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ABSTRACT

I reevaluate the total cross section and energy loss parameter β for lepton

pair production from interactions of high energy muons with atomic targets. Using

a detailed structure function analysis, this evaluation is valid for both elastic and

inelastic scattering and includes the entire range of allowed momentum transfers.

The formalism presented here is applied to both e+e− and τ+τ− pair production.

This approach to the calculation of the cross section allows for a numerical evalua-

tion of the energy distribution of the differential cross section. Using this numerical

evaluation, and parameterizations for the atmospheric muon flux, I calculate the

differential flux of high energy electrons and taus produced underground from inci-

dent muons, considering both conventional and prompt atmospheric muon fluxes.

An approximate form for the differential charged current neutrino cross section is

presented and used to calculate the differential flux of electrons and taus produced

from incident neutrinos to compare to the production by incident muons. I also

calculate the underground flux of photons produced via muon bremsstrahlung and

discuss the electromagnetic background from these events. The relevance of high

energy lepton production for underground Cherenkov detectors is discussed.
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ABSTRACT

I reevaluate the total cross section and energy loss parameter β for lepton

pair production from interactions of high energy muons with atomic targets. Using

a detailed structure function analysis, this evaluation is valid for both elastic and

inelastic scattering and includes the entire range of allowed momentum transfers.

The formalism presented here is applied to both e+e− and τ+τ− pair production.

This approach to the calculation of the cross section allows for a numerical evalua-

tion of the energy distribution of the differential cross section. Using this numerical

evaluation, and parameterizations for the atmospheric muon flux, I calculate the

differential flux of high energy electrons and taus produced underground from inci-

dent muons, considering both conventional and prompt atmospheric muon fluxes.

An approximate form for the differential charged current neutrino cross section is

presented and used to calculate the differential flux of electrons and taus produced

from incident neutrinos to compare to the production by incident muons. I also

calculate the underground flux of photons produced via muon bremsstrahlung and

discuss the electromagnetic background from these events. The relevance of high

energy lepton production for underground Cherenkov detectors is discussed.
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CHAPTER 1

INTRODUCTION

1.1 Atmospheric Muons as Signal and Back-

ground

The study of atmospheric muons is relevant for many areas of high energy

physics. Atmospheric muons are created in air showers that are produced by cosmic

ray collisions in the atmosphere. When cosmic rays collide with air nuclei, secondary

mesons are produced via p+Nair → π,K,D, . . .+X [1, 2, 3, 4, 5, 6]. The decay of

these secondary mesons produces muons [5, 6, 7, 8, 9, 10, 11]. Studying the energy

distribution of the atmospheric muon flux provides information about hadronic cross

sections [1] at energies which can reach well above those that can be obtained by

current accelerator experiments. Information can also be gained about the primary

cosmic ray flux and composition.

When considering the atmospheric muon flux, there are two different produc-

tion mechanisms, commonly referred to as ”conventional” and ”prompt” production

[1, 3, 4]. Conventional muons come from the decay of light mesons, namely pions

and kaons [1]. Prompt muons come from the decay of heavier mesons. The main

contribution to the prompt atmospheric muon flux comes from the decay of charmed

mesons, mostly D mesons [1]. Because the cross section for light meson production

is much higher than that for production of charmed mesons, the conventional at-

mospheric muon flux provides the dominant contribution to the total flux for low

muon energies. At higher energies, the lifetime of light mesons becomes larger, al-

lowing them to reach the surface of the earth before decaying [4]. This leads to an

increased contribution from prompt production as muon energy grows. Studying

the atmospheric muon flux at high energy provides the opportunity to study the

onset of the prompt production in the atmosphere [3, 5, 11].



2

Atmospheric muons also play an important role in neutrino experiments [4,

10, 12]. The large flux of atmospheric muons has pushed neutrino experiments

underground or under ice. Even at large depths there is still a large background

from atmospheric muon signals. For instance, the ratio of downward going muons

to muon neutrino induced muons is on the order of 106 even at depths larger than

1.5 km under ice. In addition to the muon background, there is also an atmo-

spheric muon neutrino flux that is directly related to the production of atmospheric

muons via the leptonic decay channels of mesons [3, 4]. Due to high production

rate of atmospheric muon neutrinos at high energy, neutrino oscillations provide a

background to searches for cosmic and atmospheric produced tau neutrino signals

through νµ → ντ [3].

1.2 Muon Energy Loss

Muon energy loss is an important ingredient in the detection of muons. At-

mospheric muons are detected by underground and underwater detectors [10, 12,

13, 14, 15]. These experiments measure the atmospheric muon flux as a function

of energy and zenith angle. As high energy muons travel through matter, they

lose energy through ionization and electromagnetic interactions. One of the ways

to characterize the atmospheric muon flux is through the energy loss relationship

given by

−〈 dE
dX

〉 = α+

3
∑

i=1

βiE . (1.1)

Here, E represents the energy of the muon, X is the column depth, α represents

the energy loss through ionization, and β is the electromagnetic energy loss pa-

rameter. The subscript i that runs from one to three represents the three electro-

magnetic interactions that contribute to muon energy loss: lepton pair production,

bremsstrahlung, and photonuclear interactions.
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There is a long history of calculating the electromagnetic energy loss of muons

in transit [16, 17, 18, 19, 20, 21, 22, 23]. There have been extensive studies of the

cross section for lepton pair production from a fast muon interacting with nuclear

targets [16, 17, 18, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. Most of these calculations

have been restricted to the approximation of a static target with low momentum

transfers to that target. To account for the nuclear nature of the targets, the for-

mulas for the energy loss parameter β for electron-positron pair production have

historically contained a Z(Z + 1) dependence to account for scattering contribu-

tions from the nucleus (Z2) and atomic electrons (Z) [19, 20, 23]. For energy loss

through photonuclear interactions, an in-depth study on the dependence of β to the

momentum transfer of the radiated photon has been done to account for contribu-

tions from inelastic scattering. In Ref. [23] it was shown that at high muon energy,

contributions from high momentum transfers can not be ignored. For the muon

bremsstrahlung differential cross section, a similar calculation has been carried to

include the effects from target excitation [35]. Calculations of muon energy loss

through lepton pair production have typically been restricted to low lepton mass

and low momentum transfers. Muon trident production, µA → µµ−µ+X, has also

been calculated for nucleon [27, 30, 32, 33] and atomic targets [31, 32, 34]. The

focus of this thesis is muon production of lepton pairs, incorporating the full range

of allowed momentum transfers.

Signals of muon production of lepton pairs in underground detectors are ubiq-

uitous. For high muon energies, the dominant contribution to muon energy loss is

through lepton pair production. Most of the energy loss is through electron-positron

pair production with low energy transfers, however, there is the potential, through

rare events, for the outgoing leptons to carry a large fraction of the initial muon

energy. There is also the potential for creation of high energy τ+τ− pairs. Because
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atmospheric production of tau neutrinos is quite low, muon production of high en-

ergy taus may produce tau signals in underground detectors in an energy regime

where few are expected. The observation of muon produced lepton pairs at high

energy will help to characterize the atmospheric muon flux. High energy lepton

pair production also provides an opportunity to test the predictions of quantum

electrodynamics at high energy.

1.3 New Results

In this thesis, I present the general formulas for the calculation of the differen-

tial and total cross section and energy loss parameter β for lepton pair production

from a fast muon interacting with an atomic target. Due to a detailed structure

function analysis, these formulas are valid for a large range of momentum transfers

to the target. In addition to electron-positron pair production, the formulas pre-

sented here are also applied to muon production of τ+τ− pairs. I do not include the

calculation of muon trident production due to the complications that come from

having identical particles in the final state [30, 31, 32, 33, 34]. The results from this

work have been published with Reno in Refs. [36, 37].

In Chapter 2, the formalism used to calculate the differential pair production

cross section will be developed. Following the work presented in Ref. [27], target

recoil will be included in the kinematics. In the calculation of the total cross section

and energy loss parameter βpair, contributions from coherent scattering with the

nucleus, inelastic scattering, and scattering with individual atomic electrons and

nucleons within the nucleus will be included. The structure functions for elastic

scattering contributions are modeled by Tsai [26]. For inelastic contributions, the

structure functions are parameterized using data from HERA [38]. In accounting

for the different scattering processes through the structure functions, the different

contributions to the total cross section can be calculated individually to understand
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the relative importance of each process. The discussion of the parameterizations of

the structure functions will begin by looking at nucleon targets and then will extend

to include higher Z targets.

The results for the total cross section and energy loss parameter βpair for

both electron-positron and τ+τ− pair production are presented in Chapter 3. For

the total cross section, the separate contributions from coherent, inelastic, and

incoherent scattering are shown as a function of muon energy for both e+e− and

τ+τ− production. The results for the energy loss parameter βpair are compared to

the commonly used results from Kokoulin and Petrukin [18]. For both the total

cross section and energy loss parameter, results are given for nucleon as well as

higher Z targets. A summary of these results is presented in Ref. [36].

One of the benefits of the formalism developed here for the calculation of the

total cross section is that the energy distribution of the differential cross section

for fixed muon energy can be calculated numerically. The results of this numerical

evaluation of the differential cross section for e+e− and τ+τ− pair production are

presented in Sections 3.3.1 & 3.3.2 respectively. This numerical evaluation of the

differential cross section is used to calculate the differential flux of electrons and

taus that are produced in underground detectors from incident atmospheric muons.

As was noted earlier, atmospheric muons provide large backgrounds in searches for

neutrino signals. To compare the flux of electrons and taus produced by atmospheric

muons with the flux of electrons and taus produced by atmospheric electron and

tau neutrinos, an approximate form for the charged current differential cross section

for neutrino nucleon scattering is presented in Section 3.3.3.

One of the ingredients needed for the calculation of underground lepton pro-

duction from incident muons and neutrinos are the atmospheric muon and neutrino

fluxes. A summary of parameterizations for atmospheric lepton fluxes is presented
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in Chapter 4. These parameterizations include both conventional and prompt at-

mospheric fluxes. In Chapter 5, I will review the steps needed to go from an atmo-

spheric muon or neutrino flux to an electron or tau flux. The formalism presented for

the calculation of underground lepton production can be applied to many detector

geometries.

For electron production we have focused our calculation on the large under-

ground Cherenkov detector IceCube. IceCube is a cubic kilometer ice Cherenkov

detector located in Antartica at a depth of ∼ 1.5 km [10, 13]. The results for

our calculation of the differential flux of electrons produced from both conventional

and prompt atmospheric muons are given in Section 5.2.1. For comparison, we

have also calculated the flux of electrons produced from incident conventional and

prompt atmospheric electron neutrinos and antineutrinos. It is important to note

that in Cherenkov detectors it is very difficult to distinguish electromagnetic show-

ers produced by electrons from those produced by photons. For this reason, we

have also calculated the underground photon flux produced by high energy muon

bremsstrahlung to show the electromagnetic background from this process.

In addition to underground electron production, we also explore the possibility

of tau production in IceCube. To do this, we have calculated the flux of high energy

taus produced from both incident muons and tau neutrinos entering the detector at

a depth of 1.5 km. The results for tau production in IceCube are show in Section

5.3.1. In addition to IceCube, we also explore the possibility for tau production in

the mountains surrounding the High Altitude Water Cherenkov (HAWC) surface

array. The HAWC surface array is a Cherenkov detector located in Mexico that

sits in a mountain saddle at an altitude of 4.1 km [39]. HAWC has the potential to

see showers produced from the decay of taus that exit the surrounding mountains.

The results for the flux of taus produced from incident muons and tau neutrinos
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and antineutrinos exiting the rock of the mountains are given in Section 5.3.2. A

summary of the results for underground production of high energy leptons can be

found in Ref. [37]. In the final chapter, I summarize our results and discuss their

relevance in a broader scope.
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CHAPTER 2

NOTATION AND FORMALISM

2.1 Differential Cross Section

I begin my discussion of the differential cross section by looking at electron-

positron pair production. The formulas are general and can be used for τ−τ+

pairs by converting me → mτ . In the expression for the squared matrix element I

will follow the notation used by Kel’ner [25]. I use the notation from Akhundov,

Bardin, and Shumeiko [27], who included target recoil in their calculation of the

pair production cross section, for the kinematics.

There are six diagrams that contribute to lepton pair production in the scat-

tering of a muon with an atomic target. These contributing diagrams are shown

in Figure 2.1. The dominant contribution comes from the Bethe-Heitler diagrams

shown in Figure 2.1 (I) [17, 32, 33]. In the calculations that follow, I neglect the

contributions from the radiative diagrams (Figure 2.1 (II) and (III)). This is a rea-

sonable approximation due to the fact that the radiative diagrams only contribute

on the order of 0.1% to the total cross section [17] in µA scattering.

For electron-positron pair production, a muon with four momentum k interacts

with an atomic target of four momentum p. The outgoing muon, four momentum k1,

is accompanied by an electron and positron, momentum p− and p+ respectively, as

well as a hadronic final state, px =
∑

i=hadrons pi. It is useful to use the usual Lorentz

invariant expressions for the four momentum squared of the incoming and outgoing

muon, k2 = k2
1 = m2

µ, as well as for the electron and positron, p2
− = p2

+ = m2
e. For

the hadronic states, p2 = M2
t denotes the target mass squared and p2

x = M2
x denotes

the final hadronic state invariant mass squared.

