um único fóton presente, portanto 

E), E k irc, Mrc, 	1. 

Ã(x) = ( 1.46) 

A=TE,TM n=0 
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_. 1(0lEplic, 
2 

 

Ep g,À)(FÇ,,À1Ep10) 

  

   

= (01.EpEp10) . 	 (1.48) 

tes correlatores são divergentes e devem ser devidamente regularizados e renormalizados. 

om este intuito, vamos usar o procedimento de regularização de separação do tempo ima-

inário de Schwinger. Para isso, escrevemos inicialmente os correlatores (1.48) como 

(01Ep(x)Ep(x)10) --= pmt(OlEp(t , x)Ep(t' , x)10} . 	 (1.49) 

om o auxílio da expressão (1.47) para o campo elétrico, após algumas manipulações, a 

uação (1.48) pode ser escrita na forma 

( 	(x)1 0 ) = (01;2(x) 10) = 

= 	lim cÉ°  f  d2k1  (w- + j-k  )sen2(kzz)eiwz(t'-')  
2/, t,->t n=0 	(27 )2 	k 	wk. 

1  lim 

	

	
w
-

-
) cos2(kzz)ei'iM'-t)  . 

00 

L 	Z-d j (2702  kWic. 	k  / 
n=0 

fetuando a rotação de Wick t' - t = ir, utilizando as definições das variáveis 

7r 
= 

L 
- 	E == AT e O = Az , 

das funções: 

00 

e.--2±(E, O) = E [1 ± cos(2kz.z)] e-(71+1/2)€ 

n=0 
CO 

[ ± cos (27r(n + 1/2)z/L)le-(n-1-1/2)E  
n=0 

1 
	± 

1 	1 
2sinh(6/2) 	4 [senh(6/2 - i0) 

+ c.c
_ 

(01g(x)10) = (1.50) 

( 1 . 5 1) 

(1.52) 
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eescrevemos as equações (1.50) como 

( 21 	2  
(OICX)10) = (OICX)10) = -1—A3 	O - + 	0)1 

2 47I-L T.0 E 	E 	 E=À7 

(01eX)10) = 	
3 

11M (a, 
21 
 - 

1a, 2).= ,_, 
- -,(6,e)1 . 	(1.53) 

47rL 1---40 	e 	e 

Expandindo as funções E±, dadas pela expressão (1.52), em potências de e, temos 

1 	 E3  7 
:±(E, = –

E 
- 

4 
T±(0) + 

96 
(

60 G(8)) + (64) , 

nde definimos as funções: 

1 	cos 9 	 cos 9 	cos O 
T±(0) = 

6 sen u 
2 , , G(0) = 6—

sen49 sen2  O • 

ubstituindo a expansão (1.54) nas equações (1.53), obtemos: 

(1.54) 

(1.55) 

(01E2 (x)I0) = (01E(x)10) = 
71.2 

4  
lim +

7
)1 

U/ 1"-)0 E4 	24 	360 

2  (
G(0) + —

7
) — h m 

7r 2 	+ 96.L4 	360 

7r.2 
(01g(x)10) 	lim [-

4 
+ —

1
(C(0) 	)1 

	

4L4  T—ko E4  24 	360 

1 	1 	7r2  
7r2 96L4  

lim + 	(G(0) 	 . 
360/ 

(1.56) 

onde usamos as definições de A e E dadas em (1.51). 

Como vimos, foi necessário regularizar os correlatores. Nossa tarefa no momento é, 

ortanto, renormalizá-los subtraindo, se possível, os termos espúrios infinitos. Uma inspeção 

pida nas equações (1.56) nos mostra que cada um dos correlatores acima foi separado numa 

arte finita, dependente dos parâmetros característicos do problema, no caso L e z, e uma 

arte divergente, que depende somente do parâmetro regularizador T, mas independe de 

e z. Esses termos espúrios são contribuições presentes mesmo quando consideramos o 

po livre, ou seja, sem condições de contorno. Como estamos interessados somente na Iam 
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i fluência das condições de contorno nos deslocamentos dos níveis atômicos, vamos descartar 

t is termos. 

Para calcular as quantidades E, E I (olEp ),)12/wij  em (1.36), usamos inicialmente a 

e pansão do campo elétrico (1.47), que nos permite escrever 

yf■ 1(01Ej, , A)12  = 	1(01.Ey líj, A)12  

x 	 w 

(01Ez(t, Alíj,A)(, ÀlEx(e,z)10) _,--_ 	, 

cc 	2"- 	

to- 

2 1 1 
= 	lim E 	d111 1 	+ 

kx 
 isen2(kzz)eiwij(ti—t) 

2 L 

	

	(270 2 	[ 
n=0 

1(01Ez lú, A)12  
= lim 	

(01.Ez(t,z)11-c, A)(1-j, AlEz(e,z)10) 
to- t'  

co 
1 , 

im== 	l 
ti -->t n=0 f (d227r/;)I 12 colic. [rwk_ — 	cos2(kzz)ei'ij(ti-t) . 

(1.57) 

om o uso das definições (1.51) e (1.52), reescrevemos as equações (1.57) como 

1(01Ex li À)12 	 ROLEyg",  ,À)12 
wk k 	U1-  

= 1 ir 	- 	ia_ -22L3 	dx g _ (x , O) —  
e ee 

[ f 	
_ (E, 0) 

1(01Ez jrc, A)12 	[

k 	Wk 	 213  E12 
E + (c, O) — f dx g +(x , (1.58) 

o de definimos gÁx , O) = (11 x3)E±(x , O). Para efetuar as integrais acima, consideramos a 

c ntinuação analítica das funções 

g±(Z , 0; p) = 	
,__, 	

O) (1.59) 

23 



Inz 

2(311+61)i 	Gni 	C 
2(3n-9)i =- 

2(2n+9)i 	4ni  
2(2n-6)i — 

2(n+0)i x — gni  
2(n-0)1 — 

 CE 
 

8 

zni 
— x 2(71-0)i 
— -2(71.0)1 

-477i z -2(2n-8)z 
— -2(27m-9) i 

— -2(3n-9)i 
— -2(3n+9)i 

n plano complexo, e integramos g±(Z , 0; p) ao longo do contorno fechado indicado na figura 

1 3. Usando o teorema do resíduo, temos 

(fc,  + fri  + fr2  +f dZ g±(Z , O; = 27ri 	Resg±  . 	 (1.60) 

Figura 1.3: Contorno de Integração 

Para os caminhos F1  e r2 podemos escrever, considerando o ângulo 5 pequeno, 

fri  dZ g±(Z,0;13) + 	dZ 9±(Z,O;P) f
2  

00 	eis(i-p) 
dr 	E.±  e (1 + i5), 

rP 

I 

c: o 

dr 
ei(27r -15)(1-p) 

+ 

	

	 (7-(1 - 	. (1.61) 
rP 

Tomando o limite ,5 	0, segue que 

gim 
r° 	1 ,__, 

dZg±(z, O) + f dZ g+(z, 0)] 	(1 - e-21riP ) 	dr —;:-.±(r, 0) 
_fri 	 r2 	 E 	 rP 

- e  -2/rip) 

Je 

00 

dx g+(x, 0;p) . (1.62) 

limite p --> oo, a integral ao longo do caminho Cp  se anula, uma vez que o integrando g+  

de a zero suficientemente rápido. Sendo assim, e também substituindo o resultado (1.62) 

(1.60), podemos escrever 

N 

te 

 

e 

 

  

24 



 

cc 

 

- f dZ g±(Z,0;p)-1- 2Iri E Res g ±1 	(1.63) 
c, 

(1 — e-2"P) dx g+(x,0;p) =1i% 6  

   

    

Aio longo do contorno CE, a variável Z tem módulo pequeno, portanto, a função E±(Z, 0; p) 

p de ser expandida como 

ee0  
±(Z , 0,p) = (fei° , 9;p)  —E 	4 

— 	T±(0) . 

sse resultado nos possibilita efetuar a integral ao longo de CE: 

e —iPb e-27riP eiP6 	T±(0)62— P  e 	p) _ e-27r i6(2_ip ei6(2—p)) J CE 	g± (Z, O; P) 2-"" 	
P6P 4(2 - p) ■ 

c jo limite 6 -> O é dado por 

1 	T± (0)62-P  
lim(i dZ g ±(Z , 8;p)) = -(— + 	+ 0(64-P)) (1 - e-2'P) 

peP 	4(2 - 

(1.64) 

, (1.65) 

(1.66) 

Utilizando os resultados (1.66) e (B.13) na expressão (1.63), e tomando o limite p -> 3 

o v temos 

f dx g (x>  O; p) = 1 
	T±(0) 	1 

P
lim  

e 	
3E3 	4E ± 128/r2 	(Z)  O(€)  

de definimos as funções 

(1.67) 

z 	 z 	( 1 1  
G ±(z) 	Y3'  2L) 	11  ( 2L) 	e' 2 2L)+  

3  (o  1 	1 ) (2L 	/ 
— 	 2  ft(3) fl-(3,1/2)) 	(1.68) 

se do 	e Çff respectivamente as funções zeta de Reinman e de Huruwitz dadas pelas 

equações (B.6). Substituindo as equações (1.54) e (1.67) em (1.58), usando a definição de c 

d da em (1.51), e tomando o limite 'T —+ O, obtemos finalmente, 
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Jc. 	Wk  

1 	1 	1 
lim + 	G+  (z) 

	

37r2  1"—■0 73 	512L3/r 
(1.69) 

I(olEzl a)12  = 1 	1 	1  lim + 	G_(z). 
to- 37r2  73  256L3ir 

nalogamente ao que aconteceu para os correlatores (1.56), cada uma das quantidades acima 

oi separada numa parte finita, dependente dos parâmetros característicos do problema, 

ornada a uma parte divergente, que depende somente do parâmetro regularizador T. Esses 

ermos espúrios serão descartados por razões análogas as que nos levaram a descartar termos 

ambém divergentes em (1.56). 

1.4 Correções nos Níveis de Energia 

esta seção, vamos nos referir a três configurações de placas diferentes, a saber: (i) uma placa 

ondutora e uma placa permeável, (ii) duas placas condutoras e (iii) duas placas permeáveis. 

amos denominar cada uma delas, respectivamente, como configurações CP, CC e PP. 

De posse dos resultados (1.32), (1.36), (1.56) e (1.69), temos as expressões que fornecem 

correções nos níveis de energia atômicos para a configuração CP, tanto no caso em que o 

tomo está próximo a uma das placas, quanto no caso em que está distante de ambas: 
e2 

= 	-- 5127rL3 {((enálr!IEn,i) + (ET,eTy1E„,.i))G+(z) 

+2(en,iir!le„,i)G_(z)} , 	 (1.70) 

longe = 

gn —e2 	
I-

[(RE  , irx  
5127L3  i=1 

+21(Ená  Ir, lEn,i) 12G_ (z)] 

,)12  + 	n,i)I 2 ) G +(z) 

7r2 	 , G(0) 	7 	7 
(1.71) 

96L4 L(ar aY 4- az  ) 	± —720) — 360] 

nde descartamos um termo divergente, porém independente de L, interpretado portanto 

orno um termo sem significado físico. Os resultados para as placas CC [10] e PP [47, 46] 

■á■Ell,,çlperto 
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podem ser obtidos na literatura e são dados por 

e2  A pCC 2 
(EnjirxiEnj) 	 j) 	F_(z) 

(z)] 

(EnjirY lEn412) 

2 
ay  4- az ) (F(0) — 11 	

4- az  iS 

+ (E„,i lry21E n J )) F+  (z) 

F_ (z)] 

2 
+ 1(enálry 1E714 I2

) 

-(z)] 

ay 	az ) (F(0) + 
15) — az  5] 

como 

3 	2 

+21(Endirz iEnái2F+(z)] 

[(1(En,j1rx1En,i)1

2  

(1.72) 

F-  (Z) 

(1.73) 

(1.74) 

F+ (z) 

(1.75) 

(1.76) 

(1.77) 

j '-̀1.-n 	Perto 	= 647i-L3  [( 

+2 (En, 1rz2  

gn e2 
AECç3 ii 71, 	unge 

647r.L3 

7r2 

i=1 

(ax  
[ 

647rL3  [((Enjir!len,i) 

96L4 

e2  A PP 
n,3 ' perto 

+2 

e2 
A 
'-n,j 'longe 	= 

64R-L 
i=1 

+21 (Enálrz i En,i)12F 

= 

+ 

+96L4 [(
ax  

o de as funções F(0) e F1 são definidas 

F(0) 

F±(z) = (H(3) Z/L) 

sin4 (8) 	sin2 (0) 

y 	\ 3  
CH(3, —z/L) 	2(R(3) 

Note que a função F(0) é estritamente positiva em todo o seu domínio, enquanto a função 

(0) adquire tanto valores positivos como negativos, como indicado na figura 1.4. Isso pode 

d ferenciar bastante o comportamento das correções nos níveis de energia do átomo causadas 

pelas placas CP em comparação com aquelas causadas pelas placas CC e PP. 
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G (0) 

ti 

Ó0.20:40.60:8 i 1:21.41:61.8 2 2:22:42:62.8 á 

F(8) 
350 600 
300 400 
250 200 
200 o 
150 -200 
100 -400 

50 -600 

Ó 0.20.40.60.8 1 1.21.41.61.8 2 2.22.42.62.8 3 

igura 1.4: Gráficos para F(0) e G(0): F é estritamente positiva, enquanto G troca de sinal. 

bas as funções divergem nas placas, ou seja, divergem em O = O, R- 

Para fazer uma breve análise numérica dos resultados obtidos, vamos nos restringir, 

e agora em diante, ao caso de um átomo não muito excitado. Nessa situação, pode-se 

ostrar que as contribuições relevantes para as correções nos níveis atômicos são dadas 

elos estados degenerados [10], ou seja, em uma base que diagonaliza o operador (1.21) os 

eslocamentos nos níveis de energia são dados, aproximadamente, pelos elementos de matriz 

1.27) multiplicados por e2. Sendo assim, temos: 

áeni; 
— 
	e2 
5127rL3 	[( 

I n,3 x n,z 'Ir le 	
2 
 +1(enálrylen,i)12)G+(z) 

i=1 

+21(E„,7  Irz isn,i )12G_(z)] , 

gn „ e2  E  r  
6471.L3 	pen,i r en,i) + (En,i Y n  I 2) F (z) 

+ 2I(en d irz ) n,7)1 2  F±(z) , 

oPP 
n,3 

C2 

647rL3 	
Ki(en,iirzien,i)12  + 1 (Ená Ir, len,i) 2) F±(z) 

i=1 

+21(En59irzin,i)12  F-(Z)1 , 	 (1.78) 

ara um átomo localizado próximo ou distante das placas. 
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Note que os sinais para estas correções são determinados pelos sinais das funções F±(z) 

e G±(z). Tanto F+  como F_ têm sinal positivo, fornecendo correções negativas para a 

configuração CC e positivas para a configuração PP. É interessante comentar ainda que os 

Is apéis das flutuações do campo longitudinal e transversal são trocados para as configurações 

CC e PP. As funções G±  trocam de sinal ao longo de seus domínios, e isto faz com que as 

orreções aos níveis atômicos para as condições CP possam trocar de sinal, em contraste com 

• que ocorre nos casos com condições CC e PP. 

Podemos comentar a respeito de algumas diferenças entre as correções nos níveis de 

nergia e o efeito Casimir, outra importante manifestação das flutuações do vácuo. No 

•feito Casimir, as configurações PP e CC fornecem a mesma força atrativa. Já no caso da 

onfiguração CP, a força é repulsiva, porém, com a mesma dependência em L encontrada 

os outros dois casos e de mesma ordem de grandeza. Por outro lado, as correções nos níveis 

• e energia têm comportamentos diferentes para as três condições consideradas, mesmo para 

•s casos onde as energias de Casimir são iguais (PP e CC) 5. Isto é devido, em parte, ao 

ato de que a pressão de Casimir é um efeito global, ao passo que as correções nos níveis de 

•nergia dependem da posição em que o átomo se encontra relativamente às placas. É como 

e o átomo fosse uma sonda de prova local dos modos do campo. 

Ainda nos restringindo a um átomo não muito excitado, mas em uma base de auto-estados 

ue não diagonalize a matriz M, as correções aos níveis de energia para a configuração CP 

ão dadas, com o auxílio de (1.18), (1.19) e (1.25), pelos autovalores do operador 

[( 
:= 	rs IE.-7-,,i)(6-„,i fts 	ru icri,i )(Eri,i iry)G+(z) + 2rzlEn,i)(en,ijrzGl(z)1 , 

i=i 

ni ultiplicados por -e2/512irL3. 

Em coordenadas esféricas, os elementos diagonais de W são dados por [10] 

(1.79) 

n2  
(n, 1 , ml 	/, m) = (am)-2n2  { 

(2/ - 1)(2/ + 1) 
[(/2  — 1+ m2)G+(z) + 2(12  - m2)G_(z) 

+ n2 — (1 + 1)2  [
(1

2 
+ 31+ m2  + 2)G+(z) + 2(12  +21 - m2  +1)G_(z)1 } , (1.80) 

(2/ + 1)(2/ H- 3) 
'Esta peculiaridade pode deixar de valer para campos em interação, como discutido no capítulo 3. 
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A 

os elementos não diagonais por 

(n,/ — 2,m1W1n,/,m) 2(cern)-2 n 2 	n2 — 12 	( /2 	)2 

4 	(2/ — 1)(2/ + 1) (2/ — 3)(2/ — 1) 

1/2 
X (12  — M2 ) [(/ — 1)2  — M2] 	(2G_ (Z) — G+(z)) 

(1.81) 

o nde l e m são, respectivamente, os números quânticos angular e azimutal. 

No multipleto n = 3 os estados 1300) e 1320) se misturam, fornecendo as correções 

2 
E3± = 

81 
(am)-

25127rL3 
[4G_ (z) + 3G+  (z) (16G2_ (z) — 8G_ (z)G+  (z) + 9G2+  (z)) 

1/2 
 . 4 

(1.82) 

Não há mais estados que se misturam com n = 1,2,3. Sendo assim, apresentamos uma 

bela com resultados numéricos, mostrando as correções nos níveis de energia mais baixos 

• o átomo de Hidrogênio quando este está interagindo com o campo de radiação no estado 

• e vácuo, submetido a cada uma das três condições citadas acima. Por uma questão de 

s mplicidade, tomamos a posição do átomo como sendo o ponto médio entre as placas, isto é, 

= L/2. Os resultados estão em unidades de CR(3)(am)-2a/32L3. Os valores apresentados 

• ara as condições CC podem ser encontrados em [10]; os resultados para as placas PP estão 

a referência [46] e para a configuração CP, em [47]. 

correções nos níveis de energia CC PP CP 

AE200 -1008 1008 o 

AE210 -576 432 -54 

AE211 -216 288 27 

ãe+ 1296(3+/') -60,75(1+f33) -162(25+-11) 

DE_ -162(25-\/W.) 1296(3-4) -60,75(1- 	33) 

AE310 -6156 5184 -364,5 

AE311 -3726 4212 182,2 

Ae321 -1782 1620 -60,75 

AE322 -972 1296 121,5 

(1.83) 
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• 

Para o estado fundamental 100 só contribuem para o deslocamento de energia os estados 

degenerados. Contribuições estas desconsideradas na tabela acima. 

Pela tabela acima, vemos que as correções para as placas CC e PP são da mesma ordem. 

e quanto para as placas CP são uma ordem de magnitude menor. 

Vamos agora analisar o caso limite quando o átomo está próximo a uma única placa, sendo 

e ta perfeitamente condutora ou perfeitamente permeável 6. Para o primeiro caso, basta 

t marmos o limite da equação (1.70) para um átomo muito próximo da placa condutora, 

to é, z/L 0, o que resulta em: 

e2  r 
= — 647rz3 [(Enál(r! + ry2 ) I En,i ) + 2  (En,i Ir! I ET/á ) • 	 (1.84) 

ale mencionar que este resultado pode também ser obtido tomando-se o mesmo limite com 

configuração de placas CC [10]. 

Para o caso do átomo estar nas proximidades de uma única placa permeável, seria mais 

c i nveniente para os cálculos ter uma expressão para as correções nos níveis de energia para 

a placa permeável em z = O e uma placa condutora em z = L. Isto pode ser conseguido 

fazendo a substituição z 	—(z — L) em (1.70): 

2 

e 	 ri 	I ( 2 	 — L)) 2(En,iir.Nn,i)G—( — (z L))] 
5127rVi\E 'iRrx 

. (1.85) 

odemos agora tomar o limite z/L —> O para um átomo muito próximo de uma placa 

infinitamente permeável: 

e2 r  
2 	2 	 2 

áen — 647rz3 [(En 31 (rx + ry)len,i) + 	Irz lEnd)] • (1.86) 

ta expressão poderia também ser obtida tomando-se o limite z/L O na equação (1.74). 

interessante notar que as correções aos níveis de energia para o caso de uma única placa 

itamente permeável têm o mesmo módulo, e sinal contrário, que as correções aos níveis 

iimicos para o caso de uma única placa perfeitamente condutora. 

Quando consideramos o átomo próximo de uma das placas, estamos comparando z (distância do átomo 

à placa esquerda) e z — L (distância do átomo à placa direita) com L (distância entre as placas), porém 

1: mbre-se que estamos tomando a aproximação de dipolo, considerando o raio atômico muito menor do que 

o. três parâmetros de distância mencionados acima. 
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1.5 Comentários Finais 

Neste capítulo, pudemos ver que a modificação dos modos do campo eletromagnético no 

vácuo devido à presença de placas materiais pode alterar os níveis de energia de um átomo 

que esteja nas vizinhanças das placas, pois este está em interação com o campo eletro-

magnético. Sendo estas alterações dependentes da distância que o átomo se encontra das 

placas, podemos dizer que o átomo funciona como uma partícula teste para os modos do 

campo eletromagnético, podendo sondá-lo localmente. 

Esse fenômeno é de grande importância sob vários aspectos. Para a física teórica, ele 

dá mais subsídios para compreendermos melhor conceitos fundamentais da Eletrodinâmica 

Quântica, como por exemplo as flutuações de campos quânticos no vácuo e a interação 

da matéria com a radiação no interior de cavidades. Experimentalmente, fenômenos como 

esse têm grande valia, pois permitem testes mais precisos da EDQ. Além disso, medições 

de constantes físicas atômicas atualmente têm atingido grande precisão, tornando-se rele-

vante considerar influências das vizinhanças dos átomos nos dados experimentais para poder 

confrontá-los com as previsões teóricas. 

Considerar a influência de placas permeáveis nos níveis de energia atômicos foi de grande 

valia, pois nos permitiu a comparação de novos resultados com os já existentes na literarura 

para placas condutoras e forneceu uma maior variedade de resultados teóricos que podem 

ser confrontados com dados experimentais. 

Como último comentário, gostaríamos de ressaltar a importância de se estudar a in-

fluência de placas permeáveis em diferentes situações físicas [57, 58] para a nanotecnolo-

gia, pois na escala nanométrica as forças de Casimir podem se tornar relevantes. Configu-

rações adequadas utilizando placas permeáveis podem produzir forças de Casimir repulsivas, 

uma vez que forças puramente atrativas podem impor limites à construção de dispositivos 

nanométri cos. 
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Capitulo 2 

O Efeito Scharnhorst e a 

Eletrodinâmica de Born-Infeld 

Neste capítulo investigamos como a velocidade da luz é alterada quando uma onda luminosa 

se propaga numa região entre duas placas paralelas e perfeitamente condutoras, mas supondo 

que a dinâmica dos campos eletromagnéticos seja descrita por uma densidade de lagrangiana 

que generaliza, ligeiramente, a de Euler-Heisenberg (que representa a lagrangiana efetiva da 

EDQ a um laço). A densidade de lagrangiana a ser considerada contém, como casos parti-

culares, a de Euler-Heisenberg e a de Born-Infeld. De certa forma, podemos dizer que inves-

tigamos qual seria o efeito Scharnhorst para tais densidades de lagrangiana. Utilizamos uma 

técnica de cálculo introduzida por Barton, que envolve diretamente a determinação de alguns 

correlatores dos operadores de campo eletromagnético, sujeitos às condições de contorno im-

postas pela presença das placas. Em particular, recuperamos os resultados encontrados na 

literatura para as densidades de lagrangiana de Euler-Heisenberg e Weisskopf-Schwinger e 

mostramos, dentro de certas aproximações, que para uma densidade de lagrangiana do tipo 

Born-Infeld não haveria variação alguma na velocidade da luz entre as placas. 

Esse capítulo está estruturado da seguinte forma: na seção 2.1 fazemos uma introdução 

ao efeito Scharnhorst; na seção 2.2 introduzimos a lagrangiana de Born-Infeld; na seção 2.3 

obtemos a lagrangiana de Euler-Heisenberg. Na seção 2.4 obtemos as variações na velocidade 

da luz quando esta se propaga entre placas paralelas e é descrita por uma lagrangiana mais 

geral do que a de Euler-Heisenberg. Os comentários finais encontram-se na seção 2.5. 
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e 

1 Introdução 

ela teoria clássica do eletromagnetismo, estabelecida por J.C. Maxwell no final do século 

a dinâmica dos campos eletromagnéticos no espaço livre, mas na presença de fontes, é 

escrita pelas equações 

•Él = p 	, 	'e7.  • 	= o 

0É.  
x = 

at 
x B = 5' +  ft, 	 (2.1) 

endo  p  e j,  respectivamente, a densidade de cargas e a densidade de corrente. 

