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Abstract. The transformation from initial coordinates (v, r) of the Vaidya metric, with light
coordinate v, to the more physical diagonal coordinates (t, r) is obtained and analyzed from
the point of view of global geometry. The exact solutions have been obtained in the case of
a linear form of the mass function m(v). In the diagonal coordinates under consideration, a
narrow region has been revealed near the apparent horizon of the Vaidya accreting black hole,
where the metric differs qualitatively from the Schwarzschild one and cannot be represented as a
small perturbation of the Schwarzschild solution. The global geometry of the thick photon shell
between the two (inner and outer) Schwarzschild regions is constructed and the corresponding
matching conditions are discussed. The propagation of light beams in the Vaidya metric in the
case of accretion is investigated and the time of the apparent horizon’s crossings is calculated.

1. Introduction
The Vaidya metric describes the space-time created by a spherically symmetric radial flow of
photons. This metric has the form [1-3]

ds2 =

[
1− 2m(v)

r

]
dv2 − 2dvdr − r2dΩ, (1)

where m(v) is an arbitrary mass function, and (in the case of accretion) v is the advance light
coordinate. If m(v) = const, the metric (1) describes the Schwarzschild black hole. We use
the units c = 1, G = 1. The Vaidya metric (1) has a number of astrophysical and theoretical
applications. For example, it is used to describe the quantum evaporation of black holes [4]
or the emission from astrophysical objects [5]. The Vaidya metric was also considered in the
studies of the gravitational collapse [6].

In this paper, coordinate transformation from standard coordinates of the Vaidya metric
(v, r) to diagonal coordinates is investigated. The explicit form of the corresponding coordinate
transformation is generally unknown [7]. However, in the case of a linear mass function, the
solution was obtained in [8,9], and all the metric coefficients were calculated. The goal of this
paper is to construct a global geometry for the Vaidya space-time, bounded by regions of pure
Schwarzschild geometry. Therefore, we consider the thick photonic shell occupying a limited
area along the radius.

After the transition to diagonal coordinates, we calculate the time by the clock of a static
observer (staying at r = const), during which a photon reaches the apparent horizon, and we
show that for some observers this time is finite.
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2. Vaidya problem in diagonal coordinates
We write the metric in the curvature diagonal coordinates (t, r, θ, φ) as follows

ds2 = f0(t, r)dt
2 − dr2

f1(t, r)
− r2(dθ2 + sin2 θdφ2), (2)

where f0(t, r) and f1(t, r) are some new functions. The light coordinate v in (1) is a function of
new coordinates

v = v(t, r̃), r = r̃. (3)

Substituting dv = v̇dt + v′dr into (1) and equating the coefficients to the corresponding
coefficients of (2), we get

f0 =

[
1− 2m(v)

r

]
v̇2, (4)

f1 = 1− 2m(v)

r
, (5)

and

v′ =
1

1− 2m(v)
r

. (6)

We consider the model with linear mass function

m(v) = αv +m0, (7)

where α > 0 characterizes the accretion rate. From the above relations, one can find a solution
in a parametric form. We present it here for the case α < 1/8. Denote y = 1− 2m(v)/r, then

r = 2αβ(t)Ψ(y), (8)

where the function β(t) ≥ 0 is determined by the boundary conditions,

Ψ(y) = |y − y1|
y1

y2−y1 |y − y2|
− y2

y2−y1 , (9)

and

y1 =
1−
√

1− 8α

2
, y2 =

1 +
√

1− 8α

2
. (10)

The function v is expressed through the parameter y as follows

v =
r(1− y)− 2m0

2α
. (11)

It is convenient to denote M(t, r) = m(v).
Differentiating (8) by t and substituting in (4), we get

f0 = β̇2(t)
1

y
|y − y1|

2y2
y2−y1 |y − y2|

−2y1
y2−y1 . (12)

The expression (12) together with f1 = y and (8) gives the solution for the Vaidya metric in
the curvature coordinates in parametric form, where y is the parameter. We see that there
are coordinate singularities at y = 0, y = y1, and y = y2. This means that a single diagonal
coordinate system is not enough to cover the entire space-time, and several such coordinate
systems are required. At an arbitrarily weak but non-zero accretion rate, there is a region
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near the BH horizon in which there are coordinate singularities, and the metric is not only
quantitatively, but even qualitatively different from the Schwarzschild one. This situation is
described in more detail in [8-9].

