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Abstract

Cosmic topology is difficult to constrain due to the lack of observable phenomena

which are affected by this property of the Universe. The phenomenon with the most

potential to reveal cosmic topology is the cosmic microwave background (CMB). The

task of constraining topology with the CMB is challenging, and so the more data that

is utilised the better. This thesis sets out a method that uses the full information

available from the CMB, including polarisation, in the form of a Bayesian analysis

of the full correlation matrix of the CMB. A catalogue of flat spaces is presented,

of which four are analysed here; the remainder could be analysed with minimal

modifications to the code developed in this work. With a little more modification,

the code could also be utilised to investigate spherical and hyperbolic spaces. The

four topologies analysed here are the flat torus, half turn space, Klein space and Klein

space with vertical flip. More work needs to be done on the Bayesian analysis in order

to achieve constraints on these four spaces; efforts in this work were concentrated on

efficiently generating full correlation matrices. The code developed for this task is

capable of generating at least 231 individual correlation matrices for a given topology

(the parameters varied being the size and cosmology of the Universe, as well as the

type of correlation, e.g. TT), for a CMB resolution of � = 30 and a spatial resolution

of k = 100/L (where k are Fourier modes and L is the size of the Universe), on an

entry level server in less than one day.
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Prologue

The shape, size and extent of the Universe comprise some of the most fundamental

yet-unanswered questions in cosmology. Cosmic topology is concerned with the

shape of the Universe and how its boundaries are connected; the concept of topology

was developed in the 19th century and became an active field in the early 20th

century. However, any attempt to constrain cosmic topology requires high-precision

observations, even more so than attempts to constrain cosmology. This is because

there are fewer observations that we can make that depend on topology than depend

on cosmology. The Cosmic Microwave Background (CMB), being the most powerful

probe of the early Universe, provides us with the most promising opportunity to

constrain topology. In the last few decades, observations of the CMB have started

to reach a precision that allows us to take advantage of this opportunity.

Surprisingly few attempts have been made to utilise all the information provided

by the full correlation matrix of the CMB, due to the process being computationally

expensive. Many analyses have been performed using the CMB power spectrum (a

reduced form of the correlation matrix), but this ignores valuable information. In

addition, very few have made use of the information contained in the polarisation

data of the CMB. This is because it was only in 2003 that the Wilkinson Microwave

Anisotropy Probe (WMAP) provided the first glimpse of the polarised CMB. These

are rather noisy, but the most recent CMB space observatory, Planck (launched in

2009), promises much improved measurements. This data is due to be released in

2014, making the case for utilising CMB polarisation even stronger, as any methods

that are developed for WMAP data could quickly be applied to Planck data upon

release. In this thesis, a method is adopted that harnesses the full CMB correlation

matrix for both temperature and polarisation.

This thesis consists of four parts. The first three explore the three main ingredi-

ents used in this work to try to constrain cosmic topology; properties of different

topologies, CMB data and Bayesian analysis. Part I introduces cosmic topology and

describes how we define different topologies. At the end of the last chapter of Part I,
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a catalogue, or look-up table, of mathematical properties of topologies is given; this

will be useful when trying to capture these properties in computational models. The

second part explores the significance of the CMB and its properties before finishing

with a chapter on mapping the CMB; this chapter details processes that will be

needed in order to utilise data from observations of the CMB. Part III explores how

Bayesian analysis is used in cosmology and astrophysics and ends with a chapter

detailing a how to calculate probabilities for different topologies, given CMB data.

Part IV brings the ingredients from the first three parts together to provide a

prescription for constraining topology using CMB data. The results from following

this prescription are then presented and discussed.
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Part I

Cosmic Topology
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28 CHAPTER 1. INTRODUCTION TO TOPOLOGY

Chapter 1

Introduction to Topology

1.1 Characterising Space

The shape, size and extent of the universe comprise some of the most fundamental

yet-unanswered questions in cosmology. The characteristics of space can be divided

into two types, geometry and topology. Topology focuses on spatial properties

which are preserved under continuous deformation. In order to understand these

properties, it is first helpful to identify some basic concepts:

• Universal covering space: a simply connected space (see Section 1.2.1) with

the same geometry as the space in question.

• Fundamental domain: the most basic element (a polygon or polyhedron) from

which a manifold can be constructed (see Fig. (1.1)). The fundamental domain

contains the entire universe. Tiling a universal covering space with the fun-

damental domain is a convenient way of visualising how one can move “out”

of the universe through one boundary while simultaneously moving “back in”

through another. A universe connected in this way is technically unbounded,

as one could never come across a point where the universe terminates. The

term “boundary” is used to describe the shape and extent of the fundamental

domain.

The key topological properties of a space are:

• Holonomy group: a set of transformations within the universal covering space

that describe how the faces of the fundamental domain are paired (connected).

• Genus: the number of handles in a space. These are “holes” which are cre-

ated depending on the way in which the faces of the fundamental domain are
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1.1. CHARACTERISING SPACE 29

Figure 1.1: In this example, the square is the fundamental domain and the
lattice of identical squares forms the manifold. The tiled universal covering space
is the entire manifold. Credit: Levin 2002.

connected, not by tearing the manifold. All surfaces with the same number

of handles are topologically equivalent, such as the doughnut and the teapot

shown in the central panel of Fig. (1.2). These are both manifestations of the

2-d torus, which has finite area yet has no boundaries.

Combining these topological properties with the geometrical properties of scale and

curvature, we can completely define a homogeneous space, see Fig. (1.3).

The geometry of space relates to the matter and energy density of the universe, e.g.:

an overdense universe has positive curvature; an underdense universe has negative

curvature; a critically dense universe is flat. This means that geometry can be

inferred from Einstein’s theory of general relativity (GR). However, each geometry

can be supported by different topologies, and GR alone can not determine which of

these topologies exists. Although it is currently impossible to theoretically predict

cosmic topology, there is growing interest in the search through observation due to

the improving precision of experiments in cosmology.

1.1.1 Intrinsic and Extrinsic Properties

Only certain aspects of topology and geometry have the potential to be detected

through observation. There are of course practical issues such as the precision of

instruments and size of the observable universe. But let’s put these aside for a

moment and assume a universe in which these considerations are not a problem.

No matter how ideal the situation, there will always be properties that an inhab-
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Figure 1.2: Classes of topology. The digits below the columns denote the genus
of (number of handles in) a space. Spaces with the same genus are topologically
equivalent, as one can be continuously deformed into another. Credit: Lachieze-
Rey & Luminet 1995.

itant cannot determine. We call these extrinsic properties, while those which are

potentially detectable are known as intrinsic. A two dimensional example of the dis-

tinction between intrinsic and extrinsic topology is given in Fig. (1.4), and similarly

for geometry in Fig. (1.5).

Extrinsic properties are a result of embedding a space in another of higher di-

mensions, for example, embedding three dimensional space in four dimensions (or a

two dimensional surface in three dimensions) in order to help visualise the situation.

While we can describe such properties mathematically, they may not exist in physi-

cal reality. Whether or not we do in fact inhabit a three dimensional “sub-universe”

embedded within some “higher-dimensional universe” and, hence, whether these ex-

trinsic properties exist, is of little consequence, as we cannot hope to experience or

detect their effects.

The matter of extrinsic and intrinsic properties is discussed in more detail in Weeks

2002.

30



1.1. CHARACTERISING SPACE 31

Figure 1.3: The properties of space fall into two categories: topology and geom-
etry. Topology describes the connectedness of space, quantified by genus, g, (the
number of handles or “holes” that a space has) and the face-pairing of the fun-
damental domain. Geometry combines the more intuitive properties of scale and
curvature. The assumption of an homogeneous universe allows only constant cur-
vatures, the three possibilities represented in 2d in the bottom right-hand panel
of this figure.
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Figure 1.4: How to put a twist is a rubber band. As outsiders living in a three
dimensional world, we can see that the twisted band is topologically different to
the original. An inhabitant of the surface of the rubber band, however, has no
way of telling this. Credit: Weeks 2002.

Figure 1.5: To us, bending a sheet of paper changes it’s geometry. To an in-
habitant of its surface however, the shortest path between any two points remains
the same, and, hence, the geometry appears unchanged. Credit: Weeks 2002.
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Figure 1.6: Example of a simply-connected topology. All loops (closed paths)
can be contracted to a point. Credit: Richard Morris.

Figure 1.7: Example of a multi-connected topology. Loop c can be contracted
to a point, but loops a and b cannot. Credit: 2006 Encyclopaedia Britannica, Inc.

1.2 Types of Topology

1.2.1 Connectedness

Let us distinguish between simply and multi connected spaces (or trivial and non-

trivial topologies).

A trivial topology is essentially a simply connected space; one in which any loop

describing a closed path through space can be contracted to a point. e.g. a space

existing on the surface of a sphere, see Fig. (1.6). The universal covering space is

simply connected.

Multi-connected space is one in which there exists a loop which cannot be

contracted to a point. Any space containing a topological “hole”, or handle, is

multi-connected, e.g. a space existing on the surface of a doughnut (Fig. (1.7)).

This occurs whenever the fundamental domain is not equal to the universal covering

space.

The universal covering spaces that can support the geometries depicted in

Fig. (1.3) are generally assumed as the topologies in the analyses of cosmological

data. Usually ignored, is the possibility of a non-trivial (multi-connected) topol-
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Figure 1.8: The inhabitant of the 2-torus sees a lattice of images of itself. Credit:
Levin 2002.

ogy. This could have an effect on observations in astronomy: light from an observer

wraps around the space so that they see themselves many times. This illusion, where

an observer sees many copies of themselves, and other objects, is demonstrated by

looking at the stick man observer in Fig. (1.8). It is the often neglected non-trivial

topologies that draw the attention of this thesis.

1.2.2 Orientability

It is possible for a traveller in a multi-connected space to leave home, traverse space

and arrive back home to find that his left and right are now the opposite way around

to that of the people who stayed behind. This happens if a flip occurs as he passes

from one boundary to another of the fundamental domain. The two dimensional

case, the Mobius strip, is given in Fig. (1.9). The Klein Bottle, Fig. (1.10), is a

three-dimensional example.

A space in which this phenomenon occurs is known as non-orientable, as no

amount of rotation within the dimensions available to the inhabitant can return

him to the correct “handedness”. Note that, if the traveller returns upside down,

with no change in handedness, he can simply rotate back to his original orientation.

This, therefore, is an orientable universe. Again, a more detailed discussion can be

found in Weeks 2002.
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Figure 1.9: A Mobius strip is similar to the case of the twisted rubber band in
Fig. (1.4) except that, instead of a 360 twist, a 180 degree twist is made before
reconnecting the ends. Now an inhabitant is aware of the difference in topology.
As the two dimensional character “A Square” travels around a Mobius strip he
comes back as his mirror image. Weeks 2002.

Figure 1.10: A Klein bottle is similar to the Mobius strip but in three di-
mensions. This is a two dimensional representation of the Klein bottle, which
is created by glueing the edges of this square so that the arrows match up. An
inhabitant of this surface will travel out the left side and come back through the
right side as his mirror image. Credit: Weeks 2002.
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Non-orientable Universes pose a problem for the standard model of particle physics.

This model requires CPT symmetry (an overall symmetry in charge, parity and

time in the Universe). The change in handedness, or parity, that occurs in a non-

orientable universe breaks this symmetry. Arguably, this is not an issue if the

Universe is large enough that no particle can travel far enough to make the round

trip required to break P-symmetry. So, while this does not rule out non-orientable

spaces, it perhaps makes them less favourable.

1.2.3 Topologies that Support Constant Curvature

Assuming that the Universe is homogeneous and isotropic, only topologies that

support constant curvature are allowed. As explained in preceding parts of this

chapter, we are interested in non-trivial topologies. We will also focus on completely

compact spaces (in which all dimensions of the fundamental domain are finite);

justification for this is given in Section 1.3.1. This section describes which topologies

fit these criteria for each of the possible constant curvatures. Much of the time,

comparisons will be made with two-dimensional spaces as they are easier to visualise.

1.2.3.1 Flat Spaces

The universal covering space of zero curvature is three-dimensional Euclidean space,

E
3.

First, consider two-dimensional Euclidean space (E2), the infinite plane. i.e.,

E
2 is our universal covering space. There are only three possible shapes for the

fundamental domain: the triangle, the quadrilateral, and the hexagon. It is not

possible to “tile” a plane with any other type of polygon without leaving gaps.

There is also a finite number of ways in which the edges of these shapes can be

“glued” together. Thus, there is a finite number of potential topologies.

Similarly, there is a limited number of possible three-dimensional flat topologies.

It has long been established that there are 18 such topologies (see Varshalovich et al.

1988) and these are described in mathematical detail in Section 2.3. However, only

six satisfy the criteria of being non-trivial, completely compact and orientable and

thus investigated in this thesis.

Note that there is degeneracy between some of the fundamental domains. For

example, in two dimensions, a flat torus can be constructed from either a square (or

other quadrilateral) or a hexagon.

Flat spaces are a sensible starting point for investigating topologies. Not only is

there a finite number of them, but they are conceptually and mathematically easiest
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Figure 1.11: A platonic solid is a regular, convex polyhedron with congruent
faces of regular polygons. The same number of faces meet at each vertex. There
are only five such solids, each named after the number of faces it has. Credit:
Martin Chaplin

to deal with.

1.2.3.2 Spherical Spaces

The universal covering space of positive curvature is three-dimensional Spherical

space, S3.

The analogous two-dimensional space, the surface of the sphere (S2), can only

be tiled in five ways. These are related to the five Platonic solids (see Fig. (1.11)).

Again, with only a finite number of ways to glue the faces, we are left with a finite

number of topologies.

In contrast, there is an infinite number of spherical spaces, but they are count-

able. The simplest manifolds are listed below and some of their fundamental domains

are depicted in Fig. (1.12).

• Quaternionic space: the fundamental domain is a 4-sided prism.

• Octahedral space: the fundamental domain is a regular octahedron.

• Truncated cube space: the fundamental domain is a truncated cube.

• Poincare space: the fundamental domain is a regular dodecahedron.

1.2.3.3 Hyperbolic Spaces

The universal covering space of constant negative curvature is three-dimensional

hyperbolic space, H3. Hyperbolic spaces are the most difficult to work with both
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Figure 1.12: Fundamental domains of some spherical multi-connected mani-
folds. Left to right: the regular octahedron, the truncated cube and the regular
dodecahedron. Credit: Niarchou & Jaffe 2006.

mathematically and conceptually. In two dimensions, spaces with genus zero are

spheres, spaces with genus one are flat tori and spaces with genus two or higher are

all hyperbolic; so there are only three possible geometries and constant, negative

curvature is associated with by far the most topologies. The situation is similar in

three dimensions, although there are eight possible geometries, but only three have

constant curvature; while there is a finite number of flat spaces, and a countably

infinite number of spherical spaces, there is an uncountably infinite number of hy-

perbolic spaces. Important models of hyperbolic spaces are the Klein model, the

hyperboloid model and the Poincaré ball and Poincaré half-plane models.

1.3 The Story So Far

1.3.1 The Theory

In the fourth century BC, Aristotle proposed that the Universe is finite, as he be-

lieved Earth to be at its centre; something with a centre needs boundaries in order to

define the central point. This was not the view of all his contemporaries, however.

Archytas famously argued the opposite by highlighting the paradoxical nature of

such a boundary; “If I arrived at the outermost edge of the heaven, could I extend

my hand or staff into what is outside or not?”, as translated in Huffman 2005.

There are some theories that may require a finite universe. For example, there

is the (non-standard) theory of quantum cosmology, in which it is impossible to

generate enough energy to create an infinite universe. Examples of work in this field

include Linde (1984) and Linde (1986); Andrei Linde pioneered theories of cosmic

inflation, due to quantum effects in the early universe, along with Alan Guth and

Alexei Starobinski (Guth 1981, Starobinski 1982, Linde 1983). However, it generally

seems to boil down to the human struggle with the concept of infinity. Plato rejected

the notion of infinity. Aristotle, his student, claimed to accept the notion of infinity,

where a number can be incremented endlessly, but ultimately rejected the concept
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of infinity as an actual entity. Based on the strength of our often willingly-adopted

arguments for a finite universe, we still struggle with it today.

It wasn’t until the 19th century AD that a finite-yet-boundless model for the

universe, the hypersphere, was proposed by Georg Riemann. The new concept of

embedding the three-dimensional space in four dimensions in order to assign it a

“shape”, or topology, led to the discovery of many more boundless finite spaces. This

was an active field in the early 20th century, which, in 1917, saw Albert Einstein

adopt the hypersphere in his first relativistic model of the Universe. Einstein pre-

ferred the elegance of the simply connected hypersphere, although Willem de Sitter

pointed out that the multi connected, closed space known as “projective space”

was also a viable solution. Alexander Freidmann extended the solutions further to

include hyperbolic spaces.

Friedmann derived two equations (describing the expansion and evolution of

the Universe) from Einstein’s field equations (describing the gravitational effects

produced by a mass, part of the theory of General Relativity). Crucially, these

equations allow all three constant curvatures and are completely independent of

which topology is chosen to support a given curvature: i.e. they do not distinguish

between simply- and multi-connected solutions.

Below is an overview of some of the work done in topology since the beginning of

the 20th century:

• 1900 - At a meeting of the German Astronomical Society in Heidelberg, Karl

Schwarzschild discussed the possibility that space was non-Euclidean and sug-

gested two kinds of possible curvatures: elliptic and hyperbolic. In the same

year, he published a paper (Schwarzschild 1900) giving a lower limit for the

radius of curvature of space as 2500 light years. He considered non-trivial

topologies and pointed out that multiple images of the same object could be

seen.

• 1913 - William Frankland pointed out limitations in the multiple image tech-

nique (Frankland 1913), mainly that different images capture an object at

different times in its history (as it takes light different amounts of time to

traverse different paths).

• 1913 - Duncan Sommerville published his bookThe Elements of Non-Euclidean

Geometry (Sommerville 1913), which became the standard text in the field al-

most immediately. It was renowned for its lucid yet meticulous exposition
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and discussed topics such as hyperbolic and elliptic geometries, analytic non-

Euclidean geometry and representations of non-Euclidean geometry in Eu-

clidean space, as well as philosophical implications of non-Euclidean geometry.

• 1917 - Albert Einstein presented the first cosmological solution of general

relativity, a static model with three-dimensional spheres S3 as spatial sections

(Einstein 1917).

• 1917 - Soon after Einstein published his solution, Willem de Sitter (1917)

pointed out that the solution could just as well be applied to P
3.

• 1922 - Alexander Friedmann published non-static, homogenous and isotropic

cosmological solutions to Einstein’s field equations (Friedmann 1922) and, soon

after, realised that, while spherical manifolds are intrinsically compact, flat and

hyperbolic manifolds could also be compact (Friedmann 1924).

• 1927 - Georges Lemaitre also found non-static, homogenous and isotropic

comological solutions to Einstein’s field equations, Lemâıtre (1927), and in

Lemâıtre (1958) recognised the possibility that hyperbolic spaces could be

compact.

• 1962 - Otto Heckmann and Engelbert Schucking (1962) explained how an

expanding universe might rotate and experience shear.

• 1971 - George Ellis published an important article reviewing recent develop-

ments concerning the classification of spaces and their possible application to

cosmology (Ellis 1971). This was followed by a revival of interest in multi-

connected cosmologies, lead by theorists such as Dmitri Sokolov and Alexei

Starobinski (Sokolov & Starobinski 1975).

• 1974 - Dmitri Sokolov and Victor Shvartsman estimate the size of the universe

from a topological point of view (Sokolov & Shvartsman 1974).

• 1978 - A set of university lecture notes by William Thurston began to circu-

late around the world; in them, Thurston introduced new ideas in geometric

topology as well as a number of new quotient H3 manifolds. These ideas made

their way into a book, Three-dimesional Geometry and Topology Volume 1,

two decades later (Thurston 1997).

• 1980 - J. Richard Gott pointed out the possibility that the universe is not only

negatively curved but compact, in Gott (1980). He determined that hyperbolic

and Euclidean space could admit thermalisation in a chaotic early universe.
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• 1983 - Helio Fagundes also acknowledged that the universe could be negatively

curved and compact (Fagundes 1983). He discusses the subsitution of a com-

pact hyperbolic three-manifold for the infinite space H
�, and analyses some

consequences of this substitution.

• 1984 - Yakov Zel’dovich and Starobinski collaborated in Zeldovich & Starobin-

skii (1984) to discuss quantum creation of a universe with non-trivial topology.

• 1984 - Thurston and Jeffery Weeks publish an article to aid the visualision

and study of two- and three-dimensional manifolds (Thurston & Weeks 1984).

• 1987 - Charles Dyer attended the Vatican Observatory conference and pre-

sented the idea that the universe could have a multiply-connected topology,

describing several attractive features of multi-connected spaces from a theo-

retical stand-point and establishing some restrictions on which topologies are

plausible on physical grounds. This work was published in the conference

proceedings, Dyer (1987).

Despite the wealth of knowledge of different possible spaces, simply connected

spaces have often been assumed by default in cosmological models. While attempts

have been made to find observational evidence for multi-connected spaces since the

idea was introduced, research into cosmic topology over the last few decades has

increasingly incorporated analyses of data from observations; this is discussed in the

next section.

1.3.2 The Observations

Another resurgence of interest in cosmic topology over the last couple of decades has

resulted from developments in technology and scientific techniques that have allowed

us to probe the distant universe with increasing precision. Methods of investigating

topology involve identifying patterns in the distribution of astronomical objects

or cosmic microwave background (CMB) anisotropies. The near-isotropy of the

CMB implies a near-constant curvature universe and so the topologies considered

for investigation are those that support these curvatures. It is conceivable that

the universe is not homogeneous, and hence does not have constant curvature, on

scales much larger than the observable universe. However, this hypothesis is not

presently testable. Similarly, it is not possible to test spaces that are larger than the

observable universe and we are only interested in spaces small enough to observe.
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A non-trivial topology would have a number of observational effects. These

include the appearance of multiple images of the same object in the sky, the sup-

pression of power at large scales due to the finiteness of the fundamental domain, and

patterns in the CMB. Some helpful reviews on topology and cosmology are Levin

(2002) and Lachieze-Rey & Luminet (1995), which provide detailed discussions on

different types of topology and methods for constraining topology, as well as Stark-

man (1998) and Luminet (1998), who describe the history of and developments in

cosmic topology.

1.3.2.1 Crystallographic Method

The first method to be implemented was searching for multiple images of the same

object (e.g. Sokolov & Shvartsman 1974; Fagundes & Wichoski 1987; Demianski &

Lapucha 1987; Fagundes 1989). This known as the crystallographic method and is

based on the idea that it is possible to observe multiple images of the same object

in a multi connected universe.

In a closed, topologically connected universe, light from distant objects can

reach us by multiple paths. In order to observe multiple images, we require light

from a given object to have sufficient time to reach us along some of these multiple

paths. This requires that the fundamental domain is sufficiently small, i.e. the

distance to the observable horizon must be greater than the injectivity radius (a

characteristic topological length scale of the fundamental domain).

It has been shown that it is possible to reconstruct the topology of a closed or

flat universe based on the observation of a very small number of multiple images

(Gomero 2003). But, as pointed out by Frankland in 1913, the identification of

these images is, in practice, incredibly challenging. There are a number of reasons

for this: different images represent an object at different stages of its life, making

it difficult to identify them as images of the same object; different images would be

seen from different directions, and therefore, different perspectives, again making it

difficult to recognise them as identical; some images may be masked or hidden by

other objects/high obscuration regions. Clearly, in reality, this method is not very

promising (at least, with current observations).

1.3.2.2 Circles in the sky

This is a phenomenon that occurs in the CMB in the presence of a non-trivial topol-

ogy if at least one dimension of the fundamental domain is smaller that the diameter
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Figure 1.13: Intersecting images of the CMB sky. The observer is located at
the centre of the middle sphere. The cross-section of the intersection is circular,
hence the term “circles-in-the-sky”. Credit: Riazuelo et al. 2006.

of the last scattering surface (LSS). Images of the LSS would intersect one another

as shown in Fig. (1.13), leading to pairs of circles, of equal radii, centred at different

locations in the CMB sky (Cornish et al. 1998). The size of the circles indicate

the size of the dimensions of the fundamental domain; the larger the circles, the

larger the dimensions of the fundamental domain that they relate to. This means

that there is a limit to the size of universe that can be detected; the circles become

points when the fundamental domain is the same size as the observable universe,

and vanish altogether when the domain becomes larger. The angular separation of

pairs of circles on the sky depend on the connectedess of the topology. Results of

matching-circles analyses of CMB data have ruled out topologies much smaller than

the scale of the observable universe (e.g.: Key et al. 2007; Bielewicz & Banday 2011;

Planck Collaboration et al. 2013d) but have not yet identified a leading candidate

for the topology itself.

1.3.2.3 Full Analysis of the CMB

The multiple-images and circles-in-the-sky methods both focus on conceptually clear

observational consequences of topology. But there are other phenomena that should

not be overlooked: different modes in the CMB anisotropies can be suppressed or

correlated with other modes in ways that depend on the finiteness, orientability

and particular symmetries of the fundamental domain. A more thorough, but more

computationally expensive, method is to analyse the entire correlation matrices of

CMB anisotropies (e.g.: Bond et al. 2000b,a; Niarchou 2006; Planck Collaboration
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et al. 2013d). As with the circles-in-the-sky method, constraints on the lower limit

of the size of the Universe have been obtained, but a dominant candidate topology

has not. Due to the expensiveness of this method, the CMB power spectrum is often

used rather that the full correlation matrix. The main objective of this thesis is to

utilse as much information as possible from the correlation matrix, which also means

including polarisation. The details required to perform this analysis are accumulated

in subsequent chapters, culminating in the exact prescription in Ch. 9 and results

in Ch. 10.
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Chapter 2

Mathematical Descriptions

2.1 Terminology

Here, we define a few terms that will be used in this chapter.

A fundamental domain is a polygon or polyhedron from which a manifold, or

topological space, may be constructed.

X is a covering space of Y if it maps onto X in a locally homeomorphic way (i.e.

if a local region of X, that is no bigger than Y , can be continuously deformed into

Y and if this deformation is invertable). A universal covering space is a simply

connected covering space. For spaces Y of constant curvature, the universal covering

space will have the same curvature as Y .

A multi-connected space Y can be expressed as a quotient space, Y = X/Γ, of

covering space X, where Γ is a symmetry group of the quotient space (see below).

A group generator, g, of a quotient space is an operation, or spatial transforma-

tion, that maps points in the quotient space to equivalent points in the universal

covering space. These transformations should be distance-preserving and non-trivial,

as demonstrated in Fig. (2.1). Euclidean space, for example, has no such generators;

any transformations returning the point on which they act are trivial (right diagram

in Fig. (2.1)).

A symmetry group, Γ, of a quotient space Y contains a set of generators that can

be used to completely map Y onto its entire universal covering space.
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Figure 2.1: The difference between a non-trivial transformation (left) and trivial
transformation (right).

2.2 Eigenmodes of Different Spaces

The eigenmodes of a space are solutions, or an orthogonal subset of the solutions,

of the generalised Helmholtz equation.

2.2.1 Eigenmodes of the Universal Covering Space

The more familiar form of the Helmholtz equation is a time-independent partial

differential equation which involves a scalar field in a flat space, Eq. (2.1).

∇2Υk (x) = −k2Υk (x) (2.1)

where ∇2 is the Laplacian, x describes position in space, and Υk (x) is one particular

solution to the equation associated with wavenumber k. In this case, Υk (x) is an

eigenmode of Euclidean space, and −k2 the corresponding eigenvalue.

The generalised Helmholtz equation extends Eq. (2.1) to any space with con-

stant curvature:

∇2Υk (x) = −(k2 −K)Υk (x) (2.2)

where the eigenvalue, −(k2 −K), now includes the curvature K.

2.2.2 Eigenmodes of a Quotient Space

The eigenmodes of a multi-connected space are a subset of those of its universal

covering space. A simple example of this is the flat torus. Only wavenumbers which
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correspond to a wavelength that fits a whole number of times into the fundamental

domain are allowed. One can halve an allowed wavelength (or divide by any integer)

to find another allowed wavelength ad infinitum. While there is an infinite number of

possible wavenumbers, they comprise a discrete set of values. In contrast, Euclidean

space admits wavenumbers corresponding to an infinite, continuous set of real-valued

wavelengths; there are no boundaries to place any constraints. So some, but not

all, of the wavenumbers (and corresponding eigenmodes) allowed in Euclidean space

are allowed in the case of the torus. That is, the eigenmodes of the flat torus are a

subset of those of Euclidean space.

The boundaries of a fundamental domain are defined by the symmetry group of

the space. So, the group generators can be used to identify the subset of eigenmodes

of the universal covering space that also belong to the multi-connected space in

question. The method for doing so for flat spaces is described in Section 2.2.3.

2.2.3 Method for Finding the Eigenmodes of Flat Spaces

An eigenmode of a multi-connected space is one which satisfies

Υk (gx) = Υk (x) (2.3)

for all generators, g, in the symmetry group Γ. A generator is simply a spatial

transformation and so Eq. (2.3) can be re-cast as Eq. (2.4):

Υk (Mgx+Tg) = Υk (x) , (2.4)

whereMg is a transformation matrix and Tg is a translation vector.

These eigenmodes are eigenmodes of the universal covering space that have a

periodicity in x of gnx, i.e. performing the transformation g any integer n number

of times returns a point gnx which has the same value of Υk as the original point

x. These eigenmodes satisfy Eq. (2.5).

Υk

(Mn
gx+

∑n−1
m=0Mm

g Tg

)
= Υk (x) . (2.5)

The flat universal covering space is Euclidean space, E3. One possible basis for

Euclidean space is planar waves, which means the eigenmodes can be expressed as

Υk (x) = eik·x. (2.6)

Eq. (2.6) substituted into Eq. (2.5), yields Eq. (2.7):
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Υk (x) = eik·(M
n
gx+

∑n−1
m=0 Mm

g Tg) = eik·
∑n−1

m=0 Mm
g TgΥkMn

g
(x) . (2.7)

Note that ΥkMn
g
(x) is only a different eigenmode to Υk (x) for kMn

g �= k. Letting

N be the smallest integer that satisfies

k = kMN
g , (2.8)

and considering the case of n = N in Eq. (2.7), it is evident that only N eigenmodes

are related by generator g.

Consider a linear combination of these eigenmodes,

N−1∑
n=0

anΥkMn
g
=

N−1∑
n=0

ane
ikMn

gTgΥkMn+1
g

, (2.9)

where the right hand side of the equation is simply the left hand side acted upon

once by g. A quick inspection of this equation reveals that the coefficients an satisfy

the following relations:

an+1 = ane
ikMn

gTg , (2.10)

a0 = aN−1e
ikMN−1

g Tg . (2.11)

Eq. (2.9), with Eq. (2.10) and Eq. (2.11), can be solved for k (see the examples given

in Section 2.2.3.2 and Section 2.2.3.3). And once we know the allowed wavenumbers,

we also know the allowed eigenmodes, Υk.

In summary, to identify the allowed eigenmodes of a space, perform the following

tasks for each generator of the space:

1. Solve Eq. (2.8) for N .

2. Solve Eq. (2.9), with Eq. (2.10) and Eq. (2.11), for k.

3. Select only the eigenmodes Υk corresponding to the allowed k.

2.2.3.1 Choice of Basis

So far, we have only considered eigenmodes as planar waves, which are convenient

for exploring multi-connected flat spaces. However, astronomical observations, es-

pecially those of the CMB, lend themselves to spherical waves. So, when it comes
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to constraining topology with observations, it may be more convenient to express

the eigenmodes of as sums of spherical waves:

Υk (x) =
∞∑
�=0

�∑
m=−�

ξk̂k�mYk�m (x) , (2.12)

where Yk�m is a spherical wave, � and m are the spherical harmonic multipole mo-

ments, and ξk̂k�m are coefficients which, as a set, capture all the properties of a

topology. For Euclidean universal covering space E
3,

ξk̂k�m = i�Y ∗
�m(k̂) (2.13)

where Y is the spherical harmonic function.

It is in fact the ξk̂Ei
k�m that will be useful for constraining topology with obser-

vational data. These are listed for all possible flat spaces, Ei where i indexes the

space, in Section 2.3 and were found, as part of the work presented in this thesis,

by extending the prescription for finding the eigenmodes as follows:

4. Find the eigenbasis for the space. The eigenbasis modes are the set of linear

combinations of covering-space eigenmodes given by the set of generators of

the multi-connected space. These are easily found by substituting the solutions

for N and the an (from steps 1. and 2.) into Eq. (2.9), and normalising the

sum.

5. The ξk̂Ei
k�m are then simply equal to the eigenbasis modes multiplied by i�, which

is an artifact of converting from planar waves to spherical waves.

2.2.3.2 Worked Example for the 3-Torus (E1)

Three generators of the form gi(x) =Mx+Ti are needed for E1 where

M =

⎛
⎜⎝
1 0 0

0 1 0

0 0 1

⎞
⎟⎠ = I (2.14)

T1 = (Lx, 0, 0)

T2 = (0, Ly, 0)

T3 = (0, 0, Lz)

(2.15)

1. Solving Eq. (2.8) for N :

kM = k =⇒ N = 1 (2.16)
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2. Solving Eq. (2.9), with Eq. (2.10) and Eq. (2.11), for k:

a0Υk = a0e
ikMTiΥkM = a0e

ikTiΥk

=⇒ eikTi = 1

=⇒ kTi ∈ 2πZ (2.17)

Substituting the Ti into Eq. (2.17) yields restrictions on k,

T1 gives kx = 2πnx/Lx where nx ∈ Z

T2 gives ky = 2πny/Ly where ny ∈ Z (2.18)

T3 gives kz = 2πnz/Lz where nz ∈ Z

3. Select only the eigenmodes Υk of E3 corresponding to the allowed k given by

Eq. (2.18).

4. In this case, since N = 1, Eq. (2.9) simply yields the eigenbasis for the space as

the set of universal-covering-space eigenmodes with the restriction nx, ny, nz ∈
Z.

5. This means that the coefficients ξk̂E1
k�m are simply the universal-covering-space

coefficients, ξk̂k�m = i�Y ∗
�m(k̂), with the restriction nx, ny, nz ∈ Z.

2.2.3.3 Worked Example for Quarter Turn Space (E3)

Four generators of the form gji(x) =Mjx+Tji are needed for E3 where

MA =

⎛
⎜⎝
1 0 0

0 1 0

0 0 1

⎞
⎟⎠ = I, MB =

⎛
⎜⎝
0 −1 0

1 0 0

0 0 1

⎞
⎟⎠ (2.19)

TA1 = (Lx, 0, 0)

TA2 = (0, Ly, 0)

TA3 = (0, 0, Lz)

TB1 = (0, 0, Lz/4)

(2.20)

Note thatMA and TAi form the generators of E1 as E3 is a quotient space of E1.

This means that the eigenmodes of E3 are linear combinations of the eigenmodes of

E1 that we found in Section 2.2.3.2.
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1. Solving Eq. (2.8) for N :

kMB = (ky,−kx, kz) = k if (kx, ky) = (0, 0) andN = 1

kM2
B = (−kx,−ky, kz) = k if (kx, ky) = (0, 0) andN = 2 (2.21)

kM3
B = (−ky, kx, kz) = k if (kx, ky) = (0, 0) andN = 3

kM4
B = (kx, ky, kz) = k if (kx, ky) �= (0, 0) andN = 4

Note that the conditions (kx, ky) = (0, 0) apply for N =1, 2 and 3 but not

N = 4. So we only need N = 1 and N = 4 for the next step.

2. Solving Eq. (2.9), with Eq. (2.10) and Eq. (2.11), for k:

N = 1 =⇒ a0Υk = a0e
ikMBTB1ΥkMB

= a0e
ikTB1Υk

=⇒ eikTB1 = 1

=⇒ kTB1 ∈ 2πZ (2.22)

N = 4 =⇒ a0Υk + a1ΥkMB
+ a2ΥkM2

B
+ a3ΥkM3

B

= a0e
ikMBTB1ΥkMB

+ a1e
ikMBTB1ΥkM2

B

+ a2e
ikMBTB1ΥkM3

B
+ a3e

ikMBTB1Υk

=⇒ a0 = a3e
ikM3

BTB1 , a1 = a0e
ikTB1 ,

a2 = a1e
ikMBTB1 , a3 = a2e

ikM2
BTB1

=⇒ eikMBTB1eikM
2
BTB1eikM

3
BTB1eikTB1 = 1

=⇒ k
(MBTB1 +M2

BTB1 +M3
BTB1 +TB1

) ∈ 2πZ (2.23)

Substituting TB1 into Eq. (2.22) and Eq. (2.23) yields restrictions on k,

N = 1 =⇒ kzLz/4 ∈ 2πZ

=⇒ nz ∈ 4Z (2.24)

N = 4 =⇒ kzLz ∈ 2πZ

=⇒ nz ∈ Z (2.25)

3. Select only the eigenmodes Υk of E3 corresponding to the allowed k given by

Eq. (2.24) and Eq. (2.25) to use in the next step. There are additional restric-

tions that we need to place on k to ensure that the eigenmodes don’t degener-
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ate. As shown in the first line of working for Eq. (2.23), the four covering-space

eigenmodes that we combine to find eigenmodes of E3 are Υk, ΥkMB
, ΥkM2

B

and ΥkM3
B
. We need to ensure that all combinations of k, kMB, kM2

B and

kM3
B are unique. This requires the conditions nx ∈ Z

+ and ny ∈ Z
+ ∪ {0}.

4. For N = 1, Eq. (2.9) simply yields the eigenmodes equivalent to those of the

universal-covering-space eigenmodes with the restriction nx, ny = 0 and nz ∈
4Z. N = 4, however, does give rise to eigenmodes that are linear combinations

of the eigenmodes of the covering space:

ΥE3
k

=
1

2

(
a0Υk + a1ΥkMB

+ a2ΥkM2
B
+ a3ΥkM3

B

)
=
1

2

(
Υk + eikTB1ΥkMB

+ eikTB1eikMBTB1ΥkM2
B

+eikTB1eikMBTB1eikM
2
BTB1ΥkM3

B

)
=
1

2

(
Υk + eikzLz/4ΥkMB

+ eikzLz/4eikzLz/4ΥkM2
B

+eikzLz/4eikzLz/4eikzLz/4ΥkM3
B

)
=
1

2

(
Υk + inzΥkMB

+ i2nzΥkM2
B
+ i3nzΥkM3

B

)

=
1

2

3∑
j=0

ijnzΥkMj
B

=
1

2

3∑
j=0

ijnz i�Y ∗
�m(k̂Mj

B)Yk�m for nx ∈ Z
+;ny ∈ Z

+ ∪ {0};nz ∈ Z (2.26)

where the factor of 1/2 is a normalisation constant.

5. This means that the coefficients ξk̂E3
k�m are either simply the universal covering

space coefficients, ξk̂k�m = i�Y ∗
�m(k̂), with the restriction nx, ny = 0 and nz ∈ 4Z

or given by

ξk̂E3

k�m =
i�

2

3∑
j=0

ijnzY ∗
�m(k̂Mj

B) for nx ∈ Z
+;ny ∈ Z

+ ∪ {0};nz ∈ Z (2.27)

2.3 Catalogue of Flat Spaces

There are only 18 possible flat spaces (Feodoroff 1885; Bierberbach 1911; Novacki

1934), all of which are catalogued in this section. Visual representations of the
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spaces are given in Fig. (2.2), Fig. (2.3) and Fig. (2.4), followed by a table of their

mathematical descriptions, Table 2.1.

Of the 18 spaces, only ten are compact in all three dimensions (E1 to E10) and,

of these, only six are orientable (E1 to E6). Just completely compact spaces are

investigated in this thesis. The reasons for choosing them are given in Ch. 1, but the

arguments in favour of these spaces act only to select them as a sensible/convenient

starting point for investigation. Of these spaces, E1, E2, E7 and E9 are selected, as

they are the easiest to implement (this is discussed in Ch. 9). The other spaces are

by no means ruled out and would be worth exploration.
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54 CHAPTER 2. MATHEMATICAL DESCRIPTIONS

Figure 2.2: The ten completely compact Euclidean manifolds. The shapes rep-
resent the fundamental domains of these manifolds. The doors indicate flips or
turns that occur as an inhabitant moves out one face and back in through another,
and similar for the windows. If no doors or windows are shown, there are no flips
or turns between the faces. The exception is E6, where all pairs of faces have
transformations like the single example shown. Note that E2 to E10 are all quo-
tients of E1: the dimensions of the fundamental domains of E2 to E10 are given
in terms of the dimensions of the fundamental domain of E1 (e.g., the length of
E2 in the z-direction, LE2

z , is equal to LE1
z /2 = Lz/2).
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2.3. CATALOGUE OF FLAT SPACES 55

Figure 2.3: The four chimney spaces: Euclidean manifolds which only have
two compact dimensions. The same rules apply here regarding the doors as in
Fig. (2.2).

Figure 2.4: The two slab spaces: Euclidean manifolds which only have one
compact dimension. The same rules apply here regarding the doors as in Fig. (2.2).
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Part II

The Cosmic Microwave

Background (CMB)
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Chapter 3

The Impact of the CMB on

Cosmology

The Cosmic Microwave Background (CMB) consists of the oldest observable photons

in existence, rendering it the most powerful probe of the early Universe. The primor-

dial Universe was so hot and dense that photons experienced multiple scatterings off

electrons. As the Universe expanded and cooled, the rate of these interactions de-

creased until, eventually, the last scatterings occurred; we refer to the region where

CMB photons last scattered as the last scattering surface (LSS). There are two ef-

fects involved here; decoupling of photons from electrons, and (re)combination of

electrons with hydrogen and helium nuclei. Decoupling occurs as a result of the

drop in the free electron density due recombination (photon scattering from bound

electrons is less efficient than scattering involving free electrons) and the increasing

mean-free-path of photons due to the expansion of the Universe. Full recombina-

tion occurs when the number of photons with energies greater than or equal to the

ionising energy of hydrogen (13.6 eV) is negligible compared to the number of elec-

trons. This takes place when the Universe has cooled to around 3000 K, when the

typical photon energy becomes about 0.3 eV. It is thought that this happened about

380,000 years after the Big Bang, equivalent to a cosmological redshift of z ∼ 1100.

The photons were then free to traverse space and ultimately reach us today. Note

that recombination was not instantaneous and so the LSS has a finite thickness.

Observations of the CMB have had a dramatic impact on our understanding of

the cosmology of our universe:

• The observation of the near-perfect blackbody spectrum of the CMB (Fig.

1.1) is one of the main pillars in support of the hot Big Bang model: the

coupling between photons and electrons before last scattering ensured the
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Figure 3.1: Intensity spectrum of the CMB obtained from the FIRAS instrument
of the COBE satellite. The curve is a theoretical black body curve. The data is
represented by points, which lie inside the curve, and error bars, which are smaller
than the thickness of the curve. Credit: Fixsen et al. 1996

thermal equilibrium necessary for a blackbody.

• The isotropic nature of the CMB (as well as other cosmological phenomena)

seems to require an early period of inflation, during which the expansion rate

of the universe increased exponentially, to allow causal contact between dia-

metrically opposing points on the LSS.

• Anisotropies over a wide range of angular scales are evident as fluctuations of

order 10−5 about a mean temperature of 2.725 ± 0.001 K. Most of the infor-

mation that we get from the CMB is found by analysing the power spectrum

of these anisotropies (see Section 3.1.1 and Section 5.2). Anisotropy mea-

surements are in agreement with the Standard Model (SM) of cosmology and

have led to quite precise constraints on many of the fundamental cosmological

parameters.

The potential wealth of knowledge encoded by the CMB has spurred many

experiments, some of which are described in Section 3.1.
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3.1 Experiments

The CMB was first predicted in 1948 by Ralph Alpher, Robert Herman, and George

Gamow as a consequence of the Big Bang model (see: Alpher & Herman 1948;

Gamow 1948). However, it was not observed until 1964 when Arno Penzias and

Robert Wilson encountered a mysterious excess noise (Penzias & Wilson 1965) while

testing a radio antenna at Holmdel, New Jersey, built to receive signals from the

first communication satellites. These Echo balloon satellites were not transceivers

but simply reflected microwave signals. This meant that the signals were faint and

all interference had to be eliminated; Penzias and Wilson tried to identify all sources

of interference, but could not explain the signal that we now know to be the CMB.

At that time, Robert Dicke, James Peebles, Peter Roll, and Dave Wilkinson had

been devising an experiment to detect the CMB and recognised the cosmological

significance of Penzias and Wilson’s discovery (Dicke et al. 1965). The discovery

gained Penzias and Wilson the 1978 Nobel Prize in Physics. There have since been

many balloon and ground based experiments but some of the major contributors to

advances in measurements of the CMB are:

(i) COBE (the COsmic microwave Background Explorer) was a satellite launched

in 1989 and operated for 4 years. It confirmed the CMB to be blackbody

radiation and provided the first measurements of primordial temperature

anisotropies. (See Smoot 1999.)

(ii) BOOMERANG (Balloon Observations Of Millimetric Extragalactic Radiation

ANd Geophysics) was a balloon experiment that circumnavigated the South

Pole for ten and a half days in 1998 and fourteen days in 2003, along with

a six-hour test flight in 1997. It allowed the determination of fundametal

cosmic parameters to within a few percent (MacTavish et al. 2006). During

the 2003 flight, it made measurement of polarisation (Piacentini et al. 2006;

Montroy et al. 2006) using bolometers identical to those planned for Planck’s

HFi instrument.

(iii) DASI (Degree Angular Scale Interferometer) is a ground-based telescope that

was set up in 1999/2000 in Antarctica. In 2001, it made the first measurements

of CMB polarisation (Kovac et al. 2002), beating BOOMERANG by almost

two years.

(iv) WMAP (the Wilkinson Microwave Anisotropy Probe) was a satellite launched

in 2001 and finished its survey of the CMB in 2010. It achieved levels of sensi-
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Figure 3.2: Temperature anisotropies simulated over the whole sky at COBE
(left) and Planck (right) resolutions. Credit: Planck Collaboration 2005.

tivity and angular resolution that allowed constraints to be placed on cosmo-

logical parameters at a precision of a few per cent. It also made the first mea-

surements of polarisation at large angular scales (DASI and BOOMERANG

did not survey the entire sky and so did not gather information on large an-

gular scales). (See, e.g., Komatsu et al. 2009, Bennett et al. 2012, Hinshaw

et al. 2012.)

(v) Planck is a satellite that was launched in 2009 and first released cosmological

data in March 2013. It has been designed not only to achieve the highest levels

of sensitivity and resolution to date (with the aim of determining cosmologi-

cal parameters to the unprecedented precision of better than a percent) but

to measure the polarisation of the CMB in detail. As of yet, no polarisation

data have been released, but cosmological parameters have been determined

to percent-level precision. (See, e.g., Planck Collaboration 2005, Planck Col-

laboration et al. 2013a, Planck Collaboration et al. 2013b.)

The marked improvement in resolution from COBE to Planck is shown in the

temperature anisotropy maps of Fig. (3.2). It is harder to see the difference in

resolution between Planck and WMAP without zooming in on the maps, as in

Fig. (3.3). Fig. (3.4) shows an anisotropy map without foregrounds subtracted and

is the first all-sky image from Planck. The removal of foregrounds poses something

of a challenge and WMAP and Planck go some way to resolving this problem by

observing over a large range of frequencies: the knowledge that different foreground

sources are present in different frequency bands can be utilised to eliminate their

signals (see Fig. (3.5)). Since we are still awaiting the release of Planck polarisation

data, this thesis will use data from WMAP.
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Figure 3.3: 5◦× 5◦ patch of sky simulated at WMAP (94 GHz, 15 FWHM) and
Planck (217 GHz, 5 FWHM) resolutions. Left - WMAP 2 years. Centre - WMAP
8 years. Right - Planck 1 year. Credit: Planck Collaboration 2005.

Figure 3.4: Actual Planck one-year all-sky survey of the microwave background
(without foregrounds subtracted). Image shows data spanning the full frequency
range of Planck (30 to 857 GHz). Credit: ESA, HFI and LFI consortia.
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Figure 3.5: Spectrum of the CMB and other sources of fluctuations in the
microwave sky across the frequency channels (grey columns) of Planck. The total
Galactic fluctuation levels depend on angular scale, and are shown for about 1◦.
Extra-galactic sources dominate smaller scales (EG, 10’ shown on diagram). The
highest frequencies are primarily sensitive to dust. Credit: Planck Collaboration
2005.
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Table 3.1: Best fit cosmological parameters for ΛCDM from WMAP 9-year data
and Planck data (see Hinshaw et al. 2012 and Planck Collaboration et al. 2013b
respectively). The uncertainties given represent the 68% confidence intervals of
the values. In the case of the WMAP fit, the densities listed are three of six model
parameters that have been optimised in order to fit the model to the data; H0

has been derived from the other parameters once the best fit has been achieved.
In the Planck case, only the physical densities are among the six fitted model
parameters; ΩΛ and H0 are both derived parameters. As usual, h is the Hubble
parameter (defined as H0 = 100h).

Parameter Symbol WMAP 9-year Planck
Physical baryon density Ωbh

2 0.0222± 0.0003 0.0221± 0.0002
Physical dark matter density Ωch

2 0.1153± 0.0019 0.1187± 0.0017
Dark energy density ΩΛ 0.714± 0.010 0.692± 0.010
Hubble const. (km.s−1.Mpc−1) H0 69.32± 0.80 67.80± 0.77

3.1.1 How Well Does the Standard Model Fit the Data?

The SM of cosmology is the Lambda Cold Dark Matter (ΛCDM) model. This

incorporates vacuum energy (the “Λ”) and cold dark matter (which, unlike hot or

warm dark matter, does not interact in any way, other than gravitationally, with

radiation) into a Big Bang scenario. There are various ways of parameterising the

model, although there can be no fewer than six parameters. Some of the parameters

involved are displayed in Table 3.1, where the best fit values are given for both

WMAP 9-year and Planck data.

Spatial curvature, k, depends on H0 and total density through the Friedmann

equation. The best fit curvature density for WMAP 9-year is Ωk = −0.0027+0.0039
−0.0038

(68% confidence level, Hinshaw et al. 2012,), while for Planck Ωk = −0.0010+0.0062
−0.0065

(95% confidence level, Planck Collaboration et al. 2013b). Since the data are con-

sistent with a flat (Ωk=0), or nearly flat, universe, the analysis in this thesis will

concentrate on flat spaces. While open spaces are not investigated in this thesis,

they would provide an interesting extension.

Both the WMAP and Planck data agree well with a flat ΛCDM model on small an-

gular scales (large multipoles, �), but not quite so well at large angular scales (small

�). This is demonstrated in Fig. (3.6). One possible explanation for this discrep-

ancy is that the model implicitly uses a simply-connected topology; incorporating a

multi-connected topology may solve the problem. However, to date, such attempts

have not been particularly successful (e.g. Niarchou 2006, Uzan et al. 2004).

The level of deficit between the data and model depends on the method of

analysis used. For example, it diminished between the WMAP 1-year results and
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Figure 3.6: Planck temperature angular power spectrum. The red data points
have error bars that include both noise and cosmic variance. The green line is
the best-fit spectrum for a flat ΛCDM cosmology. The green region represents
cosmic variance only (no noise). The fit is extremely tight above an � of around
40. Below this value, data tend to sit underneath the model line; this deficit is
between 5-10%. Credit: Planck collaboration et al. 2013c.
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WMAP 3-year results, not because of the additional data, but because a new method

proposed by George Efstathiou (Efstathiou 2004) was applied to the 3-year data;

Efstathiou argued that the low power could arise from uncertainties due to masking

foregrounds, or biases inherent in the frequentist statistics used. Some now argue

that the significance of the deficit is not strong enough for it to be forced into the

model (Crittenden 2004). However, Planck collaboration et al. (2013c) reported a

deficit of 5−10% below � ∼ 40 and work continues to to try explain this deficit (e.g.

Hearin et al. 2011; Bunn & Bourdon 2008; Shankaranarayanan & Sriramkumar

2005), including whether it could be a result of a multi-connected topology (e.g.

Aurich et al. 2006).
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Chapter 4

Physics of the CMB

The CMB is produced by one of the cleanest astrophysical systems known: inter-

actions between photons and electrons (bound in hydrogen and helium) in weak

gravitational fields. This means that predictions of CMB properties can be calcu-

lated accurately and reliably. If effects that have altered CMB radiation since it

left the LSS, as well as foregrounds, can be successfully removed, CMB anisotropies

can provide valuable information about the early universe, large-scale structure for-

mation, and the cosmological parameters (e.g.: Peebles & Yu 1970; Peebles 1981;

Jungman et al. 1996b,a).

