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Abstract

Time-domain astrophysics probes high-energy phenomena, the end-lives of massive

stars and the creation of new elements which enrich the cosmos. Wide-field, untargeted

photometric surveys have drastically increased the quantity and variety of known

extragalactic transients, continuously challenging our understanding of late-stage

stellar evolution. At the same time, gravitational wave detectors have ushered in a

new era of multi-messenger astrophysics. This thesis presents a series of theoretical

and observational studies which address the questions associated with a new era of

data-driven, multi-messenger time-domain astrophysics.

First, we explore the breadth of engines and progenitor systems which lead to

extragalactic transients. Through a systematic census of optical light curves, we explore

the spread of stellar eruptions, explosions and collisions in simple feature spaces. We then

take a detailed look into the eruption of a massive star with a neutron star companion.

Second, we focus on the collisions of compact objects: neutron star mergers

and black hole-neutron star mergers. We present a detailed analysis of the complete

photometric dataset covering the first two months of the kilonova associated with the

gravitational event GW1701817, resulting in the strongest constraints on the kilonova

properties. We then present the first Spitzer Space Telescope infrared observations of

the kilonova. Our results highlight the discrepancy between theory and the observed
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late-time behavior of kilonovae.

Finally, we focus on the upcoming age of large data streams. In late 2022, the Vera

C. Rubin Observatory will begin its Legacy Survey of Space and Time (LSST), which will

increase our annual discovery rate of extragalactic transients by two orders of magnitude.

Transients which are currently rare will become commonplace. In this context, we first

present a case study of the rare class of superluminous supernovae (SLSNe) in the new

era of LSST. We find that the number of LSST SLSN discoveries will rival the current

literature sample in less than a week, and we will be able to recover physical parameters

for most events without multi-wavelength follow up. However, no population studies of

transients will be possible without classification of LSST light curves. We present two

data-driven machine learning methods, one supervised and one semi-supervised, which

classify supernovae from the Pan-STARRs Medium Deep Survey.
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Chapter 1

Introduction

Time-domain astrophysics, the study of astrophysical events evolving on human

timescales, impacts almost every other branch of astrophysics. In addition to being

unique cosmic laboratories for high-energy physics, transient events drive the chemical

evolution of the universe; lead to the formation of compact objects like black neutron

stars and black holes; and unveil the end-stages of stellar evolution.

This thesis comes at the dawn of two revolutions in time-domain astrophysics. The

first is one of multi-messenger astrophysics, in which a single astrophysical event can

be detected in electromagnetic radiation and gravitational waves. The second is one of

big data quantities, with an exponentially increasing number of extragalactic transients

being detected annually. This Chapter introduces the three pillars of this thesis: the

“zoo” of astrophysics that drives the diversity of extragalactic transients; the birth of

a new era of multi-messenger astrophysics due to gravitational wave detectors; and the

start of a new age of “big data” in time-domain astrophysics thanks to wide-field surveys.
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CHAPTER 1. INTRODUCTION

1.1 A Zoo of Extragalactic Transients

In 1938, Walter Baade and Fritz Zwicky noted that “there exist two well-defined types

of new stars or novae which might be distinguished as common novae and super-novae”

(Baade & Zwicky 1934). Amongst this new class of so-called supernovae, Minkowski

(1941) noted that two spectroscopic subclasses appeared to exist: an “extremely

homogenous” group of hydrogen-less “Type I” SNe and the more heterogenous class of

“Type II” SNe. Today, the number of known astrophysical transients has drastically

increased; however, we still largely classify these events with similar phenomenological

reasoning and labels. The “zoo” of transients which we see today arise from a combination

of unique progenitor scenarios, environments and stellar configurations (e.g., binarity).

This thesis will focus on transients arising from three general scenarios: the

eruptions, explosions and collisions of stars. While this Section will provide a general

background on stellar eruptions and explosions, Section 1.2 will give the introduction to

the collisions of stars and their multi-messenger signals. The wide-range of underlying

physics found in extragalactic transients will be the focus of Chapters 2-3.

In particular, Chapter 3 will present a theoretical census of optical light curves

for a wide variety of extragalactic transients, including supernovae (SNe), kilonovae

(KNe) and gamma-ray bursts (GRBs). A key contribution of this Chapter is uncovering

transients which are intrinsically (vs. observationally) rare from a theoretical perspective.

We conclude that both fast-rising and intermediate-luminosity transients are intrinsically

rare due to a lack of plausible physical engines to produce them. This work also resulted

2



CHAPTER 1. INTRODUCTION

in the creation of a large number of open-source1 models and modules in the Modular

Open-Source Fitter for Transients (MOSFiT).

1.1.1 Stellar Eruptions

We define stellar eruptions as non-terminal bursts of stars, typically arising from

mass-loss events and/or accretion onto a companion star. The most famous example of

such events are classical novae, in which a non-degenerate star accretes matter onto a

white dwarf. In this work, we focus on the more unusual eruptions of massive stars, seen

in both the Milky Way and beyond.

Eruptive transients typically peak in luminosity between novae (MV ∼ −9 mag) and

the dimmest supernovae (MV ∼ −14), and are referred to as “intermediate luminosity

optical transients” (ILOTs) for this reason. Exceptionally bright eruptions may be

confused for dim SNe, leading to a class of objects known as SN-impostors (see, e.g.,

Kochanek et al. 2012).

What drives these eruptive events? There are a number of suggested theories.

For single massive stars, a sudden increase in bolometric luminosity may launch

radiation-driven, super-Eddington winds (Quataert et al. 2016). Larger outbursts may

result from intense mass-transfer events via Roche-lobe overflow in close binary systems

(Smith 2014). Finally, massive eruptions occurring months to years before core-collapse

SNe (e.g., Margutti et al. 2013) hint that mass-loss events may be related to late-stage,

unstable nucleosynthetic processes. Regardless of origin, the objects resulting from these

1https://github.com/villrv/MOSFiT
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CHAPTER 1. INTRODUCTION

eruptive mass-loss events span a wide range of observational properties and probe the

late-stage evolution of massive stars.

In Chapter 2, we present a case study of a particular interesting ILOT and

SN-imposter, dubbed SN 2010da. With more than a decade of spectroscopic and

photometric, multi-wavelength followup, we show that SN 2010da is the result of the

eruption of a massive star with a neutron star companion. We are the first to note that

this object is a ultra-luminous X-ray source (in which the X-ray luminosity is greater

than the Eddington limit of a neutron star.) Our conclusions were later confirmed

through NuSTAR and XMM-Newton X-ray observations (Carpano et al. 2018).

1.1.2 Stellar Explosions (Supernovae)

As with stellar eruptions, the explosions of stars also exhibit a wide range of observational

properties. Following historic precedent, SNe are classified largely by spectroscopic

and other observational properties. In Figure 1.1, we show an example classification

tree for SN subtypes. There are, generally speaking, two progenitor systems of SNe:

the thermonuclear explosions of white dwarfs as Type Ia (and Type Ia-like) SNe and

core-collapse SNe (CCSNe) resulting from the collapse of massive stars. There is a

greater diversity, both in physical origins and observational properties, in CCSNe

compares to thermonuclear SNe.

Amongst the many classes of CCSNe, we will focus on four: Type II SNe; Type

IIn SNe, Type Ibc SNe and Type I superluminous supernovae (SLSNe). Type II SNe

are the most common (volumetrically and observationally) CCSNe. They arise from the

collapse of red supergiants. They have a distinct “plateau” stage in their light curves,

4



CHAPTER 1. INTRODUCTION

caused by a wave of Hydrogen recombination passing through their outflowing ejecta.

In contrast, Type IIn SNe arise from massive stars which experience substantial mass

loss during their final decades. Narrow Hydrogen lines in their spectra suggest that they

are powered by shock-heating from the interaction of the SN ejecta and pre-existing

circumstellar material. In contrast, Type Ibc SNe have lost substantial mass, given

their lack of Hydrogen and Helium in their SN ejecta. However, the SN ejecta does not

interact with the lost mass, making their main power source the radioactive decay of

56Ni. Finally, Type I superluminous supernovae (SLSNe) are a rare class of objects that

are believed to originate from the birth of highly magnetized neutron stars (magnetars).

As their name suggests, they are distinguished by their brightness with peak magnitudes

brighter than M < −20 mag.

1.2 The Birth of Multi-messenger Astrophysics

The Laser Interferometer Gravitational-Wave Observatory (LIGO) began its hunt for

gravitational waves in 2002, a century after their prediction (Einstein 1918; Abbott

et al. 2009). In addition to searching for binary black hole binaries, LIGO and other

gravitational wave detectors search for the mergers of binary neutron stars (BNs) or

neutron star-black hole (NSBH) pairs. Stellar collisions involving at least one neutron

star are expected to synthesize heavy elements via the rapid neutron-capture process

(r-process; Li & Paczyński 1998. The decay of the newly synthesized material results in

a so-called kilonova (Li & Paczyński 1998; Rosswog et al. 1999; Metzger & Berger 2012).

Although not the sole site of r-process nucleosynthesis, it is believed that kilonovae

and BNS mergers are the dominate producer of the universe’s heaviest elements.

5



CHAPTER 1. INTRODUCTION

Unfortunately due to the small ejecta masses and large opacities of kilonovae (see, e.g.

Metzger 2017), kilonovae were not detected prior to 2017.

On August 17, 2017, the advanced LIGO/Virgo network detected the first

gravitational wave signal from a BNS merger (Abbott et al. 2017). This detection

was followed by the joint discovery of an associated gamma-ray burst and kilonova

(Abbott et al. 2017; Coulter et al. 2017a; Soares-Santos et al. 2017). This event, dubbed

GW170817, led to a number of significant discoveries, including the first joint detection

of GWs and EM radiation from a single event; proof that short gamma-ray bursts

arise from BNS mergers; and evidence that kilonovae are the dominate site r-process

nucleosynthesis. Our team led a number of initial studies related to the discovery

(Soares-Santos et al. 2017), ultraviolet/optical/infrared emission (Chornock et al. 2017;

Nicholl et al. 2017b; Cowperthwaite et al. 2017), X-ray/radio/gamma-ray emission

(Alexander et al. 2016; Margutti et al. 2017a; Fong et al. 2017) and host properties

(Blanchard et al. 2017) of the event.

Chapter 4 and Chapter 5 present results following the initial follow-up efforts,

including studies of the kilonova associated with GW170817 and of continued followup

efforts of new BNS and NSBH mergers discovered by the advanced LIGO network.

In Chapter 4, we present the complete set of ultraviolet, optical and near-infrared

light curves published within two months of GW170817. We analyze the complete

dataset using a multi-component, semi-analytical kilonova model, finding clear evidence

for second- and third-peak (the heaviest) r-process elements.

In Chapter 5, we present the first infrared Spitzer Space Telescope observations of

the kilonova associated with GW170817. We find that the observation lie significantly
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below our model predictions, following a similar trend to the higher wavelength

photometry. We comment on the physical implications of these observations and the

observability of future events with the James Webb Space Telescope.

1.3 A New Era of Big Data

We turn again to the work of Baade & Zwicky (1934). The authors note that the newly

discovered class of SNe must be exceptionally rare, with an observational frequency of

approximately one per galaxy (“nebula”) per “several centuries”. One would therefore

need to observe hundreds of galaxies each year for any hope of discovering just one SN.

The discovery rate of SNe and other extragalactic transients has grown exponentially

since the 1980s. The exponential growth is driven by both technological developments,

including the shift from photometric plates to charged-coupling devices (CCDs) and

changing survey strategies. The first transient surveys (e.g. the Lick Observatory

Supernova Search; Filippenko et al. 2001) made targeted observations of hundreds

of galaxies to search for new transients. Thanks to improved CCDs and increased

computational power, modern surveys such as Panoramic Survey Telescope and Rapid

Response System (Pan-STARRS; Kaiser et al. 2002), the Palomar Transient Factory

(PTF; Law et al. 2009) and the Zwicky Transient Facility (ZTF; Kulkarni 2018) adopt

an untargeted approach in which large patches of the sky are observed every few nights.

Through untargeted surveys, we now discover nearly ten-thousand SNe annually (see

Figure 1.2).

While discovery rates have exponentially increased, spectroscopic follow up has
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lagged behind. As shown in Figure 1.2, we spectroscopically identify roughly 10% of

the SNe we discover each year. Because our current method of classification relies on

spectra, the vast majority of all discovered SNe are not utilized in scientific efforts.

This mismatch of SN classification/follow up and discovery will only worsen. In

2022, a new observatory, the Vera C. Rubin Observatory (VRO), will begin a ten-year

survey of the southern hemisphere known as the Legacy Survey of Space and Time

(LSST). In its current main survey strategy, LSST will observe 18,000 square degrees

in six broadband optical filters (ugrizy), with a typical cadence of several days. The

VRO wide field-of-view (9.6 square degrees) coupled with its 8.4-meter mirror will allow

LSST to reach an unprecedented discovery rate of transient phenomena. LSST will

push up our discovery rate of extragalactic transients by over two orders of magnitude

(see Figure 1.2)–an unparalleled surge and the beginning of a new era of big data

in time-domain astrophysics. In contrast, spectroscopic resources will likely remain

constant, meaning that an extremely small fraction of events (likely ∼ 0.1%) will receive

a spectroscopic classification.

The expected deluge of discoveries has driven the need for new methods of classifying

and studying extragalactic transients, which is the subject of Chapters 8-9. In particular,

this thesis will focus on two questions: (1) How do we label extragalactic transients by

their spectroscopic subtypes using only their broadband light curves?; and (2) What

science can we do with only broadband light curve data?

We address the latter question in Chapter 6. We present a case study for the

currently rare class of hydrogen-free (Type I) SLSNe. SLSNe are thought to be powered

by the birth of magnetars (Nicholl et al. 2017). We present a unified set of 58 SLSNe
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light curves, the largest set in the literature. We then use this set to realistically model

a population of SLSNe in a LSST simulation. We find that, like many known classes,

SLSNe will switch from one of the rarest known SN types to a commonplace event, with

more than 10,000 SLSNe being discovered annually. We find that roughly half of these

events do not need any followup to sufficiently constrain magnetar and SN properties.

In Chapters 7 and 8, we address the question of classifying SNe into their

spectroscopic classes using light curves from Pan-STARRs Medium Deep Survey

(PS1-MDS). In Chapter 7, we present the first supervised machine learning algorithm

to classify thermonuclear and core-collapse SNe subclasses which is trained on a real

(rather than simulated) dataset. Our algorithm achieves classification accuracies which

rival methodologies based on simulated datasets. In Chapter 8, we extend on the work

of Chapter 7 and present a novel semi-supervised machine learning method to classify

the complete set of 3,000 PS1-MDS SN-like light curves. We comment on the ability of

this algorithm to both classify objects in real time and be used as an anomaly detection

mechanism.

We will conclude with future directions in Chapter 9.
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Figure 1.1: Diagram showing a subset of spectroscopic subclasses of SNe. SNe types

are colored based on whether they arise from thermonuclear explosions (green) or core-

collapse of massive stars (orange). SNe are classified largely by the presence/absence

of elemental lines in their spectra, rather than their physical origin. This Figure was

originally published by Villar 2016 for Astrobites.
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Figure 1.2: Discovery rate of SNe as a function of year (blue) and the number of SNe

which received a spectroscopic classification (black line). The exponential increase in an-

nual discoveries is driven by technological and computational developments. The upward

arrow reflects the expected discovery rate of the Vera C. Rubin Observatory (VRO), which

will begin scientific observations in late 2022.
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The Intermediate Luminosity

Optical Transient SN 2010da: The

Progenitor, Eruption and Aftermath

of a Peculiar Supergiant High-mass

X-ray Binary

This thesis chapter originally appeared in the literature as

V. A. Villar, E. Berger, R. Chornock et al., The Astrophysical Journal 830,
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CHAPTER 2. THE PECULIAR ILOT SN 2010DA

Abstract

We present optical spectroscopy, ultraviolet to infrared imaging and X-ray observations

of the intermediate luminosity optical transient (ILOT) SN 2010da in NGC300 (d = 1.86

Mpc) spanning from −6 to +6 years relative to the time of outburst in 2010. Based on

the light curve and multi-epoch SEDs of SN 2010da, we conclude that the progenitor of

SN 2010da is a ≈ 10 − 12 M� yellow supergiant possibly transitioning into a blue loop

phase. During outburst, SN 2010da had a peak absolute magnitude of Mbol . −10.4

mag, dimmer than other ILOTs and supernova impostors. We detect multi-component

hydrogen Balmer, Paschen, and Ca II emission lines in our high-resolution spectra,

which indicate a dusty and complex circumstellar environment. Since the 2010 eruption,

the star has brightened by a factor of ≈ 5 and remains highly variable in the optical.

Furthermore, we detect SN 2010da in archival Swift and Chandra observations as an

ultraluminous X-ray source (LX ≈ 6 × 1039 erg s−1). We additionally attribute He II

4686Å and coronal Fe emission lines in addition to a steady X-ray luminosity of ≈ 1037

erg s−1 to the presence of a compact companion.

2.1 Introduction

Between the luminosities of the brightest novae (MV ≈ −10; Hachisu & Kato 2014)

and the dimmest supernovae (MV ≈ −14; Zampieri et al. 2003), there is a dearth of

well-studied optical transients (see Kasliwal 2012a). In the last decade, we have begun to

fill in this gap with a number of exotic events such as luminous red novae (Kulkarni et al.

2007), luminous blue variable (LBV) outbursts and other “supernova impostors” (e.g.
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Van Dyk et al. 2000; Pastorello et al. 2007; Berger et al. 2009; Tartaglia et al. 2015).

Additionally, there are expected events which have not been definitively observed, such

as “failed” supernovae (Kochanek et al. 2008). Following Berger et al. (2009), we will

collectively refer to these events as intermediate luminosity optical transients (ILOTs).

The link between ILOTs and their progenitors remains elusive, especially for ILOTs

surrounded by dense circumstellar media (CSM). Brighter dusty ILOTs, such as the

great eruption of Eta Carinae (Davidson & Humphreys 1997) or SN 1954J (Van Dyk

et al. 2005), are attributed to LBV outbursts; however, the progenitors of dimmer events

are under debate with a larger pool of viable origins. For example, theorized progenitors

of the famous dusty ILOTs, such as NGC300 OT2008-1 and SN 2008S have ranged from

mass loss events of yellow hypergiants (Berger et al. 2009), to mass transfer from an

extreme AGB star to a main sequence companion (Kashi et al. 2010), to low luminosity

electron-capture supernovae (Thompson et al. 2009; Adams et al. 2016). Each of these

interpretations shares the common theme of marking an important point in the evolution

of relatively massive stars (& 9M�).

Adding to the diversity of ILOTs is the possibility of optical transients within X-ray

binary systems. High mass X-ray binaries (HMXBs) consist of a massive star and a

compact object (e.g. a neutron star or a black hole) and produce X-rays as material

accretes onto the compact object through a variety of channels (Lewin et al. 1997; Reig

2011). A relatively new subclass of HMXBs known as obscured HMXBs are cloaked

in a high density of local material (NH ∼ 1023 − 1024 cm−2; Chaty & Rahoui 2007;

Tomsick et al. 2009). While the primary stars of these systems are largely unknown,

several have been shown to be supergiants exhibiting B[e] phenomena (Clark et al. 1999;

Chaty & Filliatre 2005; Kaplan et al. 2006). These systems likely produce their dense
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circumstellar material through either a continuous wind or periodic outbursts which have

not yet been observed.

In this work we report data from a five-year, multiwavelength (X-ray, ultraviolet,

optical and infrared) observational campaign of the dusty ILOT SN 2010da which was

discovered in the nearby galaxy NGC300 (Monard 2010). We show that SN 2010da

exhibits many features shared amongst dusty ILOTs, such as striking Balmer emission

and optical variability on the order of months, but it is the only ILOT to sit in an

intermediate range between extremely dusty red transients such as SN 2008S and the

bluer, brighter LBV outbursts. Additionally, SN 2010da is the first ILOT to be a

member of a high mass X-ray binary which undergoes an ultraluminous X-ray outburst

(∼ 1040 erg s−1). Previous work on SN 2010da (Binder et al. 2011, 2016) concluded

that the progenitor is a massive (& 25 M�) luminous blue variable using limited HST

photometry. However, from our broadband photometry and spectroscopy we infer

that SN 2010da originated from an intermediate mass (∼ 10 − 12M�), variable yellow

supergiant progenitor which is now transitioning into a blue loop phase of its evolution.

We discuss these conflicting interpretations and the importance of comprehensive,

multi-wavelength coverage of ILOTs.

2.2 Observations

SN 2010da was discovered in NGC300 on 2010 May 23.169 UT by Monard (2010)

with an unfiltered magnitude of 16.0 ± 0.2, corresponding to M ≈ −10.3 assuming a

distance of 1.86 Mpc (Rizzi et al. 2006) and a foreground extinction of E(B-V)= 0.011

(Schlafly & Finkbeiner 2011). We neglect addition extinction from NGC300 based on
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our observed Swift colors (Section 2.3.1). Throughout this Chapter, Epoch 0 will refer

to the discovery date, 2010 May 23. Prior to discovery, NGC300 was behind the Sun,

although Monard (2010) reported an upper limit of . 15.5 mag on May 6. Archival

Spitzer data indicated that the source began brightening in the infrared at least 150

days before the optical discovery (Laskar et al. 2010). Multi-wavelength follow-up,

spanning from the radio to X-rays, revealed that despite its supernova designation, SN

2010da was likely an outburst of a massive star enshrouded by dust (Elias-Rosa et al.

2010; Chornock & Berger 2010; Prieto et al. 2010). This conclusion was reaffirmed by

archival Spitzer/IRAC observations of the dusty progenitor (Khan et al. 2010; Berger

& Chornock 2010), but the lack of extinction in the spectral energy distribution (SED)

suggested that some dust had been destroyed during the outburst (Brown 2010; Bond

2010). Early spectroscopic followup revealed narrow emission features (FWHM ≈ 1000

km s−1) with no signs of P-Cygni profiles (Elias-Rosa et al. 2010). Hydrogen Balmer, Fe

II and He I emission lines provided further support for interaction with a dense CSM

surrounding the progenitor.

The transient was also detected in the X-rays and UV with the Swift X-ray

Telescope (XRT) and Ultraviolet/Optical Telescope (UVOT), respectively (Immler et al.

2010; Brown 2010). Additionally, 3σ upper limits of Fν . 87 (4.9 GHz), . 75 (8.5

GHz), and . 225 (22.5 GHz) µJy were obtained with the Karl G. Jansky Very Large

Array (Chomiuk & Soderberg 2010). Following the event, we monitored SN 2010da

in the near-infrared (NIR) and optical using Gemini and Magellan. We report below

our ground-based imaging and spectroscopy, as well as an analysis of archival Spitzer,

Hubble, Swift and Chandra observations.
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2.2.1 Spitzer Infrared Imaging

We obtained publicly available Spitzer images spanning from 2003 November 21 to 2016

March 19 (see Table 2.1 for program IDs; Lau et al. 2016). This data set extends several

years before and after the event, but no data are available within a four month window

surrounding the optical discovery. We used data from the InfraRed Array Camera

(IRAC) in the 3.6 and 4.5 µm bands through both the original and “warm” Spitzer

missions, and we use IRAC data in the 5.8 and 8.0 µm bands available prior to the 2010

eruption. Additionally, we used photometry from the Multiband Imagine Photometer

(MIPS) in the 24 µm band prior to the discovery of the transient. We processed the

Spitzer data with the Mopex package, which creates a mosaic of the dithered Spitzer

images. For the IRAC images, we used a drizzling parameter of 0.7 and an output pixel

scale of 0.4′′. For the MIPS images, we used the same drizzling parameter but with an

output pixel scale of 1.8′′. Images of the field in the Spitzer bands are shown in Figure

2.1.

We performed aperture photometry using DS9’s Funtools. For the IRAC

photometry, we used an aperture of 3 native IRAC pixels (corresponding to 3.66”) with

an inner and outer background annulus radii of 3 (3.66”) and 7 (8.54”) native pixels,

respectively. These radii have calculated aperture correction factors for point sources in

the IRAC Instrument Handbook. For the MIPS 24 µm photometry we used an aperture

size of 3.5” with no background annulus, following the MIPS Instrument Handbook.

We calculated the flux uncertainties following Equation 1 in Laskar et al. (2011). The

observations are summarized in Table 2.1, and the Spitzer/IRAC light curves at 3.6

and 4.5 µm are shown in Figure 2.2. Our photometric results are consistent with those
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Figure 2.1: Top rows: Spitzer images of the SN 2010da progenitor. The right panel of

the middle row shows a false color image combining the 3.6 (blue), 4.5 (green) and 5.8

(red) µm images. Bottom row: Archival MegaCam and IMACS images. The progenitor

is only detected in the IMACS I-band image.
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presented in Lau et al. (2016).

2.2.2 Ground-based Near-Infrared Imaging

We obtained near-infrared imaging observations with the FourStar Infrared Camera

(Persson et al. 2013) on the Magellan/Baade 6.5m telescope at the Las Campanas

Observatory in Chile on three epochs: 2011 December 7 (J , H, Ks), 2015 July 31 (H,

Ks) and 2015 August 18 (J , H, Ks). We calibrated, aligned and co-added each of these

observations using the FSRED package1. Each image was calibrated using the 2MASS

Point Source Catalog, and the magnitude of the transient was measured using aperture

photometry. The results are summarized in Table 2.2.

2.2.3 Ground-based Optical Imaging

We obtained optical imaging observations with the Low Dispersion Survey Spectrograph 3

(LDSS-3, upgraded from LDSS-2 Allington-Smith et al. 1994) and the Inamori-Magellan

Areal Camera & Spectrograph (IMACS; Dressler et al. 2006) on the Magellan Clay

and Baade 6.5m telescopes at the Las Campanas Observatory, respectively, in the gri

filters spanning from ≈ 610 days before to ≈ 1900 days after the optical discovery.

In our earliest IMACS I-band image (at Epoch −609), we detect the object with

24.2 ± 0.2 mag (see Figure 2.1). However, we do not detect a source at the location of

SN 2010da in pre-transient gri images taken with the Magellan/Clay wide field imager

1http://instrumentation.obs.carnegiescience.edu/FourStar/

SOFTWARE/reduction.html
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Figure 2.2: The Spitzer, ground-based optical, HST and UVOT light curves of SN

2010da, spanning 6 years before to 6 years after the 2010 eruption. Epoch 0 refers to 2010

May 23.169 UT, the date of discovery. Downward facing triangles are 3σ upper limits.
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MegaCam (at Epoch −183; McLeod et al. 2015). We use the MegaCam images in each

filter as templates for image subtraction. For all other ground-based optical imaging

observations, we performed image subtraction using the ISIS package (Alard 2000).

We then performed aperture photometry on the subtracted images and calibrated to

southern standard stars listed in Smith et al. (2007). The photometry is summarized in

Table 2.3.

2.2.4 HST Optical Imaging

SN 2010da was observed by the Hubble Space Telescope Advanced Camera for Surveys

(ACS) on 2012 July 18 (Program 12450) and 2014 July 9 (Program 13515). The object

was observed in the F814W filter in both programs (2224 s and 2548 s exposure times,

respectively) and in the F606W filter with program 13515 (2400 s). We processed the

data using the standard PyDrizzle pipeline in PyRAF which supplies geometric distortion

corrections to combine undersampled, dithered images from HST. We scaled the pixel

size by 0.8 for a final pixel scale of 0.032′′. We detected a source coincident with the

position of SN 2010da, and using five objects detected in the field from the 2MASS

Point Source Catalog, we determined a position of α = 00h55m04.86s, δ = −37o41′43.8′′

(J2000) with 0.3′′ uncertainty in both coordinates. This is in good agreement (within

1σ) with previous results (Monard 2010; Binder et al. 2011). With the high resolution

of HST, SN 2010da appears isolated, and we used aperture photometry to measure its

magnitude. These magnitudes are listed in Table 2.4 and are in good agreement with

those reported by Binder et al. (2016).
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2.2.5 Optical Spectroscopy

We obtained medium- and high-resolution spectra of SN 2010da using: the Gemini

South Multi-Object Spectrograph (GMOS;Davies et al. 1997) located in the southern

Gemini Observatory in Chile; IMACS, the Magellan Inamori Kyocera Echelle (MIKE;

Bernstein et al. 2003) spectrograph on the 6.5m Magellan/Clay telescope; and the

Magellan Echellette Spectrograph (MagE; Marshall et al. 2008) also mounted on the

Magellan/Clay telescope. Table 2.5 summarizes these observations. We used standard

IRAF routines to process the spectra and applied wavelength calibrations using HeNeAr

arc lamps. The MIKE spectra were processed using a custom pipeline and calibrated

using ThAr arc lamps. We used our own IDL routines to apply flux calibrations from

observations of standard stars (archival in the case of Gemini) and correct for telluric

absorption. We estimate the resolution of each spectrum (see Table 2.5) using their

associated arc lamp spectra. All spectra are corrected for air-to-vacuum and heliocentric

shifts.

2.2.6 Swift/UVOT Imaging

The Swift/UVOT data was processed using the method of the Swift Optical/Ultraviolet

Supernova Archive (SOUSA; Brown et al. 2014). We combined pre-outburst observations

from December 2006 and January 2007 into templates from which the underlying host

galaxy count rate was measured. A 3′′ aperture was used with aperture corrections based

on an average PSF. A time-dependent sensitivity correction was used (updated in 2015)

and AB zeropoints from Breeveld et al. (2011). The photometry is summarized in Table

2.6.
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2.2.7 X-ray Spectral Imaging

We aggregated archival X-ray observations from the Swift/XRT, the Chandra X-ray

Observatory and XMM-Newton. These X-ray observations span from 2000 December 26

to 2014 November 17, including the outburst period. The source was undetected with

XMM-Newton, and we use the 3σ upper limits obtained by Binder et al. (2011).

The XRT observations were made before, during and after the 2010 outburst, and

an X-ray source coincident with SN 2010da is detected in all three regimes. These

observations are publicly available from the Swift Archive (Evans et al. 2009), and the

XRT photometry and spectra are automatically generated through this database.

We used three archival Chandra observations from 2010 September 24 (Obs. ID:

12238; PI: Williams), 2014 June 16 (Obs. ID: 16028; PI: Binder) and 2014 November

17 (Obs. ID: 16029; PI: Binder). All observations were made using the Advanced CCD

Imaging Spectrometer (ACIS-I) with similar exposure times (63.0 ks, 64.24 ks and 61.27

ks, respectively). We analyzed the observations using CIAO version 4.7 and CALDB version

4.6.7 using standard extraction procedures. We performed photometry with WAVDETECT

using an annular background region with an inner radius of 24.6′′ and a width of 4.9′′

centered on the source. The results are summarized in Table 2.7. We extracted spectra

of the source using the built-in function specextract.
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2.3 The Multi-wavelength Properties of SN 2010da,

its Progenitor, and its Progeny

2.3.1 Light Curve and Spectral Evolution

The Progenitor

We are able to constrain the progenitor properties using the Spitzer (3.6, 4.5, 5.8, 8

and 24 µm) and MegaCam/IMACS (gri) observations. We note that the location of SN

2010da was observed in the i′-band on both 2008 September 09 and 2009 November

25 by IMACS and MegaCam, respectively. The MegaCam/IMACS observations are

summarized in Table 2.3. The progenitor IMACS detection and MegaCam upper limit

are consistent with a magnitude ∼ 24.2. The gr upper limits were both obtained with

MegaCam on 2009 November 25. The location of SN 2010da was observed five times

by Spitzer before the transient, ranging between 2003 November 21 and 2010 January

14. These observations are summarized in Table 2.1 We find no significant change in the

color and brightness between the pre-eruption observations.

To create a progenitor SED, we average the two pre-eruption Spitzer observations in

the 3.6 and 4.5 µm filters and compiled the other detections. The SED of the progenitor

is well fit by an unabsorbed blackbody spectrum with T = 1500±40 K and R = 9.4±0.5

AU (χ2
r = 1.2 for d.f. = 3). These parameters correspond to a bolometric luminosity of

L = (1.92± 0.26)× 104 L�, suggesting a ∼ 15 M� main sequence progenitor if we assume

solar metallicity (Meynet & Maeder 2000). The large radius and cool temperature of

this fit imply that the progenitor is surrounded by dust. The progenitor SED is shown
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in Figure 2.3 along with several red supergiants (RSGs) and the progenitor of a previous

ILOT in NGC300 (NGC300 OT2008-1; Berger et al. 2009). Also shown is the SED of

an obscured HMXB (IGR J16207-5129; Tomsick et al. 2006). The progenitor SED peaks

between the typically bluer obscured HMXBs and the redder ILOTs such as NGC300

OT2008-1. The SEDs of RSGs seem to bridge this gap, owing their SED variability to

diverse geometries (e.g. WOH G64 has notable IR excess possibly due to a dusty torus

along the line of sight; Ohnaka et al. 2008), although neither RSG fits the observed SED.

The 2010 Outburst

SN 2010da was discovered at its brightest known magnitude of munfiltered = 16.0± 0.2. It

is unclear if SN 2010da was caught at its true peak brightness, but the optical 15.5 mag

upper limit 18 days prior and a slight rise in the Swift/UVOT light curve hints that SN

2010da was discovered near its peak luminosity. An increase in IR flux is seen in the

IRAC data as early as ≈ 130 days before the optical discovery. The full rise and fall

caught by Spitzer spans ≈ 250 days, as shown in Figure 2.2.

During the 2010 outburst, the SED of SN 2010da is well fit by two unabsorbed

blackbodies at ∼ 0.2 − 1.7 µm: a hotter blackbody with TH,1 = 9440 ± 280 K and

RH,1 = 1.59 ± 0.14 AU and a cooler blackbody with TC,1 = 3230 ± 490 K and

RC,1 = 9.5± 2.9 AU (χ2
r ≈ 0.8 for d.f. = 6), as shown in Figure 2.4. These black bodies

have a combined bolometric luminosity of L = (1.3 ± 0.4) × 106 L�, about 60 times

more luminous than the progenitor. Nine days later, the SED is consistent with similar

blackbodies, although the larger one has cooled (TC,2 = 2760± 250 K, RC,2 = 10.5± 1.6

AU), while the hotter one remains at roughly the same temperature (TH,2 = 9080± 330
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Figure 2.3: Spectral energy distribution of the progenitor of SN 2010da (green squares)

with a blackbody fit (black). Also shown are an obscured HMXB (blue dashed line, IGR

J16207-5129; Tomsick et al. 2006) and two RSGs (purple and pink lines, see Section 2.3.1

for a discussion of these objects; van Loon et al. 1999; Mauron & Josselin 2011). The

latter three objects have been arbitrarily scaled to match the luminosity of the progenitor

of SN 2010da. NGC300’s other well-known impostor, NGC300 OT2008-1, as well as

its best-fit blackbody, are shown in grey for comparison. Although NGC300 OT2008-1

and SN 2010da are spectroscopically similar, the progenitor of SN 2010da is obscured by

significantly warmer dust. Downward facing triangles are 3σ upper limits.
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K, RH,2 = 1.25 ± 0.13 AU). The radius of the cooler, larger blackbody component

is consistent with the estimated pre-eruption radius (RC,2 ≈ RC,1 ≈ RC,0) but has a

temperature that is twice as high (TC,2 ≈ 2TC,0). These relations are summarized in

Table 2.8. This indicates that at least some dust in the original shell survived the

outburst and has heated up.

The UVOT data trace the evolution of the hotter blackbody detected in the initial

outburst. The blackbody radius decreases from about 1.7 to 0.55 AU over the ten days

of observations while remaining at a steady temperature of ≈ 9200 K, as shown in Figure

2.5. This is consistent with a receding photosphere of the initial outburst. We can use

this observation to constrain the radius of the progenitor/surviving star to . 0.55 AU,

since we expect the photosphere of the eruption to exceed the radius of the star at all

times.

The Progeny

About 200 days after its discovery, SN 2010da dips to mi ≈ 23 mag in the optical but

returns to mi ≈ 20 mag after 500 days. In the same time frame, the IR flux declines

by about one magnitude to m3.6 ≈ 18.7 mag at 460 days. The optical light curve then

appears to settle into an aperiodic, variable state that oscillates between mr,i ≈ 20 mag

and mi ≈ 22 mag every 500−1000 days. The IR light curve remains roughly at its

pre-eruption brightness, but the color becomes much bluer (from m3.6 −m4.5 ≈ 0.2 to

≈ −0.2). Beginning around ≈ 1500 days after discovery, the IR light curve begins to rise

to magnitudes comparable to the initial outburst. We refer to the surviving star as the

progeny of SN 2010da.
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Figure 2.4: The spectral energy distribution of SN 2010da 1 day (dark blue points)

and 9 days (dark cyan points) after discovery. Both SEDs are fit with a two-component

blackbody model. The total fit is shown in black, while the components of the outburst

SED model are shown in blue and red for the first epoch. Also shown are the SEDs of

a three similar ILOTs during outburst, NGC300 OT2008-1 (pink), SN 2000ch (yellow)

and SN 2008S (orange). NGC300 OT2008-1 and SN 2008S are ILOTs with very red

progenitors, while SN 2000ch is an LBV-like star.
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Figure 2.5: We fit the UVOT dataset to a blackbody as a function of time. We find

that the blackbody radius recedes (top), while the temperature remains roughly constant

(middle). The estimated luminosity decreases with the receding radius (bottom)
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The progeny’s optical/IR SED can be roughly described by a single blackbody with

variable excess flux in the optical. After 500 days, the NIR and IR fluxes are fit by a

blackbody with a radius of ≈ 6 AU and a temperature of ≈ 2000 K. The derived radius

is smaller than the progenitor radius at ≈ 10 AU, and the temperature is higher than

the blackbody temperature of the pre-eruption SED (T = 1500 K), consistent with the

color shift seen in the IR. The optical flux, however, varies by ≈ 2 mag even two years

after the initial outburst. Fitting our NIR/IR measurements to blackbodies, we track the

bolometric luminosity of the system over time, as shown in Figure 2.6. The luminosity

of the progeny and its surrounding environment is about 2 − 5 times larger than the

progenitor of SN 2010da excluding contribution from the UV/optical, which supplies

∼ 10− 20% of the total luminosity.

We compare the SEDs taken more than 800 days after the initial outburst to a

variety of SEDs of massive stars in the LMC analyzed by Bonanos et al. (2009). We

group these massive stars by their spectroscopic classification reported by Bonanos et al.

(2009), and we construct “typical” SED ranges for each class using the 10th and 90th

percentile magnitude of each filter within each group. The SEDs for red, yellow and

blue supergiants (RSGs, YSGs, BSGs), luminous blue variables (LBVs) and B[e] stars

compared to the SED of the progeny of SN 2010da are shown in Figure 2.7. Here,

we are defining B[e] stars as any star with B[e] emission lines (e.g. Hydrogen Balmer,

iron, etc.), regardless of luminosity class. The progeny’s SED most closely matches the

SED of a typical RSG. As a test, we also convert our SDSS bandpasses into Johnson

magnitudes and search for the nearest neighbor of the progeny SED within the space of

the magnitudes used by Bonanos et al. (2009); the nearest neighbor is [SP77]46-31-999,

an M2 Iab star. The fact that the SED of the progeny most closely resembles that of
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Figure 2.6: Bolometric luminosity of SN 2010da as derived from the NIR/IR flux as

a function of time (black). The colored lines at the bottom of the plot indicate our

photometric X-ray (green), optical (blue), and infrared (red) coverage for reference. The

progeny of SN 2010da system has a consistently higher bolometric luminosity than its

progenitor.
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a RSG does not necessarily imply that the progenitor or progeny is a RSG. In fact,

the small radius we infer from the Swift/UVOT data (. 0.5AU) rules out most RSG

candidates. Both broadband photometry and spectroscopy are necessary when classifying

obscured, massive stars.

2.3.2 Spectroscopic Properties of SN 2010da

Throughout our observations, spanning from 2 to 1881 days after the optical discovery,

the spectra of SN 2010da exhibit strong hydrogen Balmer and Paschen, He I and II, Fe

II and Ca II emission lines. Early spectra reveal P-Cygni profiles in the Balmer, Paschen

and helium lines, while later spectra develop strong nebular emission lines. A full list of

these lines with a 3σ detection in at least one epoch and their properties is provided in

Table 2.9. The low-resolution spectra are shown in Figure 2.8, and the high-resolution

spectra are shown in Figure 2.9. The high-resolution spectra have been normalized

by fitting a low-order polynomial to the smoothed spectra. The strong Balmer lines,

low excitation emission lines (especially Fe II), the forbidden lines and the IR excess

all indicate that the progeny of SN 2010da exhibits B[e] phenomena by the criteria

enumerated in Lamers et al. 1998. This classification scheme is purely observational but

is linked to a complex CSM surrounding the star (see Lamers et al. 1998 Section 2.2).

We observe the development of high ionization emission lines of iron at later epochs and

continuous He II 4686Å emission. Both of these observations are due to the presence

of a hard radiation field (UV/X-ray emission) associated with the HMXB nature of the

object (see Section 2.4.3).
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Figure 2.7: Spectral energy distributions of SN 2010da compared to SEDs calculated

using massive stars in the LMC (Bonanos et al. 2010). The red region is the typical range

for a RSG (M-type), yellow for a YSG (K-type), cyan for a BSG (B-type), dark blue for

a LBV and dark green for a B[e] star. Although SN 2010da displays B[e] properties in its

spectrum, its SED seems to follow that of a RSG or YSG. Downward facing triangles are

3σ upper limits.
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Hydrogen Balmer Lines

The Balmer lines exhibit some of the most drastic changes of the spectrum over the

span of our observations. Their equivalent widths roughly follow the optical/IR flux

variations and appear to be significantly increasing in the most recent observations. A

time sequence of the Balmer lines is shown in Figure 2.10.

The spectra are marked by large Hα luminosity, contributing up to ≈ 30% of the

r-band flux at later times. Following the initial outburst, Hα is well described by a

Lorentzian profile with a full width at half maximum of ≈ 560 km s−1. The full-width at

continuum intensity is ≈ 3600 km s−1. The Hα flux immediately following the discovery

is ≈ 6.6× 10−13 erg s−1 cm−2Å−1 and approximately halves 40 days later. As the object

cools, the continuum flux decreases while the Hα flux remains relatively constant at

≈ (2− 3)× 10−13 erg s−1 cm−2 . At the same time, FHα/FHβ
increases from ≈ 4 to ≈ 8

in the first 40 days. This is far greater than the expected value of FHα/FHβ
≈ 2.8 for

Case B recombination at ∼ 104 K, the approximate temperature of the hotter blackbody

component in the SED during outburst. While dust extinction may account for this

excess, the continuum is unabsorbed. An alternative possibility is that a high-density

CSM affects the Balmer decrement via a self absorption and collisions (Drake & Ulrich

1980). Using the static slab model at 104 K from Drake & Ulrich (1980), we find that

the observed FHα/FHβ
ratio roughly corresponds to a density of ne ∼ 1010 − 1012 cm−3.

At these densities, FHγ/FHβ
is suppressed to ≈ 0.3, FHδ

/FHβ
to ≈ 0.2, and FHε/FHβ

to ≈ 0.15. The observed line fluxes roughly match these predictions during the initial

outburst. At 40 days later, the FHα/FHβ
ratio remains consistent with ne ∼ 1010 − 1012

cm−3.
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Figure 2.10: Evolution of Balmer lines in the optical spectra. Each epoch is listed above

its corresponding subplot. Hα, Hβ, Hγ, Hδ, Hε,Hζ and Hη are shown in blue, green, red,

teal, pink, yellow and black, respectively. Note that the y-axis are all on independent

scales for clarity. The local continuum has been normalized to one by fitting a first order

polynomial.
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In our high-resolution MIKE spectrum taken 14 days after discovery, the Hα line

includes multiple components. We fit the Hα profile with three Gaussian components: a

narrow component (FWHM ≈ 70 km s−1), an intermediate component (FWHM ≈ 500

km s−1) and a broad component (FWHM ≈ 1060 km s−1) with χ2
r ≈ 1.9 (see Figure

2.11). Multi-component (specifically three-component) lines are common in dusty ILOTs

(Berger et al. 2009; Van Dyk & Matheson 2012; Tartaglia et al. 2015; Turatto et al.

1993). The narrow component is broader than the other detected narrow emission

lines (e.g. other Balmer lines with FWHM ∼ 40 − 60 km s−1) possibly due to electron

scattering. These narrow components are consistent with a pre-existing wind, possibly

from an earlier red supergiant phase. As with SNe IIn emission lines, the intermediate

component is ascribed to the shockwave-CSM interaction (see Chevalier & Fransson

1994), although the velocity is nearly an order of magnitude slower than in SNe. The

intermediate component is significantly red-shifted (by ≈ 140 km s−1) relative to the

narrow component. The apparent redshift may be an artifact of electron-scattering

through high optical depths and is often seen in other dusty ILOTs, giants, Wolf-Rayet

stars and other stars experiencing significant mass loss (Humphreys et al. 2011; Hillier

1991). The broadest component is only identified in Hα, which may be due to lower

signal-to-noise in the other lines or additional scattering. The central wavelength of

this component is consistent with that of the intermediate component, also suggesting a

common physical origin.

At later times, the Hα emission line can be described as roughly Gaussian or

Lorentzian with an extended red wing and a FWHM ∼ 300− 600 km s−1. This red wing

is especially apparent in the high-resolution MagE spectrum at 516 days. The FWHM of

the late-time Hα emission is consistent with the intermediate component of the Hα line
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Figure 2.11: The Hα emission line 14 days after the outburst. The line is well described

by three Gaussian components (shown in cyan, red and green). The local continuum has

been normalized to one by fitting a first order polynomial.

39



CHAPTER 2. THE PECULIAR ILOT SN 2010DA

during the initial eruption, while the narrow component remains unresolved in all other

spectra. This suggests that the late-time emission is powered by a persistent wind or

mass loss consistent with that of a blue or yellow supergiant.

Ca II Lines

Narrow [Ca II] lines (FWHM .50 km s−1) are detected in our highest resolution

(MIKE) spectrum 15 days after discovery and possibly again in the MagE spectrum

(Figure 2.12). Similar forbidden calcium emission was observed in NGC300 OT2008-1

(Berger et al. 2009) and SN 2008S (Botticella et al. 2009), as well as in several warm

hypergiants (Humphreys et al. 2013), and its presence is typically associated with a

dusty environment. Because collisional de-excitation normally drives calcium to its

ground state, the [Ca II] doublet is associated with cooler, low density regions. Forbidden

calcium lines are additionally suppressed by UV radiation due to the low ionization

potential of calcium. Highly ionized iron and He II lines indicate a strong UV radiation

field. We can conclude from this fact and the narrow line shape that the [Ca II] forbidden

lines are from excited calcium located in the outer CSM, likely in the original dust shell

at ≈ 10 AU.

The presence of the calcium triplet also supports the existence of a cool, low density

circumstellar environment (Polidan & Peters 1976). However, the calcium triplet is

significantly blended with hydrogen Paschen emission, so we cannot make a definitive

statement about the line shape or strength. The Ca H & K doublet, typically associated

with the calcium triplet, are also blended with Hη and an iron line.
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Figure 2.12: Narrow, [Ca II] lines detected in our high-resolution spectra. The local

continuum has been normalized to one by fitting a first order polynomial.
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Fe Lines

We detect strong Fe II emission lines in all spectra. The Fe II features roughly match the

hydrogen Balmer series in shape, FWHM and line offset, indicating that these features

also arise from material within the ejecta and CSM. Fe II emission is seen in NGC300

OT2008-1 and M85 OT2006-1 (Berger et al. 2009; Bond et al. 2009), although the lines

seen in SN 2010da are notably stronger.

In addition to Fe II, we detect emission from high ionization, forbidden iron lines,

including [Fe VII], [Fe X] and [Fe XI] in the last two epochs of spectroscopy (Epochs

1819 and 1881; see Figure 2.13). These forbidden iron lines are not typically seen in

ILOTs due to their weakly ionizing radiation. High ionization iron lines are occasionally

found in SNe IIn such as SN 1997eg (Hoffman et al. 2008) and SN 2005ip (Smith et al.

2009) due to shock heating of the surrounding CSM. Unlike SNe IIn, the iron lines seen

in SN 2010da do not arise from continual shock heating over hundreds of days. Instead,

these lines arise in regions of diffuse gas surrounding the progeny which are heated to

temperatures of about 2× 106 K, the approximate ionization temperature for lines such

as [Fe XII] and [Fe XIV] (Corliss & Sugar 1982), by X-rays from the compact companion

(see Section 4.3).

He Lines

He I and II emission lines are seen throughout our observations, as shown in Figure

2.14. The widths (FWHM ∼ 200 − 400 km s−1) and profiles of the He I lines largely

follow the Balmer series with a double-peaked structure in our high-resolution spectra.

We additionally detect single-peaked He II 4686Å emission during each epoch. The
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Figure 2.13: Evolution of the coronal iron lines. Spectra taken on days 2, 15, 40, 516,

1819 and 1881 are shown in light blue, purple, red, orange, green, and black, respectively.

The local continuum has been normalized to one by fitting a first order polynomial.
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low-resolution spectra are unable to resolve the He II 4686Å line, but our MIKE spectrum

reveals a FWHM ≈ 270 km s−1. He II 4686Å has a relatively high ionization potential

and is sensitive to the EUV flux of the system. For this reason, it is often linked to

the accretion onto a compact object (Lewin et al. 1997). The continual presence of He

II 4686Å emission in each of our observations is due to the compact companion and

indicates consistent mass transfer onto this compact object.

Additional Absorption and Emission Features

Hydrogen Paschen emission lines extending to approximately Pa30 are observed

within the first 15 days of the outburst. The high-resolution MIKE spectrum reveals

double-peaked emission with narrow and broad components, similar to the Balmer lines.

These profiles are not resolved in our lower-resolution spectra. Within the first 40

days, the ratio F (Pδ)/(Hβ) decreases from ≈ 0.2 to ≈ 0.08. The latter value is roughly

consistent with that expected from Case B recombination (≈ 0.07), although the effect

of high electron density on this line is unclear.

At early times, we detect O I at 7774Å and 8446Å in emission. The O I 8446Å

line shows the same double-peaked profile as the Balmer series, while O I 7774Å

maintains a P-Cygni profile until 40 days after the initial eruption. After 1800 days, O I

7774Å becomes undetectable while O I 8446Å strengthens. The expected ratio between

these lines is F (O I 8446Å)/F (O I 7774Å) = 0.6, implying that O I 7774Å should be

detectable. The independent strengthening of O I 8446Å can be attributed to Lyβ

emission which is outside of our observed spectral range. Lyβ photons pump O I from

the ground state to an unstable state whose decay produces O I 8446Å emission (Mathew
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Figure 2.14: Evolution of the He II 4686Å emission. Spectra taken on days 2, 15, 40, 516,

1819 and 1881 are shown in light blue, purple, red, orange, green and black, respectively.

The local continuum has been normalized to one by fitting a first order polynomial.
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et al. 2012). This is consistent with the increased Balmer emission and UV flux at later

times. In addition to O I, we detect [O I] and [O III] features. Unfortunately, the [O III]

4363Å feature appears blended with either [Fe IX] or an Fe II emission line, making it

difficult to use the [O III] ratios to calculate the electron temperature.

Unresolved Na I D lines are observed in the two latest epochs (517 and 1817 days)

as emission and absorption respectively. The variability of these lines indicates that they

are associated with the CSM rather than interstellar medium.

2.3.3 X-ray Spectral Modeling

We model the X-ray emission from SN 2010da and its progeny using XSPEC version

12.8.2n (Arnaud 1996). We use the Cash statistic, a derivative of the Poisson likelihood,

as our fit statistic. To test our fits, we use the XSPEC built-in command goodness

to perform 104 Monte Carlo simulations of the spectral data. For each simulation, the

program calculates the Cramér von Mises (CVM) test statistic, which is shown to be a

good fit statistic for the data derived from a Poisson distribution (Spinelli & Stephens

1997). If about 50% of these simulations have a CVM statistic less than that of our

model, the best-fit model is a good representation of the data. A percentage much lower

than 50% implies that our model is over parametrized, and a percentage much greater

than 50% implies that our model is inconsistent with the data. All reported errors

correspond to 1σ error bars (the 68% confidence interval).

We combine all of the Swift/XRT 0.5 − 8 keV data taken within 40 days of

the outburst and fit it to a power law with Galactic absorption (tbabs * pow) with

NH,MW = 4 × 1020 cm−2. We find that additional absorption over-parametrizes the
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model (goodness = 15%), but an excess column density as large as NH ≈ 5 × 1021

cm−2 is consistent with the data. Our best fit model is described by Γ = −0.05+0.11
−0.10

with an unabsorbed 0.3 − 10.0 keV flux of 9.62+0.87
−0.85 × 10−16 erg s−1 cm−2 (assuming

NH = 0). This corresponds to a luminosity of 3.98+0.36
−0.35 × 1038 erg s−1. Similarly, we fit

the first Chandra observation (Epoch 123) to an absorbed power law. We find the best

fit model is described by Γ = 0.26+0.20
−0.21 with an unabsorbed 0.3 − 8.0 keV luminosity

of 1.95+0.17
−0.48 × 1037 erg s−1. We find an absorption upper limit beyond the Galactic

column of NH . 4× 1021 cm−2. The estimated column density and the photon index are

degenerate such that a higher column density implies a softer power law.

Due to limited statistics, we are unable to fit a spectrum to the second Chandra

observation (Epoch 1453). In the third Chandra observation (Epoch 1638), there is a

significant decrease in counts between ≈ 2 − 3 keV. We are unable to fit this spectrum

to a single power law or blackbody component and instead combine a power law with

either a soft Bremsstrahlung (bremss) or blackbody disk (diskbb) model, with no

statistical preference for either model based on the CVM statistic. For both models we

obtain a similar power law with index Γ = −2.2+0.3
−0.5 for the Bremsstrahlung model and

Γ = −2.3+0.4
−0.4 for the disk model. The Bremmstralung component has a temperature

of 0.6+0.3
−0.2 keV, while the disk model has an inner-disk temperature of 0.33+0.08

−0.06 keV.

While these fits were performed by fixing the hydrogen column density to the Galactic

value, fixing NH to values as high as 4 × 1021 cm−2 also gives reasonable (although

statistically less favorable) fits with softer power laws. This hard power law differs from

the recent results of Binder et al. (2016), who find Γ ≈ 0. Specifically, we are unable to

reconcile the double peak in the spectrum with softer power laws (see Figure 2.15). The

extremely hard power law in our models indicates that additional and detailed modelling
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is necessary to explain this unusual Chandra spectrum. All X-ray spectra and models

are shown in Figure 2.16.

2.3.4 The X-ray and UV Light Curves

Using archival observations of SN 2010da (Section 2.2.7), we are able to construct

the X-ray and UV light curves of SN 2010da. The full X-ray light curve is shown in

Figure 2.17. We build the Swift/XRT light curve by converting the light curve produced

automatically by the UK Swift Science Data Center from a count rate to a flux using the

conversion factor found for the XRT spectrum. This light curve was dynamically binned

using a rate factor of 10 and a bin factor of 5.

Binder et al. (2011) estimate a 3σ upper limit on the unabsorbed 0.3 − 10 keV

luminosity of the progenitor to be ≈ 3 × 1036 erg s−1 using archival XMM-Newton

data. However, about 1300 days before the optical outburst, we find a weak Swift/XRT

detection at 2.6σ with a luminosity of 1.8+0.7
−0.7 × 1037 erg s−1, indicating X-ray variability

even before the 2010 optical outburst.

During the transient, the X-ray luminosity increases to a peak of ≈ 6 × 1039 erg

s−1, making SN 2010da an ultraluminous X-ray source well above the Eddington limit

of a 1.4 M� neutron star. (We note that this luminosity is larger than the luminosity

reported from the spectral fit in Section 2.3.3 and Binder et al. 2011, because the

spectral fit averaged the luminosity over 40 days following the initial outburst.) In the

week following discovery, the X-ray luminosity fluctuates between 2 × 1039 erg s−1 and

6 × 1039 erg s−1 before decaying with an e-folding time of ≈ 3.5 days. This decay rate

is slightly longer that of the UVOT light curves (≈ 10 days, shown in Figure 2.18) and

48



CHAPTER 2. THE PECULIAR ILOT SN 2010DA

0.7 1 2 3 4 5 6 7
Energy [keV]

10−4

10−3

N
or

m
al

iz
ed

C
ou

nt
s/

s/
ke

V

Γ =
−2.3 (Best)

−1.0

+0.0

+1.0

Figure 2.15: The latest X-ray spectrum of SN 2010da from Chandra Observation 16029,

normalized by the detector’s effective area. Shown are four models with a Bremsstrahlung

and power law component. We fix the photon index, Γ, to -1.0 (red), 0.0 (yellow) and

+1.0 (blue) and compare to the best fit model with Γ = −2.3. We are unable to recover

the bimodal structure of the spectrum with softer power laws.
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Figure 2.16: Top: The Swift X-ray spectrum created using data taken within 40 days

of the transient. The best fit power law model is overlaid. Middle/Bottom: The Chandra

X-ray spectra (Obs. ID 12238 and 16029) with best fit power law and disc models (see

text for details).
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Figure 2.17: X-ray light curve of SN 2010da. Triangles indicate 3σ upper limits. Down-

ward facing triangles are 3σ upper limits.

is much shorter than the decay rates found in the eruptions of η Car (≈ 200 days, from

Binder et al. 2011). About 1450 days after the transient, we find an X-ray luminosity

of ≈ 2.4 × 1036 erg s−1 which increases to ≈ 5.9 × 1037 erg s−1 at about 1640 days.

This increase in X-ray luminosity occurs at roughly the same time as the increase in

optical/IR luminosity.

2.4 Discussion

Taken together, the X-ray, optical and IR light curves and spectra consistently describe

an HMXB undergoing an episode of active accretion which is fueled by persistent

eruptions of the primary star, with SN 2010da representing the largest observed eruption

in nearly a decade of observations. The optical and IR light curves are powered by

mass loss of the supergiant. This mass accretes onto the compact object, giving rise to
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facing triangles are 3σ upper limits.
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X-ray emission. The X-rays in turn excite the high ionization He II and coronal iron

lines seen in the optical spectra. In this section, we summarize the properties of the

progenitor and the surviving progeny of the 2010 eruption, and we discuss potential

compact companions.

2.4.1 The Progenitor of SN 2010da

Ignoring any contribution from a compact companion or accretion disk, our blackbody

fit of the progenitor SED (with a temperature of 1500 K and a radius of 9.6 AU) reveals

a stellar bolometric luminosity of about 2× 104 L�. This luminosity is consistent with a

15 M� main sequence star (Meynet & Maeder 2000) or a supergiant with a 10−12 M�

ZAMS mass (Ekstrom et al. 2012). The low temperature suggests that this blackbody is

not the photosphere of the progenitor. Instead, we interpret this SED as a dusty shell

surrounding the star.

To further investigate progenitor candidates, we model the dusty environment of

the progenitor and its SED using the radiative transfer code DUSTY (Ivezic et al. 1999).

DUSTY is able to model the density profiles of spherically symmetric, radiatively driven

winds, requiring as input the central source SED, the dust composition, the optical

depth and the inner dust temperature. Since we do not see silicate features around 8 µm

in our pre-eruption Spitzer observations, we choose a pure graphite environment (Drake

& Ulrich 1980). The carbon-rich dust is consistent with the stability of the dust shell at

a relatively high temperature (≈ 1500 K), which has a higher sublimation temperature

than silicate (Kobayashi et al. 2011). We assume that the shell has a thickness of

Rout/Rin = 2 and use a power law density model which falls off as ρ ∝ r−2, typical of a
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wind. We additionally assume that the central source is a blackbody, and we leave its

temperature as a free parameter. The final luminosity of the model is calculated using

the normalized flux and radius computed by DUSTY. The UVOT observations during the

2010 outburst constrain the progenitor radius to be ≈ 120 R�. This limits the progenitor

temperature to T & 6200 K. We are additionally unable to find satisfactory fits (χ2
r < 2)

of the progenitor SED for temperatures above ≈ 18, 000 K. The temperature of a 15 M�

main sequence star is about 30,000 K, meaning that we can rule out such a progenitor.

