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Abstract: The knowledge of the redshifts of Short-duration Gamma-Ray Bursts (SGRBs) is essential
for constraining their cosmic rates and thereby the rates of related astrophysical phenomena, par-
ticularly Gravitational Wave Radiation (GWR) events. Many of the events detected by gamma-ray
observatories (e.g., BATSE, Fermi, and Swift) lack experimentally measured redshifts. To remedy this,
we present and discuss a generic data-driven probabilistic modeling framework to infer the unknown
redshifts of SGRBs in the BATSE catalog. We further explain how the proposed probabilistic modeling
technique can be applied to newer catalogs of SGRBs and other astronomical surveys to infer the
missing data in the catalogs.
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1. Introduction

The discovery of the first Gravitational Wave Radiation (GWR) event in 2015 [1,2] and
the first joint detection of gravitational and electromagnetic radiation from a binary neutron
star merger in 2017 [3] have revolutionized multimessenger astronomy and resulted in the
2017 Physics Nobel Prize. These observations have given credibility to the hypothesis of
binary neutron star (BNS) mergers as the primary progenitors of Short Gamma-Ray Bursts
(SGRBs). Other channels of SGRB formation include neutron stars—black hole or binary
black hole mergers. Unlike Long Gamma-Ray Bursts (LGRBs), which are believed to be
due to the collapse of supermassive stars and are frequently associated with core-collapse
supernovae [4], the light curves of SGRBs are comprised of short-hard intense gamma-ray
pulses that generally last a few milliseconds to seconds.

A question of great interest in the field of GWR astronomy concerns the cosmic rates of
GWRs and the fraction of detectable events with the current and planned GWR detectors [5].
LGRBs and SGRBs are among the major sources of GWR events. Therefore, knowledge of
the cosmic rates of GRBs can yield tight constraints on the cosmic rates of GWR events. The
challenge, however, lies in quantifying the population properties and the cosmic rates of
GRBs. Unraveling the physics and the intrinsic properties of GRBs requires knowledge of
their distances from Earth represented by the quantity known as the cosmological redshift
(z). Despite significant progress made over the past two decades, most events detected
by the existing gamma-ray observatories lack measured redshifts. For example, less than
4% of the entire catalog of >3000 GRBs detected by the Gamma-ray Burst Monitor (GBM)
onboard the Fermi Gamma-ray Space Telescope have measured redshifts, and even fewer
of those with measured redshifts belong to the class of SGRBs, a primary GWR formation
channel. While there seems to exist a consensus on the range of the redshift distributions
of LGRBs and SGRBs [6-9], the shapes of the distributions and the knowledge of the
redshifts of individual events remain hotly debated [9] and elusive. Previous studies have
already utilized the phenomenologically discovered prompt gamma-ray correlations to
derive pseudo-redshifts for a certain fraction of events in the second-largest catalog of GRBs
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available to this date, homogeneously detected by the BATSE Large Area Detectors onboard
the now-defunct Compton Gamma-Ray Observatory [10-13]. More recent studies have
applied similar concepts and ideas to the problem of estimating the unknown redshifts of
GRBs in the Fermi-GBM catalog [14,15].

These methods, however, can lead to highly biased estimates of the unknown redshifts
of GRBs where the discovered high-energy correlations result from a small calibration
sample. The calibration samples are typically the brightest detected GRBs whose redshift
measurements have been feasible. Such small samples are often collected from multiple
heterogeneous surveys and potentially neither represent the unobserved intrinsic cosmic
population of GRBs nor the complete observed sample (with or without measured redshifts).
More importantly, the potential effects of the detector threshold and sample incompleteness
on the proposed phenomenological correlations are poorly understood. These unknown
effects and systematic biases manifest themselves in predicted redshift values that are
highly inconsistent with the estimates obtained from other independent methods; examples
of which are well studied in the literature [16-19].

In this article, we propose and lay out the details of a data-driven approach to re-
constructing the missing redshift and other information in GRB catalogs. The proposed
methodology is generic, is applicable to any astronomical or other type of datasets, and
opens the venue toward further quantification of the answers to some of the major ques-
tions in GRB research, including but not limited to: What are the cosmic rates of Short- and
Long-duration GRBs? Can the observational properties of GRBs be used as cosmological
standard candles? Is there a reliable indirect method of inferring the redshifts of GRBs in
real time? Are there any deviations in the cosmic rates of LGRBs from the Star Formation
Rate? To explain the proposed probabilistic framework, we particularly focus on the BATSE
catalog of 565 SGRBs due to the simplicity of the BATSE triggering mechanism. Despite
the extremely large uncertainties in the BATSE SGRBs’ observational data, we show the
feasibility of setting reasonable constraints on the individual redshifts of most BATSE
SGRBs. Although we frequently refer to the Fermi-GBM and Swift-BAT catalogs of GRBs in
discussions, we leave a complete treatment of these catalogs to future studies. This study is
a continuation of a previous similar study of the BATSE LGRBs catalog [1].

2. Methodology

Our proposed approach to reconstructing the missing data in GRB catalogs comprises
three major steps:

Firstly, describe the probabilistic foundations of our proposed Bayesian approach to
inferring missing data from the available observational catalog(s) combined with any prior
knowledge from independent resources. Such techniques should naturally incorporate all
sources of uncertainty into the analysis.

Secondly, we develop a detailed minimally biased model of the detection process
of GRBs. Such careful mathematical modeling of gamma-ray photon detectors is crucial
for an accurate study of the population properties of GRBs and the estimation of their
cosmic rates.

Lastly, we introduce a probabilistic framework for calibrating, validating, and selecting
the most plausible model for the population properties of the prompt gamma-ray emission
of GRBs, which can be subsequently used to infer the unknown missing data in GRB
catalogs, most importantly, the unknown redshifts of the individual GRBs. A more detailed
explanation of this process is given in Sections 2.1-2.3.

2.1. Development of the Statistical Techniques

The essence of the proposed approach to estimating the missing data, specifically
the unknown redshifts of GRBs, is summarized in Figure 1. For illustration, consider a
toy model where the observed properties of one GRB class (e.g., SGRBs) are collectively
represented by the single blue-colored lines in this figure. Each blue line represents one
GRB event. If we knew the redshifts of these individual events, represented by the black
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lines in the middle subplot, we would be able to determine, with high precision, the
intrinsic properties of all detected GRBs, represented by the red lines in the top subplot.
The background shaded areas in the top and middle subplots represent the generating
distributions of the corresponding lines in the foreground. Two approaches to inferring
the cosmic rates of GRBs and individual redshifts can be taken, depending on the state of
knowledge of individual GRB redshifts in a given GRB catalog.

Individual GRB ; GRI:. IntrmsnchB
observations + Formation = |a.r0|:.>er |.es
Rate distribution
IntrmsnchB Individual GRB 4 Intrrmsur:t(iSRB ﬁlnd;\{u:ual GRB
properties observations p o?e -es . |s. anfe
distribution distributions
+ 5 0 5 10 15 20 25
Distance &
redshift terms
5 0 10 15 20 25
=
Observed GRB
properties
5 0 5 10 15 20 25

Figure 1. A schematic illustration of the proposed probabilistic approach to inferring the unknown
GRB redshifts of the Fermi, Swift, and other catalogs of GRBs. All axes are unitless.

2.1.1. Modeling Scenario 1

In the presence of some GRBs with redshifts, as is the case with the Fermi Gamma-ray
Burst Monitor (GBM) [20] and Swift catalogs [21], we can use this partial knowledge of
individual redshifts to infer the overall cosmic rates of GRBs (the gray distribution in
Figure 1), the intrinsic population distributions of GRBs (the red distribution), and the
posterior predictive distributions of the unknown redshifts of individual catalog GRBs
(the black lines). This approach is particularly feasible for LGRB catalogs with a non-
negligible number of events with measured redshifts. For example, there are currently
>120 LGRBs with redshifts and >2350 LGRBs without redshifts in the Fermi catalog.
Previous modeling attempts [8] based on only 120 Swift LGRBs with known redshifts and
205 LGRBs without redshifts have successfully shed more light on the intrinsic cosmic rates
of LGRBs. Therefore, one expects the order-of-magnitude-larger sample size of the Fermi
catalog to only lead to significantly more robust LGRB rate inferences and more stringent
comparison with the existing models of Star Formation Rate (SFR). LGRBs with missing
redshifts can be readily incorporated into such analysis via Bayesian marginalization [22].

2.1.2. Modeling Scenario 2

In the absence of any redshift knowledge, as is the case with the BATSE catalog [1,23]
and most SGRB catalogs, we can still adopt a multilevel Empirical Bayesian methodology to
estimate both the redshifts and the intrinsic properties of individual GRBs probabilistically.
This novel approach may resemble magic as it enables us to infer two unknowns (the red
distribution and the black lines in the subplots of Figure 1) from a single known quantity
(the blue-colored lines). However, the power of the method stems from our ability to include
an independent prior knowledge of the overall redshift distribution of GRBs in the analysis.
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This prior knowledge is represented by the gray distribution in the middle subplot of the
figure. It can be chosen to be any plausible intrinsic GRB cosmic rate scenario. For LGRBs,
the prior could be set to the most recent SFR models in the literature [24,25], or the hotly
debated LGRB cosmic rate models that deviate from the SFR at low redshifts [9,26-28] or at
high redshifts [8,29]. In the case of the Fermi catalog, the available 120 spectroscopically
and photometrically measured redshifts can be compared with the corresponding predicted
redshifts using this Empirical Bayesian approach. Finally, quantifying and tabulating the
results of this comparison via simple linear correlation measures for different prior models
enables us to identify the most plausible cosmic rate model for GRBs.

2.1.3. Modeling the Population and the Cosmic Rates of SGRBs

Except for a handful, most SGRBs in the BATSE, Fermi, Swift, and other SGRB catalogs
lack redshifts. Therefore, the modeling approach of scenario 1 will lead to degenerate
solutions for the rates of SGRBs due to data scarcity. The modeling approach of scenario 2
is nevertheless identically applicable to SGRBs. There is now strong observational and
theoretical evidence for binary neutron star mergers as the primary progenitors of SGRBs.
It is, therefore, reasonable to assume that the cosmic rate of SGRBs follows that of LGRBs
or SFRs, convolved with appropriate merger delay time distributions. Population synthesis
simulations [30-34] already provide theoretical estimates of merger delay time distributions
independently of observational data. This is the only additional complexity in modeling
the rates and the population properties of SGRBs compared to LGRBs.

2.1.4. Unbiasedness and Consistency Checks

It is reasonable to question the unbiasedness of the observed redshift distributions of
various GRB catalogs used in scenario 1 compared to the underlying intrinsic GRB redshift
distribution. While quantifying the potential unknown biases in the spectroscopic and
photometric redshift measurements of GRBs is highly challenging, a simple consistency
check can be employed to ensure the absence of bias in the observed redshift distribution of
GRBs. This can be accomplished by performing the modeling of scenario 1 twice, first only
for the sample of GRBs with redshift and the second time by including the entire catalog of
GRBs with and without redshift. The absence of any significant difference in the results for
the two datasets will be strong evidence against the presence of any significant biases in
the observed redshift distribution of GRBs. Notably, independent studies of this matter
based on the Swift catalog LGRBs have not led to any noticeable differences between the
redshift distributions of LGRBs with and without redshifts [8,35]. Furthermore, the sound
rules of probability theory require a quantitative consistency of the results obtained from
the two independent modeling scenarios 1 and 2. Any significant deviations between the
results from the two scenarios either imply potential parameter degeneracy of the model
of scenario 1 or wrong choices of redshift priors in scenario 2. This purely probabilistic
framework provides a robust self-consistent approach to model verification and validation
in this data-driven framework. Although the handful of SGRBs with redshifts in GRB
catalogs does not help infer their intrinsic cosmic rates, they provide a valuable benchmark
against which the calibrated SGRB models could be validated.