4.1 Temperature Anisotropies

Foregrounds are more easily removed from temperature data than from polarisation

data and the vast majority of the information acquired to date has been deduced

from temperature anisotropies.

4.1.1 Origins of CMB Temperature Anisotropies

The evolution of CMB perturbations (Dodelson 2003, Scott & Smoot 2008) can

be divided into two phases: before and after the epoch of recombination (when

electrons combined with nucleons to form atoms and ceased scattering photons).

Before this time, the tightly coupled photons and electrons could be described as a

single (“baryon-photon”) fluid. Effects that contribute to perturbations before and

on the LSS (which all arise from primordial perturbations and so are correlated)

include:

• Fluctuations in density across the LSS: these provide fluctuations in temper-

ature - more photons corresponds to more energy.
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• Sachs-Wolfe (SW) effect: the gravitational potential at the LSS affects photon

energies. Variations in temperature due to the SW effect are given by ΔT =

φ/3c2 , where φ is gravitational potential and c is the speed of light.

• Doppler effect: variations in the line-of-sight velocity of the baryon fluid (and,

hence, electrons) across the LSS lead to variations in the observed energy of

the photons scattered by the electrons.

• Damping at small angular scales due to the finite thickness of the LSS: the

finite period of time (as opposed to instantaneous) over which last scatter-

ing occurs leads to deconstructive interference between photons emerging at

different times, weakening the signal of anisotropies at smaller angular scales.

Effects that occur as photons propagate from the LSS to Earth include:

• Reionisation: an epoch of reionisation occurred after recombination when the

universe was still sufficiently dense for a significant amount (about 10%) of

CMB photons to be rescattered by free electrons. This event is believed to

have occurred at a redshift between 20 and 5 (1.5 Myr to 1 Gyr after the Big

Bang), but the exact time is unknown and currently a hot topic for research.

• Integrated Sachs-Wolfe (ISW) effect: the effect of variations in gravitational

potential integrated between the LSS and Earth. Variations in temperature

due to the ISW effect are given by ΔT = 2Δφ/c2 , where Δφ is the change in

gravitational potential while a photon traverses the potential well.

Fig. (4.1) demonstrates how these effects appear in the angular power spectrum.

The former set of effects characterise the primordial power spectrum P (k),

where k denotes wavenumber, or Fourier mode. The latter effects contribute to

the radiation transfer functions ΔT
� (k), where � is a multipole mode (see Bond &

Efstathiou 1984). As we shall see, polarisation is susceptible to different effects to

temperature, and has its own set of transfer functions, ΔE
� (k) and ΔB

� (k). Both

temperature and polarisation transfer functions can be found using the publicly

available code such as CAMB (Lewis & Bridle 2002) or CMBFAST (Zaldarriaga &

Seljak 2000).

4.2 Polarisation

Polarisation data are not only complimentary to temperature data in anisotropy

studies but, as they provide information that cannot be obtained from temperature,
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Figure 4.1: This is a theoretical CMB anisotropy power spectrum generated
using the code CMBFAST (www.cmbfast.org). The multipole � represents angular
scale (higher multipoles for smaller angular scales). The vertical axis is the mean
square temperature fluctuation at the scale represented by �. Credit: Scott &
Smoot 2008.
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Figure 4.2: WMAP 9-year polarisation maps for different frequency bands. The
coloured background shows the intensity, while the white lines indicate the angle.
Credit: Bennett et al. 2012.

are necessary to achieve precision cosmology (Zaldarriaga et al. 1997; Eisenstein

et al. 1998; Zaldarriaga & Harari 1995; Kaplan et al. 2003). WMAP provided the

first glimpse of the full-sky polarised CMB (Kogut et al. 2003), as shown in Fig. (4.2),

and Planck promises more detailed observations (see Fig. (4.3)).

This section describes the mechanisms for producing a polarisation signal in the

CMB and how to characterise this signal mathematically. The next chapter, Ch. 5,

will develop the mathematical description further and show how to find polarisation

correlation matrices. Good introductions to CMB polarisation are given by Hu &

White (1997) and Kosowsky (1999), while detailed discussions on how to find the

transfer functions and correlation matrices for polarisation can be found in Kosowsky

(1996), Kamionkowski et al. (1997) and Zaldarriaga & Seljak (1997).
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Figure 4.3: Simulated direction (left) and amplitude (right) of polarisation
anisotropies at Planck resolution for a pure scalar fluctuation mode. Credit:
Planck Collaboration 2005.

4.2.1 Origins of CMB Polarisation

CMB polarisation is linear (i.e. the preferred axis of oscillation in the electromag-

netic field of a CMB photon does not alter direction, or rotate, with time). Fig. (4.4)

shows how this polarisation emerges from quadrupoles in the energy density of the

photon fluid at the LSS. Fig. (4.5) demonstrates how quadrupoles are formed in the

CMB.

More photons travel to a given point from hot, overdense regions than from

cool, underdense regions. In a quadrupole induced by scalar perturbations, photons

from the hottest regions travel to a central point in a direction perpendicular to

that of photons from the coldest regions. The contribution to the polarisation of

photons that are Thomson-scattered at this point is greater from the hotter regions

than the colder regions. Therefore the polarisation of the scattered photons has a

greater amplitude in the direction aligned with the hottest regions. The amount of

polarisation measured depends on the orientation of the observer to the quadrupole.

This process simply requires the energy density to vary over the LSS i.e. a scalar

mode of perturbation, the leftmost case of Fig. (4.5). This can give rise to two

types of polarisation pattern, both of which have even parity (are unchanged under

reflection) and are known as E modes (see left two images of Fig. (4.6)).

Polarisation can also arise due to vector perturbations. In this case, the bulk

motion in a region of constant energy density produces a Doppler shift in the energies

of the photons, creating an effective dipole. Therefore, a dipole in the energy density

of the photon fluid can become an effective quadrupole when there are bulk motions

in the fluid which follow opposite directions in under- and over- dense regions (see

central image of Fig. (4.5)). The right two images in Fig. (4.6) show B mode

polarisation, which has odd parity (sign changes upon reflection) and is the dominant

mode produced by vector perturbations.
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Figure 4.4: How a quadrupole in the photon fluid induces polarised scattered
light. The green dot in the centre is an electron. Black lines are directions of
propagation of photons (two incident and one scattered are shown, but photons
will travel to and from the electron in all directions). The quadrupole lies in the
plane of the page. The axes marked ε′ are incident polarisation, while ε denotes
the polarisation of photons scattered orthogonal to the plane of the quadrupole.
Incident polarisation components orthogonal to the scattered direction are trans-
ferred to the scattered photons; incident components that are parallel to this
direction are not transferred. Photons from the hot, overdense (blue) region are
more abundant than those from the cool, underdense (red) region and so con-
tribute more to the scattered polarisation. Hence non-polarised incident light can
result in polarised scattered light. Credit: Hu & White 1997.
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Figure 4.5: Different types of quadrupole on the LSS. The blue and red sheets
represent the background of overdense (hot) and underdense (cold) regions re-
spectively (scalar perturbations). Left: scalar perturbation - simple quadrupole
in energy density. Centre: vector perturbation - opposing bulk motions in two
adjacent isothermal regions (one hot, one cold) create an effective quadrupole.
Right: tensor perturbations - gravity waves distort space in the plane of the per-
turbation, changing circles of particles into ellipses and, hence, isothermal regions
into quadrupoles. Credit: Hu & White 1997.

Figure 4.6: Polarisation patterns for different types of modes. Left: positive E
mode, centred on a hot spot. Centre left: negative E-mode, centred on a cold
spot. Centre right: negative B mode, centred on a hot spot. Right: positive
B-mode, centred on a cold spot. Credit: Kaplan et al. 2003.
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Finally, tensor perturbations can also produce polarisation. These perturba-

tions are produced by gravity waves (see rightmost image of Fig. (4.5)). Gravity

waves distort space in the plane of the perturbation such that a circle of particles

becomes an ellipse. The density is increased along the minor axis of the ellipse and

decreased along the major axis. In an isothermal (constant energy density) region,

this induces a quadrupole. Different polarisation modes result from different grav-

itational wave formations; tensor perturbations produce comparable amounts of E

modes and B modes.

To see why the different types of perturbation lead to different modes of polarisation,

refer to Fig. (4.5). In a scalar perturbation, photons move parallel to the major

axis of the hot lobe towards the cold lobe, the polarisation direction is therefore

perpendicular to this axis (and parallel to the diametral axis of the cold lobe). In

a vector perturbation, however, photons move from hot lobes to cold lobes at 45◦

to the major axes of the lobes, the polarisation direction also 45◦ to these axes.

Tensor perturbations can produce polarisation both perpendicular (or parallel) and

45◦ to the major axes of the quadrupoles, depending on the shape of the quadrupole

induced.

Which type of mode dominates, if any, depends on which type of perturbation

dominates: scalar, vector or tensor. Vector perturbations are expected to be in-

significant as they arise from velocities in the baryon fluid; the greater the physical

size of the quadrupole, the larger the velocity required, meaning there is a limit to

the size of such a quadrupole. The expansion of the Universe since the formation of

the LSS is expected to have rendered these quadrupoles too small to measure the

effects of in the CMB. This means that the B mode contribution should arise al-

most exclusively from tensor perturbations. The magnitude of tensor perturbations

is limited by the energy scale of inflation and expected to be much smaller than the

magnitude of scalar perturbations. Since E modes are produced by both scalar and

tensor perturbations, they should dominate over B modes.

4.2.2 Relating E and B Modes to Stokes’ Parameters

E and B are related to Stokes’ parameters Q and U . Q and U describe polarisation

with respect to a local coordinate system, usually aligned with the observer’s line of

sight, which changes according to where in the sky the observer is looking. E and

B however, are independent of choice of coordinate system and are more convenient

for studying global properties of CMB polarisation.
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Figure 4.7: Stokes’ polarisation parameters. The x and y axes lie in the plane
perpendicular to the direction of propagation of a wave. The magnitudes of Q, U
and V indicate the amount of each type of polarisation present. Their sign is used
to indicate one of two directions. Each of these plots depicts a different extreme
case, where only one type of polarisation is present. Credit: Dan Moulton.

Stokes’ parameters completely describe the polarisation characteristics of light (e.g.

Chandrasekhar 1950). I represents intensity, Q linear polarisation in two orthogonal

directions, U linear polarisation in two orthogonal directions rotated 45 degrees with

respect to Q, V circular polarisation (see Fig. (4.7)). Eq. (4.1) is Stokes’ theorem.

I2 ≥ Q2 + U2 + V 2 Stokes’ theorem (4.1)

A monochromatic wave can be described as an electric field with the components

Ex = ax(t)cos[νt− θx]

Ey = ay(t)cos[νt− θy]
(4.2)

where ax and ay are amplitudes in the x- and y- directions, ν is the frequency of the

light, and θx and θy the phase angles. Light is polarised if the two components Ex

and Ey are correlated in some way. Stokes’ parameters are defined with respect to

these parameters as

I ≡ 〈a2x〉 + 〈a2y〉 (4.3)
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Q ≡ 〈a2x〉− 〈a2y〉 (4.4)

U ≡ 〈2axaycos(θx − θy)〉 (4.5)

V ≡ 〈2axaysin(θx − θy)〉 (4.6)

where the angle brackets represent time averages. Note that circularly polarised

light in the CMB is often considered negligible and so V vanishes. There are mecha-

nisms for producing it, in the presence of magnetic fields for example, and attempts

to detect circular polarisation in the CMB were made in the 1980s (Stark 1981;

Lubin et al. 1983; Tolman & Matzner 1984). An upper limit to the degree of cir-

cular polarisation in the CMB at large angular scales was determined to be about

10−3, although it is expected to be about 10−9. Comparing this to temperature

anisotropies, which are of order 10−5 and E-mode polarisation, at 10−7, circular

polarisation would be much harder to detect. However, as instrumental sensitivies

improve, interest in circular polarisation has started to revive (Zarei et al. 2010;

Mainini et al. 2013); some argue that the expected amplitude is not very different

to that expected for B-mode polarisation and, since experiments for detecting B-

modes are currently under way, we should be considering circular polarsiation too.

B-modes will be considered, at least initially, in this thesis as there are experiments

that may detect them in the near future. With less activity surrounding circular

polarisation, it will not be dealt with here.

Q and U depend on the orientation of the local coordinate system. The local

z-axis, by convention, lies along the axis of propagation of the wave and, hence,

along the line of sight of the observer. (Here, the z-axis is taken to be directed out

from the observer, but some texts take it to be towards the observer.) The x-y plane

is therefore tangential to the celestial sphere, but the orientation of the x-y plane

is not constrained. A wave that can be described by Q and U in one particular

coordinate system, can also be described by Q′ and U ′ in a system where the x-y

plan has been rotated by φ degrees:

Q′ = Qcos(2φ) + Usin(2φ)

U ′ = −Qsin(2φ) + Ucos(2φ)
(4.7)

If φ is chosen to be 45 degrees, Q′ is in fact equivalent to U , and U ′ equivalent to −Q.
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Figure 4.8: Positive Q (yellow lines) and U (purple lines) plotted on the celestial
sphere (left) and map of the sky (right). Negative Q and U are not shown but are
simply perpendicular to their positive counterparts. The local x- and y- axes for
the Stokes’ parameters have been chosen to be longitudinal and latitudinal with
respect to the global z-axis (running from the bottom to the top of the sphere).
This means than the net effect of the presence of Q polarisation is to create only
E modes (and similar for U and B). Credit: Hu & White 1997 (note that this
figure is used to explain a different situation in the source paper).

Unlike Q and U , E and B cannot be transformed into one another (this should be

apparent upon inspection of Fig. (4.6)). This is because they are a global, and not a

local, property. In order to properly understand the connection between these two

ways of describing polarisation, we need to identify the differences between them.

These differences are not often emphasised, but are quite fundamental:

• A wave emerging from a single point in the sky can have polarisationsQ and/or

U . It cannot, however, have E or B mode polarisation.

• To identify an E or B mode, we must compare multiple points in the sky,

searching for patterns such as those in Fig. (4.6).

E and B can be defined in terms of spherical harmonics (see Section 5.1), a

global coordinate system. It is convenient to choose the local (Q and U) x- and y-

axes to be longitudinal and latitudinal, respectively, with regard to the global (E

and B), spherical harmonic, z-axis. This choice of coordinate system results in E

being dependent only on Q, and B only on U , as in Fig. (4.8).

In general, the polarisation tensor is defined as
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Pab (n̂)

T0

=
PE

ab (n̂)

T0

+
PB

ab (n̂)

T0

=
1

2T0

(
Q (n̂) −U (n̂) sin(θ)

−U (n̂) sin(θ) −Q (n̂) sin2(θ)

)

polarisation tensor

(4.8)

where T0 is the mean CMB temperature. With the coordinate systems chosen as

above, PE
ab (n̂) is a diagonal tensor, while PB

ab (n̂) is a symmetric, off-diagonal tensor,

i.e.

PE
ab (n̂)

T0
=

1

2T0

(
Q (n̂) 0

0 −Q (n̂) sin2(θ)

)
. (4.9)

PB
ab (n̂)

T0
=

1

2T0

(
0 −U (n̂) sin(θ)

−U (n̂) sin(θ) 0

)
. (4.10)

Note that PE
ab (n̂) and PB

ab (n̂) are not the E and B modes themselves; they are

the components of the polarisation tensor that we use to test for E and B modes.

E modes are present on a certain scale, �, if there is a net correlation between all

PE
ab (n̂) and PE

ab

(
n̂′) on that scale (i.e., if CEE

� is non-zero - see Eq. (5.17)), and

similar for B.
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Chapter 5

Mapping the CMB

This chapter explores how we can extract information about the CMB from tem-

perature and polarisation maps, T (n̂) and Pab (n̂) respectively (where n̂ is the unit

vector denoting position on the sky and a, b are matrix indices), as well as the chal-

lenges involved in collecting the data that form these maps. T (n̂) is a scalar field

and Pab (n̂) is a tensor field. So, while the treatment of polarisation is analogous to

temperature, it is somewhat more complex (e.g. Kamionkowski et al. 1997).

5.1 Harmonic Expansion

T (n̂) and Pab (n̂) can both be expanded in terms of complete sets of orthonormal

basis functions, as in Eq. (5.1) and Eq. (5.2).

T (n̂)

T0
= 1 +

∞∑
�=1

�∑
m=−�

aT�mY�m (n̂) (5.1)

Pab (n̂)

T0

=
∞∑
�=2

�∑
m=−�

[
aE�mY

E
(�m)ab (n̂) + aB�mY

B
(�m)ab (n̂)

]
(5.2)

where

• T0 is the mean CMB temperature and, as well as expressing T in units T0, it

is convention to express Pab in units of T0 as the polarisation is correlated to

the temperature anisotropies.

• Y�m are the spherical harmonics and the basis functions Y E
(�m)ab and Y B

(�m)ab can

be expressed in terms of the spherical harmonics by Eq. (5.3) and Eq. (5.4).

Note that the harmonics of Pab do not exist for � = 1 (because this provides

only a local x- or local y- axis, but both are needed to describe polarisation).

81



82 CHAPTER 5. MAPPING THE CMB

While often ignored due to being contaminated by the kinematic dipole (an

apparent dipole in the CMB caused by Earth’s motion and the Doppler effect),

the � = 1 term does exist for T .

Y E
(�m)ab = N�

(
Y(�m):ab − 1

2
gabY

c
(�m):c

)
(5.3)

Y B
(�m)ab =

N�

2

(
Y(�m):ac ε

c
b + Y(�m):bc ε

c
a

)
(5.4)

where : denotes covariant differentiation on the two-sphere, gab is the metric

tensor on the two-sphere, εab is the completely antisymmetric unit tensor,

defined in Eq. (5.5), and N� is a normalisation factor given by Eq. (5.6).

εab =
√
g

(
0 1

−1 0

)
, εab =

1√
g

(
g12 g22

−g11 −g21

)
, εab =

1√
g

(
0 1

−1 0

)
(5.5)

where g ≡ ||gab||.

N� ≡
√

2 (�− 2)!

(�+ 2)!
(5.6)

Multipoles, �, express the angular scale, with smaller scales represented by

larger multipoles. However, there is no one-to-one conversion between multi-

pole and angular scale, although a single spherical harmonic Y�m corresponds

to angular variations of θ ∼ π/�.

• aX�m are the multipole moments: aT�m are the temperature multipole coefficients;

aE�m and aB�m are the polarisation expansion coefficients. Rearranging Eq. (5.1)

and Eq. (5.2) leads to the following expressions for the multipole moments:

aT�m =
1

T0

∫
dn̂ΔT (n̂) Y ∗

�m(n̂) T multipole moments (5.7)

aE�m =
1

T0

∫
dn̂Pab(n̂) Y

E ab ∗
�m (n̂) E multipole moments (5.8)

aB�m =
1

T0

∫
dn̂Pab(n̂) Y

B ab ∗
�m (n̂) B multipole moments (5.9)
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where ΔT = T − T0. For example, to get Eq. (5.7):

ΔT

T0
Y ∗
�′m′ (n̂) =

∞∑
�=1

�∑
m=−�

aT�mY�m (n̂)Y ∗
�′m′ (n̂) (5.10)

⇒
∫

dn̂
ΔT

T0
Y ∗
�′m′ (n̂) =

∞∑
�=1

�∑
m=−�

aT�m

∫
dn̂Y�m (n̂)Y ∗

�′m′ (n̂)

= aT�′m′

(5.11)

due to the orthonormality of the spherical harmonics, which dictates that

∫
dn̂Y�m (n̂)Y ∗

�′m′ (n̂) = δ��′δmm′ . (5.12)

Thus, if we have measurements for T and Pab (from observations of the CMB)

we can calculate aT�m, aE�m and aB�m. These three multipole moments fully

describe the temperature-polarisation map of the sky.

5.2 CorrelationMatrices and Angular Power Spec-

tra

The covariance of aX�m and aY�m for a particular � and m is given by Eq. (5.13),

Covar�m�′m′ (X, Y ) =
〈(
aX∗
�m −

〈
aX∗
�m

〉) (
aY�′m′ − 〈aY�′m′

〉)〉
=
〈
aX∗
�maY�′m′

〉
, (5.13)

where X, Y = T,E,B, the angle brackets represent the average over all realisations

(note that we can only observe one realisation, or universe), and
〈
aX∗
�m

〉
=
〈
aY�m
〉
= 0

(because the sum of the deviations from the mean temperature and the net polari-

sation are both zero).

We use CXY
�m�′m′ to denote the correlation matrix. Technically, to convert from

covariance to correlation, we must divide by the product of the appropriate standard

deviations:

CXY
�m�′m′ =

〈
aX∗
�maY�′m′

〉
σaX�m

σaY
�′m′

. (5.14)
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However, it is convention to assume that the multipole moments have been nor-

malised such that σaX�m
= σaY

�′m′ = 1, yielding Eq. (5.15).

CXY
�m�′m′ =

〈
aX∗
�maY�′m′

〉
XY correlation matrix (5.15)

Note that Eq. (5.7), Eq. (5.8) and Eq. (5.9) have not been normalised in this way

as, in reality, it is more convenient to perform the normalisation on the correlation

matrix itself. It also may not be necessary to normalise, depending on the properties

being investigated.

For Gaussian perturbation theories, the correlation matrices fully describe the

statistical properties of the temperature-polarisation map.

The diagonal of the correlation matrix is given in Eq. (5.16),

CXY
�m ≡ δ��′δmm′CXY

�m�′m′ . (5.16)

Averaging over m, we get the correlation for given �, the angular power spectrum,

Eq. (5.17).

CXY
� ≡ 1

2�+ 1

∑
m

CXY
�m ≡

1

2�+ 1

∑
m

〈
aX∗
�maY�m

〉
XY angular power spectrum

(5.17)

Note that Eq. (5.17) is often expressed as CXY
� ≡ 〈aX∗

�maY�m
〉
, where the angle brackets

denote the average over m, as well as all realisations. For the sake of consistency, this

notation will not be used in this thesis. Formalisms exist for computing any C� for

any FRW (Friedmann-Robertson-Walker) space-time and any structure formation

model (Callin 2006). Many cases can be computed using codes such as CAMB

(http://camb.info, Lewis & Bridle 2002) and CMBFAST (http://www.cmbfast.org,

Zaldarriaga & Seljak 2000), which are publicly available.

An important operation performed by these codes is finding the radiation trans-

fer functions, ΔX
� (k), where X denotes either temperature or type of polarisation

(T , Q or U), � is the multipole mode and k is wavenumber. The transfer functions

describe the evolution of fluctuations from primordial to present-day, at a partic-

ular � and k. Kosowsky (1996) provides a detailed discussion on how the transfer

functions can be calculated, along with how they can be used to find the CMB

correlation matrix. Eq. (5.18) gives the correlation matrix in terms of the transfer

functions using a notation very similar to that adopted by Phillips & Kogut (2006)

(whose algorithm for calculating the correlation matrix is also similar to that used
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in this thesis).

CXY,L
�m,�′m′ = (4π)2

∑
n

ΔX∗
� (kn)Δ

Y
�′ (kn)

P(k)
k3

AL
�m,�′m′(n) (5.18)

where n and kn satisfy k = 2πn/L, n represents the integer triplets (nx, ny, nz),

P(k) is the primoridal power spectrum, AL
�m,�′m′(n) is given by Eq. (5.19) and L

is the topology scale. For simplicity and readability, we assume the dimensions of

the fundametal domain to be equal, Lx = Ly = Lz = L, but the equations can be

modified to allow for different lengths.

AL
�m,�′m′(n) =

∑
{|n|=n}

ξn∗k�mξ
n
k�′m′ (5.19)

where ξnk�m are the coefficients that characterise topology discussed in Section 2.2.3.

Note that AL
�m,�′m′(n) depends on topology, not cosmology, and will be referred to

as a ‘topoterm’ for the remainder of this thesis.

5.2.1 Properties of the Correlation Matrix

If the CMB is statistically isotropic, the correlation matrix must be rotationally in-

variant (i.e. diagonal) and individual correlations must be independent of m (which

relates to the orientation/location of the associated � modes on the sky). Since

the power spectrum is by definition diagonal and independent of m, the correlation

matrix could then be expressed as

CXY
�m�′m′ = CXY

� δ��′δmm′ . (5.20)

Therefore, for the isotropic case, we lose no information by using the power spec-

trum, Eq. (5.17), for statistical analyses instead of the complete correlation matrix,

Eq. (5.15). This is an advantage as it is computationally less expensive to calculate.

In a simply connected universe, the CMB should be isotropic. In a multicon-

nected universe, however, it is generally not and, in order to retain all information,

we need to perform statistical analyses on the correlation matrix itself.

5.2.2 Properties of the Angular Power Spectrum

Fig. (5.1) shows the predicted forms of the CMB power spectra. The cross power

spectra of B with T and E are expected to vanish because of the odd parity of B,
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which should not correlate with even parity T and E (Bartlett 2006). While not

displayed in this figure, the TE power spectrum is non-vanishing.

The EE power spectrum is out of phase with the TT power spectrum. This is

because oscillatory velocities (baryonic acoustic oscillations) in the plasma induce

Doppler shifts and, hence, the scalar perturbations responsible for the majority

of the E modes. The maximum temperature variations (or Doppler shift) occurs

at peaks and troughs in the oscillations, where the plasma has minimum velocity.

Polarisaton, on the other hand, requires bulk motions in the plasma; maximum

polarisation occurs at maximum plasma velocities. So, while peaks in the T mode

spectrum correspond to density modes that are at their minimum velocities, peaks

in the E mode correspond to density modes that are at their maximum velocities.

Minimum velocity density modes are 90◦ out of phase with maximum velocity density

modes. Hence, the T and E modes, and the corresponding power spectra, are out

of phase.

B modes are assumed to be produced solely by tensor perturbations (i.e. gravity

waves) since vector perturbations are not expected to be present in the LSS and

scalar perturbations only produce E modes (see Section 4.2.1). Gravity waves in

the LSS are a prediction of inflation and, therefore, B modes can be used to constrain

the strength of inflation. The strength of inflation, r, is defined as

r =
amplitude of tensor perturbations

amplitude of scalar perturbations
. (5.21)

Fig. (5.1) shows predicted CMB BB power spectra due to gravity waves ranging

from 3.2×1015 GeV (the minimum detectable, see Knox & Song 2002) to 2.6×1016

GeV (the maximum allowable, see Wang et al. 2002) .

5.3 Converting to Pixel Space

Spherical harmonics can be used to transform between harmonic space and pixel

space. The harmonic to pixel transformation for the correlation matrix is

Cpp′ =
∑

�m�′m′
Y ∗
�m(p)Y�′m′(p′)C�m�′m′ (5.22)

where p, p′ are the pixel numbers and p, p′ are the respective pixel directions. This

is an idealistic pixel space, where each pixel contains information only from a single

point in the sky at any one time. To convert to a realistic detector pixel space,

which has some pixel beam function (describing the area, as opposed to point, in
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Figure 5.1: TT (labelled ΘΘ on the plot), EE, and BB power spectra. The EE
spectrum is out of phase with respect to the TT spectrum. The grey region covers
a number of possible BB power spectra, depending on the strength of the gravity
waves in the LSS. The line labelled g. lensing is a predicted B mode spectrum
generated purely by gravitational lensing (see Section 5.4.2). Credit: Hu et al.
2003.
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the sky to which a pixel is instantaneously exposed), the transformation is

Cpp′ =
∑

�m�′m′
B∗

�mB�′m′Y ∗
�m(p)Y�′m′(p′)C�m�′m′ . (5.23)

Note that the transformation of the pixel beam from pixel to harmonic space is

B�m =
∑
p

Bp(p)Y�m(p). (5.24)

It is usually easier to work in harmonic space, but it can be helpful to plot

maps of the correlation matrix (which is done in pixel space) in order to visualise

the correlations (e.g., see Niarchou 2006).

5.4 Taking Measurements

A measurement of the CMB consists of more than just the signal that we are inter-

ested in. We can parameterise the data (e.g., see Jaffe et al. 1999, Wandelt et al.

2004) as

di =
∑
p

Aip(sp + fp) + ni (5.25)

where i labels increments of time (t = iδt), sp and fp are the signal and foregrounds

detected in pixel p respectively, ni is the instrumental noise and Aip is the pointing

operator (Aip = 1 at times when pixel p is observed and Aip = 0 at times when

pixel p is not observed). The data di will be measurements of either temperature,

T , or polarisation, in the form of Stokes’ parameters Q or U . The temperature data,

dTi can be used directly in analyses of the temperature anisotropies. However, the

orientation of the axes against which Q and U were measured must be taken into ac-

count before dQi and dUi can be used in analyses of E and B modes (see Section 4.2.2).

We have used a time-ordering label, i, on the data, di, and noise, ni. The signal,

sp, and foregrounds, fp, are not time ordered, but we effectively make them so by

multiplying by Aip and summing over p. We can do the opposite and find the

non-time-ordered data, dp, and noise, np. For example, the non time ordered noise

is

np =
∑
i

Aipni, (5.26)
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or, in matrix form,

n = Antod. (5.27)

where ntod is the time-ordered noise correlation matrix. To convert between time

ordered and non time ordered correlation matrices (Ntod and N respectively in the

case of noise), we use

Npp′ =
∑
i,i′

AipNii′Ai′p′, (5.28)

or, in matrix form,

N = (ATN−1
todA)−1. (5.29)

5.4.1 Uncertainties

We wish to infer C� or C�m�′m′ from measurements described in Eq. (5.25). There

are many sources of uncertainty that we should consider:

• Noise ni and foregrounds fp can be estimated but, as we cannot know

them precisely, will always be responsible for some degree of uncertainty in

our knowledge of the signal, sp. Note that we usually assume the noise to have

a Gaussian distribution.

• The pixel beam Bp(x) (which describes which directions x are seen by pixel

p) not only takes into account the resolution of a pixel, but the shape of the

area that it sees. The uncertainty lies in not knowing exactly where the signal

has come from. The signal and foregrounds measured in pixel p both involve

the pixel beam:

sp =

∫
x

dxBp(x)s(x) (5.30)

fp =

∫
x

dxBp(x)f(x). (5.31)

However, on the scales considered in this thesis, the area covered by the the

pixel beam for pixel p is negligible (i.e. Bp(x) � δ(x− xp)).

• Sample variance of C� or C�m�′m′ . The variance of a population {xn}
can be estimated from a sample {yn} of that population (see any standard
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undergraduate text book on statistics):

Var({xn}) � Var({yn}). (5.32)

However, we are interested in the variance of the mean value of our sample (as

a measure of the uncertainty on the mean):

Var(y) =
Var({yn})

N
, (5.33)

where N is the size of the sample, y is the mean of the sample, and the yn must

not be correlated in order for the equation to hold. Eq. (5.32) and Eq. (5.33)

lead to the result

Var(y) � Var({xn})
N

. (5.34)

The sample variance improves (i.e. decreases) as the sample increases in size.

Regardless of how many universes there may be, we can only observe one

which, unfortunately, means that our sample size is only one for C�m�′m′ . But

the situation can be better for C�, for which there are 2�+1 moments (m) for

each multipole (�); the sample size in this case is 2�+ 1.

• Sky coverage is also an example of sample variance. Sky coverage may not be

complete if not using an all-sky survey or if a mask has been used to “remove”

foregrounds. Either way, the sample variance scales as 1/fsky, where fsky is

the fraction of the sky covered by the data being used.

5.4.2 Challenges

There are many challenges facing any experiment which trys to measure the CMB.

Polarisation can be especially problematic as only about 10% of CMB photons are

not randomly polarised resulting in a weaker signal than for temperature (Hu &

White 1997). Foregrounds such as the Milky Way and other galaxies contaminate

CMB measurements. They provide additional photons that can be mistaken for

CMB photons. We also have to consider effects that change the properties of the

CMB photons themselves as they travel from the LSS to Earth. The main such

effects are reionisation, the ISW effect and gravitational lensing.
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Foregrounds can be removed to an extent by estimating the microwave contri-

bution from sources surveyed at other wavelengths (Tegmark 1998). This is very

difficult for the Milky Way and this region of the sky tends to be masked (essen-

tially ignored). The removal of foregrounds is considerably more problematic for

polarisation than for temperature. However, the Planck satellite has been designed

to address these issues (Planck Collaboration 2005): it is much more sensitive to

polarisation than its predecessors; it has A range of frequency bands that, together,

should aid the removal of foregrounds.

• Cleaning: This is where an attempt is made to remove a foreground, revealing

the uncontaminated, ’clean’, signal of interest. However, this requires estima-

tion of the foregrounds and inevitably results in some degree of uncertainty.

• Masking: The implementation of a mask involves multiplying the data by a

mask function, M(n̂), which is zero in masked regions and one elsewhere. e.g.,

for temperature, Eq. (5.7) becomes

aT�m =
1

T0

∫
dn̂ΔT (n̂)Y ∗

�m(n̂)M(n̂ (5.35)

Alternatively, we can used a weight function, W (n̂), which is zero where

masked but not necessarily one elsewhere, providing smoother transitions in-

stead of sharp cuts around masked regions. Masking introduces anisotropies

to the CMB that can result in coupling of modes. Gruetjen & Shellard 2012

discuss methods of optimising masking in order to account for these effects.

Reionisation: some part of the CMB may have been scattered at the epoch of

reionisation, long after recombination/last scattering. This would cause damping in

both the temperature and polarisation spectra at small angular scales and induce a

bump in the polarisation at a large angular scale (see Fig. (5.2)). The �s at which

these effects take place depend on the optical depth to reionisation, τ (Zaldarriaga

1997). τ is incorporated in the ΛCDM model and can be estimated as part of the

ΛCDM fit to the CMB data. In this way, the effects of reionisation can to some

extent be accounted for (as well as gaining valuable information about the epoch).

The bump should appear below � = 20 (Kaplan et al. 2003).

ISW effect: as CMB photons propagate to Earth, changes in gravitational po-

tential induce variations in the photon energy. Fortunately, this does not affect

polarisation. Temperature is affected on scales of � less than about 5 (Rassat &

91



92 CHAPTER 5. MAPPING THE CMB

Figure 5.2: Reionisation bump in the low � region of the TE power spectrum.
Credit: Kogut et al. 2003.

Starck 2013); the contribution to the power spectrum can be modelled from theory

or estimated using galaxy surveys (Fig. (5.3)).

Weak gravitational lensing smooths out acoustic oscillations in TT, EE and TE

power spectra, generates power at arcmin scales in TT, EE and TE power spectra,

and effectively creates a spectrum of B-mode polarisation from E-modes (Hirata

et al. 2005). There is not much that can be done about the smoothing of the power

spectra, but there are ways to estimate the lensing structure of the Universe (Lewis

& Challinor 2006, Smith et al. 2012) and the contribution of lensing to the power

spectra. The lensing contribution only becomes significant at large scales, when �

reaches the order 1000 (Fig. (5.4)); this threshold is likely much lower for the gen-

eration of B modes, since the CMB B mode signal is not thought be very strong

(Fig. (5.1)).
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Figure 5.3: ISW contribution to the TT power spectrum at low �. The solid
line is the theoretical prediction and the data points are estimated from 2MASS
and NVSS galaxies with WMAP9 data. Credit: Rassat & Starck 2013.
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Figure 5.4: Contribution of gravitational lensing to the temperature power spec-
trum, based on a typical ΛCDM model. Top: the lensed temperature power
spectrum (blue, solid line), unlensed spectrum (red, dotted line) and power from
lensing only (black, dashed line). Bottom: the fractional change in the power
spectrum due to lensing. Credit: Lewis & Challinor 2006.
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Chapter 6

The General Bayesian Approach

Bayesian analyses determine a probability distribution for the parameters of a model.

This is different to frequentist approaches, which propose a hypothesis, or model

with parameters in some fixed range, to be true (or not) and then attempt to de-

termine whether or not this is the case to some confidence level. The frequentist

confidence level can be considered the probability of the model parameters lying

in a fixed range, but is not a probability distribution for the parameters. An ad-

vantage of the Bayesian approach is that it has the potential to take account of as

much available information as possible. Many believe that there is no need for this

gain in complexity, but Bayesian analyses are increasingly employed to investigate

astrophysical data for a number of reasons (Trotta 2008). As theories become more

complicated and observations more precise, models will become more complex and

require more sophisticated analysis. Due to direct incorporation of models in the

analysis, Bayesian statistics often offer a more intuitive interpretation of the data

they describe. When there are vast amounts of data, sensible Bayesian and fre-

quentist approaches will generally lead to similar conclusions. But all too often, in

cosmology and UHECR research for example, the data available is sparse or poor

quality. In these cases, the extra information utilised by Bayesian methodologies is

crucial.

6.1 Bayes’ Theorem

Bayesian statistics is so-called as it makes use of Bayes’ theorem, but it still incor-

porates other statistics. Bayes’ theorem states the probability of a hypothesis given

relevant data. One way to interpret this is: the probability that the parameters of

a model have certain values, given that certain data (regarding the system that the

model describes) have been obtained (Loredo 1990). In this case, Bayes’ theorem
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can be written:

Pr(parameters|data) = Pr(data|parameters)Pr(parameters)

Pr(data)
(6.1)

where Pr(parameters|data) is known as the posterior, Pr(data|parameters) the likeli-

hood, Pr(parameters) the prior, and Pr(data) the evidence. Note that Pr(x = X|y)
is the probability (density) that, given y, x is essentially X but, more precisely,

describes the probability (density) that x lies in some small range about X (Jaffe

1996).

Technically, all these probabilities take account of some background informa-

tion, I. Using the notation θ for the parameters and D for the data, we write Bayes’

theorem as:

Pr(θ|D, I) =
Pr(D|θ, I)Pr(θ|I)

Pr(D|I) . Bayes’ theorem (6.2)

The evidence acts to normalise the posterior and can be found by marginalising

(essentially removing) θ from the product of the likelihood and prior. This is done

by integrating this product over θ:

Pr(D|I) =
∫
θ−space

Pr(D|θ, I)Pr(θ|I)dθ. (6.3)

Different parameters of the same model have the same evidence and so the evidence

is often neglected when comparing the probabilities of different parameters. This is

helpful as it is often difficult to find the evidence analytically.

6.1.1 Choosing Priors

The most problematic part of the Bayesian method, and arguably the one that

provokes the most criticism, is the choice of prior (Loredo 1990). One must be

careful to select a prior that truly describes previous knowledge of the parameter

space, but it is not always clear what mathematical form best reflects this knowledge.

In addition, a prior should technically be normalised; if it cannot be normalised,

i.e. if it integrates to infinity, it is known as improper. This is a problem if it yields

an improper posterior, which must be normalisable. However, an improper prior can

yield a proper posterior if it provides an evidence which is finite for all D. Consider

the uniform prior, Pr(θ|I) = const.. This is an improper prior as it covers all real

space (i.e. −∞ < θ < ∞) and so integrates to infinity. But it can lead to a finite

evidence for all D, i.e.
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Pr(D|I) =
∫ ∞

−∞
Pr(D|θ, I)Pr(θ|I)dθ = A(D), (6.4)

where A is some finite value dependent on D. If the evidence can be found analyt-

ically, it is fairly straightforward to implement this prior, but this is often not the

case. If we are to find the evidence numerically, we cannot integrate between infinite

limits; we must take some other limits, ±a where a > 0, being careful to choose a

to be large enough for the evidence to have converged to A (to a large number of

significant figures) for all D.

So, if the posterior is independent (to very many significant figures) of the limits

placed on the prior, we can just as well use an improper prior. In these cases, the

information provided by the data via the likelihood “overwhelms” that provided by

the prior. If, however, the prior information and the associated ranges of parameters

is important, allowing the parameter range to become infinite leads to vanishing or

unnormalisable posterior probability. Proper priors must be used in these situations.

Uniform and logarithmic priors are popular choices where there is a complete lack of

prior knowledge. The natural logarithm is uniform over natural logarithmic scales,

often making it more appropriate in astrophysical/cosmological situations. A draw-

back of the logarithmic prior is that, unlike the uniform prior, it does not allow for

parameters with a value of zero.

6.2 Model Comparison

If we wish to compare how well two models j and k fit experimental data, we can

take the ratio of their posterior probabilities: the posterior “odds” (Jaffe 1996, Drell

et al. 2000) can be expressed as:

Pr(j|D, I)

Pr(k|D, I)
=

Pr(D|j, I)
Pr(D|k, I)

Pr(j|I)
Pr(k|I) =

Pr(D|Ij)
Pr(D|Ik)

Pr(j|I)
Pr(k|I) = Bjk

Pr(j|I)
Pr(k|I) . (6.5)

where Bjk = Pr(D|Ij)/Pr(D|Ik) is “Bayes’ factor”, a ratio which depends only on

the experimental data. Eq. (6.5) shows the odds expressed in terms of Bayes’ factor

and a term which is dependent on the theoretical model only. Bayes’ factor favours

a model whose average likelihood (with respect to the prior distribution) is greater,

i.e. a model with a strongly favoured maximum likelihood will still be disfavoured

overall if its likelihood is very low over large areas of the allowed parameter space
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(Jaffe 1996).

The favouring of simpler theories (Ockham’s razor), unless a more complex

model (e.g. one with more parameters) is significantly better at describing the data,

is an advantage of the Bayesian approach (Jaffe 1996, Trotta 2008).

6.3 Bayesian Inference in Astrophysics and Cos-

mology

Over the last decade or so, Bayesian methods have been increasingly adopted in

astrophysics and cosmology. Some examples are listed below.

• Cosmological parameter estimation from various observations such as CMB

and supernova. Cosmo MC is a Monte Carlo code that performs this parameter

estimation and is publicly available (Lewis & Bridle 2002).

• Constraining topology using CMB temperature observations (e.g. Niarchou

2006). Most work to date has focused on the use of temperature anisotropies.

With the advent of Planck, it will soon be possible to perform a full investi-

gation with polarisation measurements.

• Weak gravitational lensing (shear) from deep sky galaxy surveys (e.g. Miller

& CFHTLenS Collaboration 2012).

• The origin of UHECRs (Ultra High Energy Cosmic Rays) from UHECR ob-

servations. The use of a Bayesian approach for this application is introduced

in Watson et al. 2011, a paper describing the work in Ch. 7 of this thesis.

• Constraining neutrino mass using various experimental data, including astro-

physical, (e.g. Archidiacono et al. 2012).

• MultiNest, a publicly available, general Bayesian code for cosmology and par-

ticle physics (Feroz et al. 2009).
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Chapter 7

Example Application of the

Bayesian Approach: The Origin of

UHECRs

The work in this chapter has been published in a paper in collaboration with Daniel

Mortlock and Andrew Jaffe (Watson et al. 2011). The results were generated from

code written by myself to perform the statistical analysis (described in Section 7.4)

on the data (Section 7.3), which was provided by Daniel Mortlock in a form consis-

tent with our models (Section 7.4.1).

7.1 Brief Introduction to UHECRs

Cosmic rays (CRs) are highly accelerated protons and nuclei that reach Earth with

arrival energies in the wide range ∼ 108 eV ≤ Earr ≤∼ 1020 eV (see, e.g., Stoker

2009). They were discovered in 1912 by Victor Hess, and the less well known

Domenico Pacini. Hess performed balloon experiments that detected a greater

amount of “penetrative radiation” at higher altitudes than recorded at sea level

(Hess 1912). Pacini submerged a copper box containing an electroscope in the ocean,

measuring less penetrative radiation than at sea level (Pacini 1912). These results

led both men, separately, to the conclusion that these rays must originate in space:

hence the name “cosmic rays”. It wasn’t until 1932 that Jacob Clay demonstrated

that CRs are not photons but must be extremely energetic particles. He found that

the intensity of CRs was lower nearer the equator than at more northern latitudes.

He realised that this could be explained by the difference in the geomagnetic field at

these locations, but only if the CRs were charged particles (Clay & Berlage 1932).
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The origin of ultra-high energy cosmic rays (UHECRs) with Earr ≥∼ 1019 eV

(about 106 times greater than energies that can be achieved by CERN’s LHC), in

particular, remains uncertain. Suggested sources include gamma ray bursts (Wick

et al. 2004, Waxman 1995) and new physics (e.g. Sarkar 2002). The most promising

theory is that UHECRs are generated by active galactic nuclei (AGNs). There are

several physical models to motivate this idea (e.g., Diehl 2009; Protheroe & Szabo

1992; Fraschetti & Melia 2008), but the hypothesis requires empirical verification.

Various correlation analyses of UHECR arrival directions and locations of pos-

sible progenitors have been performed using data from different observatories and

progenitor catalogues. An analysis by the Pierre Auger Collaboration (Abraham

et al., 2007b) found the first 27 UHE PAO (Pierre Auger Observatory) events to be

strongly correlated with a sample of local AGNs in the Veron-Cetty & Veron 2006,

VCV, catalogue; this was the first strong empirical confirmation of the hypothesis

that UHECRs are generated by AGNs.

The PAO has continued to operate in the time since these results were obtained;

subsequent data (Abreu et al. 2010) show a much weaker correlation. Beatty &

Westerhoff 2009 discuss the many attempts to find a correlation between AGNs and

UHECRs, using a variety of techniques and data, such as those reported by Nemmen

et al. 2010, Abraham et al. 2008, 2007b, Abbasi et al. 2008, Ghisellini et al. 2008 and

George et al. 2008. In particular, Abbasi et al. 2008 claim no significant correlation.

7.1.1 The GZK Effect

Cosmic rays above energies ofEGZK � 5×1019 eV are highly relativistic and see CMB

photons blueshifted. Protons at these energies can interact with the blueshifted

photons to produce pions, losing energy in the process; this is know as the GZK

effect (Greisen 1966; Zatsepin & Kuz’min 1966). The GZK mean free path between

interactions for an E � 1020 eV proton is only about 4 Mpc, and each interaction

typically reduces a CR’s energy by approximately 20 per cent (Achterberg et al.

1999). So any observed UHECRs must have originated within an effective ‘GZK

horizon’ of about 100 Mpc (see Fig. (7.1)). If UHECRs are primarily Fe nuclei, the

GZK horizon is expected to be even smaller, since these nuclei are heavier and slower

than protons of the same energy. However, this also means that the deflection due

to magnetic fields, and thus uncertainty in arrival direction, is greatly increased.

So, while the GZK effect reduces the number of detectable UHECRs, a fortunate

consequence is that it also reduces the number of plausible AGN sources to the few

thousand with distances less than about 100 Mpc or, equivalently, redshifts less
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Figure 7.1: Plot of simulated received energy spectra from mono energetic
sources at different distances from Earth. Each source emits cosmic rays at the
energy of Eemit = 1021 eV. Curves from rightmost to leftmost represent sources
at increasing distances. The received spectrum from a source at only 10 Mpc has
a distinct spike containing cosmic rays that have reached us without losing energy
to the GZK effect. By 100 Mpc, the fraction of cosmic rays whose energy remains
at Eemit = 1021 eV is negligible. i.e., the probability of an Eemit = 1021 eV cosmic
ray reaching us from a source more distant than 100 Mpc is negligible. Credit:
Achterberg et al. 1999.
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than about 0.03. This makes it plausible to search for a correlation between the

arrival directions of UHECRs and locations of local AGNs, provided sufficiently

many UHECRs can be observed.

7.2 Purpose

Abraham et al. 2007b have reported the strongest correlation between arrival di-

rections of UHECRs and locations of AGNs to date (at the time of publication of

Watson et al. 2011). Given the small numbers of UHECRs on which these results

are based, some care must be taken with the statistical methods employed. This is

both to ensure that all the available information is utilised and to avoid over inter-

pretation. These aims can be achieved by adopting a Bayesian approach in which

the relevant stochastic processes (e.g., the GZK interactions of the UHECRs with

the CMB, deflection by the Galaxy’s magnetic field, and measurement errors) are

explicitly modelled. The details of some of these processes are not known (most

relevantly, the strength of the magnetic fields and the energy calibration of the

UHECRs), but such uncertainties can be accounted for by marginalisation.

Our aim is to provide an improved method for testing whether UHECRs orig-

inate from AGNs, addressing some issues with the analysis presented by Abraham

et al. 2007b:

• They use circular angular matching regions around each UHECR: all AGNs

within these regions are considered to be equally probable sources; any AGN

outside these regions is completely disregarded as a progenitor. This approach

is suboptimal as real matches would tend to be more centrally concentrated,

with the source probability decreasing gradually as the angular distance from

the CR increases.

• They ignore the radial distance to the AGNs. This is potentially misleading

because their analysis is as sensitive to physically implausible correlations (i.e.

those involving AGNs too distant to be progenitors) as it is to those that would

be expected if the AGNs are in fact the UHECRs’ progenitors.

• Their simple correlation analysis ignores the arrival energy Earr of the individ-

ual UHECRs. A likelihood based approach can incorporate the fact that the

higher the energy of the event, the nearer its progenitor is expected to be (due

to the GZK effect).
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These points can be addressed, and the constraining power of an UHECR data

set increased, by using a physical model of UHECR generation, propagation and

observation, thereby extracting all the valuable information in the data set (albeit

at the small price of increased complexity).

In this work, the first steps are taken to developing a comprehensive Bayesian

formalism for analysing UHECR data. The starting point is to reanalyse the UHECR

and AGN samples used by Abraham et al. 2007b, changing only the statistical

method. This is so that, aside from providing a direct answer to the question of

whether the 27 PAO UHECRs come from the local VCV AGNs, it will show directly

how the results depend on the statistical method used to analyse such data sets.

After describing the UHECR and AGN samples in Section 7.3, the Bayesian method

and CR propogation model are presented in Section 7.4. The results of applying this

methodology are given in Section 7.5 and the overall conclusions are summarised in

Section 7.6.

7.3 Experiments and Data

A number of difficulties hinder efforts to gain experimental evidence about UHECRs.

The most fundamental problem is that CRs are deflected by the Galaxy’s magnetic

field. The arrival directions of lower energy extragalactic protons are essentially

independent of their point of origin, although UHECRs are expected to be deflected

by no more than a few degrees (Achterberg et al., 1999).

It is also problematic that UHECRs are very rare, with the observed number

flux falling off with energy as

dΓobs

dEarr
�
(

Earr

1019 eV

)−2.6

s−1 m−2 sr−1 (7.1)

(e.g., Abraham et al. 2010), where Γobs is the observed number flux and Earr is

the arrival energy. The fall off is expected to be even more extreme above energies

of EGZK � 5 × 1019 eV due to the GZK effect. Fig. (7.2) shows the cosmic ray

spectrum, consisting of events detected by various observatories.

The problem of the low UHECR arrival rate can only be overcome by using

a large collecting area, and by observing for long periods of time. Large ground

based observatories such as HiRes Fly’s Eye and AGASA (e.g. see Nagano & Wat-

son 2000), have made significant progress in obtaining UHECR data. At present,

the largest CR observatory is the Pierre Auger Observatory (Abraham et al. 2004),

which is located near Malargüe in Argentina, at a longitude of 69◦4 and a latitude
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Figure 7.2: Cosmic ray energy spectrum containing events measured by various
different experiments. Credit: William F. Hanlon, University of Utah.
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Figure 7.3: Spectrum of PAO UHECRs, with HiRes detections for comparison.
Credit: Abraham et al. 2010.

of −35◦2, and has been operational since January 2004. It has 1600 surface detec-

tors (SDs) that cover an area of 3000 km2, as well as four arrays of six atmospheric

fluorescence telescopes.

The sample of UHECRs (Section 7.3.1) and the AGN catalogue (Section 7.3.2)

analysed here are the same as those used by Abraham et al. 2007b.

7.3.1 PAO Observations of UHECRs

During its first approximately 3.6 years of observing, the PAO made reliable de-

tections of the arrival directions and energies of 81 UHECRs, of which 27 had an

(estimated) arrival energy of Earr ≥ 5.7× 1019 eV (see Fig. (7.3)).

The arrival directions are measured accurate to about 1◦. There is an additional

effective uncertainty in the progenitor direction due to deflection of the UHECR by

Galactic and intergalactic magnetic fields. The magnitude of this effect is somewhat

uncertain, with estimates of the typical deflection angles ranging from 2◦ (e.g. Dolag

et al. 2005; Medina Tanco et al. 1998) to 10◦ (e.g. Sigl et al. 2004) for Earr � 1020 eV

UHECRs. The combined effect is that the observed arrival direction, r̂arr, and the

direction to the progenitor, r̂src, are typically separated by a smearing angle of a

few degrees.
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Figure 7.4: The arrival directions of the Nc = 27 PAO UHECRs (black points)
and the source-weighted exposure (greyscale: darker indicates greater exposure)
for the background-only model (left) and the AGN-only model (right), in Galactic
coordinates. The Galactic Centre (GC), South Celestial Pole (SCP) and PAO’s
field of view (FoV) are all indicated. Lines of constant Galactic latitude |b| = 10◦

are also shown. Credit: Watson et al. 2011.