Due to the low luminosity, we can also rule out an LBV progenitor, which was previously

suggested by others (Binder et al. 2016). The only remaining viable option at this

luminosity is an evolved yellow or blue supergiant progenitor.

We can additionally use the DUSTY models to estimate the mass loss rate of the

progenitor. Following Kochanek et al. (2012), the mass loss is approximately equal to:

Ṁ ≈ κV

8πvwRin

where the opacity is κV ≈ 120 cm2 g−1, we assume a wind velocity vw ≈ 40 km s−1 (the

approximate line width of the narrow Balmer/He lines from the high resolution MIKE

spectrum), and Rin is the inner radius of the dusty shell as calculated by DUSTY. For the

range of plausible models, the estimated mass loss rates are (4 − 5) × 10−7 M� yr−1.

This is in agreement with typical mass loss rates of RSGs of this luminosity, significantly

smaller than in super-AGB stars (Mauron & Josselin 2011; Poelarends et al. 2008) and

greater than in BSGs (Martins et al. 2015). However, asymmetry and inhomogeneity

(e.g. clumpiness) in the CSM can greatly affect our estimated optical depth. A more

extensive review of these effects can be found in Kochanek et al. (2012).
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2.4.2 The Progeny of SN 2010da and Its Environment

Our extensive photometric and spectroscopic datasets indicate that the source of SN

2010da is still active and underwent a dramatic transition to a bluer and hotter SED

with a smaller radius of ≈ 6 AU after the 2010 eruption. Additionally, the progeny is

significantly more luminous than the progenitor by a factor of ∼ 2 − 5. Although it is

possible that the bolometric luminosity of the progenitor was larger than we predict with

a significant fraction of light contributed at longer wavelengths from cool dust which

was heated during the transient, it is most likely that the ongoing mass ejections and

their interaction with a compact companion/CSM are injecting additional energy into

the system.

In addition to being brighter, the source is also undergoing significant variability in

the optical of ≈ 1 − 2 mags within a few hundred days. The variability and bolometric

magnitude of the progeny (Mbol ≈ −7) are reminiscent of supergiant long-period

variables (Wood et al. 1983), although these do not typically show B[e]-like emission

lines in their spectra nor are they often surrounded by a thick CSM.

To constrain the progeny properties, we use DUSTY to model the SEDs around 560

and 1880 days. Again using the constraint from the UVOT light curve, we find that the

progeny is hotter than ≈ 8900 K. Additionally, at temperatures higher than ≈ 25000 K,

the estimated radius becomes atypically small for a supergiant (i.e. . 15 R�), although

we can find acceptable fits beyond this temperature. To reiterate, we have previously

ruled out a main sequence star as the progenitor of SN 2010da, meaning that the progeny

must also be an evolved supergiant. These temperature and luminosity constraints are

shown in an HR diagram in Figure 2.19. We can again calculate the mass loss rates
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at these different epochs, this time assuming that a new wind of vw ≈ 200 km s−1 has

formed. We find a mass loss rate of Ṁ ≈ 3 × 10−7 M� yr−1 at 560 days and a slightly

larger rate of Ṁ ≈ 6 × 10−7 M� yr−1 at 1880 days. These numbers are consistent with

the mass loss rate before the outburst.

The low luminosity, B[e] features and bluer SED are all consistent with a RSG

transitioning into a blue loop phase of its evolution (Langer & Heger 1998). Additionally,

the widths and shapes of the multi-component emission lines are consistent with a newly

formed wind interacting with existing mass loss seen in the early stages of a blue-loop

phase of a RSG (Chita et al. 2008). The blue loop occurs when RSGs evolve off the

Hayashi-line towards the BSG regime as their envelope structure shifts from convective

to radiative. During this transition, the envelope of the RSG will spin up and the radius

will drastically decrease (Heger & Langer 1998). During this evolution, the star can

reach its critical rotation rate and develop a slow equatorial outflow, leading to B[e]-like

emission lines.

The environment surrounding the progenitor/progeny is extremely complex, as

indicated by the varying estimated electron densities from the Balmer decrement and the

existence of forbidden calcium and iron lines. Like many supergiants, SN 2010da might

be surrounded by a clumpy wind, which can explain the low- and high-density regions

necessary to excite the various emission lines detected in our spectra. The progenitor’s

dust shell at ≈ 10 AU seems to have been at least partially destroyed by the initial

transient based on the strong initial UV and X-ray detections. However, the continued

infrared excess and SED shape suggests that either some of this dust survived or new

dust has since formed at ≈ 6 AU. The surrounding CSM is carbon rich and irradiated

by X-ray/UV emission from the compact binary companion, meaning some dust must be
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Figure 2.19: Stellar evolutionary tracks of 10 M�, 12 M� and 15 M� RSG models

with (green) and without (black) rotation from Ekstrom et al. (2012) compared to the

estimated temperatures and luminosities of progenitor (red) and progeny (blue) of SN

2010da. For comparison, we also show the progenitors of NGC300 OT2008-1 (Prieto

et al. 2008), SN 2008S (Prieto 2008), several supernovae and three well-studied LBVs: S

Doradus, P Cygni, and HR Carinae (Humphreys et al. 2011).
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continuously destroyed and formed. During periods of eruptions and enhanced accretion,

the UV emission excites coronal iron lines in the CSM, which we observe in the most

recent optical spectra taken at 1819 and 1881 days.

2.4.3 SN 2010da as a High Mass X-ray Binary

Based on the strong X-ray luminosity (∼ 1037 erg s−1) detected well before and after the

optical transient, the strong He II 4686Å emission, the coronal iron lines, and the hard

X-ray spectrum, we conclude that SN 2010da is in a supergiant X-ray binary system

exhibiting B[e] phenomena. A similar conclusion was reached by Binder et al. (2011)

and Lau et al. (2016). However, it is difficult to make a definitive statement about the

nature of the compact object itself. The ultraluminous X-ray transient is far above the

Eddington limit of a 1.4 M� neutron star, but the hard spectrum (Γ ≈ 0) and the high

X-ray luminosity are consistent with other SGXBs with neutron star companions, such

as Vela X-1 (Wang 2014; Binder et al. 2011; Lewin et al. 1997). It is possible to explain

the super-Eddington luminosity of the initial outburst by invoking beaming along the

line of sight or large magnetic fields (Mushtukov et al. 2015). In fact, a ULX powered by

a neutron star was recently discovered with an X-ray luminosity greater than the peak

luminosity of SN 2010da (Bachetti et al. 2014).

SN 2010da also exhibits B[e] phenomena, consistent with a B[e] X-ray binary. Such

binaries typically undergo two types of transients: dimmer (LX ∼ 1036−37 erg s−1),

shorter (τ ∼ days) Type I outbursts which are associated with the orbital period of the

binary, and brighter (LX & 1037 erg s−1), longer (τ & weeks) Type II outbursts which are

possibly associated with the disruption of the B[e] disk (Reig 2011). The disk-disruption
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theory has undergone recent criticism following the discovery of several disks that have

remained intact after a Type II outburst (Reig & Fabregat 2015). The duration (∼ 50

days) and hard spectral index (Γ ∼ 0) of the progeny of SN 2010da are consistent with

a Type II outburst (Reig & Nespoli 2013). However, the X-ray luminosity during the

transient (LX ≈ 6× 1039 erg s−1) is much more luminous than typical Type II outbursts

(LX ≈ 1037 − 1038 erg s−1). Because little is known about the physical origin of Type II

outbursts, we cannot definitely say if SN 2010da is an unusual Type II outburst or a new

type of X-ray transient associated with eruptive stellar mass loss.

2.4.4 Comparison to Other Dusty ILOTs and Impostors

Although the canonical model of dusty ILOTs are massive LBVs ejecting dense shells

of mass, it has become clear in recent years that these events arise from a variety of

progenitors (Berger et al. 2009; Smith et al. 2011; Kochanek et al. 2012). Most of the

well-studied ILOTs and their progenitors lie in one of two observational classes. The

first class is made up of objects with blue and luminous progenitors, such as LBVs

or yellow hypergiants (e.g. SN 2009ip, SN 1954J). ILOTs in the “blue” class survive

their transients and can undergo multiple eruptions. Objects in this class include rare

η Carinae analogs such as the recent UGC 2773-OT (Smith et al. 2016b) and several

ILOTs associated with yellow hypergiants undergoing LBV-like outbursts, like SN Hunt

248 (Mauerhan et al. 2015) and PSN J09132750+7627410 (Tartaglia et al. 2016). The

second class of ILOTs is made up of objects with red and extremely cool (T ∼ 100s K)

progenitor SEDs. These ILOTs appear to be terminal explosions which are potentially

electron capture SNe from massive AGB stars (e.g. SN 2008S, NGC300 OT2008-1),
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although other theories exist to explain these events (Smith et al. 2011; Kochanek et al.

2012; Adams et al. 2016).

Does the system hosting SN 2010da fit into one of these two classes? We directly

compare the progenitor, transient and progeny associated with SN 2010da to two red

dusty ILOTs (SN 2008S and NGC300 OT2008-1) and two blue ILOTs thought to be

LBVs (SN 1954J, or Variable 12 in NGC 2403, and SN 2009ip).

SN 2008S and NGC300 OT2008-1 had peak absolute magnitudes of MV ≈ −14

and MV ≈ −12, respectively. These two objects exhibited similar properties and have

since faded beyond their initial progenitor luminosities in the IR (Adams et al. 2016).

SN 2008S and NGC300 OT2008-1 had progenitors whose SEDs were consistent with

cool circumstellar dust (T ≈ 300 − 500 K) and large radii (R ≈ 150 − 350 AU) (Prieto

et al. 2008; Khan et al. 2010). These temperatures are about four times cooler than the

progenitor of SN 2010da (≈ 1500 K), and their estimated radii are about 10 times larger.

The luminosities of these progenitors were ∼ 2 − 3 times higher than the progenitor of

SN 2010da. On the opposite end of the ILOT spectrum lie the blue ILOTs: SN 1954J,

a massive star in NGC 2403 which underwent an LBV-like eruption and remains active

today, and SN 2009ip, an LBV in NGC 7259 which likely exploded in 2012 (Smith et al.

2010; Margutti et al. 2013; Mauerhan et al. 2013). Prior to 1949, the progenitor of SN

1954J had a blue magnitude of Mb ≈ −6.6 (assuming a distance modulus of 27.6; Smith

et al. 2001). Similarly, the progenitor of SN 2009ip was extremely bright (MBol ≈ −10)

and variable by as much as one magnitude before its 2009 outburst. Both progenitors of

these blue ILOTs are notably brighter and bluer than the progenitor of SN 2010da. The

progenitor SED of SN 2010da sits between these two classes, as shown in Figure 2.20.
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These objects show similar diversity during their transient light curves. Within the

first month of discovery, the red ILOTs (SN 2008S and NGC300 OT2008-1) experienced

a similar decay rate of ≈ 0.03 mag d−1 (Berger et al. 2009) — much more slowly than

SN 2010da, which decayed at ≈ 0.1 mag d−1. Although NGC300 OT2008-1’s light curve

steepens at later times (to ≈ 0.06 mag d−1), it does not exceed the decline rate of SN

2010da. In contrast, the decline rate of SN 2009ip’s 2009 outburst within the first month

(≈ 0.2 mag d−1) is faster than that of SN 2010da (Smith et al. 2010). In the case of SN

2009ip, such a fast decline rate was attributed by Smith et al. 2010 to the ejection of an

optically thick shell, which is not ruled out as a possibility for SN 2010da.

Spectroscopically, SN 2010da shares features with both the red and blue ILOT

classes. For example, the red ILOTs and SN 2010da share similar narrow Balmer and

forbidden calcium lines, with Hα reaching a maximum width of ≈ 1200 km s−1. Like

NGC300 OT2008-1, we detect He I emission in SN 2010da, but we additionally detect

He II due to the X-ray/UV-enriched environment from the compact companion. Most

notably unlike NGC300 OT2008-1, our high resolution spectrum reveals Balmer lines

which are weakly asymmetric and lacking any absorption; high-resolution spectra of

NGC300 OT2008-1 reveal Hα emission with clear absorption slightly blueward of rest

wavelength (Berger et al. 2009; Bond et al. 2009). Similarly, the blue ILOTs are also

dominated by hydrogen Balmer and Fe II emission (typical of hot LBVs) with FWHM

≈ 550 km s−1 (Smith et al. 2010; Margutti et al. 2013). Unlike SN 2010da, there was no

[Ca II] emission detected in SN 2009ip, although [Ca II] emission has been detected in

eruptions of cool LBVs such as UGC 2773-OT (Smith et al. 2010). Late time spectra of

SN 1954J reveal broad Hα emission with ≈ 700 km s−1, broader than what is observed

in the progeny of SN 2010da.
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One of the most notable differences between SN 2010da/the red ILOTs and the

blue ILOTs is the fate of their progeny. The blue ILOTs underwent clearly non-terminal

eruptions (excluding the 2012 explosion of SN 2009ip; Margutti et al. 2013; Mauerhan

et al. 2013). Specifically, recent photometry shows that the progeny of SN 1954J has

since faded by ≈ 2 mag in the optical and is now consistent with a blackbody with

temperature of ≈ 6500 K. This has been interpreted as an η Car analog which is now

shrouded in a dusty nebula similar to η Car’s Homunculus (Smith et al. 2001; Van Dyk

et al. 2005). The most recent SED of SN 1954J is much bluer than that of SN 2010da

and suggests a notably higher bolometric luminosity (≈ 105 L�). Based on luminosity

and the SED, SN 2010da is unlikely to be an LBV outburst. In contrast, the progenies

of SN 2008S and NGC300 OT2008-1 have faded past their progenitors in the IR, leading

some authors to argue that they were electron-capture supernovae from super AGB

stars (Botticella et al. 2009; Thompson et al. 2009; Adams et al. 2016). The clear

re-brightening of the progeny of SN 2010da several hundred days after the 2010 eruption

illustrates that it is not a member of this red class of transients, but its similarities might

point to a related progenitor which is entering the last phase of its life.

Thus, SN 2010da is unlike many of the previously studied ILOTs. First, the

transient is not energetic enough to be a true LBV outburst. We can roughly estimate

the energy radiatively emitted from SN 2010da as ≈ Lpeakt1.5, where Lpeak is the peak

luminosity and t1.5 is the time it takes the transient to dim by 1.5 magnitudes (see Smith

et al. 2011). We estimate t1.5 . 30 days based on the upper limit reported by Monard

(2010), and we estimate the peak luminosity to be Lpeak = 4.5 × 1039 erg s−1. The

total radiative energy is thus . 1046 erg. This is less energetic than the typical LBV

outburst (≈ 1047 erg; Smith et al. 2011). SN 2010da is also less energetic that the red
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SN 2008S-like ILOTs, which radiate about Lpeakt1.5 ≈ 5 × 1047 erg. Additionally, SN

2008S-like events are either terminal or produce progeny that are notably dimmer than

their progenitors (Adams et al. 2016); the progeny is currently more luminous than its

progenitor by a factor of ≈ 5.

2.5 Summary and Conclusions

We presented comprehensive, multi-wavelength observations (X-ray, UV, optical and

IR) of the dusty ILOT SN 2010da, extending thousands of days before and after the

outburst. These observations allowed us to study the progenitor, outburst and progeny

in great detail. Due to its low luminosity and red SED, SN 2010da seems inconsistent

with an LBV outburst as interpreted by Binder et al. (2016). From our dataset, we

conclude that SN 2010da was the eruption of a massive star (∼ 10− 12 M�) exhibiting

B[e] phenomena. The high-resolution spectra exhibit double-peaked Balmer and Paschen

emission lines with narrow components consistent with a pre-existing RSG wind and a

newly formed supergiant wind. This suggests that the star responsible for SN 2010da

may be a YSG transitioning onto a blue loop. The optical variability and iron/calcium

emission indicate a complicated CSM which is repeatedly disturbed by mass loss of the

primary star.

The supergiant responsible for SN 2010da is likely the primary star of a HMXB.

The system shows consistently high X-ray luminosity (LX ≈ 1037 erg s−1), and during

the 2010 event, the system underwent an ultraluminous X-ray outburst (Lx ≈ 6 × 1039

erg s−1). Late time emission of coronal iron lines are fueled by a hot, X-ray- and UV-rich

region near this binary. While we cannot make a definitive statement about the nature of
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Figure 2.20: Progenitor SEDs of LBV-like (blue) and SN 2008S-like (red) ILOTs com-

pared to the SED of the progenitor of SN 2010da (black). SN 2010da sits between these

two classes. The dashed lines are black body fits for select objects to guide the eye.
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the compact object, dedicated and deep X-ray observations may shed light on its nature.

SN 2010da is unique in the heterogeneous class of ILOTs. Its progenitor was dimmer

and bluer than the AGB-like progenitors of dusty ILOTs NGC300 OT2008-1 and SN

2008S; however, it is notably dimmer and redder than LBVs and yellow hypergiants

experiencing similar outbursts. Also unlike other dusty ILOTs and supernova impostors,

the progeny of SN 2010da is more luminous than its progenitor in both the IR and

optical. The progeny is still undergoing significant outbursts, and continued followup is

crucial in understanding the elusive nature of this object.

Like many ILOTs, SN 2010da marks an important point in stellar evolution of

increased activity and mass loss. SN 2010da highlights the diversity of dusty ILOTs

and the need for multi-wavelength photometric and high-resolution spectral followup to

understand these objects. It is no doubt that future facilities such as LSST will populate

the intermediate luminosity gap which currently exists. Extensive spectroscopic followup

of current events will allow us to identify archetypes, like SN 2010da, of classes which

will arise from these surveys.
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Table 2.1:: Spitzer Photometry

Instrument AOR PI Date Epoch Filter AB Magnitude

(UT) (Days)

IRAC 6069760 Helou 2003-Nov-21 −2375 3.6 18.77 ± 0.10

IRAC 6069760 Helou 2003-Nov-21 −2375 4.5 18.55 ± 0.07

IRAC 6069760 Helou 2003-Nov-21 −2375 5.8 19.10 ± 0.52

IRAC 6069760 Helou 2003-Nov-21 −2375 8 19.51 ± 0.76

MIPS 22611456 Kennicutt 2007-Jul-16 −1042 24 > 17.00

IRAC 22517504 Kennicutt 2007-Dec-29 −876 3.6 18.79 ± 0.07

IRAC 22517504 Kennicutt 2007-Dec-29 −876 4.5 18.67 ± 0.05

IRAC 22517504 Kennicutt 2007-Dec-29 −876 5.8 19.50 ± 0.51

IRAC 22517504 Kennicutt 2007-Dec-29 −876 8 >17.45

IRAC 31527680 Freedman 2009-Dec-21 −153 3.6 18.39 ± 0.07

IRAC 31527424 Freedman 2010-Jan-13 −130 3.6 17.84 ± 0.04

IRAC 31528448 Freedman 2010-Jul-27 65 3.6 17.87 ± 0.04

IRAC 31528192 Freedman 2010-Aug-16 85 3.6 18.11 ± 0.05

IRAC 31527936 Freedman 2010-Aug-31 100 3.6 18.36 ± 0.07

IRAC 42195968 Kochanek 2011-Aug-29 463 3.6 18.68 ± 0.09

IRAC 42195968 Kochanek 2011-Aug-29 463 4.5 18.85 ± 0.08

IRAC 42502912 Kasliwal 2012-Jan-14 601 3.6 18.66 ± 0.08

IRAC 42195712 Kochanek 2012-Aug-10 810 3.6 18.41 ± 0.07

IRAC 42195712 Kochanek 2012-Aug-10 810 4.5 18.58 ± 0.07

IRAC 50572032 Kasliwal 2014-Mar-13 1390 3.6 18.41 ± 0.07
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Table 2.2 Continued:

IRAC 50572032 Kasliwal 2014-Mar-13 1390 4.5 18.65 ± 0.07

IRAC 50573056 Kasliwal 2014-Sep-05 1566 3.6 18.16 ± 0.05

IRAC 50573056 Kasliwal 2014-Sep-05 1566 4.5 18.23 ± 0.05

IRAC 50572544 Kasliwal 2014-Oct-03 1594 3.6 18.21 ± 0.06

IRAC 50572544 Kasliwal 2014-Oct-03 1594 4.5 18.28 ± 0.05

IRAC 50044672 Fox 2014-Oct-14 1605 3.6 18.26 ± 0.06

IRAC 50044672 Fox 2014-Oct-14 1605 4.5 18.34 ± 0.04

IRAC 53022208 Kochanek 2015-Feb-09 1723 3.6 18.33 ± 0.06

IRAC 52691712 Kasliwal 2015-Sep-22 1948 3.6 17.91 ± 0.05

IRAC 52691712 Kasliwal 2015-Sep-22 1948 4.5 18.03 ± 0.03

IRAC 52691968 Kasliwal 2015-Sep-29 1955 3.6 17.90 ± 0.04

IRAC 52691968 Kasliwal 2015-Sep-29 1955 4.5 18.03 ± 0.03

IRAC 52692224 Kasliwal 2015-Oct-12 1968 3.6 17.89 ± 0.05

IRAC 52692224 Kasliwal 2015-Oct-12 1968 4.5 17.99 ± 0.03

IRAC 52692480 Kasliwal 2016-Feb-22 2101 3.6 18.09 ± 0.06

IRAC 52692480 Kasliwal 2016-Feb-22 2101 4.5 18.18 ± 0.04

IRAC 52692736 Kasliwal 2016-Feb-29 2108 3.6 18.13 ± 0.05

IRAC 52692736 Kasliwal 2016-Feb-29 2108 4.5 18.19 ± 0.04

IRAC 52692992 Kasliwal 2016-Mar-19 2127 3.6 18.23 ± 0.06

IRAC 52692992 Kasliwal 2016-Mar-19 2127 4.5 18.22 ± 0.05
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Table 2.3:: Ground-based Optical Photometry

Date (UT) Epoch (days) Instrument Filter AB Magnitude

2008-Sep-09 −609 IMACS i’ 24.19 ± 0.20

2009-Nov-25 −179 MegaCam i’ > 24.4

2009-Nov-25 −179 MegaCam r ’ > 24.4

2009-Nov-25 −179 MegaCam g’ > 24.4

2010-Nov-13 174 IMACS i’ 22.97 ± 0.06

2010-Nov-13 174 IMACS r ’ 22.85 ± 0.04

2011-Jan-12 234 LDSS-3 i’ 21.64 ± 0.03

2011-Oct-21 516 LDSS-3 i’ 19.77 ± 0.06

2011-Oct-21 516 LDSS-3 r ’ 19.42 ± 0.04

2011-Oct-21 516 LDSS-3 g’ 20.58 ± 0.03

2011-Dec-27 583 IMACS i’ 20.29 ± 0.05

2011-Dec-27 583 IMACS r ’ 20.27 ± 0.09

2011-Dec-27 583 IMACS g’ 22.29 ± 0.20

2012-May-17 725 LDSS-3 i’ 21.65 ± 0.04

2012-May-17 725 LDSS-3 r ’ 21.94 ± 0.04

2012-May-17 725 LDSS-3 g’ 22.32 ± 0.03

2013-Jan-11 964 LDSS-3 i’ 21.70 ± 0.04

2013-Jan-11 964 LDSS-3 r ’ 20.75 ± 0.06

2013-Jul-15 1149 LDSS-3 i’ 20.06 ± 0.01

2013-Dec-30 1317 LDSS-3 i’ 20.80 ± 0.18

2014-Jun-26 1495 LDSS-3 i’ 21.03 ± 0.01
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Table 2.3 Continued:

2015-May-15 1818 IMACS i’ 20.03 ± 0.02

2015-May-15 1818 IMACS r ’ 18.89 ± 0.13

2015-Jul-17 1881 IMACS i’ 20.18 ± 0.02

2015-Jul-17 1881 IMACS r ’ 19.87 ± 0.02

2015-Jul-17 1881 IMACS g’ 20.99 ± 0.03

2015-Aug-01 1896 IMACS i’ 19.71 ± 0.05

2015-Aug-01 1896 IMACS r ’ 20.09 ± 0.05

2015-Aug-01 1896 IMACS g’ 20.74 ± 0.08
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Table 2.2:: Magellan/FourStar Photometry

Date (UT) Epoch Filter AB Magnitude

2011-Dec-07 563 J 14.47 ± 0.09

2011-Dec-07 563 H 14.17 ± 0.11

2011-Dec-07 563 Ks 14.21 ± 0.12

2015-Jul-31 1895 J 14.23 ± 0.02

2015-Jul-31 1895 H 13.76 ± 0.03

2015-Jul-31 1895 Ks 13.57 ± 0.02

2015-Aug-18 1913 H 13.97 ± 0.01

2015-Aug-18 1913 Ks 13.63 ± 0.02

Table 2.4:: HST Photometry

Start Date (UT) Epoch Proposal ID PI Filter AB Magnitude

2012-Jul-18 787 12450 Kochanek F814W 20.63 ± 0.03

2014-Jul-02 1501 13515 Binder F606W 20.68 ± 0.02

2014-Jul-02 1501 13515 Binder F814W 20.99 ± 0.03
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Table 2.8:: Summary of SN 2010da Blackbody Fits

Progenitor Epoch 1 Epoch 9

TC 1500 ± 40 K 3230 ± 490 K 2760 ± 250 K

TH … 9440 ± 280 K 9080 ± 330 K

RC 9.4 ± 0.5 AU 9.5 ± 2.9 AU 10.5 ± 1.6 AU

RH … 1.59 ± 0.14 AU 1.25 ± 0.13 AU
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Abstract

The duration-luminosity phase space of optical transients is used, mostly heuristically,

to compare various classes of transient events, to explore the origin of new transients,

and to influence optical survey observing strategies. For example, several observational

searches have been guided by intriguing voids and gaps in this phase space. However

we should ask: Do we expect to find transients in these voids given our understanding

of the various heating sources operating in astrophysical transients? In this work, we

explore a broad range of theoretical models and empirical relations to generate optical

light curves and to populate the duration-luminosity phase space (DLPS). We explore

transients powered by adiabatic expansion, radioactive decay, magnetar spin-down, and

circumstellar interaction. For each heating source, we provide a concise summary of the

basic physical processes, a physically motivated choice of model parameter ranges, an

overall summary of the resulting light curves and their the occupied range in the DLPS,

and how the various model input parameters affect the light curves. We specifically

explore the key voids discussed in the literature: the intermediate luminosity gap

between classical novae and supernovae, and short-duration transients (. 10 days). We

find that few physical models lead to transients that occupy these voids. Moreover, we

find that only relativistic expansion can produce fast and luminous transients, while for

all other heating sources, events with durations . 10 days are dim (MR & −15 mag).

Finally, we explore the detection potential of optical surveys (e.g., LSST) in the DLPS

and quantify the notion that short-duration and dim transients are exponentially more

difficult to discover in untargeted surveys.
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3.1 Introduction

The initial classification of astronomical transient sources is phenomenological by

necessity. Focusing on optical light curves as an example, one can extract a number

of salient features including durations, colors, peak luminosities and rise/decline times

(see e.g., Richards et al. 2011). The hope is that unique physical classes will ultimately

become distinguishable in this multidimensional feature space without extensive

photometric and spectroscopic datasets, leading in turn to physical insight about the

underlying heating sources. Furthermore, the underlying distribution of objects within

this multidimensional feature space can guide the design and optimization of future

optical surveys. As larger optical surveys (such as the Zwicky Transient Facility, ZTF,

and the Large Synoptic Survey Telescope, LSST) come online, understanding the

distribution of transients within this space is essential for classification of optical light

curves. There has been a number of works devoted to the computational and algorithmic

problems of discovering and classifying transients from such surveys (Bailey et al. 2007;

Karpenka et al. 2012; Lochner et al. 2016a; Charnock & Moss 2017a). However, little

work has been done on the expected distribution of astrophysical transients within this

feature space utilizing well-motivated physical models.

This work focuses on a useful subspace of the full feature space of optical transients:

the duration-luminosity phase space (DLPS). The DLPS is valuable to astronomers for

a number of reasons. Both duration and peak magnitude are easily measured from the

light curve, and optical transients span a wide range in both properties. Additionally,

when coupled with survey parameters and progenitor properties, the DLPS can be

used to measure expected observational rates of each transient class or to tune survey
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parameters to optimize the detectability of specific classes.

To date, the DLPS has been used mainly to collate transients after they have been

observed and to illuminate “voids” in the observed DLPS. Of particular interest are

two known voids: objects with short duration (. 10 days) durations and objects which

lie in the luminosity gap between classical novae and supernovae (MR ∼ −10 to −14

mag). The latter has been noted in the literature as early as the 1930s (Baade 1938)

and has been the focus of some observational searches (e.g.,Kasliwal 2011). However, it

also essential to explore the DLPS using theoretical models that couple various heating

sources with expected ranges of physical parameters relevant for each model in order

to to understand if the voids in the DLPS can, in principle, be heavily occupied (e.g.,

Berger et al. 2013b).

Here we aim to take the first step of exploring the full extent of the DLPS using

physically-motivated models and input parameter ranges, as well as a uniform framework

for generating the models and populating the DLPS. We review a broad range of heating

sources for optical transients and generate R-band light curves for each physical class.

We then use these light curves to produce the DLPS, and we explore the overlap of

classes with observed transients. We address the question of whether these voids appear

to be occupied by theoretical models with reasonable ranges of physical parameters.

The layout of the Chapter is as follows. In Section 3.2, we introduce the

mathematical framework for our one-zone models. In Section 3.3, we systematically

explore a wide range of heating sources, their resulting light curves, and the ranges

and trends that they follow in the DLPS. We discuss the resulting distributions and

the broad discovery potential of untargeted surveys like LSST throughout the DLPS in
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Section 3.4. We draw our primary conclusions about the DLPS, the observed voids, and

the design of optical transient surveys in Section 3.5.
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Figure 3.1: Top Row: DLPS for adiabatically expanding explosions for white dwarf

progenitors (pink), Wolf Rayet/BSG progenitors (purple) and RSG progenitors (blue).

Also shown are 68th and 90th percentile contours for the realizations, estimated using a

kernel density estimate (KDE). The WD contours are omitted for clarity. Bottom left:

Representative simulated light curves. Bottom right: Effect of EKE (orange) and Mej

(purple) on adiabatically expanding light curves. Arrows point towards increasing values

of each parameter, with all other parameters held constant. Also shown are the contours

of the simulated light curve realizations for the RSG case.
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3.2 One-Zone Models and Mathematical Framework

Throughout this Chapter we use simple one-zone models of transients within the

framework laid out by Arnett (1980) for Type I SN light curves. For heating source we

assume the following:

1. The ejecta are spherically symmetric and undergo homologous expansion, unless

otherwise stated.

2. Radiation pressure dominates over electron and gas pressure in the equation of

state.

3. The heating source is located in the center of the ejecta, unless otherwise stated.

4. The optical opacity is a constant κ = 0.1 cm2 g−1, unless otherwise stated. This is

a typical value for stripped SNe (see e.g., Wheeler et al. 2015).

5. The initial radius is small, unless otherwise stated.

We can write the first law of thermodynamics as

Ė = −PV̇ − ∂L

∂m
+ ε (3.1)

where E = aT 4V is the specific internal energy, P = aT 4V/3 is the pressure, V = 1/ρ is

the specific volume, L is the radiated bolometric luminosity, ε is the energy generation

rate of the heating source, T is the temperature and ρ is the density (e.g., Arnett 1980;

Chatzopoulos et al. 2012). In this framework, all available energy from the heating

source supplies either the expansion of the ejecta or observable radiation, and we ignore
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neutrino losses. Following our assumption of homologous expansion, the radius grows

as R(t) = vt (assuming a negligible initial radius), where we approximate v as the

photospheric velocity, v = vph. This assumption also means that no significant additional

kinetic energy is added to the ejecta during the duration of the transient (i.e., the ejecta

does not accelerate).

The sink terms in Equation 1 control the diffusion timescale of the system, which

acts as a smoothing filter to the input luminosity function. During the photospheric

phase at early times (i.e., the phase explored in this study), the luminosity and duration

of the resulting transient depend heavily on the diffusion properties of the system.

During the nebular phase at later times, the light curve of the transient should converge

on the input luminosity of the heating source, assuming that the heating source is a

smooth function.

The solution for generic input heat sources has been outlined in a number of

works (e.g., Arnett 1980; Kasen & Bildsten 2010; Chatzopoulos et al. 2012). We cite

the solutions derived by Chatzopoulos et al. (2012). For the case of a homologously

expanding photosphere, the output luminosity is given by:

Lobs(t) =
2E0

td
e
−
(

t2

t2
d

+
2R0t

vt2
d

)
× ∫ t

0

e
−
(

t′2

t2
d

+
2R0t

′

vt2
d

)(
R0

vtd
+

t′

td

)
Lin(t

′)dt′ +HS (3.2)

where Lin is the input luminosity from the central heating source, E0 ∼ Mejv
2
ph/4 is the

initial energy of the transient, R0 is the initial radius of the source, td =
√

2κMej/βcv

is the diffusion timescale, and HS is the homogeneous solution to Equation 3.1 (the
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solution with no source term), which will only be considered in the case of no internal

sources of heating (Section 3.3.1). In most cases we consider R0 = 0 (i.e., a small initial

radius) and β = 4π3

9
≈ 13.7, a geometric correction factor (Arnett 1982).

In the case of transients powered by interaction of the shock wave and circumstellar

material (CSM), we consider diffusion through a fixed photospheric radius. The

luminosity is then described by:

Lobs(t) =
2R0

vt2d
e
− 2R0

vt2
d

t
∫ t

0

e
− 2R0

vt2
d

t′

Lin(t
′)dt′ +HS ′ (3.3)

where HS ′ is the homogeneous solution to Equation 1 for the fixed photosphere

conditions. Again, we will neglect this term for the case of transients powered by

ejecta-CSM interaction.

To generate light curves from these models, we use the open-source program MOSFiT1

(Modular Open-Source Fitter for Transients v0.7.1). MOSFiT is a Python-based package

that generates and fits semi-analytical models of various transients using modular

scripts for different input heating sources, diffusion methods, template spectral energy

distributions (SEDs), fitting routines, etc. (Guillochon et al. in prep.). We generate

thousands of model light curves by sampling uniformly over reasonable parameter spaces

for the various models (see Table 3.1 and Section 3). The MOSFiT modules used to

generate the models are listed in Table 3.2. In all cases we assume a blackbody SED, and

we report the properties of the R-band light curves at redshift z = 0 with no reddening.

Our blackbody assumption is a reasonable approximation when broadly exploring the

DLPS rather than detailed modeling for individual sources. We are specifically interested

1https://github.com/guillochon/mosfit
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in the “first-order” properties of the optical light curves: the peak absolute magnitude

and the duration. We define the duration as the timescale for the light curve to rise and

decline by one magnitude relative to the peak. If the light curve is multi-peaked, with

secondary peaks within 1 mag of the maximum luminosity, we include the secondary

peak in the duration. We select R-band because it samples the mid-range of the optical

wavelength regime. We stress that the choice of filter does not have a significant effect

on our results, although in general the durations may be slightly shorter in bluer filters,

and slightly longer in redder filters due to cooling of the blackbody SED as a function of

time. We also note that at substantial redshifts the duration will be stretched by a factor

of 1 + z. However, given the resulting peak luminosities, most transients are expected

to be detected at modest redshifts, and therefore time dilation will not be a significant

factor compared to the ranges of physical parameters we consider in this work.

3.3 Specific Engine Sources

In this section we investigate various heating sources for optical transients and

systematically explore the resulting light curves and the regions they occupy in the

DLPS. In most cases, the free parameters of each class can be divided into two categories:

those which contribute to the sink terms of Equation 1 (e.g., v, Mej) and those which

contribute to the source term (e.g., MNi, Pspin, B). The parameters explored for each

class, their ranges, and their sampling method (linearly or logarithmically spaced) are

listed in Table 3.1.

In each subsection, we introduce the basic physics and free parameters of each

heating source. We describe our choice of parameter ranges and the effect of each
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parameter on the light curves. We then present the simulated DLPS, specifically

highlighting boundaries or interesting features. Finally, we compare our simulated DLPS

with observed objects when possible.

3.3.1 Adiabatic Expansion (No Central Heating Source)

Without a heating source, the light curves are entirely defined by the homogeneous

solution to Equation 2 for an expanding photosphere:

L(t) = L0e
−
(

t2

t2
d

+
2R0t
vejtd

)
(3.4)

where R0 is the progenitor radius and L0 ≈ EKE/2td is the initial luminosity from the

explosion. Although the bolometric luminosity is monotonically decreasing, the R-band

light curve rises and then declines as the photosphere expands, and the peak of the

blackbody SED evolves from shorter to longer wavelengths through the optical regime.

Rather than varying the progenitor radius across several orders of magnitude, we

focus on three specific regimes that sample the full range of reasonable scenarios: white

dwarfs (R0 ∼ 0.01 R�, Mej ∼ 0.1− 1 M�), Wolf-Rayet/blue supergiant (BSG)-like stars

(R0 ∼ 10 R�, Mej ∼ 1 − 10 M�) and red supergiant (RSG)-like stars (R0 ∼ 500 R�,

Mej ∼ 1− 10 M�). Luminous blue variables (LBVs), known for their eruptive mass loss

events, have radii intermediate between the BSG and RSG progenitors, R0 ∼ 10 − 100

R�.

In Figure 3.1, we plot a sample of simulated light curves and the DLPS of each

progenitor type, randomly sampling from uniform distributions of ejecta mass and
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logarithmically in kinetic energy (EKE ∼ 1049 − 1051 erg). As expected, we find the

general trend that larger progenitors produce longer-duration and more luminous

transients. The upper and lower bounds to the quadrilateral-like areas each of these

models occupy are defined by our chosen energy limits, while the vertical (duration)

boundaries are set by our chosen ejecta mass limits. Only compact (WD) progenitors

produce transients with durations tdur . 1 day all of which have a low luminosity

(MR & −12 mag). In contrast, the larger progenitors (BSG/RSG) only produce

transients with longer durations (tdur & 10 days) which are brighter (MR & −10 mag).

Thus, there is an overall clear positive correlation between luminosity and duration for

this type of explosions.

The effects of the main parameters (EKE and Mej) are explicitly shown in Figure 3.1.

For a constant EKE, the transients become longer and somewhat brighter with increasing

Mej. On the other hand, transients become shorter and brighter for increasing values of

EKE given a constant value of Mej. Therefore, the brightest (dimmest) transients with

no central heating have large (small) kinetic energies and small (large) ejecta masses for

a fixed value of R0. We find that these trends are generally true in all other heating

sources as well.

3.3.2 Radioactive Heating from Decay of 56Ni

One of the most important and well-studied heating sources, responsible for the bulk of

thermonuclear and stripped-envelope core-collapse SNe, is the radioactive decay of 56Ni

(and 56Co) synthesized in the explosion (see Arnett 1979, 1980, 1982; Chatzopoulos et al.

2012, etc). The input luminosity is given by
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Figure 3.2: Derived duration-luminosity relation for Type Ia SNe using Equations 6

and 7, assuming a luminosity scatter of ≈ 0.2 mag (purple) with a sample of 50 well-

sampled Type Ia SNe from the OSC after correcting for reddening and time dilation.

This sample contains the 50 objects with redshifts z ≥ 0.1 (to avoid distance-dominated

errors in nearby SNe) with the greatest number of data points on the OSC at the time

of writing. Objects from Riess et al. (1999); Stritzinger et al. (2002); Vinkó et al. (2003);

Jha et al. (2006); Pastorello et al. (2007); Hicken et al. (2009); Contreras et al. (2010);

Ganeshalingam et al. (2010); Silverman et al. (2011); Hicken et al. (2012); Silverman et al.

(2012); Walker et al. (2015); Firth et al. (2015); Ferretti et al. (2016).
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Lin(t) = MNi

[
εCoe

−t/τCo + (εNi − εCo) e
−t/τNi

]
(3.5)

where MNi (the initial nickel mass) is the only free parameter of this heating source. The

energy generation rates of 56Ni and 56Co (εNi = 3.9× 1010 erg s−1 g−1 and εCo = 6.8× 109

erg s−1 g−1) and the decay rates (τNi = 8.8 days and τCo = 111 days) are known

constants.

The radioactive decay of 56Ni powers objects spanning a broad range of properties.

We explore four regimes in this work: Type Ia SNe, Type Ib/c SNe, pair-instability SNe

and Iax-like SNe.

Type Ia SNe

White dwarfs can explode as Type Ia SNe after thermonuclear ignition (Hoyle & Fowler

1960), although there is ongoing debate about whether this ignition arises from pure

deflagration, delayed detonation or other mechanisms (see e.g., Khokhlov 1991; Arnett &

Livne 1994; Phillips et al. 2007). Although it is unclear whether the progenitors of Type

Ia SNe are single- or double-degenerate systems, Type Ia SNe occupy a narrow range of

the DLPS due to their homogeneity.

Type Ia SNe have low ejecta masses (Mej ≈ 1.4 M�) with a relatively large fraction

of this ejecta being radioactive 56Ni (fNi ∼ 0.3− 0.5). Rather than modelling these light

curves using simple blackbody SEDs, we use an empirical relation described by Tripp &

Branch (1999) and Betoule et al. (2014):
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tdur = 35s days (3.6)

Mpeak = −19.4 + 1.4(s− 1) (3.7)

where s is the stretch of the light curve, which we range from 0.6 to 1.2 (roughly

matching the range explored in Guy et al. 2005). We use the canonical (s = 1) template

from Nugent et al. (2002) to extract a template R-band light curve to stretch. As a

consistency check, we find that this relation roughly agrees with that found using the

R-band templates from Prieto et al. (2006).

Using this relation, we find the well-known result that brighter (dimmer) Type Ia

SNe have longer (shorter) durations. Type Ia SNe are constrained to a small subset of

the DLPS, with durations of tdur ∼ 25− 50 days and MR ∼ −18 to −20 mag. In Figure

3.2, we plot the duration-luminosity relation and several Type Ia SNe from the Open

Supernova Catalog (OSC; Guillochon et al. 2017; see caption for details). To summarize,

Type Ia SNe occupy a narrow portion of the DLPS, with no sources having durations of

tdur . 20 days.

Type Ib/c SNe

Type Ib/c SNe occur when stripped-envelope massive stars undergo core-collapse at

the end of their lives and are identified by their hydrogen-free (and helium-free in the

case of Type Ic SNe) spectra. Type Ib/c SNe contain a relatively low fraction of 56Ni

(fNi ∼ 0.01 − 0.15) in their ejecta (Mej ∼ 1 − 10 M�; Drout et al. 2011). In this class,

we include the parameter ranges for both normal and broad-lined Type Ib/c SNe and

sample uniformly across their typical kinetic energies (EKE ∼ 1051 − 1052 erg).
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Our simulated light curves (Figure 3.3) span a wide range in both absolute

magnitude (MR ∼ −16 to − 19 mag) and duration (tdur ∼ 10− 120 days). The brightest

(dimmest) transients have the largest (smallest) 56Ni masses (fNiMej), while the longest

(shortest) durations are largely set by the ejecta velocity (v ≈ [EKE/Mej]
1/2). Due to

this positive correlation, the shortest duration transients (tdur ∼ 10) also have the lowest

luminosities (MR ∼ −16 mag). We find essentially no transients with tdur . 10 d. Such

transients would require faster ejecta velocities than typically observed in these sources.

We compare our generated light curve properties to samples from the literature

(Drout et al. 2011; Taddia et al. 2015). The observed sample generally overlaps our

simulated DLPS, although our models extend to shorter durations of tdur ∼ 10− 20 days

which have not been observed.

Pair-instability SNe (PISNe)

It is predicted that stars with M ∼ 140 − 260 M� will reach sufficiently high core

temperatures to produce electron-positron pairs leading to a loss of pressure and a

resulting thermonuclear runaway and explosion that leaves no remnant (Barkat et al.

1967). Due to the large ejecta masses and kinetic energies, the optical light curves are

expected to be both bright and long-duration (Kasen et al. 2011; Dessart et al. 2013). We

expect PISNe to have similar (extending to slightly larger) 56Ni fractions as Type Ib/c

SNe (fNi ∼ 1−30%) but to have much larger ejecta masses (Mej ∼ 50−250 M�, with the

lower masses representing stripped progenitors) and kinetic energies (EKE ∼ 1051 − 1053

erg); see Kasen et al. 2011.

In Figure 3.4, we show a sample of simulated PISNe light curves and the associated
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Figure 3.3: Top & Middle: DLPS of Type Ib/c SNe (pink) with a sample of observed

objects from Drout et al. (2011) (purple stars) and Taddia et al. (2015) (blue squares).

For both samples, we estimate the transient durations using the reported ∆m15 values,

assuming symmetric light curves about the peak. Exceptional long-duration events: SN

2011bm (Valenti et al. 2012) and iPTF15dtg (Taddia et al. 2016) are also plotted for

comparison (green triangles). Also shown are 68th and 90th percentile contours for the

realizations, estimated using a KDE. Bottom: Representative simulated light curves for

Type Ib/c SNe.
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DLPS. Compared to Type Ib/c SNe, the PISNe typically have longer durations

(tdur ∼ 100− 400 days) and higher luminosities (MR ∼ −18 to −22 mag). Like the other

56Ni-decay powered models, the durations and luminosities are positively correlated, with

the shortest duration transients (tdur ∼ 100) being the least luminous (MR ∼ −18 mag).

We compare our results to more detailed calculations by Kasen et al. (2011) and

Dessart et al. (2013). The first order properties of the light curves are in rough agreement

(Figure 3.4), although the Kasen et al. (2011) models allow for less energetic/luminous

explosions. By allowing energy and ejecta mass to vary independently, our model

explores a larger parameter space than comprehensive PISNe models in which the

progenitor masses and kinetic energies are linked.

Ultra-stripped SNe/Iax-like SNe

Although ultra-stripped SNe and Iax SNe have some similar properties, they emerge

from distinct physical scenarios and more detailed simulations predict unique spectral

features. Ultra-stripped SNe are theorized to arise from helium star-neutron star binary

systems which undergo significant stripping of the helium envelope (Tauris et al. 2015;

Moriya et al. 2017). Iax SNe define a loose observational class which are spectroscopically

similar to Type Ia SNe, although they are dimmer in optical bands (Foley et al. 2013).

Ultra-stripped SNe and Iax-like SNe have a high nickel content (fNi ∼ 0.1 − 0.5)

similar to Type Ia SNe but have lower ejecta masses (Mej ∼ 0.01 − 1 M�) and kinetic

energy (EKE ∼ 1049 − 1051 erg) compared to Type Ib/c SNe. In Figure 3.5 we present a

sample of Iax-like SNe light curves and the associated DLPS. We find a tighter positive

correlation between duration (tdur ∼ 10− 50 days) and peak magnitudes (MR ∼ −16 to
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Figure 3.4: Top & Middle: DLPS for PISNe (pink) with a sample of models from Kasen

et al. (2011) (purple stars) and Dessart et al. (2013) (green triangles). Also shown are

68th and 90th percentile contours for the realizations, estimated using a KDE. Bottom:

Representative simulated light curves for PISNe.
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−19 mag) compared to the Type Ib/c SNe due to the narrower ranges of fNi and Mej.

Unlike the other 56Ni-decay powered models, the Iax-like model can produce a small

fraction of transients with durations tdur . 10 days (with a shortest duration of tdur ∼ 1

week), but these transients are also the dimmest (MR ∼ −16.5 mag).

We compare our models to the Iax SNe sample from Foley et al. (2013) and a

sample of short-duration transients from Drout et al. (2014) in Figure 3.5. Our models

do not account for the lowest luminosity observed objects, which likely have lower 56Ni

and ejecta masses than our model ranges. Furthermore, the realizations extend to longer

durations (tdur ∼ 30− 60 days) than seen in current observations.

General Trends

The effects of the kinetic energy, ejecta mass and nickel fraction on all 56Ni-powered

models are explored in Figure 3.6. Unsurprisingly, the unique free parameter of this

engine, MNi, exclusively impacts the brightness of the transient with no impact on

its duration. Mej and EKE have degenerate and opposing effects on the light curve

parameters (the same effect as in the adiabatic case, Figure 3.1.). For a given kinetic

energy, larger ejecta masses lead to longer and dimmer transients as the diffusion process

becomes less efficient. For a given ejecta mass, larger kinetic energies lead to shorter and

brighter transients due to the resulting larger velocities. Thus, the shortest duration

transients have small ejecta masses and large kinetic energies and vice versa for the

longest-duration transients. The brightest (dimmest) transients have large (small) nickel

masses, corresponding to either large (small) nickel fractions or ejecta masses. We

specifically find that 56Ni heating cannot power transients with durations tdur . 1 week,
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unless their peak luminosities are also small, MR & −16.5 mag.

3.3.3 r-Process Radioactive Heating (Kilonovae)

Neutron-rich ejecta from binary neutron star or black hole-neutron star mergers are

expected to undergo r-process nucleosynthesis due to the neutron-rich ejecta from either

the initial merger event or a remnant disk outflow (Li & Paczyński 1998; Metzger et al.

2010). The radioactive decay of r-process products provides a heating source, while the

synthesis of Lanthanides provides a high opacity (Barnes & Kasen 2013). The ejecta

masses are expected to be small, Mej ∼ 10−3 − 0.1 M� (Li & Paczyński 1998; Metzger

2017). The input luminosity can be parameterized by (Korobkin et al. 2012; Metzger

2017):

Lin(t) = 4× 1018εth(t)Mrp× [
0.5− π−1 arctan

(
t− t0
σ

)]1.3
erg s−1 (3.8)

where Mrp is the mass of the r-process material, t0 = 1.3 s and σ = 0.11 s are

constants, and εth(t) is the thermalization efficiency (Barnes et al. 2016; Metzger 2017)

parameterized as:

εth(t) = 0.36

[
e−0.56t +

ln(1 + 0.34t0.74)

0.34t0.74

]
(3.9)

Because kilonovae have not yet been conclusively observed (with the potential

exception of GRB130603B; Berger et al. 2013a; Tanvir et al. 2013), there are a number
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Figure 3.5: Top & Middle: DLPS for Iax-like SNe (pink) with a sample of Iax SNe from

Foley et al. (2013) (purple stars) and rapidly evolving transients from Drout et al. (2014)

(blue squares). Also shown are 68th and 90th percentile contours for the realizations,

estimated using a KDE. Note that the Drout et al. (2014) objects are not necessarily

powered by 56Ni decay (see Section 3.4). For both samples, we estimate the transient

durations using the reported ∆m15 values, assuming symmetric light curves about the

peak. We remove SN2008ge from the Foley et al. (2013) sample due to its highly uncertain

duration. Bottom: Representative simulated light curves for Iax-like SNe.
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Figure 3.6: Top: The effects of fNi (orange) and Mej (purple) on light curves powered

by 56Ni decay given a constant kinetic energy. Arrows points towards increasing values

of each parameter. Also shown are contours of our simulated DLPS. Bottom: Same, but

for of fNi (orange) and EKE (purple).
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Figure 3.7: Top Row: Kilonova DLPS assuming Lanthanide-rich (red) and Lanthanide-

free (blue) ejecta. Also shown is a sample of detailed models from Metzger (2017) (stars)

and Barnes & Kasen (2013) (squares), and 68th and 90th percentile contours for the real-

izations, estimated using a KDE. Bottom Left: Representative simulated light curves for

r-process explosions. Bottom Right: Effect of Mej (orange) and κ (purple) on light curves

powered by r-process decay assuming a constant mass fraction of r-process material. Ar-

rows point towards increasing values of each parameter. Also shown are contours of our

simulated DLPS.
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of uncertainties in the light curve properties. Notably, the optical opacity of the

Lanthanide-rich ejecta is unknown due to the complex structure of their valence f-shells.

Early work assumed that Lanthanide-rich material had opacities similar to that of

iron-peak elements, leading to bluer transients (Li & Paczyński 1998). Recent work

suggests that Lanthanide-rich material will have an optical opacity κ ∼ 102 − 103 times

larger than that of iron-peak elements (Barnes & Kasen 2013; Barnes et al. 2016).

However, it is possible that both cases exist, if binary neutron star mergers leave a NS

remnant with a survival timescale of & 0.1 s (Kasen et al. 2015). We consider these two

possibilities in our models by generating two sets of light curves, following parameter

ranges from Metzger (2017): one with a fixed κ = 0.2 cm2 g−1 (a “blue” kilonova, similar

to that originally explored by Li & Paczyński 1998) and one with a variable κ sampled

logarithmically in the range κ ∼ 10− 200 cm2 g−1 (a “red” kilonova). For each group, we

logarithmically sample from ejecta masses of Mej ∼ 10−3 − 10−1 M�, uniformly sample

from ejecta velocities of vej ∼ 0.1c − 0.3c and fix the r-process mass fraction fr = 1

(Metzger 2017). We additionally choose the geometric factor β = 3 to calculate the

diffusion timescale, following Metzger (2017).

A sample of these models and their associated DLPS are shown in Figure 3.7. Both

classes are dim (MR & −15 mag) and short-duration (tdur . 5 days). The red kilonovae

are dimmer (MR ∼ −7 to −13 mag) than the blue kilonovae (MR ∼ −13 to −15 mag).

Both subclasses have similar average durations of tdur ∼ 2 days, although a large fraction

of the red kilonovae have even shorter durations of tdur . 1 day. We note that although

red kilonovae are expected to last ∼ 1 week in the near-infrared, the transients are

short-lived and dim in the R-band even if the ejecta is Lanthanide-poor. As with the

56Ni-powered models, the duration and peak luminosities are positively correlated.
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In Figure 3.7 we explicitly show the effects of κ and Mej on the light curve properties.

Increasing opacity makes the transient shorter and dimmer in the optical, while larger

ejecta masses increase the duration and luminosity. The shortest (longest) duration

transients have large (small) values of κ and small (large) values of Mej. The brightest

kilonovae have small opacity values, and vice versa for the dimmest kilonovae. We find

that kinetic energy has a similar effect on the light curves as seen in transients lacking a

central heating source (see Section 3.3.1 and Figure 3.1); larger (smaller) kinetic energy

leads to more (less) luminous transients with shorter (longer) durations.

Finally, we compare our simple model with more detailed calculations from Metzger

(2017) and Barnes & Kasen (2013). Our models are in rough agreement with the detailed

calculation, both in duration and luminosity. However, our models include even dimmer

kilonovae (MR & −11 mag) which have low ejecta masses. We conclude that r-process

heating in the context of compact object mergers can lead to short duration transients

(. few days), but that these transients are invariably dim (& −15 mag).

3.3.4 Magnetar Spin-down

Young magnetars, or highly magnetized neutron stars, can power optical transients as

they spin down and deposit energy into the expanding ejecta (Woosley 2010; Kasen &

Bildsten 2010; Metzger et al. 2015). For a dipole field configuration, the input luminosity

is given by

Lin(t) =
Ep

tp

1

(1 + t
tp
)2

(3.10)
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Figure 3.8: Top row: DLPS of magnetar powered transients (pink) along with a sample

of observed Type I SLSNe from the literature (Young et al. 2010; Quimby et al. 2011;

Howell et al. 2013; Inserra et al. 2013; Lunnan et al. 2013; Nicholl et al. 2013; McCrum

et al. 2014; Nicholl et al. 2014; Vreeswijk et al. 2014; Nicholl et al. 2015; Papadopoulos

et al. 2015; Smartt et al. 2015; Lunnan et al. 2016; Nicholl et al. 2016, 2017; purple

stars) and theoretical models from Kasen & Bildsten 2010 (blue squares). Also shown are

68th and 90th percentile contours for the realizations, estimated using a KDE. Bottom

left: Representative simulated light curves. Bottom right: Effect of B14 (purple) and

Pspin (orange). Arrows point towards increasing values of each parameter, with all other

parameters held constant. Also shown are contours of our simulated DLPS.
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where Ep = INSΩ
2/2 is the initial magnetar rotational energy, described by the moment

of inertia (INS) and angular velocity of the neutron star (Ω), and tp is the spin-down

characteristic timescale:

tp = (1.3× 105)
P−2
spin

B2
14

s (3.11)

where Pspin = 5
(

Ep

1051erg/s

)−0.5

ms is the spin period, and B14 is the magnetic field in units

of 1014 G. Recently, the magnetar model has been used to explain Type I superluminous

supernovae (SLSNe) (Quimby et al. 2011; Gal-Yam 2012; Dessart et al. 2012; Nicholl

et al. 2013; Nicholl et al. 2017a).

In this work we explore magnetar-powered transients with spin periods Pspin ∼ 1−10

ms, magnetic fields B ∼ 1013 − 1015 G, ejecta masses Mej ∼ 1 − 10 M� and kinetic

energies EKE ∼ 1051 − 1052 erg. These parameter ranges are designed to span realistic

values where magnetar spin-down can be the dominant power source. Large spin periods

of & 10 ms, and low magnetic fields of B . 1013 will result in low input power, and the

transients will likely be dominated by 56Ni-decay (see Section 3.3.10). We additionally

eliminate unphysical models with EKE − ESN,min > Ep, where ESN,min = 1051 erg is the

minimum energy required to leave a NS remnant. This condition removes models in

which most of the rotational energy feeds into ejecta expansion rather than radiation.

The magnetar-powered models and the associated DLPS are shown in Figure 3.8. While

increasing spin periods lead to dimmer transients, the transient luminosity is actually

optimized at intermediate values of B14 which depend on Pspin when the spin-down

timescale roughly matches the diffusion timescale.

There are several notable features caused by these dependencies in the magnetar

DLPS. First, the paucity of long duration and low luminosity transients reflects the
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lower bound of our magnetic field range. In contrast, the luminosity upper limit is set

by the lower bound on the spin period, which we set at the maximal NS spin (1 ms).

There is also an absence of shorter duration transients with MR ∼ −18 to −20 mag.

The upper boundary of this void is set by our magnetic field lower limit, while the lower

boundary is set by the lower ejecta mass limit; all of the transients below this void have

low magnetic field strengths. The effects of Pspin and B on the magnetar light curves

are shown explicitly in Figure 3.8. We conclude that magnetar-powered transients are

typically luminous (MR . −19 mag) with long durations (tdur & 30 days).

Finally, we compare our DLPS with a sample of Type I SLSNe from the literature

and with detailed models by Kasen & Bildsten (2010). We find that the majority

of our realizations agree with the observed population (MR ∼ −19 to −23 mag and

tdur ∼ 20 − 200 days). Additionally, we also reproduce the lower luminosity models

(MR ∼ −17 to −19 mag) explored by Kasen & Bildsten (2010).

3.3.5 Ejecta-CSM Interaction

Several types of optical transients, including Type IIn SNe and Luminous Blue Variable

(LBV) outbursts, display clear signs of interaction between their ejecta and dense

surrounding circumstellar material (CSM). Properties such as narrow hydrogen and

metal emission lines, bright Hα luminosities, and considerable X-ray/radio luminosities

can be explained by a shock propagating through a CSM (Chevalier & Fransson 1994;

Matzner & McKee 1999). Similarly, bright, blue and short-duration transients have been

linked to shock breakout from dense CSM “cocoons” (Chevalier & Irwin 2011; Drout

et al. 2014; Arcavi et al. 2016). Because CSM interaction can describe an expansive
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Figure 3.9: Top row: DLPS of CSM shock breakout transients with a complete sample

of V,R or I Type IIn SNe and SLSNe-II with well-sampled light curves (> 20 data points)

from the OSC, a sample of short-duration transients from Drout et al. (2014) and a sample

of short-duration and bright transients from Arcavi et al. (2016). Also shown are 68th and

90th percentile contours for the realizations, estimated using a KDE. Middle left: Effect

of R0 (orange) and n (purple) on light curves. Middle right: Effect of ρCSM (orange) and

Mej (purple) on light curves. Arrows points towards increasing values of each parameter.