The squared hadronic matrix element Hµν is written in terms of the hadronic

current Jµ and can be expressed as a decomposition into the structure functions
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k k1

p−
p+

q

Q

P
Px

k k1

Q

q
P Px

p−
p+

I II

III

Figure 2.1: Pair production diagrams for µA scattering. The Bethe-Heitler diagrams
(I) give the dominant contributions. Pair production from a photon radiating from
the incoming or outgoing muon and from the atomic target or final hadronic state
are shown in II and III respectively. The diagrams were produced using Jaxodraw
[40].

F1 and F2. Using this method of decomposition, the tensor describing the hadronic

vertex can be expressed as

e2Hµν =
1

2

∑

spins, X

〈X|Jµ|p〉〈X|Jν|p〉∗ (2.1)

W µν ≡ 1

4πMt

∫

Hµν(2π)4δ4(p− q −
∑

i=hadrons

pi)
∏

i

d3pi

2Ei(2π)3
(2.2)

= (−gµν +
qαqβ

q2
)W1 + (pµ − p · q

q2
qµ)(pν − p · q

q2
qν)

W2

M2
t

(2.3)

= (−gµν +
qαqβ

q2
)
F1

Mt

+ (pµ − p · q
q2

qµ)(pν − p · q
q2

qν)
1

(p · q)Mt

F2 . (2.4)

The expression for W µν is general and can be used to describe both elastic and

inelastic scattering. It can also be used for a variety of nuclear targets. All of the

target information is contained in the structure functions. The structure functions

depend on the virtual photon four momentum squared, q2 = (p − px)
2, and the

Bjorken variable xBj = q2/2p · q [41]. For elastic scattering xBj = 1, so the structure

functions only depend on the value of the momentum transfer. Note that our choice

for the sign of q is opposite that of the usual convention.
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The spin averaged matrix element squared describing the muon contribution

to the differential cross section is

Aαβ =
1

2
Tr
[

(/k1 +mµ)γα(/k +mµ)γβ

]

. (2.5)

The change in momentum of the muon is defined by Q ≡ k − k1. Following Ref.

[25], the squared matrix element contribution from the virtual photon piece of the

diagrams shown in Figure 2.1 (I), γ∗(Q)+ γ∗(q) → e(p−)+ ē(p+), can be written as

Bαβ
µν = Tr

[

(

γα

/q − /p+ +me

q2 − 2qp+

γµ + γµ

/p− − /q +me

q2 − 2qp−
γα

)

(/p+ −me) (2.6)

×
(

γβ

/p− − /q +me

q2 − 2qp−
γν + γν

/q − /p+ +me

q2 − 2qp+
γβ

)

(/p− +me)
]

.

Again, this expression is general and can be used for τ+τ− pair production with the

substitution of me → mτ .

Using these tensors, the differential cross section is expressed as

dσ =
4πMt

2
√
λs

AαβB
αβ
µνW

µν e8

q4Q4
δ4(k + q − k1 − p+ − p−)d4q (2.7)

× d3k1

2k0
1(2π)3

d3p+

2p0
+(2π)3

d3p−
2p0

−(2π)3
(2.8)

where λs = (2p · k)2 − 4m2
µM

2
t . To preform the phase-space integration, it is useful

to rewrite all of the variables so that they are expressed in terms of Lorentz invari-

ant quantities. These Lorentz invariants and the change of variables outlined in

Appendix A [27], yield the differential cross section which can be written as

dσ =
1

2
√
λs

AαβB
αβ
µνW

µν α4

2π4t2Y 2
d(PS) , (2.9)

where t = −q2 and Y = −Q2, and the phase-space integration denoted by d(PS)

is defined by

d(PS) =
dφ1dSx dY dV 2 dt dM2

x dφq

16
√
λY λs

dΓpair (2.10)

dΓpair = δ4(κ− p+ − p−)
d3p+

2p0
+

d3p−
2p0

−

(2.11)

=
1

8

√

1 − 4m2
e/V

2 d cos θe dφe . (2.12)
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To carry out the phase-space integration we have used the adaptive Monte-Carlo

Fortran code VEGAS [42].

The evaluation of the matrix contractions can be simplified by evoking the

gauge condition Bαβ
µν q

µ = 0. Using this condition, the only surviving terms of the

hadronic matrix element are

W µν = −gµν F1

Mt

+ pµpν 1

(p · q)Mt

F2 . (2.13)

Following Ref. [25], we define the quantity

fαβ =

∫

1

q4
Bαβ

µνW
µν d

3p+

2p0
+

d3p−
2p0

−

d4q

2q0
δ4(q +Q− p+ − p−) (2.14)

= (gαβ − QαQβ

Q2
)fA +

(

pα − (p ·Q)Qα

Q2

)(

pβ − (p ·Q)Qβ

Q2

)

fB

which depends only on the four-vectors p and Q. The terms fA and fB can be found

using the gauge condition fαβQβ = 0 as well as the contractions gαβf
αβ and pαpβf

αβ.

Using Eq. (2.14) allows us to project out the surviving contractions of the matrix

elements that can be expressed in terms of gαβf
αβ and pαpβf

αβ. These projections

were calculated using the symbolic manipulation program FORM [43]. Because the

expressions for the matrix contractions are quite long, I have not included them

here but direct the reader to Appendix B.

It is important to note that because the integrand is proportional to dt/t2 the

evaluation of the cross section is dominated by values near the minimum t value.

An approximate expression for tmin in elastic scattering is

tmin =
4m2

µm
2
e

E2
µ

(2.15)

as discussed, for example, in Appendix A of Ref. [26]. For τ+τ− pair production,

one replaces m2
e → m2

τ , so the minimum t is larger for τ+τ− production than it is

for e+e− production at the same energy. This has important ramifications for the

relative importance of the different scattering contributions when comparing e+e−
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pair production with τ+τ− pair production.

2.2 Structure Functions

In calculating the pair production cross section for high energy µA scattering

one needs to consider all of the contributions from the target. For nucleon targets,

there are contributions from both elastic and inelastic scattering. For high Z targets,

scattering can occur off of the coherent nucleus, bound electrons, individual nucleons

contained in the nucleus, or individual quarks contained in the nucleons. It is

instructive to look at the structure functions for the different processes separately.

For elastic scattering, the structure functions contain a delta function that

enforces the relation xBj = 1. To reduce the number of phase-space integrals it is

useful to rewrite this delta function in terms of the final hadronic state invariant

mass,

δ(xBj − 1) = tδ(M2
x −M2

t ) . (2.16)

In parameterizing the structure functions, the standard approach is to write them

in terms of τ ≡ t/4M2
t , where Mt denotes the mass of the target. The structure

functions for elastic scattering are normalized such that in the long wavelength limit,

t→ 0, the virtual photon does not see any target structure, F1(0) = F2(0) = 0 [26].

I begin my discussion on structure functions with elastic scattering. I start with

the simplest case of nucleon targets followed by a discussion of higher Z targets.

For high Z targets, I first discuss coherent scattering with the nucleus followed with

incoherent scattering off of nucleons and atomic electrons.

Finally, the structure functions for inelastic scattering is considered. For in-

elastic scattering, there is no delta function over xBj, so there is an additional

integral over the final state hadronic mass squared, M2
x . The structure functions F1
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and F2 for inelastic scattering are presented in terms of the inelastic proton struc-

ture functions. A nuclear shadowing function is multiplied to the nucleon structure

functions to extend the calculation to atomic targets.

2.2.1 Elastic Nucleon Scattering

For nucleon targets, the target mass Mt = M , where M denotes the mass

of the proton. The structure functions can be written in terms of the electric and

magnetic form factors, GE and GM ,

F el
1 =

t

2
G2

M δ(M2
X −M2) (2.17)

F el
2 =

t

1 + τ

(

G2
E + τG2

M

)

δ(M2
X −M2) . (2.18)

By treating nucleon targets as extended objects, the form factors can be written in

the traditional dipole form [44]. For the proton

G(t) = (1 + t/0.71 GeV2)−2 (2.19)

GEp = G(t) (2.20)

GM p = µpG(t) = 2.79G(t) (2.21)

where µp is the magnetic moment of the proton in units of nuclear magnetons. For

the neutron, the form factors are

GEn = − µnτ

1 + 5.6τ
G(t) (2.22)

GM n = µnG(t) = −1.91G(t) . (2.23)

These form factors are consistent with the results of the Rosenbluth separation

method, which analyzes at the angular distribution of the cross section as a function

of t [44].

A more recent review of the nucleon elastic form factors, which studies the

polarization transfer of polarized electrons to proton targets, appears in Refs. [44,

45]. Using this analysis, the electric and magnetic form factors for the proton can



14

Form factor a0 a1 b1 b2 b3

G′
Ep 1 -0.24 10.98 12.82 21.97

G′
Mp 1 0.12 10.97 18.86 6.55

Table 2.1: The central values of the fit of Kelly [45] for electromagnetic form factors
of the proton.

be written as

GEp = G′
Ep(t) (2.24)

GMp = µpG
′
Mp(t) (2.25)

where generically,

G′(t) =

∑n
k=0 akτ

k

1 +
∑n+2

k=1 bkτ
k
. (2.26)

The fit coefficients for the proton form factors are shown in Table 2.1. These fit coef-

ficients are found by looking at the transverse and longitudinal contributions to the

cross section to separate electric contributions from magnetic. This parametrization

for the electric and magnetic form factors is valid over a larger range of t values and

yields a better fit for the high t region than the form factors found using the Rosen-

bluth separation method [44]. However, since our calculation is centered around low

t, these two parameterizations yield essentially the same results in the calculation

of the total cross section and energy loss for pair production. For this reason, we

will use the simpler form for the electric and magnetic form factors given in Eqs.

(2.20-2.23) in the calculations that follow.

2.2.2 Coherent Scattering

For higher Z targets, the dominant contribution to the cross section, and also

to the energy loss, comes from elastic, coherent scattering off of the nucleus. The



15

target nucleus carries a charge Z and a mass of Mt = MA = AM (A ∼ 2Z). This

leads to a Z2 dependence in the structure functions. The structure functions for

nuclear targets can again be written in terms of the electric and magnetic form

factors and have the same form as those for nucleon targets

F coh
1 =

t

2
G2

Mδ(M
2
X −M2

A) (2.27)

F coh
2 =

t

1 + τ

(

(Fn − Fe)
2 + τG2

M

)

δ(M2
X −M2

A) . (2.28)

In the above equation, Fn is the electric nuclear form factor. In addition to carrying

information about the nucleus, the effects of bound electrons are also included in the

structure functions. For coherent scattering, bound electrons screen the coulomb

field of the nucleus [26, 35, 46]. This screening effect is seen by the presence of the

electric form factor for bound electrons, denoted by Fe in Eq. (2.28).

For nuclear targets, the electric components of the structure functions can be

found using the non-relativistic electromagnetic current operator [35],

I0(r) =
∑

j

δ(r − Rj) −
∑

i

δ(r− ri) . (2.29)

The atomic wave functions, which can be written as a product of wave functions

for atomic electrons and protons,

Ψ(r1, . . . , rZ;R1, . . . ,RZ) = Ψe(r1, . . . , rZ)Ψp(R1, . . . ,RZ), (2.30)

are also needed to determine the charge density of the target [47]. For coherent

scattering one needs only to consider the ground state wave functions of the atom

[26, 35]. In Eq. (2.30), rn denotes the coordinates of the atomic electrons and

Rn are the coordinates of the protons in the nucleus. Using Eqs. (2.29-2.30), the

electric contribution to the structure functions can be expressed as [35]

(Fn − Fe)
2 =

∣

∣

∣

∣

∫

〈0|I0(r)|0〉eiq·rdr

∣

∣

∣

∣

2

. (2.31)
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Using this equation, the electronic and nuclear electric form factors are

Fn =

∫

(

∑

j

eiq·Rj

)

|ψp
0(R1 . . .RZ)|2dR1 . . . dRZ (2.32)

Fe =

∫

(

∑

i

eiq·ri

)

|ψe
0(r1 . . . rZ)|2dr1 . . . drZ . (2.33)

For hydrogen, the electronic wave function of the ground state is know exactly.

Using the ground state wave function for hydrogen, an exact, analytic expression

for the electronic form factor can be found [26] and is given by

Fe(t) =
1

(1 +
a2
0t

4
)

(Z = 1) , (2.34)

where a0 = 137/me defines the Bohr radius. The nuclear electric and magnetic form

factors for the Hydrogen atom are the same as those for the proton found in Eqs.

(2.20-2.23).

Because the wave functions for high Z (above helium) targets are very com-

plicated, it is useful to find an approximate, analytical form for the form factors

that can be used for calculation. For these high Z targets, the electric nuclear form

factor can be approximated by [26, 46]

Fn =
Z

(1 + a2t
12

)2
(2.35)

a = (0.58 + 0.82A1/3) × 5.07 GeV−1 . (2.36)

An expression for the electronic form factor associated with electron screening can

be found in a similar way [26, 46, 48] yielding

Fe =
Z

(1 + b2t)
(2.37)

b =
184.15√

e
Z−1/3 1

me
. (2.38)

Though the above equations are only approximate expressions, they yield results

that agree to within ∼ 4% with those found by using the more precise Thomas-Fermi

form factors [48] and have a much simpler form useful for calculation.



17

For high Z targets, we ignore magnetic contributions to the coherent structure

functions, GM ≈ 0. This is a reasonable approximation because the net magnetic

moment for a multi-nucleon atom is small. In addition, for large atomic number A,

the factor τ which always precedes GM is also very small. For this reason, F1 can

be neglected.

