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EXISTENCE THEOREM FOR NON-ABELIAN VORTICES

IN THE AHARONY–BERGMAN–JAFFERIS–MALDACENA

THEORY

Ruifeng Zhang and Meili Zhu

Abstract. In this paper, we discuss the existence theorem for multi-
ple vortex solutions in the non-Abelian Chern–Simons–Higgs field theory
developed by Aharony, Bergman, Jafferis, and Maldacena, on a doubly
periodic domain. The governing equations are of the BPS type and de-
rived by Auzzi and Kumar in the mass-deformed framework labeled by a
continuous parameter. Our method is based on fixed point method.

1. Introduction

Vortices in non-Abelian gauge field theory play important roles in confine-
ment mechanism and are governed by systems of nonlinear elliptic equations
of complicated structures [2, 4, 7, 8, 10, 11, 12, 13, 14, 16, 22, 28, 30]. In this
paper, we will focus on the vortex equations in the non-Abelian Chern–Simons–
Higgs field theory developed by Aharony, Bergman, Jafferis, and Maldacena
[1], known as the ABJM model, on a doubly periodic domain. The govern-
ing equations are of the BPS type and derived by Auzzi and Kumar [5] in
the mass-deformed framework labeled by a continuous parameter. Developing
and extending the methods of [6, 15, 17, 18, 19, 20, 21, 24, 27], we obtain the
existence of a multiple vortex solution.

Recall that the ABJM model [1] is a Chern–Simons–Higgs theory within
which the matter fields are four complex scalars,

(1.1) CI = (Q1, Q2, R1, R2), I = 1, 2, 3, 4,

in the bifundamental matter field (N,N) representation of the gauge group
U(N) × U(N), which hosts two gauge fields, Aµ and Bµ. The Chern–Simons
action associated to the two gauge group Aµ and Bµ of levels +k and −k is
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738 R. ZHANG AND M. ZHU

given by the Lagrangian density

(1.2) LCS =
k

4π
ǫµνγTr

(

Aµ∂νAγ +
2i

3
AµAνAγ −Bµ∂νBγ −

2i

3
BµBνBγ

)

,

where the gauge-covariant derivatives on the bifundamental fields are defined
as

(1.3) DµC
I = ∂µC

I + iAµC
I − iCIBµ, I = 1, 2, 3, 4.

The scalar potential of the mass deformed theory can be written in a compact
way as [9]

(1.4) V = Tr(Mα†Mα +Nα†Nα),

where

Mα = ρQα +
2π

k
(2Q[αQ

†
βQ

β] +RβR
†
βQ

α −QαR
†
βR

β

+ 2QβR
†
βR

α − 2RαR
†
βQ

β),(1.5)

Nα = − ρRα +
2π

k
(2R[αR

†
βR

β] +QβQ
†
βR

α −RαQ
†
βQ

β

+ 2RβQ
†
βQ

α − 2QαQ
†
βR

β),(1.6)

where the Kronecker symbol ǫαβ (α, β = 1, 2) is used to lower or raise indices,
and ρ > 0 a massive parameter. Thus, when the spacetime metric is of the
signature (+−−), the total (bosonic) Lagrangian density of ABJM model can
be written as

(1.7) L = −LCS + Tr([DµC
I ]†[DµCI ])− V,

which is of a pure Chern–Simons type for the gauge field sector. The equations
of motion of the Lagrangian (1.7) are rather complicated. As in [5] and [6], we
concentrate on a reduced situation where (say) Rα = 0, N = 3. In the static
limit, Auzzi and Kumar [5] showed that these equations may be reduced into
the first-order BPS vortex equations without assuming radial symmetry

(∂1 + i∂2)κ = i(a1 + ia2)κ,(1.8)

(∂1 + i∂2)φ = −i([a1 + ia2]− [b1 + ib2])φ,(1.9)

a12 = −
λ

2
(2κ2 − |φ|2 − 1),(1.10)

b12 = −λ(|φ|2 − 1),(1.11)

where κ is a real-valued scalar field, φ a complex-valued scalar field, and aj
and bj are two real-valued gauge potential vector fields, ajk = ∂jak − ∂kaj and
λ = 4ρ2.

