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Abstract

Cosmic topology is difficult to constrain due to the lack of observable phenomena
which are affected by this property of the Universe. The phenomenon with the most
potential to reveal cosmic topology is the cosmic microwave background (CMB). The
task of constraining topology with the CMB is challenging, and so the more data that
is utilised the better. This thesis sets out a method that uses the full information
available from the CMB, including polarisation, in the form of a Bayesian analysis
of the full correlation matrix of the CMB. A catalogue of flat spaces is presented,
of which four are analysed here; the remainder could be analysed with minimal
modifications to the code developed in this work. With a little more modification,
the code could also be utilised to investigate spherical and hyperbolic spaces. The
four topologies analysed here are the flat torus, half turn space, Klein space and Klein
space with vertical flip. More work needs to be done on the Bayesian analysis in order
to achieve constraints on these four spaces; efforts in this work were concentrated on
efficiently generating full correlation matrices. The code developed for this task is
capable of generating at least 231 individual correlation matrices for a given topology
(the parameters varied being the size and cosmology of the Universe, as well as the
type of correlation, e.g. TT), for a CMB resolution of ¢ = 30 and a spatial resolution
of k = 100/L (where k are Fourier modes and L is the size of the Universe), on an

entry level server in less than one day.
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vidual multipoles; the right column shows how the combined map
changes as the individual multipole maps are added. . . . . . . . . ..
10.258imulated CMB maps generated using the T'T correlation matrices
represented in Fig. (10.9). The left column contains maps for indi-
vidual multipoles; the right column shows how the combined map
changes as the individual multipole maps are added. . . . . . . . . ..
10.26Simulated CMB maps generated using the TT correlation matrices
represented in Fig. (10.10). The left column contains maps for in-
dividual multipoles; the right column shows how the combined map
changes as the individual multipole maps are added. . . . . . . . . ..
10.27Simulated CMB maps generated using the TT correlation matrices
represented in Fig. (10.11). The left column contains maps for in-
dividual multipoles; the right column shows how the combined map
changes as the individual multipole maps are added. . . . . . . . . ..
10.28Simulated CMB maps generated using the T'T correlation matrices
represented in Fig. (10.12). The left column contains maps for in-
dividual multipoles; the right column shows how the combined map
changes as the individual multipole maps are added. . . . . . . . . ..
10.29Simulated CMB maps generated using the T'T correlation matrices
represented in Fig. (10.13). The left column contains maps for in-
dividual multipoles; the right column shows how the combined map

changes as the individual multipole maps are added. . . . . . . . . ..
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10.30Simulated @ and U polarisation maps (generated using the EE cor-
relation matrices represented in Fig. (10.2)). The two left columns
contain polarisation maps for individual multipoles; the right column
shows how the combined map changes as the individual multipole
maps are added. @ is represented by columns 1 and 3, U by columns
2and 4. ..o
10.31Simulated @ and U polarisation maps (generated using the EE cor-
relation matrices represented in Fig. (10.3)). The two left columns
contain polarisation maps for individual multipoles; the right column
shows how the combined map changes as the individual multipole
maps are added. @ is represented by columns 1 and 3, U by columns
2and 4. . ..o
10.32Simulated @ and U polarisation maps (generated using the EE cor-
relation matrices represented in Fig. (10.4)). The two left columns
contain polarisation maps for individual multipoles; the right column
shows how the combined map changes as the individual multipole
maps are added. @ is represented by columns 1 and 3, U by columns
2and 4. . ..
10.33Simulated @ and U polarisation maps (generated using the EE cor-
relation matrices represented in Fig. (10.5)). The two left columns
contain polarisation maps for individual multipoles; the right column
shows how the combined map changes as the individual multipole
maps are added. @ is represented by columns 1 and 3, U by columns
2and 4. ..o
10.34Simulated @ and U polarisation maps (generated using the EE cor-
relation matrices represented in Fig. (10.6)). The two left columns
contain polarisation maps for individual multipoles; the right column
shows how the combined map changes as the individual multipole
maps are added. @ is represented by columns 1 and 3, U by columns
2and 4. ..o
10.35Simulated @ and U polarisation maps (generated using the EE cor-
relation matrices represented in Fig. (10.7)). The two left columns
contain polarisation maps for individual multipoles; the right column
shows how the combined map changes as the individual multipole
maps are added. () is represented by columns 1 and 3, U by columns
2and 4. . ..
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10.36Simulated @ and U polarisation maps (generated using the EE cor-
relation matrices represented in Fig. (10.8)). The two left columns
contain polarisation maps for individual multipoles; the right column
shows how the combined map changes as the individual multipole
maps are added. @ is represented by columns 1 and 3, U by columns
2and 4. ...
10.37Simulated @ and U polarisation maps (generated using the EE cor-
relation matrices represented in Fig. (10.9)). The two left columns
contain polarisation maps for individual multipoles; the right column
shows how the combined map changes as the individual multipole
maps are added. @ is represented by columns 1 and 3, U by columns
2and 4. ..o
10.38Simulated @ and U polarisation maps (generated using the EE cor-
relation matrices represented in Fig. (10.10)). The two left columns
contain polarisation maps for individual multipoles; the right column
shows how the combined map changes as the individual multipole
maps are added. @ is represented by columns 1 and 3, U by columns
2and 4. . ..
10.39Simulated @ and U polarisation maps (generated using the EE cor-
relation matrices represented in Fig. (10.11)). The two left columns
contain polarisation maps for individual multipoles; the right column
shows how the combined map changes as the individual multipole
maps are added. @ is represented by columns 1 and 3, U by columns
2and 4. ...
10.40Simulated @ and U polarisation maps (generated using the EE cor-
relation matrices represented in Fig. (10.12)). The two left columns
contain polarisation maps for individual multipoles; the right column
shows how the combined map changes as the individual multipole
maps are added. @ is represented by columns 1 and 3, U by columns
2and 4. ..o
10.41Simulated @ and U polarisation maps (generated using the EE cor-
relation matrices represented in Fig. (10.13)). The two left columns
contain polarisation maps for individual multipoles; the right column
shows how the combined map changes as the individual multipole
maps are added. @ is represented by columns 1 and 3, U by columns
2and 4. ..o
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10.42WMAP 9-year temperature maps. The left column contains maps for

individual multipoles; the right column shows how the combined map

changes as the individual multipole maps are added. . . . . . . . . ..

10.43WMAP 9-year ) and U polarisation maps (for E-mode polarisation

Al

only). The two left columns contain polarisation maps for individual
multipoles; the right column shows how the combined map changes
as the individual multipole maps are added. () is represented by

columns 1 and 3, U by columns 2 and 4. . . . .. ... .. ... ...

Flow chart showing the alogorithm employed in c_topoterms.cpp,

c_topoterms3.cpp, c_topoterms7.cpp and c_topoterms9.cpp. . . . . . .
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Prologue

The shape, size and extent of the Universe comprise some of the most fundamental
yet-unanswered questions in cosmology. Cosmic topology is concerned with the
shape of the Universe and how its boundaries are connected; the concept of topology
was developed in the 19th century and became an active field in the early 20th
century. However, any attempt to constrain cosmic topology requires high-precision
observations, even more so than attempts to constrain cosmology. This is because
there are fewer observations that we can make that depend on topology than depend
on cosmology. The Cosmic Microwave Background (CMB), being the most powerful
probe of the early Universe, provides us with the most promising opportunity to
constrain topology. In the last few decades, observations of the CMB have started
to reach a precision that allows us to take advantage of this opportunity.
Surprisingly few attempts have been made to utilise all the information provided
by the full correlation matrix of the CMB, due to the process being computationally
expensive. Many analyses have been performed using the CMB power spectrum (a
reduced form of the correlation matrix), but this ignores valuable information. In
addition, very few have made use of the information contained in the polarisation
data of the CMB. This is because it was only in 2003 that the Wilkinson Microwave
Anisotropy Probe (WMAP) provided the first glimpse of the polarised CMB. These
are rather noisy, but the most recent CMB space observatory, Planck (launched in
2009), promises much improved measurements. This data is due to be released in
2014, making the case for utilising CMB polarisation even stronger, as any methods
that are developed for WMAP data could quickly be applied to Planck data upon
release. In this thesis, a method is adopted that harnesses the full CMB correlation

matrix for both temperature and polarisation.

This thesis consists of four parts. The first three explore the three main ingredi-
ents used in this work to try to constrain cosmic topology; properties of different
topologies, CMB data and Bayesian analysis. Part I introduces cosmic topology and

describes how we define different topologies. At the end of the last chapter of Part I,
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a catalogue, or look-up table, of mathematical properties of topologies is given; this
will be useful when trying to capture these properties in computational models. The
second part explores the significance of the CMB and its properties before finishing
with a chapter on mapping the CMB; this chapter details processes that will be
needed in order to utilise data from observations of the CMB. Part I1I explores how
Bayesian analysis is used in cosmology and astrophysics and ends with a chapter
detailing a how to calculate probabilities for different topologies, given CMB data.

Part IV brings the ingredients from the first three parts together to provide a
prescription for constraining topology using CMB data. The results from following

this prescription are then presented and discussed.
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Part 1

Cosmic Topology

27

27



28 CHAPTER 1. INTRODUCTION TO TOPOLOGY

Chapter 1

Introduction to Topology

1.1 Characterising Space

The shape, size and extent of the universe comprise some of the most fundamental
yet-unanswered questions in cosmology. The characteristics of space can be divided
into two types, geometry and topology. Topology focuses on spatial properties
which are preserved under continuous deformation. In order to understand these

properties, it is first helpful to identify some basic concepts:

e Universal covering space: a simply connected space (see Section 1.2.1) with

the same geometry as the space in question.

e Fundamental domain: the most basic element (a polygon or polyhedron) from
which a manifold can be constructed (see Fig. (1.1)). The fundamental domain
contains the entire universe. Tiling a universal covering space with the fun-
damental domain is a convenient way of visualising how one can move “out”
of the universe through one boundary while simultaneously moving “back in”
through another. A universe connected in this way is technically unbounded,
as one could never come across a point where the universe terminates. The
term “boundary” is used to describe the shape and extent of the fundamental

domain.
The key topological properties of a space are:

e Holonomy group: a set of transformations within the universal covering space

that describe how the faces of the fundamental domain are paired (connected).

e Genus: the number of handles in a space. These are “holes” which are cre-

ated depending on the way in which the faces of the fundamental domain are
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1.1. CHARACTERISING SPACE 29

Figure 1.1: In this example, the square is the fundamental domain and the
lattice of identical squares forms the manifold. The tiled universal covering space
is the entire manifold. Credit: Levin 2002.

connected, not by tearing the manifold. All surfaces with the same number
of handles are topologically equivalent, such as the doughnut and the teapot
shown in the central panel of Fig. (1.2). These are both manifestations of the

2-d torus, which has finite area yet has no boundaries.

Combining these topological properties with the geometrical properties of scale and

curvature, we can completely define a homogeneous space, see Fig. (1.3).

The geometry of space relates to the matter and energy density of the universe, e.g.:
an overdense universe has positive curvature; an underdense universe has negative
curvature; a critically dense universe is flat. This means that geometry can be
inferred from Einstein’s theory of general relativity (GR). However, each geometry
can be supported by different topologies, and GR alone can not determine which of
these topologies exists. Although it is currently impossible to theoretically predict
cosmic topology, there is growing interest in the search through observation due to

the improving precision of experiments in cosmology.

1.1.1 Intrinsic and Extrinsic Properties

Only certain aspects of topology and geometry have the potential to be detected
through observation. There are of course practical issues such as the precision of
instruments and size of the observable universe. But let’s put these aside for a
moment and assume a universe in which these considerations are not a problem.

No matter how ideal the situation, there will always be properties that an inhab-
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30 CHAPTER 1. INTRODUCTION TO TOPOLOGY

Olles

Figure 1.2: Classes of topology. The digits below the columns denote the genus
of (number of handles in) a space. Spaces with the same genus are topologically
equivalent, as one can be continuously deformed into another. Credit: Lachieze-
Rey & Luminet 1995.

itant cannot determine. We call these extrinsic properties, while those which are
potentially detectable are known as intrinsic. A two dimensional example of the dis-
tinction between intrinsic and extrinsic topology is given in Fig. (1.4), and similarly
for geometry in Fig. (1.5).

Extrinsic properties are a result of embedding a space in another of higher di-
mensions, for example, embedding three dimensional space in four dimensions (or a
two dimensional surface in three dimensions) in order to help visualise the situation.
While we can describe such properties mathematically, they may not exist in physi-
cal reality. Whether or not we do in fact inhabit a three dimensional “sub-universe”
embedded within some “higher-dimensional universe” and, hence, whether these ex-
trinsic properties exist, is of little consequence, as we cannot hope to experience or
detect their effects.

The matter of extrinsic and intrinsic properties is discussed in more detail in Weeks
2002.
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1.1. CHARACTERISING SPACE 31

Coffee cup credit: MathematiciansPictures.com
Doughnut credit: Daniel Dean Gutierrez

‘connectedness:
g

shape and
face-pairing
of f.d.

space
properties

Figure 1.3: The properties of space fall into two categories: topology and geom-
etry. Topology describes the connectedness of space, quantified by genus, g, (the
number of handles or “holes” that a space has) and the face-pairing of the fun-
damental domain. Geometry combines the more intuitive properties of scale and
curvature. The assumption of an homogeneous universe allows only constant cur-
vatures, the three possibilities represented in 2d in the bottom right-hand panel
of this figure.
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Figure 1.4: How to put a twist is a rubber band. As outsiders living in a three
dimensional world, we can see that the twisted band is topologically different to
the original. An inhabitant of the surface of the rubber band, however, has no
way of telling this. Credit: Weeks 2002.

Figure 1.5: To us, bending a sheet of paper changes it’s geometry. To an in-
habitant of its surface however, the shortest path between any two points remains
the same, and, hence, the geometry appears unchanged. Credit: Weeks 2002.

32



1.2. TYPES OF TOPOLOGY 33

Figure 1.6: Example of a simply-connected topology. All loops (closed paths)
can be contracted to a point. Credit: Richard Morris.

© 2006 Encyclopaedia Britannica, Inc.

Figure 1.7: Example of a multi-connected topology. Loop ¢ can be contracted
to a point, but loops a and b cannot. Credit: 2006 Encyclopaedia Britannica, Inc.

1.2 Types of Topology

1.2.1 Connectedness

Let us distinguish between simply and multi connected spaces (or trivial and non-
trivial topologies).

A trivial topology is essentially a simply connected space; one in which any loop
describing a closed path through space can be contracted to a point. e.g. a space
existing on the surface of a sphere, see Fig. (1.6). The universal covering space is
simply connected.

Multi-connected space is one in which there exists a loop which cannot be
contracted to a point. Any space containing a topological “hole”, or handle, is
multi-connected, e.g. a space existing on the surface of a doughnut (Fig. (1.7)).
This occurs whenever the fundamental domain is not equal to the universal covering
space.

The universal covering spaces that can support the geometries depicted in
Fig. (1.3) are generally assumed as the topologies in the analyses of cosmological

data. Usually ignored, is the possibility of a non-trivial (multi-connected) topol-
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34 CHAPTER 1. INTRODUCTION TO TOPOLOGY

Figure 1.8: The inhabitant of the 2-torus sees a lattice of images of itself. Credit:
Levin 2002.

ogy. This could have an effect on observations in astronomy: light from an observer
wraps around the space so that they see themselves many times. This illusion, where
an observer sees many copies of themselves, and other objects, is demonstrated by
looking at the stick man observer in Fig. (1.8). It is the often neglected non-trivial

topologies that draw the attention of this thesis.

1.2.2 Orientability

It is possible for a traveller in a multi-connected space to leave home, traverse space
and arrive back home to find that his left and right are now the opposite way around
to that of the people who stayed behind. This happens if a flip occurs as he passes
from one boundary to another of the fundamental domain. The two dimensional
case, the Mobius strip, is given in Fig. (1.9). The Klein Bottle, Fig. (1.10), is a
three-dimensional example.

A space in which this phenomenon occurs is known as non-orientable, as no
amount of rotation within the dimensions available to the inhabitant can return
him to the correct “handedness”. Note that, if the traveller returns upside down,
with no change in handedness, he can simply rotate back to his original orientation.
This, therefore, is an orientable universe. Again, a more detailed discussion can be
found in Weeks 2002.
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1.2. TYPES OF TOPOLOGY 35

Departure Return

Figure 1.9: A Mobius strip is similar to the case of the twisted rubber band in
Fig. (1.4) except that, instead of a 360 twist, a 180 degree twist is made before
reconnecting the ends. Now an inhabitant is aware of the difference in topology.
As the two dimensional character “A Square” travels around a Mobius strip he
comes back as his mirror image. Weeks 2002.
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Figure 1.10: A Klein bottle is similar to the Mobius strip but in three di-
mensions. This is a two dimensional representation of the Klein bottle, which
is created by glueing the edges of this square so that the arrows match up. An
inhabitant of this surface will travel out the left side and come back through the
right side as his mirror image. Credit: Weeks 2002.
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36 CHAPTER 1. INTRODUCTION TO TOPOLOGY

Non-orientable Universes pose a problem for the standard model of particle physics.
This model requires CPT symmetry (an overall symmetry in charge, parity and
time in the Universe). The change in handedness, or parity, that occurs in a non-
orientable universe breaks this symmetry. Arguably, this is not an issue if the
Universe is large enough that no particle can travel far enough to make the round
trip required to break P-symmetry. So, while this does not rule out non-orientable

spaces, it perhaps makes them less favourable.

1.2.3 Topologies that Support Constant Curvature

Assuming that the Universe is homogeneous and isotropic, only topologies that
support constant curvature are allowed. As explained in preceding parts of this
chapter, we are interested in non-trivial topologies. We will also focus on completely
compact spaces (in which all dimensions of the fundamental domain are finite);
justification for this is given in Section 1.3.1. This section describes which topologies
fit these criteria for each of the possible constant curvatures. Much of the time,

comparisons will be made with two-dimensional spaces as they are easier to visualise.

1.2.3.1 Flat Spaces

The universal covering space of zero curvature is three-dimensional Euclidean space,
E3.

First, consider two-dimensional Euclidean space (E?), the infinite plane. i.e.,
[E? is our universal covering space. There are only three possible shapes for the
fundamental domain: the triangle, the quadrilateral, and the hexagon. It is not
possible to “tile” a plane with any other type of polygon without leaving gaps.
There is also a finite number of ways in which the edges of these shapes can be
“olued” together. Thus, there is a finite number of potential topologies.

Similarly, there is a limited number of possible three-dimensional flat topologies.
It has long been established that there are 18 such topologies (see Varshalovich et al.
1988) and these are described in mathematical detail in Section 2.3. However, only
six satisfy the criteria of being non-trivial, completely compact and orientable and
thus investigated in this thesis.

Note that there is degeneracy between some of the fundamental domains. For
example, in two dimensions, a flat torus can be constructed from either a square (or
other quadrilateral) or a hexagon.

Flat spaces are a sensible starting point for investigating topologies. Not only is

there a finite number of them, but they are conceptually and mathematically easiest
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Octahedron lcosahedron

Figure 1.11: A platonic solid is a regular, convex polyhedron with congruent
faces of regular polygons. The same number of faces meet at each vertex. There
are only five such solids, each named after the number of faces it has. Credit:
Martin Chaplin

to deal with.

1.2.3.2 Spherical Spaces

The universal covering space of positive curvature is three-dimensional Spherical
space, S°.

The analogous two-dimensional space, the surface of the sphere (S?), can only
be tiled in five ways. These are related to the five Platonic solids (see Fig. (1.11)).
Again, with only a finite number of ways to glue the faces, we are left with a finite
number of topologies.

In contrast, there is an infinite number of spherical spaces, but they are count-
able. The simplest manifolds are listed below and some of their fundamental domains
are depicted in Fig. (1.12).

e QQuaternionic space: the fundamental domain is a 4-sided prism.
e Octahedral space: the fundamental domain is a regular octahedron.
e Truncated cube space: the fundamental domain is a truncated cube.

e Poincare space: the fundamental domain is a regular dodecahedron.

1.2.3.3 Hyperbolic Spaces

The universal covering space of constant negative curvature is three-dimensional

hyperbolic space, H3. Hyperbolic spaces are the most difficult to work with both
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Figure 1.12: Fundamental domains of some spherical multi-connected mani-
folds. Left to right: the regular octahedron, the truncated cube and the regular
dodecahedron. Credit: Niarchou & Jaffe 2006.

mathematically and conceptually. In two dimensions, spaces with genus zero are
spheres, spaces with genus one are flat tori and spaces with genus two or higher are
all hyperbolic; so there are only three possible geometries and constant, negative
curvature is associated with by far the most topologies. The situation is similar in
three dimensions, although there are eight possible geometries, but only three have
constant curvature; while there is a finite number of flat spaces, and a countably
infinite number of spherical spaces, there is an uncountably infinite number of hy-
perbolic spaces. Important models of hyperbolic spaces are the Klein model, the

hyperboloid model and the Poincaré ball and Poincaré half-plane models.

1.3 The Story So Far

1.3.1 The Theory

In the fourth century BC, Aristotle proposed that the Universe is finite, as he be-
lieved Earth to be at its centre; something with a centre needs boundaries in order to
define the central point. This was not the view of all his contemporaries, however.
Archytas famously argued the opposite by highlighting the paradoxical nature of
such a boundary; “If I arrived at the outermost edge of the heaven, could I extend
my hand or staff into what is outside or not?”, as translated in Huffman 2005.
There are some theories that may require a finite universe. For example, there
is the (non-standard) theory of quantum cosmology, in which it is impossible to
generate enough energy to create an infinite universe. Examples of work in this field
include Linde (1984) and Linde (1986); Andrei Linde pioneered theories of cosmic
inflation, due to quantum effects in the early universe, along with Alan Guth and
Alexei Starobinski (Guth 1981, Starobinski 1982, Linde 1983). However, it generally
seems to boil down to the human struggle with the concept of infinity. Plato rejected
the notion of infinity. Aristotle, his student, claimed to accept the notion of infinity,

where a number can be incremented endlessly, but ultimately rejected the concept
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of infinity as an actual entity. Based on the strength of our often willingly-adopted
arguments for a finite universe, we still struggle with it today.

It wasn’t until the 19th century AD that a finite-yet-boundless model for the
universe, the hypersphere, was proposed by Georg Riemann. The new concept of
embedding the three-dimensional space in four dimensions in order to assign it a
“shape”, or topology, led to the discovery of many more boundless finite spaces. This
was an active field in the early 20th century, which, in 1917, saw Albert Einstein
adopt the hypersphere in his first relativistic model of the Universe. Einstein pre-
ferred the elegance of the simply connected hypersphere, although Willem de Sitter
pointed out that the multi connected, closed space known as “projective space”
was also a viable solution. Alexander Freidmann extended the solutions further to
include hyperbolic spaces.

Friedmann derived two equations (describing the expansion and evolution of
the Universe) from Einstein’s field equations (describing the gravitational effects
produced by a mass, part of the theory of General Relativity). Crucially, these
equations allow all three constant curvatures and are completely independent of
which topology is chosen to support a given curvature: i.e. they do not distinguish

between simply- and multi-connected solutions.

Below is an overview of some of the work done in topology since the beginning of
the 20" century:

e 1900 - At a meeting of the German Astronomical Society in Heidelberg, Karl
Schwarzschild discussed the possibility that space was non-Euclidean and sug-
gested two kinds of possible curvatures: elliptic and hyperbolic. In the same
year, he published a paper (Schwarzschild 1900) giving a lower limit for the
radius of curvature of space as 2500 light years. He considered non-trivial
topologies and pointed out that multiple images of the same object could be

seell.

e 1913 - William Frankland pointed out limitations in the multiple image tech-
nique (Frankland 1913), mainly that different images capture an object at
different times in its history (as it takes light different amounts of time to

traverse different paths).

e 1913 - Duncan Sommerville published his book The Elements of Non-Fuclidean
Geometry (Sommerville 1913), which became the standard text in the field al-

most immediately. It was renowned for its lucid yet meticulous exposition
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and discussed topics such as hyperbolic and elliptic geometries, analytic non-
Euclidean geometry and representations of non-Euclidean geometry in Eu-

clidean space, as well as philosophical implications of non-Euclidean geometry.

1917 - Albert Einstein presented the first cosmological solution of general
relativity, a static model with three-dimensional spheres S® as spatial sections
(Einstein 1917).

1917 - Soon after Einstein published his solution, Willem de Sitter (1917)
pointed out that the solution could just as well be applied to P3.

1922 - Alexander Friedmann published non-static, homogenous and isotropic
cosmological solutions to Einstein’s field equations (Friedmann 1922) and, soon
after, realised that, while spherical manifolds are intrinsically compact, flat and

hyperbolic manifolds could also be compact (Friedmann 1924).

1927 - Georges Lemaitre also found non-static, homogenous and isotropic
comological solutions to Einstein’s field equations, Lemaitre (1927), and in
Lemaitre (1958) recognised the possibility that hyperbolic spaces could be

compact.

1962 - Otto Heckmann and Engelbert Schucking (1962) explained how an

expanding universe might rotate and experience shear.

1971 - George Ellis published an important article reviewing recent develop-
ments concerning the classification of spaces and their possible application to
cosmology (Ellis 1971). This was followed by a revival of interest in multi-
connected cosmologies, lead by theorists such as Dmitri Sokolov and Alexei
Starobinski (Sokolov & Starobinski 1975).

1974 - Dmitri Sokolov and Victor Shvartsman estimate the size of the universe

from a topological point of view (Sokolov & Shvartsman 1974).

1978 - A set of university lecture notes by William Thurston began to circu-
late around the world; in them, Thurston introduced new ideas in geometric
topology as well as a number of new quotient H? manifolds. These ideas made
their way into a book, Three-dimesional Geometry and Topology Volume 1,
two decades later (Thurston 1997).

1980 - J. Richard Gott pointed out the possibility that the universe is not only
negatively curved but compact, in Gott (1980). He determined that hyperbolic

and Euclidean space could admit thermalisation in a chaotic early universe.
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e 1983 - Helio Fagundes also acknowledged that the universe could be negatively
curved and compact (Fagundes 1983). He discusses the subsitution of a com-
pact hyperbolic three-manifold for the infinite space H¥, and analyses some

consequences of this substitution.

e 1984 - Yakov Zel’dovich and Starobinski collaborated in Zeldovich & Starobin-

skii (1984) to discuss quantum creation of a universe with non-trivial topology.

e 1984 - Thurston and Jeffery Weeks publish an article to aid the visualision
and study of two- and three-dimensional manifolds (Thurston & Weeks 1984).

e 1987 - Charles Dyer attended the Vatican Observatory conference and pre-
sented the idea that the universe could have a multiply-connected topology,
describing several attractive features of multi-connected spaces from a theo-
retical stand-point and establishing some restrictions on which topologies are
plausible on physical grounds. This work was published in the conference

proceedings, Dyer (1987).

Despite the wealth of knowledge of different possible spaces, simply connected
spaces have often been assumed by default in cosmological models. While attempts
have been made to find observational evidence for multi-connected spaces since the
idea was introduced, research into cosmic topology over the last few decades has
increasingly incorporated analyses of data from observations; this is discussed in the

next section.

1.3.2 The Observations

Another resurgence of interest in cosmic topology over the last couple of decades has
resulted from developments in technology and scientific techniques that have allowed
us to probe the distant universe with increasing precision. Methods of investigating
topology involve identifying patterns in the distribution of astronomical objects
or cosmic microwave background (CMB) anisotropies. The near-isotropy of the
CMB implies a near-constant curvature universe and so the topologies considered
for investigation are those that support these curvatures. It is conceivable that
the universe is not homogeneous, and hence does not have constant curvature, on
scales much larger than the observable universe. However, this hypothesis is not
presently testable. Similarly, it is not possible to test spaces that are larger than the

observable universe and we are only interested in spaces small enough to observe.

41



42 CHAPTER 1. INTRODUCTION TO TOPOLOGY

A non-trivial topology would have a number of observational effects. These
include the appearance of multiple images of the same object in the sky, the sup-
pression of power at large scales due to the finiteness of the fundamental domain, and
patterns in the CMB. Some helpful reviews on topology and cosmology are Levin
(2002) and Lachieze-Rey & Luminet (1995), which provide detailed discussions on
different types of topology and methods for constraining topology, as well as Stark-
man (1998) and Luminet (1998), who describe the history of and developments in

cosmic topology.

1.3.2.1 Crystallographic Method

The first method to be implemented was searching for multiple images of the same
object (e.g. Sokolov & Shvartsman 1974; Fagundes & Wichoski 1987; Demianski &
Lapucha 1987; Fagundes 1989). This known as the crystallographic method and is
based on the idea that it is possible to observe multiple images of the same object
in a multi connected universe.

In a closed, topologically connected universe, light from distant objects can
reach us by multiple paths. In order to observe multiple images, we require light
from a given object to have sufficient time to reach us along some of these multiple
paths. This requires that the fundamental domain is sufficiently small, i.e. the
distance to the observable horizon must be greater than the injectivity radius (a
characteristic topological length scale of the fundamental domain).

It has been shown that it is possible to reconstruct the topology of a closed or
flat universe based on the observation of a very small number of multiple images
(Gomero 2003). But, as pointed out by Frankland in 1913, the identification of
these images is, in practice, incredibly challenging. There are a number of reasons
for this: different images represent an object at different stages of its life, making
it difficult to identify them as images of the same object; different images would be
seen from different directions, and therefore, different perspectives, again making it
difficult to recognise them as identical; some images may be masked or hidden by
other objects/high obscuration regions. Clearly, in reality, this method is not very

promising (at least, with current observations).

1.3.2.2 Circles in the sky

This is a phenomenon that occurs in the CMB in the presence of a non-trivial topol-

ogy if at least one dimension of the fundamental domain is smaller that the diameter
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Figure 1.13: Intersecting images of the CMB sky. The observer is located at
the centre of the middle sphere. The cross-section of the intersection is circular,
hence the term “circles-in-the-sky”. Credit: Riazuelo et al. 2006.

of the last scattering surface (LSS). Images of the LSS would intersect one another
as shown in Fig. (1.13), leading to pairs of circles, of equal radii, centred at different
locations in the CMB sky (Cornish et al. 1998). The size of the circles indicate
the size of the dimensions of the fundamental domain; the larger the circles, the
larger the dimensions of the fundamental domain that they relate to. This means
that there is a limit to the size of universe that can be detected; the circles become
points when the fundamental domain is the same size as the observable universe,
and vanish altogether when the domain becomes larger. The angular separation of
pairs of circles on the sky depend on the connectedess of the topology. Results of
matching-circles analyses of CMB data have ruled out topologies much smaller than
the scale of the observable universe (e.g.: Key et al. 2007; Bielewicz & Banday 2011;
Planck Collaboration et al. 2013d) but have not yet identified a leading candidate
for the topology itself.

1.3.2.3 Full Analysis of the CMB

The multiple-images and circles-in-the-sky methods both focus on conceptually clear
observational consequences of topology. But there are other phenomena that should
not be overlooked: different modes in the CMB anisotropies can be suppressed or
correlated with other modes in ways that depend on the finiteness, orientability
and particular symmetries of the fundamental domain. A more thorough, but more

computationally expensive, method is to analyse the entire correlation matrices of
CMB anisotropies (e.g.: Bond et al. 2000b,a; Niarchou 2006; Planck Collaboration
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et al. 2013d). As with the circles-in-the-sky method, constraints on the lower limit
of the size of the Universe have been obtained, but a dominant candidate topology
has not. Due to the expensiveness of this method, the CMB power spectrum is often
used rather that the full correlation matrix. The main objective of this thesis is to
utilse as much information as possible from the correlation matrix, which also means
including polarisation. The details required to perform this analysis are accumulated
in subsequent chapters, culminating in the exact prescription in Ch. 9 and results
in Ch. 10.
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Chapter 2

Mathematical Descriptions

2.1 Terminology

Here, we define a few terms that will be used in this chapter.