2.2.3 Incoherent Scattering

Another component of elastic scattering is the incoherent scattering of the

muon off of the individual nucleons inside of the nucleus. Again, the structure

functions can be written in terms of the electric and magnetic form factors for

the proton and neutron given in Eqs. (2.20-2.23). Because the scattering is off of

nucleons, the target mass Mt = M , and the structure functions are given by

F incoh,N
1 = C(t)

t

2

(

ZG2
Mp + (A− Z)G2

Mn

)

δ(M2
X −M2) (2.39)

F incoh,N
2 = C(t)

t

1 + τ

(

ZG2
Ep + (A− Z)G2

En (2.40)

+ τ(ZG2
Mp + (A− Z)G2

Mn)
)

δ(M2
X −M2) .

The function C(t) in the above equations is the Pauli suppression factor defined by

C(t) =

{

3QP

4PF

(

1 − Q2
P

12P 2
F

)

QP < 2PF

1 otherwise
(2.41)

where Q2
P = t2/(4M2)+t and PF = 0.25 GeV [26]. The above expression is found by

approximating the protons and neutrons within the nucleus as two non-interacting

fermi gases [49].

A different parameterization for the structure function F incoh,N
2 ,

F incoh,N
2 = Z

t

1 + τ
F incoh

n δ(M2
X −M2) , (2.42)

comes from including transitions to excited states in the nucleon part of Eq. (2.31),

F incoh
n =

1

Z

∑

n 6=0

∣

∣

∣

∣

∣

∫

∑

j

〈n|δ(r− Rj)|0〉eiq·r

∣

∣

∣

∣

∣

2

, (2.43)
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and using the completeness condition for the set of states given by the relation [35]

∑

n

Ψ∗
n

p(R1, . . . ,RZ)Ψp
n(R

′

1, . . . ,R
′

Z) = δ(R1 − R
′

1) . . . δ(RZ − R
′

Z) . (2.44)

Using these relations, the form factor for incoherent nucleon scattering takes the

form [26, 35, 46],

F incoh
n = 1 − F 2

n (2.45)

where Fn is the nuclear electric form factor defined by Eq. (2.35). Though this

structure function has a simple analytic form, it does not take into account magnetic

effects. For the results presented in Chapter 3 for the total cross section and energy

loss parameter βpair, I use the structure functions defined in Eqs. (2.39-2.40) for

the contributions from incoherent nucleon scattering.

Another contribution to incoherent scattering effects comes from atomic elec-

trons. Atomic electrons, in addition to screening the Coulomb field of the nucleus,

also provide targets for the incoming muon [28, 35]. For electron targets the tar-

get mass Mt = me. The structure functions for scattering off of individual bound

electrons can be written

F incoh,e
1 = Z

t

2
δ(M2

x −m2
e) (2.46)

F incoh.e
2 = Z

t

(1 + τ)

[

F incoh
e + τ

]

δ(M2
x −m2

e) , (2.47)

where F incoh
e is the electric form factor associated with electron targets. In the

above equations, the magnetic form factor has been set to one.

To find a form for the electric form factor, F incoh
e , the same method is used

as above for including transitions to excited states and the completeness condition

given in Eqs. (2.43-2.44) using the electron wave functions [35]. This give the

relation [26, 35]

F incoh
e = 1 − ZF 2

e +
1

Z

∫

|Ψe
0(r1, . . . , rZ)|2

∑

i6=j

eiq·(ri−rj)dr1 . . . drZ , (2.48)
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with the expression for Fe given in Eq. (2.37).

For hydrogen, there is only one atomic electron, so the last term in Eq. (2.48)

vanishes. The electric form factor for hydrogen reduces to [26]

F incoh,e
e = 1 − Fe(t)

2. (2.49)

For higher Z atoms, the incoherent electric form factor for electron targets can be

modeled by the approximate parameterization [26, 35, 46]

F incoh,e
e =

c4t2

(1 + c2t)2
(2.50)

c =
1194√
e
Z−2/3 1

me

. (2.51)

The results found using this parameterization for the incoherent electron struc-

ture functions agree well with those found using the parameterization presented by

Kel’ner [28]. For standard rock (Z = 11), the above expression for the structure

function gives a result that is within 2% of that found using Eq. (46) of Ref. [28]

for muon energy Eµ = 100 GeV. For muon energy Eµ = 109 GeV, the result found

using Eq. (2.50) is ∼ 18% larger than that found using Ref [28]. Neglecting con-

tributions from additional diagrams that come from identical particle exchange in

µe− → µe−e−e+ is a reasonable approximation for the energies under considera-

tion here [28]. For both incoherent nucleon and electron scattering, the structure

functions are reduced by a factor of 1/Z relative to coherent scattering with the

nucleus.

2.2.4 Inelastic Scattering

Inelastic scattering takes place when the momentum transfer to the target is

above the threshold for pion production. At these momentum transfers, the vir-

tual photon scatters off of individual quarks in the nucleons. Because of this, the
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substructure of individual nucleons needs to be considered. For inelastic contri-

butions to the cross section, we use the proton structure functions parametrized

by Abramowicz, Levin, Levy and Maor (ALLM) [50], updated in Ref. [38]. The

ALLM model is a phenomenological parameterization that is valid for a large range

of xBj and t values, including the perturbative regime. Because inelastic scattering

is probing the structure of individual nucleons, the target mass Mt = M . For a

nucleus of charge Z and atomic number A, the structure functions for the nucleons

are given by

FN
2 = ZF inel

2p + (A− Z)F inel
2n (2.52)

=
(

Z + (A− Z)P (xBj)
)

F2p (2.53)

FA
1 = FN

2 /(2xBj) . (2.54)

The parameterization for the proton structure function F inel
2p in the ALLM model

can be found in Ref. [38] and in the appendix of Ref. [23]. The ratio of the

neutron structure function to the proton structure function, F inel
2n /F inel

2p , is taken

into account using the polynomial P (xBj) which is given by [51]

P (xBj) = 1 − 1.85xBj + 2.45x2
Bj − 2.35x3

Bj + x4
Bj . (2.55)

The structure function FN
1 is found using the Callan-Gross relation, namely 2xBjF1 =

F2.

Because we are interested in muons scattering with atomic targets, nuclear

shadowing effects also need to be included in the definitions of structure functions.

For this reason we incorporate the shadowing function a(A, xBj, t) ≃ a(A, xBj) [52]

a(A, xBj) =











A−0.1 xBj < 0.0014

A0.069 log10 xBj+0.097 0.0014 < xBj < 0.04

1 0.04 < xBj

(2.56)

into our calculation. Using Eq. (2.56), the structure functions for inelastic scattering
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off of atomic targets are given by

FA
2 = a(A, xBj)

(

Z + (A− Z)P (xBj)
)

F2p (2.57)

FA
1 = a(A, xBj)F

N
2 /(2xBj) . (2.58)

Since our calculation is dominated by low xBj values, the approximate scaling for

inelastic scattering contributions is roughly A0.9. The results for inelastic scattering

of virtual photons with proton targets found using the parameterization for the

proton structure functions in the ALLM model given in Ref. [38] are in good

agreement with the results for real photons scattering off of proton targets as t→ 0.
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CHAPTER 3

CROSS SECTIONS, ENERGY LOSS, AND DIFFERENTIAL CROSS

SECTION

3.1 Cross Sections

3.1.1 Nucleon Scattering

The total cross section for lepton pair production from muons scattering with

proton targets can be written as the sum of elastic and inelastic contributions

σµp = σel
µp + σinel

µp . (3.1)

Figure 3.1 shows a plot of the elastic and inelastic contributions to the cross section

as a function of initial muon energy for electron-positron pair production. As one

can see from the plot, the elastic contribution to the total cross section is ∼ 5 − 6

orders of magnitude larger than the inelastic contributions. This can be understood

by looking at the approximate expression for the minimum t value, Eq. (2.15). The

calculation for lepton pair production is dominated by values near tmin. Because

F2
inel
p is small for t ≪ M2, the inelastic contribution to the total cross section is

very small for electron-positron pair production.

For τ+τ− pair production, tmin is much larger for a range of initial muon

energies, so we expect to see a larger contribution from inelastic scattering. Figure

3.2 shows the elastic and inelastic contributions for µp scattering to produce tau

pairs. Inelastic scattering contributes between 30% and 60% to the total cross

section depending on intial muon energy for muon energies between 100 GeV ≤

Eµ ≤ 109 GeV. Overall, the cross section for e+e− pair production is ∼ 7 orders of

magnitude larger than that for τ+τ− pair production in µp scattering.
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Figure 3.1: Elastic and inelastic contributions to the cross section for e+e− pair
production in µp scattering as a function of initial muon energy.

3.1.2 Higher Z Targets

For higher Z targets, the total cross section can be written as the sum of

contributions from coherent, incoherent, and inelastic scattering,

σtotal = σcoh + σincoh,N + σincoh,e + σinel . (3.2)

For both e+e− and τ+τ− pair production, elastic coherent scattering with the nu-

cleus, which goes like Z2, gives the dominant contribution to the cross section at

high initial muon energies (Eµ > 103 GeV). For e+e− pair production, incoherent

electron scattering, which is proportional to Z, contributes ∼ 10% to the total

cross section for the muon energies considered here. The contribution to the total

cross section from incoherent nucleon and inelastic scattering are not significant. A

plot of the different scattering contributions to the total cross section for e+e− pair

production in standard rock (A = 22) is shown in Figure 3.3 (a).
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Figure 3.2: Elastic and inelastic contributions to the cross section for τ+τ− pair
production in µp scattering as a function of initial muon energy.

The different scattering contributions to the total cross section have a different

energy profile for τ+τ− pair production as seen in Figure 3.3 (b). For low initial

muon energies, Eµ = 100 − 1000 GeV, the contribution to the total cross section

from incoherent nucleon scattering is comparable to the contribution from coherent

scattering with the nucleus. This can be understood by looking at the t dependence

of the Pauli suppression factor in Eq. (2.41) and the approximate expression for

tmin in Eq. (2.15). For low initial muon energies, tmin is large for τ+τ− pair

production. Because of this, the Pauli suppression factor C(t) ≈ 1 and incoherent

nucleon scattering effects contribute a significant amount to the total cross section.

As the initial muon energy grows, tmin decreases and we expect to see the Pauli

suppression of incoherent nucleon contribution.

Another interesting feature of the cross section for τ+τ− production in Figure

3.3 (b) is the incoherent electron scattering contribution. The energy threshold to
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Figure 3.3: Contributions to the total cross section for (a) µA → µe+e−X and
(b) µA → µτ+τ−X for standard rock (Z = 11, A = 22) targets from coherent,
incoherent, and inelastic scattering.
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produce tau pairs off of electron targets is Eµ = 1.24×104 GeV. Once this threshold

is reached, the cross section for incoherent electron scattering grows rapidly and

at muon energy Eµ = 109 GeV it contributes ∼ 10% to the total cross section.

Inelastic scattering also contributes significantly to the total cross section for τ+τ−

pair production from muons scattering off of high Z targets, as was the case for

proton targets.

In addition to looking at the different contributions to the total cross section,

it is also instructive to look at the dependence of the total cross section on the

atomic number of the medium being traversed. Figure 3.4 shows the total cross

section divided by atomic number for electron-positron pair production from muons

scattering with a variety of atomic targets. Because the contribution from coherent

scattering with the nucleus, which is proportional to Z2, provides the dominant

contribution to the total cross section, there is still an increase in the total cross

section after it has been normalized by dividing out the atomic number for higher

Z targets.

3.2 Energy Loss

The electromagnetic energy loss parameter β is defined by the equation

β =
NA

A

∫

v
dσ

dv
. (3.3)

Here, NA is Avogadro’s number, A is the atomic number of the medium being

traversed, and v is the fractional energy loss of the incident muon. In the rest frame

of the target, the fractional energy loss can be expressed in terms of the initial and

final muon energies, v = (Eµ − E ′
µ)/Eµ. The energy dependence of the different

scattering contributions to the energy loss parameter βpair is similar to that of the

total cross section. Figure 3.5 shows the elastic and inelastic contributions to the

energy loss parameter βpair for electron-positron pair production as a function of
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Figure 3.4: Cross section divided by atomic number A for µA → µe+e−X as a
function of initial muon energy Eµ. Shown are proton (A = 1), hydrogen (A = 1),
ice (A = 14.3), standard rock (A = 22), and iron (A = 55.847) targets.

initial muon energy for muons interacting with proton targets. As can be seen in

the plot, the elastic scattering contribution dominates while the contribution from

inelastic scattering is suppressed by ∼ 4 orders of magnitude for muon energies

between 10 GeV ≤ Eµ ≤ 108 GeV.

For τ+τ− pair production, the contribution from inelastic scattering is com-

parable to that of elastic scattering. Figure 3.6 shows the contributions from elastic

and inelastic scattering for τ+τ− pair production for muons interacting with proton

targets. As can be seen in the plot, inelastic scattering contributes ∼ 30% to the

energy loss parameter βpair at Eµ = 100 GeV and steadily increases with increasing

initial muon energy. At Eµ = 109 GeV, inelastic scattering is the dominant source

of energy loss for τ+τ− pair production, contributing ∼ 80% to βpair for muon

production of τ+τ− pairs.
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Figure 3.5: Elastic and inelastic contributions to the energy loss parameter βpair for
e+e− pair production in µp scattering as a function of initial muon energy Eµ.

Figure 3.6: Elastic and inelastic contributions to the energy loss parameter βpair for
τ+τ− pair production in µp scattering as a function of initial muon energy Eµ.
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Because we are usually interested in energy loss of muons as they transit

material, it is useful to look at the energy loss parameter for heavier atomic targets.