As the construction of the PAO continued, its effective detector area increased

steadily over the time during which the 27 UHECRs were detected. The evolution

was sufficiently gradual that the exposure per unit solid angle, dε/dΩ (which has

units of area × time), is a function of declination only. The angular dependence of

the PAO exposure can be approximated by assuming that the instantaneous expo-

sure is constant within 60◦ of the zenith and zero otherwise. (The detailed angular

dependence is dominated by the cross sectional area of the SD array, and there are

smaller corrections due to the various PAO data cuts, but these secondary effects are

ignored here.) Integrating the instantaneous exposure over time to account for the

Earth’s rotation (cf. Fodor & Katz 2001) yields the declination dependent exposure

ε(r̂) shown in the left panel of Fig. (7.4), which contains plots of the UHECR and

AGN data used in this analysis. The total exposure considered here is

εtot =

∫
dε

dΩ
dΩ = 9000 yr km2 sr−1 (7.2)

(Abraham et al., 2007a).

7.3.2 Local AGNs

This work follows Abraham et al. 2007b in considering only AGNs in the 12th edition

of the Veron-Cetty & Veron 2006 catalogue as possible sources for the PAO UHECRs.

The distance to each source, D, is calculated from the quoted absolute and apparent

magnitudes in the VCV catalogue, and AGNs without absolute magnitudes are

omitted. The full catalogue contains 108,014 AGNs, but only Ns = 921 have zobs ≤
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0.03 and are hence plausible UHECR progenitors inside the GZK horizon of about

100 Mpc.

The VCV catalogue is heterogeneous, having been compiled from a variety of

AGN and quasar surveys, and as such it is not ideal for statistical studies. It is,

however, expected to be close to complete for the local AGNs of interest here, except

close to the Galactic plane. Moreover, as emphasized in Section 7.2, the VCV sample

was chosen specifically to facilitate comparison with the results of Abraham et al.

2007b.

7.4 Method

Source and background rates, Γsrc and Rbkg: we use a model (detailed in Sec-

tion 7.4.1) characterised by the rate at which UHECRs are emitted by each AGN,

Γsrc, and the rate at which an isotropic background of UHECRs arrive at Earth,

Rbkg. If none of the UHECRs come from the candidate AGNs then the data should

be consistent with Γsrc = 0. Conversely, if all the UHECRs come from the AGNs in

the catalogue, then the data should be consistent with Rbkg = 0. By determining

the most probable values for theses rates, given the PAO data, we can assess the

candidacy of the AGNs as PAO UHECR progenitors. Note that the two rates have

different units: Γsrc is the average number of UHECRs emitted per unit time by an

AGN, and is given in units of s−1; Rbkg is the average number of UHECRs per unit

time, per unit area, per unit solid angle, arriving at Earth, and is given in units of

s−1 m−2 sr−1.

The joint posterior probability distribution of the rates Γsrc and Rbkg, given

the PAO data, summarises the full constraints on these rates and is given by

Pr(Γsrc, Rbkg|data) = Pr(data|Γsrc, Rbkg) Pr(Γsrc, Rbkg)∫∞
−∞
∫∞
−∞ Pr(data|Γsrc, Rbkg) Pr(Γsrc, Rbkg) dΓsrc dRbkg

, (7.3)

where:

• Pr(Γsrc, Rbkg) is the prior distribution that encodes any external constraints

on the rates. A uniform prior over Rbkg ≥ 0 and Γsrc ≥ 0 is adopted, which

reflects the lack of knowledge of what the true rates might be (whilst allowing

zero rates, unlike the logarithmic prior). This choice of prior also has the

advantage that the posterior contour plots show the likelihood and, hence,
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the constraining power of the PAO data directly. The one prior restriction

assumed is that both Γsrc and Rbkg are non-negative.

• Pr(data|Γsrc, Rbkg) is the likelihood of obtaining the measured data given par-

ticular values for Rbkg and Γsrc.

• The integral in the denominator is the evidence. As we are not making any

comparisons to other models, the only role that the evidence plays here is

to ensure that the posterior is correctly normalised. Hence it can be ignored

when investigating the shape of the posterior.

Applying the above simplifications, Eq. (7.3) reduces to

Pr(Γsrc, Rbkg|data) ∝ Θ(Γsrc)Θ(Rbkg)Pr(data|Γsrc, Rbkg), (7.4)

where Θ(x) is the Heavyside step function.

Data parameterisation: a ‘counts in cells’ approach is employed, dividing the

sky into Np = 180 × 360 = 64800 pixels distributed uniformly in right ascension

and declination. The raw data take the form of the measured arrival directions,

{r̂c}, and number, Nc, of UHECRs. (It would also be possible to use the measured

arrival energies of the UHECRs.) So the data are recast as the set of UHECR counts

in each pixel, {Nc,p}. In the limit of infinitely small pixels, this is mathematically

equivalent to using the arrival directions, but is more straightforward to analyse and

simulate.

Nbkg,p and N src,p are the expected number of background and source UHECRs

in pixel p, respectively. The expected number of background UHECRs in pixel p is

Nbkg,p = Rbkg

∫
p

dε

dΩ
dΩobs, (7.5)

where the integral is over the p’th pixel and dε/dΩ is the PAO exposure per unit solid

angle (see Section 7.3.1). The expected number of UHECRs from known sources in

pixel p is

N src,p =

Ns∑
s=1

[(∫ ∞

Emin−arr

dNarr(Earr, Ds)

dt dA
dEarr

)(∫
p

dε

dΩ
Pr(r̂arr|r̂s) dΩobs,

)]
(7.6)

where the sum is over the AGN sources, Pr(r̂arr|r̂s) is the smearing probability

(Eq. (7.20)), and the first integral is the rate (number per area and time) of UHECRs
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from a source at distance Ds arriving at Earth above the cut-off energy, Emin−arr.

This rate is proportional to the source rate, Γsrc, but further depends on both the

shape of the AGN UHECR injection spectrum and the distance-dependence of the

GZK energy losses, and so requires an explicit UHECR model (see Eq. (7.19)).

The positional dependence of Nbkg,p and N src,p are both shown in Fig. (7.4).

The right panel is a combination of both the PAO exposure and the local distribu-

tion of AGNs, although comparing the left and the right panel it is clear that the

latter dominates. In particular, the strongest source by far is Centaurus A (with

l = 309◦5 and b = 19◦4), which has previously been suggested as the dominant

source of UHECRs (e.g. Abraham et al. 2007b).

The likelihood is a product of the independent Poisson likelihoods in each pixel,

and is hence given by

Pr({Nc,p}|Γsrc, Rbkg) =

NP∏
p=1

(Nbkg,p +N src,p)
Nc,p exp[−(Nbkg,p +N src,p)]

Nc,p!
. (7.7)

Section 7.4.1 describes the parts of the likelihood calculation which depend

on our model of AGN UHECR production and propagation. In Section 7.4.2, we

simulate PAO UHECR data in order to investigate the properties of the likelihood

function.

The fraction of UHECRs that have come from AGNs, FAGN can be found

from the expected number of source and background events in any sample, which

can be calculated from the rates. The constraints on the expected UHECR numbers

are simply proportional to those on the relevant rates; FAGN is given by the ratio of

the expected number of AGN UHECRs to the expected total number.

Note that it is crucial to begin by parameterising the problem with the funda-

mental physical quantities, the rates Γsrc and Rbkg, rather than the FAGN (as done

in Abreu et al. 2010). This is because in small samples, in which the total arrival

rate of UHECRs has a significant Poisson uncertainty, the only way to consistently

account for the (independent) fluctuations in the source and background UHECRs

is to parameterise their rates explicitly.

Individual UHECR-source probabilities, Psrc, (i.e. whether any single UHECR

came from a particular source) can be found within the Bayesian approach. A useful

estimate of the probability that a UHECR, with measured arrival direction in pixel
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p, has come from one of the sources under consideration is

Psrc = Pr(from source|p,Γsrc, Rbkg) =
N src,p

N src,p +Nbkg,p

, (7.8)

given values for the two rates. As the rates inferred from a sample of even just 27

UHECRs are not sensitive to any one event, it is reasonable to evaluate Psrc using

the best-fit values of Γsrc and Rbkg to assess the likely origin of each UHECR in turn.

This is done for the PAO data in Section 7.5.

7.4.1 UHECR Model

AGN source rate: it assumed here for simplicity that all AGNs emit UHECRs at

the same overall rate and with an energy flux proportional to E−γ, i.e.

J(E) = CE−γ (7.9)

where C is some constant and γ = 3.6 (Abraham et al., 2010). Therefore the number

flux is given by

dNemit(Eemit)

dtdA
=

J(Eemit)

Eemit
= CE−γ−1

emit (7.10)

and the total emission rate of UHECRs with energy greater than E is

∫ ∞

E

dNemit(Eemit)

dt
dEemit = CA

∫ ∞

E

E−γ−1
emit dEemit =

CA

γ
E−γ, (7.11)

where A is the area over which UHECRs are emitted.

The source rate is defined as

Γsrc =

∫ ∞

Emin−emit

dNemit(Eemit)

dt
dEemit =

CA

γ
E−γ

min−emit. (7.12)

Here, Γsrc is the same for all AGNs, although a more realistic model would allow

Γsrc to vary with source; it is plausible that the UHECR emission rate scales with

an AGN’s hard X-ray luminosity (e.g., Protheroe & Szabo 1992). Now Eq. (7.11)

becomes

∫ ∞

E

dNemit(Eemit)

dt
dEemit = Γsrc

(
E

Emin−emit

)−γ

. (7.13)
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AGN luminosity: the definition of Γsrc also means that the UHECR luminosity

can be cast as

Lsrc =

∫ ∞

Emin−emit

L(Eemit)dEemit =

∫ ∞

Emin−emit

AJ(Eemit)dEemit

=
γ

γ − 1
ΓsrcEmin−emit.

(7.14)

GZK effect: the dominant energy loss mechanism of UHECRs is the GZK in-

teraction with the CMB photons. Whilst this is stochastic, its most important

feature is the exponential reduction in the probability of an UHECR travelling more

than about 100 Mpc without dropping below EGZK. This can be accounted for by

adopting a continuous loss approximation (cf. Achterberg et al. 1999) in which a

UHECR’s arrival energy is given by

Earr = max
[
EGZK, Eemit(1− fGZK)

D/LGZK
]
, (7.15)

where D is the distance to the source, fGZK = 0.2 is the average fractional energy

loss per GZK interaction, LGZK = 4 Mpc is the GZK mean free path. It is also

assumed that there are no further energy losses once a CR reaches EGZK, although

this is unimportant for UHECRs with Emin > EGZK (such as those in the PAO

sample).

AGN arrival rate: the quantity that we want is the arrival rate (per unit area

and time) of UHECRs with arrival energy above Emin−arr from a source at distance

D. For Earr > EGZK � 5× 1019 eV, which is the case for the PAO data in question,

Eq. (7.15) can be used to express this quantity as
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∫ ∞

Emin−arr

dNarr(Earr, D)

dtdA
dEarr

=

∫ ∞

Emin−arr

1

4πD2

dNemit(Earr/(1− fGZK)
D/LGZK )

dt
dEarr

=
(1− fGZK)

γD/LGZK

4πD2

∫ ∞

Emin−arr

(1−fGZK)D/LGZK

dNemit(Eemit)

dt
dEemit.

(7.16)

Using Eq. (7.13) in Eq. (7.16) yields

∫ ∞

Emin−arr

dNarr(Earr, D)

dtdA
dEarr

= Γsrc
(1− fGZK)

γD/LGZK

4πD2

(
Emin−arr

Emin−emit(1− fGZK)D/LGZK

)−γ

.

(7.17)

Since Earr > EGZK in the PAO sample then, according to the simple GZK

model, Eq. (7.15),

Emin−arr = Emin−emit(1− fGZK)
D/LGZK (7.18)

which, in Eq. (7.17), finally gives

∫ ∞

Emin−arr

dNarr(Earr, D)

dtdA
dEarr = Γsrc

(1− fGZK)
γD/LGZK

4πD2
. (7.19)

This can be used in Eq. (7.6) to calculate the expected number of CRs in each pixel

and, therefore, the likelihood function, Eq. (7.7).

Deflection: the final ingredient to Eq. (7.6) is the deflection probability. The

arrival directions are measured accurate to about 1◦, although there is an additional

effective uncertainty in the progenitor direction as UHECRs are deflected by Galactic

and inter-galactic magnetic fields. The combined effect can be modelled by defining

the probability distribution of observed arrival directions of UHECRs from a source

at r̂src as a two-dimensional Gaussian on the sphere,
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Figure 7.5: The posterior probability of the UHECR rate from VCV AGNs,
Γsrc, and the uniform background rate, Rbkg, implied from a simulated sample
of 27 UHECRs, all of which were emitted by VCV AGNs. The contours enclose
68%, 95% and 99.7% of the posterior probability, and the line plots show the
marginalised probability for each rate.

Pr(r̂arr|r̂src) =
1

2πσ2(1− e−2/σ2)
exp

(
−1− r̂arr · r̂src

σ2

)
. (7.20)

A fiducial smearing angle of σ = 3◦ is assumed unless otherwise stated, but results

using σ = 6◦ and σ = 10◦ are also calculated for comparison purposes.

7.4.2 Simulations

It is useful to test the constraining power of a small number of UHECRs by gener-

ating mock PAO samples with known progenitor properties. Simulations of the two

extreme cases were created (credit: Daniel Mortlock). In the AGN-only sample, all

the UHECRs were sourced from the nearby VCV AGNs and propagated using the

simple GZK model described in Section 7.4.1. In the all-background sample, the

arrival directions are random. In both cases, the incident UHECRs were subject to

the PAO’s measurement errors and declination-dependent exposure. Both samples

were constrained to have exactly 27 events so as to provide parameter constraints

that can be compared directly with those from the real PAO sample.

The results of the AGN-only simulation are shown in Fig. (7.5). As expected,

the constraints on Γsrc match the naive Poisson expectation. Note the rejection

of the possibility that more than a few of the PAO UHECRs are not from the
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Figure 7.6: Same as Fig. (7.5), but for a simulated sample of 27 isotropically
distributed UHECRs.

VCV AGNs. The constraints on the AGN fraction (see Fig. (7.9)) from such a

data-set would be FAGN = 1.00+0.00
−0.07, where the intervals enclose the most probable

68% of the posterior probability. This strong result implies that if AGNs source all

UHECRs, even a sample of 27 events would be sufficient to confirm this hypothesis,

if a complete sample of the progenitors was available.

The results of the background-only simulation are shown in Fig. (7.6). Again,

the constraints onRbkg match the Poisson expectation and this time the possibility of

more than a few UHECRs arriving from AGNs is rejected. The resultant constraints

on the AGN fraction (see Fig. (7.9)) are FAGN = 0.00+0.07
−0.00. It is also important to

note that some pixels (very far away from any AGN) have negligible contribution

from the VCV AGNs and, because some of the UHECRs in this sample fell in those

pixels, there is an absolute hard upper bound on FAGN that is significantly lower

than unity.

The fact that the posteriors from the AGN-only and the background-only simu-

lations are almost completely disjoint implies that even a sample of just 27 UHECRs

might be sufficient to provide a definitive answer as to their origin. The parame-

ter constraints from the real data should lie between the two extremes shown in

Fig. (7.5) and Fig. (7.6).
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Figure 7.7: Same as Fig. (7.5), but for all 27 PAO UHECRs.
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Figure 7.8: Same as Fig. (7.5), but for the 22 PAO UHECRs with arrival direc-
tions at least 10◦ from the Galactic plane.
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7.5 Results

The posterior probability distribution in Γsrc and Rbkg given the PAO UHECR

sample is shown in Fig. (7.7). As expected, the posterior is intermediate be-

tween the extreme cases shown in Fig. (7.5) and Fig. (7.6). The most likely

rates are Γsrc = (5.8+4.0
−2.9) × 1030 s−1 (equivalent to UHECR source luminosity of

Lsrc = 7.4+5.1
−3.7× 1031 W) and Rbkg = (8.0+1.9

−1.6)× 10−17 sr−1 m−2 s−1. Also calculated

is the posterior distribution of the fraction of the PAO UHECRs that come from

VCV AGNs, shown in Fig. (7.9). The most probable value is FAGN = 0.15, and the

constraints can be summarised by the interval FAGN = 0.15+0.10
−0.07 (where, again, the

limits enclose the most likely 68% of the posterior probability).

As most extragalactic catalogues are incomplete close to the Galactic plane, the

above analysis was repeated on a reduced data-set from which the region with Galac-

tic latitudes of |b| ≤ 10◦ had been removed (see Fig. (7.8)). The PAO exposure in the

retained regions is 7480 yr km2 sr and the number of UHECRs included was reduced

from 27 to 22. The lower numbers resulted in slightly broader constraints on FAGN,

as can be seen from Fig. (7.9). From this cut data, we find Γsrc = (5.6+3.9
−2.8)×1030 s−1,

Rbkg = (7.6+2.0
−1.7)× 10−17 sr−1 m−2 s−1 and FAGN = 0.18+0.11

−0.09.

The analysis was also repeated using larger mean smearing angles of σ = 6◦

and σ = 10◦. The limits on the AGN fraction in these models are FAGN = 0.22+0.12
−0.09

(σ = 6◦) and FAGN = 0.31+0.12
−0.12 (σ = 10◦). In both cases, the most probable value of

FAGN is higher, although the range of values compatible with the data is broader,

than in the fiducial model. It is natural that a higher AGN fraction be compatible

with the data given larger values of σ, as a greater fraction of the sky is within

σ of at least one source. This effect has been seen by, e.g., Kim & Kim 2011 and

Abraham et al. 2010. In particular, Kim & Kim 2011 report the fraction of observed

UHECRs that originate from AGNs to be 0.45 for a smearing angle of 6◦. However,

the best-fit value of FAGN increases less strongly with σ in the Bayesian formalism

presented in this chapter than found by using other methods. This is because the

inherent self-consistency of the Bayesian approach ensures that the correct balance

is struck between the compatibility of this more forgiving model and the lack of

predictivity.

There is strong evidence of a UHECR signal from the known VCV AGNs, which

manifests in the result that FAGN = 0.15 is 200 times more probable than FAGN =

0.00, but not all the PAO UHECRs can be explained this way. Note that the
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Figure 7.9: Posterior distributions of the fraction of observed UHECRs that are
from the population of VCV AGNs, FAGN, shown for simulated samples (both
isotropic and AGN-only) and for the real PAO data. Curves for both the full
sample of 27 UHECRs and the cut sample of 22 UHECRs (with arrival directions
at least 10◦ from the Galactic plane) are shown in the same panel. Each panel
represents a different smearing angle.
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background-only (i.e. FAGN = 0) case, the null hypothesis rejected by Abraham

et al. 2007b, is actually reasonably consistent with the data. However, the hypothesis

that all the PAO UHECRs come from VCV AGNs (i.e. FAGN = 1) is completely

ruled out because there are several events with no plausible AGN progenitor in the

VCV catalogue.

The probability that each of the 27 UHECRs came from one of the VCV AGNs

was calculated explicitly according to Eq. (7.8) by adopting the best-fit values for

Rbkg and Γsrc given above; these probabilities are given in Table 7.1. For σ = 3◦,

only 9 events have Psrc ≥∼ 0.1, all of which were identified as being within 3.2◦ of an

AGN with zobs ≤ 0.017 by Abraham et al. 2007b. However the other 11 events which

Abraham et al. 2007b identified as AGN correlated have very low values of Psrc. In

most cases, this is because the angular correlation is with an AGN that is close to

their maximum redshift and so has a significantly reduced UHECR flux at Earth.

Moreover, 14 of the UHECRs have Psrc < 0.001, with no plausible AGN progenitor,

at least within the VCV catalogue. As also shown in Table 7.1, the results are

similar, but less conclusive, for larger smearing angles. The AGN hypothesis cannot

be ruled out for the low Psrc events, however: these UHECRs could have come from

AGNs that are not in the VCV catalogue (and some could have come from VCV

AGNs if deflected by more than a few degrees). Of course, Psrc may not be so low

for these events if our simple model is adjusted to allow the source rate Γsrc to vary

with source.

7.6 Discussion

This chapter details a Bayesian analysis to test whether the first 27 UHECRs with

Earr ≥ 5.7 × 1019 eV detected by the PAO have come from the known local AGNs

in the VCV catalogue. The first main conclusion from this analysis is that either at

least some do come from VCV AGNs or at least some come from progenitors within

a few degrees of the VCV AGNs. A more realistic model should help to distinguish

between these two possibilities. Within the model presented here, the fraction of

UHECRs that come from the VCV AGNs is constrained to be 0.15+0.10
−0.07 (where the

limits enclose the most probable 68 percent of the posterior). Conversely, the second

important result is that many of the PAO UHECRs have not come from AGNs in

the VCV catalogue, either because of incompleteness (most obviously close to the

Galactic plane) or because there is another source of UHECRs, possibly in our own

Galaxy.

The results differ somewhat from those presented by Abraham et al. 2007b,
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Table 7.1: The measured arrival directions of the 27 PAO UHECRs listed in
Abraham et al. (2007b) along with their assessment of AGN correlation (PAO
corr.) and values from the method presented in this chapter of the AGN pro-
genitor probability (which is rounded to zero if less than 0.0005) for the three
different smearing angles. The CRs marked with *1, *2 and *3 in the b column
are those closest to Centaurus A, with angular separations of 0.9, 2.3 and 5.8 deg
respectively.

l b PAO Psrc Psrc Psrc

deg deg corr. σ=3 deg σ=6 deg σ=10 deg
15.4 8.4 no 0.000 0.000 0.000
−50.8 27.6 yes 0.559 0.761 0.681
−49.6 1.7 yes 0.000 0.134 0.387
−27.7 −17.0 yes 0.099 0.067 0.033
−34.4 13.0 yes 0.078 0.171 0.424
−75.6 −78.6 yes 0.380 0.528 0.493
58.8 −42.4 yes 0.000 0.000 0.000
−52.8 14.1∗3 yes 0.870 0.836 0.711

4.2 −54.9 yes 0.000 0.004 0.008
48.8 −28.7 yes 0.000 0.000 0.000

−103.7 −10.3 no 0.000 0.000 0.001
−165.9 −46.9 yes 0.000 0.003 0.010
−27.6 −16.5 yes 0.099 0.067 0.033
−52.3 7.3 no 0.167 0.533 0.577
88.8 −47.1 yes 0.000 0.000 0.002

−170.6 −45.7 yes 0.000 0.006 0.011
−51.2 17.2∗2 yes 0.952 0.873 0.735
−57.2 41.8 no 0.005 0.123 0.294
63.5 −40.2 yes 0.000 0.000 0.000
−51.4 19.2∗1 yes 0.964 0.881 0.742
−109.4 23.8 yes 0.000 0.000 0.002
−163.8 −54.4 yes 0.001 0.006 0.020
−41.7 5.9 no 0.002 0.208 0.454
12.1 −49.0 yes 0.000 0.001 0.003
−21.8 54.1 yes 0.000 0.005 0.088
−65.1 34.5 no 0.000 0.049 0.321
−125.2 −7.7 no 0.001 0.002 0.002
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because more explicit models of background and source events are used here, as

well as different statistical methods. The starting point of their analysis is the null

hypothesis that the UHECRs have not come from local AGNs; they find that this is

rejected ‘at the 99% level’ given the number of the UHECRs that are within 3◦ of a

VCV AGN. The strength of the correlation makes it clear that there is at least some

connection between the two populations. But it is impossible to go beyond this lim-

ited statement due to the use of arbitrary cuts in their correlation analysis (both in

angular radius and AGN redshift); the equal weighting of the nearest known AGN,

Centaurus A, with the hundreds of AGNs at distances of about 100 Mpc, and the

equal value placed on any angular match out to 3◦, dilutes whatever correlation sig-

nal is present. The simulations of AGN-only and background-only UHECR samples

shown here demonstrate that even a sample of just 27 events is in fact sufficient to

decisively distinguish between these two extreme possibilities, but that the apparent

strong correlation inferred by Abraham et al. 2007b is in part due to the analysis

method.

During the final preparation of the paper on this work (Watson et al. 2011), the

Pierre Auger Collaboration presented an extended analysis of an enlarged set of 69

UHECRs (Abreu et al. 2010). Aside from the correlation-based methods they had

used previously, they also included a likelihood-based formalism that has some sim-

ilarities to the method presented in this chapter. The results of the two likelihood

approaches are broadly similar (and differ from the earlier correlation-based analy-

ses), primarily because they both include a physical model of UHECR propagation.

They hence go closer to the ideal of including all the available information (i.e. not

just the data, but knowledge of the CR physics) and so produce more robust results.

There are several extensions to the analysis of even the 27 PAO UHECRs that might

allow stronger conclusions regarding the origins of these particles. Most importantly,

the energy of individual CRs can be accounted for in the likelihood, rather than just

demanding they are above the Emin−arr = 5.7× 1019 eV cut. This will make it more

important to use a more realistic, stochastic calculation of the GZK effect, as well

as the energy dependent deflection due to magnetic fields. It will similarly be more

important to investigate the possibility that the AGN UHECR emission rate scales

with AGN luminosity; a corollary is that it may be possible to discriminate between

different AGN emission models.

The strength of any such inferences will be increased as the PAO continues to

take data, increasing the number of detected UHECRs. However, it is also possi-

ble that even the current data-set could be used more efficiently by including lower
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energy events. This would obviously increase the numbers, although there is the

potentially severe penalty of diluting the angular signal by including UHECRs that

have either been deflected by more than about 10◦ or have come from the many

AGNs at distances greater than about 100 Mpc. These trade-offs can be evalu-

ated objectively (to the degree that the CR propagation and deflection models are

accurate), following the underlying principle of extracting as much information as

possible from the UHECR measurements.

Another way to potentially make better use of the existing PAO UHECRs would

be to use a more homogeneous AGN sample than the VCV catalogue. One such

example is the catalogue of AGNs from the Swift Burst Alert Telescope (BAT)

survey, which has nearly uniform selection criteria outside the Galactic plane. Both

George et al. 2008 and the latest PAO analysis from Abreu et al. 2010 compare

UHECR data to this catalogue. In particular, George et al. 2008 approach the

analysis in a fashion similar to that of Abraham et al. 2007b and found correlation

at the ‘98% level’. It would be valuable to apply the Bayesian method discussed

here to this data-set.

There are still many problems facing the determination of the origin of UHECR

events, but the Bayesian approach offers clear advantages in tackling these issues

over other statistical methodologies. The fully Bayesian analysis demonstrated in

this work provides encouraging results and presents a strong case for developing the

method further.
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Chapter 8

CMB Probability Density

Functions

We want to find the probability of a specific cosmology, Ω, and topology, Ξ, given a

set of CMB data, d, i.e.

Pr(Ω,Ξ|d) = Pr(d|Ω,Ξ)Pr(Ω,Ξ)∫
d(Ω,Ξ)Pr(d|Ω,Ξ)Pr(Ω,Ξ) . (8.1)

This can be recast in terms of the correlation matrix, which depends on cosmology

and topology C�m�′m′ = C�m�′m′(Ω,Ξ) = CΩ,Ξ
�m�′m′ , although care must be taken to

check for degeneracy, where a correlation matrix corresponds to more than one set

of cosmological and topological parameters. First, a note on notation: depending

on the context, C�m�′m′ (or, in pixel space, Cpp′) can be read as the entire matrix

or as an individual element of the matrix with specific �m�′m′ (or pp′). To avoid

ambiguity, C�m�′m′ (Cpp′) will denote only a matrix element and C the entire matrix

for the rest of this thesis. In terms of the correlation matrix, Eq. (8.1) becomes

Pr(CΩ,Ξ|d) = Pr(d|CΩ,Ξ)Pr(Ω,Ξ)∫
dCΩ,Ξ Pr(d|CΩ,Ξ)Pr(Ω,Ξ)

CMB posterior. (8.2)

The main term of interest is the likelihood,

Pr(d|CΩ,Ξ) CMB likelihood. (8.3)

This is because the eventual goal is to perform Bayesian model comparison and so

any terms that are the same for different (Ω,Ξ) are of little interest. This is the

case for the prior, Pr(Ω,Ξ), if we take it to be uniform in Ω and Ξ. A uniform
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prior in Ξ is appropriate given our lack of knowledge of topology; see Section 6.1.1).

Regardless of the choice of prior, the evidence (the denominator in Eq. (8.2)) is the

the same for all (Ω,Ξ). Hence, in this case, the only term in Eq. (8.2) which varies

with (Ω,Ξ) is the likelihood.

The specific form of the CMB likelihood is detailed in Section 8.1. Section 8.2

describes methods for sampling from the likelihood.

8.1 The CMB Likelihood

The usual choice of CMB likelihood is a multivariate Gaussian (see, e.g., Jaffe et al.

1999). In matrix form, the general expression of a multivariate Gaussian probability

distribution is

Pr(d|µ,D) = G(d− µ,D) =
1

|2πD|1/2 exp
[
−1
2
(d− µ)†D−1(d− µ)

]
(8.4)

where d is a vector of variables di, µ is a vector containing the mean values μi of the

variables di, and D is a covariance matrix containing the correlations Dij of variables

di and dj. Recast directly in terms of the variables di, and the corresponding μi and

Dij, Eq. (8.4) becomes

Pr({di}|{μi}, {Dij})

=
1(

2π

n∑
i1,...,in=1

(
εi1...in

n∏
k=1

Dk ik

))1/2
exp

[
−1
2

∑
i,j

(di − μi)D
−1
ij (dj − μj)

]

(8.5)

where εi1...in is the Levi-Civita, or permutation, symbol and i labels �m or p (j labels

�′m′ or p′) according to whether we are working in harmonic or pixel space.

8.2 Sampling Methods

The CMB likelihood and, hence, posterior cannot generally be found analytically

and finding them numerically (i.e. sampling values of the likelihood at various

points in the parameter space) is computationally expensive. So it is worth careful

consideration of which sampling methods to use. If uniformly interested in the dis-
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tribution over the entire parameter space, one can sample the likelihood or posterior

over some uniform grid (Section 8.2.1). If, however, one is interested in only the

maximum likelihood or posterior, a random walk algorithm such as Markov Chain

Monte Carlo (MCMC; Section 8.2.2) sampling may be more efficient. Gridding is

the simpler, more accurate route, but MCMC sampling is (if done correctly) less

expensive.

8.2.1 Gridding

Gridding involves sampling directly from the likelihood at intervals in the parameter

space. The explicit form of the likelihood is given here, building from a simplistic,

pure CMB signal, case to a more realistic situation that accounts for noise and

masking of foregrounds.

Pure signal: Let us first consider the (unrealistic) case where the measured data

d are pure CMB signal s. The covariance matrix for d, D, is simply equal to that

for s, CΩ,Ξ. Also, since we are dealing with temperature anisotropies, not absolute

temperature, the mean, µ, is zero. Hence the Gaussian distribution of Eq. (8.4)

directly provides us with the CMB likelihood Eq. (8.6):

Pr(d|D) = Pr(d|CΩ,Ξ) = G(d,CΩ,Ξ). (8.6)

Pure signal plus noise: The introduction of noise complicates matters. The noise

n is assumed to be Gaussian with some mean n and covariance matrix N. We now

have data d = s+n, with covariance matrix D = CΩ,Ξ+N. Now, Eq. (8.4) becomes

Pr(d|D) = Pr(d|n,CΩ,Ξ,N) = G(d− n,CΩ,Ξ +N). (8.7)

This is not the CMB likelihood. To get the likelihood, we must marginalise over the

noise, i.e.

Pr(d|CΩ,Ξ) =

∫
dn dN Pr(d|n,CΩ,Ξ,N)Pr(n,N). (8.8)

However, if the mean and covariance matrix of the noise are known, we can assign a

delta function to the joint prior Pr(n,N). Then, upon integrating Eq. (8.8), we get

Pr(d|CΩ,Ξ) = Pr(d|CΩ,Ξ,n,N) = G(d− n,CΩ,Ξ +N). (8.9)

where n and N are now fixed and part of the background information I.
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Signal plus noise with masks (or cut sky): If we are not using a map “cleaned”

of foregrounds, we must remove the parts that are contaminated using a mask (see

Section 5.4.2). Pixels cut from the data using a mask should also be cut from the

covariance and noise matrices. Once the cuts have been made, the likelihood can be

obtained through Eq. (8.9).

8.2.2 MCMC Sampling

Markov Chain Monte Carlo (MCMC) sampling is often adopted in order to find the

maximum likelihood of a likelihood distribution. The difference between MCMC

and a general Monte Carlo method is:

• Monte Carlo method: very broad term used to describe algorithms which

sample numerical results from a distribution at random, most commonly using

a random walk approach.

• Markov Chain Monte Carlo (MCMC) method: a Monte Carlo method that is

designed to converge on stationary points in the distribution of interest. See

Section 8.2.2.1.

An MCMC approach often adopted for CMB analyses is Gibbs sampling (e.g. Wan-

delt et al. 2004, Eriksen et al. 2004 for temperature; Larson et al. 2007 for polari-

sation). However, there is a low signal-to-noise inefficiency problem with the Gibbs

sampler at high �. This is addressed by Jewell et al. 2009, who build upon pre-

vious Gibbs sampling methods by combining with a Metropolis-Hastings sampling

approach. A further extension (Rudjord et al. 2009) uses a modified Blackwell-RAO

(BR) estimator to improve the characterisation of the joint posteriors used in Gibbs

sampling. In summary, the different sampling methods and estimators involved are:

• Gibbs method: an MCMC method for multi-variate probability distributions

which samples from a joint probability distribution of two or more variables

when sampling from the full distribution is difficult. See Section 8.2.2.2.

• Metropolis-Hastings method: an MCMC method for multi-variate probabil-

ity distributions for which the form of neither the full nor joint probability

distributions are well known.

• Blackwell-RAO estimator (BR): is an observable quantity that is used to es-

timate an unobservable quantity (e.g. the probability of a bus arriving in a

given period of time is not observable, but the number arriving in that time is),
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where the estimation of the unobservable can be improved by taking its expec-

tation value given a sufficient statistic of the observable (e.g. we can measure

the number of buses arriving during many time intervals (observable) to find

a mean rate of arrival (statistic) that can be used to estimate the probability

of a bus arriving (unobservable)).

8.2.2.1 Simple MCMC Sampling

A simple MCMC code follows the following steps:

(i) Choose seed(s), or initial value(s), for the parameter(s) for which you wish to

find the maximum likelihood.

(ii) Take a random step away from the current parameter value(s) to find candidate

value(s):

• This step is typically drawn from a gaussian distribution of appropriate

standard deviation. (However, the choice of distribution to draw from

can be influenced by knowledge of the distribution of the parameter(s)

that the MCMC is exploring.)

• Add the random step(s) to the current parameter values(s) to yield can-

didate values(s).

(iii) Test for which value(s) you wish to keep, the current or the candidate. Accept

the candidate if:

• The likelihood of the candidate is greater than that of the current value(s).

• The candidate likelihood is smaller than that of the current but greater

than the current value multiplied by a random number drawn from a

uniform distribution between 0 and 1. (This step can help reduce the

risk of the code getting “stuck” in a local maximum.)

If the candidate is rejected, keep the current value(s). If it is accepted, the

candidate becomes the current values(s)

(iv) Repeat steps (ii) and (iii) until the routine has converged on a value for the

maximum likelihood.

The following can affect the values obtained for the maximum likelihood:

• The seed(s): a seed which lies near a local maximum, which is not the global

maximum, can result in convergence to the local instead of global maximum.
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• The standard deviation of the gaussian distribution from which the param-

eter steps are drawn: this affects the step size between iterations - too big and

it may miss the maximum, too small and the risk of getting stuck at a local

maximum is increased.

• The number of iterations: if this is set too low, the routine may not converge

on a maximum. However, setting it too high is needlessly computationally

expensive.

In the case of the CMB likelihood, we may want to explore the likelihood as a

function of the orientation of the topology, i.e. Euler angles α, β and γ. The

MCMC process here would be:

(i) Choose seed values for α, β and γ, e.g.:

• α = αseed

• β = βseed

• γ = γseed

(ii) Draw a random step from a guassian distribution of given standard deviation

for each parameter and add to the respective parameter to obtain a candidate

value:

• αcandidate = α+ rα

• βcandidate = β + rβ

• γcandidate = γ + rγ

Note that rα, rβ and rγ must be re-drawn every time this step is performed.

(iii) If Pr(d|CΩ,Ξ(αcandidate(),βcandidate,γcandidate)) ≥ Pr(d|CΩ,Ξ(α,β,γ)):

• α→ αcandidate

• β → βcandidate

• γ → γcandidate

Else, if Pr(d|CΩ,Ξ(αcandidate(),βcandidate,γcandidate)) ≥ r × Pr(d|CΩ,Ξ(α,β,γ)):

• α→ αcandidate

• β → βcandidate

• γ → γcandidate
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Else α, β and γ remain unchanged.

Note that r is a random number drawn from a uniform distribution between

0 and 1 which must be re-drawn every time this step is performed.

(iv) Repeat steps (ii) and (iii) for n iterations, or until the routine has converged

on a value for the maximum likelihood.

This process should be repeated for a selection of different seeds.

If the maximum likelihood is found, the values of α, β and γ that correspond

to it yield the correlation matrix CΩ,Ξ(α,β,γ) for which the data d is most likely.

Note that, in this example, we have varied only the orientation of the topology:

the cosmology, topology type and dimensions of the fundamental domain have been

fixed.

8.2.2.2 Gibbs Sampling

Gibbs sampling works with the joint posterior Pr(CΩ,Ξ, s|d), instead of Pr(CΩ,Ξ|d).
This may not appear any easier to deal with. But the premise of Gibbs sampling

is that one can sample from this joint distribution by alternately sampling from

the conditional distributions Pr(s|CΩ,Ξ,d) and Pr(CΩ,Ξ|s,d), i.e. start with some

estimate of the correlation matrix, C(Ω,Ξ) 0, then iterate as follows:

si+1 ← Pr(s|CΩ,Ξ i,d) (8.10)

CΩ,Ξ i+1 ← Pr(CΩ,Ξ|si+1,d) ∝ Pr(CΩ,Ξ|si+1). (8.11)

where, in Eq. (8.11), Pr(CΩ,Ξ|s,d) = Pr(CΩ,Ξ|s)Pr(s|d), but we are not interested

in Pr(s|d) since it is independent of the model. The form of the conditional density

in Eq. (8.10) is a special case of the Wiener filter posterior density where the signal

covariance S is taken to be CΩ,Ξ:

Pr(s|CΩ,Ξ,d) ∝ G(CΩ,Ξ(CΩ,Ξ +N)−1d, ((CΩ,Ξ)−1 +N−1)−1). (8.12)

The conditional density of Eq. (8.11) is proportional to a multivariate Gaussian:

Pr(CΩ,Ξ|s) ∝ Pr(s|CΩ,Ξ)Pr(CΩ,Ξ) = Pr(CΩ,Ξ)G(s,CΩ,Ξ). (8.13)

Note that Pr(CΩ,Ξ|s) in Eq. (8.13) is usually taken to be an inverse gamma distribu-

tion (Wandelt et al. 2004). However, this is when working with the power spectrum
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(C�), for which there is a C�m�′m′ sample of size 2� + 1. The gamma distribution

involves averaging over the sample and so is not appropriate when the sample size

is only one, as is the case when working with the correlation matrix.

8.2.3 Choice of Sampling Method

As seen in Section 8.2.2.2, Gibbs methods are not ideal for full correlation matrix.

In this thesis, a combination of gridding and simple MCMC is adopted. The CMB

likelihood tends to have a narrow peak, which means care must be taken with MCMC

methods not to miss it.

130



131

Part IV

Constraining Topology with the

Polarised CMB
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Chapter 9

Prescription

Tools for constraining cosmic topology using a Bayesian approach were discussed

in Ch. 6 and Ch. 8; the best constraints should be achieved by utilising the com-

plete correlation matrix of the CMB. Surprisingly few attempts have been made to

do this due to the process being computationally expensive. Many analyses have

been performed using the CMB power spectrum (a reduced form of the correlation

matrix), but this ignores valuable information. Analyses such as Niarchou (2006)

have made use of the full correlation matrix, but very few have made use of the

information contained in the polarisation data of the CMB (an example where this

has been done is Aslanyan et al. (2013), but with the focus on constraining the size

of the Universe for each topology, rather than constraining topology itself). This is

because, up until recently, the best measurements of CMB polarisation have been

obtained by WMAP, and these are rather noisy. The most recent CMB space obser-

vatory, Planck, promises much improved measurements. While these data are yet

to be released, it makes the case for utilising CMB polarisation even stronger, as

any methods that are developed for WMAP data could quickly be applied to Planck

data upon release.

In this thesis, a method is adopted that harnesses the full CMB correlation

matrix for both temperature and polarisation. This is described in Section 9.3 and

applied in Ch. 10. Four flat spaces are investigated, the flat torus (E1), half turn

space (E2), Klein space (E7) and Klein space with vertical flip (E9), the reasons

for which are given in Section 2.3. The full range of cases explored here are listed

in Section 9.2. Note that the noise in WMAP’s polarisation measurements renders

only E modes useable in our investigation, but the method described can also be

applied to B modes. In fact, there are many extensions that could be made to this

work; in the following sections, where methods and/or data used in this thesis are

described, details of prudent extensions are also given.
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9.1 Data Used in this Thesis

The data used here is the latest, nine year, WMAP data, which has been foreground

reduced by the WMAP collaboration (Bennett et al. 2012) and is publicly available

on NASA’s CMB data website, LAMBDA (lambda.gsfc.nasa.gov). Since the maxi-

mum � that we are using is 30, the maximum resolution will be an angular area of

very roughly (180/�)2 ∼ 36 square degrees. The sky can be broken into 1,800 such

regions of equal angular area (note that this translates into areas of differing physi-

cal size depending on how close to the pole/z-axis you are). The WMAP data used

has a HEALPix resolution of 4 (Gorski et al. 1999), which is equivalent to dividing

the sky into 3,072 equal physical-area pixels and is appropriate for the maximum �

used.

The data is provided in the form of Stokes’ parameters I, Q and U , along

with the effective number of observations Nobs, for each pixel. The signal data are

easily converted into harmonic space T , E and B values (the respective a�ms) using

HEALPix. An inverse covariance matrix for noise (N−1) is also provided. This

is not convenient for our purposes, as we want N , and inverting matrices is very

computationally expensive. We can (crudely) assume the noise to be negligible for T

and E. However, the WMAP noise for B is too high to make it worth investigating

here.

Finally, WMAP has five frequency bands. We will initially focus on the W band

as it appears to have the strongest signal.

EXTENSIONS (FUTURE WORK)

Ext. 1.1 Use data from all WMAP frequency bands.

Ext. 1.2 Estimate the WMAP noise covariance matrix.

Ext. 1.3 Use Planck T and E data.

Ext. 1.4 Use Planck B data.

9.2 Cases Investigated in this Thesis

The cases investigated in this thesis are discussed below and summarised in

Table 9.1.

Topologies: the topologies investigated in this thesis are E1, E2, E7 and E9 (see

Section 2.3), the flat torus, half turn space, Klein space and Klein space with vertical

flip respectively.
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EXTENSIONS (FUTURE WORK)

Ext. 2.1 Explore all flat spaces.

Ext. 2.2 Explore spherical and hyperbolic spaces.

Cosmologies: for each topology, the Hubble parameter is varied between 0.685

and 0.701, in increments of 0.002. These values represent the constraints obtained

from the nine year WMAP observations (Hinshaw et al. 2012). Ideally, a smaller

increment, say 0.001 or less, would be used, but the value of 0.002 was chosen due

to time constraints of the investigation.

Other cosmological parameters are fixed to the default values set by CAMB.

The size of the Universe comes under geometry, and is technically another cosmo-

logical parameter. However, it is usually assumed to be infinite. So size is discussed

separately below.

EXTENSIONS (FUTURE WORK)

Ext. 2.3 Test values of h at smaller intervals.

Ext. 2.4 Vary other cosmological parameters.

Sizes: for each topology and cosmology, the size of the fundamental domain is

varied between 21 Gpc and 35 Gpc, in increments of 2 Gpc. This is because it has

been shown that a lower limit on the size of the Universe is around 25 Gpc; Key

et al. (2007) reported a value of 24 Gpc, and Planck Collaboration et al. (2013d) a

value of 26.4 Gpc, but the value can vary with topology. So we pitch our lower limit

a little under these estimates at 21 Gpc. The upper limit on the size detectable

depends on the method used; circles in the sky cannot detect a topology bigger than

the observable universe, but it may be possible for a Bayesian analysis of the CMB

correlation matrix to detect a little beyond the size of the observable universe (Kunz

et al. 2006). So we explore a little beyond the distance to the LSS. The distance

to the last scattering surface is thought to be about 14 Gpc, giving a diameter of

LLSS ∼ 28 Gpc. So the range of sizes investigated approximately corresponds to the

range 0.75 to 1.25 LLSS. Again, it would be preferable to use a smaller increment

but the value used was chosen due to time constraints. Finally, any signatures of

topology in the CMB will be stronger for smaller L; to aid understanding of the

effects of the different topologies on the CMB, for h = 0.6953, we also investigate L

from 10 to 18 Gpc (in increments of 2 Gpc).

Note that topologies with equal dimensions, Lx = Ly = Lz = L are explored
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Topologies E1, E2, E7, E9

h 0.685, 0.687, 0.689, 0.691, 0.693, 0.695, 0.697, 0.699, 0.701
L (Gpc) 21, 23, 25, 27, 29, 31, 32, 35

(10, 12, 14, 16, 18) for h = 0.693 only
αmax For E1 and E2: π/2

For E7 and E9: π
βmax For E1: π/2

For E2, E7 and E9: π
γmax 2π

Table 9.1: Values of parameters used in this thesis. Unless stated otherwise, all
combinations of parameters are investigated.

here, but a natural extension would be to vary the proportions of the dimensions of

the fundamental domain.

EXTENSIONS (FUTURE WORK)

Ext. 2.5 Test a broader range of values of L, and take values at smaller intervals.

Ext. 2.6 Try values of Lx, Ly, Lz which are not all equal to one another.

Orientations: for each topology, there is a different, infinite, set of unique orienta-

tions. The MCMC likelihood code is designed to determine the optimum orientation.

The range of unique orientations depends on the symmetries of the topology. The

orientations can be characterised by an Euler rotation α-β-γ, where α is an angle

of rotation about the z-axis, β is about the original (unrotated) y-axis, and γ is

about the original (unrotated) z-axis; the rotation order is α-β-γ. The ranges of

these angles are given by the values of αmax, βmax and γmax in Table 9.1 (we take

the minimum values to be zero).

9.3 Method for Constraining Topology using Po-

larisation

In this section, we bring together the tools and parameters found in previous chap-

ters to form a complete method for constraining topology using both temperature

and polarisation measurements of the CMB. This is depicted as a flow diagram in

Fig. (9.1).

The prescription for constraining topology used in this thesis consists of the
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Figure 9.1: Flow diagram of method for constraining topology using the po-
larised CMB. The black boxes show code written as part of the work in this
thesis. The Fourier mode and CMB covariance codes have been debugged but the
likelihood and MCMC codes have not. Grey boxes depict freely available code
from other sources. CAMB was modified to enable the Fourier modes to be read
from file and the corresponding transfer functions to be written to file. A short
routine was written in HEALPix to process the CMB data. Parameters, variables
and data are shown in red, with the red arrows showing their progression through
the code.

136



9.3. METHOD FOR CONSTRAINING TOPOLOGY USING POLARISATION137

following steps:

1. Generate allowed Fourier modes: the first task is to calculate the Fourier

modes, k, which satisfy:

k = 2πn = 2π

(
nx

Lx
,
ny

Ly
,
nz

Lz

)
(9.1)

where Li are the lengths of the sides of the fundamental domain.

Setting all Li equal to L is the simplest place to start exploring these dimensions,

and allows us to set all ni,max equal to nmax. The allowed values of ni determine how

straight-forward this step is. For spaces E1, E2, E7 and E9, ni are always integers,

and the effect of group generators, if anything, is only to change the sign of ni.

Note that, for the purposes of the next stage, which uses the publicly available code

CAMB, only the magnitude k is required, which should be expressed in units of the

Hubble parameter, h.

EXTENSIONS (FUTURE WORK)

Ext. 3.1 In order to investigate other topologies, non-integer ni must be considered

and/or ni that experience more complicated transformations under the group gen-

erators.

Ext. 3.2 In order to try values of Lx, Ly, Lz which are not all equal to one another,

ni,max should be varied accordingly.

2. Generate radiative transfer functions: this is done through CAMB, which

had to be modified to print out the transfer functions for a user-defined set of k

values. The cosmological parameters are fixed to default values, with the exception

of h, for which a range of values is explored (see Section 9.2). Transfer functions are

calculated for all values of � between 2 and 50.

3. Calculate correlation matrix: the major code written as part of the work

of this thesis is that which calculates the full CMB temperature and polarisation

correlation matrix for a given topology and cosmology. The algorithm is similar to

that used by Phillips & Kogut (2006), which follows the following equation:

CXY,L
�m,�′m′ = (4π)2

∑
n

ΔX∗
� (kn)Δ

Y
�′ (kn)

P(k)
k3

AL
�m,�′m′(n) (9.2)

where
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AL
�m,�′m′(n) =

∑
{|n|=n}

ξn∗k�mξ
n
k�′m′ . (9.3)

These equations are described in more detail in Section 5.2.

EXTENSIONS (FUTURE WORK)

Ext. 3.3 Accommodate the different types of ni required by Ext. 3.1 and Ext. 3.2 .

Ext. 3.4 Calculate TB, EB and BB matrices at the same time as the TT , TE and

EE matrices that are currently calculated.

4. Convert CMB data into appropriate form: this is done using publicly

available software HEALPix, Gorski et al. (1999). The form that the data must

take for use in the likelihood code is spherical harmonic multipole moments a�m for

T , E and B. See Section 9.1 for more detail about the data used in this thesis. The

orientation of the data can also easily be changed using HEALPix.

5. Calculate likelihood: this is another code written for the work in this thesis.

The most challenging part of the writing this code was solving y for yC = d, where

C is the covariance matrix and d is the data. The code was tested using simple

values of C and d to confirm that it did in fact solve for y correctly. Large deter-

minants can take a long time to calculate, so the denominator of the likelihood is

set to one. This should not affect the shape of the likelihood for the Euler angles,

but will make it harder to compare other parameters, such as h. This likelihood

function is implemented in a simple MCMC code that follows the prescription given

in Ch. 8 in order to try to identify the maximum likelihood.

EXTENSIONS (FUTURE WORK)

Ext. 3.5 Perform more extensive MCMC investigations, trying more seeds and it-

erations. An appropriate convergence test would be helpful.

Ext. 3.6 Try using high resolution gridding (computationally expensive).

Ext. 3.7 Once a more detailed likelihood distribution is found, normalise the like-

lihood so that constraints can be attempted on L and h.

Ext. 3.8 Try using publicly available code MultiNest (Feroz et al. 2009) to deter-

mine likelihood - this code can calculate the evidence, which is needed for a proper

comparison of different topologies.

6. Analysis: in order to aid the interpretation of the results, simulated data
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is produced. This data is simple to generate using the lower triangle correlation

matrix, ACMB = A�m�′m′ :

• Generate a vector of random numbers, r, drawn from a standard normal dis-

tribution.

• Convert r into a vector of appropriately correlated numbers, or simulated CMB

signal data, ssim via the Cholesky decomposition; ssim = ACMBr.

EXTENSIONS (FUTURE WORK)

Ext. 3.9 Run simulated data through the likelihood code to provide a guide as to

what the likelihood distribution may look like.

Ext. 3.10 Produce detailed likelihoods plots, including marginalisations of param-

eters and confidence levels for values of parameters.

9.4 Covariance Matrix Code

This section mainly focuses on the performance of the code for calculating the CMB

covariance matrices; for the code itself, see appendix Ch. A.

9.4.1 Hardware and Software Specifications

The machine used for calculating the covariance matrix is an entry level server with

Intel Xeon series E3 quad core processors, a high capacity HDD drive and a 256 GB

SSD, along with 24 GB of RAM. We chose not to access high powered computing

facilities as a local machine grants the user more flexibility and autonomy. The

operating system is Linux Debian and the compiler is the GNU C++ compiler.

These selections were made because they are freely available and may encourage

others to use and expand the code.

9.4.2 Calculations, Storage and Time

Phillips & Kogut (2006) find and store the topoterms from Eq. (9.3) before calculat-

ing the correlation matrix, Eq. (9.2). They argue that this provides a computational

advantage as the topoterms are independent of cosmology and L and therefore only

need finding once for a particular topology (and ratio Lx:Ly:Lz).