2.2. Modeling of Data and the Gamma-Ray Detector Thresholds

The practical implementation of the proposed mathematical methodology in Section 2.1
can be qualitatively understood by introducing the four main attributes with which the
prompt gamma-ray emissions of GRBs are characterized. These spectral and temporal
prompt emission attributes are illustrated as an example GRB light-curve in Figure 2: (1) the
bolometric peak energy flux (Py,;); (2) the bolometric fluence (i.e., the total observed energy,
Spor); (3) the observed time-integrated spectral peak energy (E,); (4) the observed prompt
gamma-ray duration (e.g., as defined by the 90% of the prompt-emission interval, Ty).
These four observer-frame attributes are readily available for all BATSE and Fermi-GBM,
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and many of the Swift-BAT GRBs and can be mapped to the corresponding GRB rest-frame
properties via

bolometric isotropic peak luminosity: Lis, = Py X 477 X d (2)?,

total bolometric isotropic emission: Ejs, = Spo X 471 X d 1(2)2/(z+1),
intrinsic time-integrated spectral peak energy: E,; = E, X (z+1),

intrinsic prompt-emission duration: Toy, = Tog/(z + 1),

where d} (z) represents the cosmological luminosity distance as a function of redshift z,
which can be readily computed for a given choice of cosmology (e.g., ACDM). Taking
the logarithm of both sides of all equations, we obtain a set of linear mappings from the
rest-frame to the observer-frame properties of GRBs in the logarithmic space. Therefore,
the observed distributions of the four GRB properties result from the convolution of the
distributions of the corresponding rest-frame GRB properties with the distributions of the
logarithms of the mathematical terms that are exactly determined by z (i.e., d1(z) and z + 1).
The larger the variances of the redshift-related terms in these equations are (relative to the

variances of the distributions of intrinsic GRB attributes), the more the observed properties
of GRBs will be affected, more so by the redshift as opposed to the intrinsic properties.
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Figure 2. An example time-resolved energy-resolved GRB light-curve illustrating the four main GRB
properties that are commonly reported in GRB catalogs and used in this study to infer the missing
redshift information of BATSE GRBs. The red, orange, green, and blue colored lines represent the
aggregated energy flux received in each energy window as a function of time. The time in which it
takes for the GRB to release 90% of its gamma-ray emissions in the observer frame is the Toy. The
violet- and gray-shaded curves represent the time-integrated spectrum and the energy-integrated
(bolometric) light-curve of the GRB corresponding to the bolometric fluence Sy, of the GRB.

The joint 4-dimensional distribution of the observed properties of SGRBs and LGRBs
in both BATSE and Fermi catalogs strongly resembles multivariate log-normal distributions
severely censored by the gamma-ray detection thresholds [7,36,37]. Such an orderly distri-
bution shape in the observer frame implies an even more orderly log-normal shape for the
joint distribution of the intrinsic attributes of SGRBs and LGRBs in the rest frame. Therefore,
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we will consider the multivariate log-normal as our primary statistical model describing
the intrinsic population distribution of the prompt-emission properties in both GRB classes.
Nevertheless, it is a common practice in astronomy to model the extensive properties (e.g.,
energetics and luminosity) of celestial objects with power-law distributions [9]. Therefore,
we could also consider scenarios where the distributions of GRB energetics (L;s, and Ej;,)
are jointly modeled as power laws combined with log-normal distributions for the intensive
GRB properties (Ep; and Too,). This would be particularly feasible for modeling the popu-
lation distribution of LGRBs for which ample data and redshift information are available.
Notably, we use the isotropically computed energetics of GRBs in this model. In reality,
these isotropic values must be corrected by the beaming factor measured for each GRB.
This observational information is seldom available. Nevertheless, we do not expect the
lack of beaming factor correction to have any significant effects on the accuracy of the final
results since the available theoretical and observational evidence points to narrow widths
for the distributions of the beaming angles of the jets within each class of GRB [38-42].
In other words, such beaming factor corrections to the GRB energetics, even if possible,
would only effectively shift the entire GRB data linearly in the logarithmic space of L;s, and
Eis,. That is, the resulting variations due to the beaming corrections would be orders of
magnitude smaller than the intrinsic variability in the energetics of LGRBs and SGRBs.

GRB detector threshold model. An accurate estimation of the cosmic rates of GRBs
also requires incorporating a detailed minimally biased model of the detection threshold of
GRB detectors [37,43,44]. By design, some GRB detectors are significantly more difficult
to simulate than others. For example, the Swift Burst Alert Telescope is well-known for
its immensely complex triggering algorithm. It comprises at least three separate detection
mechanisms [45] that complement each other:

1. The first type of trigger is for short time scales (4 ms to 64 ms). These are traditional
triggers (single-background), for which about 25,000 combinations of time-energy-
focal plane subregions are checked per second.

2. The second type of trigger is similar to that of HETE detectors [46]: fits to multiple
background regions are made to remove trends for time scales between 64 ms and
64 s. About 500 combinations for these triggering mechanisms are checked per second.
For these rate triggers, false triggers and variable non-GRB sources are also rejected
by requiring a new source to be present in an image.

3. The third type of trigger works on longer time scales (minutes) and is based on routine
images that are made of the field of view.

By contrast, the Fermi-GBM detection mechanism is relatively similar to that of its pre-
decessor, BATSE LADs. The GBM can trigger upon detecting GRBs at several independent
timescales from 16 ms to 8.192 s. A naive approach to modeling the Fermi-GBM triggering
mechanism would be to use the sensitivity measurements of the detector determined in
laboratory settings by the Fermi team. The modeling of BATSE and Swift catalogs, however,
provides evidence against such an approach [7,8,37,44]. This is because the operational
sensitivities of gamma-ray photon-counters tend to differ from the sensitivities measured
in isolated laboratory environments. Additionally, GRB catalogs do not form a complete
sample with respect to the detection thresholds of the relevant gamma-ray detectors. Such
simple methods of detector threshold modeling can easily lead to biases in GRB rate
estimates that show surprising deviations from the expected GRB rates [1,47].

As an alternative, the effects of the gamma-ray detectors can be accounted for by
modeling the detection threshold as part of the modeling of GRB properties [7,37]. For
example, to remove the strong dependence of the detection threshold of Fermi-GBM on
the timescale used for the definition of a GRB’s peak flux, we can define an effective
timescale-free peak flux for all BATSE and Fermi GRBs. The existence of such an effective
peak flux is noticeable in the plot of the ratio of GRB peak fluxes at different timescales
as a function of their observed durations. Figure 3 illustrates the strong dependence of
the peak flux ratios at 64 ms and 1024 ms timescales on the durations of GRBs measured
by Ty in the BATSE and Fermi catalogs. The two GRB classes are segregated via fuzzy
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classification methods [37,48,49] applied to E, and Ty of the events in both catalogs [50].
We have already shown [7,37] the utility of this relationship in removing the effects of
varying-timescale detector thresholds from the BATSE catalog. A similar procedure can be
adopted for modeling the detection thresholds of Fermi-GBM and Swift-BAT gamma-ray
detector thresholds. In the case of Fermi-GBM, the difference is minimal and amounts to
only a wider range of triggering timescales (0.016 s to 8.192 s) compared to that of BATSE
(64 ms to 1.024 s). Furthermore, a realistic modeling of the detection threshold requires
modeling the inherent fluctuations in the background gamma-ray photon counts as a Pois-
son process [22,37], leading to a fuzzy detection threshold at any given triggering timescale.
This approach properly includes all GRBs in any catalog, down to the faintest events.

* BATSE LGRBs
* BATSE SGRBs

e Fermi LGRBs
* Fermi SGRBs

-

o
T
o

[N

Te TTeNERY
r —— Best-fit Error Function
L L L L

Peak Flux Ratio: P64ms / P1024ms
Peak Flux Ratio: P64ms / P1024ms

0.01 0.1 1 10 100 1000 0.01 0.1 1 10 100 1000
Observed Duration: Log (Tgg [s]) Observed Duration: Log( T90 [s])

Figure 3. An illustration of the similar effects of different triggering timescales on the detectabil-
ity of GRBs in BATSE and Fermi catalogs: SGRBs are more detectable than LGRBs at shorter
triggering timescales.

2.3. Model Calibration, Validation, and Selection

Once we implement the mathematical modeling approach described in Section 2.1
and the detection threshold model as laid out in Section 2.2, we can combine them to
obtain probabilistic models for the observed rates of LGRBs and SGRBs in the given catalog
of interest. The two LGRB and SGRB world models collectively yield the probability of
observing the entire GRB catalog for a given set of input parameters. The most plausible
parameters can be obtained by maximizing the likelihood of observing the catalog.

The last challenge lies in the maximization of the multivariate likelihood function
resulting from the probabilistic models. This is due to the complex dependencies of the
photon-counting detection mechanism of gamma-ray detectors in a limited energy window
at different timescales on the intrinsic peak luminosity (L;s,), hardness (E,;), duration
(Tooz), and redshift (z) of each GRB. Notably, the BATSE LADs and Fermi-GBM have the
nominal triggering energy window of 50-300 keV and trigger only on particular timescales,
as noted previously. Furthermore, the intrinsic fuzziness of the detection threshold (due
to background fluctuations) creates a nontrivial 5-dimensional fuzzy cut through the
constructed probabilistic GRB world models. Thus, computing the probability of detection
of GRBs for each input parameter set requires recomputing the probabilistic model’s
normalization factor. In other words, calculating the likelihood of each parameter set of the
models requires solving a 5-dimensional integration in the space of GRB properties and the
gamma-ray detector characteristics.

Previous similar studies with the BATSE catalog data indicate that each computation
of this multidimensional integral takes on the order of 100-1000 milliseconds [1,7,22,37].
The incorporation of data uncertainties in catalogs that are larger than BATSE catalog (such
as Fermi-GBM) into this analysis via the Bayesian methods that we have detailed above will
likely increase this computational cost by 1-2 orders of magnitude. As such, sampling the
posterior probability density of the parameters of the GRB world models requires parallel
Monte Carlo sampling algorithms. Existing software, such as ParaDRAM and ParaNest
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algorithms of the ParaMonte library [51-54] or MultiNest [55], are capable of distributing
multiple simultaneous calculations of objective functions across a few processors in parallel.

