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NUCLEON DIFFRACTION DISSOCIATION (EXPERIMENT)

Yu.Kaxyshkov
ITEP, Moscow, USSR

In this paper the presemt situation in
nucleonic diffraction dissociatien into (NT) -
system is discussed. New experimental data have
come mainly from experiments performed at high
energies by electronics technigue /1=4/ at
Serpukhov, FNAL and ISR with high statisticas.

The main featvres of nucleon diffraction
aissociation N> NT observed at intermediate
energies ( < 30 GeV) are the following. The
(ﬁ(ﬁ)- syatem is preferably produced with low
invariant mass. The energy dependence of the
reaction is rather weak. The t-distribution
showa diffraction - like behaviour (~ eBt )
with the slope B, which depends on the mass of
the (l(K)— -system. For the nucleon of the
system, the cos ch distribution is strongly
peaked towards cos 9&]’ =+1, Azimuthal t]?s and
Pt
not in agreement with S- and t-channel helicity

distributions are not uniform and hence are

conservation.

1. Menifestation of Baryon-exchange Deck-effect

Fig. 1 shows the angular distribution over

cos BGJ as obtained by Moscow-~Earlsruhe-~CERN

/17

Collaboration in all experimental phase space

(a) and under small M and |[t| restrictions (b).
One can be sure that the influence of resonance
production is comsiderably weakened by this res-—
trictions.

Forward peak near cos GGJN t1  can be
desoribed as T -exchange Deck-effect (dotted).
But quite pronounced backuérd peak near cos EEJ

~=1
This backward peak can be explained by a mecha-

is not consistent with T -exchange.

nism which is similar to the Deck one, but in-
volving baryon exchanges instead of pion exchan-
g’ (solid).

In fig. 2, one can see that taking into

account baryon-exchange Deck graphs' contributions
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improves mass spectrum description considerably

(W =-exchange Deck alone predicts too soft mass
spectrum).

The backward peak near cos SQJN -1 at
small M and |t] was also clearly seen in
maL’?/ ang 1SR’/ experiments. Authors of’2/
compared \p(;J ~distributions at cos 6@3-” 1
and cos ng-N -1 with reggeized Deck model pre~
dictions (fig. 3). They consider the ng-distribu~
tion structure to be a manifestation of baryon—
exchange Deck-effect,

8o we have now at least three arguments for
the existence of baryon-exchange Deck mechanism,
i.e., backward peak at cos 62J'“ -1 y MASs spect-

ra discription and 91-; structure,
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2. t-distributions. Correlations

The appearence of the structure in d57QLt
near ft|vC.2 (GeV/c)2 in DD-processes was recent-
ly discussed/z’B’g/. The new data have come
from CHOV experiment/B/ at ISR the deep in t~-
distributions has been observed. Fig. 4 (b)
shows that for the mass range 1.30-1,35 GeV the
deep is most pronounced for the cos GEJ'N o .
Fig. 4 (a) presents the t-distributions for
~03< «s0.;< 0.3 at different mass intervals.
The deep is clearly seen for the masses M < 1.4
GeV and moves to higher [t| values with mass

increasing.
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Deck-type model with absorption, perhaps,

can interpret the appearence of this

structu-
re/9and ref. therein/,

“ollection of the data on mass~-slope cor-
relation is shown in fig. 5. One can see that

in the momentum range 12-1000 GeV/c the shape of
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the function is universal; at small masses the
slope is about twice that of NN elastic one and
for M21.6 GeV is about a factor of 2 less.At
small masses(<1.3 GeV)there are some indications
to increasing of the slope with the energy,but
due to large experimental errors ocne can hardly

say that the energy dependence of the slope inall
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mags intervals is different from that of elastic
scattering, New sxperimental results/q’z’B/ show
the existence of the correlation between pro-
duction and decay of (Ni) system (fig. 6-8).
Theoretical description of the slopes is dis-
cussed in/g/. At least partially these correla-

vions can be explained kinematically.

3, Mass spectra and cross sections

In fig. 9 the »7 ) mass distribution
for 45=p,s &5 GeV/c/q/ is compared with the
cerreaponding preliminery distribution from
the FNAL experiment/a/. Both sets of data are
absolutely normalized. The spectra turned out
to be almost identical, apart from the mass

region around 1.5 GeV,
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Fig. 10 mshows energy dependence of the cross

sections integrated over two low mass intervals
for 0,002 <[t| < 1.0 (Gev/e)/ 1427/ one can
see that in the error bars low mass cross sec—

tions are energy independent,
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Mass spectra for Serpukhov and ISR experiments



are presented in fig. 11 under the dame phase
space distributions. 411 masses with the excep-
tion of the interval near M ~ 1.5 Gev display

equal cross sections.
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If high energy diffraction dissociation is
dominated by isospin I =0 exhamge, cross sec—
tion for the reactions PP (MR*)F and

’UD-’ (Fﬂ')F should be equal (total DD pp cross
sections have a trivial factor 2 ). Fig. 12
shows experimental data on total nucleon disso-
ciation cross section in the momentum range
from 7 to 1500 GeV/c/1”7/. At ISR energies np
and pp channels have equal cross sections within
the expserimental errors. At the energies above

Seprukhov range cross sections seem to be flat-
tened.
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