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ABSTRACT

It is shov&fn that the multiparticle generating functional and the multiplicity
generating function (or partition function) are experimental observables and can
be measured directly for finite ranges of their parameters. Their derivatives
can also be measured directly. Since these functions are observables, they are
subject to statistical fluctuations due to the necessarily finite number of measurable
events used in their evaluation. The expected RMS fluctuations of the partition
function are shown to be simply expressed in terms of the total number of events
and the partition function itself. Examples are given to clarify these results and

their physical interpretation.

(Submitted to Phys. Rev. D.)

* Supported by the U. S. Atomic Energy Commission.



I. INTRODUCTION

The large number of secondary particles produced in high energy collisions,
and the surfeit of possible experimental variables, has lead to an inclusive
approach to the description of such events. Consequently, a set of multiparticle
correlation functions are introduced which allows a succinct characterization of
the data. The inclusive differential cross sections are conveniently related to the
exclusive cross sections by means of a formal generating functional. 1-4 Par-
ticular exclusive and inclusive cross sections can be found by taking functional
derivatives with respect to its parametric function. The generating function of
the multiplicity> distribution, which was originally introduced by Muellers, is
achieved when the parametric function is replaced by a constant fugacity.

The analogy between the distribution of produced secondaries and the ensemble
distribution of a gas or liquid system in statistical mechanics has been rather
thoroughly discussed. 6.7 The multiplicity generating function (partition function)
has been used to conveniently derive properties of certain models of the production

»9

processes. The introduction of long-range correlations into the multiperipheral

model has been achieved using this approachlo, and the possibility of " phase
transitions™ has been discussed.7’11

In the above works, the generating functional and the multiplicity generating
function are introduced as purely formal devices to simplify the mathematical dis~
cussion. In this paper, we wish to point out that the generating functional and the

partition function are observables and can be directly measured by experiment,

at least for a finite range of their variables (i. e. fugacity less than one).



The fugacity of a particular type of particle turns out to be the probability
that such a particle, once produced, will not be detected. The partition function
is then found to be the difference between the true total cross section, which can
be measured by an absorption experiment, for example, and the one calculated
by summing over detected events. The derivatives of the partition function can
also be measured by varying the detector efficiency. Even the functional deri-
vatives of the generating functional can be measured by the same technique. 12

Since the partition function, Q(z), is an observable, it is subject to statistical
fluctuations due to the finite number of observed events used to compute it. This
rather unusual aspect of Q(z) will be discussed and a simple formula for the
expected fluctuations will be derived. This result is clarified by an explicit cal-
culation of the fluctuations for two different multiplicity distributions. Let us turn

now to a brief review of the generating functional approach.

II. PHYSICAL GENERATING FUNCTIONALS ‘ )

In order to develop our formalism and interpretations in a convenient and
simple form, it will be assumed that only one particle type is involved in the col-
lision processes. The generalization to several particle species is straightforward.
Following the formulation and notation of Brown, reference 1, the exclusive dif-
ferential cross section for the production of n particles in the momentum interval

(d3q1). - (d3qn) is written as

n d3q n

we = ] —2 54D q-p) 1112 1)

n 0 b n
a=1 q, b=1



where P¥ is the initial total four-momentum and Tn is the transition amplitude
(including an incident-flux factor). This is a symmetric function of the n momenta

dp-- - The exclusive generating functional E[¢] is now introduced in the form

E[¢] = 22 —,%jdcjx%(ql)-.w(qn). @)
n:

The exclusive cross sections can be extracted from E [¢] by taking the appropriate
number of functional derivatives with respect to ¢(q) and setting ¢ = 0. The

total cross section can be written as

oror=E[®=1] - ®)

The inclusive cross sections are defined as

n d3q n+m
inc a 2
dolne - [] I——a (Z q—P>|T 12, @
n a=1 q£ m= 0 m' b=1 qb c=1 © n+m

and the corresponding inclusive generating functional I[¢] is found to be related

to the exclusive generating functional by

i{¢] = E[1+¢] . (5)

Let us now turn our attention to a superficially quite different problem,
namely, the effect of an imperfect experimental detection efficiency on the measured
cross sections. 13 The experimental detection probability of a particle of momentum
q is denoted by d(—cf) and will be assumed to be known. The dependence of d on_ff

allows for the solid angle and momentum acceptance of the detector. The raw



experimental exclusive cross section dEﬁXC, which is deduced directly from the
data without correcting for the detection efficiency, depends on the probability

of detecting n particles and on the probability of missing the rest:

n 3 m d3q
az &%¢ = —5 (1 d(qb))
n a=1 q b 1 q,
n+m (6)
4 2
fy) <c§-=:1 qC—P> | Tn+ml .