Bottom: Representative simulated light curves.
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range of transients, we consider two primary regimes: SN-like with ejecta masses

(Mej ∼ 1− 10 M�) and kinetic energies (EKE ∼ 1051 − 1052 erg) typical of Type IIn SNe;

and outburst-like, with low ejecta masses (Mej ∼ 10−3 − 1 M�) and wind-like velocities

(v ∼ 102 − 103 km s−1), typical of intermediate luminosity optical transients (ILOTs;

including LBV outbursts and Type IIn precursors).

Many semi-analytical models have been created to describe optical light curves

powered by shock heating (Chatzopoulos et al. 2012; Smith 2013; Moriya et al. 2013;

Ofek et al. 2014). Most of these models follow the same formalism presented by Chevalier

(1982) and Chevalier & Fransson (1994) and track a shock through the CSM as it

thermalizes the large kinetic energy reservoir (Chevalier 1982; Chevalier & Irwin 2011;

Dessart et al. 2015). Due to the current uncertainty in the analytical models available,

we explore two interaction models described by Chatzopoulos et al. (2012) and Ofek

et al. (2014) and discuss their key differences. We specifically use the Ofek et al. (2014)

model for CSM shock breakout transients, and an altered Chatzopoulos et al. (2012)

model for both SN-like and outburst-like transients. The details of these models are

presented in the Appendix. In the subsections below, we discuss the input luminosities

and model parameters.

Shock Breakout from a Dense CSM

Shock breakouts (SBO) from dense CSM winds surrounding massive stars have been

used to describe Type IIn SNe and other bright, blue transients (e.g. see Ofek et al. 2014;

Margutti et al. 2013). This model assumes that the forward shock from the ejecta-CSM

interaction radiates efficiently (td = 0) such that:
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Lin = Lobs = 2περCSM(rsh)r
2
shv

3
sh (3.12)

where ε = 0.5 is an efficiency factor, ρCSM(rsh) is the density of the CSM as a function

of the shock radius rsh, and vsh = drsh/dt is the shock velocity. The shock radius and

velocity depend on the geometry of the explosion ejecta and CSM. Here we assume that

the CSM is distributed as a wind-like profile, ρCSM(r) ∝ r−2. The ejecta density profile is

described as a broken-power law, with an outer profile of ρej(r) ∝ r−n where n is a free

parameter. We find that the inner profile has little effect on the light curves, and thus

we assume a flat inner profile. (See the Appendix for details.)

Thus, the free parameters are the ejecta density index (n), the kinetic energy of

the explosion (EKE), the ejecta mass (Mej), the inner radius of the CSM (R0), and

the CSM density at R0 (ρCSM). We sample over the following ranges: n ∼ 7 − 12,

EKE ∼ 1051 − 1052 erg, Mej ∼ 1− 10 M�, R0 ∼ 1− 102 AU and ρCSM ∼ 10−17 − 10−14 g

cm−3. We then eliminate realizations with mass-loss rates Ṁ ≡ 4πR2
0ρCSMvw < 10−6 M�

yr−1, assuming a wind velocity of vw ∼ 102 km s−1. This cut corresponds to the lower

end of expected RSG mass-loss rates (Smith 2014). Our parameters therefore correspond

to mass-loss rates of Ṁ ∼ 10−6 − 10−2 M� yr−1, roughly matching the range of mass-loss

rates of RSGs, YSGs and LBVs (Smith 2014).

We note that our range of R0 values extends beyond the radii of most progenitor

stars. However, it is possible that R0 is the location of a so-called cool dense shell formed

by an earlier eruption and not always representative of the progenitor radius (Smith

2017).

Finally, we note that our range of n is representative of ejecta density profiles
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inferred for degenerate progenitors (n ∼ 7; Colgate & McKee 1969) and RSG progenitors

(n ∼ 12; Matzner & McKee 1999). Although previous work has typically set n ∼ 12,

Chevalier & Irwin (2011) suggest that the shallower portions of density profiles may play

larger roles in the ejecta-CSM interaction, so we leave n as a free parameter. Finally, we

remove events with v > 15000 km s−1.

We show sample light curves and the associated DLPS in Figure 3.9. Our

models span a wide range in both luminosity (MR ∼ −13 to −19 mag) and duration

(tdur ∼ 10− 103 days). Like most of our models, luminosity and duration are positively

correlated. The shortest duration transients have tdur ≈ 10 days, and peak brightness

of MR & −17 mag. The duration is largely determined by the mass-loss rate, with

higher (lower) mass-loss rates leading to the longest (shortest) duration transients. The

luminosities of the brightest transients are set by our minimum value of n and maximum

velocities, while the luminosities of the dimmest transients are set by the minimum

velocities (∼ 4× 103 km s−1) of our parameter ranges. We explicitly show the effects of

each free parameter in Figure 3.9. As shown in the figure, larger values of ρCSM actually

lead to less luminous transients in the optical. This is due to the fact that large values of

ρCSM lead to hotter effective temperatures that actually decrease the visible luminosity

assuming a blackbody SED.

In Figure 3.9 we also compare our simulated distribution to the distribution of

all well-sampled Type IIn SN listed on the OSC at the time of writing, a sample

of short-duration transients from Pan-STARRs (Drout et al. 2014) and a sample of

rapidly-rising, bright transients from Arcavi et al. (2016). We note that neither of the

latter two samples are claimed to be from CSM SBO models; however, the CSM model

is able to roughly reproduce the peak luminosities and durations of the rapid transients
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from Drout et al. (2014). The simulated shock breakout models generally produce

dimmer transients than observed and allow for longer duration transients (tdur & 400

days).
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Figure 3.10: Top & Middle: Ejecta-CSM interaction DLPS for SN-like transients as-

suming s = 0 (blue) and s = 2 (pink) and the 68th and 90th percentile contours for the

realizations, estimated using a KDE. Also shown is the same sample of Type IIn SNe and

SLSNe-II light curves from Figure 3.9. Bottom: Simulated light curves for shell-like s = 0

(blue, dashed) and wind-like s = 2 (pink) mass-loss.

Ejecta-CSM Interaction with Diffusion

We now explore the generalized problem of ejecta-CSM interaction with diffusion

assuming a stationary photosphere (Chatzopoulos et al. 2012). This model is similar to
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that in Section 3.3.5, but in this case we consider the reverse shock contribution and a

stationary photosphere (see Appendix). The input luminosity is given by:

Lin = ε(ρCSMR
s
0)

n−5
n−s t

2n+6s−ns−15
n−s ×

[
C1θ (tFS − t) + C2θ (tRS − t)

]
(3.13)

where s, C1 and C2 are geometric parameters of the CSM, and θ(t) is the heaviside

function which controls the input times for the forward (tFS) and reverse (tRS) shocks.

There are seven free parameters of the model: s, n, R0, EKE, Mej, ρCSM, and the total

CSM mass (MCSM). We set s = 0 for “shell-like” CSM models and s = 2 for “wind-like”

CSM models.

We place a number of additional physical constraints on these models:

1. We require the photospheric radius to be within the CSM shell: R0 ≤ Rph ≤ RCSM

2. We require the CSM mass to be less than the ejecta mass: MCSM ≤ Mej

3. We require the velocity of the ejecta vmin ≤ vph ≡
√

10EKE/3Mej ≤ vmax, where

vmin = 5000 km s−1 and vmax = 15000 km s−1 for SN-like sources and vmin = 100

km s−1 and vmax = 1000 km s−1 for outburst-like sources.

4. We require the diffusion time (td) through the CSM to be less than the shock

crossing time through the CSM (tFS). If this were not the case, the light curve

would exponentially decline as in the case of adiabatic expansion (Section 3.3.1;

see the shell-shocked model described by Smith & McCray 2007). Moriya et al.

(2013) and Dessart et al. (2015) argue that the optical depths in typical CSMs are

significantly lower than the regime of a shell-shocked model, implying that td < tFS.
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Finally, we choose reasonable parameter ranges for SN- and outburst-like

sources. For both subclasses, we sample logarithmically from R0 ∼ 1 − 100 AU and

ρCSM ∼ 10−17 − 10−14 g cm−3, typical ranges in Type IIn SNe studies (Moriya et al.

2013; Dessart et al. 2015). For the SN-like models, we explore both shell-like (s = 0) and

wind-like (s = 2) CSM profiles. For the outburst-like models, we only explore wind-like

CSM profiles.

For SN-like transients, we sample logarithmically from EKE ∼ 1051 − 1052 erg and

MCSM ∼ 0.1− 10 M�, and uniformly from Mej ∼ 1− 10 M�. Simulated light curves and

the DLPS of our models are shown in Figure 3.10 for both shell-like and wind-like CSM

profiles. In the shell-like case, the light curves decline rapidly following peak brightness

due to our use of the heaviside function to abruptly discontinue the input luminosity

once the forward and reverse shocks have traversed the CSM. In the wind-like case, these

light curves are smoother due to the continuous ρ(r) ∝ r−2 CSM profile.

One notable difference between the shell-like and wind-like models is the range

of peak magnitudes, with shell-like models (Mpeak ∼ −21 to −24 mag) spreading a

narrower range than the wind models (Mpeak & −23 mag) for the same range of physical

parameters. This is likely due to the fact that Lin ∝ 2n+6s−ns−15
n−s

, or Lin
∝∼ t0.7(t−0.3) for

s = 0 (s = 2) assuming n = 12, a typical value for RSGs (Chevalier 1982). In other

words, the input luminosity is always decreasing in the wind-like model, while it actually

increases in the shell-like model for t < tFS. This leads to brighter transients in the

shell-like case.

There is little correlation between duration and luminosity for both shell-like and

wind-like models due to the complicated effects of the multiple parameters. In Figure
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3.11 we show how the free and derived parameters affect the wind-like CSM models.

We highlight several global trends. The brightest transients typically have the largest

mass-loss rates, optically thick CSM masses (MCSM,th) and photospheric radii (Rph), and

vice versa for the dimmest transients. The shortest duration (tdur ∼ 10 days) transients

with relatively high luminosities (MR . −16 mag) have small CSM masses although

most of this CSM is optically thick.

There are two low luminosity (MR & −15 mag) “branches” in the wind-like DLPS:

one extending to shorter durations (tdur < 20 days) and the other at tdur ∼ 100 days.

The dearth of models between these branches is due to the fact that models within this

area of phase space have optically thin CSM masses which are eliminated by our physical

constraints. Realizations in the shorter-duration branch have larger CSM masses,

mass-loss rates and inner CSM radii compared to the branch at ∼ 100 days. Realizations

in the shorter-duration branch have more peaked light curves due to thinner shells at

larger radii, while those in the longer-duration branch have flatter light curves. We note

that no transients with SN-like properties have been observed to date in either branch.

As with previous classes, we find that the transients with shortest durations and

SN-like luminosities have tdur ≈ 15 days. Transients with shorter durations (down to

tdur ≈ 15 days) all have low luminosities of & −14 mag.

Finally, we compare our DLPS to the sample of Type IIn SNe and other objects

as in Section 3.3.5. The wind-like DLPS largely overlaps with the sample, while the

shell-like DLPS is only able to reproduce the brightest Type IIn SNe.

For outburst-like transients, we sample logarithmically from v ∼ 102 − 103 km s−1

and Mej ∼ 0.001− 1 M� and assume s = 2. The corresponding kinetic energy limits are
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Figure 3.11: Ejecta-CSM interaction DLPS for the Type IIn SNe transients assuming

s = 2. In each panel, the models are color coded based on the values of the inset

parameters (e.g., the top left panel is color coded based on Mej). The “high” and “low”

values are based on the parameter ranges listed in Table 1. The mass-loss rate (Ṁ),

optically thick CSM mass (MCSM,th), photospheric radius (Rph), CSM radius (RCSM)

diffusion time (td) and forward shock-crossing time (tfs) are all derived parameters. We

note that many of the short-duration events are dominated by the forward shock (with

the reverse shock contributing a less-luminous peak not included in the duration), while

the long-duration events have durations that typically include both the forward- and

reverse-shock peaks.
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EKE ∼ 1044 − 1049 erg. These limits were chosen to roughly match the velocities of LBV

eruptions and explore a full range of the lowest luminosity transients (Humphreys &

Davidson 1994).

Sample light curves and the DLPS for outburst-like transients are shown in Figure

3.12. These models span a large range in both duration (tdur ∼ few − 100 days) and

luminosity (MR ∼ 0 to −16 mag). The light curve properties generally follow the same

trends as the Type IIn SNe models. Short-duration transients (tdur . 10 days) are less

luminous (MR & −14 mag). The parameter trends shown in Figure 3.11 also hold for

ILOT-like models.

Finally, we compare the simulated DLPS to a number of events from the literature,

including LBV outbursts and Type IIn precursor events (see caption for details). In

general, our models cover plausible timescales and magnitudes for ILOTs with signs of

CSM interaction and overlap with many known objects.

3.3.6 Hydrogen Recombination (Type IIP SNe)

Type IIP SNe are explosions of red supergiants with masses of ≈ 8 − 17 M� that have

retained their hydrogen envelopes (Smartt et al. 2009). Following the explosion, a

shock wave ionizes the hydrogen envelope. The characteristic flat, “plateau” phase of

their optical light curves is powered by hydrogen recombination as the expanding ejecta

cools to ∼ 5000 K at an approximately constant radius (i.e., the photosphere recedes

in Lagrangian coordinates). The duration of the plateau phase is determined by the

extent of the hydrogen envelope and kinematic properties of the blast wave. Following

the plateau is a rapid decline in luminosity to a predominately 56Co-powered tail (Arnett
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(c)Figure 3.12: Top & Middle: Ejecta-CSM interaction DLPS for outburst-like transients

and 68th and 90th percentile contours for the realizations, estimated using a KDE. Also

shown is a sample of well-sampled ILOT light curves from the literature that are thought

to be powered by CSM interaction: SN 1954J, SN 1961V, SN 2000ch, SN 2002bu, SN

2008S, SN 2009ip (Smith et al. 2011); SN 2002kg (Van Dyk et al. 2006); SN 2010da (Villar

et al. 2016); PTF10fqs (Kasliwal et al. 2011); V838 Mon (Munari et al. 2002); Eta Car

(Smith & Frew 2011). Bottom: Representative simulated light curves.
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1980; Weiler 2003).

The bolometric and optical light curves of Type IIP SNe have been studied

extensively (e.g., Patat et al. 1994; Hamuy 2003; Kasen & Woosley 2009; Sanders et al.

2015; Rubin et al. 2016). Multi-zone semi-analytical and numerical models generally

reproduce the observed light curves (Popov 1993; Kasen & Woosley 2009) and provide

scaling relations for both the plateau durations and luminosities. Here, we use these

theoretical scaling relations in conjunction with empirical trends found by Sanders et al.

(2015) to construct R-band light curves, neglecting contributions from both the shock

breakout and 56Ni radioactive decay. While shock breakout should primarily affect the

early light curve, significant amounts of 56Ni can extend the plateau duration. However,

recent work has shown that MNi/Mej . 0.01 (Müller et al. 2017), so we choose to ignore

this contribution.

To construct light curves, we first assume instantaneous rise-times. In reality, Type

IIP SNe have rise times which range from a few days to a week (Rubin et al. 2016). This

is a minor effect given the long plateau durations. We then use the bolometric scaling

relations derived in Popov (1993) to estimate both the peak R-band luminosity (Lp) and

duration (tp) of the plateau phase:

Lp = 1.64× 1042
R

2/3
0,500E

5/6
51

M
1/2
10

erg s−1 (3.14)

tp = 99
M

1/2
10 R

1/6
0,500

E
1/6
51

days (3.15)

where R0,500 is the progenitor radius in 500 R�, E51 is the kinetic energy in 1051 erg and

M10 is the ejecta mass in 10 M�. Here we have assumed that the R-band bolometic
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correction is negligible (approximately true during the plateau; Bersten & Hamuy

2009). Additionally, the blackbody SED has a temperature of 5054 K (the ionization

temperature of neutral hydrogen) and the opacity is κ = 0.34 cm2 g−1. Following Sanders

et al. 2015, we assume that the light curve reaches a maximum and then monotonically

declines during the plateau phase. The decline rate is strongly correlated to the peak

luminosity and is parameterized by (Sanders et al. 2015):

L(t) =
Lp

e(−13.1−0.47MR)t
(3.16)

where MR is the peak magnitude. Finally, we assume that for t > tp, the light curve

drops off instantaneously. This assumption is justified by our definition of duration

(within 1 mag of peak), which is minimally impacted by the late-time behaviour of

the light curve. We generate light curves by sampling uniformly from ejecta mass

(Mej ∼ 5 − 15 M�) and progenitor radii (R0 ∼ 100 − 1000 R�), and logarithmically in

kinetic energy (1050 − 5× 1051 erg).

The simulated DLPS and sample light curves are shown in Figure 3.13. The

transient durations (tdur ∼ 40 − 150 days) and luminosities (MR ∼ −16 to −19 mag)

are negatively correlated. The upper luminosity boundary reflects our Mej upper limit.

In Figure 3.13 we also explore the effects of the progenitor radius and the ejecta mass

on the model light curves. Larger progenitor radii lead to brighter and longer duration

transients as a result of the fixed photosphere. Increasing the ejecta mass produces

less luminous and longer duration transients. Thus, the brightest (dimmest) Type IIP

models have large (small) radii and small (large) ejecta masses. The longest (shortest)

transients have large (small) radii and ejecta masses. The shortest duration events have
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tdur ≈ 40 days and high luminosities of MR ≈ −19 mag.

In Figure 3.13 we compare our generated light curve properties to samples from

PanSTARRs (Sanders et al. 2015) and the Palomar Transient Factor (PTF; Rubin et al.

2016). It is worth noting that both samples contain so-called Type IIL SNe, which

are spectroscopically similar to Type IIP SNe but decline linearly in magnitude more

rapidly than most Type IIP SNe. Both Sanders et al. 2015 and Rubin et al. 2016 find no

evidence that Type IIP and Type IIL SNe arise from separate progenitor populations,

so we also choose to keep Type IIL SNe in the observed sample. These samples largely

overlap with our generated light curves.

3.3.7 GRB Afterglows

Following a gamma-ray burst (GRB), the interaction of the relativistic jet with the CSM

leads to a long-lived afterglow powered by synchrotron radiation (Sari et al. 1998). The

afterglow emission can also be detected for off-axis sight lines (an “orphan” afterglow;

Rhoads 1997; Rossi et al. 2002; van Eerten et al. 2010). There are two types of GRBs,

long-duration (resulting from core-collapse of stripped massive stars; Woosley 1993)

and short-duration (likely produced by neutron star binary mergers; Berger 2014).

The energy scale of short GRBs (SGRBs) is about 20 times lower than for long GRBs

(LGRBs), and their circumburst densities are at least an order of magnitude lower

(Berger 2014; Fong et al. 2015).

Here we explore both LGRB and SGRB afterglow models. Rather than generating
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Figure 3.13: Top row: Simulated Type IIP SNe DLPS (pink) with a sample of objects

from the PS1/MDS (Sanders et al. 2015; purple stars) and PTF (Rubin et al. 2016;

blue squares). For the PS1/MDS sample, we construct light curves using the model and

parameters described in Sanders et al. (2015), and we remove objects with less than

5 datapoints in the R-band. Bottom left: Sample light curves. Bottom right: Effect

of Mej (orange) and R0 (purple) on the light curves of transients powered by hydrogen

recombination given a constant kinetic energy. Arrows point towards increasing values of

each parameter. Also shown are 68th and 90th percentile contours for the realizations,

estimated using a KDE.
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analytical models, we use the publicly available2 broadband GRB afterglow model

presented by van Eerten et al. (2010). This model calculates broadband SEDs of both

on- and off-axis GRB afterglows using a high-resolution two-dimensional relativistic

hydrodynamics simulation. Typical LGRB values of isotropic energy Eiso = 1053 erg, jet

half opening angle θjet = 11.5o, circumburst medium density n0 = 1 cm−3, accelerated

particle slope p = 2.5, accelerated particle energy density fraction of thermal energy

density εe = 0.1, and magnetic field energy density as fraction of thermal energy density

εB = 0.1 are assumed. From this model, we can then generate the parameter space

of long and short GRBs using scaling relation presented in Van Eerten & MacFadyen

(2012):

Lν,obs
∝∼ ε

1/2
B n

−1/2
0 Eiso

tdur ∝∼
Eiso

n0

1/3 (3.17)

Our simulated model, using the van Eerten et al. (2010) parameters and assuming

that the afterglow is first observed ≈ 0.5 days after the GRB, is shown in Figure 3.14.

As the orientation becomes increasingly off-axis, the R-band transient becomes dimmer

and longer duration. We also plot scaled versions of this model, assuming n0 ∼ 1 − 10

cm−1 and Eiso ∼ (0.3 − 3) × 1053 erg for LGRBs, and n0 ∼ 0.01 − 0.1 cm−1 and

Eiso ∼ (0.3 − 3) × 1051 erg for SGRBs. Both the SGRB and LGRB models span a

wide range of durations (tdur ∼ 1 − 1000 days) and luminosity (MR ∼ −2 to −21 mag

for SGRBs and MR ∼ −12 to −16 mag for LGRBs). The duration and luminosity are

tightly negatively correlated, with the shortest duration events being the brightest. The

2http://cosmo.nyu.edu/afterglowlibrary/offaxis2010broadband.html
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only events with tdur . 10 days are on-axis, which are known to be rare. For off-axis

sight lines, the luminosity drops rapidly as the duration increases such that at ≈ 2θj, the

afterglow is comparable to SNe in terms of timescale and luminosity. For larger angles,

the events are much dimmer than SNe with longer durations.

We additionally plot a region corresponding to the 1σ observed properties of a

sample of rest-frame R-band afterglows of on-axis LGRBs from the BAT6 sample (after

removing LGRBs with early flares; Melandri et al. 2014). The sample is in general

agreement with the afterglow model, with short durations (tdur ∼ 0.4 − 2 days) and

bright luminosities (MR ∼ −22 to −25 mag), as expected for these on-axis events.

3.3.8 Tidal Disruption Events

Tidal disruption events (TDEs) occur when a star passes near a supermassive black hole

(SMBH) and becomes tidally disrupted (Frank & Rees 1976; Hills 1988). About half

of the star’s mass forms an accretion disk around the SMBH leading to an optically

bright transient that lasts for weeks to months depending on the system’s characteristics

(Guillochon et al. 2009). A number of complications arise when modelling these

transients, including the complex 3D geometry of the system, the hydrodynamics forming

the accretion disk, the possibility of existing CSM surrounding the event and reprocessing

of the disk emission by outflowing gas (Guillochon et al. 2014). We therefore present

basic scaling relations for the durations and luminosities of TDEs.

Assuming that the accretion rate onto the SMBH is less than the Eddington limit,

the peak bolometric luminosity of the transient scales as (Stone 2014):
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Figure 3.14: GRB optical afterglow DLPS as a function of the observer viewing angle

in units of the jet opening angle. We show both LGRBs (red) and SGRBs (blue). The

arrow points toward an increasing value of viewing angle θ. Black vertical lines mark

models where θ = θjet = 0.2 rad, θ = 0.4 rad and θ = 0.8 rad. Also shown is a 1σ region

of on-axis LGRB afterglows observed by Melandri et al. (2014) (purple rectangle).
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Lpeak ∝ Ṁ ∝ M
−1/2
BH M2

∗R
−3/2
∗ (3.18)

where Ṁ is the peak accretion rate of the disrupted star calculated at the tidal radius,

MBH is the black hole mass, and M∗ and R∗ are the star’s mass and radius, respectively.

The peak accretion rate is typically near the SMBH Eddington accretion rate, which

leads to a plateau at the corresponding Eddington luminosity. Super-Eddington accretion

will likely lead to an outflow of material (see e.g., Alexander et al. 2016).

There are three timescales which potentially affect the transient duration: the

diffusion time (td), the viscous time (tν) and the timescale of peak fallback accretion

(tpeak). In most cases, the diffusion timescale is small relative to at least one of the other

two (Guillochon et al. 2009; Guillochon & Ramirez-Ruiz 2013). Assuming a low disk

viscosity, the duration of the transient will be proportional to (Lodato et al. 2012):

tdur ∝ tpeak ∝ M
1/2
BHM

−1
∗ R3/2

∗ (3.19)

For canonical parameters (a sun-like star and MBH = 106 M�), this duration is about 40

days.

If the accretion rate is near-Eddington, the light curve will plateau for a duration

roughly corresponding to (Stone 2014):

tdur ∝ tedd ∝ M
−2/5
BH M1/5

∗ R3/5
∗ (3.20)

For canonical parameters, this corresponds to a duration of about 750 days.

Lost in these scaling relations is the fact that more massive black holes cannot
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disrupt less massive stars, because the tidal radius will be inside the horizon. The

limiting SMBH mass (i.e., the Hills mass, MH) MH = (1.1 × 108M�)R
3/2
∗ M

−1/2
∗ (Hills

1988) is proportional to M0.7
∗ , assuming R∗ ∝ M0.8

∗ for main sequence stars (Demircan &

Kahraman 1991).

The scaling relations in Equations 3.18 and 3.19, along with a sample of TDEs from

the literature, are shown in Figure 3.15. The majority of these transients follow the

scaling relation with black hole mass, with the notable exception of extremely luminous

ASASSN-15lh (Dong et al. 2016). A rapid spin rate and large black hole masses were

necessary to explain the unique optical light curve of this claimed TDE (Margutti et al.

2017b; Leloudas et al. 2016; van Velzen 2018). From the sample of observed objects

and the above scaling relations, it is clear that TDEs are not expected to produce short

duration (. 20 days) transients.

3.3.9 Other Subclasses

In this section we enumerate additional types of transients which are either observed

in small numbers or only hypothesized to exist, but whose physical models we do not

explore in detail.

Accretion Induced Collapse (AIC)

As an accreting white dwarf approaches the Chandrasekhar limit, it can collapse into

a NS (Bailyn & Grindlay 1990; Nomoto & Kondo 1991; Fryer et al. 1999) with a

rotationally-supported disk with mass Mdisk . 0.1 M� (Dessart et al. 2006). The disk

will then accrete onto the NS and eventually unbind as free nucleons recombine to form
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Figure 3.15: Rough effects of MBH (purple) and M∗ (orange) on TDE light curves

assuming that the duration is proportional to tpeak (Equation 3.19) and that R∗ ∝ M0.8
∗ .

Arrows point towards increasing values of each parameter. Also shown is a complete

sample of well-sampled R/V/I TDE light curves from which we can measure a duration

from the Open TDE Catalog at the time of writing. Light curve data gathered from Dong

et al. (2016); Holoien et al. (2014); Arcavi et al. (2014); Gezari et al. (2012); Chornock

et al. (2014a); Gezari et al. (2006); Vinkó et al. (2015); Wyrzykowski et al. (2014).
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He. The radioactive heating of this ejecta is predicted to produce a fast (tdur ∼ 1 day)

and dim (MR ∼ −13.5 mag) optical transient (Metzger et al. 2009; Darbha et al. 2010a).

These are somewhat dimmer and shorter-duration compared to those of the 56Ni models

explored in Section 3.3.2. We plot several models from Darbha et al. (2010a) in Figure

3.16.

Sub-Chandrasekhar Models/.Ia SNe If a WD is accreting hydrogen or helium

from a companion, it can undergo unstable thermonuclear ignition, which may then lead

to detonation given high enough densities of accreted material (Bildsten et al. 2007;

Shen et al. 2010; Woosley & Kasen 2011). The resulting transient is specifically referred

to as a “.Ia SN” if the binary companion is He-rich (Shen et al. 2010). Theoretical

models of .Ia SNe peak in the optical (MR ∼ −17 to −19 mag) and have intermediate

durations (tdur ∼ 10− 20 days). More generally, these types of transients are described as

sub-Chandrasekhar detonations and explosions (e.g., Sim et al. 2010; Woosley & Kasen

2011) and are powered by radioactive decay. No convincing cases of such a model have

been observed to date. In Figure 3.16 we show several models from the literature (Shen

et al. 2010; Sim et al. 2012; Woosley & Kasen 2011).

Ca-rich Transients

Ca-rich transients are an observational class of dim transients (MR ∼ −15 to −16 mag)

with intermediate durations (tdur ∼ 20 days) whose nebular-phase spectra are rich in

Ca and are primarily found in the outskirts of elliptical galaxies (Kasliwal et al. 2012;

Lyman et al. 2014; Lunnan et al. 2017). Like many low-luminosity classes, the exact

origin of these transients is uncertain, although they are likely powered by radioactive
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decay. One suggested origin is a WD-NS merger (Metzger 2012). A sample of these

transients (Lunnan et al. 2017) is shown in Figure 3.16.

Electron-Capture SNe

Electron-capture SNe (ECSNe) are explosions of super-asymptotic giant branch (SAGB)

stars (MMS ∼ 7 − 9.5 M�) with O+Ne+Mg cores rather than Fe cores. As the density

of these cores increase, the electron capture onto Mg nucei leads to a decrease in the

degeneracy pressure leading to collapse (Miyaji et al. 1980; Tominaga et al. 2013). Like

Type IIP SNe, ECSNe are powered by hydrogen recombination and radioactive decay.

The resulting optical transients are expected to be dim (MR ∼ −16 to −18 mag),

due to the small ejecta masses and kinetic energies and have intermediate durations

(tdur ∼ 40− 100 days). We show the theoretical light curves produced by Tominaga et al.

(2013) in Figure 3.16.

Luminous Red Novae (LRNe)

LRNe are an observational class of terminal transients which are characterized by

their dim (MR ∼ −10 to −13 mag) and red light curves (g − r > 1) with durations

(tdur ∼ 50−100 days) typically longer than those of classical novae at the same brightness

(Martini et al. 1999; Kulkarni et al. 2007). The class is heterogeneous, although many

LRNe have double-peaked light curves, with the peaks separated by ∼ 100 days. The

origin of these events is unclear and theoretical explanations range from planetary

capture (Retter & Marom 2003) to stellar mergers entering the common envelope phase

(Soker & Tylenda 2006; Rau et al. 2007; Ivanova et al. 2013; Blagorodnova et al. 2017;
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Metzger & Pejcha 2017). We show a number of observed events which were identified as

LRNe in the literature in Figure 3.16.

Classical Novae

Novae have a rich observational history due to their high observed rate and utility as

standardizable candles (Della Valle & Livio 1995). They occur when H-rich matter

accretes onto a white dwarf from a binary companion, and the surface undergoes

thermonuclear ignition (Gallagher & Starrfield 1978). We use the empirical maximum

magnitude relation with decline time (MMRD) to place classical novae in the duration-

luminosity phase space diagram. The MMRD relates the V -band peak magnitude

with the decline time, t2 (t3), or the time to dim by two (three) magnitudes from

peak. We approximate the duration as twice the time is takes to fall by one magnitude

(2t1). However, t1 is not often reported in studies of the MMRD and can be much

faster than the naive assumption of t2/2 or t3/3. We approximate t1 by assuming that

t3 − t2 = t2 − t1, or that the light curve decays linearly between t3 and t2. We use the

relation from Capaccioli et al. (1990) to transform between t2 and t3 and solve our above

equation for t1:

t1 = 0.31t2 − 1.9 days (3.21)

We then use the MMRD relation measured by Della Valle & Livio (1995) to estimate

the peak magnitude:

MR = −7.92− 0.81 arctan
1.32− log t2

0.23
(3.22)
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Novae R-band light curves tend to be brighter and longer-duration than V -band

(Cao et al. 2012), but we do not make an explicit correction for this. The modified

MMRD relation described above is shown in Figure 3.16.

Other Theoretical Merger Models

There are several other theorized merger models which might additionally occupy the

short-duration regime of the DLPS, which we will not discuss in detail in this work.

For example, following a WD-NS merger, both 56Ni and shocks powered by wind-ejecta

interaction may produce a luminous (L ∼ 1043 erg s−1) and short-duration (tdur ∼ week)

transient (Margalit & Metzger 2016). Similarly, WD-WD mergers which do not produce

Type Ia SNe might produce less-luminous (L ∼ 1041 − 1042 erg s−1) and shorter duration

(tdur ∼ 1 day) optical transients powered by the outflow of a differentially rotating

merger product (Beloborodov 2014).

3.3.10 Combined Models: 56Ni Decay and Magnetar Spin-down

Until now we have assumed that each transient class is powered by a single energy

source. In reality, we expect SN-like explosions to have multiple heating sources. We

specifically expect newly synthesized 56Ni within SNe ejecta.

In this section, we consider light curves generated from a combination of two power

sources: 56Ni decay and magnetar spin-down. We generate these light curves by adding

the input luminosities from both contributions and diffuse the input luminosity through

the expanding ejecta using MosFIT.
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Figure 3.16: DLPS of transients described in Section 3.3.9. Specifically shown are

electron-capture SNe models from Tominaga et al. (2013), accretion-induced collapse

models from Darbha et al. (2010b), Ia-He models from Shen et al. (2010), and sub-

Chandrasekhar Ia models from Sim et al. (2012) and Woosley & Kasen (2011). We

additionally show samples of Ca-rich transients from Kasliwal et al. (2012) and Lunnan

et al. (2017), and LRNe from the literature (Williams et al. 2016; Kashi & Soker 2010;

Kasliwal et al. 2011; Goranskij et al. 2016).
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Using the same parameter distributions as in Sections 3.3.2 and 3.3.4, we generate

R-band light curves for the combined power sources, and show these distributions

in Figure 3.17. The joint DLPS generally overlaps with the distribution of solely

magnetar-powered transients, although the low-luminosity (MR & −16 mag) transients

are missing, since in these cases the heat input from 56Ni decay dominates over the

magnetar heating.

We separate the models based on the dominant (contributing ≥ 50%) heat source at

peak (R-band) luminosity and find that almost all transients brighter than MR ∼ −19.5

mag are dominated by magnetar spin-down; conversely, all transients fainter than this

value are dominated by 56Ni. The transition between dominating power sources is mainly

controlled by the magnetic field of the magnetar. All models dominated by 56Ni have

B . 5× 1013 G. At lower luminosities, the presence of a newly-formed magnetar will not

be apparent photometrically.

3.3.11 Combined Models: 56Ni Decay and Ejecta-CSM

Interaction

We next explore combined 56Ni decay and ejecta-CSM interaction. The diffusion

processes for these two models are different: the input luminosity from the 56Ni

decay diffuses through the ejecta and optically thick CSM (Mej +MCSM,th), while the

ejecta-CSM input luminosity diffuses through MCSM,th. We assume that these two

components evolve independently and add together their final luminosities.

Typical light curves for the case of s = 2 (wind) and their distribution in the

DLPS are shown in Figure 3.18. As in the case of combined 56Ni-decay and magnetar
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Figure 3.17: Top & Middle: DLPS for explosions powered by magnetar spin-down

and 56Ni radioactive decay. The color indicates the dominated heating source at peak

luminosity (blue for magnetar spin-down and red for 56Ni). Also shown are 68th and 90th

percentile contours for the realizations, estimated using a KDE. Bottom: Representative

simulated light curves.
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spin-down, no transients brighter than ∼ −19.5 mag are dominated by the 56Ni input

luminosity at peak. Unlike the transients solely powered by ejecta-CSM interactions,

we find no transients with durations . 10 days, and no transients with MR & −14

mag, because in such cases the timescale and luminosity are determined by radioactive

heating.

The dominance of CSM interaction over 56Ni is mainly controlled by the mass loss

rate, Ṁ . Assuming vwind ∼ 100 km s−1, CSM interaction dominates when Ṁ & 10−3 M�

yr−1. This is consistent with LBV mass loss rates (Smith 2014).

3.4 Discussion

3.4.1 Specific Engine Insights

In this section, we enumerate a number of insights which can be gained from the

preceding analysis of the DLPS. We focus on the overlap of our predicted models with

the observed populations and the regions of phase space that these models occupy.

We begin with the adiabatic expansion models which lack any internal heating

source. The largest progenitors (RSG-like) can produce luminous (reaching MR ∼ −18

mag) transients on timescales similar to those of SNe (tdur ∼ 20− 100 days). In fact, the

RSG models span a similar range of peak magnitudes as the Type IIP/L models. The

BSG-like subclass lie within the luminosity gap (MR ∼ −10 to −15 mag) with durations

similar to those of SNe (tdur ∼ 20 days), and the white dwarf-like subclass have nova-like

luminosities (MR ∼ −7 to −11 mag) and have much shorter durations (tdur ∼ 1 day). In
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Figure 3.18: Top & Middle: Simulated DLPS for explosions powered by ejecta-CSM

interaction and 56Ni radioactive decay. The color indicates the dominated heating source

at peak luminosity (blue for CSM interaction and red for 56Ni). Also shown are 68th and

90th percentile contours for the realizations, estimated using a KDE. Bottom: Represen-

tative simulated light curves
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reality, these models will likely be paired with some radioactive heating or an additional

heating source and therefore represent lower limits in both duration and luminosity. We

can see from these models that for massive progenitors, we expect transients which last

& 10 days. In contrast, compact object (or stripped) progenitors can reach the extreme

limits of this phase space and generate faster transients but only at low luminosities.

Next we discuss our simulated DLPS of 56Ni-powered transients. In the simulated

and observed populations of Type Ib/c SNe, there is a dearth of short duration (tdur . 20

days) and long duration (tdur & 80 days) transients. These timescales correspond to

transients with small ejecta masses/high velocities and large ejecta masses/low velocities,

respectively. From the literature, we find only two well-observed supernovae with

durations & 70 days (also shown in Figure 3.3): iPTF15dtg (Taddia et al. 2016) and SN

2011bm (Valenti et al. 2012). Both objects require large 56Ni and ejecta masses to explain

their extended light curves, suggesting intrinsically rare massive progenitors (Valenti

et al. 2012; Taddia et al. 2016). Longer duration transients are seen in the PISNe models

with larger ejecta masses and kinetic energies. However, the low-metallicity progenitors

of PISNe are expected to be found at high redshift, meaning that observed PISNe are

likely to be even slower (time dilated by 1 + z) and redder. Shorter duration transients

are seen in the Iax-like models due to their lower ejecta masses, although very few of

these transients (observed or simulated) have tdur . 10 days.

When considering the radioactive decay of 56Ni as a heating source for short-duration

transients, it is important to note that it is largely the ratio of the ejecta mass to the

nickel mass which limits the light curve parameters. In reasonable physical models, it is

unlikely that fNi & 0.5 (although a few Type Ia SNe with higher nickel fractions have

been observed, e.g., Childress et al. 2015). This means that, regardless of the amount of
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56Ni within the ejecta, the timescale of the transient will typically be set by Mej (and

other factors). This fact – the low 56Ni fraction in physical models – essentially eliminates

luminous, short-duration transients powered by 56Ni. For example, this is why 56Ni fails

as the main power source for superluminous supernovae, which have relatively short

durations given their high luminosities (Kasen & Bildsten 2010; Nicholl et al. 2013).

The kilonovae models, powered by r-process decay, lie in a unique area of the DLPS,

with short durations (tdur ∼ few days) and low luminosities (MR ∼ −8 to −16 mag).

Their short durations couples with low luminosities follows the general trend seen in

the stripped SNe models. Although there is currently large uncertainty in the opacity

of Lanthanide-rich ejecta (Barnes et al. 2016), all of the models are below typical SNe

luminosities and durations. Our red models in particular span to even dimmer events

than those explored in Barnes & Kasen (2013) and Metzger (2017), consistent with

the recent result by Wollaeger et al. (2018). We additionally note that a brighter and

longer-lived, magnetar-powered kilonova has been recently proposed (Yu et al. 2013;

Metzger & Piro 2014; Siegel & Ciolfi 2016) which was not explored in this work. Such a

kilonova could peak at ∼ 1044 − 1045 erg s−1 with a duration of several days, although it

would represent a small fraction of the kilonova population.

We next examine the magnetar models explored in Section 3.3.4. We find that

the models span a broad range in both duration (tdur ∼ 20 − 250 days) and luminosity

(MR ∼ −16 to −23 mag). Our models reproduce both the detailed theoretical predictions

and observed light curves of SLSNe-I. However, the SLSN-I light curves span a narrower

range of the DLPS, primarily at the bright end. This indicates that at least those

magnetar-powered events have a narrower range of parameters than explored in this

work, as suggested recently by Nicholl et al. (2017a). Transients which have weak
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contributions from the magnetar’s spin-down are likely dominated by 56Ni-decay (as

discussed in Section 3.3.10) and are classified as normal Type Ib/c SNe. We also

note that several Type I SLSNe have been accompanied with early-time bumps with

several day durations and SN-like luminosities (Leloudas et al. 2012; Nicholl & Smartt

2016) which were not explored in this Chapter. The origin of these bumps is currently

unknown, although several theoretical explanations have been posed (e.g., Kasen et al.

2016; Margalit et al. 2018).

Our ejecta-CSM interaction models span the widest range of the DLPS of the

models presented here, due to both a large number of free parameters (which may

not be independent, as assumed) and the simplifying assumptions used (Chatzopoulos

et al. 2012). One of the most striking features is the difference between the wind-like

and shell-like CSM geometries, with shell-like models producing brighter transients

with somewhat shorter durations (tdur ∼ 100 days for wind-like vs tdur ∼ 50 days for

shell-like). Although wind-like models can reproduce both low and high luminosity Type

IIn SNe, the shell-like models with SN-like ejecta masses and kinetic energies do not

extend to the luminosities of normal Type IIn SNe. Focusing on the wind-like models,

we find that luminosity and duration are positively correlated at shorter (tdur . 20 days)

durations, with no models brighter than MR ∼ −14 mag in this regime.

We note that Chatzopoulos et al. (2013) find that, when fitting SLSNe with the

semi-analytical model used in this work, both s = 0 and s = 2 can generally be used to

find acceptable fits, but the models lead to substantially different explosion parameters.

For the normal Type IIn SNe, Moriya et al. (2014) estimated the CSM profile (s) from

the post-peak light curves of 11 Type IIn SNe and found that most showed s ∼ 2. This

implies that the shell model (s = 0) is less physical for at least the Type IIn events.
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The heterogeneous group of transients discussed in Section 3.3.9 span a broad range

of the DLPS, but their phase space is not particularly unique. Many of the models with

likely compact object progenitors (e.g. Ca-rich transients and sub-Chandrasekar models),

are confined to a small area similar to the Iax-like models we explored in Section 3.3.2.

The electron-capture SN models overlap with the Type Ib/c and Type IIP SNe, and the

LRNe are broadly consistent with the CSM interaction outburst-like models. Only the

AIC models and classical novae extend to novel regions of the DLPS at tdur . 10 days

durations but invariably with low luminosities (MR & −14 mag).

Finally, we focus on our combined models with radioactive decay coupled to either

magnetar spin-down or ejecta-CSM interaction. In the ejecta-CSM interaction case,

the addition of 56Ni decay eliminates both short-duration (tdur . 10 days) and dim

(MR & −14 mag) transients that are otherwise produced by this model. The former

is due to the fact that the decay of 56Ni dominates the CSM interaction light curves,

eliminating the artificial cutoffs to the input luminosities. Additionally, there is a clear

separation of transients which are dominated by 56Ni decay or CSM interaction/magnetar

spin-down in the DLPS around MR ∼ −19.5 mag. In the ejecta-CSM interaction case,

this separation roughly coincides with where the estimated mass-loss rate of the

progenitor star roughly matches typical LBV mass loss rates (Ṁ ∼ 10−3 M� yr−1; Smith

2014), and where many identified Type IIn SNe lie. In the case of magnetar spin-down,

the separation occurs at B ∼ 5× 1013, about the cutoff for expected magnetar magnetic

field strengths (Zhang & Harding 2000).
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Figure 3.19: The full DLPS explored in this work. Each colored region represents a

contour that contains roughly 68% of the Monte Carlo realizations for each class, estimated

using a KDE. An interactive version of this plot, including 90% contours and linear-space

version can be found at ashleyvillar.com/dlps.
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3.4.2 The Optical Transient Landscape

In this section, we summarize the overarching results from the DLPS analysis and

highlight several regions of interest. To begin, we present all of the classes simulated

in this Chapter (excluding TDEs and the “other transients” in Section 3.3.9) in Figure

3.19. An interactive version of this plot, which can be used to compare user-uploaded

transients to the complete DLPS, is available online3.

There is substantial overlap among models, especially between tdur ∼ 10− 100 days

and MR ∼ −18 to −20 mag. Interestingly, this is also where most observed transients

lie in the DLPS. A wide range of explosion physics and internal heating sources lead to

similar optical light curve properties, in part due to similar kinetic energies and ejecta

masses. This highly populated regime highlights the fact that the abundance of observed

transients with ∼ month-long durations and SN-like luminosities is likely not due to

observational biases but a reflection of the underlying physics. But what about the more

extreme areas of the DLPS?

We begin by focusing on fast (tdur . 10 days) and bright (MR . −18 mag)

transients within our explored models. We find essentially no models that can produce

transients in this regime, with the exception of on-axis GRB afterglows. Luminous

and fast optical transients cannot be powered by radioactivity, magnetar spin-down or

CSM interaction; however, they can be powered by relativistic outflows. Relativistic

sources (with Γ & a few) like GRBs are rare compared to other optical transients. For

example, the GRB volumetric rate at z . 0.5 is only 0.1% of the CCSNe rate (Dahlen

3ashleyvillar.com/dlps. This applet allows a user to selectively plot transient classes and to add their

own datapoints to the simulated DLPS.
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et al. 2004; Wanderman & Piran 2010). Given this low rate and current lack of other

physically-motivated models, we argue that this portion of the DLPS is, and will continue

to be, sparsely populated due to intrinsically rare physics.

A number of heating sources can produce transients that are fast (tdur . 10 days)

but invariably dim (MR & −14 mag), including novae, adiabatic explosions of white

dwarfs, r-process kilonovae and CSM interaction models. However, most of these models

require unique combinations of parameters, mainly very low ejecta masses, and represent

a small fraction of the DLPS explored. Therefore, short-duration transients seem

intrinsically rare, even at lower luminosities.

At the other extreme, we find several models that can produce exceptionally

luminous transients (MR . −22 mag), including 56Ni decay (in the context of PISNe),

magnetar spin-down, GRB afterglows and ejecta-CSM interactions. TDEs may also reach

these high luminosities (as seen in the case of ASASSN-15lh; Margutti et al. 2017b). All

of these models require extreme parameters to reach such bright luminosities, implying

that such events are intrinsically rare. However, these luminous transients are invariably

long-duration (tdur & 50 days).

The dimmest transients (MR & −14 mag), are generated from adiabatic explosions

of white dwarfs, off-axis GRB afterglows, outburst-like ILOTs, classical novae and

r-process kilonovae, with a broad range of durations (tdur ∼ 1 − 300 days). Of these,

few lie in the intermediate luminosity gap between the brightest classical novae and

dimmest SNe (MR ∼ −10 to −14 mag). Due to the low rates of GRB afterglows and

kilonovae, the most commonly discovered class in this gap will likely be powered by CSM

interaction in the context of massive star eruptions (rather than explosions) as inferred
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for the small sample of known ILOTs (e.g., Kochanek et al. 2012).

To summarize, we find three sparse regimes of the DLPS: (i) bright and fast

transients (tdur . 10 days and MR . −16 mag); (ii) intermediate luminosity transients

(MR ≈ −10 to −14 mag) across all durations; and (iii) luminous transients (MR . −21

mag). Of these, the most sparsely occupied by theoretical models is the first. On

the other hand, the typical parameter ranges for SNe (i.e., tdur ∼ 10 − 100 days and

MR ∼ −18 to −20 mag) contain a number of overlapping models, consistent with the

fact that most observed optical transients lie within this regime.

3.4.3 Observability & Survey Considerations

Until now we have investigated theoretical models of transients that occupy the DLPS.

The observed DLPS of transients will be modified by each class’s volumetric rate and

luminosity function (which we will explore in a follow-up Chapter). In this section,

we will consider the effects of a given survey’s parameters (cadence and area) on the

observed DLPS. We perform a simple calculation to explore the effect of a transient’s

luminosity and duration on its survey discovery potential, or its relative discovery

rate assuming a constant volumetric rate (R) for every transient, in a flat cosmology

(ΩM = 0.3; ΩΛ = 0.7; H0 = 70 km s−1 Mpc−1).

The number (N ) of transients of a certain luminosity and duration discovered in a

given magnitude-limited survey is proportional to:

N ∝
∫ z=zlim

z=0

εRdV (3.23)
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where zlim is the redshift where the apparent magnitude of the transient is equal to the

limiting magnitude of the survey. The parameter ε represents a detection efficiency of

the survey, defined by our heuristic equation:

ε =
1

1 + e−(tdur(1+z)−NDtcad)
(3.24)

where tdur is the transient duration in its rest frame, tcad is the survey cadence and

ND is a penalty term to simulate the need for multiple datapoints to “detect” a transient;

here we choose ND = 3 for illustrative purposes. The chosen efficiency function goes to

one when tdur � tcad and to zero when tdur � tcad. When tdur = NDtcad, the efficiency is

0.5.

In Figure 3.20, we assume a limiting R-band limiting magnitude of 24.5 (matched to

LSST) and calculate N for a given transient’s absolute magnitude and duration assuming

a constant volumetric rate and ignoring any k-corrections. We find that the expected

detection rates of transients drop off exponentially decreasing luminosity, as well as with

shorter duration as it approaches the survey cadence. Specifically, this simple example

demonstrates the fact that, even with a relatively high cadence, a wide-field survey will

detect 100 – 1000 times more SN-like transients (MR . −18 mag) compared to ILOTs

(MR ∼ −10 to −14 mag). Similarly, a survey with a cadence of several (≈ 3) days will

detect 10 – 100 times more transients with SN-like durations (∼ 20− 30 days) compared

to transients with short durations (. 10 days). To counter these facts, one could design a

survey with a faster survey cadence, but there is a trade off between a survey’s cadence,

depth and coverage area. A high survey cadence requires a much smaller coverage area,

even with a large field of view. A more efficient approach to search for dim transients
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may be a targeted survey of nearby galaxies.

Bringing together the above conclusions with those of the previous section, we

conclude that quickly evolving transients are invariably dim. Both characteristics lead

to diminishing survey potential and therefore lower observed rates. In contrast, bright

(MR . −22 mag) transients tend to have longer durations and are therefore easier to

observe. However, their volumetric rates are low and have not typically been found in

large numbers in untargeted surveys. Between these two regimes, SN-like transients

with relatively bright luminosities and intermediate-durations typically have higher

volumetric rates, allowing them to be some of the most commonly observed extragalactic

phenomena in wide-field surveys.

3.5 Conclusion

We utilized semi-analytical, one-zone models to explore a wide range of heating sources

that are either known to or expected to power optical transients. For each heating source

we generated model light curves for a physically motivated set of parameters. We also

investigated the effects of the parameters on the light curves and the locus of simulated

light curves within the DLPS. Our main conclusions are as follows:

• Most model transients lie at tdur ∼ 20 − 100 days and MR ∼ −18 to −20 mag,

consistent with the observed properties of the bulk of optical transients.

• Only sources with relativistic expansion can produce luminous (MR < −18 mag)

and fast (tdur < 10 days) transients. However, such sources (i.e., GRBs) are known

to be intrinsically rare.
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• Luminosity and duration are positively correlated for most heating sources,

implying that short-duration transients (tdur . 10 days) also have low peak

luminosities (MR & 15 mag).

• There is a paucity of heating sources that produce transients in the luminosity gap

between classical novae and SNe (MR ∼ −10 to −14 mag) with most models in

this regime powered by CSM interaction with low ejecta masses relevant to stellar

eruptions rather than explosions.

• Transients with short duration and/or low luminosity are exponentially more

difficult to detect in a wide field time-domain survey as the survey cadence

approaches the transient duration. Since fast transients have low luminosity

this implies an even more significant reduction in the survey potential for fast

transients.

The rarity of fast and luminous transients seems unavoidable given our understanding

of basic physical processes in optical transients; therefore fast transients will mostly be

dim. In addition to this fact, the relative difficulty of detecting short and dim transients

(compared to luminous and long duration) is inherent to any time-domain survey. We

argue that our approach is essential for the survey designs of future missions (e.g., LSST,

WFIRST, etc). Also, we argue that rapid cadence may be more relevant for capturing

early phases in the evolution of “slow” transients, rather than for the discovery of

intrinsically fast transients.
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3.6 Detailed CSM Models

In this appendix, we outline the CSM models used in this work in greater detail. Broadly

speaking, both the Chatzopoulos et al. (2012) and Ofek et al. (2014) models follow

the interaction of a supernova’s ejecta (whose ejecta density distribution is spherically

symmetric and a described by broken power-law) and a pre-existing CSM (whose

density distribution is spherically symmetric and described by a single power-law). This

interaction produces forward and reverse shocks which independently power the optical

transient as their kinetic energy is converted into radiation (Chatzopoulos et al. 2012):

L = ε
dEKE

dt
= ε

d

dt

(
1

2
Mswv

2
sh

)
= εMswvsh

dvsh
dt

+ ε
1

2

dMsw

dt
v2sh (3.25)

where ε = 0.5 is an efficiency factor, rsh is the shock (forward or reverse) radius at time t,

vsh = drsh/dt is the shock’s velocity at time t, Msw = 4π
∫ rfs
R0

ρCSM(r)r
2dr is the swept-up

CSM mass at time t and ρCSM(r) is the CSM density at radius r. Dessart et al. (2015)

found that the conversion efficiency (ε) depends on the ratio of the CSM and ejecta

masses, reaching as low as ε ∼ 0.3 and as high as ε ∼ 0.7.

The progenitor star is embedded in spherically symmetric CSM shell described by a

power law (ρCSM(r) = qr−s; Chevalier & Fransson 1994), where q = ρCSMR
s
0. Note that

ρCSM is a constant while ρCSM(r) is a function of r with ρCSM(R0) = ρCSM at r = R0.

The index of the CSM profile can vary from s = 0 (roughly corresponding to shell-like,

eruptive mass-loss histories) to s = 2 (a wind mass-loss history). The SN ejecta’s density

profile profile ρSN = gntn−3r−n is described by a broken power law (as described in

Chevalier & Fransson 1994 and seen observationally in SN 1987A):
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gn =
1

4π(δ − n)

(
2(5− δ)(n− 5)EKE

)n−3
2

(
(3− δ) (n− 3)Mej

)n−5
2

(3.26)

where δ is the index of the inner profile and n is the index of the outer profile. The light

curves are fairly insensitive to δ, so we set its value to 0. The value of n depends on the

polytropic index of the progenitor star, varying from 7– 12 for convective to degenerate

cores.

The self-similar solutions for the forward and reverse shocks are, respectively

(Chatzopoulos et al. 2012; Chevalier & Fransson 1994):

rfs = R0 + βF

(
Agn

q

)
t
n−3
n−s (3.27)

and

rrs = R0 + βR

(
Agn

q

)
t
n−3
n−s (3.28)

βF , βR and A are constants which depend on n and s and are order unity in most cases.

We use interpolated values from those listed in Chevalier & Fransson (1994).

3.6.1 Recovering the Cacoon SBO Solution

If we assume that the shock deceleration is small dvsh/dt = 0 and the geometric factors

βF = βR = 1, we can recover the bolometric luminosity solution of Ofek et al. (2014)

from Equation 3.25:

L = ε
dEKE

dt
= ε

ε

2

dMsw

dt
vsh = 2περCSM(rsh)r

2
shv

3
sh (3.29)
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Furthermore, we assume that this shock efficiently diffuses through the CSM and

has an effective diffusion time td = 0 (i.e., the input luminosity is equal to the observed

luminosity; Ofek et al. 2014).

The temperature can then be estimated as (Chevalier & Irwin 2011; Ofek et al.

2014):

T (t) =

(
18

7a
ρCSMv

2
fs

)1/4

(3.30)

where a is the radiation constant.

Full CSM interaction Solution

If we loosen the assumptions made to reproduce the light curve solution from Ofek et al.

(2014), we will reproduce the generalized solution presented by Chatzopoulos et al.

(2012). To do this, we calculate the contributions to the total luminosity from both the

forward and reverse shocks and diffuse this input luminosity through the CSM.

We explore both shell-like and wind-like CSM profiles (s = 0 and s = 2, respectively)

and leave the inner radius of the CSM as a free parameter (R0). By also allowing the

total mass of the CSM to be a free parameter (MCSM), we can define the total radius of

the CSM as:

RCSM =

(
3MCSM

4πq
+R3

0

) 1
3

(3.31)

We can further define the photospheric radius as:
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Rph =
2κq

3
+RCSM (3.32)

where κ = 0.34 g cm−3. RCSM and Rph will be important for setting physical constraints

on our generated models.

The input luminosity arises from the conversion of the forward and reverse shocks’

kinetic energy into radiation, which can be described as:

Lin(t) =
2πε

(n− s)3
gn

5−s
n−s q

n−5
n−s (n− 3)2(n− 5)β5−s

F A
5−s
n−s t

2n+6s−ns−15
n−s θ(tFS − t)

+ 2πε

(
Agn

q

) 5−n
n−s

β5−n
R gn

×
(
3− s

n− s

)3

t
2n+6s−ns−15

n−s θ(tRS − t) (3.33)

θ is the Heaviside step function, which designates which components (the forward or

reverse shocks) are contributing to the total luminosity based on the shock termination

times:

tFS =

∣∣∣∣∣(3− s)q
3−n
n−s (Agn)

s−3
n−s

4πβ3−s
F

∣∣∣∣∣
n−s

(n−3)(3−s)

M
n−s

(n−3)(3−s)

CSM (3.34)

tRS =

(vph
βR

)(
q

Agn

1
n−s

)(
1− (3− n)Mej

4πv3−n
ph gn

) 1
3−n


n−s
s−3

(3.35)
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Figure 3.20: Detection rate of optical transients given a luminosity, duration, and survey

cadence (tcad) and depth (24.5 mag). The lines are exponential contours, with the darkest

shade of blue being the most detectable transients. The numbers (and corresponding

horizontal lines) in the left panel represent zlim for a given absolute magnitude (see text

for details).
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Chapter 4

The Combined Ultraviolet, Optical,

and Near-Infrared Light Curves of

the Kilonova Associated with the

Binary Neutron Star Merger

GW170817: Unified Data Set,

Analytic Models, and Physical

Implications
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L21

Abstract

We present the first effort to aggregate, homogenize, and uniformly model the combined

ultraviolet, optical, and near-infrared dataset for the electromagnetic counterpart of

the binary neutron star merger GW170817. By assembling all of the available data

from 17 different papers and 46 different instruments, we are able to identify and

mitigate systematic offsets between individual datasets, and to identify clear outlying

measurements, with the resulting pruned and adjusted dataset offering an opportunity

to expand the study of the kilonova. The unified dataset includes 647 individual flux

measurements, spanning 0.45 to 29.4 days post-merger, and thus has greater constraining

power for physical models than any single dataset. We test a number of semi-analytical

models and find that the data are well modeled with a three-component kilonova

model: a “blue” lanthanide-poor component (κ = 0.5 cm2 g−1) with Mej ≈ 0.020 M�

and vej ≈ 0.27c; an intermediate opacity “purple” component (κ = 3 cm2 g−1) with

Mej ≈ 0.047 M� and vej ≈ 0.15c; and a “red” lanthanide-rich component (κ = 10 cm2

g−1) with Mej ≈ 0.011 M� and vej ≈ 0.14c. We further explore the possibility of ejecta

asymmetry and its impact on the estimated parameters. From the inferred parameters

we draw conclusions about the physical mechanisms responsible for the various ejecta

components, the properties of the neutron stars, and, combined with an up-to-date

merger rate, the implications for r-process enrichment via this channel. To facilitate

future studies of this keystone event we make the unified dataset and our modeling code

public.
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4.1 Introduction

The joint detection of gravitational waves and electromagnetic radiation from the binary

neutron star merger GW170817 marks the beginning of a new era in observational

astrophysics. The merger was detected and localized by the Advanced LIGO and Virgo

detectors to a sky region of about 30 deg2 at a distance of ≈ 24− 48 Mpc, with inferred

component masses of ≈ 1.36− 1.60 and ≈ 1.17− 1.36 M� (90% confidence ranges for the

prior of low neutron star spins; Abbott et al. 2017). A spatially coincident short-duration

gamma-ray burst (SGRB) was detected with a delay of 1.7 seconds relative to the merger

time (Abbott et al. 2017; Goldstein et al. 2017; Savchenko et al. 2017). About 11 hours

post-merger several groups (Abbott et al. 2017; Coulter et al. 2017b; Soares-Santos et al.