A fundamental domain is a polygon or polyhedron from which a manifold, or

topological space, may be constructed.

X is a covering space of Y if it maps onto X in a locally homeomorphic way (i.e.
if a local region of X, that is no bigger than Y, can be continuously deformed into
Y and if this deformation is invertable). A universal covering space is a simply
connected covering space. For spaces Y of constant curvature, the universal covering

space will have the same curvature as Y.

A multi-connected space Y can be expressed as a quotient space, Y = X/I', of

covering space X, where I' is a symmetry group of the quotient space (see below).

A group generator, g, of a quotient space is an operation, or spatial transforma-
tion, that maps points in the quotient space to equivalent points in the universal
covering space. These transformations should be distance-preserving and non-trivial,
as demonstrated in Fig. (2.1). Euclidean space, for example, has no such generators;
any transformations returning the point on which they act are trivial (right diagram
in Fig. (2.1)).

A symmetry group, ', of a quotient space Y contains a set of generators that can

be used to completely map Y onto its entire universal covering space.
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Figure 2.1: The difference between a non-trivial transformation (left) and trivial
transformation (right).

2.2 Eigenmodes of Different Spaces

The eigenmodes of a space are solutions, or an orthogonal subset of the solutions,

of the generalised Helmholtz equation.

2.2.1 Eigenmodes of the Universal Covering Space

The more familiar form of the Helmholtz equation is a time-independent partial

differential equation which involves a scalar field in a flat space, Eq. (2.1).

VT (x) = =k Ty (%) (2.1)

where V? is the Laplacian, x describes position in space, and Y (x) is one particular
solution to the equation associated with wavenumber k. In this case, Ty (x) is an
eigenmode of Euclidean space, and —k? the corresponding eigenvalue.

The generalised Helmholtz equation extends Eq. (2.1) to any space with con-

stant curvature:

VT (x) = —(k* — K)Ty (x) (2.2)

where the eigenvalue, —(k? — K), now includes the curvature K.

2.2.2 Eigenmodes of a Quotient Space

The eigenmodes of a multi-connected space are a subset of those of its universal

covering space. A simple example of this is the flat torus. Only wavenumbers which
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correspond to a wavelength that fits a whole number of times into the fundamental
domain are allowed. One can halve an allowed wavelength (or divide by any integer)
to find another allowed wavelength ad infinitum. While there is an infinite number of
possible wavenumbers, they comprise a discrete set of values. In contrast, FEuclidean
space admits wavenumbers corresponding to an infinite, continuous set of real-valued
wavelengths; there are no boundaries to place any constraints. So some, but not
all, of the wavenumbers (and corresponding eigenmodes) allowed in Euclidean space
are allowed in the case of the torus. That is, the eigenmodes of the flat torus are a
subset of those of Euclidean space.

The boundaries of a fundamental domain are defined by the symmetry group of
the space. So, the group generators can be used to identify the subset of eigenmodes
of the universal covering space that also belong to the multi-connected space in

question. The method for doing so for flat spaces is described in Section 2.2.3.

2.2.3 Method for Finding the Eigenmodes of Flat Spaces

An eigenmode of a multi-connected space is one which satisfies

Tk (9x) = Tk (x) (2.3)

for all generators, g, in the symmetry group I'. A generator is simply a spatial

transformation and so Eq. (2.3) can be re-cast as Eq. (2.4):

Ty Mgx+T,y) =Tk (x), (2.4)

where M, is a transformation matrix and T, is a translation vector.

These eigenmodes are eigenmodes of the universal covering space that have a
periodicity in x of ¢"x, i.e. performing the transformation ¢ any integer n number
of times returns a point ¢"x which has the same value of Ty as the original point

x. These eigenmodes satisfy Eq. (2.5).

T (MIx + 30 MIT,) = Ty (). (2.5)

m

The flat universal covering space is Euclidean space, E®. One possible basis for

Euclidean space is planar waves, which means the eigenmodes can be expressed as

Tk (x) = e, (2.6)

Eq. (2.6) substituted into Eq. (2.5), yields Eq. (2.7):
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T (x) = el (MExFERT M To) _ il S0 MG Toy iy (%) (2.7)

Note that Ty (x) is only a different eigenmode to Ty (x) for kM # k. Letting
N be the smallest integer that satisfies

k =kM}, (2.8)

and considering the case of n = N in Eq. (2.7), it is evident that only N eigenmodes
are related by generator g.

Consider a linear combination of these eigenmodes,

N-1 N—-1
§ — E ikM7T
anTkMg = ane 9 ngM;H'l’ (29)

where the right hand side of the equation is simply the left hand side acted upon
once by g. A quick inspection of this equation reveals that the coefficients a,, satisfy

the following relations:

Upy1 = ape™MsTo, (2.10)

ag = aN_leika’V_lT-". (211)

Eq. (2.9), with Eq. (2.10) and Eq. (2.11), can be solved for k (see the examples given
in Section 2.2.3.2 and Section 2.2.3.3). And once we know the allowed wavenumbers,

we also know the allowed eigenmodes, T.

In summary, to identify the allowed eigenmodes of a space, perform the following

tasks for each generator of the space:
1. Solve Eq. (2.8) for N.
2. Solve Eq. (2.9), with Eq. (2.10) and Eq. (2.11), for k.

3. Select only the eigenmodes Ty corresponding to the allowed k.

2.2.3.1 Choice of Basis

So far, we have only considered eigenmodes as planar waves, which are convenient
for exploring multi-connected flat spaces. However, astronomical observations, es-

pecially those of the CMB, lend themselves to spherical waves. So, when it comes
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to constraining topology with observations, it may be more convenient to express

the eigenmodes of as sums of spherical waves:

[eS) J4

Tic(x) = > > & Viem (%), (2.12)

=0 m=—/¢
where Vi, is a spherical wave, £ and m are the spherical harmonic multipole mo-
ments, and &, are coefficients which, as a set, capture all the properties of a

topology. For Euclidean universal covering space [E3,

Ko = Y5, (K) (2.13)

where Y is the spherical harmonic function.

It is in fact the g,i‘fn that will be useful for constraining topology with obser-
vational data. These are listed for all possible flat spaces, E; where ¢ indexes the
space, in Section 2.3 and were found, as part of the work presented in this thesis,

by extending the prescription for finding the eigenmodes as follows:

4. Find the eigenbasis for the space. The eigenbasis modes are the set of linear
combinations of covering-space eigenmodes given by the set of generators of
the multi-connected space. These are easily found by substituting the solutions
for N and the a, (from steps 1. and 2.) into Eq. (2.9), and normalising the

Suln.

5. The 5,557; are then simply equal to the eigenbasis modes multiplied by i, which

is an artifact of converting from planar waves to spherical waves.

2.2.3.2 Worked Example for the 3-Torus (E,)

Three generators of the form ¢;(x) = Mx + T, are needed for E; where

1 00
M=101o0|=I (2.14)
001
T, = (L,,0,0)
T, = (0, L,,0) (2.15)
Ts = (07 0, Lz)
1. Solving Eq. (2.8) for N:
KM=k = N=1 (2.16)
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2. Solving Eq. (2.9), with Eq. (2.10) and Eq. (2.11), for k:

a0k = ape™MTiT v = age®TiTy
i eZkTi — 1

— KT, € 277 (2.17)
Substituting the T; into Eq. (2.17) yields restrictions on k,

T, gives k, =2mn,/L, where n, € Z
T, gives k,=2mn,/L, where n, € Z (2.18)
T3 gives k, = 2mn,/L, where n, € Z

3. Select only the eigenmodes Yy of E3 corresponding to the allowed k given by
Eq. (2.18).

4. In this case, since N = 1, Eq. (2.9) simply yields the eigenbasis for the space as
the set of universal-covering-space eigenmodes with the restriction n,,n,,n. €
7.

5. This means that the coeflicients §,1:5,1L

coefficients, {};‘ém = 'Yy, (k), with the restriction ng,n,,n, € Z.

are simply the universal-covering-space

2.2.3.3 Worked Example for Quarter Turn Space (Fj3)

Four generators of the form g;;(x) = M;x + T}; are needed for E5 where

1 00 0O -1 0
Mi=010|=1 Ms=[1 0 o0 (2.19)
001 0 0 1
T4 = (L:,0,0)
T4 =1(0,L,,0
2 =(0,L,,0) (2.20)
TA3 = (07 07 Lz)

TBl - (07 07 Lz/4)

Note that M 4 and T 4; form the generators of £ as Fj5 is a quotient space of Fj.
This means that the eigenmodes of E3 are linear combinations of the eigenmodes of
FE; that we found in Section 2.2.3.2.

20



2.2. EIGENMODES OF DIFFERENT SPACES 51

1. Solving Eq. (2.8) for N:

kM = (ky, —ko, k) =k it (ko k,) = (0,0) and N = 1
kM2, = (—ky, —ky k) =k if (ko k,) = (0,0) and N = 2 (2.21)
kM3 = (_kya kxa kz) =k if (kz, ky) = (0, 0) and N =

(

Note that the conditions (k,,k,) = (0,0) apply for N =1, 2 and 3 but not
N = 4. So we only need N =1 and N = 4 for the next step.

2. Solving Eq. (2.9), with Eq. (2.10) and Eq. (2.11), for k:

N=1 = qyYTx= aoeikMBTBlTkMB = qoe*TBiY,
— KTm =
— kTp €21Z (2.22)

N =4 — ayTx + alTkMB + angM2B + angM%
— a/()eikMBTBlTkMB + aleZkMBTBlTkM%
_1_ a2€ZkMBTBlTkM?]§ + a3eZkMBTBlTk

kMG T 51 ikT g1
Y

— Qg = as , a1 = ape

ikMpTp1 kML T gy

a2 = 1€ , 3 = ag€

i eikMBTgleikMQBTgleikMSBTglez’kTgl -1

— k (MBTBl + M%TBl + M%TBl + TBl) € 217 (223)
Substituting Ty into Eq. (2.22) and Eq. (2.23) yields restrictions on k,

N=1= kL./4€2nZ
— n,€4Z (2.24)

N=4 — k.L,c2rZ
— n, €’ (2.25)

3. Select only the eigenmodes Yy of E3 corresponding to the allowed k given by
Eq. (2.24) and Eq. (2.25) to use in the next step. There are additional restric-

tions that we need to place on k to ensure that the eigenmodes don’t degener-
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ate. As shown in the first line of working for Eq. (2.23), the four covering-space
eigenmodes that we combine to find eigenmodes of E5 are Ty, Ty, TkMQB
and Ty . We need to ensure that all combinations of k, kMg, kM?Z% and
kM3, are unique. This requires the conditions n, € Z* and n, € Z* U {0}.

4. For N = 1, Eq. (2.9) simply yields the eigenmodes equivalent to those of the
universal-covering-space eigenmodes with the restriction n,,n, = 0 and n, €
47.. N = 4, however, does give rise to eigenmodes that are linear combinations

of the eigenmodes of the covering space:

E3
Tk

<a0Tk + a1 Ty + a2 Tz, + G3TkM?;3>

N =N =

<Tk X eikTByrkMB X eikTgleikMBTngkMgB

, , L
+eszBleszBTBIeszBTBITkMSB)

ikoL. /4 ikoLo /4 ikoLa/4
<Tk+€ TkMB—i-e e TkMQB

1 thaLs/AgikaLz[4giksLa /Ay
kM3,

N | —

<Tk +i" T + 7 Vg, + Z':snsz/w?};)

iy

N = N =
b

o

kM,

<
w |

Y (kM) Vhem  forn, € Z5n, € Z¥U{0};n, € Z (2.26)

(NN
()

<

where the factor of 1/2 is a normalisation constant.

5. This means that the coefficients ﬁggj are either simply the universal covering

space coefficients, £, = i*Y;: (k), with the restriction n, n, =0and n, € 4Z

or given by

. 0 3 o
ps :% > iy, (kMY)  forn, € Zhin, € ZF U{0}in. €Z (2.27)
=0

2.3 Catalogue of Flat Spaces

There are only 18 possible flat spaces (Feodoroff 1885; Bierberbach 1911; Novacki

1934), all of which are catalogued in this section. Visual representations of the
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spaces are given in Fig. (2.2), Fig. (2.3) and Fig. (2.4), followed by a table of their
mathematical descriptions, Table 2.1.

Of the 18 spaces, only ten are compact in all three dimensions (E; to Fyg) and,
of these, only six are orientable (E; to Fjs). Just completely compact spaces are
investigated in this thesis. The reasons for choosing them are given in Ch. 1, but the
arguments in favour of these spaces act only to select them as a sensible/convenient
starting point for investigation. Of these spaces, E1, Fy, E7 and Ey are selected, as
they are the easiest to implement (this is discussed in Ch. 9). The other spaces are

by no means ruled out and would be worth exploration.
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Figure 2.2: The ten completely compact Euclidean manifolds. The shapes rep-
resent the fundamental domains of these manifolds. The doors indicate flips or
turns that occur as an inhabitant moves out one face and back in through another,
and similar for the windows. If no doors or windows are shown, there are no flips
or turns between the faces. The exception is E6, where all pairs of faces have
transformations like the single example shown. Note that E2 to E10 are all quo-
tients of E1: the dimensions of the fundamental domains of E2 to E10 are given
in terms of the dimensions of the fundamental domain of E1 (e.g., the length of
E2 in the z-direction, L2 is equal to LE'/2 = L,/2).
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Figure 2.3: The four chimney spaces: Euclidean manifolds which only have
two compact dimensions. The same rules apply here regarding the doors as in
Fig. (2.2).

Figure 2.4: The two slab spaces: KEuclidean manifolds which only have one
compact dimension. The same rules apply here regarding the doors as in Fig. (2.2).
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60 CHAPTER 3. THE IMPACT OF THE CMB ON COSMOLOGY

Chapter 3

The Impact of the CMB on
Cosmology

The Cosmic Microwave Background (CMB) consists of the oldest observable photons
in existence, rendering it the most powerful probe of the early Universe. The primor-
dial Universe was so hot and dense that photons experienced multiple scatterings off
electrons. As the Universe expanded and cooled, the rate of these interactions de-
creased until, eventually, the last scatterings occurred; we refer to the region where
CMB photons last scattered as the last scattering surface (LSS). There are two ef-
fects involved here; decoupling of photons from electrons, and (re)combination of
electrons with hydrogen and helium nuclei. Decoupling occurs as a result of the
drop in the free electron density due recombination (photon scattering from bound
electrons is less efficient than scattering involving free electrons) and the increasing
mean-free-path of photons due to the expansion of the Universe. Full recombina-
tion occurs when the number of photons with energies greater than or equal to the
ionising energy of hydrogen (13.6 eV) is negligible compared to the number of elec-
trons. This takes place when the Universe has cooled to around 3000 K, when the
typical photon energy becomes about 0.3 eV. It is thought that this happened about
380,000 years after the Big Bang, equivalent to a cosmological redshift of z ~ 1100.
The photons were then free to traverse space and ultimately reach us today. Note
that recombination was not instantaneous and so the LSS has a finite thickness.
Observations of the CMB have had a dramatic impact on our understanding of

the cosmology of our universe:

e The observation of the near-perfect blackbody spectrum of the CMB (Fig.
1.1) is one of the main pillars in support of the hot Big Bang model: the

coupling between photons and electrons before last scattering ensured the
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Figure 3.1: Intensity spectrum of the CMB obtained from the FIRAS instrument
of the COBE satellite. The curve is a theoretical black body curve. The data is
represented by points, which lie inside the curve, and error bars, which are smaller
than the thickness of the curve. Credit: Fixsen et al. 1996

thermal equilibrium necessary for a blackbody.

e The isotropic nature of the CMB (as well as other cosmological phenomena)
seems to require an early period of inflation, during which the expansion rate
of the universe increased exponentially, to allow causal contact between dia-

metrically opposing points on the LSS.

e Anisotropies over a wide range of angular scales are evident as fluctuations of
order 107° about a mean temperature of 2.725 £ 0.001 K. Most of the infor-
mation that we get from the CMB is found by analysing the power spectrum
of these anisotropies (see Section 3.1.1 and Section 5.2). Anisotropy mea-
surements are in agreement with the Standard Model (SM) of cosmology and
have led to quite precise constraints on many of the fundamental cosmological

parameters.

The potential wealth of knowledge encoded by the CMB has spurred many

experiments, some of which are described in Section 3.1.
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3.1 Experiments

The CMB was first predicted in 1948 by Ralph Alpher, Robert Herman, and George
Gamow as a consequence of the Big Bang model (see: Alpher & Herman 1948;
Gamow 1948). However, it was not observed until 1964 when Arno Penzias and
Robert Wilson encountered a mysterious excess noise (Penzias & Wilson 1965) while
testing a radio antenna at Holmdel, New Jersey, built to receive signals from the
first communication satellites. These Echo balloon satellites were not transceivers
but simply reflected microwave signals. This meant that the signals were faint and
all interference had to be eliminated; Penzias and Wilson tried to identify all sources
of interference, but could not explain the signal that we now know to be the CMB.
At that time, Robert Dicke, James Peebles, Peter Roll, and Dave Wilkinson had
been devising an experiment to detect the CMB and recognised the cosmological
significance of Penzias and Wilson’s discovery (Dicke et al. 1965). The discovery
gained Penzias and Wilson the 1978 Nobel Prize in Physics. There have since been
many balloon and ground based experiments but some of the major contributors to

advances in measurements of the CMB are:

(i) COBE (the COsmic microwave Background Explorer) was a satellite launched
in 1989 and operated for 4 years. It confirmed the CMB to be blackbody
radiation and provided the first measurements of primordial temperature

anisotropies. (See Smoot 1999.)

(i) BOOMERANG (Balloon Observations Of Millimetric Extragalactic Radiation
ANd Geophysics) was a balloon experiment that circumnavigated the South
Pole for ten and a half days in 1998 and fourteen days in 2003, along with
a six-hour test flight in 1997. It allowed the determination of fundametal
cosmic parameters to within a few percent (MacTavish et al. 2006). During
the 2003 flight, it made measurement of polarisation (Piacentini et al. 2006;
Montroy et al. 2006) using bolometers identical to those planned for Planck’s

HF'i instrument.

(iii) DASI (Degree Angular Scale Interferometer) is a ground-based telescope that
was set up in 1999/2000 in Antarctica. In 2001, it made the first measurements
of CMB polarisation (Kovac et al. 2002), beating BOOMERANG by almost

two years.

(iv) WMAP (the Wilkinson Microwave Anisotropy Probe) was a satellite launched
in 2001 and finished its survey of the CMB in 2010. It achieved levels of sensi-
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Figure 3.2: Temperature anisotropies simulated over the whole sky at COBE
(left) and Planck (right) resolutions. Credit: Planck Collaboration 2005.

tivity and angular resolution that allowed constraints to be placed on cosmo-
logical parameters at a precision of a few per cent. It also made the first mea-
surements of polarisation at large angular scales (DASI and BOOMERANG
did not survey the entire sky and so did not gather information on large an-
gular scales). (See, e.g., Komatsu et al. 2009, Bennett et al. 2012, Hinshaw
et al. 2012.)

Planck is a satellite that was launched in 2009 and first released cosmological
data in March 2013. It has been designed not only to achieve the highest levels
of sensitivity and resolution to date (with the aim of determining cosmologi-
cal parameters to the unprecedented precision of better than a percent) but
to measure the polarisation of the CMB in detail. As of yet, no polarisation
data have been released, but cosmological parameters have been determined
to percent-level precision. (See, e.g., Planck Collaboration 2005, Planck Col-
laboration et al. 2013a, Planck Collaboration et al. 2013b.)

The marked improvement in resolution from COBE to Planck is shown in the

temperature anisotropy maps of Fig. (3.2). It is harder to see the difference in

resolution between Planck and WMAP without zooming in on the maps, as in

Fig.
is th

of a

(3.3). Fig. (3.4) shows an anisotropy map without foregrounds subtracted and
e first all-sky image from Planck. The removal of foregrounds poses something

challenge and WMAP and Planck go some way to resolving this problem by

observing over a large range of frequencies: the knowledge that different foreground

sources are present in different frequency bands can be utilised to eliminate their

signals (see Fig. (3.5)). Since we are still awaiting the release of Planck polarisation

data

, this thesis will use data from WMAP.
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Figure 3.3: 5° x 5° patch of sky simulated at WMAP (94 GHz, 15 FWHM) and
Planck (217 GHz, 5 FWHM) resolutions. Left - WMAP 2 years. Centre - WMAP
8 years. Right - Planck 1 year. Credit: Planck Collaboration 2005.

Figure 3.4: Actual Planck one-year all-sky survey of the microwave background
(without foregrounds subtracted). Image shows data spanning the full frequency
range of Planck (30 to 857 GHz). Credit: ESA, HFI and LFI consortia.
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Figure 3.5: Spectrum of the CMB and other sources of fluctuations in the
microwave sky across the frequency channels (grey columns) of Planck. The total
Galactic fluctuation levels depend on angular scale, and are shown for about 1°.
Extra-galactic sources dominate smaller scales (EG, 10’ shown on diagram). The

highest frequencies are primarily sensitive to dust. Credit: Planck Collaboration
2005.
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Table 3.1: Best fit cosmological parameters for ACDM from WMAP 9-year data
and Planck data (see Hinshaw et al. 2012 and Planck Collaboration et al. 2013b
respectively). The uncertainties given represent the 68% confidence intervals of
the values. In the case of the WMAP fit, the densities listed are three of six model
parameters that have been optimised in order to fit the model to the data; Hy
has been derived from the other parameters once the best fit has been achieved.
In the Planck case, only the physical densities are among the six fitted model
parameters; 2y and Hy are both derived parameters. As usual, h is the Hubble
parameter (defined as Hy = 100h).

Parameter Symbol WMAP 9-year Planck
Physical baryon density Q,h? 0.0222 £ 0.0003  0.0221 £ 0.0002
Physical dark matter density — Q.h? 0.1153 £0.0019  0.1187 £ 0.0017
Dark energy density Qp 0.714 £ 0.010 0.692 £0.010
Hubble const. (km.s™'.Mpc™') Hy 69.32 4+ 0.80 67.80 +0.77

3.1.1 How Well Does the Standard Model Fit the Data?

The SM of cosmology is the Lambda Cold Dark Matter (ACDM) model. This
incorporates vacuum energy (the “A”) and cold dark matter (which, unlike hot or
warm dark matter, does not interact in any way, other than gravitationally, with
radiation) into a Big Bang scenario. There are various ways of parameterising the
model, although there can be no fewer than six parameters. Some of the parameters
involved are displayed in Table 3.1, where the best fit values are given for both
WMAP 9-year and Planck data.

Spatial curvature, k, depends on Hj, and total density through the Friedmann
equation. The best fit curvature density for WMAP 9-year is ©; = —0.002770 00as
(68% confidence level, Hinshaw et al. 2012,), while for Planck €, = —0.0010"0- 0002
(95% confidence level, Planck Collaboration et al. 2013b). Since the data are con-
sistent with a flat (€,=0), or nearly flat, universe, the analysis in this thesis will
concentrate on flat spaces. While open spaces are not investigated in this thesis,

they would provide an interesting extension.

Both the WMAP and Planck data agree well with a flat ACDM model on small an-
gular scales (large multipoles, £), but not quite so well at large angular scales (small
¢). This is demonstrated in Fig. (3.6). One possible explanation for this discrep-
ancy is that the model implicitly uses a simply-connected topology; incorporating a
multi-connected topology may solve the problem. However, to date, such attempts
have not been particularly successful (e.g. Niarchou 2006, Uzan et al. 2004).

The level of deficit between the data and model depends on the method of

analysis used. For example, it diminished between the WMAP 1-year results and
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Figure 3.6: Planck temperature angular power spectrum. The red data points
have error bars that include both noise and cosmic variance. The green line is
the best-fit spectrum for a flat ACDM cosmology. The green region represents
cosmic variance only (no noise). The fit is extremely tight above an ¢ of around
40. Below this value, data tend to sit underneath the model line; this deficit is
between 5-10%. Credit: Planck collaboration et al. 2013c.
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WMAP 3-year results, not because of the additional data, but because a new method
proposed by George Efstathiou (Efstathiou 2004) was applied to the 3-year data;
Efstathiou argued that the low power could arise from uncertainties due to masking
foregrounds, or biases inherent in the frequentist statistics used. Some now argue
that the significance of the deficit is not strong enough for it to be forced into the
model (Crittenden 2004). However, Planck collaboration et al. (2013c) reported a
deficit of 5 —10% below ¢ ~ 40 and work continues to to try explain this deficit (e.g.
Hearin et al. 2011; Bunn & Bourdon 2008; Shankaranarayanan & Sriramkumar
2005), including whether it could be a result of a multi-connected topology (e.g.
Aurich et al. 2006).
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Chapter 4

Physics of the CMB

The CMB is produced by one of the cleanest astrophysical systems known: inter-
actions between photons and electrons (bound in hydrogen and helium) in weak
gravitational fields. This means that predictions of CMB properties can be calcu-
lated accurately and reliably. If effects that have altered CMB radiation since it
left the LSS, as well as foregrounds, can be successfully removed, CMB anisotropies
can provide valuable information about the early universe, large-scale structure for-
mation, and the cosmological parameters (e.g.: Peebles & Yu 1970; Peebles 1981;
Jungman et al. 1996b.a).

4.1 Temperature Anisotropies

Foregrounds are more easily removed from temperature data than from polarisation
data and the vast majority of the information acquired to date has been deduced

from temperature anisotropies.

4.1.1 Origins of CMB Temperature Anisotropies

The evolution of CMB perturbations (Dodelson 2003, Scott & Smoot 2008) can
be divided into two phases: before and after the epoch of recombination (when
electrons combined with nucleons to form atoms and ceased scattering photons).
Before this time, the tightly coupled photons and electrons could be described as a
single (“baryon-photon”) fluid. Effects that contribute to perturbations before and
on the LSS (which all arise from primordial perturbations and so are correlated)

include:

e Fluctuations in density across the LSS: these provide fluctuations in temper-

ature - more photons corresponds to more energy.
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e Sachs-Wolfe (SW) effect: the gravitational potential at the LSS affects photon
energies. Variations in temperature due to the SW effect are given by AT =

®/3c? , where ¢ is gravitational potential and c is the speed of light.

e Doppler effect: variations in the line-of-sight velocity of the baryon fluid (and,
hence, electrons) across the LSS lead to variations in the observed energy of

the photons scattered by the electrons.

e Damping at small angular scales due to the finite thickness of the LSS: the
finite period of time (as opposed to instantaneous) over which last scatter-
ing occurs leads to deconstructive interference between photons emerging at

different times, weakening the signal of anisotropies at smaller angular scales.
Effects that occur as photons propagate from the LSS to Earth include:

e Reionisation: an epoch of reionisation occurred after recombination when the
universe was still sufficiently dense for a significant amount (about 10%) of
CMB photons to be rescattered by free electrons. This event is believed to
have occurred at a redshift between 20 and 5 (1.5 Myr to 1 Gyr after the Big

Bang), but the exact time is unknown and currently a hot topic for research.

e Integrated Sachs-Wolfe (ISW) effect: the effect of variations in gravitational
potential integrated between the LSS and Earth. Variations in temperature
due to the ISW effect are given by AT = 2A¢/c? , where A¢ is the change in

gravitational potential while a photon traverses the potential well.

Fig. (4.1) demonstrates how these effects appear in the angular power spectrum.

The former set of effects characterise the primordial power spectrum P(k),
where k£ denotes wavenumber, or Fourier mode. The latter effects contribute to
the radiation transfer functions A7 (k), where ¢ is a multipole mode (see Bond &
Efstathiou 1984). As we shall see, polarisation is susceptible to different effects to
temperature, and has its own set of transfer functions, AF(k) and AP(k). Both
temperature and polarisation transfer functions can be found using the publicly
available code such as CAMB (Lewis & Bridle 2002) or CMBFAST (Zaldarriaga &
Seljak 2000).

4.2 Polarisation

Polarisation data are not only complimentary to temperature data in anisotropy

studies but, as they provide information that cannot be obtained from temperature,
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Figure 4.1: This is a theoretical CMB anisotropy power spectrum generated
using the code CMBFAST (www.cmbfast.org). The multipole ¢ represents angular
scale (higher multipoles for smaller angular scales). The vertical axis is the mean
square temperature fluctuation at the scale represented by ¢. Credit: Scott &
Smoot 2008.
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Figure 4.2: WMAP 9-year polarisation maps for different frequency bands. The
coloured background shows the intensity, while the white lines indicate the angle.
Credit: Bennett et al. 2012.

are necessary to achieve precision cosmology (Zaldarriaga et al. 1997; Eisenstein
et al. 1998; Zaldarriaga & Harari 1995; Kaplan et al. 2003). WMAP provided the
first glimpse of the full-sky polarised CMB (Kogut et al. 2003), as shown in Fig. (4.2),
and Planck promises more detailed observations (see Fig. (4.3)).

This section describes the mechanisms for producing a polarisation signal in the
CMB and how to characterise this signal mathematically. The next chapter, Ch. 5,
will develop the mathematical description further and show how to find polarisation
correlation matrices. Good introductions to CMB polarisation are given by Hu &
White (1997) and Kosowsky (1999), while detailed discussions on how to find the
transfer functions and correlation matrices for polarisation can be found in Kosowsky
(1996), Kamionkowski et al. (1997) and Zaldarriaga & Seljak (1997).
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Figure 4.3: Simulated direction (left) and amplitude (right) of polarisation
anisotropies at Planck resolution for a pure scalar fluctuation mode. Credit:
Planck Collaboration 2005.

4.2.1 Origins of CMB Polarisation

CMB polarisation is linear (i.e. the preferred axis of oscillation in the electromag-
netic field of a CMB photon does not alter direction, or rotate, with time). Fig. (4.4)
shows how this polarisation emerges from quadrupoles in the energy density of the
photon fluid at the LSS. Fig. (4.5) demonstrates how quadrupoles are formed in the
CMB.

More photons travel to a given point from hot, overdense regions than from
cool, underdense regions. In a quadrupole induced by scalar perturbations, photons
from the hottest regions travel to a central point in a direction perpendicular to
that of photons from the coldest regions. The contribution to the polarisation of
photons that are Thomson-scattered at this point is greater from the hotter regions
than the colder regions. Therefore the polarisation of the scattered photons has a
greater amplitude in the direction aligned with the hottest regions. The amount of
polarisation measured depends on the orientation of the observer to the quadrupole.
This process simply requires the energy density to vary over the LSS i.e. a scalar
mode of perturbation, the leftmost case of Fig. (4.5). This can give rise to two
types of polarisation pattern, both of which have even parity (are unchanged under
reflection) and are known as £ modes (see left two images of Fig. (4.6)).

