
2.7 Automation of the leading order calculations for e+e− →
hadrons

K. Ko lodziej

Institute of Physics, University of Silesia, ul. Uniwersytecka 4, PL-40 007 Katowice, Poland

After some modifications, carlomat [1, 2], a program for automatic computation of the
leading order (LO) cross sections of multiparticle reactions, that was originally dedicated
mainly to description of the processes of production and decay of heavy particles such as
top quarks, the Higgs boson, or electroweak gauge bosons, can be used to obtain predictions
for e+e− → hadrons in the framework of effective models. At low energies, the hadronic
final states consist mostly of pions, kaons, or nucleons which can be accompanied by one or
more photons, or light fermion pairs such as e+e−, or µ+µ−. Some effective models which
can be useful in this context, including the scalar electrodynamics (sQED) and the Wtb
interaction with operators of dimension up to 5, were already implemented in version 2 of
the program [2].

The effective Lagrangian of the Wtb interaction has the following form [3]:
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where the couplings fLi , fRi , i = 1, 2, can be complex in general. The electromagnetic (EM)
interaction of spin 1/2 nucleons has a similar form:
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The form factors F1(Q
2) and F2(Q

2), where Q2 = −(p − p′)2, were adopted from PHOKARA

[4], thus making possible Monte Carlo (MC) simulations of processes involving the EM
interaction of nucleons.

At low energies, π± can be treated as point like particles and their EM interaction can
be effectively described in the framework of sQED [5] the interaction vertices examples of
which are shown in Fig. 5.
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Figure 5: Vertices of sQED

Another step toward better description of e+e− → hadrons at low energies is the in-
clusion of the Feynman rules of the Resonance Chiral Perturbation Theory (RChPT). The
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interaction vertices and particle mixing terms of RChPT that can be relevant in this con-
text were provided by Fred Jegerlehner [6]. Some examples of them are shown in Figs. 6
and 7. The implementation of the triple and quartic interaction vertices was more or less
straightforward, as it just required writing a few new subroutines for computation of the
helicity amplitudes involving the Lorentz tensors that are different from those of the sQED
vertices. The couplings fγPP , fρ0PP , gγρ0ππ, gπγγ, gπ0γρ0 and gγπππ are currently set either to
1 or e. However, implementation of the particle mixing is more challenging, because it must
be added at the stage, where the topologies of diagrams which, in carlomat, contain only
triple and quartic vertices, are confronted with the Feynman rules. This required substantial
changes in the code generating part of the program.
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Figure 6: Examples of triple and quartic vertices of RChPT.
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Figure 7: Examples of the particle mixing.

To illustrate how the program works, consider the process e+e− → π+π−π+π−γ. Taking
into account the Feynman rules of the standard model and the rules of Figs. 5, 6 and 7,
carlomat generates the U(1) gauge invariant matrix element, which receives contributions
from 903 LO Feynman diagrams, together with a dedicated multichannel phase space inte-
gration routine in just a few seconds. A computation of the total cross section, including any
number of differential distributions, which is performed as the next step, takes several dozen
seconds or several minutes time, dependent on the desired precision of the MC integration.
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