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Abstract

Superheavy elements (SHE) are defined as elements with proton number Z > 104,
and were predicted to exist as early as 1966 using the nuclear shell model. One of
the most effective experimental techniques for producing SHE is via the cold fusion
of heavy ions. Currently, there is no fully quantum mechanical description that
addresses scattering and fusion phenomena involved in the formation of SHE in the
cold and hot fusion scenarios. From our literature review, we have determined that a
few body quantum dynamical method is a sensible approach to describing collisions
that lead to the formation of SHE, in particular for the ability of these methods to
incorporate dynamical effects, such as nuclear friction, and quantum effects such as
tunnelling.

Our goal is to develop a quantum dynamical method that includes quantum tun-
nelling, and can be expanded upon in the future to describe nuclear friction and
multi-nucleon transfer phenomena. In order to build and test our dynamical model,
we model a simpler nuclear collision which will allow us to properly explore the
strengths and weaknesses of our approach. In this feasibility study, we benchmark
the time-dependent coupled-channel wave-packet (TDCCWP) method results for
16Q + 152154Gm collisions, to those from solving the time-independent Schrédinger
equation (TISE) using the iso-centrifugal approximation. Comparisons to experi-
mental data are also present. We generate the transmission coefficients, S-matrix
elements, inelastic transition probabilities and differential cross sections for the elas-
tic 0%, and inelastic 27 and 47 states in the ground state rotational band of the
152,154Qm targets.

We find that the TDCCWP results reproduce the TISE results for a wide range
of energies (including many below the Coulomb barrier) and angular momenta.
However, the TDCCWP method has technical limitations when trying to explain
results deep (> 5 MeV) below barrier, and results at high angular momenta, which
are needed to describe the scattering differential cross sections. We address the
former by using a simple yet justified extrapolation method into deep below barrier
energies. For the 10 + 1%2Sm inelastic scattering differential cross sections at 59
MeV, the nearly converged TDCCWP method results are a significant underestimate
of the experimental data, but are qualitatively similar to the TISE results. This can
be improved by relaxing the iso-centrifugal approximation. Overall, we find that the
TDCCWP method is a robust method that can be expanded upon to address more
complicated problems such as SHE formation and heavy-ion collisions in general.
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Chapter 1

Introduction to heavy ion collisions
and superheavy element formation

1.1 The prediction of superheavy elements

Superheavy elements (SHE) are defined as elements with proton number Z > 104,
and were predicted to exist using the nuclear shell model as early as 1966 [1,2|. The
nuclear shell model successfully explained the concept of ‘magic numbers’, which
are a set of specific numbers of either protons or neutrons. A magic nucleus is a
nucleus with a magic number of either protons of neutrons, and these magic nuclei
were observed to have enhanced stability compared to neighbouring nuclei [3|. This
extra stability is characterised by a higher total binding energy, a higher nucleon
separation energy, higher energy for the low lying excited states, and a large number
of isotopes or isotones with the same magic number [3]. A doubly magic nucleus
has a magic number of both protons and neutrons, and the shell model, using a
Woods-Saxon potential well, predicted that there was a doubly magic superheavy
nucleus at 114 protons and 184 neutrons [1,2]. Later in 1967, the Strutinsky model
for nuclear fission was introduced (see section 1.2 for a definition of nuclear fission),
which was able to calculate the fission barrier using shell effects for the first time [1].
The Strutinsky model found that, for several superheavy nuclei (SHN), additional
structure in the fission barrier due to shell effects contributed to fission hindrance,
which enhanced the stability of the nuclei from spontaneous fission decay [1,3].

With a lot of favourable theoretical evidence for the existence of SHE, experimen-
talists worldwide began upgrading facilities to begin the hunt for SHE. In order
to create SHN, experimentalists perform hot and cold fusion reactions, with heavy
targets such as lead, bismuth, and actinide isotopes [1]. Nuclear fusion is a reac-
tion where two nuclei coalesce to form an excited compound nucleus [4]. In nuclear
physics, the reaction cross sections are a measure of the cross sectional area of over-
lap between the two reacting nuclei, which is used in calculating the likelihood of
a particular reaction occurring [4]. The higher the cross section is, the more likely



a reaction is to occur. Cross sections are measured in a unit called barns, and
1 barn = 1072 m? = 100 fm”.

Whilst ambitions for discovering new SHE are high, the fusion reaction cross sections
are not - they are of the order of picobarns or less [1]. This is due to the large
Coulomb repulsion of the target and projectile during fusion. Currently, the optimal
reaction parameters needed to maximise the yield of SHN via fusion are not well
understood, and it is not likely that a systematic experimental study of optimal
reaction parameters for the production of SHE will be feasible in the coming years.
By yield of SHN/SHE, we mean the number of desired SHN/SHE produced by the
nuclear fusion reaction. This is a perfect opportunity for reaction theory to develop
and try to explain the reaction process for the production of SHE. In this chapter,
we will explore the current state of nuclear reaction theory, in order to propose
a novel method for calculating nuclear reaction observables. Before we look into
nuclear reaction theory, we will motivate the problem in a little more detail in both
the perspective of theorists and experimentalists.

1.1.1 Why should we study new nuclei and further reaction
theory?

Currently, the nature of the nuclear force is not concretely understood for all nu-
clei. Whilst current models reasonably explain nuclei close to the stability line, the
further from stability one goes the worse the understanding is [5]. This means that
the production and subsequent studying of SHE can provide new inputs into mod-
els and increase our understanding of the nuclear force and other nuclear physics
phenomena. For example, the rapid neutron capture process (r-process) path in
astrophysical sites lacks understanding, so much that the natural origin of elements
from iron to uranium is one of the eleven greatest unanswered questions in physics
today [5]. Moving onto the frontiers of modern chemistry, currently we do not
know what is the heaviest possible element to exist, nor its chemical or physical
properties [6].

To investigate these problems, we require a consistent production of SHE. This is
why we are motivated to provide a powerful reaction theory, that is able to provide
experimentalists with optimal reaction parameters necessary to increase the yield of
SHE produced in reactions. The reaction theory can also provide great theoretical
insight into the production of SHE that cannot be performed in the lab, such as in the
astrophysical r-process, which can only be performed in ‘catastrophic astrophysical
events’ [7|. In this situation, the use of theory is mandatory, from which the r-process
abundances of nuclei can be generated and compared to real world astrophysical
observational data. Nuclear reaction theory provides the rates of reactions that
contribute to the formation of the r-process elements, which can be integrated over
to find the abundance of a particular element.



1.1.2 The discovery of nihonium and the practical uses for
applying theory to experiments

So far, we have discussed the numerous benefits that the production and study of
SHE have to nuclear, chemical and astrophysical theory. I want to recount the story
of the discovery of element 113, a.k.a.: nihonium, and use it to illustrate some of the
experimentally practical benefits of having access to accurate theoretical predictions
of reactions that produce SHE. The details for this recount below can be found in
reference [8].

In September 2003, a group of scientists at RIKEN lead by Kosuke Morita began
searching for the fabled element 113, via the fusion of bismuth and zinc nuclei. De-
spite the cross section being very low, the team were able to see an event on the 23"
July 2004, where a fused element 113 decayed via four alpha decays into dubnium-
262, which then underwent spontaneous fission. They saw this exact decay again on
the 274 April 2005, less than a year from the first. However, these events were not
deemed to be conclusive evidence for the production of element 113 (according to
the Joint Working Party’s 2011 report).

Despite this, the team continued, and performed supplementary experiments to
improve the characterisation of the decay chains involving dubnium-262, so that they
could provide more insight into their previous observations. Following the improved
characterisation, if they observed dubnium-262 decay via alpha decay rather than
spontaneous fission, then this would decisively demonstrate that the dubnium-262
was produced by element 113. With this goal in mind, the team pressed on with
their efforts to observe element 113.

Sadly, the incredible luck involved for their previous two observations had run out.
Weeks turned to months, months turned to years, and still the final event had not
been observed. It was only until much later, on the 12" August 2012, that they
observed the final event - the alpha decay of dubnium-262. This marks the end of
the near decade long hunt for element 113. Morita et al. named the new element
nihonium - after the country of Japan (Nihon is Japanese for Japan).

Whilst this discovery is heralded as a great and proud success, it did not come
without a price. The abnormal duration of the experiment meant that the GARIS
e3 beamtime was monopolised for almost a decade (reference 9] shows that the
GARIS e3 beam was solely scheduled for the nihonium experiment from September
2003 to October 2012), which meant that other projects at RIKEN that required
that beam could not be scheduled. This means that future projects for SHE can be
viewed as very risky and may be less likely to be funded by non-dedicated superheavy
facilities, making research of SHE less accessible worldwide. Hypothetically, if one
has a reasonably accurate theoretical model that can at least predict the positions of
resonances in the cross sections, then the yields of SHE formation can be made more
optimal compared to performing the experiment without aid of theory. In nuclear
physics, a resonance is an enhancement of the reaction cross section, which occurs at
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collision energies that match the energy values of quasi-stationary quantum states
of the compound nucleus [4].

The availability of a theoretical model will provide good leverage for grant applica-
tions, since there can be some estimation of the timescale of the experiment prior
to the experiment being performed. Even in the case where institutions avoid this
problem of scheduling conflicts by opening dedicated facilities for research of SHE
(such as the SHE factory at JINR in Dubna, Russia [10]), increasing the yield of
SHE via the use of accurate theory is still of immense benefit due to providing better
statistics for the experiment. A powerful theory is of great practical benefit for those
performing experiments, and it can give us a more realistic picture of the expected
yield of the production of SHE.

1.2 Background of nuclear collisions and heavy-ion
collisions

Now that we have motivated the problem, we will explore the world of nuclear reac-
tion theory in order to find a solution. Consider a nuclear fusion reaction between a
projectile and target nucleus with atomic (nucleon) numbers Zp (Ap) and Z7 (Ar)
respectively. The fusion process can be described in three steps [11]:

1. Capture: the projectile nucleus Ap approaches the target nucleus Ar.
2. Formation: the two nuclei react and form a compound nucleus of the set {C'}.

3. Decay: the compound nucleus C' cools and decays into nucleus B.

This is expressed with the reaction equation Ap + Ar — C — B + {p,n,a,~},
where B are known as evaporation residues, and {p, n, a, v} are a set of by-products
(proton, neutron, alpha particle and gamma ray respectively) that depend on the
formed nucleus B (in principle this set of by-products can contain more elements).
The two major decay processes are known as evaporation and fission. Evaporation
involves the emission of light particles such as those in the set {p,n, o, v}, whereas
fission involves the splitting of the compound nucleus into roughly two equally sized
nuclei known as fission fragments [12].

The primary SHE created by this process are elements of the set of compound nuclei
{C'}, which are detected by experimentalists by detecting the decay products of the
reaction, that is, B and {p,n,«a,~v}. Note that the evaporation residues B might
not be stable and can decay further, in fact B can contain secondary SHE which
can be detected by their decay. The capture and formation steps of the reaction
operate on the timescale of 107%'s (known as the zeptosecond timescale), but the
decay phase occurs several orders of magnitude later between 107! — 107165 [12],
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projectile

e

¢ NG
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Figure 1.1: Diagram illustrating the basic geometrical definitions in nuclear colli-
sions. Here, r is known as the inter-nuclear distance,  is the polar/scattering angle,
and b is the impact parameter.

which justifies the use of at least two models to model the reaction (one for the
capture + formation, another for the decay).

In general, nuclear reactions are involved and complicated processes, that can have
vastly differing physical phenomena involved depending on the reaction parameters.
One such parameter is known as the impact parameter - which is the extent of
grazing between the two nuclei as they collide [12,13], such that the smallest impact
parameter indicates a head on collision between the two nuclei. This is shown in Fig.
1.1. For high impact parameters, the two nuclei do not touch and nuclear reactions
do not occur. The only force to act at that range is the Coulomb force, which leads
to phenomena such as elastic scattering and Coulomb excitation of the internal
nuclear states [12-14]. As we decrease the impact parameter, inelastic scattering
processes become prevalent [12-14]. Further decreasing of the impact parameter
leads to deep inelastic collisions, which are reactions where the projectile and target
are mostly unchanged apart from the transfer of a few nucleons, with low outgoing
kinetic energies that are transferred to internal excited states of the nuclei, and
high angular momentum transfer from the relative motion of the nuclei into internal
excited states [12]. Another reaction that occurs at these impact parameters is quasi-
fission, which are reactions where large quantities of nucleons are transferred before
the two nuclei separate, which forms a distribution of product nuclei similar to the
fission process [15]. Quasi-fission is distinct from fusion followed by fission, because
the latter occurs on a longer timescale [12] and the former occurs on the zeptosecond
timescale [15]. Finally, direct fusion occurs at low impact parameters [12-14]. Direct
fusion, deep inelastic collisions, and quasi-fission involve the transfer of nucleons, and
thus are the main mechanisms that contribute to or compete with the compound
nucleus formation process that we describe above.

The capture stage involves surmounting the Coulomb barrier, which is a barrier
generated from the addition of the repulsive Coulomb potential and the attractive
nuclear potential. In the work by V. I. Zagrebaev et al. [11], it is demonstrated that
the capture process that we have described above is well understood, with excel-
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lent agreement between the calculated and the experimental capture cross sections.
The experimental capture cross sections are determined by counting all the prod-
ucts produced in the decay stage (the fissile material and evaporation residues) that
differ from the starting nuclei [11,12]. However, the authors mention that the dis-
agreement in the total cross sections (which involve the combination of the capture,
formation and decay processes described above) are in part due to the lack of a com-
plete quantitative model to describe the formation of the compound nucleus. They
mention that the state of the art models to determine compound nucleus formation
cross sections assume a single, dominant mechanism, when it is possible that more
than one of these mechanisms can be active at the same time.

1.3 Compound nucleus formation mechanisms

This section is a dedicated literature review on the mechanisms and phenomena
associated with the formation of the compound nucleus. These mechanisms act as
a checklist that will help motivate the kinds of models and techniques that we need
to consider when modelling the formation of SHE.

1.3.1 Macroscopic dynamical models and the di-nuclear sys-
tem

There are two main mechanisms that have been proposed for the compound nucleus
formation. The first mechanism assumes that fusion occurs along the radial coor-
dinate of the collective motion, due to the resulting liquid drop shape of the two
nuclei after the initial impact [16,17]. Typical attempts at this mechanism include
a liquid drop model to describe the overall shape of the nuclei, as well as corrections
due to the nuclear structure [16,17]. These models assume that the evolution of
the neck of the liquid drop is the driving factor for fusion to occur, and no nucleons
are transferred from one nucleus to another (in fact, the models assume there is no
way to discern the two nuclear identities that started the reaction, i.e.: there are no
nuclei Ap or A, but they are combined into one structure) [16,17]. These models
are known as the macroscopic dynamical models (MDM).

The second mechanism involves the nuclei in a touching configuration, where only
the transfer of nucleons between one nucleus and another drives the dynamics of the
system [16,17]. For two nucleons in a dynamical fusion reaction with mass numbers
Ap(t) and Ar(t) respectively, where t is time, the mass asymmetry is given by
n(t) = (Ap(t) — Ar(t))/A, where A = Ap(t) + Ar(t) is the total number of nucleons
in the system and is constant throughout the reaction [16,17]. n = 0 denotes
the symmetric configuration (Ap(t) = Ar(t)), and n = £1 are the completely fused
scenarios where one nucleus completely engulfs the other. In this picture, the discrete
values of 7 are used as a collective coordinate for fusion, without any substantial
change in elongation [16,17|. These models are known as the di-nuclear system
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MACROSCOPIC DYNAMICAL MODEL
(MDM)

Elongation of liquid drop drives the fusion

De-Co-(O (%)

DI-NUCLEAR SYSTEM
(DNS)

Transfer of nucleons drives the fusion

®8-Oo-(Cp-(=
Figure 1.2: Schematic showing and summarising the MDM and DNS mechanisms.
Adapted from [18|

(DNS) models. The two different mechanisms are shown schematically in Figure
1.2. The evolution along the elongation and mass asymmetry coordinates are used
to represent the physical phenomena of multi-nucleon transfer (such as direct fusion,
deep inelastic collisions and quasi-fission [5]).

1.3.2 Effectiveness of MDM and DNS

There have been several studies that have been conducted to investigate the relative
contributions of these two mechanisms. For example, in a study by G. G. Adamian
et al. [16], they compared a MDM using time dependent potentials to experimental
results, in order to determine if this mechanism was significant. They used an
adiabatic potential, composed of a liquid drop potential with corrections to the
shell and pairing energy of the nucleons from the two-center shell model (TCSM).
The TCSM is used in the context of the famed Strutinsky macroscopic-microscopic
method that we discussed earlier, and can better account for nuclear shapes in fission
and fusion reactions [3].

They carried out calculations for several collisions, including Mo + %Mo, *Mo
+ HOPd, and M9Pd + MOPd. The calculated compound nucleus formation cross
sections/probabilities were an overestimate of the experimental results by several
orders of magnitude, which led to the conclusion that the description of fusion by
elongation using an adiabatic potential was incorrect. They also noted that this
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Reaction P(;) P(f) P, Pexp

N7y 40 7r — BHg 2.107% | 21072 | 2-107' | 107!

100Mo +1% Mo — 2"Po | 9:107°¢ | 3-1072 | 2.1072 | 5-10*
Hopq 4+110pq — 20U | 7.107% | 4.1077 | 3-107* | 107*
6Ge+'""Er — 2%Fm | 91072 | 3-107? | 6-107* | 8107
80Ky +10Gd — *Fm | 410726 | 2.107%° | 7.107™° | 5-107°

Table 1.1: Comparison of compound nucleus formation probabilities of an MDM
and DNS model. A-channel represents the elongation/MDM channel, where the
asymmetry parameter is constant, and 7 channel represents the asymmetry/DNS
channel, where the elongation parameter is constant. (1) and (2) denote calculations
using two different parameters. See section 1.5.1 for information on the definition
of channels. Adapted from [17]

adiabatic description had a lot of inertia in the necking parameter, as it did not
deviate significantly from the initial parameter across the duration of the reaction.
This inertia is due to the crossing of single particle levels (the energy levels for
different particles become equal), which leads to large microscopical mass parameters
which hinder development of the neck [16]. This means that the neck length could
be assumed to be constant, like in the DNS description.

In order to address the level crossings, they updated the potential with a diabatic
term to account for the Pauli exclusion principle [16,17], which is used to simulate
the extent of inertia in the necking parameter. The initially diabatic potential
eventually relaxes into an adiabatic one, which in turn relaxes this inertia in the
necking parameter. They noted that for higher mass asymmetries the structural
forbiddenness in the necking parameter is less, due to smaller Coulomb barriers. This
suggests that, in order for elongation to contribute, the reaction must be engaged by
the transfer into higher mass asymmetry states, and only then can the elongation
parameter vary and contribute to the fusion cross sections (by migrating to lower
elongation states, since lower elongation implies the nuclei are closer together). The
transition between an initially diabatic elongation potential to an adiabatic one to
simulate this scenario was investigated and compared to a DNS model.