The metric coefficient (12) takes the simplest form if one introduces the new time dt̃2 = β̇2dt2.
Then one has β̇2 = 1, β = ±t+ const, where the sign should be chosen in each of the regions

−∞ < y < 0, 0 < y < y1, y1 < y < y2, y2 < y < 1 (13)

from the condition v̇ > 0. With this choice of t̃ as a time, the metric has the simplest form,
but in this case, however, it is impossible to extend the time line from the Schwarzschild metric
region to the region occupied by photons at all values of the radius r. Therefore, below we
consider another choice of the function β(t), with which we can match the Vaidya metric and the
Schwarzschild metric along the boundary of the photonic shell. This will allow us to speak about
the time when a photon crosses the horizon according to the clock of the external Schwarzschild
observer.

3. Matching conditions
We now turn to the discussion of the boundary conditions for the partial differential equation
(6), which otherwise can be considered as the matching condition. We consider the so-called
“thick shell”, when m(v) = const at v < v1 and v > v2, and in the interval v1 ≤ v ≤ v2,
the function m(v) grows linearly according to (7). Denote M1 = m(v1), M2 = m(v2), and the
special case with M1 = 0 is also possible. In the coordinates (t, r), this configuration means
that inside a certain radius r1 there is a Schwarzschild metric with the mass function M1, and
outside some larger radius r2 there is empty space and the Schwarzschild metric with the mass
function M2 > M1. In the interval r1 < r < r2, the space is filled with radially moving photons.

For the Schwarzschild metric with M1 = const, one obtains the following expression for the
light coordinate

v = t+ r + 2M1 ln(r − 2M1) + const. (14)

We perform the matching of time lines along the inner boundary of the photon shell v = v1 =
const. Matching the time lines is equivalent to finding a solution of the equations (6) passing
through the curve (14) with v = v1 = const. Let us denote the parameter y along the line
v = v1 = const as y = ξ1. The radius is an invariant and it is expressed at the inner and at
outer sides of the border as follows

r =
2M1

1− ξ1
= 2αβ[t(ξ1)]Ψ(ξ1), (15)

where time along the border is expressed from (14) as

t(ξ1) = v1 −
2M1

1− ξ1
− 2M1 ln

(
2M1ξ1
1− ξ1

)
+ C1, (16)

where C1 = const. The expressions (15) and (16) define β as a function of t in a parametric
form through the parameter ξ1, which has the physical meaning as y along the inner border of
the photon shell. The function β(t), obtained by numerical solution of both (15) and (16), is
shown at Figure 1.

Similarly, matching solutions along the outer boundary v = v2 = const, one has

r =
2M2

1− ξ2
= 2αβ[t(ξ2)]Ψ(ξ2), (17)

t(ξ2) = v2 −
2M2

1− ξ2
− 2M2 ln

(
2M2ξ2
1− ξ2

)
+ C2, (18)
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Figure 1. The function β(t).

where C2 = const. Moreover, the function β(t) remains the same as in (15), since it is given by
the metric inside the shell.

The compatibility of the matching conditions (15), (16) and (17), (18) is not trivial. Namely,
it is impossible to select the static Schwarzschild metric simultaneously inside and outside the
shell. In at least one of these areas, the metric should be non-static. This corresponds to the
following time transformation:

g00dt
2 =

(
1− 2M

r

)
dt2

dt̃2
t̃2 = g̃00dt̃

2, (19)

where the new g̃00 depends on t̃.
The study of the conditions (15) and (17) shows that the lines t = const inside the shell go

along the lines y = y1 and y = y2, and for y 6= y1,2 the parameters corresponding to the same
line t = const satisfy the condition ξ1 > ξ2. It is important that the line t = const enters the
line y = 0 with the infinite derivative v′ →∞, which immediately follows from (6).

