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Abstract. This paper represents a concise introduction to the quantum theory of point
particles in a time orientable curved spacetime part of which was presented in the DICE
conference in Castiglioncello, Italy. It is manifest covariant with a unique section of vacuum
states as part of a Hilbert bundle.

1. Introduction

There is only one quantum theory on Minkowski and that is the one presented by Weinberg
proceeding upon work started by Wigner and Von Neumann. It is axiomatic, starts from a
clear definition of a particle and constrains the dynamics as such that the notion of a field
becomes useful. Weinberg wrote his summary after all the Evil happened and the beast was
baptised “quantum field theory” instead of relativistic particle dynamics. Often, it is useful to
attribute the correct name to something as it must reflect its deepest inner workings such as
man, woman and hermaphrodite although it is kind of embarrassing to see the last one as a
convex combination of the previous extremal cases (it is much more sexy than both of them).

The idea of this paper is to give two distinct proper introductions to RQT (relativistic quantum
theory), a Weinbergian one - which we will end with and was not presented on the conference -
and a divine one, starting from the most simple of considerations, having nothing to do a priori
with probability theory and Hilbert bundles (instead of spaces). Both approaches provide one
with a different view on classical and quantum mechanics; they are geometrical and entirely
devoid of a coordinatized language as well as symplectic approaches due to globally hyperbolic
foliations.

I thank the organizers of the conference for the opportunity to present my viewpoint on the
matter -as well as other things- and will return in due time with further elaborations on this
work.

2. Foundational arguments

In this section, I see nature as a communist reflects upon society; the foundational quantity
of everything is contained in an action signifying “work” or “rabota”. That is, consider
d(v(s),p(y(s))) € B where v : [a,b] — M is a curve joining an event = to an event y in spacetime
M in affine parametrization with respect to a Lorentzian or Riemannian metric where, moreover,
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p is a field on that line associated with the physical quantity of “momentum”. We do not really
know yet what momentum is but it represents a kind of weight or importance given to that
motion, p must not be proportional to ¥ as weight might sometimes be opposant to the current
motion. Given that rednecks love calculus, B is a division algebra over the real numbers with
standard operations +, ., that is R, C or QQ disregarding the non-associative octonions.

A frictionless theory is a dreamworld as no waste is produced. Mathematically, this translates
as follows: there exists an involution  and operation x such that ¢(y(b — s),p(y(b — s))) *
¢(7(5), p(v(s)) = L and ¢(v(b—s),p(7(b—5))) = d(7(s),p(7(5)))'. It is worthwhile to comment
upon these; the first one means that that reversing the process is arithmetically equivalent to
taking the inverse whereas the second one says that the inverse has a metrical significance. This
last stance is useful as inverting two processes must preserve the distance between them. No
discussion about this is allowed for.

As a consequence, the constant curve 7.(s) = x = y satisfies

S(ve(s), p(7e(s)))* = 1.

which for x = + and B = R gives ¢(y(b — s),p(v(b — s)) = —o(y(s),p(y(s)) and
?(7ve(s), p(7e(s))) = 0. These simple observations give rise to the notion of work and classical
physics. For, B = C, we have that

P(y(b—=5),p(v(b = 5)) = ¢(7(5), p(7(5))
and |¢(v(s), p(7(s))|?> = 1 what leads to the U(1) Fourier waves in quantum theory.

2.1. Classical theory

The idea is to write down a first order differential equation for the quantity of labor.
Reparametrization invariance forces %qﬁ(’y(s), p(7y(s)) to be proportional to %fy(s). Furthermore,
the reversion property implies