We shall look for solutions of these equations so that κ never vanishes but
φ vanishes exactly at the finite set of points

(1.12) Z = {p1, p2, . . . , pn}.
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Set u = lnκ2 and w = ln |φ|2 and note that |φ| behaves like |x − ps| for x

near ps (s = 1, . . . , n). We see that u and w satisfy the equations [6]

∆u = λ(2eu − ew − 1),(1.13)

∆u+∆w = 2λ(ew − 1) + 4π

n
∑

s=1

δps
(x),(1.14)

where we have included our consideration of the zero set Z of φ as given in
(1.12).

Chen, Zhang and Zhu [6] studied vortex equations in a supersymmetric
Chern–Simons–Higgs theory in the ABJM model. They obtained a series of
existence and uniqueness theorems for multiple vortex solutions of the ABJM
model, over R2 and on a doubly periodic domain using the methods of calculus
of variations.

In the present paper, we are going to discuss the non-Abelian BPS vortex
equations of the ABJM model on a doubly periodic domain. We shall show
how to approach the existence problem by a fixed point method via the Leray–
Schauder theorem. Our approach is of independent interest because the a priori

estimates obtained in the process may provide additional information on the
governing equations. It’s interesting that, our method is completely applicable
to the self-dual equations governing multiple vortices in a product Abelian
Higgs model may be regarded as a generalized Ginzburg–Landau theory [25,
26, 29].

2. Fixed point method

In this section, we approach the existence problem of the multiple vortex
solutions in a doubly periodic domain Ω by a fixed point method where we
apple the maximum principle and the Poincaré inequality to derive suitable a

priori estimates. We introduce a background function w0 satisfying

(2.1) ∆w0 = −
4πn

|Ω|
+ 4π

n
∑

s=1

δps
(x),

where δp is the Dirac distribution concentrated at the point p. Using the new
variable v so that w = w0 + v, we can modify (1.13) and (1.14) into

∆u = λ(2eu − ew0+v − 1),(2.2)

∆v = λ(3ew0+v − 2eu − 1) +
4πn

|Ω|
,(2.3)

which are now in a regular (singularity-free) form. Note that, since the singu-
larity of w0 at ps is of the type ln |x−ps|

2, the weight function ew0 is everywhere
smooth.
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Let (u, v) be a solution of (2.2) and (2.3). Then (u,w) solves (1.13) and
(1.14). We first derive a necessary condition for the solvability of (2.2) and
(2.3). Integrating (2.2) and (2.3), we have

∫

Ω

ew0+vdx = |Ω| −
2πn

λ
≡ C1 > 0,(2.4)

∫

Ω

eudx =
1

2

∫

Ω

ew0+vdx+
1

2
|Ω| =

1

2
(C1 + |Ω|) ≡ C2 > 0.(2.5)

Of course, the conditions (2.4) and (2.5) imply that the existence of an n-vortex
solution requires that C1 > 0 and C2 > 0, which is simply

(2.6) |Ω| −
2πn

λ
≡ C1 > 0,

since C1 > 0 contains C2 > 0.
We now proceed to prove that (2.4) and (2.5) are also sufficient for the

existence of a solution to the equations (2.2) and (2.3).
We use W 1,2(Ω) to denote the usual Sobolev space of scalar-valued or vector-

valued Ω- periodic L2-functions whose derivatives are also in L2(Ω). For this
purpose, we rewrite each f ∈ W 1,2(Ω) as follows

f = f + f ′,

where f denotes the integral mean of f , f = 1
|Ω|

∫

Ω fdx and
∫

Ω f ′dx = 0. We

can derive from (2.4) and (2.5) the expressions

v = lnC1 − ln

(
∫

Ω

ew0+v′

dx

)

