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Abstract. All-optical vacuum birefringence experiments will get increasingly closer to
feasibility as multi-petawatt laser facilities become operational around the World. Thus, the
availability of focused laser intensities in the order of IL ∼ 1022−1024 W/cm2 are to be expected
in a focused spot size ∼ 3− 5 µm. With these values, vacuum refraction indices in the order of
∆n ∼ 10−11 − 10−9 are possible with an induced phase delay on a counterpropagating optical
probe beam in the order of ∆ϕ ∼ 10−9−10−7 radians. We discuss two all-optical interferometric
schemes and detail the Mach-Zender interferometric proposal. We consider this interferometric
scheme fed by both classical and non-classical input light and with two detection schemes. We
outline scenarios that are likely to lead to a feasible experimental implementation.

1. Introduction
The emergence of pewawatt-class laser facilities [1, 2, 3] opened new perspectives in the research
of intense-field QED phenomena [4]. Thus, previously untested QED, as well as BSM (beyond
Standard Model), predictions become now closer to experimental verification. Among the still
untested QED predictions we mention light-by-light scattering [5, 6], unassisted vacuum pair
creation [7] and vacuum birefringence [8]. In this work we will discuss at length the latter.

First considered in [8], the birefringence of the vacuum subjected to an electromagnetic field
was soon discussed in terms of a non-linear effectiv electrodynamic theory [9]. When discussing
the propagation of a probe photon in a pump-field disturbed vacuum, one can employ an effective
nonlinear electrodynamics description [10, 9] or covariant formalisms [11, 12].

For a purely magnetic pump field perpendicular in respect with the probe’s propagation
direction one has the so-called vacuum Cotton-Mouton effect [13]. Similarly, for a purely
electric pump field, one has the vacuum Kerr effect [13]. For a geometry having a probe beam
perpendicular on both an electric and magnetic pump fields, equally perpendicular among them,
one also finds the magneto-electric vacuum birefringence [14]. For a detailed discussion, see
reference [15].

The first class of vacuum birefringence experiments were of Cotton-Mouton type. The PVLAS
experiment [16] ran for 40 years with its best sensitivity a factor 50 short of the QED prediction
[17]. A similar experiment, BMV [18] is still ongoing.

The emergence of high-power lasers saw new vacuum birefringence measurement proposals
[19, 20, 21]. Indeed, the high pump intensities available brought into the realm of possibility
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the measurement of polarization flip in a high-energy probe photon [22] either using X-rays
[19, 23, 24, 25] or γ-rays [2, 21]. While these high-energy proposals have some advantages
(especially the X-ray probes [23]), they also present a number of difficulties.

Another category of experiments propose purely optical vacuum birefingence detection.
Initially, a cavity-based [26] proposal was put forward. Taking advantage that optical
interferometry is a mature technology, two types of optical interferometric devices have been
proposed: a Sagnac-based scheme [27, 28] that aims to detect the tiny displacement cause by
the refraction of light in the disturbed vacuum and a Mach-Zehnder based scheme [29] aiming
to detect the time delay effect from propagating through the focus of an intense pump laser.

Compared to high-energy probes, all-optical interferometric proposals have a number of
advantages. Not only optical components (including detectors) are cheap, low-loss and reliable,
but optical interferometry is an old an mature field of science. One can mention in this
context the remarkable performance of the graviational wave detectors LIGO [30] and Virgo
[31]. Another advantage of optical interferometry is the availability of the technology to go
beyond the classical limit, i. e. the shot noise limit. Indeed, squeezed light is routinely used
[30] and there is an ongoing race towards higher and higher squeezing factors [32].

In this work we focus on all-optical experimental setups that are likely to yield sensitivities
in the detection range needed for a vacuum birefringence signal resulting from a PW-class pump
laser. We shortly discuss both the Sagnac and Mach-Zehnder interferometer-based proposals
while focusing on the latter.

For the Mach-Zehnder interferometer (MZI) we discuss the phase sensitivity both for classical
input light leading to the shot-noise limit (SNL) and with non-classical light leading to sub-SNL
sensitivities [33, 34, 35, 36]. We also discuss two detection methods, namely the single-mode
intensity [37, 38] and the balanced homodyne detection (BHD) schemes [35, 37].