In the presence of multiple competing GRB world models, the Bayesian probability
theory offers a natural method of comparing and ranking multiple competing probabilistic
world models for GRBs. This can be achieved by computing the plausibility of each model
according to the Bayes rule. Consider, for example, the Bayesian problem of selecting the
best model from a set of m competing models M = { My, ..., M, } capable of describing all
available data D. For each model M; in the set, the posterior distribution of the parameters
can be written as

7(D|6, M;) (6] M)
(D[ M;)
where 77(-) denotes the probability density function and 6 represents the set of unknown

parameters of the model M;. One can integrate the Bayes rule (Equation (1)) over the entire
parameter space ® of the model and rearrange the equation to obtain

7T(9|D,Mi) =

)

_ H(D‘B/Mi)nprior(erMi>
/@7Tposterior(9u)//\/li)d6 == /@ ﬂ(D|MZ) de
=1
~ n(D|IM;) = /G)N(D\B)nprior(e)de @)

Equation (2) provides a method of computing the denominator of the Bayes rule in
Equation (1), which, by definition, is the likelihood of observing data D in a given model
M,;. It is sometimes called marginal likelihood since it is calculated by marginalizing the
likelihood function over the entire parameter space of the model. However, more frequently,
it is known as the Bayesian evidence or model evidence or simply the evidence. The utility of
evidence goes beyond just serving as a normalizing constant in the Bayes rule, as it can
be used for the calculation of Bayesian plausibility in yet another rewriting of the Bayes
theorem, this time for the set of models M.:

nt(D|M;)t(M;)
(D) ’

Equation (3) gives the posterior probability density of the ith model M; in the set of
all rival models M, given the prior probability knowledge 7t (M) about model M; being
correct. It is called the Bayesian plausibility, since it provides a measure of the plausibility of
model assumptions in the light of available data and prior knowledge about the model. In
the case of complete prior ignorance about all competing models, the Jaynes principle of
maximum entropy [56] dictates the assignment of uniform equal prior probabilities to each
of the competing models.

Despite the mathematical simplicity of Equation (3), its computation is frequently a
challenging task. Nevertheless, the computation of Bayesian plausibility can be greatly
simplified via analytical approximations to Equation (3) that are valid only under certain
assumptions and asymptotic behaviors, such as in the limit of large datasets or when
the posterior distribution of the parameters of the models can be well-approximated
by a multivariate normal distribution. In such cases, approximate methods such as the
Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC) offer simple
elegant solutions to model comparison [50,57]. In the special case of modeling GRB catalogs,
however, the full numerical computation of the Bayesian plausibility for the competing
models might be necessary. The aforementioned Monte Carlo sampling and integration
tools can handle such intricate, computationally expensive numerical integrations.

7(M|D) =

®)

3. Application to the BATSE Catalog of SGRBs

We now present an implementation of the Bayesian probabilistic approach to recon-
structing the missing data (e.g., redshifts) of BATSE SGRBs.
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3.1. Observational Data

We follow the same fuzzy clustering procedure applied to the BATSE catalog data as de-
scribed in Shahmoradi and Nemiroff [7] to segregate SGRBs from LGRBs in the BATSE cata-
log. The resulting 565 SGRB sample that we obtain and use in this study is identical to that of
Shahmoradi and Nemiroff [7]. Following Shahmoradi [37], Shahmoradi and Nemiroff [7],
and Osborne et al. [1], we use the four observational prompt gamma-ray emission proper-
ties of SGRBs available in the BATSE catalog to constrain the population properties and the
unknown redshifts of individual BATSE SGRBs (Figure 2).

3.2. Model Construction

The crucial step in modeling the population properties of BATSE SGRBs is to realize
that one can use the existing prior knowledge about the overall cosmic redshift distribution
of SGRBs to integrate over all possible redshifts for each observed SGRB in the BATSE
catalog to infer a range of plausible values for the intrinsic properties of the corresponding
SGRBs. These individually computed probability density functions (PDFs) of the intrinsic
properties can be then used to infer the unknown parameters of the joint population
distribution of the intrinsic properties of SGRBs.

Once the SGRB world model parameters are constrained, we can use the inferred pop-
ulation distribution of the intrinsic SGRB properties together with the observed properties
to estimate the redshifts of individual BATSE SGRBs, independently of each other. The
estimated redshifts can be again used to further constrain the intrinsic properties of SGRBs,
which will then result in even tighter estimates for the individual redshifts of BATSE SGRBs.
This recursive modeling can theoretically continue until convergence to a set of fixed in-
dividual redshift estimates occurs, although practical considerations frequently limit the
procedure to only one cycle.

The lack of knowledge of the cosmic rate of SGRBs proves to be the largest source of
uncertainty in SGRB population studies. At first glance, the above simple semi-Bayesian
mathematical approach may sound like magic and perhaps, too good to be true. Sometimes
it is. However, as explained in the previous sections, it can also lead to reasonably accurate
results if some conditions regarding the problem and the observational dataset are satisfied.

Let Dl)cbs,i represent the ith SGRB event in the BATSE catalog, with the four main SGRB
prompt emission properties,

D})Cbs,i = [Pbol,i/ Sbol,ir Ep,i/ T90,i] . 4)

Here, the superscript Ic is used to indicate that data are extracted exclusively from
the light-curves of the events. These are essentially the values reported both in the BATSE
catalog and in Shahmoradi and Nemiroff [58].

The entire BATSE dataset of 565 SGRB events attributes can then be represented as the
collection of these events,

Ds = {DiSs;: 1 <i <565} (5)

The peak brightness, P, is included in our GRB world model as it, along with
Ep, determines the peak photon flux, Pyp, in the 50-300 keV range (the BATSE nominal
detection energy window).

Given the available observed BATSE dataset, leb .- the primary goal now is to constrain
the probability density functions of the redshifts of individual BATSE SGRBs. To do this,
the process of SGRB observation is modeled as a nonhomogeneous Poisson process whose
mean rate parameter is the ‘observed’ cosmic SGRB rate, R ,ps.

Each SGRB can be described as having the intrinsic properties

D%;t,i = [Liso,i/ Eiso,i/ Epz,ir T9OZ,1'] (6)

Dinti = {Djoy; zi+ 1 <1< 565} 7)
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in the 5-dimensional attributes space, ()(Djnt), of the 1024 ms isotropic peak luminosity
(Liso), the total isotropic emission (Ejs,), the intrinsic spectral peak energy (E,;), and the
intrinsic duration (Too;), as a function of the parameters, 0,5, of the observed SGRB rate
model, Rps. The probability of these SGRBs occurring with the given properties is then
given by

70 (Dint i

Robsz Bobs) & Robs (Dint,i/ eobs) (8)

where the term R s represents the BATSE-censored rate of SGRB occurrence in the universe.
This can also be rewritten in terms of the intrinsic cosmic SGRB rate, R;,;, along with the
BATSE detection efficiency function, 7., as

dI\Iobs
dDint

Robs (Dint/ 6obs) 7
= Meff (Dintr eeff) X Rint (Dintr 6int) ’ (9)

for a given set of input intrinsic SGRB attributes, Dint, wWith Oyps = {0Oefr, Oint} as the
set of the parameters of our models for the BATSE detection efficiency and the intrinsic
cosmic SGRB rate, respectively. Assuming that there is no systematic evolution of SGRB

characteristics with the redshift, the intrinsic SGRB rate itself can be written as
dNint
dl)il.n = 7?/int (Dint/ 6in’t)

int

> dv
1 1 1 g(zr BZ)T
Riizt(Diﬁt/Bi%t) x (1 +Z)Z ’

(10)

with 0y, = {B}fw 0.}, where Ri;t is a statistical model, with G}fﬁ denoting its parameters,

that describes the population distribution of SGRBs in the 4-dimensional attributes space
of D%flt = [Liso, Eisos Epz, Tooz], and the term {(z,0,) represents the comoving rate density
model of SGRBs with the set of parameters 0, while the factor (1 + z) in the denominator
accounts for the cosmological time dilation. The comoving volume element per unit

redshift, CclT‘z/' is given by [59,60]

2
v _ C 4rd;“(z) 1)
dz HO

1/2 7
(1+2)2 [QM(l +2z)3 + QA]

with Q)1 and Q) representing the dark matter and dark energy densities, respectively, and
dp standing for the luminosity distance given by

dy(z) = H£(1 +2) /0 a2/ [(1+ 20y + Qs

:|—1/2
0

(12)

where C represents the speed of light and Hy represents the Hubble constant. The cosmo-
logical parameters in Equation (12) are set to 1 = 0.70, Q) = 0.27, and O = 0.73 [61]. If
the three rate models, (§ s efts R}; t)' and their parameters were known a priori, one could

readily compute the PDFs of the set of unknown redshifts of all BATSE SGRBs,
Z={z:1<i<565}, (13)

as
7T<Z|ch RObSI 6obs) x Robs (Z/ ch 90bs> . (14)

obs’ obs’
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For a range of possible parameter values, the redshift probabilities can be computed
by marginalizing over the entire parameter space, (}(8,ps ), of the model:

n(Z | D})Cbs’ Robs)
= /Q(Bobs) (Z|Dobsr obss eobs)
X n(eobs |rDl)ch, Rohs) Cleobs . (15)

The problem, however, is that neither the rate models nor their parameters are known
a priori. Even more problematic is the circular dependency of the posterior PDFs of Z and
0.ps on each other:

T (eobs | obs’ Robs)
= /Q(Z) ( obs‘Z Dobs/Robs)
x  7(Z2| DSy Rops) dZ . (16)

To break this circular dependency, we can adopt the empirical Bayes approach de-
scribed in Equation (2) to estimate the redshifts of BATSE SGRBs. First, we propose models
for (£, 77esr, RY,), whose parameters have yet to be constrained by observational data. Given
the three rate models, we can then proceed to constrain the free parameters of the observed
cosmic SGRB rate, R s, based on BATSE SGRB data.

The most appropriate fitting approach should take into account the observational
uncertainties and any prior knowledge from independent sources. This can be achieved via
the multilevel Bayesian methodology [22] by constructing the likelihood function and the
posterior PDF of the parameters of the model while taking into account the uncertainties in
observational data (see Equation (61) in [22]):

( obs|Dobs/ 7?/obs)

= exp<—/Q(Dim) Robs (Dingr oobs)dent)

565 z*=+00
X Hneff Obsy eff) /z* 0 Rmt(DobSl/ eint)dZ*/ (17)

where Equation (17) holds under the assumptions of independent and identical distribution
(i.e., the ii.d. property) of BATSE SGRBs and there is no measurement uncertainty in the
observational data, except redshift (z), which is completely unknown for BATSE SGRBs.

Once the posterior PDF of the model parameters is obtained, it can be plugged into
Equation (15) to constrain the redshift PDF of individual BATSE SGRBs at the second level
of modeling.

3.3. The SGRB Redshift Prior Knowledge

The main assumption in this work is that SGRBs are due to the coalescence of binary
neutron stars or the merger of a neutron star and a black hole. It is widely believed that
binary mergers require significant cosmological time to occur after the deaths of the parent
stars and the formations of the neutron stars. In this scenario, the cosmic rate of SGRBs
follows the Star Formation Rate (SFR) convolved with a distribution of the delay time
between the formation of a binary system and its coalescence due to gravitational radiation.

There is currently no consensus on the statistical moments and shape of the distribution
of the delay time between the deaths of supermassive stars and their subsequent coalescence
to form SGRBs, solely based on observations of individual events and their host galaxies.
The median delays vary widely in the range of ~0.1-7 billion years, depending on the
assumptions involved in estimation methods or in the dominant binary formation channels
considered. Recent results from population synthesis simulations, however, favor very
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short delay times of a few hundred million years with long, negligible tails towards several
billion years [7].