,(2.7)

u = lnC2 − ln

(
∫

Ω

eu
′

dx

)

.(2.8)

For X =

{

f ′ ∈ W 1,2(Ω)

∣

∣

∣

∣

∫

Ω
f ′dx = 0

}

and Y = X × X define a operator

T : Y −→ Y be setting

(2.9) (U ′, V ′) = T (u′, v′), (u′, v′) ∈ Y,

where (U ′, V ′) ∈ Y is the unique solution of the system of the equations

∆U ′ = λ

(

2C2e
u′

∫

Ω eu
′

dx
−

C1e
w0+v′

∫

Ω ew0+v′

dx
− 1

)

,(2.10)

∆V ′ = λ

(

3C1e
w0+v′

∫

Ω ew0+v′

dx
−

2C2e
u′

∫

Ω eu
′

dx
− 1

)

+
4πn

|Ω|
.(2.11)

The existence and uniqueness of a solution of the system of equations (2.10)
and (2.11) may easily be seen since the right-hand sides of (2.10) and (2.11)
have zero average value on Ω as a consequence of the definitions of (2.7) and
(2.8). By the Poincaré inequality [23], we may define the norm of Y as follow

(2.12) ‖(u′, v′)‖Y = ‖∇u′‖L2(Ω) + ‖∇v′‖L2(Ω).
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Theorem 2.1. The system of equation (1.13) and (1.14) has a solution if and

only if the conditions (2.4) and (2.5) are valid.

We will prove Theorem 2.1 in terms of two lemmas as follows.

Lemma 2.1. The operator T : Y 7−→ Y is completely continuous.

Proof. Let (u′
n, v

′
n) → (u′

0, v
′
0) weakly in Y as n → ∞. Then (u′

n, v
′
n) → (u′

0, v
′
0)

strongly in Lp(Ω) × Lp(Ω) (p ≥ 1). The Egorov theorem imply that for any
ε > 0 there is a sufficiently large number Kε > 0 and a subset Ωε ⊂ Ω such
that |u′

n|, |v
′
n| ≤ Kε, x ∈ Ω− Ωε, |Ωε| < ε.

Set (U ′
n, V

′
n) = T (u′

n, v
′
n) and (U ′

0, V
′
0) = T (u′

0, v
′
0). Then

∆(U ′
n − U ′

0) = λ

(

2C2e
u′

n

∫

Ω eu
′

ndx
−

C1e
w0+v′

n

∫

Ω ew0+v′

ndx
−

2C2e
u′

0

∫

Ω
eu

′

0dx
+

C1e
w0+v′

0

∫

Ω
ew0+v′

0dx

)

,

(2.13)

∆(V ′
n − V ′

0) = λ

(

−2C2e
u′

n

∫

Ω eu
′

ndx
+

3C1e
w0+v′

n

∫

Ω ew0+v′

ndx
+

2C2e
u′

0

∫

Ω eu
′

0dx
−

3C1e
w0+v′

0

∫

Ω ew0+v′

0dx

)

.

(2.14)

Multiplying (2.13) and (2.14) by U ′
n−U ′

0 and V ′
n−V ′

0 , and integrating by parts,
respectively, we obtain

∫

Ω

|∇(U ′
n − U ′

0)|
2dx =

∫

Ω

λ

{

2C2e
u′

0

∫

Ω
eu

′

0dx
−

2C2e
u′

n

∫

Ω
eu

′

ndx

+
C1e

w0+v′

n

∫

Ω
ew0+v′

ndx
−

C1e
w0+v′

0

∫

Ω
ew0+v′

0dx

}

(U ′
n − U ′

0)dx,(2.15)