In our work, preliminary tests revealed that an element of the correlation ma-

trix converges to at least four significant figures for nmax = 100; for integer-valued
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nx, ny and nz, this corresponds to 4.2× 106 allowed combinations of nx, ny and nz.

It has also been suggested that �max = 30 is sufficient for detecting the signature

of a topology in the CMB via a statistical analysis of the CMB correlation matrix,

although an �max of 40 or 50 may be preferable (see. e.g., Kunz et al. 2006); starting

from � = 2, this yields 957 �-m combinations. Therefore, if each topoterm is a com-

plex double, 16 bytes, then the storage required for the topoterms of one topology

(and ratio Lx:Ly:Lz), is 114 GB. (Note that, if a higher �max of, say, 50 is required

for some topologies, this becomes 791 GB).

For the simple case of the flat torus, calculating the correlation matrix involves

summing over all combinations of nx-ny-nz, �-m and �′-m′, each time taking the

product of two spherical harmonics. That means calculating 4.2× 106 × 2× 957 ×
957/2 = 1.9 × 1014 spherical harmonics (division by two accounts for the fact that

only combinations where m+m′ is even is allowed). On our machine, each spherical

harmonic calculation takes 440 ns (actually 1.76 μs, but four calculations can be

done at the same time). Hence, the total time to calculate the spherical harmonics

would be 1.7× 106 s, or 20 days. If we were to store all these harmonics as complex

doubles, each taking up 16 bytes, the total required storage would be 57,000 GB.

This demonstrates the point that care must be taken not to unnecessarily re-

peat calculations. If we store the spherical harmonics, the number of calculations

required can be dramatically reduced. There are three reasons for this: harmonics

calculated for �-m can be re-used for �′-m′; due to symmetry between m and −m,

only harmonics with m ≥ 0 need be stored; only the ratios nx:ny:nz are needed

to calculate the harmonics, and many combinations nx-ny-nz share the same ratio.

This reduces the calculation time to just 12 minutes per correlation matrix, and

requires 25 GB for storage of the spherical harmonics. (For �max = 50, the reduction

would be 5 months and 420,000 GB to 33 minutes and 67 GB).

So far, we have worked out the time to calculate the spherical harmonics, but have

not taken into account the time it takes to read the stored values. On a HDD with a

typical data access rate of 100 MB.s−1, the access time would be 50 hours. However,

if we could store all the harmonics in RAM, with an access rate of 12800 MB.s−1, the

access time would be reduced to 35 minutes. (In fact, this could be reduced further

to 18 minutes if we use a motherboard with dual channel capability, which are now

commonly available). Our machine has 24 GB RAM, which is not enough to store

25 GB of spherical harmonics. Instead, the harmonics are permanently stored on

an SSD and read into RAM in batches (see appendix Ch. A for more detail on how

this is done), which has an insignificant effect on the total access time. The code is
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designed to check the RAM available before deciding what size batches to use; this

means that, if the RAM was increased to 32 GB (usually the maximum motherboard

capacity), all the spherical harmonic data could be in RAM simultaneously.

The total time for the calculation of a single correlation matrix is now dominated

by looping over the necessary parameters to find the allowed values of nx-ny-nz

and perform the sums in Eq. (9.2) and Eq. (9.3). The time taken varies slightly

according to the complexity of the ξs associated with each topology (Ch. 2), but for

all topologies explored here (E1, E2, E7 and E9) is well within a day (or two days,

for ).

Finally, the values of h and L explored in this thesis are fairly restricted, but the

number of combinations is still 77. With three different types of covariance matrix

to calculate (TT , TE and EE), the total number of covariance matrices calculated

for each topology is 231. The most efficient way to find all these matrices is to

do so simultaneously, so that the topoterms need only be calculated once. A small

chunk of each matrix is kept in RAM at any one time, and written to the HDD once

completed, freeing up the RAM for the next chunk. This is quite efficient, and all

231 correlation matrices for a particular topology are calculated within a day (or

two days, for �max = 50). Each correlation matrix file is quite small: 14 MB for

�max = 30; 103 MB for �max = 50.

The advantage of this approach over the one used by Phillips & Kogut (2006) is that

little permanent storage is needed. The spherical harmonics can be stored (at 25 GB

for �max = 30, or 67 GB �max = 50) but only take about 30 minutes to pre-calculate.

In contrast, Phillips & Kogut (2006) require 114 GB, or 791 GB, permanent storage.

On a standard HDD, these would take 20 minutes, or 2.5 hours, to read. The lack

of storage required by the method presented in this thesis makes it more portable -

it can be quickly and easily shared.

9.4.3 Testing

Values generated by the code were tested at several stages. This involved comparing

the output with values calculated in Mathematica (this is generally very accurate,

but is not a fast as C++, and is not freely available). The same tests were also

checked against outputs from the freely available SciLab. The terms tested were:

• spherical harmonics

• topoterms
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• elements of the covariance matrix

All the tests showed agreement to at least six significant figures. Mathematica and

SciLab were, however, noticeably slower than the C++ code.
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Chapter 10

Results

10.1 Covariance Matrices

This section contains maps of the covariance matrices generated by the code de-

scribed in Ch. 9. A map consists of one row of the covariance matrix in pixel space,

for a particular pixel p. Fig. (10.1) shows the location on the sky of pixels for

which the covariance matrix is plotted. The pixels are numbered according to the

HEALPix nest system, with a HEALPix resolution of 4.

Fig. (10.2) to Fig. (10.13) each displays a set of these maps. Each figure corre-

sponds to a particular topology-h-L combination and displays maps for TT , TE and

EE covariance matrices. The values of (h,L), where L is in Gpc, for which the maps

are given are (0.693,10), (0.693,25) and (0.701,25). The is little difference between

maps which differ in h only. L, however, has a large influence over the appearance

of the maps. Smaller values of L should contain a stronger signature of topology,

and this appears to be the case here.

The flat torus maps are consistent with what one would expect; a region of high

probability where the pixel that the map corresponds to resides, along with circular

regions of higher correlation. The effects of other topologies are harder to visualise,

but half turn space should contain similar features to the flat torus, which is the

case with these maps.
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Pixel locations

(a) p=500 (b) p=1000 (c) p=1500 (d) p=2000 (e) p=2500 (f) p=3000

Figure 10.1: Maps showing the locations of pixels 500, 1000, 1500, 2000, 2500
and 3000.

E1: the flat torus
h = 0.693 : L = 10 Gpc

TT:

(a) p=500 (b) p=1000 (c) p=1500 (d) p=2000 (e) p=2500 (f) p=3000

TE:

(g) p=500 (h) p=1000 (i) p=1500 (j) p=2000 (k) p=2500 (l) p=3000

EE:

(m) p=500 (n) p=1000 (o) p=1500 (p) p=2000 (q) p=2500 (r) p=3000

Figure 10.2: Maps of the correlation matrices for the flat torus, E1, with h =
0.693 and L = 10 Gpc. Each map represents one row of the correlation matrix
in pixel space. p is the pixel that this row corresponds to. The first row contains
maps for the TT covariance matrix, the second for TE and the third for EE.
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E1: the flat torus
h = 0.693 : L = 25 Gpc

TT:

(a) p=500 (b) p=1000 (c) p=1500 (d) p=2000 (e) p=2500 (f) p=3000

TE:

(g) p=500 (h) p=1000 (i) p=1500 (j) p=2000 (k) p=2500 (l) p=3000

EE:

(m) p=500 (n) p=1000 (o) p=1500 (p) p=2000 (q) p=2500 (r) p=3000

Figure 10.3: Maps of the correlation matrices for the flat torus, E1, with h =
0.693 and L = 25 Gpc. Each map represents one row of the correlation matrix
in pixel space. p is the pixel that this row corresponds to. The first row contains
maps for the TT covariance matrix, the second for TE and the third for EE.
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E1: the flat torus
h = 0.701 : L = 25 Gpc

TT:

(a) p=500 (b) p=1000 (c) p=1500 (d) p=2000 (e) p=2500 (f) p=3000

TE:

(g) p=500 (h) p=1000 (i) p=1500 (j) p=2000 (k) p=2500 (l) p=3000

EE:

(m) p=500 (n) p=1000 (o) p=1500 (p) p=2000 (q) p=2500 (r) p=3000

Figure 10.4: Maps of the correlation matrices for half turn space, E2, with
h = 0.701 and L = 25 Gpc. Each map represents one row of the correlation
matrix in pixel space. p is the pixel that this row corresponds to. The first row
contains maps for the TT covariance matrix, the second for TE and the third for
EE.
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E2: half turn space
h = 0.693 : L = 10 Gpc

TT:

(a) p=500 (b) p=1000 (c) p=1500 (d) p=2000 (e) p=2500 (f) p=3000

TE:

(g) p=500 (h) p=1000 (i) p=1500 (j) p=2000 (k) p=2500 (l) p=3000

EE:

(m) p=500 (n) p=1000 (o) p=1500 (p) p=2000 (q) p=2500 (r) p=3000

Figure 10.5: Maps of the correlation matrices for the flat torus, E1, with h =
0.693 and L = 10 Gpc. Each map represents one row of the correlation matrix
in pixel space. p is the pixel that this row corresponds to. The first row contains
maps for the TT covariance matrix, the second for TE and the third for EE.
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E2: half turn space
h = 0.693 : L = 25 Gpc

TT:

(a) p=500 (b) p=1000 (c) p=1500 (d) p=2000 (e) p=2500 (f) p=3000

TE:

(g) p=500 (h) p=1000 (i) p=1500 (j) p=2000 (k) p=2500 (l) p=3000

EE:

(m) p=500 (n) p=1000 (o) p=1500 (p) p=2000 (q) p=2500 (r) p=3000

Figure 10.6: Maps of the correlation matrices for half turn space, E2, with
h = 0.693 and L = 25 Gpc. Each map represents one row of the correlation
matrix in pixel space. p is the pixel that this row corresponds to. The first row
contains maps for the TT covariance matrix, the second for TE and the third for
EE.
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E2: half turn space
h = 0.701 : L = 25 Gpc

TT:

(a) p=500 (b) p=1000 (c) p=1500 (d) p=2000 (e) p=2500 (f) p=3000

TE:

(g) p=500 (h) p=1000 (i) p=1500 (j) p=2000 (k) p=2500 (l) p=3000

EE:

(m) p=500 (n) p=1000 (o) p=1500 (p) p=2000 (q) p=2500 (r) p=3000

Figure 10.7: Maps of the correlation matrices for half turn space, E2, with
h = 0.701 and L = 25 Gpc. Each map represents one row of the correlation
matrix in pixel space. p is the pixel that this row corresponds to. The first row
contains maps for the TT covariance matrix, the second for TE and the third for
EE.

149



150 CHAPTER 10. RESULTS

E7: klein space
h = 0.693 : L = 10 Gpc

TT:

(a) p=500 (b) p=1000 (c) p=1500 (d) p=2000 (e) p=2500 (f) p=3000

TE:

(g) p=500 (h) p=1000 (i) p=1500 (j) p=2000 (k) p=2500 (l) p=3000

EE:

(m) p=500 (n) p=1000 (o) p=1500 (p) p=2000 (q) p=2500 (r) p=3000

Figure 10.8: Maps of the correlation matrices for klein space, E7, with h = 0.693
and L = 10 Gpc. Each map represents one row of the correlation matrix in pixel
space. p is the pixel that this row corresponds to. The first row contains maps
for the TT covariance matrix, the second for TE and the third for EE.
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E7: klein space
h = 0.693 : L = 25 Gpc

TT:

(a) p=500 (b) p=1000 (c) p=1500 (d) p=2000 (e) p=2500 (f) p=3000

TE:

(g) p=500 (h) p=1000 (i) p=1500 (j) p=2000 (k) p=2500 (l) p=3000

EE:

(m) p=500 (n) p=1000 (o) p=1500 (p) p=2000 (q) p=2500 (r) p=3000

Figure 10.9: Maps of the correlation matrices for klein space, E7, with h = 0.693
and L = 25 Gpc. Each map represents one row of the correlation matrix in pixel
space. p is the pixel that this row corresponds to. The first row contains maps
for the TT covariance matrix, the second for TE and the third for EE.
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E7: klein space
h = 0.701 : L = 25 Gpc

TT:

(a) p=500 (b) p=1000 (c) p=1500 (d) p=2000 (e) p=2500 (f) p=3000

TE:

(g) p=500 (h) p=1000 (i) p=1500 (j) p=2000 (k) p=2500 (l) p=3000

EE:

(m) p=500 (n) p=1000 (o) p=1500 (p) p=2000 (q) p=2500 (r) p=3000

Figure 10.10: Maps of the correlation matrices for klein space, E7, with h =
0.701 and L = 25 Gpc. Each map represents one row of the correlation matrix
in pixel space. p is the pixel that this row corresponds to. The first row contains
maps for the TT covariance matrix, the second for TE and the third for EE.
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E9: klein space with vertical flip
h = 0.693 : L = 10 Gpc

TT:

(a) p=500 (b) p=1000 (c) p=1500 (d) p=2000 (e) p=2500 (f) p=3000

TE:

(g) p=500 (h) p=1000 (i) p=1500 (j) p=2000 (k) p=2500 (l) p=3000

EE:

(m) p=500 (n) p=1000 (o) p=1500 (p) p=2000 (q) p=2500 (r) p=3000

Figure 10.11: Maps of the correlation matrices for klein space with vertical
flip, E9, with h = 0.693 and L = 10 Gpc. Each map represents one row of the
correlation matrix in pixel space. p is the pixel that this row corresponds to. The
first row contains maps for the TT covariance matrix, the second for TE and the
third for EE.
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E9: klein space with vertical flip
h = 0.693 : L = 25 Gpc

TT:

(a) p=500 (b) p=1000 (c) p=1500 (d) p=2000 (e) p=2500 (f) p=3000

TE:

(g) p=500 (h) p=1000 (i) p=1500 (j) p=2000 (k) p=2500 (l) p=3000

EE:

(m) p=500 (n) p=1000 (o) p=1500 (p) p=2000 (q) p=2500 (r) p=3000

Figure 10.12: Maps of the correlation matrices for klein space with vertical
flip, E9, with h = 0.693 and L = 25 Gpc. Each map represents one row of the
correlation matrix in pixel space. p is the pixel that this row corresponds to. The
first row contains maps for the TT covariance matrix, the second for TE and the
third for EE.
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E9: klein space with vertical flip
h = 0.701 : L = 25 Gpc

TT:

(a) p=500 (b) p=1000 (c) p=1500 (d) p=2000 (e) p=2500 (f) p=3000

TE:

(g) p=500 (h) p=1000 (i) p=1500 (j) p=2000 (k) p=2500 (l) p=3000

EE:

(m) p=500 (n) p=1000 (o) p=1500 (p) p=2000 (q) p=2500 (r) p=3000

Figure 10.13: Maps of the correlation matrices for klein space with vertical
flip, E9, with h = 0.701 and L = 25 Gpc. Each map represents one row of the
correlation matrix in pixel space. p is the pixel that this row corresponds to. The
first row contains maps for the TT covariance matrix, the second for TE and the
third for EE.
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10.2 Simulated Data

This section contains simulated maps generated using the covariance matrices via a

Cholesky decomposition (see Ch. 9) for 2 ≥ � ≥ 10. No noise has been added to any

of these maps. Fig. (10.14) to Fig. (10.17) each show a collection of simulations for

one topology; within the figure are maps for TT , TE and EE, as well as (h,L) values

of (0.693,10), (0.693,25) and (0.701,25). Each column of maps was generated using

the same set of random numbers, which is clear from the similarities in the patterns.

Again, there is little difference between maps which differ in h only. L, however,

has a large influence over the appearance of the maps. A 45 degree alignment is

apparent between the Q and U maps, which is to be expected from the definitions

of Stokes’ parameters Q and U .
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E1: the flat torus

h = 0.693 : L = 10 Gpc

I

Q

U

h = 0.0693 : L = 25 Gpc

I

Q

U

h = 0.701 : L = 25 Gpc

I

Q

U

Figure 10.14: Simulated maps for the flat torus, E1, for 2 ≤ � ≤ 10. Six different
simulations are shown for each combination of parameters.
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E2: half turn space

h = 0.693 : L = 10 Gpc

I

Q

U

h = 0.0693 : L = 25 Gpc

I

Q

U

h = 0.701 : L = 25 Gpc

I

Q

U

Figure 10.15: Simulated maps for half turn space, E2, for 2 ≤ � ≤ 10. Six
different simulations are shown for each combination of parameters.
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E7: klein space

h = 0.693 : L = 10 Gpc

I

Q

U

h = 0.0693 : L = 25 Gpc

I

Q

U

h = 0.701 : L = 25 Gpc

I

Q

U

Figure 10.16: Simulated maps for klein space, E7, for 2 ≤ � ≤ 10. Six different
simulations are shown for each combination of parameters.
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E9: klein space with vertical flip

h = 0.693 : L = 10 Gpc

I

Q

U

h = 0.0693 : L = 25 Gpc

I

Q

U

h = 0.701 : L = 25 Gpc

I

Q

U

Figure 10.17: Simulated maps for klein space with vertical flip, E9, for 2 ≤ � ≤
10. Six different simulations are shown for each combination of parameters.
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10.2.1 Temperature Maps

This section breaks some of the simulated temperature maps from the previous

section into individual multipole maps (left columns) and sequetially recombines

them (right columns). This is in order to aid understanding of the contributions of

individual mulipoles to the composite maps.

Similar maps can be found in Section 10.3 for the nine-year WMAP data. It

is interesting to compare the simulated maps with these real data. By eye, it’s

hard to say which simulated maps most resemble the real data. However, this is

not a sensible exercise as we only have one realisation for each topology, and other

realisations could look rather different.
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E1: the flat torus
h = 0.693 : L = 10 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.18: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.2). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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E1: the flat torus
h = 0.693 : L = 25 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.19: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.3). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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E1: the flat torus
h = 0.701 : L = 25 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.20: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.4). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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E2: half turn space
h = 0.693 : L = 10 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.21: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.5). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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E2: half turn space
h = 0.693 : L = 25 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.22: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.6). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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E2: half turn space
h = 0.701 : L = 25 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.23: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.7). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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E7: klein space
h = 0.693 : L = 10 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.24: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.8). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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E7: klein space
h = 0.701 : L = 25 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.25: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.9). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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E7: klein space
h = 0.701 : L = 25 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.26: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.10). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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E9: klein space with vertical flip
h = 0.693 : L = 10 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.27: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.11). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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E9: klein space with vertical flip
h = 0.701 : L = 25 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.28: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.12). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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E9: klein space with vertical flip
h = 0.701 : L = 25 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.29: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.13). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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10.2.2 Polarisation Maps

This section breaks some of the simulated polarisation maps from into individual

multipole maps (left columns) and sequentially recombines them (right columns).

Again, this is in order to aid understanding of the contributions of individual

mulipoles to the composite maps.

Similar maps can be found in Section 10.3 for the nine-year WMAP data for

comparison.
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E1: the flat torus
h = 0.693 : L = 10 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.30: Simulated Q and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.2)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. Q is represented
by columns 1 and 3, U by columns 2 and 4.
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E1: the flat torus
h = 0.693 : L = 25 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.31: Simulated Q and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.3)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. Q is represented
by columns 1 and 3, U by columns 2 and 4.
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E1: the flat torus
h = 0.701 : L = 25 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.32: Simulated Q and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.4)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. Q is represented
by columns 1 and 3, U by columns 2 and 4.
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E2: half turn space
h = 0.693 : L = 10 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.33: Simulated Q and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.5)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. Q is represented
by columns 1 and 3, U by columns 2 and 4.
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E2: half turn space
h = 0.693 : L = 25 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.34: Simulated Q and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.6)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. Q is represented
by columns 1 and 3, U by columns 2 and 4.
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E2: half turn space
h = 0.701 : L = 25 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.35: Simulated Q and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.7)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. Q is represented
by columns 1 and 3, U by columns 2 and 4.
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E7: klein space
h = 0.693 : L = 10 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.36: Simulated Q and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.8)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. Q is represented
by columns 1 and 3, U by columns 2 and 4.
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E7: klein space
h = 0.693 : L = 25 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.37: Simulated Q and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.9)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. Q is represented
by columns 1 and 3, U by columns 2 and 4.
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E7: klein space
h = 0.701 : L = 25 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.38: Simulated Q and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.10)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. Q is represented
by columns 1 and 3, U by columns 2 and 4.
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E9: klein space with vertical flip
h = 0.693 : L = 10 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.39: Simulated Q and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.11)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. Q is represented
by columns 1 and 3, U by columns 2 and 4.
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E9: klein space with vertical flip
h = 0.693 : L = 25 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.40: Simulated Q and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.12)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. Q is represented
by columns 1 and 3, U by columns 2 and 4.
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E9: klein space with vertical flip
h = 0.701 : L = 25 Gpc

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.41: Simulated Q and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.13)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. Q is represented
by columns 1 and 3, U by columns 2 and 4.
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10.3 WMAP Data

This section breaks some of the real-data nine-year WMAP maps into individual

multipole maps (left columns) and sequentially recombines them (right columns).

They provide an interesting comparison to the simulated maps from the previous

sections.

On visual inspection, it’s hard to tell if the simulated data has the same un-

derlying characteristics as the WMAP data. Other realisations of the simulated

data may be a better visual match. In order to make a proper comparison, the

statistics of the maps need to be compared. This is where a thorough Bayesian

analysis would come in; unfortunately, the simple MCMC analysis attemped could

not detect a maximum likelihood.
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WMAP temperature maps

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.42: WMAP 9-year temperature maps. The left column contains maps
for individual multipoles; the right column shows how the combined map changes
as the individual multipole maps are added.
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WMAP polarisation maps

� = 2 � = 2to 3

� = 3 � = 2 to 3

� = 4 � = 2 to 4

� = 5 � = 2 to 5

� = 6 � = 2 to 6

� = 7 � = 2 to 7

� = 8 � = 2 to 8

� = 9 � = 2 to 9

� = 10 � = 2 to 10

Figure 10.43: WMAP 9-year Q and U polarisation maps (for E-mode polarisa-
tion only). The two left columns contain polarisation maps for individual multi-
poles; the right column shows how the combined map changes as the individual
multipole maps are added. Q is represented by columns 1 and 3, U by columns 2
and 4.
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Chapter 11

Discussion

In this thesis, we set out to develop a method for constraining cosmic topology by

utilising as much information as possible from the CMB; this involves making use of

polarisation data, in addition to temperature, and taking the full CMB covariance

matrix, instead of the power spectrum.

In Ch. 2, we produced a consistent catalogue of the properties and mathematical

descriptors of all possible flat topologies. Such explicit lists are difficult to find in

the literature, but it has proven very useful in deciding which topologies to begin

the investigation with, and what steps need to be taken in order to extend the inves-

tigation to other flat spaces. A similar catalogue of spherical and hyperbolic spaces

would surely be invaluable.

In Ch. 7, we were diverted by an investigation into the origins of UHECRs. We

concluded that there is a strong chance that at least some UHECRs are produced

by AGNs. More relevant to the thesis as a whole, we demonstrated how Bayesian

methods can successfully make use of as much valuable information as possible where

data is relatively scarce.

Ch. 9 is where we described our method for constraining cosmic topology using the

polarised CMB. The majority of efforts were spent developing a code for calculating

the full CMB correlation matrix that is efficient, yet non-reliant on high-powered

computing and potentially freely available to anyone who may wish to develop it

further. On an entry-level server with 24 GB RAM, it is capable of generating in

excess of 231 covariance matrices in under a day, and probably significantly more,

for a given topology (for �max = 30). In addition, for the types of calculations in-

volved, it requires relatively little disk space (25 GB) to run.
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By the time work on the correlation matrix code was complete, the Bayesian analy-

sis had been somewhat neglected. The simple likelihood codes adopted still require

debugging and further development. Lower limits on the size of the Universe are

generally accepted to be greater than the size of the LSS, meaning that any signa-

tures of topology in the CMB could be very weak. In addition, the CMB presents

a number of challenges when it comes to extracting the pure signal. Hence, devis-

ing a successful analysis that truly makes the most of all available information is

a large undertaking; an intuitive, powerful, community-maintained code for finding

the covariance matrices would enable a greater proportion of efforts to go into these

statistical analyses. The covariance matrix code presented in this thesis has many

features that are ideal for a community-maintained code. It is fast, requires little

permanent storage, requires moderate computing power (which could be in the form

of a high-end desktop machine) and uses a freely available compiler (GNU c++).

The next step in developing this program for computing the topology-dependent

CMB covariance matrix is to make it as accessible as possible. This is to be done

through improved commenting and variable names within the code itself, the cre-

ation of instructive documentation on its use, and making it publicly available online

(through GNU licensing or similar). Also to be built in, are the flexibility to set

more of the parameters from outside the code and enhancements to the base class

to enable easier addition of more complex topologies. With these improvements

in flexiblity and accessibility, this code has the potential to be a valuable aid in

achieving the the ultimate goal of a thorough and exhaustive exploration of what

the CMB can tell us about cosmic topology.
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Epilogue

There have been many attempts to investigate cosmic topology, but each assesses a

limited selection of topologies over different ranges of cosmological parameters and

sizes of the fundamental domain, as well as each employing their own method of

analysis. More consistency is needed in order to meaningfully compare results and

gain more insight into what the cosmic topology might be. It may be possible to

eliminate many candidate topologies, but of the many that remain, we have to deal

with relative probabilities. The probabilities are not absolute, but depend on the

method of analysis. This makes comparing results from different methods difficult.

In addition, in order to utilise as much information as possible from the CMB,

the full correlation matrix must be calculated. This must to be done for each

topology, cosmology and size of fundamental domain to be investigated; calculating

just one of these can be computationally expensive. Hence, a large amount of time is

invested in creating correlation matrices. Since cosmic topology will be challenging

to constrain no matter how precise observations are, more time needs to be spent

on developing and fine-tuning methods of analysis.

The number of potential cosmic topolgies is vast and the effort that goes into

investigating just one of them is far from trivial. I believe that, in order to make

significant progress in the near future, a more collaborative approach needs to be

taken. This could involve:

• building a communal catalogue of the coefficients ξk̂k�m (the coefficients of the

eigenfunctions of the universal covering space of a topology) which encapsulate

the properties of a topology. There are many more candidate topologies for

which these have not been determined than those for which they have.

• making codes for calculating the CMB correlation matrix publicly available.

Not only would this save time, enabling individuals to use this code rather

than writing their own, it would enable testing of the codes alongside one

another. Ultimately, hopefully, this would lead to the development of a single

code that can be fine-tuned for efficiency and accuracy.
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• building a communal database of correlation matrices; if the correlation ma-

trices are readily available rather than calculated by every individual or group

who wish to try their method of analysis, the same analysis may be applied

to more topologies, providing a more consistent comparison.

Creating a communal database for the correlation matrix should be feasible as there

is not much flexibility in the way in which it is calculated. Efforts should be focused

on the method of analysis. Perhaps a series of community challenges could be set

to devise the most successful method. This has been done effectively for improving

measurements of weak gravitational lensing in the GREAT08 and GREAT10 chal-

lenges (see Bridle et al. (2010) and Kitching et al. (2012) respectively). Simulated

CMB data could be generated for a range of topologies (without stating what those

topologies are). The covariance matrices could also be provided. The challenge

would be to devise the method most successful at identifying the simulated data

with the covariance matrix that generated them. Initial challenges could give more

information to participants, e.g. the cosmological parameters used, including the

curvature, when generating the data. Subsequent challenges could reveal less infor-

mation as participants refine their codes.

Whatever path the investigation into cosmic topology takes in the future, the idea

of determining the shape of the Universe remains a fascinating one.
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Appendix A

Code for Computing the CMB

Correlation Matrix for E1, E3, E7

and E9

Included here, is more detail on the key part of the code written as part of the work

presented in this thesis; the code for calculating the CMB covariance matrices of

different multi-connected flat spaces, E1, E3, E7 and E9. The code is currently in its

pre-alpha stage; it needs further development to make it accessible to other users.

This appendix is divided into the following sections:

• Section A.1 - Usage

• Section A.2 - Hierarchy

• Section A.3 - The Code

A.1 Usage

Usage: the code is executed at the command line in the following way:

topoterms 〈topology number〉 〈ell max〉 〈nsq min〉 〈nsq max〉 [nsq inc]

where the arguments are:

• topology number: 1, 3, 7, 9 (representing E1, E3, E7, E9, )

• ell min: 2 ≤ ell max ≤ 50
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• nsq min: 0 ≤ nsq min ≤ 10000 where nsq = n from k = 2πn/L. Note,

covariance matrices are calculated for 0 < nsq ≤ nsq max; see nsq inc for the

role of the parameter nsq min.

• nsq max: nsq min < ell max ≤ 10000

• nsq inc: nsq max−nsq min. Specifies how often (the interval in nsq) a conver-

gence test is performed on the covariance matrix. nsq min is the value of nsq

at which convergence tests start; a convergence test is then performed every

time nsq has increased by nsq inc, until nsq max is reached. Results of the

tests are output to screen as they are done. If nsq inc is zero or not defined

by the user, no test is performed.

Input files: files containing the radiation transfer functions calculated using

CAMB.

Output files: files containing the CMB covariance matrices.

A.2 Hierachy

The code files are listed below, with a brief description of what they are. Note

that the original intention was to write a code to calculate the topoterms and save

them to file. The topoterms would then be read by a code designed to calculate the

covariance matrices. However, it proved more efficient to calculate the covariance

matrix immediately, removing the need to write/read the topoterms to/from file.

The code files, and objects and functions within, were named according to the origi-

nal intention; the names have not been updated to make it clear that the covariance

matrix is being calculated as well as the topoterms.

• topoterms.cpp - wrapper for classes listed below, sets values of parameters,

tests for convergence of correlation matrices

• c topoterms.cpp - base class, finds covariance matrices for E1 (also has a header

file, topoterms.h)

• c topoterms3.cpp - class, inherits from topoterms.cpp, finds covariance matri-

ces for E3 (also has a header file, topoterms3.h)
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• c topoterms7.cpp - class, inherits from topoterms.cpp, finds covariance matri-

ces for E7 (also has a header file, topoterms7.h)

• c topoterms9.cpp - class, inherits from topoterms.cpp, finds covariance matri-

ces for E9 (also has a header file, topoterms9.h)

An outline of the alogorithm employed in the topoterms classes is depicted in

Fig. (A.1).

A.3 The Code

The following pages display the code itself with the files appearing in the following

order:

• topoterms.cpp - 15 pages

• c topoterms.h - 7 pages

• c topoterms.cpp - 32 pages

• c topoterms3.h - 1 page

• c topoterms3.cpp - 17 pages

• c topoterms7.h - 1 page

• c topoterms7.cpp - 7 pages

• c topoterms9.h - 1 page

• c topoterms9.cpp - 7 pages
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Figure A.1: Flow chart showing the alogorithm employed in c topoterms.cpp,
c topoterms3.cpp, c topoterms7.cpp and c topoterms9.cpp.
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t 
<<
 "
  
  
  
  
0 
<=
 n
sq
_i
nc
 <
= 
(n
sq
_m
ax
 -
 n
sq
_m
in
)\
n"
;

  
  
  
  
re
tu
rn
 (
er
ro
rc
od
e)
;

  
  
}

  
  
ti
me
_t
 t
 =
 t
im
e(
0)
; 
  
//
 g
et
 t
im
e 
no
w

  
  
st
ru
ct

tm
 *
 n
ow
 =
 l
oc
al
ti
me
(&
t)
;

  
  
st
d:
:c
ou
t 
<<
 "
\n
\n
St
ar
te
d 
at
 "
 <
< 
(n
ow
->
tm
_y
ea
r 
+ 
19
00
) 
<<
 '
-'
 <
< 
(n
ow
->
tm
_m
on
 +
 1
) 
<<
 '
-'
 <
< 
no
w-
>t
m_
md
ay
 <
< 
' 
'

<<
 n
ow
->
tm
_h
ou
r 
<<
 '
:'
 <
< 
no
w-
>t
m_
mi
n

  
  
  
  
  
  
<<
 s
td
::
en
dl
;

  
  
//
st
d:
:c
ou
t 
<<
 s
iz
eo
f(
_C
om
pl
ex
 d
ou
bl
e)
 *
((
MA
X_
EL
L 
* 
2)
 +
 1
) 
<<
 s
td
::
en
dl
;

  
  
st
d:
:o
st
ri
ng
st
re
am
 f
il
en
am
e;

  
  
st
d:
:s
tr
in
g 
em
pt
y_
st
r;

  
  
em
pt
y_
st
r 
= 
""
;

  
  
st
d:
:c
ou
t 
<<
 "
se
t 
" 
<<
 n
um
be
r_
of
_h
_L
_t
er
ms
 <
< 
" 
h 
an
d 
L 
te
rm
s"
 <
< 
st
d:
:e
nd
l;

Pa
ge
 3

210



A.3. THE CODE 211

to
po
te
rm
s.
cp
p

  
  
fo
r 
(i
nt
 h
_i
nd
ex
 =
 0
; 
h_
in
de
x 
< 
nu
mb
er
_o
f_
h_
te
rm
s;
 h
_i
nd
ex
++
)

  
  
{

  
  
  
  
fo
r 
(i
nt
 L
_i
nd
ex
 =
 0
; 
L_
in
de
x 
< 
nu
mb
er
_o
f_
L_
te
rm
s;
 L
_i
nd
ex
++
)

  
  
  
  
{

  
  
  
  
  
  
h_
L_
te
rm
s[
L_
in
de
x 
+ 
(h
_i
nd
ex
 *
 n
um
be
r_
of
_L
_t
er
ms
)]
.h

 =
 h
[h
_i
nd
ex
];

  
  
  
  
  
  
h_
L_
te
rm
s[
L_
in
de
x 
+ 
(h
_i
nd
ex
 *
 n
um
be
r_
of
_L
_t
er
ms
)]
.L

 =
 L
[L
_i
nd
ex
];

  
  
  
  
}

  
  
}

#i
fd
ef
 I
NC
LU
DE
_S
PE
CI
AL
_L

  
  
fo
r 
(i
nt
 s
pe
ci
al
_L
_i
nd
ex
 =
 0
; 
sp
ec
ia
l_
L_
in
de
x 
< 
nu
mb
er
_o
f_
sp
ec
ia
l_
L_
te
rm
s;
 s
pe
ci
al
_L
_i
nd
ex
++
)

  
  
{

  
  
  
  
h_
L_
te
rm
s[
(n
um
be
r_
of
_L
_t
er
ms
 *
 n
um
be
r_
of
_h
_t
er
ms
) 
+ 
sp
ec
ia
l_
L_
in
de
x]
.h
 =
 0
.6
93
;

  
  
  
  
h_
L_
te
rm
s[
(n
um
be
r_
of
_L
_t
er
ms
 *
 n
um
be
r_
of
_h
_t
er
ms
) 
+ 
sp
ec
ia
l_
L_
in
de
x]
.L
 =
 s
pe
ci
al
_L
[s
pe
ci
al
_L
_i
nd
ex
];

  
  
}

#e
nd
if

  
  
c_
to
po
te
rm
s:
:c
ov
am
at
ri
x_
t 
*l
as
t_
co
va
rm
at
ri
x_
re
su
lt
s 
= 
(c

_t
op
ot
er
ms
::
co
va
ma
tr
ix
_t
*)
 n
ew

c_
to
po
te
rm
s:
:c
ov
am
at
ri
x_
t;

  
  
c_
to
po
te
rm
s:
:c
ov
am
at
ri
x_
t 
*c
ur
re
nt
_c
ov
ar
ma
tr
ix
_r
es
ul
ts
 =
 (
c_
to
po
te
rm
s:
:c
ov
am
at
ri
x_
t*
) 
ne
w

c_
to
po
te
rm
s:
:c
ov
am
at
ri
x_
t;

  
  
//
 G
en
er
at
e 
co
va
ri
an
ce
 m
at
ri
ce
s.

  
  
//
 I
f 
ns
q_
in
c 
is
 d
ef
in
ed
 a
nd
 n
on
-z
er
o;
 i
f 
so
, 
do
 c
on
ve

rg
en
ce
 t
es
t 
fo
r 
co
va
ri
an
ce

 m
at
ri
x.

  
  
//
 C
ov
er
ge
nc
e 
te
st
 d
at
a 
is
 o
ut
pu
t 
to
 s
cr
ee
n 
as
 m
at
ri
ce
s 
ar
e 
ca
lc
ul
at
ed
 a
nd
 t
es
ts
 a
re
 p
er
fo
rm
ed
.

  
  
if
 (
ns
q_
in
c 
==
 0
)

  
  
{

  
  
  
  
ge
n_
co
va
rm
at
ri
x(
TT
_N
um
be
r,
 e
ll
mi
n,
 e
ll
ma
x,
 n
sq
_m
in
, 
ns
q_
ma
x)
;

  
  
}

  
  
el
se
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

to
po
te
rm
s.
cp
p

  
  
{

  
  

st
d:
:o
st
ri
ng
st
re
am
 p
re
fi
x[
3]
;

  
  

  
  
pr
ef
ix
[0
] 
<<
 "
to
po
lo
gy
" 
<<
 T
T_
Nu
mb
er
 <
< 
"_
TT
";

  
  

  
  
pr
ef
ix
[1
] 
<<
 "
to
po
lo
gy
" 
<<
 T
T_
Nu
mb
er
 <
< 
"_
TE
";

  
  

  
  
pr
ef
ix
[2
] 
<<
 "
to
po
lo
gy
" 
<<
 T
T_
Nu
mb
er
 <
< 
"_
EE
";

  
  
  
  
ge
n_
co
va
rm
at
ri
x(
TT
_N
um
be
r,
 e
ll
mi
n,
 e
ll
ma
x,
 0
, 
ns
q_
mi
n 
- 
1)
; 
  
//
, 
la
st
_c
ov
ar
ma
tr
ix
_r
es
ul
ts
);

#i
f(
1)

  
  
  
  
fo
r 
(i
nt
 T
F_
in
de
x 
= 
0;
 T
F_
in
de
x 
< 
nu
mb
er
_o
f_
h_
L_
te
rm
s;
 T
F_
in
de
x+
+)

  
  
  
  
{

  
  
  
  
  
  
fo
r 
(i
nt
 p
re
fi
x_
in
de
x 
= 
0;
 p
re
fi
x_
in
de
x 
< 
3;
 p
re
fi
x_
in
de
x+
+)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
fi
le
na
me
.s
tr
(e
mp
ty
_s
tr
);

  
  
  
  
  
  
  
  
fi
le
na
me
 <
< 
"/
PH
D_
Sh
ar
e/
SS
D/
Te
mp
/c
ov
ar
ma
tr
ix
-p
_"
 <
< 
pr
ef
ix
[p
re
fi
x_
in
de
x]
.s
tr
()
 <
< 
"_
L:
" 
<<
 h
_L
_t
er
ms

[T
F_
in
de
x]
.L
 <
< 
"_
h:
"

  
  
  
  
  
  
  
  
  
  
  
  
<<
 h
_L
_t
er
ms
[T
F_
in
de
x]
.h

 <
< 
"_
ns
q_
mi
n:
0_
ns
q_
ma
x:
" 
<<
 n
sq
_m
in
 -
 1
 <
< 
".
da
t"
;

  
  
  
  
  
  
  
  
re
ad
_c
ov
ar
ma
tr
ix
_f
il
e(
fi
le
na
me
.s
tr
()
.c
_s
tr
()
, 
la
st
_c
ov
ar
ma
tr
ix
_r
es
ul
ts
);

  
  
  
  
  
  
  
  
if
 (
re
mo
ve
(f
il
en
am
e.
st
r(
).
c_
st
r(
))
 !
= 
0)

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
pe
rr
or
("
Er
ro
r 
de
le
ti
ng
 f
il
e"
);

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
fi
le
na
me
.s
tr
(e
mp
ty
_s
tr
);

  
  
  
  
  
  
  
  
fi
le
na
me
 <
< 
"/
PH
D_
Sh
ar
e/
Co
va
rm
at
ri
x_
Fi
le
s/
co
va
rm
at
ri
x-
p_
" 
<<
 p
re
fi
x[
pr
ef
ix
_i
nd
ex
].
st
r(
) 
<<
 "
_L
:"
 <
< 

h_
L_
te
rm
s[
TF
_i
nd
ex
].
L 
<<
 "
_h
:"

  
  
  
  
  
  
  
  
  
  
  
  
<<
 h
_L
_t
er
ms
[T
F_
in
de
x]
.h

 <
< 
"_
ns
q_
mi
n:
0_
ns
q_
ma
x:
" 
<<
 n
sq
_m
in
 -
 1
 <
< 
".
da
t"
;

  
  
  
  
  
  
  
  
wr
it
e_
co
va
rm
at
ri
x_
fi
le
(f
il
en
am
e.
st
r(
),
 l
as
t_
co
va
rm
at
ri
x_
re
su
lt
s)
;

  
  
  
  
  
  
}

  
  
  
  
}

#e
nd
if

  
  
  
  
fo
r 
(i
nt
 l
oc
al
_n
sq
_m
ax
 =
 n
sq
_m

in
 +
 n
sq
_i
nc
, 
lo
ca
l_
ns
q_
mi
n 
= 
ns
q_
mi
n;
 l
oc
al
_n
sq
_m
ax
 <
= 
ns
q_
ma
x;
 l
oc
al
_n
sq
_m
in
 +
= 

Pa
ge
 5

212



A.3. THE CODE 213

to
po
te
rm
s.
cp
p

ns
q_
ma
x 
+ 
1,
 l
oc
al
_n
sq
_m
ax
 +
= 
ns
q_
in
c)

  
  
  
  
{

  
  
  
  
  
  
st
d:
:c
ou
t 
<<
 

"*
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
" 

<<
 s
td
::
en
dl
;

  
  
  
  
  
  
st
d:
:c
ou
t 
<<
 "
* 
 D
oi
ng
 c
ov
ar
ma
tr
ix
 f
or
 t
op
ol
og
y"
 <
< 
TT
_N
um
be
r 
<<
 "
, 
el
lm
ax
 =
 "
 <
< 
el
lm
ax
 <
< 
",
 n
sq
_m
ax
 =
 "

<<
 l
oc
al
_n
sq
_m
ax
 <
< 
st
d:
:e

nd
l;

  
  
  
  
  
  
st
d:
:c
ou
t 
<<
 

"*
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
" 

<<
 s
td
::
en
dl
;

  
  
  
  
  
  
ge
n_
co
va
rm
at
ri
x(
TT
_N
um
be
r,
 e
ll
mi
n,
 e
ll
ma
x,
 l
oc
al
_n

sq
_m
in
, 
lo
ca
l_
ns
q_
ma
x)
; 

//
, 
cu
rr
en
t_
co
va
rm
at
ri
x_
re
su
lt
s)
;

  
  
  
  
  
  
fo
r 
(i
nt
 T
F_
in
de
x 
= 
0;
 T
F_
in
de
x 
< 
nu
mb
er
_o
f_
h_
L_
te
rm
s;
 T
F_
in
de
x+
+)

  
  
  
  
  
  
{

fo
r 
(i
nt
 p
re
fi
x_
in
de
x 
= 
0;
 p
re
fi
x_
in
de
x 
< 
3;
 p
re
fi
x_
in
de
x+
+)

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
//
lo
ad
 t
he
 l
as
t 
fu
ll
 f
il
e

  
  
  
  
  
  
  
  
  
  
fi
le
na
me
.s
tr
(e
mp
ty
_s
tr
);

  
  
  
  
  
  
  
  
  
  
fi
le
na
me
 <
< 
"/
PH
D_
Sh
ar
e/
Co
va
rm
at
ri
x_
Fi
le
s/
co
va
rm
at
ri
x-
p_
" 
<<
 p
re
fi
x[
pr
ef
ix
_i
nd
ex
].
st
r(
) 
<<
 "
_L
:"

<<
 

h_
L_
te
rm
s[
TF
_i
nd
ex
].
L 
<<
 "
_h
:"

  
  
  
  
  
  
  
  
  
  
  
  
  
  
<<
 h
_L
_t
er
ms
[T
F_
in
de
x]
.h

 <
< 
"_
ns
q_
mi
n:
0_
ns
q_
ma
x:
" 
<<
 l
oc
al
_n
sq
_m
in
 -
 1
 <
< 
".
da
t"
;

  
  
  
  
  
  
  
  
  
  
re
ad
_c
ov
ar
ma
tr
ix
_f
il
e(
fi
le
na
me
.s
tr
()
.c
_s
tr
()
, 
la
st
_c
ov
ar
ma
tr
ix
_r
es
ul
ts
);

  
  
  
  
  
  
  
  
  
  
if
 (
re
mo
ve
(f
il
en
am
e.
st
r(
).
c_
st
r(
))
 !
= 
0)

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
pe
rr
or
("
Er
ro
r 
de
le
ti
ng
 f
il
e"
);

  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
//
lo
ad
 t
he
 j
us
t 
ge
ne
ra
te
d 
pa
rt
ia
l 
fi
le
;

  
  
  
  
  
  
  
  
  
  
fi
le
na
me
.s
tr
(e
mp
ty
_s
tr
);

  
  
  
  
  
  
  
  
  
  
fi
le
na
me
 <
< 
"/
PH
D_
Sh
ar
e/
SS
D/
Te
mp
/c
ov
ar
ma
tr
ix
-p
_"
 <
< 
pr
ef
ix
[p
re
fi
x_
in
de
x]
.s
tr
()
 <
< 
"_
L:
" 
<<
 

h_
L_
te
rm
s[
TF
_i
nd
ex
].
L 
<<
 "
_h
:"

  
  
  
  
  
  
  
  
  
  
  
  
  
  
<<
 h
_L
_t
er
ms
[T
F_
in
de
x]
.h

 <
< 
"_
ns
q_
mi
n:
" 
<<
 l
oc
al
_n
sq
_m
in
 <
< 
"_
ns
q_
ma
x:
" 
<<
 l
oc
al
_n
sq
_m
ax
 <
< 

".
da
t"
;

  
  
  
  
  
  
  
  
  
  
re
ad
_c
ov
ar
ma
tr
ix
_f
il
e(
fi
le
na
me
.s
tr
()
.c
_s
tr
()
, 
cu
rr
en
t_
co
va
rm
at
ri
x_
re
su
lt
s)
;

  
  
  
  
  
  
  
  
  
  
if
 (
re
mo
ve
(f
il
en
am
e.
st
r(
).
c_
st
r(
))
 !
= 
0)

Pa
ge
 6

213



214
APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

to
po
te
rm
s.
cp
p

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
pe
rr
or
("
Er
ro
r 
de
le
ti
ng
 f
il
e"
);

  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
//
ad
d 
th
e 
fu
ll
 f
il
e 
to
 t
he
 p
ar
ti
al
 f
il
e 
an
d 
sa
ve
 t
o 
ne
xt
 i
n 
fu
ll
 f
il
e 
se
ri
es
.