No vácuo, ou seja, na ausência  de fontes externas, tais  equações se reduzem a 

v.E= o  , 	= o 

49È  
x É = — 

at 	
V x B = 

at 
(2.2) 

ue  podem ser obtidas por meio da densidade lagrangiana 

2 
= 2 - 	1 B2) = 2 [( _ V 

D 
A°  - 	- 	x 24) 21 

t 	
(2.3) 

1 

nde as variáveis dinâmicas são os campos A' (x). 

O fato de  4  conter apenas termos quadráticos nos campos elétrico É e magnético É.  

onfere a estes a propriedade de obedecerem ao princípio da superposição, pois  ,Co  fornece 

equações (2.2) que são lineares. 

No contexto da EDQ (eletrodinâmica quântica), tal situação relativamente cômoda muda. 

esmo no vácuo, temos a possibilidade de criação (e subseqüente aniquilação) de pares de 

articulas virtuais (elétron-pósitron). Durante suas efêmeras existências, essas partículas 

• odem trocar fótons virtuais umas com as outras. Podem, inclusive, emitir um fóton virtual 

um dado instante e absorvê-lo num instante posterior. Esses fótons, por sua vez, podem 

riar novos pares virtuais elétron-pósitron e assim sucessivamente, fazendo com que o estado 

le vácuo da EDQ seja muito mais rico do que o estado de vácuo na física clássica, inerte 

e incapaz de responder a qualquer estímulo externo (provocado, por exemplo, por campos 

xtemos ou pela presença de placas materiais). 
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Tais processos virtuais podem dar origem a novos fenômenos físicos, alguns dos quais já 

foram verificados experimentalmente. Em mais baixa ordem na constante de acoplamento, 

podemos mencionar alguns desses fenômenos, a saber: 

a) Espalhamento fóton-fóton: a seção de choque deste processo é proporcional a a4  (a sendo 

a constante de estrutura fina), e por ser extremamente pequena esse processo ainda não tem 

verificação experimental. 

b) Espalhamento Delbrück: fótons são espalhados por um campo eletromagnético externo, 

geralmente gerado por um núcleo pesado de carga Ze. A seção de choque desse processo é 

proporcional a (Za)4a2  e já existe verificação experimental para tal processo. 

c) Divisão de fótons: um único fóton se "divide" em outros dois, após ser espalhado por um 

campo externo (gerado, por exemplo, por um núcleo de carga Ze como no Espalhamento 

Delbrück). Tal processo também já possui verificação experimental. 

espalhamento 	 espalhamento 
	 divisão de 

fóton-fóton 
	

Delbrück 
	

fótons 

Figura 2.1: Diagramas de processos de baixa ordem na EDQ que envolvem criação de pares 

virtuais. 

Dessa forma, o vácuo da EDQ deixa de ser algo inerte e passa a se comportar como um 

meio ativo, onde ocorrem processos virtuais que dão origem a propriedades físicas reais. Isso 

lhe confere propriedades semelhantes àquelas dos meios materiais, como o fato de possuir 

uma densidade de energia e de responder a estímulos externos. Esses processos virtuais 

também influem na dinâmica dos campos eletromagnéticos clássicos no vácuo, já que tais 

campos interagem não só com as correntes clássicas j, mas também com os campos quan-

tizados de matéria, no caso, o campo fermiônico. Este comportamento confere ao vácuo 
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propriedades eletromagnéticas, como uma permissividade magnética e uma polarizabilidade 

elétrica, de forma análoga ao que acontece em um meio material. Tais propriedades po-

dem ser alteradas, por exemplo, quando aplicamos um campo eletromagnético externo, ou 

submetemos o campo de radiação a condições de contorno, ditadas pela presença de placas 

materiais ou cavidades em geral. Uma conseqüência imediata de alterações como estas é a 

possibilidade de mudança na velocidade de uma onda eletromagnética que se propague no 

vácuo. Em outras palavras, alterações nas propriedades eletromagnéticas do vácuo podem 

resultar em variações na velocidade de propagação da luz. 

Modificações na velocidade da luz no vácuo devido a aplicação de campos magnéticos 

externos foram discutidas inicialmente em 1952 por J. S. Toll [59] e reconsideradas poste-

riormente no início dos anos 70 [60, 61, 62] (veja também [63] e referências aí contidas). 

Para o caso da EDQ em espaços curvos, o trabalho de Drummond e Hathrell [64] levan-

tou a possibilidade de uma propagação superluminal (veja também [65] e [66]). Também 

podemos encontrar discussões a respeito da influência de efeitos térmicos na propagação da 

luz [67, 68, 12]. 

Outra situação já discutida na literatura, e de especial interesse neste capítulo, é a in-

fluência na velocidade da luz ocasionada pela presença de placas paralelas. Esse problema 

foi abordado em 1990 por Scharnhorst [11] que estudou a propagação de uma onda eletro-

magnética numa região entre placas paralelas e perfeitamente condutoras (que designaremos 

por placas de Casimir). Scharnhorst chegou à conclusão de que a componente da velocidade 

da onda perpendicular às placas se altera, sendo maior do que a velocidade da luz no vácuo 

na ausência das placas, enquanto a componente da velocidade paralela às placas não sofre 

modificação alguma. Para compreender esse efeito é necessário ter em mente que ele ocorre 

devido à interação de três campos: 

(i) o campo clássico de uma onda eletromagnética, cuja velocidade se quer estudar; 

(ii) o campo fermiônico quantizado; 

(iii) o campo de radiação submetido às condições de contorno impostas pela presença das 

placas. 

Ao se propagar no vácuo, a onda eletromagnética interage com o campo fermiônico 

quântizado (pares virtuais), que por sua vez interage com o campo de radiação. A presença 

de placas condutoras faz com que o campo de radiação tenha seus modos alterados. Essa 
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mudança é percebida diretamente pelo campo fermiônico, pois este está em interação com 

o campo de radiação, e de forma indireta pela onda eletromagnética, que interage com o 

campo fermiônico. Esse processo pode, portanto, alterar a velocidade de propagação da 

onda em questão. Resumindo, podemos dizer que o campo clássico da onda eletromagnética 

interage com o campo de radiação por meio do laço fermiônico. O efeito Scharnhorst, assim 

chamado desde então, é um efeito da EDQ que se manifesta somente quando consideramos 

diagramas de Feynman a partir de dois laços. 

Para obter perturbativamente a variação na velocidade da luz provocada pelas placas, 

Scharnhorst calculou os diagramas a dois laços que contribuem para a ação efetiva do campo 

eletromagnético, mas levando em consideração no cálculo do propagador do fóton as con-

dições de contorno sobre o campo de radiação. Obteve assim as correções relevantes à ação de 

Maxwell. De posse dessa ação efetiva, Scharnhorst determinou os tensores de permissividade 

elétrica e permeabilidade magnética do vácuo na região entre as placas, e com eles foi capaz 

de obter o índice de refração e a correspondente velocidade da luz nessa região. Os diagramas 

que dão origem ao termo de correção considerado por Scharnhorst estão representados na 

figura 2.2. 

Figura 2.2: Diagramas calculados por Scharnhorst; a dupla linha no propagador do fóton 

indica que este está submetido a condições de contorno. 

O resultado de Scharnhorst foi rederivado por Barton [12] por meio de uma técnica 

bem mais simples, baseada na ação efetiva de Euler-Heisenberg. Essa técnica foi utilizada 

posteriormente no cálculo do efeito Scharnhorst com placas de naturezas diferentes, uma 

infinitamente permeável e outra perfeitamente condutora [52, 53]. Foi também utilizada 

num cálculo envolvendo a lagrangiana efetiva (a um laço) da EDQ escalar [54]. 

Em 1995 Latorre, Pascual e Tarrach [68] perceberam que os resultados para variações 

na velocidade da luz que comentamos até o momento, para as situações de espaços sem 

curvatura, satisfaziam a chamada "fórmula mágica" 
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44 
C = - —a-

2 p 
	 (2.4) 

135 

sendo E a média sobre as polarizações em todas as direções da velocidade da onda, me  a 

massa do elétron, a a constante de estrutura fina e p a densidade de energia do vácuo, 

alterada pelas mais diversas circunstâncias 1. A origem dessa fórmula mágica foi elucidada 

posteriormente por Gies e Dittrich em 1998 [69, 70]. 

Neste capítulo, estudamos como a velocidade de uma onda eletromagnética se altera 

quando ela se propaga entre placas paralelas, mas supondo que a dinâmica dos campos 

eletromagnéticos seja descrita por uma densidade de lagrangiana ligeiramente mais geral do 

que a de Euler-Heisenberg e que contém como um caso particular não somente esta última, 

mas também a densidade de lagrangiana de Born-Infeld. Trabalhamos no regime de campos 

de baixa intensidade, o que nos permite tomar a lagrangiana de Born-Infeld expandida em 

mais baixa ordem. Obtemos os resultados por meio da técnica empregada por Barton [12] 

no cálculo do efeito Scharnhorst. 

2.2 A Lagrangiana de Born-Infeld 

A idéia de se tomar correções de ordens superiores à lagrangiana de Maxwell surgiu inicial-

mente dentro da própria eletrodinâmica clássica (com Mie em 1912 [71], e com Bom e Infeld 

em 1934 [72]), com o intuito de resolver problemas desta mesma teoria, essencialmente o 

problema da existência de um elétron estável. Se este fosse tomado como uma distribuição 

de cargas, seria instável, devido à repulsão eletrostática; se fosse tomado como uma car-

ga puntiforme, teria uma auto-energia infinita. Uma saída seria pensar em algum tipo de 

saturação para a energia, sobre algum valor para a intesidade dos campos. 

Para construir uma lagrangiana riu que exprimisse este fato, Born e Infeld impuseram 

três condições: 

(i) £51 deveria ser um escalar de Lorentz; 

(ii) .C.8/  deveria ser invariante sob transformações de calibre; 

'Para o vácuo de Friedmann-Robertson-Walker (espaço com curvatura) a fórmula mágica (2.4) toma a 

forma E = 1 — (44/135)a(GNin!)(p/m'el) [68], sendo GN a constante de Newton. 
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1) £131 deveria se reduzir à lagrangiana de Maxwell (2.3) para campos de intensidade muito 

enor do que um dado valor de saturação. 

Sendo 

1 	1 	-2  .f.  = 4 -F
i" 

F" = -
2

(B2  - E ) , 

	

g2 = (íF„F"*) 	
Fpv 

 1i., 	
evpuFpu 	(Ë...ü)2  

2 	 2 

(2.5) 

o• únicos escalares de Lorentz invariantes de calibre da teoria, rBI deve ser urna função 

semente dessas variáveis. Em vista disso, Bom e Infeld postularam a seguinte lagrangiana 

p a o campo eletromagnético: 

£.131 = 	[1. - (1 + 2 	- 
r 	g211/21 

Ed Eo  

=[1 — (1 É2  É2 (Ê..ã)2  Eó 	 (2.6) 

de E0  tem o significado de um valor máximo para a intensidade dos campos. Expandindo 

para j, Ç « Ed, recuperamos a lagrangiana de Maxwell (2.3). Dessa forma, E0  não 

relevância se nos restringirmos a campos pequenos. A teoria, não-linear, de Born e 

eld pôde resolver o problema da existência de um elétron estável com tamanho e auto-

ergia finitos, porém ainda persistiram outros problemas na eletrodinâmica clássica, como 

uto-aceleração de partículas carregadas, que ela não foi capaz de resolver. 

Um fato interessante a ser comentado é que a lagrangiana de Born-Infeld (2.6) foi esco-

da em analogia com a lagrangiana de uma partícula relativística livre, 

= mc2  [1 - (1 - 
C 2 
	 (2.7) 

onde c é uma velocidade limite, desempenhando uni papel análogo ao de E0 em £BI. No 

ite v <G c recuperamos a lagrangiana não-relativística ,C = (1/2)mv2, e c torna-se irrele-

va te. 

Entendemos como uma lagrangiana do tipo Born-Infeld aquela com a forma 

 

Ç2 
4
)1/2 

= [1 - (1 + 2 2+'y 	, 
d, 	Eo  
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sendo -y uma constante qualquer. Obviamente a equação (2.6) é um caso particular de (2.8), 

com -y = — 1. 

Expandindo a equação (2.8) até a ordem EIS-2, obtemos 

1 (.F2 ,yg2) 

1 

= —
2

(E2  — B`) 	
[4 + 2E,} 

(É2 — B2)2  — -y(È1.40)2] 
11  

(2.9) 

que nada mais é do que a lagrangiana de Maxwell acrescida de uma correção proporcional a 

42. Quanto maior for o parâmetro E0, menor será a relevância dessa contribuição. 

2.3 A Lagrangiana de Euler-Heisenberg 

Na tentativa de descrever a dinâmica do campo eletromagnético clássico, levando em conside-

ração os efeitos ocasionados pela criação de partículas virtuais, podemos tentar obter uma 

lagrangiana efetiva, acrescentando à lagrangiana de Maxwell (2.3) correções de ordens mais 
ti 

altas em e É. Com  isso, essa nova lagrangiana irá fornecer equações não-lineares para esses 

campos, deixando assim de valer o princípio da superposição. A lagrangiana que desempenha 

esse papel é a chamada lagrangiana de Euler-Heisenberg, e sua obtenção é o conteúdo desta 

seção. Para cumprir nosso objetivo, utilizaremos o procedimento introduzido por Schwinger 

em 1951 [73], conhecido como método do tempo próprio. 

Na eletrodinâmica clássica, os campos eletromagnéticos são descritos pelas equações de 

Maxwell, que podem ser obtidas por meio da ação 

Sci [A]= So [A]+ Sint [A] , 	 (2.10) 

onde definimos a ação livre So  [A] e a de interação 5,,,,t  1A1 por 

S0 [A] = f d4x ro (x) = f d4x(---À1  Fp,,Pw) 

Szrit  [A] = f diz jP(x)A,,(x) 	
6Sint[A] 
6/1/2 (x) 	3  

(2.11) 
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orno de costume, F, = 0,14.,(x) — 8,4,(x) e jP(x) designa o quadrivetor densidade de 

corrente. No vácuo clássico, temos ausência de fontes externas e devemos tomar jP = O, 

✓ stando apenas So  [A]. 

Com o intuito de descrever a dinâmica do campo eletromagnético clássico (não-quantizado) 

o vácuo, mas levando em conta efeitos originados pela quantização do campo fermiônico, 

e está acoplado com o campo eletromagnético clássico (por exemplo, efeitos de polarização 

• vácuo), vamos procurar uma ação efetiva Sef [A] que substitua So[A]. Para isso, vamos 

s basear em (2.10) e (2.11), substituindo Sint[A] por uma ação Si  [A], 

Se f [A] = S0[A] + S1[A] , 	 (2.12) 

e de tal forma que 
6Si  
SAp

[
(x) 

= (01jP(x)10) , 	 (2.13) 

analogia com a expressão (2.11). Na expressão anterior, 10) representa o estado de vácuo 

campo de Dirac e 3t4(x) corresponde ao operador densidade de corrente do campo de 

irac, isto é, 

3P(x) = 2 [(x), 7P  (x)] ('e.),20[;Pa(x), 'bp(x)] 
	

(2.14) 

c•m o operador ,Ip (x) satisfazendo, 

7P7riíRx) rniP(x)= O , 7r.m  = 	— 	 (2.15) 

x°) , 13 (X" , x°)} = 7°„06(£ — X-") 	 (2.16) 

4,  

• 

1 

e as matrizes gamma satisfazendo 

	

	
5 

-yv} —2gPv 

gpi, =O, it 	.goo = —1 ; gz, =1, i =1,2,3 . 

(2.17) 

(2.18) 

A quantidade Si  [A] pode ser vista como um termo de correção à ação de Maxwell (2.11) 

• ue descreve efeitos quânticos gerados pelo acoplamento entre o campo eletromagnético 

c ássico e o campo quantizado de Dirac, devendo se anular quando Ff' —> 0. 

Pela equação (2.14), temos 

(01314 (x)i0) = ehla0(012 (1Pa(x)/Pp(x) 'Pfi(x)2ba(x))10) • 	(2.19) 
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Note que se tomarmos o lim te simétrico em relação à coordenada temporal, ou seja, 

slim 2 lim lim 
x _, l z  

sO >:0 	./0<x0 

do produto cronológico 

(2.20) 

T(Pa(x')Q)0(x)) = 9(x'°  — °)Q),,(x`)/-4(x) — O(x°  — x'°)1)0(x);Pa(x1) , 	(2.21) 

btemos exatamente o operador que aparece do lado direito da equação (2.19). Sendo assim, 

eescrevemos a equação (2.19) como 

(01.9P(x)I0) = e s2.im.(71i)0(0171&)a(x1);Pp(x))10) . 	 (2.22) 

ela definição do propagador da equação de Dirac, 

Gpa(x, 44) = i(01TePp(x)/Pa(x'))10) = —i(01T(/),,(x')IPÁx))10) , 	(2.23) 

equação (2.22) pode ser escrita na forma 

(013'i(x)1 0) = ie slim(71/)0G/3a(x'xiA) 
ie tr[yliG(x,x1A)] . 	. 	I  (2.24) 

.ik partir das equações (2.13) e (2.24), obtemos 	 1M ‘9, \êti  . 

5,91.[A] 	. 
6Am(x) = 

ie tr[-yliG(x, xIA)] 	6Si  [A] = ie f dx 6A(x)tr[71-V(x,x1A)] . 	(2.25) 

O propagador (2.23) satisfaz a equação diferencial 

[(yPrp,),„A + m6ap]Gf3.„(x,x11A) = Sc7s5(x,— xI) , 	 (2.26) 

ue pode ser interpretada como a representação de uma equação de operadores no espaço 

e configurações: 

(-rir + m)â[A] = Il 	G(x,x'IA) = (xid[A]ix') . 	(2.27) 

Definindo o operador 6Âµ(x) tal que 

(xl6A,(x)ix') = 6(x — x')6.Ap(x) , 	 (2.28) 
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usando a definição (2.27), reescrevemos a equação (2.25) como: 

5,91[A] = ie Tr(75.Ââ[A]) , 	 (2.29) 

nde Tr designa o traço nos índices de espinores e nas coordenadas contínuas de espaço 

mpo. Considerando o fato de que - e-y.5 A = .5(-yfr) e utilizando a representação de tempo 

róprio de Schwinger [73] para â[A], a saber, 

â[A] = 
1 

 

yfr m 
yfr - m 

(
,),7f)2 _ m2 

i(M, — 7fr) fo  ds exp [_is  (7.n2 - (rít)2)] (2.30) 

a equação (2.29) pode ser reescrita na forma 

00 
(5Si[A] = -Tr [bs'7'07 f ds exp [-i (m2  - (yfr)2) 8] 

o 
00 

= 6{ - Tr f dss-1  exp [-i (m2 - (Tír) 2) s] , 
2 	o 	 (2.31) 

o de usamos o fato de que o traço do produto de um número ímpar de matrizes 7 se anula. 

I tegrando essa equação, obtemos a chamada representação de tempo próprio de Schwinger 

P a Si: 

Si  [A]-= Tr 
i f 

o  dss-1  exp [-i  (m2 __(T7-02) s] 1 + C1 , (2.32) 
° 

o de a constante de integração C1  deve garantir a condição de normalização S1[A = 0] = 0, 

p • dendo ser infinita se necessário.; Escrevendo S1  [A] como ..--- 

o olk., 
‘)Ç

ui47 • 	Si[A] = f dlx G1(x) + 	 (2.33) 

e comparando com o resultado (2.32), podemos escrever: 

  

i f" 
2 £1(x) = - 	ds 8-1  e-im2  trK (x, x; 

o  (2.34) 

o i de definimos 

  

K (x' , x"; s) 	(xle-"ix") , 	 (2.35) 
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OITI 

"1-í = — (Y7 )2  = *2 t'Fin  o- v = 2 17 	1 • 
11   

(2.36) 

A fun x"; s) desempenha o papel de um propagador de Feynman não-relativístico 

m 4 + 1 dimensões, om s fazendo o papel de tempo e it o papel de hamiltoniana. Por esse 

otivo" é-tornum denominar o operador 7:k de hamiltoniana de tempo próprio. 

O tratamento usado até agora foi geral, valendo para campos eletromagnéticos com quais-

uer características. No entanto, não é possível calcular exatamente a função K(x', x"; s) 

m um caso geral e, se quisermos prosseguir, devemos simplificar o problema. Sendo assim, 

os nos restringir ao caso em que os campos eletromagnéticos são lentamente variáveis e 

proximadamente uniformes. 

3.1 Campos Lentamente Variáveis e Aproximadamente 

Uniformes 

amos calcular ri  para campos eletromagnéticos lentamente variáveis e aproximadamente 

niformes, de modo que, em primeira aproximação, possamos escrever Fm, constante. 

Existem diversas formas de se calcular propagadores de Feynman. Nesta subseção, vamos 

bter o propagador (2.35) utilizando um método operatorial introduzido por Schwinger em 

951 [73]. Trata-se de um método elegante e muito conveniente em certos casos, mas que, 

t lvez por motivos históricos, tem sido empregado basicamente no cálculo de funções de 

reen relativísticas [38, 73, 74, 75, 76, 77]. No entanto, esse método pode ser aplicado 

i.ualmente em problemas não relativísticos [78, 79, 80, 81, 82]. (Uma discussão introdutória 

• esse método pode ser encontrada em [82]. Nessa referência, para que o método de Schwinger 

• udesse ser comparado com outros encontrados na literatura, o propagador do oscilador 

armônico foi calculado explicitamente por meio de três métodos diferentes, a saber: pelo 

M étodo de Schwinger, por integrais de Feynman e pelo método algébrico.) Vejamos como 

licar o método de Schwinger no caso de nosso interesse. 

Considere a partícula (imaginária) descrita pela hamiltoniana de tempo próprio função 

dos operadores X e fr. A quantidade K(x', x"; s) pode ser interpretada, como já mencionamos, 

como um propagador de Feynman num espaço com uma dimensão extra, onde s faz o papel 

• l e 
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(2.37) 

do tempo. A partir da Eq. (2.35), vemos que K(x', x"; s) satisfaz a equação 

i—K(x',x"; s) = lx / as 

sendo is') e lx") autovetores do operador de posição X: 

ix') = x'lx1)x ix  1.• 	= xl/ I x/l) (2.38) 

O método de Schwinger baseia-se na observação de que se utilizarmos o que seria o 

análogo do quadro de Heisenberg, ou seja, se definirmos operadores dependentes de s tais 

que 

(s) = eijt s 	, 	 (2.39) 

utilizarmos os autovetores de i(s) e i(0) com autovalores, respectivamente, dados por x' 

x", a equação diferencial para K(x', x"; s), (2.37), toma uma forma extremamente conve-

iente. Note que definindo 

Ix'(s)) := e'9Hx') 	—> 	"(s)lx/(s)) = x'Ix'(s)) 	 (2.40) 

• propagador K (x' , x"; s) pode ser escrito como (x1(s)lx"(0)), e a equação (2.37) se torna 

i-L(x'(s)lx"(0)) = (x'(.9)17-t(X,*)Ix"(0)) . 	 (2.41) 

O método de Schwinger consiste então em três etapas, como segue: 

1) Inicialmente, resolvemos as equações de Heisenberg para os operadores xµ  e */, : 

i
X 

= 	] 
ds 

.dfrm  
z— = . 

ds 
(2.42) 

2) De posse dos resultados obtidos em (1), escrevemos a hamiltoniana it em função somente 

os operadores "Xm(0) e Xii(s), de modo que em cada um de seus termos *Xi, (0) apareça sempre 

direita, e Xi,(s) sempre à esquerda, o que pode ser feito com o auxílio do comutador 

x (0), ii,(s)]. Estando a Hamiltoniana devidamente ordenada, é fácil perceber que 

(x' (s)litix" (0)) = f (x' , x" ; s) (x' (s)lx" (0)) , 	 (2.43) 
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onde f (x', x"; s) não contém operadores! Portanto, usando as equações (2.41) e (2.43), e 

integrando em .s, obtemos 

(x' (s)lx" (0)) 	g (x' , x") exp [—i f ds' f (x', x"; s')] , 

onde g(x', x") é urna função arbitrária de x' e x". 

(2.44) 

(3) O terceiro e último passo consiste em determinar g (x' , x"), o que é feito impondo-se as 
condições 

x'(s)yr,(s)z."(o)) 	(xi(s)ix"(o)) — eA),(xi)(x' (s)x"(0)) , 

(x'(8)1frg  (0) lx"(0)) =a x" 
 (x' (s)Ix" (0)) — eAtt(x")(x' (s)jx" (0)) (2.45) 

Isto determina g(x', x") a menos de uma constante multiplicativa, que pode ser encontrada 

ao impormos a condição 

lim (x/(s)lx"(0)) = 64(x' — x") , 
.5.o+ 

empre satisfeita por um propagador. 