∫

Ω

|∇(V ′
n − V ′

0)|
2dx =

∫

Ω

λ

{

2C2e
u′

n

∫

Ω
eu

′

ndx
−

2C2e
u′

0

∫

Ω
eu

′

0dx

−
3C1e

w0+v′

n

∫

Ω
ew0+v′

ndx
+

3C1e
w0+v′

0

∫

Ω
ew0+v′

0dx

}

(V ′
n − V ′

0 )dx.(2.16)

Note that the boundedness of {(u′
n, v

′
n)} in Y and the Trudinger-Moser in-

equality [3] imply that

sup
n

∫

Ω

eu
′

ndx ≤ C < ∞,(2.17)

sup
n

∫

Ω

ev
′

ndx ≤ C < ∞.(2.18)

For any ε > 0, let Ωε be a neighborhood of the points p1, p2, . . . , pn so that
ps ∈ Ωε(∀ε) and |Ωε| < ε. On the other hand, since there is a constant ε0 > 0
such that ew0(x) ≥ ε0 for all x ∈ Ω− Ωε.

Therefore, from (2.15), we obtain
∫

Ω

|∇(U ′
n − U ′

0)|
2dx ≤ λ

{

4C2
∫

Ω
eu

′

ndx

∫

Ω

eũ
′

n |u′
n − u′

0||U
′
n − U ′

0|dx
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+
2C1

∫

Ω ew0+v′

ndx

∫

Ω

ew0+ṽ′

n |v′n − v′0||U
′
n − U ′

0|dx

}

≤ λ

{

4C2

|Ω|

∫

Ω

eũ
′

n |u′
n − u′

0||U
′
n − U ′

0|dx

+
2C1

KΩ,ε

∫

Ω

ew0+ṽ′

n |v′n − v′0||U
′
n − U ′

0|dx

}

,(2.19)

where ũ′
n and ṽ′n lie between u′

n, v
′
n and u′

0, v
′
0, respectively. In (2.19), we have

used the inequalities
∫

Ω

eu
′

ndx ≥ |Ω| exp

(

1

|Ω|

∫

Ω

u′
ndx

)

= |Ω|,

and
∫

Ω

ew0+v′

ndx ≥

∫

Ω−Ωε

ew0+v′

ndx ≥ ε0|Ω− Ωε| exp(−Kε) ≡ KΩ,ε.

Applying the Cauchy inequality and Hölder inequality, and (2.17), we have
∫

Ω

eũ
′

n |u′
n − u′

0||U
′
n − U ′

0|dx ≤
1

2ε

∫

Ω

e2ũ
′

n |u′
n − u′

0|
2dx+

ε

2

∫

Ω

|U ′
n − U ′

0|
2dx

≤
1

2ε

(
∫

Ω

e4ũ
′

ndx

)
1

2

(
∫

Ω

|u′
n − u′

0|
4x

)
1

2

+
C3ε

2
‖∇(U ′

n − U ′
0)‖

2
L2(Ω)

≤ Cε‖u
′
n − u′

0‖
2
L4(Ω) +

C3ε

2
‖∇(U ′

n − U ′
0)‖

2
L2(Ω).(2.20)

Similarly,
(2.21)
∫

Ω

ew0+ṽ′

n |v′n − v′0||U
′
n − U ′

0|dx ≤ Cε‖v
′
n − v′0‖

2
L4(Ω) +

C4ε

2
‖∇(U ′

n − U ′
0)‖

2
L2(Ω).

Inserting (2.20) and (2.21) into (2.19), and letting ε > 0 be small enough, we
have

(2.22) ‖∇(U ′
n − U ′

0)‖
2
L2(Ω) ≤ C

(

‖u′
n − u′

0‖
2
L4(Ω) + ‖v′n − v′0‖

2
L4(Ω)

)

,

where C > 0 is a constant.
For (2.16), we have

(2.23) ‖∇(V ′
n − V ′

0)‖
2
L2(Ω) ≤ C

(

‖u′
n − u′

0‖
2
L4(Ω) + ‖v′n − v′0‖

2
L4(Ω)

)

.