Polarisation can also arise due to vector perturbations. In this case, the bulk
motion in a region of constant energy density produces a Doppler shift in the energies
of the photons, creating an effective dipole. Therefore, a dipole in the energy density
of the photon fluid can become an effective quadrupole when there are bulk motions
in the fluid which follow opposite directions in under- and over- dense regions (see
central image of Fig. (4.5)). The right two images in Fig. (4.6) show B mode
polarisation, which has odd parity (sign changes upon reflection) and is the dominant

mode produced by vector perturbations.
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Figure 4.4: How a quadrupole in the photon fluid induces polarised scattered
light. The green dot in the centre is an electron. Black lines are directions of
propagation of photons (two incident and one scattered are shown, but photons
will travel to and from the electron in all directions). The quadrupole lies in the
plane of the page. The axes marked ¢ are incident polarisation, while e denotes
the polarisation of photons scattered orthogonal to the plane of the quadrupole.
Incident polarisation components orthogonal to the scattered direction are trans-
ferred to the scattered photons; incident components that are parallel to this
direction are not transferred. Photons from the hot, overdense (blue) region are
more abundant than those from the cool, underdense (red) region and so con-
tribute more to the scattered polarisation. Hence non-polarised incident light can
result in polarised scattered light. Credit: Hu & White 1997.
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Figure 4.5: Different types of quadrupole on the LSS. The blue and red sheets
represent the background of overdense (hot) and underdense (cold) regions re-
spectively (scalar perturbations). Left: scalar perturbation - simple quadrupole
in energy density. Centre: vector perturbation - opposing bulk motions in two
adjacent isothermal regions (one hot, one cold) create an effective quadrupole.
Right: tensor perturbations - gravity waves distort space in the plane of the per-
turbation, changing circles of particles into ellipses and, hence, isothermal regions
into quadrupoles. Credit: Hu & White 1997.
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Figure 4.6: Polarisation patterns for different types of modes. Left: positive E

mode, centred on a hot spot. Centre left: negative E-mode, centred on a cold

spot. Centre right: negative B mode, centred on a hot spot. Right: positive
B-mode, centred on a cold spot. Credit: Kaplan et al. 2003.
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Finally, tensor perturbations can also produce polarisation. These perturba-
tions are produced by gravity waves (see rightmost image of Fig. (4.5)). Gravity
waves distort space in the plane of the perturbation such that a circle of particles
becomes an ellipse. The density is increased along the minor axis of the ellipse and
decreased along the major axis. In an isothermal (constant energy density) region,
this induces a quadrupole. Different polarisation modes result from different grav-
itational wave formations; tensor perturbations produce comparable amounts of F

modes and B modes.

To see why the different types of perturbation lead to different modes of polarisation,
refer to Fig. (4.5). In a scalar perturbation, photons move parallel to the major
axis of the hot lobe towards the cold lobe, the polarisation direction is therefore
perpendicular to this axis (and parallel to the diametral axis of the cold lobe). In
a vector perturbation, however, photons move from hot lobes to cold lobes at 45°
to the major axes of the lobes, the polarisation direction also 45° to these axes.
Tensor perturbations can produce polarisation both perpendicular (or parallel) and
45° to the major axes of the quadrupoles, depending on the shape of the quadrupole
induced.

Which type of mode dominates, if any, depends on which type of perturbation
dominates: scalar, vector or tensor. Vector perturbations are expected to be in-
significant as they arise from velocities in the baryon fluid; the greater the physical
size of the quadrupole, the larger the velocity required, meaning there is a limit to
the size of such a quadrupole. The expansion of the Universe since the formation of
the LSS is expected to have rendered these quadrupoles too small to measure the
effects of in the CMB. This means that the B mode contribution should arise al-
most exclusively from tensor perturbations. The magnitude of tensor perturbations
is limited by the energy scale of inflation and expected to be much smaller than the
magnitude of scalar perturbations. Since £ modes are produced by both scalar and

tensor perturbations, they should dominate over B modes.

4.2.2 Relating E and B Modes to Stokes’ Parameters

E and B are related to Stokes” parameters () and U. ) and U describe polarisation
with respect to a local coordinate system, usually aligned with the observer’s line of
sight, which changes according to where in the sky the observer is looking. E and
B however, are independent of choice of coordinate system and are more convenient

for studying global properties of CMB polarisation.
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Figure 4.7: Stokes’ polarisation parameters. The x and y axes lie in the plane
perpendicular to the direction of propagation of a wave. The magnitudes of @), U
and V indicate the amount of each type of polarisation present. Their sign is used
to indicate one of two directions. Each of these plots depicts a different extreme
case, where only one type of polarisation is present. Credit: Dan Moulton.

Stokes’” parameters completely describe the polarisation characteristics of light (e.g.
Chandrasekhar 1950). I represents intensity, () linear polarisation in two orthogonal
directions, U linear polarisation in two orthogonal directions rotated 45 degrees with

respect to Q, V circular polarisation (see Fig. (4.7)). Eq. (4.1) is Stokes’ theorem.

I?>@Q*+U*+V? Stokes’ theorem (4.1)

A monochromatic wave can be described as an electric field with the components

E, = a,(t)cos[vt — 0,]
E

4.2
y = ay(t)cos[vt — 6,] (42)

where a, and a, are amplitudes in the z- and y- directions, v is the frequency of the
light, and 6, and 6, the phase angles. Light is polarised if the two components E,
and F), are correlated in some way. Stokes’ parameters are defined with respect to

these parameters as
I={(a)+ <a§> (4.3)
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Q= (a) - (a2) (1.4)
U = (2a,a,c0s(0, — 6,)) (4.5)
V = (2a,a,sin(0, — 0,)) (4.6)

where the angle brackets represent time averages. Note that circularly polarised
light in the CMB is often considered negligible and so V' vanishes. There are mecha-
nisms for producing it, in the presence of magnetic fields for example, and attempts
to detect circular polarisation in the CMB were made in the 1980s (Stark 1981;
Lubin et al. 1983; Tolman & Matzner 1984). An upper limit to the degree of cir-
cular polarisation in the CMB at large angular scales was determined to be about
1073, although it is expected to be about 107, Comparing this to temperature
anisotropies, which are of order 10 and FE-mode polarisation, at 1077, circular
polarisation would be much harder to detect. However, as instrumental sensitivies
improve, interest in circular polarisation has started to revive (Zarei et al. 2010;
Mainini et al. 2013); some argue that the expected amplitude is not very different
to that expected for B-mode polarisation and, since experiments for detecting B-
modes are currently under way, we should be considering circular polarsiation too.
B-modes will be considered, at least initially, in this thesis as there are experiments
that may detect them in the near future. With less activity surrounding circular
polarisation, it will not be dealt with here.

@ and U depend on the orientation of the local coordinate system. The local
z-axis, by convention, lies along the axis of propagation of the wave and, hence,
along the line of sight of the observer. (Here, the z-axis is taken to be directed out
from the observer, but some texts take it to be towards the observer.) The z-y plane
is therefore tangential to the celestial sphere, but the orientation of the z-y plane
is not constrained. A wave that can be described by ) and U in one particular
coordinate system, can also be described by @’ and U’ in a system where the z-y

plan has been rotated by ¢ degrees:

Q' = Qcos(2¢) + Usin(2¢)

(4.7)
U'= —Qsin(2¢) + Ucos(2¢)

If ¢ is chosen to be 45 degrees, Q' is in fact equivalent to U, and U’ equivalent to —(Q).
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Figure 4.8: Positive @ (yellow lines) and U (purple lines) plotted on the celestial
sphere (left) and map of the sky (right). Negative @ and U are not shown but are
simply perpendicular to their positive counterparts. The local z- and y- axes for
the Stokes’ parameters have been chosen to be longitudinal and latitudinal with
respect to the global z-axis (running from the bottom to the top of the sphere).
This means than the net effect of the presence of () polarisation is to create only
E modes (and similar for U and B). Credit: Hu & White 1997 (note that this
figure is used to explain a different situation in the source paper).

Unlike @ and U, E and B cannot be transformed into one another (this should be
apparent upon inspection of Fig. (4.6)). This is because they are a global, and not a
local, property. In order to properly understand the connection between these two
ways of describing polarisation, we need to identify the differences between them.

These differences are not often emphasised, but are quite fundamental:

e A wave emerging from a single point in the sky can have polarisations () and/or

U. It cannot, however, have ¥ or B mode polarisation.

e To identify an E or B mode, we must compare multiple points in the sky,

searching for patterns such as those in Fig. (4.6).

E and B can be defined in terms of spherical harmonics (see Section 5.1), a
global coordinate system. It is convenient to choose the local (Q and U) z- and y-
axes to be longitudinal and latitudinal, respectively, with regard to the global (E
and B), spherical harmonic, z-axis. This choice of coordinate system results in F
being dependent only on @, and B only on U, as in Fig. (4.8).

In general, the polarisation tensor is defined as
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PB (1) 1( Q (f) —U(ﬁ)sm(e)>

Pu () _ Pl (0) _ L
Ty Ty T, 270 \ =U (d) sin(f) —Q (i) sin*(0) (4.8)

polarisation tensor

where Tj is the mean CMB temperature. With the coordinate systems chosen as
above, PZ (11) is a diagonal tensor, while P4 (1) is a symmetric, off-diagonal tensor,

l1.e.

Pa@) 1 (Q(R) 0
bTO - 2T0< 0 —Q(h) sm2(9)>' (49)

PE(R) 1 ( o U® sm(e)> | (410
To 270 \—U (1) sin(0) 0

Note that PE (i) and P (i) are not the £ and B modes themselves; they are
the components of the polarisation tensor that we use to test for £ and B modes.
FE modes are present on a certain scale, ¢, if there is a net correlation between all
PE (A1) and PE (1) on that scale (ie., if CF¥ is non-zero - see Eq. (5.17)), and

similar for B.
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Chapter 5

Mapping the CMB

This chapter explores how we can extract information about the CMB from tem-
perature and polarisation maps, 7' (@1) and Py, (1) respectively (where 1 is the unit
vector denoting position on the sky and a, b are matrix indices), as well as the chal-
lenges involved in collecting the data that form these maps. 7T (1) is a scalar field
and P, (1) is a tensor field. So, while the treatment of polarisation is analogous to

temperature, it is somewhat more complex (e.g. Kamionkowski et al. 1997).

5.1 Harmonic Expansion

T (i) and Py, (1) can both be expanded in terms of complete sets of orthonormal
basis functions, as in Eq. (5.1) and Eq. (5.2).

r®) _ 1+§: > a,Yon (1) (5.1)

TO l=1 m=—¢
[eS) 4
7Dab (ﬁ) ~ ~
- Z Z [agEm)/'(fm)ab (Il) + afmyr(?m)ab (Il)] (52)

=2 m=—{

where

e Tj is the mean CMB temperature and, as well as expressing 7" in units Tp, it
is convention to express P, in units of Tj as the polarisation is correlated to

the temperature anisotropies.

e Y, are the spherical harmonics and the basis functions Y(fm

be expressed in terms of the spherical harmonics by Eq. (5.3) and Eq. (5.4).

Yab and }/(?m)ab can

Note that the harmonics of P, do not exist for £ = 1 (because this provides

only a local z- or local y- axis, but both are needed to describe polarisation).
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While often ignored due to being contaminated by the kinematic dipole (an
apparent dipole in the CMB caused by Earth’s motion and the Doppler effect),

the ¢ = 1 term does exist for 7.

1
Yv(f‘m)ab - NE (Yv(fm):ab - égabyv(zm);cc) (53)
Ny . .
Vngar = 5 (Vempae €+ Yiemyae €<, (54)

where : denotes covariant differentiation on the two-sphere, g, is the metric
tensor on the two-sphere, €, is the completely antisymmetric unit tensor,

defined in Eq. (5.5), and Ny is a normalisation factor given by Eq. (5.6).

0 1 1 g2 922 b 1 0 1
€ab = /0 , €Y = — , €Y = — (5.5)
<—1 0) ' v <—911 —921> VI\-1 0

where g = ||ga||-

2(0 —2)!

N, =
! (0 +2)!

(5.6)

Multipoles, ¢, express the angular scale, with smaller scales represented by
larger multipoles. However, there is no one-to-one conversion between multi-
pole and angular scale, although a single spherical harmonic Yy, corresponds

to angular variations of 6 ~ 7 /(.

ay are the multipole moments: al  are the temperature multipole coefficients;

E

& and al} are the polarisation expansion coefficients. Rearranging Eq. (5.1)

a

and Eq. (5.2) leads to the following expressions for the multipole moments:

1
aj, = T / di AT(n) Y, (1) 7T multipole moments (5.7)
1
%Em — ?0 /dﬁ Pap(11) nfn“b*(ﬁ) E multipole moments (5.8)
1
afm — ?0 /dﬁ Pap(11) an“b*(ﬁ) B multipole moments (5.9)
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where AT =T — Tj. For example, to get Eq. (5.7):

T, Yo (B) =) > af,Yom () Y, (1) (5.10)

(5.11)

due to the orthonormality of the spherical harmonics, which dictates that

/ 4R Yo (8) Y, , (8) = 0By (5.12)

Thus, if we have measurements for 7" and P, (from observations of the CMB)

we can calculate af,,, a, and af . These three multipole moments fully

m

describe the temperature-polarisation map of the sky.

5.2 Correlation Matrices and Angular Power Spec-

tra

The covariance of a;\, and a}  for a particular £ and m is given by Eq. (5.13),

Covargmem (X,Y) = ((agy — (ap)) (apm — (@ )) ) = {aprap),  (5.13)

where XY =T, E, B, the angle brackets represent the average over all realisations
(note that we can only observe one realisation, or universe), and (a*) = (a},,) =0
(because the sum of the deviations from the mean temperature and the net polari-
sation are both zero).

We use CiY, . to denote the correlation matriz. Technically, to convert from
covariance to correlation, we must divide by the product of the appropriate standard

deviations:

cxy, = ltm ] (5.14)
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However, it is convention to assume that the multipole moments have been nor-

malised such that o,x = oy =1, yielding Eq. (5.15).

Compmy = {apray,,) XY correlation matrix (5.15)

Note that Eq. (5.7), Eq. (5.8) and Eq. (5.9) have not been normalised in this way
as, in reality, it is more convenient to perform the normalisation on the correlation
matrix itself. It also may not be necessary to normalise, depending on the properties
being investigated.

For Gaussian perturbation theories, the correlation matrices fully describe the

statistical properties of the temperature-polarisation map.
The diagonal of the correlation matrix is given in Eq. (5.16),

XY
Ci

m

= 5gg/5mm105)fn52,m,. (516)

Averaging over m, we get the correlation for given ¢, the angular power spectrum,

Eq. (5.17).

1
XY = T Z CXY = 2£ 1 Z <a aem> XY angular power spectrum

(5.17)
Note that Eq. (5.17) is often expressed as C;*¥ = <a aem> where the angle brackets
denote the average over m, as well as all reahsatlons. For the sake of consistency, this
notation will not be used in this thesis. Formalisms exist for computing any C; for
any FRW (Friedmann-Robertson-Walker) space-time and any structure formation
model (Callin 2006). Many cases can be computed using codes such as CAMB
(http://camb.info, Lewis & Bridle 2002) and CMBFAST (http://www.cmbfast.org,
Zaldarriaga & Seljak 2000), which are publicly available.

An important operation performed by these codes is finding the radiation trans-
fer functions, A (k), where X denotes either temperature or type of polarisation
(T, Q or U), £ is the multipole mode and k is wavenumber. The transfer functions
describe the evolution of fluctuations from primordial to present-day, at a partic-
ular ¢ and k. Kosowsky (1996) provides a detailed discussion on how the transfer
functions can be calculated, along with how they can be used to find the CMB
correlation matrix. Eq. (5.18) gives the correlation matrix in terms of the transfer
functions using a notation very similar to that adopted by Phillips & Kogut (2006)

(whose algorithm for calculating the correlation matrix is also similar to that used
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in this thesis).

P(k)

Comirm = (4m)2 >~ A (k) AL () I

tm'm

Angl/m/ (n) (518)
where n and k, satisfy k& = 27n/L, n represents the integer triplets (n,,n,,n.),
P(k) is the primoridal power spectrum, Aj ,,.(n) is given by Eq. (5.19) and L
is the topology scale. For simplicity and readability, we assume the dimensions of
the fundametal domain to be equal, L, = L, = L, = L, but the equations can be

modified to allow for different lengths.

Aﬁm,ﬁ’m’(n) - Z g/?;mglgﬁ’m’ (519)
{In[=n}

where £}, are the coefficients that characterise topology discussed in Section 2.2.3.
Note that A%ml/m/(n) depends on topology, not cosmology, and will be referred to

as a ‘topoterm’ for the remainder of this thesis.

5.2.1 Properties of the Correlation Matrix

If the CMB is statistically isotropic, the correlation matrix must be rotationally in-
variant (i.e. diagonal) and individual correlations must be independent of m (which
relates to the orientation/location of the associated ¢ modes on the sky). Since
the power spectrum is by definition diagonal and independent of m, the correlation
matrix could then be expressed as

CXY = CY 8Oy (5.20)

ml'm

Therefore, for the isotropic case, we lose no information by using the power spec-
trum, Eq. (5.17), for statistical analyses instead of the complete correlation matrix,
Eq. (5.15). This is an advantage as it is computationally less expensive to calculate.

In a simply connected universe, the CMB should be isotropic. In a multicon-
nected universe, however, it is generally not and, in order to retain all information,

we need to perform statistical analyses on the correlation matrix itself.

5.2.2 Properties of the Angular Power Spectrum

Fig. (5.1) shows the predicted forms of the CMB power spectra. The cross power
spectra of B with T" and E are expected to vanish because of the odd parity of B,
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which should not correlate with even parity 7" and E (Bartlett 2006). While not
displayed in this figure, the T'E power spectrum is non-vanishing.

The E'E power spectrum is out of phase with the TT" power spectrum. This is
because oscillatory velocities (baryonic acoustic oscillations) in the plasma induce
Doppler shifts and, hence, the scalar perturbations responsible for the majority
of the £ modes. The maximum temperature variations (or Doppler shift) occurs
at peaks and troughs in the oscillations, where the plasma has minimum velocity.
Polarisaton, on the other hand, requires bulk motions in the plasma; maximum
polarisation occurs at maximum plasma velocities. So, while peaks in the 7" mode
spectrum correspond to density modes that are at their minimum velocities, peaks
in the £ mode correspond to density modes that are at their maximum velocities.
Minimum velocity density modes are 90° out of phase with maximum velocity density
modes. Hence, the T" and E modes, and the corresponding power spectra, are out
of phase.

B modes are assumed to be produced solely by tensor perturbations (i.e. gravity
waves) since vector perturbations are not expected to be present in the LSS and
scalar perturbations only produce E modes (see Section 4.2.1). Gravity waves in
the LSS are a prediction of inflation and, therefore, B modes can be used to constrain
the strength of inflation. The strength of inflation, r, is defined as

amplitude of tensor perturbations

= . 5.21
" amplitude of scalar perturbations ( )

Fig. (5.1) shows predicted CMB BB power spectra due to gravity waves ranging
from 3.2 x 10'® GeV (the minimum detectable, see Knox & Song 2002) to 2.6 x 10'°
GeV (the maximum allowable, see Wang et al. 2002) .

5.3 Converting to Pixel Space

Spherical harmonics can be used to transform between harmonic space and pixel

space. The harmonic to pixel transformation for the correlation matrix is

Copr = D Y5 (P)Yorur (D) Clmprm (5.22)

Iml'm/!
where p, p/ are the pixel numbers and p, p’ are the respective pixel directions. This
is an idealistic pixel space, where each pixel contains information only from a single
point in the sky at any one time. To convert to a realistic detector pixel space,

which has some pixel beam function (describing the area, as opposed to point, in
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Figure 5.1: TT (labelled ©O on the plot), FE, and BB power spectra. The EFE
spectrum is out of phase with respect to the T'T" spectrum. The grey region covers
a number of possible BB power spectra, depending on the strength of the gravity
waves in the LSS. The line labelled g. lensing is a predicted B mode spectrum
generated purely by gravitational lensing (see Section 5.4.2). Credit: Hu et al.
2003.
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the sky to which a pixel is instantaneously exposed), the transformation is

Cpp’ = Z B;mBg’m’)/Z:n(p)n’m’(p/)Cng’m" (523)

me'm’

Note that the transformation of the pixel beam from pixel to harmonic space is

Bi =Y By(p)Vin(p). (5.24)

It is usually easier to work in harmonic space, but it can be helpful to plot
maps of the correlation matrix (which is done in pixel space) in order to visualise

the correlations (e.g., see Niarchou 2006).

5.4 Taking Measurements

A measurement of the CMB consists of more than just the signal that we are inter-
ested in. We can parameterise the data (e.g., see Jaffe et al. 1999, Wandelt et al.
2004) as

di =Y Ap(sy+ fp) +ni (5.25)

where ¢ labels increments of time (¢ = idt), s, and f, are the signal and foregrounds
detected in pixel p respectively, n; is the instrumental noise and A;, is the pointing
operator (A;, = 1 at times when pixel p is observed and A;, = 0 at times when
pixel p is not observed). The data d; will be measurements of either temperature,
T, or polarisation, in the form of Stokes” parameters () or U. The temperature data,
d! can be used directly in analyses of the temperature anisotropies. However, the
orientation of the axes against which ) and U were measured must be taken into ac-

count before d2 and d¥ can be used in analyses of E and B modes (see Section 4.2.2).

We have used a time-ordering label, ¢, on the data, d;, and noise, n;. The signal,
sp, and foregrounds, f,, are not time ordered, but we effectively make them so by
multiplying by A;, and summing over p. We can do the opposite and find the
non-time-ordered data, d,, and noise, n,. For example, the non time ordered noise

18

ny = Z Az‘pTLZ‘, (526)

88



54. TAKING MEASUREMENTS 89

or, in matrix form,

n=Ang. (5.27)

where ny.q is the time-ordered noise correlation matrix. To convert between time
ordered and non time ordered correlation matrices (Nyo,q and N respectively in the

case of noise), we use
Nppr = Z Aip Ny Airy (5.28)

or, in matrix form,
N=(ATN_LA)™" (5.29)

5.4.1 Uncertainties

We wish to infer Cy or Cpppyy from measurements described in Eq. (5.25). There

are many sources of uncertainty that we should consider:

e Noise n; and foregrounds f, can be estimated but, as we cannot know
them precisely, will always be responsible for some degree of uncertainty in
our knowledge of the signal, s,. Note that we usually assume the noise to have

a Gaussian distribution.

e The pixel beam B,(x) (which describes which directions x are seen by pixel
p) not only takes into account the resolution of a pixel, but the shape of the
area that it sees. The uncertainty lies in not knowing exactly where the signal
has come from. The signal and foregrounds measured in pixel p both involve

the pixel beam:

Sp = /dep(X)s(x) (5.30)

o= [ xByx) ) (5.31)

However, on the scales considered in this thesis, the area covered by the the

pixel beam for pixel p is negligible (i.e. By(z) >~ 6(x — xp)).

e Sample variance of C; or Cy,p,. The variance of a population {z,}

can be estimated from a sample {y,} of that population (see any standard
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undergraduate text book on statistics):

Var({z,}) ~ Var({y,}). (5.32)

However, we are interested in the variance of the mean value of our sample (as

a measure of the uncertainty on the mean):

Var({yn.})

Var(g) =~ el

(5.33)

where N is the size of the sample, 7 is the mean of the sample, and the y,, must
not be correlated in order for the equation to hold. Eq. (5.32) and Eq. (5.33)
lead to the result

Var(y) ~ w. (5.34)

The sample variance improves (i.e. decreases) as the sample increases in size.
Regardless of how many universes there may be, we can only observe one
which, unfortunately, means that our sample size is only one for Cy,prp. But
the situation can be better for Cy, for which there are 2¢ + 1 moments (m) for

each multipole (¢); the sample size in this case is 20 + 1.

e Sky coverage is also an example of sample variance. Sky coverage may not be
complete if not using an all-sky survey or if a mask has been used to “remove”
foregrounds. Either way, the sample variance scales as 1/ fqy,, where fy is

the fraction of the sky covered by the data being used.

5.4.2 Challenges

There are many challenges facing any experiment which trys to measure the CMB.
Polarisation can be especially problematic as only about 10% of CMB photons are
not randomly polarised resulting in a weaker signal than for temperature (Hu &
White 1997). Foregrounds such as the Milky Way and other galaxies contaminate
CMB measurements. They provide additional photons that can be mistaken for
CMB photons. We also have to consider effects that change the properties of the
CMB photons themselves as they travel from the LSS to Earth. The main such

effects are reionisation, the ISW effect and gravitational lensing.
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Foregrounds can be removed to an extent by estimating the microwave contri-
bution from sources surveyed at other wavelengths (Tegmark 1998). This is very
difficult for the Milky Way and this region of the sky tends to be masked (essen-
tially ignored). The removal of foregrounds is considerably more problematic for
polarisation than for temperature. However, the Planck satellite has been designed
to address these issues (Planck Collaboration 2005): it is much more sensitive to
polarisation than its predecessors; it has A range of frequency bands that, together,

should aid the removal of foregrounds.

e Cleaning: This is where an attempt is made to remove a foreground, revealing
the uncontaminated, 'clean’; signal of interest. However, this requires estima-

tion of the foregrounds and inevitably results in some degree of uncertainty.

e Masking: The implementation of a mask involves multiplying the data by a
mask function, M (n), which is zero in masked regions and one elsewhere. e.g.,

for temperature, Eq. (5.7) becomes

1
aj,, = 7 / di AT(R) Y, (d) M(n (5.35)

Alternatively, we can used a weight function, W (n), which is zero where
masked but not necessarily one elsewhere, providing smoother transitions in-
stead of sharp cuts around masked regions. Masking introduces anisotropies
to the CMB that can result in coupling of modes. Gruetjen & Shellard 2012

discuss methods of optimising masking in order to account for these effects.

Reionisation: some part of the CMB may have been scattered at the epoch of
reionisation, long after recombination/last scattering. This would cause damping in
both the temperature and polarisation spectra at small angular scales and induce a
bump in the polarisation at a large angular scale (see Fig. (5.2)). The ¢s at which
these effects take place depend on the optical depth to reionisation, 7 (Zaldarriaga
1997). 7 is incorporated in the ACDM model and can be estimated as part of the
ACDM fit to the CMB data. In this way, the effects of reionisation can to some
extent be accounted for (as well as gaining valuable information about the epoch).
The bump should appear below ¢ = 20 (Kaplan et al. 2003).

ISW effect: as CMB photons propagate to Earth, changes in gravitational po-
tential induce variations in the photon energy. Fortunately, this does not affect

polarisation. Temperature is affected on scales of ¢ less than about 5 (Rassat &
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Figure 5.2: Reionisation bump in the low ¢ region of the TE power spectrum.
Credit: Kogut et al. 2003.

Starck 2013); the contribution to the power spectrum can be modelled from theory

or estimated using galaxy surveys (Fig. (5.3)).

Weak gravitational lensing smooths out acoustic oscillations in TT, EE and TE
power spectra, generates power at arcmin scales in TT, EE and TE power spectra,
and effectively creates a spectrum of B-mode polarisation from E-modes (Hirata
et al. 2005). There is not much that can be done about the smoothing of the power
spectra, but there are ways to estimate the lensing structure of the Universe (Lewis
& Challinor 2006, Smith et al. 2012) and the contribution of lensing to the power
spectra. The lensing contribution only becomes significant at large scales, when ¢
reaches the order 1000 (Fig. (5.4)); this threshold is likely much lower for the gen-
eration of B modes, since the CMB B mode signal is not thought be very strong

(Fig. (5.1)).
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Figure 5.3: ISW contribution to the 7" power spectrum at low ¢. The solid
line is the theoretical prediction and the data points are estimated from 2MASS
and NVSS galaxies with WMAP9 data. Credit: Rassat & Starck 2013.
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Figure 5.4: Contribution of gravitational lensing to the temperature power spec-

trum, based on a typical ACDM model.

Top: the lensed temperature power

spectrum (blue, solid line), unlensed spectrum (red, dotted line) and power from
lensing only (black, dashed line). Bottom: the fractional change in the power
spectrum due to lensing. Credit: Lewis & Challinor 2006.
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Chapter 6
The (General Bayesian Approach

Bayesian analyses determine a probability distribution for the parameters of a model.
This is different to frequentist approaches, which propose a hypothesis, or model
with parameters in some fixed range, to be true (or not) and then attempt to de-
termine whether or not this is the case to some confidence level. The frequentist
confidence level can be considered the probability of the model parameters lying
in a fixed range, but is not a probability distribution for the parameters. An ad-
vantage of the Bayesian approach is that it has the potential to take account of as
much available information as possible. Many believe that there is no need for this
gain in complexity, but Bayesian analyses are increasingly employed to investigate
astrophysical data for a number of reasons (Trotta 2008). As theories become more
complicated and observations more precise, models will become more complex and
require more sophisticated analysis. Due to direct incorporation of models in the
analysis, Bayesian statistics often offer a more intuitive interpretation of the data
they describe. When there are vast amounts of data, sensible Bayesian and fre-
quentist approaches will generally lead to similar conclusions. But all too often, in
cosmology and UHECR research for example, the data available is sparse or poor
quality. In these cases, the extra information utilised by Bayesian methodologies is

crucial.

6.1 Bayes’ Theorem

Bayesian statistics is so-called as it makes use of Bayes’ theorem, but it still incor-
porates other statistics. Bayes’ theorem states the probability of a hypothesis given
relevant data. One way to interpret this is: the probability that the parameters of
a model have certain values, given that certain data (regarding the system that the

model describes) have been obtained (Loredo 1990). In this case, Bayes’ theorem
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can be written:

Pr(data|parameters)Pr(parameters)

Pr(data)

Pr(parameters|data) = (6.1)

where Pr(parameters|data) is known as the posterior, Pr(data|parameters) the likeli-
hood, Pr(parameters) the prior, and Pr(data) the evidence. Note that Pr(z = X|y)
is the probability (density) that, given y, = is essentially X but, more precisely,
describes the probability (density) that x lies in some small range about X (Jaffe
1996).

Technically, all these probabilities take account of some background informa-
tion, I. Using the notation 6 for the parameters and D for the data, we write Bayes’

theorem as:

Pr(D|0, I)Pr(0|1)
Pr(D|])

Pr(0|D,I) = Bayes’ theorem (6.2)

The evidence acts to normalise the posterior and can be found by marginalising
(essentially removing) 6 from the product of the likelihood and prior. This is done
by integrating this product over 6:

Pr(D|I) = /9  P(DIR.1)Pr(8]1)db. (6.3)

Different parameters of the same model have the same evidence and so the evidence
is often neglected when comparing the probabilities of different parameters. This is

helpful as it is often difficult to find the evidence analytically.

6.1.1 Choosing Priors

The most problematic part of the Bayesian method, and arguably the one that
provokes the most criticism, is the choice of prior (Loredo 1990). One must be
careful to select a prior that truly describes previous knowledge of the parameter
space, but it is not always clear what mathematical form best reflects this knowledge.

In addition, a prior should technically be normalised; if it cannot be normalised,
i.e. if it integrates to infinity, it is known as improper. This is a problem if it yields
an improper posterior, which must be normalisable. However, an improper prior can
yield a proper posterior if it provides an evidence which is finite for all D. Consider
the uniform prior, Pr(d|I) = const.. This is an improper prior as it covers all real
space (i.e. —oo < 0 < 00) and so integrates to infinity. But it can lead to a finite

evidence for all D, i.e.
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Pr(D|I) = / " P(DY, 1)Pr(8|1)d0 = A(D), (6.4)

o0
where A is some finite value dependent on D. If the evidence can be found analyt-
ically, it is fairly straightforward to implement this prior, but this is often not the
case. If we are to find the evidence numerically, we cannot integrate between infinite
limits; we must take some other limits, -£a where a > 0, being careful to choose a
to be large enough for the evidence to have converged to A (to a large number of
significant figures) for all D.