One may prefer to divide out the explicit factors of d(?f) before defining the experi-
mental cross section, but the above is convenient and more closely related to the
actual data. The experimental exclusive cross section is therefore a type of
inclusive cross section. Note that there is a finite probability that only one
particle will be detected in the final state, hence dE €XC is not zero. The mea-

XC
sured raw elastic scattering cross section is dZJ c

The experimental total cross section Z TOT is found by integrating the
above over the n particle phase space and summing from n=1 to n=«. The
result is

[}
- T3 fae
—1 n!

(D)

w0 Jz &34 0 )
4 2 —
;721 a 5 (E qb—P>lTﬂl [1— ﬂl(l—d(qc)>:l.

alq

or in other words,
Ef1-d) = 1[-d] = opqp - Zpopld] - ®)

This relation allows one to directly measure the functional dependence of E[¢]

for arbitrary values of ¢ such that 0 < ¢(_(-f) < 1.



The physical interpretation of this equation is clear. The difference between

the true total cross section and the experimental total cross section is E(1-d),
which simply measures the total number of events in which no particles at all

are detected.

The experimental multiplicity is a quantity of considerable interest and it

is given by

_ n exc
< n>expz"’l‘OT~ 2':'1 n! J dz:n

L 43, [
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which is the average value of d(q) over the true inclusive cross section.

The mathematical functional EL¢:| is introduced purely formally in order to
reproduce the exclusive cross sections by taking functional derivatives with
respect to ¢ and then setting ¢ to zero. However, these purely formal manipu-
lations can actually be carried out and have a definite operational meaning.
Consider two experiments, one run at a detection efficiency of d(q) and the other
at a slightly different value of d(q) + 6d(q) where 8d(qg) is an arbitrary change in
the detection efficiency d(q). The difference of the experimental total cross

sections is

3 | sE[1-4d]
tor = Zporld +od] 'ETOT[d]’I 6%1—d] od

n
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By choosing §d(q) to be zero except for a narrow range of values of q, the
exclusive cross section in this range is determined by this difference in the
measured total cross sections. Higher order differences determine the higher
exclusive cross sections. For example, the double difference yields

2

6z [d+sd] - 2= [a] + = [d-6d]

TOT ~ ZTOT TOT TOT

(1)

. if:l lc;)%] . —Iéd(al) 0d{dy) d= " 74{d;) d{dy) »

where dZ ze %C is the experimental elastic cross section. Clearly this is not a very
practical way to extract information from the data, but it does illustrate that the

functional derivatives of the generating functional are experimentally realizable.
III. PARTITION FUNCTIONS

The partition function can be introduced as a special case of the generating

functionals. Setting the function ¢(q) =z, the partition function Q(z) is defined as

Q@) = E[z] = Z z ncr;fxc .
n=2
Using this definition the relation between the experimental and the true total

cross sections is (see Eq. (8)):

Q1-D) = Tpgp - o (12)

where D is the (constant) detection probability. Therefore, one sees that the
partition function is an experimental observable, at least for values of its argu-

ment between zero and one, since Z is measured directly by counting events

TOT



(and depends on D) and ¢ can be measured independently (for example, by

TOT
an absorption experiment). Since D can be varied experimentally, the derivatives
of Q are also directly measurable. Following the discussion in the previous

section, the derivative of Q is related to the difference in two measurements of

z TOT at slightly different detection efficiencies:
62TOT(D) = ZTOT(D +46D) - ZTOT(D)
= 5DQ' (1-D).
The multiplicity is therefore given by
az
_ __TOT _
Tror< D> = —gn Q'(1).

D=0

Thus a differential measurement of the total cross section at very poor detection
efficiency (D ~ 0) measures the derivative of the partition function directly.

The experimental partition function QX(z) is calculated by taking the mea-
sured values of ZI?XC and forming the sum

Q(z) = 2. Lheexe (13)

n=1 n

For the case of a general d(q), the experimental partition function can be shown
to be
Q@) = E[l-(1-z)d] - E[1-d], (14)
which at z =1 is equivalent to (8).
If d has the constant value D, then note that the experimental exclusive

cross sections are



o0
ex +m)!
Z‘n ¢ - Z LI}TE?_ Dn(l_D)mO.eXC
m=0 n. m. n+m

In this case, it is a simple matter to define 1-z = (1 -x)/D and expand both

sides of Eq. (15) to yield the inverse relation
o0
A 2. [n!/2! (n-0)!] @- 1)n'£D*nz:§X° ,
n=4

which expresses a truly exclusive quantity in terms of inclusive ones. The

exc

fact that the left hand side vanishes for £= 0 and 1 allows one to express 21

and = 5%C¢(= Q(1-D))in terms of Z_ for n > 2.
0 ( n

One can introduce an experimental exclusive generating function in ana~
logy to Eq. (2) with dEI?XC in place of dcrfxc. Proceeding as above, and assuming

that d@') does not vanish, one finds the more general inverse relation

o0 n-f n
ozeXC = Z [n.’ /0! (n—!Z).':I j dzlfxc I <d(5fa)-—1) n! d@’b) , (15)
n=4{ a=1 b=1
which reduces to the above when d is constant, This is a generalized statement

of the well-known relation expressing the exclusive cross sections in terms of

the inclusive ones.