They found a strong agreement between the calculated compound nucleus formation
probabilities from the DNS description and the experimental results, for a wide
variety of systems, recorded in Table 1.1. However, the contribution to the cross
sections from the MDM was consistently lower. Specifically for heavier systems, it is
lower by up to twenty-one orders of magnitude, suggesting that the contribution due
to this effect is small and can be neglected when considering the production of SHE.
Whilst other independent studies have attempted to use an MDM to explain the
cross sections, none have been unequivocally successful thus far [19-23|. Since the
DNS can describe some compound nucleus formation probabilities more accurately
than MDM models (i.e: those in Table 1.1), we advise that an implementation of
the formation mechanism should include the DNS description at least.
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1.4 The role of friction in heavy ion fusion

Another consideration one has to make for fusion is the idea of nuclear friction.
Nuclear friction is the dissipation of the incident centre of mass frame kinetic energy
between the target and projectile. Experimental evidence shows that whilst the cross
sections of heavy ion collisions are high for compound nuclei close to A = Ap + A,
the cross section peaks were shifted down significantly from the incident centre of
mass energy [24]. We have already explored the idea of how the impact parameter
can drastically affect the phenomena that occur during the reaction, and the same
is true for the inter-nuclear distance r. Dissipation of kinetic energy of the centre of
mass motion can both enhance and inhibit fusion, which will be explained in detail
below.

1.4.1 Fusion hindrance

Fusion hindrance is an idea that originates from the dissipation of the incident col-
lision energy after the Coulomb barrier has been penetrated, which prevents the
overcoming of further barriers in the system and thus decreases the amount of ma-
terial fused [25]. Typical efforts to include dissipation involve solving the Langevin
equation - a classical dynamical model [26]. The Langevin equation has been em-
ployed in several models, and whilst some models can calculate observables that are
close to the experimental results for energies above barriers, they do not accurately
predict the sub-barrier values [27]. Classical and semi-classical models generally
fail to describe below barrier phenomena, which is often explained more accurately
using quantum mechanics. The Langevin equation has been attempted to describe
the radial dynamics of systems with mass asymmetries equal to those of the sad-
dle point of the TCSM potential, but the calculated fusion and 1n (single neutron)
residue cross sections differ from the experimental data by several orders of magni-
tude [28]. A similar implementation of a DNS with nuclear deformations and the
Langevin equation has been attempted [29]. Whilst some of the cross sections and
mass distributions were reasonably close to the experimental data, there is possibil-
ity of improvement by using a quantum mechanical model. In particular, the cross
sections for the formation of fission fragments were close to the experimental data
for several collision energies, but the capture cross sections were not.

Several authors cite a lack of concrete parameters for the systems they are studying
as a likely reason for discrepancy [28,29]. Whilst the classical dynamics may not
be a limiting factor in the calculation yet, a quantum dynamical model can model
the conversion of kinetic to potential energy without the use of the Langevin (or
equivalent) equation, as well as incorporate more accurate dynamical dissipation
for when the two nuclei penetrate the Coulomb barrier. In a classical model, any
discrepancy can either be due to the classical motion, or due to other errors. A
quantum dynamical model can be used to probe these questionable parameters at
the very least without this ambiguity.
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1.4.2 Fusion absorption

Like fusion hindrance, nuclear fusion itself can also be explained using dissipation.
After nuclei collide, if there were absolutely no dissipation of the collective radial
motion of the nuclei, then we would expect to see scattered material due to the
strongly repulsive Coulomb force at close distances. This excess scattering does not
occur in heavy-ion collisions, because the collective radial motion of the nuclei is
dissipated into non-elastic processes [12], such as the motion of individual nucleons
within the compound nuclear system.

1.5 Current models

We will now explore some of the contemporary models used to describe heavy-
ion fusion, and highlight some of their strengths and weaknesses in their ability to
describe the formation of SHE. This will be used to structure and reinforce our
quantum dynamical approach to the problem.

1.5.1 Time-independent coupled-channels

The time-independent coupled-channels (TICC) method is a few-body method which
aims to describe the the extent of excitation of nuclei after the fusion reaction has
occurred [30-32]. By a channel, we mean a particular nuclear configuration and a
particular set of quantum numbers for the collective system of the target and projec-
tile [12]. The TICC Hamiltonian couples the target and projectile together, allowing
one to influence the excitation of the other. For example, with an inert projectile
and an excitable target, the projectile excites the target when they approach closely
to one another. This excitation can be mediated by both the strong nuclear force
and the Coulomb force. The eigenstates of the CC Hamiltonian are found by solving
the time-independent Schrédinger equation using asymptotic boundary conditions.

This method is appealing since it is relatively fast at generating results for a small
number of excitations and reaction channels. Time-independent calculations forego
the time propagation, which computationally is the greatest time-investment of the
time-dependent methods. However, it is not suitable for describing all of the dy-
namical phenomena that we have listed above since time is not explicitly treated.
Specifically, TICC can account for absorption phenomena via static absorption po-
tentials, but this is less systematic than using a dissipative method, which requires
time dependence.

Crucially, the time-independent methods do not allow one to fully understand the
reaction mechanism. This may seem less important for those interested in a final
calculation, such as the yield of the fusion reaction, but it is incredibly important for
intelligent model selection. For instance, recall when we discussed earlier in section
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1.3.2 that the elongation channels were able to contribute to fusion only in high
asymmetry configurations. By an elongation channel, we mean a particular nuclear
configuration and a particular set of quantum numbers (including elongation) for
the collective system of the target and projectile. Using this information, if we find
that there are some reactions that can occupy these high asymmetry configurations
during the reaction, then we ought to use a model that incorporates elongation
channels into the calculation. In this example, we would not be able to select
an appropriate model if we did not know the mechanism beforehand. The extra
information provided by the time evolution of these intermediate states can also
allow us to make more predictions for the system.

1.5.2 Time-dependent Hartree Fock

Time-dependent Hartree Fock (TDHF') models are many-body models, which involve
solving the TDHF equation [33,34|. The TDHF equation arises from the Schrédinger
equation after restricting the basis to be single Slater determinant states only [33,34].
A Slater determinant is a wave-function that describes a system of many fermions
(such as nucleons) that obey the Pauli exclusion principle [35]. Single Slater de-
terminants form the basis of a fermionic system in the many-body picture [35],
and therefore any state in general can be formed with a correlation of single Slater
determinants. Restricting the basis to single Slater determinants is a necessary as-
sumption, since it is too time consuming to propagate any general state using the
time-dependent Schrodinger equation for many systems. There are a wide vari-
ety of different many-body interaction potentials that have been implemented and
explored within this framework [33].

Being a dynamical model, TDHF has the advantage of being able to incorporate
necessary dynamical terms such as friction. The many-body nature of the model
allows one to clearly see phenomena such as necking/elongation without having to
explicitly incorporate elongation parameters/assumptions in the basis states [33,34],
which allows these models to probe the nature of the strong nuclear force as opposed
to the nature of the collective motion only. It can also show the mechanism at the
level of individual nucleons, which can be used to better understand the nature of
the nuclear force.

These reasons make it a very appealing choice for these kinds of problems, except
that the restrictions on the basis prevent quantum tunnelling along the internuclear
distance r from being incorporated into the calculations [34]. This means that the
trajectory along the collective motion is classical, and since some of the formation of
SHE is achieved with cold fusion, ultimately this makes TDHF models less suitable
than ones that incorporate tunnelling. Whilst the TDHF methods can explain high
energy phenomena reasonably well, as energy decreases the results can be extremely
model dependent [33]. This model dependency combined with a lack of quantum
tunnelling makes these models unsuitable for the task at hand, since it will be very
difficult to interpret results without ambiguity.
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1.5.3 Time-dependent density matrix

Time propagations of the density matrix are powerful methods that have been used
before in nuclear physics [36-38]. These methods involve the time propagation of
the density operator p(t), which is expressed as [39]

pt) = [W(B)) (U()], (1.1)

where |¥(t)) is the time-dependent state of the system. One can find p(¢) by solving
what is known as the quantum master equation. The most basic form of the quantum
master equation looks like [39]

o 1. .

where [A, B] denotes the commutator of operators A and B , and H is the Hamilto-
nian of the system. In order to include dissipation effects such as fusion hindrance,
a second term is often introduced to the right hand side of equation (1.2), which
involves a folding over the dissipator/bath degrees of freedom, and, depending on
the class of assumption used, it can be an integral over the reaction time.

The strong publication history behind these models for applications of open quantum
systems (systems with dissipation and/or fluctuation) makes them very appealing
to use for this problem. However, they are very computationally expensive in both
the testing stage and in results generation, since they involve the construction and
propagation of the density matrix which has dimensions N x N, where N is the
dimension of the wave-function. In order to explain all of the nuclear phenomena
that we have described before simultaneously, the size of the basis we desire is
reasonably large.

There are methods that involve propagating the wave-function of the system only,
which can replicate the results generated by these time-dependent density matrix
methods. We explore some of these methods in the future work section, since their
complexity is beyond the scope of this thesis, but they are of the utmost relevance
for including accurate dissipation/fluctuation phenomena.

1.6 Our novel method

From this analysis, in order to model the fusion of heavy ions one ought to use
a DNS model, combined with an accurate quantum dynamical method that can
account for dissipation phenomena like fusion hindrance and fusion absorption. It
must also be able to reproduce phenomena such as Coulomb excitation and elastic
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scattering for larger impact parameter collisions, and must be able to facilitate
quantum tunnelling.

The aim of this project is to develop a novel quantum dynamical framework that
propagates the wave-function over time, which can be structured and built upon
to address the problem of heavy-ion fusion and scattering simultaneously. This
work will focus on developing a quantum dynamical method that describes two
colliding nuclei, and is known as the time-dependent coupled-channel wave-packet
(TDCCWP) method. This work will not address DNS/MDM dynamics due to time
constraints, but it is definitely possible to achieve as future work by expanding
the quantum basis, and including relevant MNT terms in the Hamiltonian. The
methodology we will use to achieve the time propagation will be very general, and
can be applied to increasingly complicated Hamiltonians in order to describe a richer
variety of phenomena. The models studied in this thesis will have applicability
to very asymmetric target-projectile reactions, as well as light and medium mass
systems, since the multi-nucleon transfer cross sections for these reactions are much
lower than the fusion cross sections [5], and thus we can neglect MNT.

All results in this thesis will use the coupled-channels Hamiltonian used in TICC
methods, since it has a sufficient depth of complexity to explain some collision
systems, and we can benchmark some of our results with those from the time-
independent method. Our model will allow us to describe the capture and formation
stages of these reactions, and explore phenomena such as elastic and inelastic scat-
tering, Coulomb and nuclear excitation, and fusion; all simultaneously. Currently,
there is no fully quantum dynamical model that both describes the capture and
formation stages and their observables, making a project in this area novel.

1.6.1 State of the art of dynamical models

We would like to highlight some ways in which our work is different to other bodies
of work addressing this problem. Currently, time-dependent methods are being
used to determine the absorption cross sections for nuclear collisions. Typically
in these approaches, an energy distribution of an initial and final wave-function
are calculated using a time-dependent form of the Green’s operator. These energy
distributions are then used to determine the penetrability of the collision. The time-
dependent Green’s operator has been evaluated using fourth order Runge-Kutta
methods [40-42].

Instead, we use a modified Chebyshev polynomial propagator (see appendix A.4 for
details) to propagate the wave-function over time, since we are interested in looking
at the dynamics of the wave-function for small times steps in order to better visualise
the mechanisms for nuclear fusion. Compared to other finite elements methods such
as the generalised Crank-Nicholson method (which is a finite element method similar
to Runge-Kutta), the Chebyshev polynomial propagator is more numerically efficient
if one wishes to visualise the wave-function over time as we do [43]. This is because
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the Chebyshev propagator has lower computation times for time steps lower than the
natural time step of the system. Also, for the small time steps where the Chebyshev
propagator is efficient, one can approximate the time integral in the propagator for
time-dependent Hamiltonians using finite element methods in time.

Whilst visualising the wave-function may seem redundant if one is solely interested
in final results, it does open up very exciting possibilities for future endeavours.
Currently, nuclear collisions are achieved by merely bombarding the nuclei together
in a very brute force way. This is different to other fields of physics that are able to
manipulate the quantum state with use of perturbative fields such as a laser field,
which can be used to promote the excitation of targeted states one wishes to study.
As of writing this thesis, there are facilities that are dedicated to producing zep-
tosecond laser pulses, that can be implemented to excite nuclei on the zeptosecond
timescale which we are modelling [44|. Then, what becomes important is knowing
where to aim said laser, and when to fire it. A quantum dynamical method has
the advantage of showing the wave-function position over time, which can be used
handily to find the optimal position and timing of the laser firing. For example, if
one wishes to study a particular excited state, and they find that the wave-function
gets trapped at a particular region for a relatively long period of time, then it would
be wise to fire the laser at that region for optimal excitation into the targeted state.
Laser fields are time-dependent fields and require information about the entire prop-
agation in order to be utilised optimally, which supports the use of time-dependent
methods that propagate using short time steps. Rather excitingly, with zeptosec-
ond and attosecond laser pulses one can provide competition to the nuclear decay
processes for every stage of the reaction mentioned in section 1.2.

1.7 Thesis structure

Chapter 2 will detail the theory behind the coupled-channels Hamiltonian that we
use. Chapters 3 and 4 will explain the window operator method and showcase our
published (and some unpublished) results from said method respectively. Chapters
5, 6 and 7 will explain and showcase results in a similar way, but instead for a Green’s
operator method involved in the calculation of differential cross sections. Chapter
8 will present the conclusions of the work in the thesis, as well as outline future
work that can be undertaken. There are three appendices dedicated to extra details
and derivations. In particular, appendices A and C detail the numerical quantum
mechanical time propagation techniques that we have used, which are very general
and can apply to many different Hamiltonians.
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Chapter 2

Simple theoretical treatments of
radial nuclear dynamics and the
coupled-channels Hamiltonian

This chapter will look into the physics behind the treatment of the radial motion of
the two colliding nuclei, as well as highlighting some methods to address the nuclear
physics phenomena discussed in the previous chapter. Whilst the angular motion is
important as well, it is not covered here explicitly since the nuclear potentials are not
dependent on angles (or rather, they are assumed to be spherically symmetrical [3]).
The details on how the angular states are accounted for in calculations are given in
chapter 5 where they are relevant. Then, we derive the Hamiltonian that we use for
calculations with our TDCCWP method.

2.1 Nuclear potentials

Some of the key forces involved in the radial dynamics of nuclear collisions are the
repulsive Coulomb force (since both nuclei are positively charged) and the strong
nuclear force, which is attractive over short distances of a few fermi [3]. The Coulomb
potential for the situation where the nuclei are outside of one another is given by
the standard form derived from shell theorem, i.e.:

Uc(r) = ZoZre (2.1)

dregr

where r is the radial distance between the target and projectile nuclei, and Zp
and Zr are the atomic numbers of the projectile and target respectively. In this
work, we do not consider the dynamics of when the two nuclei overlap (which will
be explained in more detail below at the end of section 2.1.1). In the case where
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the dynamics of overlapped nuclei are important, then one can derive overlapped
Coulomb potentials using the double-folding method, which considers the effects of
the nuclear charge distributions in an overlapped configuration [45]. The overall
effect of the strong nuclear force can be described by the Woods-Saxon potential [3].
The Woods-Saxon potential is a mean field (i.e.: averaged over all of the nucleons)
potential, which is historically ubiquitous in the treatment of nuclear scattering
problems. This potential has the form

. Viws
Un{r) = 1+ exp((r — rws)/aws)’ (2:2)

where Viyg is the strength of the potential, rwg = TWSO(A%)/ . Arlf/ 3) is the range of
the Woods-Saxon potential, Ap and At are the nucleon numbers of the projectile and
target respectively, rwso is a constant radius parameter, and aws is the diffuseness
parameter. Both of these forces are active at the same time, and so the total, angular
momentum independent interaction potential is given by the sum of these potentials

U(r) =Uc(r) + Ux(r). (2.3)

The total interaction potential has some characteristic features that are shown in
Fig. 2.1. Here, we can see that the total nuclear potential tends to infinity as the
inter-nuclear distance r tends to zero, courtesy of the dominant Coulomb potential
at these distances. The attractive Woods-Saxon potential deforms this Coulomb
potential, leading to the formation of the fusion pocket, which is ‘guarded’ by what
is known as the Coulomb barrier.

Any flux that penetrates the Coulomb barrier will go on to fuse and form the com-
pound nucleus. In other words, when the projectile penetrates the Coulomb barrier,
it is extremely unlikely that the two nuclei (in the zeptosecond timescale) will be
able to separate back into their original structures by leaving the fusion pocket (this
is known as the never-come-back approximation). This is due to a large dissipation
of the collective radial motion (which governs how separated the nuclei are), via the
transfer of radial kinetic energy to internal energy of the constituent nucleons of
the newly formed compound nucleus. This presents a problem - if we use merely a
Coulomb and Woods-Saxon potential to describe the collision like in Fig. 2.1, then
any flux that penetrates the Coulomb barrier with radial kinetic energy above the
barrier will be reflected by the Coulomb potential close to r = 0 and out of the
pocket. This means that after a long time propagation no fusion would occur. The
Woods-Saxon and Coulomb potentials alone cannot account for fusion, but it can
be effectively modelled by preventing any flux from inside the fusion pocket from
escaping. Fortunately, there are many methods that have been implemented or de-
veloped that can address this effect, such as absorption potentials, incoming wave
boundary conditions, and dynamical dissipation to name a few.
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Figure 2.1: Plot showing the radial nuclear potential for the 10O and '**Sm system
colliding head-on (orbital angular momentum L = 0), as well as its constituent
Woods-Saxon and Coulomb potentials. The barrier radius is equal to 10.81 fm, and
the barrier height is equal to 59.41 MeV. The fusion pocket is located between r = 0
and this barrier radius. The parameters used to generate the Woods-Saxon well are
provided in Table 4.2.
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2.1.1 Absorption potentials

Absorption potentials are purely imaginary potentials, and are a simple but effective
way of introducing absorption into a system. Consider a one dimensional system
with Hamiltonian H = Hy +iW, where Hy = K + V and (r| W |r) = W(r) where
W (r) € R. After rearranging the time-dependent Schrodinger equation, we find that

9y(r,t)
ot

W (r)i(r,t)
h Y

1 .
= o (| Ho ) + (2.4)

where we have chosen not to evaluate (r| Hy 1)) because it is not necessary to demon-
strate our point. Now, if we stipulate that W (r") < 0 for all ' € [Fabsmin, Tabsmax)

—W(r/)g(rl’t) will work to bring 1 (r’, ) to zero over

time. If the wave-function ¢ (r’,t) reaches zero from this effect, then the w
term will become zero as well, and thus the term will cease to contribute further to
the time evolution. This out-flux of the wave-function is what we define as absorp-

tion.

equation (2.4) shows that the term

This is what has been used before to explain fusion absorption [46]. An imaginary
Woods-Saxon potential (see equation (2.10) for more details) is constructed that has
a negative values of W (r) inside the fusion pocket, and values that tend to zero out-
side of it. This imaginary Woods-Saxon well is then added to the nuclear potential
U(r). After a long time propagation, the flux that reflects off of the Coulomb barrier
has an unimpeded time propagation, whilst the flux inside the barrier is completely
absorbed after continuous accumulative decay after every intermediate time step.