The extreme computational expenses imposed on this work by the complex mathe-
matical models strongly limit the number of possible scenarios that could be considered for
the cosmic rate of short GRBs. Thus, in order to approximate the comoving rate density
{(z) of SGRBs, we adopt the Star Formation Rate (SFR) model, ¢, described in [7] in the
form of a piecewise power-law function,

(I4+2z)10 z<z
{(z) xS (14+2)M zy<z<z (18)
(14+2z)72 z>z,

with parameters
0: = (20,21,70,71,72) = (0.993,3.8,3.3,0.055, —4.46) (19)

This SFR model is then convolved with a log-normal model of the delay time distribu-
tion [7,62]

(In T—;t)z

1 _(ntop)”
_— 2
LN (t|p,0) ¢ (20)

with parameters [y, 0] = [log(0.1),1.12] in units of billion years (Gyrs) adopted from [7],
such that the comoving rate density of SGRBs is calculated as

() o [T SFRE)EN (1) - 1) a2, (21)

with the universe’s age t(z) at redshift z given by

1 dz’'

He) = ﬁo/z (1+2)v/ 1+ 2%y + Qn 22

3.4. The SGRB Properties Rate Model: R

int

As for the choice of the statistical model for the joint distribution of the four main
intrinsic properties of SGRBs, D}gt, a multivariate log-normal distribution, Rlcn [ = LN, is
assumed in this work, whose parameters (i.e., the mean vector and the covariance matrix),
9% = {u, X}, will have to be constrained by data. The justification for the choice of
a multivariate log-normal as the underlying intrinsic population distribution of SGRBs
is multifolded. First, the observed joint distribution of BATSE SGRB properties highly
resembles a log-normal shape [36] that is censored close to the detection threshold of BATSE.
Second, unlike the power-law distribution which has traditionally been the default choice of
model for the luminosity function of SGRBs, log-normal models provide natural upper and
lower bounds on the total energy budget and luminosity of SGRBs, eliminating the need for
setting artificial sharp bounds on the distributions to properly normalize them. Third, the
log-normal and Gaussian distributions are among the most naturally occurring statistical
distributions in nature, whose generalizations to multidimensions are also well-studied
and understood. This is a highly desired property especially for our work, given the overall
mathematical and computational complexity of the model proposed and developed here.

3.5. The BATSE Detection Threshold: 1y¢

Compared to Fermi-GBM [63] and Swift-BAT [64], BATSE has a relatively simple
triggering algorithm. The BATSE detection efficiency and algorithm have been already ex-
tensively studied by the BATSE team as well as independent authors [7,37,44,58]. However,
the simple implementation and usage of the known BATSE trigger threshold for modeling
the BATSE catalog’s sample incompleteness can lead to systematic biases in the inferred
quantities of interest. Out of BATSE triggered on 2702 GRBs, only 2145, or approximately
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79%, have been consistently analyzed and reported in the current BATSE catalog, with
the remaining 21% either having a low accumulation of count rates or missing full spec-
tral/temporal coverage [7]. Thus, the extent of sample incompleteness in the BATSE catalog
is likely not fully and accurately represented by the BATSE triggering algorithm alone.

BATSE LADs generally triggered on a GRB if the number of photons per 64, 256, or
1024 ms arriving at the detectors in the 50-300 keV energy window, Py, reach a certain
threshold in units of the background photon count fluctuations, ¢. This threshold was
typically set to 5.5 ¢ during much of BATSE’s operational lifetime. However, the naturally
occurring fluctuations in the average background photon counts effectively lead to a
monotonically increasing BATSE detection efficiency as a function of Py, instead of a sharp
cutoff on the observed P, distribution of SGRBs.

Although the detection efficiency of most gamma-ray detectors depends solely on
the observed peak photon flux in a limited energy window, the quantity of interest that is
most often modeled and studied is the bolometric peak ‘energy’ flux (Py,;). This variable
depends on the observed peak photon flux and the spectral peak energy (E,) for the
class of LGRBs [37] and also on the observed duration (e.g., Top) of the burst for the
class of SGRBs [7]. The effects of GRB duration on the peak flux measurement are very
well illustrated in the left plot of Figure 3, where it is shown that for BATSE GRBs with
Too < 1024 ms, the timescale used for the definition of the peak flux does indeed matter.
This is particularly important in modeling the triggering algorithm of BATSE Large Area
Detectors when a short burst can be potentially detected on any of the three different peak
flux timescales used in the triggering algorithm: 64 ms, 256 ms, and 1024 ms. Therefore,
the detection modeling approach of Shahmoradi and Nemiroff [7] is adopted to construct
a minimally biased model of BATSE trigger efficiency for the population study of short-
hard bursts.

The interested reader is referred to Shahmoradi and Nemiroff [7], Shahmoradi [37],
Shahmoradi and Nemiroff [58] for further details.

3.6. Results

Now, with a statistical model at hand for the observed rate of short GRBs, we proceed
by first fitting the proposed censored cosmic SGRB rate model R ,;5 to 565 BATSE SGRB data
under the redshift distribution scenario prescribed in the previous section. The posterior
PDF of parameters of the cosmic rate model of SGRBs is explored by the Parallel Delayed-
Rejection Adaptive Metropolis—Hastings Markov Chain Monte Carlo algorithm (the ParaDRAM
algorithm) that is part of the larger Monte Carlo simulation package ParaMonte available
in C, C++, Fortran, MATLAB, Python, and other programming languages available online
(as of 31 March 2022) at https://github.com/cdslaborg/paramonte [52,53,65,66].

However, due to the complex truncation imposed on SGRB data and the world model
by the BATSE detection threshold, the maximization of the posterior distribution of the
parameters of the cosmic rate model of SGRBs is not only analytically intractable but
also computationally extremely complex. Calculation of the posterior distribution as
given by Equation (17) requires a multivariate integral over the four-dimensional space of
SGRB variables at any given redshift. In addition, due to lack of redshift (z) information for
BATSE SGRBs, the probability for the observation of each SGRB given the model parameters
must be marginalized over all possible redshifts, adding another layer of integration to
the four-dimensional integration. These numerical integrations make sampling from the
posterior distribution of the parameters of the SGRB cosmic rate model an extremely
difficult task. Therefore, the inclusion of the measurement uncertainties, which would
make the computations far more complex, is not considered in this work.

The joint posterior distribution of the model parameters is then obtained by iterative
sampling using a variant of Markov Chain Monte Carlo (MCMC) techniques known as
Adaptive Metropolis—Hastings [67]. To further the efficiency of MCMC sampling, we
implement all algorithms in Fortran [68,69] and approximate the numerical integration in
the definition of the luminosity distance of Equation (12) by the analytical expressions of
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Wickramasinghe and Ukwatta [70]. This integration is encountered on the order of one
billion times during the MCMC sampling of the posterior distribution.

The computations were performed on 96 processors in parallel on two Skylake com-
pute nodes of the Stampede 2 supercomputer at Texas Advanced Computing Center. We
performed extensive tests to ensure a high level of accuracy of the high-dimensional numer-
ical integrations involved in the derivation of the posterior distribution of the parameters of
the censored cosmic rate model for SGRBs as given in Equation (17). The resulting best-fit
parameters of the cosmic SGRB rate model are summarized in Table 1, and the marginal
distributions of their parameters are compared with each other in Figure 4.

Once the parameters of the censored cosmic rate model Equation (9) are constrained,
we use the calibrated model at the second level of the analysis to further constrain the
PDFs of the unknown redshifts of individual BATSE SGRBs according to Equation (15).
This iterative process can continue until convergence to a specific set of redshift PDFs
occurs. However, given the computational complexity and the expense of each iteration,
the iterative refinement process is stopped after obtaining the first round of estimates.

Table 1. Mean best-fit parameters of SGRB world model compared to LGRB world model of Shah-
moradi [37].

Parameter SGRB World Model LGRB World Model
Redshift Parameters (Equation (18))
20 0.993 0.993
Z1 3.8 3.8
Y0 3.3 3.3
7 0.0549 0.0549
Y2 —4.46 —4.46
Log-normal Merger Delay (Equation (20))
Hdelay 0.1 _
Udeluy 1.12 -
Location Parameters
logyo(Liso) 51.88 £0.16 51.54 +0.18
logyo(Eiso) 50.93 £0.19 51.98 +£0.18
loglO(Epz) 2.98 +0.05 2.48 +0.05
log;o(Tooz) —0.74 +0.08 1.12£+0.03
Scale Parameters
log;o(or,.,) —0.36 £ 0.06 —0.25 £ 0.06
logyo(0E,,) —0.10 £ 0.04 —0.08 £0.03
loglo(UEm) —0.39 £ 0.02 —0.44 £ 0.02
logyo(0T,y,.) —0.24 +0.02 —0.37 £0.01
Correlation Coefficients
OLi—Eiso 0.91 +0.03 0.94 +0.01
PLiso—Ep- 0.51+0.10 0.45 £+ 0.07
OLic—Toos 0.50 +0.09 0.48 +0.09
PEi—Ep. 0.60 + 0.06 0.58 +0.04
OE.0—Toos 0.63 +0.05 0.60 + 0.05
PE,. T 0.12 +0.06 0.31 £0.04
BATSE Detection Efficiency
Hthresh —0.25+0.03 —0.45+0.02
1og10(Tihresn) —0.86 +0.05 —0.90 £ 0.05
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Figure 4. The marginal posterior distributions of the 16 parameters of the SGRB world model.

The mean redshifts together with 50% and 90% prediction intervals for the three rate
density scenarios are also reported in Table 2. On average, the redshifts of individual
BATSE SGRBs can be constrained to within a 50% uncertainty range of 0.51. At a 90%
confidence level, the prediction intervals expand to wider a uncertainty range of 1.31.
Figure 5 shows the derived probability density functions (PDFs) of a subset of 565 BATSE
SGRBs. As illustrated, the redshifts of BATSE SGRBs are generally better constrained at
lower redshifts.

Table 2. BATSE 565 SGRB Redshift Estimates.

Trigger  Mean (z) Mode(z)  Qsy (z)  Qas (2) Qs (2) Qyse, (2) Qose (2)
108 1.62 1.58 1.05 1.35 1.58 1.85 2.30
138 1.50 1.47 0.99 1.26 1.48 1.71 2.12
185 1.08 1.02 0.70 091 1.06 1.23 1.54
207 0.77 0.75 0.50 0.64 0.76 0.88 1.09
218 1.89 1.86 1.24 1.59 1.86 2.15 2.64
229 1.39 1.36 0.92 1.17 1.36 1.58 1.95
254 1.22 1.17 0.83 1.03 1.19 1.37 1.70
289 0.84 0.83 0.54 0.70 0.83 0.96 1.18
297 1.04 0.99 0.70 0.89 1.02 1.17 1.43
373 1.34 1.30 0.89 1.12 1.31 1.52 1.89
432 0.56 0.53 0.35 0.46 0.55 0.65 0.82
474 0.46 0.43 0.29 0.37 0.44 0.52 0.67
480 0.56 0.53 0.36 0.46 0.55 0.64 0.82
486 1.21 1.16 0.80 1.02 1.18 1.38 1.71
491 1.18 1.13 0.78 0.99 1.15 1.35 1.68
508 1.49 1.45 0.98 1.24 1.46 1.69 2.10
512 0.69 0.66 0.43 0.57 0.67 0.79 0.99
537 1.65 1.61 1.09 1.39 1.62 1.88 2.33
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Table 2. Cont.