(2.46) 

Vamos agora aplicar o método descrito acima para o propagador (2.35), com F12, cons-

ante. Inserindo a hamiltoniana (2.36) nas equações (2.42) e usando as relações de comutação 

(8)] = [4(o), fru(o)] = 

[fri/(s)) grv(s)] = Vrp.(0), í'rv(0)] = 

btemos 
,(s) 

= disr'( s) 
= 2ei'mv ;ri-v (s) • ds 	 ds 

Definindo as matrizes coluna fI e 5C, e a matrize 4 x 4 Ê, 

= 	(k),1 = 	, 	= :E% , 

as equações (2.48) podem ser reescritas como 

(2.47) 

(2.48) 

(2.49) 
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dX(8)  = 21I(s) 	di-1(8)  = 2etil(s) , 
ds 	 ds 

(2.50) 

  

cujas soluções são dadas por 

R(s) = e2eFsfi(0) (2.51) 

e2eÈs 
— j(0) =  	 II(0) 

eF 

= 2(e};)-leeËssenh(ei's)ü(0). 

onseqüentemente, podemos expressar II(s) e É[(0) em termos de X(s) e 5C(0): 

1 - 
II(0) = -

2 
eFe-eFssenh-1(eÊs) (jt(s) - 5(.(0)) , 

1 
= -

2 
eFeeFssenh-1(eÊs) (5((s) - 5((0)) 

Para ordenar a hamiltoniana 	é conveniente definir as matrizes 4 x 4 

(2.52) 

(2.53) 

= a" 
(g-1)

i2L 
, _ gisv (2.54) 

tilizando os resultados (2.53) (2.54), (C.4) e (C.5) na equação (2.36), podemos escrever 

f--/ 
2  
-1  eagÊ 	(s)* /Ás) = 121T(s)gfl(s) 

\T 	eF 	eÊTs 
(5((s) 5((o)) 2 senii(eÊs)) e 	-x  

21 (seefhe:Êss)  ()-((s) 5c(0)) 

()-(( s) — k(0)) gk (5((s) - 5C(0)) 

= kT(s)g1(((s) 5(T(0)gkk(0) - 5(.T(s)gi()(0)+ 

—5(T(o)gk5( (s) (2.55) 
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o que nos fornece 

itT(0)gibt(s) = (gR),,,(k)/2(0)(5()5,(s) 

= (5C)v(s)(kTg),,m(k);,(0) + (gR)„,,[(5C)12 (0), (k),(s)] 

= )-U(s)gld((0) 2itr [gkeet,s (senh(eÊs)  -11 

(eÊ) ) g  
(2.58) 

nde definimos 

K 
1 e2Ê2  

— 4 sinh2(cÊs) 

odos os termos presentes em (2.55) estão devidamente ordenados, com exceção do último. 

A partir do resultado (2.52), das definições (2.49) e (2.54), das primeiras relações (2.47) 

da equação (C.5), podemos calcular o comutador 

(2.56) 

(k),(s)] --= [(5(),„(0), (k),(0)+(2(eÊ)-leeÊssenh(eÊs)) Úp(0) 
vP 

(2(eÊ) -1 eel's ssenh(eÊs)) 
vp 

= i{g-1.  (2(eÊ)-1e4'ssenh(eÊs)) 
pv 

senh(eÊs)  T  
[ 	( = g-12ee-Ts 

(eÊ) 

= i[2e-eÊs(sellh(eÉ''s) g-il 

(eÊ) r" J p,  
(2.57) 

sando a propriedade cíclica do traço e a definição (2.56) de R, reescrevemos a equação 

( .58) na forma 

kT(0)gibt(s) = itT(s)gk' k(0) + tr [e 
eÊ 

senh(eÊs))i 
(2.59) 

Considerando o fato de que trÊ = O e e'Fs = cosh(eÊs) + senh(eÊ's), podemos simplificar o 

traço acima, o que nos fornece 

itT(0)gkk(s) = kT(s)gR' k(0) + tr[eÊ coth(eÊs)] . 	 (2.60) 
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) esse modo, com a expressão (2.60) ordenamos o lado direito da equação (2.55) 

72í = XT(s)gIkX(s) + XT(0)gkX(0) - 2XT(s)gRX(0)+ 

i 
-t t r[eF coth(eÊs)] - 2 -

1 
eagts' 

ubstituindo o resultado (2.61) em (2.43) e (2.44), obtemos respectivamente, 

(2.61) 

f (x' , x"; s) 
(x'(s)1Ê 1 x"(0))  

(x1(s )1 x" (0)) 

e 

2 
= -

e 
4 (X' - Xll)TgF2senh-2(eFs)(X' - X") 

2 
tr[eF coth(eF s)] - 2 -

1 
 eagF 

(xl (s)!x"(0)) = (x', x") exp 1lie  (X' - X")TgF coth(eFs)(X' - X")] 

x exp [--12Ltr ln (senh(e(Fe
)

8)  )] exp (eo-gFs) 

(2.62) 

g(xf)det--1/2 [senh(eFs)i exp  (_
i 
i 

ea-gFs) x 
(eFs) J 	2 

2 e x exp[-
4

(X,  - X )T  gF coth(eFs)(X' - X")] , 	(2.63) 

onde usamos o fato de que det A = exp[tr(ln A)] e definimos a matriz coluna X analogamente 

á definições (2.49). 

Resta-nos agora encontrar g(x' ,x"). Com esse objetivo, devemos impor inicialmente as 

condições dadas pelas equações (2.45). Antes, porém, vamos utilizar as expressões (2.49) e 

(2.53) para escrever os operadores **Ás) e *1.,(0) como: 
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12 (s) 	g w,(fl(s))„ 

g (
1 
2eFeeFs sinh-1(eFs)) [(X (s) - (X(0))7] 

gm,(Ii(0)), 

= g In, (21  eFe-eFs sinh-1(eFs)) [(X (s)).), - (X(0)).y] . 

Dessa forma, o lado esquerdo das equações (2.45) podem ser escritos como 

(2.64) 

(x'(s)iír' iz (s)lx"(0)) = NeFeeFs sinh-1(eFs)(X' - X")] (x/ (s)lx"(0)) 2 

(x/(s)ifri,(0)ix"(0)) = [geFe-eFs sinh-i ir )(X' - X")] (x'(s)lx"(0)) . 

(2.65) 

Com o intuito de encontrar o lado direito de (2.45), usamos o resultado (2.63) para computar 

as derivadas em' (xi(s)lx"(0)) e e(x'(s)ix"(0)). Após algumas manipulações triviais obtemos 

a(x'(s)lx"(0))  
[g(x,1  x„)  aga(xx';:11)  + 2 (gF coth(eFs) (X' - X"))µ] (x'(s)Ix„(0)) 

aw(s)lx"(0)) 	r 	1 	Og(x` , x") 	ie 
2 F coth(eFs' - X")) (x/(s)Ix" ax"" (0)) (x' , x") ax" 	

)(X 
 

(2.66) 

Com o uso das equações (2.45), (2.65) e (2.66), podemos escrever 

1 	ag(x' , x") 
g (x' , x") 	Ox'".  

1 	,0 g (x' , x") 
g (x' , x") ex"I` 

ie [A(xl ) + 
1 
 gF(X' - X")] , 

 

1 
-ie [A(x") 	gF (X" - X')] . (2.67) 

Escrevendo o lado esquerdo de ambas as equações (2.67) como a derivada de um logaritmo, 

• integrando-as ao longo de um caminho arbitrário F, com ponto inicial em x" e ponto final 

:m ou seja 
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r aing(,x")  deu  
r 	(9e 

fx, a ln g (xY) 

x",F 

= ie Jx  [A,,(e) 	.(gF) „,(e 

-ie 
 f"

[A p.() + 
x 

xnlde , 

- xiv)ide , 	(2.68) 

btemos 

1 g (x',  x"; 	= g (x" , x"; r) exp {ie f [A p,( ) + -
2 

(gF)
F
,(e - x)] d} 

x' 
g (x' , x" ;F) = g (x' , x'; F) exp{ie f 	+ (gF)/i.,(e - x'')] de} . 	(2.69) 

erivando a primeira destas equações em relação a x"IL  e a segunda em relação a x'µ obtemos 

Og (x' , x"; F) 
a /III 

a g (x' , x"; F) 
aXIP. 

a g (x" , µ"; F)  
exp{ f [A7  + 	- 	dez} 

-ieg(x' , x"; F) [A(x") + 	(X" - X')] , 

ag(x' , x';F) 	fx/  
axm 	exp ze 	[A-y(e)± -

2 
(gF) 	- XIV)] de} 

-Fieg(x' , x"; F) [A(x)  + 2  (gF) (X' - X")] . 

Comparando as equações (2.67) e (2.70) somos levados à conclusão de que 

(2.70) 

e conseqüentemente, 

Og (x" , x"; F) 
ax"I` 

ag(x', x'; F) 
ax,/, 	 = (2.71) 

g(x", x"; F) = g(x', x'; F) = constante . 

S bstituindo os resultados acima nas equações (2.69), obtemos 

g (x' , x"; F) = C exp {ie 	[Ap() + (gF),,,,(e - xill de} 
2 

g (x1  , x" ; F) = C exp ie
J 

[A/2() 
2 	

- xfil de} 

(2.72) 

(2.73) 
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Ambas as integrais acima independem do caminho de integração, pois os respectivos in-

tegrandos têm rotacional nulo. Portanto, podemos escolher o caminho da forma mais 

conveniente possível. Vamos escolher a linha reta que liga os pontos x' e x". Devido à 
propriedade de anti-simetria do tensor 	é imediato verificar que 

f x' 	 x/ 
(gF),,,(e — x"v )de = (gF)/2,(e' — xnde = 0 . L", reta 	 x", reta 

Com isso, as equações (2.73) nos fornecem 

	

g (x' , x") = C exp (ie f 	Ap(e)de) 
x",reta 

Substituindo este resultado na expressão (2.63), obtemos 

(2.74) 

(2.75) 

r

L  
sinh(eFs)]  

1D ie 	A,.,(e)de). (x/(s)jx"(0)) = —
. 2

det-1/2 
 (eFs) ex- 	x",reta 

ie 
x exp Geo-gFs) exp [71-(X' — X")TgF coth(eFs)(X' — X")] . 

(2.76) 

Resta-nos ainda encontrar a constante C utilizando a condição inicial (2.46). Quando 
s -4 0+ podemos escrever 

det-1/2 
( 

rsinh(
eFs)

eFs)] ti det-1/2(1) = 1 , 

_cosh(eFs) F  1 	1 F coth(eFs) 	_te 
 sinh(eFs) 	(eFs) 

= e
s 

om isso, escrevemos o limite s 0+ da equação (2.76) como 

x,  
lim (x/(s)ix"(0)) = exp (ie f 

x",reta 

(2.77) 

(2.78) 

X lim —C exp  -
-1

[— (XI°  mti°)2 + Í 	111\2 

3--40+ S2  	( 4is 	— - / 	■ xii  — x ) + (x' 2  — xn2 ) 2 + (x13  x113)20] [ 
(2.79) 

omparando a equação acima com a representação da função delta 

1  
5(y) = lim 

2ar 
exp (

4a2
M 

ir  (2.80) 
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ornamos C = -i/(47r)2, de modo que o limite (2.79) forneça 

x' 
lim (x/(s)jx"(0)) = 64(x' - x") exp (ie 	Aii(e)deP) 

8—>0+ 	 fx",reta 

= 8
4(x x") (2.81) 

de acordo com a condição (2.46). Com isso, o propagador (2.76) é finalmente escrito como 

(x1  (s)ix"(0)) 
= (47rsi )2 

- 
	det-1/2 

[sinh(eFs)] 
exp ( eugFs)x 

(eFs) 	2 

( 	
x, 

x exp ie si 

	

	Ap( )de exp [-ie  (X' - X")TgF coth(eFs) (X' - X")] . 
4 x"reta ,  

(2.82) 

Com todos esses resultados, podemos agora voltar atrás e calcular a correção L. Para 

isso, substituímos o resultado (2.82) na equação (2.34) e fazemos a rotação de Wick s -> -is: 

Li 
1 

327r2  Jo 

00 
dss-3e-m2sdet-1/2 

[sin(eFs) 
 tr exp (-

1
eo-Fs) 

eFs 	2 

= 	 dss-3e-m2s (es)2g R cosh(esX)  1 
(2.83) 871_2 f°° i, 	cosh(esX) i 

1  

de usamos os resultados (D.7) e (D.16) do Apêndice D, e definimos X2  = (.fi + iÊ)2. A 

pressão (2.83) para campos fracos se reduz a 

ri -
87r2  o 

f dss-1  e-m2s [1 + 3 -
2 

(es)2.F1 . (2.84) 

o de usamos a definição (2.5) de .F. Acrescentando a .C1  em (2.83) um termo constante 

( ndependente de É e fi) de modo a fazê-la se anular na ausência de campos, podemos 

e crever a lagrangiana efetiva para o sistema como 

ref = Go± £1 

2 6   
- [1 + 	dss16-m2s 

12-7-r2  j 	
-- 

o  

	

1 f" 
dss 3  e n12  [(es)

2
Ç 

 R cosh(esX) 	2 
1 - - (e s) 2 	. 

871-2  jo 	 cosh(esX) 	3 
(2.85) 

SI 
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Renormalizando os campos e a carga e de modo que 

Tren içren = +ce2)(F+iç) eren = e2 /(1 + Ce2) , 	(2.86) 

nde definimos a quantidade infinita 

C =  1 dss-
127r2  o  

btemos a chamada lagrangiana de Euler-Heisenberg [73, 83, 84] 

1eo 
2 	 cosh(esX) Gef  = 	87,-, o  — 	f dss-3e—m s[(es)2Ç 

 cosh(esX) 
1 — — 

3 
2 

(es) 2.F] . 

a expressão anterior suprimimos os índices ren das quantidades renormalizadas. 

Expandindo a lagrangiana (2.88) para campos fracos, obtemos 

—7742 

(2.87) 

(2.88) 

GE 
4  ( 	 e*2 _ 13 2)2 ± 7(Êij)2] 

= 	B2)  ± 3607r2m4 [(Ë 
(2.89) 

b or abuso de linguagem (como é feito usualmente na literatura), vamos nos referir à expressão l 

,CEH 

3 

(E2  — L12) 2a2  (himec) 

2 	 45 	mc2 [(E2  — B2) 2  + 7(É.É.)2] 

= (E -*2 B2) 
	

1 	[1 (Ê2 É2)2 771  (É..f3.)2] -§ 	 2(4E11)2 4  
(2.90) 

nde a = e2147The 1/137 é a constante de estrutura fina, e 

457r3  mc211/2  
EO,EH [ (2.91) 

2a2  ,\ 3c  

a constante com dimensões de campo elétrico, análoga a E0  na equação (2.9), sendo 

= 27rh/mc o comprimento de onda Compton. 

cima também como lagrangiana de Euler-Heisenberg. 

Recuperando as constantes h e c temos 
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4 O Efeito Scharnhorst e a Técnica de Barton 

sta seção tem por meta expor o cálculo de Barton [12] para o efeito Scharnhorst [11] e 

alcular a variação na velocidade da luz que se propaga numa região entre placas paralelas, 

as usando uma lagrangiana efetiva ligeiramente mais geral do que a de Euler-Heisenberg 

que contém, como casos particulares, esta última e a de Born-Infeld. Podemos alcançar 

ses objetivos simultaneamente, como veremos a seguir. 

Note que as lagrangianas (2.89) e (2.9) podem ser escritas de uma forma genérica como 

= Go  + OG , 	 (2.92) 

endo Go  a lagrangiana de Maxwell (2.3) e Ar um termo de correção que tem a forma 

OG 	4 "-a.F2  + fiç2  

= a(É2  - ,ü2)2  + o(É. É)2  , (2.93) 

nde a e C3 são constantes reais. 

Vamos agora utilizar a técnica de Barton para obter a variação na velocidade da luz, 

upondo que a eletrodinâmica seja descrita por uma densidade de lagrangiana com a forma 

enérica que acabamos de escrever. Para isso, temos de lançar mão do fato, bem conhecido 

a eletrodinâmica clássica [12], que uma correção AG à lagrangiana de Maxwell leva à criação 

e um vetor de polarização P e de magnetização É dados, respectivamente, por 

1 (5A.G 	1 5Ar 
— 

- 

47r (5È 	47r 613 
ara a expressão de AG em questão, (2.93), temos 

(2.94) 

Pi 	
1 SáG 	1 [4a(É2 — .fi2 = )Ei  20(Ê • 1-1)Bi] , 	(2.95) 

47r 6Ei 	47r L 

Mi = 

	

1 6.áG 	1 1- -1i2)Bi + 2,3(É.fi)Ei] . 

	

47r SBi 	47r É--42  
(2.96) 

passo principal na técnica que estamos empregando consiste em substituir nas expressões 

.95) e (2.96) os campos eletromagnéticos É e .1;" por uma soma de dois campos, um clássico 

e 
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e outro quantizado, isto é, fazemos nessas expressões a substituição 

, 	 (2.97) 

Sendo é e g campos clássicos que descrevem a onda cuja propagação desejamos estudar, e 

É
ti 

e B campos quânticos, que serão tomados, dentro do espírito da teoria de perturbação, 

como operadores de campo livres, sem interação, exceto pela alteração de seus modos devido 

à presença das placas. Dentro dessa aproximação, é válido tomar a expansão dos campos 

quantizados em termos de operadores de criação e aniquilação, como feito usualmente na 

EDQ. 

Substituindo a expressão (2.97) nas equações (2.95) e (2.96), tomando o valor esperado 

o vácuo, e separando os termos lineares nos campos clássicos é' e r), obtemos 

= 7F6' [((È2  — f32)Ei) ii  + ((É2) H  — (1ã2) H ) ei  2(EiEi)irei + (g 2  — g 2)el+ 

[((EiBi)Bi)ii (BiBi)liej  + Miei] 

= pi 	[((É2  — f32)Ei)11 + (J 2  — b 2)ei] Êr [((EiBi)Bi)ii + Miei] 
7r 

(2.98) 

(Mi  )11 = — . r_[((É2  — 2)B i) + ((Ê2)11 	(ii2) 11 )bi  — 203 iB 	+ 	2 	2)bi] +  

	

+Êr [((EiBi)Ei)ii + (13 	+ eieibi] 

	

= mi  — á[((É. 2  — B2)Bi)11 	(è' 2  — b 2)ul 	 II 	 , (2.99) 

nde o símbolo (...) II  significa que estamos levando em consideração as condições de contorno 

esejadas. Usamos ainda o fato de que (EiBi)11 = O e definimos 75' e ir-t como sendo, respecti-

amente, os termos da polarização elétrica (2.98) e da magnetização (2.99) que correspondem 

respostas do vácuo lineares nos campos clássicos. Estes vetores nos permitem obter as 

polarizabilidades elétrica x .;)  e magnética xtn)  do vácuo, como segue: 

:1• 
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pZ 	/ it.  [4 Ji ((É2  — f12)1h + 2 (EiEj)11) + (BiBi)n] ei  = )d;)ei  , 	(2.100) 

1 
mi 

	

	(—(E2  — f32)0ii + 2 (13iBi) 	20(EiEj)id bi  = x( i)bi  . (2.101) 
47r 

)e posse das quantidades x )  e xr,  , encontramos a permissividade elétrica eii  e permeabili-

ade magnética 

(e) 
Eij = Õij 47rXii  = 6ii ACii 

4,m) „Ç A 
= bii 	( — i  • 

tilizando as equações (2.100), (2.101) e (2.102), temos 

(2.102) 

Cii  = 4a: ((É2  — É12)116ii  + 2 (EiEj) + 20(BiBi)11 , 

ágZ.) 

	 4ã(—(E2  — É2)11bij 2(BiBj)ii) 	20(EiEj)ii 
	 (2.103) 

Correções nas expressões de cii e µij  provocam uma variação no índice de refração 

= (E/A1l 2 , dada em primeira ordem por 

1 
An, = —

2
(€ Ag) . 

Esta variação, por sua vez, fornece a velocidade corrigida c' da onda: 

C  = 
n' n An 	

—
An) c 

— 1 — An , 
n n 

c 

(2.104) 

(2.105) 

nde usamos o fato de que no vácuo livre (sem condições de contorno) o índice de refração 

é igual a unidade, e no nosso sistema de unidades c = 1. 

Com essas considerações, podemos encontrar então qual é a influência na velocidade de 

ropagação da luz devida à presença de duas placas infinitas, dispostas uma paralelamente a 

utra, supondo que a eletrodinâmica seja descrita por uma lagrangiana com a forma (2.92). 

De um modo geral, podemos ter uma onda se propagando na direção perpendicular às 

lacas, que no nosso sistema de coordenadas corresponde a unia propagação na direção de 2, 

u uma onda se propagando paralelamente às placas, por exemplo, na direção de x. Em cada 
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um desses casos, existem duas polarizações possíveis, com suas respectivas susceptibilidades 

elétrica e magnética, e correspondentes variações nos índices de refração ãn, que podem ser 

obtidos por meio de (2.103) e (2.104), como indicado abaixo: 

• Propagação paralela às placas (Tj = 

1. Polarização na direção ú: 

	

ê*= e2" 	 De = AE22 
(2.106) 

	

b=b32 	 Dµ=Oµ33 

An = 4ã ((E2E2)II (B3B3)II) 	((B2B2)11 + (E3E3) i) 	(2.107) 

2. Polarização na direção 2: 

	

= b2  y 	Dµ = A/122 

An. = 4õ ((E3E3)11 	(B2B2 )11) + )(3 ((B3B3)11 + (E2E2)II) 	(2.109) 

• Propagação perpendicular as placas = ±1kA 

è'= e3.Z 	 De = AE33  
(2.108) 

1. Polarização na direção 

é= 
b2È 

AE = AEli 
= AI/22 

( 2.11 O ) 

(2.111) = 4i51((ElE1)11 	(132B2)11) 	fi((B1B1)II + (E2E2)II) 

2. Polarização na direção 

E.= e2È 	 De = AE22 (2.112) 
b = b1 	 ---- 

An = 4-c4(E2E2)11+ (B1B1)11) + ((B2B2),, + (E1 E1 ) 11 ) 	(2.113) 

Daqui por diante, vamos nos restringir a três condições de contorno distintas. 
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*) Duas Placas Condutoras-(CC) 

Esta configuração se refere a duas placas perfeitamente condutoras dispostas uma parale-

lamente a outra. Os correlatores dos campos eletromagnéticos submetidos a estas condições 

• odem ser obtidos por meio da mesma técnica empregada na seção 1.3 [10] e são dados por 

, 	(2.114) 

sendo a função F(0) e a quantidade 9 definidas em (1.76) e (1.51), respectivamente. 

Substituindo os resultados (2.114) nas equações (2.107) e (2.109), obtemos variação nula 

•ara o índice de refração de uma onda se propagando paralelamente às placas: 

A,,,(CC) 
" ' (2.115) 

sendo assim, não existe variação na velocidade da luz paralela às placas. 