2017; Valenti et al. 2017) independently detected an optical counterpart coincident with

the quiescent galaxy NGC4993 at a distance of 39.5 Mpc (Freedman et al. 2001).

Subsequently, multiple ground- and space-based observatories followed up the

optical counterpart in the UV, optical, and NIR (hereafter, UVOIR), extending to about

30 days post-merger when the location of the source near the Sun prevented further

observations. These observations were published in multiple papers that appeared when

the detection was publicly announced on October 16, 2017 (Andreoni et al. 2017; Arcavi

et al. 2017; Coulter et al. 2017b; Cowperthwaite et al. 2017; Díaz et al. 2017; Drout

et al. 2017; Evans et al. 2017; Hu et al. 2017; Kasliwal et al. 2017; Lipunov et al. 2017;

Pian et al. 2017; Pozanenko et al. 2018; Smartt et al. 2017; Troja et al. 2017; Utsumi

et al. 2017; Valenti et al. 2017). The various papers generally conclude that the UVOIR

emission is due at least in part to a kilonova, a quasi-thermal transient powered by the

radioactive decay of newly-synthesized r-process nuclei and isotopes (Li & Paczyński
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1998; Metzger et al. 2010; Roberts et al. 2011; Metzger & Berger 2012; Barnes & Kasen

2013; Tanaka & Hotokezaka 2013). In particular, there is general agreement that the

observed light curves require at least two distinct components: a “blue” component

that dominates the emission in the first few days, followed by a transition to a “red”

component. This multi-component behavior is also seen in optical and NIR spectroscopic

observations of the transient (Chornock et al. 2017; Nicholl et al. 2017b; Pian et al. 2017;

Shappee et al. 2017; Smartt et al. 2017). The blue emission is interpreted to be due to

ejecta dominated by Fe-group and light r-process nuclei (atomic mass number A . 140),

while the red emission is likely due to ejecta rich in lanthanides and heavy r-process

material (A & 140).

In Cowperthwaite et al. (2017), we modeled photometric data from the Dark Energy

Camera (DECam), Swift/UVOT, Gemini, and the Hubble Space Telescope (HST) using

the flexible light curve modeling code MOSFiT (Guillochon et al. 2017a). The analysis

demonstrated that the UVOIR data cannot be explained by the radioactive decay of

56Ni, nor with the associated opacity from Fe-peak elements alone. The data could be

well matched by a kilonova model using r-process heating but required at least two

distinct components (red and blue) with different opacities, masses, and velocities. A

model with a third component (with a higher lanthanide fraction) fit the data equally

well (Cowperthwaite et al. 2017). A similar conclusion was reached by several other

groups modeling independent sets of observations (e.g., Tanaka et al. 2017a; Kilpatrick

et al. 2017a). However, given our limited dataset, we were unable to break degeneracies

between the two- and three-component models.

Following the publication of multiple datasets, we undertake here the first effort to

aggregate, homogenize, and model all of the available UVOIR measurements. In total,
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the UVOIR dataset includes 714 individual measurements from 46 different instruments.

After collecting the data, we identify measurements that are clearly discrepant from the

majority of similar observations, and where possible correct for systematic deviations

in order to include as many photometric points as possible. The final unified dataset

includes 647 measurements. With this extensive dataset we revisit the models first

explored in Cowperthwaite et al. (2017) with a number of refinements to the physical

setup; the model setup is available via the Open Kilonova Catalog1 (OKC).

The layout of the Chapter is as follows: In Section 4.2 we discuss the various

datasets and describe our approach to standardize the data. In Section 4.3 we present

our model, including additional parameters designed to capture possible asymmetries in

the ejecta geometry. We present the results of the model fits in Section 4.4 and explore

their implications in Section 4.5.

1https://kilonova.space/ (Guillochon et al. 2017b).
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4.2 Ultraviolet, Optical, and Near-Infrared Data

Following the public announcement of the discovery and observations of GW170817, we

aggregated the UVOIR photometry available in the literature, which we provide in this

Chapter and in the OKC. The data span from 0.45 days to 29.4 days post-merger, and

were collected with 46 instruments in 37 unique filters. This extensive dataset represents

a departure from most transient light curves, with over twenty observations taken each

night on average with fairly complete color coverage during the duration of the event. For

each published set of observations, we summarize the instruments and filters used, the

details of the photometry methods, and any relevant notes in Table 4.1. All photometry

is reported as AB magnitudes with no correction for Milky Way extinction.

Thanks to the extensive observations from multiple telescopes there is significant

redundancy of photometric measurements. This allows us to compare individual datasets

to the bulk of the other observations and hence to homogenize and prune the dataset.

With this approach we find that some corrections are required for three datasets:

gri-band data from Arcavi et al. (2017), some Ks-band data from Smartt et al. 2017

and i-band data from Hu et al. 2017. All of these datasets utilized image subtraction to

isolate the flux of the transient. However, we find that for the specific filters listed above

the resulting light curves were typically dimmer, and faded more rapidly, than the rest

of the data. We interpret this as being due to residual emission from the transient in

the reference templates, since in each case the template was obtained after the discovery

of the source. Using the dates of the template images (Arcavi, private communication,

Smartt et al. 2017 and Hu et al. 2017), we estimate the kilonova brightness for each filter

and add this residual flux to the reported photometry. Specifically, we use estimated
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template magnitudes of: 20.8 (g), 20.9 (r), 20.3 (i) and 20.0 (z) mag to the Arcavi et al.

(2017) dataset; 19.4 (Ks, GROND data only) mag to the Smartt et al. (2017) dataset;

and 19.9 (i) mag to the Hu et al. (2017) dataset. With these corrections the data are in

good agreement with the photometry from other sources (to . 0.2 mag).

We additionally exclude two datasets from our model fitting: the r-band dataset

from Pozanenko et al. (2018), which was obtained in the LUM filter but calibrated to

r-band reference stars; and the w-band from Arcavi et al. (2017), which was similarly

calibrated using r-band reference stars. Because the kilonova colors differ so drastically

from the comparison stars (see e.g., Cowperthwaite et al. 2017), these calibrations are

unreliable.

Due to the fact that the observations conducted by the Swift UV/Optical Telescope

(UVOT) were publicly available, three papers presented independent analyses and

photometry of these data (Cowperthwaite et al. 2017; Drout et al. 2017; Evans et al.

2017). However, in our homogenized dataset we only use the photometry presented by the

Swift team (Evans et al. 2017) without alteration. Early photometry is largely consistent

among the three papers to within ≈ 0.2 mag, although the reported observation times

differ by several hours due to different choices of time binning.

Similarly, several teams independently analyzed some Gemini-South FLAMINGOS-2

data (Cowperthwaite et al. 2017; Kasliwal et al. 2017; Troja et al. 2017), some NTT

EFOSC2 data (Drout et al. 2017; Smartt et al. 2017), and some HST/WFC3 data

(Tanvir et al. 2017; Troja et al. 2017). All of the measurements are listed in Table 4.3

but marked as repeated observations. The HST/WFC3/F110W data from Tanvir et al.

(2017) are re-calibrated to ground-based J-band photometry, so we use the data for
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these epochs from Troja et al. (2017). For all other epochs with multiple analyses of the

same data we take a weighted average of the reported photometry for use in the model

fitting, excluding outliers (see below); we report the averaged values in Table 4.3.

Finally, we identify individual outlying data points through visual inspection and

comparison. In total, we find fifteen such data points. Three of these are photometry

of common data analyzed by multiple teams, so we simply exclude these points from

our averaged photometry. We include the twelve other outliers in our modeling, but

specifically identify these outliers in Table 4.3.

The combined dataset is listed in Table 4.3. This table includes the MJD date

and phase of each observation; the instrument, telescope, and filter combination; our

corrected magnitudes and uncertainties; the correction applied to the original magnitudes

(where applicable); a reference to the original paper; and a note indicating if the data

were excluded from modeling (“X”), were included in modeling (“*”), represent a

repeated reduction of the same observations (“R”), are averaged values from repeated

observations (“A”), or are marked as outliers (“O”).

To properly model this extensive and heterogeneous dataset we use the appropriate

transmission curve (or close equivalent) for each filter, instrument, and telescope

combination2.

Photometric modeling of the host galaxy, NGC4993, suggests that the host

2All transmission curves used in this work were obtained through the Spanish Virtual Observatory,

http://svo2.cab.inta-csic.es/svo/theory/fps3/ (Rodrigo et al. 2012), which aggregates official

transmission curves for each instrument.
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environment contributes minimal extinction (Blanchard et al. 2017)3. We therefore only

include a correction for Milky Way extinction, with E(B − V ) = 0.105 mag (Schlafly &

Finkbeiner 2011).

4.3 Kilonova Model

In this section we outline the analytical kilonova model first introduced in Metzger

(2017) and implemented in MOSFiT by Villar et al. (2017). This model was also used in

Cowperthwaite et al. (2017) to model our own set of observations.

Following decompression from high densities, seed nuclei within the neutron-rich

ejecta from a BNS merger undergo rapid neutron capture (r-process) nucleosynthesis

(Li & Paczyński 1998; Metzger et al. 2010), and it is the radioactive decay of these

freshly-synthesized nuclei that powers the kilonova (Metzger 2017). Unlike SNe, which

are powered primarily by the radioactive decay of one species (56Ni) and therefore

undergo exponential decline in their bolometric light curves, kilonovae are powered

by the decay of a wide range of r-process nuclei with different half-lives, leading to a

power-law decay. At very early times (first few seconds), the energy generation rate is

roughly constant as neutrons are consumed during the r-process, but subsequently the

r-process freezes out and the energy generation rate approaches a power-law decay, ∝ t−α

with α ≈ 1.3 (Metzger et al. 2010). The temporal evolution of the radioactive heating

3Levan et al. (2017) find evidence for more moderate extinction, E(B−V ) = 0.07 mag, from spectro-

scopic observations near the explosion site.
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rate can be approximated by the parameterized form (Korobkin et al. 2012):

Lin(t) = 4× 1018Mrp× [
0.5− π−1 arctan

(
t− t0
σ

)]1.3
erg s−1, (4.1)

where Mrp is the mass of the r-process ejecta, and t0 = 1.3 s and σ = 0.11 s are

constants. Our chosen input luminosity described above neglects any contribution from

fall-back accretion on the newly formed remnant. Hydrodynamical simulations suggest

that disk winds prevent the fall-back material from reaching the remnant on timescales

& 100 ms (Fernández & Metzger 2013; Metzger 2017); however, some contribution to

the bolometric light curve from fall-back accretion is possible on longer (days to weeks)

timescales.

Although Lin provides the total power of radioactive decay (shared between

energetic leptons, γ-rays, and neutrinos), only a fraction εth < 1 of this energy

thermalizes within the plasma and is available to power the kilonova (Metzger et al.

2010). The thermalization efficiency decreases as the ejecta become more dilute with

time, in a manner that can be approximated analytically as (Barnes et al. 2016):

εth(t) = 0.36

[
e−at +

ln(1 + 2btd)

2btd

]
, (4.2)

where a, b, and d are constants of order unity that depend on the ejecta velocity and

mass. We use an interpolation of Table 1 of Barnes et al. (2016) for these values.

Assuming that the energy deposition is centrally located and the expansion is

homologous, we can use the formalism originally outlined in Arnett (1982) to compute

the observed bolometric luminosity (Chatzopoulos et al. 2012):

Lbol(t) = exp

(
−t2

t2d

)
×
∫ t

0

Lin(t)εth(t) exp
(
t2/t2d

) t

td
dt, (4.3)
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where td ≡
√

2κMrp/βvc, κ is the grey opacity, and β = 13.4 is a dimensionless constant

related to the ejecta mass geometric profile. We note that the assumption of a centrally

concentrated power source is not necessarily true for kilonovae, as here we assume

that the ejecta consists entirely of radioactive r-process material. Relaxation of this

assumption should be explored in future work.

We explore multi-component models in which each component has a different opacity

corresponding to theoretical expectations for different ejecta compositions. The opacity

is largely determined by the fraction of lanthanides in the ejecta, with lanthanide-poor

ejecta having a typical opacity of κ ≈ 0.5 cm2 g−1, and lanthanide-rich ejecta having a

typical opacity of κ ≈ 10 cm2 g−1 (Tanaka et al. 2017b). A larger opacity results in a

slower light curve evolution and a shift of the spectral energy distribution peak to redder

wavelengths. We specifically explore a model with two components (“blue”, κ = 0.5 cm2

g−1 and “red”, κ left as a free parameter), and with three components (“blue”, κ = 0.5

cm2 g−1; “purple”, κ = 3 cm2 g−1 and “red”, κ = 10 cm2 g−1; Tanaka et al. 2017b).

The purple component corresponds to ejecta with a low, but non-negligible, lanthanide

fraction. Each component of the multi-component model is evolved independently,

accounting for the unique opacities and therefore diffusion timescales.

To model the multi-band light curves, we assume that each component has a

blackbody photosphere with a radius that expands at a constant velocity (vphot ≡ v,

where v is the ejecta velocity). At every point in time, the temperature of each component

is defined by its bolometric luminosity and radius, using the Stefan-Boltzmann law.

However, when the ejecta cool to a critical temperature (Tc) the photosphere recedes into

the ejecta and the temperature remains fixed. The full SED of the transient is given by

the sum of the blackbodies representing each component. The blackbody approximation
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and temperature floor behavior have both been seen in more sophisticated simulations

(Barnes & Kasen 2013); the temperature floor may relate to the first ionization

temperature in lanthanide species. The analytic form of the blackbody behavior is:

Tphot(t) = max
[( L(t)

4πσ2
SBv

2
ejt

2

)1/4

, Tc

]
, (4.4)

and

Rphot(t) =


vejt

(
L(t)

4πσ2
SBv

2
ejt

2

)1/4
> Tc(

L(t)
4πσSBT 4

c

)1/2 (
L(t)

4πσ2
SBv

2
ejt

2

)1/4
≤ Tc

(4.5)

4.3.1 Asymmetric Model

In addition to the spherically symmetric assumption in the previous section we also

explore a simple asymmetric model in which the blue component is confined to the polar

regions, while the red component (and purple component in the three-component model)

are confined to an equatorial torus. Such a model is seen in numerical simulations

(see e.g., Metzger & Fernández 2014; Metzger 2017). We implement this asymmetric

distribution by correcting the bolometric flux of each component by a geometric factor:

(1− cos θ) for the blue component and cos θ for the red/purple component, where θ is the

half opening angle of the blue component. Although this model neglects other important

contributions such as changes in diffusion timescale, effective blackbody temperature,

or angle dependence, it roughly captures a first-order correction to the assumption of

spherical symmetry.
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4.3.2 Fitting Procedure

We model the combined dataset using the light curve fitting package MOSFiT (Guillochon

et al. 2017a; Nicholl et al. 2017; Villar et al. 2017), which uses an ensemble-based Markov

Chain Monte Carlo method to produce posterior predictions for the model parameters.

The functional form of the log-likelihood is:

lnL = −1

2

n∑
i=1

[
(Oi −Mi)

2

σ2
i + σ2

− ln(2πσ2
i )

]
− n

2
ln(2πσ2), (4.6)

where Oi, Mi, and σi, are the ith of n observed magnitudes, model magnitudes, and

observed uncertainties, respectively. The variance parameter σ is an additional scatter

term, which we fit, that encompasses additional uncertainty in the models and/or data.

For upper limits, we use a one-sided Gaussian penalty term.

For each component of our model there are four free parameters: ejecta mass (Mej),

ejecta velocity (vej), opacity (κ), and the temperature floor (Tc). We use flat priors for

the first three parameters, and a log-uniform prior for Tc (which is the only parameter

for which we consider several orders of magnitude). In the case of the asymmetric model,

we assume a flat prior for the half opening angle (θ).

For each model, we ran MOSFiT for approximately 24 hours using 10 nodes on

Harvard University’s Odyssey computer cluster. We utilized 100 chains until they

reached convergence (i.e., had a Gelman-Rubin statistic < 1.1; Gelman & Rubin 1992).

We use the first ' 80% of the chain as burn-in. We compare the resulting fits utilizing

the Watanabe-Akaike Information Criteria (WAIC, Watanabe 2010; Gelman et al. 2014),

which accounts for both the likelihood score and number of fitted parameters for each

model.
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Figure 4.1: UVOIR light curves from the combined dataset (Table 4.3), along with the

spherically symmetric three-component models with the highest likelihood scores. Solid

lines represent the realizations of highest likelihood for each filter, while shaded regions

represent the 1σ uncertainty ranges. For some bands there are multiple lines that capture

subtle differences between filters. Data originally presented in Andreoni et al. 2017; Arcavi

et al. 2017; Coulter et al. 2017b; Cowperthwaite et al. 2017; Díaz et al. 2017; Drout et al.

2017; Evans et al. 2017; Hu et al. 2017; Kasliwal et al. 2017; Lipunov et al. 2017; Pian

et al. 2017; Pozanenko et al. 2018; Smartt et al. 2017; Troja et al. 2017; Utsumi et al.

2017; Valenti et al. 2017.
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Figure 4.2: Corner plot showing the posterior distributions of parameter realizations

for the three-component model (§4.3). Notable parameter degeneracies include the mass-

velocity pairs of the three components, (e.g., mred
ej versus vredej ), with milder degeneracies

between the temperature floors T red, T purple, and T blue and the ejecta masses. In the

former case the degeneracy is due to the ratio of the mass and velocity controlling the

diffusion timescale.
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1σ uncertainty regions, each interpolated using spline interpolation. The magenta lines

are the colors for the spherically symmetric three-component model with the highest
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Figure 4.4: Individual band UVOIR light curves, including the data (purple circles),

the three-component best-fit model (black lines), and the individual components in the

model (blue, purple, and red lines). The lower section of each panel shows the residual

between the data and model. Note that some panels contain multiple black lines due to

unique filter transmission functions on multiple instruments. Data originally presented in

Andreoni et al. 2017; Arcavi et al. 2017; Coulter et al. 2017b; Cowperthwaite et al. 2017;

Díaz et al. 2017; Drout et al. 2017; Evans et al. 2017; Hu et al. 2017; Kasliwal et al. 2017;

Lipunov et al. 2017; Pian et al. 2017; Pozanenko et al. 2018; Smartt et al. 2017; Troja

et al. 2017; Utsumi et al. 2017; Valenti et al. 2017.
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Figure 4.5: UVOIR light curves in select bands that compare the highest likelihood

model realizations of the three-component model (black lines), the two-component model

(orange lines), and three-component asymmetric model (green lines). The lower section

of each panel shows the residual between the data and the three models. All models

provide an overall adequate fit to the data, but the two-component predict a double-

peaked structure in K-band that is not seen in the data. Data originally presented in

Andreoni et al. 2017; Arcavi et al. 2017; Coulter et al. 2017b; Cowperthwaite et al. 2017;

Díaz et al. 2017; Drout et al. 2017; Evans et al. 2017; Hu et al. 2017; Kasliwal et al. 2017;

Lipunov et al. 2017; Pian et al. 2017; Pozanenko et al. 2018; Smartt et al. 2017; Troja

et al. 2017; Utsumi et al. 2017; Valenti et al. 2017.
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4.4 Results of the Kilonova Models

We fit three different models to the data: a spherical two-component model, a spherical

three-component model, and an asymmetric three-component model. The results are

shown in Figures 4.1–4.5 and summarized in Table 4.2.

For the spherical two-component model we allow the opacity of the red component

to vary freely. This model has a total of 8 free parameters: two ejecta masses, velocities

and temperatures, one free opacity, and one scatter term. We find best-fit values of

Mblue
ej = 0.023+0.005

−0.001 M�, vblueej = 0.256+0.005
−0.002c, M red

ej = 0.050+0.001
−0.001 M�, vredej = 0.149+0.001

−0.002c,

and κred = 3.65+0.09
−0.28 cm2 g−1. Although the model provides an adequate fit, it predicts a

double-peaked structure in the NIR light curves at ≈ 2− 5 days that is not seen in the

data (Figure 4.5).

Our best fitting model, the spherical three-component model, has a total of 10 free

parameters: three ejecta masses, velocities and temperatures, and one scatter term. The

best-fit values are Mblue
ej = 0.020+0.001

−0.001 M�, vblueej = 0.266+0.008
−0.008c, M

purple
ej = 0.047+0.001

−0.002 M�,

vpurpleej = 0.152+0.005
−0.005c, M red

ej = 0.011+0.002
−0.001 M�, and vredej = 0.137+0.025

−0.021c. The parameters

in this model are overall comparable to the two-component model in terms of the

ejecta masses and velocities of the bluer and redder components, but here the ejecta

in the redder component is distributed amongst the purple and red components. This

model underpredicts some of the optical data at . 1 day and overpredicts the late time

(& 15 days) K,Ks-band data; however, these deviations are less significant than for the

two-component model. We additionally explored a version of this model in which the

three opacities were allowed to vary freely, but found that these values fell close to our

fixed values and did not significantly improve the fit.
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Finally, the three-component model with an asymmetric ejecta distribution has

a total of 11 free parameters: three ejecta masses, velocities and temperatures, one

scatter term, and the opening angle. We find best-fit values of Mblue
ej = 0.009+0.001

−0.001 M�,

vblueej = 0.256+0.009
−0.004c, M

purple
ej = 0.007+0.001

−0.001 M�, vpurpleej = 0.103+0.007
−0.004c, M red

ej = 0.026+0.004
−0.002

M�, vredej = 0.175+0.011
−0.008c, and θ = 66+1

−3 degrees. This model overpredicts the intermediate

time (≈ 5 days) optical photometry and underpredicts the early NIR photometry.

Although this model has additional freedom due to the opening angle, the ejecta

masses become linked through this additional parameter. Due to the simplicity of the

asymmetric model, we do not take the derived parameters and uncertainties at face

value, and instead use them as a guide for the effects of asymmetry. We find that

an asymmetric ejecta distribution leads to masses that are ≈ 50% lower than in the

spherical case.

We note that the inferred value of θ is consistent with the blue component being

visible at an orbital inclination angle of ≈ 20− 50◦, as inferred from a comparison of the

GW waveform to the source distance, and from an analysis of the radio and X-ray data

in the context of an off-axis jet (Abbott et al. 2017; Alexander et al. 2017a; Guidorzi

et al. 2017; Hallinan et al. 2017a; Margutti et al. 2017a; Murguia-Berthier et al. 2017).

The relatively large angle is also consistent with the low polarization found by Covino

et al. (2017).

Our spherical three-component model realization of highest likelihood (the “best

fit”) is shown with the complete dataset in Figure 4.1, and its corresponding corner plot

is shown in Figure 4.2. Overall the model provides a good fit to the complete dataset.

We find that most parameters are constrained to within . 10%. The true errors in

our models are likely larger, suggesting that the uncertainty is likely dominated by
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systematic effects (e.g., uncertainty in thermalization efficiency, heating rate, etc.).

We show the individual filters with each of the three components (and their sum)

in Figure 4.4. We find that the blue component dominates across all bands at . 2 − 3

days, while the purple component dominates at later times. Because of its low ejecta

mass, the reddest component is sub-dominant at all times but contributes necessary flux

to the redder bands at late times.

We explore the color evolution of our model compared to that of the kilonova in

Figure 4.3, and again find that the model largely recovers the rapid color evolution,

although it slightly deviates from the observed NIR colors at & 12 days. Finally, we

show specific representative filters (r, H, Ks) with a comparison of all three models in

Figure 4.5. Although the differences are subtle, the three-component model provides

a statistically better fit to the overall light curves. We stress that the overall success

of all three models is remarkable given the extensive scope of the data in time and

wavelengths, and the simplifying assumptions in our analytic approach.

4.5 Discussion and Implications

Our best fit three-component model, dominated by an intermediate purple component,

is consistent with previous findings (e.g., Cowperthwaite et al. 2017; Nicholl et al. 2017b;

Chornock et al. 2017). Compared to our previous modeling presented in Cowperthwaite

et al. (2017), both the blue and purple ejecta masses and the purple velocity increased

by ≈ 40%. The other parameters remained within ≈ 1σ of the previously reported

values. The uncertainties on the fitted parameters have decreased by ≈ 10− 50% due to
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the dramatic increase in the number of data points. Our inferred total ejecta mass of

≈ 0.078 M�, somewhat higher than the values inferred by several groups based on their

individual subsets of the dataset we modeled here (≈ 0.02 − 0.06 M�; Kasliwal et al.

2017; Kilpatrick et al. 2017a; Tanaka et al. 2017b). Additionally, modeling of the optical

and NIR spectra indicates that the early blue emission is best described by material

with a gradient of lanthanide fraction, with the fraction increasing with time (Nicholl

et al. 2017b; Chornock et al. 2017). This is consistent with our findings that the purple

component begins to dominate the UVOIR light curves at ≈ 2− 3 days post-merger.

The inferred high velocity of the blue ejecta is most naturally explained by relatively

proton-rich (high electron fraction, Ye) polar dynamical ejecta created by the shock from

the collision between the merging neutron stars (e.g., Oechslin & Janka 2006; Bauswein

et al. 2013; Sekiguchi et al. 2016; Radice et al. 2016). In this scenario, the inferred high

ejecta mass (≈ 0.02 M�) is indicative of a small neutron star radius of . 12 km when

compared to the results of numerical simulations (Hotokezaka et al. 2013; Bauswein

et al. 2013; see also Nicholl et al. 2017b). Alternatively, the blue ejecta could arise

from a neutrino-heated outflow from a hyper-massive neutron star (e.g., Rosswog &

Ramirez-Ruiz 2002; Dessart et al. 2009), although the high mass and velocity of the blue

ejecta greatly exceed the expectations from a standard neutrino wind and would likely

require additional acceleration of the wind by strong magnetic fields (e.g., Metzger et al.

2008).

The red ejecta component could in principle originate from the dynamically-ejected

tidal tails in the equatorial plane of the binary (e.g., Rosswog et al. 1999; Hotokezaka

et al. 2013), in which case the high ejecta mass would require a highly asymmetric merger

with a binary mass ratio of q . 0.8 (Hotokezaka et al. 2013). However, the velocity
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of this component (≈ 0.1c) is much lower than those typically found in simulations of

NS mergers with extreme mass ratios (≈ 0.2− 0.3c; Kilpatrick et al. 2017b) potentially

disfavoring this explanation. Additionally, our large mass estimate is on the upper end of

the dynamical ejecta mass estimated by The LIGO Scientific Collaboration et al. (2017),

suggesting that not all of this mass is dynamically ejected.

A more promising source for the red and purple ejecta components is a delayed

outflow from the accretion disk formed in the merger (Metzger et al. 2009; Fernández &

Metzger 2013; Perego et al. 2014; Just et al. 2015; Siegel & Metzger 2017), for which the

outflow velocity is expected to be ≈ 0.03− 0.1c. The relatively high neutron abundance

of this matter (Ye . 0.25 − 0.3 as needed to synthesize lanthanide nuclei) would be

consistent with the moderate amount of neutrino irradiation of the outflow from a black

hole accretion disk (Just et al. 2015) but would disfavor a particularly long-lived (& 100

ms) hyper-massive or supra-massive neutron star remnant (Metzger & Fernández 2014;

Murguia-Berthier et al. 2014; Kasen et al. 2015; Lippuner et al. 2017; see also Margalit &

Metzger 2017). In this context, the properties of the red/purple ejecta provide evidence

for a relatively prompt formation of a black hole remnant.

The asymmetric model indicates a half-opening angle for the blue component of

θ ≈ 66◦. This is consistent with the blue component being visible given the inclination

angle of the system inferred both from a comparison of the GW waveform and the

distance of the event, and from off-axis jet models of the radio and X-ray light curves

(≈ 20 − 50◦; Abbott et al. 2017; Alexander et al. 2017a; Margutti et al. 2017a). Our

simple asymmetric model suggests that the total ejecta mass may be ≈ 50% smaller than

inferred in the spherical model. The effects of other simplifying assumptions, such as the

blackbody SED and constant opacities as a function of time and wavelength, should be
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explored in future work.

Finally, we compare our inferred total ejecta mass to the amount necessary to

reproduce the Milk Way r-process production rate using the updated BNS merger rate

inferred from Advanced LIGO of R0 = 1500+3200
−1220 Gpc−3 yr−1 (Abbott et al. 2017)

following a similar methodology as Cowperthwaite et al. (2017) and Kasen et al. (2017).

For light r-process nuclei, the primary source of ejecta in our three component model,

the inferred Milky Way production rate is Ṁrp,A.140 ≈ 7 × 10−7 M� yr−1 (Qian 2000).

Combining this with the BNS rate and density of Milky Way-like galaxies (≈ 0.01

Mpc−3), we estimate the Milky Way rate of BNS mergers as RMW ≈ 150 Myr−1. Thus,

the average ejecta mass necessary for a blue/purple kilonova is Ṁrp,A.140/RMW ≈ 5×10−3

M�, with an uncertainty of about a factor of ≈ 5 due to the large range of R0. For

heavy r-process elements (our red component), the Milky Way inferred production rate

is Ṁrp;A&140 ≈ 10−7 M� yr−1 (Bauswein et al. 2014). The average ejecta mass necessary

for a red kilonova is therefore Ṁrp,A.140/RMW ≈ 7× 10−4 M�, again with an uncertainty

of about a factor of 5. In both cases, this order of magnitude estimate is about a factor

10 times smaller than our estimated ejecta masses for this event, although the rate errors

(and potentially lower ejecta masses in the asymmetric case) are large enough to account

for the discrepancy4. However, we note that the ratio of red to blue/purple ejecta masses

in our model, ≈ 0.16, is in good agreement with the relative production rates of A & 140

and A . 140 nuclei in the Milky Way.

If the BNS merger rate from future events is shown to be at the high end of

the current estimates, the results inferred here would indicate that a large fraction of

4Our results are consist with those found in The LIGO Scientific Collaboration et al. 2017.
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synthesized r-process material may remain in the gas phase within the ISM or escape

the galaxy entirely via galactic winds (Shen et al. 2015). It may also suggest that the

kilonova in GW170817 is an outlier in terms of total r-process material produced. Future

events will clarify the population parameters of kilonovae.

4.6 Conclusions

We presented the first effort to aggregate, homogenize, and uniformly model the

complete UV, optical and NIR dataset for the electromagnetic counterpart of the

binary neutron star merger GW170817, allowing us to better determine the likely

combinations of parameters responsible for the observed kilonova. We are able to remove

systematic offsets from several datasets and to identify outlying data points, providing

the community with cleaned and uniform photometry for future analyses. Our key

findings are as follows:

• We present 647 photometric measurements from the kilonova accompanying

the binary neutron star merger GW170817, spanning from 0.45 to 29.4 days

post-merger and providing nearly complete color coverage at all times. We make

the homogenized dataset available to the public in Table 4.3, in the OKC, and

through https://kilonova.org/

• The kilonova UVOIR light curves are well fit by a spherically symmetric,

three-component model with an overall ejecta mass of ≈ 0.078 M�, dominated by

light r-process material (A < 140) with moderate velocities of ≈ 0.15c.

• We find evidence for a lanthanide-free component with mass and velocity of
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≈ 0.020 M� and ≈ 0.27c, respectively. This component is indicative of polar

dynamical ejecta, and hence a BNS origin (instead of NS-BH). The large ejecta

mass implies a small neutron star radius of . 12 km.

• The mass and velocities of the purple/red components are consistent with a

delayed outflow from an accretion disk formed in the merger. This disfavors a

long-lived (& 100 ms) hyper-massive neutron star remnant and provides evidence

for relatively prompt formation of a black hole remnant.

• The asymmetric model extension implies that the total ejecta mass may be up to

a factor of 2 times lower than for the symmetric model.

• Given the large uncertainties in BNS merger rates, we find that the r-process

production rates are comfortably above the Galactic production rate, consistent

with the idea that BNS mergers are the dominant source of r-process nucleosynthesis

in the universe.

The sheer size of the dataset for this event, which was the subject of unprecedented

follow-up efforts by the observational astronomy community, represents a departure from

typical transient events, allowing for more detailed modeling than typically feasible.

Although future observing runs of Advanced LIGO/Virgo will lead to many more

kilonova detections, it is likely that this event will remain one of the best-observed

objects for years to come due to its vicinity and hence ease of follow-up. Thus, the broad

UVOIR dataset collected by multiple teams, and aggregated and homogenized here, will

be an invaluable resource to explore questions about kilonova phenomenology that may

be otherwise intractable using more sparsely sampled data.

209



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3:
:
Tr

un
ca
te
d
Ph

ot
om

et
ric

D
at
a

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

2.
98

1
0.
45

2
E2

V
4k

x4
k
cc
d

Sw
op

e
i

17
.4
8

0.
02

0
C
ou

lte
r
et

al
.

*

57
98

2.
99

0
0.
46

1
Fo

ur
St
ar

M
ag

el
la
n

H
18

.2
6

0.
15

0
D
ro
ut

et
al
.

*

57
98

2.
99

3
0.
46

4
A
lta

U
47

+
Pr

om
pt
5

r
17

.4
6

0.
03

0
Va

le
nt
ie

t
al
.

*

57
98

2.
99

9
0.
47

0
V
IR

C
A
M

V
IS
TA

K
s

18
.6
2

0.
05

0
Ta

nv
ir

et
al
.

*

57
98

3.
00

0
0.
47

1
Fo

ur
St
ar

M
ag

el
la
n

J
17

.8
3

0.
15

0
D
ro
ut

et
al
.

*

57
98

3.
00

0
0.
47

1
LD

SS
M
ag

el
la
n

V
17

.3
5

0.
02

0
D
ro
ut

et
al
.

*

57
98

3.
00

0
0.
47

1
LD

SS
M
ag

el
la
n

r
17

.3
3

0.
02

0
D
ro
ut

et
al
.

*

57
98

3.
00

0
0.
47

1
LD

SS
M
ag

el
la
n

z
17

.6
7

0.
03

0
D
ro
ut

et
al
.

*

57
98

3.
00

1
0.
47

2
M
A
ST

ER
O
A
FA

W
17

.5
0

0.
20

0
Li
pu

no
v
et

al
.

*

57
98

3.
00

3
0.
47

4
D
EC

am
B
la
nc

o/
C
T
IO

i
17

.4
8

0.
03

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

3.
00

4
0.
47

5
D
EC

am
B
la
nc

o/
C
T
IO

z
17

.5
9

0.
03

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

3.
00

6
0.
47

7
LD

SS
M
ag

el
la
n

g
17

.4
1

0.
02

0
D
ro
ut

et
al
.

*

57
98

3.
00

9
0.
48

0
V
IR

C
A
M

V
IS
TA

Y
17

.8
8

0.
03

0
Ta

nv
ir

et
al
.

*

57
98

3.
01

1
0.
48

2
LD

SS
M
ag

el
la
n

g
17

.4
1

0.
04

0
D
ro
ut

et
al
.

*

57
98

3.
01

1
0.
48

2
Si
ni
st
ro

LC
O

1m
w

17
.4
9

0.
04

0
A
rc
av

ie
t
al
.

X

57
98

3.
01

4
0.
48

5
LD

SS
M
ag

el
la
n

g
17

.3
9

0.
02

0
D
ro
ut

et
al
.

*

210



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

3.
01

5
0.
48

6
M
A
ST

ER
O
A
FA

W
17

.1
0

0.
20

0
Li
pu

no
v
et

al
.

*

57
98

3.
01

9
0.
49

0
V
IR

C
A
M

V
IS
TA

Y
17

.4
6

0.
01

0
Ta

nv
ir

et
al
.

*

57
98

3.
02

8
0.
49

9
A
lta

U
47

+
Pr

om
pt
5

r
17

.5
6

0.
04

0
Va

le
nt
ie

t
al
.

*

57
98

3.
02

9
0.
50

0
V
IR

C
A
M

V
IS
TA

K
s

18
.6
4

0.
06

0
Ta

nv
ir

et
al
.

*

57
98

3.
03

0
0.
50

1
Fo

ur
St
ar

M
ag

el
la
n

K
s

18
.4
1

0.
15

0
D
ro
ut

et
al
.

*

57
98

3.
03

9
0.
51

0
V
IR

C
A
M

V
IS
TA

Y
17

.8
2

0.
03

0
Ta

nv
ir

et
al
.

*

57
98

3.
05

0
0.
52

1
R
O
S2

R
EM

g
17

.3
2

0.
07

0
Pi
an

et
al
.

*

57
98

3.
05

0
0.
52

1
R
O
S2

R
EM

i
16

.9
8

0.
05

0
Pi
an

et
al
.

*

57
98

3.
05

0
0.
52

1
R
O
S2

R
EM

r
17

.1
4

0.
08

0
Pi
an

et
al
.

*

57
98

3.
05

0
0.
52

1
R
O
S2

R
EM

z
16

.8
5

0.
10

0
Pi
an

et
al
.

*,
O

57
98

3.
05

9
0.
53

0
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

18
.4
2

0.
04

0
K
as
liw

al
et

al
.

*

57
98

3.
15

6
0.
62

7
U
V
O
T

Sw
ift

M
2

21
.1
2

0.
22

0
Ev

an
s
et

al
.

*

57
98

3.
16

2
0.
63

3
U
V
O
T

Sw
ift

W
1

19
.4
6

0.
11

0
Ev

an
s
et

al
.

*

57
98

3.
16

7
0.
63

8
U
V
O
T

Sw
ift

U
18

.1
9

0.
09

0
Ev

an
s
et

al
.

*

57
98

3.
17

2
0.
64

3
U
V
O
T

Sw
ift

W
2

21
.1
3

0.
23

0
Ev

an
s
et

al
.

*

57
98

3.
22

9
0.
70

0
H
SC

Su
ba

ru
z

17
.4
0

0.
01

0
U
ts
um

ie
t
al
.

*

211



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

3.
23

1
0.
70

2
G
FC

Pa
n-
ST

A
R
R
S

i
17

.2
4

0.
06

0
Sm

ar
tt

et
al
.

*

57
98

3.
23

1
0.
70

2
G
FC

Pa
n-
ST

A
R
R
S

y
17

.3
8

0.
10

0
Sm

ar
tt

et
al
.

*

57
98

3.
23

1
0.
70

2
G
FC

Pa
n-
ST

A
R
R
S

z
17

.2
6

0.
06

0
Sm

ar
tt

et
al
.

*

57
98

3.
38

2
0.
85

3
Si
ni
st
ro

LC
O

1m
w

17
.3
1

0.
04

0
A
rc
av

ie
t
al
.

X

57
98

3.
38

7
0.
85

8
Sk

ym
ap

pe
r

Sk
ym

ap
pe

r
i

17
.4
2

0.
05

0
A
nd

re
on

ie
t
al
.

*

57
98

3.
40

1
0.
87

2
Si
ni
st
ro

LC
O

1m
g

17
.2
8

0.
12

-0
.0
4

A
rc
av

ie
t
al
.

*

57
98

3.
40

5
0.
87

6
Si
ni
st
ro

LC
O

1m
r

17
.2
0

0.
02

-0
.0
2

A
rc
av

ie
t
al
.

*

57
98

3.
41

9
0.
89

0
Sk

ym
ap

pe
r

Sk
ym

ap
pe

r
r

17
.3
2

0.
07

0.
0

A
nd

re
on

ie
t
al
.

*

57
98

3.
42

1
0.
89

2
Sk

ym
ap

pe
r

Sk
ym

ap
pe

r
g

17
.4
6

0.
08

0.
0

A
nd

re
on

ie
t
al
.

*

57
98

3.
55

0
1.
02

1
10

k1
0k

cc
d

A
ST

3-
2

i
17

.1
4

0.
13

-0
.0
9

H
u
et

al
.

*

57
98

3.
56

9
1.
04

0
U
V
O
T

Sw
ift

W
1

20
.2
1

0.
21

0
Ev

an
s
et

al
.

*

57
98

3.
57

2
1.
04

2
U
V
O
T

Sw
ift

U
19

.0
0

0.
16

0
Ev

an
s
et

al
.

*

57
98

3.
57

5
1.
04

6
U
V
O
T

Sw
ift

W
2

>
21

.4
5

-
0

Ev
an

s
et

al
.

*

57
98

3.
59

4
1.
06

5
10

k1
0k

cc
d

A
ST

3-
2

i
17

.4
8

0.
07

-0
.1
3

H
u
et

al
.

*

57
98

3.
59

4
1.
06

5
U
V
O
T

Sw
ift

M
2

22
.5
2

0.
50

0
Ev

an
s
et

al
.

*

57
98

3.
62

5
1.
09

6
10

k1
0k

cc
d

A
ST

3-
2

i
17

.5
8

0.
09

-0
.1
4

H
u
et

al
.

*

212



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

3.
69

9
1.
17

0
SI
R
IU

S
IR

SF
H

17
.6
4

0.
04

0
U
ts
um

ie
t
al
.

*

57
98

3.
69

9
1.
17

0
SI
R
IU

S
IR

SF
J

17
.5
1

0.
03

0
U
ts
um

ie
t
al
.

*

57
98

3.
69

9
1.
17

0
SI
R
IU

S
IR

SF
K
s

17
.9
1

0.
05

0
U
ts
um

ie
t
al
.

*

57
98

3.
71

7
1.
18

8
M
A
ST

ER
SA

A
O

W
17

.3
0

0.
20

0
Li
pu

no
v
et

al
.

*

57
98

3.
71

9
1.
19

0
-

K
M
T
N
et
-S
A
A
O

B
18

.4
7

0.
11

0
Tr

oj
a
et

al
.

*

57
98

3.
71

9
1.
19

0
-

K
M
T
N
et
-S
A
A
O

I
17

.5
8

0.
10

0
Tr

oj
a
et

al
.

*

57
98

3.
71

9
1.
19

0
-

K
M
T
N
et
-S
A
A
O

R
17

.6
5

0.
05

0
Tr

oj
a
et

al
.

*

57
98

3.
71

9
1.
19

0
-

K
M
T
N
et
-S
A
A
O

V
17

.8
1

0.
04

0
Tr

oj
a
et

al
.

*

57
98

3.
72

6
1.
19

7
M
A
ST

ER
SA

A
O

R
17

.0
0

0.
20

0
Li
pu

no
v
et

al
.

*,
O

57
98

3.
73

3
1.
20

4
Si
ni
st
ro

LC
O

1m
w

17
.9
5

0.
04

0
A
rc
av

ie
t
al
.

X

57
98

3.
73

6
1.
20

7
M
A
ST

ER
SA

A
O

B
18

.1
0

0.
10

0
Li
pu

no
v
et

al
.

*

57
98

3.
74

1
1.
21

2
Si
ni
st
ro

LC
O

1m
r

17
.7
5

0.
02

-0
.0
3

A
rc
av

ie
t
al
.

*

57
98

3.
74

5
1.
21

6
Si
ni
st
ro

LC
O

1m
g

18
.0
5

0.
12

-0
.0
7

A
rc
av

ie
t
al
.

*

57
98

3.
75

8
1.
22

9
-

1.
5B

r
17

.8
9

0.
03

0
Sm

ar
tt

et
al
.

*

57
98

3.
96

4
1.
43

5
EF

O
SC

2
N
T
T

V
18

.2
2

0.
08

0
D
ro
ut

et
al
.

*

57
98

3.
96

8
1.
43

9
T
80

C
am

T
80

S
g

18
.4
3

0.
06

0
Ev

an
s
et

al
.

*

213



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

3.
96

8
1.
43

9
Si
ni
st
ro

LC
O

1m
w

18
.2
3

0.
04

0
A
rc
av

ie
t
al
.

X

57
98

3.
96

9
1.
44

0
EF

O
SC

2
N
T
T

V
18

.1
6

0.
05

0
D
ro
ut

et
al
.

*

57
98

3.
96

9
1.
44

0
G
R
O
N
D

La
Si
lla

H
17

.6
4

0.
08

0
Sm

ar
tt

et
al
.

*

57
98

3.
96

9
1.
44

0
G
R
O
N
D

La
Si
lla

J
17

.5
8

0.
07

0
Sm

ar
tt

et
al
.

*

57
98

3.
96

9
1.
44

0
G
R
O
N
D

La
Si
lla

K
17

.8
5

0.
15

-0
.2
9

Sm
ar
tt

et
al
.

*

57
98

3.
96

9
1.
44

0
G
R
O
N
D

La
Si
lla

g
18

.4
9

0.
04

0
Sm

ar
tt

et
al
.

*

57
98

3.
96

9
1.
44

0
G
R
O
N
D

La
Si
lla

i
17

.8
5

0.
05

0
Sm

ar
tt

et
al
.

*

57
98

3.
96

9
1.
44

0
G
R
O
N
D

La
Si
lla

r
17

.9
9

0.
01

0
Sm

ar
tt

et
al
.

*

57
98

3.
96

9
1.
44

0
G
R
O
N
D

La
Si
lla

z
17

.7
2

0.
03

0
Sm

ar
tt

et
al
.

*

57
98

3.
96

9
1.
44

0
FO

R
S

V
LT

r
17

.6
9

0.
02

0
Ta

nv
ir

et
al
.

*

57
98

3.
97

0
1.
44

1
EF

O
SC

2
N
T
T

V
18

.1
3

0.
08

0
D
ro
ut

et
al
.

*

57
98

3.
97

2
1.
44

3
Si
ni
st
ro

LC
O

1m
i

17
.8
8

0.
10

-0
.2
5

A
rc
av

ie
t
al
.

*

57
98

3.
97

4
1.
44

5
T
80

C
am

T
80

S
g

18
.5
1

0.
04

0
D
ía
z
et

al
.

*

57
98

3.
97

5
1.
44

6
T
80

C
am

T
80

S
g

18
.4
8

0.
04

0
D
ía
z
et

al
.

*

57
98

3.
97

6
1.
44

7
T
80

C
am

T
80

S
g

18
.6
1

0.
04

0
D
ía
z
et

al
.

*

57
98

3.
97

6
1.
44

7
Si
ni
st
ro

LC
O

1m
r

17
.9
8

0.
08

-0
.0
4

A
rc
av

ie
t
al
.

*

214



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

3.
97

6
1.
44

7
D
EC

am
B
la
nc

o/
C
T
IO

Y
17

.3
2

0.
03

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

3.
97

7
1.
44

8
LD

SS
M
ag

el
la
n

z
17

.6
2

0.
06

0
D
ro
ut

et
al
.

*

57
98

3.
97

7
1.
44

8
D
EC

am
B
la
nc

o/
C
T
IO

z
17

.5
9

0.
02

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

3.
97

7
1.
44

8
T
80

C
am

T
80

S
r

17
.9
3

0.
02

0
D
ía
z
et

al
.

*

57
98

3.
97

8
1.
44

9
D
EC

am
B
la
nc

o/
C
T
IO

i
17

.7
8

0.
02

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

3.
97

8
1.
44

9
T
80

C
am

T
80

S
r

17
.9
7

0.
02

0
D
ía
z
et

al
.

*

57
98

3.
97

8
1.
44

9
D
EC

am
B
la
nc

o/
C
T
IO

r
18

.0
4

0.
02

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

3.
97

8
1.
44

9
LD

SS
M
ag

el
la
n

z
17

.6
1

0.
06

0
D
ro
ut

et
al
.

*

57
98

3.
97

9
1.
45

0
LD

SS
M
ag

el
la
n

z
17

.6
1

0.
06

0
D
ro
ut

et
al
.

*

57
98

3.
97

9
1.
45

0
D
EC

am
B
la
nc

o/
C
T
IO

g
18

.6
6

0.
03

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

3.
97

9
1.
45

0
T
80

C
am

T
80

S
r

17
.9
4

0.
02

0
D
ía
z
et

al
.

*

57
98

3.
98

0
1.
45

1
D
EC

am
B
la
nc

o/
C
T
IO

u
19

.9
4

0.
05

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

3.
98

0
1.
45

1
LD

SS
M
ag

el
la
n

i
17

.7
7

0.
03

0
D
ro
ut

et
al
.

*

57
98

3.
98

0
1.
45

1
R
O
S2

R
EM

I
17

.6
6

0.
06

0
Pi
an

et
al
.

*

57
98

3.
98

0
1.
45

1
Si
ni
st
ro

LC
O

1m
g

18
.6
1

0.
14

-0
.1
3

A
rc
av

ie
t
al
.

*

57
98

3.
98

0
1.
45

1
R
O
S2

R
EM

r
17

.6
8

0.
13

0
Pi
an

et
al
.

*

215



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

3.
98

0
1.
45

1
R
O
S2

R
EM

z
17

.6
1

0.
10

0
Pi
an

et
al
.

*

57
98

3.
98

0
1.
45

1
T
80

C
am

T
80

S
i

17
.7
4

0.
03

0
D
ía
z
et

al
.

*

57
98

3.
98

1
1.
45

2
LD

SS
M
ag

el
la
n

r
17

.9
1

0.
03

0
D
ro
ut

et
al
.

*

57
98

3.
98

1
1.
45

2
Fo

ur
St
ar

M
ag

el
la
n

K
s

17
.6
1

0.
04

0
D
ro
ut

et
al
.

*

57
98

3.
98

1
1.
45

2
Fo

ur
St
ar

M
ag

el
la
n

J
17

.4
7

0.
01

0
D
ro
ut

et
al
.

*

57
98

3.
98

1
1.
45

2
LD

SS
M
ag

el
la
n

g
18

.6
1

0.
03

0
D
ro
ut

et
al
.

*

57
98

3.
98

2
1.
45

2
T
80

C
am

T
80

S
i

17
.8
0

0.
03

0
D
ía
z
et

al
.

*

57
98

3.
98

3
1.
45

4
T
80

C
am

T
80

S
i

17
.8
1

0.
03

0
D
ía
z
et

al
.

*

57
98

3.
98

3
1.
45

4
LD

SS
M
ag

el
la
n

B
19

.0
4

0.
06

0
D
ro
ut

et
al
.

*

57
98

3.
98

4
1.
45

5
T
80

C
am

T
80

S
g

18
.5
8

0.
03

0
D
ía
z
et

al
.

*

57
98

3.
98

4
1.
45

5
LD

SS
M
ag

el
la
n

B
19

.0
4

0.
07

0
D
ro
ut

et
al
.

*

57
98

3.
98

5
1.
45

6
T
80

C
am

T
80

S
g

18
.5
5

0.
03

0
D
ía
z
et

al
.

*

57
98

3.
98

6
1.
45

7
T
80

C
am

T
80

S
g

18
.6
1

0.
04

0
D
ía
z
et

al
.

*

57
98

3.
98

7
1.
45

8
T
80

C
am

T
80

S
r

17
.9
5

0.
02

0
D
ía
z
et

al
.

*

57
98

3.
98

8
1.
45

9
LD

SS
M
ag

el
la
n

g
18

.6
6

0.
03

0
D
ro
ut

et
al
.

*

57
98

3.
98

8
1.
45

9
T
80

C
am

T
80

S
r

17
.9
8

0.
02

0
D
ía
z
et

al
.

*

216



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

3.
98

9
1.
46

0
-

K
M
T
N
et
/C

T
IO

B
19

.0
9

0.
11

0
Tr

oj
a
et

al
.

*

57
98

3.
98

9
1.
46

0
-

K
M
T
N
et
/C

T
IO

I
17

.7
7

0.
09

0
Tr

oj
a
et

al
.

*

57
98

3.
98

9
1.
46

0
-

K
M
T
N
et
/C

T
IO

R
17

.9
4

0.
05

0
Tr

oj
a
et

al
.

*

57
98

3.
98

9
1.
46

0
-

K
M
T
N
et
/C

T
IO

V
18

.2
8

0.
04

0
Tr

oj
a
et

al
.

*

57
98

3.
98

9
1.
46

0
V
IR

C
A
M

V
IS
TA

K
s

17
.7
7

0.
02

0
Ta

nv
ir

et
al
.

*

57
98

3.
98

9
1.
46

0
V
IR

C
A
M

V
IS
TA

Y
17

.4
5

0.
01

0
Ta

nv
ir

et
al
.

*

57
98

3.
99

0
1.
46

1
T
80

C
am

T
80

S
r

17
.9
9

0.
03

0
D
ía
z
et

al
.

*

57
98

3.
99

0
1.
46

1
Fo

ur
St
ar

M
ag

el
la
n

H
17

.5
2

0.
01

0
D
ro
ut

et
al
.

*

57
98

3.
99

1
1.
46

2
T
80

C
am

T
80

S
i

17
.7
8

0.
02

0
D
ía
z
et

al
.

*

57
98

3.
99

1
1.
46

2
A
lta

U
47

+
Pr

om
pt
5

r
18

.0
0

0.
06

0
Va

le
nt
ie

t
al
.

*

57
98

3.
99

2
1.
46

3
T
80

C
am

T
80

S
i

17
.7
9

0.
02

0
D
ía
z
et

al
.

*

57
98

3.
99

3
1.
46

4
T
80

C
am

T
80

S
i

17
.8
0

0.
03

0
D
ía
z
et

al
.

*

57
98

3.
99

4
1.
46

5
T
80

C
am

T
80

S
g

18
.6
5

0.
03

0
D
ía
z
et

al
.

*

57
98

3.
99

5
1.
46

6
E2

V
4k

x4
k
cc
d

Sw
op

e
V

18
.2
2

0.
04

0
C
ou

lte
r
et

al
.

*

57
98

3.
99

5
1.
46

6
T
80

C
am

T
80

S
g

18
.6
0

0.
04

0
D
ía
z
et

al
.

*

57
98

3.
99

6
1.
46

7
T
80

C
am

T
80

S
g

18
.6
3

0.
04

0
D
ía
z
et

al
.

*

217



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

3.
99

7
1.
46

8
T
80

C
am

T
80

S
r

18
.0
2

0.
03

0
D
ía
z
et

al
.

*

57
98

3.
99

9
1.
47

0
T
80

C
am

T
80

S
r

18
.0
2

0.
02

0
D
ía
z
et

al
.

*

57
98

3.
99

9
1.
47

0
V
IR

C
A
M

V
IS
TA

Y
17

.2
3

0.
01

0
Ta

nv
ir

et
al
.

*

57
98

4.
00

0
1.
47

1
T
80

C
am

T
80

S
r

18
.0
4

0.
02

0
D
ía
z
et

al
.

*

57
98

4.
00

0
1.
47

1
X
S

V
LT

r
17

.9
5

0.
02

0
Pi
an

et
al
.

*

57
98

4.
00

0
1.
47

1
X
S

V
LT

z
17

.6
5

0.
07

0
Pi
an

et
al
.

*

57
98

4.
00

0
1.
47

1
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

H
17

.6
3

0.
10

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

4.
00

1
1.
47

2
T
80

C
am

T
80

S
i

17
.7
4

0.
02

0
D
ía
z
et

al
.

*

57
98

4.
00

2
1.
47

3
T
80

C
am

T
80

S
i

17
.8
6

0.
03

0
D
ía
z
et

al
.

*

57
98

4.
00

2
1.
47

3
Fo

ur
St
ar

M
ag

el
la
n

J1
17

.3
2

0.
01

0
D
ro
ut

et
al
.

*

57
98

4.
00

3
1.
47

4
T
80

C
am

T
80

S
i

17
.8
5

0.
03

0
D
ía
z
et

al
.

*

57
98

4.
00

4
1.
47

5
T
80

C
am

T
80

S
g

18
.6
9

0.
04

0
D
ía
z
et

al
.

*

57
98

4.
00

5
1.
47

6
T
80

C
am

T
80

S
g

18
.6
7

0.
03

0
D
ía
z
et

al
.

*

57
98

4.
00

7
1.
47

8
T
80

C
am

T
80

S
g

18
.6
2

0.
04

0
D
ía
z
et

al
.

*

57
98

4.
00

8
1.
47

9
T
80

C
am

T
80

S
r

18
.0
1

0.
02

0
D
ía
z
et

al
.

*

57
98

4.
00

9
1.
48

0
T
80

C
am

T
80

S
r

18
.0
1

0.
02

0
D
ía
z
et

al
.

*

218



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

4.
01

0
1.
48

1
T
80

C
am

T
80

S
r

18
.0
7

0.
03

0
D
ía
z
et

al
.

*

57
98

4.
01

0
1.
48

1
T
80

C
am

Pr
om

pt
5

r
18

.2
9

0.
06

0
Va

le
nt
ie

t
al
.

*

57
98

4.
01

0
1.
48

1
EF

O
SC

2
N
T
T

V
18

.1
4

0.
04

0
D
ro
ut

et
al
.

*

57
98

4.
01

1
1.
48

2
T
80

C
am

T
80

S
i

17
.8
2

0.
03

0
D
ía
z
et

al
.

*

57
98

4.
01

2
1.
48

3
EF

O
SC

2
N
T
T

V
18

.1
6

0.
06

0
D
ro
ut

et
al
.

*

57
98

4.
01

2
1.
48

3
T
80

C
am

T
80

S
i

17
.7
7

0.
03

0
D
ía
z
et

al
.

*

57
98

4.
01

3
1.
48

4
EF

O
SC

2
N
T
T

V
18

.1
8

0.
04

0
D
ro
ut

et
al
.

*

57
98

4.
01

3
1.
48

4
T
80

C
am

T
80

S
i

17
.8
7

0.
03

0
D
ía
z
et

al
.

*

57
98

4.
01

4
1.
48

5
T
80

C
am

T
80

S
g

18
.6
8

0.
04

0
D
ía
z
et

al
.

*

57
98

4.
01

6
1.
48

7
T
80

C
am

T
80

S
g

18
.6
7

0.
04

0
D
ía
z
et

al
.

*

57
98

4.
01

7
1.
48

8
T
80

C
am

T
80

S
g

18
.5
7

0.
03

0
D
ía
z
et

al
.

*

57
98

4.
01

8
1.
48

9
T
80

C
am

T
80

S
r

18
.0
3

0.
02

0
D
ía
z
et

al
.

*

57
98

4.
01

9
1.
49

0
T
80

C
am

T
80

S
r

18
.0
5

0.
03

0
D
ía
z
et

al
.

*

57
98

4.
02

0
1.
49

1
T
80

C
am

T
80

S
r

18
.0
4

0.
02

0
D
ía
z
et

al
.

*

57
98

4.
02

1
1.
49

2
T
80

C
am

T
80

S
i

17
.8
3

0.
03

0
D
ía
z
et

al
.

*

57
98

4.
02

2
1.
49

3
T
80

C
am

T
80

S
i

17
.9
0

0.
03

0
D
ía
z
et

al
.

*

219



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

4.
02

3
1.
49

4
T
80

C
am

T
80

S
i

17
.8
8

0.
03

0
D
ía
z
et

al
.

*

57
98

4.
03

4
1.
50

5
E2

V
4k

x4
k
cc
d

Sw
op

e
B

19
.0
7

0.
04

0
C
ou

lte
r
et

al
.

*

57
98

4.
03

6
1.
50

7
U
V
O
T

Sw
ift

U
20

.7
9

0.
50

0
Ev

an
s
et

al
.

*

57
98

4.
03

6
1.
50

7
U
V
O
T

Sw
ift

W
2

>
21

.6
6

-
0

Ev
an

s
et

al
.

*

57
98

4.
04

4
1.
51

5
E2

V
4k

x4
k
cc
d

Sw
op

e
i

17
.8
0

0.
02

0
C
ou

lte
r
et

al
.

*

57
98

4.
04

6
1.
51

7
EF

O
SC

2
N
T
T

V
18

.2
5

0.
06

0
D
ro
ut

et
al
.

*

57
98

4.
04

7
1.
51

8
EF

O
SC

2
N
T
T

V
18

.1
8

0.
10

0
D
ro
ut

et
al
.

*

57
98

4.
04

7
1.
51

8
E2

V
4k

x4
k
cc
d

Sw
op

e
r

17
.9
8

0.
02

0
C
ou

lte
r
et

al
.