The experimental value of the average multiplicity is given by

= d‘; mQ_(z) = E,}%)T adz E[l—(l-—z)d]! ,

z=1 lz=1

<n>
exp
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which agrees with Eq. (9). Thus QX(z) is the proper partition function for
characterizing experimental quantities since it takes into account the detection
efficiency. To extend the above discussion to several species of produced
particles, one simply notes that each type has its own detection probability

and hence its own fugacity, and proceeds accordingly by expanding in multi-

nomial series’.

IV. STATISTICAL ERRORS OF QX(Z)

Let us now consider the effect of statistical errors on the partition function
by examining a simplified but not unrealistic experiment. It will be assumed that
in a particular experiment a total of N events are detected with Nn being the

number of events with measured multiplicity n, where

N = E Nn'
n=1

Our fundamental statistical assumption will be that the expected fluctuation in

counts satisfies the familiar relation

<NnNm>—<Nn><Nm>=6nm<Nn>, (16)

where the angular bracket stands for an ensemble average.
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The partition function, normalized to the total number of events at z =1,
is

QN(Z) = Zn: zn'Nn .

The expected fluctuation in this quantity follows from the expected fluctuation in

the N _:
n

< QZN(z) > - < Q‘N(Z) >2 = < QN(zz) > = < QN(zz) > < QN(l) >/N. @n

Therefore the expected statistical fluctuations in the conventionally nor-

malized partition function are expected to be of the order

1

Q(Z)”<Q(z)>iN—%[<Q(1)><Q(Z2)>-|2 .
x X . X X 1o (18)

This is a convenient form for estimating the errors of Qx since it involves only a
knowledge of QX itself and the total number of events.

In order to clarify this result and its implications, it is instructive to con-
sider an example. Let us assume that the experimental values of Nn happen to
have a Poisson distribution and, as is customary, we will set < Nn > equal to the
experimental distribution and estimate the expected fluctuations. Since we have

(< Ny > = 0)

the associated partition function is
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. (z=1)< n-1 >
<Qpf@)> = | Nze (»
where < n-1 > = ¢ (note that this multiplicity is shifted compared to the ordinary

one). The expected fractional fluctuation in QX(Z) is then

Q@)

-1 2
W = 1N ? exp(%(z—l) < n-1 >) (19)

The fractional error is a minimum at z = 1 since the maximum amount of experi-
mental information is used. This is true for any distribution function < Nn >.
For small values of z, only the lowest multiplicities matter, and since they
involve only a small fraction of the total number of particles, the statistical
errors are larger. A similar argument holds for the more interesting region of
large z, which is sensitive to the decreasing number of events with multiplicities

much above the average.

As a second example, consider the generalized distribution which has been

4
discussed by Hoang1 )
n
<N S (c +bn)

n+1l n!

This becomes a Poisson distribution in the limit of zero b but is otherwise quite

different for large values of n. For this distribution the partition function is

°0

< Q0 >>(_), 2 e+ b)Y

< QX(z) >

1 e(c—b)y’ (20)

il

< Q) > y(1-by)~

where y = y(z) is given by z = ye—by. The sum coverges if | zbel < 1

(0<lyl< b—1 ). Defining ¥, = y(z =1), the total cross section is given by
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Cyl

-1
ZTOT = < Q)‘((O) > (1~by1) e

Many other interesting distributions of this type can be generated by differentiating
with respect to the parameters of this distribution.

The average multiplicity < n > is easily found by differentiating with respect
to z and then setting z =1 and by using the fact that dz /dy is known. The result
is

<n-1> = ‘A (1—byl)”2 [c(l—byl) +b] .

It is also easily computed that
< (n-1)(n-2) > - < n-1 >2 = b 2(l—b )—4 [c(l-b y2-by.) +b@ ~-by,)

which vanishes for a Poisson distribution (b = 0).
The expected statistical errors are easily computed from Eq. (20). If

2
terms of order b~ are dropped, one finds that the fractional statistical error is

QX(Z) _1 5
E—Q;(E)—_; =1 +N?2 exp(—%(z—l) < n-1>A), (21)

where 9 9
A =1 +b(a+z-2) +op

and 9
<n-1> = c(l+2b)+b+0(p").

Thus we see that this distribution leads to roughly the same type of statistical
error as the Poisson, at least for values of b small compared to one. For both
examples, one sees that for a given fractional error in Q, the value of z that can

be reached increases only as the square root of the logarithm of the total number

of events.
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