A plot of the energy loss parameter βpair for electron-positron pair production from

muons scattering with atomic targets as a function of initial muon energy is shown

in Figure 3.7. For proton targets, βpair grows steadily as a function of energy. This

is not the case, however, for high Z targets. For high Z targets, the dominant

contribution to βpair in e+e− pair production comes from coherent scattering off

of the nucleus, as was the case for the total cross section. As the energy of the

incoming muon increases, tmin decreases (Eq. 2.15). Low t values correspond to

large distances. At large distances, screening effects from the bound electrons start

to become important and you see an overall decrease in the energy loss for high Z

targets at large initial muon energies.

Our results for the energy loss parameter βpair from electron-positron pair

production agree well with the commonly used results of Kokoulin and Petrukin

(KP) [18, 19]. At initial muon energy Eµ = 10 GeV, our result is 2.5% lower than

the result from KP for muons interacting with standard rock. At Eµ = 100 GeV, our

results agree to within < 1%, falling to ∼ 4% lower than those of KP at Eµ = 108

GeV. For a large range of initial muon energies our results agree to within < 0.1%

to the calculation done by Groom, Mokhov, and Striganov [21].

In addition to considering electron-positron pair production, it is also useful

to look at energy loss through τ+τ− pair production in higher Z targets. Figure

3.8 shows the energy loss parameter βpair for τ+τ− pair production as a function

of initial muon energy for muons in transit through standard rock. As can be seen

in the plot, for initial muon energies Eµ < 109 GeV, there is no drop off in βpair

showing that screening effects have not yet become important at this energy. This is

in contrast to e+e− pair production. This can once again be understood by looking
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Figure 3.7: Energy loss parameter βpair for proton, hydrogen (A = 1, Z = 1), ice
(A = 14.3, Z = 7.23), rock (A = 22, Z = 11), and iron (A = 55.847, Z = 26) targets
as a function of initial muon energy

at the value of tmin for τ+τ− pair production relative to e+e− pair production. Even

though βpair grows steadily with increasing muon energy for τ+τ− pair production

in this energy range, the energy loss from τ+τ− pair production is still suppressed

by more than four orders of magnitude relative to the energy loss through e+e− pair

production at Eµ = 109 GeV for standard rock targets. Overall, tau pair production

does not significantly contribute to the electromagnetic energy loss of high energy

muons for a wide range of atomic targets.

3.3 Differential Cross Section

3.3.1 Direct e+e− Pair Production

Using the formalism developed in the Chapter 2, the differential cross section

for direct e+e− pair production as a function of Ee, the energy of the electron
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Figure 3.8: Energy loss parameter βpair for τ+τ−pair production as a function of
initial muon energy for standard rock, A = 22

or positron, can be evaluated numerically. As with the calculation for the total

cross section, the differential cross section is dominated by very low momentum

transfers to the target. Because of this, the differential cross section is dominated

by the contribution from coherent scattering with the nucleus. There is about

a 10% contribution which comes from scattering with atomic electrons. For direct

production of electron-positron pairs, incoherent scattering with individual nucleons

in the target and inelastic scattering give negligible contributions. Because of this,

contributions from incoherent nucleon and inelastic scattering effects have been

neglected in what follows.

Figure 3.9 shows the differential cross section as a function of electron energy

for fixed incident muon energies of 103, 106, and 109 GeV for muons interacting

with ice targets (A = 14.3). Our numerical results are shown with the solid curves.

While we use our numerical results in the calculations to follow, Tannenbaum in
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Ref. [22] gives an approximate expression for the differential cross section for lepton

pair production as a function of fractional energy transfer v = (Eµ − E ′
µ)/Eµ for

initial muon energy Eµ and final muon energy E ′
µ. For low momentum transfers,

Eµ −E ′
µ ≃ Ee +Eē, the sum of the energies of the produced electron and positron,

and Ee +Eē ≃ 2Ee to first approximation. As a function of v, Tannenbaum has [22]

v
dσ

dv
=

28

9π
Z(Z + 1)(αrl)

2
[

(1 + z2) ln(1 +
1

z2
) − 1

]

f(e, v) , (3.4)

which can be approximately translated to a distribution in Ee. In the above ex-

pression, rℓ is the classical radius of the lepton produced and z = vmµ/4mℓ. We

keep the lepton mass mℓ general rather than setting it to me to allow a comparison

with our numerical results for τ+τ− pair production. The function f(e, v) is given

in two limiting regions [22],

f(e, v) =







ln
(

vEµ/6.67ml

)

unscreened

ln
(

184.15ml/meZ
)

fully screened .
(3.5)

To compare our numerical results with the expression given in Eq. (3.4) we have

used the lower of the two values for f(e, v).

It is important to note that using the approximation Ee = vEµ/2, the max-

imum positron energy that can be used for the differential cross section is Eµ/2.

Because we want access to the high energy tail of the distribution we have aug-

mented the value of the fractional energy transfer to be v ≃ 2Ee/(Eµ − 1
2
Ee). This

is motivated by a comparison of the results obtained using Eq. (3.4) and our nu-

merical results. The expression for v gives the positron energy as

Ee =
2v

4 + v
Eµ , v < 4 (3.6)

as a function of v. The dashed curves in Figure 3.9 represent the differential cross

section as a function of electron energy using the expressions given in Eqs. (3.4-

3.6). As can be seen from the plot, Eq. (3.4) can reproduce our numerical results

reasonably well using Eq. (3.6) for the positron energy.
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Figure 3.9: Differential cross section as a function of electron energy for µA →
µe+e−X for fixed muon energies of 103, 106, and 109 GeV. Here A = 14.3 and
Z = 7.23 for ice. The solid lines show our numerical result and the dashed lines show
the approximation of Tannenbaum [22] using v = (Eµ−E ′

µ)/Eµ ≃ 2Ee/(Eµ−Ee/2).

3.3.2 Direct τ+τ− Pair Production

While the previous section has shown that the approximate expression for

the differential pair production cross section found in Ref. [22] reproduces our

numerical results well for electron-positron pair production, it does not hold for

τ+τ− pair production. As can be seen from Eq. (2.15), tmin is proportional to the

square of the produced lepton mass. As the mass of the lepton mass increases, so

does tmin. The approximate expression of Eq. 3.4, while good for low momentum

transfers, does not take into account the q2 evolution of the structure functions.

High t values correspond to short distances between the virtual photon and the

target. At short distances, the contribution from coherent scattering decrease. Also,
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because the lower bound of the momentum transfer increases for heavier lepton

production, incoherent nucleon and inelastic scattering effects become increasingly

more important for increasing lepton mass.

Figure 3.10: Contributions to the differential cross section as a function of tau
energy for µA→ µτ+τ−X for fixed muon energy, Eµ = 106 GeV. Here A = 22 and
Z = 11 is used for standard rock. Indicated are the contributions from coherent
scattering with the nucleus (coh), inelastic scattering (DIS), and scattering with
individual nucleons (incoh-N) and electrons (incoh-e) in the target.

Figure 3.10 shows the contributions to the differential cross section as a func-

tion of tau energy for fixed incident muon energy Eµ = 106 GeV in standard rock.

The contributions shown are coherent scattering with the nucleus (coh), inelastic

scattering (DIS), incoherent scattering with individual nucleons in the target (incoh-

N), and incoherent scattering with atomic electrons (incoh-e). As can be seen in the

plot, inelastic scattering contributes up to 20% of the total differential cross section

for a large range of outgoing tau energies. Incoherent nucleon scattering can also not

be ignored for tau pair production. At the lowest tau energies, incoherent nucleon
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scattering contributes more than 10% to the differential cross section at this muon

energy. Kinematic threshold effects can also be seen in Figure 3.10 when looking at

the contribution from scattering off of atomic electrons. Because larger momentum

transfers need to be taken into account for τ+τ− pair production, we can only use

our numerical results to evaluate the energy distribution of the differential cross

section.

3.3.3 Neutrino Charged Current Interactions

In addition to calculating the energy distribution of the lepton pair production

differential cross section, we are also interested in the differential charged current

cross section for neutrino nucleon scattering. To be able to compare the expected

event rates of leptons entering an underground detector produced via pair pro-

duction from atmospheric muons with that of single charged leptons produced via

charged current interactions from incident atmospheric neutrinos, it is useful to have

an approximate form for the charged current differential neutrino cross section.

An approximate form for the differential charged current cross section as a

function of inelasticity, y = 1 − Eℓ/Eν , where Eℓ is the energy of the produced

lepton and Eν is the incident neutrino energy, can be found in Ref. [53]

dσν

dy
=

2mpG
2
fEν

π

(

0.2 + 0.05(1 − y)2
)

(3.7)

dσν̄

dy
=

2mpG
2
fEν

π

(

0.05 + 0.2(1 − y)2
)

. (3.8)

While this approximate form works well for relatively low incident neutrino

energies, Eν ≤ 10 TeV, and low energy transfer, it does not take into account

the y dependence and energy dependence that comes from an increasing sea quark

contribution to the parton distribution functions at higher incident neutrino energies

and energy transfers. Because the interest of this work lies with production of high

energy leptons that can be measured with large underground detectors, we propose



36

the following expression for the charged current differential cross section,

dσcc

dy
=

2mpG
2
fEν

π

(

a(Eν) + b(Eν)(1 − y)2
) 1

yc(Eν)
. (3.9)

where we have explicitly included energy dependence in our parameterization. Our

parameters a(Eν), b(Eν), and c(Eν) are split into two energy regimes. For neutrino

interactions these energy regimes are split by neutrino energy Eν
c = 3.5× 104 GeV,

and the parameters are given by

aν = 0.19 − 0.0265 (2.214− log(Eν
c /Eν))

2 (3.10)

bν = 0.036 − 0.0344 (1.994− log(Eν
c /Eν))

2

cν = 2.3 × 10−2 Eν < Eν
c ,

and for higher energies

aν = 0.060 (Eν
c /Eν)

0.675 (3.11)

bν = 0.169 (Eν
c /Eν)

0.73

cν = 0.66 × 10p

p = 1.453(log(Eν
c )/ log(Eν))

6.24 Eν > Eν
c .

For antineutrino scattering the energy regimes are split by antineutrino energy E ν̄
c =

1 × 106 GeV. The low energy parameters are given by

aν̄ = 4.89 × 10−2 × 10pa (3.12)

pa = −6.31 × 10−4 log(Eν̄)
4.05

bν̄ = 0.177 × 10pb

pb = −2.78 × 10−5 log(Eν̄)
5.9

cν̄ = 4.4 × 10−3E0.32
ν̄ Eν̄ < E ν̄

c .

Because the charged current cross section is dominated by the contribution from

sea quarks at high energy, we use the same parameters for high energy (Eν̄ ≥ 106
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GeV) antineutrino scattering as we use for neutrino scattering, Eq. (3.11).

To check the validity of our parameterization, we have also calculated the

differential charged current cross section for neutrinos scattering with isoscalar nu-

cleons using the CTEQ6 parton distribution functions [54]. For very small Bjorken

x, our numerical results use a power law extrapolation according to xq(x,Q2) ∼ x−λ

[55, 56]. Figure 3.11 shows the results from our parameterization given in Eq. (3.9)

with the parameters given in Eqs. (3.10-3.11) for neutrino isoscalar nucleon scat-

tering compared to the numerical results for neutrino energies from 50 GeV ≤

Eν ≤ 1012 GeV. The solid lines show the numerical results while the dashed lines

are for our parameterization. Figure 3.12 shows the same for antineutrino nucleon

scattering using the parameters given in Eqs. (3.11-3.12).

As can be seen from the two plots, our parameterization for the differen-

tial cross section for neutrino and antineutrino charged current interactions with

isoscalar nucleons is quite good for a large range of incident energies and energy

transfers. For neutrino energies from 50 GeV ≤ Eν ≤ 1012 GeV, our parameteri-

zation for the y distribution of the differential cross section yields results that are

within about 15% of the numerical results found using the CTEQ6 parton distribu-

tion functions [54] over the entire range of y values considered.

It is important to note that, in general, the charged current neutrino cross

section depends on the mass of the lepton produced. These effects depend on the

incident neutrino energy. At incident neutrino energy Eν = 100 GeV, the charge

current cross section for ντN scattering is about 80% of that for νµN scattering

for isoscalar nucleon N [57, 58]. This mass effect decreases with increasing incident

neutrino energy. At Eν = 1 TeV, the ντN to νµN ratio is 0.95. Because this work

deals with high energy leptons, we neglect the effect of lepton mass corrections in

our parameterization of the charged current differential cross section.
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Figure 3.11: Differential neutrino-nucleon cross section defined by Eq. 3.9 with
parameters from Eqs. (3.10-3.11). The solid lines represent numerical results
using the CTEQ6 parton distribution functions [54] and the dashed lines are
our approximate analytic formula. Fig. (a) is the differential cross section for
Eν ≤ 3.5 × 104 GeV with the fit parameters defined in Eq. (3.10). The curves
represent Eν = 50, 100, 500, 1000, 5000, 104 GeV from bottom to top. Fig. (b) is
the differential cross section with parameters defined in Eq. (3.11). The curves
represent incident neutrino energies Eν = 105, 106, 108, 1010, 1012 GeV from bottom
to top.
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Figure 3.12: Differential antineutrino-nucleon cross section defined by Eq. (3.9).
The solid lines represent numerical results using the CTEQ6 parton distribution
functions [54] and the dashed lines are the results of our approximate analytic for-
mula. Fig. (a) is the differential cross section for Eν̄ < 106 GeV with the fit
parameters defined in Eq. (3.12). The curves represent incident antineutrino ener-
gies of Eν̄ = 100, 103, 104, 105 GeV from bottom to top. Fig. (b) is the differential
cross section with parameters defined in Eq. (3.11). The curves represent incident
antineutrino energies Eν̄ = 106, 108, 1010, 1012 GeV from bottom to top.
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CHAPTER 4

ATMOSPHERIC LEPTON FLUXES

4.1 Surface Fluxes

In this chapter, I summarize the parameterizations of the atmospheric lepton

fluxes we use in our calculation for production of underground leptons. I discuss

both conventional and prompt production of atmospheric leptons. As was discussed

previously, the conventional atmospheric flux comes from the decay and interactions

of light mesons. The prompt atmospheric flux comes from interactions and decays

of heavy mesons. At low energies, conventional production gives the dominant

contribution to the atmospheric fluxes at the surface. This is due to the fact that

the cross section to produce light quarks is much higher than that to produce

heavy quarks. Even though the cross section for heavy meson production is lower

than that for light meson production, prompt atmospheric lepton fluxes become the

dominant source for atmospheric leptons at the surface at high energy. This can

be understood by looking at the decay lengths of mesons. The decay length for

pions is 7.8045 m while for D mesons it is 311.8 µm. As the energy of the mesons

increase, light mesons do not have a chance to decay before reaching the surface

of the earth. Charmed mesons, due to their short decay length, do decay before

reaching the surface even at very high energy.