In this work, we use an absorption potential to account for the never-come-back ap-
proximation. The absorption potential will remove any and all flux that penetrates
the Coulomb barrier, which is situated further out from the point of touching for
the colliding nuclei that we are considering, which means that using the form of the
Coulomb interaction in equation (2.1) is reasonable.

2.1.2 Incoming wave boundary condition

Absorption potential methods produce very similar results to methods that use the
incoming wave boundary condition (IWB) [47]. Simply put, IWB aims to selectively
remove incoming (towards r = 0) waves from inside the pocket, whilst not removing
the incoming wave from outside the pocket. A difference between using this method
over an absorption potential is that, depending on the choice of the operator W,
some flux outside of the Coulomb barrier may be absorbed, whereas IWB does
not absorb said flux. This is typical for Woods-Saxon forms of W (r), as they do
not immediately attenuate to zero for radii outside the Coulomb barrier radius.
Invariably, some amount of flux that does not penetrate the Coulomb barrier will be
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absorbed with an absorption potential of this form. Results from time-independent
IWB methods will play a role in this thesis; as benchmarks for our time-dependent
calculations.

2.2 Coupled-channels Hamiltonian without spin-orbit
coupling

The coupled-channels method is a way of treating excitations of colliding nuclei [32].
The definition of a channel is given in section 1.5.1. As the projectile approaches
the target, there is an interplay of Coulomb repulsion and nuclear attraction, that
can excite roto-vibrational states in the target, projectile, or both. Roto-vibrational
states refer to the internal collective motion states of the nuclei, which are modelled
as collective rotations and/or vibrations [3|. Attempting to explain these excitations
is essential for simulating nuclear reactions. Even at high impact parameters, exci-
tations play a role due to the long range of the Coulomb force, which are known as
Coulomb excitations.

We will now derive the coupled-channels Hamiltonian that we will use in calculations.
Consider a projectile nucleus of mass Mp incident on a deformed target nucleus of
mass M. Assuming that the projectile is both spherical and inert (has no internal
states of its own), and the target is in the ground state with spin 0, the Hamiltonian
for the relative motion of this system is given by

L =R, 2 .
H=—V P V ‘/cou ) 2.5
where p = % is the reduced mass of the projectile-target system, I is the target

spin, 7 is the target moment of inertia, V is the nuclear radial potential, f/coup is the
potential which couples the target spin to the radial motion, and V2 is the Laplacian
given by

2

>

~

V2=

(2.6)

gfﬂé — i
or Or h?2¢2’

ﬁ>|
o =

where L is the orbital angular momentum. Since the potentials from operators 1%
and ‘A/Coup are not dependent on the angles of the relative motion 6 and ¢, and since
there is no spin-orbit coupling, we can express any eigenstate of this Hamiltonian
as a product of a radial state and an angular state [4], i.e.

U (r,0,¢) = Run(r)Y["™ (0, ¢). (2.7)
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where R, (r) = (r|R, ) is the radial state of channel n with spin ,, and orbital
angular momentum L, and Y;"* (6, ¢) are spherical harmonic functions which are
eigenstates of L. In the iso-centrifugal approximation, the spin of the target I, is
uncoupled with the orbital angular momentum of the system L. In this case, the
total angular momentum J of both nuclei is simply equal to the orbital angular
momentum L. Henceforth, we replace any instance of L with J in order to be
consistent with published convention. The validity /applicability of this assumption
is discussed later in this chapter. The reason R is a function of both the radial
coordinate and spin is due to the effect of the coupling f/coup.

The remainder of the derivation is covered in appendix B as it is somewhat involved.
The derivation involves the substitution v, j(r) = rR,, (1), and derives the Hamil-
tonian for the evolution of 4, j(r). This collective radial motion Hamiltonian is
given by

27.2 72
Mkepy | U+ Sl + vy Veoup- (2.8)

H =
CRM 20 2172 27

where kCRM £ . Finally, we can express the time-dependent Schrédinger equation
for the wave- functlon Y g(1) as

,hawn,J(r,t) B —h2d_2 n J(J+1)h?
' ot o\ 2 dr? 2pur?

+Zvnn 77Dn’J r, t)

+V(r)+ en) Y, (1,1)
(2.9)

where V. (1) = (r, I;] IA/COUP |r, I) and €, = W from the rigid rotor model [3].
Solving equation (2.9) can enable us to find several key observables, whilst also
allowing us to include time-dependent effects in our description for fusion if we

desire.

Note that with the inclusion of the centrifugal potential to our calculation, we will
no longer use the term Coulomb barrier in this work. Any description involving a
barrier from now on will refer to the potential barrier created by the Woods-Saxon,
Coulomb and centrifugal potentials.

2.2.1 Potentials

This section gives the form of the potentials V(r) and V,,,/(r). We begin by ex-
pressing V (r) = U(r) +iW(r), i.e.: the sum of the real nuclear potential U(r) from
equation (2.3) and a short range absorption potential W (r), the latter of which has
the form

27



100

3

s 80 —

©

= 60 —

Q

S 40

o

8 20 —

s o-

m =

| 1N | | | | | |

2 4 6 8 10 12 14 16 18 20
r (fm)

Figure 2.2: Radial potentials for varying J. The cyan, magenta and yellow lines
correspond to the potentials for J = 0, 20 and 30 respectively. The location of the
absorption potential for J = 0 is shown as a black dashed line (absorption potential
energy values not to scale). The parameters used to generate the Woods-Saxon part
of the radial potential are provided in Table 4.2.

Wy
Wir) = - 1+ exp((r — Tpock)/aw)’ (2.10)

where 7,00 1s the location of the pocket of the nuclear potential, or the shortest
distance where the nuclear potential in equation (2.3) is minimised. We show the real
potentials for varying J in Fig. 2.2. In our work, W(r) also contains an absorbing
boundary condition at the edge of the numerical radial grid (see appendix C.2 for
details on the radial grid). This is because the numerical radial grid has a feature
where ¥, j(Tmin) = Un.s(Fmax), Which means that particularly penetrative waves or
reflected waves can re-route back towards r = 0 and affect the calculations.

2.2.2 Coupling matrix elements

As described at the beginning of section 2.2, we model the projectile as inert, and
also we assume the target has a ground state rotational band. In this rotational
band, we include only the quadrupole and hexadecapole modes for both nuclear and
Coulomb excitation. The rotations are modelled as a deformation in the effective
radius of the target, which modifies the Woods-Saxon potential [32]
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Va(r,0) = — Vws , (2.11)

14+ exp((r — rws — O)/aws>

where O is the deformation on the unperturbed radius rws. The quadrupole and
hexadecapole terms are contained in O. The nuclear coupling matrix elements be-
tween spins [,, and [, are evaluated as

VNﬂml(T‘) = Z (In|a) <Oé|[n/> VN(T’, /\a) — VN(’I“, O)(;,,m/, (212)

«

where 8, is the Kronecker delta, O |a) = A\, |a) and

Vivs

VN(T7 /\@) - 1+ eXp((T — Tws — )\a)/CLWS)'

(2.13)

The last term in equation (2.12) prevents double counting of the Woods-Saxon
potential when n = n’. In the rotational basis, the matrix elements of the operator
O are given by

(I| O L) = 0 (BoF (2, Ly Lr) + BaF (4, Iy L)), (2.14)

where rp = rcoupAlT/ 3, Teoup 15 the coupling radius parameter, 3 and (3, are the
deformation parameters for the quadrupole and hexadecapole modes respectively,
and

20+ 12, + )Ly +1) (I, T I,\’

where the bracketed array is a 3-j symbol. We also include the deformed target
Coulomb interaction, up to second order in the expansion of S, and first order in
B4. This term is given by

3ZpZr 13 2 /5
Ve (r) = =% <62 + H@ﬁ%) F(2, 1, 1)
4
. 4,1,.1,
9 (54 + 5= 7\/— ) F( )

The total interaction potential V,(r) in equation (2.9) is given by the sum of
the nuclear and Coulomb components (i.e.: Vi (r) = Vi (1) + Ve (r)). For

(2.16)
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all results in this thesis, we include the 07, 2 and 4% states in the ground state
rotational band of the target.

2.3 On the iso-centrifugal approximation

We expect the iso-centrifugal approximation to hold for instances when the projectile
and target are not able to get very close to one another. This is expected to be the
case for high J values, but is invalid for low J values. A formal treatment of the
spin-orbit interaction has been relegated to the future work section, but we will
briefly explain the process here for clarity.

Essentially, in order to incorporate the spin-orbit interaction, a substitution of L=
J — I is performed into the Laplacian (equation (2.6)) [48]. The cross terms from
the squaring of L are responsible for the spin-orbit interaction, and thus when fully
expanded are modulated by the inverse distance pre-factor. This is why the iso-
centrifugal approximation is said to be applicable when the distance between the
target and projectile is large.

However, this pre-factor also contains the term (u)~! when fully expanded. For col-
lisions where the target is significantly larger than the projectile, and the projectile
is small, then ¢ — Mp, and thus the interaction term can become relevant even if
J is high. For our work, this term is neglected in order to simplify calculations for
efficiency, but it is definitely a relevant term for nuclear collisions in general.

2.4 Wave-packets

We will now show the form of the incident wave-function that we use in this work.
The label ai is used to refer to the entrance channel of the reaction, which is initial
nuclear configuration and quantum numbers of the target and projectile. The initial
wave-function of our time propagation is known as a wave-packet. One form of the
wave-packet that we use is a Gaussian envelope boosted by a plane wave, which is
given by the expression

—(r —r;)?

2
207

VYai g (1, t;) = (7|Yais(t;)) = exp ( ) X exp(—ik;r), (2.17)

where t; is the initial time (which is a constant), r; is the centre of the initial wave-
packet, o; the radial width and k; is the average wave-number for the incident wave
packet, which depends on the incident energy F; and o; and is found by solving F; =
(Vi | Her |9ai,s). For details on how the wave-function is propagated in time
using Hamiltonian Hcogy, refer to appendix A.4 for the form of the time propagator,
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and appendix C for the method we use that calculates the necessary matrix elements.
Together, the methods described in these appendices culminate to form our novel
TDCCWP method.

Later in this thesis, we find that other forms of equation (2.17) are more effective for
some calculations. However, we refer to these alternative wave-functions as wave-
packets still. This is because they embody the spirit of the wave-packet; they are a
spatially modulated envelope function which is boosted towards » = 0. The choice
of these alternate wave-packets is novel, and is motivated in further detail in chapter
5 (equation (5.13)).
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Chapter 3

The window operator method

This chapter details the window operator method, which is a method that helps us
generate more tangible results from the wave-function, which can be compared to
nuclear physics experiments. The window operator is part of a class of operators
that resolve wave-packets into specific energy components, which is crucial in order
to correctly match the experimental conditions for nuclear collisions [4]. Similar
operators to the window operator, that are also explored in this thesis, are the
Green’s operators [12].

3.1 Transmission coeflicients

The transmission, defined as any flux that penetrates the potential barrier, is an
important quantity for determining absorption cross sections. Absorption cross sec-
tions are the cross sections associated with the absorption process described in sec-
tion 2.1. An example of an absorption cross section that we can calculate is known
as the elastic absorption cross section, which is the absorption cross section in the
entrance channel. For our scattering problem, the elastic absorption cross section is
given by [4]

Uabs,el(E> = — (2J+ 1)7;1(E, J), (31)

where Tq(FE, J) is the energy resolved transmission coefficient for the collision state
with energy E and orbital angular momentum J in the entrance (or elastic) channel.
The reason why these quantities are resolved in energy is because the states pre-
pared in experiments have narrow energy distributions. With the method that we
have currently proposed, we cannot accurately perform sums like in (3.1) by merely
calculating the transmission content of our wave-packets. This is because the wave-
packets that we propagate are not resolved in energy; instead they exist as a super-
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position of energies. Thus, we require a method that can resolve the wave-packets
in energy, which can be achieved using the window operator method [49,50]. Whilst
equation (3.1) does depend on the elastic transmission, in this chapter and the next
we focus on the total transmission from integrating over all channels, since this is
more convenient when bench-marking our results from those of time-independent
methods.

Using the window operator method, we can calculate transmission coefficients using

[51]

To(E,J)=1—-Ru(FE,J), (3.2)

where T, (E, J) is the transmission from all channels from the initial state [¢a; s (%)),
where we have labelled the initial spin state/channel using the label ai, and R, (E, J)
is the reflection coefficient given by

Ro(E,J) = LeE) Wil §<E> [5,0)

, (3.3)

Pai,s(E) (i s(t:)| A(E) [thais (i)
where |17, ) is the final state from the time propagation of |1 (t;)), P(E) is the
probability of a state having energy E and A(F) is an energy projection operator
that behaves similarly to 0(Hcrm — E). We can choose to use a window operator
for the energy projection, which is given by [49,50]

2”
A(E) = A(Herm, E,(n) = — ¢

(Herm — E)?" + CW

(3.4)

where ( is known as the energy resolution parameter and n is a positive integer
that controls the shape of the energy window /bin. With this operator, ()| A(E) [¢)
represents the probability of finding the system, in state |¢)), with energy in the
range F + (. The energy spectrum is constructed for a set of energies E, where
Ejs1 = Ei +2¢. We can express P(Ey) = (Qg,|Qg,), which can be calculated by
solving the equation

((Herm — Bo)" —1C") [Q5,) = ¢" ). (3.5)

Here, the |Q2g,) states represent energy resolved bin states with energy in the range
Ey, £ (. Equation (3.5) is applicable only when Hery is Hermitian. Whilst our
Hamiltonian includes an absorption potential (and thus is not Hermitian), the ab-
sorption term can be neglected when using the window operator. This is because
the initial and final states we use in equation (3.3) are far away from the range of the
absorption, so the influence of the absorption potential on these states is negligible.
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3.2 Hamiltonian matrix

The form of the Hamiltonian matrix that we use in equation (3.5) is a collection of
several smaller matrices that account for our basis choice used. As an example, for
a target that has three states in its ground state rotational band (0%, 2" and 4" for
instance), the Hamiltonian matrix equation takes the form

0t — 0ot ot — 2t 0+t — 4+ 0+
Hepnth = 2t —0F 2t — oF ot — 4t 2+
4+ — 0ot 4t — ot 4 — 4t 4+

(3.6)

Here, the vector J is comprised of the three spatial wave-functions for each rotational
state stacked on top of one another. This definition is convenient to code because it
allows us to define a single matrix for the matrix multiplication. In this Hamiltonian
matrix of matrices, the matrices on the diagonal of Hcgry, referred to henceforth
as the self coupled-channel matrices, are a sum of the kinetic matrix, the diagonal
potential matrix arising from the potential operator v, ‘A/Coup and the centrifugal
potential, as well as a diagonal matrix of the excitation energies €, (see equation
(2.8) for more details on each operator). The matrices off the diagonal, a.k.a. the
non-self coupled-channel matrices, are contributions solely from the operator VCOUP.
We will illustrate how to construct these matrices below. Both the self and non-self
coupled-channel matrices are square radial matrices with dimensions N x N, where
N is the number of sampling points in the radial Fourier grid (see appendix C.2 for
more details).

3.2.1 Self coupled-channel matrix elements

The self coupled-channel matrix (I,, — I,,) is a mixture of diagonal and non-diagonal
matrices. It can be expressed as

(I, — 1) = K+ Uj + Vy + 6,1, (3.7)
where K is the kinetic matrix, U; is the Coulomb, Woods-Saxon and centrifugal

34



potential matrix, V,, is the diagonal coupling potential matrix, and 1 is the identity
matrix. The diagonal elements of the self coupled-channel matrix are given by

J(J + 1)
# + Vi (75) + €, (3.8)

2pur5

(In — ]n>jj = ij + U(Tj) —+

where 7; is the j™ element of the radial Fourier grid, and U(r), V,,,(r) are the same
potentials as those used in equation (2.9). The off diagonal elements are given by

We can express the kinetic matrix elements using the discrete variable representation
(DVR). Assuming the maximum radial grid point rp.x is large for our system, we
can express the kinetic matrix elements for an evenly spaced grid as [52]

L (—1)6=) w2 /3 —1/(25%), if j = j". (3.10)
T 2uie? 2/(j—7")*—2/(j+J')? otherwise, '

where Ar is the radial grid spacing.

3.2.2 Non-self coupled-channel matrices

The non-self coupled-channel matrices are constructed more simply than the self
coupled-channel matrices of Hcgry. The non-self coupled-channel matrix (I, — /)
is a diagonal matrix with elements

(I = L) 3y = Vir (1), (3.11)

where V,,,»(r) is the coupling potential from equation (2.9).

3.3 Window operator properties

We can analyse the properties of the window operator in order to determine appro-
priate values of its constants that we should use. We can rewrite the probability

(| A(Horm, Er, €, n) [00) as
(] A(Hera, Br, ¢n) [4) = Y (]®g) A(E, Ey, ¢,n) (Pglth) (3.12)
E
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Figure 3.1: Two energy windows centered at Ej for arbitrary ¢ with varying n.
Increasing n makes the window more rectangular.

2n

where A(E, Ey,(,n) = WEE)—QMCM, Hcry |Pg) = E|Pg) and (Pgly)) are the en-
ergy coefficients of state [¢). In other words, the window operator now weights the
energy coefficients of state [¢)). But what does this weighting look like whilst varying
the parameters? If we increase (, we simply increase the width of the distribution.
( is the parameter that affects the closeness of the energy window /bin to the central
energy Fj. Increasing n makes the windows more rectangular in shape, as shown in
Figure 3.1.

If we apply the limit n — oo, the weighting function becomes rectangular, and then
the summand of equation (3.12) can be written as

) (®el¢))® Er—(<E<Ei+(
Tim [(1®) AE, By, ¢, n) (@4]1)] = ,
0 otherwise

(3.13)

or in other words, equation (3.12) only includes the energy coefficients of energies
in the interval [E) — ¢, Ey + (] in this limit.
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Figure 3.2: Two energy windows centered at Ej and FEj.;, separated by 2( for
arbitrary ¢ with varying n. The overlap for n = 4 is shown by the inner green
coloured area, and for n = 2 it is the sum of both the green and magenta coloured
areas.