Lo0r(s),p(1()) = (5) - F(1(s),p((5)))

which is the old Newtonian expression with F having the meaning of force. Note that this is an
expression local in spacetime as the change of work does not depend upon its previous history.
Theories with radiative effects do not satisfy this expression but nevertheless a more complicated
one. To complete the dynamics, Newton supposed that p((s)) must maximally stimulate the
direction in which the particle is moving and that, therefore

p(v(s)) = mi(s)

where m > 0 and expresses the weight attached to persistence of motion, called physical mass.
Another observation was of an Einsteinian nature, namely that the change of work should reflect
the change in an inherent physical property of the particle and not depend upon external forces
at all. This would mean that, in a way, a particle is free infinitesimally; the lowest order, in the
derivatives of the world line, such invariant is given by the momentum squared

h(p(v(s)),p(7(s)))

which suggests something like

2
a (’3 (57) ) = L o0r1). Lo ()
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and bestows ¢(7(s), %7(5)) with the dimension of mass which it should be given that the notion
of force must be associated to something intrinsic which is change of momentum

F(3(5),p(1(5)) = Sp(1(5))

This is the simplest idea possible, given that the kinetic term is the lowest order invariant and
m can be thought of as some material based constant. This leads to

2 2
m (jsya))) - (iv(a)) = 6(1(0). (v (b)) — B((a), p((a)))

and in a way generalizes a concerved quantity given that ¢ depends upon the entire path and
not just the endpoints in general.

One could make higher derivative theories also in this way and allow for Newtonian laws
with third order derivatives. These naturally appear in the context of back reactions
in electromagnetism for example and allow for “unphysical” solutions with causality going
backwards in time. For example, an electron would accelerate prior to turning on a light bulb.
Note also that the interpretation of + as the physical path of the particle naturally emerges
given that Newtons law fixes it entirely given two “initial data”.

2.2. Quantum theory
Now, we derive quantum theory, as well as the probability interpretation, in the same vein. One
notices that the obvious, but not only, candidate for an equation of motion is given by

d

h—
ds

o(v(s), p(7(s))) = 1g(p(1(s)), 7(s))o(7(s), p(7(5)))

where p is the energy momentum vector and +(s) dimensionless. Notice that 7 is needed for
dimensional reasons to get a nontrivial theory given that ¢ must be dimensionless as any physical
quantity is a real and not unitary number. On flat space times ¢(7y(s), p(v(s))) is topological as
it just depends upon the homotopy class or winding number. That is,

$(1(b), p(7(b))) = €W

which is the standard Fourier wave in y with base point, or origin z. Given that e-(¥—%)
provides for a trivial unitary mapping between e (=% and (%) the waves are identical
up to a momentum dependent constant multiplicative U(1) factor. In traditional RQT, this
is precisely the impact of the translation symmetry in Minkowski QFT. To arrive at the QFT
propagator for a quantum field on Minkowski, we notice that the total “propagator”

Dle.y) = a [ 66 0(p.0) ~ m)ol (8).0)

is the expression we are looking after. Indeed, in ¢(z,w,p), as well w as p are uncertain, which
is kind of logical given that the momentum is not necessarily the maximal forward one but is
dragged over the curve as to indicate the initial direction of preference. In order to recuperate
the classical bi-functional way of thinking, we have to integrate over p on mass-shell. It utters
nothing but the Heisenberg uncertainty principle that if the positions =,y are known sharply,
then the momentum is totally uncertain apart from the fact that it needs to be forwards pointing
in time and have mass energy mc?. Actually, what this integration says is that all preferences are
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taken into account democratically unless some higher intelligence, due to a spiritual interaction,
desires differently. This is actually a classical Bayesian way of thinking except that the weights
or probabilities are here given by complex numbers. In this vein, quantum theory is one of
reality w and desire p which do not need to coincide as happens in the classical case; the theory
may get more psychological than this by having more complex “momenta” and Einsteinian
constraints as happens in (an appropriate version of) string theory. z is here interpreted as
the point of birth of a particle and y as the point of dissapearance, death or annihilation.
Actually, this is all there is to free QFT on Minkowski; we dispose of no Hamiltonian operator
but the Wightman function, from which the Feynman propagator can be uniquely defined, has
the standard singularity structure which makes implementation of interactions difficult.

