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PREFACE

This thesis is comprised of material developed by myself and collaborators over the four
years of my doctoral training. During this period I participated in two essentially inde-
pendent lines of research. The first, which comprises Part II of this thesis, resulted in two
publications [1][2] and focused on toplogical string and field theories on seven dimen-
sional manifolds with G2 holonomy. In this exploratory work we found many interesting
connections between open topological string theory onG2 manifolds and various theories
considered in the mathematics literature. We also explored the role of topological theories
on G2 manifolds in unifying the topological A and B models on Calabi-Yaus. It is my
hope that this work will one day serve as the basis for a deeper understanding of so-called
“Topological M-theory”.

After completing this research my emphasis shifted and with several colleagues I began
work on a program to better understand quantum aspects of supersymmetric black holes
resulting in two publications and one preprint [3][4][5] and one published review [6].
This is the subject of Part I of this thesis. My motivation to embark on this new line of
research was based on the desire to use string theory to learn general and relevant lessons
about nature despite the lack of experimental evidence for the former. I believe the work
in this thesis represents a degree of success in this regard as we have found some rather
exotic phenomena, potentially relevant for resolving black hole information loss, and it is
my belief (or hope) that the general mechanism for the resolution of this paradox should
be somewhat universal to any consistent UV-complete theory of gravity.

Due to lack of time, as well as the desire to not reinvent the wheel, there is little intro-
ductory material in this thesis. The level of exposition through-out the bulk of this thesis
is essentially geared towards an advanced PhD student already well-versed in string the-
ory, supergravity, etc... Some expository material is provided but is primarily intended to
address common misconceptions in the literature or provide some conceptual framework
for the work here rather than to actually provide detailed background material. For the
latter the reader is directed to any one of the several reviews or other theses cited in this
work.
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Preface

Much of the thesis is a recapitulation of results already present in [1][2][3][4][5] and our
review [6]. The reader familiar with these may wish to focus instead on the first chapters
where I have included my own conceptual overview of unifying threads running through
these works. I have also attempted to present my perspective on some common issues or
misconceptions plaguing the literature relevant to the research presented here.

It is my hope that this thesis will serve as a useful resource for students and researchers
interested in building on the results presented here.
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CHAPTER 1

INTRODUCTION

In this thesis we will consider a diverse range of physical phenomena and theories ex-
plored in the works [1][2][3][4][5]. Our ultimate goal will be to enhance our understand-
ing of the structure of quantum gravity by trying to learn general lessons from specific but
exotic phenomena.

1.1 MOTIVATION

In the accumulated lore of string or M-theory we now have the makings of a theory of
quantum gravity. Unfortunately, lacking either experimental underpinnings or even a full,
non-perturbative formulation these theories may seem, at first instance, to be on rather
unsound footing.

Despite these flaws string/M-theory has had profound successes on several fronts. Within
this framework it has been possible to address several outstanding issues in black hole
physics such as the black hole entropy and the essentially thermodynamic nature of black
holes (and perhaps even gravity itself). In giving birth to and being an integral part of
AdS/CFT these theories have also provided the first instance of a fully non-perturbative
theory of quantized gravity that is manifestly holographic and that demonstrates that grav-
ity emerges from very different underlying degrees of freedom. This correspondence has
also been turned on its heels, allowing us to use string theory to study theories closely
related to (and perhaps, in some sense, within the same universality class as) well-tested
theories like QCD.

In and of themselves string and M-theory also exhibit a rich and beautiful structure, deeply
interwoven with supersymmetry, which has been very fruitful for mathematics and also

1



Chapter 1 - Introduction

suggests, contingent upon the existence of this symmetry, that the theories are very natu-
ral.

Ideally we would like to find a first principles formulation of M-theory (with string theory
as a derivative) that unifies both our perturbative and non-perturbative understandings
of the theories. Doing so would also require elucidating various foundational questions
that emerge in any theory of quantum gravity such as the role of boundary conditions,
so-called “background independence”, and the structure of the Hilbert space. Of course
Matrix theory and AdS/CFT provide us with some insights or even examples of what such
a theory would look like but these formulations are somewhat removed from our original
notions of strings and spacetime and do not have the range of applicability we would like.

Given this state of affairs it is important to improve our understanding of these theories, in
particular the ways they differ from non-gravitational quantum theories. In this thesis we
hope to build upon the accumulated wisdom in the literature by contributing some new
examples of somewhat exotic quantum gravitational phenomena that, moreover, yield
potential resolutions to issues in black hole physics.

While our understanding of string theory still lacks the depth and completeness that might
provide for a satisfactory and convincing resolution of all the puzzles associated with
quantum gravity there is a growing sense that the general conceptual outline of this theory
is beginning to reveal itself. Through a combination of diverse insights a general picture
has emerged of gravity as an emergent or effective theory that has, as one manifestation
of itself, a non-Abelian field theory in one dimension lower. Moreover string theory
challenges our intuition, built on the foundation of effective field theory, as gravity seems
essentially holographic and non-local and a new, still quite coarse, intuition is slowly
emerging by incorporating these lessons.

It is our goal here to build on this emerging picture. We would like to understand, for in-
stance, the structure of the gravitational spectrum, what super-selection sectors exist, how
perturbative and non-perturbative states combine to generate e.g. a black hole ensemble,
and what these states look like in spacetime. We will be able to address these questions to
some degree in very specific contexts but, as our findings will be quite surprising from the
point of view of standard field theory, we hope to tease from them some general features
of the theory that will one day be string theory.

PART I

String theory is a quantum theory of gravity. Whether it is the theory of quantum gravity
is not yet clear. As suggested above, here we take the attitude that any consistent theory of
quantum gravity provides a framework to extract qualitative features of gravity associated
with black hole paradoxes. Thus we would like to claim that the results in the first part of

2



Chapter 1 - Introduction

this thesis are of considerable interest to black hole physics somewhat independently of
whether or not string theory proves to be the final theory of gravity.

The motivation for this perhaps surprising claim is the following. Black holes exhibit
mysterious behaviour in a wide range of theories including the standard, well-tested, the-
ory of four dimensional general relativity (Einstein gravity). The essential point is that
black holes exhibit (almost) exactly the same paradoxes in more exotic theories and even
higher dimensional theories like string theory and supergravity. Fortunately the latter are
more symmetric and hence, to some degree, under better control than standard Einstein
gravity. By studying black holes in such theories we can hope to use our enhanced tech-
nical control to resolve some of these issues, at least at a conceptual level. While it is
possible, it seems highly implausible that the resolution to ubiquitous black hole quantum
gravity puzzles, whose existence hinges on only the most basic features common to any
gravitational theory, would somehow depend very sensitively on the details of the theory
considered. In some sense then, the robustness of the information loss paradox is exactly
what allows us to probe it, with some degree of confidence, using theories seemingly very
different than the one where it was first discovered. That is to say, since the puzzle seems
to emerge in any theory which has, as a consistent limit, low-energy Einstein gravity one
would imagine that if this theory is a consistent theory of quantum gravity it has to cap-
ture, at least in broad strokes, the conceptual outlines of the “universal” resolution to this
paradox. It is to the task of finding these universal principles that we turn in Part I of
this thesis, working in the specific context of four and five dimensional black holes in
supersymmetric string theory.

Another essential theme or lesson gleaned from string theory is that open degrees of
freedom provide the non-perturbative completion of the theory. From black hole consid-
erations it seems likely that gravity, in any UV completion, is an effective description of
unknown (perhaps holographic) microscopic degrees of freedom and the lesson in string
theory is that these degrees of freedom are non-perturbative in nature and enjoy some
representation as non-Abelian degrees of freedom in a non-gravitational theory. It is of
great interest to understand if and how these degrees of freedom emerge in a description
where spacetime is manifest. In a weak-coupling limit we know they can be represented
by branes but the interplay between non-Abelian degrees of freedom and spacetime is
still quite obscure. We will not touch on this very directly in this thesis but it provides a
backdrop for much of the work here and is somewhat evident in our considerations of the
supergravity spectrum and its relation to black holes.

PART II

In a similar vein there we would like to use a vastly simplified version of string theory
to extract lessons about the fundamental structure of the theory itself. Unlike Part I the

3



Chapter 1 - Introduction

lessons learnt here are unlikely to apply to general theories of quantum gravity as they are
fundamentally intertwined with supersymmetry (so only apply if the latter is an essential
part of quantum gravity).

Simplified, topological versions of string theory seem to exhibit many of the same struc-
tures as their full-blown counterparts with the former being far more amenable to detailed
study and treatment. For instance, closed-open duality seems to be a feature of both
physical and topological string theory but this duality is far easier to demonstrate in the
topological version of the theory [7]. The relationship between the closed and open ver-
sion of string theory seems to provide an underpinning for addressing non-perturbative
aspects of the theory simply because open strings encode non-perturbative degrees of
freedom from the closed perspective. Thus by better understanding this relationship, even
in a simplified version of the theory (that is at least a derivative of the full physical theory)
we may learn something about the way the full, non-perturbative version of string theory
should be formulated.

Another non-perturbative duality is the relationship between strings and membranes in
string/M-theory. A potential role for this duality has also recently emerged in topological
string theory [8] as there are hints that topological A/B string theory may actually be
united under the auspices of “topological M-theory”. It is with the latter that we will
concern ourselves in the second part of this thesis.

Although it is not clear what “topological M-theory” should be an immediate guess would
be a topological membrane sigma model on G2 manifolds that reduces, for manifolds of
the form CY3×S1, to some combination of the A and B model. Such a direct analogy
with the physical theory has proven somewhat difficult from a computational point of
view as membrane theories seem hard to define and work with so we focus instead on
a topological string theory on G2 manifolds and hope to learn how such a theory may
relate to the well studied topological A and B models and what lessons such a theory
may yield for physical string theory. One particular hope, unfortunately unmet, is a clear
understanding of how “topological M-theory” unifies, non-perturbatively, the A and B
model and how the partition functions of the latter display a wavefunction like behaviour
as a consequence of this.

1.2 RESULTS

Here we would like to high-light, for the readers convenience, the major results of this
thesis.
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ADS/CFT FOR MULTICENTERED CONFIGURATIONS

In Chapter 3 we find a decoupling limit for a large class of solutions to solutions ofN = 1
supergravity in five dimensions (which descend to all solutions to N = 2 supergravity in
four dimensions). This limit places the centers in asymptotically AdS3×S2×CY3 space
making them amenable to study via AdS/CFT, a task which we also embark upon.

QUANTIZATION OF MULTICENTERED CONFIGURATIONS

In Chapters 4 and 5 we determine a procedure to quantize large families of the aforemen-
tioned solutions, correctly reproducing the degeneracy found in [9] using split attractor
arguments. Our quantization is made possible by restricting to the BPS locus of the phase
space (and hence also the solution space) thereby avoiding the problems generally as-
sociated with quantizing gravity. Moreover, we exploit a non-renormalization theorem
relating some gravitational (closed string) quantities to open string quantities in order to
simplify our computation. This quantization also provides the groundwork for several of
our other results.

MACROSCOPIC QUANTUM FLUCTUATIONS

In Chapter 5 we exploit the quantum structure of the solution space described above to
find the following fascinating result. Certain classical solutions, corresponding to points
in the phase space of the theory (see Section 2.3), do not seem to support semi-classical
quantum states localized on them. This is because the symplectic form is very sparse
in a region of solution space so a large family of solutions that look macroscopically
quite distinct nevertheless all sit in one “unit” of phase space once the latter is quantized.
Because quantum states can be localized, at most, on and around a cell in phase space
(but never within one) there are no semi-classical quantum states (with low variance)
describing the very different solutions within the cell.

As this is a very important discovery let us go into somewhat more detail. The solutions
described above have, as a defining characteristic, arbitrary long, deep throats that are
nonetheless entirely smooth without any regions of high curvature. According to standard
effective field theory intuition applied to general relativity these are good saddle-points
to the path integral and can be trusted as classical solutions, accessible to macroscopic
observers and having vanishingly small variance in the large charge limit. In our quan-
tization a large family of such solutions sit in a region of solution space, which can be
mapped to the phase space according to the arguments of Section 2.3, and are parameter-
ized by a small number associated with the depth of the throat. The novel physics that
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emerges is that the symplectic form is somewhat insensitive to these many macroscopi-
cally different solutions; the symplectic volume associated with this region of the phase
space is vanishingly small. Thus when quantum effects are included these geometries will
fluctuate wildly into each other defying our intuition that classical solutions do not suffer
from (significant) quantum fluctuations. Most of the differences between these geometries
lie in the throat region so a general phase space density (the analog of a wavefunction)
localized in this region of the phase space will have vanishingly small variance away from
the throat but, at some depth down the throat, will start exhibiting wild quantum fluctua-
tions over the macroscopic distances associated with the throat. This is exactly the kind
of novel physical phenomena one might hope helps resolve puzzles such as information
loss so we take this as an important qualitative lesson from string theory.

(PARTIAL) RESOLUTION OF THE ENTROPY ENIGMA

A somewhat new “enigma” that emerged after the discovery of the above mentioned mul-
ticentered black hole solutions was the realization that some two-centered black holes
seem to have, in a particular region of charge space, parametrically more entropy than
a single centered black hole with the same total charge. This is enigmatic from several
perspectives. As the entropy of a black hole usually depends quadratically (or with some
power greater than one) on its charges there is a general expectation that entropy can be
maximized by having a single black hole. This is also consistent with the idea that a
single thermodynamic system has more entropy than its two separated components. Fi-
nally, this seems to directly contradict the entropy scaling of theN = 2 partition function
conjectured by OSV [10].

In this thesis we find a partial resolution that essentially addresses all the points above
except the last one. While a two centered configuration can have a parametrically larger
entropy than a single centered one there is actually a large family of such two centered
solutions and the dominant configuration in this family has all the entropy localized at
just one of the two centers. In this configuration one center is entirely smooth and horizon
free carrying no entropy while the other center is a black hole carrying (almost) all the
entropy of the system. Thus in all cases it is a single black hole configuration that is most
entropic but the kind of black hole that is dominant depends on the value of the charges.
This dependence still seems to be in contradiction with OSV but various loopholes have
been proposed for this in the literature [9][11].

INSUFFICIENT ENTROPY IN SUPERGRAVITY

A further application of our quantization procedure is the determination of the number of
black hole states accessible via direct quantization of only supergravity fields. This is an
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important question as the latter are well understood and it turns out, perhaps surprisingly,
sufficient in the case of so-called “small” N = 4 black holes (preserving 8 supercharges)
to account for all the entropy of the black hole. As a result there was some hope that
something similar might occur for more realistic N = 2 black holes, thereby providing
access to the spacetime structure of a generic black hole microstate. The latter is of
course interesting as it promises to shed light on the information loss paradox and indeed
any quantum process associated with a black hole.