This paper is structured as follows. In Section 2 we briefly introduce the effective theory
needed to deduce the vacuum refraction indices for two counter-propagating laser beams and
discuss the interaction geometry. In Section 3 we introduce important notions such as the
shot-noise limit and the Heisenberg limit and sketch two all-optical vacuum birefringence
measurement schemes. A thorough discussion of the MZI scheme is done in Section 4. The
paper concludes with the remarks from Section 5.

2. From the Heisenberg-Euler Lagrangian to vacuum birefringence
2.1. The Heisenberg-Euler-Kockel effective Lagrangian
By considering constant or slowly varying electro-magnetic fields, one can integrate out the
fermionic degrees of freedom from the QED Lagrangian and arrive at the effective theory
described by the Heisenberg-Euler (HE) Lagrangian [7, 13, 39]. Since current laboratory-based
fields obey |E| � ES and |B| � BS where the critical fields [40] are defined as usual by
ES = m2c3/e~ and BS = ES/c, performing a lowest order expansion of the HE Lagrangian
brings us to the so-called Heisenberg-Euler-Kockel or Euler-Kockel (EK) [13, 41, 42] Lagrangian,

LEK =
F
2

+ ΛEK
(
F2 + 7G2

)
(1)

where we have the constant

ΛEK =
α

90πε0E2
S

=
αµ0

90πB2
S

=
2α2~3

45m4c5
=

~e4

360π2ε20m
4c7
≈ 1.65× 10−30

[
m3

J

]
. (2)

In the previous equations e (m) denotes the charge (mass) of the electron, h (~ = h/2π) is
the (reduced) Planck constant and the QED fine-structure constant is defined, as usual by
α = e2/4πε0~c ≈ 1/137. For a compact writing of equation (1) we also introduced the two
invariants of the electromagnetic field F = ε0

(
E2 − c2B2

)
and G =

√
ε0/µ0E ·B.
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2.2. Refraction indices in a vacuum disturbed by a strong laser field
We assume a geometry with two counter-propagating linearly polarized laser beams, namely
a probe field having Ep = Epx̂ (Bp = Bpŷ), propagating along the positive z-axis and a
much stronger pump laser propagating along the negative z-axis. In the “‖” scenario we have
EL = ELx̂, while in the “⊥” scenario we have EL = ELŷ, see Fig. 1. We assume both the
pump and the probe to be nearly monochromatic.

x

z
y

Figure 1. The collision geometry of the pump and probe laser beams.

If we assume the “‖” geometry (EL ‖ Ep, BL ‖ −Bp), the probe beam propagating in the
pump-disturbed vacuum, will see a refraction index1 [8, 19, 42]

n‖ = 1 + 16ε0ΛEKE
2
L = 1 + 32ΛEK

IL
c

(3)

where we assumed EL = cBL and the intensity of the pump beam is taken2 IL = cε0E
2
L/2. If

we assume the “⊥” geometry (hence EL ⊥ Ep and BL ⊥ Bp), the probe beam propagating in
the pump-disturbed vacuum will see a higher refraction index, namely

n⊥ = 1 + 28ε0ΛEKE
2
L = 1 + 56ΛEK

IL
c
. (4)

The difference n⊥ − n‖ yields the vacuum birefringence, ∆n = 24ΛEKIL/c. We display the
expected vacuum refraction indices for some values of the focused pump field in Table 1.

Table 1. Expected vacuum refraction indices versus the focused pump laser intensity.

Focused pump laser “⊥” refraction index, “‖” refraction index, vacuum birefringence,
intensity IL [W/cm2] ∆n⊥ = n⊥ − 1 ∆n‖ = n‖ − 1 ∆n = n⊥ − n‖

1022 3.08× 10−11 1.76× 10−11 1.32× 10−11

1023 3.08× 10−10 1.76× 10−10 1.32× 10−10

1024 3.08× 10−9 1.76× 10−9 1.32× 10−9

1 For a detailed deduction of the results from equations (3) and (4) see reference [15].
2 We assume the pump field to be monochromatic, the intensity is thus connected to its “effective” value EL/