*

57
98

4.
04

8
1.
51

9
EF

O
SC

2
N
T
T

U
20

.1
1

0.
23

0
D
ro
ut

et
al
.

R

57
98

4.
04

8
1.
51

9
EF

O
SC

2
N
T
T

U
20

.2
5

0.
29

0
Sm

ar
tt

et
al
.

R

57
98

4.
05

2
1.
52

3
EF

O
SC

2
N
T
T

U
20

.2
1

0.
28

0
D
ro
ut

et
al
.

R

57
98

4.
05

2
1.
52

3
EF

O
SC

2
N
T
T

U
20

.1
8

0.
23

0
th
is

C
ha

pt
er

*,
A

57
98

4.
05

2
1.
52

3
U
V
O
T

Sw
ift

M
2

>
22

.0
7

-
0

Ev
an

s
et

al
.

*

57
98

4.
05

5
1.
52

6
E2

V
4k

x4
k
cc
d

Sw
op

e
g

18
.4
9

0.
12

0
C
ou

lte
r
et

al
.

*

57
98

4.
05

6
1.
52

7
EF

O
SC

2
N
T
T

U
20

.1
0

0.
28

0
D
ro
ut

et
al
.

*

57
98

4.
05

8
1.
52

9
U
V
O
T

Sw
ift

W
1

>
21

.2
0

-
0

Ev
an

s
et

al
.

*

220



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

4.
22

9
1.
70

0
H
SC

Su
ba

ru
z

17
.7
4

0.
01

0
U
ts
um

ie
t
al
.

*

57
98

4.
23

1
1.
70

2
G
FC

Pa
n-
ST

A
R
R
S

i
17

.8
7

0.
06

0
Sm

ar
tt

et
al
.

*

57
98

4.
23

1
1.
70

2
G
FC

Pa
n-
ST

A
R
R
S

y
17

.5
8

0.
11

0
Sm

ar
tt

et
al
.

*

57
98

4.
23

1
1.
70

2
G
FC

Pa
n-
ST

A
R
R
S

z
17

.7
8

0.
07

0
Sm

ar
tt

et
al
.

*

57
98

4.
30

9
1.
78

0
Tr

ip
ol
5

B
&
C

g
18

.8
0

0.
07

0
U
ts
um

ie
t
al
.

*

57
98

4.
30

9
1.
78

0
Tr

ip
ol
5

B
&
C

i
18

.1
9

0.
06

0
U
ts
um

ie
t
al
.

*

57
98

4.
30

9
1.
78

0
Tr

ip
ol
5

B
&
C

r
18

.2
6

0.
04

0
U
ts
um

ie
t
al
.

*

57
98

4.
35

7
1.
82

8
Si
ni
st
ro

LC
O

1m
w

18
.6
9

0.
05

0
A
rc
av

ie
t
al
.

X

57
98

4.
35

9
1.
83

0
-

K
M
T
N
et
-S
SO

B
20

.1
0

0.
12

0
Tr

oj
a
et

al
.

*

57
98

4.
35

9
1.
83

0
-

K
M
T
N
et
-S
SO

V
18

.7
9

0.
05

0
Tr

oj
a
et

al
.

*

57
98

4.
36

1
1.
83

2
Si
ni
st
ro

LC
O

1m
i

18
.0
7

0.
13

-0
.3
0

A
rc
av

ie
t
al
.

*

57
98

4.
36

5
1.
83

6
Si
ni
st
ro

LC
O

1m
r

18
.3
4

0.
11

-0
.0
6

A
rc
av

ie
t
al
.

*

57
98

4.
36

9
1.
84

0
-

K
M
T
N
et
-S
SO

I
17

.9
8

0.
09

0
Tr

oj
a
et

al
.

*

57
98

4.
36

9
1.
84

0
-

K
M
T
N
et
-S
SO

R
18

.3
4

0.
05

0
Tr

oj
a
et

al
.

*

57
98

4.
36

9
1.
84

0
Si
ni
st
ro

LC
O

1m
g

19
.2
8

0.
17

-0
.2
5

A
rc
av

ie
t
al
.

*

57
98

4.
37

9
1.
85

0
Sk

ym
ap

pe
r

Sk
ym

ap
pe

r
i

17
.9
6

0.
07

0
A
nd

re
on

ie
t
al
.

*

221



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

4.
39

2
1.
86

3
Sk

ym
ap

pe
r

Sk
ym

ap
pe

r
i

18
.1
8

0.
08

0
A
nd

re
on

ie
t
al
.

*

57
98

4.
45

6
1.
92

7
Sk

ym
ap

pe
r

Sk
ym

ap
pe

r
r

18
.4
6

0.
17

0
A
nd

re
on

ie
t
al
.

*

57
98

4.
60

1
2.
07

2
U
V
O
T

Sw
ift

M
2

>
21

.9
7

-
0

Ev
an

s
et

al
.

*

57
98

4.
60

6
2.
07

7
U
V
O
T

Sw
ift

W
1

>
21

.7
9

-
0

Ev
an

s
et

al
.

*

57
98

4.
62

8
2.
09

9
U
V
O
T

Sw
ift

W
2

>
21

.9
8

-
0

Ev
an

s
et

al
.

*

57
98

4.
69

9
2.
17

0
SI
R
IU

S
IR

SF
H

17
.5
2

0.
04

0
U
ts
um

ie
t
al
.

*

57
98

4.
69

9
2.
17

0
SI
R
IU

S
IR

SF
J

17
.6
9

0.
04

0
U
ts
um

ie
t
al
.

*

57
98

4.
69

9
2.
17

0
SI
R
IU

S
IR

SF
K
s

17
.6
1

0.
04

0
U
ts
um

ie
t
al
.

*

57
98

4.
71

7
2.
18

8
M
A
ST

ER
SA

A
O

W
18

.4
0

0.
20

0
Li
pu

no
v
et

al
.

*

57
98

4.
71

9
2.
19

0
-

K
M
T
N
et
-S
A
A
O

B
20

.4
5

0.
09

0
Tr

oj
a
et

al
.

*

57
98

4.
71

9
2.
19

0
-

K
M
T
N
et
-S
A
A
O

I
18

.2
6

0.
12

0
Tr

oj
a
et

al
.

*

57
98

4.
71

9
2.
19

0
-

K
M
T
N
et
-S
A
A
O

R
18

.5
9

0.
05

0
Tr

oj
a
et

al
.

*

57
98

4.
71

9
2.
19

0
-

K
M
T
N
et
-S
A
A
O

V
19

.2
5

0.
05

0
Tr

oj
a
et

al
.

*

57
98

4.
73

8
2.
20

9
Si
ni
st
ro

LC
O

1m
r

18
.9
3

0.
10

-0
.1
0

A
rc
av

ie
t
al
.

*

57
98

4.
74

1
2.
21

2
Si
ni
st
ro

LC
O

1m
r

18
.9
0

0.
11

-0
.1
0

A
rc
av

ie
t
al
.

*

57
98

4.
74

5
2.
21

6
Si
ni
st
ro

LC
O

1m
i

18
.3
3

0.
12

-0
.4
1

A
rc
av

ie
t
al
.

*

222



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

4.
74

8
2.
21

9
Si
ni
st
ro

LC
O

1m
i

18
.2
6

0.
15

-0
.3
8

A
rc
av

ie
t
al
.

*

57
98

4.
74

9
2.
22

0
M
A
ST

ER
SA

A
O

R
18

.0
0

0.
30

0
Li
pu

no
v
et

al
.

*,
O

57
98

4.
75

1
2.
22

2
Si
ni
st
ro

LC
O

1m
V

19
.0
6

0.
07

0
A
rc
av

ie
t
al
.

*

57
98

4.
75

1
2.
22

2
Si
ni
st
ro

LC
O

1m
z

18
.2
5

0.
30

-0
.5
8

A
rc
av

ie
t
al
.

*

57
98

4.
75

7
2.
22

8
M
A
ST

ER
SA

A
O

B
>
19

.5
0

-
0

Li
pu

no
v
et

al
.

*

57
98

4.
75

8
2.
22

9
Si
ni
st
ro

LC
O

1m
g

19
.9
3

0.
21

-0
.5
1

A
rc
av

ie
t
al
.

*

57
98

4.
75

8
2.
22

9
Si
ni
st
ro

LC
O

1m
w

19
.1
1

0.
06

0
A
rc
av

ie
t
al
.

X

57
98

4.
76

1
2.
23

2
Si
ni
st
ro

LC
O

1m
g

19
.8
0

0.
20

-1
.4
4

A
rc
av

ie
t
al
.

*

57
98

4.
76

1
2.
23

2
Si
ni
st
ro

LC
O

1m
w

19
.1
1

0.
06

0
A
rc
av

ie
t
al
.

X

57
98

4.
76

1
2.
23

2
G
FC

Pa
n-
ST

A
R
R
S

r
18

.8
0

0.
07

0
Sm

ar
tt

et
al
.

*

57
98

4.
88

3
2.
35

4
U
V
O
T

Sw
ift

U
>
20

.4
1

-
0

Ev
an

s
et

al
.

*

57
98

4.
88

5
2.
35

6
U
V
O
T

Sw
ift

B
>
19

.3
1

-
0

Ev
an

s
et

al
.

*

57
98

4.
89

0
2.
36

1
U
V
O
T

Sw
ift

W
2

>
22

.1
6

-
0

Ev
an

s
et

al
.

*

57
98

4.
89

5
2.
36

6
U
V
O
T

Sw
ift

V
>
18

.7
2

-
0

Ev
an

s
et

al
.

*

57
98

4.
96

0
2.
43

1
R
O
S2

R
EM

I
18

.3
5

0.
10

0
Pi
an

et
al
.

*

57
98

4.
96

0
2.
43

1
R
O
S2

R
EM

g
20

.3
1

0.
28

0
Pi
an

et
al
.

*

223



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

4.
96

0
2.
43

1
R
O
S2

R
EM

r
19

.1
8

0.
10

0
Pi
an

et
al
.

*

57
98

4.
96

2
2.
43

3
Fo

ur
St
ar

M
ag

el
la
n

K
s

17
.5
5

0.
06

0
D
ro
ut

et
al
.

*

57
98

4.
96

3
2.
43

3
Fo

ur
St
ar

M
ag

el
la
n

J
17

.5
5

0.
01

0
D
ro
ut

et
al
.

*

57
98

4.
96

8
2.
43

9
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

H
17

.7
1

0.
09

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

4.
96

8
2.
43

9
Si
ni
st
ro

LC
O

1m
r

19
.1
0

0.
11

-0
.1
1

A
rc
av

ie
t
al
.

*

57
98

4.
96

9
2.
44

0
G
R
O
N
D

La
Si
lla

H
17

.6
4

0.
08

0
Sm

ar
tt

et
al
.

*

57
98

4.
96

9
2.
44

0
G
R
O
N
D

La
Si
lla

J
17

.7
3

0.
09

0
Sm

ar
tt

et
al
.

*

57
98

4.
96

9
2.
44

0
G
R
O
N
D

La
Si
lla

K
17

.6
6

0.
10

-0
.2
4

Sm
ar
tt

et
al
.

*

57
98

4.
96

9
2.
44

0
G
R
O
N
D

La
Si
lla

g
20

.1
9

0.
11

0
Sm

ar
tt

et
al
.

*

57
98

4.
96

9
2.
44

0
G
R
O
N
D

La
Si
lla

i
18

.5
8

0.
04

0
Sm

ar
tt

et
al
.

*

57
98

4.
96

9
2.
44

0
G
R
O
N
D

La
Si
lla

r
19

.1
3

0.
17

0
Sm

ar
tt

et
al
.

*

57
98

4.
96

9
2.
44

0
G
R
O
N
D

La
Si
lla

z
18

.3
3

0.
06

0
Sm

ar
tt

et
al
.

*

57
98

4.
96

9
2.
44

0
FO

R
S

V
LT

r
18

.7
7

0.
04

0
Ta

nv
ir

et
al
.

*

57
98

4.
97

1
2.
44

2
Fo

ur
St
ar

M
ag

el
la
n

H
17

.5
7

0.
01

0
D
ro
ut

et
al
.

*

57
98

4.
97

1
2.
44

2
EF

O
SC

2
N
T
T

V
19

.4
0

0.
11

0
D
ro
ut

et
al
.

*

57
98

4.
97

5
2.
44

6
D
EC

am
B
la
nc

o/
C
T
IO

Y
17

.7
7

0.
03

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

224



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

4.
97

5
2.
44

6
Si
ni
st
ro

LC
O

1m
i

18
.6
1

0.
15

-0
.5
6

A
rc
av

ie
t
al
.

*

57
98

4.
97

6
2.
44

7
D
EC

am
B
la
nc

o/
C
T
IO

z
18

.1
8

0.
03

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

4.
97

6
2.
44

7
A
lta

U
47

+
Pr

om
pt
5

r
19

.3
4

0.
08

0
Va

le
nt
ie

t
al
.

*

57
98

4.
97

6
2.
44

7
D
EC

am
B
la
nc

o/
C
T
IO

i
18

.3
8

0.
03

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

4.
97

7
2.
44

8
D
EC

am
B
la
nc

o/
C
T
IO

r
19

.0
3

0.
03

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

4.
97

8
2.
44

9
D
EC

am
B
la
nc

o/
C
T
IO

g
20

.2
1

0.
05

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

4.
97

8
2.
44

9
Si
ni
st
ro

LC
O

1m
i

18
.4
6

0.
10

-0
.4
7

A
rc
av

ie
t
al
.

*

57
98

4.
97

8
2.
44

9
A
lta

U
47

+
Pr

om
pt
5

r
19

.2
9

0.
12

0
Va

le
nt
ie

t
al
.

*

57
98

4.
97

9
2.
45

0
-

K
M
T
N
et
/C

T
IO

B
20

.8
2

0.
10

0
Tr

oj
a
et

al
.

*

57
98

4.
97

9
2.
45

0
-

K
M
T
N
et
/C

T
IO

R
18

.8
1

0.
05

0
Tr

oj
a
et

al
.

*

57
98

4.
97

9
2.
45

0
-

K
M
T
N
et
/C

T
IO

V
19

.5
1

0.
05

0
Tr

oj
a
et

al
.

*

57
98

4.
97

9
2.
45

0
V
IR

C
A
M

V
IS
TA

K
s

17
.6
7

0.
03

0
Ta

nv
ir

et
al
.

*

57
98

4.
98

0
2.
45

1
-

R
C
-1
00

0
r

19
.1
2

0.
06

0
Po

za
ne

nk
o
et

al
.

*

57
98

4.
98

0
2.
45

1
D
EC

am
B
la
nc

o/
C
T
IO

u
22

.2
6

0.
16

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

4.
98

0
2.
45

1
Fo

ur
St
ar

M
ag

el
la
n

J1
17

.5
2

0.
01

0
D
ro
ut

et
al
.

*

57
98

4.
98

0
2.
45

1
M
A
ST

ER
O
A
FA

W
18

.8
0

0.
20

0
Li
pu

no
v
et

al
.

*

225



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

4.
98

2
2.
45

3
Si
ni
st
ro

LC
O

1m
z

18
.1
9

0.
20

-0
.5
4

A
rc
av

ie
t
al
.

*

57
98

4.
98

5
2.
45

6
T
80

C
am

T
80

S
r

18
.7
8

0.
03

0
D
ía
z
et

al
.

*

57
98

4.
98

5
2.
45

6
T
80

C
am

T
80

S
r

19
.1
5

0.
06

0
D
ía
z
et

al
.

*

57
98

4.
98

8
2.
45

9
D
K
1.
5

V
LT

i
18

.3
7

0.
03

0
Ta

nv
ir

et
al
.

*

57
98

4.
98

8
2.
45

9
Si
ni
st
ro

LC
O

1m
w

19
.5
6

0.
07

0
A
rc
av

ie
t
al
.

X

57
98

4.
98

9
2.
46

0
-

K
M
T
N
et
/C

T
IO

I
18

.4
0

0.
13

0
Tr

oj
a
et

al
.

*

57
98

4.
98

9
2.
46

0
V
IR

C
A
M

V
IS
TA

Y
17

.6
6

0.
02

0
Ta

nv
ir

et
al
.

*

57
98

4.
99

0
2.
46

1
D
K
1.
5

D
K
1.
5

z
18

.0
1

0.
13

0
Ta

nv
ir

et
al
.

*

57
98

4.
99

2
2.
46

3
Si
ni
st
ro

LC
O

1m
w

19
.4
8

0.
07

0
A
rc
av

ie
t
al
.

X

57
98

4.
99

9
2.
47

0
V
IR

C
A
M

V
IS
TA

Y
17

.5
1

0.
02

0
Ta

nv
ir

et
al
.

*

57
98

5.
00

0
2.
47

1
IM

A
C
S

M
ag

el
la
n

V
19

.5
1

0.
08

0
D
ro
ut

et
al
.

*

57
98

5.
00

0
2.
47

1
IM

A
C
S

M
ag

el
la
n

i
18

.3
6

0.
02

0
D
ro
ut

et
al
.

*

57
98

5.
00

2
2.
47

3
Si
ni
st
ro

LC
O

1m
i

18
.4
6

0.
10

-0
.4
6

A
rc
av

ie
t
al
.

*

57
98

5.
00

6
2.
47

7
Si
ni
st
ro

LC
O

1m
i

18
.4
5

0.
11

-0
.4
6

A
rc
av

ie
t
al
.

*

57
98

5.
00

8
2.
47

9
1k

2k
C
C
D

V
IR

T
C

18
.9
0

0.
28

0.
0

A
nd

re
on

ie
t
al
.

X

57
98

5.
00

9
2.
48

0
IM

A
C
S

M
ag

el
la
n

r
18

.9
3

0.
02

0
D
ro
ut

et
al
.

*

226



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

5.
01

0
2.
48

1
Si
ni
st
ro

LC
O

1m
V

19
.3
3

0.
18

0
A
rc
av

ie
t
al
.

*

57
98

5.
01

6
2.
48

7
Si
ni
st
ro

LC
O

1m
w

19
.4
6

0.
06

0
A
rc
av

ie
t
al
.

X

57
98

5.
01

6
2.
48

7
EF

O
SC

2
N
T
T

V
19

.5
3

0.
12

0
D
ro
ut

et
al
.

*

57
98

5.
01

7
2.
48

8
Si
ni
st
ro

LC
O

1m
g

20
.1
5

0.
33

-0
.6
6

A
rc
av

ie
t
al
.

*

57
98

5.
01

9
2.
49

0
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

J
17

.7
6

0.
02

0
K
as
liw

al
et

al
.

*

57
98

5.
01

9
2.
49

0
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

17
.6
0

0.
04

0
K
as
liw

al
et

al
.

*

57
98

5.
01

9
2.
49

0
Si
ni
st
ro

LC
O

1m
w

19
.3
6

0.
05

0
A
rc
av

ie
t
al
.

X

57
98

5.
05

4
2.
52

5
EF

O
SC

2
N
T
T

V
19

.5
9

0.
20

0
D
ro
ut

et
al
.

*

57
98

5.
05

4
2.
52

5
EF

O
SC

2
N
T
T

U
>
20

.1
9

-
0

D
ro
ut

et
al
.

R

57
98

5.
05

5
2.
52

6
EF

O
SC

2
N
T
T

U
>
19

.6
0

-
0

Sm
ar
tt

et
al
.

R

57
98

5.
05

5
2.
52

6
EF

O
SC

2
N
T
T

U
>
19

.9
0

-
0

th
is

C
ha

pt
er

A
,*

57
98

5.
18

4
2.
65

5
U
V
O
T

Sw
ift

B
19

.9
3

0.
10

0
Ev

an
s
et

al
.

*,
O

57
98

5.
18

9
2.
66

0
U
V
O
T

Sw
ift

W
2

>
22

.2
1

-
0

Ev
an

s
et

al
.

*

57
98

5.
19

4
2.
66

5
U
V
O
T

Sw
ift

V
>
18

.6
7

-
0

Ev
an

s
et

al
.

*

57
98

5.
23

1
2.
70

2
G
FC

Pa
n-
ST

A
R
R
S

i
18

.4
4

0.
09

0
Sm

ar
tt

et
al
.

*

57
98

5.
23

1
2.
70

2
G
FC

Pa
n-
ST

A
R
R
S

y
18

.0
8

0.
11

0
Sm

ar
tt

et
al
.

*

227



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

5.
23

1
2.
70

2
G
FC

Pa
n-
ST

A
R
R
S

z
18

.3
1

0.
07

0
Sm

ar
tt

et
al
.

*

57
98

5.
35

7
2.
82

8
Si
ni
st
ro

LC
O

1m
r

19
.3
6

0.
09

-0
.1
5

A
rc
av

ie
t
al
.

*

57
98

5.
35

9
2.
83

0
-

K
M
T
N
et
-S
SO

I
18

.6
2

0.
10

0
Tr

oj
a
et

al
.

*

57
98

5.
35

9
2.
83

0
-

K
M
T
N
et
-S
SO

R
19

.1
0

0.
05

0
Tr

oj
a
et

al
.

*

57
98

5.
36

4
2.
83

5
Si
ni
st
ro

LC
O

1m
i

18
.5
3

0.
13

-0
.5
0

A
rc
av

ie
t
al
.

*

57
98

5.
36

7
2.
83

8
Si
ni
st
ro

LC
O

1m
i

18
.6
2

0.
14

-0
.5
7

A
rc
av

ie
t
al
.

*

57
98

5.
37

7
2.
84

8
Si
ni
st
ro

LC
O

1m
w

19
.6
8

0.
05

0
A
rc
av

ie
t
al
.

X

57
98

5.
38

1
2.
85

2
Si
ni
st
ro

LC
O

1m
w

19
.6
1

0.
05

0
A
rc
av

ie
t
al
.

X

57
98

5.
38

4
2.
85

5
Sk

ym
ap

pe
r

Sk
ym

ap
pe

r
r

19
.3
4

0.
08

0
A
nd

re
on

ie
t
al
.

*

57
98

4.
38

5
2.
85

6
Sk

ym
ap

pe
r

Sk
ym

ap
pe

r
g

20
.4
3

0.
11

0
A
nd

re
on

ie
t
al
.

*

57
98

5.
38

5
2.
85

6
Si
ni
st
ro

LC
O

1m
V

19
.7
7

0.
20

0
A
rc
av

ie
t
al
.

*

57
98

5.
39

1
2.
86

2
Si
ni
st
ro

LC
O

1m
i

18
.7
0

0.
18

-0
.6
3

A
rc
av

ie
t
al
.

*

57
98

5.
39

5
2.
86

6
Si
ni
st
ro

LC
O

1m
i

18
.6
3

0.
15

-0
.5
7

A
rc
av

ie
t
al
.

*

57
98

5.
39

7
2.
86

8
Sk

ym
ap

pe
r

Sk
ym

ap
pe

r
r

19
.3
7

0.
09

0
A
nd

re
on

ie
t
al
.

*

57
98

5.
39

8
2.
86

9
Sk

ym
ap

pe
r

Sk
ym

ap
pe

r
g

20
.2
1

0.
12

0
A
nd

re
on

ie
t
al
.

*

57
98

5.
40

5
2.
87

6
Si
ni
st
ro

LC
O

1m
w

19
.5
3

0.
07

0
A
rc
av

ie
t
al
.

X

228



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

5.
40

8
2.
87

9
Si
ni
st
ro

LC
O

1m
w

19
.5
6

0.
08

0
A
rc
av

ie
t
al
.

X

57
98

5.
47

9
2.
95

0
za
dk

o
za
dk

o
r

19
.1
8

0.
12

0
A
nd

re
on

ie
t
al
.

*

57
98

5.
53

1
3.
00

2
U
V
O
T

Sw
ift

V
>
18

.7
2

-
0

Ev
an

s
et

al
.

*

57
98

5.
55

0
3.
02

1
U
V
O
T

Sw
ift

W
1

>
22

.0
5

-
0

Ev
an

s
et

al
.

*

57
98

5.
55

4
3.
02

5
U
V
O
T

Sw
ift

B
>
19

.7
1

-
0

Ev
an

s
et

al
.

*

57
98

5.
55

8
3.
02

9
U
V
O
T

Sw
ift

W
2

>
22

.4
2

-
0

Ev
an

s
et

al
.

*

57
98

5.
67

2
3.
14

3
10

k1
0k

cc
d

A
ST

3-
2

i
>
18

.6
7

-
0

H
u
et

al
.

*

57
98

5.
69

9
3.
17

0
SI
R
IU

S
IR

SF
H

17
.5
7

0.
04

0
U
ts
um

ie
t
al
.

*

57
98

5.
69

9
3.
17

0
SI
R
IU

S
IR

SF
J

17
.7
8

0.
05

0
U
ts
um

ie
t
al
.

*

57
98

5.
69

9
3.
17

0
SI
R
IU

S
IR

SF
K
s

17
.5
5

0.
05

0
U
ts
um

ie
t
al
.

*

57
98

5.
71

5
3.
18

6
M
A
ST

ER
SA

A
O

W
>
19

.1
0

-
0

Li
pu

no
v
et

al
.

*

57
98

5.
71

9
3.
19

0
-

K
M
T
N
et
-S
A
A
O

I
18

.7
3

0.
11

0
Tr

oj
a
et

al
.

*

57
98

5.
71

9
3.
19

0
-

K
M
T
N
et
-S
A
A
O

R
19

.3
0

0.
05

0
Tr

oj
a
et

al
.

*

57
98

5.
72

6
3.
19

7
Si
ni
st
ro

LC
O

1m
r

19
.7
5

0.
12

-0
.2
2

A
rc
av

ie
t
al
.

*

57
98

5.
73

0
3.
20

1
M
A
ST

ER
SA

A
O

R
>
18

.6
0

-
0

Li
pu

no
v
et

al
.

*

57
98

5.
73

3
3.
20

4
Si
ni
st
ro

LC
O

1m
i

18
.8
4

0.
20

-0
.5
7

A
rc
av

ie
t
al
.

*

229



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

5.
73

6
3.
20

7
Si
ni
st
ro

LC
O

1m
i

18
.7
6

0.
15

-0
.6
8

A
rc
av

ie
t
al
.

*

57
98

5.
73

8
3.
20

9
M
A
ST

ER
SA

A
O

B
>
19

.3
0

-
0

Li
pu

no
v
et

al
.

*

57
98

5.
74

0
3.
21

1
Si
ni
st
ro

LC
O

1m
z

18
.4
2

0.
34

-0
.7
2

A
rc
av

ie
t
al
.

*

57
98

5.
74

3
3.
21

4
Si
ni
st
ro

LC
O

1m
V

19
.8
9

0.
19

0
A
rc
av

ie
t
al
.

*

57
98

5.
74

6
3.
21

7
Si
ni
st
ro

LC
O

1m
w

20
.1
3

0.
13

0
A
rc
av

ie
t
al
.

X

57
98

5.
75

0
3.
22

1
Si
ni
st
ro

LC
O

1m
w

19
.9
9

0.
06

0
A
rc
av

ie
t
al
.

X

57
98

5.
77

6
3.
24

7
-

1.
5B

r
19

.5
2

0.
13

0
Sm

ar
tt

et
al
.

*

57
98

5.
96

9
3.
44

0
EF

O
SC

2
N
T
T

V
20

.5
4

0.
20

0
D
ro
ut

et
al
.

*

57
98

5.
97

3
3.
44

4
Fo

ur
St
ar

M
ag

el
la
n

J
17

.8
5

0.
01

0
D
ro
ut

et
al
.

*

57
98

5.
97

3
3.
44

4
-

R
C
-1
00

0
r

20
.0
4

0.
08

0
Po

za
ne

nk
o
et

al
.

*

57
98

5.
97

4
3.
44

5
G
R
O
N
D

La
Si
lla

H
17

.7
2

0.
07

0
Sm

ar
tt

et
al
.

*

57
98

5.
97

4
3.
44

5
G
R
O
N
D

La
Si
lla

J
17

.9
5

0.
07

0
Sm

ar
tt

et
al
.

*

57
98

5.
97

4
3.
44

5
G
R
O
N
D

La
Si
lla

K
17

.6
3

0.
10

0
Sm

ar
tt

et
al
.

*

57
98

5.
97

4
3.
44

5
G
R
O
N
D

La
Si
lla

g
21

.1
3

0.
16

0
Sm

ar
tt

et
al
.

*

57
98

5.
97

4
3.
44

5
G
R
O
N
D

La
Si
lla

i
19

.0
3

0.
01

0
Sm

ar
tt

et
al
.

*

57
98

5.
97

4
3.
44

5
G
R
O
N
D

La
Si
lla

r
19

.8
1

0.
02

0
Sm

ar
tt

et
al
.

*

230



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

5.
97

4
3.
44

5
G
R
O
N
D

La
Si
lla

z
18

.7
4

0.
02

0
Sm

ar
tt

et
al
.

*

57
98

5.
97

9
3.
45

0
-

K
M
T
N
et
/C

T
IO

I
18

.8
7

0.
11

0
Tr

oj
a
et

al
.

*

57
98

5.
97

9
3.
45

0
-

K
M
T
N
et
/C

T
IO

R
19

.5
4

0.
06

0
Tr

oj
a
et

al
.

*

57
98

5.
97

9
3.
45

0
V
IR

C
A
M

V
IS
TA

K
s

17
.5
4

0.
02

0
Ta

nv
ir

et
al
.

*

57
98

5.
97

9
3.
45

0
FO

R
S

V
LT

r
19

.2
8

0.
01

0
Ta

nv
ir

et
al
.

*

57
98

5.
98

3
3.
45

4
D
EC

am
B
la
nc

o/
C
T
IO

Y
18

.0
5

0.
03

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

5.
98

4
3.
45

5
D
EC

am
B
la
nc

o/
C
T
IO

z
18

.5
6

0.
03

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

5.
98

4
3.
45

5
D
EC

am
B
la
nc

o/
C
T
IO

u
23

.0
6

0.
32

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

5.
98

4
3.
45

5
D
EC

am
B
la
nc

o/
C
T
IO

i
18

.7
3

0.
03

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

5.
98

5
3.
45

6
D
EC

am
B
la
nc

o/
C
T
IO

r
19

.2
9

0.
04

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

5.
98

6
3.
45

7
D
EC

am
B
la
nc

o/
C
T
IO

g
20

.9
3

0.
08

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

5.
98

9
3.
46

0
V
IR

C
A
M

V
IS
TA

Y
17

.7
6

0.
01

0
Ta

nv
ir

et
al
.

*

57
98

5.
98

9
3.
46

0
V
IR

C
A
M

V
IS
TA

Y
17

.8
6

0.
02

0
Ta

nv
ir

et
al
.

*

57
98

5.
98

9
3.
46

0
E2

V
4k

x4
k
cc
d

Sw
op

e
V

20
.5
2

0.
12

0
C
ou

lte
r
et

al
.

*

57
98

5.
99

5
3.
46

6
E2

V
4k

x4
k
cc
d

Sw
op

e
B

21
.7
2

0.
13

0
C
ou

lte
r
et

al
.

*

57
98

6.
00

0
3.
47

1
LD

SS
M
ag

el
la
n

z
18

.3
8

0.
05

0
D
ro
ut

et
al
.

*

231



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

6.
00

1
3.
47

2
E2

V
4k

x4
k
cc
d

Sw
op

e
g

20
.7
7

0.
05

0
C
ou

lte
r
et

al
.

*

57
98

6.
00

3
3.
47

4
A
lta

U
47

+
Pr

om
pt
5

r
20

.1
8

0.
10

0
Va

le
nt
ie

t
al
.

*

57
98

6.
00

5
3.
47

6
E2

V
4k

x4
k
cc
d

Sw
op

e
i

18
.9
2

0.
05

0
C
ou

lte
r
et

al
.

*

57
98

6.
00

8
3.
47

9
E2

V
4k

x4
k
cc
d

Sw
op

e
r

19
.8
2

0.
09

0
C
ou

lte
r
et

al
.

*

57
98

6.
01

6
3.
48

7
EF

O
SC

2
N
T
T

V
20

.5
5

0.
15

0
D
ro
ut

et
al
.

*

57
98

6.
02

0
3.
49

1
X
S

V
LT

g
20

.9
4

0.
06

0
Pi
an

et
al
.

*

57
98

6.
02

0
3.
49

1
X
S

V
LT

r
19

.7
4

0.
02

0
Pi
an

et
al
.

*

57
98

6.
02

0
3.
49

1
X
S

V
LT

z
18

.3
0

0.
02

0
Pi
an

et
al
.

*

57
98

6.
02

9
3.
50

0
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

H
17

.7
2

0.
04

0
K
as
liw

al
et

al
.

R

57
98

6.
02

9
3.
50

0
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

H
17

.6
9

0.
02

0
Tr

oj
a
et

al
.

R

57
98

6.
02

9
3.
50

0
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

H
17

.7
0

0.
02

0
th
is

C
ha

pt
er

*,
A

57
98

6.
02

9
3.
50

0
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

J
17

.9
3

0.
06

0
K
as
liw

al
et

al
.

R

57
98

6.
02

9
3.
50

0
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

J
17

.9
4

0.
02

0
Tr

oj
a
et

al
.

R

57
98

6.
02

9
3.
50

0
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

J
17

.9
4

0.
02

0
th
is

C
ha

pt
er

*,
A

57
98

6.
02

9
3.
50

0
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

17
.6
1

0.
06

0
K
as
liw

al
et

al
.

R

57
98

6.
02

9
3.
50

0
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

17
.6
2

0.
02

0
Tr

oj
a
et

al
.

R

232



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

6.
02

9
3.
50

0
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

17
.6
1

0.
02

0
th
is

C
ha

pt
er

*,
A

57
98

6.
03

1
3.
50

2
M
A
ST

ER
O
A
FA

W
>
19

.8
0

-
0

Li
pu

no
v
et

al
.

*

57
98

6.
03

9
3.
51

0
G
M
O
S

G
em

in
i-S

g
20

.9
0

0.
01

0
Tr

oj
a
et

al
.

*

57
98

6.
03

9
3.
51

0
G
M
O
S

G
em

in
i-S

i
18

.9
3

0.
01

0
Tr

oj
a
et

al
.

*

57
98

6.
03

9
3.
51

0
G
M
O
S

G
em

in
i-S

r
19

.6
6

0.
01

0
Tr

oj
a
et

al
.

*

57
98

6.
04

9
3.
52

0
G
M
O
S

G
em

in
i-S

z
18

.4
6

0.
01

0
Tr

oj
a
et

al
.

*

57
98

6.
05

3
3.
52

4
EF

O
SC

2
N
T
T

V
20

.6
8

0.
31

0
D
ro
ut

et
al
.

*

57
98

6.
18

0
3.
65

1
U
V
O
T

Sw
ift

B
>
19

.3
7

-
0

Ev
an

s
et

al
.

*

57
98

6.
19

1
3.
66

2
U
V
O
T

Sw
ift

V
>
18

.9
5

-
0

Ev
an

s
et

al
.

*

57
98

6.
23

6
3.
70

7
G
FC

Pa
n-
ST

A
R
R
S

i
>
17

.8
0

-
0

Sm
ar
tt

et
al
.

*

57
98

6.
23

6
3.
70

7
G
FC

Pa
n-
ST

A
R
R
S

y
>
17

.7
0

-
0

Sm
ar
tt

et
al
.

*

57
98

6.
23

6
3.
70

7
G
FC

Pa
n-
ST

A
R
R
S

z
18

.1
0

0.
30

0
Sm

ar
tt

et
al
.

*,
O

57
98

6.
35

9
3.
83

0
-

K
M
T
N
et
-S
SO

I
19

.0
0

0.
10

0
Tr

oj
a
et

al
.

*

57
98

6.
35

9
3.
83

0
-

K
M
T
N
et
-S
SO

R
19

.6
4

0.
09

0
Tr

oj
a
et

al
.

*

57
98

6.
49

4
3.
96

5
za
dk

o
za
dk

o
r

19
.8
6

0.
21

0.
0

A
nd

re
on

ie
t
al
.

*

57
98

6.
65

1
4.
12

2
10

k1
0k

cc
d

A
ST

3-
2

i
>
18

.3
8

-
0

H
u
et

al
.

*

233



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

6.
70

9
4.
18

0
SI
R
IU

S
IR

SF
H

17
.7
7

0.
04

0
U
ts
um

ie
t
al
.

*

57
98

6.
70

9
4.
18

0
SI
R
IU

S
IR

SF
J

18
.1
3

0.
12

0
U
ts
um

ie
t
al
.

*

57
98

6.
70

9
4.
18

0
SI
R
IU

S
IR

SF
K
s

17
.5
7

0.
07

0
U
ts
um

ie
t
al
.

*

57
98

6.
71

5
4.
18

6
Si
ni
st
ro

LC
O

1m
r

20
.3
0

0.
31

-0
.3
9

A
rc
av

ie
t
al
.

*

57
98

6.
71

8
4.
18

9
M
A
ST

ER
SA

A
O

W
>
20

.0
0

-
0

Li
pu

no
v
et

al
.

*

57
98

6.
71

9
4.
19

0
-

K
M
T
N
et
-S
A
A
O

I
19

.2
3

0.
10

0
Tr

oj
a
et

al
.

*

57
98

6.
71

9
4.
19

0
-

K
M
T
N
et
-S
A
A
O

R
19

.9
4

0.
06

0
Tr

oj
a
et

al
.

*

57
98

6.
75

8
4.
22

9
M
A
ST

ER
SA

A
O

R
>
19

.5
0

-
0

Li
pu

no
v
et

al
.

*

57
98

6.
81

0
4.
28

1
M
A
ST

ER
SA

A
O

B
>
19

.0
0

-
0

Li
pu

no
v
et

al
.

*

57
98

6.
96

9
4.
44

0
-

K
M
T
N
et
/C

T
IO

I
19

.2
2

0.
10

0
Tr

oj
a
et

al
.

*

57
98

6.
96

9
4.
44

0
-

K
M
T
N
et
/C

T
IO

R
20

.1
2

0.
08

0
Tr

oj
a
et

al
.

*

57
98

6.
96

9
4.
44

0
Si
ni
st
ro

LC
O

1m
r

20
.2
5

0.
28

-0
.3
7

A
rc
av

ie
t
al
.

*

57
98

6.
97

0
4.
44

1
FO

R
S2

V
LT

R
20

.2
4

0.
06

0
Pi
an

et
al
.

*

57
98

6.
97

3
4.
44

4
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

H
17

.9
2

0.
10

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

6.
97

4
4.
44

5
G
R
O
N
D

La
Si
lla

H
18

.0
2

0.
10

0
Sm

ar
tt

et
al
.

*

57
98

6.
97

4
4.
44

5
G
R
O
N
D

La
Si
lla

J
18

.1
7

0.
07

0
Sm

ar
tt

et
al
.

*

234



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

6.
97

4
4.
44

5
G
R
O
N
D

La
Si
lla

K
17

.5
3

0.
11

-0
.2
1

Sm
ar
tt

et
al
.

*

57
98

6.
97

4
4.
44

5
G
R
O
N
D

La
Si
lla

g
21

.5
8

0.
22

0
Sm

ar
tt

et
al
.

*

57
98

6.
97

4
4.
44

5
G
R
O
N
D

La
Si
lla

i
19

.5
1

0.
04

0
Sm

ar
tt

et
al
.

*

57
98

6.
97

4
4.
44

5
G
R
O
N
D

La
Si
lla

r
20

.5
3

0.
05

0
Sm

ar
tt

et
al
.

*

57
98

6.
97

4
4.
44

5
G
R
O
N
D

La
Si
lla

z
19

.0
7

0.
06

0
Sm

ar
tt

et
al
.

*

57
98

6.
97

5
4.
44

6
D
EC

am
B
la
nc

o/
C
T
IO

Y
18

.3
5

0.
03

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

6.
97

8
4.
44

9
D
EC

am
B
la
nc

o/
C
T
IO

z
18

.8
1

0.
03

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

6.
97

9
4.
45

0
V
IR

C
A
M

V
IS
TA

K
s

17
.6
0

0.
02

0
Ta

nv
ir

et
al
.

*

57
98

6.
98

0
4.
45

1
V
IM

O
S

V
LT

z
18

.7
3

0.
01

0
Ta

nv
ir

et
al
.

*

57
98

6.
98

0
4.
45

1
D
EC

am
B
la
nc

o/
C
T
IO

i
19

.2
2

0.
03

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

6.
98

1
4.
45

2
-

R
C
-1
00

0
R

20
.1
4

0.
12

0
Po

za
ne

nk
o
et

al
.

*

57
98

6.
98

4
4.
45

5
D
EC

am
B
la
nc

o/
C
T
IO

r
20

.2
5

0.
05

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

6.
98

8
4.
45

9
E2

V
4k

x4
k
cc
d

Sw
op

e
i

19
.3
9

0.
04

0
C
ou

lte
r
et

al
.

*

57
98

6.
98

9
4.
46

0
V
IR

C
A
M

V
IS
TA

Y
18

.0
7

0.
02

0
Ta

nv
ir

et
al
.

*

57
98

6.
98

9
4.
46

0
V
IR

C
A
M

V
IS
TA

Y
18

.0
8

0.
03

0
Ta

nv
ir

et
al
.

*

57
98

6.
98

9
4.
46

0
V
IM

O
S

V
LT

r
19

.8
6

0.
01

0
Ta

nv
ir

et
al
.

*,
O

235



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

6.
99

1
4.
46

2
D
EC

am
B
la
nc

o/
C
T
IO

g
21

.7
3

0.
11

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

6.
99

2
4.
46

3
Si
ni
st
ro

LC
O

1m
w

20
.6
4

0.
09

0
A
rc
av

ie
t
al
.

X

57
98

6.
99

7
4.
46

7
E2

V
4k

x4
k
cc
d

Sw
op

e
r

20
.5
8

0.
12

0
C
ou

lte
r
et

al
.

*

57
98

7.
00

0
4.
47

1
LD

SS
M
ag

el
la
n

V
21

.8
5

0.
22

0
D
ro
ut

et
al
.

*,
O

57
98

7.
00

0
4.
47

1
FO

R
S2

V
LT

z
18

.9
3

0.
03

0
Pi
an

et
al
.

*

57
98

7.
00

4
4.
47

5
A
lta

U
47

+
Pr

om
pt
5

r
20

.9
2

0.
12

0
Va

le
nt
ie

t
al
.

*,
O

57
98

7.
00

4
4.
47

5
E2

V
4k

x4
k
cc
d

Sw
op

e
g

21
.7
5

0.
10

0
C
ou

lte
r
et

al
.

*

57
98

7.
01

0
4.
48

1
FO

R
S2

V
LT

I
19

.2
8

0.
06

0
Pi
an

et
al
.

*

57
98

7.
01

9
4.
49

0
LD

SS
M
ag

el
la
n

g
21

.7
8

0.
06

0
D
ro
ut

et
al
.

*

57
98

7.
02

0
4.
49

1
FO

R
S2

V
LT

B
22

.7
3

0.
13

0
Pi
an

et
al
.

*

57
98

7.
02

0
4.
49

1
FO

R
S2

V
LT

V
21

.0
8

0.
05

0
Pi
an

et
al
.

*

57
98

7.
02

2
4.
49

3
LD

SS
M
ag

el
la
n

B
22

.5
2

0.
14

0
D
ro
ut

et
al
.

*

57
98

7.
03

9
4.
51

0
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

17
.7
2

0.
09

0
K
as
liw

al
et

al
.

*

57
98

7.
04

9
4.
52

0
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

H
18

.0
2

0.
07

0
K
as
liw

al
et

al
.

*

57
98

7.
04

9
4.
52

0
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

J
18

.1
5

0.
06

0
K
as
liw

al
et

al
.

*

57
98

7.
23

6
4.
70

7
G
FC

Pa
n-
ST

A
R
R
S

z
>
18

.8
0

-
0

Sm
ar
tt

et
al
.

*

236



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

7.
31

9
4.
79

0
W

FC
3/

IR
H
ST

F1
10

W
18

.2
6

0.
01

0
Ta

nv
ir

et
al
.

R

57
98

7.
31

9
4.
79

0
W

FC
3/

IR
H
ST

F1
10

W
18

.4
3

0.
03

0
Tr

oj
a
et

al
.

R
,*

57
98

7.
35

8
4.
82

9
Si
ni
st
ro

LC
O

1m
r

20
.6
9

0.
33

-0
.6
2

A
rc
av

ie
t
al
.

*

57
98

7.
35

9
4.
83

0
-

K
M
T
N
et
-S
SO

I
19

.5
2

0.
13

0
Tr

oj
a
et

al
.

*

57
98

7.
35

9
4.
83

0
-

K
M
T
N
et
-S
SO

R
20

.3
3

0.
05

0
Tr

oj
a
et

al
.

*

57
98

7.
38

2
4.
85

3
Sk

ym
ap

pe
r

Sk
ym

ap
pe

r
r

>
20

.5
1

-
0

A
nd

re
on

ie
t
al
.

*

57
98

7.
38

3
4.
85

4
Sk

ym
ap

pe
r

Sk
ym

ap
pe

r
g

>
20

.6
0

-
0

A
nd

re
on

ie
t
al
.

*

57
98

7.
39

4
4.
86

5
Sk

ym
ap

pe
r

Sk
ym

ap
pe

r
r

>
20

.4
7

-
0

A
nd

re
on

ie
t
al
.

*

57
98

7.
39

5
4.
86

6
Sk

ym
ap

pe
r

Sk
ym

ap
pe

r
g

>
20

.6
6

-
0

A
nd

re
on

ie
t
al
.

*

57
98

7.
45

2
4.
92

3
W

FC
3/

IR
H
ST

F1
60

W
18

.0
6

0.
03

0
Ta

nv
ir

et
al
.

R

57
98

7.
45

2
4.
92

3
W

FC
3/

IR
H
ST

F1
60

W
18

.1
2

0.
03

0
Tr

oj
a
et

al
.

R

57
98

7.
45

2
4.
92

3
W

FC
3/

IR
H
ST

F1
60

W
18

.0
9

0.
03

0
th
is

C
ha

pt
er

*,
A

57
98

7.
47

5
4.
94

6
U
V
O
T

Sw
ift

U
>
20

.8
5

-
0

Ev
an

s
et

al
.

*

57
98

7.
48

2
4.
95

3
U
V
O
T

Sw
ift

M
2

>
22

.4
7

-
0

Ev
an

s
et

al
.

*

57
98

7.
49

0
4.
96

1
za
dk

o
za
dk

o
r

20
.2
3

0.
23

0.
0

A
nd

re
on

ie
t
al
.

*,
O

57
98

7.
70

9
5.
18

0
SI
R
IU

S
IR

SF
H

17
.9
4

0.
05

0
U
ts
um

ie
t
al
.

*

237



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

7.
70

9
5.
18

0
SI
R
IU

S
IR

SF
J

18
.3
1

0.
06

0
U
ts
um

ie
t
al
.

*

57
98

7.
70

9
5.
18

0
SI
R
IU

S
IR

SF
K
s

17
.6
8

0.
04

0
U
ts
um

ie
t
al
.

*

57
98

7.
71

9
5.
19

0
-

K
M
T
N
et
-S
A
A
O

I
19

.6
8

0.
10

0
Tr

oj
a
et

al
.

*

57
98

7.
71

9
5.
19

0
-

K
M
T
N
et
-S
A
A
O

R
20

.6
4

0.
07

0
Tr

oj
a
et

al
.

*

57
98

7.
84

9
5.
32

0
W

FC
3/

U
V
IS

H
ST

F3
36

W
24

.9
7

0.
11

0
K
as
liw

al
et

al
.

*

57
98

7.
84

9
5.
32

0
W

FC
3/

U
V
IS

H
ST

F3
36

W
25

.0
5

0.
11

0
K
as
liw

al
et

al
.

*

57
98

7.
87

9
5.
35

0
W

FC
3/

U
V
IS

H
ST

F3
36

W
25

.1
8

0.
11

0
K
as
liw

al
et

al
.

*

57
98

7.
96

9
5.
44

0
FO

R
S

V
LT

r
20

.3
9

0.
03

0
Ta

nv
ir

et
al
.

*

57
98

7.
97

1
5.
44

2
LD

SS
M
ag

el
la
n

z
19

.0
8

0.
12

0
D
ro
ut

et
al
.

*

57
98

7.
97

5
5.
44

6
D
EC

am
B
la
nc

o/
C
T
IO

Y
18

.8
3

0.
18

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

7.
97

7
5.
44

8
D
EC

am
B
la
nc

o/
C
T
IO

z
19

.1
7

0.
11

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

7.
97

9
5.
45

0
D
EC

am
B
la
nc

o/
C
T
IO

i
19

.5
5

0.
18

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

7.
98

3
5.
45

4
D
EC

am
B
la
nc

o/
C
T
IO

r
20

.7
9

0.
24

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

7.
99

0
5.
46

1
O
m
eg
aC

am
V
ST

g
22

.5
1

0.
12

0
Pi
an

et
al
.

*

57
98

7.
99

0
5.
46

1
D
EC

am
B
la
nc

o/
C
T
IO

g
22

.0
3

0.
42

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

8.
00

2
5.
47

3
E2

V
4k

x4
k
cc
d

Sw
op

e
i

20
.2
7

0.
12

0
C
ou

lte
r
et

al
.

*,
O

238



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

8.
02

0
5.
49

1
X
S

V
LT

r
20

.7
4

0.
03

0
Pi
an

et
al
.

*

57
98

8.
02

0
5.
49

1
X
S

V
LT

z
19

.1
6

0.
03

0
Pi
an

et
al
.

*

57
98

8.
23

4
5.
70

5
G
FC

Pa
n-
ST

A
R
R
S

y
18

.9
5

0.
44

0
Sm

ar
tt

et
al
.

*

57
98

8.
35

9
5.
83

0
-

K
M
T
N
et
-S
SO

R
20

.9
5

0.
07

0
Tr

oj
a
et

al
.

*

57
98

8.
36

9
5.
84

0
-

K
M
T
N
et
-S
SO

I
19

.9
9

0.
14

0
Tr

oj
a
et

al
.

*

57
98

8.
43

8
5.
90

9
U
V
O
T

Sw
ift

B
>
19

.5
0

-
0

Ev
an

s
et

al
.

*

57
98

8.
44

5
5.
91

6
U
V
O
T

Sw
ift

V
>
18

.5
4

-
0

Ev
an

s
et

al
.

*

57
98

8.
48

1
5.
95

2
za
dk

o
za
dk

o
r

>
20

.6
0

-
0.
0

A
nd

re
on

ie
t
al
.

*

57
98

8.
72

9
6.
20

0
-

K
M
T
N
et
-S
A
A
O

I
20

.3
1

0.
11

0
Tr

oj
a
et

al
.

*

57
98

8.
72

9
6.
20

0
SI
R
IU

S
IR

SF
H

18
.1
2

0.
04

0
U
ts
um

ie
t
al
.

*

57
98

8.
72

9
6.
20

0
SI
R
IU

S
IR

SF
H

18
.6
0

0.
18

0
K
as
liw

al
et

al
.

*

57
98

8.
72

9
6.
20

0
SI
R
IU

S
IR

SF
J

18
.3
6

0.
05

0
U
ts
um

ie
t
al
.

*

57
98

8.
72

9
6.
20

0
SI
R
IU

S
IR

SF
J

18
.6
5

0.
19

0
K
as
liw

al
et

al
.

*

57
98

8.
72

9
6.
20

0
SI
R
IU

S
IR

SF
K
s

17
.6
9

0.
03

0
U
ts
um

ie
t
al
.

*

57
98

8.
72

9
6.
20

0
SI
R
IU

S
IR

SF
K
s

18
.0
1

0.
10

0
K
as
liw

al
et

al
.

*

57
98

8.
97

0
6.
44

1
O
m
eg
aC

am
V
ST

i
20

.3
3

0.
09

0
Pi
an

et
al
.

*

239



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

8.
97

4
6.
44

5
D
EC

am
B
la
nc

o/
C
T
IO

Y
19

.0
6

0.
31

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

8.
97

9
6.
45

0
V
IS
IR

V
LT

J8
.9

>
8.
26

-
0

K
as
liw

al
et

al
.

*

57
98

8.
98

0
6.
45

1
FO

R
S2

V
LT

I
20

.1
4

0.
07

0
Pi
an

et
al
.

*

57
98

8.
98

0
6.
45

1
O
m
eg
aC

am
V
ST

r
21

.3
1

0.
07

0
Pi
an

et
al
.

*

57
98

8.
98

0
6.
45

1
FO

R
S2

V
LT

z
19

.6
3

0.
04

0
Pi
an

et
al
.

*

57
98

8.
98

5
6.
45

6
D
EC

am
B
la
nc

o/
C
T
IO

r
20

.9
5

0.
35

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

8.
98

9
6.
46

0
V
IR

C
A
M

V
IS
TA

K
s

17
.8
4

0.
03

0
Ta

nv
ir

et
al
.

*

57
98

8.
99

6
6.
46

7
D
EC

am
B
la
nc

o/
C
T
IO

g
22

.0
8

0.
52

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

8.
99

9
6.
47

0
V
IR

C
A
M

V
IS
TA

Y
18

.7
1

0.
04

0
Ta

nv
ir

et
al
.

*

57
98

8.
99

9
6.
47

0
V
IR

C
A
M

V
IS
TA

Y
18

.7
4

0.
04

0
Ta

nv
ir

et
al
.

*

57
98

9.
00

0
6.
47

1
FO

R
S2

V
LT

R
21

.2
7

0.
11

0
Pi
an

et
al
.

*

57
98

9.
02

0
6.
49

1
FO

R
S2

V
LT

B
23

.8
1

0.
25

0
Pi
an

et
al
.

*

57
98

9.
02

0
6.
49

1
FO

R
S2

V
LT

V
22

.3
6

0.
16

0
Pi
an

et
al
.

*

57
98

9.
23

0
6.
70

1
G
FC

Pa
n-
ST

A
R
R
S

y
19

.3
1

0.
43

0
Sm

ar
tt

et
al
.

*

57
98

9.
23

4
6.
70

5
LR

IS
K
ec
k-
I

I
20

.8
3

0.
09

0
D
ro
ut

et
al
.

*

57
98

9.
23

5
6.
70

6
LR

IS
K
ec
k-
I

g
>
22

.2
0

-
0

D
ro
ut

et
al
.

*

240



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

9.
36

9
6.
84

0
-

K
M
T
N
et
-S
SO

I
20

.3
9

0.
12

0
Tr

oj
a
et

al
.

*

57
98

9.
69

9
7.
17

0
SI
R
IU

S
IR

SF
H

18
.5
1

0.
05

0
U
ts
um

ie
t
al
.

*

57
98

9.
69

9
7.
17

0
SI
R
IU

S
IR

SF
H

18
.5
3

0.
17

0
K
as
liw

al
et

al
.

*

57
98

9.
69

9
7.
17

0
SI
R
IU

S
IR

SF
J

18
.9
5

0.
32

0
K
as
liw

al
et

al
.

*

57
98

9.
69

9
7.
17

0
SI
R
IU

S
IR

SF
J

18
.9
8

0.
08

0
U
ts
um

ie
t
al
.

*

57
98

9.
69

9
7.
17

0
SI
R
IU

S
IR

SF
K
s

17
.9
5

0.
04

0
U
ts
um

ie
t
al
.

*

57
98

9.
69

9
7.
17

0
SI
R
IU

S
IR

SF
K
s

18
.0
2

0.
12

0
K
as
liw

al
et

al
.

*

57
98

9.
72

9
7.
20

0
-

K
M
T
N
et
-S
A
A
O

I
20

.8
9

0.
13

0
Tr

oj
a
et

al
.

*

57
98

9.
76

9
7.
24

0
W

FC
3/

IR
H
ST

F1
10

W
19

.0
6

0.
01

0
Ta

nv
ir

et
al
.

R

57
98

9.
76

9
7.
24

0
W

FC
3/

IR
H
ST

F1
10

W
19

.3
7

0.
04

0
Tr

oj
a
et

al
.

R
,*

57
98

9.
96

6
7.
43

7
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

H
18

.7
9

0.
14

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

9.
96

9
7.
44

0
A
N
D
IC

A
M

1.
3m

/C
T
IO

K
18

.0
6

0.
17

0
K
as
liw

al
et

al
.

*

57
98

9.
97

0
7.
44

1
LD

SS
M
ag

el
la
n

z
19

.8
7

0.
07

0
D
ro
ut

et
al
.

*

57
98

9.
97

3
7.
44

4
D
EC

am
B
la
nc

o/
C
T
IO

Y
19

.4
4

0.
05

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

9.
97

9
7.
45

0
V
IR

C
A
M

V
IS
TA

K
s

17
.9
5

0.
04

0
Ta

nv
ir

et
al
.

*

57
98

9.
97

9
7.
45

0
D
EC

am
B
la
nc

o/
C
T
IO

z
19

.8
9

0.
05

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

241



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
98

9.
98

2
7.
45

3
D
EC

am
B
la
nc

o/
C
T
IO

i
20

.5
4

0.
05

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

9.
98

3
7.
45

4
G
R
O
N
D

La
Si
lla

H
18

.7
4

0.
06

0
Sm

ar
tt

et
al
.

*

57
98

9.
98

3
7.
45

4
G
R
O
N
D

La
Si
lla

J
19

.2
6

0.
28

0
Sm

ar
tt

et
al
.

*

57
98

9.
98

3
7.
45

4
G
R
O
N
D

La
Si
lla

K
18

.0
4

0.
12

-0
.3
6

Sm
ar
tt

et
al
.

*

57
98

9.
98

3
7.
45

4
G
R
O
N
D

La
Si
lla

g
>
20

.5
0

-
0

Sm
ar
tt

et
al
.

*

57
98

9.
98

3
7.
45

4
G
R
O
N
D

La
Si
lla

i
>
20

.5
0

-
0

Sm
ar
tt

et
al
.

*

57
98

9.
98

3
7.
45

4
G
R
O
N
D

La
Si
lla

r
>
20

.6
0

-
0

Sm
ar
tt

et
al
.

*

57
98

9.
98

3
7.
45

4
G
R
O
N
D

La
Si
lla

z
>
19

.7
0

-
0

Sm
ar
tt

et
al
.

*

57
98

9.
98

7
7.
45

8
D
EC

am
B
la
nc

o/
C
T
IO

r
21

.2
3

0.
11

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

9.
98

9
7.
46

0
V
IR

C
A
M

V
IS
TA

Y
19

.0
7

0.
08

0
Ta

nv
ir

et
al
.

*

57
98

9.
99

0
7.
46

1
E2

V
4k

x4
k
cc
d

Sw
op

e
i

21
.4
2

0.
18

0
C
ou

lte
r
et

al
.

*,
O

57
98

9.
99

6
7.
46

7
-

R
C
-1
00

0
r

>
21

.0
0

-
0

Po
za
ne

nk
o
et

al
.

*

57
98

9.
99

7
7.
46

8
D
EC

am
B
la
nc

o/
C
T
IO

g
23

.2
8

0.
34

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
98

9.
99

9
7.
47

0
V
IR

C
A
M

V
IS
TA

Y
19

.2
4

0.
07

0
Ta

nv
ir

et
al
.

*

57
99

0.
00

4
7.
47

5
A
lta

U
47

+
Pr

om
pt
5

r
>
20

.8
9

-
0

Va
le
nt
ie

t
al
.

*

57
99

0.
03

0
7.
50

1
LD

SS
M
ag

el
la
n

B
23

.8
5

0.
31

0
D
ro
ut

et
al
.

*

242



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
99

0.
03

9
7.
51

0
G
M
O
S

G
em

in
i-S

i
20

.9
1

0.
03

0
Tr

oj
a
et

al
.

*

57
99

0.
03

9
7.
51

0
G
M
O
S

G
em

in
i-S

r
21

.7
4

0.
04

0
Tr

oj
a
et

al
.

*

57
99

0.
22

9
7.
70

0
H
SC

Su
ba

ru
z

20
.2
1

0.
04

0
U
ts
um

ie
t
al
.