We construct a set of sampling energies { £y} with the difference between adjacent
sampling energies E} and FEjy; equal to 2¢. This ensures the windows are lined up
next to each other, and no window shares coefficients in the limit n — oo. For finite
n the windows overlap, and can share coefficients, as shown in Figure 3.2.

Increasing n increases the computational effort needed to generate the coefficients.
Typically, n = 2 is used as it is often good enough to produce correct results despite
the relatively high overlap between adjacent window functions. In general, overlap
is not desirable, since we use all of the energy windows to normalise the probabilities
P(E). The accuracy of the window operator is mainly affected by the absolute size
of the energy coefficients (Pg|1). If the energy coefficients of state [¢) in the energy
window Ej, &£ ¢ are too low, then the |Qp, ) state generated by the window operator
calculation will be inaccurate. We will see how this limits our TDCCWP method
in the next chapter, and how it can be circumvented.
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3.4 Why not propagate asymptotic eigenstates?

If we require energy resolved transmission coefficients, one may wonder why we do
not simply propagate the eigenstates of the asymptotic Hamiltonian (which is the
Hamiltonian in the limit » — o0), and calculate the transmission by performing
a radial integral across the fusion pocket. In general, using the window operator
on a propagated wave-packet is faster. This is because the numerical grid sizes
needed to support the propagation of energy eigenstates are too large for efficient
calculations. The window operator method allows one to use more sensible grid sizes
and parameters to perform the energy resolution.
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Chapter 4

160 4 4Sm TDCCWP window
operator results

In this chapter, we present the results of single and multi channel propagations for
160 + 4Sm collisions. The incident wave-packet that we use in equation (3.3) is
chosen to be a Gaussian envelope with a plane-wave boost, like in equation (2.17).
Firstly, we present results for a single channel head-on collision without absorption
to ensure the propagator is accurate, and then compare these to the results with the
absorption potential active. The absorption transmission coefficients from the win-
dow operator method are compared to those from the time-independent Schrédinger
equation (TISE). Then, we introduce the three channels and varying J values and
perform the same comparison to the TISE. The Fourier grid, initial wave-packet,
absorption potential and window operator parameters used can be found in Table
4.1, and the Woods-Saxon and coupled-channels parameters that we used are shown
in Table 4.2. As mentioned in section 2.2, the term ‘barrier’ refers to the poten-
tial barrier produced by the Woods-Saxon, Coulomb and centrifugal potentials. A
publication in Physical Review C using results from this chapter can be found in
reference [53].

4.1 Single channel propagation without absorption

We begin by looking at propagations for a single channel Hamiltonian, in order to
quantify the quality of our numerical time propagator. We define a quantity called
the fidelity measure as

Fy= () ](t:) — ()]0 )]

L= WO RO, (4.1)

where || denotes the absolute value. Similarly, we define the energy fidelity measure
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Table 4.1: Model parameters used for the Fourier grid, wave-packet, imaginary
potential and window operator.

Variable | Value Description
N 2048 | No. of sampling points in the Fourier grid
T'min/fm 0.5 Minimum value of r in the Fourier grid
Tmax/fm 500 Maximum r in Fourier grid
At/s 107 Propagator time step
ri/fm 200 Initial position of wave-packet
o;/fm 10 Width parameter of initial wave-packet
Wo/MeV | 50 Imaginary potential well height
aw /fm 0.3 Imaginary potential well range
n 2 Window operator overlap parameter
¢/MeV 0.5 Window operator resolution parameter

as

Fig = | ((t:)| H [ (&) — ()] H (1))

— 1B~ (). 42)

In principle, for propagations with no absorption, the value for both F} and Fg
should be zero, since information/energy is conserved. The energy fidelity measure
and fidelity measure of the propagation without absorption are shown in Figs. 4.1(a)
and 4.1(b) respectively. Both quantities remain acceptably small throughout the
propagation. A high quality fidelity is needed in order to discern between loss of
information/energy due to actual physical processes, and loss of information/energy
due to the numerical implementation of the propagator. We shall see later that we
are indeed able to discern these two effects.

4.2 Single channel propagation with absorption

The difference between not including and including the absorption potential can be
illustrated clearly by comparing Fig. 4.2 and Fig. 4.3, which show the time evolution
of the wave-packet without and with absorption respectively. With the absorption,
the information close to » = 0 in the radial pocket is completely absorbed, unlike
in Fig. 4.2(b) where some information is trapped inside the pocket. Thus, the
propagation in Fig. 4.3 should only contain outgoing waves (since incoming waves
either get reflected by the barrier and become outgoing, or penetrate the barrier
and get absorbed), which can be verified using Fig. 4.4(c), which shows that after
the interaction the momentum density is located solely in the positive-k (outgoing)
region.
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Figure 4.1: (a) Energy and (b) normalisation fidelity measures (see text) over time
for the single-channel propagation in Fig. 4.2.
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Figure 4.2: Evolution of the radial probability density (a) from 0 to 8 zs, and (b)
from 9 to 16 zs, for J = 0 and E; = 60 MeV for the single-channel *O+1%4Sm

collision, without absorption.

We can see in Fig. 4.5 that the expectation energy and state population ( (¢(t)| H 4 (t))
and (¢(t)]1)(t)) respectively) decrease due to the absorption. In Fig. 4.5(a), the loss
of average energy is due to the decrease of the high energy components of the energy
probability distribution of the time-dependent state. The magnitude of the decrease
due to absorption is much greater than the magnitude of decrease solely due to the
numerical propagation in Fig. 4.1, indicating that we can accurately discern the
absorption from the numerical error in Fig. 4.1.
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4.3 Single channel transmission coefficients

When the momentum density is in the positive-k region only, then the results calcu-
lated by solving the TISE for positive momentum states and the results calculated
using these outgoing wave-packets should be equivalent. We choose the final state
|Ys,s) in equation (3.3) to be the state ¢ = 16 zs. Using the energy-resolved states
generated by acting the window operator on our initial and final states, we compare
the transmission coefficients from our TDCCWP method and the TISE in Fig. 4.6
for a number of incident energies F;. For each E;, we can see that some TDCCWP
transmission coefficients are in agreement with the TISE curve, but then there are
deviations at energies further away from F;. This is what we expect from our win-
dow operator calculation, since for energy values close to E;, the wave-packet energy
coefficients are relatively high in magnitude, which makes the calculation from the
window operator more numerically accurate (as mentioned in section 3.3). However,
once one performs calculations for energies outside of this energy range, then the en-
ergy coefficients are no longer high enough to calculate the transmission accurately.
In principle, the transmission coefficients should not depend on the choice of E; in
our model, since the transmission coefficients are calculated as overlap integrals of
energy eigenstates, and the eigenstates of the Hamiltonian are not dependent on E;.

We illustrate a method to circumvent this effect in Fig. 4.7, which shows a portion
of the probabilities generated by applying the window operator on the initial state
of E; = 60 MeV. Whilst the final probabilities are also important in determining
the transmission, they are not needed to be shown here to illustrate this point.
Here, the probability P,; j(E) ~ ](CIDEWMJ(Q)W, where (Pg|1)a; s (t;)) is the energy
coefficient of the initial state (see equation (3.12) for details on energy coefficients).
In Fig. 4.7(a), for energies close to E;, the probabilities P,; ;(F) (and thus the
energy coefficients) are relatively high in absolute value, which results in a convergent
calculation of the transmission coefficients. However, past £ = 1.08Vp for instance,
where Vg is the barrier energy, the energy coefficients are now too low in order to
calculate the transmission coefficients accurately. Therefore, if we then propagate
with another incident wave-packet (with E; = 62.5 MeV, for instance), as shown in
Fig. 4.7(b), then the coefficients past F = 1.08Vp are higher relative to those of
E; = 60 MeV, and so the transmission calculation for F; = 62.5 MeV in that energy
region should be more convergent to the expected TISE results.

Not only are the F; = 62.5 MeV coefficients more convergent in the £ > 1.08Vp
region, but the transmission coefficients from both the E; = 62.5 MeV and E; = 60
MeV curves in Fig. 4.6 overlap with one another. This is because there are energy
regions where the energy coefficients are high for both wave-packets. This allows
one to perform multiple propagations with differing FE;, collect the results, and chain
together the transmission coefficients to form a total transmission coefficient profile
that is convergent across an energy range. However, there is a numerical limit
to this technique - when FE; is much smaller than the barrier energy, then none
of the probabilities from the window operator will be accurate, since the reflection
coefficient in equation (3.3) is very close to unity for that wave-packet, and therefore
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Figure 4.6: Energy-resolved transmission coefficients using the window operator
method for J = 0 and the TISE results from using the CCFULL code of Ref. [32].
The profile resulting from the overlap of these FE; profiles shows the transmission
coefficients (explained in text, shown in Fig. 4.8). Barrier energy for J = 0 is equal
to 59.41 MeV
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the calculation of the transmission using the subtraction in equation (3.2) becomes
inaccurate.

In order to overlap the transmission coefficients correctly, we employ a simple pro-
cedure. Firstly, for a given value of J, start with the lowest value of E;, denoted
by E;o. Then, compare the E;, transmission coeflicients with those for the next
highest value of E;, denoted by E; ;. For some value E = E,,, where E.o,, > E;,
there will be a convergence between the E; o and F; ; transmission coefficients. Eeopny
corresponds to an energy where both the energy coefficients for the two wave-packets
of initial energies E; o and F; are high in value (for example E.pny =~ 1.03Vp in Fig.
4.7(b)). The tolerance for this convergence was set to 1072, such that if the absolute
difference between the F;, and FE;; transmission coefficients is less than or equal
to the tolerance 1072, then we consider the curves converged. Then, once conver-
gence has been established, the overlapped profile will consist of the transmission
coefficients for E;( for energies £ < E¢opy, and the transmission coefficients for E; ;
for energies £ > E.o,y. This procedure is then repeated using F;; and E; -, and
so on until the maximum value of E; is reached. The total overlapped TDCCWP
transmission coefficients can be shown in Fig. 4.8. The TDCCWP transmission
coefficients agree well with the TISE results for a wide range of energies, including
some below the barrier, indicating that we can obtain energy-resolved quantities
using a time-dependent method.
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Table 4.2: Model parameters pertaining to the coupled-channels Hamiltonian for
the %0 and '%*Sm collision, assuming the projectile is spherical and inert and the
target has a rotational band. Wood-Saxons and rotational parameters obtained
from [54].

Variable | Value Description
Vivs/MeV | 165 Wood-Saxons well depth
rwso/fm | 0.95 Wood-Saxons well centre
aws/fm 1.05 Wood-Saxons well range
€9 /keV 82 Second excited state energy (27)
o) 0.322 | Quadrupole deformation parameter
Ba 0.027 | Hexadecapole deformation parameter
Tcoup/ M 1.06 Rotational coupling radius

4.4 Three channel propagation

The following section is a summary of our work in Ref. [53|. As explained in sections
2.2 and 2.2.2, we model the projectile as spherical and inert and the target with a
rotational band with the 07, 2% and 4" states. Introducing three channels means
increasing the parameter space of our model to include for the nuclear and Coulomb
rotational couplings. The propagation parameters are the same as in the single
channel case, shown in Table 4.1.

The propagation of the radial and momentum wave-functions for £; = 60 MeV and
J = 0 are shown in Figs. 4.9 and 4.10 respectively. Qualitatively we observe a
similar absorption behaviour in Fig. 4.9(a) as in Fig. 4.3. We can also see in Fig.
4.9(b) that the 2% and 4" states penetrate deeper into the barrier. This is because
these states are mainly generated via the transfer of flux from the higher momentum
states of the 07 state in the entrance channel. This can be verified in Fig. 4.10(b),
where we observe that the higher momentum 0% states convert into the 2% and 47
states at around 6 — 7 zs. This is what we expect physically because the strength
of the coupling potentials are decreasing for penetration approaching the barrier
radius, which is illustrated in Fig. 4.11. This means that the closer the states get
to the barrier radius, the more likely it is for excitation to occur, and hence the
momentum states in the entrance channel with deeper penetration are more likely
to become excited. States that penetrate deeper than the barrier radius are not
considered in this explanation, since they are quickly absorbed and thus we cannot
deduce their excitation mechanism with respect to penetrability.

Figs. 4.12(a) and 4.12(b) show the expectation energy and wave-function norm over
time. For a long time before the nuclei reach the barrier, the norm is conserved with
an accuracy of 107! like in Fig. 4.1(b). The loss of norm of the 0T state due to
both fusion absorption and nuclear excitation is much larger than 104, indicating
that we can distinguish between loss of norm due to relevant physical processes
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and the loss of norm due to computational error. There is a small loss of average
energy due to the absorption. We confirm that there are no more interactions
after at least 10 zs because the momentum distribution of the wave-function in Fig.
4.10(c) is completely located in positive momentum and the wave-function norm in
Fig. 4.12(b) remains constant. Thus for times after at least 10 zs the comparison
between the TDCCWP method and the TISE should yield the same results. The
propagation results agree with our expectations.

4.5 Three channel transmission coeflicients

The method and analysis is identical for the single channel case described before, and
thus they are not repeated here. Figs. 4.13 and 4.14 show the raw and overlapped
transmission data for J = 0 respectively, and Fig 4.15 shows the overlapped trans-
mission data for J = 20 and J = 30. Note that the J = 30 results in Fig. 4.15(b)
are different to the results in Fig. 7(b) published in [53|, due to a mistakenly missing
divisor of H_ in the absorption of equation (A.30) in the published results. The re-
sults in this thesis are produced from the corrected code, and accurately reproduce
the transmission coefficients as expected.

4.6 Summary

Overall, we can see that the propagation performs quantitatively well and repro-
duces the expected transmission coefficient for a wide range of energies around the
barrier energy. The transmission coefficients are still determined accurately when
the number of excited states is increased, indicating that the method has good scal-
ability. This model is able to calculate absorption cross sections using equation (3.1)
and may be useful for interpreting experimental fusion data.

52



o+
o+
100 (a) 4+
107
1072
103
104
10°°
106

Radial Prob. Density

100
1071
1072
103
104
10°

10
250

(b) 4+

Radial Prob. Density

200

2 3 Time (zs)

0+
o+
4+

100
10"
1072
103
104
108
106

—_
()
N

Radial Prob. Density

11
12
Time (zs) 1 14 15 16 0

Figure 4.9: Evolution of the radial probability density a) over the whole time period
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Chapter 5

Differential cross sections and
S-matrix for reactive scattering

This chapter details the development of the S-matrix method, which is useful in
finding reactive scattering differential cross sections. Whilst the results in the pre-
vious chapter are very promising, there is always a concern that no matter how one
optimises the parameters of the window operator, the energy resolution may not be
as accurate as from, say, a Green’s operator. Thus, we have developed an alterna-
tive method that uses Green’s operators to determine the S-matrix. The S-matrix
(or scattering matrix) is the probability amplitude for the transition between initial
and final scattering states [12]. The S-matrix is used directly to find the scattering
differential cross sections, which can be integrated over to find scattering cross sec-
tions [4]. It can also be used to find transmission coefficients used in equation (3.1),
as well as for energy resolution in situations where the asymptotic eigenstates of the
Hamiltonian are known.

5.1 Scattering differential cross sections

The scattering differential cross sections are a key observable in nuclear reactions,
and are ubiquitous in nuclear experiments. We briefly went over the concept of
cross sections before in section 1.1, and we will provide a more detailed explanation
here. Consider a reaction that results in the emission of nuclei/particles of type
b, with a projectile beam intensity of Ip nuclei/particles per unit area, aimed at a
target with nr nuclei of a specific type Atr. We expect that the rate of emission
of nuclei/particles of type b to be proportional to both Ip and ny. If the projectile
beam intensity increases, then there are more nuclei/particles per unit area and
therefore more reactions should occur. If nt is increased, then we also expect more
reactions to occur. The constant of proportionality is the cross section [4]. The
differential cross section is a similar concept - it is the constant of proportionality
between the rate of emission of nuclei/particles of type b within the solid angle d€2,
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and the quantities Ip, nr and dQ [4]. The scattering differential cross section is
the differential cross section for nuclei/particles of type b produced by a scattering
reaction.

The differential cross section is a relatively intuitive concept to experimentalists.
It can be calculated relatively easily because experimentalists measure the rate of
emission of nuclei/particles of type b within solid angles, since they place their de-
tectors at angles around the reaction centre. Since the projectile beam intensity is
known /controlled, as well as the composition of the target, the differential cross sec-
tions can be calculated, and then the cross sections can be found by integrating the
determined differential cross sections over the solid angle. In general, the scattering
differential cross sections are given by [4]

dosga(E.0,0) v

_ v 2
dQ - va|fﬁa(E797¢)| ) (51)

where € is the solid angle, E is the kinetic energy of the radial motion, fz,(E, 0, ¢)
is known as the scattering amplitude, and v, is the velocity of flux in channel ~.
The scattering amplitude is an angular dependent coefficient that relates the scat-
tered wave-function of the relative motion to the radial eigenstates of the asymptotic
Hamiltonian [4]. The calculation of the scattering amplitude involves a summation
over the total angular momentum J. In order to calculate the differential cross
sections, we make some assumptions to simplify the scattering amplitude computa-
tions. Firstly, we assume that the direction of the beam is aligned along the z axis.
This means that the angular velocity, and therefore the direction of the angular
momentum .J, is initially confined to the xy plane. The consequence of this is that,
at least initially, the magnetic projection number m; = 0, since m is the projection
of the angular momentum J on the z axis, which is zero if the angular momentum
is in the xy plane. Next, if we assume that any spin-orbit interactions are negligible
(such as in the iso-centrifugal approximation), then m; = 0 for the entire reaction,
and then the differential cross sections will only depend on the polar angle 6 since
only terms with m; = 0 enter the sum (m; = 0 terms have no ¢ dependence).
Consequently, the scattering amplitude for collisions involving charged particles is
given by [4]

foa(E,0,) = fow)ém%,w\/% S (2041) exp (210ra,0) (S3F (B, J)—b05) Py (co5(6),
(5.2)

where fo(6) is the pure Coulomb point charge (or Rutherford) scattering amplitude,
dap 1s the Kronecker delta, k,; is the wave-number of the incident channel «, o, ;
are known as the Coulomb phase shifts, ng (E,J) are the space-fixed on-shell S-
matrix elements (discussed in section 5.2) and Pj (cos (0)) are Legendre polynomials.
The term on-shell means that the collective radial motion of the nuclei satisfies the
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energy-momentum relation [55]. The Coulomb point charge scattering amplitude
has the form

fo(0) = —m exp (—z’na In (sin2 <g>) + 210',1,0) , (5.3)

where

. ZTZp€2
- Armeghv,

o (5.4)

Note that 7, is known as the Sommerfeld parameter, and it is used to calculate the
Coulomb phase shifts, i.e.:

0oy =arg (D(J+1+1n,)), (5.5)

where I' is the Gamma function. If we are modelling a neutron capture reaction,
then 7, = 0, which means that o, ; = 0 from the argument of the Gamma function,
and the expression in equation (5.2) reduces to the same expression that is derived
for electrically neutral particles [4]. The heart of the calculation of equation (5.2) is
the calculation of the S-matrix elements, since all other quantities in equation (5.2)
are known parameters of the system.