√
2,

hence the factor of 2 taken in our definition of IL.
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2.3. The probe beam’s propagation in the pump-perturbed vacuum
As discussed in Section 2.2, a probe beam (counter-)propagating through the focus of a strong
pump beam is behaving as if it would propagate through a material medium with a refraction
index n > 1. For the two collision geometries described in Fig. 1, the refraction index is either
n‖ given by equation (3) or n⊥ given by equation (4). Assuming that we have a Gaussian pump
beam, the beam width w(z) varies longitudinally from the focus point (assumed at z = 0) as

w(z) = w0

√
1 + z2/z2R where the Rayleigh distance zR is defined as usual by zR = πw2

0/λL and

throughout this work we will assume a pump central wavelength of λL = 800 nm. We can thus
approximate the pump’s intensity to its maximum value IL over a length b = 2zR (usually called
depth of focus), see Fig. 2. Since the typical focused waists are in the order of w0 ≈ 3− 5 µm,
we expect a parameter b ≈ 70 − 200 µm. We will use this fact in Section 3.1. Assuming the
pump laser to have a pulse duration in the range τL ≈ 25− 30 fs [2, 3], the relevant longitudinal
interaction region is zint = cτL ≈ 7.5 − 9 µm. The counterpropagating probe beam will thus
accumulate a phase ϕ⊥/‖ = ωpzintn⊥/‖/c where ωp = 2πc/λp is the probe (angular) frequency
and λp denotes its wavelength. We thus expect the relative phase delays in an interferometer{

∆ϕ⊥
∆ϕ‖

}
=

2πτLΛEK
λp

×
{

56
32

}
× IL. (5)

probe laser beampump laser beam

Figure 2. Symbolic representation of the pump-probe interaction geometry (left). The probe
beam has a longer pulse duration, τp ≈ b/c, where b = 2zR and zR is the Rayleigh length. (right)
The orange cuve symbolically depicts the pump width variation in the depth of focus.

In Table 2 we detail the expected phase shifts for a number of focused intensities. We
conclude that the range of expected vacuum birefringence induced phase shifts is in the order
of 10−9 − 10−7 radians. These estimations are based on the pulse duration of the ELI-NP
lasers [2, 3]. If one considers the upcoming ELI Beamlines L4 Aton laser (10 PW, 1.5 kJ/pulse)
featuring a pulse duration of τL = 150 fs, one needs to multiply by a factor of ∼ 6 all results
from Table 2, leading to a much more optimistic range of induced phase shifts in the order of
10−8 − 10−6 radians.

3. All-optical interferometric schemes to measure vacuum birefringence
3.1. The shot-noise limit, the Heisenberg limit and the minimum needed probe laser peak power
It is well known that if one uses classical input light, we have a shot-noise limited (sometimes
called Poisson limited) phase sensitivity in an interferometer ∆ϕSNL = 1/

√
〈N〉 [43, 34] where

〈N〉 denotes the average number of input photons. Thus, given a target phase sensitivity ∆ϕ⊥/‖

to be attained, we need a minimum average number of photons 〈N〉min ≥ 1/
(
∆ϕ⊥/‖

)2
. If we

assume a target phase sensitivity in the orderO(10−8), this implies a shot-noise limited minimum
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Table 2. Expected phase shifts versus the focused pump intensity.

Focused pump laser Induced phase Induced phase
intensity IL [W/cm2] shift ∆ϕ⊥ [radians] shift ∆ϕ‖ [radians]

1022 2.73× 10−9 1.56× 10−9

1023 2.73× 10−8 1.56× 10−8

1024 2.73× 10−7 1.56× 10−7

number of photons for successful detection of 〈N〉min = O(1016). Assuming that the probe laser
has a pulse duration of τp, the average number of probe photons during the interaction time is
〈N〉probe = Ppτp/~ωp = Ppτpλp/hc. We can thus estimate the needed probe power in order to
be able to detect the QED induced phase shifts by replacing 〈N〉min with 〈N〉probe. We find

Pp ≥
hc

τpλp

1(
∆ϕ⊥/‖

)2 . (6)

The only variable yet to be determined in the RHS of the previous equation is the probe pulse
duration (τp). If we assume a counter-propagating geometry, as detailed in Fig. 2 (right) the
ideal probe pulse duration should obey cτp ∼ b, we thus take τp = 2zR/c. Indeed, while counter-
propagating, one can take advantage of the slow variation of the pump waist in the interval
[−zR, zR]. For the expected range of focused pump waist w0 ≈ 3 − 5 µm we thus get the ideal
probe pulse duration τp ≈ 235− 654 fs.

The fact that τp � τL has a number of positive side-effects. Besides the fact that more probe
photons participate in the interaction and thus a lower power is needed, the longer probe pulse
(∼ ns range) is positive both from an optical and electronic/detection point of view.

Plugging the values from Table 2 into equation (6) and assuming a pump pulse duration
τL ≈ 25− 30 fs implies a required probe laser power in the range Pp ∼ 2 GW − 20 TW. These
peak powers for femtosecond-nanosecond pulsed lasers are readily available today.