Para uma onda se propagando perpendicularmente às placas, as equações (2.114), (2.111) 

e (2.113) nos fornecem 

( 2 . 1 1 6 ) 

( i) Duas Placas Permeáveis-(PP) 

Neste caso as duas placas em questão são infinitamente permeáveis. Os correlatores dos 

c. mpos eletromagnéticos para esta configuração de placas são dados por [46] 

(01ERX)10) = (01.g(X)10 = —(01M(X)10) = 
(F(6)  + 15) ' 48L4  

2 1 
(014(X)1°) — (OIBRX)10) = —(01 /3 (X)10) = (F(6)  E) 

(2.117) 
48L4  = — 

S bstituindo os resultados (2.117) nas equações (2.107), (2.109), (2.111) e (2.113), obtemos 

mesmos resultados que os encontrados para as condições CC 

An(II")  = 0 • 

ir2 àn(j_pp) =. ánS_CC) == 	" 	(4(7e 4.0) 
23325 L4  

(2.118) 

(2.119) 

o 

(01 -g(x)10) (014(40) — (014x)10) 
7r 

e = = = 48L4  \ () 15/ 

2 í  
(OMX)10) = — (01B?(X)10) = —(01./A(x)10) = 

478r.L4 	115) -P(61) + 

7r2 1  
AnS,")  = 	 

23325 L4 
(4-á + f) . 
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• 

i) Uma Placa Condutora e uma Permeável-(CP) 

Esta configuração corresponde a duas placas paralelas, uma perfeitamente condutora, 

ocalizada no plano z = 0, e outra infinitamente permável, localizada em z = L. Os corre-

atores de campo elétrico, a menos de fatores divergentes, são dados pelas equações (1.56). 

s correlatores de campo magnético podem ser calculados de forma análoga ao que fizemos 

ara o campo elétrico. Os resultados são: 
7,2 

(0lENX)113) = 0140» = (DIM (X)1°) = 
96L4 

 (9) + ji) 

2 í  
(Oin (40) = (01BRX)10) - (01/3 (40) = 	 

48L4 G(e)  60/ 	
(2.120) 

endo a função G(0) definida em (1.54). Substituindo os resultados (2.120) nas equações 

2.107), (2.109), (2.111) e (2.113), obtemos 

An(CP) = o  , 
(2.121) 

II 

-2  (CP) 7 (cc) 777 1 
Ani  = —

8
Ani  = 26325 L4 (4a + 0) . 	 (2.122) 

Pelas equações (2.115), (2.118) e (2.121) fica claro que para nenhuma das condições 

e contorno consideradas temos alteração na velocidade da luz quando esta se propaga 

aralelamente às placas, quaisquer que sejam os coeficientes ã e 0. 
Para uma propagação em uma direção arbitrária, fazendo um ângulo O com a normal às 

lacas (direção 2), a equação (2.105) se torna 

d(0) = 1 —1177,1  cose  O . 	 (2.123) 

No intuito de encontrar uma "fórmula mágica" para a lagrangiana (2.92), tomamos a 

édia da velocidade (2.123) nas polarizações e em todas as direções 

c
1 	2-tr 

—47r  fo o  c (0)sen(0)d00 

	

= 1
3 	

(2.124) 

calculamos a densidade de energia do campo eletromagnético no vácuo, 

p = (01 (É.2 	13-.2)10) 
2 ' 

(2.125) 
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para as três condições de contorno consideradas, o que pode ser feito com o auxílio dos 

correlatores (2.114), (2.117) e (2.120), 

C 	P 	 C P 	7  cc 	77r2   1  Pc 	PP  — 	
ir2 

24325 L4 ' P = 8 P = 27325 L4 • 

Utilizando as equações (2.126), (2.124), (2.116), (2.119) e (2.122), temos que 

dcc = 1 — (4ã + 2)3)pcc  
3 

E'PP  = 1 — (4 -rá +2)(3)pPP  
3 

EicP  — 1 — 3 —
2 

(4ã + 20)pc" , 

u de forma geral 

e =1— —3 (4ei + 213)p , 

ue é a fórmula mágica para a lagrangiana (2.92). 

( 2 . 12 7 ) 

(2 . 12 8) 

Os coeficientes ã e f3 para a lagrangiana de Euler-Heisenberg podem ser encontrados ao 

ompararmos as equações (2.93), (2.92) e (2.89) 

e4 7e4  
3607r2m4 	fi = 7ã = 3607r2m4 	 (2.129) 

tilizando as equações (2.116), (2.119), (2.122) e (2.105), concluimos que a velocidade de 

ropagação cl da luz, quando esta se propaga perpendicularmente às placas, para cada uma 

as condições de contorno consideradas, é dada por 

(ey±CC) = (ct)(LPP) 117r2 a2 
= 1 + 	 

223452  (m,L)4  

11a

2

2   (C)4 
	1 , 	 (2.130) --"=- 1 + 26345 r2 L 

(2.126) 

(c,) (±CP) = 1 8 223452 (mL)4 

1 	77a2   N.\ 4  
2934527r2  L ) <1  

7 117r2 	a2 

(2.131) 
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endo )v' o comprimento de onda Compton AG,  = 27r/m. 

Ao substituirmos os valores de Et e fi dados em (2.129) na equação (2.128) obtemos a 

órmula mágica (2.4). 

Para uma lagrangiana do tipo Born-Infeld (2.9), os coeficientes "éx e 13 são dados por 

1 	 1 
a =  84 	13  —724 	

(2.132) 

Com o auxílio de (2.116), (2.119), (2.122) e (2.105), obtemos 

(c,)icc) _ 	(Fp) 	ir2 

	

- kC )1 	1 ± 
24325 

(1 7) 
(E0L2)2  ' 	

(2.133) 

77r2 \ (CP) 
(2.134) 

	

C  )1 	= 1 
27325 

(1 y) 
(E0L2)2 

Substituindo os coeficientes apresentados em (2.129) na equação (2.128) obtemos a fórmula 

ágica para uma lagrangiana do tipo Born-Infeld 

1 = - -3(1 — 7) 
E0  

(2.135) 

2.5 Comentários Finais 

Na seção anterior aplicamos a técnica introduzida por Barton [12] para obter a variação da 

Nelocidade de propagação da luz ocasionada pela alteração do campo de radiação quando este 

ca submetido às condições de contorno impostas pela presença de placas materiais (lembre-

e que o campo clássico da onda eletromagnética interage, indiretamente, com o campo de 

adiação, devido à polarização do vácuo). Discutimos três configurações de placas paralelas 

iferentes, envolvendo placas perfeitamente condutoras e perfeitamente permeáveis. 

Para uma lagrangiana com a forma geral (2.93), vemos pelos resultados (2.115), (2.118) e 

.121) que a velocidade de uma onda se propagando paralelamente às placas não se altera. 

Para uma propagação perpendicular às placas, as condições de contorno (CC) e (PP) 

f rnecem o mesmo resultado para a variação na velocidade da luz, como indicam as equações 

(+.116) e (2.119) respectivamente. 
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Já para a condição (CP) podemos constatar, pela equação (2.122), que a variação na 

elocidade da luz tem sinal oposto ao que encontramos para as outras duas condições. Esse 

esultado está relacionado com o que ocorre no efeito Casimir, onde encontramos a mesma 

orça atrativaentre as placas para as condições (CC) e (PP), e uma força repulsiva para (CP). 

e fato, analisando a relação existente entre a variação na velocidade da luz Sc e a densidade 

e energia do vácuo p, constatada por Latorre e colaboradores [68] e dada pela equação (2.4) 

•ara o caso da EDQ usual, esse resultado já era esperado, devido à proporcionalidade entre 

c e p. Uma outra conseqüência imediata dessa proporcionalidade é que a variação Sc para 

condições (CP) é —7/8 das variações correspondentes com as outras duas condições de 

ontorno, como pode ser verificado comparando as equações (2.116), (2.119) e (2.122) 

Ao considerarmos lagrangianas do tipo Born-Infeld, dadas por (2.9) com y genérico, 

omos levados a um fato interessante: de acordo com (2.133) e (2.134), se tomarmos um 

ator 7 < 1 teremos 

	

-y < 1 	> 	(c/ )(ice)  = (c')(iPP)  > 1 , (c1)(1CP)  < 1 . 

Já no caso em que 7 > 1, obtemos 

	

> 1 	(eyicc) _ (cYIPP)  < 1 , ATP)  > 1 . 

(2.136) 

(2.137) 

o entanto, se tomarmos -y = 1 não se constata, na aproximação considerada (ordem 1/Ed), 

nenhuma variação na velocidade da luz devido à presença das placas materiais. Ou seja, 

temos 

-y = 1 (ct)(1CC) (d)(1PP) (c/)(1CP) 1  (2.138) 

O fato de termos obtido velocidades de propagação da luz maiores do que c = 1 não 

stá em desacordo com a causalidade, estassão velocidades de fase, e esses resultados valem 

omente para baixas freqüências. Para fazermos um estudo a esse respeito, deveríamos ter 

onsiderado a propagação de um pacote de onda, investigando qual seria a velocidade da 

ente desse pacote, quantidade esta que não deve ultrapassar c = 1. Porém, para termos 

um pacote com frente bem definida, precisamos considerar suas componentes de Fourrier 

em todo o espectro, inclusive nos altos valores de freqüências, situação onde os resultados 

presentados não se aplicam mais. 
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Como último comentário, gostaríamos de enfatizar que com a técnica de Barton, em-

regada na seção anterior, também poderíamos ter obtido a variação da velocidade da luz 

rovocada pelas mais diversas circunstâncias, como efeitos térmicos, condições de contorno 

e outros tipos, etc. Para isso, bastaria tomar o valor esperado do campo eletromagnético 

(2.103) no estado correspondente. 
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Capítulo 3 

Correções Radiativas ao Efeito 

Casimir 

Neste capítulo estudamos o efeito Casimir para campos com interação. Em particular, calcu-

lamos as primeiras correções radiativas à energia de Casimir de um campo escalar com massa 

com auto-interação A,04  sujeito a condições de contorno em fronteiras planas e paralelas entre 

si. Várias condições são consideradas, dentre elas a condição mista (Dirichlet-Neumann), cuja 

peculiaridade reside no fato de que mesmo para a configuração de placas paralelas ela dá 

origem a uma força repulsiva entre as placas. Os limites de massa nula para as correções em 

ordem A concordam com os resultados da literatura [24]. Já os cálculos envolvendo campos 

massivos, revelam uni resultado interessante, e um dos mais importantes desta tese, a saber: 

embora a energia de Casimir de um campo escalar sem massa calculada com as condições de 

contorno de Dirichlet seja idêntica àquela calculada com condições de contorno de Neumann, 

mesmo se incluirmos as primeiras correções radiativas (resultado inesperado, pois os modos 

do campo são diferentes), o mesmo não ocorre para campos massivos. 

O capítulo está organizado da seguinte forma. Na seção 3.1 fazemos urna breve introdução 

ao efeito Casimir. Na seção 3.2 apresentamos os cálculos do efeito Casimir para o campo 

eletromagnético entre placas paralelas e perfeitamente condutoras. Na seção seguinte, cal-

culamos a energia de Casimir de um campo escalar com massa, mas utilizando diretamente 

técnicas funcionais. Na seção 3.4 passamos a discutir as correções radiativas ao efeito Casimir 

no modelo 4,4  e, finalmente, na seção 3.5 encontram-se comentários finais. 
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3.1 Introdução ao Efeito Casimir 

O efeito Casimir, assim chamado em homenagem ao físico holandês Hendrik B. G. Casimir 

que o previu teoricamente em 1948 [1], consiste essencialmente na atração entre duas placas 

neutras, paralelas e perfeitamente condutoras — em outras palavras, um capacitor plano 

descarregado —, localizadas no vácuo. Obviamente, tal força não pode ser explicada a 

partir da física clássica. Sua origem é genuinamente quântica. No entanto, a novidade do 

resultado de Casimir não estava no fato de que dois objetos neutros pudessem se atrair, uma 

vez que London [85], em 1930, já havia explicado com a mecânica quântica a força de atração 

entre dois átomos (ou moléculas) neutros, porém polarizáveis, conhecida como força de van 

der Waals. A novidade de seu o trabalho estava na técnica empregada por ele no cálculo 

dessa força, baseada, como veremos, na energia de ponto zero do campo eletromagnético 

quantizado na presença das placas. 

De fato, a história do efeito Casimir está intimamente relacionada com as forças de van 

der Waals; o próprio interesse de Casimir na época não era a interação entre duas placas 

neutras e condutoras, mas sim como o retardamento causado pela finitude da velocidade da 

luz afetava as forças de London-van der Waals. Esse interesse se originou nos resultados 

encontrados por Verwey e Overbeek [86] relacionados ao estudo da estabilidade de certos 

sistemas coloidais. Eles chegaram à conclusão de que, para que houvesse acordo entre teoria 

e experimentos, o potencial de interação interatômico deveria cair mais rapidamente do 

que 1/r6  (potencial previsto por London) para grandes distâncias. Mais ainda, chegaram a 

conjecturar que a razão para essa mudança na lei de força tinha origem no retardamento da 

interação eletromagnética, cujos efeitos tornavam-se perceptíveis a grandes distâncias. Ou 

seja, a teoria de London deveria ser modificada para grandes distâncias a fim de incorporar 

os efeitos do retardamento. Foram justamente Casimir e Polder os primeiros a calcular 

explicitamente tais efeitos utilizando métodos perturbativos em eletrodinâmica quântica [87]. 

Eles mostraram que para distâncias interatômicas tais que o tempo de percurso da luz entre 

os átomos é da ordem de tempos característicos do átomo, o potencial interatômico passa a se 

comportar como 1/r7. Na época, esse resultado causou muito mais impacto do que o trabalho 

que deu origem ao efeito Casimir. Essa mudança na lei de potência da interação de van der 

Waals quando se passa do regime não retardado (pequenas separações entre os átomos) ao 
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regime retardado (grandes separações entre os átomos) só foi verificada experimentalmente 

vinte anos após a sua previsão, por Tabor e Winterton [88]. Usando folhas de mica, eles 

verificaram que havia uma mudança na lei de potência da força interatômica para distâncias 

da ordem de 150À; essa distância corresponde aproximadamente ao comprimento de onda 

da transição dominante do material utilizado. 

Embora o cálculo de Casimir e Polder [87] tenha sido longo e trabalhoso, o resultado final 

se revelou relativamente simples. Esse fato sugeriu a eles que deveria haver um procedimento 

muito mais simples que fornecesse o mesmo resultado, como fica claro em suas próprias 

palavras': 

A forma muito simples da Eq. (56) e a fórmula análoga (25) sugerem que deveria 

ser possível derivar essas expressões, talvez a menos de fatores numéricos, por 

meio de considerações mais elementares. Isso seria desejável uma vez que daria 

um respaldo físico maior para o nosso resultado, um resultado que na nossa 

opinião é muito notável. Até o momento não fomos capazes de encontrar tal 

argumento simples. 

Foi então que, numa conversa com Niels Bohr, Casimir ouviu a sugestão de que seu resultado 

poderia ter alguma relação com a energia de ponto zero'. Uma simples sugestão, mas o 

suficiente para colocar Casimir no caminho certo. Pouco tempo se passou para que Casimir 

rederivasse seu resultado utilizando o conceito de energia de ponto zero, num trabalho que 

foi publicado apenas em 1949 [91] (maiores detalhes sobre as motivações iniciais de Casimir 

podem ser encontradas em [92]). A novidade do trabalho de Casimir estava então no fato 

de que a força entre dois corpos macroscópicos colocados no vácuo pode ser calculada pela 

variação da energia de ponto zero (devidamente regularizada e renormalizadada) do campo 

eletromagnético quantizado, sujeito às condições de contorno impostas pela presença de tais 

corpos. Esse método deve fornecer o mesmo resultado para a força entre os corpos que aquele 

'Tradução feita pelo autor desta tese. 

2A energia de ponto zero apareceu na física pela primeira vez num trabalho de Max Planck em 1911 [89], 

bem antes que a mecânica quântica estivesse bem estabelecida e que a sua derivação fosse feita a partir do 

formalismo matricial de Heisenberg em 1925. Durante muitos anos, mesmo após 1925, ainda foi um tema 

controvertido nos debates entre os especialistas da física quântica. Para maiores detalhes sobre a história da 

energia de ponto zero, veja, por exemplo, a referência [90]. 
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obtido pela integração das forças de van der Waals entre os átomos (moléculas) desses corpos, 

desde que se leve em consideração os efeitos de retardamento e a não-aditividade das forças 

de van der Waals. 

As forças de Casimir em geral são muito pequenas. Para se ter uma idéia quantitativa, 

a força por unidade de área entre duas placas condutoras separadas por uma distância a, 

calculada por Casimir em 1948, é dada por [1]: 

O 

	

a 	7r2 F() 

0a4 

	 1 dyn 
, 013  	 (3.1) 

	

L2 	24 	 (a/gm)4  m2  

onde L2  corresponde à área de cada placa. Para a = lpm, por exemplo, a pressão de Casimir 

é aproximadamente 10-8  vezes a pressão atmosférica. Muito embora sejam diminutas tais 

forças, elas podem ser medidas experimentalmente. O primeiro experimento realizado com 

o intuito de verificar a existência do efeito Casimir foi feito por M. J. Sparnaay em 1958 [13]. 

No entanto, ele pôde apenas afirmar que seus resultados experimentais eram compatíveis 

com a previsão teórica feita por Casimir. Quatro décadas se passaram até que novos expe-

rimentos fossem realizados diretamente com metais (não necessariamente com duas placas 

aralelas), mas dessa vez com uma acurácia muito maior [14]. A boa precisão experimental 

btida por técnicas modernas — a maior parte dos experimentos recentes foi feita utilizando-

e microscópios de força atômica — exigiu que a comparação entre os experimentos e a teoria 

osse feita com fórmulas teóricas que já levassem em consideração efeitos de temperatura, da 

ugosidade dos materiais envolvidos e da condutividade finita dos metais. Portanto, podemos 

mar hoje em dia que o efeito Casimir existe, ou seja, está muito bem confirmado experi-

entalmente e trata-se, sem dúvida, de um dos efeitos macroscópicos mais espetaculares 

om origem na teoria quântica de campos3. 

Até 1960, aproximadamente, o efeito Casimir e tópicos relacionados a esse efeito, como 

forças de van der Waals, eram estudados por um pequeno grupo de pesquisadores, ba-

icamente na Holanda e na extinta União Soviética. No entanto, nas décadas seguintes, o 

feito Casimir se tornou um campo de pesquisa bastante ativo. A razão para isso reside, em 

3Para uma introdução ao efeito Casimir, sugerimos as referências [18, 93], além, é claro, do artigo original 

de Casimir[1] (uma tradução desse artigo para o português pode ser encontrada na Ref. [19]). Para discussões 

mais elaboradas e detalhadas, sugerimos as Refs. [5, 15, 16, 17]. Há ainda livros que, embora dedicados a 

temas mais gerais, contêm uma boa discussão do efeito Casimir [94, 95]. 
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parte, no fato de que o efeito Casimir, entendido como uma alteração da energia do vácuo 

de um campo quântico devido à imposição de condições de contorno, não é uma peculiari-

dade exibida apenas pelo campo eletromagnético. Qualquer campo relativístico, bosônico 

ou fermiônico, definido em uma variedade com topologia não-trivial terá, em princípio, sua 

densidade de energia no estado de vácuo modificada. Ou seja, a energia de ponto zero tanto 

de um campo escalar quanto de um campo fermiônico é alterada quando tais campos são 

submetidos a condições de contorno. Isso ampliou bastante o leque de possíveis aplicações 

desse efeito. Uma das mais notáveis surgiu nos anos 70, a saber, o chamado modelo de sacola 

("bag model" ) do MIT [6], no qual os hádrons são concebidos como sacolas contendo quarks 

e glúons. O confinamento destas partículas dá origem então a uma energia de Casimir que é 

responsável por até 9% da massa do hádron. Nesse contexto, o efeito Casimir fermiônico foi 

calculado pela primeira vez por K. Johnson em 1975 (veja a primeira referência em [6]). Vale 

citar ainda que nos anos 1970 a energia do vácuo quântico passou a ser estudada também 

em cosmologia. 

O efeito Casimir na sua forma genérica se tornou, portanto, uma área de pesquisa ex-

tremamente ativa nos dias de hoje. Isso se deve, em grande parte, ao seu caráter interdis-

ciplinar, uma vez que esse efeito é relevante não apenas em eletrodinâmica quântica, mas 

também na teoria quântica de campos em geral, na física da matéria condensada, na física 

atômica e molecular, na gravitação e cosmologia, na física matemática e, por que não dizer, 

na nanotecnologia, na construção de dispositivos microeletromecânicos. Na teoria quântica 

de campos, as principais aplicações desse efeito são: (i) no modelo de sacola do MIT, já 

mencionado anterioremente; (ii) em teorias de Kaluza-Klein, nas quais o efeito Casimir pro-

porciona um dos mecanismos mais promissores para explicar a compactificação espontânea 

das dimensões espaciais extras, e (iii) na possibilidade de impor restrições mais fortes so-

bre os parâmetros de interações de longo alcance ou na existência de partículas elementares 

leves previstas por teorias de calibre unificadas, pela supersimetria, supergravidade e teoria 

de cordas. Já na matéria condensada, o efeito Casimir leva à existência de forças entre fron-

teiras materiais muito próximas entre si, e é responsável por algumas propriedades de filmes 

finos, devendo ser levado em consideração em cálculos de tensão superficial e calor latente. 

Na cosmologia, esse efeito pode ter sido relevante no processo de inflação do Universo. Na 

física matemática, os cálculos de energias de Casimir têm estimulado o desenvolvimento de 
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novas técnicas de regularização e renormalização, como por exemplo o método da função 

zeta generalizada. (Para maiores detalhes e referências mais específicas sobre todas essas 

aplicações, veja a Ref. [17].) 

Concluímos esta seção comentando sobre um último tema de pesquisa sobre o efeito 

Casimir, e que corresponde justamente à parte principal deste capítulo, a saber: o cálculo 

de suas primeiras correções radiativas. Em comparação com o que já foi feito para o caso 

de campos não interagentes, o número de trabalhos que consideram o efeito Casimir em 

campos com interação é extremamente reduzido, como veremos. No caso da eletrodinâmica 

quântica, a primeira correção radiativa ao efeito já foi discutida [17, 20], e se revelou muito 

pequena. Os experimentos atuais ainda não possuem precisão suficiente para detectá-la. 

Apesar disso, esse é um cálculo de grande importância do ponto vista teórico, pois permite, 

num contexto mais simples, examinar as dificuldades que se interpõem à renormalização de 

modelos de teoria de campos definidos em espaços-tempos curvos ou com fronteiras, e que 

por esse motivo não exibem invariância de Poincaré. Neste capítulo obteremos resultados 

apenas para as correções radiativas de um campo escalar com massa com auto-interação 

quártica (o modelo Aq54). 

3.2 O Efeito Casimir Eletromagnético 

Nesta seção apresentamos explicitamente o cálculo da energia de Casimir para o campo 

eletromagnético na presença de duas placas neutras, paralelas e perfeitamente condutoras —

a configuração investigada originalmente por Casimir [1]. Nosso procedimento será análogo 

ao das referências [1, 38]. O cálculo a ser apresentado tem relevância não apenas histórica, 

mas será útil para estabelecer notações e introduzir alguns conceitos fundamentais, tais como 

as idéias de regularização e renormalização no contexto do efeito Casimir. 

Por conveniência, vamos escolher os eixos cartesianos de modo que uma das placas esteja 

localizada em z = O e a outra em z = a. As condições de contorno impostas por esta 

configuração de placas sobre o campo eletromagnético são dadas por 

x É(t,x, y, = 

• 11(t, x, y, 0) = O {
z x É(t, x, y, = 

• Mt, x, y, 	= O • 
(3.2) 
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Tais condições restringem as freqüências dos modos do campo eletromagnético a: 

(n7r)  2 
k 	Y  + k2  + 	 n= 0,1,2,..., 	 (3.3) 

sendo que para n = O só existe um estado de polarização para o campo. Desse modo, a 

nergia do campo no estado de vácuo, contida na região entre as placas, é dada formalmente 

E = 
1 
2 

00 	222)1/2 

2 	(27 02 	

] 
7r  

f L2  -d2kil  [lie' I + 2 	(k2  + 
77,
a  

 n=1 
(3.4) 

nde kll := kx  + ky  ú, L2  é a área de cada placa, e a denota o estado de polarização do 

ampo. 

Como a energia de Casimir é definida como a variação da energia do campo no estado de 

ácuo devido à imposição de condições de contorno, devemos subtrair da expressão (3.4) a 

nergia do campo na região entre as placas, porém sem a presença das mesmas 4, dada por 

2 	(202 _co 	2 Vi te; E0 = --r1C  f L2  d2k il  f ic 

=L2  (c122irk)112 	dn 2.11c2  + n27r2 a2 

na qual fizemos a transformação de variável n := akz/7r. Sendo assim, a energia de Casimir 

por unidade de área é dada por 

E(a) = 
E — E0 

 
L2  

, rric7r.  fo c° dkil  kl, [._. + E Vk2 ± 	 

	

n=1 	
11 	a2 	

fo°°  dn, 
a2 	

. 	(3.6) 
kii 	00 

	

n271-2 	 n2R-2 

sta expressão ainda carece de significado físico, urna vez que se trata da subtração de duas 

uantidades divergentes. Devemos então adotar um procedimento de regularização a fim de 

4Na verdade, deveríamos ter considerado também as contribuições das regiões exteriores às placas. No 

tanto, como as freqüências dos modos do campo não se alteram nestas regiões com a presença das placas, 

ais contribuições se cancelam no processo de subtração. 

(3.5) 
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extrair um resultado finito e dotado de interpretação física. Como para altas freqüências as 

¡placas se tornam transparentes para os modos do campo, é natural introduzir uma função de 

corte que elimine os modos de alta freqüência, eliminando assim a divergência ultravioleta 

na equação (3.6). Procedendo dessa maneira, obtemos: 

rtc
4a3 

fo u du  \ru
2 
 ( 

a 	 a 
E' (a) = f v,1.7) + rd \Ai  + 77 	2 f ( _ \tu  4_ n 	2 ) 7r 7r 	 7r 

- 	 n=1 

—J 
 o  dn-Vu + n2  f (-7' Vu + 	n2)1, 

a 

00 

nde fizemos a transformação de variável u = a21q/7r2  e introduzimos a função de corte f . 

ta função deve ser tal que f (kii) = 1 para leu « k,„ e f(kii) = O para k11 » km, onde km  é 

a ordem do inverso do raio atômico. Em lugar de apresentarmos a função f explicitamente, 

os somente impor que ela ainda satisfaça as seguintes propriedades: (i) f(0) = 1, e (ii) 

odas as suas derivadas se anulam na origem. 