Our results, however, suggest that we are not so fortunate and that supergravity can only
account for a parametrically small fraction of the black hole entropy. In particular, while
the entropy of a large black hole grows as the square-root of the quartic invariant of the
charges, the entropy of supergravity states grows only as a cube-root. That supergravity
is capable of providing an exponential number of states justifies the initial hope at least
but the difference in powers makes the latter very subleading at large charge.

DEFINITION AND SPECTRUM OF OPEN G2 STRINGS

In Part II we extend the results of [12] by defining the open version of topological string
theory on G2 manifolds. The branes in this theory turn out to be the same as those in a
physical theory on G2 manifolds, namely associative three cycles and co-associative four
cycles as well as zero branes and branes wrapping the whole manifold. We determine the
spectrum of open string excitations for strings with any of these boundary conditions and
find that they correspond to gauge fields on the branes and scalars encoding calibration-
preserving fluctuations in the transverse space.

WORLDVOLUME THEORIES ON TOPOLOGICAL G2 BRANES

Extending the above results we study the open string field theory for these topological
theories and see that they reduce to Chern-Simons-like theories on associative and co-
associative membranes inG2 manifolds. In fact both these theories descend from a seven-
dimensional theory, defined on the entire manifold, which is essentially the G2 analog of
holomorphic Chern-Simons theory.

For associative cycles this theory is nothing more than ordinary Chern-Simons theory
coupled to essentially non-interacting matter (scalar degrees of freedom from the normal
modes which couple minimally to the Chern-Simons gauge field). This is a powerful
result as it provides a non-perturbative definition of the open theory which may, as in [7],
be related to the closed version of the theory via a geometric transition. One could then
hope to put the closed theory, presently defined only at genus zero, on more firm footing.
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ONE-LOOP COMPARISON OF HITCHIN FUNCTIONAL AND G2 STRING

Although we do not include detailed results from [2] in this thesis, we do review it briefly
so we include the results in this list. The primary result is that, unlike the case of the
B-model [13], the one-loop partition functions of the (closed) topological G2 string and
the generalized Hitchin functional for G2 manifolds do not match but, in fact, differ by
power of the Ray-Singer torsion of the manifold.

In a somewhat different vein we do find agreement between the degrees of freedom of
the dimensional reduction of the (original and the generalized) Hitchin functional on G2

manifolds of the form CY3×S1 and the six-dimensional Hitchin functionals of [13]. This
may seem to contradict the idea that topological M-theory, and indeed the G2 Hitchin
functional itself, encode both Kähler and complex structure deformations of the CY since
the Hitchin functionals considered in [13] only incorporate complex structure deforma-
tions. A possible explanation for this discrepancy is the fact that the Kähler deformations
are generally encoded in a purely topological gauge theory (such as that of [14]) and we
neglect the topologically non-trivial sector of the G2 theory in our analysis. A more care-
ful analysis of the G2 functional may therefore be needed to find a unification of the A
and B models.
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Black Hole Microstates
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PRELUDE

In Part I of this thesis, based on [3][4][5], we report on our program to understand the
quantum structure of black holes by studying and quantizing microstates originating from
supergravity.

Our initial motivation when starting [3] was to understand which objects in string theory
could provide corrections to OSV [10] following the developments of [15][16][9]. This
work eventually took a different direction, however, and our focus shifted to extracting as
much information as possible aboutN = 2 black holes by studying only supergravity so-
lutions with the same asymptotics. We first did this using AdS/CFT in [3] but soon found
we could also directly quantize the space of such solutions providing much more fine
grained control over the quantum mechanics of the BPS sector [4]. An important ques-
tion throughout has been how far one could hope to get by restricting only to supergravity.
While a considerable amount of technology exists to treat the latter, if a generic state in
the black hole ensemble essentially requires knowledge of stringy or non-perturbative de-
grees of freedom to distinguish it then it is unlikely that we can carry out a complete
program of study using only supergravity modes. This led to [5] where we established
that it is very unlikely that supergravity will suffice to probe the generic black hole states.

Despite this setback several unexpected surprises proved that our efforts were hardly in
vain as we established the existence of interesting quantum phenomena of exactly the
kind one might imagine are necessary to resolve information loss and other associated
paradoxes. In particular we have found that in these systems quantum effects can extend
over macroscopic distances and our standard intuition from field theory seems to break
down. Moreover, we have (further) opened the N = 2 system to study via AdS/CFT and
also via an unrelated 0+1 dimensional quiver quantum mechanics first pioneered in [17].
With these tools we may hope to go beyond supergravity and access the full quantum and
stringy structure of a generic black hole microstate.
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CHAPTER 2

BLACK HOLE PUZZLES

The first part of this thesis will focus on exploring various aspects of black hole physics.
In particular we extend the technical tools available and apply them to learn qualitative
lessons that may point towards resolutions of the well known paradoxes associated with
black hole physics.

Before doing so we spend a chapter on some expository material. We will be relatively
brief in our review of well-known material such as the information loss paradox as this
thesis is not intended as a review of known results. Rather we will focus on a careful
conceptual introduction to what has become known as the “fuzzball conjecture”. Because
the latter has been the source of somewhat ill-deserved controversy, we spend some time
clarifying the main points and disavowing various points of view that are extensions of
this conjecture rather than its core. We would like to emphasize, in particular, that the
conjecture, in our view, is not about the role of semi-classical or even quantum super-
gravity states in making up the black hole ensemble. Rather the conjecture is a statement
about the spatial extent of a generic state in the ensemble, be it stringy or quantum, and
how this grows with the entropy of the ensemble. The main novelty in this proposal is
the claim that stringy or quantum effects may be significant in gravitational theories even
in regimes where curvatures are low (i.e. where we might naively have thought we could
trust effective field theory). Put another way, the claim is that a semi-classical analysis on
a fixed background, such as Hawking’s analysis in [18], may be invalid in a gravitational
theory because quantum gravity effects can be relevant even in regimes with low curva-
ture. We will, in fact, demonstrate a particular instance of this phenomena in Chapter
5.

We will also spend time here providing the conceptual background for some of our main
tools such as AdS/CFT and phase space quantization. Again, the idea is not to be compre-
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hensive or even detailed but rather to address conceptual issues relevant for this thesis that
are perhaps unusual or novel and also to provide a modicum of background. A reader in-
terested in more detailed background reading is referred to several other interesting theses
in this field [19, 20] and to the literature survey of [6].

2.1 INFORMATION LOSS

Perhaps the most persistent and troublesome puzzle associated with black holes is their
ability to “lose” information in a quantum theory. This paradox is rather technical and
there has been significant effort made to show that it does not in fact exist (see [21] for
a nice summary and analysis of these arguments). It nonetheless seems to persist and a
large part of this thesis will be motivated by attempting to qualitatively determine which
sort of resolutions may be possible. Before doing so we should naturally introduce the
puzzle itself.

Black hole information loss was first proposed by Hawking in the seminal paper [18].
Here we will present a very visual, heuristic and non-technical overview of this phenom-
ena following [22]. Information loss will play a primarily motivational role in this thesis
and will not directly be dealt with. We thus forego a detailed treatment here. Rather we
hope to give the reader a sense for how the paradox emerges and to hint at what elements
necessarily must play a role in any resolution.

If we consider the Schwarzschild metric

ds2 = −
(

1− 2GM
r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2 (dθ2 + sin2 θdφ2) (2.1)

we see that not only is there a coordinate singularity at r = rh = 2GM (withG Newton’s
constant and M the black hole mass) but also that this point corresponds to a “tipping” of
the light-cone. Specifically the killing vector ∂

∂t which becomes the standard (Minkowski)
time-like killing vector asymptotically, becomes null at this point, and is space-like within
the horizon. This tipping is, as we shall see, an essential feature of information loss. Note
that within the horizon it is ∂

∂r that is the timelike vector (though it is not a Killing vector).

To study the quantum mechanics of matter fields in this background, while neglecting
quantum gravity effects, we would like to find a foliation of the spacetime corresponding
to (2.1) on which the induced metric on each slice is everywhere spacelike and regular.
Fixed t slices do not satisfy these requirements, as they might in a geometry without a
horizon, since such slices become time-like inside the horizon. We can however, foliate
spacetime as shown in figure 2.1. This foliation uses constant t slices outside the horizon,
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Figure 2.1: A spatial foliation of the black hole geometry. The regions inside the horizon, r <
2GM , correspond to constant r slices whereas outside they are constant t slices. The “connector”
region straddling the horizon has to stretch to accommodate the different rate of evolution of the
slices. An attempt to foliate a general geometry in a similar manner would fail as this stretching
would eventually make part of the connector region timelike. Based on figure 4 of [22].

constant r slices inside the horizon and a “connector” region that crosses the horizon
and is defined so that the foliation is always spatial. Because we want to keep our slices
smooth and away from the singularity they only move inwards very slowly so while the
external region of the slices are parameterized by values of t from t0, when the black hole
formed, to t = ∞ the internal slices run, within the same parameterization, from r = rh
to r = ε where ε > 0 is far enough away from the singularity to keep the curvature on
each slice low, even at late times. The different rates of “time-evolution” of the slices
implies a stretching of the slices in the connector region as indicated via the dotted lines
in the figure.

Performing a standard field-theoretic analysis using this foliation has several interest-
ing consequences. First, the curving of the spatial foliations reflects the fact that null
geodesics move in different directions on either side of the horizon. Within the horizon
they are directed inwards towards the singularity, whereas those outside the horizon move
outwards towards asymptotic infinity (see figure 2.2). Moreover, the regions of the folia-
tion away from the horizon (i.e. the complement of the connector region) have a very low
curvature in the induced metric and do not vary much from slice to slice. Near the horizon
region, however, there is a “stretching” effect as discussed before. The stretching of the
background acts like a time-dependent potential for e.g. a scalar field in this background.
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Figure 2.2: Stretching of wavemodes as a result of changes in the spatial foliation. The upward
pointing lines represent the paths of null geodesics in the black hole geometry. The wavemodes are
time-evolved by keeping their phase constant along such null geodesic. Based on figure 9 of [22].

Thus an empty region of spacetime near the horizon that is in a vacuum state at an early
slice will no longer be in the vacuum state at later time slices. This can be seen by
solving the wave-equation for a scalar on this spatial foliation at a particular time slice
in terms of Fourier modes and comparing these modes on a different slice. Somewhat
more concretely we can consider an outgoing mode of the form eiky

+
with y± light-cone

coordinates near the horizon at an early time. We are interested in how these coordinates
evolve with time and how they are related to light-cone coordinates at a future time-slice
X±(y±). This is because we will assume modes of the form given above time-evolve by
keeping a constant phase along null-geodesics.

Recall that the horizon is a splicing point for null geodesics, with geodesics within the
horizon heading inwards and those outside heading outwards. Because of this fact, and
the way we foliate our geometry, the coordinate transformation between X± and y± will
vary over the connector region with the largest variation being near the horizon (see figure
2.2). This coordinate transformation mixes creation and annihilation operators in the basis
of Fourier modes and can transform the vacuum at one time slice to an excited state at
another.

A simple analog for this is the vacuum state for a harmonic oscillator in a potential pa-
rameterized, in the standard way, by a frequency ω. If the potential changes fast enough
to the potential assocaited with a harmonic oscillator with a different frequency ω′ the old
ground state wavefunction will not adiabatically evolve into the new one but will keep its
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form and will now be given by a superposition of excited states of the new Hamiltonian.

In this case it can be shown that the resultant state is heuristically of the form

|ψe〉 = e
P
k γb

†
kc
†
k |0〉 (2.2)

where b†k and c†k are creation operators for localized quanta of the scalar field on the
inside and outside of the horizon, respectively (of course k cannot label a momentum
basis here since the quanta would then not be localized so we let k denote an index over
some localized basis of creation operators). Thus the resultant state is an entangled state
of excited quanta on either side of the horizon and, according to our previous arguments,
these modes will either move inwards or outwards depending on which side of the horizon
they were created.

This entangled state is at the heart of information loss. The quanta created by the c†k will
move off to infinity while those created by b†k will slowly fall towards the singularity but
they are in an entangled state. Generally this is not a problem as an entangled state is still
a pure state. The problem arises when we realize that the black hole continues to radiate
until it disappears. At this point the quanta at infinity are entangled with nothing!

As a larger and larger number of quanta c†k arrive at infinity the number of quanta b†k
within the horizon must also grow at the same rate to keep the state pure (each c†k quanta is
entangled with one b†k quanta). At the same time, the volume within the shrinking horizon
is constantly decreasing so must support a higher and higher density of states. While one
can allow this to happen leading to the notion of remnants it quickly becomes clear that
this leads to a host of other problems (see e.g. [21]). On the other hand, if the number
of quanta within the horizon is decreasing or vanishing then we are essentially tracing
over the states b†k transforming |ψe〉 from an entangled state to a density matrix with an
associated entropy. This entropy is not a result of our ignorance of the underlying degrees
of freedom in this system but represents a genuine loss of information and violation of
unitarity.

Note that small corrections near the horizon will not change the entangled nature of |ψe〉
as this would require a relatively large change to this state. For a more detailed discussion
of why this cannot be avoided by simply appealing to small quantum gravity corrections
see [22]. Our review here has been rather heuristic; for more detailed and technical argu-
ments the reader is directed to some of the original literature [18][23] and other references
in [22].
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2.2 FUZZBALLS

A spacetime geometry can carry an entropy in string theory via coarse graining over an
underlying set of microstates. Since the initial success of string theory in accounting for
the entropy of supersymmetric black holes by counting states in a field theory [24] there
has been an ongoing effort to understand exactly what the structure of these microstates
is in a setting where spacetime and gravity are manifest (i.e. in a closed string theory).

Recently, it was shown that, in examples with enough supersymmetry, including some ex-
tremal black holes, one can construct a basis of “coherent” microstates whose spacetime
descriptions in the ~ → 0 limit approach non-singular, horizon-free geometries which
resemble a topologically complicated “foam”. Conversely, in these cases the quantum
Hilbert space of states can be constructed by directly quantizing a moduli space of smooth
classical solutions. Nevertheless, the typical states in these Hilbert spaces respond to
semiclassical probes as if the underlying geometry was singular, or an extremal black
hole. In this sense, these black holes are effective, coarse-grained descriptions of under-
lying non-singular, horizon-free states (see [6] for a review of examples with differing
amounts of supersymmetry).