5.1.1 High energy limit

There is an analytical result to equation (5.2) for when the collision energy is at least
several MeV above the largest potential barriers involved in the calculation. In the
limit £ — oo, we expect the S-matrix elements to tend to zero. This is because at
high collision energies, all barriers preventing fusion are penetrated, and thus there
is no reflection at the barrier. Taking the limit of equation (5.2) yields

1 [ |
ke \/ % Z]:(QJ + 1) exp (2i04,7) 6ap Py (cos(0)) .

(5.6)

Jim f50(5,0.0) = fo(0)0as —

Clearly, in this limit the inelastic scattering amplitude becomes zero due to the
Kronecker deltas, and only elastic scattering is present in equation (5.6). This is
a crucial result that can be used to benchmark our time-dependent calculations at
high energies, since equation (5.6) only depends on known parameters or quantities
of the system. For collision energies several MeV higher than the barrier height, we
expect our results of equation (5.2) to match the results from equation (5.6).
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In reality, if all the material goes into fusion in this high energy limit, then the scat-
tering amplitudes should become zero for all angles. The out-bound wave-function
in this situation is null, and therefore not of the form of a Coulomb wave. Thus, the
sum in equation (5.2) diverges from the physically expected result (since equation
(5.2) is built on the assumption that the outgoing Coulomb wave exists). Never-
theless, this fictitious benchmark is still a useful way to check the results of our
numerical calculation.

5.2 On-shell body-fixed S-matrix elements

Our main goal is to find the S-matrix elements for the body-fixed reference frame,
and relate these to the space-fixed frame S-matrix elements. The body-fixed refer-
ence frame dynamics are achieved by rotating the three-dimensional dynamics onto
the radial coordinate axis. In general, the body-fixed Hamiltonian for the nuclear
system is not of the same form as equation (2.8), but in the iso-centrifugal approxi-
mation the two Hamiltonians are equivalent [48,56]. This means that a time prop-
agation of solely the radial wave-function (without any angular folding) yields the
body-fixed S-matrix elements that we need. The more general form for the relation-
ship linking the body-fixed S-matrix elements to the space-fixed S-matrix elements
is relegated to the future work section since these forms of body-fixed Hamiltonians
are relevant when treating the spin-orbit interaction. In our iso-centrifugal case, the
relationship between the body-fixed and space-fixed elements is given by [56]

SSE(E,J) = (2] +1) < ‘é 8 ‘é) ( ‘g Igf ‘é)SBf(E, J), (5.7)

where SEF(E, J) are the on-shell body-fixed S-matrix elements, which can be ex-
pressed as [57]

SBCREa J) = <XEf,E,J‘X2i,E,J> ) (5.8)

where |x, g.s) are the energy resolved asymptotic states of the body-fixed Hamil-
tonian Hegy of equation (2.8) for excitation channel v with angular momentum J,
and + /- indicates in/out-bound radial states (i.e.: the inwards direction is towards
r = 0, and outwards is away). The energies of the initial and final states are the
same, which is a direct consequence of the nuclei satisfying the energy-momentum
relation as discussed earlier [55]. Consider the initial state in entrance channel « for
our time propagation |2/);rl ;(ti)), which is a superposition of in-bound body-fixed
asymptotic states. We can extract the asymptotic state from the initial state using
an energy projection operator
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1

Aon',E,J

|X;,E,J> = 5(H E) Wm J( i) (5.9)

where

Aai,E’,J - <XazE JWJ(M J( >> ) (51())

and similarly for x5, p ;) via some out-bound final state |5, ;). Substitution into
(5.8) yields the result [57]

1 —
St (Bl) = e (W | OUH = B (1)
i N
" 2nAby g Aai (a7l GH(E) + G7(E) [ (1))
i .
= 2mAs, g Ay | G EN G 0)

1 > iB(t —t;)
B dtexp{ ———— Ut L)
215 p s NaiEn /_OO eXp( 7 ) (Y37l ) |k, ()

1 00 iE(t B t-) )
dt = + )
27ThAﬁfE JAai,E,J /_OO exp( h ) <wﬁf7J’won,J( )>

(5.11)

Here we have replaced the two delta functions with a single G*(F) Green’s oper-
ator, and performed a Fourier transform into the time domain. The effect of the
G~ (E) Green’s operator is omitted since the initial state |7, ;(t;)) consists only of
inbound states, and thus G~ (E) ¢, ;(t;)) = 0. This expression from reference [57]
is equivalent to the result derived by Tannor and Weeks in reference [58], with the
practical advantage of avoiding a numerical implementation of the Mgller operators,
since the initial and final states are defined as asymptotic states already. We choose
the final states |5, ;) so that their radial wave-functions are of the form

N2
<T|¢Ef,J> = €xXp (%) X <7“’ng,Ef,J>7 (5.12)

where E is an arbitrarily chosen final energy, taken to be equal to E (henceforth,
the terms E and Ef will be used interchangeably, with a preference for £). Thus for
the Hamiltonian in equation (2.8) the final radial wave-functions are the out-bound
energy resolved asymptotic Coulomb wave-functions, modulated by a Gaussian en-
velope. The incident wave has a similar form
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(o0 = o0 (U ) ) (5.13)

where r;, 0; and E; are the same as the parameters used in equation (2.17). Our novel
choice of the initial and final states in equation (5.12) have been found to reduce
the error in calculating the transmission coefficients from the S-matrix method. The
Gaussian envelope function in equation (5.12) is used to converge the time integral
in equation (5.11), since with this choice of wave-function |, s(t)) will eventually
travel past the final states, and thus a finite upper limit to the integral can be
imposed. It should be noted that the number of grid points must increase from
calculations in the previous chapter, since despite all the countermeasures employed
to make integrals smoother they are quite oscillatory in nature. This also requires
one to use more sophisticated (but still elementary) integration methods such as the
Simpson’s rule.

Time propagation and matrix inverse methods such as the window operator method
are accurate, but are also counter-synergistic because the relatively large grid sizes
needed for accurate time propagation make the matrix inverse calculations more
time consuming. Using a time-dependent S-matrix calculation such as (5.11) is
much more efficient in terms of computation time. It has a similar (high) level of
accuracy, it can generate results faster for a fixed set of energies, and it foregoes
matrix inverse calculations on the large grid which take a significant amount of
computation time. However, the S-matrix method is only appropriate for systems
where the asymptotic form of the final scattering states is known and calculable,
which thankfully is the case for nuclear reactions.

A significant strength of the proposed S-matrix method is the ability to use any
final state to extract the S-matrix elements, as opposed to a final state that comes
from the time propagated state. The optimal choice of the envelope widths oy and
0, is vital in order to generate accurate calculations, and the choices sufficient for
accurate calculations for one set of input parameters are not necessarily sufficient for
other inputs. As a rough guide, the initial state should be broad in momentum to
minimise the number of time propagations needed for good overlap between adjacent
E; values, and the final states should be narrow in momentum in order to accurately
determine the energy coefficients and the energy overlap.

5.2.1 Transmission coeflicients from the S-matrix

We can find the reflection coefficients using the S-matrix method simply by sum-
ming the mod squared of the S-matrix elements over the final channels. Then, the
transmission can be found using
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To(E,J)=1—Ru(E,J) (5.14)
=1- Z |SEF (B, )] (5.15)

Having transmission data from other methods is very useful to compare the S-
matrix data to. When there is no data to compare to, one ought to find the energy
coefficients of the initial and final states used in equation (5.11), in order to best
guide the judgement of how to consolidate the results for varying initial energies
E;. We will discover in the next chapter that there is a pattern for which energy
components are convergent from each wave-packet of initial energy F;.

5.3 Differential cross sections including spin-orbit
interaction

There have been bodies of work concerning the interaction between the spin of
the target with the orbital angular momentum, through mechanisms such as the
Coriolis interaction. This have been used to study collisions between di-atoms and
atoms [56].

The Coriolis effect is expected to have less of an impact on high J collisions, because
the centrifugal barrier repels the two nuclei away from the spin-orbit interacting po-
tentials (as explained previously in section 2.3). However, the spin-orbit interaction
does depend on other parameters of the colliding system and undoubtedly is rele-
vant. A reasonable extension of this work would be to model a spin-orbit calculation
of the differential cross sections for differing J values, and compare it to those gen-
erated from equation (5.2). This will involve including Coriolis terms into equation
(2.8), as well as extending the summation in equation (5.2) to include terms other
than m; = 0. The spin-orbit calculation is very involved, and takes a relatively long
computation time even for the time-independent approach. This spin-orbit method
is expanded upon in the future work section.

Whilst the iso-centrifugal approximation is indeed an unjustified simplification if
one wants to calculate the differential cross section accurately for all angles, it is
predicted to be a powerful approximation for the forward angles (i.e.: 8 ~ 0), since

the contributions to forward angles occur at high J values where the approximation
holds.
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Chapter 6

TDCCWP S-matrix results

6.1 Updated model parameters

Since the integrals over time in equation (5.11) are relatively oscillatory in nature, it
is necessary to increase the number of grid points and to decrease the parameter .
to ensure a better point density for these integral calculations, which means that
r; must also be adjusted to properly contain the wave-packet within the numerical
grid. The wave-packet width can be decreased from previously using this new and
improved point density to afford more overlap between results from wave-packets of
adjacent F; values. The changes to the Fourier grid parameters are shown in Table
6.1.

Table 6.1: Updated Table 4.1 Fourier grid model parameters. Includes the r; and
oy parameters for the final states as described in equation (5.12).

Variable | Value Description
NGP 3200 | No. of grid points in the Fourier grid
Tmax/fm | 350 Maximum 7 in Fourier grid
r;/fm 150 Initial position of wave-packet
o;/fm 3 Width parameter of initial wave-packet
ry/fm 120 Position of final states
or/fm 10 Width parameter of final states
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6.2 Investigating the J = 0 propagation of the S-
matrix

We will begin by investigating how our calculation of equation (5.11) fares during
the propagation of the wave-function. During the propagation, there are several
aspects that we expect to see, namely:

1. The product <1/1§f7 J|¢ai7 4(t)) should be zero whilst [¢)a;,s(¢)) is incoming, and
finite when it is outgoing.

2. Since |w,§f,J> is radially modulated, the product <¢B_f7’]|wai7j(t)> for larger
times should tend to zero.

3. The overall integral of the products over time should converge to a finite value.

For the first aspect, the product <¢ﬂ_f7 J‘@Dm’, J(t)> is not able to be calculated whilst
|9i,7(t)) is incoming in our simulation, since the integral is highly oscillatory across
space as expected from the expression. Analytically, this integral is zero, however
since we are using a finite grid method it is impossible for any sensible number of
grid points to calculate a zero for the integral. Thus, we only start integrating for
times where the wave-function is outgoing.

A necessary but insufficient criterion for an outgoing wave in our simulation is
when the average wave-number of the propagated wave is greater than zero. This
is not sufficient to determine that the entire wave is an outgoing wave, since not
all the components of the wave-packet reflect off the Coulomb barrier at the same
time. Suppose we start integrating the S-matrix the moment after the average
wave-number becomes positive. For some time before the average wave-number is
greater than zero (and therefore before we start counting the integrand), there are
components of the wave that have reflected that may not be counted. Therefore,
we ensure that the final states are far away enough from the barrier, so that the
earliest reflected components are counted when calculating the S-matrix elements.
This justifies our choice of final state position in Table 6.1.

Fortunately, once the waves are outgoing, we do not have to deal with highly oscilla-
tory integrals and the remaining aspects listed above are testable. We will test these
aspects using the elastic (07) scattering data. To that end, we define the following
expressions

! iE(t' —t, e
[Q(E,t)_/ dt’exp(%)/ dT’[l(E,T’,t/), (61)
t;

Tmin

where
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Figure 6.1: a) Real and b) imaginary parts of the integrand quantity I;(F,r,t) for
E =FE;, =60 MeV and J = 0.

]1<E7 T, t) = <7vba_f,J’T> <T|wai,J(t)> : (62)

I (E,r,t) is the elastic product, and intends to test the second aspect. I5(F,t) folds
I (E,rt") over space and up to time ¢, and intends to test the third. One may wonder
why we do not simply fold over time first and then space when calculating I5, which
will allow one to save computation time by not have to perform a radial integration
at every time step. The reason is simple - folding over time first means the new
integrand over space becomes very highly oscillatory. These two expressions are the

building blocks for the computation of the elastic S-matrix elements in equation
(5.11).

The 3D plots of I1(E,r,t) are shown in Fig. 6.1. We can see for times ¢t ~ 9 zs and
t ~ 14 zs that the integrand I; is equal to zero, and thus we have effectively contained
the information using the radially modulated final state W;f, J>. L(E,rt) for times
earlier than 9 zs are not shown due to large rendering times and decreased clarity of
the results, but for those times I;(FE, r,t) is also equal to zero. Qualitatively, we can
also see that for times between 9 and 14 zs, the folding along the radial direction
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Figure 6.2: Real part of I,(E,rt) for t = 9,12,14 zs. The imaginary part of
I (E,r t) shows similar features and smoothness.

is very achievable with a method such as the Simpson’s rule, since the oscillations
along this direction are tame. This is made clearer in Fig. 6.2, which shows the
real part of [;(F,r,t) for t = 12 zs. Evidently from Fig. 6.1, folding over time and
then space as suggested earlier will create highly oscillatory integrals that are not
calculable using our grid parameters and methods.

The value of I1(E,t) converges after a long time. This is illustrated in Fig. 6.3,
which shows that the real and imaginary parts of Io(FE,t) for £ = 60 MeV converge
for large times. All the aspects to test the propagation have been verified to be true,
and thus the propagation is qualitatively successful. Fig. 6.4 shows that the integrals
I,(E,t) for energies far away from F; = 60 MeV do not converge to large integral
values. This causes the same type of error that the window operator produced, and
thus calls for the same solution - we must propagate over a set of FE; values in order
to represent the reaction properly. For each J value, we choose six energies in steps
of 1 MeV, with the maximum energy considered being max(E;) = ceiling(Vg(J)).
So for J =0, E; = {55,56,57,58,59,60} MeV.
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and J = 0. As FE is decreased, the value of the integral decreases, which can become
a source of error for the method like it was for the window operator. The imaginary
parts follow a similar trend.
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6.3 Transmission coeflicients from the S-matrix

After all six propagations, the S-matrix data is used to calculate a transmission
coefficient via equation (5.15), shown in Fig. 6.5. Unlike the transmission from
the window operator, for the energies considered the transmission curves all behave
similarly to one another as well as to the expected result. As energy decreases,
the deviation between each curve becomes noticeable, but for high energies every
curve successfully replicates the high transmission behaviour. This allows for more
propagations to be done for energies below the barrier, without sacrificing the higher
energy behaviour. Also, with this method one can use a significantly higher energy
point density without impeding calculations, since no matrix inverses are invoked
on our now much larger grid. Using matrix inverses with a window operator method
to calculate energy resolved states would be somewhat unfeasible on our new grid.
Like before, we can fit the E; curves to the CCFULL data, which is shown in Fig.
6.6. This produces similar results to the window operator method, and allows us to
describe transmission at energies below the barrier.

The process to overlap the transmission coefficients of varying FE; is remarkably
consistent across all J values, but it is slightly different to the procedure described
in chapter 4. We have found that the first E; value agrees with the TISE transmission
best up to 0.5 MeV above its value, the second agrees best for energies 0 — 1 MeV
above its value, the third for energies 0.5—1.5 MeV above, the forth 1—2 MeV above,
the fifth 1.5 — 2.5 MeV above, and the sixth for 2 MeV above its value and beyond.
This pattern is the same for all J values, which is somewhat expected giving how
we have systematised our time propagation and calculations.

What may be surprising is that the energy ranges where the curves agree are all
above the F; values. We found that the expectation energy for the final states
|1/1/gf, J> is roughly equal to the energy E, and thus does not affect this skewing of
these energy ranges. For our choice of |14, s), the expectation energy is larger than
the energy F;, thus S-matrix elements for energies above E; are expected to be
calculated better than those below.

6.4 The choice of final state

We previously justified the choice of using equations (5.13) and (5.12) for the initial
and final wave-functions respectively, by saying the results are more accurate com-
pared to using a Gaussian wave-packet with a similar for to the initial wave-function
used in chapter 4. This is shown in Fig. 6.7, which features the transmission coeffi-
cients via the S-matrix elements for initial energy E; = 55 MeV for two cases: one
where the initial and final waves are boosted Gaussian waves (like what was done
in chapter 4), and one where both the initial and final wave-functions are of the
form of equations (5.13) and (5.12) respectively. As we can see, using two boosted
Gaussian wave-functions produces poor convergence with the TISE at low energies,
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Figure 6.7: Transmission coefficients for initial energy F; = 55 MeV for the two
cases of initial and final wave-functions explained in the text. Using two boosted
Gaussian wave-functions like equation (2.17) provides poor convergence to the TISE
at low energies, whilst using two modulated Coulomb initial and final wave-functions
(equations (5.13) and (5.12) respectively) provides significantly better convergence.

and using two modulated Coulomb wave-functions produces the best convergence.
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6.5 Low energy coefficients

Our findings show that we can set up a simple procedure where one can lower the
initial energy FE;, and continue to propagate into lower energies to find the S-matrix
elements. Sadly, whilst the time propagation is still stable for energies far below the
barrier and the calculations of integrals I, (E,r,t) and Iy(E,t) are still reliable, this
simple procedure cannot be carried out for energies far below the barrier. This is
shown in Fig. 6.8, where decreasing the wave-packet initial energy does not produce
accurate transmission results. The size of the error for these values is much larger
than the accuracy of the time propagation, which at this point has almost zero
transmission and only reflection.

It is absolutely vital to calculate low energy S-matrix elements, since the sum in
equation (5.2) to calculate the scattering amplitude at any energy involves contri-
butions from all J values. For example, in order to calculate the differential cross
sections for £ = 60 MeV, we need to know the S-matrix elements for all J at 60
MeV. Consider J = 30, which has a barrier of 71.38 MeV. At £ = 60 MeV the
amount of scattered material for J = 30 is large, and thus this J value contributes
a substantial amount to the scattering differential cross section at this energy.

One way to try and address the lowest of energies is to extrapolate. Whilst this is
not generally advised, we can use the fact that when E — 0, only elastic scattering
should be present, and the reflection coefficient should tend to unity. This is because
the nuclei are far away from both the barrier and the interaction potentials that
excite samarium into higher rotational states. Mathematically, this means that
the complex radii of the S-matrix elements |SBf (E,J )‘ tends to unity for elastic
scattering and zero for inelastic. We also know that as we decrease the energy from
Vg, there must be a point along each of the S-matrix complex radii curves as a
function of energy where for elastic scattering the curve has a positive gradient, and
for inelastic scattering the curve has a negative gradient.