To arrive at the full expression in curved spacetime, we notice that
D(z,y) e R

if x is space like to y written by x ~ y and given that D(z,y) = D(y,x) in general we arrive at
the conclusion that for space like separated events, the creation and annihilation processes at x
and y can be swapped without altering the “propagator”. This is the expression of Bose-Einstein
statistics, a desirable property in the general theory. In a general curved spacetime, ¢ depends
upon curve and not just the homotopy class due to the existence of local gravitational degrees
of freedom. In light of Bose statistics, only geodesics count given that the scalar product is
preserved. In the light of constructing regularized propagators with a smooth structure, consider
the “Schrodinger” equation,

d
%¢($, Y= epr(’U)); w, k7 3)

= (iglw(s), k(5)) — my/m(w(s), w(5)) ~ 75— Ot (2,050, (w3) ) ()6,

(, exp, (ws))

= exp,(w);w, k, s)

where s € [0,1] and w, k € T, M, h is a Riemannian metric delivering an energy u and L is a
huge mass smoothening out the light cone. Finally,

D D
gk(s) = gw(s) =0.

Notice that violation of unitarity occurs by means of x, L: they represent irreducible imaginary
friction terms, meaning that every process has a “cost” which cannot be undone -no perfect
“Carnot cycle”. It endows spacetime with a kind of effective granularity in the metrics
determined by h and o2. The solution to the equation reads

—K fol h(w(s),w(s))ds—m

¢(l‘7y = eXp$(w), w, k) = ¢(x’ Y= expm(w>’ w, k’ 1) — e’ik.we

which produces a generalized wave given by

gb(aj,y;k) = Z QS(:L'JJ = epr(w);ka)'

WET, Miexp, (w)=y

This calls for the following definition of the propagator

Pep=a ¥ [ dawe)

weT M:exp, (w)=y
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e_ll/h(p(o)7p(0))_Mh(p(l)vp(l))_H‘(l_a(g(w7w)))(h(Rw(O)p(O)7Rw(0)p(0))_h(wa(l)p(l)vaw(l)p(l)))

8(g(p,p) — m*)$(x, y;w, p)

where the p terms express that the creation and annihilation processes come at a cost.

Under reasonable conditions, this regularized propagator is smooth everywhere and has
exponential falloff behavior towards infinity. The Feynman propagator gets the following
universal prescription:

AF,;L,R,L (1‘, y) = Z D,u,n,L ($7 w)

w:exp,, (w)=yand w is in the future lightcone of x

+ Z Du,fe,L (3/7 w/)

w’:exp, (w')=z and w’ is in the future lightcone of y

+ Z D#aH>L(m’ w)

w:exp,, (w)=y and w is space like at x

meaning that all “information” has to travel towards the future which constitutes clearly the
right function to study interactions with.

This theory has been worked out in a book [1] published on Amazon. It turns out that
all Feynman diagrams are finite in all known interaction theories for particles of spin less
than % Moreover, they are suitably bounded and show “exponential falloff behavior” even
on Riemannian spaces with negative sectional curvature when friction x is large enough. All
theories need a modification of the standard Dyson expression for diagrams with a large number
of internal vertices in order to procure analytical results and make the whole power series well

defined. The interested reader is referred to that book for an entire elaboration of this theory.

3. Haute Weinbergian cuisine

Whereas this previous section procured extremely deep connections between different branches
of physics from an elementary point of view, this section is somewhat more traditional but no
less profound. It is just so that in the end, the same formalism is recovered in all known cases
but a different looking avenue is opened up. The latter might be completely isomorphic to the
previous one however.