Definindo a nova função 

co 
F(n) :=du-Vu + n2  f (-7:tyu + 	n2) , 

o 
(3.8) 

a equação (3.7) pode ser escrita como 

,r2 

E(a) = hc-—[—F(0) + F(1) + F(2) + • • • — f dnF(n)] 	 (3.9) 
4a3  2 	 o 

É conveniente, neste momento, utilizarmos a fórmula de Euler-MacLaurin, dada por 

,  
—
1 

F(0) + F(1) + F(2) + • - • — f dnF(n) = -- 
BI 

 (0) — 
4 

F"'(0) -I- • • • , 	(3.10) 
o 

nde os números de Bernoulli Bt, são definidos por por meio da série de Taylor da função 

(y) = y/(ev  — 1): ce 
Y  yr"' 

= 	 (3.11) 
eY — 1 	

13 
ni M! 	

( y 1 < 27'). 

772.=o 

fim de calcular as derivadas de F, reescrevemos esta função numa forma mais adequada: 

o o (7i U 
F(n) = fn.2  du-NFu f 	

Cl 
	. 	 (3.12) 

(3.7) 
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Desse modo, temos 

	

F1(n) = —2n2  f (ra  . 	 (3.13) 

Utilizando então as propriedades da função f , é simples mostrar que F'(0) = 0, F"'(0) -= —4, 

e que todas as outras derivadas de ordem superior são nulas na origem. Conseqüentemente, 

a energia de Casimir por unidade de área é dada por 

hen.2 B4 	7r2hc  
E(a) =  	 (3.14) 

a3  4! 	720a3  

onde usamos o fato de que B4  = —1/30. Podemos agora calcular a pressão sobre as placas 

utilizando a relação 
F DE 

(3.15) 
L2 	--- Da 

chegando assim ao resultado obtido por Casimir em 1948, dado pela equação (3.1). 

Poderíamos ter calculado a pressão de Casimir utilizando outros métodos de regula-

rização. Vale enfatizar, contudo, que um resultado físico não deve depender do procedimento 

de regularização adotado. Cálculos explícitos com outros métodos podem ser encontrados 

na referência [17], e reproduzem o resultado (3.14). 

3.3 Método Funcional para o Campo Escalar Livre 

Nesta seção, vamos reobter o resultado já conhecido para a energia de Casimir de um campo 

escalar com massa sujeito a condições de contorno de Dirichlet em dois planos paralelos entre 

si. Em princípio, esse resultado pode ser obtido por um procedimento totalmente análogo 

ao da seção anterior. No entanto, vamos utilizar aqui um método funcional, introduzido por 

Bordag et al. (veja a primeira referência em [20]), mas ainda não empregado no problema 

que vamos abordar. Além disso, utilizaremos essa mesma técnica no cálculo da primeira 

correção radiativa à energia de Casimir no modelo ÀO4  sem massa, a ser apresentado na 

próxima seção. 

O funcional gerador de funções de Green de um campo escalar livre 0, de massa m, é 

dado por 

W[J] = N f DO exp {i f dix [r(çb(x) , 01,0(x)) + J(x)0(x)]} 	(3.16) 
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onde N é um fator de normalização, escolhido de tal forma que W[0] = 1, e G é a densidade 

lagrangiana da teoria 5, 

£(0,3,0) = 2(0p0040 — m202). (3.17) 

A energia desse campo, no estado de vácuo, pode ser obtida por meio da integração, em 

todo o espaço, do valor esperado no vácuo da componente 00 do tensor de energia-momento: 

E 	f d3±,  (Too ( x )) 

lirn f d3x 	a 	+ m2) (T (0(s)0(Y))) 2 y--,x 	 axmayg 
g=0 

onde usamos regularização por separação de pontos. 

As condições de contorno impostas sobre o campo escalar são dadas por 

(3.18) 

0(t,n,x3= 0) = 0, 	0(t,n,x3= a) = 0, 	 (3.19) 

onde xll = (x1, x2). Daqui em diante chamaremos estas condições de Dirichlet-Dirichlet, ou 

de forma abreviada, de condições DD. 

Vamos então obter o funcional gerador WDD[J] do campo escalar submetido às condições 

de contorno (3.19). Com esse objetivo, note que a integral funcional (3.16) do campo livre 

(sem condições de contorno) é efetuada considerando todas as configurações de campo çb. 

Para a situação em que estamos interessados, temos de restringir essa integração somente 

sobre as configurações de campo que satisfaçam a condição de contorno que estamos con-

siderando, ou seja, devemos fazer a integral somente sobre os campos que satisfaçam a 

condição (3.19): 

WDD[J] = N f DOiDn exp {i f d4x [G(0(x), a30(x)) + i(x)0(x)1} • 	(3.20) 

A restrição às funções cp em (3.20) pode ser efetuada por meio da inserção de funcionais 

delta 

WDD[J] = N f D06[01z3.0]6[01.3=.] exp {i f d4x [r(x) + J (x)0(x)J} . 	(3.21) 

5Convenções: h = c = 1, x p, = 	= diag(+1, —1, —1, —1); índices gregos variam de O a 3, e 

subentende-se uma soma quando houver índices repetidos: xiLyg = ntivxmyv = xoyo — xiyi — x2y2 x3y3.  
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jsses funcionais delta, por definição, vão fazer com que sejam nulas as contribuições para 

integral oriundas de configurações de campo que não satisfaçam as condições de contorno 

k3.19). A representação integral para cada um desses funcionais é dada por 

6 [01x3=ak] = f D.13k  exp(i f di x 6(x3  – ak)Bk (x11)0(x)) , k = 1, 2 , 	(3.22) 

nde al  = O, a2 = a, x11 = (x°, x1, x2, O) e Bk (xii) é um campo auxiliar cujo domínio é o 

►lano x3  = ak. Note que não existe soma em k no lado direito de (3.22). 

Substituindo a expressão (3.22) na equação (3.21), obtemos: 

WDD[J] = N f Dq5D.B1  DB2  exp {i f d4x [6(x3  – ak)Bk(xii)çb(s) + £(x) + J(x)0(x)1} 

(3.23) 

nde está implícita uma soma no índice k. 

A expressão (3.23) tem uma interpretação interessante: o integrando na primeira expo-

encial pode ser visto como uma densidade lagrangiana £5(x) = 6(x3  – ak)Bk(xii)0(x) que 

imula a presença das superfícies x3  = ak (k = 1, 2) onde o campo se anula. 

A fim de escrever a integral (3.23) em uma forma gaussiana, fazemos a seguinte translação 

no campo çb: 	
0(x) —+ 0(x) – f ctly 6(y3  – ak)Bk(yII)D(x – y) , 	 (3.24) 

onde D(x – y) é o propagador do campo livre, que satisfaz a equação 

(NOP + m2)D(x – y) = –5(4)(x – y). 	 (3.25) 

Tendo em vista que o jacobiano de uma translação é igual à unidade, após a transformação 

(3.24) o funcional (3.23) toma a forma 

WDD[J] N f Dq5DB1 DB2  exp {i f d4x 	 + m2)0(x) + J(x)0(x)1} 

  

x exp – f f d4x dly [2Bk (xii)6(x3  – ak)D(x – y)6(y3  – ai)B1 (Y11) 

+J(x)D(x — y)6(y3  — ak)Bk(yi)] , 	 (3.26) 

onde temos somas implícitas em k e 1. 
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Note que o funcional acima foi separado em duas integrais gaussianas, uma no campo q5, 

e outra nos campos Bk. A integral em g5 fornece o conhecido funcional gerador do campo 

escalar, 

W[J] = exp{ 2 
	

d4x d4y J (x)D (x — y) J (y)} 

enquanto a integral em Bk  fornece (veja Apêndice E) 

WDD[J] 	 f f d4x"J(x)D(x,y)J(y)} 

onde definimos 

1 I  d3  kii 	1  
D (x — y) 

2 
J 

(27)3  L(191) A(kil x3, y3) e-ikii(xii -Y11),  

	

A(k , x3,  y3) 	= 

	

Mkpi D)(ku , X3, y3) 	= 

tr [R(DD)(ki i x3 , 

exp {iL(kil) (1x3  

h-1  (k ) 
5 

aii)} 

i 

aki + 

L(k) = 	— m2  = (k°)2  — (k1)2  — (k2)2  — m2, 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) (h 1)kl (k11) = 2 sen(La) 
+ 1) 6k1  1] 

e usamos a notação na qual kii  (x ii  — yil ) = Em2=0  (x — yi2). 

Com o auxilio dos resultados (3.27) e (3.28), podemos escrever a equação (3.26) como 

WDD[J] = W[J] WDD[J] = exp { —2 f f d4x d4y J (x) [D (x — y) + D(x , y)] J(y)} . 

(3.34) 

ote que este funcional gerador tem a mesma estrutura que o funcional para o caso em que 

campo não está submetido a condições de contorno, dado pela equação (3.27). No entanto, 

invés do propagador D (x — y), temos agora a soma D (x — + D(x, y). Portanto, podemos 

desenvolver toda a teoria quântica para o campo escalar sob as condições DD em estreita 

nalogia com o caso do campo livre. 
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De posse do funcional (3.34), obtemos diretamente o produto de tempo ordenado do 

campo 0(x) sob condições DD: 

(710(X)0(Y))
(DD) (1)2  52WDD[J]  

z 6J(x)M(y) 

  

,J=0 
= i [D(x - y) + D(x, y)] . 	(3.35) 

 

ara o cálculo da energia de Casimir, utilizamos a expressão acima e a equação (3.18): 

E = 
2 

lim f 	
axm 

d31 	(9 2 
 g 

 + m2) [D(x - y) + D(x, y)] . 
y-,x 	 ay 

/1=0 

(3.36) 

integral que envolve o propagador do campo livre D(x - y) fornece um resultado indepen-

ente da distância a, que nada mais é do que a energia do campo livre no estado de vácuo. 

orno já dito, esta quantidade infinita não nos interessa e será eliminada. 

Utilizando a representação de Fourier para D(x, y), a equação (3.29), e tomando o limite 

-› x ao longo do eixo x3, a equação (3.36) se torna 

d3ki,  1 	 a2 
E -= -? A lim f o.°  dx3  f 	 

2 y3-x3 	 (2-n-)3  2L \ 
[(k0V -I- 

(k')2 
 -f-  (k2)2  + m2  + ax30y3] 

A(k11, 
 x3, y3) 

(3.37) 

nde A representa a área das superfícies onde o campo se anula. 

Usando a definição de A, dada por (3.30), tomando o limite y3  -4 x3, e integrando em 

obtemos 

E  _ 	iji.  i d3k}i 1 	i 
+a 

 2. f 	 a e-iLa ] 	 r(k0)2 + (k1)2  + (k2)2 + m2] 
-2 s j (2703  2L 1 L 	z 	sen(La) L\  

2 (i 	) 2 	e —iLa _L 

l_ L 	

11 
- a - 

z 
-: 

+ 
a

sen (La) 	i f (3.38) 

Esta integral fornece uma parte divergente, independente de a e proporcional à área A, que 

é interpretada como a auto-energia das placas, e pode ser eliminada. Com  isto, e usando a 

d finição de L, dada por (3.32), escrevemos, após algumas manipulações algébricas, a energia 

d Casimir por unidade de área como 

=: = -a 
f d3ki i 1 	e%/Ai 
	 ° 2  

A 	(2703  L eiLa  — e—iLa (k ) E(a) . 	 (3.39) 

Para efetuarmos essa integral, fazemos uma rotação de Wick: 

k°  ip°, kl pl,  k2 	p2  , 	 (3.40) 
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que implica 

     

 

d3191 —> id3p, L j.s/r2 ± m2 , (3.41) 

onde definimos a quantidade r = /(p92  + (p1)2  + (p2)2. Substituindo esses resultados na 

integral (3.39), passando para coordenadas esféricas e integrando a parte angular, obtemos 

f  2 a 	cxD 	r4 	 exp (—a\/r2  + m2 ) 
E (a) —  dr  

3 (27r)2 	
/r2  + m2 exp  (avr2 	+ m2) — exp (—a \/r2 + 7112 	

(3.42) 

udando a variável de integração de r para x = / v r2 m2/m, chegamos a 

2 amofc° 	 e—xma 
E (a) =  

3 (2702 	
dx (x2 — 1)3/2 exma e-xma 

razão envolvendo as exponenciais acima pode ser escrita como 

(3.43) 

C
—xma oo 

Ee-2xman 

n=1 
(3.44) exma _ e  —xma 

o que fornece para a integral (3.43) a expressão 

2 1 f 00  \ 

n=1 .1 
dx (x2  — 1)3/2e-2xman 

S(a) 	3 (27i) a  

Utilizando a representação para a função de Bessel modificada Ki,(z) [96], 

(3.45) 

 

  

7T 

 1/2) (2

1/2 
IC,(z) =--- 

r(v — 
	 z

) 
i) 	dx (x2  — 1r1/2 	, 	 (3.46) 

1  

btemos, finalmente, a energia de Casimir por unidade de área para o problema em questão: 

e 	2  
2 (27)2  a 	

--§X2(2man) , 	 (3.47)  
n=1 

pleno acordo com os resultados da literatura [15]. 

Como último comentário, gostaríamos de chamar a atenção para o fato de que, embora 

t nhamos calculado apenas a energia de Casimir do campo sob condições DD, poderíamos 

t bém ter calculado qualquer outra quantidade referente a este campo sob estas condições, 

cimo por exemplo, funções de Green mais genéricas, uma vez que estabelecemos o funcional 

g rador da teoria sob condições DD. 
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3.4 Correções Radiativas ao Efeito Casimir 

Nesta seção, calcularemos explicitamente as primeiras correções radiativas ao efeito Casimir 

de um campo escalar com auto-interação A04. Iniciaremos com o cálculo para um campo de 

massa nula sob condições DD. Em seguida, abordaremos o problema mais complexo de um 

campo escalar massivo, incluindo, nesse caso, outras condições de contorno. 

A interação de um campo quantizado, mesmo em seu estado de vácuo, com placas ma-

teriais já é extremamente complicada, motivo pelo qual simulamos tal interação impondo 

condições de contorno bastante idealizadas. Como conseqüência, mesmo quando tratamos 

um campo não interagente, mas sujeito a condições de contorno, encontramos um desloca-

mento da energia do vácuo de tal campo, como já mencionado em seções anteriores. Portanto, 

surgem forças entre corpos macroscópicos colocados no vácuo, referidas muitas vezes como 

forças de Casimir. Note que, nesta aproximação (campos não interagentes), nenhuma cons-

tante de acoplamento aparece na expressão da força, apenas constantes universais como h, 

c e obviamente parâmetros geométricos característicos do sistema em estudo. 

No entanto, os campos da Natureza são interagentes e o efeito Casimir deve ser calculado, 

em princípio, para tais campos em todas as ordens. Como essa é uma tarefa extremamente 

difícil, recorre-se à teoria de perturbação e calcula-se, por exemplo, a correção em primeira 

ordem na constante de acoplamento ao efeito Casimir. Apesar de existir uma vasta literatura 

sobre efeito Casimir, é surpreendente que não se tenha considerado, com maior freqüência, 

campos em interação no estudo de tal efeito. No caso da EDQ, a primeira correção radiativa 

já foi discutida [20, 17], e se revelou muito pequena. O caso de campos escalares também foi 

discutido na literatura [21, 23, 24, 25, 97, 98, 99, 100]. 

Os experimentos atuais ainda não têm precisão suficiente para poder detectar correções 

radiativas às forças de Casimir. Apesar disso, esse é um cálculo de grande importância do 

ponto vista teórico, pois permite, num contexto mais simples, examinar as dificuldades —

e eventualmente tentar saná-las — que se interpõem à renormalização de modelos de teoria 

de campos definidos em espaços-tempos curvos ou com fronteiras, e que por esse motivo não 

exibem invariância de Poincaré. 

Um fato interessante a respeito do efeito Casimir é que a um laço (ordem zero em À) ele 

depende somente das freqüências do campo, e não dos seus modos. Em outras palavras, em 
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ordem zero na constante de acoplamento a energia de Casimir pode ser escrita simplesmente 

como a energia de ponto zero do campo, devidamente regularizada e renormalizada. Uma 

conseqüência imediata desse fato é que, nessa ordem, a energia de Casimir de um campo 

escalar sujeito a condições de Dirichlet é exatamente igual àquela calculada com condições 

de Naumann. No entanto, em ordens mais altas na constante de acoplamento, era de se 

esperar que essa igualdade deixasse de existir. Surpreendentemente, isso não acontece para 

o caso de um campo escalar sem massa, pelo menos em primeira ordem na constante de 

acoplamento [24]. 

Até o momento, não havia nenhum cálculo na literatura para o campo escalar com massa 

com auto-interação 454  e não se sabia, portanto, se esta igualdade permanecia válida ainda 

para o caso de um campo com massa. Nesta seção, mostraremos explicitamente que tal 

igualdade deixa de ser válida em tal caso [99]. 

3.4.1 Campo Escalar sem Massa 

Nesta subseção apresentaremos o cálculo da primeira correção radiativa à energia de Casimir, 

para o caso de um campo escalar sem massa, com auto-interação descrita pela densidade de 

lagrangiana 
1 	1 

= ai''9/1°.  + 2 m2°2 —74 c/54 +£ct  
£0 	ri  

(3.48) 

onde r ct  contém os contratermos de renormalização. Por conveniência, vamos considerar 

inicialmente que o campo q  tenha massa e, no momento oportuno, vamos tomá-la como 

sendo nula. 

É um resultado bem estabelecido da TQC que a energia do campo escalar pode ser obtida 

pela expressão [30, 101] 

T/2 
E = lim 

1 	 - 
ln{f D çb exp [i f dx°  f d31.G(0(x), 5,,,,çb(x)1} , 	(3.49) 

-+0 	 T/2 

onde, a fim de garantir a convergência da integral funcional, acrescenta-se uma parte imagi-

nária negativa à massa, m —> m — i€. 

Se quisermos trabalhar com o campo escalar submetido às condições de contorno (3.19), 

devemos considerar na integral funcional acima somente os campos que satisfaçam tais con- 
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dições, ou seja 

T/2 
E = fim ln{f DOI DD exp [i, f dx° f d3 .C(q5(x), 0,45(x))] 	(3.50) 

T-)0 T 	 -T12 

Como veremos a seguir, em primeira ordem em teoria de perturbação, somente a massa 

renormalizada, por isso só vamos precisar do contratermo de massa em .Cct: 

6 2  
rct 	- 

777, 
 y2. 	 (3.51) 

2 

Como usualmente é feito em teoria de perturbação na TQC, sendo G1  e rct  dependentes 

somente dos campos 0, podemos reescrever a equação(3.50) como 

E = lim — ln exp 
T-00 T 

- 77 2 f 	o 	3 _, 
f x (r.r( 	5 	MWDDMIJ=o i6J(x) + rct( i6J(x) - -772 

(3.52) 

onde 

TI2 

WDD[T, J] f DOIDDexp(i f dx°  f d3 "'[.G0(0(x),ai,çb(x)) + J(x)0(x)]) 	(3.53) 
-T/2 

o funcional gerador de funções de Green a tempo finito da teoria livre (isto é, sem interação), 

as satisfazendo as condições de contorno DD nos planos x3  = O e x3  = a. 

Expandindo a exponencial que envolve G/ e Lct em (3.52) até primeira ordem em A e 

6m2, obtemos 

E = E°  + E1, 	 (3.54) 

onde o primeiro termo, 

E°  = lim ln 
T-->oo 

ornece a energia de Casimir em ordem À°  (veja 

WDD[71,0], 
	 (3.55) 

a equação (3.47)), e o segundo termo, 

TI2 	 ( 	

WDD[T   
11,7 =o —1 	

dx°  f d3g [C1 ( 	
l5 	) 	J(x))1 	5 

,1 
iJ(X) = Je. TWDDET, 0] fT/2 

(3.56) 

fornece a primeira correção radiativa à energia de Casimir. 

Note que, a menos de uma constante de normalização, WDD[T 	JJ coincide com o 

funcional gerador WDD[J] definido na Seção 3.3 pela equação (3.20). Assim, utilizando a 
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expressão (3.34) para WDD[J] e as expressões explícitas de £1 e rct, definidas em (3.48) e 

(3.51), obtemos os seguintes resultados: 

), 	2 
WDD [O] iSJ (x) ) WDDM 	4! I J=0 = — 3 1 )( 	[D(0) 4- D(x, x)] 2  , 	(3.57) 

b 2  
WDD[Or lrct (i6J(x) 

WDD[J] J=o = rn [D(0) + D(x, x)] 
2 	

(3.58) 

Levando estes resultados em (3.56), tendo em mente que D(0) não depende de x e que 

D(x, x) só depende da terceira coordenada espacial x3, obtemos 

El  = A f dx3  (- -
8 

[D(0) + D (x , x)] 
2 

i
õm2 

[D(0) D(x, x)]) 	(3.59) 
2 

onde A = f d2g11  é a área das placas onde o campo se anula. 

A correção à energia de Casimir por unidade de área, em ordem À', é então dada por 

- 
el (a) = - f dx3  GD(0) i8 2m2 

 D (0) f dx3  ( 4 D (0)
.5

2
77/2 
 )D(x, x)- -8  f dx3  D2  (x , x) . 

(3.60) 

O primeiro termo no lado direito da equação (3.60) fornece urna contribuição para a 

energia proporcional ao volume espacial A f dx3, e nada mais é do que a correção à energia 

do campo, no estado de vácuo, mas sem a consideração das condições de contorno, podendo, 

portanto, ser descartada. 

O fator de renormalização de massa 6m2, que aparece no segundo termo no lado direito 

da equação (3.60), é fixado impondo-se que a auto-energia do campo seja finita. Em primeira 

ordem na constante de acoplamento, ela é dada por 

i À 
E(x, x) = —2  [D(0) + D(x, x)] + Sm2  . 	 (3.61) 

Para eliminar a parte divergente que aparece na expressão (3.61) devemos escolher Sm2  de 

tal forma que 

2 
— D(0) bm2 = /12 < 00  . 	 (3.62) 

Levando este resultado em (3.61), tomando o limite a -4 co e usando o fato de que nesse 

limite D(x, x) 	O longe das placas, obtemos 

lim E(x, x) = ii2  . 
a—>oo 

(3.63) 
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A constante p2  pode ser fixada impondo-se ainda que E -> O quando a -> Do. Com essa 

condição, obtemos um valor nulo para a constante ,a2. Conseqüentemente, o contratermo de 

assa em (3.62) é dado por 

5m2  = -D(0) , 	 (3.64) 

atendo com que o segundo termo do lado direito da equação (3.60) seja nulo. Assim, a 

nergia de Casirnir por unidade de área, devidamente renormalizada 6, é dada por 

El(a) 	f c/x3D2(x,x) . 	 (3.65) 

Com o auxílio da representação de Fourier de D(x, y), dada pela equação (3.29), temos 

	

El(a) = 32 idx3  [/(x3,a)]2 	 (3.66) 

onde definimos a integral 

d3kli 	1   tr [R( DD)(19,x3,x3) h  1  i  (k11)1 /( x3, a) - 	(27)3 ruem)  (3.67) 

Utilizando as definições (3.30)-(3.33), podemos calcular explicitamente o traço acima, 

btendo 

tr [R(DD)(kii , x3, x3) h 1  (k11)  ] 
i 

= 	1  	[e-iLa (e2iL I x3  —a11 + e2iL I X3  —a2i) — 	 (3.68) 2eiax3—all I ±,x3—a21)1 . 
2 sen(La) 

ubstituindo esse resultado na integral (3.67) e fazendo uma rotação de Wick, descrita em 

3.40), obtemos 

/(x3, a) = —i I.  d3/3  	
1 
	[ata (e-211.2-a11 + e—gx3—a21) - 2e-1(1x3 —all+Is3 —a21)1 , (3.69) J 

(2703  2/ sh(/a) 

cnde definimos / := ., A52 + m2. 