We can see on Fig. 6.9 that for F; = 55 MeV and J = 0, between E ~ 0.7Vg and
E ~ 0.8Vp the elastic and inelastic 47 complex radii gradients are clearly behaving
like we expect. This means that we can make a more promising extrapolation using
both the £ — 0 behaviour and these gradients. The behaviour in Fig. 6.9 for
E/Vp < 0.65 is unphysical, and is due to the numerically small Green’s operator
integrals from the time propagation shown in Fig. 6.4.

The sign of the gradient of these S-matrix elements around F ~ 0.8Vp and F ~
0.9V3 is conserved as one propagates into lower initial energies, as shown in Fig. 6.10
for the final spin state 07. Whilst the S-matrix elements no longer quantitatively
match the transmission coefficients as E; decreases (see Fig. 6.8), the fact that the
sign of the gradient does not change for decreasing E and E; supports the logic
that we can use an extrapolation method with the gradients for the lowest F; in the
range 0.7Vp < E < 0.9Vp. This is also true for the inelastic reflection probabilities
in Fig. 6.11.
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Figure 6.8: Transmission coefficients for varying low FE;. Propagating into lower FE;
does not improve the convergence of the TDCCWP transmission coefficients with
the TISE.
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Figure 6.9: Reflection probabilities |S5F(E, J )|2 for E; = 55 MeV for each of the
different final spin states. Between F/ ~ 0.7Vz and E =~ 0.8V, we have a coincidence
where the 0% gradient is positive, and the inelastic gradients are negative or zero.
For decreasing F/Vp, eventually we encounter unphysical results due to numerical
inaccuracy.
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Figure 6.10: Reflection probabilities ‘ng (E,J )|2 for varying E; and final target
spin state 0. The sign of the gradient is conserved as we decrease E;, supporting
the idea that this gradient stays positive, and brings the elastic S-matrix elements
to unity. For decreasing FE/Vp, each F; value eventually generates a curve with
unphysical results due to numerical inaccuracy.
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Figure 6.11: Same as Fig. 6.10, but for a) 27 and b) 4 target rotational states. As
E; is decreased, the sign of the gradient is negative and conserved, which will lead
the inelastic S-matrix elements to zero.
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Given what we know about the low energy limits of the complex radii of the S-matrix
elements and Figs. 6.10 and 6.11, the behaviour of the sub-barrier complex radii of
the S-matrix elements appears similar to the logistic function

B L
1+ exp(—k(z — x0))

f(2) +C, (6.3)

where L is the maximum value, k is the steepness and z( fixes the midpoint of the
curve and C' is a constant. Assuming k£ > 0 and C = 0, for x < x( the curve
plateaus at zero, and for x > z it plateaus at L. This behaviour is qualitatively
similar to what we expect from both our S-matrix complex radii and the transmission
coefficients, and thus this choice of fitting function is sensible.

After fitting both the low energy S-matrix elements and the transmission to logistic
functions, the new transmission coefficients are shown in Fig. 6.12. The result
matches the gradient of the TISE data very well and is satisfactory. The S-matrix
reflection probabilities and phase shifts are shown in Figs. 6.13 and 6.14 respectively.
The complex radii, fitted using the logistic function, are quantitatively accurate
for low energies. The phase angles of the S-matrix elements for a given J are
extrapolated using a Taylor expansion using the lowest E; data-set, i.e.

Tmax @(n) Eex’ J .
CI)(E7 J) = Z %(E - Eex) ) (64)
n=0 ’

where Eg is a low energy and ®((FE,,,J) is the n'™ order derivative of ®(E,.J)
evaluated at F,,, which is approximated using a central finite difference method

S (Ey +AE, J) — VB, — AE, J)

cb(n)(Eean) = IANE 5

(6.5)

where AE = 0.5 MeV, which is the spacing of our S-matrix energy grid. The
d=Y(E, + AE, J) are evaluated using a backwards and forwards finite difference
method respectively. To ensure accuracy, ny.x was chosen to be equal to 50. The
phase shifts show little deviation as the energy decreases. For energies above the
barrier, the phase angles become erratic. This is due to high transmission at these
energies which means what little of the wave-packet that is reflected is effectively
numerical noise. This is not a problem that needs addressing, since the complex
radii in these energy ranges tend to zero and so these erratic phase angles do not
affect the sum in equation (5.2).
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Figure 6.12: Overlapped and fitted transmission coefficients using the data from
Fig. 6.6 and the logistic fitting procedures described in the text.
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Figure 6.13: Complex radius of the S-matrix elements for each of the different final
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elastic elements and 0 for the inelastic.
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Figure 6.14: Same as Fig. 6.13, but for the phase shifts. The phase shifts become
erratic for energies above the barrier height due to the reflected waves becoming
near zero in amplitude, which makes numerical calculations for the phase shifts very
inaccurate.
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6.6 Comparison with FRESCO results

In this section, we compare the TDCCWP S-matrix with results generated from the
FRESCO code [59] using the iso-centrifugal setting, which is a time-independent
coupled-channel method that can calculate S-matrix elements and differential cross
sections. FRESCO solves the TISE with a coupled-channels Hamiltonian of the same
form as equation (2.5) [59]. From Fig. 6.15, we can see that the TDCCWP S-matrix
elements are qualitatively similar to the FRESCO results. The main differences are
that the FRESCO wave-functions are determined up to an unknown constant phase
factor, the implementation of the iso-centrifugal approximation in FRESCO contains
spin-orbit coupling form factors, and the coupled-channel calculations in FRESCO
use higher order Coulomb interactions. In fact, if we correct for the constant phase
factor in the TDCCWP results, the phase patterns become much more similar to
that of FRESCO. This is shown in Figs. 6.18 and 6.19. The correction phase was
chosen to be the value such that the phase shifts for both methods are equal at
E = 35 MeV, an asymptotically small energy. Now we can see a more striking
resemblance between the two methods, and have confidence that our method is
qualitatively accurate at least.

6.6.1 Convergence of the elastic differential cross sections

At high J values, the combination of the elastic reflection probability and a phase
shift of zero converges equation (5.2). As it stands, with this non-zero phase at low
energies in Fig. 6.16, the results of equation (5.2) using the TDCCWP S-matrix
elements will not converge. This is because the summand in equation (5.2) will
always have a non-zero result for high J values. Therefore, we have decided to
adjust all of the elastic phase shifts to match the J = 0 phase shifts like in Fig.
6.18. This allows us to simply use only the FRESCO results for J = 0 to correct
the phase factors. Whilst there is an extremely slight dependence on the asymptotic
phase shifts and the J value in the FRESCO data (shown in Fig. 6.20), correcting
the TDCCWP elastic phase shifts to the J = 0 data is a sensible approximation.
The TDCCWP results also have a slight dependence on the J value, but it is much
larger than the dependence on J in the FRESCO results. This dependence is likely
(at least in our method) due to small numerical inaccuracies. Due to this slight
dependence and in order to be consistent, we opt to correct the inelastic data like in
Fig. 6.19 as well. It is less important to do this because, from equation (5.2), any
global phase factor will not affect the calculation of the inelastic differential cross
section. For all J the difference between the TDCCWP method and the FRESCO
results is approximately a constant global phase factor, which again can be seen in
Fig. 6.20. After these phase corrections, our TDCCWP method produces similar
results for J = 20 and 30, which are shown in Figs. 6.21 and 6.22. We are confident
that, after these curation processes, our results are reasonably accurate, and thus
we can begin to investigate the differential cross sections.
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Figure 6.15: Comparison between the TDCCWP method and FRESCO results for
the reflection probabilities for J = 0. Differences between the two methods are
detailed in the text. The results between both methods are qualitatively similar.
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Figure 6.16: Phase shifts for J = 0 and the 0" target state. Solid line is the FRESCO
calculation, and crosses are from the TDCCWP method. The results show a near
constant phase difference between the two curves, which is not accounted for in the

FRESCO method.
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Figure 6.17: Same as Fig. 6.16, but for the a) 27 b) 4" target state.
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Figure 6.18: Phase shifts for J = 0 and the 0% target state. Solid line is the
FRESCO calculation, and crosses are from the TDCCWP method after adding a
constant phase. The constant phase was chosen to be the value such that the phase
shifts for both methods are equal at F = 35 MeV, an asymptotically small energy.
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Figure 6.19: Same as Fig. 6.18, but for the a) 27 b) 4" target state.
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Figure 6.20: Uncorrected TDCCWP phase shifts vs. FRESCO for varying J. Both
methods show a very slight J dependence, with the TDCCWP results showing a
stronger relationship, likely due to numerical inaccuracies.
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Figure 6.21: Comparison between FRESCO and TDCCWP S-matrix reflection prob-
abilities for a) J =20 b) J = 30. There is a similar qualitative agreement between
the two methods like in Fig. 6.15.
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Figure 6.22: Same as Fig. 6.21, but for the a) J =20 b) J = 30 phase shifts.
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6.7 Summary

We performed time propagations of the S-matrix, and were able to replicate the
time-independent transmission coefficients by varying the initial energy FE;. We
verified that the integrals needed to find the S-matrix elements were calculable, and
that after a long time the integrals converged as expected. We also verified that
the choice of initial condition is extremely important to obtain the most accurate
results.

Since we required the S-matrix elements for increasingly lower energies below the
barrier height, we performed calculations for J = 0 for decreasing E;. We found that
the transmission (or normalisation of the S-matrix elements) was not improved by
decreasing the initial energy in this way. However, since the data showed an expected
trend where the elastic reflection probability goes to unity and the inelastic to zero,
we employed a sigmoid fit to the data to help describe these low energy elements.
We also used a very high order Taylor expansion in order to extrapolate the phase
shifts.

Comparing this new curated data to the results of FRESCO, the S-matrix elements
are reasonably similar. FRESCO calculations that use the iso-centrifugal approx-
imation still contain form factors relating to spin-orbit coupling, and the coupled-
channel calculations in FRESCO use higher order Coulomb interactions. We also
noticed that the TDCCWP results have an almost constant phase factor difference
between the phase shifts. This is because the FRESCO calculations involve a diag-
onalisation method, so the FRESCO S-matrix is determined up to a constant phase
factor. The presence of these phase shifts have stark implications for the calculation
of the differential cross section, and due to their unphysical implications for the dif-
ferential cross sections, we have decided to correct for the phase factors by shifting
the phases to replicate the J = 0 FRESCO data. This produces similar phases for
all J values.

94



Chapter 7

TDCCWP differential cross section
results

In the previous chapter, we established the need for extrapolation techniques for
the S-matrix elements in order to generate sub-barrier elements with some accuracy.
We compared this to the FRESCO method, which produced qualitatively similar
results to ours within reason. Notably, the TDCCWP results included a constant
phase difference that is not accounted for in the FRESCO calculations. Since this
prevents the convergence of the elastic differential cross sections, we correct for the
phase factor in the S-matrix elements. Now, in this chapter we will investigate what
the differential cross sections look like using our method.

7.1 150 + ¥ Sm collisions

7.1.1 Inelastic transition probabilities

We define the inelastic transition probability as Pg.(E) = |S5E(E, J) }2. The inelas-
tic transition probability is the probability of the transition from entrance channel
ai to exit channel Gf, for a specified F and J. We use equation (5.7) to calculate
the inelastic transition probabilities, with our fitted S-matrix elements from our cal-
culations of equation (5.11). We will focus on energies close to and above the barrier
as this is a novel result, which conveniently avoids errors due to the extrapolation.
Whilst it may seem like these results ought to be in the previous chapter, they will
help us in explaining an interesting feature that appears in the differential cross
sections.

The inelastic transition probabilities as a function of E/Vj for varying J are shown
in Figs. 7.1 and 7.2. As J is increased, the overall probability decreases as a function
of E/Vg, due to a combination of the decrease in interaction time and the decay
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of the 3-J symbols used in equation (5.7). For energies below the barrier height,
as J increases Fig. 7.1 shows the development of a local maximum in the interval
1 < E/Vp < 1.05, and two local minima in the interval 0.9 < E/Vp < 1 in the 2%
transition probability. Fig. 7.2 shows a local maximum locating deeper below the
barrier energy in the 4" transition probability. In fact, these two effects coincide
with one another and produce a situation where the 4" transition probability is
very close in value to the 2% transition probability. This is shown in Fig. 7.3. Note
that this effect is present at £ ~ 66 MeV. To verify this, a time propagation of a
wave-packet with E; = 66 MeV and J = 30 was performed, and indeed we see in
Fig. 7.4 that the 4T scattering is at a similar order of magnitude to the 2% scattering.
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Figure 7.1: Inelastic transition probabilities for the 2% state in **Sm for varying .J.
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Figure 7.3: Inelastic transition probabilities for the 27 and 4+ states of 1**Sm. At
E ~ 66 MeV, the inelastic transition probabilities have similar values.
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energy from Fig. 7.3.
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7.1.2 Differential cross sections

In this section, we have chosen to focus on collision energies E = {59, 66,72} MeV,
and we include up to J = 30 in the evaluation of equation (5.2). These energies
are chosen to give a reasonable idea of how calculations perform for energies below
all barriers, energies above all barriers, and an intermediate energy. E = 59 MeV
is relatively close to energy values where the S-matrix calculations for each J are
accurate, but still within the extrapolated region. The other energies are outside of
the extrapolated region for all J. These specific energies have experimental data for
160 + 1528m, which can enable comparisons between the two nuclei if need be. For
the case of 10 + Sm, we focus on looking at the effect of varying the number of
channels.

Figs. 7.5, 7.6 and 7.7 show the differential cross sections for a varying number
of channels, with partial waves up to J = 30. For the single channel case, any
deviations from the Rutherford cross section are due to effects from the nuclear force.
In our case, these are a combination of the fusion absorption from the absorption
potential, and the effect of the presence of the Woods-Saxon potential. We can
use the single channel data as a baseline to more thoroughly discern the effects of
including the coupled-channels.

In Fig. 7.5, we can see that the introduction of channels to the calculation decreases
the scattering for angles larger than ~ 80°. The decreases in elastic scattering at
approximately 130°,150° and 160° coincide with increases in scattering in the 2%
and 47 differential cross sections. We can also see that as # — 180°, the differential
cross sections rapidly increase to large values, including the high energy analytical
result, which is shown as a black solid line. We see that the forward angle differential
cross sections are less sensitive to changing the number of channels at this energy,
which is what we expect since these differential cross sections originate from high
J value terms, which have higher barriers and prevent the two nuclei from getting
close enough to react significantly via the nuclear force at this energy.

For E = 66 MeV, Fig. 7.6 shows a crossing of the 27 and 4% curves, which is
consistent with the inelastic transition probabilities of Fig. 7.3 and the propagation
in Fig. 7.4. As the number of channels increases from one to two, between 6 ~ 90°
and 0 ~ 100°, we can see that the elastic scattering decreases. We could imagine
that for certain J values the introduction of a new channel provides a pathway,
where elastic flux can avoid fusion absorption by exciting into the new excited state.
This is because when the elastic state excites, the kinetic energy decreases due to
the rigid rotor potential and thus this newly excited state becomes less penetrative.
This can lead to an enhancement of the elastic scattering from the subsequent de-
excitation of this newly excited scattering state. If this effect is indeed present, then
it is less impacting when the number of channels increases from two to three, since
we do not observe any elastic scattering enhancement in Fig. 7.6 when the number
of channels increases in this way.

For £ = 72 MeV, Fig. 7.7 shows that the behaviour at high angles has diminished
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significantly, which is sensible since at these energies a majority of the nuclei will
fuse at this energy for all the J values that we consider. The difference between the
one, two and three channel cases at this energy is less significant, since at this energy
all the barriers up to J = 30 have been classically penetrated, and thus there is less
scattering. All of the energies show close to unity Rutherford ratio for small angles,
which is consistent with expected results. They also show that for small angles, the
majority of the 4T excitation originates from the 2%, since at low angles the elastic
differential cross section barely changes compared to the 27 cross section when the
number of channels increases from two to three.

Fig. 7.8 shows the Rutherford ratios for a much higher energy of 115 MeV. For any
amount of channels, the results from this should be very close to those from the high
energy analytical solution of equation (5.6). As we can see, the Rutherford ratios
are very close to the analytical solution at this energy, indicating our method for
evaluating equation (5.2) is correct.

7.1.3 Comparison to experimental data

We present a comparison to experimental data in Fig. 7.9, which shows the differen-
tial cross section as a function of energy for § = 175° for up to J = 30 partial waves.
There is not a strong agreement between the two data-sets, which is expected be-
cause 6 = 175° is a backwards angle, which means that low J values contribute most
to the scattering and thus the iso-centrifugal approximation is very inaccurate. Note
that increasing the number of partial waves does not help here, since the results are
converged for a very low number of partial waves.
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Figure 7.6: Same as Fig. 7.5, but for £ = 66 MeV.
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Figure 7.8: Same as the top half of Fig. 7.5, but for £ = 115 MeV, the highest
energy that we have used in our data-set. The elastic differential cross sections
show a similar pattern to the high energy limit (i.e. equation (5.6)).
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Figure 7.9: Comparison to experimental data of the elastic scattering for 8 = 175° for
up to a varying number of partial waves. Results are converged for very low J values,
and thus all four data-sets are the same. Experimental data from reference [60].
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Table 7.1: Model parameters pertaining to the coupled-channels Hamiltonian for
the 0O and '%2Sm collision. The Woods-Saxon well depth was chosen to produce
the barrier height of 59.53 MeV (the barrier height is from reference [60]). The
other Woods-Saxon, imaginary potential, 84 and coupling radius parameters are
from reference [61]. The 5 and €; parameters are from the nuclear data tables in
reference [62].

Variable Value Description
Vivs/MeV 69.5 Woods-Saxon well depth
Twso/fm 1.20 Woods-Saxon well centre
aws/fm 0.65 Woods-Saxon well range
€a2/keV | 121.7817 Second excited state energy (271)
Ba 0.3064 Quadrupole deformation parameter
B4 0.037 Hexadecapole deformation parameter
Tcoup/f01 1.1 Rotational coupling radius

7.2 160 + B28m collisions

This section is dedicated to the results from %O + %2Sm collisions. This will include
a comparison of the differential cross sections with both the FRESCO method and
experimental data. Table 7.1 contains the coupled-channel parameters for these
collisions.