3.1. Classical physics revisited

Consider a particle moving in a bundle £ over a Lorentzian spacetime (M, g) where the fibers are
equipped with a metric field and the associated connection preserves the total metric (which is
usually a product metric). Regard the word line as an immersion v : R — £ and the momentum
as its the push forward of 0; with equals

D

ﬁ::v

FA(D)

where V is the bundle connection. Given that we shall only work with functions f : £ — R, the
latter expression can be taken for (9;), as an ordinary vectorfield instead of a general derivative
operator. To every curve v and function f we can attach a function vy : R = R : ¢t — f(v(t)).
We can now define a C*°(R) algebra of operators L on the function space f : &€ — R mapping
them to functions from R to R. Concretely

(v ) (@] (@) == F(v(£))g (7 (1))
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and
I+ 71(8) = S £ (1),
We have moreover,
V#(g + 1) =75(9) +5(h)

and
(D) (vp )] (#) == [(Be)w 1) g(v(t)) + F (v (1)) [(De)x () (1)

This suggests to extend the definition of the momentum in this way to functions R — R. The
same comment holds for v;. In this vein,

g vrhI () = g(v () f (v () h(¥(t))

and

[pyv£h](t) = Ou(f (v (1)) R(¥(2)))
as well as

[vrpyhl(E) = f(7())Oeh(7(2)).
Finally,

[,y h)(t) = (9)*h(4(t))

which induces a real algebra generated by

Ygs Py

where « varies over all immersions. This algebra is represented by means of linear operators on
the function algebra
B:=C®R)®C>*¢)

which may be given the structure of an Hilbert algebra in the usual L? sense by introducing an
einbein on the “time line” R. Concretely

v ) (9) = 0 = [py, 4] (9): [Py: 17 (9) = Py (F)1e(9) = Y (1) (9)

where v, is the pull back defined by the immersion . Here, the commutation relations employ
the full B action but are understood to apply on f,g,h € C*°(€) and result in an element of
C*(R).

Covariant dynamics requires dynamics without potential energy terms; therefore, any force has
to be implemented in the momentum what explains the bundle £. Moreover, according to
Einstein himself, every force, including the gravitational one, can be gauged away in some point
so that locally and physically every particle is a free one meaning that the correct equation is
the geodesic bundle equation. Therefore, the classical Hamiltonian is a constraint and moreover,
commuting it with a vector leaves a covector if it were an invariant energy so that

[(H(vfspy)s Pyl

cannot represent %p7 unless we would make an extra metric contraction. Actually, the whole
Hamiltonian edifice is kind of meaningless as we shall see now. Indeed, taking H(vs,p,) to be
p With equations of motion given by

[%AW] (9) = [Py, v71(9) = V(1) (9)
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and D D
2 00)0) = [

dt Ap,)(dg) = [py, py)(dg) = [py, 4] (9) =0

where

2 Ad(9) = [ Cl(o)

There is nothing more to say really apart from the constraint g(p-,p,) = m;f which is the
mass energy relation. This is all what is allowed in classical physics of point particles really
and we now proceed to quantum theory. Notice that the dynamical content is completely
implied by the commutator algebra which constitutes a total unison between dynamics and
kinematics. Physically, this is entirely trivial and completely justified given that the momentum
just corresponds to the energy in a rest frame. Note also the presence of & in the latter formula
which is there for dimensional reasons; alas, it does not do anything else apart from setting a

time scale given that the covariant derivative does not depend upon it.

3.2. Relativistic quantum theory

As we have shown in the previous section, the Poisson Bracket really is a commutator and the
Hamiltonian formulation is rather void given that the total free momentum, constrained by
the quantum mechanical mass formula is the only real quantity of interest. Unlike in classical
physics, quantum mechanics cannot use an external time in a sense given that a particle is not
specified anymore by a world line but by a wave. In a way, it is the complex dual of the classical
situation where “world lines” correspond to functions 9 : &€ — C which are C*°. The operators
vf and p, are replaced then by xy and iVy where V' is a real vectorfield over £ and f is a real
valued function over £. Here, [x¢](g)(z) = f(z)g(x) and

P(V)(g) = iVv(g) = iV(9g).
They obey the algebra
[xf,2n] = 0,[iVy,iVw] = =R(V.W)(-) = Vyw

and finally
[(Vv,zf] = ziv(p)-

The momentum commutation relations have been put in this exotic form because the covariant
derivative can work on vectorfields and higher objects too. The ¢ is just there to ensure that
the momentum operator is real given that the commutator of two real operators is imaginary.
The situation here is very different as one cannot just pick a Hamiltonian linear in the momenta
given that one would as thus preselect a non dynamical arrow of time. Hence our only choice is
given by

n
H= Z ”ijinvEJ‘
ij—=1

where the FE; correspond to local vielbeins and 7% is the inverse of the standard flat metric.
In order for this to work V must be extended to the spin connection to digest local boost
transformations. Furthermore, one has