Daqui para a frente, vamos nos restringir ao caso de massa nula, m = 0. Tomando al  = O 

e a2  = a, passando para coordenadas esféricas, e integrando no ângulo sólido, escrevemos a 

integral (3.69) como 

6Na verdade, como veremos a seguir, é necessário fazer ainda uma renormalização aditiva na expressão 

(3.65) 
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/(x3, a) =2 2 f 
 2 sh(p 

1 	" p dp

a) 
[epa (e-2pix31 	e-2pix3 - 	2e-p(ix31+1x3 	(3.70) 

/r   

Devido à presença dos módulos na integral acima, temos de considerar três possibilidades 

separadamente: 

1. Região com x3  < O: 

Para tal situação, a equação (3.70) é escrita na forma 

1 
1 (x3  , a) = 

2r2 
f 	e2pss 

p dp 
2 sh(pa) L  
	 r epa (1  + e-2paN 

	

) 	 . 	(3.71) 
o  

Fazendo ainda algumas manipulações algébricas no integrando e efetuando a inte-

gração, obtemos 

1 00 
1 

/(s3, a) = 	 dp p e 21)IX3 1 

27r2 	
2232  (x3

1 
)2 • O 

(3.72) 

2. Região com X3  > a: 

Neste caso, a equação (3.70) se torna 

1 	cc 	e-2P(x3-a) 
i(X3, a) = 	f 

pdp  2 sh(pa) [ePa 
—e 2Pa  + 1) — 	 (3.73) 

o 

e, de forma análoga ao caso anterior, obtemos 

1 	oo 
—2p1x3 —al = 	1 	1 

/(x3, a) = 	f dP P e 27r2  o 	 237r2  (x3  - a)2  
(3.74) 

3. Região com O < x3  < a: 

Para esta região, a equação (3.70), após algumas manipulações algébricas, toma a 

forma 
1 	e-Pa 

./(X3, a) = 	P "P 2 sh(pa) 
-2p(x3-a) e2px3 - 2) (3.75) 

Note que 1/sh(pa) pode ser escrita em termos de uma série, a saber, 

1 	2 	 1 	 00 
	 = 2e-Pa 	 = 2e-Pa E e-2pan  

sh(pa) 	ePa - e —Pa 	1 — e-2pa 
n=0 

(3.76) 
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1 
7

27r2  

. 1 
= —2 

27r2  

= 
1

[2 IA'  (1) — 111 (x3  I a) — '(1 — x3/a)] , 
a 

(3.81) 

Dessa forma, a integral (3.75) é dada por 

/(x3, a) 
CO 	00 

n=0 f 

dp p  e-2pa(n+1) (e-2p(x3-a) 	e2px3  

Ec°  [f°  dppe-212Ex3+(n-l)al 
O n=1 

- 2) 

00 	 00 
dpp e-2p(na-.3) — 2 	dpp e -2Pnal 

C) 	 O 
(3.77) 

onde alteramos o índice de soma na segunda linha. Efetuando as integrais, obtemos 

( 	
1 c° 	 1 	 1 

/ x3, a ) = 
237r2 	[(.an)2 	(x3  + (n — 1)a)2 	(x3  — na)2] • 

E  2   
n=1 

Substituindo os resultados (3.72), (3.74) e (3.78) na equação (3.66), obtemos 

o 	1 	00 

2114 { f.  dx3  (x3)4  + 	dx3  (x3 1 a)4 

1 a 
+ f dx3 

00 

[ 	(
(a2 	

1 	2 

n)2  (x3  + 	1)a)2  (x3  — na)2  )] j 	(3")  

As duas primeiras integrais fornecem contribuições divergentes, porém independentes da 

distância a entre as placas, e portanto podem ser descartadas, pois não contribuem para a 

força de Casimir. Se pensarmos na energia propriamente dita, E1  = ElA, essas contribuições 

serão proporcionais à área A das placas, e podem ser interpretadas como sua auto-energia. 

A energia de Casimir por unidade de área é dada então por 

a 2 	1 	 1 	2 

el  (a) = 2114 
r 
 dx3  [E ( 

(an)2  (x3  + — 1)a)2 	(x3  — na)2  )] 

Note que o somatório pode ser reescrito como 

2 	1 	1  r 	 

[(na)2 	(x3  + (n — 1)a)2 	(x3  — n a) 2 ] 
n=1 

1 	
r  

a,2 	(n +2  1)2 	Rx3/a) + 7112 	[(x3/a) — (n + 1)121 n=0 

(3.78) 

£1(a) = 

(3.80) 
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sendo 7/) a função digamma [96, 25]. A combinação de derivadas da função digamma que 

aparece em (3.81) pode ser expressa em termos de funções trigonométricas [25]: 

2 01) - iii(x3 /a) — 	— x3/a) = —71-2 
 L

cscl 7rX3 	1  
a 	31 

Com isto, reescrevemos a equação (3.80) na forma 

(3.82) 

A 1 	
a-E 	 3 

E1(a) = — lim i dx3  [csc2  (" ) — 1  1 2  
211 a4 E,0 	 a 	3 	

, 	
(3.83) 

nde usamos um fator de regularização E nos limites de integração, de modo a poder identi-

ficar eventuais divergências. A integral (3.83) pode ser facilmente resolvida, fornecendo 

A 1 	 2 
el  (a) = 	lim [-

2a 
cot 

(
—") CSC2  (--7r€ ) + — —

9 
. 

211 a4 6,0 317. 	a 	a 	9 

xpandindo as funções trigonométricas acima em potências de e, obtemos 

(3.84) 

£1(a) -= — — 
21 	

m h — — 	+ 0(e)). 
1 a4 e_,0 37r4 	9 E3  + 

(3.85) 

O primeiro termo da expressão acima, apesar de divergente, não depende da distância a, 

de forma análoga ao que foi dito a respeito das duas primeiras integrais na expressão (3.79), 

se termo também está associado à auto-energia das fronteiras, podendo ser desprezado por 

ão ter relevância física. Com  estas considerações chegamos, finalmente, à primeira correção 

adiativa à energia de Casimir por unidade de área para o campo escalar neutro sem massa: 

À 
E1  (a) = 21132 a 

1 
3 . 	

(3.86) 

Esse resultado coincide com os apresentados na literatura, obtidos por outros métodos 

23, 24]. Procedendo da mesma forma, nós calculamos a primeira correção radiativa à energia 

de Casimir com o campo satisfazendo condições de Neumann nas fronteiras, e chegamos ao 

esmo resultado (3.86) para o campo satisfazendo condições de Dirichlet. No entanto, como 

eremos a seguir, tal igualdade não será mais válida para o caso de um campo com massa. 

.4.2 Campo Escalar com Massa 

Nesta subseção vamos calcular a primeira correção radiativa à energia de Casimir para cam-

pos com massa em D = d+1 dimensões e salientar as principais diferenças em relação ao caso 
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de campos sem massa, discutido anteriormente. Abordaremos explicitamente três condições 

de contorno diferentes, a saber: 

1._Condições Dirichlet-Dirichlet (DD): 

0(x) i sd=o = 0, 	0(x) ixd=a = 0; 	 (3.87) 

2. Condições Neumann-Neumann (NN): 

	

= 0 	
00(x)  

	

, 	 — O' 
xd=0 axd  ixd=a 

(3.88) 

  

3. Condições Dirichlet-Neumann (DN): 

0(x)I xd=c, = o, 	
ao(x)1 

axd ixd=a. 
o. (3.89) 

Diferentemente do que fizemos até agora, nesta subseção iremos trabalhar na versão 

uclidiana da teoria de campos. De forma análoga ao que fizemos para obter a equação 

(3.59), podemos escrever a primeira correção radiativa à energia de Casimir, para as três 

ondições de contorno mencionadas, como 

	

el  (a) = f 	[ À 2 dxd  —G E(x , x) + —
6m 

2  2
G E(x , x)] , 	 (3.90) 

	

o 	8  

endo GE(x, x') a função de Green euclidiana do campo escalar submetido às condições de 

ontorno apropriadas. Em termos de diagramas de Feynman, a contribuição em ordem À à 

nergia de Casimir é dada pelos diagramas mostrados na figura 3.1. 

C-=>-<=") 
A 	 B 

Figura 3.1: Diagramas que contribuem para a primeira correção radiativa: (A) contribuição 

de dois laços, (B) contratermo de massa. 

Analogamente ao que foi feito na seção anterior, a integração nas regiões exteriores às 

fronteiras (xci  < O e xd  > 0) foram descartadas, pois embora estas forneçam resultados 
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divergentes, eles são independentes da distância a entre as fronteiras (veja a equação (3.79)) 

e não têm relevância física. 

Para cada uma das condições de contorno consideradas, na região do espaço situada entre 

as fronteiras localizadas em Xd  = O e xd  = a, o propagador euclidiano pode ser expresso como 

dd-l reii  
GE(x,x') = 	(27 ) 1 (27r)d-1 

e 
 

—1'111) 	(Pn(Xd ) W;i( xcil  )  
, 	(3.91) 

n 
rn2 	(k;:i..1)2  

ii 

onde (xl, xd-1 ) denota as coordenadas espaciais paralelas às placas, e as autofunções 

yon(xd) e os momentos quantizados knd são dados em cada caso por 

DD : yon(xd) = 

N N : çon(xd) = 

sen(kd  xd), 	kd  = 
a n' 	

n = 1, 2, 3, . . . 	(3.92) 

\/(2 -  
a 	

cos(kn xd), 	kd  = n 	n 	n. = O, 1, 2, ... 	(3.93) 

D N : '()n
d
) -

a 
sen(knd  xd ) , 	knd  = 

7F 
- 	+ -

1 

a  
n. = 0, 1, 2, ... 	. (3.94) 

Tomando pontos coincidentes, a função de Green é escrita na forma 

 

GE(x, x) 
(1 dwdd-l-kill 	1 

(27.)d w2 	k2 	(Pn( d  X)(Pn* d  (X) (3.95) 

onde definimos 

     

  

wn  Vm2 (4)2 

 

(3.96) 

A integral em (3.95) diverge para d > 2, mas pode ser definida por continuação analítica 

do resultado para d < 2. Obtemos, assim [30], 

I'1—d2) 
GE(x,x) = 	(47042 	

d-2,pn(xd)(pn*(xd) 	 (3.97) 

Tendo em mente que as funções çon(xd) são normalizadas, 

ra 

(pn  (Xd)4,(Xd) = 1 , (3.98) 
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podemos escrever 

13 

F1 — d2) \--■ (.4)n-2 
7  (70d/ 

/
2  

a 
dxd  GE(x,x) 	

(
4  

/3 

	

	
d/2) 	, 	c/ ,-2 A a  dXd  GE2  (X, X) 

r2(1 - 
(47r)d 	 L-43,n

n 
 

onde definimos 
a 

A3,n  = f dxd CiOn(Xd)(4,(Xd)(pi(Xd )(p;:(Xd ) . 
O 

Com os resultados (3.99) e (3.100) reescrevemos a equação (3.90) como 

(3.101) 

L-  
( 	F2(1  — d/2)   	d-2 d-2 	6m2  (1 — d/2) 
a) — 8 	(47r)d 	 (-4-)j 47, n +  2 (47042  j 

d-2 Wri • (3.102) 

Vamos neste ponto voltar a atenção para o contratermo de renormalização 6m2. A função 

de Green que aparece em (3.90) pode ser expressa na forma 

GE(x, x)) = GE,0(x, x)) + "G- E(x, x') , 	 (3.103) 

onde GE,o(x, x') é a função de Green euclidiana para o campo livre (sem condições de con-

torno), e d-E(x, x') uma correção introduzida pelas condições de contorno, que se anula para 

a cc. Note que na seção anterior calculamos Õ(x, x') para as condições DD. 

O uso de (3.103) em (3.90) resulta em 

A 	 À 
El (a) = f

a 
dxd  [e G o(x , x) + 

S 2 

 
m2) Go(x, x) + (-

4
Go(x, x) + 

67712  
—

2
) G(x, x) + —

8
G2(x,x)]  

o 
(3.104) 

O primeiro termo do lado direito fornece uma contribuição uniforme para a densidade de 

nergia de Casimir e, por esse motivo, apesar de ser divergente, pode ser ignorado. 

O contratermo de massa 67712  é obtido de forma análoga ao que foi feito na seção anterior: 

6m2  = —2Go(x,x) • (3.105) 

  

pom isso, o segundo termo no lado direito de (3.90) se anula. 

Usando agora a representação espectral da função de Green do campo livre [17], 

(3.99) 

(3.100) 
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GO(X x' ) = 	

f d d k.  ciw( r  _TI) ei -É(g_gt) 	 1 	
3.106 

(27r) 	(27r)d 	 w2 	+ m2 	
( 	)  

e definindo o vetor k = (w, kl, kd), reescrevemos o contratermo de massa (3.105) na forma 

À 	da-Fik 	1 
6m2 	(2.70d1-1 k2 + m2 (3.107) 

integral acima é divergente para d > 1, mas pode ser definida por continuação analítica 

d. resultado para d < 1, obtemos assim [30], 

6m2 = À F(1  — (d + 1)12)  md-1 	 (3.108) 
2 (47r)(d+1)/2  — 

De agora em diante, discutiremos cada uma das condições de contorno, DD, NN e DN, 

paradamente. 

ondições Dirichlet-Dirichlet (DD) 

• .m as definições das autofunções (3.92), podemos calcular explicitamente os fatores .A3,, 

definidos em (3.101), obtendo 

, j,721 /3D = 	(1  + 	 (3.109) 

om este resultado, a soma dupla presente no primeiro termo de (3.102) se torna 

 

E E , 	A 
x-xn,3 "'n 3 

n=1 j=1 

	

oo 	2 	co 
1 [ 	wdn-2) 	wn2d-4] 
a 	 2 

	

n=1 	 n=1 

 

o de a função F é definida como 

1 
—
a 

[F2(2 — d, a) +  F(4 — 2d, 
2 

(3.110) 

F(s, a) := 
CO 

n=1 

(77.7ar ) 2] -8/2  
[m2 -E --- R(s) > 1. 	 (3.111) 

extensão analítica de F(s, a) para (s) < 1, necessária para que a equação (3.110) faça 

sentido em d > 1, é discutida no Apêndice F. 

Expressando também o somatório no segundo termo do lado direito da equação (3.102) 

em termos da função F, obtemos 
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À F2(1 —  d/2)  1 	 6m2  F(1 — d/2)  
[F2(2 d, a) + 21  F(4 2d, a) + 2 	(470d/2 F(2 — d, a) 

8 (470d a 

2À 
A [F(1 — d/2) 2 —  

8a 	(47r)d/2 	
d, a) 2a 6m21  2 	(45m2)2  

F2(1 — d/2) F , 
+ 	 4 2d, a) . 

16a 	(47r)d 	
(  (3.112) 

termo (6m2)2a/2À na expressão acima, por ser proporcional à distância entre as placas, 

ode ser descartado por argumentos já discutidos anteriormente. Substituindo no restante 

a expressão acima a função F por sua forma alternativa (F.7), e 6m2  por (3.108), chegamos 

almente ao resultado 

ELD(a) — 
À 	4amd-1 	.°° K(d_i)/2(2man) 1 F(1 — d/2) rnd_2  2  [ 	 
8a (470(d+1)/2 n=1 (man)(d-1)/2 	2 (47042  

À F2(1  — d/2)  { 1 2d_4  1 am2d-3  [
r 

 3— 2d + 

16a (47r)d 	2
m + 

2 -sFrF(2 — d) 	2 

+4  Ê K(2d_3)/2  (2man) 
(man)(2d-3)/2  ] } . 	

(3.113) 
n=1 

Obviamente, o caso de maior interesse é quando temos d -= 3 dimensões espaciais, quando 

e tão a expressão acima fornece 

1311  D (a) 
d=3 

À 
8a 

4am2  (2man) .  1 F(-1/2) 2  F2(-1/2) m2  

2 	(47r)3/2 'a 16a 	(4703 	2 (4702  (man) 
co 

Àm2   (1 + 2 	Ki(2man) 2 

29a7r2 C \ n 	) n=1 

(3.114) 

expressão (3.114) fornece, assim, a primeira correção radiativa à energia de Casimir (por 

idade de área das placas) de um campo escalar com massa em três dimensões espaciais 

submetido às condições DD. 

elbD (a) 
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1) 

ondições Neumann-Neumann (NN) 

ubstituindo as autofunções (3.93) na expressão (3.101), obtém-se 

An,j1NN = —1 a [1 	— 
2  

(5n j 6n,06  j,0)1 • 

endo assim, a soma dupla do primeiro termo da equação (3.102) é escrita como 

(3.115) 

co co 
d-2 d-2 

, 2_, wn Wj 
n=0 j=0 

co 	2 
[(‘` w  c/-2) 

2_, a 	 2 

1 
-
a 

{ [F(2 - d, a) + Trid-2] 
2 
 + 

2 
-
1 

F(4 - 2d, a) } 	(3.116) 

co 

n=1 2d-4]
n 

somatório presente no segundo termo do lado direito de (3.102) também pode expresso 

termos da função F definida em (3.111): 

.d-2 m2-d + F(2 - d, 	. 	 (3.117) Lun 
n=0 

Substituindo as equações (3.116) e (3.117) em (3.102), obtém-se, após algumas manipu- 

1 u ções algébricas, 

Af F(1 - d/2) 2a õm2 2  

8a 	(47r)d/2 {F(2 
d, a) + md-21 	À   } 

(6m2)2 	_ c//2) 

2À a  + 16a 	(47r)d 
	F(4 -2d, a). 	 (3.118) 

O segundo termo do lado direito da equação (3.118) pode ser descartado, pelas mesmas razões 

resentadas ao analisarmos a equação (3.112). Substituindo no restante da expressão acima 

função F por sua forma alternativa (F.7), e Sm2  por (3.108), temos finalmente 

E ri (a) - 
À [  4amci-1 	K(d_1)/2(2man) 1 F(1 - d/2) d_2  2  

8a (47r)(d±1)/2 	(man)(d-1)/2  + 2 (47042  

r2(1— d/2) 	1 am2d-3 	( 3 - 2c/ 
+

16a (47r)d 	2m + 
1 m 
2 fi-rF(2 - d) 	2 } 

 

 

+4 
K(2d_3)/2(2man)]  

(man)(2d-3)/2 	• } 
n=1 	 111  

(3.119) 

ell■IN (a) 

• 1 8  
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7- 2 2 	4 ) [M 2  + (2n + 1)‘ (E- 

—s/2 	00  
[rn2 	k2 	) 

2
1 

2a 

—s/2 

k=0 

[m2  + (2k)2  
7T 21 —s/2  

2ct) 

No caso de três dimensões espaciais, d = 3, obtemos 

 

0, 
Am ,2 

 [ 	 (2man)) 
 — 	, 
2  

d=3 29a7r2  
n=1 

 

(NN (a) (3.120) 

  

   

A expressão (3.120) fornece a primeira correção radiativa à energia de Casimir, por 

unidade de área, para o campo escalar com massa submetido às condições NN. 

Condições Dirichlet-Neumann (DN) 

Para estas condições de contorno, os fatores (3.101) são obtidos a partir de (3.94): 

	

An,J IDN = (1+ 2k3) 	 (3.121) 

om este resultado, a dupla soma presente no primeiro termo do lado direito de (3.102) é 

ada por 

	

oo 	 co 	2 	oo 

	 Wn W j 	— 
—2 d-2 A 	1  [  	—2) 	1  

a 
+ — ' 2 	n 	• 

„2d-41 	 (3.122) 

	

n=0 j=0 	 n =0 	 n=0 

A fim de expressar o resultado acima em termos da função F, notemos que no caso das 

condições DN tem-se 

F(s, 2a) — F(s, a) . 

ssim, podemos reescrever a equação (3.102) como 

(3.123) 

EL1N(a) 	
8a 	(47r)d/ 2 

 P(1 — d/2) 2 2  
[F(2 d, 2a) F(2 d, a)] + 

2a  bm 
 

(5

mA  

2)2 

a + 16 

A 

 a 	( 

F2(1

47r)d 

 d/2) 
	 [F(4 — 2d, 2a) — F(4 — 2d, a)] 	(3.124) 

2  

Finalmente, substituindo F por (F.7) e bm2  por (3.108) na equação acima, obtemos 
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eil5N (a) = 2  
[ 4amd-1 	K(d_iv2(4amn) 	K(d_1)/2(2amn)  )1 2  

8a [(47r)(d+1)/2 	(2amn)(d-1)/2 	(amn)(d-1)/2 
n=1 	 n=1 

AM2d-3  F2 (1 — d/2)  [ (3 -  2c/ 
16(47r)d+1/2  F(2 - d) 	2 ) 

	

K(2d_3)/2(4amn) 	K(2d_3)/2(2amn) 

	

+4 (2 Ê 	  
(2amn)(2d-3)/2 	(amn)(2d-3)/2  )] 

	

n=1 	 n=1 

(3.125) 

nde, tal como fizemos nos casos DD e NN, descartamos o segundo termo do lado direito da 

quação (3.124). 

Tomando d = 3 na expressão acima, obtemos finalmente a primeira correção radiativa à 

nergia de Casimir, por unidade de área, para o campo escalar em três dimensões espaciais, 

ubmetido às condições DN. 

 

Am2 (Ew  K1(4man) - K1(2man))  2  
d=3 277r4a n=1 

 

Slim (a) (3.126) 

  

Com o objetivo de comparar as primeiras correções radiativas à energia de Casimir para as 

PI es condições de contorno consideradas, escrevemos os resultados (3.114), (3.120) e (3.126) 

orno 

e1bD(a) d=3 

4,N (a) d=3  

a) EID  ( N d=3  

297r2a3 
FDD(ma), 	 (3.127) 

À 

292a3 
„,

Nr N(ma), 	 (3.128) 

997r2a3 FDN (ma), 	 (3.129) 

nde definimos as funções 

FDD (ma) 

FNN (ma) 

FDN (ma) 

K1(2man) 2  
= (ma)2  ( 2 	-1 + -7r  Ê 

n=i 

(mc )2 [ (1  

(ma)
2 	 (4man,) - K1 (2man,) 2  

7r 
n=1 

1 

n=1 

K1(2man) 2  

n 
1] , 

(3.130) 

(3.131) 

(3.132) 
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0.28 
0.26 
0.24 
0.22 
0.2 

0.18 
0.16 
0.14 
0.12 
0.1 

0.08 
0.06 
0.04 
0.02 

FDD (ma) 

DN(m(2) \N ma 

-0.02 
-0.04 
-0.06 
-0.08 
-0.1 

-0.12 
-0.14 
-0.16 
-0.18 
-0.2 

Figura 3.2: Gráficos das funções FDD(ma), FNN (ma) e FDN (ma) 

A figura 3.2 exibe os gráficos das funções FDD, FNN e FDN- 

Note que a correção à energia de Casimir para as condições DD e DN é estritamente 

positiva, enquanto para a condição NN ela torna-se negativa para ma > 0,2. 

Finalizamos esta seção analisando os limites de massa pequena (ma « 1) e massa grande 

(ma » 1) nas expressões obtidas para a energia de Casimir por unidade de área calculadas 

com as condições de contorno DD, NN e DN, dadas respectivamente pelas equações (3.114), 

(3.120) e (3.126). 

A fim de obter o limite de massa pequena, usamos o resultado (ver Apêndice G) 

ce 1 
	R-2 	7r 	1 [ ( 	1 

N---' -Ki(nz) - -cz  - - ,Ã  ln 47.) + -y - z + 0(z3), 	(3.133) 
nLl7f-1  

válido para O < z < 1, nas equações (3.114), (3.120) e (3.126), o que nos fornece 

 

f 1  12 (m2a)2  
- d=3 	2113

À
2a3 

[In(ma) + ln G 	
5

) + 7 +  
1 

+0 [(ma)4 1n2(ma)] } , 

 

EL'ID (a) 

 

 

(3.134) 
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À 	24ma 12(7na)2  
	 1 	

19 
d=3 	21132a3 	7r 	2 	 [1n(ma) + ln C±) + - -2- 

2 

+0 [(ma)3  ln(ma)] 	 (3.135) 

e 11V N (a) 

 

 

 

ma)2  
d=3 
	{ 24( 	 + 	[1n(ma) + ln(27r) + -y - 21332a3 	7r2 e .112N (a) 

 

+0 [(ma)41n2(ma)] . 	 (3.136) 

m particular, quando a massa do campo é nula, as expressões acima se tornam 

  

À 
d=3  == 21132a3 

   

ELI) (a) = N(a) d=3 
ED1 N(a) d=3 21332a3  

(3.137) 

   

plena concordância com os resultados encontrados na literatura [23, 24]. Note que, de 

cordo com a equação (3.137), a primeira correção radiativa à energia de Casimir do campo 

calar sem massa é a mesma nos casos DD e NN. No entanto, de acordo com os resultados 

(1.114) e (3.120), essa igualdade deixa de valer quando o campo possui massa. Isso pode ser 

c nstatado claramente na figura 3.2. 

Para grandes valores de massa (ma » 1), usamos o limite assintótico das funções de 

essel Kv(z) [96], 

nas equações (3.114), (3.120) 

el)D (a) 

eléN (a) 

K„(z) 
 

7r 
e' [1 

e (3.126), o que 

d-3 = 	jÁrN (a) 

Am 

+ 0(z-1)] 	(z 	Do), 

nos permite escrever 

Àm312  

(3.138) 

(3.139) 

(3.140) 

d=3 
ti 
 287r5/2a3/2 exp(-2ma), 

D( 	4ma). 
d=3 	297r3a2  

Note que a correção à energia de Casimir para as condições DN cai bem mais rápido em 

c•mparação com as outras duas condições DD e NN. É interessante notar também que no 

nie ite de grandes valores de massa, a correção à energia de Casimir para as condições DD é 

o osta a que encontramos no caso NN. 
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3.5 Comentários Finais 

Neste capítulo, rederivamos a primeira correção radiativa à energia de Casimir para um 

campo escalar sem massa com auto-interação A04  utilizando a técnica de integrais funcionais, 

até então não empregada para esse caso. Embora ela não apresente nenhuma vantagem 

aparente no caso de fronteiras planas, suspeitamos de que essa técnica forneça uma maneira 

sistemática de se calcular a força de Casimir entre fronteiras curvas (por exemplo, entre um 

plano e uma esfera). 