  
  
  
  
  
  
  
  
  
  
ad
d_
to
_c
ov
ar
ma
tr
ix
_a
rr
ay
(c
ur
re
nt
_c
ov
ar
ma
tr
ix
_r
es
ul
ts
, 
la
st
_c
ov
ar
ma
tr
ix
_r
es
ul
ts
);

  
  
  
  
  
  
  
  
  
  
fi
le
na
me
.s
tr
(e
mp
ty
_s
tr
);

  
  
  
  
  
  
  
  
  
  
fi
le
na
me
 <
< 
"/
PH
D_
Sh
ar
e/
Co
va
rm
at
ri
x_
Fi
le
s/
co
va
rm
at
ri
x-
p_
" 
<<
 p
re
fi
x[
pr
ef
ix
_i
nd
ex
].
st
r(
) 
<<
 "
_L
:"

<<
 

h_
L_
te
rm
s[
TF
_i
nd
ex
].
L 
<<
 "
_h
:"

  
  
  
  
  
  
  
  
  
  
  
  
  
  
<<
 h
_L
_t
er
ms
[T
F_
in
de
x]
.h

 <
< 
"_
ns
q_
mi
n:
0_
ns
q_
ma
x:
" 
<<
 l
oc
al
_n
sq
_m
ax
 <
< 
".
da
t"
;

  
  
  
  
  
  
  
  
  
  
wr
it
e_
co
va
rm
at
ri
x_
fi
le
(f
il
en
am
e.
st
r(
),
 c
ur
re
nt
_c
ov
ar
ma
tr
ix
_r
es
ul
ts
);

  
  
  
  
  
  
  
  
  
  
co
mp
ar
e_
tw
o_
co
va
rm
at
ri
x_
ar
ra
y(
cu
rr
en
t_
co
va
rm
at
ri
x_
re
su
lt
s,
 l
as
t_
co
va
rm
at
ri
x_
re
su
lt
s)
;

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
}

  
  
  
  
}

  
  
  
  
de
le
te
 c
ur
re
nt
_c
ov
ar
ma
tr
ix
_r
es
ul
ts
;

  
  
  
  
de
le
te
 l
as
t_
co
va
rm
at
ri
x_
re
su
lt
s;

  
  
}

  
  
t 
= 
ti
me
(0
);
  
 /
/ 
ge
t 
ti
me
 n
ow

  
  
no
w 
= 
lo
ca
lt
im
e(
&t
);

  
  
st
d:
:c
ou
t 
<<
 "
\n
En
de
d 
at
 "
 <
< 
(n
ow
->
tm
_y
ea
r 
+ 
19
00
) 
<<
 '
-'
 <
< 
(n
ow
->
tm
_m
on
 +
 1
) 
<<
 '
-'
 <
< 
no
w-
>t
m_
md
ay
 <
< 
' 
' 
<<
 

no
w-
>t
m_
ho
ur
 <
< 
':
' 
<<
 n
ow
->
tm
_m
in

  
  
  
  
  
  
<<
 "
\n
\n
" 
<<
 s
td
::
en
dl
;

  
  
re
tu
rn
 0
;

} //
 F
un
ct
io
n 
to
 g
en
er
at
e 
co
va
ri
an
ce
 m
at
ri
x:

vo
id

ge
n_
co
va
rm
at
ri
x(
in
t 
TT
_N
um
be
r,
 i
nt
 e
ll
mi
n,
 i
nt
 e
ll
ma
x,
 i
nt
 n
sq
_m
in
, 
in
t 
ns
q_
ma
x)
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to
po
te
rm
s.
cp
p

{   
  
c_
to
po
te
rm
s 
*t
op
ot
er
ms
;

  
  
sw
it
ch
 (
TT
_N
um
be
r)

  
  
{

  
  
ca
se
 1
:

  
  
  
  
to
po
te
rm
s 
= 
ne
w 
c_
to
po
te
rm
s(
el
lm
in
, 
el
lm
ax
, 
ns
q_

mi
n,
 n
sq
_m
ax
);

  
  
  
  
br
ea
k;

  
  
ca
se
 3
:

  
  
  
  
to
po
te
rm
s 
= 
ne
w 
c_
to
po
te
rm
s3
(e
ll
mi
n,
 e
ll
ma
x,
 n
sq
_m
in
, 
ns
q_
ma
x)
;

  
  
  
  
br
ea
k;

  
  
ca
se
 7
:

  
  
  
  
to
po
te
rm
s 
= 
ne
w 
c_
to
po
te
rm
s7
(e
ll
mi
n,
 e
ll
ma
x,
 n
sq
_m
in
, 
ns
q_
ma
x)
;

br
ea
k;

  
  
ca
se
 9
:

  
  
  
  
 t
op
ot
er
ms
 =
 n
ew
 c
_t
op
ot
er
ms
9(
el
lm
in
, 
el
lm
ax
, 
ns
q_
mi
n,
 n
sq
_m
ax
);

  
  
  
  
 b
re
ak
;

  
  
de
fa
ul
t:

  
  
  
  
to
po
te
rm
s 
= 
ne
w 
c_
to
po
te
rm
s(
el
lm
in
, 
el
lm
ax
, 
ns
q_

mi
n,
 n
sq
_m
ax
);

  
  
  
  
br
ea
k;

  
  
}

  
  
to
po
te
rm
s-
>s
et
_h
_a
nd
_L
_l
is
t(
h_
L_
te
rm
s,
 n
um
be
r_
of
_h
_L
_t
er
ms
);
  
 /

/ 
se
t 
L 
an
d 
h 
va
lu
es
 t
o

  
  

  
 /
/ 
fi
nd
 c
ov
ar
ma
tr
ix
 f
or

  
  
to
po
te
rm
s-
>g
en
er
at
e_
sh
()
; 

//
 f
in
d 
sp
he
ri
ca
l 
ha
rm
on
ic
s 
ne
ed
ed
 t
o

  
  

  
//
 c
al
cu
la
te
 c
ov
ar
ma
tr
ix
 f
or
 c
ur
re
nt
 t
op
ol
og
y

#i
f(
0)

  
  
to
po
te
rm
s.
ge
ne
ra
te
_s
h(
FO
RC
E_
SA
VE
_T
O_
FI
LE
);

#e
nd
if

#i
f(
0)
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

to
po
te
rm
s.
cp
p

  
  
_C
om
pl
ex

do
ub
le
 r
et
ur
n_
va
lu
e 
= 
to
po
te
rm
s.
ge
ne
ra
te
_s
h(
2,
0,
1,
-1
,0
);

  
  
st
d:
:c
ou
t 
<<
 "
\n
fo
r
el
l 
= 
2,
 m
 =
 0
, 
n1
 =
 1
, 
n2
 =
 -
1,
 n
3 
= 
0 
 s
h 
= 
" 
<<
 _
_r
ea
l_
_ 
re
tu
rn
_v
al
ue
 <
< 
" 
+ 
" 
<<
 _
_i
ma
g_
_ 

re
tu
rn
_v
al
ue
 <
< 
'i
' 
<<
 s
td
::
en
dl
;

#e
nd
if

  
  
to
po
te
rm
s-
>g
en
er
at
e_
tt
()
; 
  
//
 *
**
 t
he
 t
op
ot
er
ms
 c
la
ss
 f
n 
ge
ne
ra
te
_t
t 
or
ig
in
al
ly
 j
us
t 
co
mp
ut
ed

  
  

//
  
  
 t
op
ot
er
ms
 b
ut
 n
ow
 g
oe
s 
on
 t
o 
fi
nd
 t
he
 c
ov
ar
ia
nc
e 

ma
tr
ix
 *
**

  
  
de
le
te
 t
op
ot
er
ms
;

} //
 F
un
ct
io
n 
fo
r 
ad
di
ng
 t
o 
co
va
ri
an
ce
 m
at
ri
x 
el
em
en
ts

vo
id

ad
d_
to
_c
ov
ar
ma
tr
ix
_a
rr
ay
(c
_t
op
ot
er
ms
::
co
va
ma
tr
ix
_t
* 
co
va
ma
tr
ix
_d
es
t,
 c
_t
op
ot
er
ms
::
co
va
ma
tr
ix
_t
* 
co
va
ma
tr
ix
_s
ou
rc
e)

{   
  
fo
r 
(i
nt
 e
ll
 =
 0
; 
el
l 
<=
 M
AX
_E
LL
; 
el
l+
+)

  
  
{

  
  
  
  
fo
r 
(i
nt
 m
 =
 0
; 
m 
<=
 (
MA
X_
EL
L 
* 
2)
; 
m+
+)

  
  
  
  
{

  
  
  
  
  
  
fo
r 
(i
nt
 e
ll
da
sh
 =
 0
; 
el
ld
as
h 
<=
 M
AX
_E
LL
; 
el
ld
as
h+
+)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
fo
r 
(i
nt
 m
da
sh
 =
 0
; 
md
as
h 
<=
 (
MA
X_
EL
L 
* 
2)
; 
md
as
h+
+)

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
(*
co
va
ma
tr
ix
_d
es
t)
[e
ll
][
m]
[e
ll
da
sh
][
md
as
h]
 +
= 
(*
co
va
ma
tr
ix
_s
ou
rc
e)
[e
ll
][
m]
[e
ll
da
sh
][
md
as
h]
;

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
}

  
  
  
  
}

  
  
}

Pa
ge
 9

216



A.3. THE CODE 217

to
po
te
rm
s.
cp
p

} //
 F
un
ct
io
n 
fo
r 
co
mp
ar
in
g 
tw
o 
ar
ra
ys
 (
us
ed
 t
o 
ch
ec
k 
fo
r 
co
nv
er
ge
nc
e 
of
 c
ov
ar
ai
nc
e 
ma
tr
ix
):

bo
ol

co
mp
ar
e_
tw
o_
co
va
rm
at
ri
x_
ar
ra
y(
c_
to
po
te
rm
s:
:c
ov
am
at
ri
x_
t*
 c
ov
am
at
ri
x_
1,
 c
_t
op
ot
er
ms
::
co
va
ma
tr
ix
_t
* 
co
va
ma
tr
ix
_2
)

{   
  
do
ub
le
 d
if
f;

  
  
do
ub
le
 t
ot
al
_d
if
f 
= 
0;

  
  
;

  
  
in
t 
ac
tu
al
_c
ou
nt
 =
 0
;

  
  
in
t 
po
ss
ib
le
_c
ou
nt
 =
 0
;

  
  
in
t 
ma
tc
h_
co
un
t 
= 
0;

  
  
in
t 
no
_m
at
ch
_c
ou
nt
 =
 0
;

in
t 
bo
th
_z
er
o_
co
un
t 
= 
0;

  
  
in
t 
on
e_
ze
ro
_c
ou
nt
 =
 0
;

  
  
in
t 
si
gn
_m
is
sm
at
ch
_c
ou
nt
 =
 0
;

  
  
bo
ol
 r
et
ur
n_
va
l 
= 
tr
ue
;

  
  
do
ub
le
 m
ax
_d
if
f 
= 
0;

  
  
do
ub
le
 m
in
_d
if
f 
= 
st
d:
:n
um
er
ic
_l
im
it
s<
do
ub
le
>:
:m
ax
()
;

  
  
co
ns
t
do
ub
le
 c
om
pa
re
Le
ve
l 
= 
0.
00
00
1;

  
  
do
ub
le
 m
in
_m
at
ch
ed
_v
al
ue
 =
 s
td
::
nu
me
ri
c_
li
mi
ts
<d
ou
bl
e>
::
ma
x(
);

  
  
do
ub
le
 m
ax
_m
at
ch
ed
_v
al
ue
 =
 s
td
::
nu
me
ri
c_
li
mi
ts
<d
ou
bl
e>
::
mi
n(
);

  
  
do
ub
le
 m
in
_n
on
_m
at
ch
ed
_v
al
ue
 =
 s
td
::
nu
me
ri
c_
li
mi
ts
<d
ou
bl
e>
::
ma
x(
);

  
  
do
ub
le
 m
ax
_n
on
_m
at
ch
ed
_v
al
ue
 =
 s
td
::
nu
me
ri
c_
li
mi
ts
<d
ou
bl
e>
::
mi
n(
);

  
  
fo
r 
(i
nt
 e
ll
 =
 2
; 
el
l 
<=
 M
AX
_E
LL
; 
el
l+
+)

  
  
{

  
  
  
  
fo
r 
(i
nt
 m
 =
 M
AX
_E
LL
 -
 e
ll
; 
m 
<=
 (
MA
X_
EL
L 
* 
2)
; 
m+
+)

  
  
  
  
{

  
  
  
  
  
  
fo
r 
(i
nt
 e
ll
da
sh
 =
 2
; 
el
ld
as
h 
<=
 M
AX
_E
LL
; 
el
ld
as
h+
+)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
fo
r 
(i
nt
 m
da
sh
 =
 M
AX
_E
LL
 -
 e
ll

da
sh
; 
md
as
h 
<=
 (
MA
X_
EL
L 
* 
2)
; 
md
as
h+
+)

  
  
  
  
  
  
  
  
{
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

to
po
te
rm
s.
cp
p

  
  
  
  
  
  
  
  
  
  
fo
r 
(i
nt
 p
ar
t_
id
 =
 0
; 
pa
rt
_i
d 
< 
2;
 p
ar
t_
id
++
)

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
po
ss
ib
le
_c
ou
nt
++
;

  
  
  
  
  
  
  
  
  
  
  
  
do
ub
le
 c
ov
am
at
ri
x_
1_
va
l;

  
  
  
  
  
  
  
  
  
  
  
  
do
ub
le
 c
ov
am
at
ri
x_
2_
va
l;

  
  
  
  
  
  
  
  
  
  
  
  
if
 (
pa
rt
_i
d 
==
 0
)

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
co
va
ma
tr
ix
_1
_v
al
 =
 _
_r
ea
l_
_ 
(*
co
va
ma
tr
ix
_1
)[
el
l]
[m
][
el
ld
as
h]
[m
da
sh
];

  
  
  
  
  
  
  
  
  
  
  
  
  
  
co
va
ma
tr
ix
_2
_v
al
 =
 _
_r
ea
l_
_ 
(*
co
va
ma
tr
ix
_2
)[
el
l]
[m
][
el
ld
as
h]
[m
da
sh
];

  
  
  
  
  
  
  
  
  
  
  
  
} el
se

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
co
va
ma
tr
ix
_1
_v
al
 =
 _
_i
ma
g_
_ 
(*
co
va
ma
tr
ix
_1
)[
el
l]
[m
][
el
ld
as
h]
[m
da
sh
];

  
  
  
  
  
  
  
  
  
  
  
  
  
  
co
va
ma
tr
ix
_2
_v
al
 =
 _
_i
ma
g_
_ 
(*
co
va
ma
tr
ix
_2
)[
el
l]
[m
][
el
ld
as
h]
[m
da
sh
];

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
if
 (
co
va
ma
tr
ix
_1
_v
al
 !
= 
0 
&&
 c
ov
am
at
ri
x_
2_
va
l 
!=
 0
)

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
if
 (
fa
bs
(c
ov
am
at
ri
x_
1_
va
l)
 >
 f
ab
s(
co
va
ma
tr
ix
_2
_v
al
))

  
  
  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
di
ff
 =
 (
co
va
ma
tr
ix
_1
_v
al
 /
 c
ov
am

at
ri
x_
2_
va
l)
 -
 1
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
  
  
el
se

if
 (
fa
bs
(c
ov
am
at
ri
x_
1_
va
l)
 <
 f
ab
s(
co
va
ma
tr
ix
_2
_v
al
))

  
  
  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
di
ff
 =
 (
co
va
ma
tr
ix
_2
_v
al
 /
 c
ov
am

at
ri
x_
1_
va
l)
 -
 1
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
  
  
el
se

  
  
  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
di
ff
 =
 0
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
}
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to
po
te
rm
s.
cp
p

  
  
  
  
  
  
  
  
  
  
  
  
  
  
if
 (
di
ff
 >
= 
0)

  
  
  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
if
 (
ma
x_
di
ff
 <
 d
if
f)

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
ma
x_
di
ff
 =
 d
if
f;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
if
 (
mi
n_
di
ff
 >
 d
if
f)

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
mi
n_
di
ff
 =
 d
if
f;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
to
ta
l_
di
ff
 +
= 
di
ff
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
ac
tu
al
_c
ou
nt
++
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
if
 (
di
ff
 <
 c
om
pa
re
Le
ve
l)

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
//
tr
ea
t 
as
 e
xa
ct
 m
at
ch

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
ma
tc
h_
co
un
t+
+;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
if
 (
mi
n_
ma
tc
he
d_
va
lu
e 
> 
fa
bs
(c
ov
am
at
ri
x_
1_
va
l)
)

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
mi
n_
ma
tc
he
d_
va
lu
e 
= 
fa
bs
(c
ov
am
at
ri
x_
1_
va
l)
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
if
 (
ma
x_
ma
tc
he
d_
va
lu
e 
< 
fa
bs
(c
ov
am
at
ri
x_
1_
va
l)
)

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
ma
x_
ma
tc
he
d_
va
lu
e 
= 
fa
bs
(c
ov
am
at
ri
x_
1_
va
l)
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
if
 (
mi
n_
ma
tc
he
d_
va
lu
e 
> 
fa
bs
(c
ov
am
at
ri
x_
2_
va
l)
)

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
mi
n_
ma
tc
he
d_
va
lu
e 
= 
fa
bs
(c
ov
am
at
ri
x_
2_
va
l)
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
if
 (
ma
x_
ma
tc
he
d_
va
lu
e 
< 
fa
bs
(c
ov
am
at
ri
x_
2_
va
l)
)

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
ma
x_
ma
tc
he
d_
va
lu
e 
= 
fa
bs
(c
ov
am
at
ri
x_
2_
va
l)
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
el
se

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
re
tu
rn
_v
al
 =
 f
al
se
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
no
_m
at
ch
_c
ou
nt
++
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
if
 (
mi
n_
no
n_
ma
tc
he
d_
va
lu
e 
> 
fa
bs
(c
ov
am
at
ri
x_
1_
va
l)
)

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
mi
n_
no
n_
ma
tc
he
d_
va
lu
e 
= 
fa
bs
(c
ov
am
at
ri
x_
1_
va
l)
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
if
 (
ma
x_
no
n_
ma
tc
he
d_
va
lu
e 
< 
fa
bs
(c
ov
am
at
ri
x_
1_
va
l)
)

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
ma
x_
no
n_
ma
tc
he
d_
va
lu
e 
= 
fa
bs
(c
ov
am
at
ri
x_
1_
va
l)
;
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

to
po
te
rm
s.
cp
p

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
if
 (
mi
n_
no
n_
ma
tc
he
d_
va
lu
e 
> 
fa
bs
(c
ov
am
at
ri
x_
2_
va
l)
)

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
mi
n_
no
n_
ma
tc
he
d_
va
lu
e 
= 
fa
bs
(c
ov
am
at
ri
x_
2_
va
l)
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
if
 (
ma
x_
no
n_
ma
tc
he
d_
va
lu
e 
< 
fa
bs
(c
ov
am
at
ri
x_
2_
va
l)
)

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
ma
x_
no
n_
ma
tc
he
d_
va
lu
e 
= 
fa
bs
(c
ov
am
at
ri
x_
2_
va
l)
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
  
  
el
se

  
  
  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
si
gn
_m
is
sm
at
ch
_c
ou
nt
++
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
el
se

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
if
 (
co
va
ma
tr
ix
_1
_v
al
 =
= 
0 
&&
 c
ov
am
at
ri
x_
2_
va
l 
==
 0
)

  
  
  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
bo
th
_z
er
o_
co
un
t+
+;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
  
  
el
se

  
  
  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
on
e_
ze
ro
_c
ou
nt
++
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
}

  
  
  
  
}

  
  
}

  
  
st
d:
:c
ou
t 
<<
 s
td
::
fi
xe
d;

  
  
st
d:
:c
ou
t 
<<
 "
--
--
--
--
- 
co
mp
ar
e 
re
su
lt
s 
--
--
--
--
-"

 <
< 
st
d:
:e
nd
l;

  
  
st
d:
:c
ou
t 
<<
 "
co
mp
ar
er
d 
te
rm
s 
= 
" 
<<
 a
ct
ua
l_
co
un
t 
<<
 "
, 
" 
<<
 m
at
ch
_c
ou
nt
 <
< 
" 
< 
" 
<<
 c
om
pa
re
Le
ve
l 
<<
 "
 <
  
" 
<<
 

no
_m
at
ch
_c
ou
nt
 <
< 
",
 m
in
 f
ra
ct
io
na
l 
er
ro
r 
= 
"
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to
po
te
rm
s.
cp
p

  
  
  
  
  
  
<<
 m
in
_d
if
f 
<<
 "
, 
ma
x 
fr
ac
ti
on
al
 e
rr
or
 =
 "
 <
< 
ma
x_
di
ff
 <
< 
",
 a
ve
ra
ge
 f
ra
ct
io

na
l 
er
ro
r 
= 
" 
<<
 (
to
ta
l_
di
ff
 /
 

ac
tu
al
_c
ou
nt
) 
<<
 s
td
::
en
dl
;

  
  
st
d:
:c
ou
t 
<<
 "
ma
gn
it
ud
e 
ra
ng
e 
fo
r 
va
lu
es
 w
it
h 
fr
ac
ti
on
al
 e
rr
or
 l
es
s 
th
an
 "
 <
< 
co
mp
ar
eL
ev
el
 <
< 
st
d:
:s
ci
en
ti
fi
c 
<<
 "

 
mi
n:
" 
<<
 m
in
_m
at
ch
ed
_v
al
ue
 <
< 
" 
ma
x:
"

  
  
  
  
  
  
<<
 m
ax
_m
at
ch
ed
_v
al

ue
 <
< 
st
d:
:e

nd
l;

  
  
st
d:
:c
ou
t 
<<
 s
td
::
fi
xe
d;

  
  
st
d:
:c
ou
t 
<<
 "
ma
gn
it
ud
e 
ra
ng
e 
fo
r 
va
lu
es
 w
it
h 

fr
ac
ti
on
al
 e
rr
or
 g
re
at
er
 t
ha
n 
" 
<<
 c
om
pa
re
Le
ve
l 
<<
 s
td
::
sc
ie
nt
if
ic
 <
< 

" 
mi
n:
" 
<<
 m
in
_n
on
_m
at
ch
ed
_v
al
ue

  
  
  
  
  
  
<<
 "
 m
ax
:"
 <
< 
ma
x_
no
n_
ma
tc
he
d_
va
lu
e 
<<
 s
td
::
en
dl
;

  
  
st
d:
:c
ou
t 
<<
 "
bo
th
 t
er
ms
 z
er
o 
= 
" 
<<
 b
ot
h_
ze
ro
_c
ou
nt
 <
< 
",
 o
ne
 t
er
m 
ze
ro
 =
 "
 <
< 
on
e_
ze
ro
_c
ou
nt
 <
< 
st
d:
:e
nd
l;

  
  
st
d:
:c
ou
t 
<<
 "
di
ff
er
en
t 
si
gn
s 
= 
" 
<<
 s
ig
n_
mi
ss
ma
tc
h_
co
un
t 
<<
 s
td
::
en
dl
;

re
tu
rn
 r
et
ur
n_
va
l;

} //
 F
un
ct
io
n 
fo
r 
re
ad
in
g 
co
va
ri
an
ce
 m
at
ri
x 
fr
om
 f
il
e:

bo
ol

re
ad
_c
ov
ar
ma
tr
ix
_f
il
e(
st
d:
:s
tr
in
g 
fi
le
na
me
, 
c_
to
po
te
rm
s:
:c
ov
am
at
ri
x_
t 
*c
ov
am
at
ri
x_
re
su
lt
s)

{   
  
st
d:
:o
st
ri
ng
st
re
am
 C
ov
ar
ma
tr
ix
fi
le
na
me
;

  
  
st
d:
:i
fs
tr
ea
m 
Co
va
rm
at
ri
xf
il
e;

  
  
Co
va
rm
at
ri
xf
il
en
am
e 
<<
 f
il
en
am
e.
c_
st
r(
);

  
  
if
 (
ac
ce
ss
(C
ov
ar
ma
tr
ix
fi
le
na
me
.s
tr
()
.c
_s
tr
()
, 
R_
OK
) 
!=
 -
1)

  
  
{

  
  
  
  
Co
va
rm
at
ri
xf
il
e.
op
en
(C
ov
ar
ma
tr
ix
fi
le
na
me
.s
tr
()
.c
_s
tr
()
, 
st
d:
:i
os
::
bi
na
ry
);

  
  
  
  
Co
va
rm
at
ri
xf
il
e.
se
ek
g(
0,
 s
td
::
io
s:
:e
nd
);

  
  
  
  
lo
ng

lo
ng
 C
ov
ar
ma
tr
ix
fi
le
_f
si
ze
 =
 C
ov
ar
ma
tr

ix
fi
le
.t
el
lg
()
;

  
  
  
  
Co
va
rm
at
ri
xf
il
e.
se
ek
g(
0,
 s
td
::
io
s:
:b
eg
);

  
  
  
  
//
be
fo
re
 r
ea
di
ng
 t
he
 f
il
e 
ch
ec
k 
to
 s
ee
 i
t 
is
 t
he
 s
iz
e 
we
 e
xp
ec
t 
it
 t
o 
be
;

  
  
  
  
if
 (
Co
va
rm
at
ri
xf
il
e_
fs
iz
e 
!=
 s
iz
eo
f(
c_
to
po
te
rm
s:
:c
ov
am
at
ri
x_
t)
)

  
  
  
  
{

  
  
  
  
  
  
st
d:
:c
ou
t 
<<
 "
Ba
d 
fi
le
 s
iz
e 
fo
r 
" 
<<
 C
ov
ar
ma
tr
ix
fi
le
na
me
.s
tr
()
 <
< 
" 
" 
<<
 _
_F
IL
E_
_ 
<<

" 
li
ne
 "
 <
< 
__
LI
NE
__
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

to
po
te
rm
s.
cp
p

<<
 "
\n
";

  
  
  
  
  
  
re
tu
rn
 (
1)
;

  
  
  
  
}

  
  
  
  
//
re
ad
 i
n 
th
e 
co
va
rm
at
ri
x 
fi
le

  
  
  
  
st
d:
:c
ou
t 
<<
 "
re
ad
in
g 
co
va
rm
at
ri
x 
fi
le
 "
 <
< 
Co
va
rm
at
ri
xf
il
en
am
e.
st
r(
) 
<<
 "
\n
";

  
  
  
  
Co
va
rm
at
ri
xf
il
e.
re
ad
((
ch
ar
*)
 c
ov
am
at
ri
x_
re
su
lt
s,
 s
iz
eo
f(
c_
to
po
te
rm
s:
:c
ov
am
at
ri
x_
t)
);

  
  
  
  
Co
va
rm
at
ri
xf
il
e.
cl
os
e(
);

  
  
}

  
  
el
se

  
  
{

  
  
  
  
st
d:
:c
ou
t 
<<
 "
Co
ul
d 
no
t 
op
en
 "
 <
< 
Co
va
rm
at
ri
xf
il
en
am
e.
st
r(
) 
<<
 "
 "
 <
< 
__
FI
LE
__
 <
< 
" 
li
ne
 "
 <
< 
__
LI
NE
__
 <
< 
"\
n"
;

  
  
  
  
re
tu
rn
 (
1)
;

  
  
}

  
  
re
tu
rn
 (
0)
;

} //
 F
un
ct
io
n 
fo
r 
wr
it
in
g 
co
va
ri
an
ce
 m
at
ri
x 
to
 f
il
e:

bo
ol

wr
it
e_
co
va
rm
at
ri
x_
fi
le
(s
td
::
st
ri
ng
 f
il
en
am
e,
 c
_t
op
ot
er
ms
::
co
va
ma
tr
ix
_t
 *
co
va
ma
tr
ix
_d
at
a)

{   
  
if
 (
ac
ce
ss
(f
il
en
am
e.
c_
st
r(
),
 R
_O
K)
 !
= 
-1
)

  
  
{

  
  
  
  
st
d:
:c
ou
t 
<<
 "
fi
le
 "
 <
< 
fi
le
na
me
 <
< 
" 
al
re
ad
y 
ex
is
ts
 "
 <
< 
__
FI
LE
__
 <
< 
" 
li
ne
 "
 <
< 
__
LI
NE
__
 <
< 
"\
n"
;

  
  
  
  
re
tu
rn
 (
1)
;

  
  
}

  
  
st
d:
:o
fs
tr
ea
m 
Co
va
rm
at
ri
xf
il
e(
fi
le
na
me
.c
_s
tr
()
);

  
  
st
d:
:c
ou
t 
<<
 "
wr
it
in
g 
co
va
rm
at
ri
x 
fi
le
 "
 <
< 
fi
le
na
me
 <
< 
"\
n"
;

  
  
Co
va
rm
at
ri
xf
il
e.
wr
it
e(
(c
ha
r*
) 
co
va
ma
tr
ix
_d
at
a,
 s
iz
eo
f(
c_
to
po
te
rm
s:
:c
ov
am
at
ri
x_
t)
);

  
  
Co
va
rm
at
ri
xf
il
e.
cl
os
e(
);

  
  
re
tu
rn
 (
0)
;

}
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c_
to
po
te
rm
s.
h

 *
 c
_t
op
ot
er
ms
.h

#i
fn
de
f 
C_
TO
PO
TE
RM
S_
H_

#d
ef
in
e 
C_
TO
PO
TE
RM
S_
H_

#i
nc
lu
de

<i
os
tr
ea
m>

#i
nc
lu
de

<f
st
re
am
>

#i
nc
lu
de

<i
om
an
ip
>

#i
nc
lu
de

<s
st
re
am
>

#i
nc
lu
de

<s
tr
in
g>

#i
nc
lu
de

<m
at
h.
h>

#i
nc
lu
de

<v
ec
to
r>

#i
nc
lu
de

<c
st
dl
ib
>

#i
nc
lu
de

<c
om
pl
ex
>

#i
nc
lu
de

<g
sl
/g
sl
_s
f_
le
ge
nd
re
.h
>

#i
nc
lu
de

<t
im
e.
h>

#i
nc
lu
de

<p
th
re
ad
.h
>

#i
nc
lu
de

<s
tr
in
g.
h>

#i
nc
lu
de

<u
ni
st
d.
h>

#i
nc
lu
de

<s
ys
/s
ys
in
fo
.h
>

#i
nc
lu
de

<v
ec
to
r>

#i
nc
lu
de

<c
om
pl
ex
>

#i
nc
lu
de

<l
im
it
s>

//
 s
ho
ul
dn
't
 n
ee
d 
th
is
 b
ut
 t
he
 c
od
e 
an
al
ys
er
 d
oe
n'
t 
se
em
 t
o 
kn
ow
 a
bo
ut
 _
_b
ui
lt
in
_c
po
w

_C
om
pl
ex

do
ub
le

__
bu
il
ti
n_
cp
ow
( 
_C
om
pl
ex

do
ub
le
, 
_C
om
pl
ex

do
ub
le
);

//
#d
ef
in
e 
ND
EB
UG

#i
nc
lu
de

<a
ss
er
t.
h>

#d
ef
in
e 
MA
X_
NU
MB
ER
_O
F_
CO
RE
S 
4
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s.
h

#d
ef
in
e 
MA
X_
NM
AX
 1
00

#d
ef
in
e 
MA
X_
EL
L 
50

#d
ef
in
e 
NO
_T
RU
NC
AT
E

#d
ef
in
e 
FO
RC
E_
SA
VE
_T
O_
FI
LE
 t
ru
e

cl
as
s
c_
to
po
te
rm
s

{ pu
bl
ic
:

ty
pe
de
f
_C
om
pl
ex

do
ub
le

co
va
ma
tr
ix
_t
 [
MA
X_
EL
L 
+1
 ]
[(
MA
X_
EL
L 
* 
2)
 +
1]
[M
AX
_E
LL
 +
1 

][
(M
AX
_E
LL
 *
 2
) 
+1
];

  
  
st
ru
ct

h_
L_
te
rm
s_
t

  
  
{

  
  
  
  
do
ub
le

h;
  
  
  
  
do
ub
le

L;
  
  
};

  
  
vo
id

se
t_
h_
an
d_
L_
li
st
( 
h_
L_
te
rm
s_
t 
*h
_L
_t
er
ms
, 
in
t 
nu
mb
er
_o
f_
te
rm
s)
;

  
  
c_
to
po
te
rm
s(
in
t 
el
l_
mi
n_
va
lu
e,
 i
nt
 e
ll
_m
ax
_v
al
ue
, 
in
t 
ns
q_
mi
n_
va
lu
e,
 i
nt
 n
sq
_m
ax
_v
al
ue
);

  
  
vi
rt
ua
l
~c
_t
op
ot
er
ms
()
;

  
  
in
t
ge
ne
ra
te
_s
h(
un
si
gn
ed

in
t 
el
l_
mi
n 
= 
2,
 u
ns
ig
ne
d
in
t 
el
l_
ma
x 
= 
MA
X_
EL
L)
;

  
  
_C
om
pl
ex

do
ub
le
  
ge
ne
ra
te
_t
t(
)

  
  
{

  
  
  
  
re
tu
rn
 g
en
er
at
e_
tt
(m
_e
ll
mi
n,
 m
_e
ll
ma
x,
 m
_e
ll
mi
n,
 m
_e
ll
ma
x)
;

  
  
}

  
  
_C
om
pl
ex

do
ub
le
  
ge
ne
ra
te
_t
t(

un
si
gn
ed

in
t 

el
lm
in
,
un
si
gn
ed

in
t 

el
lm
ax
,
un
si
gn
ed

in
t 

el
ld
as
h_
mi
n,

un
si
gn
ed

in
t
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c_
to
po
te
rm
s.
h

el
ld
as
h_
ma
x,
 i
nt
 m
_t
es
t_
va
lu
e 
= 
-1
, 
in
t 
m_
da
sh
_t
es
t_
va
lu
e 
= 
-1
);

  
  
in
t
ge
t_
di
re
ct
io
n_
in
de
x(
in
t 
N1
, 
in
t 
N2
, 
in
t 
N3
)

  
  
{

  
  
  
  
re
tu
rn

m_
fi
rs
t_
fo
un
d_
di
re
ct
io
n_
n1
_n
2_
n3
[N
1 
+ 
MA
X_
NM
AX
][
N2
 +
 M
AX
_N
MA
X]
[N
3 
+ 
MA
X_
NM
AX
];

  
  
}

pr
ot
ec
te
d:

#i
fd
ef
 D
EB
UG

  
  
in
t
nu
mb
er
_o
f_
co
re
s 
= 
1;

#e
ls
e

  
  
in
t 
nu
mb
er
_o
f_
co
re
s 
= 
4;

#e
nd
if

  
 s
td
::
st
ri
ng

m_
to
po
lo
gy
_n
am
e;

  
  
co
ns
t
do
ub
le

m_
Pi
;

  
  
co
ns
t
un
si
gn
ed

in
t
m_
el
lm
in
;

  
  
co
ns
t
un
si
gn
ed

in
t
m_
el
lm
ax
;

  
  
co
ns
t
in
t
m_
ns
q_
mi
n;

  
  
co
ns
t
in
t
m_
ns
q_
ma
x;

  
  
in
t
m_
nn
sq
;

  
  
st
ru
ct

co
va
ma
tr
ix
_d
at
a_
t

  
  
{

  
  
  
  
do
ub
le

h;
  
  
  
  
do
ub
le

L;
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s.
h

  
  
  
  
do
ub
le

tr
an
sf
er
_f
un
ct
io
ns
_T
[M
AX
_E
LL
 +
 1
][
(M
AX
_N
MA

X 
* 
MA
X_
NM
AX
) 
+ 
1]
;

  
  
  
  
do
ub
le

tr
an
sf
er
_f
un
ct
io
ns
_E
[M
AX
_E
LL
 +
 1
][
(M
AX
_N
MA

X 
* 
MA
X_
NM
AX
) 
+ 
1]
;

  
  
  
  
do
ub
le

tr
an
sf
er
_f
un
ct
io
ns
_K
po
we
r[
(M
AX
_N
MA
X 
* 
MA
X_
NM
AX
) 
+ 
1]
;

  
  
  
  
_C
om
pl
ex

do
ub
le

TT
_c
ov
am
at
ri
x_
fo
r_
on
e_
el
l_
an
d_
it
s_
ms
[(
MA
X_
EL
L 
* 
2)
 +
 1
];

  
  
  
  
_C
om
pl
ex

do
ub
le

TE
_c
ov
am
at
ri
x_
fo
r_
on
e_
el
l_
an
d_
it
s_
ms
[(
MA
X_
EL
L 
* 
2)
 +
 1
];

  
  
  
  
_C
om
pl
ex

do
ub
le

EE
_c
ov
am
at
ri
x_
fo
r_
on
e_
el
l_
an
d_
it
s_
ms
[(
MA
X_
EL
L 
* 
2)
 +
 1
];

  
  
  
  
st
d:
:o
fs
tr
ea
m 
*T
T_
ou
tf
il
e 
= 
NU
LL
;

  
  
  
  
st
d:
:o
fs
tr
ea
m 
*T
E_
ou
tf
il
e 
= 
NU
LL
;

  
  
  
  
st
d:
:o
fs
tr
ea
m 
*E
E_
ou
tf
il
e 
= 
NU
LL
;

  
  
};

  
  
in
t
m_
nu
mb
er
_o
f_
h_
l_
te
rm
s 
= 
0;

co
va
ma
tr
ix
_d
at
a_
t 
* 
mp
_c
ov
am
at
ri
x_
da
ta
 =
 N
UL
L;

  
  
st
ru
ct

di
re
ct
io
n_
da
ta
_t

  
  
{

  
  
  
  
do
ub
le

th
et
a;

  
  
  
  
do
ub
le

ph
i;

  
  
  
  
do
ub
le

co
st
he
ta
;

  
  
  
  
_C
om
pl
ex

do
ub
le

ex
p1
;

  
  
  
  
in
t
ns
q;

  
  
  
  
in
t
N1
;

  
  
  
  
in
t
N2
;

  
  
  
  
in
t
N3
;

  
  
};

  
  
st
ru
ct

si
ng
le
_d
ir
ec
ti
on
_t

  
  
{

  
  
  
  
in
t
n1
;

  
  
  
  
in
t
n2
;

  
  
  
  
in
t
n3
;

  
  
};
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c_
to
po
te
rm
s.
h

  
  
st
ru
ct

ns
q_
an
d_
di
re
ct
io
ns
_t

  
  
{

  
  
  
  
in
t
ns
q;

  
  
  
  
in
t
nd
ir
ec
s;

  
  
  
  
st
ru
ct

si
ng
le
_d
ir
ec
ti
on
_t
 *
di
re
ct
io
n_
in
de
x_
li
st
;

  
  
};

  
  
en
um
 t
hr
ea
d_
ty
pe
_t

  
  
{

  
  
  
  
TH
_G
TT
, 
TH
_G
SH
, 
TH
_W
TT

  
  
}; st
ru
ct

st
ar
t_
th
re
ad
_d
at
a_
t

  
  
{

  
  
  
  
en
um
 t
hr
ea
d_
ty
pe
_t
 t
hr
ea
dt
yp
e;

  
  
  
  
c_
to
po
te
rm
s 
* 
ct
op
ot
er
ms
;

  
  
};

  
  
st
ru
ct

sp
he
ri
ca
l_
ta
sk
_d
at
a_
t:
 s
ta
rt
_t
hr
ea
d_
da
ta
_t

  
  
{

  
  
  
  
in
t 
*e
ll
;

  
  
  
  
in
t
el
l_
ma
x;

  
  
};

  
  
st
ru
ct

tt
_f
il
e_
wr
it
e_
ta
sk
_d
at
a_
t:
 s
ta
rt
_t
hr
ea
d_
da
ta
_t

  
  
{

  
  
  
  
st
d:
:o
fs
tr
ea
m 
*t
t_
ou
tf
il
e;

  
  
  
  
lo
ng

lo
ng

in
t
nu
mb
er
_o
f_
to
po
te
rm
s;

  
  
  
  
co
ns
t
_C
om
pl
ex

do
ub
le
 *
to
po
te
rm
s_
fo
r_
on
e_
el
l_
on
e_
m_
on
e_
el
ld
as
h_
al
l_
md
as
h;

  
  
};

  
  
st
ru
ct

to
po
te
rm
s_
ta
sk
_d
at
a_
t:
 s
ta
rt
_t
hr
ea
d_
da
ta
_t
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s.
h

  
  
{

  
  
  
  
in
t 
*m
da
sh
_c
ou
nt
;

  
  
  
  
in
t
el
l;

  
  
  
  
in
t
el
ld
as
h;

  
  
  
  
in
t
m;

  
  
  
  
in
t
m_
da
sh
; 
//
te
st
in
g 
on
ly

  
  
  
  
in
t
ta
sk
_n
um
be
r;

  
  
  
  
lo
ng

lo
ng

in
t
nu
mb
er
_o
f_
to
po
te
tm
s;

  
  
  
  
_C
om
pl
ex

do
ub
le

co
ns
t 

*o
ne
_e
ll
_o
ne
_m
_s
h_
fo
r_
un
iq
ue
_d
ir
ec
ti
on
s;

  
  
  
  
_C
om
pl
ex

do
ub
le

co
ns
t 

*o
ne
_e
ll
da
sh
_a
ll
_m
da
sh
_s
h_
fo
r_
un
iq
ue
_d
ir
ec
ti
on
s;

  
  
  
  
co
va
ma
tr
ix
_d
at
a_
t 
*t
ra
ns
fe
r_
fu
nc
ti
on
s;

  
  
  
  
co
va
ma
tr
ix
_t
 *
co
va
ma
tr
ix
;

in
t
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t;

  
  
};

pu
bl
ic
:

  
  
ty
pe
de
f
in
t
di
re
ct
io
n_
N1
_N
2_
N3
_t
[(
MA
X_
NM
AX
 *
 2
) 
+ 
1]
[(
MA
X_
NM
AX
 *
 2
) 
+ 
1]
[(
MA
X_
NM
AX
 *
 2
) 
+ 
1]
;

  
  
ty
pe
de
f
di
re
ct
io
n_
da
ta
_t

un
iq
ue
_d
ir
ec
ti
on
s_
li
st
_t

[(
(M
AX
_N
MA
X 
* 
2)
 +
 1
) 
* 
((
MA
X_
NM
AX
 *
 2
) 
+ 
1)
 *
 (
(M
AX
_N
MA
X 
* 
2)
 +
 

1)
];

  
  
ty
pe
de
f
ns
q_
an
d_
di
re
ct
io
ns
_t

ns
q_
an
d_
di
re
ct
io
ns
_l
is
t_
t[
MA
X_
NM
AX
 *
 M
AX
_N
MA
X 
* 
MA
X_
NM
AX
];

pr
ot
ec
te
d:

  
  
in
t
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t;

  
  
un
iq
ue
_d
ir
ec
ti
on
s_
li
st
_t
 &
un
iq
ue
_d
ir
ec
ti
on
s_
li
st
;

  
  
ns
q_
an
d_
di
re
ct
io
ns
_l
is
t_
t 
&n
sq
_a
nd
_d
ir
ec
ti
on
s_
li
st
;

  
  
di
re
ct
io
n_
N1
_N
2_
N3
_t
 &
m_
fi
rs
t_
fo
un
d_
di
re
ct
io
n_
n1
_n
2_
n3
;

  
  
pt
hr
ea
d_
mu
te
x_
t
lo
ck
_e
ll
;

  
  
pt
hr
ea
d_
mu
te
x_
t
lo
ck
_m
da
sh
_c
ou
nt
;
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c_
to
po
te
rm
s.
h

pu
bl
ic
:

  
  
in
t
ge
t_
un
iq
ue
_d
ir
ec
ti
on
s_
li
st
(c
on
st

un
iq
ue
_d
ir
ec
ti
on
s_
li
st
_t
**
 u
ni
qu
e_
di
re
ct
io
ns
)

  
  
{ 
  
*u
ni
qu
e_
di
re
ct
io
ns
 =
 &
un
iq
ue
_d
ir
ec
ti
on
s_
li
st
;

  
  
  
  
re
tu
rn

un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t;

  
  
}

pr
ot
ec
te
d:

  
  
vi
rt
ua
l
vo
id

ca
lc
ul
at
e_
to
po
te
rm
s(
to
po
te
rm
s_
ta
sk
_d
at
a_
t 
&t
t_
da
ta
);

  
  
vo
id

wr
it
e_
tt
_f
il
e_
th
re
ad
(t
t_
fi
le
_w
ri
te
_t
as
k_
da
ta
_t
 &
tf
w_
ta
sk
_d
at
a)
;

  
  
vo
id

ca
lc
ul
at
e_
sp
he
ri
ca
l_
ha
rm
on
ic
s(
sp
he
ri
ca
l_
ta
sk
_d
at
a_
t 
&s
ph
_d
at
a)
;

  
  
vo
id

fi
nd
_r
at
io
(i
nt
 &
n1
, 
in
t 
&n
2,
 i
nt
 &
n3
);

  
  
in
t
fi
nd
_n
sq
_d
ir
ec
ti
on
s(
in
t 
ns
q,
 s
tr
uc
t
si
ng
le
_d
ir
ec
ti
on
_t
  
**
 d
ir
ec
ti
on
_i
nd
ex
_l
is
t)
;

in
t
fi
nd
_a
ll
_n
sq
()
;

  
  
st
at
ic

vo
id
 *
 s
ta
rt
_t
hr
ea
d(
vo
id
 *
ar
g)
;

}; #e
nd
if

/*
 C
_T
OP
OT
ER
MS
_H
_ 
*/
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s.
cp
p

#i
nc
lu
de

"c
_t
op
ot
er
ms
.h
"

us
in
g
na
me
sp
ac
e 

st
d;

c_
to
po
te
rm
s:
:c
_t
op
ot
er
ms
(i
nt
 e
ll
_m
in
_v
al
ue
, 
in
t 
el
l_
ma
x_
va
lu
e,
 i
nt
 n
sq
_m
in
_v
al
ue
, 
in
t 
ns
q_
ma
x_
va
lu
e)
 :

  
  
  
  
m_
Pi
(a
co
s(
-1
.0
))
, 
m_
el
lm
in
(e
ll
_m
in
_v
al
ue
),
 m
_e
ll
ma
x(
el
l_
ma
x_
va
lu
e)
, 
m_
ns
q_
mi
n(
ns
q_
mi
n_
va
lu
e)
, 
m_
ns
q_
ma
x

(n
sq
_m
ax
_v
al
ue
),

  
  
  
  
//
th
is
 l
is
t 
wi
ll
 h
ol
d 
al
l 
th
e 
un
iq
ue
 d
ir
ec
ti
on
s 
an
d 
th
ei
r 
as
so
ci
at
ed
 d
at
a.

  
  
  
  
un
iq
ue
_d
ir
ec
ti
on
s_
li
st
(*
(u
ni
qu
e_
di
re
ct
io
ns
_l
is
t_
t 
*)
 n
ew

un
iq
ue
_d
ir
ec
ti
on
s_
li
st
_t
),

  
  
  
  
//
th
is
 l
is
t 
wi
ll
 h
ol
d 
al
l 
th
e 
ns
q 
va
lu
es
 a
nd
 a
 l
is
t 
of
 d
ir
ec
ti
on
 i
nd
ex
es
 f
or
 e
ac
h 
ns
q.
  
Th
e 
in
de
xe
s 
in
de
x 
in
to
 

th
e

  
  
  
  
//
un
iq
ue
_d
ir
ec
ti
on
s 
li
st
 t
o 
pr
ov
id
e 
th
e 
ac
tu
al
 d
ir
ec
ti
on
 i
nf
or
ma
ti
on
.

  
  
  
  
ns
q_
an
d_
di
re
ct
io
ns
_l
is
t(
*(
ns
q_
an
d_
di
re
ct
io
ns
_l
is
t_
t*
) 
ne
w
ns
q_
an
d_
di
re
ct
io
ns
_l
is
t_
t)
, 

m_
fi
rs
t_
fo
un
d_
di
re
ct
io
n_
n1
_n
2_
n3
(

  
  
  
  
  
  
  
  
*(
di
re
ct
io
n_
N1
_N
2_
N3
_t
 *
) 
ne
w
di
re
ct
io
n_
N1
_N
2_
N3
_t
)

{   
  
m_
to
po
lo
gy
_n
am
e 
= 
"t
op
ol
og
y1
";

  
  
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t 

= 
0;

  
  
m_
nn
sq
 =
 f
in
d_
al
l_
ns
q(
);

} c_
to
po
te
rm
s:
:~
c_
to
po
te
rm
s(
)

{   
  
de
le
te

un
iq
ue
_d
ir
ec
ti
on
s_
li
st
;

  
  
de
le
te

m_
fi
rs
t_
fo
un
d_
di
re
ct
io
n_
n1
_n
2_
n3
;

  
  
fo
r 
(i
nt
 i
 =
 0
; 
i 
< 
m_
nn
sq
; 
i+
+)

  
  
{

  
  
  
  
de
le
te

ns
q_
an
d_
di
re
ct
io
ns
_l
is
t[
i]
.d
ir
ec
ti
on
_i
nd
ex
_l
is
t;

  
  
}
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c_
to
po
te
rm
s.
cp
p

  
  
if
 (
mp
_c
ov
am
at
ri
x_
da
ta
 !
= 
NU
LL
)

  
  
{

  
  
  
  
fo
r 
(i
nt
 T
F_
in
de
x 
= 
0;
 T
F_
in
de
x 
< 
m_
nu
mb
er
_o
f_
h_
l_
te
rm
s;
 T
F_
in
de
x+
+)

  
  
  
  
{

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
if
 (
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.T
T_
ou
tf
il
e 
!=
 N
UL
L)

  
  
  
  
  
  
  
  
  
  
de
le
te

mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.T
T_
ou
tf
il
e;

  
  
  
  
  
  
  
  
if
 (
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.T
E_
ou
tf
il
e 
!=
 N
UL
L)

  
  
  
  
  
  
  
  
  
  
de
le
te

mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.T
E_
ou
tf
il
e;

  
  
  
  
  
  
  
  
if
 (
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.E
E_
ou
tf
il
e 
!=
 N
UL
L)

  
  
  
  
  
  
  
  
  
  
de
le
te

mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.E
E_
ou
tf
il
e;

  
  
  
  
  
  
}

  
  
  
  
}

  
  
  
  
de
le
te

mp
_c
ov
am
at
ri
x_
da
ta
;

  
  
}

  
  
de
le
te

ns
q_
an
d_
di
re
ct
io
ns
_l
is
t;

} //
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

//
 F
in
d 
ns
q_
li
st
 -
 a
ll
 p
os
si
bl
e 
va
lu
es
 o
f 
n^
2 
<=
 n
ma
x^

2
//
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

in
t
c_
to
po
te
rm
s:
:f
in
d_
al
l_
ns
q(
)

{   
  
co
ns
t
in
t 
m_
nm
ax
= 
 s
qr
t(
m_
ns
q_
ma
x)
 ;

  
  
in
t 
To
ta
lD
ir
ec
ti
on
s 
= 
0;

  
  
in
t 
nn
sq
 =
 0
;

  
  
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t 

= 
0;
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s.
cp
p

  
  
//
th
is
 t
hr
ee
 d
im
en
si
on
al
 a
rr
ay

 i
s 
a 
qu
ic
k 
wa
y 
to
 m
ar
k 
al
l 
di
re
ct
io
ns
 t
ha
t 
ha
ve
 a
lr
ea
dy
 b
ee
n 
fo
un
d 
wi
th
 t
he

  
  
//
in
de
x 
in
 t
he
 l
is
t 
of
 u
ni
qu
e 
di
re
ct
io
ns
 (
de
fi
ne
d 
ab
ov
e)
, 
wh
er
e 
th
ey
 w
er
e 
fi
rs
t 
fo
un
d;
.

  
  
//
se
t 
al
l 
en
tr
ie
s 
to
 -
1 
to
 i
nd
ic
at
e 
th
ey
 a
re
 u
nu
se
d.

  
  
me
ms
et
(m
_f
ir
st
_f
ou
nd
_d
ir
ec
ti
on
_n
1_
n2
_n
3,
 0
xf
f,
 s
iz
eo
f(
di
re
ct
io
n_
N1
_N
2_
N3
_t
))
;

  
  
fo
r 
(i
nt
 n
1 
= 
0;
 n
1 
<=
 m
_n
ma
x;
 n
1+
+)

  
  
{

  
  
  
  
fo
r 
(i
nt
 n
2 
= 
n1
; 
n2
 <
= 
m_
nm
ax
; 
n2
++
)

  
  
  
  
{

  
  
  
  
  
  
fo
r 
(i
nt
 n
3 
= 
n2
; 
n3
 <
= 
m_
nm
ax
; 
n3
++
)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
in
t 
ns
q 
= 
n1
 *
 n
1 
+ 
n2
 *
 n
2 
+ 
n3
 *
 n
3;

if
 (
ns
q 
>=
 m
_n
sq
_m
in
 &
& 
ns
q 
<=
 m
_n
sq
_m
ax
 &
& 
ns
q 
!=
 0
)

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
//
 C
he
ck
 t
ha
t 
ns
q 
do
es
 n
ot
 a
lr
ea
dy
 e
xi
st
 i
n 
ns
q_
li
st
 b
ef
or
e 
ad
di
ng
 t
o 
li
st

  
  
  
  
  
  
  
  
  
  
in
t 
jj
;

  
  
  
  
  
  
  
  
  
  
fo
r 
(j
j 
= 
0;
 j
j 
< 
nn
sq
; 
jj
++
)

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
if
 (
ns
q 
==
 n
sq
_a
nd
_d
ir
ec
ti
on
s_
li
st
[j
j]
.n
sq
)

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
br
ea
k;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
if
 (
jj
 =
= 
nn
sq
)

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
ns
q_
an
d_
di
re
ct
io
ns
_l
is
t[
nn
sq
].
ns
q 
= 
ns
q;

  
  
  
  
  
  
  
  
  
  
  
  
ns
q_
an
d_
di
re
ct
io
ns
_l
is
t[
nn
sq
].
nd
ir
ec
s 
= 
fi
nd
_n
sq
_d
ir
ec
ti
on
s(
ns
q,
 &
(n
sq
_a
nd
_d
ir
ec
ti
on
s_
li
st

[n
ns
q]
.d
ir
ec
ti
on
_i
nd
ex
_l
is
t)
);

  
  
  
  
  
  
  
  
  
  
  
  
To
ta
lD
ir
ec
ti
on
s 
+=
 n
sq
_a
nd
_d
ir
ec
ti
on
s_
li
st
[n
ns
q]
.n
di
re
cs
;

  
  
  
  
  
  
  
  
  
  
  
  
nn
sq
++
;

  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
}
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c_
to
po
te
rm
s.
cp
p

  
  
  
  
  
  
}

  
  
  
  
}

  
  
}

  
  
co
ut
 <
< 
"n
um
be
r 
of
 n
sq
 =
 "
 <
< 
nn
sq
 <
< 
" 
to
ta
l 
Di
re
ct
io
ns
 =
 "
 <
< 
To
ta
lD
ir
ec
ti
on
s 
<<
 "
 U
ni
qu
e 
Di
re
ct
io
ns
 =
 "
 <
< 

un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t 
<<
 e
nd
l;

  
  
re
tu
rn
 n
ns
q;

} //
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

//
 F
un
ct
io
n 
to
 f
in
d 
di
re
ct
io
ns
 (
n1
,n
2,
n3
) 
fo
r 
gi
ve
n 
n 
wh
er
e 
0<
=n
1<
=n
2<
=n
3

//
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

in
t
c_
to
po
te
rm
s:
:f
in
d_
ns
q_
di
re
ct
io
ns
(i
nt
 n
sq
, 
st
ru
ct

si
ng
le
_d
ir
ec
ti
on
_t
 *
* 
di
re
ct
io
n_
in
de
x_
li
st
)

{   
  
//
fo
r 
ns
q 
we
 w
il
l 
ad
d 
an
y 
un
iq
ue
 d
ir
ec
ti
on
 f
ou
nd
 t
o 
th
e 
'd
ir
ec
ti
on
s_
li
st
' 
an
d 
up
da
te
 t
he
 '
di
re
ct
io
n_
li
st
_c
ou
nt
'.

  
  
//
we
 w
il
l 
al
so
 r
et
ur
n 
a 
li
st
 o
f 
in
de
xe
s 
in
to
 t
he
 '
di
re
ct
io
ns
_l
is
t'
 t
o 
gi
ve
 a
 c
om
pl
et
e 
li
st
 o
f 
di
re
ct
io
n 
fo
r 
ns
q.

  
  
in
t 
nu
mb
er
_o
f_
di
re
ct
io
ns
_i
nd
ex
es
 =
 0
;

  
  
//
As
 w
e 
do
n'
t 
kn
ow
 t
he
 n
um
be
r 
of
 d
ir
ec
ti
on
s 
th
at
 w
il
l 
be
 f
ou
nd
 w
e 
wi
ll
 m
ak
e 
th
is
 b
uf
fe
r 
fa
r 
to
o 
bi
g.