H =m?

as constraint. It is clear one has no Heisenberg type dynamics here as the vectorfields really
are spacetime vectorfields; hence, the entire theory is encapsulated by the constraint and the
geometry of the bundle £. It has been shown by Ashtekar and Magnon that this theory only



9th International Workshop DICE2018 : Spacetime - Matter - Quantum Mechanics IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 1275 (2019) 012047  doi:10.1088/1742-6596/1275/1/012047

works out fine in stationary space times with Minkowski as the prime example due to the
existence of scalar products on leafs of a foliation for which the latter is preserved in “time”.

In 2011, T wrote a book about an operational approach to quantum theory with local vacua
delineating a Fock-Hilbert bundle ®,caH, over the space-time manifold M. However, the
approach was troublesome and muddled with two “fundamental errors” of mine, not due to
a lack of mathematical precision, but being the consequence of a poor understanding of what
curved spacetime really signifies. This error found a natural solution in [1] written on generally
covariant quantum theory from the point of view of the Feynman series.

Concretely, we assumed H, to be constructed by means of a cyclic quasi-free vacuum state |0),
and multi particle states showing Bose or Fermi statistics constructed in the Fock way. The
dynamical object was a unitary bi-field U(z,y) mapping H, — H, and obeying a Schroedinger
like differential equation

d ,
@U(t, s) =1iHU(t,s)

but then with the times ¢,s replaced by x,y. The two errors in the book originated from
the mathematical implementation of this idea I conceived; first of all U(t,s) = U(t)UT(s)
and moreover the only covariant first order differential operator homogeneous in the spacetime
coordinates is given by the covariant Dirac operator D. The first condition is equivalent to a
“cohomology” condition

Uz, y)U(y,2)U(z,2) =1

which turns out to hold in Minkowski or any maximally symmetric spacetime only and reflects
the absence of local gravitational degrees of freedom. Consequently, the only solution I was
able to find of my field equations was free quantum field theory on Minkowski in a way I shall
explain later. The Dirac operator gives all sorts of trouble meaning we have to replace the
complex numbers by an appropriate Clifford algebra of signature (1,3) or (3,1). This gives rise
to negative probabilities and huge problems with the spectral theorem even for finite dimensional
Clifford bi-modules. The approach was clearly dead as it stood which I realized later on.

3.3. Taking bi-fields seriously

As pointed out in [1], the idea of a Hilbert bundle is adequate, but the correct differential
equation for U(y, ) needs to run over geodesics connecting = with y in a fully reparametrization
invariant way. The obvious candidate is given by

L U(y(s),2) = #4()° PaU (3(s), )

ds
where 7(s) is the unique geodesic connecting x with y and P, equals the free momentum
generator, given by the expression

p_ d3k:k +
a — Z \/% aak;j,ojak,j,aj

particles j, internal degrees o;

at the point z with respect to the dragged vierbein in x along the geodesic. The coincidence
limit is fixed by U(z,x) = 1; this suggests one to enlarge the notation to U(y,x;eq(y), ep(x))
as well as a unitary action T'(A,ep(z)) of the ortochronous Lorentz group A € O*(1,3) on
Ul(z,x;¢'5(2), eq(x)) by means of conjugation TUTT. All this has been explained in [2]; in order
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for T(A(s), eq(y(z)) to shift through we need a Lorentz covariant derivative and, henceforth,
an anti hermitian connection L, (z, eb( )) such that

<CZ +3%(8) Lu(v(s), Aﬁ(S)@b(V(S)))) T(A(s), s (v ()T (1(s), a3 en(1(5)), ea (@) TT(A(s), en(7(5)))