Em seguida, obtivemos o resultado mais importante desta tese: calculamos pela primeira 

vez a correção radiativa em ordem A à energia de Casimir para um campo escalar com 

massa, também com auto-interação À. Nesse caso, os cálculos foram feitos considerando-

se três condições de contorno diferentes, a saber, as condições DD, NN e DN, definidas 

anteriormente. Analisando os resultados (3.114) e (3.120), constatamos que a igualdade que 

existe entre a primeira correção radiativa à energia de Casimir de um campo escalar sem 

massa submetido às condições DD e NN (veja a equação (3.137)) deixa de existir no caso de 

campos com massa. Finalmente, analisando as equações (3.134)—(3.136) podemos constatar 

que as condições NN são as mais sensíveis à massa do campo, se pensarmos nesta como uma 

pequena perturbação à teoria sem massa. 
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Conclusões e Perspectivas 

Finalizamos esta tese resumindo os principais resultados apresentados em cada capítulo, e 

apontando algumas perspectivas para futuros trabalhos relacionados aos tópicos aqui abor-

dados. 

Em linhas gerais, fizemos nesta tese um estudo a respeito da influência de cavidades 

em fenômenos perturbativos da Teoria Quântica de Campos. Abordamos problemas envol-

vendo desde um campo escalar com auto-interação 44, até problemas relacionados com a 

Eletrodinâmica Quântica e com a Eletrodinâmica de Born-Infeld. Em todos esses casos, 

correções radiativas foram calculadas supondo que os campos em questão estivessem sub-

metidos a condições de contorno em planos paralelos entre si. Resultados foram obtidos para 

diversas condições de contorno. 

No Capítulo 1 estudamos a influência causada pela presença de placas paralelas no espec-

tro de energia de um átomo de Hidrogênio. Usando teoria de perturbação de segunda ordem, 

obtivemos os deslocamentos nos níveis de energia do átomo quando este está localizado na 

região entre as placas. Os correlatores do campo eletromagnético relevantes foram calculados 

por meio do método de separação de tempo imaginário de Schwinger. Consideramos, em 

particular, o caso no qual uma das placas é perfeitamente condutora, e a outra, infinitamente 

permeável, configuração à qual nos referimos por CP. Comparamos nossos resultados com 

os já existentes na literatura para outras configurações, como os casos em que as duas pla-

cas são perfeitamente condutoras ou infinitamente permeáveis, configurações denominadas, 

respectivamente, por CC e PP. Observamos algumas peculiaridades, como o fato de que 

apesar de os deslocamentos nos níveis de energia atômicos para as placas CC e PP terem 

sempre um sinal determinado, sendo positivo para CC e negativo para PP, para o caso da 

configuração CP não é possível prever de antemão o sinal dos deslocamentos de energia, que 
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podem adquirir tanto valores positivos quanto negativos. 

A partir dos resultados obtidos, encontramos também os deslocamentos nos níveis de 

energia de um átomo localizado perto de uma única placa, sendo esta perfeitamente con-

dutora ou infinitamente permeável. É interessante ressaltar que, ao compararmos os deslo-

camentos nos níveis de energia para estes dois casos, vemos que eles têm o mesmo módulo, 

mas sinais contrários. 

Uma extensão desse estudo seria calcular as alterações nos níveis de energia de um átomo 

localizado entre placas paralelas, mas considerando também que este esteja em um banho 

térmico a uma determinada temperatura. Dessa forma, estaríamos considerando também 

os efeitos que a radiação de corpo negro confinada entre as placas exerce sobre os níveis 

atômicos. Do ponto de vista técnico, bastaria trocar os correlatores calculados na tese 

por "correlatores térmicos", ou seja, médias térmicas de correlatores dos campos. Seria 

interessante investigar também a influência de outros tipos de cavidades nos níveis de energia 

atômicos, como por exemplo, cavidades cilíndricas e retangulares. 

Ainda nessa linha de pesquisa a respeito de como certas propriedades radiativas de sis-

temas físicos são afetadas pela sua vizinhança, é nossa intenção investigar também a in-

fluência de cavidades no momento anômalo do elétron, mesmo porque a medida mais precisa 

da EDQ é a do fator g — 2. Pretendemos considerar especificamente o caso em que temos 

duas placas paralelas, sendo pelo menos uma delas infinitamente permeável, e comparar os 

resultados com os já existentes para placas condutoras. 

No capítulo 2 estudamos como a velocidade da luz é alterada quando esta se propaga 

em uma região entre placas paralelas. Consideramos as mesmas configurações de placas 

empregadas no estudo dos deslocamentos dos níveis de energia atômicos do Capítulo 1. Em-

pregamos a técnica desenvolvida por Barton no contexto do efeito Scharnhorst para encontrar 

as alterações na velocidade da luz devido à presença das placas, considerando a dinâmica 

do campo eletromagnético descrita por uma lagrangiana que generaliza, ligeiramente, a la-

grangiana de Euler-Heisenberg, e que tem como caso particular a lagrangiana de Born-Infeld. 

No caso desta última lagrangiana, mostramos que não há variação alguma na velocidade da 

luz até a ordem considerada. Esse é um fato curioso pois, mesmo sem levar em conta efeitos 

quânticos, a lagrangiana de Born-Infeld também fornece variação nula para a velocidade de 

propagação da luz [102, 103]. 
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Utilizando a técnica de Barton, pretendemos calcular a variação na velocidade da luz 

percebida por um referencial com aceleração própria constante (movimento hiperbólico) e 

comparar o resultado com o obtido para um referencial de Lorentz, porém imerso em um 

banho térmico a uma temperatura determinada, ou seja, considerando o campo de radiação 

satisfazendo a distribuição de Planck. A motivação para isso é o chamado efeito Unruh-

Davies [104, 105], que consiste no fato de que a distribuição de ocupação de estados de 

partículas observada por um referencial de Lorentz, a temperatura finita, é igual à observada 

por um referencial em movimento hiperbólico, mas a temperatura zero, se relacionarmos a 

temperatura do primeiro referencial com a aceleração do segundo de forma apropriada. Nosso 

objetivo é constatar, ou não, se algo semelhante acontece entre os dois referenciais para a 

variação na velocidade da luz. 

No Capítulo 3 fizemos um estudo sobre o efeito Casimir para o campo escalar. Em par-

ticular, calculamos a energia de Casimir para o campo escalar com massa, e sua primeira 

correção radiativa para o campo sem massa, mas com auto-interação 454. Em ambos os ca-

sos, consideramos o campo submetido a condições de Dirichlet em planos paralelos. Apesar 

desses resultados já existirem na literatura, empregamos, nesse cálculo, uma técnica fun-

cional ainda não utilizada para o campo escalar. Por meio de outra técnica, envolvendo 

regularização dimensional e extensão analítica, obtivemos pela primeira vez na literatura as 

correções radiativas à energia de Casimir para um campo escalar com massa e auto-interação 

A04. Consideramos três condições de contorno, e os resultados obtidos nos levaram a eluci-

dar a questão da igualdade entre as primeiras correções radiativas ao efeito Casimir para o 

campo escalar sem massa submetido às condições de Dirichlet e de Neumann. Verificamos 

explicitamente que esta igualdade não persiste no caso do campo escalar com massa. 

Mesmo no caso de campos escalares interagentes, há algumas questões que não estão 

muito claras. Por exemplo, quando consideramos um campo escalar com auto-interação do 

tipo A04  e impomos condições de contorno de Neumann em planos paralelos, podem ocorrer, 

dependendo do esquema de regularização, divergências no cálculo da energia de Casimir que, 

aparentemente, não podem ser absorvidas com a renormalização da massa, da constante de 

acoplamento ou da função de onda. Dependendo da regularização empregada, parece ser 

necessário introduzir contratermos de superfície à lagrangiana do sistema. A partir de nossos 

resultados, pretendemos responder a questões como essa. 
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Pretendemos ainda calcular as primeiras correções radiativas à energia de Casimir para 

o campo escalar com massa na teoria Açb4  para duas outras condições de contorno, a saber: 

condições periódicas e anti-periódicas. O objetivo aqui é verificar se a razão entre tais energias 

de Casimir é a mesma que a encontrada no caso sem massa. Esse tipo de estudo pode ajudar 

a elucidar a influência da massa no efeito Casimir. Embora saibamos que o efeito Casimir 

se anula quando a massa do campo tende a infinito, pois esse limite corresponde ao limite 

clássico, uma vez que nesse caso cessam as flutuações quãnticas, a maneira como a energia 

de Casimir varia com a massa não é trivial. 

Por fim, pretendemos calcular as correções radiativas ao efeito Casimir no modelo de 

Schwinger, isto é, na EDQ bidimensional com férmions de massa nula. Como se trata de um 

modelo exatamente solúvel, esperamos encontrar um resultado exato para essa correção, o 

que pode vir a esclarecer alguns pontos e ajudar no entendimento de modelos mais realistas 

em 3+1 dimensões. 
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pêndice A 

emonstrando (1.23) e (1.48) 

Para demonstrar que os termos cruzados em (1.22) são nulos, consideramos inicialmente que 

(014,11k, À) = 471-25),),,57,,„,5(1ju — íjf i ) 

(T,,A!ai t10) = 47r2õ),,A/6„,„,(5( 	— 211 ) 

(k, Ala 	= (014,11k, À) = O 
	

(A.1) 

Com a expansão do campo elétrico (1.47) e as eqUações (A.1) ternos 

(OlEp(Z,  t) 	)1/4)(17, 	t')10)  

2-' k 	£n —£m,—W k  

c,. r r  d2k1 	1 	C4.)- 

A=TE,TM n=0 / 
(2702  En  — Em  — ij 2 

(Ã (Z)) (Ãi•*()) e-zw£(t-t')  (A.2) 

om as definições (1.39) e (1.40), temos para os termos cruzados 

(01Ez(x,t)1rc,),)(, À lEy 	t')I0)  

Jka 	£n — Em  — W i-c• 

d24 	 (k2 

= E ÉD• I (27f)2 
2En 6,17:  wk.  2 	1)kxkysen2(kzz)e-iwz(t-e) (A.3) 

À=TE,TM re=0 
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(01Es( ),t)lk, A)(íj,AlEz("±',t1)10) . 
A 4"11CA 	 en — Em — Wij 

00 
d2É 

= 	E f ii (2702 en ____(e—nii)_  W...  1 -12\r:_12  kri  lczkzsen(kzz) cos(kzz)e-iwg(t-t')  (A.4) 
A=TE,TM n=0 	 k 	k 

>‘
-f. (014(£, t)I  , À) (ij, AlEz  (g, t')10) 

ÀJ ka 	En — Em  — (41k. 

co f d2;j11 	 IN7,12  2  
= 	E E 	(2702 e 	e 	co _ 2 	k

wk 
 ii kzkysen(kzz) cos(k,z)e-iw (t-ti)  (A.5) 

n m k .À=TE,TM rt=0 

Escrevendo as integrais nas expressões (A.3), (A.4) e (A.5) em coordenadas esféricas, ou 

s-ia, fazendo 

d24 = k11 dkiidOkii , kx = k11 cos(q) , ky  = kiisen(0) , Wk = (g + kz2)1 12  , 	(A.6) 

integrando na variável angular 0, verificamos que as integrais (A.3), (A.4) e (A.5) se 

ulam; sendo assim, os termos cruzados em (1.22) são nulos, o que demonstra a equação 

.23). 

Para demonstrar a equação (1.48), consideramos a expansão (1.47) para o campo elétrico 

ambos os lados de (1.48), e utilizamos as equações (A.1), o que fornece 

(01Eplk*, À)12  =  

	

	(01Ep1íj,A)(ic,AlEp10) = 
A 

A r., 0 0 - II k 	
k 
 (£)) VA.* (g)) e-it..,k(t-e) 

(2702  2 	p  
A=TE,TM n=0 

(014Eyi O) 	 (A.7) 
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Apêndice B 

Soma de Resíduos 

Neste apêndice vamos calcular a soma dos resíduos (1.60) internos ao contorno de integração 

indicado na figura 1.3. Considerando as expressões (1.59) e (1.52) temos que 

11±(Z,O;p). Z-Pe-z/2 	1 Z-Pe-(Z/2-FiO) 	z-pe-(Z12-1:0) 

1 - e-z ± 2 1- e-(z+lie) 	1 - e-(Z-2i9) J • 	
(B.1) 

 

As funções g±  têm pólo em Z = 0, mas este ponto está fora do contorno 1.3 e deve ser 

desconsiderado. 

O primeiro termo de (B.1) tem pólos simples internos ao contorno 1.3 em Z = 2niri, 

n = ±1, 12, ±3, ..., fornecendo para cada um o resíduo 

Z-Pe-Z/2 	1 (-1)n  
ReSZ=2n7ri 

	

	 (B.2) 
1 - e-z ) = (271-i)P n,P 

O segundo termo de (B.1) tem pólos simples em Z = 2niri - 2i9, ri = 0, ±1, ±2 ±3, 

o que resulta em 

z-pe-(Z12-1-i0) 	1 	 PO 

	

(27ri)P
( 1)n  (n, - - 	 (B.3) Resz=2i(nar-0) 	 w 1 - e-(z+o) 71- 

Finalmente, para o terceiro termo em (B.1) temos os pólos simples Z = 2niri + 2i0 , n = 

0, ±1, ±2, ±3, ..., com os resíduos 

Z-p e- (Z 12-i0) 
	( 1)71  (n. + 

-0)-19 
 . 	 (B.4) ResZ=2i(nir-I-0) 	

= 

1 e-(Z-2i0) (27ri)p 

A soma dos resíduos dados por (B.2) é efetuada facilmente como segue: 
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1 / 
+ — 	'Hir (7-1, —)° ,9 ) —P 

+ d 
 o. 

(27rz)P 

1 La (-1)n(
¡ 

+ 7-F8)-P  :(-1)n + 
e ) 

+
-P  

o 
oo 

 

	

oo 	 (z—pe—Z/2) 	-00 	 z—pe—Z/2 

	 Resz=2n7ri 	 Resz=2,„, 	 
1 - e-z 	 z 1 - e- 

	

n=1 	 n=-1 

(-1)n 	-a°  (-1)n  

TLP 

1 
(27ri 

1 
0 

( -1)n 
( 

(27ri nP n=1 

0000
(-1)n]  1)-P 
	 nP n=1 

1 	
[1 + ( 1)P] 	( 1)2n 	

00 
 (-1)2n+1  

(27ri)P 	 L,1  (2n)P 	n=0  (2n + 1)P ] 

1  1 
( 2 

7r 
 z )P 2p 

[1 + (-1)--19 ] ((R(p) — 	1/2)) (B.5) 

nde usamos as definições das funções zeta de Riemann e de Hurwitz, dadas respectivamente 

elas expressões 

	

oo 	 oo 
1 	 1 

ÇR (73) = 	n
.1/(P) a) = L (n  I a)P 	

(B.6) 

	

n=1 	 n=0 

Por questão de conveniência, vamos efetuar as somas dos resíduos dados pelas equações 

(B.3) e (B.4) em conjunto, como segue: 

oo 	
Z—Pe—(Z/2—i61) 	

z—pe —(Z/2+i0) )1 

ResZ=2i(nrc-O) ReSZ=2i(nar+0) 	e_(Z-2i8) 	 e_(Z4-2i0) 
— 00  

-p --cx) 	 -P 

-I-
(2/ri)P [>:'(-1)n (n 
 

 - e ) + >:( — ir  (n  - 9) 	
(B.7) 

o 
 

1 

ocando n --- -n nas segunda e quarta somas do lado direito da equação (B.7), temos que t 
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1  [ 
(—ir + —

O
) + (-1 

(2iri)P 	 ir 

co 	 A P 
+E(-1)n  (n — 	+ 

o 

(-1)n (n. — 	—19  
7r 

7r ) 

00 

(-1 
00 

	

z—pe—(Z/2—i0) 	 Z—Pe—(Z/2±i°))] 
[ReS,Z=2i(mr--1-0) 	 -- 

	

e_(z_2i0) 	ReSZ=2i(n7r0) 1_ e-(Z+2i0) 

\
(n+ —9  ) 

7r 

73 	 oo 	 — p  

+ (-1)-P E(-1)n l n — 
7r [ 	(— l) (27r1i)P 

00 

Ê(-1)n — -) 
—13 

 + (-1 (-1)n + 	, 
7r) 

(B.8) 

completendo as segunda e terceira somas de modo a faze-las iniciarem de n = 0, reescrevemos 

a equação (B.8) como 

co 	 z—pe—(Z12—iO) 
	  ±ReSZ=2i(n7r0) 1__. e —(Z+2i0) 

Z —PC(Z/2+¡°) )1  

	

[ReSz,_-_-2i (nir +0) 1 —  e—(Z-2i0) 	 -- 
-00 

— (

8 

) -17  (-1)—P  (2-7r  ) —P] 

1  
( 2 ir )P 

[1+ (-1)-1 [É
°  (-1)71 (n — —O) 

n=o 

—P 

oo 	 A —P 	— P 
E(-1r (77, 	— 

bol 

n=0 

Separando em cada somatório os termos com n par e n ímpar temos que 

(B.9) 
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co 	
Z—Pe—(Z/2—ii9) Z—Pe—(Z/2±iO)  E [Resz=2i(nir+0)(  1- e—(Z-2i0) 

▪  

ReSZ=2i(n7r-0) 1 e—(Z +20) 

00 
	[1 + (-1)-P] [(-1)2" (2n - -9  

Ti 	
) -1)  

(27ri)P 	 =o 
ao 

▪ E
F1)2n+1 

n=0 
oo 

▪ E(_42n+1 

n=0 

P 
((2n + 1) - 	>2.,(-1)2n  (2n + 

r 
n=0 

-P 
((2n + 1) + 

9 
 I- 

7r 

1 1 

(271-0P 2p 
[1 + (-1) —P][ c 	 P  (n - 

2,r
6 

n-0

)  

=15 
 

00 	
1 O -P 

cc - Li ( n + 
2 

27r) .+ 	(n ± 9 P  ) 
27r 

x 	■ 

n=0 	 n=0 
ce 13-  (n  ± 1 ± O -P  ( -0 -  

2 	27r) 	7r ) 
n=0 

sando as definições (B.6) chegamos finalmente a expressão 

(B.10)  

Z-19e—(272-Fie)  z—pe—(Z/2—i0) 

ReSZ=2i(nr+0) 	

▪  

ReSZ=2i(nir-0) 	  ( 	e—(Z-2i0) 	 e—(Z-1-2i0) [ 	 = 
—oo 

1  1 
(27ri)P [1  + (-1)-21 	(/), 5-7r  + (R (P, 

-O) 

( 1 	O 	( 1 	O \ 

§. ± Fr ) - II  ã - Fr) - 	) 

Com os resultados (B.5) e (B.11), escrevemos a soma dos resíduos de (B.1) como 

(B.11)  

>:Resg±(Z, 0;p) = 
1 	

1 ( 

	

+ e-"riP)[GR (P) 	H(p, 1/2)) 
(27rz)P 27) 

O \ 	7 -O \ 	7 1 	O 	í 1 	O \ 
+ 2 _(RV,-27r ) 4-  V> 	 --E Fr) - 	— -27 r  ) 	 (B.12) 
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nde, por conveniência, usamos que -1 = eiri  e consideramos p como um número inteiro, 

possibilitando escrever (-1)-P = e'riP 

Podemos agora tomar o limite 

( 	
27ri 	 27ri 1 	1 -1- e—lriP 

pli_9 1 — e_ 27r jp  E Resg±  (Z, O; p) = 	m 	 
(27ri)3  23  (

li
p-,3 1 - e-27riP ) 

X [((3) - Ç H(3, 1/2)) ± -21  ç ' H  (3, 2 ) + Cif  (3, 29) 

_cif (3'21 + 307r) (H  (3, 21  307r) 

+ 
(7143]] 

sando a regra de L'Hospital no lado direito da equação acima, obtemos 

p—>3 (1 —227" L•  
. 	Resg(Z, O; p)) = 

1287r2  GT 
	 T(Z) 

7r
e— 

i 	 1 

nde definimos G±(z) em (1.68) e usamos a definição de O em (1.51). 

(B.13)  

(B.14)  
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Apêndice C 

Resultados para Manipular a Equação 

(2.55) 

Neste apêndice estabelecemos resultados que nos permitem escrever a equação (2.55). 

Pelas definições (2.49) de É e g podemos mostrar que 

FT = _gÊg-1 . 

Iterando a equação (C.1) temos 

(ÊT)n = (_ i)ng(É)ng-1 Ên = H1rg-1(ÊTrg  

Sendo assim, para uma dada função j(x) = Enc.°, anxn, podemos escrever 
00 	 00 	 00 

J(FT) = 	an,(ÊT)n = 	E an  (ÊT  )71  + Y-f,  an  (ÊT  ) n 

n=0 	 n=0,2,4,... 	n=1,3,5,... 

	

... 	00 

= g[ E n 

a Ên  — > aj'n] g-1  
n= 0,2,4,... 	n=1,3,5,... 

Fazendo J(x) = e"' e J(x) = ex/senh(exs) na equação (C.3), obtemos respectivamente os 

resultados (C.4) e (C.5): 

eefrT s
g = ge

-ek''s 	
g 1

— 	s = e 	g -eÊs -1 (C.4) 

( 	eF' 	T 	eF 	 g_i  (senh(eÊs) T  = (senh(eÊs))
g 	(C.5)

_1 

senh(eÊs 	

(

)) g g  senh(eÊs)) 	 eF ) 	eF 

(C.3) 
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Apêndice D 

Cálculo do Traço e do Determinante 

Presentes na Equação (2.83) 

D.1 Cálculo do Traço da Equação (2.83) 

Neste apêndice calculamos o traço presente na equação (2.83), para isso precisamos encontrar 

os autovalores de (1/2)aF. Com esse intuito consideremos inicialmente o produto: 

— {o-  oÀ P  }Fi 	P 	— (c,,aAp  oApoiv) FPVFÀP  

—1 (o-127., F o-  F 	o- ÀpF4o-12,Fi„) 2 	iLv Ap 
FP 

( 	
tw) 2 

= o- F (D.1) 

Usando a propriedade 

onde: 

- Cf 	CT), = 6 	- 
2{  ilv' P} 	PX vp 	p.,961JA 2E 	75 

O 1 2 3 	2 
}̂15 - 	"Y 	'Y5 -= —1  , 

(D.2)  

(D.3)  

e a equação (D.1), temos: 
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(
o-

ILV 
F )

2 

= 
2 	4i/ 	

1 ( 1 , 

4 C2 laijv' uaP}J  FI2vFAP 

= — (F ,,F , — F ,F,) + —1 (-1if"ÀPF),p)75111,,, . 
4 II  ' II  II  2 	

(D.4) 
1 

Com as definições (2.5), a equação (D.2) e a propriedade de anti-simetria de Fp, podemos 

(21-crF) 2  = 
(2

0'111,1'1") = 2(.F ± 75g) , 	 (D.5) 
2 

ue nos fornece quatro autovalores para (1/2)aF 

±[2(.T ±ig)]112  . 	 (D.6) 

e posse da equação (D.6) podemos finalmente calcular o traço: 

tr exp (-
1
2 
 eo- Fs) = 4Recoshes[2( F + iÇ)]1/2  = 4Re cosh esX , 	(D.7) 

X2  = (Ê + i.'02  . 	 (D.8) 

.2 Cálculo do Determinante da Equação (2.83) 

Neste apêndice calculamos o determinante presente na equação (2.83). 

De início precisamos calcular os autovalores de F. Para isso consideramos as relações: 

	

.F„AFL,= —MvÇ , 	 (D.9) 

FA.C, — 	= 2(V"'T , 	 (D.10) 

a equação de autovalores 

F v = av v 	1.1 , 	 (D.11) 

onde definimos v como um autovetor de F, com autovalor a. 