4. Photon infall time
Let us investigate the incoming light rays and find the time of the photon moving to the
gravitational radius y = 0. For incoming rays from ds2 = 0 it follows v = const, which in
the coordinates (t, r) is written as dt = −dr/

√
f0f1. We take into account that in this case

M = m(v) = const. Substituting f1 = y and f0, we find the change of β as the parameter y
changes from some initial value yi to the current value of y:

∆β = β − βi = 2M

∫ yi

y

dx|x− y1|
−y2

y2−y1 |x− y2|
y1

y2−y1

(1− x)2
=

= M(1− x)−2F1

[
2;

y2
y2 − y1

,
−y1

y2 − y1
; 3,

1− y1
1− x

,
1− y2
1− x

]∣∣∣∣x=yi

x=y

, (20)
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Figure 2. Global geometry of the Vaidya-Minkowski space-time.

where F1[...] is the Appell’s hypergeometric function. From this expression it is clear that for
y1 6= 0 the change in the function β(t) is finite then the photon intersects the horizon. But we
need to calculate the corresponding time interval ∆t.

In the case of the simplest choice of a metric with β = ±t + const, that was discussed
earlier, the finiteness of ∆t immediately follows from the finiteness of ∆β(t). This finite time
is measured by an observer who is inside the shell, and the corresponding constant time lines
cannot be continued outside the shell to the Schwarzschild region for all values of r.

Now we discuss the value of ∆t when one matches the time lines inside the shell with time
lines in the Schwarzschild metric outside the shell according to the conditions (15), (16) or (17),
(18). An analysis done at the end of the previous section gives the following picture. If we match
the time lines inside the shell with the static Schwarzschild metric inside it, and examine the
approach of the photon inside the shell (v1 < v < v2) to the gravitational radius y = 0, then the
time lines of the internal static observer will be stick into the y = 0 line. This means that the
internal photons (v1 < v < v2) according to the clock of this observer will cross the gravitational
radius (apparent horizon) at a finite time. Numerically, this time can be found from (20) and
Figure 1. A boundary photon with v = v1 will cross y = 0 at infinite time, and a boundary
photon with v = v2 will cross y = 0 in a finite time. If we choose the static Schwarzschild
metric in the outer region v > v2 and match the time lines, then according to the clock of the
external observer all the photons will reach y = 0 at infinite time. Let us specify that here the
internal static observer is the one that is at r = const and to which the surrounding photon shell
approaches from infinite radii. An external static observer is one that is located on r = const
after a spherically symmetric photon shell was passed through it.

5. Global geometry
We discussed above the matching conditions in the curvature coordinates (t, r). However,
in these coordinates, the solution is obtained implicitly; therefore, the construction of the
Carter–Penrose diagram is difficult. It is more convenient to construct such diagrams in other



XXI International Meeting of Physical Interpretations of Relativity Theory

Journal of Physics: Conference Series 1557 (2020) 012013

IOP Publishing

doi:10.1088/1742-6596/1557/1/012013

6

coordinates (η, y), where y is defined above, and η is a new temporary variable:

ds2 = f0(η, y)dη2 − dy2

f1(η, y)
− r2(dθ2 + sin2 θdφ2). (21)

For the case of the pure Vaidya metric, an analytical solution was found in [8] and the
corresponding diagrams were constructed. Here we will give an example of a similar diagram, but
matched with the Minkowski M1 = 0 region. For the case of superstrong accretion, see Figure
2. The paper with the full set of the diagrams for all types of accretions is under preparation.

6. Conclusions
This paper shows that for the Vaidya space-time of a thick photon shell in diagonal coordinates,
a global geometry can be constructed in which the Vaidya metric is matched with the internal
and external Schwarzschild metrics. At the same time, one of the Schwarzschild regions turns
out to be non-static due to the transformation of the time required for the matching. There are
static observers inside the shell and in the inner region, according to the clocks of which the
photons cross the apparent horizon at a finite time.
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