Such results suggest the idea, first put forward by Mathur and collaborators [25, 26], that
all black hole geometries in string theory, even those with finite horizon area, can be seen
as the effective coarse-grained descriptions of complex underlying horizon-free states1

which have, essentially, an extended spacetime structure. Thus the main claim of the
proposal is

Conjecture (form 1): The generic state in the black hole ensemble, realized in a closed
string theory, differs from the naive geometry up to the horizon scale.

While this form captures the essence of the proposal it is perhaps somewhat imprecise as
it is not immediately clear what the relation between a state and a geometry is so let us
restate this somewhat differently (closely mirroring [22]).

Conjecture (form 2): Quantum gravity effects are not confined to within a Plank scale
and in particular may be relevant for describing the physics up to the horizon scale.

The importance of this claim is that it would invalidate the implicit assumption made in

1The idea here is that a single microstate does not have an entropy, even if its coarse-grained description in
gravity has a horizon. Thus the spacetime realization of the microstate, having no entropy, should be in some
sense horizon-free, even though the idea of a horizon, or even a geometry, may be difficult to define precisely at
a microscopic level.
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Section 2.1 that in the region near the horizon quantum gravity effects are subleading
(or highly suppressed) and effective field theory can be trusted. This idea seems initially
unlikely because one might expect that the quantum effects that correct the classical black
hole spacetime would be largely confined to regions of high curvature near the singularity,
and would thus not modify the horizon structure.

While we are still quite far from a demonstration of this conjecture in the context of
large black holes we do manage, in this thesis, to demonstrate the existence of large
scale quantum or stringy structures that extend into a region of spacetime that standard
reasoning would suggest is perfectly smooth and classical. More precisely we show that
certain classical solutions to the equations of motion will, if embedded in a fully quantum
string theory, receive quantum and stringy corrections over a large region of spacetime
even though the associated solutions are smooth and of low curvature everywhere. This
demonstrates that the precept underlying the conjecture may holds but it certainly does
not imply the full conjecture.

Let us mention an important caveat at this point. While we claim (and demonstrate in
some instances) that quantum or stringy effects can be “important” up to the horizon scale
it is not clear exactly how an in-falling observer would perceive this. The idea that the
black hole geometry is an averaged effective description of many underlying microstates,
not unlike a thermal ensemble, would suggest that a macroscopic observer would have
to make impractically precise measurements to distinguish the actual microstate from the
ensemble average. There is some friction, however, between this philosophy and the
apparent need for rather significant violations of the assumptions implicit in Section 2.1
(as promulgated in e.g. [22]) in order to resolve the information loss paradox. Thus,
at this point it seems unclear, even within the context of the fuzzball proposal, whether
the resolution to information loss will involve drastic violations of classical reasoning,
immediately evident to an infalling observer, or if a more subtle resolution, wherein part
of the classical picture survives, will emerge. A more complete understanding of this
issue is essential if we are to have any hope of demonstrating the fuzzball proposal.

2.2.1 BACKGROUND

In string theory, black holes can often be constructed by wrapping D-branes on cycles
in a compact manifold X so they appear as point like objects in the spatial part of the
non-compact spacetime, R1,d−1. As the string coupling is increased, these objects back-
react on spacetime and can form supersymmetric spacetimes with macroscopic horizons.
The entropy associated with these objects can be determined “microscopically” by count-
ing BPS states in a field theory living on the branes and this has been shown in many
cases to match the count expected from the horizon area (see [24, 27] for the prototypical
calculations). Although the field theory description is only valid for very small values
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of the string coupling gs the fact that the entropy counting in the two regimes coincides
can be attributed to the protected nature of BPS states that persist in the spectrum at any
value of the coupling unless a phase transition occurs or a wall of stability is crossed. The
fact that the (leading) contribution to the entropy of the black hole could be reproduced
from counting states in a sector of the field theory suggests that the black hole microstates
dominate the entropy in this sector.

While it is already very impressive that these states can be counted at weak coupling,
understanding the nature of these states in spacetime at finite coupling remains an open
problem. As gs is increased the branes couple to gravity and we expect them to start
backreacting on the geometry. The main tools we have to understand the spacetime or
closed string picture of the system are the AdS/CFT correspondence and the physics of
D-branes.

Within the framework of the AdS/CFT correspondence black holes with near horizon
geometries of the form AdSm ×M must correspond to objects in a dual conformal field
theory that have an associated entropy2. A natural candidate is a thermal ensemble or
density matrix, in the CFT, composed of individual pure states (see e.g. [28]). AdS/CFT
then suggests that there must be corresponding pure states in the closed string picture
and that these would comprise the microstates of the black hole. There is no reason, a
priori, that such states will be accessible in the supergravity approximation. First, the dual
objects should be closed string states and may not admit a classical description. Even if
they do admit a classical description they may involve regions of high curvature and hence
be inherently stringy. For BPS black holes3, however, we may restrict to the BPS sector in
the Hilbert space where the protected nature of the states suggests that they should persist
as we tune continuous parameters (barring phase transitions or wall crossings). We may
then hope to see a supergravity manifestation of these states, and indeed this turns out to
be the case for systems with sufficient supersymmetry.

The large N limit4, however, which must be taken for supergravity to be a valid descrip-
tion, bears many similarities with the ~→ 0 limit in quantum mechanics where we know
that most states do not have a proper classical limit. Thus it is quite possible that only a
vanishing fraction of the black hole states can be realized within supergravity and, indeed,
we give evidence that this is the case for large (four supercharge) black holes in Chapter 6.
We would like to emphasize once more that this is not a problem insofar as the conjecture
stated above is concerned. The focus on quantum states supported on supergravity con-

2More generally objects in AdS with horizons, microscopic or macroscopic, are expected to have an associ-
ated entropy which should manifest itself in the dual CFT.

3Here “BPS” can mean either 1/2, 1/4 or 1/8 BPS states or black holes in the full string theory. The degree to
which states are protected depends on the amount of supersymmetry that they preserve and our general remarks
should always be taken with this caveat.

4N measures the size of the system. For black holes it is usually related to mass in the bulk and conformal
weight in the CFT.

20



Chapter 2 - Black Hole Puzzles

figurations or modes is purely technically motivated as the latter are under some degree of
control; conceptually there is no reason to believe or even hope that we can describe black
holes by restricted our attention to supergravity modes. Nevertheless, as we will describe,
this approach has been largely successful for very supersymmetric black holes (eight or
more supercharges) so we will ultimately begin our study of less supersymmetric black
holes this way.

Despite the potential problems and caveats mentioned above, recently, a very fruitful
program has been undertaken to explore and classify the smooth supergravity duals of
coherent CFT states in the black hole ensemble. Smoothness here is important because if
these geometries exhibit singularities we expect these to either be resolved by string-scale
effects, making them inaccessible in supergravity, or enclosed by a horizon implying that
the geometry corresponds, not to a pure state, but rather an ensemble with some associated
entropy.

Large classes of such smooth supergravity solutions, asymptotically indistinguishable
from black hole5 solutions, have indeed been found [29, 30, 31, 32, 33, 34, 35, 36] (and
related [37, 38] to previously known black hole composites [39, 17, 40]). These are
complete families of solutions preserving a certain amount of supersymmetry with fixed
asymptotic charges6 and with no (or very mild) singularities.

In constructing such solutions it has often been possible to start with a suitable probe
brane solution with the correct asymptotic charges in a flat background and to generate a
supergravity solution by backreacting the probe [29, 32, 41]. In a near-horizon limit these
back-reacted probe solutions are asymptotically AdS, and by identifying the operator cor-
responding to the probe and the state it makes in the dual CFT, the backreacted solution
can often be understood as the spacetime realization of a coherent state in the CFT. Lin,
Lunin and Maldacena [29] showed that the back-reaction of such branes (as well their
transition to flux) was identified with a complete set of asymptotically AdS5 supergrav-
ity solutions (as described above) suggesting that the latter should be related to 1/2 BPS
states of the original D3 probes generating the geometry. Indeed, in [42, 43] it was shown
that quantizing the space of such supergravity solutions as a classical phase space repro-
duces the spectrum of BPS operators in the dual N = 4 superconformal Yang-Mills (at
N →∞).

In a different setting Lunin and Mathur [31] were able to construct supergravity solutions

5Throughout this thesis we will be discussing “microstates” of various objects in string theory but the objects
will not necessarily be holes (i.e. spherical horizon topology) nor will they always have a macroscopic horizon.
We will, none-the-less, somewhat carelessly continue to refer to these as “microstates” of a black hole for the
sake of brevity.

6The question of which asymptotic charges of the microstates should match those of the black hole is some-
what subtle and depends on which ensemble the black hole is in. In principle some of the asymptotic charges
might be traded for their conjugate potentials. Moreover, the solutions will, in general, only have the same
isometries asymptotically.
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related to configurations of a D1-D5 brane in six dimensions (i.e. compactified on a T4)
by utilizing dualities that relate this system to an F1-P system (see also [30]). The latter
system is nothing more than a BPS excitation of a fundamental string quantized in a flat
background. The back reaction of this system can be parametrized by a profile F i(z) in
R4 (the transverse directions). T-duality relates configurations of this system to that of the
D1-D5 system.

Recall that the naive back-reaction of a bound state of D1-D5 branes is a singular or
“small” black hole in five dimensions. These geometries have naked singularities though
horizons are believed to form when α′ corrections are encorporated. The geometries
arising from the F1-P system, on the other hand, are smooth after dualizing back to the
D1-D5 frame, though they have the same asymptotics as the naive solution [30]. Each
F1-P curve thus defines a unique supergravity solution with the same asymptotics as the
naive D1-D5 black hole but with different subleading structure. Smoothness of these
geometries led Lunin and Mathur to propose that these solutions should be mapped to
individual states of the D1-D5 CFT. The logic of this idea was that individual microstates
do not carry any entropy, and hence should be represented in spacetime by configurations
without horizons. Lunin and Mathur also conjectured that the naive black hole geometry
is somehow a coarse graining over all these smooth solutions, i.e. that the black hole itself
is simply an effective, coarse-grained description. In this context a lot of evidence was
put forth to demonstrate that this indeed likely is the case and, due to the large amount
of supersymmetry of the associated black holes, it seems that the black hole microstates
can be realized directly within quantized supergravity. Although this initial success of
the “fuzzball program” hinged upon using supergravity microstates it is not clear that
extensions of the program to large black holes, with macroscopic horizon areas, will also
be able to restrict purely to supergravity modes or if stringy modes will be essential (as
argued in Chapter 6, current evidence seems to favour the latter).

2.2.2 ANSWERS TO SOME POTENTIAL OBJECTIONS

The idea that black holes are simply effective descriptions of underlying horizon-free ob-
jects is confusing because it runs counter to well-established intuition in effective field
theory; most importantly the idea that near the horizon of a large black hole the curva-
tures are small and hence so are the effects of quantum gravity. Indeed, it is not easy to
formulate a precisely stated conjecture for black holes with finite horizon area, although
for extremal black holes with enough supersymmetry a substantial amount of evidence
has accumulated for the correctness of the picture, as reviewed in e.g. [6]. To clarify
some potential misconceptions, we transcribe below a FAQ from [6], addressing some
typical objections and representing our current point of view. See also [26, 22, 44, 45].

1. How can a smooth geometry possibly correspond to a “microstate” of a black hole?
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Smooth geometries do not exactly correspond to states. Rather, as classical so-
lutions they define points in the phase space of a theory (since a coordinate and a
momenta define a history and hence a solution; see section 2.3 for more details)
which is isomorphic to the solution space. In combination with a symplectic form,
the phase space defines the Hilbert space of the theory upon quantization. While
it is not clear that direct phase space quantization is the correct way to quantize
gravity in its entirety this procedure, when applied to the BPS sector of the theory,
seems to yield meaningful results that are consistent with AdS/CFT (and passes
other non-trivial consistency checks).

As always in quantum mechanics, it is not possible to write down a state that cor-
responds to a point in phase space. The best we can do is to construct a state which
is localized in one unit of phase space volume near a point. We will refer to such
states as coherent states. Very often (but not always, as we will see later in these
notes) the limit in which supergravity becomes a good approximation corresponds
exactly to the classical limit of this quantum mechanical system, and in this limit
coherent states localize at a point in phase space. It is in this sense, and only in
this sense, that smooth geometries can correspond to microstates. Clearly, coher-
ent states are very special states, and a generic state will not admit a description in
terms of a smooth geometry.

Let us note that, as the discussion above and throughout the thesis pertains to super-
gravity geometries, the relevant Hilbert space is an approximate factor, in the entire
BPS Hilbert space of string theory, comprised of states that do not spread into the
“stringy” directions of the full phase space of string theory.

2. How can a finite dimensional solution space provide an exponential number of
states?

The number of states obtained by quantizing a given phase space is roughly given
by the volume of the phase space as measured by the symplectic form ω, N ∼∫
ωk/k! for a 2k-dimensional phase space. Thus, all we need is an exponentially

growing volume which is relatively easy to achieve.

3. Why do we expect to be able to account for the entropy of the black hole simply by
studying smooth supergravity solutions?

Well, actually, we do not really expect this to be true. In cases with enough su-
persymmetry, one does recover all BPS states of the field theory by quantizing the
space of smooth solutions, but there is no guarantee that the same will remain true
for large black holes, and the available evidence does not support this point of view.
We do however expect that by including stringy degrees of freedom we should be

23



Chapter 2 - Black Hole Puzzles

able to accomplish this, in view of open/closed string duality.

4. If black hole “microstates” are stringy in nature then what is the content of the
“fuzzball proposal”?

The content of the fuzzball proposal is that the closed string description of a generic
microstate of a black hole, while possibly highly stringy and quantum in nature, has
interesting structure that extends all the way to the horizon of the naive black hole
solution, and is well approximated by the black hole geometry outside the horizon.

More precisely the naive black hole solution is argued to correspond to a thermody-
namic ensemble of pure states. The generic constituent state will not have a good
geometrical description in classical supergravity; it may be plagued by regions with
string-scale curvature and may suffer large quantum fluctuations. These, however,
are not restricted to the region near the singularity but extend all the way to the
horizon of the naive geometry. This is important as it might shed light on informa-
tion loss via Hawking radiation from the horizon as near horizon processes would
now encode information about this state that, in principle, distinguish it from the
ensemble average.

5. Why would we expect string-scale curvature or large quantum fluctuations away
from the singularity of the naive black hole solution? Why would the classical
equations of motion break down in this regime?