So, if the posterior is independent (to very many significant figures) of the limits
placed on the prior, we can just as well use an improper prior. In these cases, the
information provided by the data via the likelihood “overwhelms” that provided by
the prior. If, however, the prior information and the associated ranges of parameters
is important, allowing the parameter range to become infinite leads to vanishing or

unnormalisable posterior probability. Proper priors must be used in these situations.

Uniform and logarithmic priors are popular choices where there is a complete lack of
prior knowledge. The natural logarithm is uniform over natural logarithmic scales,
often making it more appropriate in astrophysical/cosmological situations. A draw-
back of the logarithmic prior is that, unlike the uniform prior, it does not allow for

parameters with a value of zero.

6.2 Model Comparison

If we wish to compare how well two models j and £ fit experimental data, we can
take the ratio of their posterior probabilities: the posterior “odds” (Jaffe 1996, Drell

et al. 2000) can be expressed as:

Pr(j[D, 1) _ Pr(Dlj, 1) Pr(j|I) _ Pr(DIL) Pr(i[l) o, Pr(jll)

Pr(k|D,1) ~ Pr(D|k, 1) Pr(k|l) ~ Pr(D[Iy) Pr(k[)  *Pr(k|l)’

(6.5)

where Bj, = Pr(D|l;)/Pr(D|1) is “Bayes’ factor”, a ratio which depends only on
the experimental data. Eq. (6.5) shows the odds expressed in terms of Bayes’ factor
and a term which is dependent on the theoretical model only. Bayes’ factor favours
a model whose average likelihood (with respect to the prior distribution) is greater,
i.e. a model with a strongly favoured maximum likelihood will still be disfavoured

overall if its likelihood is very low over large areas of the allowed parameter space
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(Jaffe 1996).
The favouring of simpler theories (Ockham’s razor), unless a more complex
model (e.g. one with more parameters) is significantly better at describing the data,

is an advantage of the Bayesian approach (Jaffe 1996, Trotta 2008).

6.3 Bayesian Inference in Astrophysics and Cos-

mology

Over the last decade or so, Bayesian methods have been increasingly adopted in

astrophysics and cosmology. Some examples are listed below.

e Cosmological parameter estimation from various observations such as CMB
and supernova. Cosmo MC is a Monte Carlo code that performs this parameter
estimation and is publicly available (Lewis & Bridle 2002).

e Constraining topology using CMB temperature observations (e.g. Niarchou
2006). Most work to date has focused on the use of temperature anisotropies.
With the advent of Planck, it will soon be possible to perform a full investi-

gation with polarisation measurements.

e Weak gravitational lensing (shear) from deep sky galaxy surveys (e.g. Miller
& CFHTLenS Collaboration 2012).

e The origin of UHECRs (Ultra High Energy Cosmic Rays) from UHECR ob-
servations. The use of a Bayesian approach for this application is introduced

in Watson et al. 2011, a paper describing the work in Ch. 7 of this thesis.

e Constraining neutrino mass using various experimental data, including astro-

physical, (e.g. Archidiacono et al. 2012).

e MultiNest, a publicly available, general Bayesian code for cosmology and par-
ticle physics (Feroz et al. 2009).
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Chapter 7

Example Application of the
Bayesian Approach: The Origin of
UHECRs

The work in this chapter has been published in a paper in collaboration with Daniel
Mortlock and Andrew Jaffe (Watson et al. 2011). The results were generated from
code written by myself to perform the statistical analysis (described in Section 7.4)
on the data (Section 7.3), which was provided by Daniel Mortlock in a form consis-

tent with our models (Section 7.4.1).

7.1 Brief Introduction to UHECRSs

Cosmic rays (CRs) are highly accelerated protons and nuclei that reach Earth with
arrival energies in the wide range ~ 108 eV < E,,, <~ 10%° eV (see, e.g., Stoker
2009). They were discovered in 1912 by Victor Hess, and the less well known
Domenico Pacini. Hess performed balloon experiments that detected a greater
amount of “penetrative radiation” at higher altitudes than recorded at sea level
(Hess 1912). Pacini submerged a copper box containing an electroscope in the ocean,
measuring less penetrative radiation than at sea level (Pacini 1912). These results
led both men, separately, to the conclusion that these rays must originate in space:
hence the name “cosmic rays”. It wasn’t until 1932 that Jacob Clay demonstrated
that CRs are not photons but must be extremely energetic particles. He found that
the intensity of CRs was lower nearer the equator than at more northern latitudes.
He realised that this could be explained by the difference in the geomagnetic field at
these locations, but only if the CRs were charged particles (Clay & Berlage 1932).

100



7.1. BRIEF INTRODUCTION TO UHECRS 101

The origin of ultra-high energy cosmic rays (UHECRs) with F,, >~ 10 eV
(about 10° times greater than energies that can be achieved by CERN’s LHC), in
particular, remains uncertain. Suggested sources include gamma ray bursts (Wick
et al. 2004, Waxman 1995) and new physics (e.g. Sarkar 2002). The most promising
theory is that UHECRs are generated by active galactic nuclei (AGNs). There are
several physical models to motivate this idea (e.g., Diehl 2009; Protheroe & Szabo
1992; Fraschetti & Melia 2008), but the hypothesis requires empirical verification.

Various correlation analyses of UHECR arrival directions and locations of pos-
sible progenitors have been performed using data from different observatories and
progenitor catalogues. An analysis by the Pierre Auger Collaboration (Abraham
et al., 2007b) found the first 27 UHE PAO (Pierre Auger Observatory) events to be
strongly correlated with a sample of local AGNs in the Veron-Cetty & Veron 2006,
VCV, catalogue; this was the first strong empirical confirmation of the hypothesis
that UHECRs are generated by AGNs.

The PAO has continued to operate in the time since these results were obtained;
subsequent data (Abreu et al. 2010) show a much weaker correlation. Beatty &
Westerhoff 2009 discuss the many attempts to find a correlation between AGNs and
UHECRs, using a variety of techniques and data, such as those reported by Nemmen
et al. 2010, Abraham et al. 2008, 2007b, Abbasi et al. 2008, Ghisellini et al. 2008 and

George et al. 2008. In particular, Abbasi et al. 2008 claim no significant correlation.

7.1.1 The GZK Effect

Cosmic rays above energies of Eqzx ~ 5x 10 eV are highly relativistic and see CMB
photons blueshifted. Protons at these energies can interact with the blueshifted
photons to produce pions, losing energy in the process; this is know as the GZK
effect (Greisen 1966; Zatsepin & Kuz'min 1966). The GZK mean free path between
interactions for an E ~ 10%° eV proton is only about 4 Mpc, and each interaction
typically reduces a CR’s energy by approximately 20 per cent (Achterberg et al.
1999). So any observed UHECRs must have originated within an effective ‘GZK
horizon’ of about 100 Mpc (see Fig. (7.1)). If UHECRs are primarily Fe nuclei, the
GZK horizon is expected to be even smaller, since these nuclei are heavier and slower
than protons of the same energy. However, this also means that the deflection due
to magnetic fields, and thus uncertainty in arrival direction, is greatly increased.
So, while the GZK effect reduces the number of detectable UHECRS, a fortunate
consequence is that it also reduces the number of plausible AGN sources to the few

thousand with distances less than about 100 Mpc or, equivalently, redshifts less
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Figure 7.1: Plot of simulated received energy spectra from mono energetic
sources at different distances from Earth. Each source emits cosmic rays at the
energy of Funit = 102! eV. Curves from rightmost to leftmost represent sources
at increasing distances. The received spectrum from a source at only 10 Mpc has
a distinct spike containing cosmic rays that have reached us without losing energy
to the GZK effect. By 100 Mpc, the fraction of cosmic rays whose energy remains
at Eemit = 10?! €V is negligible. i.e., the probability of an Fupmi; = 102! €V cosmic
ray reaching us from a source more distant than 100 Mpc is negligible. Credit:
Achterberg et al. 1999.
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than about 0.03. This makes it plausible to search for a correlation between the
arrival directions of UHECRs and locations of local AGNs, provided sufficiently
many UHECRs can be observed.

7.2 Purpose

Abraham et al. 2007b have reported the strongest correlation between arrival di-
rections of UHECRs and locations of AGNs to date (at the time of publication of
Watson et al. 2011). Given the small numbers of UHECRs on which these results
are based, some care must be taken with the statistical methods employed. This is
both to ensure that all the available information is utilised and to avoid over inter-
pretation. These aims can be achieved by adopting a Bayesian approach in which
the relevant stochastic processes (e.g., the GZK interactions of the UHECRs with
the CMB, deflection by the Galaxy’s magnetic field, and measurement errors) are
explicitly modelled. The details of some of these processes are not known (most
relevantly, the strength of the magnetic fields and the energy calibration of the
UHECRSs), but such uncertainties can be accounted for by marginalisation.

Our aim is to provide an improved method for testing whether UHECRs orig-
inate from AGNs, addressing some issues with the analysis presented by Abraham
et al. 2007b:

e They use circular angular matching regions around each UHECR: all AGNs
within these regions are considered to be equally probable sources; any AGN
outside these regions is completely disregarded as a progenitor. This approach
is suboptimal as real matches would tend to be more centrally concentrated,
with the source probability decreasing gradually as the angular distance from

the CR increases.

e They ignore the radial distance to the AGNs. This is potentially misleading
because their analysis is as sensitive to physically implausible correlations (i.e.
those involving AGNs too distant to be progenitors) as it is to those that would
be expected if the AGNs are in fact the UHECRSs’ progenitors.

e Their simple correlation analysis ignores the arrival energy FE,,, of the individ-
ual UHECRs. A likelihood based approach can incorporate the fact that the
higher the energy of the event, the nearer its progenitor is expected to be (due

to the GZK effect).
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These points can be addressed, and the constraining power of an UHECR data
set increased, by using a physical model of UHECR generation, propagation and
observation, thereby extracting all the valuable information in the data set (albeit
at the small price of increased complexity).

In this work, the first steps are taken to developing a comprehensive Bayesian
formalism for analysing UHECR data. The starting point is to reanalyse the UHECR
and AGN samples used by Abraham et al. 2007b, changing only the statistical
method. This is so that, aside from providing a direct answer to the question of
whether the 27 PAO UHECRs come from the local VCV AGNs, it will show directly
how the results depend on the statistical method used to analyse such data sets.
After describing the UHECR and AGN samples in Section 7.3, the Bayesian method
and CR propogation model are presented in Section 7.4. The results of applying this
methodology are given in Section 7.5 and the overall conclusions are summarised in
Section 7.6.

7.3 Experiments and Data

A number of difficulties hinder efforts to gain experimental evidence about UHECRs.
The most fundamental problem is that CRs are deflected by the Galaxy’s magnetic
field. The arrival directions of lower energy extragalactic protons are essentially
independent of their point of origin, although UHECRSs are expected to be deflected
by no more than a few degrees (Achterberg et al., 1999).

It is also problematic that UHECRSs are very rare, with the observed number

flux falling off with energy as

drobs Earr o0 — — _
T (1019 eV) stm st (7.1)

(e.g., Abraham et al. 2010), where I'y,s is the observed number flux and E,,, is
the arrival energy. The fall off is expected to be even more extreme above energies
of Egzx =~ 5 x 10" eV due to the GZK effect. Fig. (7.2) shows the cosmic ray
spectrum, consisting of events detected by various observatories.

The problem of the low UHECR arrival rate can only be overcome by using
a large collecting area, and by observing for long periods of time. Large ground
based observatories such as HiRes Fly’s Eye and AGASA (e.g. see Nagano & Wat-
son 2000), have made significant progress in obtaining UHECR data. At present,
the largest CR observatory is the Pierre Auger Observatory (Abraham et al. 2004),

which is located near Malargiie in Argentina, at a longitude of 69°4 and a latitude
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Cosmic Ray Spectra of Various Experiments
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Figure 7.2: Cosmic ray energy spectrum containing events measured by various
different experiments. Credit: William F. Hanlon, University of Utah.
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Figure 7.3: Spectrum of PAO UHECRs, with HiRes detections for comparison.
Credit: Abraham et al. 2010.

of —35°2, and has been operational since January 2004. It has 1600 surface detec-
tors (SDs) that cover an area of 3000 km?, as well as four arrays of six atmospheric

fluorescence telescopes.

The sample of UHECRs (Section 7.3.1) and the AGN catalogue (Section 7.3.2)
analysed here are the same as those used by Abraham et al. 2007b.

7.3.1 PAO Observations of UHECRs

During its first approximately 3.6 years of observing, the PAO made reliable de-
tections of the arrival directions and energies of 81 UHECRs, of which 27 had an
(estimated) arrival energy of E,, > 5.7 x 1012 eV (see Fig. (7.3)).

The arrival directions are measured accurate to about 1°. There is an additional
effective uncertainty in the progenitor direction due to deflection of the UHECR by
Galactic and intergalactic magnetic fields. The magnitude of this effect is somewhat
uncertain, with estimates of the typical deflection angles ranging from 2° (e.g. Dolag
et al. 2005; Medina Tanco et al. 1998) to 10° (e.g. Sigl et al. 2004) for E,,, ~ 10?° eV
UHECRs. The combined effect is that the observed arrival direction, 7., and the
direction to the progenitor, 7., are typically separated by a smearing angle of a

few degrees.
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Figure 7.4: The arrival directions of the N, = 27 PAO UHECRs (black points)
and the source-weighted exposure (greyscale: darker indicates greater exposure)
for the background-only model (left) and the AGN-only model (right), in Galactic
coordinates. The Galactic Centre (GC), South Celestial Pole (SCP) and PAO’s
field of view (FoV) are all indicated. Lines of constant Galactic latitude |b| = 10°
are also shown. Credit: Watson et al. 2011.

As the construction of the PAO continued, its effective detector area increased
steadily over the time during which the 27 UHECRs were detected. The evolution
was sufficiently gradual that the exposure per unit solid angle, de/d€) (which has
units of area X time), is a function of declination only. The angular dependence of
the PAO exposure can be approximated by assuming that the instantaneous expo-
sure is constant within 60° of the zenith and zero otherwise. (The detailed angular
dependence is dominated by the cross sectional area of the SD array, and there are
smaller corrections due to the various PAO data cuts, but these secondary effects are
ignored here.) Integrating the instantaneous exposure over time to account for the
Earth’s rotation (cf. Fodor & Katz 2001) yields the declination dependent exposure
() shown in the left panel of Fig. (7.4), which contains plots of the UHECR and

AGN data used in this analysis. The total exposure considered here is
— [ 40— 9000 yr km? ! (7.2)
€tot — a0 = y S .
(Abraham et al., 2007a).

7.3.2 Local AGNs

This work follows Abraham et al. 2007b in considering only AGNs in the 12th edition
of the Veron-Cetty & Veron 2006 catalogue as possible sources for the PAO UHECRs.
The distance to each source, D, is calculated from the quoted absolute and apparent
magnitudes in the VCV catalogue, and AGNs without absolute magnitudes are
omitted. The full catalogue contains 108,014 AGNs, but only Ny = 921 have z,,s <
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0.03 and are hence plausible UHECR progenitors inside the GZK horizon of about
100 Mpc.

The VCV catalogue is heterogeneous, having been compiled from a variety of
AGN and quasar surveys, and as such it is not ideal for statistical studies. It is,
however, expected to be close to complete for the local AGNs of interest here, except
close to the Galactic plane. Moreover, as emphasized in Section 7.2, the VCV sample

was chosen specifically to facilitate comparison with the results of Abraham et al.
2007b.

7.4 Method

Source and background rates, I'y,. and Rp,: we use a model (detailed in Sec-
tion 7.4.1) characterised by the rate at which UHECRs are emitted by each AGN,
[y, and the rate at which an isotropic background of UHECRs arrive at Earth,
Ryxg. If none of the UHECRs come from the candidate AGNs then the data should
be consistent with 'y, = 0. Conversely, if all the UHECRs come from the AGNs in
the catalogue, then the data should be consistent with Ry, = 0. By determining
the most probable values for theses rates, given the PAO data, we can assess the
candidacy of the AGNs as PAO UHECR progenitors. Note that the two rates have
different units: Iy is the average number of UHECRs emitted per unit time by an
AGN, and is given in units of s™%; Ry, is the average number of UHECRs per unit

time, per unit area, per unit solid angle, arriving at Earth, and is given in units of

The joint posterior probability distribution of the rates I'y,. and Ry, given

the PAO data, summarises the full constraints on these rates and is given by

Pr(data|FsrC, Rbkg) Pr(FsrC, Rbkg)
f_oooo ffooo Pr<data|rsrca Rbkg) Pr(rsrca Rbkg) drsrc dekg ’

Pr(Lgye, Rpxg|data) = (7.3)

where:

o Pr(I'yc, Rpkg) is the prior distribution that encodes any external constraints
on the rates. A uniform prior over Ry, > 0 and I'yc > 0 is adopted, which
reflects the lack of knowledge of what the true rates might be (whilst allowing
zero rates, unlike the logarithmic prior). This choice of prior also has the

advantage that the posterior contour plots show the likelihood and, hence,
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the constraining power of the PAO data directly. The one prior restriction

assumed is that both I'y. and Ry, are non-negative.

e Pr(data|l'yc, Rykg) is the likelihood of obtaining the measured data given par-

ticular values for Ry, and I'ge.

e The integral in the denominator is the evidence. As we are not making any
comparisons to other models, the only role that the evidence plays here is
to ensure that the posterior is correctly normalised. Hence it can be ignored

when investigating the shape of the posterior.

Applying the above simplifications, Eq. (7.3) reduces to

Pr(Lgpe, Rikg|data) o< ©(Lge) O (Rykg ) Pr(data|lgye, Rikg ), (7.4)

where ©(x) is the Heavyside step function.

Data parameterisation: a ‘counts in cells’ approach is employed, dividing the
sky into N, = 180 x 360 = 64800 pixels distributed uniformly in right ascension
and declination. The raw data take the form of the measured arrival directions,
{7.}, and number, N,, of UHECRs. (It would also be possible to use the measured
arrival energies of the UHECRs.) So the data are recast as the set of UHECR counts
in each pixel, {N.,}. In the limit of infinitely small pixels, this is mathematically
equivalent to using the arrival directions, but is more straightforward to analyse and
simulate.

kag,p and Nsm,p are the expected number of background and source UHECRs
in pixel p, respectively. The expected number of background UHECRs in pixel p is

de

kag,p = Rbkg / d_Q onbsa (75)
p

where the integral is over the p’th pixel and de/dS2 is the PAO exposure per unit solid

angle (see Section 7.3.1). The expected number of UHECRs from known sources in

pixel p is
ak ANy (Bar, Dy) de
N‘rc - L dEarr — P Aarr As on S .
e ; |:(/Eminarr dt dA ) (/p dS2 r(r |r ) b )} (7 6)

where the sum is over the AGN sources, Pr(7,.|7s) is the smearing probability
(Eq. (7.20)), and the first integral is the rate (number per area and time) of UHECRs
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from a source at distance D, arriving at Earth above the cut-off energy, Fiin_ar-
This rate is proportional to the source rate, I'y.., but further depends on both the
shape of the AGN UHECR injection spectrum and the distance-dependence of the
GZK energy losses, and so requires an explicit UHECR model (see Eq. (7.19)).

The positional dependence of Ny, and Ng., are both shown in Fig. (7.4).
The right panel is a combination of both the PAO exposure and the local distribu-
tion of AGNs, although comparing the left and the right panel it is clear that the
latter dominates. In particular, the strongest source by far is Centaurus A (with
[ = 309°5 and b = 19°4), which has previously been suggested as the dominant
source of UHECRs (e.g. Abraham et al. 2007b).

The likelihood is a product of the independent Poisson likelihoods in each pixel,

and is hence given by

Np —  n — —
N + Nsrc P eX - N + NSI’C
Pr({Ney H e Rogg) = [ [ ot ¥ Norew) 2 DLWk + Roeal] 7.

p:1 c,p*

Section 7.4.1 describes the parts of the likelihood calculation which depend
on our model of AGN UHECR production and propagation. In Section 7.4.2, we
simulate PAO UHECR data in order to investigate the properties of the likelihood

function.

The fraction of UHECRSs that have come from AGNs, Fgn can be found
from the expected number of source and background events in any sample, which
can be calculated from the rates. The constraints on the expected UHECR numbers
are simply proportional to those on the relevant rates; Fagn is given by the ratio of
the expected number of AGN UHECRs to the expected total number.

Note that it is crucial to begin by parameterising the problem with the funda-
mental physical quantities, the rates Iy, and Ry, rather than the Fagn (as done
in Abreu et al. 2010). This is because in small samples, in which the total arrival
rate of UHECRs has a significant Poisson uncertainty, the only way to consistently
account for the (independent) fluctuations in the source and background UHECRs

is to parameterise their rates explicitly.

Individual UHECR-source probabilities, Py, (i.e. whether any single UHECR
came from a particular source) can be found within the Bayesian approach. A useful

estimate of the probability that a UHECR, with measured arrival direction in pixel
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p, has come from one of the sources under consideration is

Ny
Psrc - PI’(fI‘Om SOUI‘Ce|p’ Fsrc> Rbkg) = = srcﬁ
Nsrc,p + kag,p

, (7.8)

given values for the two rates. As the rates inferred from a sample of even just 27
UHECRs are not sensitive to any one event, it is reasonable to evaluate Py, using
the best-fit values of I's;. and Ry, to assess the likely origin of each UHECR in turn.
This is done for the PAO data in Section 7.5.

7.4.1 UHECR Model

AGN source rate: it assumed here for simplicity that all AGNs emit UHECRs at

the same overall rate and with an energy flux proportional to £77, i.e.

J(E)=CE™ (7.9)

where C'is some constant and v = 3.6 (Abraham et al., 2010). Therefore the number

flux is given by

dNemit (Eemit) J<Eemit> —v—1
= =CE_ 1
dtdA Eemit C emit (7 0)

and the total emission rate of UHECRs with energy greater than F is

> dNemi Eemi > e CA —
#dam =CA | E. ) 'dEgy = —FE77, (7.11)
dt emit
E E v
where A is the area over which UHECRSs are emitted.
The source rate is defined as

o dNemi Eemi A —

Lyre = / MdEemit = O—Em;;lfemit‘ (712)
Fmin—emit dt /y

Here, Ty is the same for all AGNs, although a more realistic model would allow
['yc to vary with source; it is plausible that the UHECR emission rate scales with
an AGN’s hard X-ray luminosity (e.g., Protheroe & Szabo 1992). Now Eq. (7.11)

becomes

/oo dNemit (Eemit>

E -
dEemi - Fsrc . 7.13
5 dt t ( ) 71

E min—emit
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AGN luminosity: the definition of I'y,. also means that the UHECR luminosity

can be cast as

Lsrc = / L(Eemit)dEemit - / AJ(Eemit)dEemit

Emin—emit Emin—emit

(7.14)
- L Fsmeminfemit .

v—1

GZK effect: the dominant energy loss mechanism of UHECRs is the GZK in-
teraction with the CMB photons. Whilst this is stochastic, its most important
feature is the exponential reduction in the probability of an UHECR travelling more
than about 100 Mpc without dropping below Egzk. This can be accounted for by
adopting a continuous loss approximation (cf. Achterberg et al. 1999) in which a

UHECR’s arrival energy is given by

Earr = max [EGZKa Ejemit(1 - fGZK)D/LGZK} ) (715>

where D is the distance to the source, fgzx = 0.2 is the average fractional energy
loss per GZK interaction, Lgzk = 4 Mpc is the GZK mean free path. It is also
assumed that there are no further energy losses once a CR reaches Egzk, although
this is unimportant for UHECRs with FE.;, > Egzk (such as those in the PAO

sample).

AGN arrival rate: the quantity that we want is the arrival rate (per unit area
and time) of UHECRs with arrival energy above Eyin—an from a source at distance
D. For E,y > Eqzk ~ 5 x 10* eV, which is the case for the PAO data in question,
Eq. (7.15) can be used to express this quantity as
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0o ANger(Earr, D
/ QdEarr
Emin—arr dtdA
[ 1 dNeit(Earr/ (1 — fazx)P/Fozx)
N /Emin—arr 47TD2 dt dEarr (716)

_ (1 - fGZK)’yD/LGZK /oo dNemit(Eemit>
Emin—arr

Eemit.
A D? ar et

(1—faz)P/lczK

Using Eq. (7.13) in Eq. (7.16) yields

/OO dNarr(EamD)dEarr
Emin—arr dtdA
(7.17)
T (1 — fagk) P/ bezx ( Emin—arr )7
e 4 D? Erin—emit (1 — fazk)P/Eozx .

Since E,, > Egzx in the PAO sample then, according to the simple GZK
model, Eq. (7.15),

Emin—arr - E'min—emit(1 - fGZK)D/LGZK (718)
which, in Eq. (7.17), finally gives

(1 _ fGZK)’YD/LGZK
4 D?

dEarr - 11src

/°° ANarr(Earr, D) (7.19)

dtdA

Emin—arr
This can be used in Eq. (7.6) to calculate the expected number of CRs in each pixel
and, therefore, the likelihood function, Eq. (7.7).

Deflection: the final ingredient to Eq. (7.6) is the deflection probability. The
arrival directions are measured accurate to about 1°, although there is an additional
effective uncertainty in the progenitor direction as UHECRs are deflected by Galactic
and inter-galactic magnetic fields. The combined effect can be modelled by defining
the probability distribution of observed arrival directions of UHECRs from a source

at 7y as a two-dimensional Gaussian on the sphere,
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Figure 7.5: The posterior probability of the UHECR rate from VCV AGNs,
[se, and the uniform background rate, Ry, implied from a simulated sample
of 27 UHECRSs, all of which were emitted by VCV AGNs. The contours enclose
68%, 95% and 99.7% of the posterior probability, and the line plots show the
marginalised probability for each rate.

1
202 (1 —

S - 1— I’Aqarr : I’Aqsrc
Pr(’rarr|’rsrc) = 672/02) exXp <_—> . (720)

o2
A fiducial smearing angle of o = 3° is assumed unless otherwise stated, but results

using 0 = 6° and o = 10° are also calculated for comparison purposes.

7.4.2 Simulations

It is useful to test the constraining power of a small number of UHECRs by gener-
ating mock PAO samples with known progenitor properties. Simulations of the two
extreme cases were created (credit: Daniel Mortlock). In the AGN-only sample, all
the UHECRs were sourced from the nearby VCV AGNs and propagated using the
simple GZK model described in Section 7.4.1. In the all-background sample, the
arrival directions are random. In both cases, the incident UHECRs were subject to
the PAO’s measurement errors and declination-dependent exposure. Both samples
were constrained to have exactly 27 events so as to provide parameter constraints
that can be compared directly with those from the real PAO sample.

The results of the AGN-only simulation are shown in Fig. (7.5). As expected,
the constraints on I'y,. match the naive Poisson expectation. Note the rejection
of the possibility that more than a few of the PAO UHECRs are not from the
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Figure 7.6: Same as Fig. (7.5), but for a simulated sample of 27 isotropically
distributed UHECRs.

VCV AGNs. The constraints on the AGN fraction (see Fig. (7.9)) from such a
data-set would be Fagn = 1.00f8:89, where the intervals enclose the most probable
68% of the posterior probability. This strong result implies that if AGNs source all
UHECRs, even a sample of 27 events would be sufficient to confirm this hypothesis,
if a complete sample of the progenitors was available.

The results of the background-only simulation are shown in Fig. (7.6). Again,
the constraints on Ry, match the Poisson expectation and this time the possibility of
more than a few UHECRs arriving from AGNs is rejected. The resultant constraints
on the AGN fraction (see Fig. (7.9)) are Fagy = 0.0075:07. It is also important to
note that some pixels (very far away from any AGN) have negligible contribution
from the VCV AGNs and, because some of the UHECRs in this sample fell in those
pixels, there is an absolute hard upper bound on Fagy that is significantly lower
than unity.

The fact that the posteriors from the AGN-only and the background-only simu-
lations are almost completely disjoint implies that even a sample of just 27 UHECRs
might be sufficient to provide a definitive answer as to their origin. The parame-

ter constraints from the real data should lie between the two extremes shown in

Fig. (7.5) and Fig. (7.6).
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Figure 7.7: Same as Fig. (7.5), but for all 27 PAO UHECRs.
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Figure 7.8: Same as Fig. (7.5), but for the 22 PAO UHECRs with arrival direc-
tions at least 10° from the Galactic plane.
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7.5 Results

The posterior probability distribution in I'g,. and Ry, given the PAO UHECR
sample is shown in Fig. (7.7). As expected, the posterior is intermediate be-
tween the extreme cases shown in Fig. (7.5) and Fig. (7.6). The most likely
rates are I'ge = (5.8755) x 103 s (equivalent to UHECR source luminosity of
Lge = 74751 x 103 W) and Ry, = (8.0712) x 10717 st m2 571, Also calculated
is the posterior distribution of the fraction of the PAO UHECRs that come from
VCV AGNs, shown in Fig. (7.9). The most probable value is Fagn = 0.15, and the
constraints can be summarised by the interval Fagn = 0.157530 (where, again, the

limits enclose the most likely 68% of the posterior probability).

As most extragalactic catalogues are incomplete close to the Galactic plane, the
above analysis was repeated on a reduced data-set from which the region with Galac-
tic latitudes of || < 10° had been removed (see Fig. (7.8)). The PAO exposure in the
retained regions is 7480 yr km? sr and the number of UHECRs included was reduced
from 27 to 22. The lower numbers resulted in slightly broader constraints on Fagn,
as can be seen from Fig. (7.9). From this cut data, we find I'y,. = (5.6753) x 10%° 71,
Rie = (7.6739) x 1071 st m~2 571 and Fagn = 0.1870 3.

The analysis was also repeated using larger mean smearing angles of ¢ = 6°
and o = 10°. The limits on the AGN fraction in these models are Fagy = 0.2270 03
(0 =6°) and Fagy = 0.317073 (0 = 10°). In both cases, the most probable value of
Fagn is higher, although the range of values compatible with the data is broader,
than in the fiducial model. It is natural that a higher AGN fraction be compatible
with the data given larger values of o, as a greater fraction of the sky is within
o of at least one source. This effect has been seen by, e.g., Kim & Kim 2011 and
Abraham et al. 2010. In particular, Kim & Kim 2011 report the fraction of observed
UHECRSs that originate from AGNs to be 0.45 for a smearing angle of 6°. However,
the best-fit value of Fagn increases less strongly with o in the Bayesian formalism
presented in this chapter than found by using other methods. This is because the
inherent self-consistency of the Bayesian approach ensures that the correct balance
is struck between the compatibility of this more forgiving model and the lack of

predictivity.
There is strong evidence of a UHECR signal from the known VCV AGNSs, which

manifests in the result that Fagy = 0.15 is 200 times more probable than Fagny =
0.00, but not all the PAO UHECRs can be explained this way. Note that the
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Figure 7.9: Posterior distributions of the fraction of observed UHECRSs that are
from the population of VCV AGNs, Fagn, shown for simulated samples (both
isotropic and AGN-only) and for the real PAO data. Curves for both the full
sample of 27 UHECRs and the cut sample of 22 UHECRs (with arrival directions
at least 10° from the Galactic plane) are shown in the same panel. Each panel

represents a different smearing angle.
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background-only (i.e. Fagn = 0) case, the null hypothesis rejected by Abraham
et al. 2007b, is actually reasonably consistent with the data. However, the hypothesis
that all the PAO UHECRs come from VCV AGNs (i.e. Fagn = 1) is completely
ruled out because there are several events with no plausible AGN progenitor in the
VCV catalogue.