4.1.1 Atmospheric Muon Flux

Following the work of Ref. [2], the conventional muon flux at sea level as a

function of zenith angle θ and energy Eµ can be expressed as

φµ+µ̄(Eµ, 0, θ) =
0.175 (GeV cm2 sr s)

−1

(Eµ/GeV)2.72
(4.1)

×
( 1

1 + Eµ cos θ∗∗/103 GeV
+

0.037

1 + Eµ cos θ∗∗/810 GeV

)

.
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The first term in the parenthesis of the above above equation represents the con-

tribution to the conventional atmospheric muon flux from pions created in the

atmosphere while the second is the contribution from kaons. The energies 103

GeV and 810 GeV are the pion and kaon critical energies [2] which are defined as

ǫcrit = mmh0/cτm for meson m using scale height h0 ≃ 6 km [5, 6]. The critical en-

ergies separate the high and low energy contributions to the atmospheric flux. The

low energy contribution to the conventional atmospheric muon flux comes from the

decay of light mesons. As the energy increases, the meson decay length becomes

longer than the height of the atmosphere and interactions between mesons and air

nuclei becomes the predominate source of lepton production. As can be seen from

Eq. (4.1), for energies below the GeV range, the atmospheric muon flux scales as

E−2.72
µ . As muon energies increase, the scaling becomes E−3.72

µ . This energy scaling

behavior comes from the small probability of meson decay relative to reinteraction

above the critical energy. In the above equation, cos θ∗∗ is the effective cosine,

cos θ∗∗ = S(θ) cos θ∗ (4.2)

S(θ) = 0.986 + 0.014 sec θ , (4.3)

which takes into account the spherical geometry of the atmosphere [2]. The param-

eterization for cos θ∗ can be found in Appendix A of Ref. [2].

The prompt atmospheric muon flux is dominated by the decay of charmed

mesons. There are many predictions for the prompt muon flux at sea level [3, 5, 7,

11]. Predictions from a perturbative QCD calculation can be parameterized by [7]

log(E3
µφµ+µ̄(E, 0)) ≃ −5.37 + 0.0191x+ 0.156x2 − 0.0153x3 (4.4)

for x defined by x ≡ log(Eµ/GeV). This is not as simple a form as the parameter-

ization for the conventional atmospheric muon flux at sea level found in Eq. (4.1)

because it is a fit to numerical results. Also, the energy scaling in the production
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of charmed mesons is not as simple as the energy scaling for the production of light

mesons. This expression is independent of zenith angle, an approximation valid

below 107 GeV.

The prompt atmospheric muon flux at sea level can also be calculated using a

dipole model evaluation of the cc̄ cross section [11]. The approximate form for the

prompt muon flux at sea level using this analysis can be found in Ref. [11] and is

given by

φµ+µ̄(Eµ, 0, θ) ≃
2.33 × 10−6 (GeV cm2 sr s)

−1

(Eµ/GeV)2.53(1 + Eµ cos θ∗∗/E0)
(4.5)

for E0 = 3.08 × 106 GeV. This evaluation gives a slightly lower prompt muon flux

at high energies than that given by Eq. (4.4). It also includes the dependence on

zenith angle.

Figure 4.1 compares the conventional atmospheric muon flux given in Eq. (4.1)

with the two formulas for prompt muon fluxes given in Eqs. (4.4 & 4.5) at sea level

in the vertical direction. As can be seen from the plot, the conventional atmospheric

muon flux gives the dominant contribution to the total flux for Eµ < 106 GeV, when

the prompt flux contributions take over. The zenith angle dependence of Eq. (4.1)

has the effect of slightly increasing the sea level flux as the zenith angle increases.

This is because larger zenith angles correspond to higher slant depths for the mesons

as they penetrate the atmosphere.

4.1.2 Atmospheric Neutrino Fluxes

Because our end goal is to compare underground electron and tau produc-

tion rates produced through pair production from incident muons with the rates

of production for single electrons and taus produced via charged current neutrino

interactions, we also need parameterizations for the atmospheric neutrino fluxes.

At the energies of interest, Eν > 100 GeV, the conventional atmospheric electron
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Figure 4.1: Contributions to the atmospheric muon flux at sea level in the vertical
direction. The solid curve represents the conventional muon flux given by Eq. (4.1).
The dashed curve represents the prompt muon flux calculated from perterbative
QCD given by Eq. (4.4) while the dot-dashed curve represents the prompt flux
given in Eq. (4.5) calculated using a dipole model of the cc̄ cross section.

neutrino flux has approximately the same energy dependence as the conventional

muon flux, Eq. (4.1). The normalization is a factor of 135 smaller [59] and for our

calculations we use

φνe+ν̄e
(Eν , 0, θ) =

1.30 × 10−3 (GeV cm2 sr s)
−1

(Eν/GeV)2.72
(4.6)

×
( 1

1 + Eν cos θ∗∗/103 GeV
+

0.037

1 + Eν cos θ∗∗/810 GeV

)

.

for the conventional flux of νe + ν̄e. At neutrino energy Eν = 1 TeV the conventional

flux of neutrinos to antineutrinos has an approximate 60:40 ratio [59]. For simplicity,

we use this ratio for the full energy range under consideration.

For the prompt atmospheric electron neutrino flux we use the same approxi-

mate formulas as those for the prompt atmospheric muon flux found in Eqs. (4.4
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& 4.5). This is due to the fact that charmed mesons decay into electronic and

muonic channels with an equal branching ratio. Also, the energy distribution of the

lepton and neutrino produced in charm decay is about the same. For the prompt

atmospheric electron neutrino flux, the ratio of νe to ν̄e is 50:50.

For the atmospheric tau neutrino flux in the downward direction, two sources

need to be considered. The first is neutrino oscillations. The primary contribution

comes from νµ → ντ oscillations. In the present analysis we are considering down-

ward fluxes ranging from the vertical direction to a zenith angle of 45◦ for neutrino

energies in the TeV and above range. The average height of production for leptons

in the atmosphere is ∼ 15 km [8]. The probability for neutrino oscillations depends

on the function

sin2

(

1.27∆m2(eV2)
L(km)

Eν( GeV)

)

. (4.7)

At the energies and distances of interest here, the argument of the above function

is small, therefore there is not a significant contribution to the downward going

tau neutrino flux from neutrino oscillations. Because of this, we neglect neutrino

oscillations as a source of tau neutrinos.

The other source of downward going tau neutrinos is the decay of Ds and b

mesons and subsequent tau decays [3, 4]. An approximate form for the prompt tau

neutrino flux from this production mechanism can be found in Ref. [4],

φντ+ν̄τ
(Eν , 0) =

1 × 10−7E0.5
ν (GeV cm2 sr s)

−1

(Eν/GeV)3
(4.8)

×
( 1

1 + (Eν/1 × 106)0.7 + (Eν/4 × 106)1.5

)

.

As is the case for prompt production of electron neutrinos and antineutrinos, the

ratio for tau neutrinos to antineutrinos is 50:50.
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4.2 Depth Corrections

When considering the atmospheric muon flux at depth, electromagnetic energy

losses of the muon need to be taken into account [6, 21]. The general energy loss

formula for muons in transit is given by

−〈 dE
dX

〉 = α +

3
∑

i

βiE (4.9)

for column depth X. Using the above equations, the atmospheric muon flux at

depth d can be written as

φcl
µ+µ̄(Eµ, d, θ) ≃ φµ+µ̄(E

s
µ, 0, θ) exp(βρd) (4.10)

for muons traveling through material of constant density ρ. In the above equation,

Es
µ denotes the surface energy. The vertical depth d and the column depth X are

related through X = ρd when the density is constant. The above formula assumes

continuous energy loss (cl). It is known that fluctuations in energy loss lead to an

increase in the down-going atmospheric flux at depth [20], however, this amounts

to only a 5% − 10% increase in the flux at a depth of 1 km water equivalent for

muon energies from 100 GeV − 1 TeV [2]. In what follows, we neglect the effects

of energy loss fluctuations. As a side note, water equivalent distance is related to

vertical depth through the slant depth. For example, 1 km water equivelent is equal

to a slant depth of 105 g/cm2 which corresponds to a depth d = 105/ρ ≃ 3.8 × 104

cm of rock (ρstd rock = 2.65 g/cm3).

The relationship between the surface energy and the energy of the muon at

depth d can be found by integrating Eq. (4.9) assuming constant α and β and is

given by

Es
µ = exp(βρd)Eµ + (exp(βρd) − 1)

α

β
. (4.11)
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The exponential factor in Eq. (4.10) comes from differentiating the above expression

dEs
µ

dEµ

= exp(βρd) . (4.12)

To determine the atmospheric muon flux at depth, we use the approximate two

slope linear fit from Ref. [2] for the energy loss parameters,

α = 2.67 × 10−3GeVcm2/g (4.13)

β = 2.4 × 10−6cm2/g

for Eµ ≤ 3.53 × 104 GeV, and

α = −6.5 × 10−3GeVcm2/g (4.14)

β = 3.66 × 10−6cm2/g

at higher muon energies. Figure 4.2 shows the contributions to the underground at-

mospheric muon flux at a depth of 1.5 km in ice. As was the case for the atmospheric

muon flux at the surface, the prompt flux becomes the dominant contribution to

the underground flux for muon energies Eµ > 106 GeV.

When considering fluxes of atmospheric leptons at depth coming from higher

zenith angles there are competing effects that need to be considered. The first is the

increase of the atmospheric flux at the surface of the earth. Higher zenith angles

lead to a higher slant depth (D → D/ cos θ) in the atmosphere. The higher slant

depth leads to an increase in the number of decays of light mesons at high energies.

For example, the conventional atmospheric muon flux at the surface increases by a

factor of ∼ 2 for Eµ = 106 GeV when the zenith angle increases from 0◦ → 60◦.

There is also an increase in the atmospheric flux of neutrinos and antineutrinos

with increased zenith angle. The second effect that needs to be accounted for is

the electromagnetic energy loss of muons in transit. The effect of muon energy loss

on the downward going atmospheric muon flux at depth is governed by Eq. (4.10).

Even though the surface flux increases with increasing zenith angle, there is a net
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Figure 4.2: Contributions to the atmospheric muon flux at a depth of 1.5 km in
ice, A = 14.3. The solid curve represents the conventional muon flux given in Eq.
(4.1). The dashed curve represents the prompt flux given by Eq. (4.4) while the
dot-dashed curve represents the prompt flux given in Eq. (4.5).

decrease in the atmospheric flux at depth due to electromagnetic energy losses of

the muons.

In addition to considering lepton production underground, we are also inter-

ested in lepton production in the mountains surrounding the High Altitude Water

Cherenkov (HAWC) surface array. This proposed array sits in a saddle at an al-

titude of 4.1 km, shielded on two sides by mountains. The atmospheric flux at

this altitude is approximately the same as at the surface. This is due to the fact

that the average height of production for mesons produced in cosmic ray-air nuclei

collisions is approximately 15 km [8]. At altitudes between 15 and 4 km, pion and

kaon interactions with air nuclei are favored over decay at the energies of interest

here, E > 10 GeV.

We are interested in comparing underground lepton production rates from
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incident muons with those from incident neutrinos at depth. As was discussed in

the previous section, at the energies under consideration here, neutrino oscillations

are not an important source of neutrino disappearance between the surface and a

depth of 1.5 km under ice. Because of the long interaction length of neutrinos,

neutrino attenuation is also not important for the vertical neutrino flux in these

regions [55]. The long interaction length of neutrinos also makes the effects from

increased zenith angle negligible for underground attenuation of the atmospheric

flux. We use the same expressions for the atmospheric neutrino flux at depth as we

use for the surface fluxes.
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CHAPTER 5

UNDERGROUND LEPTON PRODUCTION

5.1 Event Geometries

Before describing the formalism used to calculate underground production of

leptons, it is instructive to describe the types of event geometries being considered.