One can however, use non-classical states of light and thus the shot-noise limit ∆ϕSNL can
be surpassed. The theoretical best case limit is the so-called Heisenberg limit ∆ϕHL = 1/〈N〉
[34, 43]. If, similar to reference [42], we consider this limit and a target phase sensitivity in the
order O(10−8), it implies a Heisenberg limited number of photons 〈N〉min = O(108). For the
current experiment, though, this scenario is not realistic and is of purely theoretical interest.
However, there are intermediate sub-SNL phase sensitivities ∆ϕHL ≤ ∆ϕsub−SNL ≤ ∆ϕSNL
that are feasible, a good example being the coherent plus squeezed vacuum input [33], the very
input state that boosed LIGO’s sensitivty [30].

3.2. Sagnac-based interferometric scheme
A Sagnac interferometer can be used in an all-optical vacuum birefringence scheme3 [28], as
depicted in Fig. 3. The balanced beam splitter (denoted BS1) splits the input pulse into a
reference and a probe one. By reference we understand the pulse that will not meet head-on
and counter-propagating the pump laser in its focus depth. On the contrary, the probe pulse
will meet the pump beam exactly in the “hot spot”, as depicted in Fig. 3. Thus, assuming that
the pump laser is off, no signal is expected at the output port 3 (i. e. “dark port”). Assuming
now that the pump laser is on, the two beams will collide in the geometry described in Fig. 2,

3 In reference [28], although a phase delay effect takes place, the authors intend to measure the minute
displacement of the intensity profile in the dark port (∆y ∼ 13 pm) caused by the refraction of the probe
beam while propagating through the pump-disturbed vacuum.
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creating a delay in respect with the reference beam and thus generating a signal in the output
port 3.

M1

M2

BS1

Figure 3. Sagnac-based all-optical vac-
uum birefringence interferometric detec-
tion setup. See main text for details.

Figure 4. Mach-Zehnder based all-
optical vacuum birefringence measure-
ment setup. See main text for details.

3.3. Mach-Zehnder based interferometric scheme
In Fig. 4 we depict a Mach-Zehnder based interferometric scheme [29]. We consider the same
pump-probe geometry from Fig. 2, with the pump-disturbed vacuum (depicted as a gray blob).
Hence, a laser pulse propagating inside the interferometer will be slightly delayed in the lower
arm. This delay can be detected at the output.

4. Detailed discussion of a Mach-Zehnder interferometer-based proposal
From a quantum optical point of view, a Sagnac interferometer ca be seen as a “folded” MZI.
We can thus discuss only the latter, the conclusions applying to both interferometric schemes.
Throughout this section we assume the MZI input state (denoted by |ψin〉) to be pure.

4.1. MZI phase sensitivity with classical input states
The phase sensitivity of a MZI has been studied at length in the literature [35, 36, 37, 38, 44].
Taking into account that our scenario involves high peak powers, some detection schemes are
more suited. We thus consider the single-mode intensity detection4 and the BHD5 schemes (see
Fig. 5). This time we split the internal phase shift into two components, the tiny QED-induced
phase shift ϕs and the experimentally controllable φ so that ϕ = ϕs + φ. As we will discuss
shortly, for each considered input state/detection scheme, by adjusting φ to φopt we can put the
MZI in its optimum working point (also called “sweet spot”).

The first input we consider is a coherent (plus vacuum) state,

|ψin〉 = D̂1 (α) |0〉 = |α100〉 (7)

where |0〉 denotes the vacuum, α = |α|eiθα , θα denotes the phase of the coherent source and

the displacement operator is defined by D̂1 (α) = eαâ
†
1−α∗â1 [44]. Throughout this work â†m/âm

4 This detection scheme features a photo-detector placed at one MZI output port (output 4 in our case). The
operator modelling this scheme is n̂4. For a detailed discussion of this detection scheme see references [35, 37, 38].
5 The BHD scheme mixes the output of port 4 with a stong coherent source (“local oscillator”) |γL〉 where
γL = |γL|eiφL . The operator modelling this detection scheme is X̂φL = 1/2(â4e

−iφL + â†4e
iφL). For more details

on this detection scheme see references [35, 37, 45].
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Figure 5. The Mach-Zehnder interferometer with the two considered detection schemes, namely
the single mode intensity (modelled via the operator n̂4) and BHD (modelled via the operator