The probability that each of the 27 UHECRs came from one of the VCV AGNs
was calculated explicitly according to Eq. (7.8) by adopting the best-fit values for
Ryxs and Ty given above; these probabilities are given in Table 7.1. For o = 3°,
only 9 events have Py, >~ 0.1, all of which were identified as being within 3.2° of an
AGN with z,,s < 0.017 by Abraham et al. 2007b. However the other 11 events which
Abraham et al. 2007b identified as AGN correlated have very low values of Py.. In
most cases, this is because the angular correlation is with an AGN that is close to
their maximum redshift and so has a significantly reduced UHECR flux at Earth.
Moreover, 14 of the UHECRs have Py < 0.001, with no plausible AGN progenitor,
at least within the VCV catalogue. As also shown in Table 7.1, the results are
similar, but less conclusive, for larger smearing angles. The AGN hypothesis cannot
be ruled out for the low P, events, however: these UHECRSs could have come from
AGNs that are not in the VCV catalogue (and some could have come from VCV
AGNs if deflected by more than a few degrees). Of course, Py, may not be so low
for these events if our simple model is adjusted to allow the source rate [y to vary

with source.

7.6 Discussion

This chapter details a Bayesian analysis to test whether the first 27 UHECRs with
Eae > 5.7 x 101 eV detected by the PAO have come from the known local AGNs
in the VCV catalogue. The first main conclusion from this analysis is that either at
least some do come from VCV AGNs or at least some come from progenitors within
a few degrees of the VCV AGNs. A more realistic model should help to distinguish
between these two possibilities. Within the model presented here, the fraction of
UHECRSs that come from the VCV AGNs is constrained to be 0.1570 7 (where the
limits enclose the most probable 68 percent of the posterior). Conversely, the second
important result is that many of the PAO UHECRs have not come from AGNs in
the VCV catalogue, either because of incompleteness (most obviously close to the
Galactic plane) or because there is another source of UHECRS, possibly in our own
Galaxy.

The results differ somewhat from those presented by Abraham et al. 2007b,

119



CHAPTER 7. EXAMPLE APPLICATION OF THE BAYESIAN APPROACH:
120 THE ORIGIN OF UHECRS

Table 7.1: The measured arrival directions of the 27 PAO UHECRs listed in
Abraham et al. (2007b) along with their assessment of AGN correlation (PAO
corr.) and values from the method presented in this chapter of the AGN pro-
genitor probability (which is rounded to zero if less than 0.0005) for the three
different smearing angles. The CRs marked with *1, *2 and *3 in the b column
are those closest to Centaurus A, with angular separations of 0.9, 2.3 and 5.8 deg
respectively.

l b PAO Py Py Py
deg deg  corr. 0=3 deg 0=06 deg o=10 deg
154 8.4 no 0.000 0.000 0.000

—50.8  27.6 yes 0.559 0.761 0.681
—49.6 1.7 yes 0.000 0.134 0.387
—-27.7 —17.0 yes 0.099 0.067 0.033
—34.4 13.0 yes 0.078 0.171 0.424
—75.6 —78.6 yes 0.380 0.528 0.493
58.8 —42.4 yes 0.000 0.000 0.000
—52.8 14.1%%  yes 0.870 0.836 0.711
4.2 —54.9 yes 0.000 0.004 0.008
48.8 —28.7 yes 0.000 0.000 0.000
—103.7 —10.3 no 0.000 0.000 0.001
—165.9 —46.9 yes 0.000 0.003 0.010
—27.6 —16.5 yes 0.099 0.067 0.033
—52.3 7.3 no 0.167 0.533 0.577
88.8 —47.1 yes 0.000 0.000 0.002
—170.6 —45.7 yes 0.000 0.006 0.011
—51.2 17.2*2  yes 0.952 0.873 0.735
—57.2 418 no 0.005 0.123 0.294
63.5 —40.2 yes 0.000 0.000 0.000
—51.4 19.2*1  yes 0.964 0.881 0.742
—109.4 238 yes 0.000 0.000 0.002
—163.8 —bH4.4 yes 0.001 0.006 0.020
—41.7 5.9 no 0.002 0.208 0.454
121 —49.0 yes 0.000 0.001 0.003
—21.8 541 yes 0.000 0.005 0.088
—65.1 34.5 no 0.000 0.049 0.321
—125.2 =77 no 0.001 0.002 0.002
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because more explicit models of background and source events are used here, as
well as different statistical methods. The starting point of their analysis is the null
hypothesis that the UHECRs have not come from local AGNs; they find that this is
rejected ‘at the 99% level” given the number of the UHECRS that are within 3° of a
VCV AGN. The strength of the correlation makes it clear that there is at least some
connection between the two populations. But it is impossible to go beyond this lim-
ited statement due to the use of arbitrary cuts in their correlation analysis (both in
angular radius and AGN redshift); the equal weighting of the nearest known AGN;,
Centaurus A, with the hundreds of AGNs at distances of about 100 Mpc, and the
equal value placed on any angular match out to 3°, dilutes whatever correlation sig-
nal is present. The simulations of AGN-only and background-only UHECR samples
shown here demonstrate that even a sample of just 27 events is in fact sufficient to
decisively distinguish between these two extreme possibilities, but that the apparent
strong correlation inferred by Abraham et al. 2007b is in part due to the analysis
method.

During the final preparation of the paper on this work (Watson et al. 2011), the
Pierre Auger Collaboration presented an extended analysis of an enlarged set of 69
UHECRs (Abreu et al. 2010). Aside from the correlation-based methods they had
used previously, they also included a likelihood-based formalism that has some sim-
ilarities to the method presented in this chapter. The results of the two likelihood
approaches are broadly similar (and differ from the earlier correlation-based analy-
ses), primarily because they both include a physical model of UHECR, propagation.
They hence go closer to the ideal of including all the available information (i.e. not

just the data, but knowledge of the CR physics) and so produce more robust results.

There are several extensions to the analysis of even the 27 PAO UHECRs that might
allow stronger conclusions regarding the origins of these particles. Most importantly,
the energy of individual CRs can be accounted for in the likelihood, rather than just
demanding they are above the Fyi—ar = 5.7 X 10Y eV cut. This will make it more
important to use a more realistic, stochastic calculation of the GZK effect, as well
as the energy dependent deflection due to magnetic fields. It will similarly be more
important to investigate the possibility that the AGN UHECR emission rate scales
with AGN luminosity; a corollary is that it may be possible to discriminate between
different AGN emission models.

The strength of any such inferences will be increased as the PAO continues to
take data, increasing the number of detected UHECRs. However, it is also possi-

ble that even the current data-set could be used more efficiently by including lower
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energy events. This would obviously increase the numbers, although there is the
potentially severe penalty of diluting the angular signal by including UHECRs that
have either been deflected by more than about 10° or have come from the many
AGNs at distances greater than about 100 Mpc. These trade-offs can be evalu-
ated objectively (to the degree that the CR propagation and deflection models are
accurate), following the underlying principle of extracting as much information as
possible from the UHECR measurements.

Another way to potentially make better use of the existing PAO UHECRs would
be to use a more homogeneous AGN sample than the VCV catalogue. One such
example is the catalogue of AGNs from the Swift Burst Alert Telescope (BAT)
survey, which has nearly uniform selection criteria outside the Galactic plane. Both
George et al. 2008 and the latest PAO analysis from Abreu et al. 2010 compare
UHECR data to this catalogue. In particular, George et al. 2008 approach the
analysis in a fashion similar to that of Abraham et al. 2007b and found correlation
at the ‘98% level’. It would be valuable to apply the Bayesian method discussed
here to this data-set.

There are still many problems facing the determination of the origin of UHECR
events, but the Bayesian approach offers clear advantages in tackling these issues
over other statistical methodologies. The fully Bayesian analysis demonstrated in
this work provides encouraging results and presents a strong case for developing the
method further.
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Chapter 8

CMB Probability Density

Functions

We want to find the probability of a specific cosmology, €2, and topology, =, given a
set of CMB data, d, i.e.

Pr(d|Q, Z)Pr(Q, Z)
Pr(Q,Eld) = [d(Q,Z)Pr(d|Q,Z)Pr(Q, =)

(8.1)

This can be recast in terms of the correlation matrix, which depends on cosmology
and topology Crnemy = Comerny (2, 2) = C’?m;, ,, although care must be taken to
check for degeneracy, where a correlation matrix corresponds to more than one set
of cosmological and topological parameters. First, a note on notation: depending
on the context, Cppnepy (or, in pixel space, Cp,) can be read as the entire matrix
or as an individual element of the matrix with specific {mé'm’ (or pp’). To avoid
ambiguity, Comen (Cpy) will denote only a matrix element and C the entire matrix

for the rest of this thesis. In terms of the correlation matrix, Eq. (8.1) becomes

= Pr(d|C%=)Pr(Q, =) )
Pr(C%=|d = CMB post : 8.2
r( |d) = [ dC= Pr(d|CPE)Pr(2, 5 posterior (8.2)
The main term of interest is the likelihood,
Pr(d|C%%) CMB likelihood. (8.3)

This is because the eventual goal is to perform Bayesian model comparison and so
any terms that are the same for different (€2, =) are of little interest. This is the

case for the prior, Pr(Q, =), if we take it to be uniform in Q and =. A uniform
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prior in = is appropriate given our lack of knowledge of topology; see Section 6.1.1).
Regardless of the choice of prior, the evidence (the denominator in Eq. (8.2)) is the
the same for all (€2, =). Hence, in this case, the only term in Eq. (8.2) which varies
with (€2, Z) is the likelihood.

The specific form of the CMB likelihood is detailed in Section 8.1. Section 8.2

describes methods for sampling from the likelihood.

8.1 The CMB Likelihood

The usual choice of CMB likelihood is a multivariate Gaussian (see, e.g., Jaffe et al.
1999). In matrix form, the general expression of a multivariate Gaussian probability

distribution is

Pr(d|u, D) = G(d — 1, D) exp | 5(d— DA )| (84)

~ |27D|\/2

where d is a vector of variables d;, p is a vector containing the mean values p; of the
variables d;, and D is a covariance matrix containing the correlations D;; of variables
d; and d;. Recast directly in terms of the variables d;, and the corresponding j; and
D,;, Eq. (8.4) becomes

Pr({d;}{pi}, {Di;})
1

(27'(' i <6i1...in ﬁDka>
i1 ; k=1

. > (di — 1) Dy (d; — py)

>1/2 eXp [_5 -
Z’j

(8.5)

where ¢;, ;s the Levi-Civita, or permutation, symbol and i labels ¢m or p (j labels

'm/ or p') according to whether we are working in harmonic or pixel space.

8.2 Sampling Methods

The CMB likelihood and, hence, posterior cannot generally be found analytically
and finding them numerically (i.e. sampling values of the likelihood at various
points in the parameter space) is computationally expensive. So it is worth careful

consideration of which sampling methods to use. If uniformly interested in the dis-
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tribution over the entire parameter space, one can sample the likelihood or posterior
over some uniform grid (Section 8.2.1). If, however, one is interested in only the
maximum likelihood or posterior, a random walk algorithm such as Markov Chain
Monte Carlo (MCMC; Section 8.2.2) sampling may be more efficient. Gridding is
the simpler, more accurate route, but MCMC sampling is (if done correctly) less

expensive.

8.2.1 Gridding

Gridding involves sampling directly from the likelihood at intervals in the parameter
space. The explicit form of the likelihood is given here, building from a simplistic,
pure CMB signal, case to a more realistic situation that accounts for noise and

masking of foregrounds.

Pure signal: Let us first consider the (unrealistic) case where the measured data
d are pure CMB signal s. The covariance matrix for d, D, is simply equal to that
for s, C*=. Also, since we are dealing with temperature anisotropies, not absolute
temperature, the mean, p, is zero. Hence the Gaussian distribution of Eq. (8.4)
directly provides us with the CMB likelihood Eq. (8.6):

Pr(d|D) = Pr(d|C®%) = G(d, C*%). (8.6)

Pure signal plus noise: The introduction of noise complicates matters. The noise
n is assumed to be Gaussian with some mean n and covariance matrix N. We now

have data d = s+n, with covariance matrix D = C**=+N. Now, Eq. (8.4) becomes

Pr(d|D) = Pr(d/m, C*= N) = G(d — i, C**= + N). (8.7)

This is not the CMB likelihood. To get the likelihood, we must marginalise over the

noise, i.e.

Pr(d|C%=) = / dn dN Pr(d|m, C%= N)Pr(m, N). (8.8)

However, if the mean and covariance matrix of the noise are known, we can assign a

delta function to the joint prior Pr(m, IN). Then, upon integrating Eq. (8.8), we get

Pr(d|C*=) = Pr(d|C®= @, N) = G(d — 1, C*= + N). (8.9)

where m and N are now fixed and part of the background information 1.
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Signal plus noise with masks (or cut sky): If we are not using a map “cleaned”
of foregrounds, we must remove the parts that are contaminated using a mask (see
Section 5.4.2). Pixels cut from the data using a mask should also be cut from the
covariance and noise matrices. Once the cuts have been made, the likelihood can be
obtained through Eq. (8.9).

8.2.2 MCMC Sampling

Markov Chain Monte Carlo (MCMC) sampling is often adopted in order to find the
maximum likelihood of a likelihood distribution. The difference between MCMC

and a general Monte Carlo method is:

e Monte Carlo method: very broad term used to describe algorithms which
sample numerical results from a distribution at random, most commonly using

a random walk approach.

e Markov Chain Monte Carlo (MCMC) method: a Monte Carlo method that is
designed to converge on stationary points in the distribution of interest. See
Section 8.2.2.1.

An MCMC approach often adopted for CMB analyses is Gibbs sampling (e.g. Wan-
delt et al. 2004, Eriksen et al. 2004 for temperature; Larson et al. 2007 for polari-
sation). However, there is a low signal-to-noise inefficiency problem with the Gibbs
sampler at high ¢. This is addressed by Jewell et al. 2009, who build upon pre-
vious Gibbs sampling methods by combining with a Metropolis-Hastings sampling
approach. A further extension (Rudjord et al. 2009) uses a modified Blackwell-RAO
(BR) estimator to improve the characterisation of the joint posteriors used in Gibbs

sampling. In summary, the different sampling methods and estimators involved are:

e Gibbs method: an MCMC method for multi-variate probability distributions
which samples from a joint probability distribution of two or more variables

when sampling from the full distribution is difficult. See Section 8.2.2.2.

e Metropolis-Hastings method: an MCMC method for multi-variate probabil-
ity distributions for which the form of neither the full nor joint probability

distributions are well known.

e Blackwell-RAO estimator (BR): is an observable quantity that is used to es-
timate an unobservable quantity (e.g. the probability of a bus arriving in a

given period of time is not observable, but the number arriving in that time is),
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where the estimation of the unobservable can be improved by taking its expec-
tation value given a sufficient statistic of the observable (e.g. we can measure
the number of buses arriving during many time intervals (observable) to find
a mean rate of arrival (statistic) that can be used to estimate the probability

of a bus arriving (unobservable)).

8.2.2.1 Simple MCMC Sampling

A simple MCMC code follows the following steps:

(i) Choose seed(s), or initial value(s), for the parameter(s) for which you wish to

find the maximum likelihood.

(ii) Take a random step away from the current parameter value(s) to find candidate

value(s):

e This step is typically drawn from a gaussian distribution of appropriate
standard deviation. (However, the choice of distribution to draw from
can be influenced by knowledge of the distribution of the parameter(s)
that the MCMC is exploring.)

e Add the random step(s) to the current parameter values(s) to yield can-

didate values(s).

(iii) Test for which value(s) you wish to keep, the current or the candidate. Accept
the candidate if:
e The likelihood of the candidate is greater than that of the current value(s).

e The candidate likelihood is smaller than that of the current but greater
than the current value multiplied by a random number drawn from a
uniform distribution between 0 and 1. (This step can help reduce the

risk of the code getting “stuck” in a local maximum.)

If the candidate is rejected, keep the current value(s). If it is accepted, the

candidate becomes the current values(s)

(iv) Repeat steps (ii) and (iii) until the routine has converged on a value for the

maximum likelihood.
The following can affect the values obtained for the maximum likelihood:

e The seed(s): a seed which lies near a local maximum, which is not the global

maximum, can result in convergence to the local instead of global maximum.
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e The standard deviation of the gaussian distribution from which the param-
eter steps are drawn: this affects the step size between iterations - too big and
it may miss the maximum, too small and the risk of getting stuck at a local

maximum is increased.

e The number of iterations: if this is set too low, the routine may not converge
on a maximum. However, setting it too high is needlessly computationally

expensive.

In the case of the CMB likelihood, we may want to explore the likelihood as a
function of the orientation of the topology, i.e. Euler angles «, g and . The
MCMC process here would be:

(i) Choose seed values for «, 5 and 7, e.g.:

® (v = (geed
b ﬁ = ﬁseed
® 7 = Vseed

(ii) Draw a random step from a guassian distribution of given standard deviation
for each parameter and add to the respective parameter to obtain a candidate

value:

® Qcandidate = O + T
4 Bcandidate - 5 + s
® Yeandidate = Y + Ty

Note that r,, 75 and 7., must be re-drawn every time this step is performed.

(111) If Pr(d‘ CQ7E(acandidate() :Bcandidatea'ycandidate)) Z Pr(d | CﬂaE(O‘:Bﬂ/) ) :

® (¥ — (lcandidate
4 B — Bcandidate

® 7 — Ycandidate

]Else7 lf Pr(d|CﬂaE(O‘candidate():Bcandidate:'ycandidate)) 2 r X Pr(d|CQ=E(O‘:B=7)):

® (¥ — (lcandidate
4 B — Bcandidate

® 7 — Ycandidate
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Else «, f and v remain unchanged.
Note that r is a random number drawn from a uniform distribution between

0 and 1 which must be re-drawn every time this step is performed.

(iv) Repeat steps (ii) and (iii) for n iterations, or until the routine has converged

on a value for the maximum likelihood.

This process should be repeated for a selection of different seeds.

If the maximum likelihood is found, the values of a;, § and ~ that correspond
to it yield the correlation matrix C%=(®57) for which the data d is most likely.
Note that, in this example, we have varied only the orientation of the topology:

the cosmology, topology type and dimensions of the fundamental domain have been
fixed.
8.2.2.2 Gibbs Sampling

Gibbs sampling works with the joint posterior Pr(C%= s|d), instead of Pr(C%=|d).
This may not appear any easier to deal with. But the premise of Gibbs sampling
is that one can sample from this joint distribution by alternately sampling from
the conditional distributions Pr(s|C®=,d) and Pr(C%=[s,d), i.e. start with some

estimate of the correlation matrix, C»® 0 then iterate as follows:

st < Pr(s|C%=¢ d) (8.10)

CH=H  Pr(C™=|s't! d) oc Pr(C*=|s™). (8.11)

where, in Eq. (8.11), Pr(C%=|s,d) = Pr(C®=|s)Pr(s|d), but we are not interested
in Pr(s|d) since it is independent of the model. The form of the conditional density
in Eq. (8.10) is a special case of the Wiener filter posterior density where the signal

covariance S is taken to be C%=:

Pr(s|C%=,d) o« G(C®=(C™= + N)~'d, (C™=) ' + N~ H)™H). (8.12)
The conditional density of Eq. (8.11) is proportional to a multivariate Gaussian:

Pr(C%=|s) o« Pr(s|C®*=)Pr(C*=) = Pr(C®*=)G(s, C*%). (8.13)

Note that Pr(C®%=|s) in Eq. (8.13) is usually taken to be an inverse gamma distribu-

tion (Wandelt et al. 2004). However, this is when working with the power spectrum
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(Cy), for which there is a Cypppy sample of size 2¢ + 1. The gamma distribution
involves averaging over the sample and so is not appropriate when the sample size

is only one, as is the case when working with the correlation matrix.

8.2.3 Choice of Sampling Method

As seen in Section 8.2.2.2, Gibbs methods are not ideal for full correlation matrix.
In this thesis, a combination of gridding and simple MCMC is adopted. The CMB
likelihood tends to have a narrow peak, which means care must be taken with MCMC

methods not to miss it.
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Part 1V

Constraining Topology with the
Polarised CMB
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Chapter 9
Prescription

Tools for constraining cosmic topology using a Bayesian approach were discussed
in Ch. 6 and Ch. 8; the best constraints should be achieved by utilising the com-
plete correlation matrix of the CMB. Surprisingly few attempts have been made to
do this due to the process being computationally expensive. Many analyses have
been performed using the CMB power spectrum (a reduced form of the correlation
matrix), but this ignores valuable information. Analyses such as Niarchou (2006)
have made use of the full correlation matrix, but very few have made use of the
information contained in the polarisation data of the CMB (an example where this
has been done is Aslanyan et al. (2013), but with the focus on constraining the size
of the Universe for each topology, rather than constraining topology itself). This is
because, up until recently, the best measurements of CMB polarisation have been
obtained by WMAP, and these are rather noisy. The most recent CMB space obser-
vatory, Planck, promises much improved measurements. While these data are yet
to be released, it makes the case for utilising CMB polarisation even stronger, as
any methods that are developed for WMAP data could quickly be applied to Planck
data upon release.

In this thesis, a method is adopted that harnesses the full CMB correlation
matrix for both temperature and polarisation. This is described in Section 9.3 and
applied in Ch. 10. Four flat spaces are investigated, the flat torus (F;), half turn
space (Fs), Klein space (E7) and Klein space with vertical flip (Ey), the reasons
for which are given in Section 2.3. The full range of cases explored here are listed
in Section 9.2. Note that the noise in WMAP’s polarisation measurements renders
only E modes useable in our investigation, but the method described can also be
applied to B modes. In fact, there are many extensions that could be made to this
work; in the following sections, where methods and/or data used in this thesis are

described, details of prudent extensions are also given.
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9.1. DATA USED IN THIS THESIS 133

9.1 Data Used in this Thesis

The data used here is the latest, nine year, WMAP data, which has been foreground
reduced by the WMAP collaboration (Bennett et al. 2012) and is publicly available
on NASA’s CMB data website, LAMBDA (lambda.gsfc.nasa.gov). Since the maxi-
mum ¢ that we are using is 30, the maximum resolution will be an angular area of
very roughly (180/¢)? ~ 36 square degrees. The sky can be broken into 1,800 such
regions of equal angular area (note that this translates into areas of differing physi-
cal size depending on how close to the pole/z-axis you are). The WMAP data used
has a HEALPix resolution of 4 (Gorski et al. 1999), which is equivalent to dividing
the sky into 3,072 equal physical-area pixels and is appropriate for the maximum ¢
used.

The data is provided in the form of Stokes’ parameters I, () and U, along
with the effective number of observations N, for each pixel. The signal data are
casily converted into harmonic space T, E and B values (the respective agy,s) using
HEALPix. An inverse covariance matrix for noise (N7!) is also provided. This
is not convenient for our purposes, as we want N, and inverting matrices is very
computationally expensive. We can (crudely) assume the noise to be negligible for T’
and F. However, the WMAP noise for B is too high to make it worth investigating
here.

Finally, WMAP has five frequency bands. We will initially focus on the W band

as it appears to have the strongest signal.

EXTENSIONS (FUTURE WORK)

Ext. 1.1 Use data from all WMAP frequency bands.
Ext. 1.2 Estimate the WMAP noise covariance matrix.
Ext. 1.3  Use Planck 7" and F data.

Ext. 1.4  Use Planck B data.

9.2 Cases Investigated in this Thesis

The cases investigated in this thesis are discussed below and summarised in
Table 9.1.

Topologies: the topologies investigated in this thesis are E;, Ey, F; and Eq (see

Section 2.3), the flat torus, half turn space, Klein space and Klein space with vertical

flip respectively.
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EXTENSIONS (FUTURE WORK)
Ext. 2.1 Explore all flat spaces.

Ext. 2.2 Explore spherical and hyperbolic spaces.

Cosmologies: for each topology, the Hubble parameter is varied between 0.685
and 0.701, in increments of 0.002. These values represent the constraints obtained
from the nine year WMAP observations (Hinshaw et al. 2012). Ideally, a smaller
increment, say 0.001 or less, would be used, but the value of 0.002 was chosen due
to time constraints of the investigation.

Other cosmological parameters are fixed to the default values set by CAMB.
The size of the Universe comes under geometry, and is technically another cosmo-
logical parameter. However, it is usually assumed to be infinite. So size is discussed

separately below.

EXTENSIONS (FUTURE WORK)
Ext. 2.3  Test values of h at smaller intervals.

Ext. 2.4  Vary other cosmological parameters.

Sizes: for each topology and cosmology, the size of the fundamental domain is
varied between 21 Gpc and 35 Gpc, in increments of 2 Gpc. This is because it has
been shown that a lower limit on the size of the Universe is around 25 Gpc; Key
et al. (2007) reported a value of 24 Gpc, and Planck Collaboration et al. (2013d) a
value of 26.4 Gpc, but the value can vary with topology. So we pitch our lower limit
a little under these estimates at 21 Gpc. The upper limit on the size detectable
depends on the method used; circles in the sky cannot detect a topology bigger than
the observable universe, but it may be possible for a Bayesian analysis of the CMB
correlation matrix to detect a little beyond the size of the observable universe (Kunz
et al. 2006). So we explore a little beyond the distance to the LSS. The distance
to the last scattering surface is thought to be about 14 Gpc, giving a diameter of
Lpss ~ 28 Gpc. So the range of sizes investigated approximately corresponds to the
range 0.75 to 1.25 Lpgs. Again, it would be preferable to use a smaller increment
but the value used was chosen due to time constraints. Finally, any signatures of
topology in the CMB will be stronger for smaller L; to aid understanding of the
effects of the different topologies on the CMB, for h = 0.6953, we also investigate L
from 10 to 18 Gpc (in increments of 2 Gpc).

Note that topologies with equal dimensions, L, = L, = L, = L are explored
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Topologies | Ey, Es, Fr, Eqg

h 0.685, 0.687, 0.689, 0.691, 0.693, 0.695, 0.697, 0.699, 0.701
L (Gpc) 21, 23, 25, 27, 29, 31, 32, 35

(10, 12, 14, 16, 18) for h = 0.693 only

Olmax For Ey and Fy: /2
For B, and Eqg:
Bmax For Ey: 7/2
For E5, F; and Ey: 7w
Vmax 27

Table 9.1: Values of parameters used in this thesis. Unless stated otherwise, all
combinations of parameters are investigated.

here, but a natural extension would be to vary the proportions of the dimensions of

the fundamental domain.

EXTENSIONS (FUTURE WORK)
Ext. 2.5 Test a broader range of values of L, and take values at smaller intervals.

Ext. 2.6 1Ty values of L,, L,, L. which are not all equal to one another.

Orientations: for each topology, there is a different, infinite, set of unique orienta-
tions. The MCMC likelihood code is designed to determine the optimum orientation.
The range of unique orientations depends on the symmetries of the topology. The
orientations can be characterised by an Euler rotation a-3-v, where « is an angle
of rotation about the z-axis, 8 is about the original (unrotated) y-axis, and = is
about the original (unrotated) z-axis; the rotation order is a-f-7y. The ranges of
these angles are given by the values of ayax, Omax and Jmax in Table 9.1 (we take

the minimum values to be zero).

9.3 Method for Constraining Topology using Po-

larisation

In this section, we bring together the tools and parameters found in previous chap-
ters to form a complete method for constraining topology using both temperature
and polarisation measurements of the CMB. This is depicted as a flow diagram in
Fig. (9.1).

The prescription for constraining topology used in this thesis consists of the
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Topology
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Figure 9.1: Flow diagram of method for constraining topology using the po-
larised CMB. The black boxes show code written as part of the work in this
thesis. The Fourier mode and CMB covariance codes have been debugged but the
likelihood and MCMC codes have not. Grey boxes depict freely available code
from other sources. CAMB was modified to enable the Fourier modes to be read
from file and the corresponding transfer functions to be written to file. A short
routine was written in HEALPix to process the CMB data. Parameters, variables
and data are shown in red, with the red arrows showing their progression through

the code.
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following steps:

1. Generate allowed Fourier modes: the first task is to calculate the Fourier

modes, k, which satisfy:

k = 27n = 27 <ZI Zy Z) (9.1)

where L; are the lengths of the sides of the fundamental domain.

Setting all L; equal to L is the simplest place to start exploring these dimensions,
and allows us to set all 1; yax equal to nyax. The allowed values of n; determine how
straight-forward this step is. For spaces Ei, Fy, E; and Ey, n; are always integers,
and the effect of group generators, if anything, is only to change the sign of n;.
Note that, for the purposes of the next stage, which uses the publicly available code
CAMB, only the magnitude k is required, which should be expressed in units of the
Hubble parameter, h.

EXTENSIONS (FUTURE WORK)

Ext. 3.1 In order to investigate other topologies, non-integer n; must be considered
and/or n; that experience more complicated transformations under the group gen-
erators.

Ext. 3.2 In order to try values of L, L,, L, which are not all equal to one another,

N max Should be varied accordingly.

2. Generate radiative transfer functions: this is done through CAMB, which
had to be modified to print out the transfer functions for a user-defined set of k
values. The cosmological parameters are fixed to default values, with the exception
of h, for which a range of values is explored (see Section 9.2). Transfer functions are

calculated for all values of ¢ between 2 and 50.

3. Calculate correlation matrix: the major code written as part of the work
of this thesis is that which calculates the full CMB temperature and polarisation
correlation matrix for a given topology and cosmology. The algorithm is similar to
that used by Phillips & Kogut (2006), which follows the following equation:

P Aty () (9.2

Cgin}?;/ ;) = 47T Z AX* Ag/ )

where
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AZLm,E’m’ (n) - Z £I?nglrcl€’m” (93)
{In[=n}

These equations are described in more detail in Section 5.2.

EXTENSIONS (FUTURE WORK)
Ext. 3.3  Accommodate the different types of n; required by Ext. 3.1 and Ext. 3.2 .
Ext. 3.4  Calculate T'B, EB and BB matrices at the same time as the TT", TE and

EE matrices that are currently calculated.

4. Convert CMB data into appropriate form: this is done using publicly
available software HEALPix, Gorski et al. (1999). The form that the data must
take for use in the likelihood code is spherical harmonic multipole moments ag, for
T, E and B. See Section 9.1 for more detail about the data used in this thesis. The
orientation of the data can also easily be changed using HEALPix.

5. Calculate likelihood: this is another code written for the work in this thesis.
The most challenging part of the writing this code was solving y for yC' = d, where
C' is the covariance matrix and d is the data. The code was tested using simple
values of C' and d to confirm that it did in fact solve for y correctly. Large deter-
minants can take a long time to calculate, so the denominator of the likelihood is
set to one. This should not affect the shape of the likelihood for the Euler angles,
but will make it harder to compare other parameters, such as h. This likelihood
function is implemented in a simple MCMC code that follows the prescription given

in Ch. 8 in order to try to identify the maximum likelihood.

EXTENSIONS (FUTURE WORK)

Ext. 3.5  Perform more extensive MCMC investigations, trying more seeds and it-
erations. An appropriate convergence test would be helpful.

Ext. 3.6 1ry using high resolution gridding (computationally expensive).

Ext. 3.7  Once a more detailed likelihood distribution is found, normalise the like-
lihood so that constraints can be attempted on L and h.

Ext. 3.8  Try using publicly available code MultiNest (Feroz et al. 2009) to deter-
mine likelihood - this code can calculate the evidence, which is needed for a proper

comparison of different topologies.

6. Analysis: in order to aid the interpretation of the results, simulated data
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is produced. This data is simple to generate using the lower triangle correlation

matrix, Acv = Apmerm::

e Generate a vector of random numbers, r, drawn from a standard normal dis-

tribution.

e Convert r into a vector of appropriately correlated numbers, or simulated CMB

signal data, sg,, via the Cholesky decomposition; sg, = AcumBr-

EXTENSIONS (FUTURE WORK)

Ext. 3.9 Run simulated data through the likelihood code to provide a guide as to
what the likelihood distribution may look like.