Trigger Mean (z) Mode (z)  Qse, (2)  Qas9, (z)  Qsp9% (2) Qs (2) Qosey, (2)

547 1.02 0.99 0.69 0.87 1.00 1.15 1.41
551 0.77 0.75 0.50 0.65 0.76 0.88 1.09
555 1.22 1.16 0.81 1.02 1.18 1.38 1.72
568 0.80 0.79 0.53 0.68 0.79 0.92 1.13
575 0.97 0.98 0.65 0.83 0.96 1.10 1.35
603 0.84 0.83 0.55 0.71 0.83 0.96 1.18
677 0.48 0.46 0.30 0.40 0.47 0.56 0.71
729 0.87 0.86 0.56 0.73 0.86 0.99 1.22
734 1.32 1.27 0.88 1.11 1.29 1.51 1.87
788 1.11 1.04 0.73 0.93 1.08 1.25 1.57
799 0.93 0.93 0.59 0.78 0.92 1.06 1.33
809 1.01 0.99 0.67 0.86 0.99 1.13 1.40
830 0.68 0.66 0.44 0.57 0.67 0.78 0.98
834 2.48 247 l.61 2.09 2.45 2.83 3.46
836 1.37 1.34 0.90 1.15 1.34 1.55 1.92
845 2.05 2.02 1.34 1.72 2.02 2.33 2.88
856 1.18 1.13 0.78 0.99 1.15 1.35 1.68
867 1.65 1.60 1.08 1.38 1.61 1.88 2.34
878 1.05 0.99 0.70 0.89 1.03 1.18 1.46
906 1.06 1.00 0.72 0.90 1.04 1.19 1.47
909 2.89 2.89 1.90 244 2.85 3.30 3.96
929 1.59 1.56 1.05 1.34 1.56 1.81 2.23
936 0.91 0.91 0.61 0.78 0.90 1.03 1.27
942 2.36 2.34 1.54 1.99 2.33 2.69 3.31
974 2.76 2.76 1.82 2.33 2.73 3.15 3.79
1051 1.17 1.13 0.78 0.99 1.15 1.33 1.65
1073 1.10 1.04 0.74 0.93 1.08 1.24 1.53
1076 0.61 0.59 0.39 0.51 0.60 0.70 0.89
1088 0.47 0.44 0.30 0.39 0.46 0.54 0.69
1096 1.11 1.05 0.73 0.93 1.09 1.27 1.58
1097 0.97 0.98 0.64 0.83 0.96 1.10 1.36
1102 0.94 0.94 0.62 0.79 0.92 1.06 1.30
1112 1.40 1.36 0.93 1.18 1.37 1.58 1.95
1128 1.27 1.23 0.83 1.06 1.24 1.45 1.80
1129 1.79 1.78 1.17 1.51 1.76 2.04 2.52
1154 0.92 0.92 0.61 0.78 091 1.04 1.28
1211 1.21 1.17 0.81 1.02 1.19 1.37 1.70
1223 1.72 1.68 1.11 1.43 1.69 1.97 247
1289 1.23 1.18 0.83 1.03 1.20 1.39 1.72
1308 0.84 0.83 0.53 0.70 0.83 0.96 1.18
1346 1.63 1.59 1.07 1.36 1.60 1.86 2.30
1359 1.02 0.99 0.68 0.87 1.00 1.14 1.41
1404 1.90 1.88 1.24 1.60 1.87 2.17 2.67
1435 2.19 217 1.40 1.83 2.15 2.50 3.08
1443 1.32 1.24 0.87 1.09 1.28 1.50 1.89
1453 0.56 0.54 0.36 0.46 0.55 0.65 0.82
1461 0.93 0.92 0.61 0.78 0.91 1.05 1.30
1481 1.81 1.74 1.15 1.49 1.76 2.08 2.64
1518 1.16 1.11 0.79 0.98 1.13 1.31 1.62
1546 1.05 0.99 0.68 0.88 1.02 1.19 1.51
1553 0.71 0.68 0.46 0.59 0.69 0.81 1.01
1566 0.87 0.86 0.57 0.73 0.86 0.99 1.21
1588 0.91 0.91 0.61 0.78 0.90 1.03 1.27
1634 1.23 1.18 0.83 1.04 1.20 1.39 1.71
1635 1.14 1.09 0.76 0.96 1.11 1.29 1.59
1636 1.95 1.88 1.24 1.61 191 2.24 2.83
1637 1.80 1.78 1.15 1.51 1.77 2.06 2.56

1659 1.44 1.41 0.96 1.21 1.41 1.63 2.01
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Table 2. Cont.

Trigger Mean (z) Mode (z)  Qse, (2)  Qas9, (z)  Qsp9% (2) Qs (2) Qosey, (2)

1662 1.13 1.08 0.75 0.96 1.10 1.27 1.57
1665 0.56 0.53 0.35 0.46 0.54 0.64 0.81
1679 3.51 3.69 2.38 3.03 3.50 3.94 4.72
1680 1.03 0.99 0.68 0.87 1.01 1.16 1.44
1683 1.36 1.27 0.88 1.11 1.31 1.55 1.99
1694 1.00 0.99 0.68 0.86 0.99 1.13 1.39
1719 1.00 0.99 0.67 0.85 0.98 1.12 1.38
1736 0.93 0.93 0.60 0.78 0.92 1.06 1.32
1741 0.83 0.82 0.54 0.70 0.82 0.95 1.17
1747 1.20 1.15 0.80 1.01 1.17 1.36 1.68
1760 0.94 0.93 0.63 0.80 0.92 1.06 1.30
1851 0.82 0.80 0.54 0.69 0.80 0.93 1.14
1953 1.36 1.32 0.92 1.15 1.34 1.54 1.91
1968 1.41 1.38 0.94 1.19 1.39 1.60 1.97
2003 1.10 1.05 0.74 0.94 1.08 1.25 1.54
2037 1.11 1.03 0.74 0.93 1.08 1.25 1.57
2040 1.65 1.62 1.09 1.39 1.62 1.88 2.31
2041 1.24 1.19 0.84 1.05 1.21 1.41 1.75
2043 1.51 1.48 0.99 1.26 1.48 1.72 2.12
2044 2.20 2.16 1.42 1.83 2.16 2.51 3.12
2049 0.84 0.82 0.55 0.71 0.83 0.95 1.17
2056 225 221 1.47 1.89 2.21 2.56 3.16
2068 0.55 0.52 0.34 0.45 0.53 0.63 0.81
2099 2.40 2.36 1.57 2.02 2.36 2.74 3.39
2103 1.31 1.27 0.88 1.10 1.28 1.48 1.82
2115 1.02 0.99 0.68 0.87 1.00 1.15 1.42
2117 1.04 0.99 0.69 0.88 1.02 1.17 1.45
2125 0.50 0.47 0.31 0.41 0.48 0.57 0.73
2126 0.91 0.90 0.60 0.77 0.90 1.03 1.26
2132 0.90 0.90 0.57 0.75 0.89 1.03 1.27
2142 1.86 1.82 1.21 1.56 1.82 2.12 2.62
2145 1.40 1.37 0.93 1.18 1.37 1.59 1.96
2146 0.99 0.99 0.66 0.84 0.98 1.12 1.37
2155 1.18 1.13 0.80 1.00 1.15 1.33 1.64
2159 1.14 1.07 0.73 0.95 1.11 1.30 1.63
2161 0.88 0.87 0.57 0.74 0.86 1.00 1.23
2163 1.46 1.43 0.97 1.23 1.43 1.66 2.04
2167 0.69 0.67 0.44 0.58 0.68 0.79 0.99
2201 1.11 1.07 0.75 0.95 1.09 1.26 1.54
2205 1.29 1.24 0.85 1.08 1.26 1.47 1.82
2206 1.10 1.05 0.74 0.94 1.08 1.24 1.52
2217 0.88 0.87 0.59 0.75 0.87 1.00 1.23
2220 1.09 1.04 0.73 0.93 1.07 1.23 1.51
2265 1.38 1.35 0.92 1.16 1.36 1.57 1.95
2268 1.49 1.43 0.98 1.24 1.45 1.70 2.13
2273 0.46 0.43 0.29 0.37 0.44 0.52 0.67
2283 1.20 1.14 0.79 1.01 1.17 1.37 1.72
2288 1.40 1.37 0.93 1.18 1.37 1.59 1.96
2312 1.07 1.01 0.72 091 1.05 1.21 1.48
2326 0.96 0.96 0.64 0.81 0.94 1.08 1.33
2327 2.78 2.79 1.84 2.36 2.76 3.17 3.81
2330 0.69 0.66 0.45 0.58 0.67 0.79 0.98
2332 0.96 0.97 0.63 0.81 0.95 1.09 1.35
2352 1.83 1.81 1.19 1.54 1.80 2.09 2.57
2353 1.52 1.50 1.01 1.28 1.50 1.73 2.13
2357 1.21 1.16 0.81 1.02 1.19 1.37 1.71
2358 1.40 1.36 091 1.16 1.37 1.59 1.98

2360 1.43 1.40 0.95 1.20 1.40 1.63 2.01
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Trigger Mean (z) Mode (z)  Qse, (2)  Qas9, (z)  Qsp9% (2) Qs (2) Qosey, (2)

2365 1.71 1.68 1.12 1.44 1.68 1.95 241
2368 2.89 2.90 1.92 2.46 2.87 3.30 3.95
2372 1.15 1.11 0.77 0.98 1.13 1.31 1.61
2377 0.92 0.92 0.62 0.79 091 1.04 1.27
2382 3.11 3.15 2.06 2.65 3.09 3.54 4.21
2384 1.34 1.31 0.89 1.13 1.31 1.52 1.88
2395 1.00 0.99 0.65 0.84 0.98 1.13 1.39
2401 272 2.71 1.79 2.30 2.69 3.10 3.76
2424 2.62 2.60 1.72 221 2.59 2.99 3.64
2434 221 2.14 1.39 1.81 2.15 2.55 3.22
2448 1.52 1.49 1.00 1.28 1.49 1.73 2.13
2449 1.06 1.00 0.71 0.90 1.04 1.20 1.47
2454 224 2.20 1.45 1.87 2.20 2.55 3.17
2485 1.21 1.16 0.79 1.01 1.18 1.38 1.73
2487 1.01 0.99 0.68 0.86 0.99 1.13 1.39
2502 1.03 0.99 0.69 0.88 1.01 1.15 1.42
2504 0.87 0.86 0.57 0.73 0.85 0.99 1.21
2512 0.96 0.97 0.64 0.82 0.95 1.09 1.34
2513 2.10 2.07 1.38 1.77 2.06 2.39 2.95
2523 1.40 1.37 0.94 1.18 1.37 1.59 1.96
2529 1.76 1.70 1.11 1.45 1.72 2.02 2.55
2536 1.20 1.15 0.80 1.01 1.17 1.36 1.67
2564 1.33 1.29 0.89 1.12 1.31 1.51 1.87
2583 0.60 0.58 0.38 0.50 0.59 0.69 0.87
2585 1.94 1.88 1.23 1.60 1.90 223 2.80
2597 1.04 0.99 0.69 0.88 1.02 1.17 1.44
2599 0.81 0.79 0.52 0.67 0.79 0.92 1.14
2614 0.60 0.57 0.39 0.50 0.59 0.69 0.87
2615 0.83 0.82 0.53 0.70 0.82 0.95 1.17
2623 1.49 1.44 0.98 1.24 1.46 1.70 2.12
2632 1.58 1.52 1.03 1.31 1.54 1.81 227
2633 1.62 1.59 1.06 1.36 1.59 1.85 2.28
2649 1.03 0.99 0.68 0.88 1.01 1.16 1.44
2679 0.48 0.45 0.30 0.39 0.46 0.55 0.70
2680 2.69 2.65 1.76 2.26 2.64 3.07 3.74
2690 0.87 0.86 0.57 0.74 0.86 0.99 1.21
2693 1.26 1.23 0.84 1.06 1.24 1.44 1.78
2701 1.43 1.40 0.95 1.20 1.41 1.62 2.00
2715 0.54 0.51 0.34 0.45 0.53 0.62 0.79
2728 1.41 1.36 0.94 1.18 1.37 1.60 2.00
2748 1.20 1.15 0.79 1.01 1.17 1.36 1.69
2755 1.00 0.99 0.65 0.84 0.98 1.13 1.40
2757 1.30 1.25 0.86 1.09 1.27 1.48 1.86
2760 3.07 3.10 2.01 2.59 3.04 3.52 422
2776 2.02 2.00 1.31 1.70 1.99 2.30 2.83
2788 1.32 1.28 0.89 1.11 1.29 1.50 1.84
2795 0.87 0.85 0.57 0.73 0.85 0.98 1.21
2799 1.14 1.05 0.74 0.95 1.10 1.29 1.64
2800 1.45 141 0.96 1.22 1.42 1.64 2.02
2801 1.13 1.08 0.74 0.95 1.11 1.28 1.59
2810 2.51 2.47 1.64 2.10 2.47 2.87 3.52
2814 0.83 0.81 0.53 0.70 0.82 0.95 1.16
2821 1.12 1.07 0.74 0.95 1.10 1.27 1.58
2823 1.20 1.15 0.78 1.00 1.17 1.37 1.71
2828 1.44 141 0.96 1.21 1.42 1.64 2.02
2834 0.68 0.65 0.44 0.57 0.67 0.78 0.97
2844 1.95 1.92 1.26 1.63 1.92 223 2.76
2846 1.07 1.01 0.71 0.90 1.05 1.21 1.50