As mentioned in the answer to question 1, it is not always true that a solution to
the classical equations of motion is well described by a coherent state, even in the
supergravity limit. In particular there may be some regions of phase space where
the density of states is too low to localize a coherent state at a particular point. Such
a point, which can be mapped to a particular solution of the equations of motion,
is not a good classical solution because the variance of any quantum state whose
expectation values match the solution will necessarily be large.

Another way to understand this is to recall that the symplectic form effectively
discretizes the phase space into ~-sized cells. In general all the points in a given cell
correspond to classical solutions that are essentially indistinguishable from each
other at large scales. It is possible, however, for a cell to contain solutions to the
equation of motion that do differ from each other at very large scales. Since a
quantum state can be localized at most to one such cell it is not possible to localize
any state to a particular point within the cell. Only in the strict ~→ 0 limit will the
cell size shrink to a single point suggesting there might be states corresponding to
a given solution but this is just an artifact of the limit. A specific explicit example
of such a scenario is discussed later in this thesis (in Chapter 5).
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Thus, even though the black hole solution satisfies the classical equation of motion
all the way to the singularity this does not necessarily imply that when quantum
effects are taken into account that this solution will correspond to a good semi-
classical state with very small (localized) quantum fluctuations.

6. So is a black hole a pure state or a thermal ensemble?

In a fundamental theory we expect to be able to describe a quantum system in
terms of pure states. This applies to a black hole as well. At first glance, since
the black hole carries an entropy, it should be associated to a thermal ensemble of
microstates. But, as we know from statistical physics, the thermal ensemble can
be regarded as a technique for approximating the physics of the generic microstate
in the microcanonical ensemble with the same macroscopic charges. Thus, one
should be able to speak of the black hole as a coarse grained effective descrip-
tion of a generic underlying microstate. Recall that a typical or generic state in an
ensemble is very hard to distinguish from the ensemble average without doing im-
possibly precise microscopic measurements. The entropy of the black hole is then,
as usual in thermodynamics, a measure of the ignorance of macroscopic observers
about the nature of the microstate underlying the black hole.

7. What does an observer falling into a black hole see?

This is a difficult question which cannot be answered at present. The above pic-
ture of a black hole does suggest that the observer will gradually thermalize once
the horizon has been passed, but the rate of thermalization remains to be computed.
It would be interesting to do this and to compare it to recent suggestions that black
holes are the most efficient scramblers in nature [46, 47, 48].

8. Does the fuzzball proposal follow from AdS/CFT?

As we have defined it the fuzzball proposal does not follow from AdS/CFT. The
latter is obviously useful for many purposes. For example, given a state or density
matrix, we can try to find a bulk description by first computing all one-point func-
tions in the state, and by subsequently integrating the equations of motion subject
to the boundary conditions imposed by the one-point function. If this bulk solution
is unique and has a low variance (so that it represents a good saddle-point of the
bulk path integral) then it is the right geometric dual description. In particular, this
allows us to attempt to find geometries dual to superpositions of smooth geome-
tries. What it does not do is provide a useful criterion for which states have good
geometric dual descriptions; it is not clear that there is a basis of coherent states that
all have decent dual geometric descriptions, and it is difficult to determine the way
in which bulk descriptions of generic states differ from each other. In particular, it
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is difficult to show that generic microstates have non-trivial structure all the way up
to the location of the horizon of the corresponding black hole.

9. To what degree does it make sense to consider quantizing a (sub)space of super-
gravity solutions?

In some instances a subspace of the solution space corresponds to a well defined
symplectic manifold and is hence a phase space in its own right. Quantizing such
a space defines a Hilbert space which sits (as a factor) in the larger Hilbert space
of the full theory. Under some favourable circumstances the resulting Hilbert space
may be physically relevant because a subspace of the total Hilbert space can be
mapped to this smaller Hilbert space. That is, there is a one-to-one map between
states in the Hilbert space generated by quantizing a submanifold of the phase space
and states in the full Hilbert space whose support is localized on this submanifold.

For instance, in determining BPS states we can imagine imposing BPS constraints
on the Hilbert space of the full theory, generated by quantizing the full solution
space, and expect that the resulting states will be supported primarily on the locus
of points that corresponds to the BPS phase space; that is, the subset of the solution
space corresponding to classical BPS solutions. It is therefore possible to first re-
strict the phase space to this subspace and then quantize it in order to determine the
BPS sector of the Hilbert space.

2.3 PHASE SPACE QUANTIZATION

An important technical tool in this thesis will be the quantization of large classes of
smooth BPS solutions. Quantum mechanics on the moduli space of BPS solutions is
a familiar topic in string theory but the solution spaces we consider here are somewhat
special as they sit within the full phase space of the theory as a symplectic submanifold
(hence defining a phase space of their own) rather than as a configuration space. The
latter is more familiar from standard BPS systems and leads to such notion as supersym-
metric sigma models on the BPS solution space with BPS wavefunctions corresponding
to the cohomology of the BPS manifold. The solution spaces in our exampels our quite
different, however, and require a different treatment. They are phase spaces and hence
cannot be quantized via e.g. supersymmetric sigma models so we will resort to different
techniques in order to understand the quantum structure of the theory. As this may be
somewhat unfamiliar we devote this section to introducing the relevant notions.

The space of classical solutions of a theory is generally isomorphic to its classical phase
space7. Heuristically, this is because a given point in the phase space, comprised of a con-

7It is not entirely clear, however, which solutions should be included in defining the phase space. For
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figuration and associated momenta, can be translated into an entire history by integrating
the equations of motion against this initial data; likewise, by fixing a spatial foliation, any
solution can translated into a unique point in the phase space by extracting a configuration
and momentum from the solution evaluated on a fixed spatial slice. This observation can
be used to quantize the theory using a symplectic form, derived from the Lagrangian, on
the space of solutions rather than on the phase space. This is an old idea [49] (see also
[50] for an extensive list of references and [51] [52] [53] for more recent work) which
was used in [42, 43] [54, 55] to quantize the LLM [29] and Lunin-Mathur [31] geome-
tries. An important subtlety in these examples is that it is not the entire solution space
which is being quantized but rather a subspace of the solutions with a certain amount of
supersymmetry.

In general, quantizing a subspace of the phase space will not yield the correct physics as it
is not clear that the resultant states do not couple to states coming from other sectors. It is
not even clear that a given subspace will be a symplectic manifold with a non-degenerate
symplectic pairing. As discussed in [43] we expect the latter to be the case only if the sub-
space contains dynamics; for gravitational solutions we thus expect stationary solutions,
for which the canonical momenta are not trivial, to possibly yield a non-degenerate phase
space. This still does not address the issue of consistency as states in the Hilbert space
derived by quantizing fluctuations along a constrained submanifold of the phase space
might mix with modes transverse to the submanifold. When the submanifold corresponds
to the space of BPS solutions one can argue, however, that this should not matter. The
number of BPS states is invariant under continuous deformations that do not cross a wall
of marginal stability or induce a phase transition. Thus if we can quantize the solutions in
a regime where the interaction with transverse fluctuations is very weak then the energy
eigenstates will be given by perturbations around the states on the BPS phase space, and,
although these will change character as parameters are varied the resultant space should
be isomorphic to the Hilbert space obtained by quantizing the BPS sector alone. If a wall
of marginal stability is crossed states will disappear from the spectrum but there are tools
that allow us to analyze this as it occurs (see section 3.1.6).

Let us emphasize that the validity of this decoupling argument depends on what questions
one is asking. If we were interested in studying dynamics then we would have to worry
about how modes on the BPS phase space interact with transverse modes. For the purpose
of enumerating or determining general (static) properties of states, however, as we have
argued, it should be safe to ignore these modes. For an example of the relation between
states obtained by considering the BPS sector of the full (i.e. non-BPS) Hilbert space and
those obtained by quantizing just the BPS sector the phase space compare the two center
states determined in [17] with those of section 4.3.2 (see [4] further discussion of this

instance, in treating gravity, it is not clear if trajectories which eventually develop singularities should also be
included as points in the phase space or only solutions which are eternally smooth. As we will primarily be
concerned with static or stationary solutions in these notes we will largely avoid this issue.
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topic).

As mentioned, the LLM and Lunin-Mathur geometries have already been quantized and
the resultant states were matched with states in the dual CFTs. Our focus here will be on
the quantization ofN = 2 solutions in four (orN = 1 in five) dimensions. For such solu-
tions, although a decoupling limit has been defined (see section 3.2), the dualN = (0, 4)
CFT is rather poorly understood. Thus quantization of the supergravity solutions may
yield important insights into the structure of the CFT and will be important in studying
the microstates of the corresponding extremal black objects.

2.4 ADS/CFT

One of the most powerful tools to study properties of black holes in string theory is the
AdS/CFT correspondence [56]. This conjecture relates string theory on backgrounds
of the form AdSp+1 ×M to a CFTp that lives on the boundary of the AdSp+1 space.
Such backgrounds arise from taking a particular decoupling limit of geometries describ-
ing black objects such as black holes, black strings, black tubes, etc. The limit amounts
to decoupling the physics in the near horizon region8 of the black object from that of the
asymptotically flat region by scaling the appropriate Planck length, lp, which decouples
the asymptotic gravitons from the bulk (i.e. the near horizon region). At the same time
the appropriate spatial coordinates are rescaled with powers of lp to keep the energies of
some excitations finite. This procedure should be equivalent to the field theory limit of
the brane bound states generating the geometry under consideration.

We are interested in black objects which describe normalizable deformations in the AdSp+1

background. These correspond to a state/density matrix on the dual CFT according to the
following dictionary

BULK BOUNDARY
exp

(−Son shell
bulk

)
Tr[ρO1 . . .On] = 〈O1 . . .On〉ρ

classical geometries semiclassical states ?
black hole ρ ∼ exp{−∑i βiOi}
entropy S S = − Tr(ρ log ρ)

bulk isometry D
[
ρ, D̂

]
= 0

ADM quantum numbers of D Tr
(
ρD̂
)

=
〈
D̂
〉

= DADM

In the first line Oi are operators dual to sources turned on in the boundary. They are
included in the calculation of the on-shell bulk action,

(−Son shell
bulk

)
. The second line can

8In some of the cases treated in these notes the region will not be an actual near-horizon region as the
original solutions may be horizon-free (or, in some cases, may have multiple horizons) but the decoupling limits
are motivated by analogy with genuine black holes where the relevant region is the near horizon one.
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be seen as the definition of the dual semiclassical state. More specifically, a semiclassical
state is one that has an unambiguous dual bulk geometry (i.e. in the classical limit, N →
∞ and ~→ 0, macroscopic observables take on a fixed expectation value with vanishing
variance). In some ideal situations such semiclassical states turn out to be the analog of
coherent states in the harmonic oscillator. In the third line, we describe a typical form
of a density matrix that we expect to describe black holes. This form is motivated by
the first law of thermodynamics: the entropy as defined in the fourth line obeys dS =∑
i βid〈Oi〉, and by matching this to the first law as derived from the bulk description

of the black hole we can identify the relevant set of operators Oi and potentials µi and
guess the corresponding density matrix. The fourth line simply states that we expect a
relation between the bulk and boundary entropies. In the fifth and the last line, D̂ is the
current/operator dual to the bulk isometry D.

Our use of AdS/CFT in this thesis will be quite standard and relatively basic. This is due,
in part, due to the lack of control of the relevant N = (0, 4) CFT that we will encounter.
Let us nonetheless be somewhat optimistic here and propose potentially interesting ques-
tions one might wish to explore in order to understand the spacetime structure of black
hole microstates once greater control has been established over this CFT (something we
hope to lay the groundwork for here).

One question relevant for understanding black holes via AdS/CFT is: “Given a density
matrix ρ on the CFT side, is there a dual geometry in the bulk?”. On general grounds one
could have expected that a general density matrix ρ should be dual to a suitably weighted
sum over geometries, each of which could be singular, have regions with high curvature,
and perhaps not have good classical limits. As a result the dual gravitational description
of a general density matrix will not generally be trustworthy. However, under suitable
circumstances, it can happen that there is a dual “effective” geometry that describes the
density matrix ρ very well. This procedure of finding the effective geometry is what we
will call “coarse graining”. In the gravity description, this amounts to neglecting the
details that a classical observer cannot access anyway due to limitations associated to the
resolution of their apparatus. So, one can phrase our question in the opposite direction,
“What are the characteristics of a density matrix on the CFT side, so that there is a good
dual effective geometry that describes the physics accurately?”.

One can try to construct the dual effective geometry following the usual AdS/CFT pre-
scription. To do so, one should first calculate all the non-vanishing expectation values of
all operators dual to supergravity modes (assuming one knows the detailed map between
the two). On the CFT side, these VEVs are simply given by

〈Oi〉 = Tr(ρ Oi),

and they determine the boundary conditions for all the supergravity fields. The next step
is to integrate the gravity equations of motion subject to these boundary conditions to
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get the dual geometry. This is in principle what has to be done according to AdS/CFT
prescription. The problem with this straightforward approach is that it is not terribly
practical, and so alternative approaches have been sought out [57, 58] 9.

9Though it would be interesting to study in some detail the connection between the two.
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CHAPTER 3

MULTICENTERED SOLUTIONS

In chapters 3-5 we will turn our attention to a large class of classical supergravity solutions
in four and five dimensions. These solutions furnish a laboratory within which we attempt
to address several of the issues raised in chapter 2. The solutions look asymptotically like
a black hole with the same total charge. We would like to understand their relation to the
black hole microstates as this may yield insight into the spacetime structure of the latter.

To this end we first use AdS/CFT techniques to determine if these solutions can be related
to black hole states via the duality between (string theory in) the near-horizon geome-
try and the dual CFT. Using this correspondence we can relate the geometries to semi-
classical states in the dual CFT and might hope to study the CFT itself to learn about
more quantum (i.e. less classical) states.

Another, more direct, approach to understanding the relation between these classical ge-
ometries and the quantum black hole microstates is to quantize this restricted class of
solutions directly and study the resultant BPS states. While the original geometries are
of course classical the BPS states are essentially phase space densities (the analog of
wavefunctions) and need not be semi-classical objects.

The second approach will be the subject of Chapter 4. In this chapter we will focus on the
classical solutions and their decoupling limits.

3.1 FOUR AND FIVE DIMENSIONAL SOLUTIONS

We begin with a brief review of multicentered solutions of N = 2 supergravity in 4
dimensions and their lift to (N = 1 solutions in) 5 dimensions. The four dimensional the-
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ory is obtained by compactifying IIA on a proper SU(3) holonomy Calabi-Yau manifold
X , the five dimensional theory from compactifying M-theory on the same Calabi-Yau
manifold. In the regime of interest to us, we can restrict to the cubic part of the IIA
prepotential.