Ext. 3.10  Produce detailed likelihoods plots, including marginalisations of param-

eters and confidence levels for values of parameters.

9.4 Covariance Matrix Code

This section mainly focuses on the performance of the code for calculating the CMB

covariance matrices; for the code itself, see appendix Ch. A.

9.4.1 Hardware and Software Specifications

The machine used for calculating the covariance matrix is an entry level server with
Intel Xeon series E3 quad core processors, a high capacity HDD drive and a 256 GB
SSD, along with 24 GB of RAM. We chose not to access high powered computing
facilities as a local machine grants the user more flexibility and autonomy. The
operating system is Linux Debian and the compiler is the GNU C++ compiler.
These selections were made because they are freely available and may encourage

others to use and expand the code.

9.4.2 Calculations, Storage and Time

Phillips & Kogut (2006) find and store the topoterms from Eq. (9.3) before calculat-
ing the correlation matrix, Eq. (9.2). They argue that this provides a computational
advantage as the topoterms are independent of cosmology and L and therefore only
need finding once for a particular topology (and ratio L,:L,:L,).

In our work, preliminary tests revealed that an element of the correlation ma-

trix converges to at least four significant figures for ny., = 100; for integer-valued
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Ny, ny, and n., this corresponds to 4.2 x 10° allowed combinations of n,, n, and n..
It has also been suggested that ¢, = 30 is sufficient for detecting the signature
of a topology in the CMB via a statistical analysis of the CMB correlation matrix,
although an /,,, of 40 or 50 may be preferable (see. e.g., Kunz et al. 2006); starting
from ¢ = 2, this yields 957 /-m combinations. Therefore, if each topoterm is a com-
plex double, 16 bytes, then the storage required for the topoterms of one topology
(and ratio L,:L,:L,), is 114 GB. (Note that, if a higher /,,,x of, say, 50 is required
for some topologies, this becomes 791 GB).

For the simple case of the flat torus, calculating the correlation matrix involves
summing over all combinations of ngz-n,-n., f~-m and -m/, each time taking the
product of two spherical harmonics. That means calculating 4.2 x 10% x 2 x 957 x
957/2 = 1.9 x 10 spherical harmonics (division by two accounts for the fact that
only combinations where m+m’ is even is allowed). On our machine, each spherical
harmonic calculation takes 440 ns (actually 1.76 us, but four calculations can be
done at the same time). Hence, the total time to calculate the spherical harmonics
would be 1.7 x 10® s, or 20 days. If we were to store all these harmonics as complex
doubles, each taking up 16 bytes, the total required storage would be 57,000 GB.

This demonstrates the point that care must be taken not to unnecessarily re-
peat calculations. If we store the spherical harmonics, the number of calculations
required can be dramatically reduced. There are three reasons for this: harmonics
calculated for f-m can be re-used for ¢-m’; due to symmetry between m and —m,
only harmonics with m > 0 need be stored; only the ratios ngn,:n. are needed
to calculate the harmonics, and many combinations n,-n,-n. share the same ratio.
This reduces the calculation time to just 12 minutes per correlation matrix, and
requires 25 GB for storage of the spherical harmonics. (For £, = 50, the reduction
would be 5 months and 420,000 GB to 33 minutes and 67 GB).

So far, we have worked out the time to calculate the spherical harmonics, but have
not taken into account the time it takes to read the stored values. On a HDD with a
typical data access rate of 100 MB.s™!, the access time would be 50 hours. However,
if we could store all the harmonics in RAM, with an access rate of 12800 MB.s™!, the
access time would be reduced to 35 minutes. (In fact, this could be reduced further
to 18 minutes if we use a motherboard with dual channel capability, which are now
commonly available). Our machine has 24 GB RAM, which is not enough to store
25 GB of spherical harmonics. Instead, the harmonics are permanently stored on
an SSD and read into RAM in batches (see appendix Ch. A for more detail on how

this is done), which has an insignificant effect on the total access time. The code is
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designed to check the RAM available before deciding what size batches to use; this
means that, if the RAM was increased to 32 GB (usually the maximum motherboard
capacity), all the spherical harmonic data could be in RAM simultaneously.

The total time for the calculation of a single correlation matrix is now dominated
by looping over the necessary parameters to find the allowed values of n,-n,-n,
and perform the sums in Eq. (9.2) and Eq. (9.3). The time taken varies slightly
according to the complexity of the {s associated with each topology (Ch. 2), but for
all topologies explored here (F;, Ey, E; and FEy) is well within a day (or two days,
for ).

Finally, the values of h and L explored in this thesis are fairly restricted, but the
number of combinations is still 77. With three different types of covariance matrix
to calculate (7T, TE and EF), the total number of covariance matrices calculated
for each topology is 231. The most efficient way to find all these matrices is to
do so simultaneously, so that the topoterms need only be calculated once. A small
chunk of each matrix is kept in RAM at any one time, and written to the HDD once
completed, freeing up the RAM for the next chunk. This is quite efficient, and all
231 correlation matrices for a particular topology are calculated within a day (or
two days, for £,.x = 50). Each correlation matrix file is quite small: 14 MB for
lmax = 30; 103 MB for /., = 50.

The advantage of this approach over the one used by Phillips & Kogut (2006) is that
little permanent storage is needed. The spherical harmonics can be stored (at 25 GB
for £iax = 30, or 67 GB £y, = 50) but only take about 30 minutes to pre-calculate.
In contrast, Phillips & Kogut (2006) require 114 GB, or 791 GB, permanent storage.
On a standard HDD, these would take 20 minutes, or 2.5 hours, to read. The lack
of storage required by the method presented in this thesis makes it more portable -

it can be quickly and easily shared.

9.4.3 Testing

Values generated by the code were tested at several stages. This involved comparing
the output with values calculated in Mathematica (this is generally very accurate,
but is not a fast as C++, and is not freely available). The same tests were also

checked against outputs from the freely available SciL.ab. The terms tested were:

e spherical harmonics

e topoterms
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e clements of the covariance matrix

All the tests showed agreement to at least six significant figures. Mathematica and

SciLab were, however, noticeably slower than the C+-+ code.
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Chapter 10

Results

10.1 Covariance Matrices

This section contains maps of the covariance matrices generated by the code de-
scribed in Ch. 9. A map consists of one row of the covariance matrix in pixel space,
for a particular pixel p. Fig. (10.1) shows the location on the sky of pixels for
which the covariance matrix is plotted. The pixels are numbered according to the
HEALPix nest system, with a HEALPix resolution of 4.

Fig. (10.2) to Fig. (10.13) each displays a set of these maps. Each figure corre-
sponds to a particular topology-h-L combination and displays maps for 7T, TE and
EFE covariance matrices. The values of (h,L), where L is in Gpc, for which the maps
are given are (0.693,10), (0.693,25) and (0.701,25). The is little difference between
maps which differ in A only. L, however, has a large influence over the appearance
of the maps. Smaller values of L should contain a stronger signature of topology,
and this appears to be the case here.

The flat torus maps are consistent with what one would expect; a region of high
probability where the pixel that the map corresponds to resides, along with circular
regions of higher correlation. The effects of other topologies are harder to visualise,
but half turn space should contain similar features to the flat torus, which is the

case with these maps.
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Pixel locations
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Figure 10.1: Maps showing the locations of pixels 500, 1000, 1500, 2000, 2500
and 3000.

FE;: the flat torus
h=0.693 : L =10 Gpc
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Figure 10.2: Maps of the correlation matrices for the flat torus, Fy, with h =
0.693 and L = 10 Gpc. Each map represents one row of the correlation matrix
in pixel space. p is the pixel that this row corresponds to. The first row contains
maps for the T'T covariance matrix, the second for TE and the third for EE.
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FE;: the flat torus
h=0.693 : L =25 Gpc
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Figure 10.3: Maps of the correlation matrices for the flat torus, Fy, with h =
0.693 and L = 25 Gpc. Each map represents one row of the correlation matrix

in pixel space. p is the pixel that this row corresponds to. The first row contains
maps for the T'T covariance matrix, the second for TE and the third for EE.
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E,: the flat torus
h =0.701: L =25 Gpc
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Figure 10.4: Maps of the correlation matrices for half turn space, Fo, with
h = 0.701 and L = 25 Gpc. Each map represents one row of the correlation
matrix in pixel space. p is the pixel that this row corresponds to. The first row
contains maps for the T'T covariance matrix, the second for TE and the third for
EE.
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FE5: half turn space
h=0.693 : L =10 Gpc
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Figure 10.5: Maps of the correlation matrices for the flat torus, Fy, with h =
0.693 and L = 10 Gpc. Each map represents one row of the correlation matrix
in pixel space. p is the pixel that this row corresponds to. The first row contains
maps for the T'T covariance matrix, the second for TE and the third for EE.
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E5: half turn space
h =0.693 : L =25 Gpc
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Figure 10.6: Maps of the correlation matrices for half turn space, Fo, with
h = 0.693 and L = 25 Gpc. Each map represents one row of the correlation
matrix in pixel space. p is the pixel that this row corresponds to. The first row
contains maps for the TT covariance matrix, the second for TE and the third for
EE.
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E5: half turn space
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Figure 10.7: Maps of the correlation matrices for half turn space, Fs, with
h = 0.701 and L = 25 Gpc. Each map represents one row of the correlation
matrix in pixel space. p is the pixel that this row corresponds to. The first row
contains maps for the TT covariance matrix, the second for TE and the third for
EE.
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Figure 10.8: Maps of the correlation matrices for klein space, E7, with A = 0.693
and L = 10 Gpc. Each map represents one row of the correlation matrix in pixel

space. p is the pixel that this row corresponds to. The first row contains maps
for the TT covariance matrix, the second for TE and the third for EE.
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E~: klein space
h=0.693 : L =25 Gpc

TT:
e — SIS
L 1 Rt

(a) p=500  (b) p=1000 (c) p=1500 (d) p=2000 (e) p=2500  (f) p=3000

(g) p=500  (h) p=1000 (i) p=1500  (j) p=2000 (k) p=2500 (1) p=3000

(m) p=500 (n) p=1000 (o) p=1500 (p) p=2000 (q) p=2500 (r) p=3000

Figure 10.9: Maps of the correlation matrices for klein space, F7, with h = 0.693
and L = 25 Gpc. Each map represents one row of the correlation matrix in pixel
space. p is the pixel that this row corresponds to. The first row contains maps
for the TT covariance matrix, the second for TE and the third for EE.
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FE;: klein space
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Figure 10.10: Maps of the correlation matrices for klein space, Fr, with h =
0.701 and L = 25 Gpc. Each map represents one row of the correlation matrix
in pixel space. p is the pixel that this row corresponds to. The first row contains
maps for the T'T covariance matrix, the second for TE and the third for EE.
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Ey: klein space with vertical flip
h=0.693 : L =10 Gpc
i ", ( )
(@} (( D \Q-@} ‘& J)
) p=500 ) p=1000 (c) p=1500 (d) p=2000 (e) p=2500 () p=3000
@ © «-m» @ @ O
) p=500 ) p=1000 (i) p=1500  (j) p=2000 (k) p=2500 (1) p=3000
@ g ¢® «® @ «®
) p=500 (n) p=1000 (o) p=1500 (p) p=2000 (q) p=2500 (r) p=3000

Figure 10.11: Maps of the correlation matrices for klein space with vertical
flip, Eg, with h = 0.693 and L = 10 Gpc. Each map represents one row of the
correlation matrix in pixel space. p is the pixel that this row corresponds to. The
first row contains maps for the T'T covariance matrix, the second for TE and the
third for EE.
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Ey: klein space with vertical flip
h=0.693 : L =25 Gpc
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Figure 10.12: Maps of the correlation matrices for klein space with vertical
flip, Eg, with h = 0.693 and L = 25 Gpc. Each map represents one row of the
correlation matrix in pixel space. p is the pixel that this row corresponds to. The
first row contains maps for the T'T covariance matrix, the second for TE and the
third for EE.
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Ey: klein space with vertical flip
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Figure 10.13: Maps of the correlation matrices for klein space with vertical
flip, Eg, with h = 0.701 and L = 25 Gpc. Each map represents one row of the
correlation matrix in pixel space. p is the pixel that this row corresponds to. The
first row contains maps for the T'T covariance matrix, the second for TE and the
third for EE.
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10.2 Simulated Data

This section contains simulated maps generated using the covariance matrices via a
Cholesky decomposition (see Ch. 9) for 2 > ¢ > 10. No noise has been added to any
of these maps. Fig. (10.14) to Fig. (10.17) each show a collection of simulations for
one topology; within the figure are maps for 7T, TE and E'E, as well as (h,L) values
of (0.693,10), (0.693,25) and (0.701,25). Each column of maps was generated using
the same set of random numbers, which is clear from the similarities in the patterns.
Again, there is little difference between maps which differ in A only. L, however,
has a large influence over the appearance of the maps. A 45 degree alignment is
apparent between the () and U maps, which is to be expected from the definitions

of Stokes’ parameters () and U.
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F;: the flat torus

Figure 10.14: Simulated maps for the flat torus, E1, for 2 < ¢ < 10. Six different
simulations are shown for each combination of parameters.
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E5: half turn space

h=0.693: L =10 Gpc

Figure 10.15: Simulated maps for half turn space, Fo, for 2 < ¢ < 10. Six
different simulations are shown for each combination of parameters.
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E~: klein space

h =0.693 : L =10 Gpc

Figure 10.16: Simulated maps for klein space, Fr, for 2 < ¢ < 10. Six different
simulations are shown for each combination of parameters.
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Ey: klein space with vertical flip

h—=0693: L =10 Gpe
;’f‘ f) - - 6_4 \
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Figure 10.17: Simulated maps for klein space with vertical flip, Eg, for 2 < ¢ <
10. Six different simulations are shown for each combination of parameters.
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10.2.1 Temperature Maps

This section breaks some of the simulated temperature maps from the previous
section into individual multipole maps (left columns) and sequetially recombines
them (right columns). This is in order to aid understanding of the contributions of
individual mulipoles to the composite maps.

Similar maps can be found in Section 10.3 for the nine-year WMAP data. It
is interesting to compare the simulated maps with these real data. By eye, it’s
hard to say which simulated maps most resemble the real data. However, this is
not a sensible exercise as we only have one realisation for each topology, and other

realisations could look rather different.
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E,: the flat torus
h=0.693: L =10 Gpc
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Figure 10.18: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.2). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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FE,: the flat torus
h=0.693 : L =25 Gpc
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Figure 10.19: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.3). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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E,: the flat torus
h=0.701 : L =25 Gpc
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Figure 10.20: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.4). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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E5: half turn space
h =0.693 : L =10 Gpc
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Figure 10.21: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.5). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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E5: half turn space
h =0.693 : L =25 Gpc

Figure 10.22: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.6). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-

vidual multipole maps are added.
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E5: half turn space
h =0.701 : L =25 Gpc
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Figure 10.23: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.7). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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E;: klein space
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Figure 10.24: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.8). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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Figure 10.25: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.9). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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E;: klein space
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Figure 10.26: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.10). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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Ey: klein space with vertical flip
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Figure 10.27: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.11). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-
vidual multipole maps are added.
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Ey: klein space with vertical flip
h=0.701: L =25 Gpc
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Figure 10.28: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.12). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-

vidual multipole maps are added.
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Ey: klein space with vertical flip
h=0.701: L =25 Gpc
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Figure 10.29: Simulated CMB maps generated using the TT correlation ma-
trices represented in Fig. (10.13). The left column contains maps for individual
multipoles; the right column shows how the combined map changes as the indi-

vidual multipole maps are added.
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10.2.2 Polarisation Maps

This section breaks some of the simulated polarisation maps from into individual
multipole maps (left columns) and sequentially recombines them (right columns).
Again, this is in order to aid understanding of the contributions of individual

mulipoles to the composite maps.
Similar maps can be found in Section 10.3 for the nine-year WMAP data for

comparison.
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Figure 10.30: Simulated @ and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.2)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. @ is represented
by columns 1 and 3, U by columns 2 and 4.
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E,: the flat torus
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Figure 10.31: Simulated @) and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.3)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. @ is represented
by columns 1 and 3, U by columns 2 and 4.
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FE,: the flat torus
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Figure 10.32: Simulated @) and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.4)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. @ is represented
by columns 1 and 3, U by columns 2 and 4.
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E5: half turn space
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Figure 10.33: Simulated @ and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.5)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. @ is represented
by columns 1 and 3, U by columns 2 and 4.
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Figure 10.34: Simulated @ and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.6)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. @ is represented
by columns 1 and 3, U by columns 2 and 4.
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E5: half turn space
h=0.701: L =25 Gpc
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Figure 10.35: Simulated @) and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.7)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. @ is represented
by columns 1 and 3, U by columns 2 and 4.
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Figure 10.36: Simulated @ and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.8)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. @ is represented
by columns 1 and 3, U by columns 2 and 4.
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Figure 10.37: Simulated @ and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.9)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. @ is represented
by columns 1 and 3, U by columns 2 and 4.
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Figure 10.38: Simulated @) and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.10)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. @ is represented
by columns 1 and 3, U by columns 2 and 4.
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Ey: klein space with vertical flip
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Figure 10.39: Simulated @ and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.11)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. @ is represented
by columns 1 and 3, U by columns 2 and 4.
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Figure 10.40: Simulated @ and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.12)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. @ is represented
by columns 1 and 3, U by columns 2 and 4.
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Figure 10.41: Simulated @) and U polarisation maps (generated using the EE
correlation matrices represented in Fig. (10.13)). The two left columns contain
polarisation maps for individual multipoles; the right column shows how the com-
bined map changes as the individual multipole maps are added. @ is represented
by columns 1 and 3, U by columns 2 and 4.
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10.3 WMAP Data

This section breaks some of the real-data nine-year WMAP maps into individual
multipole maps (left columns) and sequentially recombines them (right columns).
They provide an interesting comparison to the simulated maps from the previous
sections.

On visual inspection, it’s hard to tell if the simulated data has the same un-
derlying characteristics as the WMAP data. Other realisations of the simulated
data may be a better visual match. In order to make a proper comparison, the
statistics of the maps need to be compared. This is where a thorough Bayesian
analysis would come in; unfortunately, the simple MCMC analysis attemped could

not detect a maximum likelihood.
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Figure 10.42: WMAP 9-year temperature maps. The left column contains maps
for individual multipoles; the right column shows how the combined map changes
as the individual multipole maps are added.
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WMAP polarisation maps

M(l})’i? ADC.

LA ke Q)f‘\

T, & r.)
5_4.\!:!/ ~_ , .,/6_2‘504

g_5‘.-' ‘~ \.L-u \\’E—Qtof)

Ao (,‘\; (-3‘- G

*e e \\, (=21t06

(=6 ~—~—-—
P R
SO NS
EDS fa
¢ = g NNSEEF QNS
= -.% S K: .\\
(=9 s NS o & (=2t09
ﬂﬁ: 'ip:&‘ P - -:-.
(=10 NE&L A =210 10

Figure 10.43: WMAP 9-year @ and U polarisation maps (for E-mode polarisa-
tion only). The two left columns contain polarisation maps for individual multi-
poles; the right column shows how the combined map changes as the individual
multipole maps are added. @ is represented by columns 1 and 3, U by columns 2
and 4.
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Chapter 11
Discussion

In this thesis, we set out to develop a method for constraining cosmic topology by
utilising as much information as possible from the CMB; this involves making use of
polarisation data, in addition to temperature, and taking the full CMB covariance

matrix, instead of the power spectrum.

In Ch. 2, we produced a consistent catalogue of the properties and mathematical
descriptors of all possible flat topologies. Such explicit lists are difficult to find in
the literature, but it has proven very useful in deciding which topologies to begin
the investigation with, and what steps need to be taken in order to extend the inves-
tigation to other flat spaces. A similar catalogue of spherical and hyperbolic spaces

would surely be invaluable.

In Ch. 7, we were diverted by an investigation into the origins of UHECRs. We
concluded that there is a strong chance that at least some UHECRs are produced
by AGNs. More relevant to the thesis as a whole, we demonstrated how Bayesian
methods can successfully make use of as much valuable information as possible where

data is relatively scarce.

Ch. 9 is where we described our method for constraining cosmic topology using the
polarised CMB. The majority of efforts were spent developing a code for calculating
the full CMB correlation matrix that is efficient, yet non-reliant on high-powered
computing and potentially freely available to anyone who may wish to develop it
further. On an entry-level server with 24 GB RAM, it is capable of generating in
excess of 231 covariance matrices in under a day, and probably significantly more,
for a given topology (for ¢,.,x = 30). In addition, for the types of calculations in-

volved, it requires relatively little disk space (25 GB) to run.

190



191

By the time work on the correlation matrix code was complete, the Bayesian analy-
sis had been somewhat neglected. The simple likelihood codes adopted still require
debugging and further development. Lower limits on the size of the Universe are
generally accepted to be greater than the size of the LSS, meaning that any signa-
tures of topology in the CMB could be very weak. In addition, the CMB presents
a number of challenges when it comes to extracting the pure signal. Hence, devis-
ing a successful analysis that truly makes the most of all available information is
a large undertaking; an intuitive, powerful, community-maintained code for finding
the covariance matrices would enable a greater proportion of efforts to go into these
statistical analyses. The covariance matrix code presented in this thesis has many
features that are ideal for a community-maintained code. It is fast, requires little
permanent storage, requires moderate computing power (which could be in the form
of a high-end desktop machine) and uses a freely available compiler (GNU c++).
The next step in developing this program for computing the topology-dependent
CMB covariance matrix is to make it as accessible as possible. This is to be done
through improved commenting and variable names within the code itself, the cre-
ation of instructive documentation on its use, and making it publicly available online
(through GNU licensing or similar). Also to be built in, are the flexibility to set
more of the parameters from outside the code and enhancements to the base class
to enable easier addition of more complex topologies. With these improvements
in flexiblity and accessibility, this code has the potential to be a valuable aid in
achieving the the ultimate goal of a thorough and exhaustive exploration of what

the CMB can tell us about cosmic topology.
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Epilogue

There have been many attempts to investigate cosmic topology, but each assesses a
limited selection of topologies over different ranges of cosmological parameters and
sizes of the fundamental domain, as well as each employing their own method of
analysis. More consistency is needed in order to meaningfully compare results and
gain more insight into what the cosmic topology might be. It may be possible to
eliminate many candidate topologies, but of the many that remain, we have to deal
with relative probabilities. The probabilities are not absolute, but depend on the
method of analysis. This makes comparing results from different methods difficult.

In addition, in order to utilise as much information as possible from the CMB,
the full correlation matrix must be calculated. This must to be done for each
topology, cosmology and size of fundamental domain to be investigated; calculating
just one of these can be computationally expensive. Hence, a large amount of time is
invested in creating correlation matrices. Since cosmic topology will be challenging
to constrain no matter how precise observations are, more time needs to be spent
on developing and fine-tuning methods of analysis.

The number of potential cosmic topolgies is vast and the effort that goes into
investigating just one of them is far from trivial. I believe that, in order to make
significant progress in the near future, a more collaborative approach needs to be

taken. This could involve:

e building a communal catalogue of the coefficients f,’i}m (the coefficients of the
eigenfunctions of the universal covering space of a topology) which encapsulate
the properties of a topology. There are many more candidate topologies for

which these have not been determined than those for which they have.

e making codes for calculating the CMB correlation matrix publicly available.
Not only would this save time, enabling individuals to use this code rather
than writing their own, it would enable testing of the codes alongside one
another. Ultimately, hopefully, this would lead to the development of a single

code that can be fine-tuned for efficiency and accuracy.
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e building a communal database of correlation matrices; if the correlation ma-
trices are readily available rather than calculated by every individual or group
who wish to try their method of analysis, the same analysis may be applied

to more topologies, providing a more consistent comparison.

Creating a communal database for the correlation matrix should be feasible as there
is not much flexibility in the way in which it is calculated. Efforts should be focused
on the method of analysis. Perhaps a series of community challenges could be set
to devise the most successful method. This has been done effectively for improving
measurements of weak gravitational lensing in the GREATO08 and GREAT10 chal-
lenges (see Bridle et al. (2010) and Kitching et al. (2012) respectively). Simulated
CMB data could be generated for a range of topologies (without stating what those
topologies are). The covariance matrices could also be provided. The challenge
would be to devise the method most successful at identifying the simulated data
with the covariance matrix that generated them. Initial challenges could give more
information to participants, e.g. the cosmological parameters used, including the
curvature, when generating the data. Subsequent challenges could reveal less infor-

mation as participants refine their codes.

Whatever path the investigation into cosmic topology takes in the future, the idea

of determining the shape of the Universe remains a fascinating one.
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Appendix A

Code for Computing the CMB
Correlation Matrix for Ey, E3, E~
and FEjq

Included here, is more detail on the key part of the code written as part of the work
presented in this thesis; the code for calculating the CMB covariance matrices of
different multi-connected flat spaces, F;, F3, F; and Ey. The code is currently in its
pre-alpha stage; it needs further development to make it accessible to other users.

This appendix is divided into the following sections:

e Section A.1 - Usage
e Section A.2 - Hierarchy

e Section A.3 - The Code

A.1 Usage

Usage: the code is executed at the command line in the following way:
topoterms (topology number) (ell_max) (nsq-min) (nsq-max) [nsq-inc|

where the arguments are:

e topology number: 1, 3, 7, 9 (representing Ey, Es3, F7, Ey, )

e cll min: 2 < ell.max < 50
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e nsq-min: 0 < nsq-min < 10000 where nsq = n from k = 27n/L. Note,
covariance matrices are calculated for 0 < nsq < nsq_max; see nsq-inc for the

role of the parameter nsq_min.
e nsg_max: nsq-min < ell_max < 10000

e nsq.inc: nsq_max—nsq-min. Specifies how often (the interval in nsq) a conver-
gence test is performed on the covariance matrix. nsq_min is the value of nsq
at which convergence tests start; a convergence test is then performed every
time nsq has increased by nsq-inc, until nsq_max is reached. Results of the
tests are output to screen as they are done. If nsq_inc is zero or not defined

by the user, no test is performed.

Input files: files containing the radiation transfer functions calculated using

CAMB.

Output files: files containing the CMB covariance matrices.

A.2 Hierachy

The code files are listed below, with a brief description of what they are. Note
that the original intention was to write a code to calculate the topoterms and save
them to file. The topoterms would then be read by a code designed to calculate the
covariance matrices. However, it proved more efficient to calculate the covariance
matrix immediately, removing the need to write/read the topoterms to/from file.
The code files, and objects and functions within, were named according to the origi-
nal intention; the names have not been updated to make it clear that the covariance

matrix is being calculated as well as the topoterms.

e topoterms.cpp - wrapper for classes listed below, sets values of parameters,

tests for convergence of correlation matrices

e c_topoterms.cpp - base class, finds covariance matrices for F; (also has a header

file, topoterms.h)

e c_topoterms3.cpp - class, inherits from topoterms.cpp, finds covariance matri-

ces for Fj (also has a header file, topoterms3.h)
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e c_topoterms7.cpp - class, inherits from topoterms.cpp, finds covariance matri-

ces for Er (also has a header file, topoterms7.h)

e c_topoterms9.cpp - class, inherits from topoterms.cpp, finds covariance matri-

ces for Ey (also has a header file, topoterms9.h)

An outline of the alogorithm employed in the topoterms classes is depicted in
Fig. (A.1).

A.3 The Code

The following pages display the code itself with the files appearing in the following

order:

e topoterms.cpp - 15 pages

e c_topoterms.h - 7 pages

e c_topoterms.cpp - 32 pages
e c_topoterms3.h - 1 page

e c_topoterms3.cpp - 17 pages
e c_topoterms7.h - 1 page

e c_topoterms7.cpp - 7 pages
e c_topoterms9.h - 1 page

e c_topoterms9.cpp - 7 pages
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»

Matrix

AN J/

=

"'/Generate Covariance

Calculate all the
spherical
harmonics that will
be needed and
save them to a
solid state disk.

One file for
each /value
that contains
the spherical

harmonics
for all m and

(nx! n}l nz)
combinations

v

Loop for all
combinations of I, m, /',
and m'.

v

Loop for all n.

-

v

Figure A.1: Flow chart showing the alogorithm employed in c_topoterms.cpp,

Loop for all directions
(n,, n, n,) allowed for
current n.

-

\

One topoterm is
generated for each
n from a calculation

involving a sum

over all of its
directions.

¢—

One covariance
matrix term is
generated for each
I, m, I',’and m' from
a calculation
involving a sum
over all of its
topoterms.

END ‘

This program is designed to
produce covariance matrices, for

— a specified topology, for / up to 50

and n up to 100 (where n is from
k=2mn/L).

There are thousands of
computations that involve the
calculation of spherical
harmonics. However, many of
the spherical harmonic
calculations are duplicated. In
practice the only spherical
harmonics needed are one each
for every combination of direction
(n, n, n,), I, and positive values
of m.

This is where the main speed-up
is done. Each calculation
involving n will also involve at
least one spherical harmonic for
I, m and at least one for /', m'.
Loading them all from disk as
required would be too slow.

In reality, the code does all the
calculations shown in the nested
loops, but in a different order so
as to minimise the number of
slow disk accesses.

First, as many spherical
harmonics as possible for /" and
m' are loaded into memory (at
least 24 GB of memory is
needed). Then the topoterms
are calculated for every I, m, and
loaded /', m' combination. (The /,
m spherical harmonics are
loaded from disk as required.)

The contributions of the
topoterms to the covariance
matrix are added to the
covariance matrix as the
topoterms are calculated. This
allows the topoterms to be
discarded quickly; saving all the
topoterms to disk would be both
very slow and require a very
large amount of storage.

On completion, the next batch of
I'' m' spherical harmonics are
loaded and the process is
repeated. This continues until all
I''m" spherical harmonics have
been loaded.

c_topoterms3.cpp, c_topoterms7.cpp and c_topoterms9.cpp.
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T abed

‘[swd21 7 Yy 40 JaquNuU]SwJd} T Y 2 Swad1r 7 y::swudzodoyr D

JTpUSY

{(SWJ9) Y JO J9QUNU 4 SWJD) T 40 J3QWNU) = SWJId) T Y 40 J3QWNU 3JUT 3SUOD

9s19#

!swu9) T 1eTo9dS 4O udquNU + (SWJSF Y JO J4dQUNU 4 SWIDY} T 40 JdQWNU) = SWJd) ] Y 40 JSquWNu JUT 3SU0d
(7 18T29dS%)4092TS / (7 1BTI9dS)}09ZTS = SwWUd} 7 1eTI3dS JO Jaqunu JUT 3Suod
T IVID3dS 3IANTONI JOpIT#

' (Yx)409zTS / (Y)409ZTS = SWJS3} Y JO Jaqunu JuT 3SUOD
‘(1%)4092TS / (7)409ZTS = SWJd3} 7 JO Jagqunu JUT 3SUOD

JTpUSY

*{ 00081 ‘0009T ‘000YT ‘000ZT ‘0000T } = [G]7 1eT2ads @1qnop 3suod
7 IVID3dS 3IANTONI 3°PIT#

so1auwesed 3109nH // ‘{ TOL°0 ‘66970 ‘L6970 ‘S69°0 ‘€69°0 ‘I69°0 ‘689°0 ‘/89°0 ‘S89°0 } = []y @1qnop 1suod
5djf uT pry Jo 8zTs // ‘{ 0OOSE ‘0OOEE ‘0OOTE ‘00067 ‘000LZ ‘000SZ ‘00OEZ ‘000TZ } [17 @1qnop 1suod
7 IVID3dS 3ANTONI BuTiop#

110 XTJdlew 33UBTIEA03 @1e1Nd18D 01 Y pue 7 JO SanjeA 13§ //

!(ejep XTJ3BWEAOD4 } XTJIBWEAO0D::Swda30do} D ‘Sweud)T4 DBUTIIS::p31S)d1T4 XTJIJBWIBAOD BFTJIM 100(q

{(S31NS9J XTJ}PWEAODy 3 XTJIBWEAOD::SwJd10dol D ‘Sweusd)Ty BuTJI3S::p31S)d1T4 XTJ}eWJIBAOD pead 100q

{(Z XTJ1BWEAODD 4] XTJ]BWEAOD::Swta9310dol O ‘T XTJIBWEAOD 4] XTJ]BWEAOD::swial0dol D)Aedue XTJlewdenod om} aJedwod j00(q
{(924N0S XTJ1BWEAO0D

%} XTJ}BWEAOD: :swi9310d0l O ‘3S9pP XTJIBWEAOD 4] XTJ1BWEAOD::swda3odoyl dO)Aedde XTJIEWIBRAOD 0}

‘(xew bsu Ut ‘utw bsu JUT ‘Xew)]1® JUT ‘UTwW))® 3JUT ‘JaqunN 11 JUT)XTJlewsenod
WU eswiaarodoy 2,

WYr/swiarodoy o,

LYrgswaarodoy o,

.Y-rswiaayodoy o,

ddo - swusyodoy

ppe pToA
uab pton
Spn1dUT#
S9pN1OUT#
9pN1OUT#
9pNOUT#

208



209

THE CODE

A.3.