2849 2.16 2.10 1.38 1.79 2.11 248 3.11
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Trigger Mean (z) Mode (z)  Qse, (2)  Qas9, (z)  Qsp9% (2) Qs (2) Qosey, (2)

2851 2.55 2.53 1.67 2.15 2.52 292 3.58
2860 1.30 1.25 0.88 1.09 1.27 1.47 1.82
2861 1.61 1.56 1.06 1.35 1.58 1.83 2.28
2873 1.04 0.99 0.68 0.88 1.03 1.18 1.47
2879 1.08 1.03 0.71 0.92 1.06 1.23 1.52
2892 1.03 0.99 0.67 0.87 1.01 1.16 1.45
2894 1.34 1.24 0.85 1.09 1.29 1.53 1.98
2910 0.95 0.95 0.62 0.80 0.93 1.08 1.33
2918 0.88 0.86 0.58 0.74 0.86 0.99 1.21
2933 0.63 0.61 0.41 0.53 0.62 0.73 0.92
2952 0.89 0.88 0.59 0.75 0.88 1.00 1.23
2964 1.14 1.09 0.75 0.96 1.12 1.30 1.61
2966 1.42 1.39 0.95 1.19 1.39 1.61 1.99
2973 1.21 1.17 0.81 1.03 1.19 1.37 1.70
2975 0.86 0.84 0.56 0.72 0.84 0.98 1.19
2977 1.09 1.03 0.73 0.93 1.07 1.22 1.51
2978 0.67 0.64 0.42 0.55 0.65 0.77 0.96
2987 1.32 1.28 0.89 1.11 1.29 1.50 1.84
2988 0.89 0.88 0.59 0.75 0.88 1.01 1.24
2995 0.83 0.81 0.54 0.70 0.82 0.95 1.16
3016 1.34 1.27 0.83 1.08 1.30 1.54 1.99
3027 0.75 0.72 0.48 0.62 0.73 0.86 1.06
3037 0.81 0.80 0.52 0.68 0.80 0.93 1.15
3038 1.19 1.15 0.81 1.01 1.17 1.35 1.66
3039 1.29 1.20 0.83 1.05 1.25 1.48 1.91
3043 1.22 1.15 0.79 1.01 1.18 1.39 1.76
3051 0.78 0.75 0.48 0.64 0.76 0.90 1.13
3066 0.95 0.95 0.63 0.81 0.94 1.07 1.31
3073 0.91 0.91 0.59 0.77 0.90 1.03 1.27
3078 0.88 0.87 0.58 0.75 0.87 1.00 1.23
3087 0.76 0.73 0.48 0.63 0.74 0.88 1.10
3094 1.15 1.10 0.77 0.97 1.12 1.29 1.59
3113 1.05 0.99 0.71 0.89 1.03 1.18 1.45
3114 1.80 1.78 1.17 1.51 1.78 2.06 2.53
3118 1.12 1.07 0.75 0.95 1.09 1.26 1.55
3121 1.43 1.40 0.96 1.21 1.41 1.63 2.00
3137 0.99 0.99 0.66 0.84 0.98 1.12 1.39
3144 3.51 3.69 237 3.03 3.49 3.94 4.71
3146 2.62 2.59 1.71 2.20 2.58 3.00 3.68
3152 0.55 0.52 0.35 0.45 0.54 0.63 0.81
3155 2.34 227 1.50 1.93 2.28 2.68 3.35
3160 2.05 2.02 1.34 1.73 2.02 2.34 2.88
3164 2.75 2.71 1.79 231 2.71 3.15 3.83
3173 0.48 0.46 0.30 0.40 0.47 0.55 0.70
3215 0.56 0.53 0.36 0.46 0.55 0.64 0.81
3218 0.75 0.73 0.48 0.62 0.74 0.86 1.07
3266 0.90 0.89 0.59 0.76 0.89 1.02 1.25
3278 1.81 1.79 1.18 1.52 1.78 2.07 2.55
3280 2.58 2.57 1.69 2.17 2.55 2.94 3.59
3282 0.78 0.76 0.50 0.65 0.77 0.90 1.10
3286 1.07 0.99 0.69 0.89 1.05 1.22 1.55
3293 1.11 1.05 0.74 0.94 1.08 1.25 1.54
3294 1.50 1.46 0.99 1.26 1.47 1.71 2.12
3297 0.85 0.83 0.56 0.72 0.84 0.96 1.18
3308 1.58 1.56 1.04 1.33 1.55 1.80 221
3323 1.13 1.09 0.77 0.96 1.11 1.28 1.58
3333 0.89 0.89 0.56 0.74 0.88 1.01 1.25
3335 1.76 1.74 1.15 1.48 1.73 2.01 247

3338 0.88 0.88 0.55 0.73 0.87 1.01 1.26
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Trigger Mean (z) Mode (z)  Qse, (2)  Qas9, (z)  Qsp9% (2) Qs (2) Qosey, (2)

3340 1.15 1.10 0.78 0.98 1.13 1.30 1.60
3342 0.93 0.93 0.62 0.79 0.92 1.06 1.30
3349 0.97 0.98 0.64 0.83 0.96 1.10 1.35
3359 1.05 0.99 0.71 0.90 1.03 1.18 1.46
3374 1.22 1.18 0.82 1.03 1.19 1.38 1.70
3379 1.25 1.21 0.84 1.05 1.22 1.41 1.74
3384 0.84 0.83 0.52 0.69 0.83 0.96 1.19
3437 0.96 0.96 0.62 0.80 0.94 1.09 1.37
3441 1.00 0.99 0.66 0.85 0.99 1.13 1.40
3476 1.37 1.32 0.89 1.14 1.34 1.56 1.96
3477 1.72 1.70 1.13 1.45 1.69 1.96 241
3487 1.17 1.13 0.79 0.99 1.15 1.33 1.64
3494 1.38 1.34 0.92 1.16 1.35 1.56 1.93
3502 1.06 1.01 0.72 0.91 1.05 1.20 1.47
3510 1.05 0.99 0.70 0.89 1.03 1.19 1.47
3530 1.92 1.87 1.24 1.60 1.88 2.19 272
3545 1.44 1.41 0.96 1.21 1.41 1.63 2.02
3606 1.14 1.09 0.77 0.97 1.11 1.28 1.58
3611 2.80 2.77 1.83 2.35 2.76 3.20 3.88
3640 0.97 0.98 0.64 0.82 0.96 1.10 1.36
3642 0.79 0.77 0.52 0.67 0.78 0.90 1.11
3665 0.47 0.44 0.29 0.38 0.46 0.54 0.69
3668 0.78 0.76 0.51 0.65 0.77 0.89 1.10
3722 1.19 1.14 0.80 1.00 1.16 1.34 1.66
3728 1.18 1.14 0.79 1.00 1.16 1.34 1.66
3735 0.88 0.86 0.58 0.74 0.86 0.99 1.22
3737 0.79 0.77 0.51 0.66 0.77 0.90 1.10
3742 1.18 1.13 0.79 0.99 1.15 1.34 1.66
3751 1.08 1.03 0.74 0.93 1.07 1.22 1.50
3770 0.81 0.79 0.53 0.68 0.79 0.92 1.13
3774 1.08 1.01 0.70 0.90 1.05 1.22 1.53
3782 1.12 1.06 0.73 0.94 1.09 1.27 1.59
3791 0.88 0.86 0.58 0.74 0.86 0.99 1.21
3799 0.97 0.98 0.62 0.81 0.95 1.10 1.37
3810 0.83 0.81 0.54 0.70 0.82 0.95 1.16
3866 1.23 1.16 0.82 1.03 1.20 1.40 1.74
3867 1.04 0.99 0.71 0.89 1.02 1.17 1.44
3868 1.06 1.01 0.71 0.90 1.05 1.20 1.48
3888 0.95 0.95 0.64 0.81 0.93 1.07 1.31
3889 0.67 0.64 0.42 0.55 0.65 0.77 0.96
3894 1.27 1.23 0.85 1.07 1.24 1.44 1.78
3895 1.82 1.80 1.18 1.53 1.79 2.08 2.55
3902 0.58 0.56 0.37 0.48 0.57 0.67 0.84
3904 0.98 0.99 0.64 0.83 0.97 1.11 1.38
3910 0.90 0.89 0.56 0.75 0.89 1.03 1.30
3919 1.17 1.12 0.77 0.98 1.14 1.33 1.65
3921 0.86 0.85 0.57 0.73 0.85 0.98 1.19
3936 1.28 1.20 0.84 1.05 1.24 1.46 1.86
3939 1.88 1.81 1.20 1.55 1.83 2.16 2.74
3940 1.11 1.05 0.74 0.94 1.08 1.25 1.55
4327 0.52 0.49 0.32 0.42 0.50 0.60 0.76
4660 0.97 0.98 0.66 0.83 0.96 1.10 1.35
4744 0.95 0.96 0.63 0.81 0.94 1.08 1.33
4776 0.83 0.81 0.55 0.70 0.81 0.94 1.15
4807 0.86 0.84 0.55 0.72 0.84 0.98 1.21
4871 0.78 0.76 0.50 0.65 0.77 0.90 1.11
4955 0.80 0.78 0.53 0.68 0.79 0.92 1.12
5079 1.35 1.32 0.90 1.14 1.33 1.53 1.90