7.2.1 Differential cross sections

Whilst summing partial waves to J = 30 gives a good idea of the fusion process, it
is not sufficient to explain scattering processes. Therefore we calculate the S-matrix
for J > 30 to see what effect it has on the differential cross sections. However,
the computations are extremely time consuming for J > 30, so calculations only
up to J = 45 have been calculated in the allotted project time. Therefore, whilst
experimental data exists for several energies, we only compare our TDCCWP data
to the experimental data for £ = 59 MeV. This is because the results for the inelastic
S-matrix elements are closer to convergence, since the reflection probabilities at this
energy are approaching zero, which makes the summand in equation (5.2) go to zero.

A comparison between FRESCO, TDCCWP and the experimental differential cross
sections is shown in Fig. 7.10. There is a striking resemblance between the differ-
ential cross sections for both of the theoretical methods. In fact, from the figure we
can see the inelastic differential cross section results for up to J = 45 partial waves
approximately differ by a multiplicative constant for many angles. This is sensible
because the FRESCO calculations do include multiplicative form factors, which can
account for the difference. Also, the TDCCWP method produces differential cross
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sections several orders of magnitude lower than both FRESCO and the experimental
data. This is expected since, without the iso-centrifugal approximation, we expect
that at least initially that the spin-orbit interaction will ‘pump’ the initial 0" ground
state into the excited states. Whilst the FRESCO results were generated with some
parts of the iso-centrifugal approximation, it is not a true iso-centrifugal approxima-
tion due to the inclusion of the spin-orbit coupling form factors we discussed before.
Overall, the TDCCWP differential cross sections at this level behave qualitatively
similar to the FRESCO calculations, and are quantitatively smaller in size which is
what we expect without spin-orbit coupling.

7.2.2 Can converged FRESCO calculations explain the ex-
perimental data?

Since the two theoretical methods produce similar results, we would like to know if
the FRESCO calculations, when they eventually converge, can explain the experi-
mental data. Using FRESCO, we made a calculation including up to J = 700 partial
waves, shown in Fig. 7.11. Granted, since the FRESCO calculations involved some
of the iso-centrifugal approximation, it is not expected to reproduce these results.
Nevertheless, Fig. 7.11 shows a reasonable agreement with the experimental data,
particularly in determining the inelastic differential cross sections. However, since
the iso-centrifugal approximation is meant to perform well when explaining high J
values, it is interesting to see that the forward angles are not completely explained
when we expect them to be. On the other hand, the FRESCO calculations we
have used do not include higher rotational states than the 47 in the ground state
rotational band, so coupling to higher states such as the 6 and 8" states may be
necessary for better agreement.

7.3 Summary

We observed that our differential cross section results were consistent with results
from the TISE and the analytical limits of our differential cross section expression.
We used the S-matrix elements to generate the inelastic transition probabilities,
which are both a novel result for time-dependent nuclear physics and were able to
identify a crossing of the 2 and 4% levels at E = 66 MeV, which was reflected in the
differential cross sections. Overall, more partial waves are needed to investigate the
differential cross sections, but they are difficult to obtain using our method due to
heavily time consuming calculations from the time-dependent method. Upon com-
paring a fully converged FRESCO calculation to the experimental data, we can see
a very good agreement between them. Since the TDCCWP method performs simi-
larly to FRESCO, this gives us hope that the TDCCWP method can perform well in
calculating these differential cross sections, subject to using a proper Hamiltonian,
and a high number of partial waves to ensure convergence.
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Figure 7.10: TDCCWP and FRESCO differential cross section calculations com-
pared to the experimental data. The results were generated by summing partial
waves up to J = 45. Experimental 0" data are from reference [63], and the 2% and
4% results are from reference [64].
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Chapter 8

Conclusions and future work

The time propagation of the wave-function in chapter 4 successfully reproduced the
correct wave-function normalisation and energy conservation before the absorption
potential was introduced, indicating that the error in the time propagation was
negligible. We began by using the window operator in order to calculate energy
resolved quantities, but opted to switch to an S-matrix method, since the S-matrix
was needed to calculate the differential cross sections that we wanted to reproduce,
and there was concern that the window operator parameters would not allow for
accurate energy resolution in every circumstance we wish to simulate.

The TDCCWP method with both the window operator and S-matrix method is
able to reproduce transmission coefficients to the similar level as the TISE for a
wide range of energies and angular momenta, up to several MeV below the Coulomb
barrier. The results for the differential cross sections produced at £ = 59 MeV for
160 + 1529m and at 6 = 175° for 0 + '%*Sm did not reproduce the experimental
data. The near converged inelastic differential cross sections for 10 + 32Sm were off
by several orders of magnitude. We predict that both of these results will improve
with the introduction of spin-orbit coupling, which can provide an increased flux
of the inelastic 2 and 471 states by decreasing the orbital angular momentum L.
Decreasing the orbital angular momentum affects the position of the barrier, which
can in turn influence the inelastic excitations.

However, there are also other technical issues unrelated to the choice of Hamiltonian
that need addressing for the most accurate results. There are two main technical
problems that the TDCCWP method faces when trying to reproduce the scatter-
ing differential cross sections. The first is the inability to propagate sequentially
lower and lower energy wave-packets for accurate low energy S-matrix element gen-
eration. These low energy S-matrix elements are needed for all J value terms in
equation (5.2). Inaccurate below-barrier calculations are an ongoing problem in
nuclear physics and more concentrated effort is needed there. In this work, we at-
tempted an extrapolation method that was justified using the qualitative nature of
low incident energy wave-packets, which performs reasonably well compared to the
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data from FRESCO. The second problem is that partial waves up to J = 45 are
insufficient to reproduce the scattering data for 60O + 152:1%4Sm_ Whilst expanding
up to this angular momenta is sufficient to describe fusion, we will need to go to
higher J values to reproduce scattering data, which is important in giving us a more
complete picture of the reaction.

These two problems, if addressed satisfactorily, can provide us with a very powerful
time-dependent method to address nuclear reactions. This is because the physical
behaviour of the nuclei enter solely through the Hamiltonian, and not through the
propagator. Specifically, the calculation of the S-matrix elements can still be per-
formed in the body-fixed frame, and in theory reproduce the space-fixed S-matrix
elements for the inert projectile and excitable target; after accounting for Corio-
lis/tidal effects in both the Hamiltonian and differential cross sections. These are
discussed in the future work section below. From this work, we have seen that
the TDCCWP method for nuclear physics can reliably expand the complexity of
the Hamiltonian without compromising the dynamics, for a range angular momenta
that are sufficient to describe the fusion process. This was demonstrated when
the number of channels was increased, and the results from the time propagation
remained as accurate as the single channel case. The major bottlenecks for this
method are in the calculation of observables such as the differential cross sections.

In the future work section below, we will explore ideas that help find the S-matrix
elements for higher J values, the theory behind body-fixed spin-orbit coupled dy-
namics, some of the concepts used in finding potentials to describe MNT in the DNS
framework, and finally a powerful dynamical method that can include dissipation
into the Hamiltonian, without having to model a density matrix system. With these
implementations to the method, we will be able to begin describing more involved
fusion scenarios between heavy nuclei that can go on to make SHE. Overall, this is a
promising step in the direction towards an accurate few body reaction theory, that
can describe a wide range of nuclear physics phenomena in the context of heavy-ion
fusion.

8.1 Future work

8.1.1 Artificial neural networks

As we described in Chapter 7, it becomes very difficult to produce results for J >
45, which are vital to describe the scattering cross sections fully. This can be
addressed by using artificial neural networks (ANN) to learn the pattern between
the S-matrix elements and how it varies with changing J [65]. The motivation
behind using an ANN is the observation that the S-matrix elements for differing
J all share common characteristics, namely - local minima and maxima, as well as
the asymptotic behaviour at high and low energies. The extent of similarity can be
seen in Fig. 6.21, for instance. The features (inputs) that should be given to the
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ANN are properties of the barrier such as barrier height, width and position, as well
as the ratios of the energies to the barrier height. For the output layer, the ANN
should try and learn the S-matrix elements.

In the case we have considered in this work, semi-classical methods can be useful to
check the results of our calculation, since we wish to use the ANN to extrapolate
to high angular momenta where semi-classical methods are applicable. We do not
suggest using semi-classical methods instead of these methods, because for more
involved calculations such as for MNT the TDCCWP codes may break down at a
lower angular momenta, which requires a quantum treatment in order to explain.

8.1.2 Spin-orbit coupling Hamiltonian and scattering ampli-
tudes

We introduce the spin-orbit/tidal coupling into the Hamiltonian of equation (2.9)
by expressing the orbital angular momentum operator L = J—1. The Hamiltonian
with this tidal interaction is

. —R219 ,0 (J-I?® I . .
H = ———AQ A Ao V coup- 8.1
2u 72 ar or + 272 otV Veow (8.1)

In the space-fixed reference frame, one solves the Schréodinger equation by finding the
eigenstate of equation (8.1), which involve a coupling of the spin and orbital angular
momentum states via the Clebsch-Gordan coefficients [48]. These calculations can
be fairly involved, since one has to consider both the magnetic projections as well as
the momentum quantum numbers, for both the spin and the orbital momentum. To
describe scattering phenomena in nuclear physics, which requires a high amount of
partial waves, these calculations would be very involved even in the time-independent
frame-work. Fortunately, serious efforts in the field of quantum chemistry have been
made that can reduce this time, using a clever trick to describe the space-fixed states.

The body-fixed states can be described as space-fixed states that have been rotated
onto the body-fixed axis, which is equivalent to the axis of the inter-nuclear distance
[48]. This leads to an expression of the space fixed states |56]

(7 P Waimres (1) = Y (27 + 1) Dityy, (e, 5,7)
JI,K (8.2)

X Y},K<67 O) <T7 -[7 K|waz,J(t)> )

where 7 are the internal coordinates of the target nuclei, D is the Wigner D-matrix,
a, 3, are the Euler angles, m,; is the initial spin projection number and K is the
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projection of I on the body-fixed axis, also known as the tidal spin eigenvalue [66]
or simply as the projection number [56]. The tidal spin K ranges from —min(J, )
to +min(J, I') [56]. The wave-function (r, I, K|, s(t)) is like our body-fixed wave-
function that we have found in this thesis, except that it depends on this additional
tidal projection K. After substituting equation (8.2) in the TDSE, and integrating
over the Euler angles, we get an expression for the time dependence of the body-fixed
states [56]

. d
_mE (r, 1, K|t s (1)) = Z HPT (r 1K, I' K J) (r, I, K |thai s (1)) (8.3)
rI' K’
where
—h%1 0? hQ(J(J+1)—2K2+[(I+1))
HB (r I, K, I''K',J) = (—-—
(’f’, y Ly 4y aJ) ( 2,u 7’87’2T + 2/1,7“2
—+ V(T’) + 61)5]]/5]([(/
+ Vir(r)ox s (8.4)
32
+ 2m’2()\+(J’ K))\+(I,K)5[I/(5K+1K,
+A_(J, K))\_(I, K)5U/5K_1K,),
and

M(LK)=+v/(J£K+1)(JFK). (8.5)

We can solve equation (8.3) using the same numerical recipes used in this thesis, by
including an extra basis in K. The space-fixed S-matrix is given by [56]

Ss(f(Ea J, L) = Z \/2L—|— 1\/2[/&1 +1x (_1)K+m1m_

my ., K

ag 1 J L I J (8.6)
X ( 0 my, —Mr, ) < 0 K -K ) S o (E, J, K)7

which is the general form of the expression we used to calculate the space-fixed
matrix elements in equation (5.7). For the inert projectile and for no change in
mass of the target and projectile after the reaction, the differential cross sections
are given by |59
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daﬁa(E,é’) . 1

o Z ‘fMB:Ma (E7 9) ? (87)
o (@Is +1)
where
Fatginso (B, 0) = 01,1, Je(0) + > Ayt Pr ™" (cos(0)), (8.8)
Lgy
and
L
A== Y (LaiOlaMo|TM) (LM, 15 Mg| T M, )
LM,J,MLM
2 kg )
e kﬁl exp(i(0a,L., — 0ap)) exp(i(oL,, — 050)) (8.9)
120, + 1
(50,8_855(E7 J7L,3f)) T}/C(Lﬁf’MLﬁf)'
where
YM(0,¢) = Y.(L, M)P(cos(8)) exp(iM ). (8.10)

If 1,; = 0 like in our calculations, then M, = 0, and therefore (L,;01.;M,|JM,) =
(La;000|J0) = 6y, 7, which allows us to eliminate the sums over both M, and L,;.
This yields the expression for the differential cross section

dOﬁa(E,e)
10 %ﬁ ZIfMM (8.11)
where
frrgia(E,0) = dapfe(0) + ZA%;QPLM cos(6)), (8.12)
Lgs
and
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A== > (LppMy, 15 M| JM,)

J,MLM,

27 kﬁf
ikai kai

(8.13)

exp(i(0a,; — 0ap)) €Xp (i(O’@Lﬁf — 05,0))

2J +1
47

(505 - ng(Ea J, Lﬁf)) YC<Lﬁf’MLﬁf)'

Although equation (8.13) assumes that the projectile is inert and the target starts
in a spin 0 state, it can be generalised for any initial state and for a rotationally
excitable projectile too [59]. However, we are not currently aware of a published
extension to the body-fixed Hamiltonian method that incorporates the excitable
projectile. Nor are we currently aware of the form of the coupled-channel potentials
for target-projectile-orbit spin coupling in the nuclear physics context. This will
need to be studied in further detail in order to fully generalise the model.

8.1.3 DNS and MNT

A potential that is dependent on the inter-nuclear distance r, the excitation levels
and the mass asymmetry coordinate can be generated by re-normalising the sum
of single particle energies from the asymmetric TCSM [67]. These potentials have
a vanishing r dependence as r — oo, and for r — 0 the mass asymmetry varies
without changing r or the excitation levels (at least in general) [67].

In order to calculate the mass asymmetry, the two nuclei are divided into two regions
- the projectile region and the target region. The mass asymmetry is then calculated
by integrating over the many-body wave-function in each region [67], i.e.

n=(Y[€ey), (8.14)

where

~ 1 / ~r =\ 13 / ~ 3 )
€= —"— p(r)d°z — p(r)d’z |, 8.15
AP + AT ( RegionP ( ) RegionT (“) ( )

where regions P and T are the projectile and target regions respectively, and p(7)
is the many-body density operator. This potential can then be used in our time-
dependent method to model MNT reactions.

More modern advances have been made in the TCSM, which are based on using
two spherical Woods-Saxon potentials, instead of two harmonic oscillator potentials
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[68,69]. For example, the TCSM potential experienced by neutrons can be written
as [68,69]

e = Y exp(—inwk) Vavexp (invk). (8.16)

Ne{T,P}

where N is either the target or projectile, 7y is the location of the centre of nuclei
N, k is the single particle reciprocal distance operator, and Vi is a Woods-Saxon
potential including single particle spin-orbit coupling, i.e.

N drN -

V() = v (750 - 0 (5 5) ). (817)
r dr

where —V{ is the Woods-Saxon well strength, ky is the strength of the spin-orbit

coupling, and fN(r) is a dimensionless Woods-Saxon potential given by

) = !

- , (8.18)
1+ exp ((r — TONAll\I/S)/aON>

and similarly for f3,(r). The single particle potential operators Vi are expanded in a
truncated single particle oscillator basis [68,69], which has the radial wave-functions

(r|nl)y = hgég@nl(x), where & = 1 /hose, Pose = 0.84TONA11\I/6 fm [69], and

Opy(z) = \/ T +2l”!+ 5 /2>$l exp (%) LH1/2(52), (8.19)

where L,/ 2(x2) is a Laguerre polynomial. The momentum wave-functions are given
by (k|nl) = (—1)"(i)lh§,§3<bnl (€), where & = hog k. Using this basis, the operator Vi

can be approximated as |68, 69|
W >IN VRN, (8.20)
wre{nljm}

where Vi = (N, y Vx IN,v). The solution to the TCSM problem is the solution
to [68,69]

Z Z 5NN'5M/ - Z <N7 :U" GO(E) €xp <i<fN - fN’)]Af) ‘N/, V> VVI\:/ AN';/ = 0,

w €{nljm} N'e{T,P} ve{nljm}

(8.21)
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where Gy(FE) is the free Green’s propagator for single particles, given by

Go(E) = (E - hzl?) 7 (8.22)

2m0

where my is the single particle mass, and

Ax = (N, 1l exp (1le%> 1), (8.23)

where

P)=Go(B) > Y ViAwexp(-innk)INg) . (824)

w,ve{nljm} Ne{T,P}

These states are used to generate the TCSM potentials for varying Ar and Ap, which
can be linked to the mass asymmetry coordinate. The OWL code in reference [69]
is available for this purpose.

8.1.4 Stochastic surrogate Hamiltonian (dynamical dissipa-
tion)

The absorption potential quickly dissipates and destroys all of the quantum infor-
mation inside the fusion region for the sake of preventing the penetrated flux from
escaping and affecting the scattering data. If we are interested in looking at the
fusion mechanism for times after barrier penetration, we can circumvent this lim-
itation by replacing the absorption potential with dynamical dissipation. In this
case, the dissipators/oscillator bath and their interaction with the environment are
intended to simulate the interaction between the collective degrees of freedom of
our Hamiltonian with the non-collective, such as single particle motion. The pro-
cess should be Markovian (i.e. no fluctuations into the collective degrees of freedom
from non-collective [39]), since for heavy ion collisions the number of non-collective
degrees of freedom vastly outnumbers the collective, so it is statistically unlikely that
fluctuations of this type can occur. As discussed before in section 1.5.3, dynamical
dissipation is often included in time-dependent density matrix methods, which are
computationally expensive due to the increased dimensions of the density matrix
relative to a wave-function.

One method that can be used to model dynamical friction using a wave-function is
the stochastic surrogate Hamiltonian method [70]. Instead of coupling the collective
system to the entirety of the non-collective/bath degrees of freedom, the collective
system can interact with a subset of said bath. This subset is known as the primary
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bath, which is typically a set of two level systems with some frequency w; [70]. The
primary bath may then interact further with a secondary bath, which does not inter-
act with the collective system. The computational efficiency is gained by modelling
the interaction of only the system and primary bath, and effectively modelling the
primary-secondary bath interaction by swapping the primary and secondary bath
states at random times [70,71]. This is commonly achieved by replacing the phase
of a swapped primary bath oscillator with a random phase [70,71]. A swap occurs
when [71]

exp(—FjAtj) < P;wap7 (825)

where P57 is the stochastic probability of swapping for the j'* oscillator, At; is the
amount of time since the last swap, and I'; is the swap rate. In order to stochastically
swap the primary and secondary bath states, P;"*" is set to a random number on
initialisation and after a swap occurs [71|. The swap rate is expressed as [71]

Iy =7J(w;), (8.26)

where 7; is the life-time of the j™ bath mode and J(w) is the spectral density.
The value of 7; controls the extent of Markovianity of the propagation, with high
life-times leading to non-Markovian dynamics, and low life-times to Markovian |71].