Z obed

(00001 < utw bsu || @ > utw bsu) 4t

“(T)modya
(06 < xewn1d || z > xewn1d) It

- - B “(T)MmoJay3
(6 =i J49qunN 11 S9 £ =i JoqunN L1 8% (€ < JaqunN LI || T > J43qunN 11)) 3T
‘(0) : ([g]nbBue)TOle ; (9 == dbue) = out bsu
‘([y]nbae)TOlE = Xew bsu
‘([g]nbae)TO3E = UTW bsu

([z]nbae)TOlE = XBW]1d
‘([1]abae)TOlR = JBQUNN 11

“(T)modya
(9 =i obue 99 g ={ dbue) }1

W5

/2uop ST 1591 2ouUabJuaAuod ou ‘uasn AQ pautjapun ST Jo @=bSu 11 //

SQUTJOpP JUT bsu *pa1sal ST SJUBTIBA0D JO 9duUabUDAUOD YdTYm Joy //
bSU Jo anjeA 1SJT) ST uTw bsu *xew bsu 01 @ wod) sabueds bsSu // ‘out bsu ‘xew bsu ‘utw bsu ‘usquny 11 IUT
‘0§ = Xew)ls 3ut
{Z = UTW]1® JUT 1SU0d

(*uda242s uo asayy ndut o1 paxdwoud st Jdsn) //

}

([1ABue 4aeyd ‘DbHue JuT)uTew jut

ddo*swusyodoy
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¢ abed
1pua::p3s >> ,SWJd1 7 pue y , >> SwWJA9)} T Y JO Jaqunu >> , 13S, >> IN0D::p1sS
Yuu = J3s Aydws
‘41s Ayrdws bBuTuls::ipas

{Weua T} WesJd1sbuTdlso::pas

PIPUS:1PIS >> (T + (T x 7173 XVW))* (919nop x21dwo) )J09ZTS >> IN013::pis//

1pus::ipis >>
UTW W3<-MOU >> ,:, >> JNOY Wl<-MoU >>
. . >> Aepw wi<-mou >> -, >> (T + UOW Wl<-mMou) >> ,-, >> (PE6T + JB9A Wi<-mou) >> , 1B palJdeisu\u\, >> IN0d::pi1s

1 (39)2wWT31]1Ld0] = MOU 4 W) 3INJ3S
Mmou |wTy 386 //  f(@)dWTI = } } dWT}

{
{1 (9p0d2J0J4Jd) uaniad
L U\ (UuTw bsu - xew bsu) => dutT bsu => ¢ . >> 1N0D::p31s
‘L U\ 000OT => Xew bsu > utw bsu . >> 1N0D2::p3s
£,U\PPOOT => UTw bsu => @ . >> 1N0D::p3s
LU\ 0G => 119 => ¢ . >> 1N0D::p1s
fLJU\ 6 JO / ‘€ ‘T = Jaqunu AbHojodoa . >> 1Nn0D::p1s
f,u\adaym: . >> 3}N0D::p31s
£, U\[ouT bsu] xew bsu utw bsu xew 112 Jaqunu AbBojodoyl suwiajodoyl :abesn, >> 31N0d::p3s
}
(9p0240JJd 3JUT) yd3zed
{
“(T)modya
((utw bsu - xew bsu) < out bsu) 3T
“(T)moJy3
(00EOT < xew bsu || utw bsu > xew bsu) JT
“(T)moaya

ddo - swusyodoy
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v obed

9519

{
}

(6 == out bsu) 4t

!(xew bsu ‘utw bsu ‘xew)}® ‘UTw)1® ‘J9qUWNN 11)XTJiewdeaod uab

*pawJdojdad ade S1S91 pue pa1eINd1ed 9Je S9DTJ1eW Se U33JdS 01 1ndino ST eiep 1S81 JIUSHUISA0H //
*XTJlew S3UETIBA0S J0) 1591 90USBUBAUOD Op ‘OS LT ‘049Z-UOU pue PauTiap ST dUT bsu 4TI //
*S90TJ1ew SIUETIEA0S 21edausy //

{1 XTJleweaod::swJayodoyl D
MAU (4] XTJ1eWweAod::swJda3odol} 2) = S1INSSJ XTJIBWIBAOD JUSJJND4 1 XTJIBWEAOD: :swdalodol 2
{1 XTJ1BWEAO0D::SWwJi910d0l D MAU (41 XTJIPWEAOD::SwJd10dol D) = S3)NSdJ XTJIBWIBAOD 1S4 1 XTJIRPWEAOD::swJdiodol D

JTpuUSH
{

{[xapuT 7 1eTO9dS]7 1eTd2dS = 7°[XSpuT 7 1eTI9dS + (SWJd3} Y JO JBQUNU 4 SWJId]} T JO Jaqunu)]swddal Ty
'€69°0 = Y [xopuT 7 1eTI9dS + (SWJd1 Y JO Jaquwnu 4 SWJd] T JO Jaqunu)]swdalr Ty
}
(++Xx3puT 7 1eTI3dS !Swud) 7 1eTI9dS 4O JIquNU > XSPUT T 1BTOAdS @ = XSpuT 7T 1eTO3dS JuT) Jo}
T IVID3dS 3IANTONI JoOpIT#

{
B L B B o {
{[X3puT 17 = 77 [(SWJ®) 7 JO JBQUNU 4 XIPUT Y) + XIPUT T]swJal 7y
Y[X3puUT yly = Y- [(Swid1 7 JO JBQUNU 4 XIPUT Y) + XIPUT JIswdd) Ty
}
(++X3PUT 7 ‘SwJd} T 40 JSQWNU > XSPUT 7 (@ = XSPUT 7 JUT) J0OJ
}

(++XS9pUT Y {SWJd} Y JO JdquNU > XSPUT Y @ = XSPUT Y IJUT) Jo}

ddo*swusyodoy
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212

G abey

=+ UTw bsu 1e2071 ‘xew bsu => xew bsu 1e2071 {utw bsu = utw bsu 1e20] ‘OuT bsu + uTw bsu = xew bsu jed0) jut) Joj}

JTpUSY
{

£(S311NS9J XTJleWJIRAOD 31Se] ‘()J1S SWeud)T4)d]1T) XTJIRWJIRAOD 9ITJM
‘,1ept, >> T - UTW bsu >> ,:xew bsu @:uTtw bsu , >> y'[XapuT 41]sSwJar 71 Yy >>
WPY o, >> 7T [X9pUT 41]swael Ty
>> 17, >> ()J41S°[XopuT XT4o4d]xTioad >> , d-XTJIIBWIBAOD/SS)T4 XTJ1RWJRAO)/9dJRYS (QHd/. >> SWeud Tl
‘(41s Ardwd)Jais-aweua) Tt

{
}

(0 =i (()43s D°()J1S 'BWRUDIT4)dN0WRI) 3T
{(S11NS9J XTJlewdenod 31sey “()41S 27 ()J41S SWeus)T))d]1Tl XTJleWJIeAOD pead
‘,1epr, >> T - UTW bsu >> ,:xew bsu @:utw bsu , >> y [XapuT 41]sSwdar 7 Yy >>

‘(,91T4 butioop 40443, )d0443d

_ _ _ _ _ WY W >> 77 [X9puT 41]
SWdy 1T Y >> i1 , >> ()41S°[xapuT xT4a4d]xT4odd >> , d-XTJiewienod/dws]/qss/a24eys aHd/. >> sweusalTt
‘(41s Ardwa)Jis-aweua) Tl

}
(++X9puUT XT494d ‘€ > XOpuT XT4oJdd {@ = X9puTl XTJaJd 3ut) Joj}
}
(++X9PUT 41 ‘SwWJd} 7 Y 40 Jaqunu > XIPUT 41 ‘@ = XSPUT 41 3JUT) J0OJ
(T)3T#
{(S11NnS9J XTJlewJdenod isey ‘// ‘(T - uTw bsu ‘@ ‘xew]]1® ‘UTtw)]1® ‘J4aqunN 1l)XTJlewderod uab
.33 ., >> JaqunN || >> ,ABojodoy, >> [z]xTia4d
‘.31 . >> Jaquny Il >> ,Abojodol, >> [T]xT4oud
‘.11 ., >> JaqunN Il >> ,Abojodol, >> [@]xT4oud
‘[€1xT)04d wesu1sbuTalsSo: 1p1s
}

ddo - swusyodoy
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9 abey

(0 =i (()43s D" ()J1S°BWeUd|T4)dA0Wa]) 4T

£(S11NS9J XTJ1BWJIBAOD 1USJJND “()J1S D27 ()J1S OWRUD|T4)D) T4 XTJIRWIRAOD peal
Tulep,

>> Xew bsu 1e20] >> ,:xew bsu , >> uTw bsu 1e20] >> ,:UTW bsu , >> Yy [X9pUuT 41]swdar 7 Yy >>

WiY o, >> 70 [XSpuT 41]swidl Ty

>> 7 . >> ()J43S°[X9puT xT4ouad]xTiouad >> , d-XTdiewdeaod/dws]/qsSS/24eys aHd/. >> SWeua T4

‘(415 Ayrdws)Jis-aweua) Tl

{9114 1eT1Jed paiedausb isnl syy peoy//

{

}
(0 =i (()43s 2" ()43 sweus)T})anowdd) 4T
{(s11nsaJ XTJlewdeAod 1sel “()d43S 27 ()J1S dWeus)T4)d1T XTJlewlseAod pead
‘,1epr, >> T - UTIW bsu 1e20] >> ,:Xew bsu @:utw bsu , >> Y- [XSputT J41]swtal T Yy >>
WiY o, >> 77 [X9puT 41]swael Ty
>> 17, >> ()421S°[xopuT xTodd]xT4odd >> |, d-XTJIJBWIBAOD/SD1T4 XTJ1eWIRAO)/DJBeYS (QHd/. >> dWeud T4
‘(415 Ardws)Jis-aweua) Tl
91T4 11n4 1se) ayy peoy//

‘(,91T4 bButio1oOp 40443, )d04u43d

}

(++X9pUT XT4o4d ‘€ > XIpuT XTJaJd (@ = X9puT xT4a4d 3uT) J0}

}

(++X9pUT 41 ‘SwWJd3 T Y 4O Jdqunu > X3PUT 41 ‘@ = XSPUT 41 IUT) 40}

{(S11NS9J XTJ1BWJIBAOD 1USJUND ‘// ‘(Xew bsu (€207 ‘uTw bsu 1201 ‘Xew]]l® ‘UTw))® ‘JaqunN 11)XTJiewdeaod uab
TUPUD I I PIS >3 sk s koo sk ok ok o ok ok ok ook ok o o ok ok o ok sk ok o ok sk o o ok ok o o sk ok o o ok o o o sk o o ok ok o o ok ok o ook ok o o sk ok o o sk o o ok sk o o ok ok o o ok ok o ok ok o sk ok o ok sk ok o ok ok ok ok ok ok ok ok ok oK oK K K

>> 1N02::p3s
{1pua::p1s >> xew bsu 1ed30] >>

. = Xew bsu ‘, >> xewyl® >> , = Xewj)ls ‘, >> JaqunN 1] >> ,ABojodol Jo) XTJdlewdeaod butoq x, >> 1N0D::p1s
TUPUD I TIPS >3 ok s ook sk ok ok ok ok ok ook ok o o sk ok o ok sk ok o ok ok o o ok ok o o sk ok o o ok ok o o sk ok o ok ok o o ok ok o ook ok o o sk ok o o sk ok o K sk ok o ok ok ok ook ok o ok ok o sk ok o ok sk ok o oK ok ok o K ok ok ok ok ok KoK K K

>> 1N0D::p3s
}
(out bsu =+ xew bsu 1ed0] ‘T + Xxew bsu

ddo*swusyodoy
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214

| abeqd

(Xxew bsu 3uT ‘uTw bsu JUT ‘Xew)1d JUT ‘UTWI]® IUT ‘JSquNN |] IJUT)XTJI3ewienod uab proa
IXTJyew 33UETIBA0) @1edausb 03 uotidung //

‘9 uaniad

1pud::ip3is >> ,u\u\, >>

UTW Wl<-mou >>

, i, >> Jnoy wi<-mou

>> , , >> Aepw Wl<-mou >> ,-, >> (T + UOW Wi<-MoOU) >> ,-, >> (QOGT + JedA wi<-mou) >> , 1e papuju\, >> IN0J::p31s
‘(19)awtiied0] = mou
mou awtl 196 //  f(@)BWT} = 1}

{

£S11NSaJd” XTJ1RWJIBAOD 31SE| 93313p
£511NS3J4 XTJ1PWJIRAOD 1USJJND 31319p

£(S11NS9J XTJlBWJIBAOD 1SE] ‘S1]1NSaJ XTJlBWJeAOD 1udJddnd)Aedde XTJlewieAaod om} aJdedwod

1(S31NS9J XTJIBWJIRAOD JUDJIND ‘()J1S SWEUD|TS)D]1T4 XTJIBWIBAOD DITJM
‘,1epr, >> Xew bsu 1e20] >> ,:Xew bsu @:utw bsu , >> y'[XdpUuT 41]SwJa1 7 Yy >> B
T
>> 17, >> ()J41ST[X9puT XTiodd]xTiodd >> , d-XTIIBWIBAOD/S9)T4 XTJlewJeno)/aJeys QHd/. >> dWeud) Tl
‘(415 Ayrdws)Jis-aweua) Tl

{(s1]1NSaJ XTJleWwWJBAOD 1SB] ‘S1]1NSaJ XTJlewJdeAod 1uaJduand)Aedde XTJlewldeaod 01} ppe
"S9TJ9S 9]1T4 11N4 UT 1XdU 01 dABS pue 91TJ )etided syl 01 91T 11N 9yl ppe//
{

}

‘(,91T4 Buti®1®p J04UT, )a0aa8d

ddo - swusyodoy

{
{

*[xoput d41]swisy Ty

214



215

THE CODE

A.3.

g abed
(0)IT#
$TpuUs#
£(3714 0L 3IAVS 3D40d4)ys @31edausb-swisiodol
(0)IT#
A60710d01 ud44ND JO) XTJIBWIBAOD @31e1Nd1Ed //
0} popoau SOTUOWJey 1edtdayds puty) // ‘()ys o1edsuab<-swiarodol
Jo) XTijeliienod puty //
01 SanjeA y pue 7 13Ss // f(SwJd1 7 Y 4O JdqWNuU ‘SwJddl T Y)IST] 7 pue Yy 13S<-swiarodoly
{
‘yeadq
‘(xew bsu ‘utw bsu ‘xew]]1® ‘uTw)]d)swJta3odol 2 mdu = swialodoiy
131nejap
!yeadq
‘(xew bsu ‘utw bsu ‘xew)]1® ‘uTw)]d)eswJaa310dol > mdu = swidiodoiy
16 9sed
!yeadq
‘(xew bsu ‘utw bsu ‘xew))® ‘utw))d)/swJdaiodol > mdu = swialodoi
1/ ased
eadq
‘(xew bsu ‘utw bsu ‘xew)]1® ‘uTw])d)gswJaaiodol 2 mdu = swialodoiy
1 ased
yeadq
‘(xew bsu ‘utw bsu ‘xew]]1® ‘uTw)]d)swaa3odol > mdu = swidlodoiy
:T ased
}

(43quNN 11) Yd23TIMS
‘swJa910d014 swiairodol >

ddo*swusyodoy

215



APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E,, Es, B; AND E,

216

6 9bed
{
{
{
B B {
‘[ysepw] [ysep11a] [w][119](924N0S XTJleWEAODy) =+ [ysepw][ysep119][w][119](1SOp XTJIBWEAOD)
B }
(++ysepw :(Z % 113 XVW) => ysepw @ = ysepw 3uT) Joj
B }
(++ysep11® ‘773 XVW => ysep11d ‘@ = Ysep11d IUT) Joj}
_ }
(++W (2 % 773 XVW) => W @ = W JUT) Jo}
}

(+4112 ‘773 XYW => 11® ‘0 = 11° IUT) Jo}
}

(924N0S XTJ3BWEAOD 4} XTJIBWEAOD::SWJ930d0] O ‘3S9P XTJJBWEAOD 43} XTJIBWEAOD::sSwid30do} D)Aesde” XT431BUWIBAOD 0} ppe PIOA
S1UBWa1® XTJlew IIUBTIEA0d 01 buTppe Jo) uoTidund //

{
‘swJiaro0doyl 93a)9p
sxx XTJlew 9OUBTIBAO0D 9yl puts 01 uo s20b mou 1ng SWiis10doy //
paindwod 31sn[ A11eutbTdo 11 931edauab U sseyd SWi910d0T 9yl sxx // ‘()11 91edsuab<-swiarodoy
JTPUS#
{1pud::ip3s >> ,I, >> 9N1BA udniaJ
"~ bPewtr  >> , + , >> 9N1BA UJNIDL  JeAd  >> , =U(S @ = €U ‘T- =gu ‘T =TU ‘@ =W ‘Z =719 JOJU\, >> 3n0D::p31S

(0'T-‘T'0‘7)Yys @21ed8uab’swis10dol = anjeA uaniad aqnop xa1dwo)y™

ddo - swusyodoy

216



217

A.3. THE CODE

0T obed

(++ysepu :(Z x 173 XVW) => ysepw :ysep11d® - 773 XVW = ysepw 3uT) Low
(++ysep11@ 773 XV => Ysep11d :Z = ysep)1d 3uT) Low
(++W (2 % 7173 XVW) => W 1119 - 773 XVW = W JuT) Low
(++119 1773 XVW => 11® ‘¢ = 11@ uT) Low

$()urw: :<d1qNOP>S3ITWT] DTJBWNU::pP3S = SN1RA PAYd3ew uou Xew 31qnop
() xew: :<d1qNOP>SITWT] JTJIBWNU::PIS = SN|BA PIYDI}LW UOU UTW 319nop
Y ()UTW: :<d1qNOP>SITWT] JDTJBWNU::pP1S = SN1BA paydlew Xew ajgnop
f()xew: :<d1gNOP>SITWT] JTJBWNU::P1S = SN]BA paydiew Uutw agnop
‘10000°'0 = 19A979Jedwod a)1gnop 3Suod

{()xew: :<d1qNOP>SITWI] JOTJBWNU::p1S = JLIP UTW d)qnop

‘0 = 44Tp Xxew ¥1qnop

‘anu} = j1eA udniaJd jo0q

!0 = Junod ydjewssTw ubTS 3JuTt

! = 1uUNOD 049z BUO 3JUT

‘9@ = 1UN0d 0J43Z y10q JuT

‘@ = 1Unod ydlew ou ut

‘@ = Junod ydjew jut

! = unod 91q9Tssod 3JuT
‘@ = 3unod 1enide jut

‘0 = #3TIp 18303 @19nop

‘4JTp °1qnop
}
(Z XTJ43BWBAOD 41} XTJIRWEAOD::SwJ230d0} D ‘T XTJIBWBAOD 43} XTJIBWeAOD::swid30dol D)Aeade” xTJdjewdenod om} oJdedwod j00q
P (XTJ1ew 35UTEIEeA0D Lo 2dusabuaAuod 4ol YI9yd 01 pasn) sAedde omy BuTJedwod Joj uoTidUNg //

{

ddo*swusyodoy

217



APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E;, Es, E; AND Ej,

218

1T 9bed
{
0 = J4TP
}
9s19
. o {
‘T - (1A T XTJleWeAOD / 1BA g XTJIBWEAOD) = JJTIp
}
((1en Z XTJieweaod)sqe} > (1A T XTJlewenod)sqej) JT 9S19
{
‘T - (1BA Z XTJieweaod / 1A T XTJleweaod) = JIIp
}
((1en 7 XTJiewenod)sqe} < (1A T XTJlewenod)sqey) IT
}
(0 =i 1A Z XTJ1eWEAOD B% @ =i 1A T XTJ3}eweA0d) JT
B - o o {
‘[ysepw][ysep11a][w][119](Z XTJ1eWeAOD) fewt = j1BA g XTJleweaod
‘[ysepw][ysep112] [W][119](T XTJiewenody)  bBewT = 1A T XTJ1BWEAOD
}
9519
B - o o {
‘[ysepw][ysep112][w][119](Z XTJ1eweAody) 1e94 = 1BA g XTJleweaod
‘[ysepw][ysep112][W][119]1(T XTJiewenody)  1ead = 1A T XTJ1BWEAOD
}

(0 == pT 1Jed) 4t

‘1eA g XTJleweaod a1qnop
‘1eA T XTJieweAod ajgnop

‘++3uUnod 91qtssod

}
(++pT 34ed (g > pT 3ded {p = pT 3Jded jur) Joj

ddo - swusyodoy

218



219

THE CODE

A.3.

Z1 9bed

(1eA T XTJleweAod)sqe}

9N1EeA paydlew uou xeuw

((1eA T XTJlewenod)sgej > dN1EA paYdjew UOU Xew) JT

(1eAn T xTJdiewenod)sqey

9n1eA paydiew uou utw

((1eA T XTJleweAod)sqej < SN1EA paydilew uou utw) JT

! (1BA T XTJlewenod)sqey
((1en g XTJleweAod)sqey}
‘(1eA g XTJiewenod)sqel
((1en g XTJieweAod)sqeyl
{(1eA T XTJlewenod)sqey
((1en T XTJleweAod)sqey}
‘(1eA T XTJlewenod)sqel
((1en T XTJleweAod)sqeyl

‘++3Un0d ydiew ou
!3s1es = 1eA uJniad

as19

9nieA paydiew xeuw
Sn1eA psaydilew xew) JT
anjeA paydiew uTw
9N1eA paydlew utw) JT
anieA paydiew xeuw
9n1eA paydlew xew) JT
anjeA paydiew uTw
9n1eA paydlew utw) JT
‘++3Unod ydiew

yolew 1dexa se 1eady//

}

(19n9704edwod > 14TpP) 4T

“++pc:ou\Wm:Hum
“3JTIP =+ JJTIp 1e310}

"14TP = LITP UTW
(34TP < 44Tp_uTw) 3t
'14Tp = 11TP Xxew
(34TP > J4TP Xew) 3T

}
(0 =< 447Tp) 41

ddo*swusyodoy

219



APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E;, Es, E; AND Ej,

220

€1 obed
. = JOJJ® 1euoTldoeJy UTW ‘, >> 3unod
>> , >, >> 19Ad7aJedwod >> , > , >> 1UN0d ydiew >> , ‘, >> 1UNOD 1enide >> , = SWwJdl pJadedwod, >> 1nod
f1pud::ipis >> ,--------- S31NnsaJd oJedwod --------- . >> 3n0d
!PaXT4::p1S >> 1n0d
{
{
{
{
B _ {
{4++1UN0D 0J43Z 3Uuo
}
CISE)
B -~ {
{4++3UN0d> 043z y3oq
}
(0 == 1A Z XTJ1BWEAOD RR @ == 1A T XTJIBWBAOD) JT
}
9s19
{
{
{++1uUn0d ydiewssTIw ubTsS
}
CIS )
{

! (1BA T XTJdlewenod)sqey
((1eA g XTJlewenod)sqey}
‘(1en 7 XTJiewenod)sqel
((1en g XTJieweAod)sqeyl

9n1eA paydlew uou xew
SN1eA paydlew uou xeuw) 4T
an1eA paydiew uou utw
9N1eA paydlew uou utw) 4T

Al Vo

ddo - swusyodoy

" ydlew ou
11pas
11pas
1ipas

{

220



221

THE CODE

A.3.

1 obed
T3aNIT >> ., 9UTIY . >> J1I4d >> . . >> ()J1SToWeud)T4XTJIBWIRAO) >> , JOJ 9ZTS 9)1T4 ped, >> 1N0D::pis
}
((3 XTJlewenod::swu230do} 2)J09ZTS =| 9ZTS4 91T4XTJIBWIRAO)) JT

{90 01 1T 1D09dX® oM 9ZTS @Yl ST 1T 995 01 MO9yd 91T4 9yl burpesad 24043q//
{(baQ::s0T::p1S ‘Q)bBY99S 91 TLXTJI1RWIRADD)

1()b1191 91 T4XTJ1RWIRAO) = 9ZTS) 91TiXTJlewseno) Buoy Huoy

!(pus::sotr::p1s ‘p)HXOS D1 TLXTJIRWIRAD)

!(Aueurq::soT::p1s ‘()J41S 2°()J1S BWRUSTIXTJIIRWIRAO))USAO D) TLXTJIRWIRAD)

}

(T- =i OI0 Y “()41S 2" ()J41S OWRUSITIXTIIRWIRAO))SS3IIR) 4T

£()J3s D'BWeUd|T} >> SWERUD|TIXTJILWIBAO)

{91 TIXTJ1LWIRAO) WEDJISLT: :PS

{3WeUd | TJXTJ1BWIRAD) Wead1SBuTI1S0: 1p1s
}
(S31NS9J XTJ1RWEAOD4 1 XTJ1BWEAOD: :SWJd10do} O ‘Sweud)Ts HUTJ1S::p1lS)d1TJ XTJJRWIRAOD peaJd ]00(
191TJ WOJ) XTJdlew S3UBTIEA0 HBuTpesd J0J uoTIdUNS //

{
‘1eA uJdnlaJd uaniad
f1pua::p1s >> 1UN0OD yd1ewsSTW UbBTS >> , = SUBTS 1USJDLLTIP, >> 1N0D::pP1S
{1pua::p1sS >> 1UNOD 0J4dZ BUO >> , = 0J4dZ WJdY dUO ‘, >> 1UNO0ID 0JdZ Yiog >> , = 0JdZ SWJd1 Yyiog, >> IN0D::p1s

{1pua::p1s >> anjeA paydilew uou xew >> ,:ixew , >>
9N1eA paydilew uou uTw >> ,:UuTW
>> JTJTIUDTIS::p1S >> 19Ad79J4edwod >> , ueyl Jaleadb JoJdd JPUOTIOEJL YITM SanjeA Jdol abued spnitubew, >> 1n0d::pis
!poXT4::iplsS >> 1N0D::p3is
f1pua::pis >> an)1eA paydiew xew >>
LiXew , >> 9njeA paydiew utw >> ,:UTW
. >> DTJTIUDTIS::p1S >> 19Ad7aJedwod >> , ueyl SSa)] JOJJd 1BUOTIDEJI) YITM SanieA Jo) abued apnitubew, >> 3n0d::pis
{1pu@::p31s >> (3unod 1enjoe
/ J4TP 12301) >> , = JOJJd (eUOT3IdeJ) dbeudAe ‘, >> JJTP XBWw >> , = JOJJD 1RUOTIOEJ} Xew ‘, >> J4TIp UTW >>

ddo*swusyodoy

221



APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E;, Es, E; AND Ej,

222

GT abed
{
(@) uaniau
1()®S012 91 TJXTJ3eWIRAO)
{((3 XTJlewenO0d::swi210d0} D)}J09ZTS ‘BlEP XTJIBWEAOD (4xJBYD))DITJIM D1 T4XTJIBWIRAO)
f,U\, >> dWeusaTs >> , 91T4 XTJlewJeAnod BUTITJIM, >> 1N0D::pls
f(()J1S D°"BWRUD)TL)D1TIXTJIIRWIRAO) WEDILSLO: :PIS
{
‘(T) uaniaa
fLU\, >>  INIT >> , 9uTy , >> 3J7I4 >> , SISTXd Apesdjle , >> aweud T) >> , 9\T4, >> IN0D::p1s
}
(T- =i (IO Y ‘()41S D> Bweus)T4)ssadde) 4T
}

(e1ep XTJ1BWEAOD4 1 XTJIRWEAO0D: :Swid1odol} O ‘sweud T4 BUTJIIS::p1S)d1T4 XTIIRWIRAOD 9FTJIM 700(
191TJ 01 XTJiew 33UBTIEeA0D HBUTITJM J0) uoTIDdUNS //

{

‘(@) uaniad

{
‘(T) uanmyau
fLU\, > 3INIT >> , 9UTl] , >> J1I4 >> , . >> ()J41S'dWeRUdTIXTJleWIRAO) >> , Uddo j0uU p1no), >> 3N0D::pi1s
}
9s19
{
{()95012 91 T}XTJleWILAO)
! ((3 XTJleweAod::swd2310dol D)J09ZTS ‘SIINSSJ XTJIBWEAOD (4JBYD))pedd 31 TIXTJIRWIRAO)
LU\, >> ()J1S'9WeUd|TIXTJIRWIRAO) >> , 91T4 XTJ1BWIBAOD BuTpesad, >> 1N0D::p1s
91TJ XTJJewJeaod ayl ut pead//

{

LU\, >>

‘(1) uaniau

ddo - swusyodoy

222



223

A.3. THE CODE

T abey

¥ S340D 40 d3IGWNN XVIW SUT}ap#

<y 1Jasse>

9pN1ouUTH#

ONg3AN dUTIap#//

! (a1qnop xa1dwo)” ‘S1qnop x91dwo)” )modd uTI1TNG S1qnop

x91dwo)y™

Mmodd> UT11TNG  1hoge Mouy 03} WIS 1,Ud0p JasAjeue apod ayl i1ng STY} pasau 3,upinoys //

<S3}TuT)1>
<x91dwod>
<J031J9A>

<y 0JutsAs/sAs>
<y pasTun>
<y-butdis>

<y peaJyid>

<y auwTl>
<y-oJdpuabayl 4s 1s6/1sb>
<x91dwod>
<QT1pP31sd>>
<J031J9A>
<y-ylews
<butais>
<WeaJ1ss>
<dTuewotr>
<weaJlsy>
<WeaJ}soT>

Spn1ouT#
apN1ouT#
9pN1ouUTH#
apn1ouT#
apn1ouTH
apn1ouT#
9pN1ouUTH#
apn1ouTH#
apn1ouT#
apn1ouT#
apn1ouT#
apn1ouTH#
apn1ouT#
SpNOUT#
apN1ouTH#
apn1ouT#
apn1ouTH
SpnouT#

“H SWY3L0d0L D SuT)op#
H SWY3L0dOL D 49puiT#

y-swiaayodoy D

y-swJayodoy D

223



APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E;, Es, E; AND Ej,

224

Z 9bed
JUT paubTsun ‘uTw ysep)1d IUT paubTsun ‘xew]1d JUT paubTsun ‘uTw)]d JuT paubrsun)iy ojeusual o1gnop xa1dwo)”

f(Xewl1d® W ‘UTwW)]® W ‘Xew)1d® W ‘uTw)ld w)ll 91edausb uaniad

v~ -~

()33 @3ea3uab a1gnop xadwo)

‘(7713 XYW = Xew 112 3uT paubTsun ‘g = UTW 119 JUT paubTsun)ys 9jelauab jut
! ()swad30dol 2~ 1BNJJTA

{(an1en xew bsu jur ‘snjea uTw bsu JuT ‘SnieA Xew 119 JUT ‘Sn1EA UTW 119 3JUT)swuad3rodol d
{(SwJd1 JO JdqWNU JUT ‘SWJUD] T Yx 3 SWISY T Y )IST]1 1 pue y 3138S pPIOA
{
‘97 919nop
‘y a1qnop
}

1 SWJal 7 Yy 32na3s

ST+ (2 o« 113 XYW IL T+ 1713 XYWI LT+ (2 % 7173 XvW) 1[ T+ 773 XviW] 1 XTJdlewenod aiqnop xa1dwo)  jsepadAy
:oT19nd

}

swaa210dol O sseld

anJl 37I4 0L IAVS 3D40d4 SuTiep#

JLVYONNYL ON SuTiap#

0S 113 _XVW SuTjop#
00T XVWN XV SuTiap#

y-swJayodoy D

224



225

A.3. THE CODE

¢ abey

‘9 @1qnop
‘y a1qnop

}

1 elep XTJ1leWBAOD 3JNJ3S

‘bsuu w jut

!xew bsu w jut 3Suod

‘UTw bsu w 3uT 3Suod
!Xew)1® w 3uT paubTsun 3suod
{UTW)1® W JuT paubTsun 3}suod

‘14 w @)1gnop 3suod

‘aweu Abojodor w BuTJalS::p3S

JTpUSH
!§ = seu0D JO Jdqunu JuT
9s19#
!T = S9J402 J0O Jaqunu 3JuT
ond3q 3JopIT#
:pa3d93ouad
_ B _ o B B B {
TIXVWN XYW + ENTIXVWN XVW + ZN]I[XVWN XVYW + INJEU U TU UOT3IDSJTIP pPunoj 3SJT4 W uaniad
}
(EN JUT ‘ZN JUT ‘IN JUT)XSPUT UOTIIBJTpP 39b JuT
{(I- = Sn1eA 1591 ysep w JUT ‘- = SN1BA 1591 W JUT ‘Xew yseplld

y-swJayodoy D

225



APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E;, Es, E; AND Ej,

226

v obed

‘€u juT
‘Zu juT
‘Tu jut
}

1 UOT1D29JTp 916UTS 32nJ43s

‘{
‘EN JuT
‘ZN Ut
YIN JuT
‘bsu jut
!1dxa @1gqnop xa1dwo)
{e19y31so0d a1qnop
!Tyd =1qnop
‘e1ayl oqnop
}

1 elep UOT1D9JTP 3INJ3S

‘97NN = eiep XTJdieweAod dw 4 1 elep XTJ1BWEAOD
!0 = swJd) 1 Y JO JdqWnNu w JUT

o
“TINN = 91T43IN0 3% WEDUISH0::p3s
“TINN = 91T43IN0 JLx WEDJJSJO::p3s
7NN = S1T4INO0 114 WESJ1ISL0::p1sS

[T + (Z % 113 XVW)1Sw S1T pue 119 auo Jo} XTJleweAaod 33 a1qnop xai1dwo)™
‘[T + (2 % 713 XVW)]1SW S1T pue 112 U0 JO) XTJleweAaod J| a1qnop xai1dwo)r™
[T + (Z % 113 XVW)]Sw SIT pue 119 U0 JOJ XTJleweaod || a1qnop xa1dwo)™
PIT + (XVWN XYW + XVWN XVW)]J3Mody SuoTiduny Jajsued a1qnop

PIT + (XVWN XYW « XVWN XVW)][T + 173 XVW]3 SuoTiduny Jajsuedi ai1qnop
ST+ (XVWN XYW % XVWN XYW)1[T + 773 XvW]L SuoTiduny Jajsuedl a1qnop

y-swJayodoy D

226



227

THE CODE

A.3.