5206 0.84 0.83 0.55 0.71 0.83 0.96 1.17
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5212 1.01 0.99 0.68 0.86 0.99 1.13 1.39
5277 0.70 0.68 0.46 0.59 0.69 0.80 1.00
5339 0.82 0.80 0.54 0.69 0.81 0.94 1.15
5439 0.66 0.63 0.42 0.55 0.64 0.76 0.96
5448 1.13 1.07 0.75 0.95 1.10 1.27 1.58
5453 1.63 1.61 1.07 1.37 1.60 1.86 2.29
5456 1.43 1.37 0.94 1.19 1.39 1.62 2.03
5458 0.89 0.88 0.53 0.73 0.88 1.03 1.33
5459 1.17 1.12 0.77 0.98 1.15 1.33 1.66
5461 1.44 1.41 0.96 1.21 1.41 1.64 2.02
5467 1.78 1.74 1.16 1.49 1.74 2.02 2.51
5469 1.13 1.07 0.76 0.96 1.10 1.27 1.56
5471 1.12 1.06 0.75 0.95 1.09 1.26 1.57
5485 2.63 2.62 1.73 222 2.59 3.00 3.65
5488 1.15 1.11 0.77 0.98 1.13 1.31 1.62
5491 1.01 0.99 0.65 0.85 0.99 1.14 1.42
5498 1.32 1.28 0.88 1.11 1.29 1.50 1.86
5499 1.32 1.28 0.89 1.11 1.29 1.50 1.84
5500 0.61 0.59 0.39 0.51 0.60 0.71 0.89
5501 1.21 1.16 0.80 1.02 1.18 1.38 1.72
5527 091 0.89 0.60 0.77 0.89 1.02 1.26
5528 1.13 1.08 0.77 0.96 1.11 1.27 1.57
5529 0.95 0.95 0.64 0.81 0.93 1.07 1.31
5533 0.85 0.83 0.56 0.72 0.84 0.96 1.18
5536 0.86 0.85 0.53 0.71 0.84 0.99 1.24
5537 1.40 1.37 0.94 1.18 1.38 1.59 1.96
5546 1.73 1.70 1.13 1.45 1.70 1.97 2.45
5547 1.23 1.18 0.83 1.04 1.20 1.39 1.71
5556 1.60 1.54 1.03 1.32 1.56 1.83 2.31
5560 1.27 1.23 0.85 1.07 1.24 1.44 1.78
5562 0.84 0.82 0.55 0.71 0.83 0.95 1.17
5564 0.59 0.56 0.37 0.49 0.58 0.68 0.86
5576 1.18 1.14 0.79 1.00 1.16 1.34 1.65
5592 1.07 1.02 0.71 091 1.05 1.21 1.50
5599 0.92 0.92 0.62 0.78 0.91 1.04 1.27
5607 0.92 091 0.62 0.78 0.90 1.04 1.27
5619 0.83 0.82 0.54 0.70 0.82 0.95 1.16
5620 0.88 0.87 0.55 0.73 0.86 1.01 1.26
5633 1.03 0.99 0.67 0.87 1.01 1.17 1.46
5638 1.66 1.64 1.09 1.40 1.64 1.90 2.33
5647 0.60 0.57 0.38 0.49 0.59 0.69 0.89
5650 1.45 1.41 0.96 1.21 1.42 1.64 2.03
5664 2.17 2.15 1.41 1.82 2.14 248 3.05
5724 1.20 1.15 0.81 1.02 1.18 1.36 1.67
5730 1.46 1.42 0.96 1.22 1.43 1.66 2.07
5733 1.04 0.99 0.68 0.88 1.01 1.17 1.45
5740 1.25 1.21 0.84 1.05 1.22 1.41 1.75
5770 1.32 1.28 0.89 1.11 1.29 1.49 1.83
5992 0.81 0.79 0.49 0.66 0.79 0.94 1.18
6091 1.42 1.34 0.91 1.16 1.37 1.63 2.09
6096 1.13 1.07 0.76 0.96 1.10 1.27 1.57
6105 0.99 0.99 0.66 0.84 0.98 1.12 1.38
6117 1.38 1.35 0.93 1.17 1.36 1.57 1.93
6120 1.00 0.99 0.67 0.85 0.98 1.13 1.38
6123 0.49 0.46 0.31 0.41 0.48 0.56 0.72
6135 212 2.09 1.38 1.78 2.08 241 2.98
6136 1.20 1.12 0.79 1.00 1.16 1.36 1.71
6145 1.07 1.01 0.72 0.91 1.05 1.20 1.48

6153 1.35 1.32 0.90 1.14 1.33 1.53 1.90
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6166 091 091 0.59 0.76 0.89 1.03 1.27
6178 1.60 1.57 1.05 1.35 1.57 1.82 224
6180 1.43 1.40 0.95 1.20 1.41 1.63 2.02
6182 0.99 0.99 0.66 0.84 0.97 1.12 1.39
6204 0.97 0.97 0.63 0.81 0.95 1.10 1.37
6205 0.97 0.98 0.64 0.82 0.96 1.10 1.37
6215 1.01 0.99 0.68 0.86 0.99 1.14 1.41
6216 1.48 1.39 0.95 1.21 1.43 1.70 2.18
6219 0.94 0.93 0.60 0.78 0.92 1.07 1.36
6230 0.78 0.75 0.50 0.65 0.76 0.89 1.10
6237 1.15 1.11 0.77 0.98 1.13 1.31 1.61
6238 1.17 1.12 0.78 0.99 1.15 1.33 1.65
6251 1.09 1.02 0.73 0.92 1.07 1.24 1.54
6263 0.82 0.79 0.52 0.68 0.81 0.95 1.19
6265 0.74 0.72 0.48 0.62 0.73 0.85 1.05
6275 1.18 1.13 0.79 1.00 1.15 1.33 1.65
6281 1.42 1.38 0.92 1.18 1.39 1.62 2.03
6284 1.18 1.14 0.79 1.00 1.16 1.34 1.65
6292 1.18 1.12 0.78 0.99 1.15 1.34 1.68
6299 0.93 0.92 0.60 0.78 0.91 1.05 1.31
6301 1.55 1.51 1.03 1.30 1.51 1.75 2.16
6307 1.30 1.26 0.87 1.09 1.27 1.47 1.81
6314 2.15 2.11 1.40 1.80 2.11 2.46 3.06
6331 1.99 1.94 1.28 1.66 1.95 2.28 2.85
6338 0.99 0.99 0.65 0.84 0.97 1.12 1.39
6341 1.20 1.15 0.81 1.02 1.18 1.36 1.68
6342 1.02 0.99 0.65 0.85 0.99 1.16 1.49
6343 1.02 0.99 0.66 0.86 1.00 1.15 1.44
6347 1.20 1.15 0.80 1.01 1.17 1.36 1.68
6354 0.67 0.64 0.42 0.55 0.66 0.78 0.98
6361 0.96 0.96 0.64 0.81 0.95 1.09 1.35
6368 0.69 0.66 0.45 0.58 0.68 0.79 0.98
6372 1.18 1.14 0.79 1.00 1.16 1.34 1.65
6376 1.06 1.00 0.71 0.90 1.04 1.20 1.48
6385 1.09 1.03 0.73 0.93 1.07 1.23 1.51
6386 1.22 1.18 0.83 1.03 1.19 1.37 1.70
6398 1.54 1.50 0.99 1.28 1.51 1.76 2.20
6401 2.01 1.98 1.31 1.69 1.97 2.29 2.82
6411 1.44 1.41 0.94 1.20 1.41 1.65 2.06
6412 1.27 1.23 0.84 1.07 1.24 1.45 1.81
6427 1.08 1.02 0.72 0.92 1.06 1.22 1.51
6436 0.61 0.58 0.39 0.50 0.60 0.71 0.90
6439 1.20 1.16 0.80 1.01 1.18 1.36 1.69
6443 1.36 1.32 0.90 1.14 1.33 1.55 1.93
6445 1.28 1.24 0.86 1.08 1.26 1.45 1.80
6447 1.22 1.18 0.81 1.02 1.19 1.38 1.72
6452 1.36 1.32 0.90 1.13 1.33 1.54 1.91
6462 0.92 0.92 0.61 0.78 0.90 1.04 1.27
6469 1.00 0.99 0.66 0.85 0.99 1.14 1.41
6486 0.63 0.60 0.39 0.51 0.61 0.72 0.92
6488 2.31 2.29 1.51 1.95 2.28 2.63 3.23
6497 2.54 2.53 1.66 2.15 2.51 2.90 3.52
6535 0.83 0.80 0.54 0.70 0.81 0.95 1.17
6540 0.80 0.79 0.50 0.67 0.79 0.92 1.14
6542 0.98 0.99 0.65 0.84 0.96 1.11 1.36
6543 0.81 0.77 0.51 0.67 0.79 0.93 1.18
6547 1.02 0.99 0.68 0.87 1.00 1.15 1.42
6562 1.33 1.29 0.88 1.11 1.30 1.51 1.89

6569 1.32 1.27 0.87 1.10 1.29 1.51 1.88
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Table 2. Cont.

Trigger ~ Mean (z) Mode(z) Qs (2) Q59 (2)  Qs0% (z) Qs (2) Qosey, (2)

6571 1.13 1.07 0.74 0.95 1.10 1.28 1.59
6573 1.03 0.99 0.69 0.88 1.01 1.16 1.43
6579 1.36 1.31 091 1.14 1.33 1.54 1.91
6580 1.32 1.27 0.89 1.11 1.29 1.50 1.86
6586 1.36 1.30 0.88 1.12 1.32 1.55 1.96
6591 1.33 1.29 0.90 1.12 1.30 1.51 1.86
6606 0.80 0.78 0.52 0.67 0.78 091 1.11
6634 1.94 1.90 1.25 1.62 1.90 2.23 2.78
6635 0.87 0.83 0.54 0.71 0.84 0.99 1.27
6638 1.40 1.36 0.94 1.18 1.37 1.59 1.97
6641 1.34 1.30 0.90 1.13 1.31 1.52 1.90
6643 0.92 091 0.60 0.77 0.90 1.04 1.27
6645 0.81 0.79 0.52 0.68 0.80 0.93 1.15
6659 1.09 1.02 0.73 0.92 1.06 1.23 1.53
6662 242 2.39 1.59 2.04 2.39 2.76 3.39
6671 0.67 0.64 0.43 0.56 0.66 0.77 0.96
6679 0.75 0.73 0.49 0.63 0.74 0.86 1.06
6682 1.05 1.00 0.70 0.90 1.03 1.19 1.47
6689 0.98 0.98 0.65 0.83 0.96 1.10 1.36
6693 1.07 1.02 0.72 0.91 1.05 1.21 1.49
6697 1.37 1.33 0.92 1.15 1.34 1.55 1.92
6700 0.71 0.68 0.46 0.59 0.70 0.81 1.01
6710 1.75 1.73 1.14 1.47 1.72 1.99 245
6715 0.97 0.97 0.65 0.83 0.95 1.09 1.34
6718 1.24 1.18 0.81 1.03 1.21 1.41 1.78
6753 2.66 2.64 1.74 224 2.62 3.04 3.71
6757 2.04 2.00 1.33 1.71 2.00 2.32 2.87
6786 1.28 1.24 0.85 1.08 1.26 1.46 1.81
6787 0.93 0.92 0.61 0.79 0.91 1.05 1.28
6788 0.38 0.36 0.24 0.31 0.37 0.44 0.56
6800 0.67 0.64 0.43 0.55 0.65 0.77 0.96
6824 1.06 0.99 0.71 0.90 1.03 1.19 1.49
6866 1.18 1.13 0.78 0.99 1.15 1.33 1.65
6867 1.63 1.58 1.04 1.35 1.59 1.87 2.35
6870 1.75 1.71 1.12 1.45 1.71 2.00 2.49
6904 0.36 0.33 0.22 0.29 0.35 0.41 0.54
6916 0.71 0.68 0.46 0.59 0.69 0.81 1.01
6931 0.70 0.68 0.46 0.59 0.69 0.80 0.99
7009 0.44 0.42 0.28 0.36 0.43 0.51 0.65
7060 0.80 0.78 0.52 0.67 0.79 0.92 1.13
7063 0.40 0.38 0.25 0.33 0.39 0.46 0.60
7078 0.77 0.75 0.49 0.64 0.75 0.88 1.09
7102 1.03 0.99 0.69 0.88 1.01 1.16 1.42
7106 1.16 1.11 0.78 0.98 1.13 1.31 1.61
7133 1.11 1.05 0.75 0.95 1.09 1.25 1.55
7142 0.92 091 0.62 0.78 0.90 1.04 1.27
7148 1.52 1.49 1.00 1.27 1.49 1.73 2.13
7159 1.09 1.00 0.69 0.90 1.06 1.25 1.60
7173 1.01 0.99 0.68 0.86 0.99 1.13 1.40
7187 0.75 0.73 0.48 0.63 0.74 0.86 1.08
7227 0.97 0.98 0.64 0.82 0.95 1.09 1.35
7240 0.77 0.74 0.50 0.64 0.75 0.88 1.09
7281 0.76 0.73 0.48 0.63 0.75 0.88 1.11
7283 1.27 1.23 0.86 1.07 1.24 1.43 1.76
7287 0.65 0.61 0.41 0.53 0.63 0.75 0.96
7290 1.05 0.99 0.70 0.89 1.03 1.19 1.48
7292 0.87 0.86 0.57 0.74 0.86 0.99 1.21
7294 0.76 0.73 0.49 0.63 0.74 0.86 1.07