From (2.22) and (2.23), we arrive at

(2.24) ‖(U ′
n − U ′

0, V
′
n − V ′

0)‖Y ≤ C

(

‖u′
n − u′

0‖
2
L4(Ω) + ‖v′n − v′0‖

2
L4(Ω)

)

,



EXISTENCE THEOREM FOR NON-ABELIAN VORTICES 743

where C > 0 is a constant. This proves that (U ′
n, V

′
n) → (U ′

0, V
′
0) strongly in Y

and the lemma follows. �

We now study the fixed point equation labeled by a parameter t,

(2.25) (u′
t, v

′
t) = tT (u′

t, v
′
t), 0 ≤ t ≤ 1.

Lemma 2.2. There is a constant C > 0 independent of t ∈ [0, 1] so that

(2.26) ‖(u′
t, v

′
t)‖Y ≤ C, 0 < t ≤ 1.

Consequently, T has a fixed point in Y .

Proof. When t > 0, it is straightforward to check that (u′
t, v

′
t) satisfies the

equations

∆u′
t = λt(

2C2e
u′

t

∫

Ω eu
′

tdx
−

C1e
w0+v′

t

∫

Ω ew0+v′

tdx
− 1),(2.27)

∆v′t = λt(
−2C2e

u′

t

∫

Ω
eu

′

tdx
+

3C1e
w0+v′

t

∫

Ω
ew0+v′

tdx
− 1) +

4πn

|Ω|
t.(2.28)

Set w′
t = w0 + v′t. Then the equations (2.27) and (2.28) are modified into

∆u′
t = λt(

2C2e
u′

t

∫

Ω eu
′

tdx
−

C1e
w′

t

∫

Ω ew
′

tdx
− 1),(2.29)

∆w′
t = λt(

−2C2e
u′

t

∫

Ω
eu

′

tdx
+

3C1e
w′

t

∫

Ω
ew

′

tdx
− 1) +

4πn

|Ω|
(t− 1) + 4π

n
∑

s=1

δps
(x),(2.30)

where ∆w0 = − 4πn
|Ω| + 4π

∑n

s=1δps
(x).

In the doubly periodic domain Ω, we let p, q ∈ Ω so that

u′
t(p) = max{u′

t(x)|x ∈ Ω}, w′
t(q) = max{w′

t(x)|x ∈ Ω}.

To facilitate our computation, we adopt the notation

(2.31) h′
t(x) =

C2e
u′

t

∫

Ω eu
′

tdx
, g′t(x) =

C1e
w′

t

∫

Ω ew
′

tdx
.

Then from (2.29), we have

0 ≥ (∆u′
t)(p) = λt(2h′

t(p)− g′t(p)− 1).

Therefore

2h′
t(p) ≤ g′t(p) + 1 ≤

C1e
w′

t
(q)

∫

Ω ew
′

tdx
+ 1 = g′t(q) + 1.

Hence, for any x ∈ Ω, we have

(2.32) 2h′
t(x) ≤ g′t(q) + 1, ∀x ∈ Ω.

From (2.30), using (2.32), we obtain

(2.33) g′t(q) ≤ 1 +
2πn

λ|Ω|
·
1− t

t
, 0 < t ≤ 1.
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In view of (2.32) and (2.33), for any x ∈ Ω, we have

(2.34) g′t(x) ≤ 1, h′
t(x) ≤ 1 +

πn

λ|Ω|
·
1− t

t
, x ∈ Ω.