*

57
99

0.
23

0
7.
70

1
G
FC

Pa
n-
ST

A
R
R
S

y
>
18

.9
0

-
0

Sm
ar
tt

et
al
.

*

57
99

0.
58

5
8.
05

6
W

FC
3/

U
V
IS

H
ST

F6
06

W
22

.4
9

0.
17

0
Tr

oj
a
et

al
.

*

57
99

0.
64

5
8.
11

6
W

FC
3/

U
V
IS

H
ST

F4
75

W
23

.1
4

0.
02

0
Ta

nv
ir

et
al
.

R

57
99

0.
64

5
8.
11

6
W

FC
3/

U
V
IS

H
ST

F4
75

W
23

.6
6

0.
42

0
Tr

oj
a
et

al
.

R

57
99

0.
64

5
8.
11

6
W

FC
3/

U
V
IS

H
ST

F4
75

W
23

.1
4

0.
02

0
th
is

C
ha

pt
er

*,
A

57
99

0.
96

8
8.
43

9
G
R
O
N
D

La
Si
lla

H
19

.2
6

0.
26

0
Sm

ar
tt

et
al
.

*

57
99

0.
96

8
8.
43

9
G
R
O
N
D

La
Si
lla

J
19

.6
4

0.
11

0
Sm

ar
tt

et
al
.

*

57
99

0.
96

8
8.
43

9
G
R
O
N
D

La
Si
lla

K
18

.3
5

0.
16

-0
.5
1

Sm
ar
tt

et
al
.

*

57
99

0.
96

8
8.
43

9
G
R
O
N
D

La
Si
lla

g
>
22

.2
0

-
0

Sm
ar
tt

et
al
.

*

57
99

0.
96

8
8.
43

9
G
R
O
N
D

La
Si
lla

i
>
21

.1
0

-
0

Sm
ar
tt

et
al
.

*

57
99

0.
96

8
8.
43

9
G
R
O
N
D

La
Si
lla

r
>
21

.7
0

-
0

Sm
ar
tt

et
al
.

*

57
99

0.
96

8
8.
43

9
G
R
O
N
D

La
Si
lla

z
>
21

.5
0

-
0

Sm
ar
tt

et
al
.

*

57
99

0.
97

2
8.
44

3
V
IM

O
S

V
LT

z
20

.2
8

0.
03

0
Ta

nv
ir

et
al
.

*

243



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
99

0.
97

2
8.
44

3
LD

SS
M
ag

el
la
n

z
20

.4
0

0.
07

0
D
ro
ut

et
al
.

*

57
99

0.
97

3
8.
44

4
D
EC

am
B
la
nc

o/
C
T
IO

Y
20

.0
6

0.
07

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
99

0.
97

9
8.
45

0
A
N
D
IC

A
M

1.
3m

/C
T
IO

K
18

.4
4

0.
18

0
K
as
liw

al
et

al
.

*

57
99

0.
97

9
8.
45

0
V
IR

C
A
M

V
IS
TA

K
s

18
.2
5

0.
03

0
Ta

nv
ir

et
al
.

*

57
99

0.
97

9
8.
45

0
V
IR

C
A
M

V
IS
TA

Y
19

.6
9

0.
09

0
Ta

nv
ir

et
al
.

*

57
99

0.
98

0
8.
45

1
EF

O
SC

2
N
T
T

g
>
21

.0
0

-
0

Sm
ar
tt

et
al
.

*

57
99

0.
98

0
8.
45

1
EF

O
SC

2
N
T
T

i
>
21

.1
0

-
0

Sm
ar
tt

et
al
.

*

57
99

0.
98

0
8.
45

1
EF

O
SC

2
N
T
T

r
>
21

.4
0

-
0

Sm
ar
tt

et
al
.

*

57
99

0.
98

0
8.
45

1
EF

O
SC

2
N
T
T

z
>
20

.4
0

-
0

Sm
ar
tt

et
al
.

*

57
99

0.
98

0
8.
45

1
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

H
19

.2
2

0.
18

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
99

0.
98

3
8.
45

4
D
EC

am
B
la
nc

o/
C
T
IO

z
20

.4
0

0.
06

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
99

0.
98

8
8.
45

9
D
EC

am
B
la
nc

o/
C
T
IO

i
20

.7
2

0.
06

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
99

0.
98

9
8.
46

0
V
IR

C
A
M

V
IS
TA

Y
19

.6
7

0.
09

0
Ta

nv
ir

et
al
.

*

57
99

0.
98

9
8.
46

0
V
IM

O
S

V
LT

r
21

.7
5

0.
05

0
Ta

nv
ir

et
al
.

*

57
99

0.
99

0
8.
46

1
FO

R
S2

V
LT

I
21

.1
3

0.
12

0
Pi
an

et
al
.

*

57
99

0.
99

0
8.
46

1
FO

R
S2

V
LT

z
20

.6
1

0.
09

0
Pi
an

et
al
.

*

244



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
99

0.
99

7
8.
46

8
D
EC

am
B
la
nc

o/
C
T
IO

r
21

.9
5

0.
18

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
99

1.
00

0
8.
47

1
FO

R
S2

V
LT

R
22

.5
0

0.
24

0
Pi
an

et
al
.

*

57
99

1.
00

4
8.
47

5
A
lta

U
47

+
Pr

om
pt
5

r
>
20

.3
7

-
0

Va
le
nt
ie

t
al
.

*

57
99

1.
01

0
8.
48

1
FO

R
S2

V
LT

V
23

.1
5

0.
26

0
Pi
an

et
al
.

*

57
99

1.
03

4
8.
50

5
LD

SS
M
ag

el
la
n

g
>
22

.6
4

-
0

D
ro
ut

et
al
.

*

57
99

1.
70

9
9.
18

0
SI
R
IU

S
IR

SF
H

18
.8
3

0.
23

0
K
as
liw

al
et

al
.

*

57
99

1.
70

9
9.
18

0
SI
R
IU

S
IR

SF
H

18
.9
0

0.
09

0
U
ts
um

ie
t
al
.

*

57
99

1.
70

9
9.
18

0
SI
R
IU

S
IR

SF
J

>
18

.8
7

-
0

K
as
liw

al
et

al
.

*

57
99

1.
70

9
9.
18

0
SI
R
IU

S
IR

SF
J

19
.3
2

0.
08

0
U
ts
um

ie
t
al
.

o

57
99

1.
70

9
9.
18

0
SI
R
IU

S
IR

SF
K
s

18
.2
5

0.
21

0
K
as
liw

al
et

al
.

*

57
99

1.
70

9
9.
18

0
SI
R
IU

S
IR

SF
K
s

18
.3
4

0.
06

0
U
ts
um

ie
t
al
.

*

57
99

1.
95

6
9.
42

7
W

FC
3/

IR
H
ST

F1
60

W
19

.6
0

0.
06

0
Ta

nv
ir

et
al
.

R

57
99

1.
95

6
9.
42

7
W

FC
3/

IR
H
ST

F1
60

W
19

.7
7

0.
07

0
Tr

oj
a
et

al
.

R
,*

57
99

1.
95

9
9.
43

0
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

H
19

.6
2

0.
15

0
C
ow

pe
rt
hw

ai
te

et
al
.

R

57
99

1.
95

9
9.
43

0
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

H
19

.6
8

0.
08

0
K
as
liw

al
et

al
.

R

57
99

1.
95

9
9.
43

0
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

H
19

.6
7

0.
08

0
th
is

C
ha

pt
er

*,
A

245



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
99

1.
95

9
9.
43

0
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

J
20

.5
7

0.
20

0
K
as
liw

al
et

al
.

*

57
99

1.
95

9
9.
43

0
FL

A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

18
.5
0

0.
08

0
K
as
liw

al
et

al
.

*

57
99

1.
96

9
9.
44

0
A
N
D
IC

A
M

1.
3m

/C
T
IO

K
18

.4
3

0.
17

0
K
as
liw

al
et

al
.

*

57
99

1.
96

9
9.
44

0
G
R
O
N
D

La
Si
lla

H
19

.6
6

0.
14

0
Sm

ar
tt

et
al
.

*

57
99

1.
96

9
9.
44

0
G
R
O
N
D

La
Si
lla

J
20

.2
3

0.
10

0
Sm

ar
tt

et
al
.

*

57
99

1.
96

9
9.
44

0
G
R
O
N
D

La
Si
lla

K
18

.4
6

0.
20

-0
.5
7

Sm
ar
tt

et
al
.

*

57
99

1.
97

4
9.
44

5
V
IM

O
S

V
LT

z
20

.8
5

0.
04

0
Ta

nv
ir

et
al
.

*

57
99

1.
97

4
9.
44

5
D
EC

am
B
la
nc

o/
C
T
IO

Y
20

.7
8

0.
11

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
99

1.
97

9
9.
45

0
V
IR

C
A
M

V
IS
TA

K
s

18
.4
9

0.
05

0
Ta

nv
ir

et
al
.

*

57
99

1.
97

9
9.
45

0
V
IR

C
A
M

V
IS
TA

Y
20

.0
6

0.
14

0
Ta

nv
ir

et
al
.

*

57
99

1.
98

9
9.
46

0
V
IR

C
A
M

V
IS
TA

Y
20

.0
9

0.
14

0
Ta

nv
ir

et
al
.

*

57
99

1.
98

9
9.
46

0
A
lta

U
47

+
Pr

om
pt
5

r
>
19

.9
0

-
0

Va
le
nt
ie

t
al
.

*

57
99

1.
98

9
9.
46

0
V
IM

O
S

V
LT

r
22

.2
0

0.
04

0
Ta

nv
ir

et
al
.

*

57
99

1.
99

1
9.
46

2
FO

R
S

V
LT

z
20

.6
9

0.
11

0
Ta

nv
ir

et
al
.

*

57
99

1.
99

4
9.
46

5
D
EC

am
B
la
nc

o/
C
T
IO

z
21

.1
9

0.
07

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
99

2.
00

0
9.
47

1
D
EC

am
B
la
nc

o/
C
T
IO

i
21

.3
7

0.
06

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

246



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
99

2.
09

9
9.
57

0
N
IC

FP
S

A
PO

K
s

>
17

.9
9

-
0

K
as
liw

al
et

al
.

*

57
99

2.
11

9
9.
59

0
W

H
IR

C
Pa

lo
m
ar
5m

K
s

>
17

.6
4

-
0

K
as
liw

al
et

al
.

*

57
99

2.
28

2
9.
75

3
W

FC
3/

IR
H
ST

F1
10

W
20

.5
7

0.
04

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
99

2.
29

6
9.
76

7
W

FC
3/

IR
H
ST

F1
60

W
19

.8
9

0.
04

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
99

2.
34

8
9.
81

9
W

FC
3/

U
V
IS
1

H
ST

F3
36

W
26

.9
2

0.
27

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
99

2.
43

3
9.
90

4
A
C
S/

W
FC

H
ST

F4
75

W
23

.9
5

0.
06

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
99

2.
49

8
9.
96

9
A
C
S/

W
FC

H
ST

F6
25

W
22

.8
8

0.
07

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
99

2.
56

1
10

.0
32

A
C
S/

W
FC

H
ST

F7
75

W
22

.3
5

0.
08

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
99

2.
57

3
10

.0
44

A
C
S/

W
FC

H
ST

F8
50

W
21

.5
3

0.
05

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
99

2.
95

9
10

.4
30

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

18
.7
7

0.
07

0
K
as
liw

al
et

al
.

*

57
99

2.
96

9
10

.4
40

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

H
19

.6
3

0.
08

0
K
as
liw

al
et

al
.

*

57
99

2.
96

9
10

.4
40

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

J
21

.3
3

0.
30

0
K
as
liw

al
et

al
.

*

57
99

2.
96

9
10

.4
40

A
N
D
IC

A
M

1.
3m

/C
T
IO

K
18

.9
1

0.
19

0
K
as
liw

al
et

al
.

*

57
99

2.
97

5
10

.4
46

D
EC

am
B
la
nc

o/
C
T
IO

Y
21

.6
7

0.
21

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
99

2.
97

5
10

.4
46

EF
O
SC

2
N
T
T

J
21

.0
2

0.
22

0
Sm

ar
tt

et
al
.

*

57
99

2.
97

8
10

.4
49

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

18
.4
3

0.
25

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

247



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
99

2.
97

9
10

.4
50

V
IR

C
A
M

V
IS
TA

K
s

18
.7
4

0.
06

0
Ta

nv
ir

et
al
.

*

57
99

2.
98

0
10

.4
51

FO
R
S2

V
LT

z
22

.0
1

0.
21

0
Pi
an

et
al
.

*

57
99

2.
98

1
10

.4
52

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

H
20

.0
4

0.
15

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
99

2.
98

7
10

.4
58

D
EC

am
B
la
nc

o/
C
T
IO

z
22

.0
6

0.
13

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
99

2.
98

9
10

.4
60

V
IR

C
A
M

V
IS
TA

Y
20

.9
4

0.
35

0
Ta

nv
ir

et
al
.

*

57
99

2.
98

9
10

.4
60

V
IM

O
S

V
LT

r
22

.4
5

0.
07

0
Ta

nv
ir

et
al
.

*

57
99

2.
99

0
10

.4
61

FO
R
S2

V
LT

I
22

.0
5

0.
29

0
Pi
an

et
al
.

*

57
99

3.
00

0
10

.4
71

D
EC

am
B
la
nc

o/
C
T
IO

i
22

.3
8

0.
10

0
C
ow

pe
rt
hw

ai
te

et
al
.

*

57
99

3.
01

0
10

.4
81

FO
R
S2

V
LT

R
23

.3
8

0.
28

0
Pi
an

et
al
.

*

57
99

3.
01

0
10

.4
81

FO
R
S2

V
LT

V
23

.7
6

0.
28

0
Pi
an

et
al
.

*

57
99

3.
01

6
10

.4
87

G
R
O
N
D

La
Si
lla

H
20

.1
7

0.
34

0
Sm

ar
tt

et
al
.

*

57
99

3.
01

6
10

.4
87

G
R
O
N
D

La
Si
lla

K
18

.7
1

0.
22

-0
.7
9

Sm
ar
tt

et
al
.

*

57
99

3.
07

9
10

.5
50

W
FC

3/
IR

H
ST

F1
10

W
20

.8
2

0.
02

0
Ta

nv
ir

et
al
.

R

57
99

3.
07

9
10

.5
50

W
FC

3/
IR

H
ST

F1
10

W
21

.3
7

0.
12

0
Tr

oj
a
et

al
.

*,
R

57
99

3.
14

8
10

.6
19

W
FC

3/
IR

H
ST

F1
60

W
20

.2
8

0.
09

0
Ta

nv
ir

et
al
.

R

57
99

3.
14

8
10

.6
19

W
FC

3/
IR

H
ST

F1
60

W
20

.4
5

0.
10

0
Tr

oj
a
et

al
.

R

248



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
99

3.
14

8
10

.6
19

W
FC

3/
IR

H
ST

F1
60

W
20

.3
6

0.
09

0
-

*,
A

57
99

3.
38

7
10

.8
58

Sk
ym

ap
pe

r
Sk

ym
ap

pe
r

r
>
19

.3
6

-
0.
0

A
nd

re
on

ie
t
al
.

*

57
99

3.
38

8
10

.8
59

Sk
ym

ap
pe

r
Sk

ym
ap

pe
r

g
>
19

.5
3

-
0.
0

A
nd

re
on

ie
t
al
.

*

57
99

3.
40

0
10

.8
71

Sk
ym

ap
pe

r
Sk

ym
ap

pe
r

r
>
19

.3
9

-
0.
0

A
nd

re
on

ie
t
al
.

*

57
99

3.
40

1
10

.8
72

Sk
ym

ap
pe

r
Sk

ym
ap

pe
r

g
>
19

.5
0

-
0.
0

A
nd

re
on

ie
t
al
.

*

57
99

3.
69

9
11

.1
70

SI
R
IU

S
IR

SF
H

>
18

.4
3

-
0

K
as
liw

al
et

al
.

*

57
99

3.
69

9
11

.1
70

SI
R
IU

S
IR

SF
H

19
.5
3

0.
21

0
U
ts
um

ie
t
al
.

*

57
99

3.
69

9
11

.1
70

SI
R
IU

S
IR

SF
J

>
18

.3
7

-
0

K
as
liw

al
et

al
.

*

57
99

3.
69

9
11

.1
70

SI
R
IU

S
IR

SF
K
s

>
18

.4
8

-
0

K
as
liw

al
et

al
.

*

57
99

3.
69

9
11

.1
70

SI
R
IU

S
IR

SF
K
s

18
.6
4

0.
12

0
U
ts
um

ie
t
al
.

*

57
99

3.
81

4
11

.2
85

W
FC

3/
U
V
IS

H
ST

F6
06

W
23

.7
7

0.
38

0
Tr

oj
a
et

al
.

*

57
99

3.
82

9
11

.3
00

W
FC

3/
U
V
IS

H
ST

F4
75

W
24

.0
8

0.
05

0
Ta

nv
ir

et
al
.

R

57
99

3.
82

9
11

.3
00

W
FC

3/
U
V
IS

H
ST

F4
75

W
24

.7
5

0.
69

0
Tr

oj
a
et

al
.

R

57
99

3.
82

9
11

.3
00

W
FC

3/
U
V
IS

H
ST

F4
75

W
24

.0
8

0.
05

0
th
is

C
ha

pt
er

A
,*

57
99

3.
94

0
11

.4
11

W
FC

3/
U
V
IS

H
ST

F4
75

W
23

.9
6

0.
05

0
Ta

nv
ir

et
al
.

R

57
99

3.
94

0
11

.4
11

W
FC

3/
U
V
IS

H
ST

F4
75

W
24

.5
5

0.
64

0
Tr

oj
a
et

al
.

R

249



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
99

3.
94

0
11

.4
11

W
FC

3/
U
V
IS

H
ST

F4
75

W
23

.9
6

0.
05

0
th
is

C
ha

pt
er

*,
A

57
99

3.
95

7
11

.4
28

W
FC

3/
U
V
IS

H
ST

F8
14

W
22

.3
2

0.
02

0
Ta

nv
ir

et
al
.

R

57
99

3.
95

7
11

.4
28

W
FC

3/
U
V
IS

H
ST

F8
14

W
22

.5
8

0.
34

0
Tr

oj
a
et

al
.

R

57
99

3.
95

7
11

.4
28

W
FC

3/
U
V
IS

H
ST

F8
14

W
22

.3
2

0.
02

0
th
is

C
ha

pt
er

*,
A

57
99

3.
96

0
11

.4
31

EF
O
SC

2
N
T
T

H
20

.0
5

0.
20

0
Sm

ar
tt

et
al
.

*

57
99

3.
96

8
11

.4
39

W
FC

3/
U
V
IS

H
ST

F6
06

W
23

.6
6

0.
36

0
Tr

oj
a
et

al
.

R

57
99

3.
96

8
11

.4
39

W
FC

3/
U
V
IS

H
ST

F6
06

W
23

.0
9

0.
03

0
Ta

nv
ir

et
al
.

R

57
99

3.
96

8
11

.4
39

W
FC

3/
U
V
IS

H
ST

F6
06

W
23

.0
9

0.
03

0
th
is

C
ha

pt
er

*,
A

57
99

3.
96

9
11

.4
40

A
N
D
IC

A
M

1.
3m

/C
T
IO

K
>
19

.1
1

-
0

K
as
liw

al
et

al
.

*

57
99

3.
97

9
11

.4
50

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

19
.0
3

0.
17

0
C
ow

pe
rt
hw

ai
te

et
al
.

R

57
99

3.
97

9
11

.4
50

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

19
.4
1

0.
09

0
K
as
liw

al
et

al
.

R
,O

57
99

3.
97

9
11

.4
50

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

18
.9
9

0.
05

0
Tr

oj
a
et

al
.

R

57
99

3.
97

9
11

.4
50

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

18
.9
9

0.
05

0
th
is

C
ha

pt
er

*,
A

57
99

3.
98

0
11

.4
51

FO
R
S2

V
LT

z
22

.8
2

0.
47

0
Pi
an

et
al
.

*

57
99

3.
98

9
11

.4
60

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

H
>
20

.6
3

-
0

K
as
liw

al
et

al
.

R

57
99

3.
98

9
11

.4
60

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

H
20

.2
4

0.
18

0
Tr

oj
a
et

al
.

*,
R

250



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
99

3.
98

9
11

.4
60

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

J
>
21

.0
7

-
0

K
as
liw

al
et

al
.

r,
O

57
99

3.
98

9
11

.4
60

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

J
20

.3
5

0.
12

0
Tr

oj
a
et

al
.

*,
R

57
99

3.
98

9
11

.4
60

V
IR

C
A
M

V
IS
TA

Y
21

.1
6

0.
40

0
Ta

nv
ir

et
al
.

*

57
99

3.
99

7
11

.4
68

SO
FI

N
T
T

H
19

.6
4

0.
14

0
D
ro
ut

et
al
.

*

57
99

4.
00

0
11

.4
71

FO
R
S2

V
LT

I
23

.0
0

0.
31

0
Pi
an

et
al
.

*

57
99

4.
02

9
11

.5
00

W
FC

3/
U
V
IS

H
ST

F2
25

W
>
26

.0
4

-
0

K
as
liw

al
et

al
.

*

57
99

4.
02

9
11

.5
00

W
FC

3/
U
V
IS

H
ST

F2
75

W
>
26

.1
3

-
0

K
as
liw

al
et

al
.

*

57
99

4.
02

9
11

.5
00

W
FC

3/
U
V
IS

H
ST

F3
36

W
>
26

.3
7

-
0

K
as
liw

al
et

al
.

*

57
99

4.
96

2
12

.4
33

Fo
ur
St
ar

M
ag

el
la
n

K
s

19
.3
6

0.
09

0
D
ro
ut

et
al
.

*

57
99

4.
96

9
12

.4
40

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

19
.4
2

0.
16

0
C
ow

pe
rt
hw

ai
te

et
al
.

R

57
99

4.
96

9
12

.4
40

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

19
.4
4

0.
08

0
K
as
liw

al
et

al
.

R

57
99

4.
96

9
12

.4
40

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

19
.4
6

0.
04

0
Tr

oj
a
et

al
.

R

57
99

4.
96

9
12

.4
40

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

19
.4
5

0.
04

0
th
is

C
ha

pt
er

*,
A

57
99

4.
96

9
12

.4
40

V
IM

O
S

V
LT

r
23

.1
2

0.
31

0
Ta

nv
ir

et
al
.

*

57
99

4.
97

9
12

.4
50

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

H
20

.9
9

0.
21

0
Tr

oj
a
et

al
.

R

57
99

4.
97

9
12

.4
50

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

H
20

.5
7

0.
19

0
K
as
liw

al
et

al
.

R

251



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
99

4.
97

9
12

.4
50

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

H
20

.7
6

0.
19

0
th
is

C
ha

pt
er

*,
A

57
99

4.
98

5
12

.4
56

SO
FI

N
T
T

K
s

19
.3
2

0.
09

0
D
ro
ut

et
al
.

*

57
99

4.
98

9
12

.4
60

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

J
>
21

.5
5

-
0

K
as
liw

al
et

al
.

*

57
99

4.
98

9
12

.4
60

V
IR

C
A
M

V
IS
TA

K
s

19
.3
4

0.
08

0
Ta

nv
ir

et
al
.

*

57
99

5.
38

8
12

.8
59

Sk
ym

ap
pe

r
Sk

ym
ap

pe
r

g
>
19

.3
6

-
0

A
nd

re
on

ie
t
al
.

*

57
99

5.
38

9
12

.8
60

Sk
ym

ap
pe

r
Sk

ym
ap

pe
r

r
>
19

.3
2

-
0

A
nd

re
on

ie
t
al
.

*

57
99

5.
40

1
12

.8
72

Sk
ym

ap
pe

r
Sk

ym
ap

pe
r

g
>
19

.2
4

-
0

A
nd

re
on

ie
t
al
.

*

57
99

5.
95

9
13

.4
30

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

19
.6
3

0.
23

0
C
ow

pe
rt
hw

ai
te

et
al
.

R

57
99

5.
95

9
13

.4
30

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

19
.8
4

0.
09

0
K
as
liw

al
et

al
.

R

57
99

5.
95

9
13

.4
30

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

19
.8
1

0.
09

0
th
is

C
ha

pt
er

*,
A

57
99

5.
96

1
13

.4
32

EF
O
SC

2
N
T
T

K
19

.6
7

0.
14

0
Sm

ar
tt

et
al
.

*

57
99

5.
96

2
13

.4
33

Fo
ur
St
ar

M
ag

el
la
n

H
>
20

.5
0

-
0

D
ro
ut

et
al
.

*

57
99

5.
96

9
13

.4
40

V
IM

O
S

V
LT

z
22

.3
0

0.
28

0
Ta

nv
ir

et
al
.

*

57
99

5.
97

8
13

.4
49

Fo
ur
St
ar

M
ag

el
la
n

K
s

19
.5
2

0.
09

0
D
ro
ut

et
al
.

*

57
99

5.
97

9
13

.4
50

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

H
21

.4
8

0.
30

0
K
as
liw

al
et

al
.

R

57
99

5.
97

9
13

.4
50

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

H
21

.0
1

0.
14

0
Tr

oj
a
et

al
.

R

252



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
99

5.
97

9
13

.4
50

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

H
21

.0
9

0.
14

0
th
is

C
ha

pt
er

*,
A

57
99

5.
98

9
13

.4
60

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

J
>
21

.9
4

-
0

K
as
liw

al
et

al
.

*

57
99

5.
99

0
13

.4
61

SO
FI

N
T
T

K
s

19
.4
3

0.
09

0
D
ro
ut

et
al
.

*

57
99

6.
79

9
14

.2
70

M
O
IR

C
S

Su
ba

ru
K
s

19
.3
5

0.
04

0
U
ts
um

ie
t
al
.

O

57
99

6.
97

4
14

.4
45

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

19
.9
0

0.
21

0
C
ow

pe
rt
hw

ai
te

et
al
.

R

57
99

6.
97

4
14

.4
45

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

20
.0
6

0.
10

0
K
as
liw

al
et

al
.

R

57
99

6.
97

4
14

.4
45

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

19
.9
3

0.
03

0
Tr

oj
a
et

al
.

R

57
99

6.
97

4
14

.4
45

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

19
.9
4

0.
03

0
th
is

C
ha

pt
er

*,
A

57
99

6.
96

9
14

.4
40

V
IS
IR

V
LT

J8
.9

>
7.
74

-
0

K
as
liw

al
et

al
.

*

57
99

6.
98

0
14

.4
51

FO
R
S2

V
LT

z
23

.3
4

0.
37

0
Pi
an

et
al
.

*

57
99

6.
98

9
14

.4
60

V
IR

C
A
M

V
IS
TA

K
s

20
.0
2

0.
13

0
Ta

nv
ir

et
al
.

*

57
99

6.
99

9
14

.4
70

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

H
21

.6
3

0.
36

0
K
as
liw

al
et

al
.

*

57
99

7.
00

9
14

.4
80

G
M
O
S

G
em

in
i-S

i
>
23

.2
0

-
0

K
as
liw

al
et

al
.

*

57
99

7.
79

9
15

.2
70

M
O
IR

C
S

Su
ba

ru
K
s

19
.9
7

0.
05

0
U
ts
um

ie
t
al
.

*

57
99

7.
96

9
15

.4
40

V
IS
IR

V
LT

J8
.9

>
7.
57

-
0

K
as
liw

al
et

al
.

*

57
99

7.
97

0
15

.4
41

Fo
ur
St
ar

M
ag

el
la
n

K
s

20
.2
3

0.
10

0
D
ro
ut

et
al
.

*

253



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

57
99

7.
97

6
15

.4
47

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

20
.1
3

0.
25

0
C
ow

pe
rt
hw

ai
te

et
al
.

R

57
99

7.
97

6
15

.4
47

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

20
.4
3

0.
13

0
K
as
liw

al
et

al
.

R
,O

57
99

7.
97

6
15

.4
47

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

20
.0
6

0.
05

0
Tr

oj
a
et

al
.

R

57
99

7.
97

6
15

.4
47

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

20
.0
6

0.
05

0
th
is

C
ha

pt
er

*,
A

57
99

8.
02

9
15

.5
00

G
M
O
S

G
em

in
i-S

i
>
23

.4
0

-
0

K
as
liw

al
et

al
.

*

57
99

8.
97

9
16

.4
50

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

20
.4
3

0.
30

0
C
ow

pe
rt
hw

ai
te

et
al
.

R

57
99

8.
97

9
16

.4
50

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

20
.3
1

0.
08

0
Tr

oj
a
et

al
.

R

57
99

8.
97

9
16

.4
50

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

20
.9
5

0.
18

0
K
as
liw

al
et

al
.

R
,O

57
99

8.
97

9
16

.4
50

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

20
.3
2

0.
08

0
th
is

C
ha

pt
er

*,
A

57
99

8.
99

9
16

.4
70

G
M
O
S

G
em

in
i-S

r
>
21

.1
8

-
0

K
as
liw

al
et

al
.

*

57
99

9.
97

9
17

.4
50

H
AW

K
I

V
LT

K
s

20
.7
7

0.
13

0
Ta

nv
ir

et
al
.

*

57
99

9.
98

9
17

.4
60

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

>
19

.9
2

-
0

K
as
liw

al
et

al
.

R

57
99

9.
98

9
17

.4
60

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

20
.6
1

0.
09

0
Tr

oj
a
et

al
.

*,
R

58
00

0.
00

9
17

.4
80

G
M
O
S

G
em

in
i-S

r
>
21

.9
8

-
0

K
as
liw

al
et

al
.

*

58
00

0.
96

0
18

.4
31

Fo
ur
St
ar

M
ag

el
la
n

K
s

20
.8
1

0.
13

0
D
ro
ut

et
al
.

*

58
00

0.
96

6
18

.4
37

EF
O
SC

2
N
T
T

K
20

.7
6

0.
35

0
Sm

ar
tt

et
al
.

*

254



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

58
00

0.
97

8
18

.4
49

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

20
.8
4

0.
26

0
C
ow

pe
rt
hw

ai
te

et
al
.

R

58
00

0.
97

8
18

.4
49

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

21
.0
4

0.
09

0
K
as
liw

al
et

al
.

R

58
00

0.
97

8
18

.4
49

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

21
.0
2

0.
09

0
th
is

C
ha

pt
er

*,
A

58
00

0.
99

0
18

.4
61

Fo
ur
St
ar

M
ag

el
la
n

K
s

20
.9
3

0.
17

0
D
ro
ut

et
al
.

*

58
00

0.
99

9
18

.4
70

G
M
O
S

G
em

in
i-S

i
>
21

.9
0

-
0

K
as
liw

al
et

al
.

*

58
00

1.
98

9
19

.4
60

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

21
.2
3

0.
37

0
K
as
liw

al
et

al
.

R

58
00

1.
98

9
19

.4
60

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

20
.8
5

0.
13

0
Tr

oj
a
et

al
.

R

58
00

1.
98

9
19

.4
60

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

20
.8
9

0.
13

0
th
is

C
ha

pt
er

*,
A

58
00

1.
99

2
19

.4
63

V
IM

O
S

V
LT

z
23

.3
7

0.
48

0
Ta

nv
ir

et
al
.

*

58
00

2.
97

9
20

.4
50

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

H
>
21

.2
2

-
0

K
as
liw

al
et

al
.

*

58
00

2.
97

9
20

.4
50

V
IS
IR

V
LT

J8
.9

>
7.
42

-
0

K
as
liw

al
et

al
.

*

58
00

3.
96

9
21

.4
40

H
AW

K
I

V
LT

K
s

21
.4
6

0.
08

0
Ta

nv
ir

et
al
.

*

58
00

3.
98

9
21

.4
60

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

>
21

.4
8

-
0

K
as
liw

al
et

al
.

*

58
00

7.
96

9
25

.4
40

H
AW

K
I

V
LT

K
s

22
.0
6

0.
22

0
Ta

nv
ir

et
al
.

*

58
00

7.
98

9
25

.4
60

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

J
>
20

.2
1

-
0

K
as
liw

al
et

al
.

*

58
01

0.
96

9
28

.4
40

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

>
19

.9
6

-
0

K
as
liw

al
et

al
.

*

255



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Ta
bl
e
4.
3
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

M
JD

Ph
as
e

In
st
ru
m
en
t

Te
le
sc
op

e
Fi
lte

r
A
B

M
ag

a
Er

r.
∆
(M

ag
)b

R
ef
.

N
ot
ec

58
01

1.
96

9
29

.4
40

FL
A
M
IN

G
O
S-
2

G
em

in
i-S

K
s

>
20

.6
0

-
0

K
as
liw

al
et

al
.

*

N
ot
e:

A
co
m
pl
et
e
ta
bl
e
is

av
ai
la
bl
e
on

lin
e
in

th
e
or
ig
in
al

pu
bl
ic
at
io
n.

a:
N
ew

m
ag

ni
tu
de

va
lu
e
us
ed

in
m
od

el
in
g.

b:
D
iff
er
en

ce
be

tw
ee
n
ne

w
va
lu
e
an

d
or
ig
in
al
ly

re
po

rt
ed

va
lu
e.

c:
Ph

ot
om

et
ry

lis
te
d

w
ith

an
“X

”
is

no
t
in
cl
ud

ed
in

ou
r
m
od

el
fit
,
ph

ot
om

et
ry

lis
te
d

w
ith

an
“O

”
ha

s
be

en
vi
su
al
ly

fla
gg

ed
as

an
ou

tli
er
,
ph

ot
om

et
ry

re
po

rt
ed

in
m
ul
tip

le
so
ur
ce
s
w
ith

un
iq
ue

re
du

ct
io
n
ro
ut
in
es

ar
e
lis
te
d
w
ith

an
“‘
R
”,

ph
ot
om

et
ry

ge
ne

ra
te
d
by

av
er
ag

in
g
re
pe

at
ed

ph
ot
om

et
ry

is
lis
te
d
w
ith

an
“A

”,
an

d
ph

ot
om

et
ry

us
ed

in
m
od

el
in
g
is

lis
te
d
w
ith

an
“*
”.

256



CHAPTER 4. MODELING OF THE KILONOVA ASSOCIATED WITH GW170817

Acknowledgments

We thank the anonymous referee and the larger community for valuable feedback on

this work. The Berger Time-Domain Group at Harvard is supported in part by the

NSF through grant AST-1714498, and by NASA through grants NNX15AE50G and

NNX16AC22G. VAV acknowledges support by the National Science Foundation through

a Graduate Research Fellowship. This research has made use of NASA’s Astrophysics

Data System.

257



Chapter 5

Spitzer Space Telescope Infrared

Observations of the Binary Neutron

Star Merger GW170817

This thesis chapter originally appeared in the literature as

V. A. Villar, P. Cowperthwaite, E. Berger et al., The Astrophysical Journal

862, L11

Abstract

We present Spitzer Space Telescope 3.6 and 4.5 µm observations of the binary neutron

star merger GW170817 at 43, 74, and 264 days post-merger. Using the final observation

as a template, we uncover a source at the position of GW170817 at 4.5 µm with a

brightness of 22.9 ± 0.3 AB mag at 43 days and 23.8 ± 0.3 AB mag at 74 days (the
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uncertainty is dominated by systematics from the image subtraction); no obvious source

is detected at 3.6 µm to a 3σ limit of > 23.3 AB mag in both epochs. The measured

brightness is dimmer by a factor of about 2 − 3 times compared to our previously

published kilonova model, which is based on UV, optical, and near-IR data at . 30 days.

However, the observed fading rate and color (m3.6 −m4.5 & 0 AB mag) are consistent

with our model. We suggest that the discrepancy is likely due to a transition to the

nebular phase, or a reduced thermalization efficiency at such late time. Using the Spitzer

data as a guide, we briefly discuss the prospects of observing future binary neutron

star mergers with Spitzer(in LIGO/Virgo Observing Run 3) and the James Webb Space

Telescope (in LIGO/Virgo Observing Run 4 and beyond).

5.1 Introduction

The gravitational wave discovery of the binary neutron star (BNS) merger GW170817

(Abbott et al. 2017), and the subsequent identification of its electromagnetic counterpart

(Abbott et al. 2017) provided the first multi-messenger view of a compact object

merger and its aftermath. In the ultraviolet, optical, and near-infrared (hereafter,

UVOIR) the emission was observed in the first month post-merger, before the source

became sun-constrained (Andreoni et al. 2017; Arcavi et al. 2017; Coulter et al. 2017b;

Cowperthwaite et al. 2017; Díaz et al. 2017; Drout et al. 2017; Evans et al. 2017; Hu

et al. 2017; Kasliwal et al. 2017; Lipunov et al. 2017; Pian et al. 2017; Pozanenko et al.

2018; Smartt et al. 2017; Soares-Santos et al. 2017; Tanvir et al. 2017; Troja et al. 2017;

Utsumi et al. 2017; Valenti et al. 2017; Villar et al. 2017a). This emission was produced

by the radioactive decay of r-process nuclei synthesized in the merger ejecta, a so-called
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kilonova (e.g., Li & Paczyński 1998; Rosswog et al. 1999; Metzger et al. 2010; Roberts

et al. 2011; Metzger & Berger 2012; Barnes & Kasen 2013; Tanaka & Hotokezaka 2013).

From these observations, most authors concluded that GW170817 produced at least

two distinct non-relativistic ejecta components: a rapidly-evolving “blue” component

dominated by light r-process nuclei (atomic mass number A < 140) with a mass of

≈ 0.02 M� and a velocity of ≈ 0.3c; and a more slowly-evolving “red” component

dominated by heavy r-process elements (A > 140, including lanthanides) with a mass of

≈ 0.05 M� and a velocity of ≈ 0.15c (e.g., Villar et al. 2017a; although see Smartt et al.

2017; Waxman et al. 2017). The multi-component nature of the ejecta is also evident

in optical and NIR spectroscopic observations (Chornock et al. 2017; Nicholl et al.

2017b; Pian et al. 2017; Shappee et al. 2017; Smartt et al. 2017). Subsequently, X-ray,

radio, and optical observations of the non-thermal afterglow provided insight into the

production of relativistic ejecta (Alexander et al. 2017b; Gottlieb et al. 2017; Haggard

et al. 2017; Hallinan et al. 2017b; Lazzati et al. 2017; Margutti et al. 2017a; Troja et al.

2017; Alexander et al. 2018; D’Avanzo et al. 2018; Dobie et al. 2018; Lyman et al. 2018;

Margutti et al. 2018a; Mooley et al. 2018; Nynka et al. 2018; Ruan et al. 2018; Troja

et al. 2018).

At & 10 days the kilonova spectral energy distribution (SED) peaked in the

NIR, with a blackbody temperature of . 1300 K, and hence an expected substantial

contribution into the mid-IR (Chornock et al. 2017; Nicholl et al. 2017b; Kasliwal

et al. 2017). Here, we present the full set of Spitzer Space Telescope IR observations of

GW170817, obtained at 43, 74, and 264 days post-merger, which extend the kilonova

observations to 3.6 and 4.5 µm (see Lau et al. 2017); we uncover clear detections at

4.5 µm. In 5.2 we present the observations and our data analysis, image subtraction,
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and photometry procedures. We compare the results to our kilonova models from Villar

et al. (2017a) in 5.3. Motivated by the results, in 5.4 we discuss the prospects for IR

observations of future events with Spitzerand the James Webb Space Telescope (JWST).

All magnitudes presented in this Chapter are given in the AB system and corrected

for Galactic reddening with E(B − V ) = 0.105 mag (Schlafly & Finkbeiner 2011). All

uncertainties are reported at the 1σ level. We assume negligible reddening contribution

from the host galaxy (Blanchard et al. 2017), and a luminosity distance to NGC4993 of

40.7 Mpc (Cantiello et al. 2018).

5.2 Observations and Data Analysis

We downloaded public Spitzer(Werner et al. 2004) observations of GW170817 taken on

2017 September 29, 2017 October 30, and 2018 May 8 with the InfraRed Array Camera

(IRAC; Fazio et al. 2004) in the 3.6 and 4.5 µm bands during the “warm” Spitzermission

(Director’s Discretionary Time Program 13202; PI: Kasliwal); see Table 5.1. Each visit

consisted of 466 frames with exposure times of 30 sec per frame, for a total on-source

time of ≈ 3.9 hours in each band. We processed the images using standard procedures in

Mopex (Makovoz & Marleau 2005) to generate mosaic images. Mopex cleans the images

of cosmic rays and applies appropriate distortion corrections before drizzling the images.

We used a drizzling factor of 0.8 and an output pixel scale of 0.4′′. We compare the native

astrometry to seven 2MASS point sources in the field, and find that the astrometric

solution is good to about 1 pixel.

We performed image subtraction with the HOTPANTS package (Alard 2000; Becker
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2015), using the 2018 May 8 observations as a template in each band. We note that at

264 days post-merger, the emission from the relativistic ejecta (which dominates in the

radio and X-ray bands) has m3.6 = 25.9 and m4.5 = 25.7 mag (Alexander et al. 2018;

Margutti et al. 2018a; Xie et al. 2018), more than an order of magnitude below the

expected brightness of the kilonova emission, and well below the detection level of the

Spitzerdata. A composite 3.6 and 4.5 µm image, and the subtracted 4.5 µm image at 43

days are shown in Figure 5.1. A point source is apparent in the difference image.

Although HOTPANTS computes and utilizes a spatially-variable convolution kernel,

and is therefore able to match dissimilar point spread functions (PSFs), we find that

the location of GW170817 is heavily contaminated by residual artifacts from the bright

host galaxy. To remove the remaining contamination, we first mask the source location

in the difference image with a region the size of the expected PSF (≈ 5 pixels). We

then smooth the masked image with a Gaussian kernel, interpolating across the masked

region. We use a kernel standard deviation of one pixel (but find that the kernel width

has little effect on our results). We then subtract the smoothed image from the original

difference image to isolate the point source. The resulting final 4.5 µm images from 43

and 74 days are shown in Figure 5.1 and clearly reveal the presence of a point source at

the location of GW170817.

We measure the brightness of the source using both fixed aperture photometry and

PSF-fitting assuming a Gaussian PSF. We injected fake point sources around the host

galaxy at a similar offset to that of GW170817 to quantify the systematic uncertainties

of the subtraction methods and photometry. For the observations with a detected source

at the location of GW170817 (4.5 µm), we specifically injected fake sources of the

same measured magnitude. For each injected source, we executed the same method of
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smoothing and subtraction from a masked image. We used the spread in the recovered

magnitudes as our overall uncertainty. For the observations without a significantly

detected source (3.6 µm), we injected sources with a range of fluxes to determine 3σ

upper limits. The results are summarized in Table 5.1. We additionally confirmed that

the 4.5 µm detection is not an artifact of the subtraction process or the IRAC PSF by

searching for sources at the same relative location as the GW170817 counterpart around

a nearby saturated star within the field of view, following the same procedure. We did

not find any significant sources around the star.

The detected source at 4.5 µm has 22.9 ± 0.3 mag at 43 days and 23.8 ± 0.3 mag

at 74 days post-merger. The source is detected with a signal-to-noise ratio (SNR) of

≈ 10 at 43 days and ≈ 5 at 74 days. However, the final uncertainties are dominated by

systematic effects, as determined from the spread in magnitudes for the injected fake

point sources. We do not detect a source at 3.6 µm in either epoch to a 3σ limit of

& 23.3 mag. The exact significance of our (non)detections may be better constrained

through other methods (e.g., Zackay et al. 2016).

5.3 Comparison to a Kilonova Model

We compare the observations to our three-component kilonova model, which was

previously used to fit all available UVOIR photometry (Villar et al. 2017a); see

Figure 5.2. Each component is characterized by a unique gray opacity roughly

corresponding to its lanthanide fraction (Tanaka et al. 2018), and is independently

described by a blackbody SED. The blackbody SEDs cool as a function of time until they

reach a minimal “temperature floor”, at which point we assume that the photosphere
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recedes into the ejecta, at a constant temperature. At late times (& 10 days), our

three-component model predicts that the light curve is dominated by the intermediate

r-process component and that this component has reached its temperature floor of

≈ 1300 K, somewhat cooler than the lowest lanthanide ionization temperature (e.g.,

Kasen et al. 2013).

We find that our model over-predicts the Spitzermeasurements at 43 and 74 days by

about a factor of ≈ 3 (1.2 mag) and ≈ 2.5 (1 mag), respectively (Figure 5.2). However,

the decline rate between the two measurements is in good agreement with the model

prediction. Similarly, the temperature implied by the flat or red color in the 3.6 and 4.5

µm bands (. 1200 K) is consistent with the temperature floor in our model. We observe

a similar late-time deviation from our model in the Ks-band (2.2 µm) at & 20 days.

Assuming a blackbody SED with T = 1200 K we find that the bolometric luminosity

implied by the 4.5 µm detections is ≈ 6 × 1038 erg s−1 and ≈ 2 × 1038 erg s−1at 43

and 74 days, respectively. This is consistent with the drop off in bolometric luminosity

starting at ≈ 10 days, when the estimated bolometric luminosity is ≈ 2 × 1040 erg s−1

(Cowperthwaite et al. 2017; Arcavi 2018; Waxman et al. 2017)

Relaxing some of the assumptions in our model may eliminate the brightness

discrepancy. For example, at the time of the Spitzerobservations the kilonova is likely

transitioning into the nebular phase, and the blackbody SED approximation may break

down. Using the parameters of the dominant intermediate-opacity component of our

model (Villar et al. 2017a), we find that at 43 days the optical depth is τ ≈ 1, suggesting

that the ejecta are becoming optically thin. Additionally, the shape of the late-time

light curve is also dictated by the time-dependent thermalization efficiency of the merger
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ejecta (Barnes et al. 2016). A steeper decline of the thermalization efficiency at & 20

days will better capture the lower observed fluxes in the Ks and Spitzerbands. The

thermalization is highly dependent on the nuclear mass models assumed (see e.g., Barnes

et al. 2016; Rosswog et al. 2017), and is uncertain by almost an order of magnitude at

& 1 month. Our observations would imply an efficiency of ftot . 0.1 at t > 40 days.

We also consider the possibility that the observed IR emission is due to reprocessing

of bluer kilonova emission by newly formed dust. The warm temperature implied by

our observations requires carbon-based dust, due to its high condensation temperature

(Tc ≈ 1800 K; Takami et al. 2014). We fit a modified blackbody to the Spitzerphotometry

at day 43, assuming m3.5 ≈ m4.5 (following Equations 1 and 2 of Gall et al. 2017).

We find that the carbon dust mass required to reproduce the observed luminosity is

≈ 5 × 10−7 M�. However, Gall et al. (2017) explored a range of theoretical kilonova

wind models and found that at most ∼ 10−9 M� of carbon dust can be produced. We

therefore conclude that the observed IR emission is not due to dust reprocessing.

5.4 Implications for IR Observations of Future BNS

Mergers

The Spitzerdetections of GW170817 at 43 and 74 days post-merger indicate that future

BNS mergers should be observed at IR wavelengths. Indeed, taking our models at

face value, at least in the well-characterized regime at . 20 days, it appears that the

peak of the kilonova emission shifts into the NIR/MIR bands at & 10 days. This

suggests that significant effort should be focused on robust characterization of the IR
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emission of kilonovae. This will provide numerous benefits, including more accurate

determination of the bolometric luminosity and therefore total r-process ejecta mass,

improved measurements of the r-process opacity at long wavelengths, observational

constraints on the late-time thermalization efficiency, and continued insight into BNS

mergers as sites of cosmic r-process production.

Advanced LIGO/Virgo (ALV) Observing Run 3 (O3) is expected to begin in early

2019 and span a full year, with an expected BNS merger detection distance of ≈ 120

Mpc. The timing of O3 overlaps favorably with SpitzerCycle 14 (the final Spitzercycle),

and the sensitivity should be sufficient to detect events with a similar IR luminosity to

GW170817 in the first ≈ 40 days to ≈ 120 Mpc. For example, observations of about 9

hours on-source can achieve 5σ limiting magnitudes of m3.6 ≈ 25.5 mag and m4.6 ≈ 25

mag, assuming no significant contamination from host galaxy subtraction. In reality,

host galaxy contamination may prove to be problematic for dim events to the ≈ 10%

photometry level. A full exploration of these systematics is not possible with only one

observed event.

Beyond O3 (2021 and later), the ALV network is expected to achieve design

sensitivity, with typical BNS merger detections to ≈ 200 Mpc and a maximal detection

distance of ≈ 450 Mpc (for favorably oriented and positioned BNS mergers). The timing

is ideal for overlap with JWST, which will be able to provide NIR and MIR spectra.

In the NIR, NIRSpec can produce low-resolution (R ≈ 100) spectra at 0.6 − 5.3 µm;

this resolution is sufficient for kilonovae given the typical velocities of ∼ 0.1 − 0.3c. In

particular, spectra with SNR & 50 can be obtained near peak for a GW170817-like

kilonova to 450 Mpc in just 1 hour of on-source time. At later times, BNS mergers could

be tracked to ≈ 40 days at ≈ 200 Mpc with SNR ≈ 10 in about 6 hours of on-source

266



CHAPTER 5. SPITZER OBSERVATIONS OF GW170817

time.

In the MIR, the Mid-Infrared Instrument (MIRI) can produce low-resolution

(R ≈ 40–160) spectra covering 5 − 14 µm. In particular, SNR ≈ 10 − 20 at 5 − 9 µm

(and lower SNR at longer wavelengths) can be achieved for a GW170817-like kilonova

near peak to ≈ 450 Mpc with ≈ 5 hours of on-source time. At late times (≈ 40 days),

MIRI can produce SNR ≈ 5 spectra at 5− 7 µm to ≈ 100 Mpc.

We do not yet know the full range of brightnesses and SEDs of kilonovae, as well as

the potential contribution of dust reprocessing, but the discussion above illustrates that

NIR/MIR characterization of kilonovae can be achieved with Spitzerin ALV O3 and with

JWST when ALV reaches design sensitivity. This can be achieved with a modest time

investment, but will require target-of-opportunity response to BNS mergers.

5.5 Conclusions

We present SpitzerIR observations of the kilonova associated with GW170817 spanning

to 264 days post-merger. We detect the kilonova at 4.5 µm at 43 and 74 days post-merger

with a brightness of ≈ 22.9 and ≈ 23.8 mag, respectively. We do not identify a confident

detection at 3.6 µm, to a 3σ upper limit of & 23.3 mag. The inferred color of the

kilonova indicates that the ejecta has cooled to . 1200 K at these late times. These

magnitudes are fainter than an extrapolation of our model to the UVOIR data at . 30

days, highlighting the need for improved models at late times (for example, the details

of the ejecta thermalization). Finally, we show that future BNS mergers with kilonovae

similar to GW170817 will be detectable with Spitzerto 120 Mpc at 40 days post-merger,
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and will be accessible to NIR and MIR spectroscopy with JWST to ≈ 450 Mpc at peak

and to ≈ 100−200 Mpc at 40 days post-merger (and to later times with JWST imaging).
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Figure 5.1: Upper Left: Spitzer3.6 and 4.5 µm color composite image from the observa-

tions on 2017 September 29 (43 days post-merger). The location of GW170817 is marked

by the red cross hairs. Upper Right: Residual from HOTPANTS image subtraction of the

4.5 µm images at 43 and 264 days. While a point source is visible at the position of

GW170817, its location is contaminated by subtraction residuals from the host galaxy.

Bottom: Residual images (Left: 43 days; Right: 74 days) after subtracting a masked and

smoothed version of the image from itself (see Section 5.2). An isolated point source is

clearly visible at the location of GW170817.
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Table 5.1:: Spitzer/IRAC Observations and Photometry of GW170817

UT Date Epoch λ Magnitude

(days) (µm)

2017 Sep 29 43 3.6 > 23.3

2017 Sep 29 43 4.5 22.9± 0.3

2017 Oct 30 74 3.6 > 23.3

2017 Oct 30 74 4.5 23.8± 0.3

2018 May 8 264 3.6 Template

2018 May 8 264 4.5 Template
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Figure 5.2: Spitzerdata at 3.6 µm (blue) and 4.5 µm (red); upper limits are marked as

triangles. Also shown are light curves from our model fit to the complete UVOIR data

set at . 30 days (Villar et al. 2017a). For comparison we also show the Ks-band (2.2 µm)

data and model (gray; Cowperthwaite et al. 2017; Drout et al. 2017; Kasliwal et al. 2017;

Smartt et al. 2017; Tanvir et al. 2017; Troja et al. 2017; Utsumi et al. 2017; Villar et al.

2017a).
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Chapter 6

Superluminous Supernovae in LSST:

Rates, Detection Metrics, and Light

Curve Modeling

This thesis chapter originally appeared in the literature as

V. A. Villar, M. Nicholl, E. Berger, The Astrophysical Journal 869, 166

Abstract

We explore and demonstrate the capabilities of the upcoming Large Synoptic Survey

Telescope (LSST) to study Type I superluminous supernovae (SLSNe). We first fit the

light curves of 58 known SLSNe at z ≈ 0.1− 1.6, using an analytical magnetar spin-down

model implemented in MOSFiT. We then use the posterior distributions of the magnetar

and ejecta parameters to generate thousands of synthetic SLSN light curves, and we
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inject those into the LSST Operations Simulator (OpSim) to generate realistic ugrizy

light curves. We define simple, measurable metrics to quantify the detectability and

utility of the light curve, and to measure the efficiency of LSST in returning SLSN light

curves satisfying these metrics. We combine the metric efficiencies with the volumetric

rate of SLSNe to estimate the overall discovery rate of LSST, and we find that ≈ 104

SLSNe per year with > 10 data points will be discovered in the Wide-Fast-Deep (WFD)

survey at z . 3.0, while only ≈ 15 SLSNe per year will be discovered in each Deep

Drilling Field at z . 4.0. To evaluate the information content in the LSST data, we refit

representative output light curves with the same model that was used to generate them.

We correlate our ability to recover magnetar and ejecta parameters with the simple light

curve metrics to evaluate the most important metrics. We find that we can recover

physical parameters to within 30% of their true values from ≈ 18% of WFD light curves.

Light curves with measurements of both the rise and decline in gri-bands, and those with

at least fifty observations in all bands combined, are most information rich, with ≈ 30%

of these light curves having recoverable physical parameters to ≈ 30% accuracy. WFD

survey strategies which increase cadence in these bands and minimize seasonal gaps will

maximize the number of scientifically useful SLSN light curves. Finally, although the

Deep Drilling Fields will provide more densely sampled light curves, we expect only ≈ 50

SLSNe with recoverable parameters in each field in the decade-long survey.

6.1 Introduction

Type I Superluminous supernovae (SLSNe) are an observationally-classified class of

transients that typically reach a peak absolute magnitude of . −20 mag and display
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unique early-time spectra with OII absorption superposed on a hydrogen-free blue

continuum (Chomiuk et al. 2011; Quimby et al. 2011; Gal-Yam 2012). These events

also typically exhibit long durations, with a time to rise and decline by one magnitude

of tdur & 50 days, allowing them to radiate ≈ 1051 erg in the optical/UV, comparable

to the kinetic energies of normal core-collapse SNe. Despite their high luminosities and

long durations, SLSNe are a relatively recent discovery due to the advent of untargeted

wide-field time-domain surveys. These surveys are essential due to the low volumetric

rate and low-luminosity host galaxies of SLSNe (Neill et al. 2010; Lunnan et al. 2014;

Chen et al. 2017a; Leloudas et al. 2015; Angus et al. 2016; Perley et al. 2016; Schulze

et al. 2018).

There is ongoing debate about the energy source of SLSNe. Unlike hydrogen-rich

Type II SLSNe which appear to be powered by interaction with a dense circumstellar

medium (Chevalier & Irwin 2011), such interaction is disfavored as the dominant

heating source for Type I SLSNe, due to the exceptionally large CSM mass required to

reproduce the bright observed light curves (Moriya et al. 2018), coupled with low-density

environments suggested by X-ray (Margutti et al. 2017) and radio (Nicholl et al. 2016a;

Coppejans et al. 2018) observations. Instead, a central engine model is preferred, and it

appears to explain the light curve shapes and diversity (Nicholl et al. 2017), early-time

spectra (e.g., Dessart et al. 2012; Howell et al. 2013; Mazzali et al. 2016), and the velocity

and density structures inferred from nebular spectra (Nicholl et al. 2016b; Jerkstrand

et al. 2017; Nicholl et al. 2018).

Currently, the best central engine candidate to power SLSNe is a rapidly spinning

magnetar, or a pulsar with a strong magnetic field (B & 1013 G; Kasen & Bildsten 2010;

Woosley 2010; Inserra et al. 2013; Chatzopoulos et al. 2013; Metzger et al. 2015; Nicholl

274



CHAPTER 6. SUPERLUMINOUS SUPERNOVAE IN LSST

et al. 2017). The magnetar model can explain the diversity of SLSN light curves (Nicholl

et al. 2017; Villar et al. 2017b), and the inferred velocities and temperatures (Moriya

et al. 2018). Recently, Nicholl et al. 2017 fit a sample of 38 well-observed SLSNe with

a semi-analytical magnetar model and found that this model is able to reproduce the

observed light curves using a fraction of parameter space (see also, Nicholl et al. 2015b;

Prajs et al. 2016; Yu et al. 2017; Liu et al. 2017).

Statistical population studies like these are essential for mapping the properties of

SLSNe. Currently, about 10 SLSNe are discovered per year (Guillochon et al. 2017)1,

and this low rate allows for detailed spectroscopic follow-up of each event. However,

future surveys will lead to a substantial increase in the discovery rate. For example,

Tanaka et al. (2012) and Tanaka et al. (2013) explored several future optical and

near-infrared (NIR) surveys, concluding that missions like WFIRST and LSST will find

∼ 102 − 104 SLSNe per year. Due to limited spectroscopic resources, it is essential to

explore what information can be obtained about these large samples from light curves

alone; namely, their diverse observational properties (Nicholl et al. 2015b), progenitor

populations (Lunnan et al. 2014), host galaxies (Berger et al. 2012; Schulze et al. 2018),

and potentially cosmological parameters (Inserra & Smartt 2014; Scovacricchi et al.

2015).

Here, we explore and study the characteristics of SLSNe observed by the upcoming

Large Synoptic Survey Telescope (LSST), an 8.4-m diameter telescope with a 9.6 deg2

field-of-view that will conduct several 10-year wide-field surveys across the Southern

hemisphere in the ugrizy filters. The current LSST observing strategy spends the

1See sne.space.
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majority (& 90%) of the time executing the Wide-Fast-Deep (WFD) survey, covering

18,000 deg2 with a cadence of roughly four days in any filter and ten days in a specific

filter, and with a per-visit limiting magnitude of mlim,gr ≈ 24.5 mag. About 5% of the

observing time will focus on several Deep Drilling fields (DDFs), each comprised of a

single pointing (9.6 deg2) with five times more cumulative imaging than a typical field in

the WFD survey and with a nightly stack limiting magnitude of mlim,gr ≈ 26.5 mag. The

remaining time will be split between the Galactic Plane and South Celestial Pole surveys.

We focus on the WFD survey and DDFs in this study (see LSST Science Collaboration

et al. 2017 for technical details).

The large survey area, cadence and depth make LSST a potential powerhouse

for time-domain astronomy, particularly in the case of volumetrically-rare events like

SLSNe. However, there are two key questions that must be addressed to maximize the

potential of LSST. First, it is essential to quantify the number of SLSNe that LSST

will discover, their redshift distribution, and their observational properties. Second, it

is vital to predict the information content from LSST light curves alone to account for

cases which will lack spectroscopic follow up. In this work we perform the first detailed

study of SLSNe discovered with LSST using an observationally-motivated suite of SLSN

models and a realistic observational simulator provided by the LSST collaboration.