G abey
1 eilep peaJyl 1J4eis :1 eiep ¥ysel swia1odol 3dnJis

‘{
‘ysepw ]1)1e Yysep)1]1® QU0 W U0 112 LU0 J0J swaairodoly 3)gnop xa1dwo)y” 3Fsuod
‘swu930dol jo usaqunu 3ut Huoy Huoy
!91T41N0 114 WEDJ1SL0::p31S

}

} elep peaJyy 3Jeis i} eiep 3se} 91TJM 3\T4 33} 3dnJ3s

NA

!Xew 119 jut

"119x 23Ut
B B B - - - }
1 eilep peaJyl 1Jdeis :1 ejep yseyl 1edTJayds 3ona3s

|
‘swJt210d01d 4 swddyodol D
‘adAypeadyl 1 adA1 peauyl wnud

}
1 eilep peaJyl 1Jeis 3dnJis
|

}
1 odA1 peaJyl wnud

H

1IM HL 'HS9 HL ‘119 Hl

{1ST] XSPUT UOTIIDJTPx 1} UOTIISJTIP 9106UTS 32na3s
!SD9JTpU JUT
‘bsu jut

}

1 SUOT1DJ9JTIP pue bsu 32nJ43s

y-swJayodoy D

227



APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E,, Es, B; AND E,

228

9 abed

£3Un0D ysSepw ¥20] 1 x21nhw peadyid
{119 Y201 1 x91nuw peadyad

f€U ZU TU UOTIDSJTP PUNO4 3SJT4 WR 3 €N ZN TN UOTIDBJTP

{1ST] SUOT1D9JTIP pue bsuy 1 1ST] SUOTIIBJTIP pue bsu
{3ST1 SUOT3ID9JTP SnbTun® 3 3ST) SUOTIDSJTP anbTun

{3unod> 3ST] UOT3D9JTIP °anbTun jut

:pa3d93oud

TIXVWN XYW % XVWN XVW % XVWN XVW]3} 3ST1 SUOT3D9JTp pue bsu 3 SUuoT3daJ4Tp pue bsu japadAy

e

+ (T % XVWN XYW)) (T + (Z % XVWN XVW)) x (T + (Z % XVWN XVW))]3 3ST1 SUOTIDSJTP onbTun 3 eiep UOTIDAJTP JapadAy
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SUOT1D9JTIP 2nbTun JoJ YS W U0 )12 auo-'eiep 11 = /Jys ajgnop xajdwor™

dd> - gswJaarodol >

‘[J4Tp 1uUdJUND 03 paielad J1p]

266



267

THE CODE

A.3.

G obed

(0 > weyep 13) It

f[4Tp 2US4JND](((2UN0D 1ST] UOT1DSJTP onbTun-eiep 11
« (ysepw 1ed01)sge)) + SUOTIDSJTIP anbTun JOJ YsS Yysepw 1€ ysep)1l® auo-eiep 11)
Z4ys o1gqnop xa1dwo)y
{[4TP 1USJJND]SUOTIDDJITP SNbTuUN JOL YS W U0 119 duo- eiep 11 = TJys ajgnop xajdwo)ry™
1 WJsyodoy Jo) se swes//

}
T Wis10d0Y Jo) se swes 2yl op anJy 4T // (0 == (I ® €U) B9 @ == ZU I3 @ == TU) JT 8513
{

{

B o o Y(((83Us x [49MmOd €XEu]T o suamod)
+ (94Ys x [J49MOd ZXEU]T 40 suamod) + (¥4Ys x [JoMod €ulT Jo sasmod) + Ziys) x
(((£4ys) fuod uTaI1TNG 4 [J49MOd €XEU]T BN 40 saamod) + ((G4ys)[uod uTi1ING 4 [J8MOd gXEU]T BeN Jo sdemod)
+ ((€4ys)fuod uta1TNG 4 [J8MOd €ulT BaN 10 sdamod) + (T4ys)[fuod utiIng )) «
(T + GZ'0) =+ 11

I~
©
‘€8 (EU x €) = JOMOd EXEU JUT N
‘€8 (EU % ) = J9MOd ZXEU JuT
‘€ % €U = JB9MOd €U JuT
{
o o - A
‘81ys 1esd - = 8l1ys 1ead
‘9Jys  1eaJd - = 94ys  1edad
'PIUS  1BBJ - = p4ys  esd
‘Z4Ys ~ 1ead - = z4ys  qead
}
9s19
{

ddo - gswJaaiyodoy o



APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E;, Es, E; AND Ej,

268

9 abed

+« (ysepw 1e2071)sqe)) + SUOTIDSJTP oanbTun U0} YS ysepw 11 ysep11d 2uo0 'eiep 11)
= zJys a1qnop xa1duwo)
{[JTIP 1USJJND]SUOTIDDJITP SNbTUN JOL YS W U0 119 duo-'eiep 11 = TIys ajlgnop xa1dwo)
“(T-) + (1) ¢ (0 == (T 3 €u)) = €u mod THaN 3uT

}
¢ Wi930d03 Jo) se swes 8yl 03 8ndl JT// ((0@ < gu 88 0 == Tu) || @ < TU) 4T 8518
{

'( Z4Ys % (1dys)fuod utiyTng ) =+ 13

{
o o o A
‘Z4Ys  1E9J - = 7JYs  esad
}
9519
o o o A
‘ziys  bewtr - = ziys beut
}
usn® 8°T// (@ == (T ¥ ysepw 1e201)) 4T B
} N
(0 > ysepw 182071) 4T
{
o o o A
‘T4Ys  1B9J - = TJYys 1ead
}
9s19
o o \\ A
‘T4ys bewtr - = T4ys beut
}
usn® 9°1// (0 == (T % Ysepw 1e201)) 4T
b

dd> - gswJaarodol >



269

THE CODE

A.3.

| abed
o o o A
‘yiys  bewtr - = Hiys  beuwt
‘ziys ~ bewt - = z4ys bewt
}

usn® 2°1// (0 == (T ¥ ysepw 1e201)) IT
{!(24Ys) UGS« (ySepu’1-)Mod=z4ys} (e>ysSepu)it//

}
(0 > ysepw 1e201) 4T
{
o o o A
‘€4ys  1eaJd - = g€Jys  1ead
‘TIYys ~— 1esd - = TJys  1ead
}
CISE)
o o o A
‘elys pewt - = glys bewt
‘Tiys bewt - = T4ys bewt
-~ }
usAe 8°1// (B == (T ¥ Yysepw 1e301)) 4T
{*(14us) TUOS (w'T-)Mod=T4ys} (e>w)41//
}

(0 > weyep 11) It

‘[4TIp 1US44nd 01 pd1e1ad JIP](((3Un0d 1ST] UOTIDDJTIP onbTun-eiep 11
« (ysepw 1ed201)sge)) + SUOTIDSJTIP onbTun JOJ YS Yysepw ]11e ysepll® auo-eiep 11)
¥4ys a1gnop xa1dwo)y™
€1ys ajiqnop xajdwo)y™

‘[4IP 1USJJND 01} pd1e]1dJ JIP]SUOTIIDJITP 9nbTun JOJ YS W U0 119 LU0 eiep 11

_ _ o _ _ _ -~ o _ '[XVYWN XYW + €u
-TIXVWN XYW + Zu-1[XVWN XVW + TUJEU ZU TU UOTIDSJTP PUNOY 3SJTJL W = JTP 1USJJND 01 paileiad JTIp JUT

[4Tp 2uUSJ4JnD](((3Un0D 1ST] UOT1ISJTIP onbTun-eiep 11

ddo - gswJaaiyodoy o

269



APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E,, Es, B; AND E,

270

T abed

/% H €SWY3L0d0LD %/ STpud#

{
‘(ejep 3319 1 eiep sel swuas31odol)swaarodol 93e]1Nd]1EI PTOA 1BNIJTA
:pa3dajoud
! ()Lswad30dol 2~ 1BNJJTA
‘(an1en xew bsu jur ‘Snjea uTw bsu JuT ‘SnieA Xew 113 JUT ‘Sn1EA UTW 119 3UT)/swidjlodol >
:2T119nd
}

swtayodol 2 2119nd :/swud3rodol O sseld
.Y swiairodol o, apnyduT#

“H /SWY310d01D SUT4ap#
H ZSWY310d0L1D JoPUST#

Y- /swaar0dold

y-/swiarodoy D

270



271

A.3. THE CODE

T obed

£ (2unod ysepw X201%))20] x33hw peaayird
}
op

‘((z ‘T4 w)modd UuTI1ING % 9T) = B 1Su0d a1qnop xa1dwo)” 3Suod
‘15 ajqnop

‘[swd21 1 Yy 40 Jaqunu w]Jaenod33 a1qnop xa1dwo)y”

‘[swid1 1 Yy JO Jaqunu w]ieaod3l a1qnop xa1dwo)

‘[swa91 1 Yy 40 Jdqunu wliaenod]] a1qnop xa1dwo)

{11 9qnop xa1dwo)

‘I0'T + 0°0 = I @19nop x31dwo)y™ 3suod

‘ysepw 1e201 3JuT

}

(e3ep 3389 1 eiep sel swuo310dol)swadirodol @3ejndied::/zswuadlodol 2 pToOA

{

_ 1

()zswad3rodoy do~::/swud3rodoy >

{
!,LAbo10doy, = sweu Abojodoy w

}
(sn1en xew bsu ‘snjea utw bsu ‘snjean xew 118 ‘SnleA utw 119)swJaiodol D
(sn1ea xew bsu jut ‘sSniea uTw bsu jut ‘SnieA Xew 119 JUT ‘Sn1eA UTW 119 3JUT)/swadjodol d::zswid3rodol d

‘p1s 2oedsaweu Butsn
.U'/swid10d0o} D, SpN1IUTH

dd> - gswao10d01d

dd>o - /swas30dol >

271



CODE FOR COMPUTING THE CMB CORRELATION

APPENDIX A.

MATRIX FOR E;, Es, E; AND Ej,

272

Z 9bed

‘[4TP 2USJJND]SUOTIDDJITP SnbTUN JOL YS W U0 119 auo- eiep 11 = TJYys ajgnop xajdwory™
}
(0 < zu) It

3 B _£(3un0d> 3ST] UOTIDLJTp anbTun-eiep 33 > JTP JUSJJIND)3J3SSE
"IXVWN XYW + E€U][XVWN XVW + ZUI[XVWN XYW + TUJEU Zu Tu UOTIDSJTIP punoy 3ISJTJ W = JTP IUSJIJND JUT

{€UTUOT3D9JTp 91PUTS = €U JuT
{ZuruoT1daJTp 91PUTS = Zu uT
{TuruoT1daJTp 91PUTS = TU JUT
‘[xpuTda4Tp]

1ST] XOPUT UOTIISJTIP [IUN0D bSu]1ST] SUOTIDSJTP pue bsu = uoTId9JTP 91PUTS 1 UOTIDLJTP 91BUTS 3dNJ3S

1

(++XPUTOSJTP {SI9JTPU’[3IUNOD bSU]3ST] SUOTIIDJTIP pue bsSu > XPUTIIIJTP ‘@ = XPUTDDJTP JUT) JO}

‘0 + 0 =13

}

(++3unod bsu ‘bsuu w > junod bsu {@ = 3unod bsu jut) Joy
(4en0233) J09ZTS ‘@ ‘Jenod33)laswau

o
‘((Jenod31)4092TS ‘@ ‘Jenod3l)3raswsuw
‘((4en02]])J09ZTS ‘@ ‘JeA0d]])3aswaul

{

}
(ysep119-e3ep 13 < ysepw 18301) 4T

‘yeauq

£ (3uno0d ysepw X2018)3}207un” xainw peauyid

2 =+ ((3unod> ysepu-eiep 313)x)
{(3Unod ysepuwr eiep 11)x = ysepw 1es50)]

dd> - /swJaai0dol >

272



273

THE CODE

A.3.

¢ abey

- o B o $((Z4Us x TNSN1LJIN4@MOJTHAN)
+ Z4US) x (((T4ys)luod uTILTNG 5 ZNSNIAINJOMOJIBSN) + (T4Ys)[uod uTI1ING ) % (TO + G'0) =+ 11

H(T-) (1) & (0 == (TR (zu+ 1TUu))) ZNSN1dINJ®MOdTBON 3uT

{
o o o A
‘Z4Yys  1e9J4 - = zJys  ead
}
EISE)
o o o A
‘ziys pewt - = ziys bewt
}
usans 2°1// (0 == (T % ysepw 1ed01)) IT
}
(0 > ysepw 1e201) 4T
{
o o o A
‘T4Yys ~ 1E9J4 - = TJys  1ead
}
CISE)
o o o A
‘11ys pewt - = T4ys bewt
}
usnd 2°1// (0 == (T ¥ ysepw 1e201)) IT
}

(6 > wreiep 13) 4t
f[4TP 2US4JND](((2UN0D 1ST] UOT1DSJTP onbTun-eiep 11
« (Yysepw 1ed201)sqge)) + SUOTIISJTIP onbTun JOJ YS ysepw 11e ysepll® suo-eiep 13)
= z4ys a1qnop xa1dwo)y”

dd>o - /swas30dol >

273



APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E,, Es, B; AND E,

274

v obed
{
o o o A
Z4ys 1esd - = zlys 1ead
}
CISE)
o o o A
‘ziys pewt - = zlys bewt
-~ }
usne 9°1// (0 == (T B Yysepw 1ed301)) It
}
(0 > ysepw 18301) 3T
{
o o o A
‘Tiys ~ 1esd - = TJys  jead
}
9s19
o o o A
‘11ys pewt - = T1ys bewt
}
Usn® 9°T// (0 == (T % Ysepw 1e301)) 4T
}

f[4Tp 2US4JND](((2UN0D 1ST] UOT1DSJTP anbrtun-eiep 11

(0 > wreyep 313) 4t

+« (ysepw 1e2071)sqe)) + SUOTIDSJTP oanbTun U0} YS ysepw 11e ysepl1d 2uo-eiep 11)

= z4ys @1qnop xa1dwo)y”

{[J4Tp 1USJUND]SUOTIDBJTP onbTun JOJ YS W au0 119 auo‘eiep 11 = T4Ys ajqnop xa1dwo)y™

1 ii330d0Y Jo4 se awes 8yl op andl 4T //

dd> - /swJaai0dol >

Twi210dol J0) Se awes//
}
(0 ==2un"N” @ == (I % TuU)) JT 8S1®
{

274



275

THE CODE

A.3.

G obed
bsSU yaTm pajeTdosse WISI0WSOD putd //

‘++sw3y2310dol JO Jaqunu-eiep 13
. . JTpUS#
9 = 13 1eaJ
(T00OOO0ERO 0 > (33 1esJ4  )sqel}) JT
‘0 =11 beur
(T000000000 0 > (33 bewtr )sqey) 4t
*049z SsJaqunu )jews AJdan 2yew//

JLVONNYL ON J8pujiT#

JTpuUS#
_ _ _ _ {
{(3unod ysepw X201%)¥201un xa1nw pesJyid
TUPUD >3 ook ook ok s skok ok o sk ok o ok ok ok o sk ok ok sk ok ok o sk ok ok ok sk ok ok ok ok ok ok ok sk ok ok ok sk ok ok Kok ok Sk Kok ok KKk Kk ok ko Rk k. >> 3N0D
f1pus >>
.I., >> 11 bewt  >> sodmoys
>>, , >> 1} (e84  >> , = /]l , >> bsur[3unod> bsu]3}sT) SuoTidaJIp pue bsu >> , = bsu , >> 1nod

‘ysepw 1e20]
>> ,iysepu , >> yseplld-eiep 131 >> ,i(Seplis , >> w-eiep i} >> W, >> 1139°e3ep 11 >> ,i119, >> IN0d
uHUcw >> =************************************************H*****H**********M****=IVV 1nod
! (2unod ysepw X201X)X20] x21nw peadyid

3 B 3 }
(ysep wreiep 13} == ysepw 1e201) 4T
L1l ONILS3IL 3opsT#
“((ysep112-eiep 33 ‘I)Modd UTIITING 4 (119°e3ep 33 ‘I-)modd UTIING ) =x 313
{

“(Z4Us x (T4ys)fuod utiIng ) =+ 13

dd>o - /swas30dol >

275



CODE FOR COMPUTING THE CMB CORRELATION

APPENDIX A.

MATRIX FOR E;, Es, E; AND Ej,

276

Jenos3g

Jeaod3)

Jenodl]l

9 abed

[ysepw 1201 + 773 XVW]ISW SIT pue 112 QU0 JOJ XTJleWwWeAOD JJ'[XSPUT 41]SUOTIOUNS JdiSueJ] 'elep 11

‘e 1SU0D , [X9puT 41]
[ysepw 1e20] + 773 XVWISW S1T pue 112 U0 JO) XTJIBWEAOD J| ' [XSpUuT 4]1]SUOTIdUNS JdjSuedi‘eiep 11

‘e 1SU0d 4 [X9puT 41]
[ysepw 1201 + 773 XVWISW SIT pue 112 9UO JOJ XTJIBWEAOD || [XSPUT 41]SUOTIOdUN) JdjSuedl-eiep 11

WD

ONILS31l I°puiT#
}

(++X9PUT 41 ‘SwJd3 1 Y JO JSQWNU W > XIPUT 4] ‘@ = XOPUT 4] 3JUT) J0j}

‘33 % 30 =+ [X3pUT 41]Jen0d33
J210Wsod // ‘[bsu]lJamody suoTiduny JajSuedl: [XdpUuT 41]SUOTIDdUNS JdjSuedl eiep 11 x
[bsu][ysep)112 e1ep 11]3 SUOTIOUN) JDLSUBJL"[XSPUT 41]SUOTIDUNL JdJSuedi eilep 11 x
[bsul[119 e3ep 33]3 SUOTIOUNS UDJSUBIL [XDPUT 41]SUOTIdUNS JdjSuedl-eirep 33 = 3D
111 & 30 =+ [X3puT 4Lluenod3L
WJi210Wsod // ‘[bsulJomody SuOTIOdUN) JdiSUBLY"[XSPUT 41]SUOTIdUNS JdjSuedl elep 11 x
[bsu][ysep112 e1ep 11]3 SUOTIOUN) JDLSUBJL" [XIPUT 41]SUOTIdDUNS JdJSuedl Blep 11 &
[bsu][119"e1ep 313]L SUOTIDUNL JDJSUBUL' [XSPUT 41]SUOTIOUNS JdjSuedl eiep 1) = 1D
133 % 10 =+ [XSpuT 41]Jenodll
WJa30wWsod // ‘[bsulaomody SuOTIOUN} J3JSUBJY' [XDPUT 41]SUOTIDUNY JdjSuedl eiep 11 x
[bsu][ysep)112 eiep 11]1 SUOTIOUNY JDLSUBUL" [XSPUT 41]SUOTIDUNY JdJSuedl eiep 11 x
[bsu]l[11®'eiep 31]1 SUOT1ODUNS JDJSUBIY' [XdPUT 41]SUOTIDUNY Jdjsuedl‘eiep 31 = 1D
(++X9PUT 41 ‘SWJ®) 1 Y JO Jdqunu W > XIPUT 41 ‘@ = XSPUT 41 3IUT)

‘bsu’[31unod bsu]1sT) SuUOT1DdaJTIpP pue bsu = bsu

dd> - /swJaai0dol >

{

Joj

uT

276



277

A.3. THE CODE

>>

>>

>>

| abed
{
‘(9nJ31) °oTym
{
{
$TpudZ#
B o o B o o Aq
‘1pus >> sodmoysou >> [xaput 4l1]Jeaod33 bewt  >> sodmoys >> , , >> [XSpuT J1]Jenod33y  ead
. >> U [X9puT 4l]eiep xtdieweaod dw >> ,:y , >> 7 [X9puT 4l]eiep XxTJieweAod dw >> ,:7 33, >> 1h0od
‘1pua >> sodmoysou >> [XdpuT 4l]Jenod3] bBewr  >> sodmoys >> , , >> [XIpuTl 4l1]Jeaod3ql  ead
. >> U [XopuT 4l]eiep xtdieweaod dw >> ,:y , >> T [X9puT 4l]eiep XTdieweAod dw >> ,:7 31, >> 1h0d
!1pud >> sodmoysou >> [XdpuT 4l]Jenod]] bBewr  >> sodmoys >> , , >> [X9puT 41]JeAod]]  1ead
. >> U [X9puT 4l]eiep xtJdieweaod dw >> ,:y , >> " [X9puT 4l]eiep XTJdieweAod dw >> ,:7 11, >> 1h0od
eilep XTJ1BWJIBA0D 9yl 3no utdd BuTysal uaym//
‘e 1SU0d =, [X9puT 41]Jeaod33
‘e 1SU0D =, [XdpuT 41]Jen0d3L
‘e 1SU0D =4 [XSPUT 41]J4en0d]|
}
(ysep w-ejep 3} == ysepw 1e201) IT
9S19#

‘e 1SU0D 4 [X3puT 41]

dd>o - /swas30dol >

277
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MATRIX FOR E,, Es, B; AND E,

278

T abed

/% H 8SWJ3L0d0Ll) %/ STpud#

{
‘(ejep 3319 1 eiep sel swuas31odol)swaarodol 93e]1Nd]1EI PTOA 1BNIJTA
:pa3dajoud
! ()6swad3odol 2~ 1BNJJTA
‘(an1en xew bsu jur ‘Snjea uTw bsu JuT ‘SnieA Xew 113 JUT ‘Sn1EA UTW 119 3UT)esSwddlodol d
:2T119nd
}

swaayodol 2 2119nd :Gswuarodol DO sseld
.Y swiairodol o, apnyduT#

“H 6SWY310d01D SUT4ap#
H 6SWY310d0LD JOPUST#

Y psSwaarodold

Y gSwJiarodoy D

278



279

A.3. THE CODE

T obed

£ (2unod ysepw X201%))20] x33hw peaayird
}
op

‘((z ‘T4 w)modd UuTI1ING % 9T) = B 1Su0d a1qnop xa1dwo)” 3Suod
‘15 ajqnop

‘[swd21 1 Yy 40 Jaqunu w]Jaenod33 a1qnop xa1dwo)y”

‘[swid1 1 Yy JO Jaqunu w]ieaod3l a1qnop xa1dwo)

‘[swa91 1 Yy 40 Jdqunu wliaenod]] a1qnop xa1dwo)

{11 9qnop xa1dwo)

‘I0'T + 0°0 = I @19nop x31dwo)y™ 3suod

‘ysepw 1e201 3JuT

}

(e3ep 3389 1 eiep sel swuo310dol)swadrodol @3end1ed: :gswaalodol 2> pToA

{

_ 1

()eswad3rodoyl o~::gswud3rodoy >

{
! ,6Ab010do1, = sweu Abojodoy w

}
(sn1en xew bsu ‘snjea utw bsu ‘snjean xew 118 ‘SnleA utw 119)swJaiodol D
(Sn1ea xew bsu jut ‘Sniea uTw bsu jut ‘SnieA Xew 119 JUT ‘SN1EA UTW 119 3JUT)esSwdadjodol d::gswidirodol d

‘p1s 2oedsaweu Butsn
.U 6Swia10doy D, SpN1IUT#H

dd> - gswao10d01d

dd> - gswJiarodoy o

279



CODE FOR COMPUTING THE CMB CORRELATION

APPENDIX A.

MATRIX FOR E;, Es, E; AND Ej,

280

Z 9bed

‘[4TP 2USJJND]SUOTIDDJITP SnbTUN JOL YS W U0 119 auo- eiep 11 = TJYys ajgnop xajdwory™
}
((T 3 ¢gu) == (T 79 (qu+Tu)) WO <u) It

3 B _£(3un0d> 3ST] UOTIDLJTp anbTun-eiep 33 > JTP JUSJJIND)3J3SSE
"IXVWN XYW + E€U][XVWN XVW + ZUI[XVWN XYW + TUJEU Zu Tu UOTIDSJTIP punoy 3ISJTJ W = JTP IUSJIJND JUT

{€UTUOT3D9JTp 91PUTS = €U JuT
{ZuruoT1daJTp 91PUTS = Zu uT
{TuruoT1daJTp 91PUTS = TU JUT
‘[xpuTda4Tp]

1ST] XOPUT UOTIISJTIP [IUN0D bSu]1ST] SUOTIDSJTP pue bsu = uoTId9JTP 91PUTS 1 UOTIDLJTP 91BUTS 3dNJ3S

1

(++XPUTOSJTP {SI9JTPU’[3IUNOD bSU]3ST] SUOTIIDJTIP pue bsSu > XPUTIIIJTP ‘@ = XPUTDDJTP JUT) JO}

‘0 + 0 =13

}

(++3unod bsu ‘bsuu w > junod bsu {@ = 3unod bsu jut) Joy
(4en0233) J09ZTS ‘@ ‘Jenod33)laswau

o
‘((Jenod31)4092TS ‘@ ‘Jenod3l)3raswsuw
‘((4en02]])J09ZTS ‘@ ‘JeA0d]])3aswaul

{

}
(ysep119-e3ep 13 < ysepw 18301) 4T

‘yeauq

£ (3uno0d ysepw X2018)3}207un” xainw peauyid

2 =+ ((3unod> ysepu-eiep 313)x)
{(3Unod ysepuwr eiep 11)x = ysepw 1es50)]

dd> - gswdaaro0dol >

280



281

THE CODE

A.3.

¢ abey

- o B o $((Z4Us x TNSN1LJIN4@MOJTHAN)
+ Z4US) x (((T4ys)luod uTILTNG 5 ZNSNIAINJOMOJIBSN) + (T4Ys)[uod uTI1ING ) % (TO + G'0) =+ 11

H(T-) (1) & (0 == (TR (zu+ 1TUu))) ZNSN1dINJ®MOdTBON 3uT

{
o o o A
‘Z4Yys  1e9J4 - = zJys  ead
}
EISE)
o o o A
‘ziys pewt - = ziys bewt
}
usans 2°1// (0 == (T % ysepw 1ed01)) IT
}
(0 > ysepw 1e201) 4T
{
o o o A
‘T4Yys ~ 1E9J4 - = TJys  1ead
}
CISE)
o o o A
‘11ys pewt - = T4ys bewt
}
usnd 2°1// (0 == (T ¥ ysepw 1e201)) IT
}

(6 > wreiep 13) 4t
f[4TP 2US4JND](((2UN0D 1ST] UOT1DSJTP onbTun-eiep 11
« (Yysepw 1ed201)sqge)) + SUOTIISJTIP onbTun JOJ YS ysepw 11e ysepll® suo-eiep 13)
= z4ys a1qnop xa1dwo)y”

dd> - gswJiarodoy o

281



APPENDIX A. CODE FOR COMPUTING THE CMB CORRELATION

MATRIX FOR E,, Es, B; AND E,

282

v obed
‘ziys  1ead -
‘ziys = bewt -

usns 9°1// (0 == (I

‘T4ys  1ead -

‘T4ys = bewt -

usne 3°T// (0 == (T

f[4Tp 2US4JND](((2UN0D 1ST] UOT1DSJTP anbrtun-eiep 11

+« (ysepw 1e2071)sqe)) + SUOTIDSJTP anbTun U0} Ys ysepw 11e ysepy

‘[J4Tp 1USJUND]SUOTIDBJTIP 2nbTun JoJ YS W auo 119 auo-elep 13}
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