The multicentered solutions are determined by specifying a number of charges, Γa, and
their locations, ~xa, in the spatial R3. These charged centers correspond in the 10 di-
mensional picture to branes wrapping even cycles in the CY3. There are 2b2 + 2 inde-
pendent such cycles in homology, with b2 the second Betti-number of X , each giving
rise to a charge in 4d sourcing one of the 2b2 + 2 vector fields of the N = 2 super-
gravity. We will often denote the charges by their coefficients in a basis of cohomology,
i.e. Γ = (p0, pA, qA, q0) = p0 + pADA + qAD̃

A + q0 dV , where the DA form a ba-
sis of H2(X,Z), the D̃A make up a dual basis and dV is the unit volume element of X;∫
X
dV ≡ 1.

The moduli of the Calabi-Yau appear as scalar fields in the 4d/5d effective theories. In
the solutions we will be considering the hypermultiplet moduli will be constant (and will
mostly be irrelevant) while the moduli in the vector multiplets will vary dynamically in
response to charged sources. An important boundary condition in these solutions is then
the value of these vector multiplet moduli at infinity.

Our review of these solutions will be concise, as they are discussed in great detail in
e.g. the references [59, 40, 9] (see also [34][32]). We will recall the split attractor flow
conjecture, which relates the existence of solutions at particular values of the moduli at
infinity to the existence of certain flow trees in moduli space. A short discussion of the
concept of marginal stability, distinguishing between proper marginal stability and what
we call threshold stability will also be included.

3.1.1 FOUR DIMENSIONAL SOLUTIONS

Our starting point is the set of multicentered solutions of [59, 60, 40]. The solutions are
entirely determined in terms of a single function Σ, which is obtained from the charge
(p0, pA, qA, q0) single centered BPS black hole entropy S(p0, pA, qA, q0) by substituting

Σ :=
1
π
S(H0, HA, HA, H0) , (3.1)

where

H ≡ (H0, HA, HA, H0) :=
∑
a

Γa
√
G4

|x− xa| − 2Im(e−iαΩ)|r=∞ , (3.2)

and we will often denote the constant term in the harmonics by h

h := −2Im(e−iαΩ)|r=∞ . (3.3)
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Here G4 is the four dimensional Newton constant (i.e the Einstein-Hilbert action is of the
form SEH

4 = 1
16πG4

∫ √−g4R4). We keep this dependence on G4 explicit for now as it
will be important when we take the decoupling limit. The Γa in the 2b2 + 2 harmonic
functions take values in Hev(X,Z), the integral even cohomology of the Calabi-Yau X ,
eiα is the phase of the total central charge, Z(Γ), and Ω is the normalized period vector
defining the special geometry.

Z(Γ) = 〈
∑
a

Γa,Ω〉 , eiα =
Z

|Z| (3.4)

Γa is the charge vector of the center at position ~xa. The constant term of the harmonic
functions is such that Σ|r=∞ = 1.

The solutions are now given by the following four dimensional metric, gauge fields and
moduli 1:

ds2 = − 1
Σ

(dt+
√
G4 ω)2 + Σ dxidxi ,

A0 =
∂ log Σ
∂H0

(
dt√
G4

+ ω

)
+ ω0 , (3.5)

AA =
∂ log Σ
∂HA

(
dt√
G4

+ ω

)
+AAd ,

tA = BA + i JA =
HA − i ∂Σ

∂HA

H0 + i ∂Σ
∂H0

,

The off diagonal metric components can be found explicitly too [40] by solving

? dω =
1√
G4

〈dH,H〉 , (3.6)

where the Hodge ? is on flat R3. The Dirac parts AAd , ω0 = A0
d of the vector potentials

are obtained by solving

dω0 =
1√
G4

? dH0 , (3.7)

dAAd =
1√
G4

? dHA . (3.8)

Again the Hodge star ? is on flat R3. Asymptotically for r →∞ we have2

ds2 = −dt2 + d~x2, A = 2 Re (e−iαΩ)|∞ dt√
G4

+Ad|∞ (3.9)

1We will work for the moment in conventions where we take c = ~ = 1 but keep dimensions of length
explicit. The formulae here can be compared with those of e.g. [40] by noting that there the conventionG4 = 1

was used. For more information concerning the conventions and different length scales used in this paper, see
appendix A.

2HereAd includes both ω0 andAAd .
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The above form of the solution holds for any prepotential. However it still requires finding
the entropy function S(p, q) which in general cannot be obtained in closed form. If we
take the prepotential to be cubic, which is tantamount to taking the large volume limit in
IIA, we can be more explicit. First, the period vector becomes Ω = − eB+iJq

4J3
3

, considered

as an element of Hev(X,R). Furthermore [61, 62],

A0 =
−L
Σ2

(
dt√
G4

+ ω

)
+ ω0

AA =
HAL−Q3/2yA

H0Σ2

(
dt√
G4

+ ω

)
+AAd ,

tA =
HA

H0
+
yA

Q
3
2

(
iΣ− L

H0

)
,

Σ =

√
Q3 − L2

(H0)2
, (3.10)

L = H0(H0)2 +
1
3
DABCH

AHBHC −HAHAH
0 ,

Q3 = (
1
3
DABCy

AyByC)2 ,

DABCy
AyB = −2HCH

0 +DABCH
AHB .

The entropy function Σ will play a central role in the discussion that follows. At the hori-
zon of one of the bound black holes this function will be proportional to the entropy, i.e.
Σ(H)|(x→xa) = G4

|x−xa|2 Σ(Γa) +O(
√
G4

|x−xa| ) where πΣ(Γa) = S(Γa) is the Bekenstein-
Hawking entropy of the ath center3.

Finally there are N − 1 independent consistency conditions on the relative positions of
the N centers, reflecting the fact that these configurations really are bound states and one
can’t move the centers around freely. These conditions arise from requiring integrability
of (3.6). They take the simple form

〈H,Γs〉|x=xs = 0 , (3.11)

or written out more explicitly4

√
G4

∑
b 6=a

〈Γa,Γb〉
rab

= 〈h,Γa〉 , (3.12)

3Note that the entropy formula for black holes involving D6-charge is rather involved and might appear
singular as H0 (or p0) goes to zero, see (3.10). This is however not the case and by analysing the formula in an
expansion around small H0 one finds that the leading term is the non-singular entropy function for a black hole

without D6-charge, Σ =

q
DABCH

AHBHC

3
(DABHAHB − 2H0), as expected.

4For brevity we use unconventional notation here: by
P
s6=r we mean a sum over all s different from r

whereas
P
s 6=r denotes a doubles sum over all s and r such that s and r are different.
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where rab = |xab| = |xa−xb| and the h are the constant terms in the harmonic functions
given in (3.3). Note that, as these depend on the asymptotic values of the scalar fields, the
equilibrium distances between the different centers do so as well.

Since there are N − 1 independent position constraints, the dimension of the moduli
space modulo the center of mass translations will generically be 2N − 2. Thus this space
is always even dimensional which is good as we will eventually show that it is, in fact, a
phase space.

3.1.2 FIVE DIMENSIONAL SOLUTIONS

In [62] (see also [37, 63, 38, 64, 65, 66, 34, 35]) these solutions were lifted to five dimen-
sions via the connection between IIA and M-theory on a circle. These solutions were also
independently discovered directly in five dimensions in [32][34]. The five dimensional
solution can be expressed in terms of the four dimensional one as (see appendix A for
more details about notations and conventions):

ds2
5d = Ṽ

2/3
IIA `25

(
dψ +A0

)2
+ Ṽ

−1/3
IIA

R̂

2
ds2

4d ,

AA5d = AA +BA
(
dψ +A0

)
, (3.13)

Y A = Ṽ
−1/3
IIA JA , ṼIIA =

DABC

6
JAJBJC =

1
2

(
Σ
Q

)3

.

Here ψ parametrizes the M-theory circle with periodicity 4π and we define, in terms of
the 11d Planck length l11 and the physical asymptotic M-theory circle radius R,

`5 :=
l11

4πṼ 1/3
M

, R̂ =
R

`5
, (3.14)

where ṼM = VM/l
6
11 is the M-theory volume of X in 11d Planck units. The reduced 5d

Planck length `5 is related to the 4d Newton constant G4 by

`35 = RG4 (3.15)

and we have the relation R̂ = 2 Ṽ 1/3
IIA |∞. Note that unlike the M-theory volume in 11d

Planck units, which is in a hypermultiplet and hence constant, the IIA volume in string
units varies over space. Our normalizations are chosen such that asymptotically we have
the metric

ds2
5d|∞ =

R2

4
(
dψ +A0

)2
+ d~x2 − dt2 , (3.16)

A0 = −2 cosα∞
dt

R
+ p0 cos θ dφ ,
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where A0 was obtained from (3.9), and we recall that eiα is the phase of the total central
charge. Recall that p0 is the total D6-charge of the solution which, for our decoupling
analysis (and in fact through-out most of this thesis), we will take to be zero.

The five dimensional vector multiplet scalars Y A are related to the M-theory Kähler mod-
uli by JAM = Ṽ

1/3
M Y A. Here ṼM = VM

l611
is the volume of the internal Calabi-Yau as

measured with the M-theory metric. This is constant throughout the solution as it is in a
hypermultiplet and hence decoupled. For more details about all the different length scales
and the relation between M-theory and IIA variables in our conventions see appendix A.

For practical computations it is often useful to express the metric (3.13) above more ex-
plicitly in terms of the functions (3.10):

ds2
5d = 2−2/3Q−2

[
−`25 (H0)2

(√
R

`35
dt+ ω

)2

− 2`25 L
(√

R

`35
dt+ ω

)
(dψ + ω0)

+ `25 Σ2(dψ + ω0)2

]
+ 2−2/3R

`5
Qdxidxi . (3.17)

Finally, note that by construction, all these five dimensional solutions have a U(1) isome-
try along the ψ direction. They are therefore not the complete set of five dimensional BPS
solutions.

3.1.3 ANGULAR MOMENTUM

Let us briefly recall some relevant properties of these multicentered solutions.

The first new feature with respect to single black holes is that, as shown in [59], they carry
an angular momentum equal to

~J =
1
2

∑
a<b

〈Γa,Γb〉 ~xab
rab

. (3.18)

Note that Dirac quantization of the charges is equivalent to half integral quantization of
the angular momentum of a two centered solution. This angular momentum is associated
to SO(3) rotations in the three non-compact spacelike dimensions and should not be
confused by the momentum around the M-theory circle (which, in the four dimensional
picture, corresponds to the D0-charge q0).

As angular momentum will play an important role in this part of the thesis, providing
a natural coordinate on the solution space, we will derive some more useful ways of
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expressing it. Multiplying the condition (3.18) by xa and then summing over the different
centers shows that

J =
1
2

∑
a

〈h,Γa〉xa . (3.19)

By using the fact that
∑
a〈h,Γa〉 = 0 one can rewrite the last expression as

J =
1
2

∑
a,a6=b

〈h,Γa〉xab . (3.20)

Starting from this formula we can show that the size of the angular momentum can be
compactly written in terms of the inter-center distances rab. Squaring (3.20) gives

J2 =
1
4

∑
a,a6=b

∑
c, c 6=b

〈h,Γa〉〈h,Γc〉xab · xcb . (3.21)

Now we can use that for any three points labeled by a, b, c there is the relation xab ·xcb =
1
2 (r2

ab + r2
cb − r2

ac) and a little more algebra reveals that

|J | = 1
2

√
−
∑
a<b

〈h,Γa〉〈h,Γb〉 r2
ab . (3.22)

3.1.4 SOLUTION SPACES

Another important property of a configuration with a sufficient number of centers is that
although the centers bind to each other there is some freedom left to change their re-
spective positions. These possible movements can be thought of as flat directions in the
interaction potential. Equation (3.12) constrains the locations of the centers to the points
where this potential is zero. As for a system with N centers there are N − 1 such equa-
tions for 3N − 3 coordinate variables (neglecting the overall center of mass coordinate)
there is, in general, a 2N −2 dimensional moduli space of solutions for fixed charges and
asymptotics. This space may or may not be connected and it may even have interesting
topology. We will refer to this as the moduli space of solutions or solution space; the lat-
ter terminology will be preferred as it is less likely to be confused with the moduli space
of the Calabi-Yau, in which the scalar fields tA take value. The shape of this solution
space does, in fact, depend quite sensitively on where the moduli at infinity, tA|∞, lie in
the Calabi-Yau moduli space (as the latter determine h on the RHS of eqn. (3.12)). We
will return in more detail to the geometry of the solution space in section 3.4 and to its
quantization in Section 4.3.

The space-time corresponding to a generic multicenter configuration can be rather com-
plicated as there can be many centers of different kinds. Some properties of the 5 di-
mensional geometry have been discussed in the literature, e.g. [32, 38, 34, 62] and we
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won’t repeat the details here. A basic understanding will be useful when considering the
decoupling limit so we shortly summarize some points of interest. The four dimensional
solutions are defined on a space that is topologically R4. When lifted to five dimensions,
however, a Taub-NUT circle is fibred over this space, pinching at the location of any
center with D6-charge. The resultant space typically has non-contractible two-spheres
extending between centers with D6 charge and has been referred to as a “bubbling solu-
tion” [32]. Generically, a D4 charged center will lift to a black string unless it also caries
D6-charge in which case it lifts to what locally looks like a BMPV black hole at the center
of 5 dimensional Taub-NUT [37]. The topology of the horizon at a given center is that of
an S1-bundle over S2 of degree p0

a, i.e. S1 × S2 for p0
a = 0 and S3/Z|p0a| otherwise.

Finally let us mention a symmetry of the solutions (which is closely related to the one
observed in [65][38]) given by the following shift of the harmonic functions:

H0 → H0 ,

HA → HA + kAH0 , (3.23)

HA → HA +DABCH
BkC +

1
2
DABCk

BkCH0 ,

H0 → H0 + kAHA +
1
2
DABCH

AkBkC +
1
6
DABCk

AkBkC(H0) .