7297 1.54 1.51 1.02 1.30 1.51 1.75 2.16
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Table 2. Cont.

Trigger Mean (z) Mode (z)  Qse, (2)  Qas9, (z)  Qsp9% (2) Qs (2) Qosey, (2)

7305 0.59 0.56 0.38 0.49 0.58 0.68 0.86
7329 1.23 1.17 0.83 1.03 1.20 1.39 1.73
7344 091 0.90 0.60 0.77 0.89 1.03 1.26
7353 0.57 0.54 0.36 0.47 0.55 0.65 0.83
7359 1.06 0.99 0.70 0.90 1.04 1.21 1.51
7361 1.30 1.26 0.86 1.09 1.27 1.47 1.83
7366 0.59 0.56 0.37 0.49 0.58 0.68 0.86
7367 1.63 1.56 1.04 1.34 1.58 1.86 2.35
7375 0.74 0.72 0.48 0.62 0.73 0.85 1.05
7378 0.94 0.93 0.63 0.80 0.92 1.05 1.30
7427 0.59 0.56 0.37 0.49 0.58 0.68 0.86
7430 1.58 1.54 1.04 1.32 1.55 1.80 2.23
7440 0.71 0.69 0.46 0.59 0.70 0.81 1.01
7447 0.67 0.65 0.43 0.56 0.66 0.77 0.97
7449 0.92 0.92 0.60 0.78 091 1.05 1.30
7453 1.00 0.99 0.66 0.85 0.99 1.14 1.41
7455 1.14 1.09 0.76 0.96 1.11 1.29 1.60
7456 0.83 0.80 0.53 0.69 0.81 0.95 1.18
7472 1.19 1.14 0.81 1.01 1.16 1.35 1.66
7495 1.56 1.53 1.02 1.31 1.53 1.78 2.18
7496 1.82 1.80 1.18 1.53 1.79 2.08 2.56
7508 0.79 0.77 0.50 0.66 0.78 0.90 1.11
7514 0.97 0.97 0.63 0.81 0.95 1.11 1.40
7526 1.63 1.59 1.05 1.36 1.59 1.86 2.30
7547 0.81 0.79 0.53 0.68 0.79 0.92 1.13
7554 1.42 1.40 0.94 1.19 1.40 1.62 1.99
7559 1.37 1.32 0.90 1.14 1.34 1.56 1.96
7581 1.65 1.62 1.08 1.38 1.62 1.88 2.33
7584 0.87 0.85 0.56 0.73 0.85 0.99 1.23
7595 1.16 1.11 0.77 0.98 1.13 1.31 1.62
7599 1.12 1.06 0.75 0.95 1.10 1.27 1.58
7601 1.04 0.99 0.70 0.89 1.02 1.18 1.44
7602 0.88 0.86 0.56 0.74 0.86 1.01 1.27
7626 0.73 0.70 0.47 0.61 0.71 0.83 1.03
7663 0.89 0.88 0.58 0.75 0.88 1.01 1.25
7671 0.90 0.88 0.58 0.75 0.89 1.03 1.30
7706 0.75 0.73 0.48 0.63 0.74 0.86 1.06
7710 1.33 1.29 0.89 1.12 1.30 1.51 1.86
7734 1.56 1.53 1.02 1.31 1.53 1.78 2.20
7745 2.34 2.31 1.53 1.97 2.30 2.67 3.29
7753 1.50 1.46 0.99 1.26 1.47 1.71 2.12
7754 0.89 0.89 0.57 0.75 0.88 1.02 1.27
7775 1.09 1.03 0.74 0.93 1.07 1.23 1.52
7784 0.73 0.70 0.46 0.60 0.72 0.84 1.06
7789 0.69 0.66 0.44 0.57 0.67 0.78 0.98
7793 1.07 1.01 0.73 0.92 1.05 1.21 1.50
7800 1.14 1.09 0.76 0.96 1.11 1.29 1.59
7805 2.35 2.31 1.53 1.97 2.31 2.69 3.31
7827 1.39 1.36 0.92 1.16 1.36 1.58 1.96
7830 1.48 1.45 0.98 1.24 1.45 1.69 2.09
7901 0.69 0.66 0.45 0.58 0.68 0.79 0.99
7912 1.22 1.18 0.83 1.03 1.20 1.38 1.71
7922 0.98 0.99 0.64 0.83 0.96 1.11 1.36
7939 0.90 0.88 0.57 0.74 0.88 1.03 1.31
7943 1.18 1.12 0.80 0.99 1.15 1.33 1.64
7952 1.38 1.34 0.91 1.15 1.35 1.57 1.94
7970 1.30 1.25 0.86 1.09 1.27 1.48 1.85
7979 1.73 1.70 1.12 1.45 1.70 1.97 245

7980 1.06 1.00 0.71 0.90 1.04 1.20 1.48
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Table 2. Cont.

Trigger Mean (z) Mode (z)  Qse, (2)  Qas9, (z)  Qsp9% (2) Qs (2) Qosey, (2)

7980 1.06 1.00 0.71 0.90 1.04 1.20 1.48
7988 0.76 0.73 0.49 0.64 0.74 0.86 1.06
7995 0.93 0.92 0.62 0.79 0.92 1.05 1.29
7999 1.60 1.58 1.05 1.35 1.57 1.83 2.25
8018 0.61 0.59 0.38 0.50 0.59 0.70 0.89
8027 1.57 1.53 1.03 1.31 1.54 1.79 222
8035 1.13 1.07 0.76 0.96 1.10 1.27 1.57
8041 0.92 0.92 0.60 0.77 0.90 1.04 1.28
8047 1.06 1.01 0.72 0.91 1.04 1.19 1.47
8072 1.15 1.10 0.77 0.98 1.12 1.30 1.59
8076 0.76 0.73 0.48 0.63 0.74 0.87 1.07
8077 1.16 1.11 0.77 0.98 1.14 1.32 1.64
8079 1.33 1.30 0.89 1.12 1.31 1.51 1.87
8082 1.22 1.17 0.81 1.03 1.19 1.38 1.72
8085 1.34 1.29 0.90 1.13 1.31 1.52 1.89
8089 0.72 0.69 0.46 0.60 0.70 0.82 1.01
8097 1.88 1.85 1.23 1.58 1.85 2.14 2.64
8104 0.65 0.62 0.42 0.54 0.64 0.74 0.93
8120 1.39 1.35 0.93 1.17 1.36 1.57 1.94
0.06 | | | |

o
o
o

o
o
=
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= =
o o
N w

Redshift (z)

Figure 5. An illustration of the derived probability density functions (PDFs) of the individual redshifts
of a subset of 565 BATSE SGRBs. Each curve corresponds to the inferred likelihood of different values
of redshifts (z) for a single BATSE SGRB.

4. Discussion and Concluding Remarks

In this work, a semi-Bayesian data-driven methodology was proposed to infer the
unknown redshifts of 565 BATSE catalog SGRBs. Towards this, first, the two populations of
BATSE LGRBs and SGRBs were segregated using the fuzzy C-means classification method
based on the observed durations and spectral peak energies of 1966 BATSE GRBs with
available spectral and temporal information. Then, the process of SGRB detection was
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modeled as a nonhomogeneous spatiotemporal Poisson process whose rate parameter was
modeled by a multivariate log-normal distribution as a function of the four main SGRB
intrinsic attributes: the 1024 ms isotropic peak luminosity (L;s,), the total isotropic emission
(Eiso), the intrinsic spectral peak energy (E,;), and the intrinsic duration (Too;). To calibrate
the parameters of the rate model, a fundamental assumption was made: SGRBs trace the
Cosmic Star Formation Rate (SFR) convolved with a model for the binary neutron star
merger delay distribution. Then, the resulting posterior probability densities of the model
parameters were used to compute the probability density functions of the redshifts of
individual BATSE SGRBs.

Although sample incompleteness may strongly affect an observational dataset, the
proposed semi-Bayesian modeling framework enables us to overcome the limitations of the
observational samples and missing data via reasonable prior distributions and appropriate
modeling of the potential biases [71] present in observational data. The proposed method-
ology is different from and offers a parametric alternative to the existing nonparametric
methods for quantifying the impact of missing data [72,73]. While generic and applicable
to a wide range of research problems and datasets, this parametric probabilistic method
requires certain assumptions to be met regarding the observational data to yield reasonably
accurate unbiased constraints on the missing data. Most importantly, the effectiveness of
the method correlates strongly and positively with the quality of data and the impact of
the unknown components of data (e.g., redshift) on the known (observed) data. These
two factors can together explain the significant difference between the tight constraints
that Osborne et al. [1] obtain on the individual redshifts of BATSE LGRBs and the inferred
redshifts of BATSE SGRBs in this work, as illustrated in Figure 5. We expect the Swift-BAT
and particularly the Fermi-GBM catalogs to yield significantly tighter constraints on the
unknown individual redshifts of Swift and Fermi LGRBs and SGRBs, due to the higher
quality of data and the availability of redshift information for a significant number of
events in these catalogs. This will ultimately lead to better independent estimates of the
cosmic rates of LGRBs and SGRBs and their improved utilities in constraining the rate
of GWR events. This will also enable the implementation of our proposed probabilistic
framework for validating the inferred redshifts in these catalogs, an issue that remains
untouched in present work due to the lack of any measured redshifts in the BATSE (SGRB)
catalog. Nevertheless, Osborne et al. [1] show that our proposed methodology is capable of
constraining the redshifts of GRBs in the presence of sufficient high-quality data.
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