Figure 5.1 shows the three types of events being considered for the detectors IceCube

and HAWC. Figures 5.1 (a) and (b) represent events for the IceCube detector. Here,

the circle represents the earth while the embedded square is the detecting volume of

IceCube. For underground electron production, we are looking at contained events

in IceCube. Contained events correspond to particle production and decay inside

the detector. This is shown Figure 5.1 (a). For tau production, we consider two

types of event geometry. The first, shown in Figure 5.1 (b), corresponds to tau

events in IceCube. Here, tau particles are produced outside of, then enter, the

detecting volume. The second, shown in Figure 5.1 (c), represents tau production

for the HAWC array. Tau particles are produced in the mountains surrounding

the surface array, then they exit the mountain above the detector. For low enough

energy, the exiting taus will decay in the air above the detector, producing a shower.

The events shown in Figure 5.1 correspond to leptons produced via pair production

from atmospheric muons. For lepton production from atmospheric neutrinos, there

is only a single lepton produced and no outgoing neutrino.

5.2 Underground Electron Production

I begin my discussion of underground lepton production with the formalism

used to calculate the differential electron flux produced underground. The formula

for the differential flux of electrons produced in a detector (contained) beginning

at depth D and extending to depth D+ Lmax from an incident flux of atmospheric
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(a) (b) (c)

Figure 5.1: The three types of event geometries considered here for underground
lepton production by atmospheric muons. Figures (a) and (b) are the types of
events being considered for IceCube. Figure (a) represents contained events, i.e.,
particle production and decay contained in the detector. Figure (b) represents par-
ticles produced outside of the detector with the particles then entering the detector
vertically. Figure (c) is the type of events being considered for HAWC. Leptons are
produced in and then exit the mountains surrounding the surface array.

muons can be expressed as [9]

dN

dEf
e

=

∫ Lmax

0

dℓ

∫ ∞

Ei
e

dEµ

∫

dEi
e

dPprod

dℓ
φµ+µ̄(Eµ, D + ℓ, θ)δ(Ef

e −Ei
e) , (5.1)

where Eµ is the muon energy at depth and φµ+µ̄(Eµ, D + ℓ, θ) is the atmospheric

muon flux at depth given in Eq. (4.10). For electrons, the delta function identifies

the final energy Ef
e with the initial energy Ei

e. The probability for a muon of energy

Eµ to produce an electron with energy Ei
e via pair production in a depth interval

dℓ can be written as [9, 60]

Pprod(µ→ e, Eµ, E
i
e) = dℓdEi

e

NA

A
ρ
dσpair(Eµ, E

i
e)

dEi
e

. (5.2)

Here, NA is Avogadro’s number and A is the atomic mass of the material the muon

is traversing. Substituting the above expression into Eq. (5.1) and using the delta

function to do the integral over the initial electron energy, Ei
e, yields

dN

dEf
e

=

∫ Lmax

0

dℓ

∫ ∞

Ef
e

dEµ
NA

A
ρ
dσpair(Eµ, E

f
e )

dEf
e

φµ+µ̄(Eµ, D + ℓ, θ) (5.3)
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for the differential electron flux produced by incident atmospheric muons under-

ground.

The above formula is general and can be used to calculate the underground

electron flux produced from an incident atmospheric flux of electron neutrinos.

For production of single electrons or positrons from incident electron neutrinos

and antineutrinos, one needs to replace the differential pair production cross sec-

tion, dσpair(Eµ, E
i
e)/dE

i
e, with the charged current differential neutrino cross section,

dσCC(Eν , E
i
e)/dE

i
e defined in Eqs. (3.9-3.12), in the expression for production prob-

ability. The atmospheric muon flux at depth also needs to be replaced with the

atmospheric electron neutrino flux.

5.2.1 Electron Production in IceCube

For underground production of electrons and positrons, we have focused our

calculation on the large underground Cherenkov detector IceCube. The instrumen-

tation at IceCube begins approximately 1.5 km under ice and extends to a depth of

approximately 2.5 km. Figure 5.2 shows the differential flux of electrons produced

via pair production from incident atmospheric muons compared to the differential

flux of single electrons produced via charged current interactions from an incident

flux of atmospheric neutrinos. Also shown in the plot are the contributions from

both incident conventional and prompt atmospheric fluxes. The differential electron

flux shown is that produced between depths of 1.5 km ≤ d ≤ 2.5 km in ice in the

vertical direction.

To understand the comparison of the flux of underground electrons produced

from incident atmospheric muons with those produced from incident atmospheric

neutrinos, it is important to look at the production mechanism. The production

mechanism for electrons produced by atmospheric muons is pair production, i.e.,

µA→ µe+e−X. Therefore, the total number of high energy events comes from the
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sum of the µ + µ̄ atmospheric flux. Every electron produced is accompanied by

a positron, a muon, and possibly a signal of the interaction. This is in contrast

to electrons produced via charged current interactions from incident atmospheric

neutrinos. For neutrino production of underground electrons and positrons, the

electron signal comes purely from the incident neutrino flux while the positron

signal comes purely from the incident antineutrino flux. Because IceCube has no

way of measuring the charge of particles produced in the detector, we have summed

the event rates of electrons and positrons produced from incident neutrinos and

antineutrinos in Figure 5.2 to better compare with the event rates of electrons and

positrons produced from incident muons.

Figure 5.2: The differential underground electron flux scaled by the square of the
electron energy for electrons produced in ice between the vertical depths 1.5 ≤ d ≤
2.5 km. The solid curves represent the electron flux produced by incident vertical
conventional fluxes of muons and neutrinos given by Eqs. (4.1 & 4.6). The dashed
curves labeled prompt represent the contribution from an initial prompt flux given
by Eq. (4.4) while the dot-dash curve is the contribution from the prompt flux
given in Eq. (4.5). The dashed curve following the conventional µ → e curve was
calculated using the Tannenbaum approximation to dσpair/dEe.
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To understand the curves in Figure 5.2, it is instructive to look at the energy

dependence of the incident lepton fluxes in relation to the energy dependence of the

differential cross section. Both the incident conventional atmospheric flux of muons

and the conventional atmospheric flux of electron neutrinos and antineutrinos scale

approximately as E−4 at the energies of interest here (E > 10 GeV). Because of

this, the differential flux of electrons produced underground is dominated by the

high energy tails of the energy distributions of the differential cross sections, i.e.,

large v values for dσpair/dEe and small y values for dσCC/dEe. This is also the

case, although not as pronounced, for electrons produced from incident prompt

atmospheric fluxes of muons and neutrinos which fall off approximately as E−3.

As can be seen in Figure 5.2, for electrons produced from incident muons,

the underground flux is dominated by the contribution from the conventional atmo-

spheric muon flux for energies Ee ≤ 104 GeV. At higher energies, Ee ≥ 105 GeV, the

contribution from the prompt muon flux starts to dominate. This crossover occurs

one order of magnitude lower than that for the atmospheric muon flux at depth.

Figure 4.2 shows that the atmospheric muon flux at depth is dominated by the

conventional contribution for muon energies Eµ ≤ 106 GeV. Because the crossover

occurs one order of magnitude lower when looking at underground electrons pro-

duced from incident muons, studying the energy distribution of the underground

electron signal may augment efforts to measure the onset of the prompt muon flux.

For electrons produced via charged current interactions from incident atmospheric

neutrinos and antineutrinos, the crossover for the contributions from conventional

neutrinos versus prompt neutrinos occurs at an electron energy of Ee ∼ 104 GeV. It

is not until an electron energy of Ee ≃ 107 that the contributions from atmospheric

neutrinos and antineutrinos start to dominate the contributions from incident at-

mospheric muons to the underground electron flux.
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It is important to note that when looking at electron and positron signals

in an underground Cherenkov detector, the electromagnetic showers produced are

very difficult to distinguish from those produced by photons created by muon

bremsstrahlung events. Because of this, it is important to calculate the event rate

of the muon bremsstrahlung background to compare with the expected event rate

of underground electron and positron production.

Figure 5.3 shows the event rate of bremsstrahlung events, coming from µA→

µγX, compared to pair produced electrons and positrons from incident atmospheric

conventional and prompt muon fluxes. As can be seen, the muon bremsstrahlung

signal is ∼ 2 orders of magnitude larger than the expected signal from pair produc-

tion events produced in the detector between depths of 1.5 km ≤ d ≤ 2.5 km. This

is the case even though the energy loss parameter β and the total cross section are

lower for bremsstrahlung than for electron-positron pair production. This can be

understood by looking at the energy distribution of the differential cross section for

muon bremsstrahlung in comparison to that for pair production.

Figure 5.4 shows the energy distribution of both the muon bremsstrahlung

and the electron-positron pair production differential cross sections for fixed muon

energy Eµ = 106 GeV in ice. For the muon bremsstrahlung differential cross section,

we have used the parameterization of Ref. [61] with the more precise scaling relation

of Ref. [62]. Using the more complicated formula of Ref. [35] which includes target

excitation effects in the evaluation of the differential cross section amounts to < 1%

correction in the energy distribution for the values of the fractional energy loss,

vγ ≃ Eγ/Eµ, important here.

Figure 5.4 shows that for large values of fractional energy transfer v ≥ 0.1,

the differential cross section for muon bremsstrahlung dominates the more steeply
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Figure 5.3: The differential underground electron and photon fluxes scaled by the
square of the electron or photon energy for particles produced in ice (A = 14.3)
between the vertical depths 1.5 ≤ d ≤ 2.5 km. The solid curves represent the
electron flux produced by incident vertical conventional (Eq. (4.1)) and prompt
(Eq. (4.5)) atmospheric muons. The dashed curves show the conventional and
prompt µ→ γ contribution.

falling differential pair production cross section. Because the calculation for under-

ground electromagnetic events is dominated by the high energy tail of the differential

distribution, as was noted above, bremsstrahlung events are the dominant source of

electromagnetic showers produced in underground detectors. It is also important

to note that the crossover between conventional and prompt contributions for un-

derground bremsstrahlung events happens at an energy intermediate to that of the

underground atmospheric muon flux and the underground electron flux.

In addition to looking at the full electromagnetic signal, it is also instructive

to look at the relationship between the initial muon energy and the energy of the

produced electron or photon. Because the energy distribution of the differential

pair production cross section falls much more steeply than that of the differential
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Figure 5.4: Energy distributions for the differential bremsstrahlung cross section for
the process µA→ µγX and the differential electron-positron pair production cross
section. The solid curve represents pair production and the dashed curve muon
bremsstrahlung. Both of the distributions have been calculated for fixed muon
energy Eµ = 106 GeV in ice, A = 14.3.

bremsstrahlung cross section, higher values of vγ = Eγ/Eµ are favored in relation

to ve. This amounts to a much different v dependence in the underground flux of

photons versus electrons. Figure 5.5 shows the underground electron and photon

fluxes produced by atmospheric muons where the upper limit of v has been set to

vmax
e,(γ) = 0.01. With this restriction, the underground photon flux falls by a factor of

∼ 105 whereas the underground electron flux only falls by a factor of ∼ 102. If the

initial muon energy could be correlated with the energy of the produced electron

or photon with the above restriction, the electron signal coming from electron-

positron pair production would be a factor of ∼ 10 higher than the corresponding

photon signal produced via muon bremsstrahlung. Using this restriction would

help to reduce the background from muon bremsstrahlung events when looking for
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Figure 5.5: The differential flux of electrons and photons scaled by the square
of the electron or photon energy calculated using the restriction vmax

e,γ = 0.01
(Emin

µ ≈ 100Ee,γ). Shown in the plot are the differential flux of electrons and pho-
tons produced from both conventional (Eq. (4.1)) and prompt (Eq. (4.5)) incident
atmospheric muons.

electron-positron electromagnetic signals in underground detectors.

5.3 Underground Tau Production

For underground electron production, we neglected the energy loss and sur-

vival probability of the electrons in our evaluation of the underground differential

flux. This is due to the fact that once produced, electrons and positrons shower very

quickly. Electrons and positrons must be produced in the detector to be observed.

For underground tau signals this is not the case. High energy taus can persist over

large distances underground, losing energy electromagnetically as they transit. The

electromagnetic energy loss of high energy taus through material is governed by

〈 dE
dX

〉 ≃ dE

dX
≃ −βτE (5.4)
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assuming continuous energy loss. The energy loss parameter βτ is a factor of mµ/mτ

smaller than the energy loss parameter for muons. Using the above equation, the

relationship between the initial tau energy and the energy of the tau after traveling

a distance ℓ is given by

Ef
τ = Ei

τ exp(−βτρℓ) (5.5)

for constant density ρ and βτ . In what follows, we assume a constant energy loss

parameter for standard rock, βτ = 8.5×10−7 cm2/g [9, 23]. Accounting for the finite

lifetime of the tau and electromagnetic energy losses yields a survival probability of

[9, 23, 60]

Psurv(E
f
τ , E

i
τ ) = exp

[

mτ

cττβτρ

(

1

Ei
τ

− 1

Ef
τ

)]

. (5.6)

The relationship between initial and final tau energies is given in Eq. (5.5).

As was noted above, high energy taus can persist over large distances. The

decay length of a tau with initial energy Ei
τ = 10 PeV is ∼ 500 m. Tau particles that

traverse a detector and do not decay in that detector have signals that mimic a muon.

Looking at the energy loss relationship, a muon with initial energy Ei
µ = βτE

i
τ/βµ

will have approximately the same energy loss as a tau with Ei
τ over a given column

depth. Because Cherenkov detectors have no way of measuring initial energy of

uncontained events, tau events without a decay are indistinguishable from lower

energy muon signals. Consequently, it is beneficial to have a understanding of the

expected high energy tau background in underground detectors.