Under which the metric and the constraint equations are invariant and the gauge field is
transformed by a large gauge transformation

AA → AA + kAdψ . (3.24)

3.1.5 SMOOTHNESS AND ZERO-ENTROPY BITS

The multicenter solutions of sections 3.1.1 have played an important role in understand-
ing the structure of the BPS Hilbert space of N = 2 supergravity (in 4d) [59, 67, 9]
and have also had related mathematical applications [68, 69]. More recently the five di-
mensional versions of these solutions came to prominence within the Mathur program
of understanding black hole microstates as a result of [34, 32]. In this context we are
interested in large families of smooth solutions because, as discussed in Chapter 2, such
families provide various windows into the quantum structure of the theory, either as phase
spaces which can be quantized yielding quantum states as described in section 2.3 or as
duals to semi-classical states in a CFT as in section 2.4 (if the solutions in the family are
asymptotically AdS). In either case it is important that the solutions be suitably smooth
or entropy-less. Such solutions are often be referred to as “microstate geometries” though
this unfortunate terminology is not intended to suggest that the classical solution neces-
sarily corresponds to a black hole microstate. Rather, as we will see later, quantizing the
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space of such solutions as a phase space provides a set of quantum states that may or may
not be semi-classical.

Although it is perhaps not entirely a priori clear what solutions we should include in
defining the phase space of a our supergravity theory a natural criteria is that the solutions
be non-singular in some sense which we will attempt to make precise. The reasoning
for this is as follows. Singular supergravity solutions are only meaningful if stringy ef-
fects resolve or smooth out the singularity yielding a consistent solution to the full string
theory. Although this is not something we generally have control over we will often use
indirect arguments to determine which singularities are acceptable and which are not.
For instance, we will occasionally have recourse to consider solutions with singularities
coming from D0 branes and we allow these because these branes are believed to be good
solutions to the full (closed) string theory. We have, moreover, an alternative open string
formulation which suggests that such solutions are completely consistent. From this de-
scription we know that there is very little entropy associated with a single D0 so we argue
that stringy effects will smooth out the geometry rather than generating a horizon. This
is important as solutions with horizons have an associated entropy and are better thought
of as an effective description of an ensemble of states (quantum or semi-classical) rather
than a semi-classical state.

Let us now apply this philosophy to our multicentered solutions. Recall that the function
Σ appearing in the metric in (3.5) is known as the entropy function. When evaluated at
~xa it is proportional to the entropy of a black hole carrying the charge of the center lying
at ~xa. This follows from the Bekenstein-Hawking relation and the fact that Σ determines
the area of the horizon of a possible black hole at ~xa. If this area is zero then the center at
~xa does not have any macroscopic entropy and, if the associated geometry does not suffer
from large curvature in this region, then there is no reason to believe stringy corrections
will change this.

The prototypical example of such geometries have centers with charges of the form Γ =
(1, p/2, p2/8, p3/48) corresponding to a single D6 branes wrapping the Calabi-Yau with
all lower-dimensional charges induced by abelian flux. A configuration with a single
such center can be spectral flowed (see e.g. [65, 3]) to a single D6 brane with no flux
and hence no additional degrees of freedom in the Calabi-Yau; thus “integrating out”
the Calabi-Yau degrees of freedom does not generate an entropy and the associated five
dimensional solution is smooth. As discussed in [35, 70], “zero-entropy bits” can also
be D4 and D2-branes with flux or D0 branes. Generically they can carry a “primitive”
charge vector, i.e. some number of D6-branes with fractional fluxes such that the induced
D2, D4 and D0 brane charges are all quantized, but have no common factor. Note that if
the D6-brane charge is N > 1, the solution is not strictly smooth – there is relatively mild
orbifold singularity (R4/ZN ) in the five-dimensional theory. It was shown in [34, 35]
that, in classicalN = 8 supergravity, such zero entropy smooth centers carry charges that
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are half-BPS. The half-BPS nature of the charge vector follows from smoothness.

Five-dimensional multicenter configurations with every center constrained to be of the
above form have been studied in [32, 71, 34, 35] and numerous other works by the same
authors. Note that the associated four dimensional solution can have singularities associ-
ated to Kaluza-Klein reduction on a non-trivial S1 fibration. This high-lights an important
distinction: while the entropy, determined by replacingHA in the definition of Σ(H) with
ΓA, is a duality invariant notion, the smoothness of the resulting supergravity solution is
not (see e.g. [72]). Thus we will often generally assume that solutions with all centers
that are “zero-entropy bits” (in the sense of vanishing “microscopic” entropy) are can-
didate “microstate geometries” even though they may have naked singularities in some
duality frames. As suggested above a more fundamental criteria is provided by the open
string formulation of the solutions. If this analysis suggests that a singular center does not
carry additional (e.g. non-Abelian) degrees of freedom then we expect stringy effects to
smooth it out. This allows us to distinguish between configurations such as small black
holes which have vanishing horizon area and genuine zero-entropy bits such as D0 branes.

3.1.6 THE SPLIT ATTRACTOR FLOW CONJECTURE

So far we have reviewed a class of 4 and 5 dimensional solutions. These solutions are
relatively complicated and it is non-trivial to determine if they are well-behaved every-
where. In particular one should be concerned about the appearance of closed timelike
curves or singularities. If the entropy function, Σ, which involves a square root, becomes
zero or takes imaginary values in some regions the 4d solution is clearly ill behaved; this
is equivalent to closed timelike curves in the 5d metric as discussed in [38] and [32]. One
can on the other hand show that if Σ2 > ωiω

i everywhere then there can be no closed
timelike curves [34]. This is a rather complicated condition to check for a generic mul-
ticenter solution however and furthermore it is sufficient but not necessary; the condition
could be violated without closed timelike curves appearing. In [59] and [9] a simplified
criteria was proposed for the existence of (well-behaved) solutions which we will now
relate.

In [59] a conjecture is proposed whereby pathology-free solutions are those with a corre-
sponding attractor flow tree in the moduli space. This conjecture was first posed for the
multicentered four-dimensional solutions of Section 3.1.1.

Recall that the four dimensional moduli, tA(~x) = BA(~x) + iJA(~x), are the complexi-
fied Kähler moduli of the Calabi-Yau. The relation between these moduli and their five
dimensional counterparts can be found in [37] [3]. To each charge vector, Γa, we can
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associate a complex number, the central charge, as

Z(Γa; t) := 〈Γa,Ω(t)〉 Ω(t) := − et√
4
3J

3
(3.25)

Note that, since tA is a two-form, Ω is a sum of even degree forms. The phase of the
central charge, α(Γa) := arg[Z(Γa; t)], encodes the supersymmetry preserved by that
charge at the given value of the moduli. The even form Ω is related, asymptotically, to the
constants in the harmonics (which define both the 4-d and 5-d solutions) as given in (3.3).

An attractor flow tree is a graph in the Calabi-Yau moduli space beginning at the moduli at
infinity, tA|∞, and ending at the attractor points for each center. The edges correspond to
single center flows towards the attractor point for the sum of charges further down the tree.
Vertices can occur where single center flows (for a charge Γ = Γ1 + Γ2) cross walls of
marginal stability where the central charges are all aligned (|Z(Γ)| = |Z(Γ1)|+ |Z(Γ2)|).
The actual flow of the moduli tA(~x) for a multi-centered solution will then be a thickening
of this graph (see [59], [9] for more details). According to the conjecture a given attractor
flow tree will correspond to a single connected set of solutions to the equations (3.11), all
of which will be well-behaved. An example of such a flow is given in figure 3.1.

The intuition behind this proposal is based on studying the two center solution for charges
Γ1 and Γ2. The constraint equations (3.11) imply that when the moduli at infinity are
moved near a wall of marginal stability (where Z1 and Z2 are parallel) the centers are
forced infinitely far apart

r12 =
〈Γ1,Γ2〉
〈h,Γ1〉 =

〈Γ1,Γ2〉 |Z1 + Z2|
2 Im(Z̄2Z1)

∣∣∣∣
∞

(3.26)

In this regime the actual flows in moduli space are well approximated by the split attractor
trees since the centers are so far apart that the moduli will assume single-center behaviour
in a large region of spacetime around each center. Thus in this regime the conjecture is
well motivated. Varying the moduli at infinity continuously should not alter the BPS state
count, which corresponds to the quantization of the two center moduli space, so unless
the moduli cross a wall of marginal stability we expect solutions smoothly connected to
these to also be well defined. Extending this logic to the general N center case requires
an assumption that it is always possible to tune the moduli such that the N centers can be
forced to decay into two clusters that effectively mimic the two center case. There is no
general argument that this should be the case but one can run the logic in reverse, building
certain large classes of solutions by bringing in charges pairwise from infinity and this
can be understood in terms of attractor flow trees. What is not clear is that all solutions
can be constructed in this way. For more discussion the reader should consult [73].

Although this conjecture was initially proposed for asymptotically flat solutions, when we
consider the decoupling limit of the multicenter solutions in the next section we will see
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that the attractor flow conjecture and its utility in classifying solutions can be extended to
AdS space.

For generic charges the attractor flow conjecture also provides a way to determine the
entropy of a given solution space. The idea is that the entropy of a given total charge is
the sum of the entropy of each possible attractor flow tree associated with it. Thus the
partition function receives contributions from all possible trees associated with a given
total charge and specific moduli at infinity. An immediate corollary of this is that, as
emphasized in [9], the partition function depends on the asymptotic moduli. As the latter
are varied certain attractor trees will cease to exist; specifically, a tree ceases to contribute
when the moduli at infinity cross a wall of marginal stability (MS) for its first vertex,
Γ→ Γ1 + Γ2, as is evident from (3.26).

For two center solutions one can determine the entropy most easily near marginal stability
where the centers are infinitely far apart. In this regime locality suggests that the Hilbert
state contains a product of three factors5 [9]

H(Γ1 + Γ2; tms) ⊃ Hint(Γ1,Γ2; tms)⊗H(Γ1; tms)⊗H(Γ2; tms) (3.27)

Since the centers move infinitely far apart as tms is approached we do not expect them
to interact in general. There is, however, conserved angular momentum carried in the
electromagnetic fields sourced by the centers and this also yields a non-trivial multiplet of
quantum states. Thus the claim is thatHint is the Hilbert space of a single spin J multiplet
where J = 1

2 (|〈Γ1,Γ2〉| − 1).6. H(Γ1) andH(Γ2) are the Hilbert spaces associated with
BPS brane excitations in the Calabi-Yau and their dimensions are given in terms of a
suitable entropy formula for the charges Γ1 and Γ2 valid at tms.

Thus, if the moduli at infinity were to cross a wall of marginal stability for the two center
system above the associated Hilbert space would cease to contribute to the entropy (or the
index). A similar analysis can be applied to a more general multicentered configuration
like that in figure 3.1 by working iteratively down the tree and treating subtrees as though
they correspond to single centers with the combined total charge of all their nodes. The
idea is, once more, that we can cluster charges into two clusters by tuning the moduli
and then treat the clusters effectively like individual charges. We can then iterate these
arguments within each cluster. This counting argument mimics the constructive argument
for building the solutions by bringing in charges from infinity and is hence subject to the
same caveats, discussed above.

Altogether the above ideas allow us to determine the entropy associated with a partic-
ular attractor tree, which, by the split attractor flow conjecture corresponds to a single

5Since attractor flow trees do not have to split at walls of marginal stability, there will in general be other
contributions toH(Γ1 + Γ2; tms) as well.

6The unusual−1 in the definition of J comes from quantizing additional fermionic degrees of freedom [17]
[4].
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Γ

Γ4

Γ1

Γ2

Γ3

Figure 3.1: Sketch of an attractor flow tree. The dark blue lines are lines of marginal stability, the
purple lines are single center attractor flows. The tree starts at the yellow circle and flows towards
the attractor points indicated by the yellow boxes.

connected component of the solutions space. The entropy of a tree is the product of the
angular momentum contribution from each vertex (i.e. |〈Γ1,Γ2〉|, the dimension of Hint)
times the entropy associated to each node.

|〈Γ3,Γ1 + Γ2〉| |〈Γ1,Γ2〉|Ω(Γ1) Ω(Γ2) Ω(Γ3) (3.28)

In Chapter 4 we will show that it is possible, in the two and three center cases, to quantize
the solution space directly and to match the entropy so derived with the entropy calculated
using the split attractor tree. This provides a non-trivial check of both calculations.

Before proceeding we should mention an important subtlety in using the attractor flow
conjecture to classify and validate solutions. Certain classes of charges will admit so
called scaling solutions [70] [9] which are not amenable to study via attractor flows.
These solutions are characterized by the fact that the constraint equations (3.11) have
solutions that continue to exist at any value of the asymptotic moduli. We will discuss
these solutions in greater detail in the section 3.4.2 but it is important to note here that the
general arguments given in this section (such as counting of states via attractor flow trees)
do not apply to scaling solutions.

3.2 DECOUPLING LIMIT

As outlined in the introduction, we want to study the geometries dual to states of M5-
branes wrapped on 4-cycles with total homology class pADA, in the decoupling limit
R/l11 → ∞, VM/l611 fixed. A convenient way to take the limit is to adapt units such
that R remains finite — for example R ≡ 1 — while `5 → 0 (note that l11/`5 is fixed
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Figure 3.2: In this figure the (50B1, J1, J2) subspace in moduli space is shown. The blue surface
is a wall of marginal stability (which is always codimension 1). The central red line is the attractor
flow for a single center solution with the same total charge as the two center. The pink surface
shows the values the moduli take in the two center solution.

because VM/l611 is fixed). Then the dynamics of finite energy excitations of the M5 are
described by a (0,4) supersymmetric 1+1 dimensional nonlinear sigma model with target
space naively7 given by the classical M5 moduli space, the MSW string [27, 74], decou-
pled from bulk and KK modes. For example, Kaluza-Klein excitations along the 4-cycle
decouple as their mass is of order V −1/6

M , which scales to infinity.

We wish to find out how multicentered solutions with total charge (0, pA, qA, q0) behave
when we take this limit. The IIA Kähler moduli JA are related to the normalized scalars
Y A as JA ∼ R

`5
Y A, hence J → ∞. For two centered solutions involving D6-charges,

the equilibrium separation following from the integrability condition (3.11) asymptotes to

|~x1 − ~x2| = 〈Γ1,Γ2〉
2 Im(e−iαZ1)|∞

`
3/2
5√
R
∼ 〈Γ1,Γ2〉

R2
`35, (3.29)

where we used that for total D6-charge zero, α→ 0 when J →∞, while Z1 ∼ iJ3/2 ∼
i(R/`5)3/2.