Multiplying (2.27) and (2.28) by u′
t, v

′
t and integrating by parts, respectively,

and using (2.34), we have

‖(∇u′
t,∇v′t)‖

2
L2(Ω)×L2(Ω)

≤

∫

Ω

∣

∣

∣

∣

λt

(

2C2e
u′

t

∫

Ω eu
′

tdx
−

C1e
w0+v′

t

∫

Ω ew0+v′

tdx
− 1

)

· u′
t

∣

∣

∣

∣

dx

+

∫

Ω

∣

∣

∣

∣

{

λt(
−2C2e

u′

t

∫

Ω eu
′

tdx
+

3C1e
w0+v′

t

∫

Ω ew0+v′

tdx
− 1) +

4πn

|Ω|
t

}

· v′t

∣

∣

∣

∣

dx

≤

∫

Ω

{

(1 + 1 + 2)λ|u′
t|+

[

(1 + 3 + 2)λ+
4πn

|Ω|

]

|v′t|

}

dx

≤ C̃1

∫

Ω

|u′
t|dx+ C̃2

∫

Ω

|v′t|dx

≤ Cε + C̃ε‖(∇u′
t,∇v′t)‖

2
L2(Ω)×L2(Ω).(2.35)

Let ε > 0 be small enough, we have

(2.36) ‖(u′
t, v

′
t)‖Y = ‖(∇u′

t,∇v′t)‖L2(Ω)×L2(Ω) ≤ C,

where C > 0 is a constant. The existence of a fixed point is a consequence
of Lemma 2.2, the apriori estimate (2.26) and the Leray–Schauder theory. In
particular, the existence of a fixed point of T , say (u′, v′), follows. �

Set u = u+ u′ and v = v+ v′. We see that (u, v) is a solution of the system
of equations (2.2) and (2.3). This completes the proof of Theorem 2.1.
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and New York, 1982.
[4] R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi, and A. Yung, Non-Abelian superconduc-

tors: vortices and confinement in N =2 SQCD, Nuclear Phys. B 673 (2003), 187–216.
[5] R. Auzzi and S. P. Kumar, Non-Abelian vortices at weak and strong coupling in mass

deformed ABJM theory, J. High Energy Phys. 2009 (2009), no. 10, 071, 35 pp.
[6] S. X. Chen, R. F. Zhang, and M. L. Zhu, Multiple vortices in the Aharony–Bergman–

Jafferis–Maldacena model, Ann. H. Poincaré, to appear.
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[16] C. N. Kumar and A. Khare, Charged vortex of finite energy in non-Abelian gauge the-

ories with Chern-Simons term, Phys. Lett. B 178 (1986), no. 4, 395–399.
[17] E. H. Lieb and Y. Yang, Non-Abelian vortices in supersymmetric gauge field theory via

direct methods, Comm. Math. Phys. 313 (2012), no. 2, 445–478.
[18] C. S. Lin, A. C. Ponce, and Y. Yang, A system of elliptic equations arising in Chern–

Simons field theory, J. Funct. Anal. 247 (2007), no. 2, 289–350.
[19] C. S. Lin and J. V. Prajapat, Vortex condensates for relativistic Abelian Chern–Simons

model with two Higgs scalar fields and two gauge fields on a torus, Comm. Math. Phys.
288 (2009), no. 1, 311–347.

[20] C. S. Lin and Y. Yang, Non-Abelian multiple vortices in supersymmetric field theory,
Comm. Math. Phys. 304 (2011), no. 2, 433–457.

[21] , Sharp existence and uniqueness theorems for non-Abelian multiple vortex so-

lutions, Nuclear Phys. B 846 (2011), no. 3, 650–676.
[22] G. S. Lozano, D. Marqus, E. F. Moreno, and F. A. Schaposnik, Non-Abelian Chern–

Simons vortices, Phys. Lett. B 654 (2007), no. 1-2, 27–34.
[23] R. McOwen, On the equation ∆u+Ke2u = f and prescribed negative curvature in R

2,
J. Math. Anal. Appl. 103 (1984), no. 2, 365–370.

[24] G. Tarantello, Selfdual Gauge Field Vortices: An Analytical Approach, Birkhäuser,
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