X̂φL). The QED-induced phase shift is modeled via the phase shift ϕs.

represent the creation/annihilation operators for mode m. The average number of photons
for the input state (7) is given by 〈N〉 = 〈n̂1〉 = |α|2 where n̂k denotes the photon number
operator for mode k. Both beam splitters are assumed balanced, we thus have the transmission
(reflection) coefficients T = T ′ = 1/

√
2 (R = R′ = i/

√
2) [44]. There exists a theoretical

optimum bound, derived from purely quantum estimation theory, called the quantum Cramér-
Rao bound (QCRB), itself implied by the quantum Fisher information (see Appendix A). For
a MZI featuring the input state (7) one finds that the theoretical best phase sensitivity is given
by [38, 46]

∆ϕQCRB =
1

|α|
. (8)

Incidentally, in this case this is also the shot-noise limit. The phase sensitivity of a MZI with
single-mode intensity detection [37, 38] is found to be ∆ϕsg = 1/|α sin(ϕ/2)| the optimum
working point being obviously φopt = π. For a BHD scheme, the phase sensitivity is given by
∆ϕhom = 1/|α cosϕ| [35, 37]. In Fig. 6 we depict the phase sensitivity for a coherent input state
for |α| = 108 (this corresponds to P ≈ 15.9 TW if we assume τp ≈ 235 fs). Both considered
detection schemes yield the same working point around φopt = π, where they reach the QCRB
(horizontal thick dotted green line), proof that they are optimal.

4.2. MZI phase sensitivity with non-classical input states
As mentioned in Section 3.1, the shot-noise limit can be surpassed by employing non-classical
states of light. One such state is the coherent plus squeezed vacuum input [33, 47],

|ψin〉 = D̂1 (α) Ŝ0 (ξ) |0〉 = |α1ξ0〉 (9)

where the squeezing operator is Ŝ0 (ξ) = e1/2[ξ
∗â20−ξ(â

†
0)

2] [44]. Here ξ = reiθ, r ∈ R+ is called the
squeezing factor and θ denotes the phase of the squeezed state. The average number of photons
of the coherent plus squeezed vacuum input state is 〈N〉csv = |α|2 + sinh2 r. The optimum
input phase matching condition (PMC) imposes 2θα − θ = 0 [35, 36]. The theoretical optimum

phase sensitivity provided by the QCRB is found to be ∆ϕQCRB = 1/
√
|α|2e2r + sinh2 r [36].

A Heisenberg scaling is possible if we impose |α|2 ≈ sinh2 r [36] i. e. we put the same amount
of energy in the coherent state and in the squeezed vacuum. However, in a realistic setup the
coherent source will be much stronger than the squeezed vacuum i. e. |α|2 � sinh2 r the QCRB
can thus be approximated as

∆ϕQCRB '
e−r

|α|
. (10)
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Figure 6. Phase sensitivity for a MZI
with a coherent input state. Parameter
used: |α| = 108.
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Figure 7. Phase sensitivity for a MZI
with the input state (9). Parameters used:
|α| = 108, 2θα − θ = 0, and r = 1.2.

For a single-mode intensity detection scheme we have φopt ≈ π [38, 47]. The optimum phase
sensitivity is given in reference [38], equation (38). In the high-coherent regime it can be
approximated to ∆ϕsg = e−r/|α| and this is indeed the QCRB from equation (10). For a
BHD scheme the optimum working point is φopt = π [35, 37] and at this point we again find
∆ϕhom = e−r/|α|.

In Fig. 7 we depict the phase sensitivity performance of a coherent plus squeezed vacuum
input (9) with a squeezing factor r = 1.2 (≈ 10 dB). Similar to the discussion from Fig. 6, both
detection schemes have their optimum working points around φopt = π and their performance is
almost optimal. The horizontal thick dotted green line represents the QCRB while the horizontal
dashed magenta line represents the SNL, ∆ϕSNL = 1/

√
〈N〉csv. The latter is the theoretical

limit when using classical input states [34]. As seen from Fig. 7, we go beyond this limit, hence
we are in the sub-shot noise (i. e. non-classical) regime. Compared to the best performance from
Fig. 6, the gain is close to a factor of 3, as predicted by equation (10). We would like to point
out that this improvement was done by using only an average number of sinh2 r ≈ 2.3 squeezed
photons, despite the fact that the coherent source has an average of |α|2 = 1016 photons.