~TAGs), s ))U(1(5), 2 (1)), @) THALS), en(a(3))V#(5) Ly 5), AL s)enr(5) =
T(AGs) W FAELOE. 0D ) Vol mah().a@)]| T0a6)
T, 1NV ((5), 23 01 (3)) eal))F(5) Lulr (5), (T A), (1 ()

In case we dispose of multiple geodesics connecting x with ¥, we just multiply the corresponding
unitary operators in the same vierbein at y, the order of which does not matter given that all P,
commute and because the action of the Lorentz group acts by boosting the momenta. Therefore,
we can just sum up the momenta which can accommodate for topology change of Minkowski
into a flat space like cylinder giving rise to the correct field picture.

There is however a small caveat here in case multiple geodesics connect z and y in the sense that
the gauge field might acquire a nontrivial significance due to multi valuedness of e,(y), where
the latter is the dragged vielbein from x to y. Hence, it is better to replace the argument y by
a tangent vector V' in T M, and take the x perspective where exp,(v) = y. In that case, we set
L, (sv,A%(s)ep(exp,(sv))) to zero in case

D
£eb(expx(sv)) =0

for s = 0...1. In other words, the vielbein in the warped point in that direction must be the
dragged one; this makes both formalisms entirely equivalent what the free theory is concerned.
Notice that by construction, U(y,z) = U'(z,y) due to the minus sign caused by flipping 7*(s).
Given that the connection L, (v, ep(exp,(v))) is a new object defined on

TMgz(v) x VMgy(exp,(v))

where V. Mg(exp,(v)) is the nonlinear space of g vierbeins over M, which is equivalent to the
group manifold O*(1,3) regarded as a homogeneous space with a hyperbolic Cartan metric
of signature (3,3); it might be opportune to make it more dynamical and invent a new type
of non abelian Yang-Mills theory over T M,. This author tried this also in 2011 but failed
to recognize the bundle perspective as well was stuck with Clifford modules for replacements
of Hilbert spaces. The easiest thing is to see Ly, as Ly ; exp, (v) (v, €r(exp,(v))) where e, varies

independently and refers to y = exp,(v) and subsequently write out a Yang-Mills equation of
the kind

(DL, exp, ) (v ealexpa (1))

where d is the Hodge operator on flat tangent space. Life could be more exciting as to pick out
the zero solution in parallel transport gauge and we leave this new piece of physics for further
examination of the bored ones.

W (Byr — L) Ly = (dL)gy — (LA L)y =0

So far, we have determined only our quantum connection; now, we develop bi-fields which are
nothing but the warps of coincidence fields meaning

O(y, ) : I1 U(y = expy(v), ;5 (exp, (v))x€a (), €a(@)) | B(2,2)

VET Mg :exp, (v)=y
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II Uly = exp,(v), z; (exp,(v))«€a(2), €a(x))

VET My :exp, (v)=y

Here,

3k _

particles j with internal quantum numbers o ;

where v, is an internal field vector associated to the internal particle degrees of freedom. They
are needed to obtain different physical behavior, % is the on shell relativistic measure in
Fourier space on Minkowski and finally, \/l?gakJJj is relativistic normalization of the creation
annihilation algebra. I leave it as an elementary exercise to find out principles determining
Vg,. So ®(z,x) is the proper democratic relativistic expression taking into all matter degrees of

freedom in the universe.

3.4. Interaction theory
So far, we have delineated the free theory from an operational bi-field formalism which reduces
in Minkowski to a single field formalism due to the remarkable “cohomology” property

U(z,y)U(y,2)U(z,z) =1

where we have dropped the vielbeins and assumed dragging all along which is logical given that
dragging is trivial and hence consistent along closed paths due to the vanishing of the Riemann
tensor. The trick now is to work directly into an interaction picture and forget about a closed
bi-field equation. That is, we write down spacetime interaction densities of the kind

M/ VW) (y, 2)®(y, 2)®(y, p)@(y, q)-
M

This is an obvious exercise leading to a completely equivalent formalism as in the book.
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