Following the formalism of the previous section, and incorporating the energy

loss and survival probability of the tau, the differential flux of taus entering a
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detector at depth D as a function of energy and zenith angle is given by [9]

dN

dEf
τ

=

∫ D

0

dℓ

∫ Ei
τ exp(βτ ρ(D−ℓ))

Ei
τ

dEi′

τ

∫ ∞

Ei′
τ

dEµ
dPprod

dℓ
φµ+µ̄(Eµ, ℓ, cos θ)

× Psurv(E
f
τ , E

i′

τ )δ(Ef
τ − Ei′

τ exp(−βρ(D − ℓ)))

=

∫ D

0

dℓ

∫ ∞

Ei
τ

dEµ
NA

A
ρ
dσpair(Eµ, E

i
τ )

dEi
τ

φµ+µ̄(Eµ, ℓ, cos θ)

× exp
[ mτ

cτβτρ

(exp(−βτρ(D − ℓ))

Ef
τ

− 1

Ef
τ

)]

. (5.7)

The delta function in the above equation specifically enforces the energy loss rela-

tionship found in Eq. (5.5).

As was the case for the formula used to calculate the differential flux of elec-

trons produced underground, Eq. (5.7) is general and can be used for neutrino

induced tau production. For tau neutrino and antineutrino production of tau and

antitau particles, the differential pair production cross section in Eq. (5.7) needs

to be replaced by the differential charged current cross section defined in Eq. (3.9).

Also, the underground incident atmospheric muon flux needs to be replaced with

the atmospheric flux of tau neutrinos and antineutrinos.

5.3.1 PeV Taus in IceCube

Atmospheric muons are a background to searches for tau neutrino induced tau

events in underground detectors since a tau track without a decay mimics a lower

energy muon. Because of this, detectors like IceCube look for contained or partially

contained events to identify tau signals. One of the signals used to identify tau

particles is the so-called ”lollipop” event [12, 63]. This event is identified with an

entering electromagnetic tau track and decay that leaves a splash of energy in the

detector. The minimum tau energy for ”lollipop” events in IceCube is Eτ = 5 PeV

[12, 63], which corresponds to a decay length of ∼ 250 m.

In addition to the muon background in searches for tau signals, there is also
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potential to create taus through the interaction µA→ µτ+τ−X. For taus produced

in this interaction with high enough energy, there is the potential for taus created

outside the detector to enter the detector and subsequently decay. This type of event

is a background to charged current production of taus and antitaus from incident

tau neutrinos and antineutrinos. To understand the contributions to the under-

ground tau flux, we have calculated the differential flux of taus entering IceCube at

a depth of D = 1.5 km in the vertical direction. Figure 5.6 shows the contributions

to the underground differential flux of taus produced from incident conventional

and prompt atmospheric muons as well as the flux of taus produced from incident

prompt tau neutrinos and antineutrinos for tau energies of Eτ = 1 − 1000 PeV. In

this energy range, the dominant contribution to the underground tau flux comes

from incident prompt atmospheric tau neutrinos and antineutrinos. The total un-

derground tau flux receives ∼ 20% contribution from prompt µ→ τ production. In

this energy range, the contribution to the underground tau flux from conventional

µ→ τ production is suppressed by 1−2 orders of magnitude relative to the prompt

ντ → τ contribution.

To understand the expected number of ”lollipop” events for a given tau flux,

it is necessary to look at the survival probability defined in Eq. (5.6) in relation to

the decay length of the tau. For taus with energy Eτ = 105 GeV, the decay length is

approximately 5 m. This means that for a tau of energy Eτ = 105 GeV entering the

detector, the survival probability of the tau is Psurv ≃ 0 over the 1 km of detector

distance. As tau energy increases, the survival probability increases as well. For

taus with energy Eτ = 108 GeV entering the detector, the survival probability over

the 1 km of detector distance increases to Psurv ≃ 0.8. The survival probability

does not directly correlate to the decay length of the tau entering the detector

because electromagnetic energy losses are taken into account as the tau traverses
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Figure 5.6: Differential tau flux scaled by the square of the final tau energy entering
the detector at a depth of 1.5 km in ice. The lower solid line corresponds to tau
production from a vertical incident conventional muon flux given in Eq. (4.1). The
dashed and dot-dashed curve represents the tau flux from a vertical incident prompt
flux given in Eq. (4.4) and Eq. (4.5) respectively. The top solid curve is for the tau
flux produced with an incident prompt tau neutrino flux given in Eq. (4.8).

the detector medium. The ”lollipop” event rate is proportional to 1 − Psurv.

In addition to the incident fluxes that were considered in Figure 5.6, it is also

instructive to look at a characteristic E−2
ν dependent neutrino flux to get an idea of

the relative normalization. An isotropic neutrino flux given by

φντ+ν̄τ
= 10−8(cm2 s sr GeV)−1(E/GeV)−2 (5.8)

gives a ντ + ν̄τ flux that is approximately 30 times larger than the prompt ντ + ν̄τ

flux given in Eq. (4.8) that was used to calculate the underground tau flux shown

in Figure 5.6 for a neutrino energy of Eν = 105 GeV. Because the prompt ντ + ν̄τ

flux falls approximately as E−3
ν , the underground flux of taus produced from the

characteristic isotropic neutrino flux given in Eq. (5.8) would remain at least a
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factor of 30 higher than that produced from the atmospheric prompt tau neutrino

flux given in Eq. (4.8). Therefore, if an isotropic neutrino flux with an energy

dependence of E−2
ν exists with the normalization of 10−8, the background of tau

events from the atmospheric tau neutrino flux would be very low for energies in the

PeV range. It will be even more difficult to see the contribution of underground taus

from incident atmospheric muons. There is the possibility that at lower energy, tau

production from atmospheric leptons would be higher than that from an isotropic

neutrino flux, however, the lifetime of taus at this energy is very short, making

detection difficult. It is also important to note that because the differential cross

section for muon induced tau production is much smaller than that for muon induced

electron production, the differential flux of underground tau production shown in

Figure 5.6 is much smaller than the expected differential flux of electrons shown in

Figure 5.2 for the same energy regime.

5.3.2 Tau Production for HAWC

The proposed HAWC surface array has the potential to see tau decay induced

showers. The array is to sit in a mountain saddle at an altitude of 4.1 km, shielded

on two sides by mountains. The rock of the surrounding mountains could provide

the necessary conversion volume for incident atmospheric muons and tau neutrinos

and antineutrinos at high enough zenith angles to produce tau particles. Taus

created in the surrounding mountains with high enough energy have the potential

to exit the rock and then decay in the air above the array, producing a shower.

To investigate the potential for tau creation in the mountains shielding the

HAWC array, we have assumed 1 km water equivalent distance of rock for the

conversion volume. For the incident atmospheric lepton fluxes, we use a zenith angle

of 45◦. Figure 5.7 shows the contributions to the differential tau flux exiting the 1

km water equivalent of mountain. Shown in the figure are the contributions from
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both a conventional and prompt atmospheric muon flux as well as the contribution

from prompt atmospheric tau neutrinos and antineutrinos. As was the case for the

underground electron fluxes, we have summed the contributions from neutrino and

antineutrino production of taus and antitaus to better compare with production

from atmospheric muons.

Figure 5.7: Differential tau flux scaled by the square of the final tau energy emerging
from 1 km water equivalent of rock. We use a zenith angle of 45◦ for our incident
fluxes. The lower solid line corresponds to tau production from an incident conven-
tional muon flux given in Eq. (4.1). The dashed and dot-dashed curve represents
the tau flux produced from the incident prompt muon fluxes given in Eq. (4.4) and
Eq. (4.5) respectively. The top solid curve represents the tau flux produced from
the incident prompt tau neutrino flux given in Eq. (4.8).

Since we are considering air showers produced by tau decays, there is no need

for a minimum track length like there was in the consideration of tau particles en-

tering IceCube. Because of this, we have lowered the lower bound of tau energy we

are considering. A tau with energy Eτ = 105 GeV has a decay length of only 5 m, so
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taus exiting the mountain in this energy regime would surely decay in the air above

the detector. As can be seen in Figure 5.7, the dominant contribution to the differ-

ential tau flux at this energy comes from incident conventional atmospheric muons.

Due to the energy dependences of the atmospheric lepton fluxes, the contributions

from conventional muons falls off much faster than the contributions from prompt

muons and tau neutrinos. By Eτ = 107 GeV, the contribution to the emerging tau

flux from conventional muon conversions is suppressed by almost 2 orders of mag-

nitude relative to the dominant prompt ντ → τ conversion contribution. The decay

length of taus with this energy is ∼ 500 m which still may allow the decays to be

measured by HAWC. For Eτ ≥ 106 GeV, the total differential flux of taus emerging

from the 1 km water equivalent of rock receives about a 20−30% contribution from

atmospheric muon conversions, mostly from prompt muons.
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CHAPTER 6

DISCUSSION

This calculation of the total cross section and energy loss parameter for lepton

pair production in high energy µA scattering extends the work of Kel’ner [25] and

others [16, 17, 18, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34]. The formalism developed

in Chapter 2 is valid for a large range of momentum transfers to the target nucleus.

This calculation is also valid for high lepton mass as well as low.

For electron-positron pair production, where momentum transfer to the target

is low, the dominant contribution to the total cross section and energy loss come

from coherent scattering with the nucleus, with about a 10% contribution coming

from scattering off of atomic electrons, which is scaled down by a factor of Z rel-

ative to coherent scattering. Incoherent scattering with individual nucleons and

inelastic scattering effects are suppressed by ∼ 4 − 7 orders of magnitude relative

to coherent scattering for the muon energies considered here. A similar scaling be-

havior holds for calculating the energy loss parameter βpair where the effects from

incoherent nucleon and inelastic scattering can be neglected. Our calculation of

βpair for electron-positron pair production gives results that are in good agreement

with those found by Kokoulin and Petrukin (KP) [18]. For muon energy Eµ = 100

GeV, our calculation gives results that are < 1% lower than those found by KP. For

Eµ = 108 GeV, our calculation give results that are ∼ 4% lower than KP showing

the effects of nuclear screening at high energy. Our results are within the numerical

accuracy of our evaluation (< 0.1%) with the results found by Groom, Mokhov, and

Stringanov [21] for a large range of initial muon energies.

For τ+τ− pair production, we have shown that there is no simple correspon-

dence with the simple formulas in the literature [22]. For τ+τ− pair production,
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larger momentum transfers need to be considered, leading to an increased contribu-

tion from incoherent nucleon and inelastic scattering effects. Coherent scattering off

of the nucleus is still the dominant contribution to the total cross section and energy

loss parameter for muons scattering with atomic targets for a large range of initial

muon energies, however, inelastic scattering gives contributions which range from

∼ 30− 60% depending on initial muon energy and target. At low energies, incoher-

ent scattering with individual nucleons gives contributions which are of the same

order as those from coherent and inelastic effects. Once the threshold is reached for

τ+τ− production off of atomic electrons, the contributions grow quickly and are on

the order of 10% for Eµ = 108 GeV. Overall, tau pair production is not a significant

source of energy loss for high energy muons in transit.

In Section 3.3.1 I have shown that the formula of Tannebaum [22] can be

expressed as the differential cross section with respect to energy. With the redef-

inition of the fractional energy loss, v = 2Ee/(Eµ + 1
2
Ee), we can approximately

reproduce our numerical calculation for the energy distribution of the differential

cross section for electron-positron pair production. Using the approximate form

from Tannenbaum [22] to calculate the flux of underground electrons yields errors

that are ≤ 30% for electron energies 10 GeV ≤ Ee ≤ 109 GeV. As is the case for the

calculation of the total cross section and energy loss parameter, there is no easy cor-

respondence for τ+τ− pair production and we can only use our numerical evaluation

for the calculation of the energy distribution of the differential cross section.

Though there are analytic formulas in the literature for the differential charged

current cross section for neutrino nucleon scattering [53], they are not valid at low

values of inelasticity, y, and high initial neutrino energy. They do not reflect the

violation of Bjorken scaling. As the energy of the neutrino and momentum transfers

increase, there is an increased contribution from sea quarks that needs to be taken
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into account. I give, in Section 3.3.3, an approximate form for the charged cur-

rent differential cross section for neutrino and antineutrino scattering with isoscalar

nucleons. We have explicitly put energy dependence in the phenomenological pa-

rameters to account for the y dependence that is seen as the energy of the inci-

dent neutrino (antineutrino) increases. We find that the results presented here are

within 15% for the y distribution of the differential cross section when compared to

numerical results calculated using the CTEQ6 [54] parton distributions functions.

This parameterization will be valuable for future analytic calculations requiring the

charged current differential neutrino cross section. Because of the energies under

consideration here, we have neglected the effects of mass of the produced lepton.

Our calculation of underground electron and photon production from incident

atmospheric muons may help to augment efforts to see the onset of the atmospheric

prompt muon flux. Comparing Figure 5.2 with Figure 4.2 shows that the crossover

of conventional and prompt contributions to the underground electron flux produced

by atmospheric muons occurs one order of magnitude lower than the crossover for

conventional and prompt atmospheric muons at depth. Figure 5.3 shows that the

corresponding crossover for photon events happens at an energy intermediate to

these two points. Because the parameterizations of atmospheric prompt models

for muon production have different crossover points [3, 5, 7, 11], the additional

information provided by studying underground electromagnetic signals may help to

aid in the determination of the correct prompt parameterization for the atmospheric

muon flux.

Though our calculation for underground electromagnetic events has focused

on production by atmospheric leptons in the vertical direction, the formalism can

be generalized to higher zenith angles. The underground flux of electrons produced

by conventional muons with an incident zenith angle of 30◦ is reduced to ∼ 80%
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of the flux produced by conventional muons in the vertical direction between the

depths of 1.5 ≤ D ≤ 2.5 km for electron energy of Ee = 10 GeV. For the same

depth, the underground electron flux produced by conventional atmospheric muons

with an incident zenith angle of 30◦ is ∼ 90% of the flux produced by atmospheric

muons in the vertical direction for electron energy of Ee = 109 GeV.