To keep the coordinate separation finite in the limit `5 → 0, we should therefore rescale
all coordinates as

~x = `35~x. (3.30)

7As discussed in the introduction and further in section 5.4.3, the precise M5-brane interpretation of the
decoupling limit is rather mysterious and still poses various puzzles.
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The finite~x region then has the expected properties for a decoupling limit. First, as we will
see, at finite values of ~x, the metric converges to an expression of the form ds2 = `25 ds2

with ds2 finite. Finite fluctuations of ds2 thus give rise to finite action fluctuations — the
`25 metric prefactor cancels the `−3

5 in front of the Einstein-Hilbert action [56]. Similarly,
M2-branes wrapping the M-theory circle and stretched over finite ~x intervals have finite
energy. Finally, the geometry becomes asymptotically an S2 bundle over AdS3 at large
r = |~x| → ∞:

ds2 ≈ dη2 + eη/U (−dτ2 + dσ2) + U2
(
dθ2 + sin2 θ (dφ+ Ã)2

)
, (3.31)

Ã = J
Jmax

d(τ − σ) (3.32)

AA5d ≈ −pA cos θ (dφ+ Ã) + 2DABqB d(σ + τ) , (3.33)

Y A ≈ pA

U
. (3.34)

where U := ( 1
6DABCp

ApBpC)1/3 and we made the change of coordinates (r, t, ψ) →
(η, τ, σ) to leading order given by:

η := U log
R2r

U
, τ :=

t

R
, σ :=

ψ

2
− t

R
. (3.35)

Notice that the normalized Kähler moduli Y A and the U(1) vectors AA are fixed at at-
tractor values determined by the M5 and M2 charges. The flat connection Ã determines
the twisting of the S2 over the AdS3 base; J is the S2-angular momentum of the solution
and Jmax := U3

2 is its maximal value for given p. Note that going around the M-theory
circle in the new coordinates corresponds to

σ → σ + 2π, (3.36)

with all other coordinates fixed. Parallel transport of the S2 along this circle produces a
rotation ∆φ = J

Jmax
2π around its z-axis (which is the axis determined by the direction

of the four dimensional angular momentum). Because Ã ∼ d(σ − τ), the sphere simi-
larly gets rotated in time, resulting in angular momentum proportional to the amount of
twisting around the S1. Since the S2 descends from the spatial sphere at infinity in four
dimensions, this equals the 4d angular momentum of the 4d multicentered solution. In
the dual CFT, it translates to SU(2)R charge.

The σ → σ + 2π circle smoothly connects to the asymptotic M-theory circle in the orig-
inal asymptotically flat geometry. Fermions must be periodic around this circle, as an-
tiperiodic fermions would produce a nonzero vacuum energy. Therefore we have periodic
boundary conditions for the fermions on the AdS3 boundary circle, so the supersymmetric
black hole configurations we are describing must correspond to supersymmetric states in
the Ramond sector of the boundary CFT.
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It is not true, however, that all multicentered solutions with total charge (0, pA, qA, q0)
give rise to such asymptotic AdS3×S2 attractor geometries8 in the decoupling limit. For
example D4-D4 2-centered solutions (i.e. p0

1 = p0
2 = 0) turn out to have equilibrium sepa-

rations in the original coordinates scaling as |~x1−~x2| ∼ 〈Γ1,Γ2〉`5. The different scaling
compared to the case with nonzero D6-charges is due to the fact that now argZ1 → 0 in
the decoupling limit. In the rescaled coordinates (3.30) the separation diverges, so these
multicentered solutions therefore do not fit in the asymptotic AdS3 × S2 × X attractor
geometry associated to the total M5 charge pA. Rather, they give rise to two mutually
decoupled AdS3 × S2 ×X attractor geometries associated to the two individual centers.
More elaborate configurations of this kind are possible too, for instance consisting of
two clusters each with zero net D6-charge, but containing themselves more centers with
nonzero D6-charge. The centers within each cluster will have rescaled coordinate sepa-
rations of order 1, while the mutual separation between the clusters diverges like `−2

5 in
these coordinates.

These D4-D4 type BPS bound states exist in regions of Kähler moduli space separated
from the overall M5 attractor point Y A = pA/U by a wall of marginal stability. They
correspond to ensembles of BPS states of the MSW string which exist at certain values
of the Y A but not at the attractor point. Their interpretation in the AdS-CFT context is
therefore less clear — we will return to this in section 5.4.3.

In the following we wish to focus on solutions which do correspond to a single asymptotic
AdS3 × S2 in the decoupling limit, and in particular find practical criteria to determine
when this will be the case. We will proceed by rescaling coordinates as in (3.30) and
carefully studying the behavior of the solutions when `5 → 0. As the explicit form of
the multicenter solutions is rather complicated we will first make the dependence on `5
more clear by pulling it out through a rescaling of the variables in section 3.2.1. After this
rescaling the dependence on `5 will simply be an overall factor in the metric as described
above and a dependence left in the equilibrium distance between the centers and the con-
stant terms of the harmonic functions. Once we have this simple form we will take the
decoupling limit by sending `5 → 0. We calculate the asymptotics and some quantum
numbers in sections 3.2.3 and 3.2.4 and finally we will discuss when the decoupling limit
is well defined (in the sense that we do get a single asymptotically AdS3 × S2 geometry
when `5 → 0) in section 3.2.5.

3.2.1 RESCALING

As discussed above, to take the decoupling limit we want to work with the rescaled coor-
dinates, xi,

xi = `35 xi . (3.37)

8Despite the nontrivial twist of the S2, we will still loosely refer to the asymptotic geometry as AdS3 ×S2.
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Furthermore we want to extract a factor of `5 out of the 5d metric. As the multicen-
ter solutions are rather complicated we will here first simplify the dependence on `5 by
redefining various quantities. In the rescaled coordinates it is natural to define rescaled
harmonic functions, H,

H = `
3/2
5 H =

∑
a

Γa√
R |x− xa|

− 2`3/25 Im(e−iαΩ)|∞ . (3.38)

It is not difficult to verify that all functions appearing in (3.10) are actually homogenous
under the rescaling of the coordinates and harmonic functions given above. For instance

yA(H) = `
−3/2
5 yA(H) ,

Q(H) = `−3
5 Q(H) , (3.39)

L(H) = `
−9/2
5 L(H) ,

Σ(H) = `−3
5 Σ(H) .

The scaling of ω is a little more subtle. Here one has to take into account that the ? scales
as well since the flat 3d metric scales as `−6

5 under the coordinate rescaling. This implies

?x = `
3(3−2p)
5 ?x , (3.40)

for the ? acting on a p-form . So from its equation of motion (3.10) we see that

ω(H, dx,
√
G4) = `

−3/2
5 ω(H, dx, R−1/2) , (3.41)

where the factor `3/25 out of
√
G4 = `

3/2
5√
R

is essential.

Note that the 4d metric from (3.5) scales as

ds2
4d(H, dx,

√
G4) = `−3

5 ds2
4d(H, dx, R−1/2) . (3.42)

Finally there are also some fields that remain invariant under the rescaling:

tA(H) = tA(H) (3.43)

ω0(H, dx,
√
G4) = ω0(H, dx, R−1/2) (3.44)

A(H, dx,
√
G4) = A(H, dx, R−1/2) . (3.45)

It is clear from the discussion above that the whole solution transforms homogeneously
under the rescaling of the coordinates and the redefinition of the harmonic functions.
In fact our solutions in rescaled coordinates take exactly the same form as the original
solutions in Section 3.1, with the only changes being the replacement of

√
G4 withR−1/2

and H with H everywhere. For the readers convenience we provide the explicit rescaled
form of the solutions in Appendix C.

47



Chapter 3 - Multicentered Solutions

The 5d metric in these coordinates now has a prefactor `25

1
`25
ds2

5d = 2−2/3Q−2

[
−(H0)2(

√
Rdt+ ω)2 − 2L(

√
Rdt+ ω)(dψ + ω0)

+ Σ2(dψ + ω0)2

]
+ 2−2/3RQdxidxi . (3.46)

Otherwise, the only appearance of `5 is through the harmonic functions H in (3.38). It
enters there in two ways. First, through the constant terms

− 2`3/25 Im(e−iαΩ)|∞ , (3.47)

where it is important to recall that Ω|∞ also depends on `5 as JA∞ is related to `5 by 4J3
∞

3 =(
R
l5

)3

. Secondly, the equilibrium positions xi of the charged centers are determined by
the consistency condition

〈Γa,H〉|xa = 0 . (3.48)

By this equation they depend on the constant part of the harmonics and thus `5. We will
elaborate in detail on this dependence in the next subsection when we consider the `5 → 0
limit.

From this point onwards we will always be working with rescaled coordinates (unless we
explicitly state otherwise). Hence, for notational simplicity we will revert to original
notation (e.g. Σ, ds2

4d, x, H) though we will be referring to the rescaled expressions (e.g.
Σ(H), ds2

4d(H, dt, dx, R−1/2), x, H). Hopefully this will not lead to excessive confusion.

3.2.2 DECOUPLING

Having rewritten our solutions in a rescaled form where the `5 dependence is transparent
(see e.g. (C.5)) we can consistently take the decoupling limit, `5 → 0, while keeping
R, t, xi, ψ, ṼM and Γi fixed. As mentioned before, in the rescaled variables `5 only ap-
pears through the constants in the harmonic functions so taking the limit `5 → 0 will leave
the whole structure of the solution invariant except for replacing the harmonic functions
by their limiting form. Changing `5 also effects the equilibrium distances of the centers,
xa, in the solution due to the appearance of the constant terms in the constraint equation
(3.12). In general the equilibrium distances will vary in a rather complicated (and not
unique) way. Some interesting examples will be discussed explicitly in section 3.4.

Let us now examine the dependence on `5 in the small `5 regime. The constant terms of
the rescaled harmonic functions are

h = −2`3/25 Im(e−iαΩ)|∞ , (3.49)
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where Ω = − eB+iJq
4J3
3

and JA|∞ = R
2l5
Y A|∞. We can write those constant terms in an

expansion for small `5 as

h0 = h0
(4)

`45
R5/2

+O(`65) ,

hA = hA(2)

`25√
R

+ hA(4)

`45
R5/2

+O(`65) , (3.50)

hA = h
(2)
A

`25√
R

+ h
(4)
A

`45
R5/2

+O(`65) ,

h0 = −R
3/2

4
+ h

(2)
0

`25√
R

+ h
(4)
0

`45
R5/2

+O(`65) ,

where the leading terms are9

h0
(4) = 8

pY B − qY
pY Y

|∞ ,

hA(2) = Y A∞ , (3.51)

h
(2)
A = (Y B)A|∞ +

Y 2
A

pY 2
(qY − pY B)|∞ ,

h
(2)
0 =

1
2
Y B2|∞ +

BY 2

pY 2
(qY − pY B)|∞ + 2

(qY − pY B)2

(pY 2)2
|∞ .

So in the limit `5 → 0 all the constants in harmonics are sent to zero except for the one in
the D0 harmonic H0 which reads

h0 → −R
3/2

4
. (3.52)

The equilibrium distances also depend on the asymptotic moduli through (3.11). These
constraints can be written in the form∑

b

〈Γa,Γb〉√
R |xa − xb|

= −〈Γa, h〉 . (3.53)

So from the behavior (3.52) we see that in the decoupling limit `5 → 0 the consistency
conditions (3.11) become ∑

b

〈Γa,Γb〉
|xa − xb| = −p

0
a

4
R2 . (3.54)

9To keep the formulas in (3.50) readable we suppressed the various indices and contractions, these formulas
should all be read as e.g. XY Z = DABCX

AY BZC , (XY )A = DABCX
BY C , XY = XAY

A .
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Summarized, the decoupling limit corresponds to replacing the harmonic functions by

H0 =
∑
a

p0
a√

R |x− xa|
,

HA =
∑
a

pAa√
R |x− xa|

, (3.55)

HA =
∑
a

qaA√
R |x− xa|

,

H0 =
∑
a

qa0√
R |x− xa|

− R3/2

4
.

Furthermore the equilibrium distances are now determined by the equations (3.54).

Note that this limit is similar to the usual near horizon limit, but not quite the same, since
we are not simply dropping all constant terms from the harmonic functions. A similar
situation was encountered for instance in [75], where a similar decoupling limit is defined
for the three charge super tubes.

It is useful to note that although under the decoupling limit the D0 constant goes to a
fixed non vanishing value, this constant can, however, be removed by the following formal
transformations

H0 → H0 +
R3/2

4

L → L+
R3/2

4
(H0)2 (3.56)

t → v = t− R

4
ψ

As this is the only effect of the constant term in the D0-brane harmonic function, we can
set it to zero while replacing t by v = t − R/4 ψ and making a shift in L at the same
time. This is sometimes technically convenient.

3.2.3 ASYMPTOTICS

Now that we have implemented the decoupling limit we want to study the new asymptotics
of these solutions. This is completely determined by the asymptotics of the harmonic
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functions. For r →∞ the harmonic functions (3.55) can be expanded as

H0 → R−1/2 e · d0

r2
,

HA → R−1/2

(
pA

r
+
e · dA
r2

)
, (3.57)

HA → R−1/2

(
qA
r

+
e · dA
r2

)
,

H0 → R−1/2

(
q0

r
+
e · d0

r2

)
,

where we have put the constant in H0 to zero by the procedure explained at the end of the
last subsection. In our notation

d :=
∑
a

Γa xa (3.58)

is the dipole moment and ~e = ~x
r , r = |x|, is the normalized position vector that gives the

direction on the S2 at infinity. Note that for H0 the dipole term is leading as we take the
overall D6 charge zero; the same is true for HA if the total D2 charge is zero. As we will
only consider cases of non-vanishing overall D4 charge here the dipole term is always
subleading.

In studying the asymptotics of the physical fields it will be most straightforward to work
in a coordinate system where d0 lies along the z-axis. In this case

e · d0 = cos θ|d0| , (3.59)

with the standard spherical coordinates (θ, φ). To simplify the notation we will often
write just d0 for |d0|; it should be clear from the context when the vectorial quantity is
intended and when the scalar. Note that the different dipole moments don’t have to align
so in general there is no simple expression for e.g. e · dA in this coordinate system.