The Chapter is structured as follows. In §6.2, we outline the simulations used to

produce realistic SLSN light curves as they would appear in the LSST WFD survey and

DDFs. In §6.3, we describe the characteristics of the SLSNe discovered by LSST based

on our simulation results. In §6.4, we discuss the ability to recover physical parameters

from the LSST light curves, and quantify the information content of the simulated

light curves. We conclude in §6.5. All magnitudes are reported in the AB system, and
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Figure 6.1: A subset of the model parameters for the SLSN magnetar model, showing

the results for the observed sample (orange circles: Nicholl et al. 2017; purple squares:

Lunnan et al. 2018; green diamonds; De Cia et al. 2017), and our simulated population

(blue circles). The simulated sample captures intrinsic correlations between parameters

(including nuisance parameters) that are seen within the observed population.

we assume a standard cosmology, with H0 = 67.7 km s−1 Mpc−1, ΩM = 0.307, and

ΩΛ = 0.691 (Planck Collaboration et al. 2016).
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6.2 Simulation Set-Up

To simulate the observable SLSN population in the LSST surveys we construct a sample

of light curve models and inject these into the LSST Operations Simulator (OpSim). We

describe these steps in the following subsections.

6.2.1 Constructing Simulated SLSN Light Curves

We construct a sample of simulated light curves based on known events from the

literature. Several studies have previously aggregated SLSN light curves (e.g. Nicholl

et al. 2015b; Prajs et al. 2017; Liu et al. 2017; De Cia et al. 2017; Lunnan et al. 2018).

Recently, Nicholl et al. (2017) uniformly modeled a sample of 38 SLSNe requiring the

events to be spectroscopically classified and to have some photometric data near peak.

As such, the sample spans a range of peak luminosities and light curve timescales.

Here we combine the sample of Nicholl et al. (2017) with 12 events discovered by the

Palomar Transient Factory (PTF; De Cia et al. 2017) and 8 events discovered in the

Pan-STARRS1 Medium Deep Survey (PS1-MDS; Lunnan et al. 2018), leading to 58

spectroscopically classified SLSNe spanning a wide range of observational properties (see

Table 6.1).

We model the 21 PTF and PS1-MDS SLSNe with the same model described in

Nicholl et al. (2017). In short, we use the open-source code MOSFiT (Guillochon et al.

2018) to fit a magnetar spin-down model to the multi-band light curves. We assume

a modified blackbody spectral energy distribution (SED) in which flux is linearly

suppressed below a “cutoff” frequency of 3000Å. This SED shape is consistent with
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observed SEDs (Chomiuk et al. 2011; Nicholl et al. 2016, but see also Yan et al. 2018

who argue that more UV variation is seen in SLSN SEDs). We remove data in which

a pre-peak “bump” is observed (see Nicholl & Smartt 2016). Our model additionally

assumes a one-zone treatment of the ejecta and a grey opacity dominated by electron

scattering, both assumptions being typical during the photospheric phase. Several

choices, such as the precise definition of spin-down time, lead to additional uncertainties

that can affect best-fit values to the tens of percent level (see Nicholl et al. 2017 for

detailed discussion). In this work, we explore only our ability to recover known model

parameters. Our best-fit parameters and their 1σ error bars are provided in Table 6.3.

We use the sample of 58 fitted events to generate our simulated SLSN light curves.

Because drawing walkers directly from the model posteriors would lead to undersampling

of the parameter space, we sample from a model of the underlying population distribution

as follows. We draw one walker from the posterior of each event to create a distribution

of the model parameters of the underlying population. We fit this distribution to a

truncated multivariate log-Gaussian which allows us to capture the correlations between

parameters observed in the sample events. We place physically-motivated limits on

the parameters, as listed in Table 6.2. We then draw samples from the population

distribution to generate 1,000 events per redshift bin of ∆z = 0.1 from z = 0.1 to z = 6.0.

Finally, from this sample we eliminate events with Mr > −20 mag; although these

magnetar-powered events may exist in nature, they are not necessarily distinguishable

from the broader population of Type I SNe. The parameters for the modeled SLSNe and

for our simulated events are shown in Figure 6.1.
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CHAPTER 6. SUPERLUMINOUS SUPERNOVAE IN LSST

The resulting r-band peak-luminosity function of our simulated events and the

observed sample are shown in Figure 6.2. Our simulated luminosity function is consistent

with that derived by Nicholl et al. 2017. We do not attempt to correct for any potential

observational biases within the various surveys, as we expect these effects to be small

relative to the overall uncertainty in the volumetric rate (approximately a factor ≈ 3− 5;

see Quimby et al. 2013; McCrum et al. 2015; Prajs et al. 2016 and §6.4). Similarly,

we show the duration distribution of the known SLSNe and of our simulated events in

Figure 6.3, finding a good agreement between the two.
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Table 6.2:: Model Parameters and Imposed Limits Parameters described in detail in

Nicholl et al. 2017.

∗Indicates limits well within the tail of the Gaussian distribution.

Parameter Mini Max

Pspin/ms 0.7 100∗

B⊥/10
14 G 10−2∗ 10

Mej/M� 1 100∗

vej/10
4 km s−1 0.5 100∗

κ/ g cm−2 0.05 0.2

κγ/ g cm−2 10−2 103

MNS/M� 1.4 2.2

Tfloor/10
3 K 0.1∗ 50∗
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24 23 22 21 20 19
Peak r-band Magnitude

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Simulated
Observed

Figure 6.2: Observed (orange) and simulated (blue) r-band peak luminosity function for

SLSNe. The luminosity functions are in good agreement, with only ≈ 5% of our models

extending to brighter r-band peak luminosities (Mr . −23) than currently observed.
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Figure 6.3: Same as Figure 6.2 but for the r-band duration (tdur) of the observed (orange)

and simulated (blue) SLSNe. The duration distributions are in good agreement, with only

≈ 2% of our models extending to durations longer than those in our observed sample.
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Figure 6.4: Sample ugrizy LSST light curves from OpSim at four representative redshifts.

For each redshift, the light curves are ordered by the number of observations, with the

left-most representing the bottom 10th percentile, the two middle panels representing the

50th percentile, and the right-most panel representing the 90th percentile.
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6.2.2 Description of the LSST Simulation

After generating the sample of SLSN models, we inject the simulated events into OpSim,

a publicly available application that simulates LSST’s scheduler and image acquisition

process over its 10-year survey. OpSim realistically accounts for the science program

requirements, mechanics of the telescope design and potential environmental conditions

to produce a database of observations. We use OpSim to calculate the estimated

signal-to-noise ratios and limiting magnitudes of each observation, using the formulae

outlined in the Appendix. OpSim offers a number of unique schedulers, each designed to

optimize distinct scientific goals; we use the most recent simulation, dubbed minion_1016

(Delgado et al. 2014).

For both the WFD survey and DDFs, we inject our simulated models uniformly

at z = 0 − 6 in bins of ∆z = 0.1. In each bin, a sample of 1,000 models are randomly

injected uniformly across the sky and in time to calculate the “discovery efficiency”

(see §6.3.1) of the LSST observing strategy as a function of redshift. We resample

the simulated models to the observed times and add white noise corresponding to the

estimated signal-to-noise ratio reported by OpSim. Additionally, we add Milky Way

extinction based on the injected sky positions. We disregard host galaxy extinction since

most known SLSN host galaxies appear to have negligible extinction (e.g., Chen et al.

2015; Leloudas et al. 2015; Nicholl et al. 2017; Lunnan et al. 2014). Example light curves

at representative redshifts are shown in Figure 6.4; featured light curves are selected to

highlight a combination of best, typical and worst cases in the WFD survey.
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6.3 Characteristics of SLSNe discovered by LSST

The thousands of injected simulated light curves reflect the wide range of observed SLSN

properties expected from LSST. Here we summarize these properties, define our criteria

for detection, and determine the rate of detected SLSNe as a function of redshift for

both the WFD survey and DDFs.

We calculate the expected number of SLSNe within each redshift bin by multiplying

the sample recovered from OpSim by the estimated volumetric rate from Quimby et al.

(2013) normalized to the cosmic star formation history (Madau & Dickinson 2014):

R = R0
(1 + z)2.7

1 + [(1 + z)/2.9]5.6
Gpc−3yr−1, (6.1)

where R0 ≈ 21Gpc−3yr−1 is the normalized SLSNe rate at z = 0 with an uncertainty

range of R0 ≈ 4 − 72 Gpc−3 (Quimby et al. 2013; Prajs et al. 2016). Using this

prescription, the volumetric SLSN rate peaks at z ≈ 1.5− 2.

We first focus on the r-band light curves to provide an overview of the broad

observational properties. In Figure 6.5, we show the observed duration-luminosity phase

space for our injected light curves (weighted by their volumetric rate) using a kernel

density estimate. For the WFD survey, peak observed magnitudes span ≈ 19− 23 mag,

with the distribution peaking at ≈ 21.2 mag. We also find that the observed durations

of the SLSNe span tdur ≈ 60 − 300 days. This timescale is comparable to the expected

LSST season length (≈ 4− 6 months), implying that for a substantial fraction of events

the rise or decline will be missed in seasonal gaps. We find that a typical SLSN is

tracked for ≈ 100− 400 days (1σ uncertainty range). For the DDFs, we find that average

peak magnitudes are slightly dimmer, with the distribution peaking at ≈ 21.8 mag. The
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observed durations are similar to those in the WFD survey.

The total number of observed light curve data points (combined in all filters) rapidly

decreases with redshift; see Figure 6.6. For the WFD survey, SLSNe at z . 1 will have

≈ 50 − 100 data points, while the majority of SLSNe have light curves with . 50 data

points. The number of observed data points roughly doubles for the SLSNe in the DDFs

due to both their higher cadence and deeper limits, enabling a longer temporal baseline.

291



CHAPTER 6. SUPERLUMINOUS SUPERNOVAE IN LSST

0 200 400 600
Duration (days)

18

20

22

24

r-m
ag

ni
tu

de

WFD
DDF

Figure 6.5: Duration-luminosity phase space for a representative sample of our simulated

SLSNe as observed with LSST in the WFD survey (orange) and DDFs (blue). Contours

are a kernel density estimate of the two populations, while points represent outliers. The

majority of objects have a peak magnitude of r ≈ 21 − 22 mag and durations of ≈ 100

days. The events in the DDFs extend to lower peak magnitudes and longer durations.
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Figure 6.6: Number of observed data points per event as a function of redshift. Bold lines

show the mean in each redshift bin, with the shaded regions representing 1σ ranges due

to event-to-event variations. The number of observed points drops to < 10 (our minimum

criterion for a detection) at z ≈ 3 in the WFD survey, while it typically remains at > 20

in the DDFs even to z ≈ 6.
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6.3.1 Efficiency and Metrics for Detectability

We now focus on more quantitative measures of “detectability” for the simulated light

curves. There can be many definitions of a detection of a transient. We are most

interested in the ability to: (1) accurately estimate the physical parameters from the

light curve, and (2) discover events sufficiently early to enable follow up with other

instruments. To address these points, we quantify the information content of the

observed light curves by defining several properties that can be easily measured directly

from the light curve. We focus on 19 representative properties, summarized in Table 6.4.

Using each property as an independent criterion of detection, we calculate the

total detection efficiency for SLSNe in LSST. The efficiency can be divided into two

multiplicative parts. The first is the survey efficiency, εs, arising from the survey footprint

and cadence. We calculate this by injecting events uniformly across the complete survey

duration and the sky. We then calculate the fraction of events that are in the LSST

footprint during at least one observation. This efficiency is effectively the area covered

by the survey, given the long duration of SLSNe compared to the cadence of LSST. The

second efficiency, εm, is the fraction of simulated events that satisfy the metrics listed in

Table 6.4.

The total efficiency, ε ≡ εs × εm, as a function of redshift is shown in Figure 6.7 for

light curves with > 10 observations (one of our 19 metrics). For both the WFD survey

and DDFs, the efficiencies decline monotonically as a function of redshift; however, the

decline is shallower in the case of the deeper DDFs. Within the WFD survey footprint,

the efficiency peaks at ≈ 70% at low redshift; in the DDF fields, the efficiency peaks

at ≈ 100%. The WFD survey peaks at a lower efficiency due to the fact that SLSNe
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Figure 6.7: WFD survey and DDFs efficiencies as a function of redshift. The left-hand

y-axis shows the efficiency of SLSN detection, assuming the SLSNe are within the survey

footprint (i.e., a SLSN may be in the footprint but too dim to detect). The right-hand

y-axis shows the total efficiency, ε, including the effect of survey area. The shaded region

represents the 1σ error bars from bootstrap analysis.
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(particularly if they explode outside of the observing season for their part of the sky) can

be discovered well beyond peak, at which point they may already be below the LSST

detection limit. The WFD survey efficiency reaches 50% at z ≈ 1 and declines to 10% at

z ≈ 3. For the DDFs, the efficiency reaches 50% at z ≈ 3 and declines to 10% at z ≈ 5.

We combine the efficiency and the estimated volumetric rate to calculate the total

expected number of SLSNe, the integral of the observed rate over the comoving volume,

corrected for time dilation:

N = ε

∫ zmax

zmin

4πR

1 + z

dV

dz
dz. (6.2)

We estimate the statistical uncertainty in the number of detections due to the uncertainty

in ε using a bootstrap analysis; namely, we resample the properties of the observed light

curves repeatedly, recalculating the efficiencies each time. There is an overall scaling

uncertainty due to the systematic uncertainty in the volumetric rate, but we expect

this to be improved with new rate measurements from DES (The Dark Energy Survey

Collaboration 2005) and ZTF (Kulkarni 2018). Therefore, in Figures 6.7–6.9 we show

only the statistical uncertainties.

The number of SLSNe discovered per year as a function of redshift is shown in

Figures 6.8 and 6.9. For our most lenient definition of a detection (at least 10 light curve

points), we find that LSST will discover ≈ 9, 600 SLSNe per year. This is in agreement

with the rate reported in the Scientific Handbook (LSST Science Collaboration et al.

2017) and previous studies (Tanaka et al. 2013; Scovacricchi et al. 2015). The distribution

roughly traces the cosmic star formation history to z ≈ 1, at which point the observed

distribution drops more rapidly due to the declining detection efficiency. The distribution

extends to z ≈ 3 in the WFD survey and to z ≈ 5 in the DDFs.
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Measuring both the peak brightness and duration can lead to robust measurements

of the SLSN properties. About 2,700 SLSNe per year will have more than 20 observations

within one magnitude of their peak brightness. We find that the duration is most readily

measurable in r-band, and that for about 950 SLSNe per year tdur (as defined above)

will be measured; we note that this represents only 10% of the overall SLSN sample.

Capturing the light curve rise can be especially important for constraining the

underlying power source in SLSNe and to search for early bumps in the light curve. We

find that ≈ 800 SLSNe per year will be discovered within ten days (in the rest frame) of

their explosion time, comparable to the typical time frame of the early pre-peak bumps

seen to date (Nicholl & Smartt 2016; Leloudas et al. 2012; Nicholl et al. 2015a; Smith

et al. 2016a). About 100 SLSNe per year will be discovered within five days of explosion,

most being located at z . 1. About 4, 200 SLSNe will be detected with at least ten

observations during the rising phase; however, fewer than 10 SLSNe with this property

will be found annually in each DDF, due to their small areal footprint.

6.4 Recovering the SLSN Parameters

In the previous section we explored the overall detection rates and the redshift

distributions for a range of observational light curve metrics. Here we fit the simulated

LSST light curves with the same model used to generate them to determine how well we

can recover the injected model parameters. Our goals are to understand how well we

can determine the model parameters from LSST data, and to correlate our simple light

curve metrics to the information content of the light curves. The latter goal is important

because the final survey strategies of LSST will be determined by providing a simple,
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measurable metric that can be optimized for a specific science goal.

6.4.1 Injection and Recovery of Representative SLSNe

We fit the output light curves using MOSFiT in the same manner that was used to

generate them (§6.2). We focus on three SLSNe representative of the larger population:

SN2013dg (tdur ≈ 45 days), LSQ12dlf (tdur ≈ 60 days), and SN2015bn (tdur ≈ 130 days).

All three have roughly the same peak luminosity, ≈ 3 × 1044 erg s−1. We inject and

recover about 100 iterations of these SLSNe at z = 0.5, 1.0, 1.5, 2.0, 3.0.

We fix the redshift to its input value when fitting, finding that without doing so it is

nearly impossible to constrain the explosion parameters. In reality, it is unclear how well

we will know the redshift a priori through photometry or (in some cases) spectroscopic

measurements of their host galaxies. SLSNe are typically found in low-luminosity

(MB ≈ −17 mag) host galaxies (Lunnan et al. 2014). For z . 0.5, most of these

hosts will fall in the so-called LSST “gold” galaxy sample (defined as galaxies with

mi < 25.3 mag), which will have a root-mean-square scatter in the photometric redshifts

of σz/(1 + z) . 0.05 (see LSST Science Collaboration et al. 2017). We additionally fix

the host reddening to be negligible.

We are interested in our ability to recover four key parameters: the ejecta mass,

the ejecta velocity, the initial magnetar spin period, and the magnetic field. In our

model, the spin period and magnetic field have strong degeneracies with several nuisance

parameters, making them difficult to directly measure. We therefore recover the following

variables, which directly correlate with the rotational energy and spindown timescales of
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the magnetar (Nicholl et al. 2017; Villar et al. 2017b):

B∗ ≡ B−2(sin θ)−2M
3/2
NS

P ∗ ≡ P−2
spinM

3/2
NS

, where θ is the angle between the rotational axis and magnetic dipole, and MNS is the

neutron star mass.

How well we need to recover the SLSN parameters depends on the scientific

goal. For cosmological studies, determining the average distance modulus (assuming

SLSNe are standardizable; see Inserra & Smartt 2014) to ≈ 0.25 mag is sufficient to

constrain, for example, Ωm to within 2% (Scovacricchi et al. 2015). In Nicholl et al.

(2017), constraining parameters to an average of ≈ 30− 50% was sufficient to probe the

underlying population with a sample of ≈ 50 events. We track our ability to recover the

four key parameters to (1) . 30% of their input values and with error bars of < 50%

(“strict”), and (2) within a factor of two of their input values with error bars of < 50%

(“lenient”).

Example light curves and their best-fit models are shown in Figure 6.10. At low

redshifts, many of the light curves are well-sampled both near and post peak, leading to

better recovery of the input parameters. At higher redshifts, the majority of light curves

are caught near peak and quickly drop below the detection limit, leading to typically

poorer recovery. Additionally, due to the much deeper limits available in gri-bands,

the light curves of higher redshift events are typically limited to these filters. Thus our

ability to recover the input parameters significantly drops with redshift. At z . 0.5, our

strict recovery rate is ≈ 60% and our lenient recovery rate is ≈ 100% for light curves

with > 10 data points. By z = 2, the strict recovery rate drops to zero, while the lenient
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recovery rate is ≈ 50%. By z = 3, the lenient recovery rate also drops to zero.

The parameter recovery rate is a function of both redshift and luminosity. The

above calculations used a peak luminosity of L0 ≈ 3 × 1044 erg s−1. We now consider

the full luminosity function of our simulated SLSNe (Figure 6.2) to capture the overall

recovery rate. For any luminosity, the recovery curve as a function of redshift, εrecov(z),

is set to 1 at z = 0 and to zero at z = zlim, where z = zlim is the limiting redshift

for a given luminosity. For SLSNe with peak luminosity L0, the limiting redshift is

zlim,0 ≈ 3.0. We assume that for all other peak luminosities, the recovery rate can be

described as εrecov = (z ∗ zlim,0/zlim). This allows brighter events to be captured at higher

redshifts, and all events will be capped to their limiting redshifts. After reweighting

the recovery rate through this process with our simulated luminosity function, we find

that the overall efficiencies decline more rapidly with redshift. For example, the lenient

recovery rate drops to ≈ 40% at z = 2, rather than to ≈ 50% when we used just a single

peak luminosity.

Multiplying our corrected recovery rates by the overall discovery efficiency from

§6.3, we find that ≈ 18% (about 1,700 out of 9,600 discovered annually) of SLSNe

discovered in the WFD survey will have light curves that satisfy our strict criterion, and

≈ 50% will satisfy the lenient criterion. Even at the high redshift end (z ≈ 3), ≈ 50

SLSNe per year will satisfy the lenient criterion.

For the DDFs, we find that the fraction of useful light curves is slightly smaller than

that of the WFD survey. This is likely due to the fact that the overall efficiency reaches

to higher redshifts, although fewer of the high-redshift light curves are useful due to their

lower luminosities.
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Finally, we test the robustness of our results given an uncertain redshift. For each

model at a representative z = 1, we rerun our fits with a uniform prior on redshift with

three levels of uncertainty: 5%, 10% and 20%. These levels range from the expected

“gold standard” (5%) and a worst-case scenario (20%). Using a bootstrap analysis, we

find no statistically significant (p > 0.05) bias or error inflation in any of the four key

parameters given the different redshift priors. This is likely due to the fact that the

errors are dominated by the other eleven parameters being fit. At higher redshift, it is

possible that similar uncertainties will have a larger effect on the models, but we expect

these to still remain at the ≈ 10%-level.

6.4.2 Correlating SLSN Properties to Parameter Recovery

Finally, we turn to the question of what properties of a SLSN light curve allow us to best

recover key physical parameters. Unsurprisingly, the number of observations strongly

correlates with our ability to recover parameters. This is demonstrated in Figure 6.11,

in which we show the average parameter residual for each of the four important physical

parameters (e.g., |Mej,fit −Mej,true|/Mej,true) as a function of the number of observations

for a sample of light curves spanning from z = 0.5 to z = 2. We consider both the total

number of observations (taken at any point during the event) and observations taken

within the first 2tdur days in the rest-frame (i.e., near-peak). In both cases, light curves

with & 50 points are significantly more likely to have recoverable physical parameters

compared to the average light curve with ≈ 20 observations (≈ 65% compared to ≈ 50%

recovery rate). Light curves with & 100 observations are only somewhat more useful

than those with & 50 observations when using the lenient definition (≈ 70% vs ≈ 65%);
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however, they are more useful when using the strict criterion, with ≈ 40% compared to

≈ 30%.

Additionally, having a measurable duration in any filter is a good indicator of an

information-rich light curve, with ≈ 65% compared to ≈ 50% recovery rate for the

typical light curve. This is likely due to the fact that the light curve peak and width

greatly constrain the model parameter space. For example, a bright and broad light

curve cannot be produced by a small ejecta mass or weak magnetic field. The most

“useful” filter for measuring duration appears to be u-band, although this is likely due to

the fact that light curves which are well-sampled in u-band tend to be at low redshifts

(i.e., the limiting redshift for this metric is only z = 1.2). In contrast, light curves with a

measurable r-band duration can occur at higher redshift (z ≈ 2). Again, this suggests

that well-sampled light curves near peak are more scientifically useful.

These findings indicate that a survey strategy which optimizes a higher cadence

in the most sensitive bands, gri, will provide the greatest return on scientifically useful

light curves even at high redshift. Given the average SLSN duration of ≈ 100 days

(Figure 6.5), a cadence of roughly two to four days (similar to the nominal cadence) in

any filter would be sufficient to recover magnetar parameters directly from most SLSN

light curves at z < 3.0. Perhaps more importantly, the current WFD observing strategy

has large seasonal gaps every 4 − 6 months which interrupt many SLSN light curves.

This is due to the fact that the WFD survey observes fields with airmass ≤ 1.4 (LSST

Science Collaboration et al. 2017). Reducing these gaps with even a few observations

at higher airmass would be beneficial to provide more comprehensive temporal coverage

and greater opportunity to recover SLSN properties. In a similar vein, stacking late-time

observations can significantly extend our light curve coverage accross seasons.
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6.5 Summary and Conclusions

We presented detailed simulations of Type-I SLSNe in the upcoming LSST survey.

We constructed a realistic distribution of magnetar and explosion parameters from an

existing sample of 58 SLSNe spanning z = 0.1− 1.6 and used this to simulate thousands

of SLSNe at z = 0− 6 in the LSST Operations Simulator.

We define a number of measurable light curve metrics which we use to define a

“detection”. For our loosest definition of a detection (observing > 10 data points in

all filters combined), we find that the detection efficiency of the WFD survey quickly

declines from ≈ 50% at z = 1 to ≈ 10% at z = 3, while for the DDFs, the efficiency

declines from ≈ 100% at z = 0.5 to ≈ 50% at z = 3 and 10% at z = 5. We combine this

detection efficiency with an estimate for the cosmic SLSN rate to find that LSST will

discover ≈ 104 SLSNe per year within the WFD survey and ≈ 15 per year in each DDF.

Most (90%) of the discovered SLSNe are found at z . 3, although ≈ 1 SLSN per year

should be discovered at z ≈ 5.

We refit the light curves of representative SLSNe injected into the LSST WFD

survey and DDFs, and test how well we can recover four key physical parameters (initial

magnetar spin period, magnetic field strength, ejecta velocity and ejecta mass). We find

that we can successfully recover the four parameters in ≈ 18% of all SLSNe to within

30% with error bars of < 50% of the parameter values. We can recover the parameters to

within a factor of two for ≈ 50% of all SLSNe. The majority of SLSNe with recoverable

parameters will be found at low redshift (z . 1.5). Parameter recovery relies on having

accurate redshifts; while LSST will provide photometric redshifts for many host galaxies

this may become a challenge at the high redshift end.
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We correlate our ability to recover physical parameters with the defined light curve

metrics. In both the WFD survey and DDFs, light curves with & 50 observations,

especially concentrated near-peak, are typically those with recoverable parameters. LSST

survey strategies which maintain a rapid cadence (≈ 2− 4 day) in the most sensitive gri

bands will provide the most scientifically useful SLSN light curves. Similarly, strategies

which minimize seasonal gaps with some high airmass observations will increase our

chance of covering the light curves peak and duration, and therefore provide more

scientifically useful light curves. Finally, stacking observations at late times may allow

us to probe more SLSNe across multiple seasons and better anchor our models.

Compared to the WFD survey, we find that the DDFs (in their current form) will

not provide higher quality SLSNe, or SLSNe at significantly higher redshifts in large

quantities due to the small area covered by these fields. It is therefore imperative to

maximize the scientific return from events in the WFD survey, rather than relying on a

small number of events from the DDFs.

Overall, our simulations indicate that LSST will be a powerhouse for discovering

SLSNe. About 1,700 SLSNe per year will have sufficient photometry to extract key

physical parameters directly from the light curves (given an accurate redshift estimate)

to within 30%, significantly increasing our current sample by at least two orders of

magnitude.
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6.6 Appendix

Using information provided by OpSim, we can calculate the signal-to-noise ratio (SNR)

of our injected observations 2:

SNR =
C√

C/g + (B/g + σ2
instr) ∗ neff

, (6.3)

where C is the source counts in ADU, B is the background count per pixel in ADU,

σinstr = 12.7 e− is the instrumental noise in ADU, g = 2.3 e−/ADU is the gain, and neff

is the effective number of source pixels. Both B and σinstr are provided by OpSim. The

source counts are calculated using:

C =
Aeff∆t

gh

∫
Fν(λ)

S(λ)

λ
dλ, (6.4)

where Fν is source spectrum, and S(λ) is the filter throughput, ∆t = 30s is the

integration time, Aeff = 3.24 × 1010cm2 is the effective collecting area and h is Plank’s

constant. The effective number of pixels can be calculated as:

neff = 2.266(FWHMeff/px)2, (6.5)

where FWHMeff is the effective full-width-at-half-max of the source PSF as reported by

OpSim and px = 0.2”/pixel is the pixel scale.

For the DDFs, the exposure time is increased according to the number of exposures

taken in a single night in each filter, allowing us to probe deeper limiting magnitudes.

2See https://smtn-002.lsst.io
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Figure 6.8: First and third rows: The WFD survey annual detection rate of SLSNe

as a function of redshift (black lines) for various metrics. The green shaded regions

represent 1σ errors from our bootstrap analysis. Also shown are the rates for SLSNe with

(strict) recoverable parameters (purple line and shaded area); note that the purple line is

calculated assuming the same information efficiency for each metric. Second and fourth

rows: Cumulative distributions of SLSNe that satisfy each metric (black) and those that

have lenient recoverable parameters (purple).
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Figure 6.9: Same as Figure 6.8 but for each DDF.
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Figure 6.10: Light curves fits from MOSFiT to a sample of simulated LSST light curves at

representative redshifts. For each event we list the ratio of the injected to fitted values for

the four key model parameters. The light curves are ordered by the quality of parameter

recovery from left (worst) to right (best).
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Figure 6.11: Average parameter residuals (for Mej, vej, B
∗, P ∗) as a function of number

of observations per light curve. The blue points show total number of observations per

light curve, while the oranges points show the number of observations within 2tdur days of

explosion (in the event’s rest frame). The solid lines are fits to exponential functions to

guide the eye. Dotted lines show both the lenient and strict information criteria. There

is little gain beyond ≈ 50 observations per light curve, and almost no light curves have

more than 50 observations within 2tdur days post-explosion.
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Abstract

Photometric classification of supernovae (SNe) is imperative as recent and upcoming

optical time-domain surveys, such as the Large Synoptic Survey Telescope (LSST),

overwhelm the available resources for spectrosopic follow-up. Here we develop a range of

light curve classification pipelines, trained on 513 spectroscopically-classified SNe from

the Pan-STARRS1 Medium-Deep Survey (PS1-MDS): 357 Type Ia, 93 Type II, 25 Type

IIn, 21 Type Ibc, and 17 Type I SLSNe. We present a new parametric analytical model

that can accommodate a broad range of SN light curve morphologies, including those

with a plateau, and fit this model to data in four PS1 filters (gP1rP1iP1zP1). We test

a number of feature extraction methods, data augmentation strategies, and machine

learning algorithms to predict the class of each SN. Our best pipelines result in ≈ 90%

average accuracy, ≈ 70% average purity, and ≈ 80% average completeness for all SN

classes, with the highest success rates for Type Ia SNe and SLSNe and the lowest for

Type Ibc SNe. Despite the greater complexity of our classification scheme, the purity

of our Type Ia SN classification, ≈ 95%, is on par with methods developed specifically

for Type Ia versus non-Type Ia binary classification. As the first of its kind, this study

serves as a guide to developing and training classification algorithms for a wide range

of SN types with a purely empirical training set, particularly one that is similar in its

characteristics to the expected LSST main survey strategy. Future work will implement

this classification pipeline on ≈ 3000 PS1/MDS light curves that lack spectroscopic

classification.
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7.1 Introduction

Optical time-domain astronomy has entered a new era of large photometric datasets

thanks to current and upcoming deep and wide-field surveys, such as the Panoramic

Survey Telescope and Rapid Response System (Pan-STARRS; Kaiser et al. 2010),

the Asteroid Terrestrial-impact Last Alert System (ATLAS; Jedicke et al. 2012), the

Zwicky Transient Facility (ZTF; Kulkarni 2018), the Large Synoptic Survey Telescope

(LSST; Ivezic et al. 2011), and the Wide Field Infrared Survey Telescope (WFIRST;

Spergel et al. 2015). The current surveys are already discovering ∼ 104 SNe per year, a

hundred-fold increase over the rate of discovery only a decade ago. LSST will increase

this discovery rate to ∼ 106 SNe per year.

Supernovae have traditionally been classified based on their spectra (Filippenko

1997). In the early days this was accomplished through visual inspection, then with

template-matching techniques (e.g., SNID; Blondin & Tonry 2007), and most recently

with deep learning techniques (e.g., Muthukrishna et al. 2019b). However, given the

current discovery rate, and the anticipated LSST discovery rate, spectroscopic follow

up is severely limited. The consequence of this fact is twofold. First, we need a way to

effectively identify “needles” in the haystack – the events that will yield the greatest

scientific return with detailed follow up observations (e.g., spectroscopy, radio, X-ray).

Second, we need to devise methods to extract as much information and physical insight

as possible from the “haystack” of SNe for which no spectroscopy or other data will be

available. Here, we specifically focus on the latter issue and explore the question: Given

complete optical light curves, can we classify SNe into their main spectroscopic classes

(Ia, Ibc, IIP, etc.)?
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Figure 7.1: Peak iP1-band absolute magnitude versus redshift for the sample of PS1-MDS

spectroscopically-classified SNe used in this study. We apply a cosmological k-correction

to the peak magnitudes, but do not correct for the intrinsic spectral energy distribution of

the various SNe. The sample includes five SN classes: Ia (green circle), Ibc (red downward

triangle), II (blue sqaure), IIn (purple upward triangle), and SLSNe (yellow star).

Previous studies in this area have largely focused on the simpler task of separating

thermonuclear Type Ia SNe from non-Type Ia SNe, motivated by the use of Type Ia

SNe as standardizable cosmological candles, and taking advantage of their uniformity

(e.g., Möller et al. 2016; Kimura et al. 2017). Separating the classes of core-collapse SNe
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(CCSNe) is a broader and more challenging problem. First, unlike Type Ia SNe, CCSNe

exhibit broad diversity between and within each class in terms of basic properties such

as luminosity, timescale, and color (e.g., Drout et al. 2011; Taddia et al. 2013; Sanders

et al. 2015; Nicholl et al. 2017; Villar et al. 2017b). This is due to their wide variety

of progenitor systems, energy sources, and circumstellar environments. Second, the

overall diversity of CCSNe is less thoroughly explored, due to small sample sizes and

few published uniform studies. As a consequence, most previous works on photometric

classification of CCSNe have relied on simulated datasets to train and test classification

algorithms (e.g., Richards et al. 2011; Charnock & Moss 2017b; Kimura et al. 2017;

Ishida et al. 2018). Simulated datasets are based on strong assumptions about the

underlying populations of each SN class and often do not reflect the true event diversity,

or the effects of actual survey conditions.

Here, we approach the question of SN photometric classification using a large and

uniform dataset of 513 spectroscopically-classified SNe from the PS1-MDS. Importantly,

the characteristics of this dataset in terms of filters, depth, and cadence are the closest

available analogue to the LSST main survey design. We fit the observed light curves

with a flexible analytical model that can accommodate all existing light curve shapes,

using a Markov chain Monte Carlo (MCMC) approach. We then train and evaluate 24

classification pipelines that span different feature extraction, data augmentation, and

classifications methods. We further use the posteriors of our MCMC fits to determine

overall uncertainties on our classifications.

The Chapter is organized as follows. In §7.2 we introduce the PS1-MDS dataset

utilized here. In §7.3 we describe our analytical light curve model and iterative MCMC

fitting approach. In §7.4 we describe the key components of our various classification
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pipelines, including feature extraction, data augmentation, and classification approaches.

We present the results of our classifications in §7.5, compare to previous classifications

efforts in §7.6, and discuss limitations and future directions in §7.7.

Throughout this Chapter, we assume a flat ΛCDM cosmology with ΩM = 0.286,

ΩΛ = 0.712 and H0 = 69.3 km s−1 Mpc−1 (Hinshaw et al. 2013).

7.2 PS1-MDS Supernova Light Curves and Spectro-

scopic Classifications

Pan-STARRS1 (PS1) is a wide-field survey telescope with a 1.8 m diameter primary

mirror located on Haleakala, Hawaii (Kaiser et al. 2010). The PS1 1.4 gigapixel camera

(GPC1) is an array of 60 4800 × 4800 pixel detectors with a pixel scale of 0.′′258

and an overall field of view of 7.1 deg2. The PS1 survey used five broadband filters,

gP1rP1iP1zP1yP1. The details of the filters and the photometry system are given in Stubbs

et al. (2010) and Tonry et al. (2012).

The PS1-MDS, conducted in 2010− 2014, consisted of ten single-pointing fields for

a total area of about 70 deg2 (Chambers et al. 2016). About 25% of the overall survey

observing time was dedicated to the MDS fields, which were observed with a cadence

of about 3 days per filter in gP1rP1iP1zP1 to a 5σ depth of ≈ 23.3 mag per visit. The

typical sequence consisted of gP1 and rP1 on the same night, followed by iP1 and then zP1

on subsequent nights. Observations in yP1-band were concentrated near full moon with

a shallower 5σ depth of ≈ 21.7 mag; we do not use the yP1-band data in this study due

to its significantly shallower depth and poorer cadence.
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The reduction, astrometry, and stacking of the nightly images were carried out by

the Pan-STARRS1 Image Processing Pipeline (IPP; Magnier et al. 2016b,a; Waters et al.

2016). The nightly stacks were then transferred to the Harvard FAS Research Computing

Odyssey cluster for a transient search using the photpipe pipeline, previously used in

the SuperMACHO and ESSENCE surveys (Rest et al. 2005; Miknaitis et al. 2007) and

described in detail in our previous analyses of PS1-MDS data (Rest et al. 2014; Scolnic

et al. 2017; Jones et al. 2018).

In the full PS1-MDS dataset we have identified 5235 likely SNe (Jones et al. 2017,

2018). During the course of the survey, spectroscopic observations were obtained for

over 500 events using the MMT 6.5-m telescope, the Magellan 6.5-m telescopes, and

the Gemini 8-m telescopes. We further obtained spectroscopic host galaxy redshifts for

3147 SN-like transients. The transients spectroscopically and photometrically classified

as Type Ia SNe were published in Jones et al. (2017); the light curves and photometric

classification of the remaining objects will be presented in future work. Similarly, the

bulk of the Type IIP SNe (76 events) were published in Sanders et al. (2015), and the

Type I SLSNe (17 events) were published in Lunnan et al. (2018). Here we focus on 513

spectroscopically classified events, which were classified using the SNID software package

(Blondin & Tonry 2007). The sample contains 357 Type Ia SNe, 93 IIP/L SNe, 25 Type

IIn SNe, 21 Type Ibc SNe, and 17 Type I SLSNe1.

Our sample is limited events with high-confidence spectroscopic classifications with

a statistically useful number of members in each class. As part of the PS1-MDS we

1Three of the 17 SLSNe (PS1-12cil, PS1-10ahf, and PS1-13or) do not have spectroscopic host redshift

measurements. Lunnan et al. (2018) estimated their redshifts (0.32, 1.10 and 1.52, respectively) from

strong rest-frame UV features for the z > 1 objects and SN Ic-like post-peak features for PS1-12cil.
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discovered several other rare transients, including tidal disruption events (Gezari et al.

2012; Chornock et al. 2014b) and fast-evolving luminous transients (Drout et al. 2014),

but the sample sizes for those are too small for inclusion in this study. It is possible that

SNID misclassification exist in our dataset; e.g., low SNR events are more likely to match

to Type Ia SNe (Blondin & Tonry 2007). To partially counteract this, we check each

member of our Type Ibc and SLSNe classes (our smallest classes) by eye to ensure high

purities. Finally, we note that the magnitude limit for our spectroscopic follow up was

generally shallower by about 1.5 mag relative to the PS1-MDS nominal per-visit depth.

This does not affect our ability to test classifiers on the spectroscopic sample itself, but

will be considered when extending our method to the full photometric dataset in future

work (see §7.6).

The light curves range from a minimum of 3 to ≈ 150 total data points in any filter

with a signal-to-noise ratio of S/N > 3, with a median of about 30 data points in each

light curve. We have only eliminated events with light curves that contain fewer than

two 3σ detections in three or more filters, eliminating 7 SNe from our sample2 (6 Type

Ia SNe and 1 Type II SN) leaving 506 remaining SNe for our training set.

In Figure 7.1 we plot the peak absolute iP1 magnitude versus redshift for our

spectroscopic sample. The sample spans Mi ≈ −14.5 to −22.5 and extends in redshift to

z ≈ 1.6, with only the brightest classes (SLSNe and Type IIn) being observed at z & 0.6.

Specifically, we find a range of Mi ≈ −14.5 to −18.5 mag for the Type II SNe, ≈ −16.5

to −19.5 mag for the Type Ibc SNe, −16 to −20.5 for the Type IIn SNe, and ≈ −20.5

2For completeness, we ran our final classifier on these light curves as well and found that 5 of the 6 Type

Ia SNe, as well as the one Type II SN were actually correctly classified, albeit with a low classification

confidence.
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Figure 7.2: Example model light curves based on Equation 7.1 highlighting how each of

the free parameters affects the light curves. The parameters are individually varied from

low (blue) to high (red) values.

to −22.5 for the SLSNe.

7.3 Analytical Light Curve Model and Fitting

Rather than interpolating data points, a common method to standardize data is to fit

a simple parametric model to the light curves (e.g., Bazin et al. 2009; Newling et al.
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Figure 7.3: A comparison of our analytical light curve model (Equation 7.1; black line)

to that of Bazin et al. (2009) (blue line) and Karpenka et al. (2013) (yellow line) for i-band

lightcurves of both a Type IIP SN (Left) and a Type Ia SN (Right). Our model performs

similarly for a Type Ia SN, but is superior at fitting SNe with a light curve plateau.

2011; Karpenka et al. 2013). However, the majority of existing analytical light curve

models are best-suited for Type Ia SNe and have limited flexibility for the full observed

range of SN light curve shapes. Here we present and fit our data with a new parametric

piecewise model that is designed to be flexible enough for a broad range of light curve

morphologies:

F =


A+β(t−t0)

1+e−(t−t0)/τrise
t < t1

(A+β(t1−t0))e
−(t−t1)/τfall

1+e−(t−t0)/τrise
t ≥ t1

(7.1)

The model contains seven free parameters, whose effects on the resulting light curves
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are shown in Figure 7.2. Although each parameter has a unique and interpretable effect,

some degeneracies between the parameters exist. For example, the parameter A affects

the amplitude of the light curve, although its value does not exactly correspond to the

peak flux. Similarly, t0 acts as a temporal shift in the light curve, but does not directly

correspond to the time of explosion or the time of peak. The parameters, trise, t1, and

tfall control the rise, plateau onset, and fall time of the light curve, respectively. For the

purposes of fitting, we reparameterize t1 into a new parameter γ ≡ t1 − t0, which better

represents the plateau duration of the light curve and results in fewer degeneracies when

fitting. Finally, the parameter β controls the slope of the plateau phase.

This functional form is similar to those presented in Bazin et al. (2009) (with five

free parameters) and Karpenka et al. (2013) (with six free parameters), but incorporates

a plateau component. In Figure 7.3 we show examples of fits to a Type IIP SN and a

Type Ia SN with our model, the Bazin model and the Karpenka model. Our model

provides a better fit to both the fast rise time and plateau phase of the Type IIP SN

light curve, and is flexible enough to also fit the smoother light curve of a Type Ia SN.

We note that Sanders et al. (2015) presented a similar piecewise model with 11 free

parameters to fit a sample of 76 PS1-MDS Type II SNe; however, Lochner et al. (2016b)

found that this model was not robust when fitting data without the use of informative

priors, due to the large number of free parameters. Additionally, the sharp transitions

between rise and decline in the Sanders model make it difficult to fit CCSNe with smooth

peaks.

One common Type Ia SN light curve feature missing from our model is the second

peak in the red light curves at about 1 month post-explosion (e.g., Kasen 2006; Mandel

et al. 2011; Dhawan et al. 2015). We find that this feature manifests itself as a “plateau”
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in our analytical model in the i- and z-bands. However, as we show in §7.5, our

classification pipelines can reliably classify Type Ia SNe without explicitly including a

second peak in our model.

We fit the light curves using PyMC (V2; Patil et al. 2010), a Python module that

implements a Metropolis-Hastings MCMC sampling algorithm. We assume uniform

priors on all parameters with the exception of γ. We found that light curves typically fall

in one of two solutions: light curves with a long plateau (in the case of Type IIP SNe)

and light curves that lack a plateau (all other types). To best reflect this fact, we set the

prior of γ to a double Gaussian peaked at 5 and 60 days. This prior helps to remove a

degeneracy in which a steep exponential decline can resemble a linear decline. The priors

are listed in Table 7.1. We use a standard likelihood function, incorporating both the

observational error and a scalar white noise scatter term added in quadrature.

We find that several of our model parameters are correlated (degenerate) with one

another. In particular, the amplitude (A) is negatively correlated with both the rise

time (trise) and plateau duration (γ) but negatively correlated with the start time (t0).

Additionally, duration is negatively correlated to both the rise time and start time, while

the rise time is positively correlated with the start time.

We fit the light curve in each of the 4 filters independently, in the observer frame,

but use an iterative fitting routine to incorporate combined information from all filters.

We first run the MCMC to convergence on each filter independently with the same

set of priors. We then combine the marginalized posteriors (i.e., we ignore parameter

covariances) from each filter and use the combined posterior as a new prior for a second

iteration of fitting. We can apply this process repeatedly, but we find that a single
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Figure 7.4: Example best-fit light curves in the 4 PS1 filters after the first (top) and

second (bottom) MCMC iterations. Following the first iteration, the peak time varies

significantly between the filters due to differences in the data quality and time sampling.

The best-fit solution of the second iteration, using the combined posteriors from the first

iteration, provides much better agreement in the light curve properties.
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iteration is sufficient for the vast majority of events. Our iterative procedure is essential

for fitting light curves in which some filters have significantly fewer data points, a

situation that is common in photometric surveys due to differences in relative sensitivity,

the intrinsic colors and color evolution of SNe, and varying observing conditions. An

example of the best-fit solutions given by the first and second iterations is shown in

Figure 7.4. In this example, the peak times in g- and i are in disagreement with r- and z

due to poorly-sampled data in the former two filters. Following the second iteration, this

disagreement is removed, leading to more realistic fits.

Representative light curves and their best fits are shown in Figure 7.5. The solutions

are constrained for well-sampled light curves (e.g., the Type Ia SN shown) but more

poorly constrained for sparse light curves (e.g., the SLSN shown). Crucially, because we

have access to the full posterior of light curve solutions, we can feed many samples of the

posterior through our classification algorithm to quantify the classification uncertainty

for each event.

Unless otherwise specified, we use the observer-frame light curve fits to extract

features. We then include the redshift to transform to absolute magnitudes, including

a cosmological k-correction: M = m − 5 log(dL/10pc) + 2.5 log(1 + z), where dL is the

luminosity distance. We do not apply k-corrections to account for the intrinsic spectral

energy distribution of the various SN types.
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Figure 7.5: Example light curves and sample posterior draws of associated model fits in

the 4 filters for various SN types. The model is described by Equation 7.1 and the fitting

procedure is described in §7.3.

7.4 Classification Pipelines

For each SN, our MCMC fitting generates posterior distributions for the model light

curve parameters. To train a classifier, we need to extract features from the light curves

generated by the fitted parameters. We test several methods of feature extraction, data

augmentation and classification. We describe each method in the following subsections,

and we compare the algorithms in terms of classification purity, completeness, and

accuracy in §7.5. Purity (also called precision) is defined as the fraction of events in

a predicted class that are correctly identified; for example, if our classifier predicts a

total of 100 Type Ia SNe, but only 70 of those are spectroscopically-classified as Type Ia
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SNe, the purity would be 0.7. Completeness (also called recall) is defined as the fraction

of events in an observed class that are correctly identified; for example, if our sample

contains 100 spectrosopically-classified Type Ia SNe, but our classifier has only identified

70 of those events as Type Ia SNe, then our completeness would be 0.7. Accuracy is

defined as the total fraction of events that are classified correctly as being a member

or not a member of a given class; for example, if a sample of 100 SNe contains 70

spectrosopically-classified Type Ia SNe, and our classifier correctly identifies the 70 Type

Ia SNe but incorrectly classifies 20 more CCSNe as Type Ia SNe, the overall accuracy is

0.8. The three terms are mathematically defined as follows:

Purity =
TP

TP + FP
(7.2)

Completeness =
TP

TP + FN
(7.3)

Accuracy =
TP + TN

TS
, (7.4)

where TP (FP) is the number of true (false) positives, TN (FN) is the number true

(false) negatives, and TS is the total sample size.

7.4.1 Feature Selection

Although our analytical model produces interpretable features for each light curve (albeit

ones that are somewhat degenerate) we would like to explore various methods of feature

extraction, based on the analytical fits. In particular, we explore the following four types

of features:

• Model Parameters (M): We use the analytical model parameters as features,

as well as the peak absolute magnitude in each filter, including a cosmological
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k-correction but no correction for intrinsic SN colors and color evolution.

• Hand-Selected Features (HS): We use hand-selected interpretable features: the

peak absolute magnitude in each filter, including a cosmological k-correction but

no correction for intrinsic SN colors and color evolution; and the rest-frame rise

and fall times by 1, 2 and 3 mag relative to peak (where we do not correct the rise

and fall times for cosmological time-dilation).

• Principal Component Analysis (PCA): We fit a PCA decomposition model to

the full set of analytical model fits (without any redshift corrections) independently

for each filter. We use the first 6 PCA components from each filter, corresponding

to an explained variance within the light curves of ∼ 99.9%. We also use the peak

absolute magnitude, including a cosmological k-correction, in each filter in addition

to the PCA components.

• Light Curves (LC): We use the model light curves as the features. We

renormalize the flux of each light curve, correcting for luminosity distance; however,

we find that neglecting time dilation corrections improves classification accuracy,

and therefore we do not make these corrections. We down-sample each filter model

to 10 observations logarithmic-spacing between t0 and t0 + 300 to decrease the

number of features.

To provide some intuition, we highlight a sub-space of the hand-selected features

(Mpeak versus duration time to rise and fall by 2 mag) in Figure 7.6. We find that some

SN classes, such as SLSNe versus Type II, or Type Ia versus Type IIn, easily separate

in the duration-luminosity feature space. However, other classes, such as Type Ibc

versus Type Ia and IIP, have substantial overlap in this space, regardless of filter. This
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highlights that while simple heuristics can be used as first-order classifiers for some SN

classes, other classes are intrinsically difficult to disentangle from light curve information

alone.

7.4.2 Data Augmentation

Data augmentation is ubiquitous in machine learning applications, as a larger dataset can

significantly improve the accuracy and generalizability of most classification algorithms.

Data augmentation methods have already been utilized in the astrophysical context

(e.g., Hoyle et al. 2015).

Here, we augment our training set with simulated events for two key reasons. First,

our training set is unbalanced in terms of SN classes due to the differing observed rates of

transients, with Type Ia SNe representing ≈ 70% of our sample (and more generally, of

any magnitude-limited optical survey). Classification algorithms trained on unbalanced

training sets tend to over-classify all objects as the dominant class. This is because the

algorithms can minimize the decision-making complexity by ignoring minority classes in

favor of correctly classifying the majority class. In our case, a classification algorithm

may preferentially label all objects as Type Ia SNe to achieve an overall high accuracy.

Second, our training set is small in the context of machine learning, with the smallest

class (SLSNe) containing just 17 events.

One approach to overcome this in the context of our method is to augment our

training set with many draws from the MCMC posteriors. However, this would lead to

clustering of solutions in feature-space that may bias the training algorithms. Instead,

we address the issue of a small and imbalanced training set by synthesizing more event
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samples using two techniques. First, we use the Synthetic Minority Over-sampling

Technique (SMOTE; Chawla et al. 2002) to over-sample all the non-Type Ia SN classes

to be equally represented as the Type Ia SNe. SMOTE creates synthetic samples in

feature space by randomly sampling along line segments joining the k nearest neighbors

of a sample, where k is a free parameter of the algorithm. Here we find that k = 5

performs well for sampling the minority classes. An example of the SMOTE resampling

algorithm is shown in Figure 7.7. A key feature of SMOTE resampling is that it produces

realistic samples within each class, but it cannot produce samples outside the extent of

the original sample. While this prevents the generation of unphysical models, it may

overly constrain the properties of classes with only a few samples (e.g., SLSNe).

Second, we augment the non-Type Ia SN classes by fitting the feature space of each

class to a multivariate-Gaussian (MVG) and resampling from the fitted MVG. This is

similar to the SMOTE algorithm in that it allows for the generation of new events that

encompass a larger potential feature space. However, one key difference is that this

method allows for synthesized events beyond the feature boundaries seen in the data.

While this may lead to some unphysical models, it better reflects the potential spread in

light curve parameters in poorly-sampled classes. An example of the MVG resampling is

shown in Figure 7.7.

Both augmentation methods aim to increase our training set in a way which is

representative of the set and therefore makes no attempt to correct for potential biases.

This can potentially lead to increased misclassifications if our labelled training set is

unrepresentative of a future test set; however, we expect no such effects within the

training set of 513 objects.
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7.4.3 Classification

Following the work of Lochner et al. (2016b), we test three classification algorithms:

a support vector machine (SVM), a random forest (RF), and a multilayer perceptron

(MLP). We optimize the hyperparameters of each algorithm independently using a grid

search. Each algorithm and its tunable hyperparameters are described below. We use

the scikit-learn python package throughout the classification portion of our pipeline.

Support Vector Machine (SVM)

A SVM classifies the training set by finding the optimal hyperplane in feature space

to minimize the number of misclassified samples. In particular, the SVM will select a

hyperplane that maximizes the distance between class samples nearest the hyperplane

(also known as the support vectors). In the majority of cases, the classes are not linearly

separable within the feature space alone (i.e., there may be significant overlap between

classes). Instead, the features are expanded into an infinite basis function using the

so-called Kernel trick (Aizerman 1964), allowing one to find a feature space in which the

separating hyperplane is linear. We optimize the kernel and a regularization term using

a coarse grid search, allowing the kernel size to logarithmically range from σ = 1 to

σ = 100 and the normalization to logarithmically range from 1 to 1000. We find that a

radial basis function kernel with width σ = 10 typically results in optimal classification,

with normalization values ranging depending on the pipeline.

332



CHAPTER 7. SUPERVISED SUPERNOVA PHOTOMETRIC CLASSIFICATION

Random Forest (RF)

RF classifiers (Breiman 2001) are built on the idea of a decision tree, which is a model

that generates a set of rules to map input features to classes. This mapping is based on a

series of branching decisions based on feature values (e.g., “is the peak g-band magnitude

brighter than −19?”). While single trees are theoretically sufficient for classification

problems, they often lead to over-fitting due to specialized branching required for each

class. Random forests overcome this problem by combining decision trees that are

trained on different subsets of the training data and features. The ensemble of decision

trees is then used as the classifier. There are a number of free parameters within a

RF, including the number of decision trees, the number of nodes for each tree and the

splitting rules for each node. Through a grid search of hyperparameters, we find that

100 decision trees utilizing the Gini impurity (the probability that a randomly chosen

SN from a labelled class is misclassified) as a splitting criterion and allowing nodes to be

split until all leaves are pure results in the highest accuracy.

Multilayer Perceptron (MLP)

A fully-connected MLP is the simplest artificial neural network (e.g., Schmidhuber 2015).

It is composed of a series of layers of neurons, where each neuron is the dot product of

the previous layer and a set of optimizable weights, passed through a nonlinear activation

function. A “fully-connected” MLP means that each neuron is connected to all neurons

in the preceding layer. The nonlinear activation function is what allows a MLP to model

nonlinear mappings between the feature set and classes. MLPs have many tunable

parameters, including the number of layers, the number of neurons within each layer,
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the learning rate and a regularization term. We optimize the hyperparameters using a

grid search, finding that two layers with ten neurons each typically performs best, and

use the Adam optimization algorithm (Kingma & Ba 2014) to train the MLP.

An example of a complete pipeline, excluding the MCMC fitting step, is available

on GitHub3.

7.5 Classification Results

We combine each of the four feature extraction methods (M, HS, PCA, and LC), two

data augmentation methods (SMOTE and MVG), and three classification algorithms

(SVM, RF, and MLP) to test a total of 24 classification pipelines. For each pipeline, we

use the full dataset to find the hyperparameters which optimize overall accuracy for the

classification method. We optimize the hyperparameters over a coarse grid, due to the

computational costs of performing a large grid search. We then perform leave-one-out

cross-validation by iteratively removing one object from the sample, performing data

augmentation on the remaining dataset, and training a classifier on the new set. We

then test the trained classifier on the median posterior values of the removed object and

record the predicted label. Due to computational costs, we only utilize the full posteriors

for classification error estimation using our optimal pipeline.

3https://github.com/villrv/ps1ml
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7.5.1 General Trends

In Figures 7.8 and 7.9 we plot the purity, completeness and accuracy for each of the

24 pipelines and each of the 5 SN classes. Figure 7.8 provides a matrix representation

with the percentage score noted for each combination of pipeline and SN class, while

Figure 7.9 shows the same results in histogram format to aid in visualizing the range of

completeness, purity, and accuracy values across the 24 pipelines for each SN class.

We find that SLSNe and Type Ia SNe are consistently the classes with the highest

purity and completeness, reaching & 90% for the best classification pipelines. This is

due to the fact that SLSNe are easily separable from the other classes due to their high

luminosity and longer durations (Figures 7.1 and 7.6), while Type Ia SNe are tightly

clustered in feature space due to their intrinstic uniformity.

In contrast, we find that Type Ibc SNe typically have the lowest purity and

completeness, with ≈ 15− 35% and ≈ 25− 65%, respectively, and a much wider spread

in performance for the various pipelines. The lower classification success rate is due to

broader diversity within Type Ibc SNe, as well as their significant overlap with Type Ia

SNe (e.g., Figure 7.6).

For Type II SNe we find high values of purity and completeness of ≈ 65− 85% and

≈ 60 − 80%, respectively. This overall high success rate is mainly due to the presence

of a plateau phase that helps to distinguish most Type II SNe from the other classes.

However, the failed classifications are most likely due to the faster evolving Type II SNe

(often called Type IIL), which tend to be misclassified as Type Ibc or Type Ia SNe due

to overlap in light curve shapes (e.g., Figure 7.6).
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Finally, for Type IIn SNe we find purity and completeness of ≈ 30 − 80% and

≈ 45 − 70%, respectively, reflecting the broad diversity of light curve morphologies and

luminosities, with some events overlapping similar areas in feature space with Type Ia

and Ibc SNe (e.g., Figure 7.6). As for the Type Ibc SNe, we find quite a broad dispersion

in performance between the various pipelines.

For the overall accuracy across the 5 SN classes, we find generally high values of

≈ 100% for SLSNe, ≈ 95% for Type IIn SNe, ≈ 90% for Type II SNe, ≈ 85 − 95% for

Type Ibc SNe, and ≈ 85−90% for Type Ia SNe. These values are essentially independent

of the classification pipeline used.

To further explore the relative performance of the various pipelines, in Figure 7.10

we plot the distribution of completeness across the full dataset, grouping the classification

pipelines by feature extraction method, classification method, and data augmentation

method. We find that the classification method has the largest impact on completeness,

with the RF classifiers performing noticeably better, and more uniformly, than the

SVM and NN classifiers. In terms of feature extraction we find that use of the model

parameters (M) and PCA are somewhat advantageous compared to hand-selected (HS)

features and the LC approach, although the PCA extraction leads to a broader range

of outcomes. Finally, the MVG augmentation method performs slightly better than

SMOTE.

The top three pipelines in terms of purity, completeness and accuracy share RF

classification and PCA feature extraction, with both MVG and SMOTE augmentation.

Between these pipelines, the overall accuracy differs by . 5% across the 5 SN classes.

In addition to performing well, the RF classifier also has the advantage of allowing us
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to measure the relative important of each feature. For example, we test the relative

importance of our hand-selected and model features in the RF classification pipeline

using the “gini importance”, a measure of the average gini impurity decrease across

descending nodes (Leo et al. 1984). We find that the peak magnitudes are the most

important interpretable features, with durations and other parameters being roughly

equally important.

For simplicity, below we focus on the results of our pipeline with the highest purity

(72%) and completeness (78%) scores with an average accuracy of 93% across the 5 SN

classes. This pipeline consists of PCA feature extraction, MVG data augmentation, and

RF classifier; however, we emphasize that this pipeline does not significantly outperform

the others. In Figure 7.11 we present the final confusion matrix for this pipeline across

the full training set. The confusion matrix is a quick-look visualization of how each class

is correctly or incorrectly classified. We generate the confusion matrix using the full

posteriors for each SN, so the probability densities have been effectively smoothed out

across the matrix. To specifically assess the role of poor quality classifications, we show

the confusion matrix for the full sample, as well as separately for classifications with a

confidence of p > 0.8 only (representing ∼ 85% of the original sample). In practice, one

can optimize pipeline parameters to maximize sample purity, completeness or some other

metric.