While muon energy loss plays a significant role when considering the atmo-

spheric flux at depth, neutrino attenuation is not an important feature. Due to the

low cross section for neutrino nucleon scattering, the interaction length for neutrinos

is on the order of 105 km of ice even at the highest energies [55]. Because of this, we

have neglected the contributions from neutrino attenuation when considering the

downward going atmospheric neutrino fluxes at depth.

When considering underground production of high energy taus, it is important

to understand the signals used in underground Cherenkov detectors to identify tau

events. A ”lollipop” signal is identified with an electromagnetic tau track entering

the detector and a splash of energy created by the tau decay, with a threshold

for this type of event of ∼ 5 PeV [12, 63]. While potentially difficult to see, the

total tau flux considered here receives ∼ 20% contribution from the prompt µ→ τ

underground flux. Conventional µ → τ production is not important in the energy

range considered here and is suppressed by ∼ 2 orders of magnitude relative to the

prompt ντ → τ signal. The ”double bang” event, where there is a splash of energy

left by the creation of a tau, a tau track, and another splash left by the tau decay [63],

is also possible in the type of production we consider here. For tau production from

atmospheric muons, the initial muon track should reduce the background from this

process. While we have not done a full calculation for expected number of ”double

bang events”, it is expected that similar to ”lollipop” events, the prompt ντ → τ

flux would be difficult to see in IceCube.
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The HAWC array presents another opportunity to see tau production and

decay. HAWC may have the potential to see the decays of taus that are created in,

and subsequently exit, the rock of the mountains surrounding the array. As I showed

in Figure 5.7, for emerging tau energy of Eτ = 50 TeV the dominant contribution

to the tau flux comes from conventional µ → τ production. At this energy, all

of the taus exiting the rock will decay before reaching the detector allowing for a

potential detection by the surface array. For emerging tau energy of Eτ = 10 PeV,

corresponding to a decay length of 500 m, there is still the potential for detection

of the tau decay. At this energy, prompt ντ → τ production gives the dominant

contribution to the emerging tau flux, with prompt µ→ τ production contributing

∼ 20% to the total emerging flux.

It is important to note that when considering production of high energy

electron-positron pairs from muons in transit, there should be rare events where

one of the charged leptons comes out with a significant fraction of the initial muon

energy. In events with this type of energy distribution, it may be difficult to see

the accompanying lepton, as well as the emerging muon in a large Cherenkov detec-

tor. Since even the highest energy electrons shower very quickly, this type of event

creates the potential for faked ”lollipop” signals when searching for tau neutrino

production of underground taus. Cataclysmic muon bremsstrahlung events could

produce a similar signal, adding to the potential for fake ”lollipop” events. This is

important because the flux of PeV electrons produced in IceCube from the vertical

direction is roughly 100 times the flux of prompt tau neutrino induced tau events

at a similar energy. The flux of muon bremsstrahlung events is even higher, roughly

104 times the prompt ντ → τ underground flux in this energy regime.

In addition to the production of underground tau particles, there is also the

potential for production of a secondary ”atmospheric” tau neutrino flux coming
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from incident atmospheric muons via

µA → µτ+τ−X (6.1)

τ → ντX .

As can be seen in Figure 5.7, for tau energies lower thanEτ ∼ 200 TeV, the dominant

mechanism for underground tau production comes from conventional atmospheric

muons. For these energies, taus decay very quickly, < 10 m. The decay of these low

energy taus will produce a down going flux of tau neutrinos were few are expected.

Because the Deep Core detector, which is to sit in the middle of the IceCube de-

tecting volume, will lower the energy threshold to approximately 10 GeV [64], there

is the potential to see ντ → τ conversions in this lower energy regime.

Our calculation of underground lepton production has focused on Cherenkov

detectors such as IceCube and HAWC, however the formulas presented in Chapter

5 are general and can be applied to many detector geometries. The Indian Neutrino

Observatory (INO) presents another interesting opportunity to study underground

production of charged leptons. The detecting volume of INO will consist of magne-

tized iron calorimeters. Looking at Figure 3.4 shows that the total cross section for

electron-positron pair production increases by a factor of ∼ 10 for muons scattering

with iron targets relative to ice targets. This increase in the cross section will yield

a higher rate of underground charged lepton production. The iron calorimeters will

also be magnetized. Due to this magnetization, INO will have the capability of sep-

arating the electron (τ−) and positron (τ+) signals. This separation could lead to

the capability of measuring the energy of the charged partner when looking at pair

production events, something that could be done numerically with our calculation

of the energy distribution of the differential pair production cross section.

Studying high energy lepton pair production from muons in transit offers an
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opportunity to test the predictions of QED at a high energy scale. While electro-

magnetic interactions of muons interacting with atomic targets, particularly lepton

pair production, are interesting in their own right, they also play an important

role in searches for neutrino signals. Muon induced lepton signals may provide im-

portant cross checks when searching for neutrino induced lepton production. High

energy lepton pair production and muon bremsstrahlung events also may augment

efforts in determining correct prompt production models. This could be a valuable

tool for modeling cosmic ray interactions in the atmosphere.
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APPENDIX A

CHANGE OF VARIABLES AND LIMITS OF INTEGRATION

The cross section for lepton pair production by muons interacting with atomic

targets involves an eight-dimensional phase-space integration. The momentum as-

signments are µ(k)+A(p) → µ(k1)+ℓ
+(p+)+ℓ−(p−)+X(px). The differential cross

section found in Eq. (2.9) is written in terms of the following invariant quantities

Y = −Q2 = −(k − k1)
2

t = −q2 = −(p− px)
2

λs = S2 − 4m2
µM

2
t .

The combination AαβB
αβ
µνW

µν accounts for the matrix element squared of the Bethe-

Heitler diagrams shown in Figure 2.1 (I). To carry out the phase-space integration,

it is useful to define the following Lorentz invariant quantities following the work of

Ref. [27],

V 2 = κ2 = (p+ + p−)2 = (q +Q)2

S = 2p · k

X = 2p · k1

Sx = S −X = 2p ·Q

M2
x = p2

x

W 2 = (p+Q)2 = M2
t + S −X − Y

T = M2
t − t−M2

x = 2p · q

λt = T 2 + 4M2
t t

λY = S2
x + 4M2

t Y

∆M2 = (Mmin
x + 2me)

2 −M2
t .
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In terms of the variables above, the Bjorken x variable can be written as

xBj =
q2

2p · q = − t

T

Using the above definitions, the phase-space integrals reduce to

d(PS) =
dφ1dSx dY dV 2 dt dM2

x dφq

16
√
λY λs

dΓpair

dΓpair = δ4(κ− p+ − p−)
d3p+

2p0
−

d3p+

2p0
+

=
1

8

√

1 − 4m2
e/V

2 d cos θe dφe .

Using the invariants defined above, the limits of integration in the rest frame of the

target are [33]

(M +mπ)2 ≤ M2
x ≤ (

√
W 2 − 2me)

2

4m2
e ≤ V 2 ≤ 1

2M2

(

SxT +
√

λY

√

λt

)

− t− Y

tmin ≤ t ≤ tmax

tmin = (Sx(W
2 −M2

x) + 2YM2
x − 4m2

e(Sx + 2M2) −
√
U)/(2W 2)

tmax = (Sx(W
2 −M2

x) + 2YM2
x − 4m2

e(Sx + 2M2) +
√
U)/(2W 2)

U = λY

(

W 4 +M4
x + 16m4

e − 2(W 2(M2
x + 4m2

e) + 4m2
eM

2
x)
)

Y min ≤ Y ≤ Y max

Y min =
λs − SSx

2M2
− 1

2M2

√

(λs − SSx)2 − 4m2
µM

2S2
x

=
λs − SSx

2M2
− 1

2M2

√

λs(λs − 2SSx + S2
x)

Y max = Sx − ∆M2

Smin
x =

[

λs + ∆M2(S + 2M2)

−
√

λs(λs − 2S∆M2 + (∆M2)2 − 4m2
µ∆M2)

]

× (2(S +m2
µ +M2))−1

Smax
x = S − 2Mmµ .

The above limits are valid for nucleon targets. To extend to atomic targets, the
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proton mass should be substituted with the appropriate target mass, M → Mt.

For elastic scattering, the delta function that enforces the relation xBj = 1 can be

rewritten in terms of the final hadronic state invariant mass squared, M2
x ,

δ(xBj − 1) = tδ(M2
x −M2

t ) ,

to reduce the number of phase-space integrals.
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APPENDIX B

MATRIX CONTRACTIONS

Defining the gauge invariant quantity found in Eq. (2.14) reduces the number

of surviving matrix contractions, therefore simplifying the calculation. The terms

fA and fB can found using the gauge condition fαβQβ = 0, and can be expressed

in terms of the quantities gαβf
αβ and pαpβf

αβ,

fA =
1

2

(

gαβf
αβ − 4Y

λY

pαpβf
αβ
)

fB =
2Y

λY

(

−gαβf
αβ +

12Y

λY

pαpβf
αβ
)

.

Because fαβ is proportional to the contraction of the squared hadronic matrix el-

ement and the squared matrix element for the virtual photon contribution to the

differential cross section, γ∗(q) + γ∗(Q) → e(p−) + ē(p+),

fαβ ∝ Bαβ
µνW

µν ,

the contractions gαβf
αβ and pαpβf

αβ are given by

gαβf
αβ = gαβB

αβ
µν g

µν F1

M
+ gαβB

αβ
µν p

µpν F2

(p · q)M

pαpβf
αβ = pαpβB

αβ
µν g

µν F1

M
+ pαpβB

αβ
µν p

µpν F2

(p · q)M .

Where F1 and F2 represent the structure functions of the target. To express the

above the matrix contractions it is useful to define the quantities [25]

D+ = −t− 2q · p+

D− = −t− 2q · p− .
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Using the above definitions, the four surviving matrix contractions are given by

gαβB
αβ
µν g

µν = 4

(

1

D2
+

+
1

D2
−

)

[

(q · p+)(q · p−) − 2m4
e

+(p+ · p+)(
t

2
−m2

e) +m2
e(q · p+ + q · p−) +

3

2
tm2

e

]

+8
p+ · p−
D+D−

[

p+ · p− + 2m2
e − t− q · p+ − q · p−

]

pαpβB
αβ
µν g

µν = 2

(

1

D2
+

+
1

D2
−

)

[

M2
(

(q · p+)(q · p−)

+m2
e(q · p+ + q · p− + t−m2

e)
)

+ 2(p · p+)(p · p−)(m2
e −

t

2
)
]

+M2
( 1

D+

− 1

D−

)2[

p+ · p−(t− 2m2
e)
]

−4
( p · p+

D+D−

− p · p−
D+D−

)[

(p · p+)(q · p−) − (p · p−)(q · p+)
]

+4
p+ · p−
D+D−

[

M2
(

p+ · p− − q · p+ − q · p−
)

− 2(p · p+)(p · p−)
]

−4(p · q)
[p · p+

D2
−

(q · p− +m2
e) +

p · p−
D2

+

(q · p+ +m2
e)
]

+4
p · q
D+D−

[

(p+ · p−)(p · p+ + p · p−) +m2
e(p · q)

]

gαβB
αβ
µν pµpν = 4

( 1

D+
+

1

D−

)(p · p+

D+
− p · p−

D−

)[

(p · p+)(q · p−)

−(p · p−)(q · p+)
]

− 4
(p · p+

D+
− p · p−

D−

)2[

p+ · p− + 2m2
e

]

+2
( 1

D2
+

+
1

D2
−

)[

M2
(

(q · p+)(q · p−) +
t

2
(p+ · p− + 2m2

e)
)

−t(p · p+)(p · p−)
]

− 2M2t
p+ · p−
D+D−

+4(p · q)
(p · p+

D+

− p · p−
D−

)( 1

D+

− 1

D−

)[

p+ · p− + 2m2
e

]

−4(p · q)
[(p · p−)(q · p+)

D2
−

+
(p · p+)(q · p−)

D2
+

−m2
e

p · q
D+D−

]
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pαpβB
αβ
µν pµpν = 2

(p · p+

D+
− p · p−

D−

)2[

2(p · p+)(p · p−) −M2(p+ · p− +m2
e)
]

+
1

2

( 1

D+
− 1

D−

)2[

M4
(

2(q · p+)(q · p−)

+t(p+ · p− +m2
e)
)

− 4(p · q)
(

M2
(

(p · p−)(q · p+)

+(p · p+)(q · p−)
)

− 2(p · p+)(p · p−)(p · q)
)]

+2
( 1

D+
− 1

D−

)(p · p+

D+
− p · p−

D−

)[

M2
(

(p · p+)(q · p−)

+(p · p−)(q · p+)
)

+ (p · q)
(

M2(p+ · p− +m2
e)

−4(p · p+)(p · p−)
)]

.

These expressions are valid for e+e− pair production off of proton targets. For

τ+τ− pair production one needs to change m2
e → m2

τ . To extend the calculation to

higher Z targets, the proton mass, M , appearing in the above equations needs to be

changed to the appropriate target mass, Mt. Using the expression for fαβ given in

Eq. (2.14), the expression for the contraction of all of the tensors in the differential

cross section reduces to

Aαβf
αβ = (4m2

µ − 2Y )fA + (Sx −M2Y )fB .
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