Utilizando a equação (D.11) e a relação (D.9) temos 

	

= —(1/a)gvp 	 (D.12) 

111 

e 

escrever: 

Onde definimos 



Iterando a equação (D.11) e a equação (D.12), obtemos respectivamente 

= 

Fg*Ani, = (1/a)2gvti • 

Substituindo os as expressões (D.13) na relação (D.10) obtemos a equação 

a4  2.Ta2  — g2  o , 

que fornece os autovalores a = ±a(i) e a = ±a(2), sendo: 

a(i) = 	2)[(.F + iç)1/2 + (.F — ig)1/21 

a(2) = (i/4[(J- + iç)1/2 (•F ig)1/21 

(D.13)  

(D.14)  

(D.15)  

Utilizando as equações (D.15). após algumas manipulações, obtemos finalmente o determi-

nante: 

rsen(eFs)] 	 2 [(se(n(ea(i); 	(se(n(ea(2))s)  ) 2] -1/2 det_v2 
(eFs) 

com X definido em (D.8). 

g  = (es)2 
Imcosh(esX) 

(D.16)  

112 



Apêndice E 

Cálculo do Funcional (3.28) 

• funcional WDD[J] é dado por (veja a equação (3.26)) 

WDD[J] = N f DB1  D B2  exp — i f f dix dly [J(x)D(x — y)S(y3  — ak)Bk (z) 

12 Bk  (xii)6 (x3  — ak )D(x — y)b.  (y3  — ai)B1  (y11)1} . 	 (E.1) 

fetuando as integrais em x3  e y3  obtemos 

WDD[J] = A" f DB1  DB2  exp -5  f f d3xii d3y11  Bk(xii)D(xii — yIl, ak  — ad )Bi  (mi) 

f d3y11 [f d4x J(x)D(x11 — yii, x3  — ak) Bk (x)} . 	 (E.2) 

integral funcional (E.2) é gaussiana, cuja solução é conhecida [30, 106, 107, 108]; o resultado 

WDD[J] 
	exp{ f fd3x11 d3y11 Jk(Xii))/Vici 	— 	) , 	(E.3) 

nde definimos 

jc(Xii) := f d4  Z J(Z)D(Zu — XII I  Z3  — ak), 
	 (E.4) 

e 	— mi) é definido como o inverso de D(xii — 	x3  — ak), ou seja, 
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f d3yli D(x11 — yii, ak — az) 14,1m(y1i — z11) = Skj3) (xii — z11) . 	(E.5) 

Para encontrar 14,1m(yli — z11), consideramos inicialmente a representação de Fourier do 

propagador, 

(E.6)  

ntegrando em k3, e tomando o limite e —> O, obtemos 

d3ku 
D(xii — yii,x 

Y  ) 	f (27 )3  2L(kii) 
3 	3 \   eiLlx3 —y3  e—ikii (x11 —y11 ) 

nde L(kii) está definido em (3.32). Em particular, podemos escrever 

D(x — y) = f d4k 	
1 	e--11c(x—y) 

(2704 k2 m2 + iE 

(E.7)  

onde definimos 

d3kii 
D(Xli 	 a1) 	f (27)3  2L(kii) 

(E.8)  

(E.9)  hki(kii) = eiLlak-ad 

agora imediato verificar que a solução de (E.5) é dada por 

d3ki
An,) \ kl (kii) 	(xii —y11) — mi) = f (27 

i
3 0   2ibvell  (E.10)  

nde 	é a inversa da matriz h definida em (E.9); seus elementos são dados explicitamente 

m (3.33). 

Substituindo as representações de Fourier (E.10) e (E.7) nas equações (E.3) e (E.4), 

btemos 

W D D[J] 
 

= exP{-2 
f f diz d4w J(z) J(w) 

d3k11 f 	 
j (27 )3  j (27 )3  j (2703  2L(11) 

2iL (km ) 2L—
(kf 

etikgwii f 	  

X E eimmi>1.3-aki(h-i)ki(kii )eiL(Ylw3-aii 
kl 

X 	d3x11 e-i(kil f—k im )x ii 	cpyii e-i(q-kii )yii  

Integrando sucessivamente em xii, yil, kii  e kii, obtemos finalmente 
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onde definimos 

D(z, w) 

	

WDD[J] = exP{ --- f f d4z d4w J(z)D(z,w)J(w)}, 	 (E.1 2) 

f d3 	e-ikii(z11-9) 	eiL(191)(1z3 —ak I±S 	12-1)kl 3 —ad) 	( k11) 	(E.13) (27)3  2L(k11) 
kl 
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Apêndice F 

Extensão Analítica de F(s, a) 

Este apêndice é destinado à obtenção da extensão analítica, para R(s) < 1, da função F(s, a) 

definida em (3.111), cujo domínio está restrito ai(s) > 1. Vamos proceder de acordo com 

a referência [109]. 

Reescrevendo a equação (3.111) como 

F (s , a) = - 
1 
 m' + 

-2
1  

	

2 	
[m2 + ( n 21- 

2   

a

) 1 —s/2 

(F.1) 
co 

n=—oo 

e usando a identidade [96] 1  f00 
z r-s = dx xs-1  e-  " , 	 (F.2) 

F(s) jo  

odemos reescrever a função F como 

1 	1 	00 	 00 

r(s/2) f 	
e

_7,2(7,2 2).1a  

	

F(s, a) = --
2 

m' + 2 
	

dx x812-1e-m2x  E 	. 	(F.3) 

tilizando a fórmula de Poisson, 

Ee-crn2 
n=—oo 

o° 	471.2n2 
exp 

= - 00 

(F.4) 

a equação (F.3), obtemos 

1a 	00 	 CO 	2 2 
F (s , a) --= 	m-8  + 	dx  X(8-3)/2  CM

2

X—oo 
,V‘  exp 	

na 

	

2N rF(s/2) fo 	 n= 	
x ) 

-= --
2 

m-s 	
-s f 

dt t(s-3)/ 2  e' 1 + 2 
00 

exp 	
n2a2m2 )] 

,  (F.5) 1 	am1  
2N/Frr(s/2)  o  n=1 

- 00 
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onde, na segunda linha, fizemos a mudança de variável de integração m2x ----> t. Finalmente, 

usando as identidades (F.2) e [96] 

A2 
fow  dte 	r-- exp (-t - ) = 2 2 pv+1K„+1(2,3), 

t 
(F.6) 

nde Ku(z) é a função de Bessel modificada, e o fato de que 1(....,(z) = Kp(z), obtemos a 

eguinte expressão alternativa para a função F(s, a): 

1  am's [r ( s  - 1 	
co 

K(1-3)/2 (2man) 
F(s, a) = -- m-8  + 	

j . 
4 	

1 
(F.7) 

2 	2N/FF(s/2) L' 	
n=1 

2 ) 	(man)(1-9 )/2  

Apesar da expressão acima ter sido obtida sob a hipótese de que R(s) > 1, ela é bem 

definida para qualquer s complexo, exceto nos pontos s = 1,-1, -3, -5, ..., onde possui 

:•*51os simples. Sendo assim, a equação (F.7) constitui a extensão analítica de F(s, a) para o 

plano-s complexo. 

1 
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Apêndice G 

Expansão de 2_,„_1  n-11-(1(nz) em 

e Potências de z 

Série 

 

este apêndice vamos deduzir a expansão (3.133) para a função 

• 

S(z) : E Kl(nz)  
n=1 

(G.1) 

 

por meio da transformada de Mellin [110]. 

A transformada de Mellin de urna função f (x) é definida por 

 

F (p) = ice  xP-1  f (x) dx , 	 (G.2) 
o 

sendo a respectiva transformada inversa dada por 

f (x) = —27ri  L.  x-P F(p) dp , 	 (G.3) 

onde c é uma constante arbitrária que deve ser tomada à direita dos pólos de F (p). 

A transformada de Mellin fornece uma maneira de reescrever uma série infinita como 

uma integral no plano complexo. Para ilustrar como isso é feito, consideremos a série 

= 	f (n). 	 (G.4) 
n=1 

S-!lbstituindo f (n) por (G.3) em (G.4), podemos reescrever S como 
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n=1 

1 	c+i00 

27ri jc_i. 
n-P F(p) dp 

00 

F (p) (E n-P) dp 
n=1 

F(P) -(P) dP (G.5)  

endo e(p) a função zeta de Riemann. 

A expressão (G.5) é conhecida como fórmula da soma de Mellin [110]. Para o caso em 

que_ estamos interessados, temos 

ua transformada (G.2) é dada por 

f (n;; z) = 
Ki(nz)  

(G.6)  

F(p; z) = f xP-2  Ki (xz) dx 	 (G.7) 
o 

integral acima é tabulada [111, fórmula 6.561.16], fornecendo 

F(p, z) = 2P-3  zP-1 F (12 )r ( i2 - i) 	(R(p) > 2, 	(z) > 0) . 
2 

ubstituindo a expressão (G.8) na fórmula da soma de Mellin, Eq. (G.5), obtemos 

s(z) = i67ri 	z e+w°  e) r  ( I22 ) r  (122 1) ((P) dP  

(G.8)  

(G.9)  

O integrando possui pólos simples em p = 2 e p = 1, e pólos de segunda ordem em 

= 0, -2, -4, .... Como o pólo mais à direita está em p = 2, devemos tomar c > 2 na 

in tegral (G.9). 

Para efetuar a integral (G.9), consideramos outro contorno de integração, como indicado 

na figura G.1, e utilizamos o teorema dos resíduos para escrever 

00 
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167ri (ir ± L) G)Pr() r 	i) (p) dp 

00 
= —

z 
[Res(p = 2) + Res(p = 1) + Res(p = O) + 	Res(p = —2n)] . (G.10) 

n=1 

integrando acima tende a zero suficientemente rápido quando 	oo e I arg(p) J < 7r, de 

odo a fazer a integração ao longo do caminho r se anular. Sendo assim, as integrais (G.9) 

(G.10) são iguais, e podemos escrever 

00 
8(z) = 

8 
—
z 

[Res(p = 2) + Res(p = 1) + Res(p = O) + 	Res(p = —2n)] . 	(G.11) 

Figura G.1: Contorno de Integração. 

O cálculo dos três primeiros resíduos na equação acima fornece 

47r2  
3z2  

Res(p = 1) = 
47r 
z 

Res(p = O) = —2 [11G-17-r) 	— 
1 . 
	 (G.12) 

Os resíduos em p = —2n (n = 1,2, ...) são proporcionais a z2n, sendo portanto desprezíveis 

suas contribuições para pequenos valores de z. Substituindo os resultados (G.12) na ex-

pressão (G.11), obtemos a equação (3.133). 

• 

Res(p = 2) = 
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Para finalizar, gostaríamos de comentar que o procedimento utilizado neste apêndice 

ermite obter o resultado mais genérico [112] 

En' Kv(nz) 
n=1 

L
()1 

 (- 	
(5) 21-v + r (2_1 ) ( 

2 T(/ + 1) 
(2(v — 0)F (v — 1) 

E2') 2r(v1+ 1)  In C ) — (0(1)(v+1))]+ 
  

I=0 

2 
°° Ni+  2n) 	+ 2n) 	z 2n 

F
2

-Z  ) v 
n=i  F(1 +n+ v)F(1 +n) 

( ir (47r l
en 

+2 
(G.13) 

álido para v > —1/2 e O < z < 1. Fazendo v = 1 e tomando os termos em ordem mais 

aixa em z, obtemos o resultado (3.133). 

121 



Referências Bibliográficas 

[1] H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948). 

[2] Serge Haroche e Daniel Kleppner, Physics Today 42 (1), 24 (1989). 

[3] S. Haroche, Fundamental Systems in Quantum Optics, Les Houches Summer School, 

section LIII, edited by J. Dalibard, J.M. Raymond e J. Zinn-Justin (North Holland, 

Amsterdam, 1992). 

[4] Cavity Quantum Electrodynamics; edited by Paul R. Berman, Academic Press, Orlando, 

(1994). 

[5] P.W. Milonni, The Quantum Vaccum: An Introduction to Quantum Electrodynamics, 

Academic Press, New York (1994). 

[6] K. Johnson, Acta Phys. Polonica B 6, 865 (1975); 

A. Chodos e C.B. Thorn, Phys. Lett. B 53, 359 (1974); 

K. Johnson, Sci. Am. 241, 112 (1979); 

[7] G. Barton, Proc. Roy. Soc. Lond. A 320, 251 (1970). 

[8] G. Barton, Proc. Roy. Soc. Lond. A 410, 141 (1987). 

[9] G. Barton, Proc. Roy. Soc. Lond. A 410, 175 (1987). 

10] C.A. Lütken e F. Ravndal, Phys. Rev. A 31, 2082 (1985) 

11] K. Scharnhorst, Phys. Lett. B 236, 354 (1990). 

12] G. Barton, Phys. Lett. B 237, 559 (1990). 

122 



[13] M.J. Sparnaay, Physica 24, (1958), 751. 

[14] S.K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997); 

U. Mohideen e A. Roy, Phys. Rev. Lett. 81, 4549 (1998) ; 

A. Roy e U. Mohideen, Phys. Rev. Lett. 82, 4380 (1999) ; 

A. Roy, C.-Y. Lin e U. Mohideen, Phys. Rev. D 60, 111101(R) (1999) ; 

B.W. Harris, F. Chen e U. Mohideen, Phys. Rev. A 62, 052109 (2000); 

T. Ederth, Phys. Rev. A 62, 062104 (2000) ; 

H.B. Chan, V.A. Aksyuk, R.N. Kleiman, D.J. Bishop e F. Capasso, Science 291, 1941 

(2001) ; 

H.B. Chan, V.A. Aksyuk, R.N. Kleiman, D.J. Bishop e F. Capasso, Phys. Rev. Lett. 

87, 211801 (2001); 

G. Bressi, G. Carugno, R. Onofrio e G. Ruoso, Phys. Rev. Lett. 88, 041804 (2002). 

[15] G. Plunien, B. Muller e W. Greiner, Phys. Rep. 134, 89 (1986) . 

[16] V. M. Mostepanenko e N. N. Trunov The Casimir effect and 'as applications, Clarendon 

Press, Oxford (1997). 

[1 ] M. Bordag, U. Mohideen, e V. M. Mostepanenko, Phys. Rep. 353, 1 (2001). 

[1 ] E. Elizalde e A. Romeo, Am. J. Phys. 59, 711 (1991). 

] M.V. Cougo-Pinto, C. Farina e A.C. Tort, Revista Brasileira de Física 22, n° 1 Março, 

122 (2000). 

[20] M. Bordag, D. Robaschik, e E. Wieczorek, Ann. Phys. (N.Y.) 165, 192 (1985); 

E. Wieczorek, D. Robaschik, e K. Scharnhorst, Sov. J. Nucl. Phys. 44, 665 (1986); 

D. Robaschik, K. Scharnhorst, e E. Wieczorek, Ann. Phys. 174, 401 (1987); 

M. Bordag e K. Scharnhorst, Phys. Rev. Lett. 81, 3815 (1998); 

M. Bordag e J. Lindig, Phys. Rev. D 58, 045003 (1998); 

F. Ravndal e J. B. Thomassen, Phys. Rev. D 63, 113007 (2001). 

[21] Bernard S. Kay, Phys. Rev. D 20, 3052 (1979). 

[22] David J. Toms, Phys. Rev. D 21, 2805 (1980). 

123 



[23] K. Symanzik, Nuc. Phys. B 190, 1-44 (1981). 

[24] M. Krech e S. Dietrich, Phys. Rev. A 46, 1886 (1992). 

[25] Luiz C. de Albuquerque e R. M. Cavalcanti, Phys. Rev. D 65, 045004 (2002). 

[26] C. Cohen-Tannoudji, B. Diu e F. Laloë, Quantum Mechanics, John Wiley, New York 

(1977). 

[27] H. M. Nussenzveig, Notas de Aula de Macanica Quântica, Universidade Federal do Rio 

de Janeiro (1998). 

[28] W. Greiner, Relativistic Quantum Mechanics, Springer-Verlag (1997). 

[29] R. H. Landau, Quantum Mechanics II, A Second Course in Quantum Theory, John 

Wiley, New York (1996). 

[30] M. Kaku, Quantum Field Theory, A Modern Introduction, Oxford University Press 

(1993). 

[31] W. V. Houston, Phys. Rev. 51, 446 (1937). 

[32] R. C. Williams, Phys. Rev. 54, 558 (1938). 

[33] W. E. Lamb, Jr. e R. C. Retherford, Phys. Rev. 72, 241 (1947). 

34] W. E. Lamb, Jr. e R. C. Retherford, Phys. Rev. 86, 1014 (1952). 

35] G. L. Ni, H. B. Wang, J. Yan J e H. L. Li, High Energy Physics-Chinese Edition, 24, 

5, 400-407 (2002). 

36] H. Bethe, Phys. Rev. 72, 339 (1947). 

[37] S. Weinberg, The Quantum Theory of Fields, Cambridge University Press (1998). 

[38] Claude Itzykson e Jean-Bernard Zuber, Quantum Field Theory, McGraw-Hill Inc., Nova 

York (1980). 

f39] E. Power, Proc. Roy. Soc. Lond. A 292, 424 (1966). 

124 



[40] Lütken e F. Ravndal, Phys. Scr. 28, 209 (1983). 

[41] E.A. Power e T. Thirunamachandran, Phys. Rev. A 25, 2473 (1982). 

[42] W. Jhe, Phys. Rev. A 43, 5795 (1990). 

[43] W. Jhe, Phys. Rev. A 44, 5932 (1991). 

[44] N. Nha e W. Jhe, Phys. Rev. A 54. 3505 (1996). 

[45] D.T. Alves, C. Farina e A.C. Tort, Phys. Rev. A 61, 034102 (2000). 

[46] Danilo Teixeira Alves, Influência de paredes magneticamente per•rrmeáveis em alguns 

efeitos do vácuo quântico, Tese de Doutorado, CBPF (2002). 

[47] D. T. Alves, F. A. Barone, C. Farina e A. C. Tort, Phys. Rev. A 67, 022103 (2003). 

48] Timothy H. Boyer, Phys. Rev. A 9, 2078 (1974). 

49] V. Hushwater, Am. J. Phys. 65, 381 (1997). 

50] M.V. Cougo-Pinto, C. Farina e A. Tenório, Braz. J. Phys. 29, 371 (1999). 

[51] A. Tenorio, A.C. Tort e F.C. Santos, Phys. Rev. D 60, 105022 (1999). 

[52] M.V. Cougo-Pinto, C. Farina, F.C. Santos e A.C. Tort, Phys. Lett. B 446, 170 (1999). 

[53] M.V. Cougo-Pinto, C. Farina, F.C. Santos e A.C. Tort, Proceedings of the Fourth Work-

shop on Quantum Field Theory under the Influente of External Conditions, 260 (1999). 

54] M.V. Cougo-Pinto, C. Farina, F.C. Santos e A.C. Tort, J. Phys. A 32, 4463 (1999). 

[155] F.A. Barone e C. Farina, Am. J. Phys. 69, 232 (2001). 

[56] J. J. Sakurai, Modern Quantum Mechanics, Addison-Wesley Publishing Company, 

(1994). 

[57] I.Klich, A. Mann e M. Revzen, Phys. Rev. D 65, 045005 (2002). 

[58] O. Kenneth, I.Klich, A. Mann e M. Revzen, Phys. Rev. Lett. 89, 033001 (2002). 

125 



1 9] J. S. Toll, The Dispersion Relation for Light and Its Application to Problems involvzng 

Electron Pairs, Ph. D. Thesis, Princeton (1952). 

0] Z. Bialynicka-Birula e I. Bialynicki-Birula, Phys. Rev. D 2, 2341 (1970). 

61] S. L. Adler, Ann. Phys. (NY) 67, 599 (1971). 

62] E. Brezin e C. Itzykson, Phys. Rev. D 3, 618 (1971). 

,63] K. Scharnhorst, The velocities of light in modified QED vacua, apresentação no "work- 

shop" "Superlumial (?) Velocities", Cologne, hep-th/9810221 (1998). 

[4] I. T. Drummond e S. J. Hathrell, Phys. Rev. D 22, 343 (1980) 

[?5] R. D. Daniels e G. M. Shore, Nucl. Phys. B 425, 634 (1994). 

[66] G. M. Shore, Nucl. Phys. B 460, 379 (1996). 

[67] R. Tarrach, Phys. Lett. B 133, 259 (1983). 

[68] J. I. Latorre, P. Pascual e R. Tarrach, Nucl. Phys. B 437, 60 (1995). 

[C9] H. Gies e W. Dittrich, Phys. Lett. B 431, 420 (1998). 

[710] W. Dittrich e H. Gies, Phys. Rev. D 58, 025004 (1998). 

[71] G.Mie, Ann. Phys. 37, 511 (1912); 39, 1 (1913). 

[72] M. Bom e L. Infeld, Proc. Roy. Soc. A 144, 425 (1934). 

[73] Julian Schwinger, Phys. Rev. 82, 664 (1951). 

[74] V. V. Dodonov, I. A. Malkin e V. I. Man'ko, Lett. Nuovo Cim. 14, 241 (1975). 

[75] V. V. Dodonov, I. A. Malkin e V. I. Man'ko, Physica 82A, 113 (1976). 

[7 
 
6] V. V. Dodonov, I. A. Malkin e V. I. Man'ko, J. Phys. A 9, 1791 (1976). 

[77] J.D. Likken, J. Sonnenschein e N. Weiss, Int. J. IVlod. Phys. A 6, 5155 (1991). 

[78] N.J. Morgenstern Horing, H.L. Cui e G. Fiorenza, Phys. Rev. A 34, 612 (1986). 

126 



[79] C. Farina e Antonio Segui-Santonja, Phys. Lett. A 184, 23 (1993). 

[80] S. Rabello e C. Farina, Phys. Rev. A 51, 2614 (1995). 

[81] J. Schwinger, ed. B. G. Englert, Quantum Mechanics: Symbolism of Atomic Measure-

ments, Springer (2001). 

[82] F. A. Barone, H. Boschi Filho e C. Farina, Am. J. Phys. 71, 483 (2003). 

[83] W. Greiner e J. Reinhardt. Quantum Electrodynamics, Springer-Verlag, New York 

(1994). 

[84] W. Dittrich e M. Reuter, Effective Lagrangians in Quantum Electrodynamics, Springer-

Verlag, Berlin (1985). 

[85] F. London, Z. Phys. 63, 245 (1930). 

[86] E.J.W. Verwey e J.T.G. Overbeek, Theory of the Stability of Lyophobic Colloids, Else-

vier, Amsterdam (1948). 

[87] H.B.G. Casimir e D. Polder, Phys. Rev. 73, 360 (1948). 

[88] D. Tabor e R.H.S. Winterton, Nature (London), 219, 1120 (1968). 

[89] M. Planck, Verh. d. Deutsch. Phys. Ges. (2) 13, 138 (1911). 

[90] Helmut Rechenberg, Historical Remarks on Zero-Point Energy and the Casimir Effect 

(1911-1998), pág. 10, Proceedings of the Fourth Workshop on Quantum Field Theory 

under the Influence of External Conditions, World Scientific Publishing Co. Pte. Ltd., 

Cingapura (1998). 

[91] H.B.G. Casimir, J. Chim. Phys. 46, 407 (1949). 

[92] H.B.G. Casimir, Some Remarks on the History of the so Called Casimir Effect, pág 3, 

Proceedings of the Fourth Workshop on Quantum Field Theory under the Influence of 

External Conditions, World Scientific Publishing Co. Pte. Ltd., Cingapura (1998). 

[93] P. W. Milonni e M.-L. Shih, Contemporary Physics 33, 313 (1992). 

127 



[94] E. Elizalde, S. D. Odintsov, A. Romeo, A. A. Bitsenko e S. Zerbini, Zeta Regularization 

Techniques with Applications, World Scientific, Singapore (1994). 

[95] K. Kirsten, Spectral Functions in Mathematics and Physics, Chapman & Hall, Dordrecht 

- Netherlands (2001). 

[96] G. B. Arfken e H. J. Weber, Mathematical Methods for Physicists, Academie Press 

' 	(1995). 

[97] L.H. Ford, Phys. Rev. D 22, 3003 (1980). 

[98] K. Melnikov, Phys. Rev. D 64, 045002 (2001). 

[99] Radiative Corrections to the Casimir Effect for the Massive Scalar Field, F. A. Barone, 

R. M. Cavalcanti e C. Farina, Anais do XXIII Encontro Nacional de Física de Partículas 

e Campos, http://www.sbfl.if.usp.brieventos/enfpchociii.  

[100] L.H. Ford, Proc. R. Soc. Lond. A 368, 305 (1979). 

[101] M. E. Peskin e D. V. Schroeder, An Introduction To Quantum Field Theory, Addison-

Wesley Publishing Company (1995). 

[102] V.A. De Lorenci, R. Klippert, M. Novelo e J.M. Salim, Phys. Let. B 482, 134 (2000). 

[103] M. Novello, V.A. De Lorenci, J.M. Salim e R. Klippert, Phys. Rev. D 61, 045001 

(2000). 

[104] W.C. Unruh, Phys. Rev. D 14, 870 (1976). 

[105] P.C.W. Davies, J. Phys. A 8, 609 (1975). 

[106] W. Greiner e J. Reinhardt, Field Quantization, Springer-Verlag (1996). 

[107] B. Hatfield, Quantum Field Theory of Point Particles and Strings, Perseus Book 

(1992). 

[108] J. Barcelos Neto, Notas de Teoria Quântica de Campos, Universidade Federal do Rio 

de Janeiro (1988). 

128 



[109] Jan Ambjorn e Stephen Wolfram, Ann. Phys. 147, 1 (1983). 

[110] B. Davies, Integral Transforms and Their Applications, Springer (1937). 

[111] I. S. Gradshteyn e I. M. Ryzhik, Table of Integrais, Series, and Products, Academic 

Press (2000). 

[112] W. H. Braden, Phys. Rev. D 25, 1028 (1982). 

129 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141