  
  
//
 W
e 
wi
ll
 w
il
l 
cr
ea
te
 a
 b
uf
fe
r 
of
 t
he
 c
or
re
ct
 s
iz
e 
be
fo
re
 a

ss
ig
ni
ng
 i
t 
to
 t
he
 d
ir
ec
ti
on
_i
nd
ex

_l
is
t 
po
in
te
r

  
  
st
ru
ct

si
ng
le
_d
ir
ec
ti
on
_t
 *
te
mp
_d
ir
ec
ti
on
_i
nd
ex
_l
is
t 
= 
ne
w
st
ru
ct

si
ng
le
_d
ir
ec
ti
on
_t
[(
((
(u
ns
ig
ne
d
in
t)
(s
qr
t

(m
_n
sq
_m
ax
) 
+1
)*
 2
) 
+ 
1)
 *
 (
(u
ns
ig
ne
d
in
t)
(s
qr
t(
(m
_n
sq
_m
ax
) 
+1
) 
* 
2)
 +
 1
))
 *
 2
];

  
  
fo
r 
(i
nt
 n
1 
= 
-s
qr
t(
ns
q)
; 
n1
 <
= 
sq
rt
(n
sq
);
 n
1+
+)

  
  
{

  
  
  
  
fo
r 
(i
nt
 n
2 
= 
-s
qr
t(
ns
q 
- 
n1
 *
 n
1)
; 
n2
 <
= 
sq
rt
(n
sq
 -
 n
1 
* 
n1
);
 n
2+
+)

  
  
  
  
{

  
  
  
  
  
  
in
t 
n3
 =
 s
qr
t(
ns
q 
- 
n1
 *
 n
1 
- 
n2
 *
 n
2)
;

  
  
  
  
  
  
if
 (
n1
 *
 n
1 
+ 
n2
 *
 n
2 
+ 
n3
 *
 n
3 
==
 n
sq
)
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s.
cp
p

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
fo
r 
(i
nt
 l
oo
p_
in
de
x 
= 
0;
 l
oo
p_
in
de
x 
< 
2;
 l
oo
p_
in
de
x+
+)

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
//
ad
d 
th
e 
ne
w 
di
re
ct
io
n 
to
 t
he
 l
is
t 
if
 d
ir
ec
ti
on
 f
or
 t
he
 c

ur
re
nt
 n
sq

  
  
  
  
  
  
  
  
  
  
te
mp
_d
ir
ec
ti
on
_i
nd
ex
_l
is
t[
nu
mb
er
_o
f_
di
re
ct
io
ns
_i
nd
ex
es
].
n1
 =
 n
1;

  
  
  
  
  
  
  
  
  
  
te
mp
_d
ir
ec
ti
on
_i
nd
ex
_l
is
t[
nu
mb
er
_o
f_
di
re
ct
io
ns
_i
nd
ex
es
].
n2
 =
 n
2;

  
  
  
  
  
  
  
  
  
  
te
mp
_d
ir
ec
ti
on
_i
nd
ex
_l
is
t[
nu
mb
er
_o
f_
di
re
ct
io
ns
_i
nd
ex
es
++
].
n3
 =
 n
3;

  
  
  
  
  
  
  
  
  
  
in
t 
N1
 =
 n
1;

  
  
  
  
  
  
  
  
  
  
in
t 
N2
 =
 n
2;

  
  
  
  
  
  
  
  
  
  
in
t 
N3
 =
 n
3;

  
  
  
  
  
  
  
  
  
  
fi
nd
_r
at
io
(N
1,
 N
2,
 N
3)
;

  
  
  
  
  
  
  
  
  
  
//
ch
ec
k 
to
 s
ee
 i
f 
th
e 
di
re
ct
io
n 
is
 a
lr
ea
dy
 i
n 
th
e 
li
st
 a
nd
 i
f 
so
 j
us
t 
re
gi
st
er
 a
n 
in
de
x 
to
 i
t

  
  
  
  
  
  
  
  
  
  
//
ot
he
rw
is
e 
ad
d 
th
e 
di
re
ct
io
n 
to
 t
he
 l
is
t 
an
d 
ad
d 
re
gi
st
er
 i
ts
 i
nd
ex
.

  
  
  
  
  
  
  
  
  
  
if
 (
m_
fi
rs
t_
fo
un
d_
di
re
ct
io
n_
n1
_n
2_
n3
[N
1 
+ 
MA
X_
NM
AX
][
N2
 +
 M
AX
_N
MA
X]
[N
3 
+ 
MA
X_
NM
AX
] 
!=
 -
1)

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
m_
fi
rs
t_
fo
un
d_
di
re
ct
io
n_
n1
_n
2_
n3
[n
1 
+ 
MA
X_
NM
AX
][
n2
 +
 M
AX
_N
MA
X]
[n
3 
+ 
MA
X_
NM
AX
] 
=

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
m_
fi
rs
t_
fo
un
d_
di
re
ct
io
n_
n1
_n
2_
n3
[N
1 
+ 
MA
X_
NM
AX
][
N2
 +
 M
AX
_N
MA
X]
[N
3 
+ 
MA
X_
NM
AX
];

  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
el
se

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
un
iq
ue
_d
ir
ec
ti
on
s_
li
st
[u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
].
ns
q 
= 
ns
q;

  
  
  
  
  
  
  
  
  
  
  
  
un
iq
ue
_d
ir
ec
ti
on
s_
li
st
[u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
].
N1
 =
 N
1;

  
  
  
  
  
  
  
  
  
  
  
  
un
iq
ue
_d
ir
ec
ti
on
s_
li
st
[u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
].
N2
 =
 N
2;

  
  
  
  
  
  
  
  
  
  
  
  
un
iq
ue
_d
ir
ec
ti
on
s_
li
st
[u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
].
N3
 =
 N
3;

  
  
  
  
  
  
  
  
  
  
  
  
un
iq
ue
_d
ir
ec
ti
on
s_
li
st
[u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
].
th
et
a 
= 
at
an
2(
sq
rt
(n
1 
* 
n1
 +
 n
2 
* 
n2
),
 n
3)
;

  
  
  
  
  
  
  
  
  
  
  
  
if
 (
un
iq
ue
_d
ir
ec
ti
on
s_
li
st
[u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
].
th
et
a 
==
 0
 |
| 
un
iq
ue
_d
ir
ec
ti
on
s_
li
st

[u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
].
th
et
a 
==
 m
_P
i)

  
  
  
  
  
  
  
  
  
  
  
  
{
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c_
to
po
te
rm
s.
cp
p

  
  
  
  
  
  
  
  
  
  
  
  
  
  
un
iq
ue
_d
ir
ec
ti
on
s_
li
st
[u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
].
ph
i 
= 
0.
0;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
el
se

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
un
iq
ue
_d
ir
ec
ti
on
s_
li
st
[u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
].
ph
i 
= 
at
an
2(
(d
ou
bl
e)
n2
, 
(d
ou
bl
e)
n1
) 
+ 

m_
Pi
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
un
iq
ue
_d
ir
ec
ti
on
s_
li
st
[u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
].
co
st
he
ta
 =
 c
os
(u
ni
qu
e_
di
re
ct
io
ns
_l
is
t

[u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
].
th
et
a)
;

  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 u
ni
qu
e_
di
re
ct
io
ns
_l
is
t[
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t]
.e
xp
1 
= 
co
s(
un
iq
ue
_d
ir
ec
ti
on
s_
li
st

[u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
].
ph
i)
;

  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 u
ni
qu
e_
di
re
ct
io
ns
_l
is
t[
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t]
.e
xp
1 
= 
si
n(
un
iq
ue
_d
ir
ec
ti
on
s_
li
st

[u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
].
ph
i)
;

  
  
  
  
  
  
  
  
  
  
  
  
m_
fi
rs
t_
fo
un
d_
di
re
ct
io
n_
n1
_n
2_
n3
[N
1 
+ 
MA
X_
NM
AX
][
N2
 +
 M
AX
_N
MA
X]
[N
3 
+ 
MA
X_
NM
AX
] 
= 

un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t;

  
  
  
  
  
  
  
  
  
  
  
  
m_
fi
rs
t_
fo
un
d_
di
re
ct
io
n_
n1
_n
2_
n3
[n
1 
+ 
MA
X_
NM
AX
][
n2
 +
 M
AX
_N
MA
X]
[n
3 
+ 
MA
X_
NM
AX
] 
= 

un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t+
+;

  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
if
 (
n3
 =
= 
0)

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
br
ea
k;

  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
n3
 =
 -
n3
;

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
}

  
  
  
  
}

  
  
}
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s.
cp
p

  
  
st
ru
ct

si
ng
le
_d
ir
ec
ti
on
_t
 *
re
tu
rn
_b
uf
fe
r 
= 
ne
w
st
ru
ct

si
ng
le
_d
ir
ec
ti
on
_t
[n
um
be
r_
of
_d
ir
ec
ti
on
s_
in
de
xe
s]
;

  
  
me
mc
py
(r
et
ur
n_
bu
ff
er
, 
te
mp
_d
ir
ec
ti
on
_i
nd
ex
_l
is
t,
 s
iz
eo
f(
st
ru
ct

si
ng
le
_d
ir
ec
ti
on
_t
) 
* 
nu
mb
er
_o
f_
di
re
ct
io
ns
_i
nd
ex
es
);

  
  
de
le
te
 t
em
p_
di
re
ct
io
n_
in
de
x_
li
st
;

  
  
*d
ir
ec
ti
on
_i
nd
ex
_l
is
t 
= 
re
tu
rn
_b
uf
fe
r;

  
  
re
tu
rn
 n
um
be
r_
of
_d
ir
ec
ti
on
s_
in
de
xe
s;

} //
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

//
 F
un
ct
io
n 
to
 f
in
d 
sm
al
le
st
 v
al
ue
s 
of
 (
N1
,N
2,
N3
) 
wi
th
 s
am
e 
ra
ti
o 
as
 (
n1
,n
2,
n3
)

//
 w
he
re
 0
<=
n1
<=
n2
<=
n3

vo
id

c_
to
po
te
rm
s:
:f
in
d_
ra
ti
o(
in
t 
&n
1,
 i
nt
 &
n2
, 
in
t 
&n
3)

{   
  
//
 A
ss
ig
n 
n1
, 
n2
, 
n3
 t
o 
na
, 
nb
, 
nc
 w
he
re
 n
a<
=n
b<
=n
c

  
  
in
t 
na
, 
nb
, 
nc
;

  
  
in
t 
ab
s_
n1
 =
 a
bs
(n
1)
;

  
  
in
t 
ab
s_
n2
 =
 a
bs
(n
2)
;

  
  
in
t 
ab
s_
n3
 =
 a
bs
(n
3)
;

  
  
if
 (
ab
s_
n3
 >
= 
ab
s_
n2
 &
& 
ab
s_
n3
 >
= 
ab
s_
n1
)

  
  
{

  
  
  
  
na
 =
 n
3;

  
  
  
  
if
 (
ab
s_
n2
 >
= 
ab
s_
n1
)

  
  
  
  
{

  
  
  
  
  
  
nb
 =
 n
2;

  
  
  
  
  
  
nc
 =
 n
1;

  
  
  
  
}

  
  
  
  
el
se

  
  
  
  
{
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c_
to
po
te
rm
s.
cp
p

  
  
  
  
  
  
nb
 =
 n
1;

  
  
  
  
  
  
nc
 =
 n
2;

  
  
  
  
}

  
  
}

  
  
el
se

if
 (
ab
s_
n3
 >
= 
ab
s_
n2
)

  
  
{

  
  
  
  
na
 =
 n
1;

  
  
  
  
nb
 =
 n
3;

  
  
  
  
nc
 =
 n
2;

  
  
}

  
  
el
se

if
 (
ab
s_
n3
 >
= 
ab
s_
n1
)

  
  
{

  
  
  
  
na
 =
 n
2;

  
  
  
  
nb
 =
 n
3;

  
  
  
  
nc
 =
 n
1;

  
  
}

  
  
el
se

  
  
{

  
  
  
  
nc
 =
 n
3;

  
  
  
  
if
 (
ab
s_
n2
 >
= 
ab
s_
n1
)

  
  
  
  
{

  
  
  
  
  
  
na
 =
 n
2;

  
  
  
  
  
  
nb
 =
 n
1;

  
  
  
  
}

  
  
  
  
el
se

  
  
  
  
{

  
  
  
  
  
  
na
 =
 n
1;

  
  
  
  
  
  
nb
 =
 n
2;

  
  
  
  
}

  
  
}

  
  
//
 F
in
d 
hi
gh
es
t 
co
mm
on
 f
ac
to
r 
d 
of
 n
a,
 n
b,
 n
c
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s.
cp
p

  
  
in
t 
d 
= 
99
;

  
  
in
t 
te
st
d;

  
  
in
t 
ab
s_
na
 =
 a
bs
(n
a)
;

  
  
in
t 
ab
s_
nb
 =
 a
bs
(n
b)
;

  
  
in
t 
ab
s_
nc
 =
 a
bs
(n
c)
;

  
  
os
tr
in
gs
tr
ea
m 
sp
h_
fi
le
_n
am
e;

  
  
st
ri
ng
 e
mp
ty
_s
tr
;

  
  
of
st
re
am
 o
ut
fi
le
;

  
  
if
 (
na
 =
= 
0)

  
  
{

  
  
  
  
if
 (
nb
 =
= 
0)

  
  
  
  
{

if
 (
nc
 =
= 
0)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
d 
= 
1;

  
  
  
  
  
  
}

  
  
  
  
  
  
el
se

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
d 
= 
ab
s_
nc
;

  
  
  
  
  
  
}

  
  
  
  
}

  
  
  
  
el
se

  
  
  
  
{

  
  
  
  
  
  
fo
r 
(t
es
td
 =
 a
bs
_n
b;
 t
es
td
 >
= 
1;
 t
es
td
--
)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
if
 (
((
ab
s_
nb
 %
 t
es
td
) 
==
 0
) 
&&
 (
(a
bs
_n
c 
% 
te
st
d)
 =
= 
0)
)

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
d 
= 
te
st
d;

  
  
  
  
  
  
  
  
  
  
br
ea
k;

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
}

  
  
  
  
}
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c_
to
po
te
rm
s.
cp
p

  
  
}

  
  
el
se

  
  
{

  
  
  
  
fo
r 
(t
es
td
 =
 a
bs
_n
a;
 t
es
td
 >
= 
1;
 t
es
td
--
)

  
  
  
  
{

  
  
  
  
  
  
if
 (
((
ab
s_
na
 %
 t
es
td
) 
==
 0
) 
&&
 (
(a
bs
_n
b 
% 
te
st
d)
 =
= 
0)
 &
& 
((
ab
s_
nc
 %
 t
es
td
) 
==
 0
))

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
d 
= 
te
st
d;

  
  
  
  
  
  
  
  
br
ea
k;

  
  
  
  
  
  
}

  
  
  
  
}

  
  
}

  
  
//
 F
in
d 
N1
, 
N2
, 
N3

  
  
n1
 =
 n
1 
/ 
d;

  
  
n2
 =
 n
2 
/ 
d;

  
  
n3
 =
 n
3 
/ 
d;

} //
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

--
--
--
--
--
--

//
  
te
st
 t
o 
se
e 
if
 a
ll
 t
op
ot
er
ms
 c
an
 b
e 
ge
ne
ra
te
d 
if
(T
T_
Nu
mb
er
 =
 1
)

//
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

--
--
--
--
--
--

_C
om
pl
ex

do
ub
le

c_
to
po
te
rm
s:
:g
en
er
at
e_
tt
(u
ns
ig
ne
d
in
t 
el
lm
in
, 
un
si
gn
ed

in
t 
el
lm
ax
, 
un
si
gn
ed

in
t 
el
ld
as
h_
mi
n,
 u
ns
ig
ne
d

in
t 
el
ld
as
h_
ma
x,
 i
nt
 m
_t
es
t_
va
lu
e,
 i
nt
 m
_d
as
h_
te
st
_v
al
ue
)

{   
  
pt
hr
ea
d_
t 
th
r[
nu
mb
er
_o
f_
co
re
s]
;

  
  
os
tr
in
gs
tr
ea
m 
on
e_
el
l_
al
l_
m_
sh
_f
il
e_
na
me
;

  
  
st
ri
ng
 e
mp
ty
_s
tr
;

  
  
if
st
re
am
 o
ne
_e
ll
_a
ll
_m
_s
h_
in
fi
le
;
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s.
cp
p

  
  
in
t 
md
as
h_
st
ar
t_
co
un
t 
= 
0;

  
  
lo
ng

lo
ng
 t
ot
al
_n
um
be
r_
of
_t
op
ot
er
ms
 =
 0
;

  
  
os
tr
in
gs
tr
ea
m 
tt
_f
il
e_
na
me
;

  
  
of
st
re
am
 t
t_
ou
tf
il
e;

  
  
to
po
te
rm
s_
ta
sk
_d
at
a_
t 
tt
_t
as
k_
da
ta
[4
];

#i
f 
de
fi
ne
d(
 T
ES
TI
NG
_T
T)
 |
| 
de
fi
ne
d(
TE
ST
IN
G_
CM
)

  
  
//
wh
en
 t
es
ti
ng
 t
op
ot
er
m  
or
 c
ov
ar
ma
tr
ix
 d
at
a 
we
 o
nl
y 
do
 i
t 
fo
r 
on
e 
va
lu
e 
of
 e
ll
, 
el
l_
da
sh
, 
m 
an
d 
m_
da
sh

  
  
el
lm
ax
 =
 e
ll
mi
n;

  
  
el
ld
as
h_
ma
x 
= 
el
ld
as
h_
mi
n;

  
  
if
 (
m_
te
st
_v
al
ue
 =
= 
-1
)

  
  
{

  
  
  
  
m_
te
st
_v
al
ue
 =
 0
;

  
  
}

  
  
if
 (
m_
da
sh
_t
es
t_
va
lu
e 
==
 -
1)

  
  
{

  
  
  
  
m_
da
sh
_t
es
t_
va
lu
e 
= 
0;

  
  
}

#e
ls
e

  
  
//
no
rm
al
ly
 w
he
n 
no
t 
in
 t
es
t 
mo
de
 w
e 
ge
ne
ra
te
 a
ll
 t
he
 a
ss
oc
ia
te
d 
to
po
te
ms

 f
or
 e
ll
 =
 0
 t
o 
MA
X_
EL
L 
an
d 
el
ld
as
h 
= 
0 
to
 

MA
X_
EL
L.

  
  
//
it
 i
s 
po
ss
ib
le
 t
o 
sp
ec
if
y 
th
e 
ra
ng
es
 f
or
 e
ll
 a
nd
 e
ll
da
sh
, 
th
e 
ra
ng
es
 f
or
 m
 a
nd
 m
_d
as
h 
wi
ll
 a
lw
ay
s 
be
 s
et
 t
o 

ma
xi
mu
m

  
  
//
Ho
we
ve
r 
th
e 
si
ze
 o
f 
th
e 
co
va
rm
at
ri
x 
ou
tp
ut
 f
il
e 
wi
ll
 a
lw
ay
s 
be
 [
MA
X_
EL
L 
+1
 ]
[(
MA
X_
EL
L 
* 
2)
 +
1]
[M
AX
_E
LL
 +
1 
]

[(
MA
X_
EL
L 
* 
2)
 +
1]

  
  
//
wh
er
e 
th
e 
in
de
xe
s 
ar
e 
el
l,
 m
, 
el
l_
da
sh
 a
nd
 m
 d
as
h.
  
Lo
ca
ti
on
s 
th
at
 d
o 
no
t 
li

e 
wi
th
in
 t
he
 c
al
cu
la
te
d 
ra
ng
e 
wi
ll
 b
e 

un
sp
ec
if
ie
d

  
  
m_
te
st
_v
al
ue
 =
 -
1;

  
  
if
 (
mp
_c
ov
am
at
ri
x_
da
ta
 =
= 
NU
LL
)

  
  
{

  
  
  
  
co
ut
 <
< 
"n
o 
h 
an
d 
L 
te
rm
s 
se
t 
" 
<<
 _
_F
IL
E_
_ 
<<
 "
 l
in
e 
" 
<<
 _
_L
IN
E_
_ 
<<
 "
\n
";

  
  
  
  
re
tu
rn
 (
0 
+ 
0i
);

Pa
ge
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1
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c_
to
po
te
rm
s.
cp
p

  
  
}

#e
nd
if

  
  
if
 (
(e
ll
mi
n 
< 
m_
el
lm
in
) 
||
 (
el
ld
as
h_
mi
n 
< 
m_
el
lm
in
) 
||
 (
el
lm
ax
 >
 m
_e
ll
ma
x)
 |
| 
(e
ll
da
sh
_m
ax
 >
 m
_e
ll
ma
x)
)

  
  
{

  
  
  
  
co
ut
 <
< 
"b
ad
 a
rg
um
en
ts
 f
or
 '
_C

om
pl
ex
 d
ou
bl
e 
c_
to
po
te
rm
s:
:g
en
er
at
e_
tt
(i
nt

el
lm
in
, 
in
t
el
lm
ax
, 
in
t 
el
ld
as
h_
mi
n,
 

in
t 
el
ld
as
h_
ma
x,
 i
nt
 m
_t
es
t_
va
lu
e)
' 
"

  
  
  
  
  
  
  
  
<<
 e
nd
l;

  
  
  
  
re
tu
rn
 (
0 
+ 
0i
);

  
  
}

  
  
em
pt
y_
st
r 
= 
""
;

  
  
{

  
  
  
  
st
ri
ng
 e
mp
ty
_s
tr
;

  
  
  
  
os
tr
in
gs
tr
ea
m 
tf
fi
le
na
me
;

  
  
  
  
if
st
re
am
 i
nf
il
e;

  
  
  
  
do
ub
le
 d
um
p;

  
  
  
  
fo
r 
(i
nt
 T
F_
in
de
x 
= 
0;
 T
F_
in
de
x 
< 
m_
nu
mb
er
_o
f_
h_
l_
te
rm
s;
 T
F_
in
de
x+
+)

  
  
  
  
{

#i
f
no
t 
de
fi
ne
d(
 T
ES
TI
NG
_T
T)
 &
& 
no
t 
de
fi
ne
d(
TE
ST
IN
G_
CM
)

  
  
  
  

//
ch
ec
k 
to
 s
ee
 i
f 
th
e 
co
va
rm
at
ri
x 
fi
le
 a
lr
ea
dy
 e
xi
st
s

  
  
  
  
  
  
os
tr
in
gs
tr
ea
m 
Co
va
rm
at
ri
xf
il
en
am
e;

  
  
  
  
  
  
Co
va
rm
at
ri
xf
il
en
am
e.
st
r(
em
pt
y_
st
r)
;

  
  
  
  
  
  
Co
va
rm
at
ri
xf
il
en
am
e 
 <
< 
"/
PH
D_
Sh
ar
e/
SS
D/
Te
mp
/c
ov
ar
ma
tr
ix
-p
_"
 <
< 
m_
to
po
lo
gy
_n
am
e 
<<
 "
_T
T_
L:
" 
<<
 

mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.L
 <
< 
"_
h:
" 
<<
 m
p_
co
va
ma
tr
ix
_d
at
a[
TF
_i
nd
ex
].
h

  
  
  
  
  
  
  
  
  
  
<<
 "
_n
sq
_m
in
:"
 <
< 
m_
ns
q_
mi
n 
<<
 "
_n
sq
_m
ax
:"
 <
< 
m_
ns
q_
ma
x 
<<
 "
.d
at
";

  
  
  
  
  
  
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.T
T_
ou
tf
il
e 
= 
ne
w 
of
st
re
am
(C
ov
ar
ma
tr
ix
fi
le
na
me
.s

tr
()
.c
_s
tr
()
, 

io
s:
:b
in
ar
y 
| 

io
s:
:t
ru
nc
);

Pa
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MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s.
cp
p

  
  
  
  
  
  
Co
va
rm
at
ri
xf
il
en
am
e.
st
r(
em
pt
y_
st
r)
;

  
  
  
  
  
  
Co
va
rm
at
ri
xf
il
en
am
e 
<<
 "
/P
HD
_S
ha
re
/S
SD
/T
em
p/
co
va
rm
at
ri
x-
p_
" 
<<
 m
_t
op
ol
og
y_
na
me
 <
< 
"_
TE
_L
:"
 <
< 

mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.L
 <
< 
"_
h:
" 
<<
 m
p_
co
va
ma
tr
ix
_d
at
a[
TF
_i
nd
ex
].
h

  
  
  
  
  
  
  
  
  
  
<<
 "
_n
sq
_m
in
:"
 <
< 
m_
ns
q_
mi
n 
<<
 "
_n
sq
_m
ax
:"
 <
< 
m_
ns
q_
ma
x 
<<
 "
.d
at
";

  
  
  
  
  
  
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.T
E_
ou
tf
il
e 
= 
ne
w 
of
st
re
am
(C
ov
ar
ma
tr
ix
fi
le
na
me
.s

tr
()
.c
_s
tr
()
, 

io
s:
:b
in
ar
y 
| 

io
s:
:t
ru
nc
);

  
  
  
  
  
  
Co
va
rm
at
ri
xf
il
en
am
e.
st
r(
em
pt
y_
st
r)
;

  
  
  
  
  
  
Co
va
rm
at
ri
xf
il
en
am
e 
<<
 "
/P
HD
_S
ha
re
/S
SD
/T
em
p/
co
va
rm
at
ri
x-
p_
" 
<<
 m
_t
op
ol
og
y_
na
me
 <
< 
"_
EE
_L
:"
 <
< 

mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.L
 <
< 
"_
h:
" 
<<
 m
p_
co
va
ma
tr
ix
_d
at
a[
TF
_i
nd
ex
].
h

  
  
  
  
  
  
  
  
  
  
<<
 "
_n
sq
_m
in
:"
 <
< 
m_
ns
q_
mi
n 
<<
 "
_n
sq
_m
ax
:"
 <
< 
m_
ns
q_
ma
x 
<<
 "
.d
at
";

mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.E
E_
ou
tf
il
e 
= 
ne
w 
of
st
re
am
(C
ov
ar
ma
tr
ix
fi
le
na
me
.s

tr
()
.c
_s
tr
()
, 

io
s:
:b
in
ar
y 
| 

io
s:
:t
ru
nc
);

#e
nd
if

  
  
  
  
  
  
fo
r 
(u
ns
ig
ne
d
in
t 
tr
an
sf
er
_f
il
e_
el
l_
nu
mb
er
 =
 e
ll
da
sh
_m
in
; 
tr
an
sf
er
_f
il
e_
el
l_
nu
mb
er
 <
= 
el
ld
as
h_
ma
x;
 

tr
an
sf
er
_f
il
e_
el
l_
nu
mb
er
++
)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
tf
fi
le
na
me
.s
tr
(e
mp
ty
_s
tr
);

  
  
  
  
  
  
  
  
tf
fi
le
na
me
 <
< 
"/
PH
D_
Sh
ar
e/
SS
D/
ca
mb
_r
ad
ia
ti
on
_t
ra
ns
fe
rf
ns
/r
ad
ia
ti
on
-t
ra
ns
fe
rf
ns
_e
ll
:"
 <
< 

tr
an
sf
er
_f
il
e_
el
l_
nu
mb
er
 <
< 
"_
nm
ax
:1
00
_L
:"

  
  
  
  
  
  
  
  
  
  
  
  
<<
 m
p_
co
va
ma
tr
ix
_d
at
a[
TF
_i
nd
ex
].
L 
<<
 "
_h
:"
 <
< 
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.h
 <
< 
".
da
t"
;

  
  
  
  
  
  
  
  
if
 (
ac
ce
ss
(t
ff
il
en
am
e.
st
r(
).
c_
st
r(
),
 R
_O
K)
 !
= 
0)

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
co
ut
 <
< 
"c
an
't
 o
pe
n 
" 
<<
 t
ff
il
en
am
e.
st
r(
).
c_
st
r(
) 
<<
 "
 "
 <
< 
__
FI
LE
__
 <
< 
" 
li
ne
 "
 <
< 
__
LI
NE
__
 <
< 

"\
n"
;

  
  
  
  
  
  
  
  
  
  
ab
or
t(
);

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
//
 t
he
 t
ra
ns
fe
r 
fu
nc
ti
on
 f
il
e 
wi
ll
 c
on
ta
in
 k
 a
nd
 a
 t
ra
ns
fe
r 

fu
nc
ti
on
s 
fo
r 
ns
q 

=1
 t
o 
ns
q 
= 
(m
_n
ma
x 
* 

m_
nm
ax
) 
in
 i
nt
 s
te
ps
.

Pa
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c_
to
po
te
rm
s.
cp
p

  
  
  
  
  
  
  
  
//
 d
um
p 
tr
an
sf
er
_f
un
ct
io
ns
[t
ra
ns
fe
r_
fi
le
_e
ll
_n
um
be
r]
 =
 n
ew
 d
ou
bl
e[
(M
AX

_N
MA
X 
* 
MA
X_
NM
AX
) 
+ 
1]
;

  
  
  
  
  
  
  
  
co
ut
 <
< 
"l
oa
di
ng
 t
ra
ns
fe
r 
fu
nc
ti
on
s 
fr
om
 f
il
e 
: 
" 
<<
 t
ff
il
en
am
e.
st
r(
).
c_
st
r(
) 
<<
 "
  
  
  
  
  
  
\r
" 
<<
 

fl
us
h;

  
  
  
  
  
  
  
  
in
fi
le
.o
pe
n(
tf
fi
le
na
me
.s
tr
()
.c
_s
tr
()
);

  
  
  
  
  
  
  
  
fo
r 
(i
nt
 t
ra
ns
fe
r_
fu
nc
ti
on
_i
nd
ex
 =
 1
; 
tr
an
sf
er
_f
un
ct
io
n_
in
de
x 
<=
 (
MA
X_
NM
AX
 *
 M
AX
_N
MA
X)
; 

tr
an
sf
er
_f
un
ct
io
n_
in
de
x+
+)

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
in
fi
le
 >
> 
du
mp
; 
//
th
e 
k 
va
lu
e

  
  
  
  
  
  
  
  
  
  
if
 (
in
fi
le
.e
of
()
)

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
co
ut
 <
< 
"e
nd
 o
f 
fi
le
 r
ea
di
ng
 "
 <
< 
tf
fi
le
na
me
.s
tr
()
.c
_s
tr
()
 <
< 
" 
" 
<<
 _
_F
IL
E_
_ 
<<
 "
 l
in
e 
" 
<<
 

__
LI
NE
__
 <
< 
"\
n"
;

ab
or
t(
);

  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
in
fi
le
 >
> 
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
T[
tr
an
sf
er
_f
il
e_
el
l_
nu
mb
er
]

[t
ra
ns
fe
r_
fu
nc
ti
on
_i
nd
ex
];

  
  
  
  
  
  
  
  
  
  
in
fi
le
 >
> 
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
E[
tr
an
sf
er
_f
il
e_
el
l_
nu
mb
er
]

[t
ra
ns
fe
r_
fu
nc
ti
on
_i
nd
ex
];

  
  
  
  
  
  
  
  
  
  
in
fi
le
 >
> 
du
mp
; 
//
th
e 
B 
va
lu
e

  
  
  
  
  
  
  
  
  
  
do
ub
le
 k
 =
 2
 *
 m
_P
i 
* 
sq
rt
(t
ra
ns
fe
r_
fu
nc
ti
on
_i
nd
ex
) 
/ 
(m
p_
co
va
ma
tr
ix
_d
at
a[
TF
_i
nd
ex
].
L 
* 

mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.h
);

  
  
  
  
  
  
  
  
  
  
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
Kp
ow
er
[t
ra
ns
fe
r_
fu
nc
ti
on
_i
nd
ex
] 
= 
(p
ow
(k
, 
-3
) 
/ 
po
w

(k
, 
3)
);

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
in
fi
le
 >
> 
du
mp
;

  
  
  
  
  
  
  
  
if
 (
!i
nf
il
e.
eo
f(
))

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
co
ut
 <
< 
"e
xp
ec
te
d 
en
d 
of
 f
il
e 
fo
r 
" 
<<
 t
ff
il
en
am
e.
st
r(
).
c_
st
r(
) 
<<
 "
 "
 <
< 
__
FI
LE
__
 <
< 
" 
li
ne
 "
 <
< 

__
LI
NE
__
 <
< 
"\
n"
;

  
  
  
  
  
  
  
  
  
  
ab
or
t(
);

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
in
fi
le
.c
lo
se
()
;

Pa
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MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s.
cp
p

  
  
  
  
  
  
}

  
  
  
  
}

  
  
  
  
co
ut
 <
< 
en
dl
;

  
  
}

  
  
co
ns
t
un
si
gn
ed

in
t 

sh
_u
ni
qu
e_
di
re
ct
io
n_
li
st
_b
uf
fe
r_
si
ze
 =
 u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
 *
 s
iz
eo
f(
_C
om
pl
ex

do
ub
le
);

  
  
_C
om
pl
ex

do
ub
le
 *
on
e_
el
ld
as
h_
al
l_
md
as
h_
sh
_f
or
_u
ni
qu
e_

di
re
ct
io
ns
[M
AX
_E
LL
 +
 2
];
  

//
 0
 n
ev
er
 u
se
d

  
  
_C
om
pl
ex

do
ub
le
 *
on
e_
el
l_
on
e_
m_
sh
_f
or
_u
ni
qu
e_
di

re
ct
io
ns
 =
 (

_C
om
pl
ex

do
ub
le
 *
) 
ne
w
ch
ar

[s
h_
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
bu
ff
er
_s
iz
e]
;

  
  
fo
r 
(i
nt
 i
 =
 0
; 
i 
< 
nu
mb
er
_o
f_
co
re
s;
 +
+i
)

  
  
{

  
  
  
  
tt
_t
as
k_
da
ta
[i
].
md
as
h_
co
un
t 
= 
&m
da
sh
_s
ta
rt
_c
ou
nt
;

  
  
  
  
tt
_t
as
k_
da
ta
[i
].
nu
mb
er
_o
f_
to
po
te
tm
s 
= 
0;

  
  
  
  
tt
_t
as
k_
da
ta
[i
].
ta
sk
_n
um
be
r 
= 
i;

  
  
  
  
tt
_t
as
k_
da
ta
[i
].
on
e_
el
l_
on
e_
m_
sh
_f
or
_u
ni
qu
e_
di
re
ct
io
ns
 =
 o
ne
_e
ll
_o
ne
_m
_s
h_
fo
r_
un
iq
ue
_d
ir
ec
ti
on
s;

  
  
  
  
tt
_t
as
k_
da
ta
[i
].
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t 

= 
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t;

  
  
  
  
tt
_t
as
k_
da
ta
[i
].
tr
an
sf
er
_f
un
ct
io
ns
 =
 m
p_
co
va
ma
tr
ix
_d
at
a;

  
  
  
  
tt
_t
as
k_
da
ta
[i
].
m_
da
sh
 =
m_
da
sh
_t
es
t_
va
lu
e;

  
  
}

  
  
un
si
gn
ed

in
t 
el
l_
da
sh
_l
oo
p_
st
ar
t_
va
lu
e 
= 
el
ld
as
h_
mi
n;

  
  
un
si
gn
ed

in
t 
el
l_
da
sh
_l
oo
p_
en
d_
va
lu
e 
= 
el
ld
as
h_
ma
x;

  
  
do

  
  
{

  
  
  
  
st
ru
ct

sy
si
nf
o 
in
fo
;

  
  
  
  
sy
si
nf
o(
&i
nf
o)
;

  
  
  
  
un
si
gn
ed

lo
ng

in
t 
us
ea
bl
e_
me
mo
ry
 =
 (
in
fo
.t
ot
al
ra
m 
/ 
4)
 *
 3
;

  
  
  
  
un
si
gn
ed

lo
ng

in
t 

al
lo
ca
te
d_
me
me
or
y 
= 
0;

  
  
  
  
el
l_
da
sh
_l
oo
p_
en
d_
va
lu
e 
= 
el
ld
as
h_
ma
x;

Pa
ge
 1
5

244



A.3. THE CODE 245

c_
to
po
te
rm
s.
cp
p

  
  
  
  
//
re
ad
 a
s 
ma
ny
 o
f 
th
e 
sp
he
ri
ca
l 
ha
rm
on
ic
 f
il
es
 i
nt
o 
bu
ff
er
s 
as
 m
em
or
y 
al
lo
ws
;

  
  
  
  
fo
r 
(u
ns
ig
ne
d
in
t 
el
l_
fi
le
_i
nd
ex
 =
 e
ll
_d
as
h_
lo
op
_s
ta
rt
_v
al
ue
; 
el
l_
fi
le
_i
nd
ex
 <
= 
el
ld
as
h_
ma
x;
 e
ll
_f
il
e_
in
de
x+
+)

  
  
  
  
{

  
  
  
  
  
  
un
si
gn
ed

lo
ng

in
t 

el
ld
as
h_
ca
lc
ul
at
ed
_f
il
e_
si
ze
 =
 (
un
si
gn
ed

lo
ng

in
t)
 (
el
l_
fi
le
_i
nd
ex
 +
 1
)

  
  
  
  
  
  
  
  
  
  
* 
 s
h_
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
bu
ff
er
_s
iz
e;

  
  
  
  
  
  
if
 (
al
lo
ca
te
d_
me
me
or
y 
+ 
el
ld
as
h_
ca
lc
ul
at
ed
_f
il
e_
si
ze
 >
 u
se
ab
le
_m
em
or
y)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
el
l_
da
sh
_l
oo
p_
en
d_
va
lu
e 
= 
el
l_
fi
le
_i
nd
ex
 -
 1
;

  
  
  
  
  
  
  
  
br
ea
k;

  
  
  
  
  
  
}

  
  
  
  
  
  
al
lo
ca
te
d_
me
me
or
y 
+=
 e
ll
da
sh
_c
al
cu
la
te
d_

fi
le
_s
iz
e;

  
  
  
  
  
  
on
e_
el
ld
as
h_
al
l_
md
as
h_
sh
_f
or
_u
ni
qu
e_
di
re
ct
io
ns
[e
ll
_f
il
e_
in
de
x]
 =
 (
_C
om
pl
ex

do
ub
le
*)
 n
ew

ch
ar

[e
ll
da
sh
_c
al
cu
la
te
d_
fi
le
_s
iz
e]
;

  
  
  
  
  
  
un
si
gn
ed

lo
ng

in
t 

el
ld
as
h_
fs
iz
e;

  
  
  
  
  
  
os
tr
in
gs
tr
ea
m 
on
e_
el
ld
as
h_
al
l_
md
as
h_
sh
_f
il
e_
na
me
;

  
  
  
  
  
  
if
st
re
am
 o
ne
_e
ll
da
sh
_a
ll
_m
da
sh
_s
h_
in
fi
le
;

  
  
  
  
  
  
on
e_
el
ld
as
h_
al
l_
md
as
h_
sh
_f
il
e_
na
me
.s
tr
(e
mp
ty
_s
tr
);

  
  
  
  
  
  
on
e_
el
ld
as
h_
al
l_
md
as
h_
sh
_f
il
e_
na
me
 <
< 
"/
PH
D_
Sh
ar
e/
SS
D/
sp
h/
sp
h_
" 
<<
 e
ll
_f
il
e_
in
de
x 
<<
 "
_"
 <
< 
m_
ns
q_
mi
n 
<<
 

"_
" 
<<
 m
_n
sq
_m
ax
;

  
  
  
  
  
  
co
ut
 <
< 
"l
oa
di
ng
 s
ph
er
ic
al
 h
ar
mo
ni
c 

fr
om
 f
il
e 
: 
" 
<<
 o
ne
_e
ll
da
sh
_a
ll
_m
da
sh
_s
h_
fi
le
_n
am
e.
st
r(
) 
<<
 

" 
  
  
  
  
  
\r
" 
<<
 f
lu
sh
;

  
  
  
  
  
  
on
e_
el
ld
as
h_
al
l_
md
as
h_
sh
_f
il
e_
na
me
.s
tr
(o
ne
_e
ll
da
sh
_a
ll
_m
da
sh
_s
h_
fi
le
_n
am
e.
st
r(
).
c_
st
r(
))
;

  
  
  
  
  
  
on
e_
el
ld
as
h_
al
l_
md
as
h_
sh
_i
nf
il
e.
op
en
(o
ne
_e
ll
da
sh
_a
ll
_m
da
sh
_s
h_
fi
le
_n
am
e.
st
r(
).
c_
st
r(
),
 i

os
::
bi
na
ry
);

  
  
  
  
  
  
on
e_
el
ld
as
h_
al
l_
md
as
h_
sh
_i
nf
il
e.
se
ek
g(
0,
 i
os
::
en
d)
;

  
  
  
  
  
  
el
ld
as
h_
fs
iz
e 
= 
on
e_
el
ld
as
h_
al
l_
md
as
h_
sh
_i
nf
il
e.
te
ll
g(
);

  
  
  
  
  
  
on
e_
el
ld
as
h_
al
l_
md
as
h_
sh
_i
nf
il
e.
se
ek
g(
0,
 i
os
::
be
g)
;

  
  
  
  
  
  
//
be
fo
re
 r
ea
di
ng
 t
he
 f
il
e 
ch
ec
k 
to
 s
ee
 i
t 
is
 t
he
 s
iz
e 
we
 e
xp
ec
t 
it
 t
o 
be
;

  
  
  
  
  
  
if
 (
el
ld
as
h_
fs
iz
e 
!=
 e
ll
da
sh
_c
al
cu
la
te
d_

fi
le
_s
iz
e)

  
  
  
  
  
  
{
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MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s.
cp
p

  
  
  
  
  
  
  
  
co
ut
 <
< 
"\
nB
ad
 f
il
e 
si
ze
 f
or
 "
 <
< 
on
e_
el
ld
as
h_
al
l_
md
as
h_
sh
_f
il
e_
na
me
.s
tr
()
 <
< 
" 
" 
<<
 _
_F
IL
E_
_ 
<<
 "
 l
in
e 

" 
<<
 _
_L
IN
E_
_ 
<<
 "
 e
xp
ec
te
d 
" 
<<
 e
ll
da
sh
_c
al
cu
la
te
d_
fi
le
_s
iz
e 
<<
 e
nd
l;

  
  
  
  
  
  
  
  
ab
or
t(
);

  
  
  
  
  
  
}

  
  
  
  
  
  
//
re
ad
 i
n 
sp
he
ri
ca
l_
ha
rm
on
ic
 f
or
 a
ll
 o
f 
md
as
h'
s 
un
iq
ue
 d
ir
ec
ti
on
s

  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 *
 c
ur
re
nt
_f
il
e_
pt
r 
= 
on
e_
el
ld
as
h_
al
l_
md
as
h_
sh
_f
or
_u
ni
qu
e_
di
re
ct
io
ns
[e
ll
_f
il
e_
in
de
x]
;

  
  
  
  
  
  
on
e_
el
ld
as
h_
al
l_
md
as
h_
sh
_i
nf
il
e.
re
ad
((
ch
ar
*)
 c
ur
re
nt
_f
il
e_
pt
r,
 e
ll
da
sh
_c
al
cu
la

te
d_
fi
le
_s
iz
e)
;

  
  
  
  
  
  
on
e_
el
ld
as
h_
al
l_
md
as
h_
sh
_i
nf
il
e.
cl
os
e(
);

  
  
  
  
}

  
  
  
  
co
ut
 <
< 
"\
nS
ta
rt
in
g 
to
po
te
rm
s 
fo
r 
el
da
sh
 =
 "
 <
< 
el
l_
da
sh
_l
oo
p_
st
ar
t_
va
lu
e 
<<
 "
 t
o 
" 
<<
 e
ll
_d
as
h_
lo
op
_e
nd
_v
al
ue
 

<<
 "
\n
";
fo
r 
(u
ns
ig
ne
d
in
t 
el
l 
= 
el
lm
in
; 
el
l 
<=
 e
ll
ma
x;
 e
ll
++
)

  
  
  
  
{

  
  
  
  
  
  
un
si
gn
ed

lo
ng

in
t 

el
l_
ca
lc
ul
at
ed
_f
il
e_
si
ze
 =
 (
un
si
gn
ed

lo
ng

in
t)
(e
ll
 +
 1
) 
* 

sh
_u
ni
qu
e_
di
re
ct
io
n_
li
st
_b
uf
fe
r_
si
ze
;

  
  
  
  
  
  
un
si
gn
ed

lo
ng

in
t 

el
l_
fs
iz
e;

  
  
  
  
  
  
//
re
ad
 i
n 
fr
om
 f
il
e 
th
e 
li
st
 o
f 
di
re
ct
io
n 
de
ri
ve
d 
sp
he
ri
ca
l 
ha
rm
on
ic
s 
fo
r 
al
l 
va
lu
es
 o
f 
m 
as
so
ci
at
ed
 w
it
h 

th
e 
cu
rr
en
t 
el
l

  
  
  
  
  
  
on
e_
el
l_
al
l_
m_
sh
_f
il
e_
na
me
.s
tr
(e
mp
ty
_s
tr
);

  
  
  
  
  
  
on
e_
el
l_
al
l_
m_
sh
_f
il
e_
na
me
 <
< 
"/
PH
D_
Sh
ar
e/
SS
D/
sp
h/
sp
h_
" 
<<
 e
ll
 <
< 
"_
" 
<<
 m
_n
sq
_m
in
 <
< 
"_
" 
<<
 m
_n
sq
_m
ax
;

  
  
  
  
  
  
on
e_
el
l_
al
l_
m_
sh
_f
il
e_
na
me
.s
tr
(o
ne
_e
ll
_a
ll
_m
_s
h_
fi
le
_n
am
e.
st
r(
).
c_
st
r(
))
;

  
  
  
  
  
  
on
e_
el
l_
al
l_
m_
sh
_i
nf
il
e.
op
en
(o
ne
_e
ll
_a
ll
_m
_s
h_
fi
le
_n
am
e.
st
r(
).
c_
st
r(
),
 i

os
::
bi
na
ry
);

  
  
  
  
  
  
on
e_
el
l_
al
l_
m_
sh
_i
nf
il
e.
se
ek
g(
0,
 i
os
::
en
d)
;

  
  
  
  
  
  
el
l_
fs
iz
e 
= 
on
e_
el
l_
al
l_
m_
sh
_i
nf
il
e.
te
ll
g(
);

  
  
  
  
  
  
on
e_
el
l_
al
l_
m_
sh
_i
nf
il
e.
se
ek
g(
0,
 i
os
::
be
g)
;

  
  
  
  
  
  
//
be
fo
re
 r
ea
di
ng
 t
he
 f
il
e 
ch
ec
k 
to
 s
ee
 i
t 
is
 t
he
 s
iz
e 
we
 e
xp
ec
t 
it
 t
o 
be
;

  
  
  
  
  
  
if
 (
el
l_
fs
iz
e 
!=
 e
ll
_c
al
cu
la
te
d_
fi

le
_s
iz
e)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
co
ut
 <
< 
"B
ad
 f
il
e 
si
ze
 f
or
 "
 <
< 
on
e_
el
l_
al
l_
m_
sh
_f
il
e_
na
me
.s
tr
()
 <
< 
" 
" 
<<
 _
_F
IL
E_
_ 
<<
 "
 l
in
e 
" 
<<
 

__
LI
NE
__
 <
< 
" 
ex
pe
ct
ed
 "
 <
< 
el
l_
ca
lc
ul
at
ed
_f
il
e_
si
ze
 <
< 
"\
n"
;
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c_
to
po
te
rm
s.
cp
p

  
  
  
  
  
  
  
  
ab
or
t(
);

  
  
  
  
  
  
}

  
  
  
  
  
  
on
e_
el
l_
al
l_
m_
sh
_i
nf
il
e.
cl
os
e(
);

  
  
  
  
  
  
//
if
 t
he
 v
al
ue
 o
f 
m_
te
st
_v
al
ue
 i
s 
no
t 
-1
 t
he
 w
e 
ar
e 
te
st
in
g 
to
po
te
rm
 f
or
 a
 s
in
gl
e 
el
l,
 s
in
gl
e 
m 
(i
.e
. 

m_
te
st
_v
al
ue
),
 s
in
gl
e 
el
ld
as
h

  
  
  
  
  
  
//
an
d 
al
l 
md
as
he
s.
  
Th
e 
va
lu
es
 o
f 
el
lm
ax
 a
nd
 e
ll
da
sh
 w
il
l 
ha
ve
 b
ee
n 
se
t 
to
 e
ll
mi
n 
an
d 
el
ld
as
hm
in

re
sp
ec
ti
ve
ly
 b
y 
th
e 
co
nd
it
io
na
l

  
  
  
  
  
  
//
bu
il
d 
ti
me
 s
wi
tc
h 
'T
ES
TI
NG
_T
T'

#i
f 
de
fi
ne
d(
 T
ES
TI
NG
_T
T)
 |
| 
de
fi
ne
d(
TE
ST
IN
G_
CM
)

  
  
  
  
  
  
fo
r 
(i
nt
 m
 =
 m
_t
es
t_
va
lu
e;
 m
 <

= 
m_
te
st
_v
al
ue
; 
m+
+)

#e
ls
e

  
  
  
  
  
  
fo
r 
(i
nt
 m
 =
 -
el
l;
 m
 <
= 
(s

ig
ne
d
in
t)
el
l;
 m
++
)

#e
nd
if

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
co
ut
 <
< 
"d
oi
ng
 t
op
ot
er
ms
 f
or
 e
ll
 =
 "
 <
< 
el
l 
<<
 "
 a
nd
 m
 =
 "
 <
< 
m 
<<
 "
  
  
  
  
  
 \
r"
 <
< 
fl
us
h;

  
  
  
  
  
  
  
  
on
e_
el
l_
al
l_
m_
sh
_i
nf
il
e.
op
en
(o
ne
_e
ll
_a
ll
_m
_s
h_
fi
le
_n
am
e.
st
r(
).
c_
st
r(
),
 i

os
::
bi
na
ry
);

  
  
  
  
  
  
  
  
//
se
ek
 t
o 
th
e 
di
re
ct
io
n 
li
st
 f
or
 m

  
  
  
  
  
  
  
  
on
e_
el
l_
al
l_
m_
sh
_i
nf
il
e.
se
ek
g(
ab
s(
m)
 *
 s
h_
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
bu
ff
er
_s
iz
e,
 i
os
::
be
g)
;

  
  
  
  
  
  
  
  
//
re
ad
 i
n 
sp
he
ri
ca
l_
ha
rm
on
ic
 f
or
 a
ll
 o
f 
m'
s 
un
iq
ue
 d
ir
ec
ti
on
s

  
  
  
  
  
  
  
  
on
e_
el
l_
al
l_
m_
sh
_i
nf
il
e.
re
ad
((
ch
ar
*)
 o
ne
_e
ll
_o
ne
_m
_s
h_
fo
r_
un
iq
ue
_d
ir
ec
ti
on
s,
 

sh
_u
ni
qu
e_
di
re
ct
io
n_
li
st
_b
uf
fe
r_
si
ze
);

  
  
  
  
  
  
  
  
//
St
ar
t 
on
e 
or
 m
or
e 
th
re
ad
s 
to
 w
or
k 
th
ro
ug
h 
th
e 
el
l_
da
sh
 a
nd
 m
_d
as
h 
co
mb
in
at
io
ns
 t
o 
pr
od
uc
e 
th
e 

to
po
te
rm
s.

  
  
  
  
  
  
  
  
on
e_
el
l_
al
l_
m_
sh
_i
nf
il
e.
cl
os
e(
);

  
  
  
  
  
  
  
  
fo
r 
(u
ns
ig
ne
d
in
t 
el
ld
as
h 
= 
el
l_
da
sh
_l

oo
p_
st
ar
t_
va
lu
e;
 e
ll
da
sh
 <
= 
el
l_
da
sh
_l
oo
p_
en
d_
va
lu
e;
 e
ll
da
sh
++
)

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
pt
hr
ea
d_
mu
te
x_
in
it
(&
lo
ck
_m
da
sh
_c
ou
nt
, 
NU
LL
);

  
  
  
  
  
  
  
  
  
  
  
  
md
as
h_
st
ar
t_
co
un
t 
= 
((
(m
 -
 e
ll
da
sh
) 
& 
1)
 =
= 
1)
 ?
 (
1 
- 
el
ld
as
h)
 :
 (
-e
ll
da
sh
);
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s.
cp
p

  
  
  
  
  
  
  
  
  
  
  
  
//
ad
de
d 
5/
2/
20
14
 s
o 
th
at
 u
nu
se
d 
va
lu
es
 a
re
 z
er
o.