Using a time propagator with the stochastic surrogate Hamiltonian leads to the
generation of a stochastic state |¢(") (t)> The density matrix of the collective system
is then given by [70]

A [ RACA .
p(t) = Trp (F ; | (t)) (0 >(t>|> , (8.27)

where Trg denotes the partial trace over the primary bath and N is the total number
of stochastic states. In the limit Ny — oo, the density matrix produced equation
(8.27) for a Markovian system is equivalent to that from Lindblad dynamics.
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Appendix A

Chebyshev polynomial propagator

This appendix is dedicated to a mathematical derivation and motivation of the
Chebyshev polynomial series for the curious reader, followed by the application of
the polynomial series to the problem of quantum dynamics. For those who are solely
interested in the form of the time propagator that we are using, see sections A.3 and
beyond.

A.1 Derivation of the Chebyshev polynomial series

This derivation follows the work in reference [72]. Suppose you have a analytical
function f(z) with a domain = € | = [—1,1] (this domain is known as the unit
interval). We would like to use a series expansion of f(z). A very general series
expansion we may consider is the Laurent series. However, we cannot directly use
a Laurent series expansion of f(z), because the domain of the Laurent series is the
unit circle in the complex plane U.

A.1.1 Joukowsky map

Consider the map Mj : U +— | that maps the unit circle in the complex plane U to
the unit interval |, which is defined as |72]

My(z) = (z + 1) , (A1)

1

2

for z € U C C. This is known as the Joukowsky map. We note that for z € U, z* =
and
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1/1

My(=") = 5 (; + z) = Mj(2). (A.2)

We are interested in looking at the inverse map M L' I = U, which will allow
us to map values of x to values of z, which can then be used in a Laurent series
expansion. Since Mj(z) has exactly two elements in U mapping to one in | (from
equation (A.2)), it will have two inverse maps. By setting M;(z) = z, we rearrange
to find

2 —2224+1=0, (A.3)
= zy =z + Va2 — 1= M; (). (A.4)

For the remainder of this derivation, we will carry out the expansion using the
inverse map M; ().

A.1.2 Constructing the polynomial series

Consider the analytical function f(x) that has a domain x € |, which has the same
values as the function g(z) that has a domain z € U. To re-iterate, we wish to map
the values of x to values of z, and then use these values of z in a Laurent series. We
define [72]

fl@)=g(z)= Y gmz" (A.5)

m=—0o0

where we have expanded ¢(z) using the Laurent series, and g, are the Laurent series
coefficients given by [72]

1 1
= — M dz. A.
Im o] g(2)z dz (A.6)

Note that since the Joukowsky map is analytical, the analyticity of g(z) originates
from f(z) in general, so in our case since f(x) is analytical, g(z) is analytical as
well. Substituting z = M; ! () into equation (A.5) yields

gMH (@) = Y g (M (2))™ (A7)
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Equation (A.7) is the expression we will expand to yield the Chebyshev expression.
Firstly, we can simplify the sum via g,, by noting

o) = FOD () = F(M(5)) = o(5). (A3)

z

using the property from equation (A.2). If we define £ = 1| we can see that

2

1 1
m T 5 . T d
g 2mi 9(2)2 :

B N R A5 IR
= 5 PG

=T Gl (A9)
= o o€ ae
= GJ_m-

Here we have absorbed the minus sign since the contour integration is closed. Using
the result of (A.9) in (A.7) yields

oM @) = g0+ 3 g (M @)™ + (M @) ™). (A10)

By using M;}!(z) = 2 £ V2% — 1 = 2 £iv/1 — 22, we can show that (M;'(z))" +
(M;!(x))™™ is a polynomial of order m for m >0

(A.11)

since the odd j terms in the (M I 1(x))m sums cancel out during the addition. Note
that the middle equation of (A.11) used the property M; ' (z)M;;'(z) = 1. Now, we
define these polynomials as
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T,(z) = - , (A.12)

= F@) = g0+ 3 2nTn(@) = 3 fuTn(a), (A.13)

where f,, = (2 — 9,n0)gm and d,,0 is the Kronecker delta. The polynomials T, (x)
are known as the Chebyshev polynomials. The first two polynomials and their
recurrence relation are given by

To(x) =1, (A.14)
Ti(x) = =, (A.15)
To(z) = 22T 1 (x) — Thao(x). (A.16)

With this simple recurrence relation, the remaining work to approximate the func-
tion f(z) is calculating the contour integrals in the coefficients f,,.

A.2 Chebyshev series of a complex exponential

Consider the complex number function f(x) = exp(iaz), where a € R. We would
like to know the coefficients of the expansion f,,, which involve the g,, integral from
equation (A.6). Using the Joukowsky map M;(z) = z, we can express ¢(z) as |72]

o(2) = £(o) = FO() = exp (5 o+ D) (A17)
Now consider
iTe} 1 . i
5(z ;) = 5(12 + ;)
_ %(iz - é) (A.18)
a,, 1
= E(Z - ;)7

where 2z’ = iz. Changing variables from z to 2’ leads to the following integral for g,,
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o N—m 1 a I i I—m—173_/
= ()5 e (G- D))o a: o

where J,, are the Bessel functions of the first kind, a prominent and well studied set
of mathematical equations. Thus, f,,, = (2 — 0n0)i™ Jin () and from (A.13) we have
the result

exp (io) = Y (2 = 6n0)i™ Jn (@) T (). (A.20)

m=0

The power behind this choice of polynomial basis for complex number functions is
realised once one considers the coefficients f,,. For m > «, the Bessel functions
exponentially decay, so f,, decays too and thus the series converges. The series can
be effectively truncated, provided that the final value of the summation index m is
some amount greater than a.

We can replace the variable x with an operator z, provided that the eigenvalues of
the operator z lie in the domain |. This allows us to express functions of operators
with a Chebyshev series, such as the quantum mechanical time propagator.

A.3 Quantum mechanical time propagator

Consider a time independent Hamiltonian H. The time propagator that takes a
state from a time ¢ to t + At is given by [73]

U(t + At t) = exp<_ﬂZAt>, (A.21)

In this form, we cannot use the Chebyshev expansion. This is because, in general,
the Hamiltonian has eigenvalues that lie outside of the domain of the Chebyshev
series. We can scale the Hamiltonian using the normalised Hamiltonian H,opm [74]

N H.I-H
Hyorm , A.22
il (A.22)
where
/\max :t /\min
H = St (A.23)
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and Apax, Amin are the maxirr}um and minumum eigenvalues of H respectively. This
ensures the eigenspectra of Ho, is within the domain of the Chebyshev polynomi-
als. After some rearrangement we find

e+ 00 = A

h
— exp —1H+]At exp lH_HnormAt <A24)
h h
—1H+At ~
= exp< 3 > exp (104Hn0rm>,

where a = H‘hm, and we have simplified the first exponential. Using the result

derived in (A.20) we can express the second exponential in equation (A.24) as

exp (mﬁmrm) - i(z a0 T (@) T (Elorm)- (A.25)
m=0

Putting it all together, we have

N —iH{ At «— . H_At -
U(t+At,t):exp(T) D (2= o) (=) T (Hiorm). (A.26)

m=0

A.4 Absorbative quantum propagator - modified Cheby-
shev method

The propagator in equation (A.26) is a unitary operator, and should conserve the
wave-function norm for all times to a high degree of accuracy. When we change the
closed system to an open one, the propagator for the relevant degrees of freedom is no
longer unitary in general. With an open system Hamiltonian like this, we no longer
conserve the norm of the wave-function, and thus we cannot use the propagator we
have derived above to describe its dynamics. For example, in this work we focus
on including an absorption potential in order to explain the phenomenon of nuclear
fusion, and thus our Hamiltonian has the form HCRM = HCRM0+Hop = HCRM0+1W
where HCRMO is our baseline nuclear collective radial motion Hamiltonian and Hop
is an optical potential.

Following the work of V. A. Mandelshtam and H. S. Taylor [75], we find that we can
build the effect of an absorption potential into the Chebyshev propagator by using
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damping factors. These take into account the effect of the optical potential exactly,
and uses only the baseline Hamiltonian Heprao in the Chebyshev expansion, which
ensures the domains match. We introduce a family of polynomials {@Q,,} with the
following recurrence relation

Qo(#) =1, (A.27)
Qi(#) = ez, (A.28)
Qu () = € 7(28Qm-1(2) — ¢ Qm2), (A.29)

where %4 is the damping operator that is related to the optical potential. When
using these damping factors, a calculation of the Green’s function of the absorbative
system using the modified Chebyshev polynomials yields the relationship between
4 and H,, [75]

~

H,, = H_ (cos(©)(1 — cosh(¥)) —isin(O) sinh(%)), (A.30)

where

B — H,
© = arccos (H—)’ (A.31)

and F; is the energy of the initial state being propagated. For our choice of ﬁop =
iW, we can ignore the real part and solve the imaginary part of (A.30) to obtain 4.
The absorbative time propagator is given by

U(t+ At t) = exp (%ﬁt) Y- 5m0)ime(H_TAt)Qm(F[mrm). (A.32)

m=0

where
2 H—i—j - FICRMO
Hnorm — 5 A33
il (A.33)
and
>\max :]: >\min
H, = St (A.34)
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where Apax, Amin are the maximum and minimum eigenvalues of fICRMO respectively.
If the optical potential is not present, then from equation (A.30) we can see that the
operator 4 becomes null, and then the time propagator in equation (A.32) becomes
identical to that of equation (A.26).
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Appendix B

Derivation of the body-fixed
Hamiltonian (extra details)

This appendix includes the remainder of the derivation of the body-fixed Hamilto-
nian from chapter 2.2. We begin by repeating equation (2.7), and replace the orbital
angular momentum L with the total angular momentum J as per the iso-centrifugal
approximation, which yields

W (r,0,0) = Ry s (r)Y;™ (0, 0). (B.1)

Now we can expand and simplify the expression for (7] H ’\I/;”§>, in order to remove
the angular dependence

32

n,J> :Eﬁg r 67“ ) YJ (07¢)
(ﬂJ+nW
+ - @@

e +V(r)+ en) R, ;(r)Y;"(8,9)

(B.2)
+ Z Vnn/(T)Rn/,J(T>Y}nJ (97 ¢)
~ By (),

where Vi (1) = (r, I| Veoup |7 L) and €, = W from the rigid rotor model [3].

We can divide out the angular dependent part Y;"/ (6, ¢) out of equation (B.2) which
yields
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(ﬂHhﬂZ}_—Wj;g ﬁa&ww>_+ J(J +1)h?
Y(0,¢)  2u r2Or or 2ur?

+ ) Vo (7) R 5 ()

- E\IIRn,J(T)a

+V(r)+ en) R, 4(7)

(B.3)

Substituting ¢, j(r) = rR,, ;(r) into equation (B.3) and multiplying by r, we find
that

Putst) = L2 (122 (12)))

+(£%%ﬁwwxym0¢wm (B.4)

+ Z Vnn wn’ J\T

Now consider

L2 (2 () = 22 (2 st - i)

e o2 (B.5)
= 52 Wna(r)) = 55 (Wna(r).
Substituting equation (B.5) into (B.4) yields the result
—h2 82
Byt (r) = P (¥, (1))
J(J + 1)k
+ (—2W’2 +V(r)+ 6n> V7 (1) (B.6)

+Zvnn n’J

= <7a| HCRM |wn,J> )

where ﬁCRM is the Hamiltonian operator for the coupled channels radial (or collec-
tive radial motion) states, given by
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where kcpy = 1

or”
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Appendix C

Fourier grid method

This appendix details the Fourier grid method, which is used to numerically compute
the action of the Hamiltonian FICRM on a numerical state. This involves splitting
the Hamiltonian into two parts. Consider the Hamiltonian in equation (2.8). We
can express this Hamiltonian as

Hern = Herwo + W, (C.1)
where
Hermo = Kora + Vorao, (C.2)
and
. h2k2
K — _ “ORM C.3
CRM ST (C.3)
where kory = i% and Vepuo are the remaining real potentials. This is a useful

splitting of ]:ICRMO because all the potentials in VCRMO are diagonal in radial position
(i.e.: <r', In‘ Vermo |75 1) = Vermo(r,n) if 7 = 7" and zero otherwise), where-as the
kinetic operator K. CRM 1S not.

Suppose we know the wave-function of the collective radial motion at time ¢, and
we would like to find the wave-function at time ¢t + At. Using the results derived in
appendix A.4, we can express the time propagated wave-function as
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(i + 30) = esp( ) 50— ) () 1] Q) 6110,
(C.4)

where

] HJrj_I—:rCRMO

Hyorm = T (C.5)

We must find the matrix elements (r| Qm(Huorm) [¢n.s(2)) for every m in the Cheby-
shev summation in equation (C.4). Using the modified Chebyshev recurrence rela-
tion in equation (A.29), these elements can be expressed as

<7°’ Qm(ﬁnorm) ’¢n,]<t>> = ef'y(r ( < ’Hnoerm 1( norm) ’wn J( )>

C.
) (1] Qs s (). 0

where we have used the fact that the operators 4 in equation (A.29) are diagonalised
in the radial coordinate. The states Qm—2 |¥ns(t)) and Qum_1 |1, s(t)) are known
prior to the calculation of (r \Qm( norm) |tn.s(t)), and thus the only involved cal-

culation is that of (r |Hn0erm 1( norm) |95 (t)). Ultimately, from equation (C.5),
we need to calculate matrix elements

< ‘HCRMOQm 1( norm) ‘wn J( )> = <T| kCRMmel(ﬁnorm) ‘wn,J(t»

) i (C.7)
+ <T‘ VCRMOmel(Hnorm) |wn,J(t)> .

For brevity, we will refer to the state Qm_1(Hnorm) |Un.s(t)) as W > The
potential matrix elements are relatively trivial to calculate, and have the form

w (1)
), ol Veoup |1 L) (e[ 1 (#))

(I +1)R?
N 2412

. J(J+ 1R I
(r] Vermo W:Z;l(t» = (r| <(2/+2) + 2T + U> |

(C.8)
+e, + U(T)) e, t)

+va yWm (b,
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where Vegao = J(;:_TIQ)?’Z + % +U + \A/Coup from equation (2.8). The kinetic matrix

elements are more involved.

C.1 Kinetic matrix elements

In order to calculate the action of the kinetic operator, we need to transform into
momentum space. The eigenstates of this momentum operator are the same as the
eigenstates of the free-particle Hamiltonian, which have the relation

(k) — \/127 explikr), (C.9)

Performing a spectral decomposition of Kory on the kinetic matrix element yields

(1] Roomaa |5 (1)) = / "k {r| Kora [K) ([0 (6))

h2 00 .
ﬂ dk & (r|k) (k| n,Jl(t)>.

(C.10)

Equation (C.10) requires us to know the momentum wave-functions <k:‘1p::jl(t)>,
which can be found using a radial identity operator

(k| (1)) = / T ) e 0) (C.11)

Using equation (C.9), we can express equation (C.11) as

<k”1/12f;1( \/%/ dr’ exp(—ikr’) (r'| ) (C.12)

which is known as a forward Fourier transform. Performing a similar substitution
into equation (C.10) we find

h2
2V 21

477,“/ dk’/ dr’ k2 exp(ikr) exp(—ikr’) (r’ [y L(t)),
(C.13)

(r, I,| Kcrm [0 (1)) =

/ dk k* exp(ikr) (k|7 (1))
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which is known as a backwards Fourier transform. Collectively, equations (C.12)
and (C.13) outline a simple procedure in order to calculate the matrix elements
(r, I,| Kcru |47 (t)) from the wave-function (rlyr'(t)). Firstly, generate the
momentum wave-function (k| (t)) by performing a forward Fourier transform
from radial to momentum space. Then, multiply each element of <k|¢:?jl(t)> by k2,
and perform a backwards Fourier transform back into radial space.

C.2 Discrete Fourier transform

A powerful method to treat these Fourier transforms is to discretise the radial and
momentum spaces, so one can employ discrete Fourier transform methods. The
physical consequences of this is that now instead of the state |¢7’7;1(t)> being able
to occupy all momentum states k for k € [—o0, 00], it can only occupy states up to a
finite limit. As a consequence of this momentum cut-off, state ]w:{fjl(t)} cannot oc-
cupy radial states above a maximum radius 7,.x, and below a minimum radius ry;y.
This constriction of radius and momentum presents no problem for our method, since
the wave-packets can be both localised in radial and momentum space specifically
so that these conditions are met.

C.2.1 The Fourier grid method

The Fourier grid method consists of representing the radial and momentum coor-
dinates as grids of equidistant points [76]. Consider a discrete radial grid of points
separated equidistantly from one another, with the first point at r = r;, and the
last at r = rpa.c. The separation between adjacent points is given by

Tmax — Tmin
Ar = — N (C.14)
where N is known as the number of sampling points, which is equal to the number
of collocation points minus one [77|. The collocation points are another name for
the physical points in the grid. For example, if one physically draws 9 dots equally
spaced apart for their grid, the number of collocation points is equal to 9, and the
number of sampling points is equal to 8. Using our grid, we define the sampling
points 7; as

Tj = Tmin + JAT, (C.15)

where j € [0 .. N — 1]. For a discrete radial grid, the momentum space of the grid
is also a set of equidistant points [73,76,77|. These momentum grid points have the
form [77]
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ky = LAk, (C.16)

where Ak is the momentum separation and [ € [-(N/2—1) .. N/2]. The two
separations Ar and Ak have a relation |73]

27
= 1
AkEAr = N (C.17)

With this discretisation in mind, equation (C.13) now becomes

N/2 N-1
T K m—1 _th/{ZAT k;2 . ik m—1
<7°J> n’ CRM’¢J (t)> T 4x Z Z lexp(1 ﬂ’])exp( 1 lrj’) <7~j,’ 7 (t)>
H I=—(N/2—-1) j=0
h2 N/2 N-—1
= N Z Z ki exp(ikyr;) exp(—ikyry) (ro[wn s (t)) .

I=—(N/2—1) j=0

(C.18)

Here we have substituted in equation (C.17) in order to simplify the pre-factor. Now
consider

exp(ikr;) eXp(—ik’ﬁjf) = exp(iky(r; — T )
= exp(lklAr ji—17 >

g (C.19)
= exp(ik;Aryj) exp(—lklArj )
= exp(1AkATjl) exp< iAkArj?).
Substituting equation (C.17) into the rhs of equation (C.19) yields
exp(iAkAT;l) exp<—iAkAm"z> —exp( 1251 ) exp( —i2% (C.20)
N N ’

which is the form of the exponentials needed to perform discrete Fourier transforms.
Finally, we have the discrete kinetic matrix elements of equation (C.18)

> m—1 h2 Al = 27T l 27le m—1
(rj, In| Kcrm WJ (t)> 2MN Z Z k’z eXp €exXp N <7°j" n,J () -
—(N/2—1) j=
(C.21)
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In our codes, these discrete Fourier transforms are provided by the FFTW library,
which features fast calculation times and accurate results.
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