7.5.2 Assessing Misclassifications

Although the overall completeness for each SN class is high, we note several common

misclassifications. First, Type II and Ia are the most likely classes to be misclassified as
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Type Ibc SNe. The Type II SNe that are misclassified as Type Ibc SNe are typically

either poorly sampled or are rapidly evolving (the so-called IIL events). Second, Type

Ibc, IIn, and II SNe are the most likely classes to be misclassified as Type Ia SNe. This

is again due to specific events in those diverse classes that occupy the region in feature

space that overlaps with the uniform Type Ia SNe. Finally, Type IIn and Ibc SNe are

the most likely classes to be misclassified as Type II SNe, again due to overlaps in

feature space. Comparing the full sample to the subset of events with high classification

confidence (p > 0.8) we find that the fraction of misclassified events indeed declines (most

notably for Type Ibc and Ia SNe), indicating that some misclassifications are simply due

to poorly sampled light curves. However, the overall trends for which classes are most

likely to be misclassified as others remains the same, indicating that there is an inherent

limitation to the classification success rate that is due to real overlaps in feature space.

We highlight several SNe that are misclassified, but with high confidence in

Figure 7.12. In these examples, a spectroscopic Type II SN with a rapid linear decline is

misclassified as a Type Ibc SN; a slightly dim Type Ia SN is misclassified as a Type Ibc

SN; and a fairly luminous Type Ibc SN is misclassified as a Type Ia SN. In each of these

cases, the posterior of the fitted light curves is narrow, leading to little variability (i.e.,

a high confidence) in the final classification. These events indicate that even with good

photometric data quality there is inherent overlap of SNe in feature space that leads to

misclassification.

The misclassifications of SNe are further highlighted in Figure 7.13. Each panel

in the top part of Figure 7.13 represents a spectroscopically classified class, while

in the bottom part each panel represents a photometrically assigned class. The

misclassified events in both cases are labeled to provide insight into the most common
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misclassification. In all panels the ordinate represents the overall classification certainty,

based on many draws from the posteriors of each event. In all cases, the majority of

misclassifications occur at the low confidence end (p < 0.8), but there are also high

confidence misclassifications.

We explore the role of data quantity in Figure 7.14, where we plot the classification

accuracy as a function of total light curve data points for all 5 SN classes. We again

find that misclassifications are more likely in the regime of low number of data points,

specifically . 20 data points. However, as noted above, there are also high confidence

misclassifications for events with a large number of data points.

7.6 Comparison to Previous Photometric Classifica-

tion Approaches

The photometric classification of optical transients has been previously explored in the

existing literature. Previous studies on machine learning methods have focused almost

exclusively on the binary problem of Type Ia versus non-Type Ia SN classifications (e.g.,

Campbell et al. 2013; Ishida & de Souza 2013; Jones et al. 2017), or have been trained

and tested on simulated datasets (e.g., Kessler et al. 2010; Tonry et al. 2012; Möller

et al. 2016; Charnock & Moss 2017b; Möller & de Boissière 2019; Muthukrishna et al.

2019b). We highlight the strengths and weaknesses of both approaches (which we note

are disjoint) compared to our methodology. We emphasize that classification pipelines

should ideally be compared using the same dataset and set of labels. No machine

learning method, including the one presented in this Chapter, can be applied to a new
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test set without retraining or careful consideration of training-vs-test set biases. This is

especially crucial when comparing our method to those created for simulated datasets,

which have known biases, uncertainties and simulated physics.

Identification of Type Ia SNe from photometric light curves is essential for precision

cosmology in the era of large photometric surveys (Scolnic et al. 2014; Jones et al.

2017), which is why many studies have specifically focused on Type Ia SN classification.

However, the binary problem of Type Ia vs non-Typa Ia SN classification is much narrower

(and simpler) than full classification of CCSN classes. As standardizable candles, Type

Ia SNe are fairly homogeneous with observational variations (excluding reddening) that

are well described by two observable features: stretch and peak luminosity. As a result,

it is easier to separate the small area of feature-space corresponding to Type Ia SNe from

other transients. Studies that focus on this approach achieve a classification accuracy

of & 0.95 (e.g., Ishida & de Souza 2013; Charnock & Moss 2017b; Jones et al. 2017;

Narayan et al. 2018; Pasquet et al. 2019). Although our pipeline is trained and tested on

an empirical dataset for 5 distinct SN classes, we find that our achieved purity (≈ 95%),

completeness (≈ 90%) and accuracy (≈ 95%) for Type Ia SN classification are actually

comparable to methods that specifically train on the binary classification. However,

we note that studies such as Möller et al. (2016) achieve this high purity rate without

redshift information, which our method currently requires.

The vast majority of previous photometric classification studies used simulated

datasets to train classifiers. This is largely due to the fact that few homogeneous

photometric datasets with large numbers of spectroscopically-classified SNe exist. Most

studies that train on simulated datasets use the Supernova Photometric Classification

Challenge (SNPCC) training set (Kessler et al. 2010). The SNPCC dataset consists
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of 20,000 simulated SNe with griz light curves, generated from templates of Type Ia,

Ibc, IIP and IIn SNe (they do not include SLSNe). This dataset was presented as a

community-wide classification challenge in preparation for the Dark Energy Survey,

and was widely successful, with the top algorithms reaching an average Type Ia SN

classification purity of ≈ 80% and completeness of ≈ 95%. Works such as Möller &

de Boissière (2019) and Moss (2018) have reported average classification accuracies of

≈ 90% for CCSNe classes (similar to our reported accuracies here). Similarly, Lochner

et al. 2016b report an average Type Ia classification accuracy of ∼ 84% using SALT2 light

curve features. They further break down the CCSNe subclass into Type Ibc and Type

II, where they report accuracies of ∼ 63% and ∼ 93%, respectively. We caution that

the SNPCC dataset is not representative of the real diversity we encounter in on-going

and future surveys, and should not be used as a benchmark for CCSN classification. In

particular, to generate synthetic light curves, Kessler et al. (2010) fit well-sampled real

light curves from each CCSN class with a Bazin function. Then they stretch Nugent

CCSN templates4 to match the Bazin light curves. Variations within each class are

included from both the sample of templates available and from random color variations

derived from the Hubble scatter of Type Ia SNe and the peak luminosity derived from

Richardson et al. (2002). While the collection of simulated Type Ia SNe likely samples

the full phase-space of light curves, the non-Type Ia templates used to build the model

light curve were severely limited. For example, only 2 Type IIn SN templates were used

to generate 800 template light curves, and only 16 Type Ibc SN templates were used to

generate 3,200 light curves. Because of this, we can expect methods that rely on this

dataset to overestimate the accuracy of classifications for CCSN classes.

4https://c3.lbl.gov/nugent/nugent_templates.html
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A new classification challenge, PLAsTiCC (Allam Jr et al. 2018; Kessler et al.

2019), is a more realistic simulated dataset that can be used as a benchmark for CCSN

classification, although it too largely relies on theoretical models. Recent work by

Muthukrishna et al. (2019) find an average completeness of ≈ 65% over the five SN

classes that we have classified here (although we note that the PLAsTiCC challenge

combines Type IIP/L and Type IIn SNe into one class). Our average completeness is

significantly higher, at ≈ 77%.

7.7 Limitations and Future Directions

The challenge of photometric classification for optical transients is broad and cannot

be solved with one classification method alone. Like all methods, our classification

pipeline aims to solve a simplified version of this problem: Given a complete light curve,

a redshift, and a list of SN classes, what is the type of a given transient? Here we

highlight several improvements that can be made to our pipeline, and more broadly

outline outstanding problems in the field of transient classification.

Our pipeline requires a redshift, which simplifies the problem of classification by

anchoring the absolute magnitudes of every light curve. In our training set these redshifts

were obtained from spectra of the transients and their host galaxies. However, in the

on-going and future surveys we expect that spectroscopic redshifts (from the SNe or

host galaxies) will be rare. On the other hand, LSST will provide photometric redshifts

(photo-z) for all galaxies with m < 27.5 mag, with an expected root-mean-square scatter

of σz/(1+ z) . 0.05 for galaxies with m < 25.3 (LSST Science Collaboration et al. 2009),

and a fraction of outliers of < 10% (Graham et al. 2017). A classification algorithm that
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can associate a transient to its host galaxy will therefore be able to utilize the photo-z

value. We anticipate that the additional uncertainty in the model fits due to the photo-z

uncertainty will not be a dominant factor. We additionally note that by including

redshift information as a feature (even when doing so indirectly) we have limited the use

of our pipeline to surveys of similar depth.

Additionally, our classification pipelines best utilizes full light curves, and are thus

most naturally applicable for after-the-fact classification. The most natural use is on the

yearly samples of ∼ 106 transients from LSST to enable large-scale population studies,

as well as targeted studies of specific subsets (e.g., host galaxies of SLSNe). While our

method can work on partial light curves for real-time classification, its performance in

this context is yet to be evaluated. Several studies that have explored the specific issue

of real-time classification have found that recurrent neural networks perform well for this

purpose (e.g., Charnock & Moss 2017b; Möller & de Boissière 2019; Muthukrishna et al.

2019a).

Our algorithm currently relies exclusively on information derived from the transient

light curves (other than the redshift). However, useful contextual information about a SN

can be extracted from the host galaxy. For example, SLSNe prefer low metallicity, dwarf

galaxies (Lunnan et al. 2014), other CCSN classes span a wide range of star forming

galaxies, and Type Ia SNe are found in both star forming and elliptical galaxies. Simple

galaxy features, such as Hubble type, color, and SN offset can be easily incorporated into

the classification pipeline (e.g.,Foley & Mandel 2013). This will be explored in follow-up

work.

Furthermore, our algorithm is limited to classification within known SN classes
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(in this case 5 classes). To add additional classes under our current framework, we

would need to incorporate new data into the training set and retrain the classification

algorithms. Our pipeline is amenable to rapid training, so it is feasible to incorporate

more classes in this way. For a more complex classification pipeline (e.g., one involving

a large neural network), one could incorporate new classes cheaply using “one-shot”

learning (Lv et al. 2006), in which a classifier learns the characteristics of a new class

using very limited examples. However, the addition of new classes will not solve the issue

of how to identify unforeseen classes of transients and entirely new phenomena. Such a

classifier is challenging to train, since outlier events are (by definition) rare.

Because our original training set is imbalanced and small, we needed to augment our

dataset with simulated events drawn from the observed populations. For completeness,

we test our best classification pipeline (PCA feature extraction and RF classifier) on

the original training set without data augmentation. As expected, we find that we

can classify classes with the most samples (Type Ia and II SNe) or those that are

well-separated in feature space (SLSNe), as well as or better than our classification

pipeline with data augmentation. However, the completeness of the minority classes,

like Type Ibc and IIn SNe, falls by 20 − 40%. This is a good indication that data

augmentation in the extracted feature space is a potential solution to the imbalanced

classes.

Our method neglects the possibility of a biased spectroscopic sample. For example,

if the spectroscopic samples contains only the brighter end of the luminosity function

for rare transients. In our presumed classification case in which we have access to the

full light curves, one can use the full dataset to detect and minimize the effects of

selection bias without knowing the true underlying distribution. For example, one can
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re-weight the importance of each SN in the spectroscopic training sample to better reflect

the distribution of features from the full dataset (using, e.g., Huang et al. 2007 and

Cortes et al. 2008). A detailed study of the effect of observational biases on transient

classification is essential, but beyond the scope of this work.

Finally, we note that classification is only the first step in understanding the

uncovered transients. Even for the currently rare SLSN class, LSST will discover ∼ 104

events per year (Villar et al. 2018). Additional data cuts that remove light curves

with a minimal information content (or those from which we cannot extract physical

parameters) may be necessary in order to realistically fit a representative set of light

curves.

7.8 Conclusions

Given increasingly large datasets and limited spectroscopic resources, photometric

classification of SNe is a pressing problem within the wide scope of time-domain

astrophysics. Here we used the PS1-MDS spectroscopiccaly classified SNe dataset

(513 events) to test a number of classification pipelines, varying the features extracted

from each light curve, the augmentation method to bolster the training set, and the

classification algorithms. We used a flexible analytical model with an iterative MCMC

process to model the gP1rP1iP1zP1 light curves of each event, and to generate posterior

distributions. We find that several pipelines (e.g., PCA feature extraction, MVG

resampling, and RF classifier) perform well across the 5 relevant SN classes, achieving an

average accuracy of about 90% and a Type Ia SN purity of about 95%.
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Our study is the first to use an empirical dataset to classify multiple classes of SNe,

rather than just Type Ia versus non-Type Ia SN classification. Our overall results rival

similar pipelines trained on simulated SN datasets, as well as those that utilize only a

binary classification. This indicates that we can utilize this approach to generate robust

samples of both common and rare SN type (e.g., Type IIn, SLSNe) from LSST.

Finally, we highlight several areas for future exploration and improvement of

our classification approach, including the use of contextual information and the

possible application to real-time classification. We plan to extend this work and other

classification approaches to the full set of PS1-MDS SN photometric light curves in

future work.
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Table 7.1:: Parameter Descriptions and Priors

Parameter Description Prior

τrise (days) Rise Time U(0.01,50)

τfall (days) Decline Time U(1,300)

t0 (MJD) “Start” Time U(tmin − 50, tmax + 300

A Amplitude U(3σ,100 Fmax)

β (flux/day) Plateau slope U(−Fmax/150,0)

c (flux) Baseline Flux U(−3σ,3σ)

γ (days) Plateau duration (2/3)N(5, 5) + (1/3)N(60, 30)
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Figure 7.6: Duration-luminosity feature space of the dataset in the 4 PS1 filters. Dura-

tion is defined as the total time for the light curves to rise and decline by 2 mag relative

to the peak. The plotted values are from the median model fits to the light curves us-

ing Equation 7.1. The sample includes the five SN classes: Ia (green circle), Ibc (red

downward triangle), II (blue square), IIn (purple upward triangle), and SLSNe (yellow

star).
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Figure 7.7: Top: The original dataset plotted in terms of feature 1 versus feature 2,

indicating both the span of the various SN classes and the imbalance in number of events

per class. Bottom: The augmented dataset using MVG resampling (Left) and SMOTE

resampling (Right).
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Figure 7.8: Completeness (Top), Purity (Middle) and Accuracy (Bottom) for each of the

five spectrosopic SN classes across the 24 classification pipelines. Each pipeline is encoded

by its feature extraction method (M, HS, PCA, LC), data augmentation method (S, G)

and classification method (SVM, RF, NN).
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Figure 7.9: Histograms of Completeness (Top), Purity (Middle) and Accuracy (Bottom)

for each of the five spectroscopic SN classes across the 24 classification pipelines.
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Figure 7.10: Histograms of completeness across all 5 SN classes, grouped by classifica-

tion method (Top), feature extraction method (Middle) and data augmentation method

(Bottom).

353



CHAPTER 7. SUPERVISED SUPERNOVA PHOTOMETRIC CLASSIFICATION

SLS
Ne

SN
II

SN
IIn SN

Ia
SN

Ibc

Predicted label

SLSNe

SNII

SNIIn

SNIa

SNIbc

Tr
ue

 la
be

l

0.92 0.00 0.08 0.00 0.00

0.00 0.80 0.01 0.05 0.14

0.00 0.17 0.73 0.09 0.02

0.00 0.05 0.03 0.88 0.05

0.00 0.16 0.00 0.15 0.69

Complete Confusion Matrix

SLS
Ne

SN
II

SN
IIn SN

Ia
SN

Ibc

Predicted label

SLSNe

SNII

SNIIn

SNIa

SNIbc

Tr
ue

 la
be

l

0.92 0.00 0.08 0.00 0.00

0.00 0.84 0.01 0.05 0.10

0.00 0.13 0.77 0.09 0.01

0.00 0.02 0.01 0.95 0.02

0.00 0.07 0.00 0.14 0.79

Confusion Matrix, p > 0.8

Figure 7.11: Confusion matrix for one of our best performing classification pipelines

(PCA feature extraction, MVG data augmentation, and RF classifier) calculated using

the full posterior distributions for each SN. We show the confusion matrix for both the

full SN sample of 513 objects (Top) and only for the 429 events with a high classification

confidence probability of p > 0.8 (Bottom).
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Figure 7.12: Light curves of three SNe classified incorrectly, but with high confidence

(p > 0.9). We note the spectroscopic and photometric classification of each event. Given

the high data quality, these misclassifications are due to inherent overlap between SNe in

feature space.
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Figure 7.13: Top: For each true spectroscopic class, we show the correct classifications

(grey) and misclassifications (pink), with the classification confidence plotted on the or-

dinate. The misclassified label is given next to each misclassified event. We find that the

bulk of the misclassifications are concentrated at low classification confidence. Bottom:

For each assigned label, we again show the correct classifications (grey) and misclassifica-

tions (pink). The correct class label of each misclassified event is given.
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Figure 7.14: Classification accuracy as a function of number of light curve data points.

The colors and shapes reflect the SN classes, and the black line represents a smoothed

median to guide the eye. Filled symbols are SNe classified correctly, while open symbols

are misclassified events. We find that misclassifications are more prevalent for light curves

with fewer points, but also that some events are misclassified even with tens of data points,

as also highlighted in Figure 7.12.
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Chapter 8

Let It RAENN: A Semi-supervised

Photometric Classification Pipeline

for Spectroscopically-classified

PanSTARRs Supernovae

V. A. Villar, et al.,

in Preparation

Abstract

Automated classification of supernovae (SNe) based on optical photometric light curve

information is essential in the upcoming era of wide-field time domain surveys, such as
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the Legacy Survey of Space and Time (LSST). Photometric classification can enable

real-time identification of interesting events for extended multi-wavelength follow-up,

as well as archival, population studies. Here we present the complete sample of 5,244

SN-like light curves (in gP1rP1iP1zP1) from the Pan-STARRS1 Medium-Deep Survey

(PS1-MDS). The PS1-MDS is similar to the planned LSST in terms of cadence, filters

and depth, making this a useful training set for the community. Using this dataset, we

train a novel semi-supervised machine learning algorithm to photometrically classify

2,870 SN-like light curves with host galaxy redshift estimates. Our algorithm consists of

a random forest supervised classification step and a novel unsupervised step in which

we introduce a recurrent-neuron based autoencoder architecture (RAENN). Our final

pipeline results in a class-averaged accuracy of 95% across five SN classes. We find the

highest accuracy rates for Type Ia SNe and SLSNe and the lowest for Type Ibc SNe.

Our photometrically-classified sample breaks down into: 67% Type Ia (1923 objects),

19% Type II (545 objects), 6% Type IIn (173 objects), 6% Type Ibc (172 objects), and

2% Type I SLSNe (57 objects). Finally, we discuss how this algorithm can be modified

for online LSST data streams.

8.1 Introduction

Time-domain astrophysics has entered a new era of large photometric datasets thanks

to on-going and upcoming wide-field surveys, including Pan-STARRS (PS; Kaiser et al.

2010, the Asteroid Terrestrial-impact Last Alert System (ATLAS; Jedicke et al. 2012),

the All-Sky Automated Survey for SuperNovae (ASASSN; Kochanek et al. 2017), the

Zwicky Transient Facility (ZTF; Kulkarni 2018), the Legacy Survey of Space and Time

359



CHAPTER 8. RAENN SUPERNOVA CLASSIFICATION

(LSST; Ivezic et al. 2011), and the Wide Field Infrared Survey Telescope (WFIRST;

Spergel et al. 2015). LSST, conducted by the Vera C. Rubin Observatory between 2022

and 2032, is expected to increase the current annual rate of discovered SNe by two orders

of magnitude, to over one million discoveries per year.

Historically, SNe and other optical transients have been classified and studied based

on their optical spectra. Class labels are largely phenomenological, dependent on the

presence of elements in the photospheric-phase spectra (see e.g., Filippenko 1997 for a

review). SNe, for example, have historically been classified as Type I or Type II based

on the absence or presence of strong Hydrogen Balmer lines, respectively. As the number

of events increased, further classes were created to account for the increased diversity.

For example, subclasses of Type I SNe, Type Ib and Type Ic, were created to designated

the presence and absence of Helium, respectively. Today, semi-automated software such

as SNID (Blondin & Tonry 2007) and Superfit (Howell et al. 2005) match SN spectra to

a library of previously classified events to determine the spectroscopic class.

However, spectroscopic follow up remains an expensive endeavor, taking up to

several hours on 8-meter class telescopes to classify a single object. Wide-field surveys

have enabled the discovery of tens of thousands of extragalactic transients each year. Of

these, roughly 10% of events actually receive a spectroscopic classification1. Spectroscopic

follow up is not expected to significantly increase when the LSST begins, although the

discovery rate of SNe will increase to well over one million events annually. This means

that only 0.1% of events will be spectroscopically classified.

Given this growing rate of discovery, and limited spectroscopic resources,

1Based on data from the public Open Supernova Catalog (Guillochon et al. 2017).
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transient events are increasingly being classified by their photometric light curves into

spectroscopically-defined classes. Luckily, the phenomenological labels often correspond

to unique underlying astrophysics. For example, while Type Ia SNe are spectroscopically

classified by their lack of Hydrogen and strong Si II absorption, these features distinctly

originate from the thermonuclear detonations of carbon-oxygen white dwarfs. The

unique progenitor system leads to other observable features, some of which are captured

in broadband optical light curves. Said features allow transients to be classified into their

traditional spectroscopic subclasses using only their broadband, optical light curves.

There is a growing literature on light curve classifiers that rely on data-driven

and machine learning algorithms. Most studies use supervised learning, in which the

training set consists of SNe with known classes (e.g., Lochner et al. 2016; Charnock &

Moss 2017a; Boone 2019; Villar et al. 2019; Möller & de Boissière 2020) However, SN

classification can benefit from semi-supervised methods, in which the training set contains

both labelled and unlabelled SNe. The unlabelled set is used to better understand

low-dimensional structure in the SN dataset to improve classification. Richards et al.

(2012), for example, created a diffusion map (a nonlinear dimensionality reduction

technique) based on Supernova Photometric Classification Challenge (SPCC; Kessler

et al. 2010) light curve similarities in shape and color. They use the diffusion map to

extract 120 non-linear SN features from each labelled SN, which are then used to train a

random forest classifier. More recently, Pasquet-Itam & Pasquet (2018) introduced the

PELICAN classifier, also trained on synthetic SPCC data. PELICAN uses a convolutional

neuron-based autoencoder to encode nonlinear SN features and a set of fully connected

neural network layers to classify the full set of light curves.

Here we introduce a new semi-supervised classification method for SNe, which
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utilizes a recurrent neuron-based autoencoder (RAENN). This method is uniquely

trained on real (rather than simulated) data from the Pan-STARRs Medium Deep

Survey (PS1-MDS) and is optimized for general SN classification (as opposed to Ia

versus non-Ia classification). We then use the RAENN features with a random forest to

classify the PS1-MDS sample of 2,870 SN-like transients. We publish the full sample and

associated labels for community use.

The Chapter is organized as follows. In §8.2, we review the PS1-MDS and associated

sample of “SN-like” objects. In §8.3 we introduce the RAENN architecture and training

procedure. We present the classification results and discuss implications in §8.4 and §8.5.

We conclude in §8.6. Throughout this Chapter, we assume a flat ΛCDM cosmology with

ΩM = 0.286, ΩΛ = 0.712 and H0 = 69.3 km s−1 Mpc−1 (Hinshaw et al. 2013).

8.2 The PS1-MDS Supernova Sample

PS1 is a wide-field survey telescope located near the summit of Haleakala, Hawaii with

a 1.8 m diameter primary mirror and a 1.4 gigapixel camera (GPC1) (Kaiser et al.

2010). PS1-MDS was conducted between Jul 2009 and Jul 2014. It consisted of 10

single-pointing fields, each of approximately 7.1 deg2 with a pixel-scale of 0.′′25. The

survey was conducted in five broadband filters (gP1rP1iP1zP1yPS1 (Stubbs et al. 2010;

Tonry et al. 2012) with a nominal cadence of 3 days per filter in four filters (gP1rP1iP1zP1),

with a 5σ limiting magnitude of ≈ 23.3 per visit. In general, PS1-MDS observed a field

in gP1 and rP1 on the same night, followed by iP1 and then zP1 on subsequent nights.

PS1-MDS included observations in the yP1-band, primarily near full moon and with a

shallower 5σ limiting magnitude of ≈ 21.7. Due to the poor cadence and shallow depth,
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Figure 8.1: Peak apparent r-band magnitude of the full SN-like dataset (grey), objects

used in our unsupervised method (orange) and the spectroscopic sample (blue). The

spectroscopic dataset is roughly one magnitude brighter than the full dataset.

we do not present or use the yP1 here.

During its 5-year survey, PS1-MDS discovered 5,235 SN-like objects (where “SN-like”

is defined in Jones et al. 2017). Of these, ≈ 10% of events, generally with mr . 22 mag,

were spectroscopically followed up. In total, 521 SNe were spectroscopically classified.

Of the 5,244 SN-like objects, 4,342 host galaxies were targeted through a concerted

observational effort. The majority (3,306 objects) were examined in the final year of the

survey through a program on the Hectospec multifiber instrument on MMT (Fabricant

363



CHAPTER 8. RAENN SUPERNOVA CLASSIFICATION

0.0 0.5 1.0 1.5 2.0
Redshift

100

101

102

SLSNe
SNII
SNIIn
SNIa
SNIbc

Figure 8.2: Histogram of the redshifts of SN-like transients in PS1-MDS (grey line; 5,244

objects), the subset of host redshift measurements for objects used in our unsupervised

learning algorithm (black line; 2,870 objects), and the subset with spectroscopic classifi-

cation (colored lines). The shaded grey region represents the summed, spectroscopically

classified objects. The full sample and spectroscopic distribution peak at z ≈ 0.25, al-

though the spectroscopic sample has an additional peak near z ≈ 0.1. At z & 0.75, our

spectroscopic sample is limited to SLSNe.

et al. 2005; Mink et al. 2007). Additional host redshifts were obtained with the Apache

Point Observatory 3.5m telescope (APO; 17 objects), the WIYN telescope and the

Anglo-Australian Telescope (AAT; 241 objects). Host galaxies selected for follow-up were
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largely unbiased in terms of transient properties (i.e., we did not prioritize SNe based

on luminosity, color or amount of additional followup). In addition to our programs,

approximately 800 host redshifts come from 2dFGRS (Colless et al. 2003), 6dFGS (Jones

et al. 2009), DEEP2 (Newman et al. 2013), SDSS (Smee et al. 2013), VIPERS (Scodeggio

et al. 2018), VIMOS (Le Fèvre et al. 2005), WiggleZ (Blake et al. 2008) and zCOSMOS

(Lilly et al. 2009).

To identify the most likely host galaxy for each SN, we use the galaxy size and

orientation-weighted RCC-parameter from Sullivan et al. (2006), as outlined in Jones

et al. (2017). Jones et al. (2017) finds that only ≈ 1.4% of host galaxies are likely

mismatched. Although Jones et al. (2017) restricts the Type Ia SNe sample to z< 0.75

to minimize host mismatch at high redshifts, we keep all SNe in our sample as we are

especially interested. In total, 3,147 galaxies have reliable redshifts. Of these, we remove

events, which have highly variable light curves or events whose best-match host galaxy

is an Active Galactic Nuclei (AGN) or a quasar (QSO). Our final sample includes 2,870

light curves.

A number of transients were spectroscopically followed in real time throughout the

survey, without a clear selection function. In this work, we will limit our spectroscopic

sample (521 objects) to five potential classes: Type I superluminous SNe (17 objects),

which are thought to arise from the birth of highly magnetized neutron stars (Quimby

et al. 2007; Nicholl et al. 2017); Type II SNe (93 objects; including Type IIP and Type

IIL SNe) which arise from red supergiant progenitors; Type IIn SNe (25 objects) powered

by the interaction of a CCSN and pre-existing circumstellar material (see, e.g. Smith

et al. 2014); Type Ia SNe (365 objects); and finally Type Ibc SNe (21 objects) with no

distinction between the two due to an already small sample).
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As expected, our spectroscopic dataset is brighter than our complete photometric

dataset. As shown in Figure 8.1, the spectroscopic dataset has a median peak r-band

magnitude ∼ 1 mag brighter than the full sample. We directly compare the redshift

distributions in Figure 8.2. The spectroscopic sample peaks at a slightly lower redshift

(z∼ 0.27 vs z ∼ 0.34), with a slight extended tail to higher redshift (z & 1.0). The

mismatch between the spectroscopic and photometric samples may translate to biases in

our classification pipeline, which we will explore in more detail in § 8.5. The complete

grizy light curves of our sample will be available on Zenodo.

We explore the overall data quality of our sample in Figure 8.3, finding that the

majority of events have ∼ 20 data points with signal-to-noise ratios above three. Given

a typical SN duration of a month and our typical cadence of three days, we expect most

SNe to have relatively complete light curves.

8.3 A Semi-supervised Classification Pipeline

About 10% of our SN sample is spectroscopically classified. Traditional supervised

classification methods are strictly limited to this subset of our data, as they require

labelled SN examples. However, information about SN subtypes exists as substructure

in the unlabelled dataset as well. For example, SN classes may be clustered in duration

and luminosity (e.g., Kasliwal 2012b; Villar et al. 2017b). Because we would like to

leverage the information in both the labelled and unlabelled subsets of the training set,

we use a recurrent neuron-based autoencoder (RAENN) paired with a random forest

classifier for a semi-supervised classification approach. In this Section, we describe the

complete algorithm and training process. We summarize the PS1-MDS SN-like objects,
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Figure 8.3: Histogram of the number of light curves with N data points with signal-to-

noise ratio (SNR) of ≥ 3 (blue), ≥ 5 (orange), and ≥ 10 (green) from the complete sample

of SN-like objects (5,244 events). Most events have ≈ 10− 20 3σ data points, with only

a handful having > 100 points.

367



CHAPTER 8. RAENN SUPERNOVA CLASSIFICATION

their associated hosts and redshift information in Table 8.1. We also specify which SNe

are used in the supervised/unsupervised portions of our classification algorithm.

Our pipeline is composed of three steps: (1) a pre-processing and interpolation step

using Gaussian processes; (2) an unsupervised step in which we train a RAENN on the

full set of SNe (labelled and unlabelled); and (3) a supervised step in which we train a

random forest on the spectroscopically labelled set of SNe.

8.3.1 Pre-processing with Gaussian Processes
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Figure 8.4: Examples of three spectroscopically classified SNe and their associated GP-

interpolated light curves in the four PS1 filters. The griz light curves (in green, red,

orange and purple, respectively) with all detections. Solid lines represent the mean GP

prediction, while the shaded regions represent the 1σ estimated uncertainties.

We pre-process the absolute magnitude light curves before extracting features. We

estimate and normalize the absolute magnitude using the measured host redshift:
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Mnorm = m− 5 log10(dL,pc/10pc)

+2.5 log10(1 + z)−mlim

(8.1)

, where mlim is the limiting magnitude, which we take to be mlim = 25. We do this

renormalization so that the base magnitude is equal to zero (see below).

The PS1-MDS light curves are irregularly sampled across the four filters (see §8.2 for

the PS1 observing strategy). The architecture of the RAENN will not require uniformly

sampled light curves. However, it will require that each observation is made in all four

filters. For example, if an observation is made in only g-band and r-band on a given

night, we will need to fill in interpolated values for i-band and z-band for that night.

To interpolate the griz light curves as described above, we fit a Gaussian process

(GP) using the open-source Python package George (Foreman-Mackey 2015). GPs

are a non-parametric model that has been previously used to interpolate and classify

light curves (see e.g., Lochner et al. 2016; Revsbech et al. 2018; Boone 2019). GPs

define a prior over a family of functions, which is then conditioned on the light curve

observations. A key assumption is that the posterior distribution describing the light

curve is Gaussian, described by a mean, µ(~t), and a covariance matrix, Σ(~t), described by

Σi,j = κ(~xi, ~xj) with kernel κ. We use a 2D squared exponential kernel to simultaneously

fit all four filtered light curves:

κ(~ti~tj~fi~fj;σ, ltlf ) = σ2 exp
(
− (ti − tj)

2

2l2t

)
× exp

(
− (fi − fj)

2

2l2f

) (8.2)

where f is an integer between 0 and 3 that represents the griz filters, and the parameters
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lt and lf are characteristic correlation length scales in time and filter integer, respectively.

Note that our GP assumes a mean of zero, which is why we renormalize the light curves

such that they are equal to zero at their limiting magnitude.

We independently optimize the kernel parameters for each SN using the minimize

function implemented in scipy, with initial values of lt = 100 days and lf = 1. We find

that our choice of initialization values has little effect on the resulting best fit. We find

that lt is typically about one week, and lf is typically 2 − 3, implying the filters are

highly correlated. Examples of the GP interpolation for Type Ia, Type Ic and Type II

SNe are shown in Figure 8.4. The GP is able to produce reasonable interpolated SN

light curves even in cases with sparse and noisy data.

We note that a GP similar method was implemented by Boone (2019) to classify a

variety of SN types in the PLAsTiCC dataset. Instead of an integer, Boone 2019 used the

rest frame central wavelength of each filter for each object. We avoid this added layer

of complexity because the k-corrections and evolving SN spectral energy distribution

(SED) change the weighted central filter wavelength. However, the simple 2D kernel still

allows the four bands to share mutual information.

Our light curves contain several years of data, most of which are non-detections. To

limit our input data, we keep only detections (of any significance) within 100 days of

peak flux (in whichever filter is brightest). Although we can use our estimated errors

from the GP, we do not end up utilizing these estimates.

For ease of optimization, the light curves need to contain the same number of

data points. The data must be a consistent size during the back-propagation step of

optimization for the RAENN (see next Section) for each iteration. Our longest light
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curve contains 169 data points, so we pad all light curves to match this length. We do

so by appending the estimated absolute limiting flux (assumed to be mlim = 25) to 100

days after the last detection in the light curve.

8.3.2 Unsupervised Learning: A Recurrent Neuron-based

Autoencoder (RAENN)

...
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...

...
...... ...

Measured / Estimated 
griz Magnitudes, 
Errors and Phase

Encoded 
Layer

Repeated Encoded 
Layer with 

Concatenated Phases

Outputted 
Light Curve

Figure 8.5: Diagram of the RAENN architecture. The pre-processed light curves are

fed into the encoder which encodes the light curve into a encoding vector. This vector is

then repeated, and new time values are appended to each copy. The final light curve is

then predicted at each new time value. The RAENN is trained by comparing the input

light curve with the predicted light curve.

To extract unique features from the complete (unlabelled and labelled) PS1-MDS
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SN dataset with redshift estimates, we construct a RAENN, inspired by the work of

Naul et al. (2018). Autoencoders (AEs, Kramer 1991) are a class of neural network

architectures that learn a compressed representation of input data. By training an AE

to return the original data given a limited set of variables, it learns an “encoded” version

of the data. In astrophysics, AEs have been used for feature-learning in galaxy spectral

energy distributions (SEDs, Frontera-Pons et al. 2017), image de-noising (Ma et al.

2018; Lucas et al. 2018), and transient classification (Naul et al. 2018; Pasquet et al.

2019). AEs are increasingly being used in the astrophysics literature for dimensionality

reduction (see e.g., Ralph et al. 2019 and Portillo et al. 2020 for recent examples).

Here, our proposed model is designed to address several concerns of SN light

curves: (1) the temporal irregularity of data; (2) data across multiple filters; and (3)

“live-streaming” data that update nightly. The last point is not a concern for our

PS1-MDS archival dataset, but it will become important as LSST comes online and

discovers thousands of SNe nightly.

The RAENN uses the GP light curves as input, by codifying the light curves as

matrices of size 9 × T0, where T0 = 169, as described in the previous section. The 9

values arise from: one time value, relative to maximum (in whichever filter is brightest),

four flux values (griz) at that time and four error bars. Recall that the flux values are

either measured or estimated from the GP. For the error values, we use the 1σ errors for

the measured points. For the GP points, we use a large error of 1 mag. We note that the

GP produces estimated errors, but we find that, in practice, using this large error leads

to better performance. We emphasize that, while T0 = 169 for training, the RAENN

architecture allows a user to input a light curve of any size without needed to pad the

light curve.

372



CHAPTER 8. RAENN SUPERNOVA CLASSIFICATION

The RAENN architecture is divided into an encoder and a decoder. Our encoder

is a series of fully-connected layers that decrease in size until the final encoded layer

with size NE (i.e., the number of neurons used to fully encode the SN light curve).

Note that NE is a free parameter of our model that needs to be optimized. Similarly,

the fully-connected layer has NN neurons, where NN > NE and a tunable parameter.

Following the encoded layer, the decoder half of the architecture typically mirrors the

encoder with increasing layer sizes. A novel feature of our architecture is the inclusion

of a repeat layer immediately after our final encoded layer. In this layer, we repeat

the encoded version of the light curve TN times. In this work, TN = T0; we repeat the

encoded values to match the original light curve length. To each copy, we append the

time of each data point, relative to peak brightness in one filter (whichever filter happens

to be brightest) via a concatenation layer. Finally, this layer is followed by another

fully-connected layer with NN neurons.

One way to view the purpose of this layer is to imagine the autoencoder as two

functions. The first function (the encoder) takes in the original data points, including

observation times, and outputs a set of NE values. A second function (the decoder)

takes in a set of NE values and T0 times to generate a light curve at the T0 times. This

architecture allows us to generate a light curve at different TN times; e.g, interpolated or

extrapolated light curves, which is further explored in §8.5.

Our autoencoder utilizes gated recurrent neurons (GRUs; Cho et al. 2014; Rumelhart

et al. 1988). In addition to the typical hidden weights that are optimized during training,

recurrent neurons have additional weights that act as “memory” of previous input. GRUs

in particular utilize an update value (called a gate) and a reset gate. The values of these

neurons determine how the current and previous input affect the value of the output.
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With each light curve data point, the gates become updated with new information that

informs the next prediction. This class of neurons is useful for our light curves with

various numbers of observed data points. Our GRU neurons use the tanh activation

functions with a hard sigmoid for the gate activation function.

Our RAENN is implemented in Keras (Chollet 2015) with a Tensorflow backend

(Abadi et al. 2016). A diagram of the architecture is shown in Figure 8.5, and is outlined

as follows:

1. Input Layer: Input light curve of size T0 × 9 with each griz data point labelled

with a time (1 value) in days relative to light curve peak (4 values) and an

uncertainty (4 values).

2. Encoding Layer: Encoding layer with NN neurons, where NN is a free parameter.

3. Encoded Layer: Encoded light curve with NE neurons, where NE is a free

parameter.

4. Repeat Layer: Layer to repeat encoded light curve to match with new time-array,

with size T0 ×NE.

5. Concatenate Layer: Layer to concatenate new times to encoded light curve,

with size T0 × (NE + 1).

6. Decoding Layer: Decoding layer with NN neurons.

7. Decoded Layer: T0 × 4 Decoded griz light curve.

To optimize the free parameters (the weights) of the RAENN model, we must define
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a loss function. Our loss function is simple mean square error function:

L =
N∑
i=0

Fi,True(t, f)− Fi,Predicted(t, f)

N
, (8.3)

where F is the SN flux as a function of time t and filter f . Although we feed errors

into the network, we find that excluding flux errors in our loss function provided best

results. We minimize our loss function using the gradient descent-based optimizer, Adam

(Kingma & Ba 2014), finding an optimal learning rate of 10−4, which is a typical value.

We randomly split our unlabeled dataset into training (66%) and test (33%) sets.

We optimize the number of neurons in both the encoding and decoding layers (fixed to

be the same number, NN) and the number of encoding neurons (NE) through a grid

search, allowing NN to vary from 20 to 160 in intervals of 20, and NE to vary between 2

and 24 in intervals of 2. We find that, when optimizing over final classification accuracy,

our optimal values are NN = 140 and NE = 10. We note that NN is slightly below the

maximum number of data points in our set of light curves (where the longest light curve

has 169 observed data points). The number of encoding neurons NE is similar to the

number of free parameters for the analytical model used in Villar et al. (2019) to capture

shape of a single-filter SN light curve.

We contrast our architecture with methods from Naul et al. (2018) and Pasquet

et al. (2019), who present similar methodologies. Naul et al. (2018) uses a similar

GRU-based RAENN to classify variable stars with unevenly sampled light curves in one

filter from the All Sky Automated Survey Catalog of Variable stars (Pojmanski 2002).

The flux and time since last observation (∆t) is sequentially read into the recurrent

layers. The same time array is fed into the decoder for output. In our case, we feed in a

time series across four filters and give a time array relative to peak rather than relative
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to the previous data point. This is more natural in our problem, in which the SNe have

a clear beginning and end, versus the periodic signals of variable stars. Additionally, our

architecture allows us to give the decoder a different time series to allow for interpolation

or extrapolation of the data.

Pasquet et al. (2019) uses a semi-supervised method to classify simulated SN light

curves from the Supernova Photometric Classification Challenge (SNPCC; Kessler et al.

2010 They use an AE with convolutional layers by transforming the light curves into

“light curve images” (see Pasquet-Itam & Pasquet 2018). Rather than interpolate the

light curves, Pasquet et al. (2019) applies a mask to filters that are missing data at

a certain time. In contrast, we interpolate our light curves but assign interpolated

values a large uncertainty of 1 mag, as explained above. We found that the method

of transforming light curves into images and masking across 4 filters led to unstable

training and poorer performance. This is likely due to the large data gaps in the real

PS1-MDS light curves, compared to the high-cadence (2-days for each filter) simulated

light curves of SNPCC (Kessler et al. 2010). Since the LSST data are expected to more

closely resemble the PS1-MDS light curves than the SNPCC simulated events, we expect

our method to be more robust in a real-life application.

8.3.3 Supervised Learning: Random Forest Classifier

Finally, we use the encoded light curves as features for a supervised classification method.

Following Villar et al. (2019), we train a random forest (RF) classifier on the PS1-MDS

spectroscopically classified SNe, including the RAENN encodings as features. We use

a subset of the 521 SNe that removes outlier light curves that we find decrease the
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classification accuracy of our models. In total, we remove 27 SNe either due to data

quality (20 Type Ia SNe; 1 Type II SN; 4 Type Ib/c SNe; see Villar et al. 2019) or lack

of a host galaxy redshift (2 SLSNe, although SN redshifts are reported in Lunnan et al.

2018). However, in the reported accuracies throughout this Chapter, we utilize the full

sample of 521 light curves.

In addition to the encoding (10 features), we use the following 25 features based on

the GP-interpolated light curves:

1. 1-4 The griz rise times in observer frame, calculated 1-magnitude below peak.

2. 5-8 The griz rise times in observer frame, calculated 2-magnitude below peak.

3. 9-12 The griz decline times in observer frame, calculated 1-magnitude below peak.

4. 13-16 The griz decline times in observer frame, calculated 2-magnitude below

peak.

5. 17-20 The griz peak absolute magnitudes.

6. 21 The peak absolute magnitude in any filter (a repeated value).

7. 22-25 The median griz slope between 10 and 30 days post-peak in observer frame.

This area was chosen by eye to specifically help the model differentiate between

Type II and Type Ibc SNe.

Note that we measure these values from the GP-interpolated light curves rather

than the decoded light curves. The decoded light curves are, at best, approximations

of the GP-interpolated light curves. Therefore, using them would only result in noisier
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features. The decoded light curves are necessary, however, as a means to train the

RAENN to extract the NE encoding neuron values.

These features were chosen through trial-and-error while optimizing classification

accuracy. We find that inclusion of all of these features leads to our optimal classification

accuracy. We additionally tried, but ultimately eliminated: the integrated flux values in

each filter; the slope values within 10-days of peak; the 3-mag rise/decline times; and the

total duration of the transients.

We pass these features through a RF classifier, utilizing 300 trees in the random

forest and the Gini-information criterion. To counteract the imbalance across the

five spectroscopic classes, we tested several algorithms to generate synthetic data to

augment our training set. First following Villar et al. 2019, we use a Synthetic Minority

Over-sampling Technique (SMOTE; Chawla et al. 2002) and a multivariate Gaussian

(MVG) fit. We find optimal results utilizing a Kernel Density Estimate (KDE) of

the training set, using a Gaussian kernel with bandwidth equal to 0.2 (or 20% of the

whitened feature standard deviation). Note this is different than the MVG treatment

used in Villar et al. (2019) in which each class is assumed to come from a single MVG

in feature space. We test our classifier using leave-one-out cross-validation, in which

we remove one SN from the sample, over sample the remaining objects using a KDE

estimate and then apply the trained RF to the single test For each object, our RF reports

probabilities associated to each class, and we take the class with the highest probability

as the predicted SN type.
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Figure 8.6: Confusion matrix for the full set of 2,870 spectroscopically classified SNe.

In the bottom panel, we include only objects where the maximum probability is greater

than 80%
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8.4 Classification Results

We use leave-one-out cross validation to train the random forest on the 35 features

described above. There are several metrics to measure the success of a classifier. We

focus on three metrics: the purity, completeness and accuracy. We define the three,

calculated for a single class, below:

Purity =
TP

TP + FP

Completeness =
TP

TP + FN

Accuracy =
TP + TN

TS

(8.4)

where TP (FP) is the number of true (false) positives, TN (FN) is the number

true (false) negatives, and TS is the total sample size. We visualize the completeness of

the sample of spectroscopically identified SNe using a confusion matrix in Figure 8.6.

A confusion matrix compares our RAENN label (x-axis) with the specgroscopic label

(y-axis). As with Villar et al. (2019), we find that our classifier performs best for

Type Ia SNe and SLSNe and worse for Type Ibc SNe. Our class-averaged classification

completeness is 77% across the 5 SNe types. This is slightly worse than the performance

of Villar et al. (2019) (with an average completeness of 80%). When limiting the

sample to only objects in which the classification probability is > 80%, we find that our

performance only somewhat increases. We find a class-averaged accuracy of 95% and

class-averaged purity of 71%, consistent with Villar et al. (2019).

The random forest classifier allows us to measure the relative “importance” of the

35 features used to classify the SNe. We define importance as the decrease in the Gini
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importance, which accounts for how often a feature is used to split a node and how often

a node is reached in the forest (Breiman et al. 1984). We show the importance of each

RF feature in Figure 8.7, along with estimated errors. As expected, the peak magnitudes

are by far the most important features for classification. However, the RAENN features

also have significant influence on the final classifications, with three RAENN features

appearing in the top ten important features.

We apply our trained classification algorithm to the PS1-MDS dataset of SN-like

transients that pass our quality cuts described in § 8.2. We report the probabilities of

each class type for each light curve in Table 8.2. As shown in Figure 8.8, the breakdown

of our sample (the 2,870 light curves used to train the RAENN) is largely consistent

with the spectroscopic sample, with a slightly lower fraction of SLSNe and Type Ia SNe

and otherwise higher fractions of subtypes. However, all fraction agree to within ∼ 2%.
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Figure 8.7: Feature importance (grey) with estimated 1σ errors (black lines). The blue

horizontal line shows the importance measure for a normally-distributed random variable;

features below this line can be considered largely unimportant to the final classification.
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8.5 Discussion

As discussed in § 8.2, our spectroscopic sample is somewhat brighter and at a lower

redshift than our test set. This difference may introduce biases in our final classifications.

De-redshifting the SNe using the measured redshift removes some of this bias, by

removing knowledge of the underlying redshift as a feature. The relative fractions of

SN subtypes may evolve with redshift as host properties change (see e.g., Graur et al.

(2017) for an exploration of the correlations between host properties and SN type). Our

training and test set differs most greatly between 0.5 < z < 1.5 (see Fig. 8.2). In this

redshift range, average host metallicity is not expected to drastically shift, implying a

small potential bias (Lilly et al. 2003).

As expected, the relative fraction of SN subtypes evolves with redshift as the

absolute limiting magnitude increases at higher redshifts. We trace this evolution in

Figure 8.9. We show the cumulative fraction (integrating from z = 0) of each subclass

as a function of redshift. Each subclass peaks in order of luminosity function, with the

dimmest subclass, Type II SNe, peaking near z ∼ 0. The cumulative fractions level out

near z ∼ 0.5, where the cumulative distribution of all SNe reaches approximately 80%.

Using the high redshift sample, we can test if redshift information is playing an

unwanted role in our training. The spectroscopic sample at z & 0.75 is solely made up of

SLSNe; however, we do not expect all high-z objects to be SLSNe. For z > 0.75, we find

that our test sample is 45% SLSNe, 17.5% Type SNe and 37.5% Type IIn SNe, implying

our classifier has not learned to simply classify all high-z events as SLSNe.
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Spectroscopic
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Sample

SNIa69.6%

SNII18.1%

SNIIn4.9%
SNIbc4.1%
SLSNe3.3%

67.0%

19.0%

6.4%
5.9%
1.7%

Figure 8.8: Breakdown of SN subclasses in the spectroscopic (left) and full (right)

samples. The samples largely agree, suggesting no obvious bias in our spectroscopic vs

photometric sample. We note that our breakdown is subject to pipeline and observational

biases (e.g., necessity to measure a host redshift) and should therefore not be used for

rate calculations.
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8.5.1 Comparison to Other Works

For the first time, we can compare multiple photometric classifications of the same real

dataset. We directly compare our results to Jones et al. 2017, finding strong overall

agreement. Jones et al. (2017) presents a PS1-MDS sample of 1,033 likely Type Ia SNe,

as classified by four algorithms: the template-matching algorithm PSNID (Sako et al.

2011), a nearest neighbor approach using the PSNID templates; an algorithm based on

fitting light curves to SALT2 templates (Guy et al. 2007); and a method, GALSNID

(Foley & Mandel 2013), which only utilizes host galaxy properties. The Jones et al.

(2017) sample, similar to our sample, removes objects with unreliable redshifts and

potential AGN hosts; however, Jones et al. (2017) additionally removes high redshift

z > 0.75 objects. Of the 1,033 SNe Jones et al. (2017) identifies as likely Type Ia SNe, we

find 979 (95%) agreement. Of the remaining 54 SNe, we identified Type Ia as the second

highest choice in 37 cases. Of the remaining 17 cases, 6 have low Type Ia probabilities

(p < 0.8) or classification probabilities based entirely on host galaxy.

Hosseinzadeh et al. (in prep) extends the work of Villar et al. (2019) to classify

the PS1-MDS sample using features extracted from analytical fits to the light curves.

Our photometric classifications agree on 71% of the 2,870 events, with 71% of Type Ia

agreement, 54% SLSN agreement, 76% Type II agreement, 20% Type IIn agreement

and 46% Type Ibc agreement. If we compare the top two labels, the algorithms agree

on 93% of objects. Indeed, often the top two classification choices are flipped for either

algorithm, occurring most often with Type II/Type Ibc SNe and Type IIn/Type Ia SNe.

We find stronger agreement if we exclude objects with low classification confidence. If we

exclude objects in which the first choice has a probability < 0.8 in either algorithm, our
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classifications agree to 84% (with 1780 objects remaining after the cut). The agreement

increases with high probability cuts of > 0.9 (> 0.99), with 90% (96%) agreement with

1,322 (676) objects remaining.

We compare the overall breakdown of SN types to that of the ZTF Bright Transient

Survey Fremling et al. (2019) which spectroscopically identified ∼ 700 bright SNe

with peak g− or r−band magnitude of < 18.5. Fremling et al. (2019) find that their

magnitude-limited survey breaks down into 72% Type Ia SNe, 16% “normal” Type II

SNe (Type IIP/L), 3% Type IIn SNe (including their Type IIn and SLSN-II category),

5% Type Ibc SNe, and 1.6% Type I SLSNe. These are largely in agreement with our

spectroscopic and photometric class breakdown, to within reported error bars (ranging

from ∼ 1− 5%).

We make special note that our sample is likely biased against discovering SLSNe,

due to our requirement of a host galaxy redshift. SLSNe prefer low-mass, low-metallicity

hosts (Leloudas et al. 2015), and their relatively small volumetric rate means that

they are typically found at higher redshifts. Because of this, we are less likely to have

successfully targeted the host galaxies of SLSNe, which may explain the lower fraction of

SLSNe in our complete sample. In fact, if we removed the SLSNe in our spectroscopic

sample which have redshift estimates from the SN spectra, the fraction of SLSNe would

decrease to ∼ 2.7%, more in line with our full sample.

8.5.2 RAENN Architecture: Limitations and Benefits

We now turn to the architecture of the RAENN itself and its use in future surveys. The

recurrent neurons allow our NN to generate light curve features which can be updated in
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Figure 8.10: Example of a Type Ia SN (top row), Type II SN (middle row) and Type

Ibc SN (bottom row). Filled points represent observations used to generate the RAENN

model (colored lines), while empty points are the complete set to guide the eye. In the

right-most column, we show the root-mean-squared (RMS) error as a function of SN

phase. Interestingly, the RMS reaches ∼ 1 near peak for all SNe shown. We emphasize

that the RAENN model has been optimized to classify complete SN light curves rather

than evolving light curves.
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real time, in addition to extrapolating and interpolating light curves. We highlight the

accuracy of the RAENN light curve model as a function of light curve completeness in

Figure 8.10. We track how well the RAENN is able to (1) model the complete light curve

with limited data and (2) accurately classify the SNe with limited data by feeding a

partial light curve into the RAENN and using the encoded neurons as features. Note that

at every step, we hold the other features (e.g., peak luminosity and duration) constant.

We find that our classifier’s performances generally drastically improves post-peak, but

that the can provide accurate classifications and light curves somewhat before peak. To

explore this, we track how the RAENN features change as the light curves evolve. In

Figure 8.11, track the values several representative encoding values of a Type Ia SN. As

expected, the values vary smoothly until ∼ 10 days post-peak.

The unique ability of the RAENN to extrapolate light curves without built-in

physical assumptions gives it the unique capacity to hunt for anomalous events in real

time which require followup during online surveys such as ZTF and LSST. Given the

millions of events discovered annually with LSST, it is not unreasonable to search for

unexpected physics which appear as observational outliers. One concern is that our

algorithm is potentially not robust to noisy live-streaming data; in other words, our

algorithm must be able to distinguish between anomalous data and noisy data. We check

the stability of our encoded values as a function of scaled white noise by adding white

noise to a light curve. We then use our RAENN to encode the noisy light curve and

record the scatter of the encoded values. We report the results of this test in Figure 8.12,

in which we show the scaled scatter of the encoded values as a function of the magnitude

of the injected noise. The scatter grows linearly with noise; however, even with one

magnitude of scatter added to the light curve, the overall scatter of the encoded values
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only increases to 30% of the overall spread of class’s features. This implies that the

RAENN is largely robust to noise.

We note that several steps need to be taken to allow our architecture to work

on streaming data. First, we use phases relative to maximum light, which will be

unavailable during the rise of the SN. A simple shift to an easily measured time, like time

of first detection, will allow the RAENN to otherwise perform as designed. Similarly, the

features utilized during the supervised portion of our classifier rely on the full light curve

being available. All features can be estimated from extrapolated RAENN light curves or

a new set of features may be used on streaming data. Finally, although not necessary,

our RAENN could output uncertainties on the SN light curves by converting the network

into a variational AE, which is designed to simultaneously find an encoding space and

uncertainties on the encoded data. This more complex architecture would likely require

a larger training set to be reliable.

8.6 Conclusions

Deep learning-based classifiers are becoming increasingly important for classification of

archival SN light curves. In this Chapter we present a novel, semi-supervised approach

to light curve classification which utilizes spectroscopically labelled and unlabelled SN

data from the PS1-MDS. Our RAENN model extracts learned, nonlinear features from

the sparse light optical light curves. We use these features and other features to classify

the complete set of SN-like objects in the PS1-MDS dataset.

We achieve high (95%) class-averaged accuracy for our spectroscopically-labelled
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sample. We find best performance for SLSNe and Type Ia SNe due to their distinctive

region of feature space. We find worst performance for Type Ibc SNe, likely due to the

small sample size (of just 21 events). We perform simple tests for classification bias and

method robustness to noise, finding our method robust to both. We apply our classifier

to the full, SNe sample of PS1-MDS which pass our quality cuts described in §8.2. We

find fractional subclass breakdowns consist with previous studies.

Finally, we note that simple modifications to our presented classifier will allow it to

work with live, rather than archival, data streams such as ZTF and LSST. We perform

simple tests and find that our classifier performs optimally after peak, although we have

not optimized for online data streams. We additionally note that the architecture may

also be utilized to search for interesting, anomalous events in real time. We plan to

explore this in future work.
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Figure 8.11: Top: Normalized light curve of a spectroscopically-classified Type Ia SN.

Bottom: Normalized AE features as a function of SN phase. To generate these features,

we run the light curve data through the RAENN up to a certain phase. We track how

these features change as we increase the phase for three representative features. As shown,

the values vary smoothly but broadly until roughly a week post-peak.
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Figure 8.12: Average spread of the RAENN features for a spectroscopic Type Ia SN

as a function of light curve noise. For every noise scale, we run 100 simulations, adding

random noise to the light curve. We then track the average spread of each parameter.

We scale this spread by the total spread in the Type Ia class. Even with an injected error

of 0.5 mag, the spread in the RAENN feature space only reaches 20% of the total spread

throughout the Type Ia class in feature space, implying the method is robust to noise.
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Table 8.2:: SNe classification

Object Name pSLSN pII pIIn pIa pIbc

PSc000001 0.01 0.01 0.13 0.84 0.01

PSc000006 0.0 0.0 0.0 1.0 0.0

PSc000010 0.0 0.0 0.0 1.0 0.0

A complete, machine-readable version

of this table is available in the online version.
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Chapter 9

Conclusions and Future Directions

Time-domain astrophysics is concurrently entering two new eras of multi-messenger

astrophysics and big data. Wide-field surveys continue to increase the discovery rate of

extragalactic transients at an exponential rate, opening the door for statistical studies

of even the rarest SN classes. At the same time, the discovery rate of well-localized

binary neutron star mergers is growing thanks to improved gravitational wave detectors.

This thesis has presented several studies which tackle these new eras, via physical and

data-driven methodologies.

Through a theoretical census of extragalactic transients, we quantify the extent of

observable features from known astrophysical sources. We build on this work to conduct

detailed studies of a massive stellar eruption in a high-mass X-ray binary. We then turn

our attention to the collisions of compact objects. We present the first analysis of the

complete ultraviolet, optical and near-infrared light curve of the first discovered kilonova,

followed by the first late-time infrared observations. Finally, we present several studies

addressing the classification of supernova light curves in the upcoming age of large data
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streams, thanks to the Vera C. Rubin Observatory (VRO).

The future is an exciting new frontier for time-domain astrophysics. As this thesis

has shown, the VRO will increase our discovery rate of transients by two orders of

magnitude. Undoubtedly, this exponential growth will lead to new and unexpected

discoveries. Machine learning methods, like those developed in this thesis, will be

necessary tools to sort the interesting “needles” (or events which require real time,

multi-wavelength follow up) from the “hay” of objects. Future algorithms need to

utilize all available information (e.g., host galaxy properties or pre-explosion outbursts)

and flag anomalous events in real time. The unique nature of transient data will

require cutting-edge machine learning techniques founded on astrophysics. In addition,

sophisticated statistical methods are necessary to fully analyze the “hay” of extragalactic

transients with no follow up. Population studies of millions of probabilistically classified

transients will require Bayesian hierarchical studies which simultaneously consider

physical progenitors and observational selection effects.

In parallel, Advanced LIGO/Virgo will be joined by the new detectors KAGRA in

Japan and LIGO-India. This new generation of gravitational wave detectors will continue

to improve sensitivity and localizations of binary mergers. Using VRO in conjunction

with this network will lead to dozens of kilonova discoveries annually (Margutti et al.

2018b; Cowperthwaite et al. 2019), opening the doors to studies of kilonova diversity,

r-process enrichment over cosmic time and cosmology. As with the area of time-domain

astrophysics, machine learning and statistical algorithms for the classification and

understanding of kilonovae will become the norm in this new era.

At the same time, future multi-wavelength facilities will enable new means to
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study kilonovae. In particular, the James Webb Space Telescope will launch in the

early 2020s, opening a new window into the infrared. As this thesis has shown, nebular

phase observations of kilonovae are essential to understand the nucleosynthetic products

and ejecta thermalization properties of events. In the ultraviolet, missions like the

proposed Ultraviolet Transient Astronomy Satellite will provide rapid follow up to better

understand the early blue emission of kilonovae.
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