  
  
  
  
  
  
  
  
  
  
  
  
fo
r 
(i
nt
 T
F_
in
de
x 
= 
0;
 T
F_
in
de
x 
< 
m_
nu
mb
er
_o
f_
h_
l_
te
rm
s;
 T
F_
in
de
x+
+)

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
me
ms
et
(m
p_
co
va
ma
tr
ix
_d
at
a[
TF
_i
nd
ex
].
TT
_c
ov
am
at
ri
x_
fo
r_
on
e_
el
l_
an
d_
it
s_
ms
, 
0,
 s
iz
eo
f

(m
p_
co
va
ma
tr
ix
_d
at
a[
TF
_i
nd
ex
].
TT
_c
ov
am
at
ri
x_
fo
r_
on
e_
el
l_
an
d_
it
s_
ms
))
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
me
ms
et
(m
p_
co
va
ma
tr
ix
_d
at
a[
TF
_i
nd
ex
].
TE
_c
ov
am
at
ri
x_
fo
r_
on
e_
el
l_
an
d_
it
s_
ms
, 
0,
 s
iz
eo
f

(m
p_
co
va
ma
tr
ix
_d
at
a[
TF
_i
nd
ex
].
TE
_c
ov
am
at
ri
x_
fo
r_
on
e_
el
l_
an
d_
it
s_
ms
))
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
me
ms
et
(m
p_
co
va
ma
tr
ix
_d
at
a[
TF
_i
nd
ex
].
EE
_c
ov
am
at
ri
x_
fo
r_
on
e_
el
l_
an
d_
it
s_
ms
, 
0,
 s
iz
eo
f

(m
p_
co
va
ma
tr
ix
_d
at
a[
TF
_i
nd
ex
].
EE
_c
ov
am
at
ri
x_
fo
r_
on
e_
el
l_
an
d_
it
s_
ms
))
;

  
  
  
  
  
  
  
  
  
  
  
  
} fo
r 
(i
nt
 i
 =
 0
; 
i 
< 
nu
mb
er
_o
f_
co
re
s;
 +
+i
)

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
tt
_t
as
k_
da
ta
[i
].
on
e_
el
ld
as
h_
al
l_
md
as
h_
sh
_f
or
_u
ni
qu
e_
di
re
ct
io
ns
 =
 

on
e_
el
ld
as
h_
al
l_
md
as
h_
sh
_f
or
_u
ni
qu
e_
di
re
ct
io
ns
[e
ll
da
sh
];

  
  
  
  
  
  
  
  
  
  
  
  
  
  
tt
_t
as
k_
da
ta
[i
].
el
l 
= 
el
l;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
tt
_t
as
k_
da
ta
[i
].
el
ld
as
h 
= 
el
ld
as
h;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
tt
_t
as
k_
da
ta
[i
].
m 
= 
m;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
tt
_t
as
k_
da
ta
[i
].
ct
op
ot
er
ms
 =
 t
hi
s;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
tt
_t
as
k_
da
ta
[i
].
th
re
ad
ty
pe
 =
 T
H_
GT
T;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
if
 (
pt
hr
ea
d_
cr
ea
te
(&
th
r[
i]
, 
NU
LL
, 
st
ar
t_
th
re
ad
, 
&(
tt
_t
as
k_
da
ta
[i
])
))

  
  
  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
re
tu
rn
 E
XI
T_
FA
IL
UR
E;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
//
 b
lo
ck
 u
nt
il
 a
ll
 t
hr
ea
ds
 c
om
pl
et
e

  
  
  
  
  
  
  
  
  
  
fo
r 
(i
nt
 i
 =
 0
; 
i 
< 
nu
mb
er
_o
f_
co
re
s;
 +
+i
)

  
  
  
  
  
  
  
  
  
  
{
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c_
to
po
te
rm
s.
cp
p

  
  
  
  
  
  
  
  
  
  
  
  
pt
hr
ea
d_
jo
in
(t
hr
[i
],
 N
UL
L)
;

  
  
  
  
  
  
  
  
  
  
}

#i
f
no
t 
de
fi
ne
d(
 T
ES
TI
NG
_T
T)
 &
& 
no
t 
de
fi
ne
d(
TE
ST
IN
G_
CM
)

  
  
  
  
  
  
  
  
  
  
in
t 
el
em
en
t_
d_
si
ze
 =
 s
iz
eo
f(
_C
om
pl
ex

do
ub
le
) 
* 
((
MA
X_
EL
L 
* 
2)
 +
 1
);

  
  
  
  
  
  
  
  
  
  
in
t 
el
em
en
t_
c_
si
ze
 =
 (
MA
X_
EL
L 
+ 
1)
 *
 e
le
me
nt
_d
_s
iz
e;

  
  
  
  
  
  
  
  
  
  
in
t 
el
em
en
t_
b_
si
ze
 =
 (
(M
AX
_E
LL
 *
 2
) 
+ 
1)
 *
 e
le
me
nt
_c
_s
iz
e;

  
  
  
  
  
  
  
  
  
  
in
t 
se
ek
po
s 
= 
(e
ll
da
sh
 *
 e
le
me
nt
_d
_s
iz
e)
 +
 (
(M
AX
_E
LL
 +
 m
) 
* 
el
em
en
t_
c_
si
ze
) 
+ 
(e
ll
 *
 

el
em
en
t_
b_
si
ze
);

  
  
  
  
  
  
  
  
  
  
fo
r 
(i
nt
 T
F_
in
de
x 
= 
0;
 T
F_
in
de
x 
< 
m_
nu
mb
er
_o
f_
h_
l_
te
rm
s;
 T
F_
in
de
x+
+)

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
if
 (
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.T
T_
ou
tf
il
e 
!=
 N
UL
L)

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.T
T_
ou
tf
il
e-
>s
ee
kp
(s
ee
kp
os
, 
io
s:
:b
eg
);

  
  
  
  
  
  
  
  
  
  
  
  
  
  
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.T
T_
ou
tf
il
e-
>w
ri
te
((
ch
ar
*)
 m
p_
co
va
ma
tr
ix
_d
at
a

[T
F_
in
de
x]
.T
T_
co
va
ma
tr
ix
_f
or
_o
ne
_e
ll
_a
nd
_i
ts
_m
s,

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
el
em
en
t_
d_
si
ze
);

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
if
 (
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.T
E_
ou
tf
il
e 
!=
 N
UL
L)

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.T
E_
ou
tf
il
e-
>s
ee
kp
(s
ee
kp
os
, 
io
s:
:b
eg
);

  
  
  
  
  
  
  
  
  
  
  
  
  
  
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.T
E_
ou
tf
il
e-
>w
ri
te
((
ch
ar
*)
 m
p_
co
va
ma
tr
ix
_d
at
a

[T
F_
in
de
x]
.T
E_
co
va
ma
tr
ix
_f
or
_o
ne
_e
ll
_a
nd
_i
ts
_m
s,

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
el
em
en
t_
d_
si
ze
);

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
if
 (
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.E
E_
ou
tf
il
e 
!=
 N
UL
L)

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.E
E_
ou
tf
il
e-
>s
ee
kp
(s
ee
kp
os
, 
io
s:
:b
eg
);

  
  
  
  
  
  
  
  
  
  
  
  
  
  
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.E
E_
ou
tf
il
e-
>w
ri
te
((
ch
ar
*)
 m
p_
co
va
ma
tr
ix
_d
at
a

[T
F_
in
de
x]
.E
E_
co
va
ma
tr
ix
_f
or
_o
ne
_e
ll
_a
nd
_i
ts
_m
s,
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MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s.
cp
p

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
el
em
en
t_
d_
si
ze
);

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
}

#e
nd
if

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
}

  
  
  
  
}

  
  
  
  
fo
r 
(u
ns
ig
ne
d
in
t 
el
l_
fi
le
_i
nd
ex
 =
 e
ll
_d
as
h_
lo
op
_s
ta
rt
_v
al
ue
; 
el
l_
fi
le
_i
nd
ex
 <
= 
el
l_
da
sh
_l
oo
p_
en
d_
va
lu
e;
 

el
l_
fi
le
_i
nd
ex
++
)

  
  
  
  
{

  
  
  
  
  
  
de
le
te
 o
ne
_e
ll
da
sh
_a
ll
_m
da
sh
_s
h_
fo
r_
un
iq
ue
_d

ir
ec
ti
on
s[
el
l_

fi
le
_i
nd
ex
];

  
  
  
  
}

  
  
  
  
el
l_
da
sh
_l
oo
p_
st
ar
t_
va
lu
e 
= 
el
l_
da
sh
_l
oo
p_
en
d_
va
lu
e 
+ 
1;

  
  
} 
wh
il
e 
(e
ll
_d
as
h_
lo
op
_s
ta
rt
_v
al
ue
 <
= 
el
ld
as
h_
ma
x)
;

  
  
fo
r 
(i
nt
 i
 =
 0
; 
i 
< 
nu
mb
er
_o
f_
co
re
s;
 +
+i
)

  
  
{

  
  
  
  
to
ta
l_
nu
mb
er
_o
f_
to
po
te
rm
s 
+=
 t
t_
ta
sk
_d
at
a[
i]
.n
um
be
r_
of
_t
op
ot
et
ms
;

  
  
}

#i
f
no
t 
de
fi
ne
d(
 T
ES
TI
NG
_T
T)
 &
& 
no
t 
de
fi
ne
d(
TE
ST
IN
G_
CM
)

  
  
co
ut
 <
< 
"\
nt
ot
al
 n
um
be
r 
of
 t
op
ot
er
ms
 =
 "
 <
< 
to
ta
l_
nu
mb
er
_o
f_
to
po
te
rm
s 
<<
 "
\n
";

#e
nd
if

  
  
//
gi
ve
 b
ac
k 
th
e 
me
mo
ry
 w
e 
bo
rr
ow
ed

  
  
de
le
te
 o
ne
_e
ll
_o
ne
_m
_s
h_
fo
r_
un
iq
ue
_d
ir
ec
ti
on
s;

#i
f
no
t 
de
fi
ne
d(
 T
ES
TI
NG
_T
T)
 &
& 
no
t 
de
fi
ne
d(
TE
ST
IN
G_
CM
)

  
  
fo
r 
(i
nt
 T
F_
in
de
x 
= 
0;
 T
F_
in
de
x 
< 
m_
nu
mb
er
_o
f_
h_
l_
te
rm
s;
 T
F_
in
de
x+
+)
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c_
to
po
te
rm
s.
cp
p

  
  
{

  
  
  
  
if
 (
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.T
T_
ou
tf
il
e 
!=
 N
UL
L)

  
  
  
  
{

  
  
  
  
  
  
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.T
T_
ou
tf
il
e-
>c
lo
se
()
;

  
  
  
  
}

  
  
  
  
if
 (
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.T
E_
ou
tf
il
e 
!=
 N
UL
L)

  
  
  
  
{

  
  
  
  
  
  
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.T
E_
ou
tf
il
e-
>c
lo
se
()
;

  
  
  
  
}

  
  
  
  
if
 (
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.E
E_
ou
tf
il
e 
!=
 N
UL
L)

  
  
  
  
{

  
  
  
  
  
  
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.E
E_
ou
tf
il
e-
>c
lo
se
()
;

  
  
  
  
}

  
  
}

#e
nd
if

  
  
re
tu
rn
 (
0)
;

} //
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

vo
id

c_
to
po
te
rm
s:
:c
al
cu
la
te
_t
op
ot
er
ms
(t
op
ot
er
ms
_t
as
k_
da
ta
_t
 &
tt
_d
at
a)

{   
/*
 T
he
re
 i
s 
a 
to
po
te
rm
 f
or
 e
ac
h 
co
mb
in
at
io
n 
of
 e
ll
, 
m,
 e
ll
da
sh
, 
md
as
h 
an
d 
n 
wh
ic
h 
is
 c
al
cu
la
te
d 
us
in
g 
th
e

  
 *
 f
ol
lo
wi
ng
 e
qu
at
io
n:

  
 *
  
  
  
  
 -
--
-

  
 *
  
 i
^e
ll
  
> 
  
 (
sp
h_
ha
rm
(e
ll
,m
,n
1,
n2
,n
3)
 *
 c
om
pl
ex
_c
on
ju
ga
te
(s
ph
_h
ar
m(
el
ld
as
h,

md
as
h,
n1
,n
3)
))

  
 *
  
  
  
  
 -
--
-

  
 *
  
  
  
  
 d
ir
ec
s(
n1
,n
2,
n3
) 
fo
r 
gi
ve
n 

n 
  
 w
he
re
 n
 =
 s
qr
t(
n1
^2
 *
 n
2^
2 
* 
n3
^2
)

  
 *
/

  
in
t 
lo
ca
l_
md
as
h;
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s.
cp
p

  
co
ns
t
_C
om
pl
ex

do
ub
le
 I
 =
 0
.0
 +
 1
.0
i;

  
_C
om
pl
ex

do
ub
le
 t
t;

  
_C
om
pl
ex

do
ub
le
 T
Tc
ov
ar
[m
_n
um
be
r_
of
_h
_l
_t
er
ms
];

  
_C
om
pl
ex

do
ub
le
 T
Ec
ov
ar
[m
_n
um
be
r_
of
_h
_l
_t
er
ms
];

  
_C
om
pl
ex

do
ub
le
 E
Ec
ov
ar
[m
_n
um
be
r_
of
_h
_l
_t
er
ms
];

  
do
ub
le
 c
t;

  
co
ns
t
_C
om
pl
ex

do
ub
le
 c
on
st
_a
 =
 (
16
 *
 _

_b
ui
lt
in
_c
po
w(
m_
Pi
, 
2)
);

  
do

  
{

  
  
pt
hr
ea
d_
mu
te
x_
lo
ck
(&
lo
ck
_m
da
sh
_c
ou
nt
);

  
  
  
lo
ca
l_
md
as
h 
= 
*(
tt
_d
at
a.
md
as
h_
co
un
t)
;

  
  
  
(*
(t
t_
da
ta
.m
da
sh
_c
ou
nt
))
 +
= 
2;

  
  
  
//
Th
e 
to
po
te
rm
 f
or
 e
ll
=a
, 
m=
b,
 e
ll
da
sh
=x
, 
md
as
h=
y 
 i
s 
th
e 
th
e 
sa
me
 a
s 
th
e 
to
po
te
rm

 f
or
 e
ll
=x
, 
m=
y,
 e
ll
da
sh
=a
, 

md
as
h=
b.

  
  
  
//
So
 t
he
re
's
 n
o 
po
in
t 
in
 c
al
cu
la
ti
ng
 b
ot

h 
of
 t
he
m.

  
  
pt
hr
ea
d_
mu
te
x_
un
lo
ck
(&
lo
ck
_m
da
sh
_c
ou
nt
);

  
  
if
 (
lo
ca
l_
md
as
h 
> 
tt
_d
at
a.
el
ld
as
h)

  
  
{

  
  
  
br
ea
k;

  
  
}

  
  
me
ms
et
(T
Tc
ov
ar
, 
0,
 s
iz
eo
f(
TT
co
va
r)
);

  
  
me
ms
et
(T
Ec
ov
ar
, 
0,
 s
iz
eo
f(
TE
co
va
r)
);

  
  
me
ms
et
(E
Ec
ov
ar
, 
0,
 s
iz
eo
f(
EE
co
va
r)
);

  
  
fo
r 
(i
nt
 n
sq
_c
ou
nt
 =
 0
; 
ns
q_
co
un
t 
< 
m_
nn
sq
; 
ns
q_
co
un
t+
+)

  
  
{

  
  
  
tt
 =
 0
 +
 0
i;
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c_
to
po
te
rm
s.
cp
p

  
  
  
fo
r 
(i
nt
 d
ir
ec
in
dx
 =
 0
; 
di
re
ci
nd
x 
< 
ns
q_
an
d_
di
re
ct
io
ns
_l
is
t[
ns
q_
co
un
t]
.n
di
re
cs
; 
di
re
ci
nd
x+
+)

  
  
  
{

  
  
  
  
st
ru
ct

si
ng
le
_d
ir
ec
ti
on
_t
 s
in
gl
e_
di
re
ct
io
n 
= 
ns
q_
an
d_
di
re
ct
io
ns
_l
is
t[
ns
q_
co
un
t]
.d
ir
ec
ti
on
_i
nd
ex
_l
is
t

[d
ir
ec
in
dx
];

  
  
  
  
in
t 
cu
rr
en
t_
di
r 
= 
m_
fi
rs
t_
fo
un
d_
di
re
ct
io
n_
n1
_n
2_
n3
[s
in
gl
e_
di
re
ct
io
n.
n1
 +
 M
AX
_N
MA
X]
[s
in
gl
e_
di
re
ct
io
n.
n2
 +
 

MA
X_
NM
AX
][
si
ng
le
_d
ir
ec
ti
on
.n
3 
+ 
MA
X_
NM
AX
];

  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
1 
= 
tt
_d
at
a.
on
e_
el
l_
on
e_
m_
sh
_f
or
_u
ni
qu
e_
di
re
ct
io
ns
[c
ur
re
nt
_d
ir
];

  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
2 
=

  
  
  
  
  
  
(t
t_
da
ta
.o
ne
_e
ll
da
sh
_a
ll
_m
da
sh
_s
h_
fo
r_
un
iq
ue
_d
ir
ec
ti
on
s 
+ 
((
ab
s(
lo
ca
l_
md
as
h)
 *
 

tt
_d
at
a.
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t)
))
[c
ur
re
nt
_d
ir
];

  
  
  
  
if
 (
tt
_d
at
a.
m 
< 
0)

  
  
  
  
{

  
  
  
  
  
if
 (
(l
oc
al
_m
da
sh
 &
 1
) 
==
 0
) 
//
i.
e 
ev
en

  
  
  
  
  
{

  
  
  
  
  
  
__
im
ag
__
 s
hf
1 
= 
-_
_i
ma
g_
_ 
sh
f1
;

  
  
  
  
  
}

  
  
  
  
  
el
se

  
  
  
  
  
{

  
  
  
  
  
  
__
re
al
__
 s
hf
1 
= 
-_
_r
ea
l_
_ 
sh
f1
;

  
  
  
  
  
}

  
  
  
  
}

  
  
  
  
if
 (
lo
ca
l_
md
as
h 
< 
0)

  
  
  
  
{

  
  
  
  
  
if
 (
(l
oc
al
_m
da
sh
 &
 1
) 
==
 0
) 
//
i.
e 
ev
en

  
  
  
  
  
{

  
  
  
  
  
  
__
im
ag
__
 s
hf
2 
= 
-_
_i
ma
g_
_ 
sh
f2
;

  
  
  
  
  
}

  
  
  
  
  
el
se

  
  
  
  
  
{

  
  
  
  
  
  
__
re
al
__
 s
hf
2 
= 
-_
_r
ea
l_
_ 
sh
f2
;
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s.
cp
p

  
  
  
  
  
}

  
  
  
  
}

  
  
  
  
tt
 +
= 
(_
_b
ui
lt
in
_c
on
j(
sh
f1
) 
* 
sh
f2
);

  
  
  
}

  
  
  
tt
 *
= 
(_
_b
ui
lt
in
_c
po
w(
-I
, 
tt
_d
at
a.
el
l)
 *
 _
_b
ui
lt
in
_c
po
w(
I,
 t
t_
da
ta
.e
ll
da
sh
))
;

#i
fd
ef
 T
ES
TI
NG
_T
T

  
  
  
if
 (
lo
ca
l_
md
as
h 
==
 t
t_
da
ta
.m
_d
as
h)

  
  
  
{

  
  
  
  
pt
hr
ea
d_
mu
te
x_
lo
ck
(&
lo
ck
_m
da
sh
_c
ou
nt
);

  
  
  
  
co
ut
 <
< 
"*
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
*"
 <
< 
en
dl
;

  
  
  
  
co
ut
 <
< 
"e
ll
:"
 <
< 
tt
_d
at
a.
el
l 
<<
 "
 m
:"
 <
< 
tt
_d
at
a.
m 
<<
 "
 e
ll
da
sh
:"
 <
< 
tt
_d
at
a.
el
ld
as
h 
<<
 "
 m
da
sh
:"
 <
< 

lo
ca
l_
md
as
h;

  
  
  
  
co
ut
 <
< 
" 
  
ns
q 
= 
" 
<<
 n
sq
_a
nd
_d
ir
ec
ti
on
s_
li
st
[n
sq
_c
ou
nt
].
ns
q 
<<
 "
  
 T
T1
 =
 "
 <
< 
__
re
al
__
 t
t 
<<
 "
 "
<<
 s
ho
wp
os
 <
< 

__
im
ag
__
 t
t 
<<
 "
i"
<<
en
dl
;

  
  
  
  
co
ut
 <
< 
"*
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
*"
 <
< 
en
dl
;

  
  
  
  
pt
hr
ea
d_
mu
te
x_
un
lo
ck
(&
lo
ck
_m
da
sh
_c
ou
nt
);

  
  
  
}

#e
nd
if

#i
fn
de
f 
NO
_T
RU
NC
AT
E

  
  
  
//
ma
ke
 v
er
y 
sm
al
l 
nu
mb
er
s 
ze
ro
.

  
  
  
if
 (
fa
bs
(_
_i
ma
g_
_ 
tt
) 
< 
0.
00
00
00
00
01
)

  
  
  
  
__
im
ag
__
 t
t 
= 
0;

  
  
  
if
 (
fa
bs
(_
_r
ea
l_
_ 
tt
) 
< 
0.
00
00
00
00
01
)

  
  
  
  
__
re
al
__
 t
t 
= 
0;

#e
nd
if

  
  
  
tt
_d
at
a.
nu
mb
er
_o
f_
to
po
te
tm
s+
+;

  
  
  
//
 F
in
d 
co
sm
ot
er
m 
as
so
ci
at
ed
 w
it
h 
ns
q

  
  
  
in
t 
ns
q 
= 
ns
q_
an
d_
di
re
ct
io
ns
_l
is
t[
ns
q_
co
un
t]
.n
sq
; Pa

ge
 2
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c_
to
po
te
rm
s.
cp
p

  
  
  
fo
r 
(i
nt
 T
F_
in
de
x 
= 
0;
 T
F_
in
de
x 
< 
m_
nu
mb
er
_o
f_
h_
l_
te
rm
s;
 T
F_
in
de
x+
+)

  
  
  
{

  
  
  
  
ct
 =
 t
t_
da
ta
.t
ra
ns
fe
r_
fu
nc
ti
on
s[
TF
_i
nd
ex
].
tr
an
sf
er
_f
un
ct
io
ns
_T
[t
t_
da
ta
.e
ll
][
ns
q]

  
  
  
  
  
  
* 
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
T[
tt
_d
at
a.
el
ld
as
h]
[n
sq
]

  
  
  
  
  
  
* 
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
Kp
ow
er
[n
sq
];
 /
/ 
co
sm
ot
er
m

  
  
  
  
TT
co
va
r[
TF
_i
nd
ex
] 
+=
 c
t 
* 
tt
;

  
  
  
  
ct
 =
 t
t_
da
ta
.t
ra
ns
fe
r_
fu
nc
ti
on
s[
TF
_i
nd
ex
].
tr
an
sf
er
_f
un
ct
io
ns
_T
[t
t_
da
ta
.e
ll
][
ns
q]

  
  
  
  
  
  
* 
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
E[
tt
_d
at
a.
el
ld
as
h]
[n
sq
]

  
  
  
  
  
  
* 
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
Kp
ow
er
[n
sq
];
 /
/ 
co
sm
ot
er
m

  
  
  
  
TE
co
va
r[
TF
_i
nd
ex
] 
+=
 c
t 
* 
tt
;

  
  
  
  
ct
 =
 t
t_
da
ta
.t
ra
ns
fe
r_
fu
nc
ti
on
s[
TF
_i
nd
ex
].
tr
an
sf
er
_f
un
ct
io
ns
_E
[t
t_
da
ta
.e
ll
][
ns
q]

  
  
  
  
  
  
* 
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
E[
tt
_d
at
a.
el
ld
as
h]
[n
sq
]

  
  
  
  
  
  
* 
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
Kp
ow
er
[n
sq
];
 /
/ 
co
sm
ot
er
m

  
  
  
  
EE
co
va
r[
TF
_i
nd
ex
] 
+=
 c
t 
* 
tt
;

  
  
  
}

  
  
}

  
  
fo
r 
(i
nt
 T
F_
in
de
x 
= 
0;
 T
F_
in
de
x 
< 
m_
nu
mb
er
_o
f_
h_
l_
te
rm
s;
 T
F_
in
de
x+
+)

  
  
{

#i
fn
de
f 
TE
ST
IN
G_
CM

  
  
  
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.T
T_
co
va
ma
tr
ix
_f
or
_o
ne
_e
ll
_a
nd
_i
ts
_m
s[
MA
X_
EL
L 
+ 
lo
ca
l_
md
as
h]
 =
 T
Tc
ov
ar

[T
F_
in
de
x]
 *
 c
on
st
_a
;

  
  
  
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.T
E_
co
va
ma
tr
ix
_f
or
_o
ne
_e
ll
_a
nd
_i
ts
_m
s[
MA
X_
EL
L 
+ 
lo
ca
l_
md
as
h]
 =
 T
Ec
ov
ar

[T
F_
in
de
x]
 *
 c
on
st
_a
;

  
  
  
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.E
E_
co
va
ma
tr
ix
_f
or
_o
ne
_e
ll
_a
nd
_i
ts
_m
s[
MA
X_
EL
L 
+ 
lo
ca
l_
md
as
h]
 =
 E
Ec
ov
ar
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s.
cp
p

[T
F_
in
de
x]
 *
 c
on
st
_a
;

#e
ls
e

  
  
  
if
 (
lo
ca
l_
md
as
h 
==
 t
t_
da
ta
.m
_d
as
h)

  
  
  
{

  
  
  
  
TT
co
va
r[
TF
_i
nd
ex
] 
*=
 c
on
st
_a
;

  
  
  
  
TE
co
va
r[
TF
_i
nd
ex
] 
*=
 c
on
st
_a
;

  
  
  
  
EE
co
va
r[
TF
_i
nd
ex
] 
*=
 c
on
st
_a
;

  
  
  
  
//
wh
en
 t
es
ti
ng
 p
ri
nt
 o
ut
 t
he
 c
ov
ar
ma
tr
ix
 d
at
a

  
  
  
  
co
ut
 <
< 
"T
T_
L:
" 
<<
 m
p_
co
va
ma
tr
ix
_d
at
a[
TF
_i
nd
ex
].
L 
<<
 "
_h
:"
 <
< 
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.h
 <
< 
" 
 "
 <
<

  
  
  
  
  
  
__
re
al
__
 T
Tc
ov
ar
[T
F_
in
de
x]
 <
< 
" 
" 
<<
 s
ho
wp
os
 <
< 
__
im
ag
__
 T
Tc
ov
ar
[T
F_
in
de
x]
 <
< 
no
sh
ow
po
s 
<<
 e
nd
l;

  
  
  
  
co
ut
 <
< 
"T
E_
L:
" 
<<
 m
p_
co
va
ma
tr
ix
_d
at
a[
TF
_i
nd
ex
].
L 
<<
 "
_h
:"
 <
< 
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.h
 <
< 
" 
 "
 <
<

  
  
  
  
  
  
__
re
al
__
 T
Ec
ov
ar
[T
F_
in
de
x]
 <
< 
" 
" 
 <
< 
sh
ow
po
s 
<<
 _
_i
ma
g_
_ 
TE
co
va
r[
TF
_i
nd
ex
] 
<<
 n
os
ho
wp
os
 <
< 
en
dl
;

  
  
  
  
co
ut
 <
< 
"E
E_
L:
" 
<<
 m
p_
co
va
ma
tr
ix
_d
at
a[
TF
_i
nd
ex
].
L 
<<
 "
_h
:"
 <
< 
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.h
 <
< 
" 
 "
 <
<

  
  
  
  
  
  
__
re
al
__
 E
Ec
ov
ar
[T
F_
in
de
x]
 <
< 
" 
" 
 <
< 
sh
ow
po
s 
<<
 _
_i
ma
g_
_ 
EE
co
va
r[
TF
_i
nd
ex
] 
<<
 n
os
ho
wp
os
 <
< 
en
dl
;

  
  
  
}

#e
nd
if

  
  
}

  
}

  
wh
il
e 
(t
ru
e)
;

} in
t
c_
to
po
te
rm
s:
:g
en
er
at
e_
sh
(u
ns
ig
ne
d
in
t 
el
l_
mi
n,
 u
ns
ig
ne
d
in
t 
el
l_
ma
x)

{
pt
hr
ea
d_
t 
th
r[
nu
mb
er
_o
f_
co
re
s]
;

if
(e
ll
_m
ax
 >
 m
_e
ll
ma
x)
 e
ll
_m
ax
 =
 m
_e
ll
ma
x;

if
(e
ll
_m
in
 <
 m
_e
ll
mi
n)
 e
ll
_m
in
 =
 m
_e
ll
mi
n;

in
t 
el
l_
st
ar
t 
= 
el
l_
mi
n;

sp
he
ri
ca
l_
ta
sk
_d
at
a_
t 
sp
h_
ta
sk
_d
at
a;

sp
h_
ta
sk
_d
at
a.
el
l 
= 
&e
ll
_s
ta
rt
;
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A.3. THE CODE 257

c_
to
po
te
rm
s.
cp
p

sp
h_
ta
sk
_d
at
a.
el
l_
ma
x 
= 
el
l_
ma
x;

sp
h_
ta
sk
_d
at
a.
ct
op
ot
er
ms
 =
 t
hi
s;

sp
h_
ta
sk
_d
at
a.
th
re
ad
ty
pe
 =
 T
H_
GS
H;

pt
hr
ea
d_
mu
te
x_
in
it
(&
lo
ck
_e
ll
, 
NU
LL
);

fo
r 
(i
nt
 i
 =
 0
; 
i 
< 
nu
mb
er
_o
f_
co
re
s;
 +
+i
)

{
if
 (
pt
hr
ea
d_
cr
ea
te
(&
th
r[
i]
, 
NU
LL
, 
st
ar
t_
th
re
ad
, 
&s
ph
_t
as
k_
da
ta
))

{
re
tu
rn
 E
XI
T_
FA
IL
UR
E;

}
} //
 b
lo
ck
 u
nt
il
 a
ll
 t
hr
ea
ds
 c
om
pl
et
e

fo
r 
(i
nt
 i
 =
 0
; 
i 
< 
nu
mb
er
_o
f_
co
re
s;
 +
+i
)

{
pt
hr
ea
d_
jo
in
(t
hr
[i
],
 N
UL
L)
;

} re
tu
rn
 0
;

} //
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

vo
id

c_
to
po
te
rm
s:
:c
al
cu
la
te
_s
ph
er
ic
al
_h
ar
mo
ni
cs
(s
ph
er
ic
al
_t
as
k_
da
ta
_t
 &
sp
h_
da
ta
)

{   
  
in
t 
lo
ca
l_
el
l;

  
  
_C
om
pl
ex

do
ub
le
 *
bu
ff
er
;

  
  
os
tr
in
gs
tr
ea
m 
sp
h_
fi
le
_n
am
e;

  
  
st
ri
ng
 e
mp
ty
_s
tr
;
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s.
cp
p

  
  
of
st
re
am
 o
ut
fi
le
;

  
  
in
t
ge
ne
ra
te
_s
h(
bo
ol
 f
or
ce
_s
av
e_
tt
_t
o_
fi
le
 =
 f
al
se
);

  
  
do

  
  
{

  
  
  
  
pt
hr
ea
d_
mu
te
x_
lo
ck
(&
lo
ck
_e
ll
);

  
  
  
  
if
 (
*(
sp
h_
da
ta
.e
ll
) 
> 
sp
h_
da
ta
.e
ll
_m
ax
)

  
  
  
  
{

  
  
  
  
  
  
pt
hr
ea
d_
mu
te
x_
un
lo
ck
(&
lo
ck
_e
ll
);

  
  
  
  
  
  
br
ea
k;

  
  
  
  
}

  
  
  
  
lo
ca
l_
el
l 
= 
(*
(s
ph
_d
at
a.
el
l)
)+
+;

//
wr
it
e 
al
l 
th
e 
sp
he
ri
ca
l 
ha
rm
on
ic
s 
fo
r 
th
e 
cu
rr
en
t 
el
l 
, 
m 
co
mb
in
at
io
n 
to
 a
 f
il
e.

  
  
  
  
//
th
e 
na
me
 o
f 
th
e 
fi
le
 i
s 
sp
h_
el
l_
m_
nm
ax
.d
at
 w
he
re
 e
ll
, 
m 
an
d 
na
mx
 a
re
 n
um
be
rs
.

  
  
  
  
em
pt
y_
st
r 
= 
""
;

  
  
  
  
sp
h_
fi
le
_n
am
e.
st
r(
em
pt
y_
st
r)
;

  
  
  
  
sp
h_
fi
le
_n
am
e 
<<
 "
/P
HD
_S
ha
re
/S
SD
/s
ph
/s
ph
_"
 <
< 
lo
ca
l_
el
l 
<<
 "
_"
 <
< 
m_
ns
q_
mi
n 
<<
 "
_"
 <
< 
m_
ns
q_
ma
x;

  
  
  
  
if
 (
ac
ce
ss
(s
ph
_f
il
e_
na
me
.s
tr
()
.c
_s
tr
()
, 
R_
OK
) 
!=
 -
1)

  
  
  
  
{

  
  
  
  
  
  
//
do
 n
ot
hi
ng
 i
f 
th
e 
fi
le
 a
lr
ea
dy
 e
xi
st
s.

  
  
  
  
  
  
co
ut
 <
< 
"f
ou
nd
 s
ph
er
ic
al
 h
ar
mo
ni
cs
 f
or
  
el
l 
= 
" 
<<
 l
oc
al
_e
ll
 <
< 
" 
  
  
  
  
  
  
  
  
 \
r"
 <
< 
fl
us
h;

  
  
  
  
  
  
pt
hr
ea
d_
mu
te
x_
un
lo
ck
(&
lo
ck
_e
ll
);

  
  
  
  
  
  
co
nt
in
ue
;

  
  
  
  
}

  
  
  
  
co
ut
 <
< 
"g
en
er
at
in
g 
sp
he
ri
ca
l 
ha
rm
on
ic
s 
fo
r 
 e
ll
 =
 "
 <
< 
lo
ca
l_
el
l 
<<
 "
  
  
  
  
  
  
  
  
  
\r
" 
<<
 f
lu
sh
;

  
  
  
  
pt
hr
ea
d_
mu
te
x_
un
lo
ck
(&
lo
ck
_e
ll
);

  
  
  
  
bu
ff
er
 =
 n
ew

_C
om
pl
ex

do
ub
le
[(
lo
ca
l_
el
l 
+ 
1)
 *
 u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
];

  
  
  
  
in
t 
m 
= 
0;

  
  
  
  
fo
r 
(m
 =
 0
; 
m 
<=
 l
oc
al
_e
ll
; 
m+
+)

  
  
  
  
{

  
  
  
  
  
  
//
 L
oo
p 
ov
er
 a
ll
 t
he
 d
if
fe
re
nt
 d
ir

ec
ti
on
s 
po
ss
ib
le
 f
or
 n
sq
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A.3. THE CODE 259

c_
to
po
te
rm
s.
cp
p

  
  
  
  
  
  
fo
r 
(i
nt
 d
ir
ec
in
dx
 =
 0
; 
di
re
ci
nd
x 
< 
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t;
 d
ir
ec
in
dx
++
)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
 =
 (
__
bu
il
ti
n_
cp
ow
(u

ni
qu
e_
di
re
ct
io
ns
_l
is
t[
di
re
ci
nd
x]
.e
xp
1,
 m
))

  
  
  
  
  
  
  
  
  
  
  
  
* 
gs
l_
sf
_l
eg
en
dr
e_
sp
hP
lm
(l
oc
al
_e
ll
, 
m,
 u
ni
qu
e_
di
re
ct
io
ns
_l
is
t[
di
re
ci
nd
x]
.c
os
th
et
a)
;

#i
fn
de
f 
NO
_T
RU
NC
AT
E

  
  
  
  
  
  
  
  
//
ma
ke
 v
er
y 
sm
al
l 
nu
mb
er
s 
ze
ro
.

  
  
  
  
  
  
  
  
if
 (
fa
bs
(_
_i
ma
g_
_ 
sh
f)
 <
 0
.0
00
00
00
00
1)

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
 =
 0
;

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
if
 (
fa
bs
(_
_r
ea
l_
_ 
sh
f)
 <
 0
.0
00
00
00
00
1)

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
 =
 0
;

  
  
  
  
  
  
  
  
}

#e
nd
if

  
  
  
  
  
  
  
  
bu
ff
er
[(
m 
* 
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t)
 +
 d
ir
ec
in
dx
] 
= 
sh
f;

  
  
  
  
  
  
}

  
  
  
  
}

  
  
  
  
sp
h_
fi
le
_n
am
e.
st
r(
sp
h_
fi
le
_n
am
e.
st
r(
).
c_
st
r(
))
;

  
  
  
  
ou
tf
il
e.
op
en
(s
ph
_f
il
e_
na
me
.s
tr
()
.c
_s
tr
()
, 
io
s:
:b
in
ar
y)
;

  
  
  
  
ou
tf
il
e.
wr
it
e(
(c
ha
r 
*)
 b
uf
fe
r,
 (
lo
ca
l_
el
l 
+ 
1)
 *
 u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
 *
 s
iz
eo
f(
_C
om
pl
ex

do
ub
le
))
;

  
  
  
  
ou
tf
il
e.
cl
os
e(
);

  
  
  
  
de
le
te
 b
uf
fe
r;

  
  
} 
wh
il
e 
(t
ru
e)
;

}
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s.
cp
p

vo
id
 *
 c
_t
op
ot
er
ms
::
st

ar
t_
th
re
ad
(v
oi
d 
*a
rg
)

{   
  
st
ar
t_
th
re
ad
_d
at
a_
t 
& 
st
ar
t_
th
re
ad
_d
at
a 
= 
*(
st
ar
t_
th
re
ad
_d
at
a_
t*
) 
ar
g;

  
  
sw
it
ch
 (
st
ar
t_
th
re
ad
_d
at
a.
th
re
ad
ty
pe
)

  
  
{

  
  
ca
se

TH
_G
TT
:

  
  
  
  
st
ar
t_
th
re
ad
_d
at
a.
ct
op
ot
er
ms
->
ca
lc
ul
at
e_
to
po
te
rm
s(
*(
to
po
te
rm
s_
ta
sk
_d
at
a_
t*
) 
ar
g)
;

  
  
  
  
br
ea
k;

  
  
ca
se

TH
_G
SH
:

  
  
  
  
st
ar
t_
th
re
ad
_d
at
a.
ct
op
ot
er
ms
->
ca
lc
ul
at
e_
sp
he
ri
ca
l_
ha
rm
on
ic
s(
*(
sp
he
ri
ca
l_
ta
sk
_d
at
a_
t*
) 
ar
g)
;

br
ea
k;

  
  
de
fa
ul
t:

  
  
  
  
co
ut
 <
< 
"\
n 
un
kn
ow
n 
ta
sk
\n
";

  
  
  
  
ab
or
t(
);

  
  
  
  
br
ea
k;

  
  
}

  
  
pt
hr
ea
d_
ex
it
(N
UL
L)
;

} // //
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

vo
id

c_
to
po
te
rm
s:
:s
et
_h
_a
nd
_L
_l
is
t(
h_
L_
te
rm
s_
t 
*h
_L
_t
er
ms
, 
in
t 
nu
mb
er
_o
f_
te
rm
s)

{   
  
if
 (
mp
_c
ov
am
at
ri
x_
da
ta
 !
= 
NU
LL
)

  
  
{

  
  
  
  
fo
r 
(i
nt
 T
F_
in
de
x 
= 
0;
 T
F_
in
de
x 
< 
m_
nu
mb
er
_o
f_
h_
l_
te
rm
s;
 T
F_
in
de
x+
+)

  
  
  
  
{

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
if
 (
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.T
T_
ou
tf
il
e 
!=
 N
UL
L)
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A.3. THE CODE 261

c_
to
po
te
rm
s.
cp
p

  
  
  
  
  
  
  
  
  
  
de
le
te

mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.T
T_
ou
tf
il
e;

  
  
  
  
  
  
  
  
if
 (
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.T
E_
ou
tf
il
e 
!=
 N
UL
L)

  
  
  
  
  
  
  
  
  
  
de
le
te

mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.T
E_
ou
tf
il
e;

  
  
  
  
  
  
  
  
if
 (
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.E
E_
ou
tf
il
e 
!=
 N
UL
L)

  
  
  
  
  
  
  
  
  
  
de
le
te

mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.E
E_
ou
tf
il
e;

  
  
  
  
  
  
}

  
  
  
  
}

  
  
  
  
de
le
te

mp
_c
ov
am
at
ri
x_
da
ta
;

  
  
}

  
  
m_
nu
mb
er
_o
f_
h_
l_
te
rm
s 
= 
nu
mb
er
_o
f_
te
rm
s;

mp
_c
ov
am
at
ri
x_
da
ta
 =
 n
ew
 c
ov
am
at
ri
x_
da
ta
_t
[m
_n
um
be
r_
of
_h
_l
_t
er
ms
];

  
  
fo
r 
(i
nt
 c
op
y_
in
de
x 
= 
0;
 c
op
y_
in
de
x 
< 
nu
mb
er
_o
f_
te
rm
s;
 c
op
y_
in
de
x+
+)

  
  
{

  
  
  
  
mp
_c
ov
am
at
ri
x_
da
ta
[c
op
y_
in
de
x]
.h
 =
 h
_L
_t
er
ms
[c
op
y_
in
de
x]
.h
;

  
  
  
  
mp
_c
ov
am
at
ri
x_
da
ta
[c
op
y_
in
de
x]
.L
 =
 h
_L
_t
er
ms
[c
op
y_
in
de
x]
.L
;

  
  
}

}
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MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s3
.h

 *
 c
to
po
te
rm
s3
.h

#i
fn
de
f 
CT
OP
OT
ER
MS
3_
H_

#d
ef
in
e 
CT
OP
OT
ER
MS
3_
H_

#i
nc
lu
de

"c
_t
op
ot
er
ms
.h
"

cl
as
s
c_
to
po
te
rm
s3
: 
pu
bl
ic

c_
to
po
te
rm
s

{ pu
bl
ic
:

  
  
c_
to
po
te
rm
s3
(i
nt
 e
ll
_m
in
_v
al
ue
, 
in
t 
el
l_
ma
x_
va
lu
e,
 i
nt
 n
sq
_m
in
_v
al
ue
, 
in
t 
ns
q_
ma
x_
va
lu
e)
;

  
  
vi
rt
ua
l
~c
_t
op
ot
er
ms
3(
);

pr
ot
ec
te
d:

  
  
vi
rt
ua
l
vo
id

ca
lc
ul
at
e_
to
po
te
rm
s(
to
po
te
rm
s_
ta
sk
_d
at
a_
t 
&t
t_
da
ta
);

}; #e
nd
if

/*
 C
TO
PO
TE
RM
S3
_H
_ 
*/
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c_
to
po
te
rm
s3
.c
pp

 *
 c
to
po
te
rm
s3
.c
pp

#i
nc
lu
de

"c
_t
op
ot
er
ms
3.
h"

us
in
g
na
me
sp
ac
e 

st
d;

c_
to
po
te
rm
s3
::
c_
to
po
te
rm
s3
(i
nt
 e
ll
_m
in
_v
al
ue
, 
in
t 
el
l_
ma
x_
va
lu
e,
 i
nt
 n
sq
_m
in
_v
al
ue
, 
in
t 
ns
q_
ma
x_
va
lu
e)
 :

  
  
  
  
c_
to
po
te
rm
s(
el
l_
mi
n_
va
lu
e,
 e
ll
_m
ax
_v
al
ue
, 
ns
q_
mi
n_
va
lu
e,
 n
sq
_m
ax
_v
al
ue
)

{   
  
m_
to
po
lo
gy
_n
am
e 
= 
"t
op
ol
og
y3
";

} c_
to
po
te
rm
s3
::
~c
_t
op
ot
er
ms
3(
)

{ } vo
id

c_
to
po
te
rm
s3
::
ca
lc
ul
at
e_
to
po
te
rm
s(
to
po
te
rm
s_
ta
sk
_d
at
a_
t 
&t
t_
da
ta
)

{   
  
/*
 T
he
re
 i
s 
a 
to
po
te
rm
 f
or
 e
ac
h 
co
mb
in
at
io
n 
of
 e
ll
, 
m,
 e
ll
da
sh
, 
md
as
h 
an
d 
n 
eq
ua
l 
to
:

  
  
 *
  
  
  
  
 -
--
-

  
  
 *
  
 i
^e
ll
  
> 
  
 (
if
 n
1 
= 
0,
 n
2 
= 
0,
 a
nd
 n
3 
is
 e
ve
n 
th
en
 a
dd
 (
1)
 t
o 
su
m 
el
se
 a
dd
 (
2)
 t
o 
su
m

  
  
 *
  
  
  
  
 -
--
-

  
  
 *
  
  
  
  
 d
ir
ec
s(
n1
,n
2,
n3
) 
fo
r 
gi
ve
n 
n 
  

 w
he
re
 d
is
ta
nc
e 
n 
= 
sq
rt
(n
1^
2 
* 
n2
^2
 *
 n
3^
2)

  
  
 *

  
  
 *
 (
1)
 (
sp
h_
ha
rm
(e
ll
,m
,n
1,
n2
,n
3)
 *
 c
pm
pl
ex
_c
on
ju
ga
te
(s
ph
_h
ar
m(
el
ld
as
h,

md
as
h,
n1
.n
3)
)

  
  
 *
 (
2)
 1
/s
qr
t(
2)
 *
 (
sp
h_
ha
rm
(e
ll
,m
,n
1,
n2
,n
3)
 +
 (
-1
)^
n3
 *
 s
ph
_h
ar
m(
el
l,

m,
n1
,-
n2
,-
n3
))
 *

  
  
 *
  
  
  
  
  
  
  
  
 (
cp
mp
le
x_
co
nj
ug
at
e(
sp
h_
ha
rm
(e
ll
,m
,n
1,
n2
,n
3)
) 
+ 
(-
1)
^n
3 
* 
cp
mp
le
x_
co
nj
ug
at
e(
sp
h_
ha
rm
(e
ll
,m
,n
1,
-

n2
,-
n3
))
)

  
  
 *
/

  
  
in
t 
lo
ca
l_
md
as
h;

  
  
co
ns
t
_C
om
pl
ex

do
ub
le
 I
 =
 0
.0
 +
 1
.0
i;
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MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s3
.c
pp

  
  
co
ns
t
_C
om
pl
ex

do
ub
le
 p
ow
er
s_
of
_i
[4
] 
= 
{ 
{ 
1 
+ 
0i
 }
, 
{ 
0 
+ 
1i
 }
, 
{ 
-1
 +
 0
i 
},
 {
 0
 +
 -
1i
 }
 }
;

  
  
co
ns
t
_C
om
pl
ex

do
ub
le
 p
ow
er
s_
of
_N
eg
_i
[4
] 
= 
{ 
{ 
1 
+ 
0i
 }
, 
{ 
0 
+ 
-1
i 
},
 {
 1
 +
 0
i 
},
 {
 0
 +
 1
i 
} 
};

  
  
_C
om
pl
ex

do
ub
le
 t
t;

  
  
_C
om
pl
ex

do
ub
le
 T
Tc
ov
ar
[m
_n
um
be
r_
of
_h
_l
_t
er
ms
];

  
  
_C
om
pl
ex

do
ub
le
 T
Ec
ov
ar
[m
_n
um
be
r_
of
_h
_l
_t
er
ms
];

  
  
_C
om
pl
ex

do
ub
le
 E
Ec
ov
ar
[m
_n
um
be
r_
of
_h
_l
_t
er
ms
];

  
  
do
ub
le
 c
t;

  
  
co
ns
t
_C
om
pl
ex

do
ub
le
 c
on
st
_a
 =
 (
16
 *
 _

_b
ui
lt
in
_c
po
w(
m_
Pi
, 
2)
);

  
  
do

  
  
{

  
  
  
  
pt
hr
ea
d_
mu
te
x_
lo
ck
(&
lo
ck
_m
da
sh
_c
ou
nt
);

  
  
  
  
lo
ca
l_
md
as
h 
= 
*(
tt
_d
at
a.
md
as
h_
co
un
t)
;

  
  
  
  
(*
(t
t_
da
ta
.m
da
sh
_c
ou
nt
))
 +
= 
2;

  
  
  
  
pt
hr
ea
d_
mu
te
x_
un
lo
ck
(&
lo
ck
_m
da
sh
_c
ou
nt
);

  
  
  
  
if
 (
lo
ca
l_
md
as
h 
> 
tt
_d
at
a.
el
ld
as
h)

  
  
  
  
{

  
  
  
  
  
  
br
ea
k;

  
  
  
  
}

  
  
  
  
me
ms
et
(T
Tc
ov
ar
, 
0,
 s
iz
eo
f(
TT
co
va
r)
);

  
  
  
  
me
ms
et
(T
Ec
ov
ar
, 
0,
 s
iz
eo
f(
TE
co
va
r)
);

  
  
  
  
me
ms
et
(E
Ec
ov
ar
, 
0,
 s
iz
eo
f(
EE
co
va
r)
);

  
  
  
  
fo
r 
(i
nt
 n
sq
_c
ou
nt
 =
 0
; 
ns
q_
co
un
t 
< 
m_
nn
sq
; 
ns
q_
co
un
t+
+)

  
  
  
  
{

  
  
  
  
  
  
tt
 =
 0
 +
 0
i;

  
  
  
  
  
  
fo
r 
(i
nt
 d
ir
ec
in
dx
 =
 0
; 
di
re
ci
nd
x 
< 
ns
q_
an
d_
di
re
ct
io
ns
_l
is
t[
ns
q_
co
un
t]
.n
di
re
cs
; 
di
re
ci
nd
x+
+)

  
  
  
  
  
  
{
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c_
to
po
te
rm
s3
.c
pp

  
  
  
  
  
  
  
  
st
ru
ct

si
ng
le
_d
ir
ec
ti
on
_t
 s
in
gl
e_
di
re
ct
io
n 
= 
ns
q_
an
d_
di
re
ct
io
ns
_l
is
t[
ns
q_
co
un
t]
.d
ir
ec
ti
on
_i
nd
ex
_l
is
t

[d
ir
ec
in
dx
];

  
  
  
  
  
  
  
  
in
t 
n1
 =
 s
in
gl
e_
di
re
ct
io
n.
n1
;

  
  
  
  
  
  
  
  
in
t 
n2
 =
 s
in
gl
e_
di
re
ct
io
n.
n2
;

  
  
  
  
  
  
  
  
in
t 
n3
 =
 s
in
gl
e_
di
re
ct
io
n.
n3
;

  
  
  
  
  
  
  
  
in
t 
cu
rr
en
t_
di
r 
= 
m_
fi
rs
t_
fo
un
d_
di
re
ct
io
n_
n1
_n
2_
n3
[n
1 
+ 
MA
X_
NM
AX
][
n2
 +
 M
AX
_N
MA
X]
[n
3 
+ 
MA
X_
NM
AX
];

  
  
  
  
  
  
  
  
as
se
rt
(c
ur
re
nt
_d
ir
 <
 t
t_
da
ta
.u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
);

  
  
  
  
  
  
  
  
if
 (
n1
 !
= 
0 
||
 n
2 
!=
 0
 |
| 
(n
3 
% 
4)
 !
= 
0)

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
if
 (
n1
 >
 0
 &
& 
n2
 >
= 
0)

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
1 
= 
tt
_d
at
a.
on
e_
el
l_
on
e_
m_
sh
_f
or
_u
ni
qu
e_
di
re
ct
io
ns
[c
ur
re
nt
_d
ir
];

  
  
  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
2 
= 
(t
t_
da
ta
.o
ne
_e
ll
da
sh
_a
ll
_m
da
sh
_s
h_
fo
r_
un
iq
ue
_d
ir
ec
ti
on
s

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
+ 
((
ab
s(
lo
ca
l_
md
as
h)
 *
 t
t_
da
ta
.u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
))
)[
cu
rr
en
t_
di
r]
;

  
  
  
  
  
  
  
  
  
  
  
  
in
t 
di
r_
re
la
te
d_
to
_c
ur
re
nt
_d
ir
 =
 m
_f
ir
st
_f
ou
nd
_d
ir
ec
ti
on
_n
1_
n2
_n
3[
n2
 +
 M
AX
_N
MA
X]
[-
n1
 +
 

MA
X_
NM
AX
][
-n
3 
+ 
MA
X_
NM
AX
];

  
  
  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
3 
= 
tt
_d
at
a.
on
e_
el
l_
on
e_
m_
sh
_f
or
_u
ni
qu
e_
di
re
ct
io
ns

[d
ir
_r
el
at
ed
_t
o_
cu
rr
en
t_
di
r]
;

  
  
  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
4 
= 
(t
t_
da
ta
.o
ne
_e
ll
da
sh
_a
ll
_m
da
sh
_s
h_
fo
r_
un
iq
ue
_d
ir
ec
ti
on
s

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
+ 
((
ab
s(
lo
ca
l_
md
as
h)
 *
 t
t_
da
ta
.u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
))
)

[d
ir
_r
el
at
ed
_t
o_
cu
rr
en
t_
di
r]
;

  
  
  
  
  
  
  
  
  
  
  
  
di
r_
re
la
te
d_
to
_c
ur
re
nt
_d
ir
 =
 m
_f
ir
st
_f
ou
nd
_d
ir
ec
ti
on
_n
1_
n2
_n
3[
-n
1 
+ 
MA
X_
NM
AX
][
-n
2 
+ 
MA
X_
NM
AX
]

[n
3 
+ 
MA
X_
NM
AX
];

  
  
  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
5 
= 
tt
_d
at
a.
on
e_
el
l_
on
e_
m_
sh
_f
or
_u
ni
qu
e_
di
re
ct
io
ns

[d
ir
_r
el
at
ed
_t
o_
cu
rr
en
t_
di
r]
;

  
  
  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
6 
= 
(t
t_
da
ta
.o
ne
_e
ll
da
sh
_a
ll
_m
da
sh
_s
h_
fo
r_
un
iq
ue
_d
ir
ec
ti
on
s

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
+ 
((
ab
s(
lo
ca
l_
md
as
h)
 *
 t
t_
da
ta
.u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
))
)

[d
ir
_r
el
at
ed
_t
o_
cu
rr
en
t_
di
r]
;

  
  
  
  
  
  
  
  