4.3. Practical considerations for a MZI implementation
While a detailed discussion of the practical experimental setup including all non-idealities goes
beyond the scope of this paper and will be the subject of a future work, we can briefly consider a
number of factors that will influence the expected phase sensitivity in a real-life implementation.

When considering the effect of losses, it is well known that for a coherent input they can be
modelled by replacing α →

√
1− σα [48] where σ ∈ [0, 1] models the amount of losses, σ = 0

being the lossless case. Thus, the optimum expected phase sensitivity changes from the value
given in equation (8) to ∆ϕQCRB,l = 1/

√
1− σ|α|. We do not expect this effect to be important

for classical input light. Also, the probe laser being pulsed, it is actually a multi-mode coherent
state, featuring a central frequency ωp and a spectral width ∆ωp. Thus, in respect with the plane-

wave SNL we assumed here, we expect a phase sensitivity ∆ϕpulsed ≈ ∆ϕSNL/
√

∆ω2
p/ω

2
p + 1.

However, considering that the probe laser has its optimum pulse duration τp in the ns range,
the ratio ∆ω2

p/ω
2
p is negligible compared to 1.
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4.4. Other techniques likely to yield an improved phase sensitivity
In this short section we mention more speculative ideas that might provide an improved phase
sensitivity in respect with the already discussed cases. If one allows the MZI to be unbalanced
[45, 49], a detection scheme having access to an external phase reference could provide an
improvement in its theoretical phase sensitivity [45, 50, 51] (see also Appendix A). This effect
is still valid in the high-coherent regime [45, 51].

Another interesting evolution could be the addition of OAM (orbital angular momentum,
also called optical angular momentum) [52]. Recently, descriptions of Laguerre-Gauss beams
[53, 54] have been reported. By employing OAM (e. g. l = 1 for the pump beam and no OAM
l = 0 to the probe beam) could allow a better filtering of the unwanted stray photons at the
detection site, potentially minimizing the need to use a different wavelength for the probe beam.

5. Conclusion
In this work we discussed all-optical interferometric schemes that could potentially measure
the vacuum birefringence signal induced by a strong, counter-propagating pump laser. If we
optimally exploit the counter-propagating collision geometry of the two lasers, the ideal pulse
duration of the probe beam should match the depth of focus of the pump laser.

Since from a quantum optical point of view both the Sagnac and Mach-Zehnder
interferometers are equivalent, we discussed in detail the latter. We considered both classical
and non-classical input states and evaluated the expected phase sensitivity.

Given the new petawatt laser facilities that started operating (or will be available in the near
future), the all-optical vacuum birefringence measurement scheme seems a promising candidate
in the list of possible experiments.
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Appendix A. Quantum Fisher information and the quantum Cramér-Rao bound
When dealing with a single parameter estimation, the optimal solution is found by employing
the quantum Fisher information (QFI) [55]. Indeed, from the QFI one can infer the minimum
variance for the esimation of a parameter [34, 55]. As discussed in the literature [46], applying
the single parameter QFI to a MZI yields over-optimistic results due to counting resources that
are not necessarily available. If one implements a detection scheme not having access to an
external phase reference, then in order not to obtain over-optimistic results, one has to do one
of the following: i) average out the input state in respect with a common phase or ii) use the
two-parameter QFI. We chose the latter in this work.

Thus, when dealing with a multi-parameter estimation problem the single QFI approach has
to be extended to a matrix form [45, 46, 56]. We replace the QFI by a 2× 2 matrix having the
Fisher matrix elements, Fij = 4<{〈∂iψ|∂jψ〉 − 〈∂iψ|ψ〉〈ψ|∂jψ〉} [46, 56] with i, j ∈ {s, d} and
we performed the variable changes ϕs = ϕ1 + ϕ2 and ϕd = ϕ1 − ϕ2. The quantum Cramér-Rao
bound implies the matrix inequality Σ ≥ F−1 [56, 57] (see also equation (A3) in [51]). We will
saturate only the inequality corresponding the difference-difference phase estimator, we thus
introduce the definition F (2p) = Fdd−F2

sd/Fss [45]. Thus, throughout this work we will use the

QCRB, ∆ϕQCRB = 1/
√
F (2p). Nevertheless, if one uses a detection scheme having access to an

external phase (e. g. BHD), then the two-parameter QFI can be surpassed [45, 46, 50].
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[57] Pezzè L, Hyllus P and Smerzi A 2015 Phys. Rev. A 91 032103