  
  
  
  
di
r_
re
la
te
d_
to
_c
ur
re
nt
_d
ir
 =
 m
_f
ir
st
_f
ou
nd
_d
ir
ec
ti
on
_n
1_
n2
_n
3[
-n
2 
+ 
MA
X_
NM
AX
][
n1
 +
 M
AX
_N
MA
X]
[-

n3
 +
 M
AX
_N
MA
X]
;
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MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s3
.c
pp

  
  
  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
7 
= 
tt
_d
at
a.
on
e_
el
l_
on
e_
m_
sh
_f
or
_u
ni
qu
e_
di
re
ct
io
ns

[d
ir
_r
el
at
ed
_t
o_
cu
rr
en
t_
di
r]
;

  
  
  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
8 
= 
(t
t_
da
ta
.o
ne
_e
ll
da
sh
_a
ll
_m
da
sh
_s
h_
fo
r_
un
iq
ue
_d
ir
ec
ti
on
s

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
+ 
((
ab
s(
lo
ca
l_
md
as
h)
 *
 t
t_
da
ta
.u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
))
)

[d
ir
_r
el
at
ed
_t
o_
cu
rr
en
t_
di
r]
;

  
  
  
  
  
  
  
  
  
  
  
  
if
 (
tt
_d
at
a.
m 
< 
0)

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
if
 (
(l
oc
al
_m
da
sh
 &
 1
) 
==
 0
) 
//
i.
e 
ev
en

  
  
  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
1 
= 
-_
_i
ma
g_
_ 
sh
f1
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
3 
= 
-_
_i
ma
g_
_ 
sh
f3
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
5 
= 
-_
_i
ma
g_
_ 
sh
f5
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
7 
= 
-_
_i
ma
g_
_ 
sh
f7
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
  
  
el
se

  
  
  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
1 
= 
-_
_r
ea
l_
_ 
sh
f1
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
3 
= 
-_
_r
ea
l_
_ 
sh
f3
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
5 
= 
-_
_r
ea
l_
_ 
sh
f5
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
7 
= 
-_
_r
ea
l_
_ 
sh
f7
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
if
 (
lo
ca
l_
md
as
h 
< 
0)

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
if
 (
(l
oc
al
_m
da
sh
 &
 1
) 
==
 0
) 
//
i.
e 
ev
en

  
  
  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
2 
= 
-_
_i
ma
g_
_ 
sh
f2
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
4 
= 
-_
_i
ma
g_
_ 
sh
f4
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
6 
= 
-_
_i
ma
g_
_ 
sh
f6
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
8 
= 
-_
_i
ma
g_
_ 
sh
f8
;
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c_
to
po
te
rm
s3
.c
pp

  
  
  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
  
  
el
se

  
  
  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
2 
= 
-_
_r
ea
l_
_ 
sh
f2
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
4 
= 
-_
_r
ea
l_
_ 
sh
f4
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
6 
= 
-_
_r
ea
l_
_ 
sh
f6
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
8 
= 
-_
_r
ea
l_
_ 
sh
f8
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
in
t 
n3
_P
ow
er
 =
 n
3 
& 
3;

  
  
  
  
  
  
  
  
  
  
  
  
in
t 
n3
X2
_P
ow
er
 =
 (
2 
* 
n3
) 
& 
3;

in
t 
n3
X3
_P
ow
er
 =
 (
3 
* 
n3
) 
& 
3;

  
  
  
  
  
  
  
  
  
  
  
  
tt
 +
= 
(0
.2
5 
+ 
0i
)

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
* 
((
__
bu
il
ti
n_
co
nj
(s
hf
1)
 +
 (
po
we
rs
_o
f_
Ne
g_
i[
n3
_P
ow
er
] 
* 
__
bu
il
ti
n_
co
nj
(s
hf
3)
) 
+ 

(p
ow
er
s_
of
_N
eg
_i
[n
3X
2_
Po
we
r]
 *
 _
_b
ui
lt
in
_c
on
j(
sh
f5
))
 +
 (
po
we
rs
_o
f_
Ne
g_

i[
n3
X3
_P
ow
er
] 
* 
__
bu
il
ti
n_
co
nj
(s
hf
7)
))

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
* 
(s
hf
2 
+ 
(p
ow
er
s_
of
_i
[n
3_
Po
we
r]
 *
 s
hf
4)
 +
 (
po
we
rs

_o
f_
i[
n3
X2
_P
ow
er
] 
* 
sh
f6
) 
+ 

(p
ow
er
s_
of
_i
[n
3X
3_
Po
we
r]
 *
 s
hf
8)
))
;

  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
el
se

if
 (
n1
 =
= 
0 
&&
 n
2 
==
 0
 &
& 
(n
3 
& 
1)
 =
= 
0)
  
//
 i
f 
tr
ue
 d
o 
th
e 
sa
me
 a
s 
fo
r 
to
po
te
rm
 1

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
//
sa
me
 a
s 
fo
r 
to
po
te
rm
 1

  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
1 
= 
tt
_d
at
a.
on
e_
el
l_
on
e_
m_
sh
_f
or
_u
ni
qu
e_
di
re
ct
io
ns
[c
ur
re
nt
_d
ir
];

  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
2 
=

  
  
  
  
  
  
  
  
  
  
  
  
  
  
(t
t_
da
ta
.o
ne
_e
ll
da
sh
_a
ll
_m
da
sh
_s
h_
fo
r_
un
iq
ue
_d
ir
ec
ti
on
s 
+ 
((
ab
s(
lo
ca
l_
md
as
h)
 *
 

tt
_d
at
a.
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t)
))
[c
ur
re
nt
_d
ir
];

  
  
  
  
  
  
  
  
  
  
if
 (
tt
_d
at
a.
m 
< 
0)
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s3
.c
pp

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
if
 (
(l
oc
al
_m
da
sh
 &
 1
) 
==
 0
) 
//
i.
e 
ev
en

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
1 
= 
-_
_i
ma
g_
_ 
sh
f1
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
el
se

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
1 
= 
-_
_r
ea
l_
_ 
sh
f1
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
if
 (
lo
ca
l_
md
as
h 
< 
0)

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
if
 (
(l
oc
al
_m
da
sh
 &
 1
) 
==
 0
) 
//
i.
e 
ev
en

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
2 
= 
-_
_i
ma
g_
_ 
sh
f2
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
el
se

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
2 
= 
-_
_r
ea
l_
_ 
sh
f2
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
tt
 +
= 
(_
_b
ui
lt
in
_c
on
j(
sh
f1
) 
* 
 s
hf
2 
);

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
el
se

if
 (
n1
 >
 0
 |
| 
(n
1 
==
 0
 &
& 
n2
 >
 0
))
  
//
if
 t
ru
e 
to
 t
he
 s
am
e 
as
 f
or
 t
op
ot
er
m 

2
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
in
t 
Ne
g1
_p
ow
_n
3 
= 
((
n3
 &
 1
) 
==
 0
) 
? 
(1
) 
: 
(-
1)
;

  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
1 
= 
tt
_d
at
a.
on
e_
el
l_
on
e_
m_
sh
_f
or
_u
ni
qu
e_
di
re
ct
io
ns
[c
ur
re
nt
_d
ir
];

  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
2 
=

  
  
  
  
  
  
  
  
  
  
  
  
  
  
(t
t_
da
ta
.o
ne
_e
ll
da
sh
_a
ll
_m

da
sh
_s
h_
fo
r_
un
iq

ue
_d
ir
ec
ti
on
s 
+ 
((
ab
s(
lo
ca
l_
md
as
h)
 *
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c_
to
po
te
rm
s3
.c
pp

tt
_d
at
a.
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t)
))
[c
ur
re
nt
_d
ir
];

  
  
  
  
  
  
  
  
  
  
in
t 
di
r_
re
la
te
d_
to
_c
ur
re
nt
_d
ir
 =
 m
_f
ir
st
_f
ou
nd
_d
ir
ec
ti
on
_n
1_
n2
_n
3[
n1
 +
 M
AX
_N
MA
X]
[-
n2
 +
 M
AX
_N
MA
X]
[-

n3
 +
 M
AX
_N
MA
X]
;

  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
3 
= 
tt
_d
at
a.
on
e_
el
l_
on
e_
m_
sh
_f
or
_u
ni
qu
e_
di
re
ct
io
ns
[d
ir
_r
el
at
ed
_t
o_
cu
rr
en
t_
di
r]
;

  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
4 
=

  
  
  
  
  
  
  
  
  
  
  
  
  
  
(t
t_
da
ta
.o
ne
_e
ll
da
sh
_a
ll
_m
da
sh
_s
h_
fo
r_
un
iq
ue
_d
ir
ec
ti
on
s 
+ 
((
ab
s(
lo
ca
l_
md
as
h)
 *
 

tt
_d
at
a.
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t)
))
[d
ir
_r
el
at
ed
_t
o_
cu
rr
en
t_
di
r]
;

  
  
  
  
  
  
  
  
  
  
if
 (
tt
_d
at
a.
m 
< 
0)

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
//
if
(m
<0
){
sh
f1
=p
ow
(-
1,
m)
*c
on
j(
sh
f1
);
}

if
 (
(l
oc
al
_m
da
sh
 &
 1
) 
==
 0
) 
//
i.
e 
ev
en

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
1 
= 
-_
_i
ma
g_
_ 
sh
f1
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
3 
= 
-_
_i
ma
g_
_ 
sh
f3
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
el
se

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
1 
= 
-_
_r
ea
l_
_ 
sh
f1
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
3 
= 
-_
_r
ea
l_
_ 
sh
f3
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
if
 (
lo
ca
l_
md
as
h 
< 
0)

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
//
if
(m
da
sh
<0
){
sh
f2
=p
ow
(-
1,
md
as
h)
*c
on
j(
sh
f2
);
}

  
  
  
  
  
  
  
  
  
  
  
  
if
 (
(l
oc
al
_m
da
sh
 &
 1
) 
==
 0
) 
//
i.
e 
ev
en

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
2 
= 
-_
_i
ma
g_
_ 
sh
f2
;

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
4 
= 
-_
_i
ma
g_
_ 
sh
f4
;

  
  
  
  
  
  
  
  
  
  
  
  
}
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s7
.h

 *
 c
to
po
te
rm
s7
.h

#i
fn
de
f 
CT
OP
OT
ER
MS
7_
H_

#d
ef
in
e 
CT
OP
OT
ER
MS
7_
H_

#i
nc
lu
de

"c
_t
op
ot
er
ms
.h
"

cl
as
s
c_
to
po
te
rm
s7
: 
pu
bl
ic

c_
to
po
te
rm
s

{ pu
bl
ic
:

  
  
c_
to
po
te
rm
s7
(i
nt
 e
ll
_m
in
_v
al
ue
, 
in
t 
el
l_
ma
x_
va
lu
e,
 i
nt
 n
sq
_m
in
_v
al
ue
, 
in
t 
ns
q_
ma
x_
va
lu
e)
;

  
  
vi
rt
ua
l
~c
_t
op
ot
er
ms
7(
);

pr
ot
ec
te
d:

  
  
vi
rt
ua
l
vo
id

ca
lc
ul
at
e_
to
po
te
rm
s(
to
po
te
rm
s_
ta
sk
_d
at
a_
t 
&t
t_
da
ta
);

}; #e
nd
if

/*
 C
TO
PO
TE
RM
S3
_H
_ 
*/
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c_
to
po
te
rm
s7
.c
pp

 *
 c
to
po
te
rm
s3
.c
pp

#i
nc
lu
de

"c
_t
op
ot
er
ms
7.
h"

us
in
g
na
me
sp
ac
e 

st
d;

c_
to
po
te
rm
s7
::
c_
to
po
te
rm
s7
(i
nt
 e
ll
_m
in
_v
al
ue
, 
in
t 
el
l_
ma
x_
va
lu
e,
 i
nt
 n
sq
_m
in
_v
al
ue
, 
in
t 
ns
q_
ma
x_
va
lu
e)
 :

  
  
  
  
c_
to
po
te
rm
s(
el
l_
mi
n_
va
lu
e,
 e
ll
_m
ax
_v
al
ue
, 
ns
q_
mi
n_
va
lu
e,
 n
sq
_m
ax
_v
al
ue
)

{   
  
m_
to
po
lo
gy
_n
am
e 
= 
"t
op
ol
og
y7
";

} c_
to
po
te
rm
s7
::
~c
_t
op
ot
er
ms
7(
)

{ } vo
id

c_
to
po
te
rm
s7
::
ca
lc
ul
at
e_
to
po
te
rm
s(
to
po
te
rm
s_
ta
sk
_d
at
a_
t 
&t
t_
da
ta
)

{   
  
in
t 
lo
ca
l_
md
as
h;

  
  
co
ns
t
_C
om
pl
ex

do
ub
le
 I
 =
 0
.0
 +
 1
.0
i;

  
  
_C
om
pl
ex

do
ub
le
 t
t;

  
  
_C
om
pl
ex

do
ub
le
 T
Tc
ov
ar
[m
_n
um
be
r_
of
_h
_l
_t
er
ms
];

  
  
_C
om
pl
ex

do
ub
le
 T
Ec
ov
ar
[m
_n
um
be
r_
of
_h
_l
_t
er
ms
];

  
  
_C
om
pl
ex

do
ub
le
 E
Ec
ov
ar
[m
_n
um
be
r_
of
_h
_l
_t
er
ms
];

  
  
do
ub
le
 c
t;

  
  
co
ns
t
_C
om
pl
ex

do
ub
le
 c
on
st
_a
 =
 (
16
 *
 _

_b
ui
lt
in
_c
po
w(
m_
Pi
, 
2)
);

  
  
do

  
  
{

  
  
  
  
pt
hr
ea
d_
mu
te
x_
lo
ck
(&
lo
ck
_m
da
sh
_c
ou
nt
);
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s7
.c
pp

  
  
  
  
lo
ca
l_
md
as
h 
= 
*(
tt
_d
at
a.
md
as
h_
co
un
t)
;

  
  
  
  
(*
(t
t_
da
ta
.m
da
sh
_c
ou
nt
))
 +
= 
2;

  
  
  
  
pt
hr
ea
d_
mu
te
x_
un
lo
ck
(&
lo
ck
_m
da
sh
_c
ou
nt
);

  
  
  
  
if
 (
lo
ca
l_
md
as
h 
> 
tt
_d
at
a.
el
ld
as
h)

  
  
  
  
{

  
  
  
  
  
  
br
ea
k;

  
  
  
  
}

  
  
  
  
me
ms
et
(T
Tc
ov
ar
, 
0,
 s
iz
eo
f(
TT
co
va
r)
);

  
  
  
  
me
ms
et
(T
Ec
ov
ar
, 
0,
 s
iz
eo
f(
TE
co
va
r)
);

me
ms
et
(E
Ec
ov
ar
, 
0,
 s
iz
eo
f(
EE
co
va
r)
);

  
  
  
  
fo
r 
(i
nt
 n
sq
_c
ou
nt
 =
 0
; 
ns
q_
co
un
t 
< 
m_
nn
sq
; 
ns
q_
co
un
t+
+)

  
  
  
  
{

  
  
  
  
  
  
tt
 =
 0
 +
 0
i;

  
  
  
  
  
  
fo
r 
(i
nt
 d
ir
ec
in
dx
 =
 0
; 
di
re
ci
nd
x 
< 
ns
q_
an
d_
di
re
ct
io
ns
_l
is
t[
ns
q_
co
un
t]
.n
di
re
cs
; 
di
re
ci
nd
x+
+)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
st
ru
ct

si
ng
le
_d
ir
ec
ti
on
_t
 s
in
gl
e_
di
re
ct
io
n 
= 
ns
q_
an
d_
di
re
ct
io
ns
_l
is
t[
ns
q_
co
un
t]
.d
ir
ec
ti
on
_i
nd
ex
_l
is
t

[d
ir
ec
in
dx
];

  
  
  
  
  
  
  
  
in
t 
n1
 =
 s
in
gl
e_
di
re
ct
io
n.
n1
;

  
  
  
  
  
  
  
  
in
t 
n2
 =
 s
in
gl
e_
di
re
ct
io
n.
n2
;

  
  
  
  
  
  
  
  
in
t 
n3
 =
 s
in
gl
e_
di
re
ct
io
n.
n3
;

  
  
  
  
  
  
  
  
in
t 
cu
rr
en
t_
di
r 
= 
m_
fi
rs
t_
fo
un
d_
di
re
ct
io
n_
n1
_n
2_
n3
[n
1 
+ 
MA
X_
NM
AX
][
n2
 +
 M
AX
_N
MA
X]
[n
3 
+ 
MA
X_
NM
AX
];

  
  
  
  
  
  
  
  
as
se
rt
(c
ur
re
nt
_d
ir
 <
 t
t_
da
ta
.u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
);

  
  
  
  
  
  
  
  
if
 (
n2
 >
 0
)

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
1 
= 
tt
_d
at
a.
on
e_
el
l_
on
e_
m_
sh
_f
or
_u
ni
qu
e_
di
re
ct
io
ns
[c
ur
re
nt
_d
ir
];
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c_
to
po
te
rm
s7
.c
pp

  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
2 
=

  
  
  
  
  
  
  
  
  
  
  
  
  
  
(t
t_
da
ta
.o
ne
_e
ll
da
sh
_a
ll
_m
da
sh
_s
h_
fo
r_
un
iq
ue
_d
ir
ec
ti
on
s 
+ 
((
ab
s(
lo
ca
l_
md
as
h)
 *
 

tt
_d
at
a.
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t)
))
[c
ur
re
nt
_d
ir
];

  
  
  
  
  
  
  
  
  
  
if
 (
tt
_d
at
a.
m 
< 
0)

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
if
 (
(l
oc
al
_m
da
sh
 &
 1
) 
==
 0
) 
//
i.
e 
ev
en

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
1 
= 
-_
_i
ma
g_
_ 
sh
f1
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
el
se

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
1 
= 
-_
_r
ea
l_
_ 
sh
f1
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
if
 (
lo
ca
l_
md
as
h 
< 
0)

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
if
 (
(l
oc
al
_m
da
sh
 &
 1
) 
==
 0
) 
//
i.
e 
ev
en

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
2 
= 
-_
_i
ma
g_
_ 
sh
f2
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
el
se

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
2 
= 
-_
_r
ea
l_
_ 
sh
f2
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
in
t 
Ne
g1
Po
we
rN
1P
lu
sN
2 
= 

((
(n
1 
+ 
n2
) 
& 
1)
 =
= 
0)
 ?
 (
1)
 :
 (
-1
);

  
  
  
  
  
  
  
  
  
  
tt
 +
= 
(0
.5
 +
 0
i)
 *
 (
__
bu
il
ti
n_
co
nj
(s
hf

1)
 +
 (
Ne
g1
Po
we
rN

1P
lu
sN
2 
* 
__
bu
il
ti
n_
co
nj
(s
hf
1)
))
 *
 (
sh
f2
 +
 

(N
eg
1P
ow
er
N1
Pl
us
N2
 *
 s
hf
2)
);
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MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s7
.c
pp

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
el
se

if
 (
(n
1 
& 
1)
 =
= 
0 
&&
 n
2 
==
 0
) 
 /
/ 
if
 t
ru
e 
do
 t
he
 s
am
e 
as
 f
or
 t
op
ot
er
m 
1

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
//
sa
me
 a
s 
fo
r 
to
po
te
rm
1

  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
1 
= 
tt
_d
at
a.
on
e_
el
l_
on
e_
m_
sh
_f
or
_u
ni
qu
e_
di
re
ct
io
ns
[c
ur
re
nt
_d
ir
];

  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
2 
=

  
  
  
  
  
  
  
  
  
  
  
  
  
  
(t
t_
da
ta
.o
ne
_e
ll
da
sh
_a
ll
_m
da
sh
_s
h_
fo
r_
un
iq
ue
_d
ir
ec
ti
on
s 
+ 
((
ab
s(
lo
ca
l_
md
as
h)
 *
 

tt
_d
at
a.
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t)
))
[c
ur
re
nt
_d
ir
];

  
  
  
  
  
  
  
  
  
  
if
 (
tt
_d
at
a.
m 
< 
0)

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
if
 (
(l
oc
al
_m
da
sh
 &
 1
) 
==
 0
) 
//
i.
e 
ev
en

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
1 
= 
-_
_i
ma
g_
_ 
sh
f1
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
el
se

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
1 
= 
-_
_r
ea
l_
_ 
sh
f1
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
if
 (
lo
ca
l_
md
as
h 
< 
0)

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
if
 (
(l
oc
al
_m
da
sh
 &
 1
) 
==
 0
) 
//
i.
e 
ev
en

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
2 
= 
-_
_i
ma
g_
_ 
sh
f2
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
el
se

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
2 
= 
-_
_r
ea
l_
_ 
sh
f2
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
}
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c_
to
po
te
rm
s7
.c
pp

  
  
  
  
  
  
  
  
  
  
tt
 +
= 
(_
_b
ui
lt
in
_c
on
j(
sh
f1
) 
* 
sh
f2
);

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
}

  
  
  
  
  
  
tt
 *
= 
(_
_b
ui
lt
in
_c
po
w(
-I
, 
tt
_d
at
a.
el
l)
 *
 _
_b
ui
lt
in
_c
po
w(
I,
 t
t_
da
ta
.e
ll
da
sh
))
;

#i
fd
ef
 T
ES
TI
NG
_T
T

  
  
  
  
  
  
if
 (
lo
ca
l_
md
as
h 
==
 t
t_
da
ta
.m
_d
as
h)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
pt
hr
ea
d_
mu
te
x_
lo
ck
(&
lo
ck
_m
da
sh
_c
ou
nt
);

  
  
  
  
  
  
  
  
co
ut
 <
< 
"*
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
*"
 <
< 
en
dl
;

  
  
  
  
  
  
  
  
co
ut
 <
< 
"e
ll
:"
 <
< 
tt
_d
at
a.
el
l 
<<
 "
 m
:"
 <
< 
tt
_d
at
a.
m 
<<
 "
 e
ll
da
sh
:"
 <
< 
tt
_d
at
a.
el
ld
as
h 
<<
 "
 m
da
sh
:"
 <
< 

lo
ca
l_
md
as
h;

  
  
  
  
  
  
  
  
co
ut
 <
< 
" 
  
ns
q 
= 
" 
<<
 n
sq
_a
nd
_d
ir
ec
ti
on
s_
li
st
[n
sq
_c
ou
nt
].
ns
q 
<<
 "
  
 T
T7
 =
 "
 <
< 
__
re
al
__
 t
t 
<<
 "
 "
<<
 

sh
ow
po
s 
<<
 _
_i
ma
g_
_ 
tt
 <
< 
"i
"

  
  
  
  
  
  
  
  
<<
 e
nd
l;

  
  
  
  
  
  
  
  
co
ut
 <
< 
"*
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
*"
 <
< 
en
dl
;

  
  
  
  
  
  
  
  
pt
hr
ea
d_
mu
te
x_
un
lo
ck
(&
lo
ck
_m
da
sh
_c
ou
nt
);

  
  
  
  
  
  
}

#e
nd
if

#i
fn
de
f 
NO
_T
RU
NC
AT
E

  
  
  
  
  
  
//
ma
ke
 v
er
y 
sm
al
l 
nu
mb
er
s 
ze
ro
.

  
  
  
  
  
  
if
 (
fa
bs
(_
_i
ma
g_
_ 
tt
) 
< 
0.
00
00
00
00
01
)

  
  
  
  
  
  
__
im
ag
__
 t
t 
= 
0;

  
  
  
  
  
  
if
 (
fa
bs
(_
_r
ea
l_
_ 
tt
) 
< 
0.
00
00
00
00
01
)

  
  
  
  
  
  
__
re
al
__
 t
t 
= 
0;

#e
nd
if

  
  
  
  
  
  
tt
_d
at
a.
nu
mb
er
_o
f_
to
po
te
tm
s+
+;

  
  
  
  
  
  
//
 F
in
d 
co
sm
ot
er
m 
as
so
ci
at
ed
 w
it
h 
ns
q
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s7
.c
pp

  
  
  
  
  
  
in
t 
ns
q 
= 
ns
q_
an
d_
di
re
ct
io
ns
_l
is
t[
ns
q_
co
un
t]
.n
sq
;

  
  
  
  
  
  
fo
r 
(i
nt
 T
F_
in
de
x 
= 
0;
 T
F_
in
de
x 
< 
m_
nu
mb
er
_o
f_
h_
l_
te
rm
s;
 T
F_
in
de
x+
+)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
ct
 =
 t
t_
da
ta
.t
ra
ns
fe
r_
fu
nc
ti
on
s[
TF
_i
nd
ex
].
tr
an
sf
er
_f
un
ct
io
ns
_T
[t
t_
da
ta
.e
ll
][
ns
q]

  
  
  
  
  
  
  
  
  
  
  
  
* 
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
T[
tt
_d
at
a.
el
ld
as
h]
[n
sq
]

  
  
  
  
  
  
  
  
  
  
  
  
* 
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
Kp
ow
er
[n
sq
];
 /
/ 
co
sm
ot
er
m

  
  
  
  
  
  
  
  
TT
co
va
r[
TF
_i
nd
ex
] 
+=
 c
t 
* 
tt
;

  
  
  
  
  
  
  
  
ct
 =
 t
t_
da
ta
.t
ra
ns
fe
r_
fu
nc
ti
on
s[
TF
_i
nd
ex
].
tr
an
sf
er
_f
un
ct
io
ns
_T
[t
t_
da
ta
.e
ll
][
ns
q]

  
  
  
  
  
  
  
  
  
  
  
  
* 
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
E[
tt
_d
at
a.
el
ld
as
h]
[n
sq
]

  
  
  
  
  
  
  
  
  
  
  
  
* 
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
Kp
ow
er
[n
sq
];
 /
/ 
co
sm
ot
er
m

  
  
  
  
  
  
  
  
TE
co
va
r[
TF
_i
nd
ex
] 
+=
 c
t 
* 
tt
;

  
  
  
  
  
  
  
  
ct
 =
 t
t_
da
ta
.t
ra
ns
fe
r_
fu
nc
ti
on
s[
TF
_i
nd
ex
].
tr
an
sf
er
_f
un
ct
io
ns
_E
[t
t_
da
ta
.e
ll
][
ns
q]

  
  
  
  
  
  
  
  
  
  
  
  
* 
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
E[
tt
_d
at
a.
el
ld
as
h]
[n
sq
]

  
  
  
  
  
  
  
  
  
  
  
  
* 
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
Kp
ow
er
[n
sq
];
 /
/ 
co
sm
ot
er
m

  
  
  
  
  
  
  
  
EE
co
va
r[
TF
_i
nd
ex
] 
+=
 c
t 
* 
tt
;

  
  
  
  
  
  
}

  
  
  
  
}

  
  
  
  
fo
r 
(i
nt
 T
F_
in
de
x 
= 
0;
 T
F_
in
de
x 
< 
m_
nu
mb
er
_o
f_
h_
l_
te
rm
s;
 T
F_
in
de
x+
+)

  
  
  
  
{

#i
fn
de
f 
TE
ST
IN
G_
CM

  
  
  
  
  
  
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.T
T_
co
va
ma
tr
ix
_f
or
_o
ne
_e
ll
_a
nd
_i
ts
_m
s[
MA
X_
EL
L 
+ 
lo
ca
l_
md
as
h]
 =
 T
Tc
ov
ar

[T
F_
in
de
x]
 *
 c
on
st
_a
;

  
  
  
  
  
  
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.T
E_
co
va
ma
tr
ix
_f
or
_o
ne
_e
ll
_a
nd
_i
ts
_m
s[
MA
X_
EL
L 
+ 
lo
ca
l_
md
as
h]
 =
 T
Ec
ov
ar

[T
F_
in
de
x]
 *
 c
on
st
_a
;

  
  
  
  
  
  
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.E
E_
co
va
ma
tr
ix
_f
or
_o
ne
_e
ll
_a
nd
_i
ts
_m
s[
MA
X_
EL
L 
+ 
lo
ca
l_
md
as
h]
 =
 E
Ec
ov
ar
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c_
to
po
te
rm
s7
.c
pp

[T
F_
in
de
x]
 *
 c
on
st
_a
;

#e
ls
e

  
  
  
  
  
  
if
 (
lo
ca
l_
md
as
h 
==
 t
t_
da
ta
.m
_d
as
h)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
TT
co
va
r[
TF
_i
nd
ex
] 
*=
 c
on
st
_a
;

  
  
  
  
  
  
  
  
TE
co
va
r[
TF
_i
nd
ex
] 
*=
 c
on
st
_a
;

  
  
  
  
  
  
  
  
EE
co
va
r[
TF
_i
nd
ex
] 
*=
 c
on
st
_a
;

  
  
  
  
  
  
  
  
//
wh
en
 t
es
ti
ng
 p
ri
nt
 o
ut
 t
he
 c
ov
ar
ma
tr
ix
 d
at
a

  
  
  
  
  
  
  
  
co
ut
 <
< 
"T
T_
L:
" 
<<
 m
p_
co
va
ma
tr
ix
_d
at
a[
TF
_i
nd
ex
].
L 
<<
 "
_h
:"
 <
< 
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.h
 <
< 
" 
 "
 <
<

  
  
  
  
  
  
  
  
__
re
al
__
 T
Tc
ov
ar
[T
F_
in
de
x]
 <
< 
" 
" 
<<
 s
ho
wp
os
 <
< 
__
im
ag
__
 T
Tc
ov
ar
[T
F_
in
de
x]
 <
< 
no
sh
ow
po
s 
<<
 e
nd
l;

  
  
  
  
  
  
  
  
co
ut
 <
< 
"T
E_
L:
" 
<<
 m
p_
co
va
ma
tr
ix
_d
at
a[
TF
_i
nd
ex
].
L 
<<
 "
_h
:"
 <
< 
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.h
 <
< 
" 
 "
 <
<

  
  
  
  
  
  
  
  
__
re
al
__
 T
Ec
ov
ar
[T
F_
in
de
x]
 <
< 
" 
" 
<<
 s
ho
wp
os
 <
< 
__
im
ag
__
 T
Ec
ov
ar
[T
F_
in
de
x]
 <
< 
no
sh
ow
po
s 
<<
 e
nd
l;

  
  
  
  
  
  
  
  
co
ut
 <
< 
"E
E_
L:
" 
<<
 m
p_
co
va
ma
tr
ix
_d
at
a[
TF
_i
nd
ex
].
L 
<<
 "
_h
:"
 <
< 
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.h
 <
< 
" 
 "
 <
<

  
  
  
  
  
  
  
  
__
re
al
__
 E
Ec
ov
ar
[T
F_
in
de
x]
 <
< 
" 
" 
<<
 s
ho
wp
os
 <
< 
__
im
ag
__
 E
Ec
ov
ar
[T
F_
in
de
x]
 <
< 
no
sh
ow
po
s 
<<
 e
nd
l;

  
  
  
  
  
  
}

#e
nd
if

  
  
  
  
}

  
  
}

  
  
wh
il
e 
(t
ru
e)
;

}
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MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s9
.h

 *
 c
to
po
te
rm
s9
.h

#i
fn
de
f 
CT
OP
OT
ER
MS
9_
H_

#d
ef
in
e 
CT
OP
OT
ER
MS
9_
H_

#i
nc
lu
de

"c
_t
op
ot
er
ms
.h
"

cl
as
s
c_
to
po
te
rm
s9
: 
pu
bl
ic

c_
to
po
te
rm
s

{ pu
bl
ic
:

  
  
c_
to
po
te
rm
s9
(i
nt
 e
ll
_m
in
_v
al
ue
, 
in
t 
el
l_
ma
x_
va
lu
e,
 i
nt
 n
sq
_m
in
_v
al
ue
, 
in
t 
ns
q_
ma
x_
va
lu
e)
;

  
  
vi
rt
ua
l
~c
_t
op
ot
er
ms
9(
);

pr
ot
ec
te
d:

  
  
vi
rt
ua
l
vo
id

ca
lc
ul
at
e_
to
po
te
rm
s(
to
po
te
rm
s_
ta
sk
_d
at
a_
t 
&t
t_
da
ta
);

}; #e
nd
if

/*
 C
TO
PO
TE
RM
S8
_H
_ 
*/
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c_
to
po
te
rm
s9
.c
pp

 *
 c
to
po
te
rm
s3
.c
pp

#i
nc
lu
de

"c
_t
op
ot
er
ms
9.
h"

us
in
g
na
me
sp
ac
e 

st
d;

c_
to
po
te
rm
s9
::
c_
to
po
te
rm
s9
(i
nt
 e
ll
_m
in
_v
al
ue
, 
in
t 
el
l_
ma
x_
va
lu
e,
 i
nt
 n
sq
_m
in
_v
al
ue
, 
in
t 
ns
q_
ma
x_
va
lu
e)
 :

  
  
  
  
c_
to
po
te
rm
s(
el
l_
mi
n_
va
lu
e,
 e
ll
_m
ax
_v
al
ue
, 
ns
q_
mi
n_
va
lu
e,
 n
sq
_m
ax
_v
al
ue
)

{   
  
m_
to
po
lo
gy
_n
am
e 
= 
"t
op
ol
og
y9
";

} c_
to
po
te
rm
s9
::
~c
_t
op
ot
er
ms
9(
)

{ } vo
id

c_
to
po
te
rm
s9
::
ca
lc
ul
at
e_
to
po
te
rm
s(
to
po
te
rm
s_
ta
sk
_d
at
a_
t 
&t
t_
da
ta
)

{   
  
in
t 
lo
ca
l_
md
as
h;

  
  
co
ns
t
_C
om
pl
ex

do
ub
le
 I
 =
 0
.0
 +
 1
.0
i;

  
  
_C
om
pl
ex

do
ub
le
 t
t;

  
  
_C
om
pl
ex

do
ub
le
 T
Tc
ov
ar
[m
_n
um
be
r_
of
_h
_l
_t
er
ms
];

  
  
_C
om
pl
ex

do
ub
le
 T
Ec
ov
ar
[m
_n
um
be
r_
of
_h
_l
_t
er
ms
];

  
  
_C
om
pl
ex

do
ub
le
 E
Ec
ov
ar
[m
_n
um
be
r_
of
_h
_l
_t
er
ms
];

  
  
do
ub
le
 c
t;

  
  
co
ns
t
_C
om
pl
ex

do
ub
le
 c
on
st
_a
 =
 (
16
 *
 _

_b
ui
lt
in
_c
po
w(
m_
Pi
, 
2)
);

  
  
do

  
  
{

  
  
  
  
pt
hr
ea
d_
mu
te
x_
lo
ck
(&
lo
ck
_m
da
sh
_c
ou
nt
);

Pa
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MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s9
.c
pp

  
  
  
  
lo
ca
l_
md
as
h 
= 
*(
tt
_d
at
a.
md
as
h_
co
un
t)
;

  
  
  
  
(*
(t
t_
da
ta
.m
da
sh
_c
ou
nt
))
 +
= 
2;

  
  
  
  
pt
hr
ea
d_
mu
te
x_
un
lo
ck
(&
lo
ck
_m
da
sh
_c
ou
nt
);

  
  
  
  
if
 (
lo
ca
l_
md
as
h 
> 
tt
_d
at
a.
el
ld
as
h)

  
  
  
  
{

  
  
  
  
  
  
br
ea
k;

  
  
  
  
}

  
  
  
  
me
ms
et
(T
Tc
ov
ar
, 
0,
 s
iz
eo
f(
TT
co
va
r)
);

  
  
  
  
me
ms
et
(T
Ec
ov
ar
, 
0,
 s
iz
eo
f(
TE
co
va
r)
);

me
ms
et
(E
Ec
ov
ar
, 
0,
 s
iz
eo
f(
EE
co
va
r)
);

  
  
  
  
fo
r 
(i
nt
 n
sq
_c
ou
nt
 =
 0
; 
ns
q_
co
un
t 
< 
m_
nn
sq
; 
ns
q_
co
un
t+
+)

  
  
  
  
{

  
  
  
  
  
  
tt
 =
 0
 +
 0
i;

  
  
  
  
  
  
fo
r 
(i
nt
 d
ir
ec
in
dx
 =
 0
; 
di
re
ci
nd
x 
< 
ns
q_
an
d_
di
re
ct
io
ns
_l
is
t[
ns
q_
co
un
t]
.n
di
re
cs
; 
di
re
ci
nd
x+
+)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
st
ru
ct

si
ng
le
_d
ir
ec
ti
on
_t
 s
in
gl
e_
di
re
ct
io
n 
= 
ns
q_
an
d_
di
re
ct
io
ns
_l
is
t[
ns
q_
co
un
t]
.d
ir
ec
ti
on
_i
nd
ex
_l
is
t

[d
ir
ec
in
dx
];

  
  
  
  
  
  
  
  
in
t 
n1
 =
 s
in
gl
e_
di
re
ct
io
n.
n1
;

  
  
  
  
  
  
  
  
in
t 
n2
 =
 s
in
gl
e_
di
re
ct
io
n.
n2
;

  
  
  
  
  
  
  
  
in
t 
n3
 =
 s
in
gl
e_
di
re
ct
io
n.
n3
;

  
  
  
  
  
  
  
  
in
t 
cu
rr
en
t_
di
r 
= 
m_
fi
rs
t_
fo
un
d_
di
re
ct
io
n_
n1
_n
2_
n3
[n
1 
+ 
MA
X_
NM
AX
][
n2
 +
 M
AX
_N
MA
X]
[n
3 
+ 
MA
X_
NM
AX
];

  
  
  
  
  
  
  
  
as
se
rt
(c
ur
re
nt
_d
ir
 <
 t
t_
da
ta
.u
ni
qu
e_
di
re
ct
io
n_
li
st
_c
ou
nt
);

  
  
  
  
  
  
  
  
if
 (
n2
 >
 0
 &
& 
((
n1
 +
 n
2)
 &
 1
) 
==
 (
n3
 &
 1
))

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
1 
= 
tt
_d
at
a.
on
e_
el
l_
on
e_
m_
sh
_f
or
_u
ni
qu
e_
di
re
ct
io
ns
[c
ur
re
nt
_d
ir
];

Pa
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c_
to
po
te
rm
s9
.c
pp

  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
2 
=

  
  
  
  
  
  
  
  
  
  
  
  
  
  
(t
t_
da
ta
.o
ne
_e
ll
da
sh
_a
ll
_m
da
sh
_s
h_
fo
r_
un
iq
ue
_d
ir
ec
ti
on
s 
+ 
((
ab
s(
lo
ca
l_
md
as
h)
 *
 

tt
_d
at
a.
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t)
))
[c
ur
re
nt
_d
ir
];

  
  
  
  
  
  
  
  
  
  
if
 (
tt
_d
at
a.
m 
< 
0)

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
if
 (
(l
oc
al
_m
da
sh
 &
 1
) 
==
 0
) 
//
i.
e 
ev
en

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
1 
= 
-_
_i
ma
g_
_ 
sh
f1
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
el
se

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
1 
= 
-_
_r
ea
l_
_ 
sh
f1
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
if
 (
lo
ca
l_
md
as
h 
< 
0)

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
if
 (
(l
oc
al
_m
da
sh
 &
 1
) 
==
 0
) 
//
i.
e 
ev
en

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
2 
= 
-_
_i
ma
g_
_ 
sh
f2
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
el
se

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
2 
= 
-_
_r
ea
l_
_ 
sh
f2
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
in
t 
Ne
g1
Po
we
rN
1P
lu
sN
2 
= 

((
(n
1 
+ 
n2
) 
& 
1)
 =
= 
0)
 ?
 (
1)
 :
 (
-1
);

  
  
  
  
  
  
  
  
  
  
tt
 +
= 
(0
.5
 +
 0
i)
 *
 (
__
bu
il
ti
n_
co
nj
(s
hf

1)
 +
 (
Ne
g1
Po
we
rN

1P
lu
sN
2 
* 
__
bu
il
ti
n_
co
nj
(s
hf
1)
))
 *
 (
sh
f2
 +
 

(N
eg
1P
ow
er
N1
Pl
us
N2
 *
 s
hf
2)
);

Pa
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APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s9
.c
pp

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
el
se

if
 (
((
n1
 |
 n
3)
 &
 1
) 
==
 0
 &
& 
n2
 =
= 
0)
  
//
 i
f 
tr
ue
 d
o 
th
e 
sa
me
 a
s 
fo
r 
to
po
te
rm
 1

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
//
sa
me
 a
s 
fo
r 
to
po
te
rm
1

  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
1 
= 
tt
_d
at
a.
on
e_
el
l_
on
e_
m_
sh
_f
or
_u
ni
qu
e_
di
re
ct
io
ns
[c
ur
re
nt
_d
ir
];

  
  
  
  
  
  
  
  
  
  
_C
om
pl
ex

do
ub
le
 s
hf
2 
=

  
  
  
  
  
  
  
  
  
  
  
  
  
  
(t
t_
da
ta
.o
ne
_e
ll
da
sh
_a
ll
_m
da
sh
_s
h_
fo
r_
un
iq
ue
_d
ir
ec
ti
on
s 
+ 
((
ab
s(
lo
ca
l_
md
as
h)
 *
 

tt
_d
at
a.
un
iq
ue
_d
ir
ec
ti
on
_l
is
t_
co
un
t)
))
[c
ur
re
nt
_d
ir
];

  
  
  
  
  
  
  
  
  
  
if
 (
tt
_d
at
a.
m 
< 
0)

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
if
 (
(l
oc
al
_m
da
sh
 &
 1
) 
==
 0
) 
//
i.
e 
ev
en

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
1 
= 
-_
_i
ma
g_
_ 
sh
f1
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
el
se

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
1 
= 
-_
_r
ea
l_
_ 
sh
f1
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
if
 (
lo
ca
l_
md
as
h 
< 
0)

  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
if
 (
(l
oc
al
_m
da
sh
 &
 1
) 
==
 0
) 
//
i.
e 
ev
en

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
im
ag
__
 s
hf
2 
= 
-_
_i
ma
g_
_ 
sh
f2
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
  
  
el
se

  
  
  
  
  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
  
  
  
  
__
re
al
__
 s
hf
2 
= 
-_
_r
ea
l_
_ 
sh
f2
;

  
  
  
  
  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
  
  
}

Pa
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c_
to
po
te
rm
s9
.c
pp

  
  
  
  
  
  
  
  
  
  
tt
 +
= 
(_
_b
ui
lt
in
_c
on
j(
sh
f1
) 
* 
sh
f2
);

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
}

  
  
  
  
  
  
tt
 *
= 
(_
_b
ui
lt
in
_c
po
w(
-I
, 
tt
_d
at
a.
el
l)
 *
 _
_b
ui
lt
in
_c
po
w(
I,
 t
t_
da
ta
.e
ll
da
sh
))
;

#i
fd
ef
 T
ES
TI
NG
_T
T

  
  
  
  
  
  
if
 (
lo
ca
l_
md
as
h 
==
 t
t_
da
ta
.m
_d
as
h)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
pt
hr
ea
d_
mu
te
x_
lo
ck
(&
lo
ck
_m
da
sh
_c
ou
nt
);

  
  
  
  
  
  
  
  
co
ut
 <
< 
"*
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
*"
 <
< 
en
dl
;

  
  
  
  
  
  
  
  
co
ut
 <
< 
"e
ll
:"
 <
< 
tt
_d
at
a.
el
l 
<<
 "
 m
:"
 <
< 
tt
_d
at
a.
m 
<<
 "
 e
ll
da
sh
:"
 <
< 
tt
_d
at
a.
el
ld
as
h 
<<
 "
 m
da
sh
:"
 <
< 

lo
ca
l_
md
as
h;

  
  
  
  
  
  
  
  
co
ut
 <
< 
" 
  
ns
q 
= 
" 
<<
 n
sq
_a
nd
_d
ir
ec
ti
on
s_
li
st
[n
sq
_c
ou
nt
].
ns
q 
<<
 "
  
 T
T7
 =
 "
 <
< 
__
re
al
__
 t
t 
<<
 "
 "
<<
 

sh
ow
po
s 
<<
 _
_i
ma
g_
_ 
tt
 <
< 
"i
"

  
  
  
  
  
  
  
  
<<
 e
nd
l;

  
  
  
  
  
  
  
  
co
ut
 <
< 
"*
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
*"
 <
< 
en
dl
;

  
  
  
  
  
  
  
  
pt
hr
ea
d_
mu
te
x_
un
lo
ck
(&
lo
ck
_m
da
sh
_c
ou
nt
);

  
  
  
  
  
  
}

#e
nd
if

#i
fn
de
f 
NO
_T
RU
NC
AT
E

  
  
  
  
  
  
//
ma
ke
 v
er
y 
sm
al
l 
nu
mb
er
s 
ze
ro
.

  
  
  
  
  
  
if
 (
fa
bs
(_
_i
ma
g_
_ 
tt
) 
< 
0.
00
00
00
00
01
)

  
  
  
  
  
  
__
im
ag
__
 t
t 
= 
0;

  
  
  
  
  
  
if
 (
fa
bs
(_
_r
ea
l_
_ 
tt
) 
< 
0.
00
00
00
00
01
)

  
  
  
  
  
  
__
re
al
__
 t
t 
= 
0;

#e
nd
if

  
  
  
  
  
  
tt
_d
at
a.
nu
mb
er
_o
f_
to
po
te
tm
s+
+;

  
  
  
  
  
  
//
 F
in
d 
co
sm
ot
er
m 
as
so
ci
at
ed
 w
it
h 
ns
q

Pa
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MATRIX FOR E1, E3, E7 AND E9

c_
to
po
te
rm
s9
.c
pp

  
  
  
  
  
  
in
t 
ns
q 
= 
ns
q_
an
d_
di
re
ct
io
ns
_l
is
t[
ns
q_
co
un
t]
.n
sq
;

  
  
  
  
  
  
fo
r 
(i
nt
 T
F_
in
de
x 
= 
0;
 T
F_
in
de
x 
< 
m_
nu
mb
er
_o
f_
h_
l_
te
rm
s;
 T
F_
in
de
x+
+)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
ct
 =
 t
t_
da
ta
.t
ra
ns
fe
r_
fu
nc
ti
on
s[
TF
_i
nd
ex
].
tr
an
sf
er
_f
un
ct
io
ns
_T
[t
t_
da
ta
.e
ll
][
ns
q]

  
  
  
  
  
  
  
  
  
  
  
  
* 
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
T[
tt
_d
at
a.
el
ld
as
h]
[n
sq
]

  
  
  
  
  
  
  
  
  
  
  
  
* 
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
Kp
ow
er
[n
sq
];
 /
/ 
co
sm
ot
er
m

  
  
  
  
  
  
  
  
TT
co
va
r[
TF
_i
nd
ex
] 
+=
 c
t 
* 
tt
;

  
  
  
  
  
  
  
  
ct
 =
 t
t_
da
ta
.t
ra
ns
fe
r_
fu
nc
ti
on
s[
TF
_i
nd
ex
].
tr
an
sf
er
_f
un
ct
io
ns
_T
[t
t_
da
ta
.e
ll
][
ns
q]

  
  
  
  
  
  
  
  
  
  
  
  
* 
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
E[
tt
_d
at
a.
el
ld
as
h]
[n
sq
]

  
  
  
  
  
  
  
  
  
  
  
  
* 
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
Kp
ow
er
[n
sq
];
 /
/ 
co
sm
ot
er
m

  
  
  
  
  
  
  
  
TE
co
va
r[
TF
_i
nd
ex
] 
+=
 c
t 
* 
tt
;

  
  
  
  
  
  
  
  
ct
 =
 t
t_
da
ta
.t
ra
ns
fe
r_
fu
nc
ti
on
s[
TF
_i
nd
ex
].
tr
an
sf
er
_f
un
ct
io
ns
_E
[t
t_
da
ta
.e
ll
][
ns
q]

  
  
  
  
  
  
  
  
  
  
  
  
* 
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
E[
tt
_d
at
a.
el
ld
as
h]
[n
sq
]

  
  
  
  
  
  
  
  
  
  
  
  
* 
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.t
ra
ns
fe
r_
fu
nc
ti
on
s_
Kp
ow
er
[n
sq
];
 /
/ 
co
sm
ot
er
m

  
  
  
  
  
  
  
  
EE
co
va
r[
TF
_i
nd
ex
] 
+=
 c
t 
* 
tt
;

  
  
  
  
  
  
}

  
  
  
  
}

  
  
  
  
fo
r 
(i
nt
 T
F_
in
de
x 
= 
0;
 T
F_
in
de
x 
< 
m_
nu
mb
er
_o
f_
h_
l_
te
rm
s;
 T
F_
in
de
x+
+)

  
  
  
  
{

#i
fn
de
f 
TE
ST
IN
G_
CM

  
  
  
  
  
  
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.T
T_
co
va
ma
tr
ix
_f
or
_o
ne
_e
ll
_a
nd
_i
ts
_m
s[
MA
X_
EL
L 
+ 
lo
ca
l_
md
as
h]
 =
 T
Tc
ov
ar

[T
F_
in
de
x]
 *
 c
on
st
_a
;

  
  
  
  
  
  
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.T
E_
co
va
ma
tr
ix
_f
or
_o
ne
_e
ll
_a
nd
_i
ts
_m
s[
MA
X_
EL
L 
+ 
lo
ca
l_
md
as
h]
 =
 T
Ec
ov
ar

[T
F_
in
de
x]
 *
 c
on
st
_a
;

  
  
  
  
  
  
tt
_d
at
a.
tr
an
sf
er
_f
un
ct
io
ns
[T
F_
in
de
x]
.E
E_
co
va
ma
tr
ix
_f
or
_o
ne
_e
ll
_a
nd
_i
ts
_m
s[
MA
X_
EL
L 
+ 
lo
ca
l_
md
as
h]
 =
 E
Ec
ov
ar
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A.3. THE CODE 285

c_
to
po
te
rm
s9
.c
pp

[T
F_
in
de
x]
 *
 c
on
st
_a
;

#e
ls
e

  
  
  
  
  
  
if
 (
lo
ca
l_
md
as
h 
==
 t
t_
da
ta
.m
_d
as
h)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
TT
co
va
r[
TF
_i
nd
ex
] 
*=
 c
on
st
_a
;

  
  
  
  
  
  
  
  
TE
co
va
r[
TF
_i
nd
ex
] 
*=
 c
on
st
_a
;

  
  
  
  
  
  
  
  
EE
co
va
r[
TF
_i
nd
ex
] 
*=
 c
on
st
_a
;

  
  
  
  
  
  
  
  
//
wh
en
 t
es
ti
ng
 p
ri
nt
 o
ut
 t
he
 c
ov
ar
ma
tr
ix
 d
at
a

  
  
  
  
  
  
  
  
co
ut
 <
< 
"T
T_
L:
" 
<<
 m
p_
co
va
ma
tr
ix
_d
at
a[
TF
_i
nd
ex
].
L 
<<
 "
_h
:"
 <
< 
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.h
 <
< 
" 
 "
 <
<

  
  
  
  
  
  
  
  
__
re
al
__
 T
Tc
ov
ar
[T
F_
in
de
x]
 <
< 
" 
" 
<<
 s
ho
wp
os
 <
< 
__
im
ag
__
 T
Tc
ov
ar
[T
F_
in
de
x]
 <
< 
no
sh
ow
po
s 
<<
 e
nd
l;

  
  
  
  
  
  
  
  
co
ut
 <
< 
"T
E_
L:
" 
<<
 m
p_
co
va
ma
tr
ix
_d
at
a[
TF
_i
nd
ex
].
L 
<<
 "
_h
:"
 <
< 
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.h
 <
< 
" 
 "
 <
<

  
  
  
  
  
  
  
  
__
re
al
__
 T
Ec
ov
ar
[T
F_
in
de
x]
 <
< 
" 
" 
<<
 s
ho
wp
os
 <
< 
__
im
ag
__
 T
Ec
ov
ar
[T
F_
in
de
x]
 <
< 
no
sh
ow
po
s 
<<
 e
nd
l;

  
  
  
  
  
  
  
  
co
ut
 <
< 
"E
E_
L:
" 
<<
 m
p_
co
va
ma
tr
ix
_d
at
a[
TF
_i
nd
ex
].
L 
<<
 "
_h
:"
 <
< 
mp
_c
ov
am
at
ri
x_
da
ta
[T
F_
in
de
x]
.h
 <
< 
" 
 "
 <
<

  
  
  
  
  
  
  
  
__
re
al
__
 E
Ec
ov
ar
[T
F_
in
de
x]
 <
< 
" 
" 
<<
 s
ho
wp
os
 <
< 
__
im
ag
__
 E
Ec
ov
ar
[T
F_
in
de
x]
 <
< 
no
sh
ow
po
s 
<<
 e
nd
l;

  
  
  
  
  
  
}

#e
nd
if

  
  
  
  
}

  
  
}

  
  
wh
il
e 
(t
ru
e)
;

}
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