In the decoupled geometry the d0 plays a distinguished role as it is proportional to the
total angular momentum of the system. To see this we start from the stability condition in
the decoupled theory, (3.54), multiply by xb and sum over b (note that this still is a vector
identity):

J =
1
2

∑
a 6=b

〈Γa,Γb〉xb
|xa − xb| =

R2

8

∑
a

p0
axa =

R2

8
d0 . (3.60)

From the above asymptotic expansion of the harmonics (3.57), we can determine the
asymptotic behavior of all the fields and functions appearing in our solution. First, let us
determine the large r expansion of the functions yA. These are given in the form of a
quadratic equation which can be solved in a 1/r expansion as

yA = HA −H0DABHB − 1
2

(H0)2DFADFBCD
BDHDD

CEHE +O(
1
r4

) , (3.61)
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where we defined
DAB = (DABCH

D)−1 . (3.62)

Armed with this expression for yA we compute

DABCy
AyByC = DABCH

AHBHC − 3H0HAHA

+
3
2

(H0)2HAD
ABHB +O(

1
r6

) .
(3.63)

We can now evaluate the 1/r expansion of the coefficient Σ2

Q2 appearing in front of dψ2 in
the metric

Σ2

Q2
=
(
HAD

ABHB − 2H0

)(DABCH
AHBHC

3

)−1/3

+O(
1
r

) . (3.64)

The expansion of L is straightforward, and the expansion for Q follows directly from
(3.63). The last non-trivial expansions to be calculated are those of ω and ω0. For those
the following result is convenient: for any vector ni ∈ R3 one has

d

(
εijkn

irjdrk

r3

)
= − ∗3 d

(
niri

r3

)
. (3.65)

In particular we find that

ω0 = −εijk (d0)irjdrk

r3
+O(

1
r2

) = − sin2 θd0

r
dφ+O(

1
r

) , (3.66)

where in the last equality we used our choice to take the z axis to be along the D6 dipole
moment d0. We will not need the explicit form of ω because its leading term goes like
O(r−2). This follows from the asymptotic form of the equations of motion

dω =
√
R ?

(
−h0dH

0 +O(
1
r4

)
)
, (3.67)

where we have once more shifted the D0 constant term to zero; see the end of section
3.2.2 for the details.

We are now ready to spell out the asymptotic expansion of the metric. We start from
(3.46), use the expansions computed above and replace t by v to compensate for shifting
the D0 constant h0. The result one gets up to terms of order10 O( 1

r ) is

ds2
5d =− rR

U
dvdψ +

U−4

4

[
−R2(d0)2dv2

+ 2R
(
e · dADABCp

BpC

3
− pAqAd

0 cos θ
3

)
dvdψ +Ddψ2

]
(3.68)

+ U2 dr
2

r2
+ U2

(
dθ2 + sin2 θ (dφ+ Ã)2

)
+O(

1
r

) .

10In this power counting we considerO(dr) = O(r).
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Here we introduced the notation

v = t−R/4ψ , U3 =
p3

6
,

D =
p3

3
(
DABqAqB − 2q0

)
, Ã =

J

Jmax

2v
R
.

(3.69)

We used the relation between the D6-dipole moment d0 and the angular momentum J

given by (3.60) and the fact that there is a maximal angular momentum Jmax = U3

2 .
Note that π2D = S(Γt)2, so D is the discriminant of the total charge. With a coordinate
transformation to a new radial variable ρ one can show that the angular dependent part in
the second term of 3.68 is really further subleading. The coordinate ρ is given by

ρ2

4U2
= −U

−4

2
R

(
e · dADABCp

BpC

3
− pAqAd

0 cos θ
3

)
+
R

U
r . (3.70)

In this new radial coordinate the expansion in large ρ takes the following form

ds2
5d = − ρ2

4U2
dvdψ +

U−4

4
[−R2(d0)2dv2 +Ddψ2

]
+ 4U2 dρ

2

ρ2
(3.71)

+U2
(
dθ2 + sin2 θ (dφ+ Ã)2

)
+O(

1
ρ2

) .

Using the expansion formulas derived above it is straightforward to calculate the asymp-
totics of the gauge field and the scalars. Putting everything together we see that the solu-
tion asymptotes to

ds2
5d = − ρ2

4U2
dvdψ +

U−4

4
[−R2(d0)2dv2 +Ddψ2

]
+4U2 dρ

2

ρ2
+ U2

(
dθ2 + sin2 θ (dφ+ Ã)2

)
+O(

1
ρ2

) , (3.72)

AA5d = −pA cos θdα+DABqBdψ +O(
1
ρ2

) , (3.73)

Y A =
pA

U
+O(

1
r2

) . (3.74)

It is clear that the metric is locally asymptotically AdS3×S2 with RAdS = 2RS2 = 2U .
We have kept track of some subleading terms as they will be important in reading off
quantum numbers in the next section. Note that we have in fact a nontrivial S2 fibration
over AdS3 described by the flat connection Ã = J

Jmax
( 2dt
R − dψ

2 ). As Ã depends on the
time coordinate we see that as time progresses the sphere rotates, implying the solution
has angular momentum as expected. In the same way, going once around the M-theory
circle, i.e. ψ → ψ + 4π, induces a rotation of 2πJ

Jmax
along the equator11 of the S2.

The explicit coordinate transformation bringing the above metric in the form (3.31) after
dropping the subleading terms will be given below.

11Remember we chose the canonical “z-axis” of our spherical coordinates along the total angular momentum
of the solution.
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3.2.4 CFT QUANTUM NUMBERS

In this subsection we will perform an analysis of the asymptotic conserved charges of the
decoupled solutions. As we now have an asymptotic AdS geometry we can use the well
developed technology for these spaces. In our case of AdS3 a nice review can be found
in [76]. The asymptotic charges as determined from the supergravity side can later be
compared to various quantum numbers in the boundary CFT.

To proceed we first rewrite everything asymptotically in terms of a three dimensional
theory on AdS3 by reducing over the asymptotic sphere spanned by (θ, φ). Reducing five
dimensional N=1 supergravity over the S2 will result in a three dimensional theory with
an SU(2) gauge group in addition to gravity (in an AdS3 background) and theU(1) vector
multiplet fields that descend from five dimensions. The metric of the reduced theory is

ds2
3d = − ρ2

4U2
dvdψ +

U−4

4
[−R2(d0)2dv2 +Ddψ2

]
+ 4U2 dρ

2

ρ2
. (3.75)

This can be put it into a standard form for the asymptotic expansion around AdS3 by the
coordinate transformations

ρ2 =
e
η
U 4U2

R
, dv = −R

2
dw̄ , dψ = 2dw . (3.76)

These are related to the coordinates τ, σ we used in (3.31)-(3.34) by w = σ + τ , w̄ =
σ − τ . After Wick rotating τ → iτ , these become the standard conjugate holomorphic
coordinates on the boundary cylinder, with periodicity 2π. The metric reads

ds2
3d = dη2 + e

η
U dwdw̄ +

1
U4

(
Ddw2 − R4(d0)2

16
dw̄2

)
, (3.77)

which has the standard form ds2
3d = dη2 +(e

2η
RAdS g

(0)
ij +g

(2)
ij )duiduj . We can now apply

the formulas [76]:

T grav
ww =

1
8πG3RAdS

g(2)
ww , (3.78)

T grav
w̄w̄ =

1
8πG3RAdS

g
(2)
w̄w̄ .

In our case this becomes12

T grav
ww =

D
8πU3

, (3.79)

T grav
w̄w̄ =

−R4(d0)2

8π 16U3
.

12We used G3 =
`35

2R2
S2

. Note furthermore that the definitions (3.78) are given in unrescaled variables so

that both RAdS and RS2 carry a factor `5. Thus when rescaling gij → `25gij all factors of `5 drop out of the
energy momentum tensor. This is as expected since we defined our limit in such a way as to ensure that these
energies stay finite as `5 → 0.
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Apart from the metric, there are also gauge fields: the SU(2) gauge field coming from the
reduction of the metric on S2 and the U(1) vectors of the 5d supergravity. These gauge
fields do contribute to the asymptotic energy momentum tensor because the 5-dimensional
action contains a Chern-Simons term involving them. Here we will just present the results
of the derivation that is detailed in appendix D. The contribution of all the different gauge
fields to the energy momentum is given by

T gauge
ww =

1
4π

[
(pA qA)2

p3
− (qADABqB)

]
,

T gauge
w̄w̄ =

1
4π

(pA qA)2

p3
+
R4

8π
(d0)2

16U3
.

(3.80)

So by combining (3.79) and (3.80), we see that the total energy momentum tensor is:

Tww =
1

4π

(
(pA qA)2

p3
− 2q0

)
, Tww̄ = 0 , Tw̄w̄ =

1
4π

(pA qA)2

p3
. (3.81)

The Virasoro charges (L0)cyl and (L̃0)cyl on the cylinder are obtained from the energy-
momentum tensor as

(L0)cyl =
∮
dw Tww =

(pA qA)2

2p3
− q0 ,

(L̃0)cyl =
∮
dw̄ Tw̄w̄ =

(pA qA)2

2p3
, (3.82)

where the contour integral is taken along a contour wrapped once around the asymptotic
cylinder, i.e. w → w + 2π. These are related to the standard Virasoro charges on the
z = eiw-plane by the transformations

L0 = (L0)cyl +
c

24
, L̃0 = (L̃0)cyl +

c

24
, (3.83)

with c the Brown-Henneaux central charge:

c =
3RAdS

2G3
= p3. (3.84)

These are exactly the quantum numbers of the BPS states of the dual CFT in the Ramond
sector as determined in [16, 77], confirming our earlier assertion under (3.36). Naively
one might have thought that the BPS condition would require L̃0 = c/24. That this is
not so follows from the particular structure of the (0, 4) theory under consideration. It
has, besides the usual (0, 4) superconformal algebra, several additional U(1) currents, as
well as additional right-moving fermions — these are superpartners of the center of mass
degrees of freedom of the original wrapped M5-brane description. As was analyzed in
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[16, 77], the BPS conditions involve the right-moving fermions in a non-trivial way, and
this modifies the BPS bound into L̃0 ≥ (pA qA)2

2p3 + p3

24 , consistent with our result above.

Often, it is more convenient to work with different but closely related quantum numbers,
L′0 and L̃′0, and similarly (L′0)cyl and (L̃′0)cyl, which are obtained from the original ones
by subtracting out the contributions of the zero modes of the additional currents, so only
the oscillator contributions remain. In our case they are given by [16]:

L′0 −
c

24
= (L′0)cyl = −q̂0 := −(q0 − 1

2
DABqAqB) ,

L̃′0 −
c

24
= (L̃′0)cyl = 0 . (3.85)

These reduced quantum numbers are in many cases more convenient. They are spectral
flow invariant, and when we want to use Cardy’s formula to compute the number of states
with given U(1) charges, we can simply use the standard Cardy formula with L0, L̃0

replaced by L′0, L̃
′
0. The reduced quantum numbers also have a simple interpretation

in the AdS/CFT correspondence. They represent the contributions to L0, L̃0 from the
gravitational sector, ignoring the additional contributions from the gauge fields.

The total energy and momentum, in units of 1/R, are given by

H = (L0)cyl + (L̃0)cyl =
(pA qA)2

p3
− q0, P = (L0)cyl − (L̃0)cyl = −q0 , (3.86)

and the reduced energy and momentum by

H ′ = (L′0)cyl + (L̃′0)cyl = −q̂0, P ′ = (L′0)cyl − (L̃′0)cyl = −q̂0 = H ′ . (3.87)

The energy H can be seen to equal the BPS energy E = |Z|√
G4

of a D4-D2-D0 particle in
a 4d asymptotically flat background with JA → ∞pA, BA = 0, with the diverging part
subtracted off. The reduced energy is the same but now at BA = DABqB .

Finally, the SU(2)R charge can be read off from the sphere reduction connection appear-
ing in the metric (3.31). In general it is given by

JI0 =
∮
dw̄

2π
JIw̄ =

c

12

∮
dw̄

2π
AIw̄ . (3.88)

Details are given in appendix D. Thus the SU(2)R charge equals the four dimensional
angular momentum:

J0 =
R2d0

8
= J , (3.89)

where we used (3.60). This is as expected, since the S2 descends from the spatial sphere
at infinity in four dimensions.
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Figure 3.3: This figure is an example of an attractor tree that exists in flat space but that will not
survive in the decoupling limit, because the starting point of the split flow will move towards J =∞
and hence cross a wall of marginal stability and decay.

3.2.5 EXISTENCE AND ATTRACTOR FLOW TREES

Not all choices of charges Γa give rise to multicentered solutions in asymptotically flat
space at finite R/`5. Of those which do, not all survive the decoupling limit R/`5 →∞.
And of those which survive, not all give rise to a single AdS3 × S2 throat.

As reviewed in section 3.1.6, in four dimensional asymptotically flat space, the well sup-
ported split attractor flow conjecture states there is a one to one correspondence between
attractor flow trees and components of the moduli space of multicentered solutions. In
particular, the existence of flow trees implies the existence of corresponding multicen-
tered configurations, which can be assembled or disassembled adiabatically by dialing
the asymptotic moduli according to the flow tree diagram. By the uplift procedure we
followed, the same correspondence holds for five dimensional solutions asymptotic to
R1,3 × S1 with a U(1) isometry corresponding to the extra S1.

The 4d Kähler moduli scalars JA are related to the five dimensional normalized Kähler
scalars Y A and the radius R of the circle by

JA =
R

2`5
Y A (3.90)

and the four dimensional B-field moduli BA equal the Wilson lines around the S1 of the
five dimensional gauge fields. Asymptotically R1,3×S1 solutions surviving the R/`5 →
∞ limit thus correspond to 4d flow trees surviving the JA → ∞Y A limit. Figure 3.3
gives an example of a class of flow trees not surviving in this limit.

Now, not all asymptotically R1,3×S1 configurations surviving in the limit fit into a single
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AdS3×S2 throat. For example D4-D4 bound states have center separations of order p3 `5
in the original coordinates (see appendix D of [3]) , whereas multicentered configurations
which do fit into an asymptotic AdS3×S2 throat have separations of order p3`35/R

2. The
diverging hierarchy between these distance scales in the decoupling limit R/`5 → ∞ is
manifest in the rescaled consistency condition (3.54) in the decoupling limit: for two D4
centers (or more generally clusters) with non-vanishing mutual intersection product, the
(rescaled) equilibrium separation is infinite.

To understand this more systematically let us consider the fate of attractor trees in the
decoupling limit. Looking at the asymptotics (3.31)-(3.34) of the decoupled solutions,
we see that the value of Y A at the boundary of AdS is proportional to pA, and that the
θ-averaged Wilson line 1

4π

∮
AA5d, equals DABqB . This suggest asymptotic AdS3 × S2

solutions correspond to 4d attractor flow trees with starting point at the “asymptotic AdS3

attractor point”
BA + iJA = DABqB + i∞pA. (3.91)

As a test of this suggestion, note that, as pointed out in [9], this eliminates flow trees
initially splitting into two flows carrying only D4-D2-D0 charges, and therefore config-
urations of two D4 clusters with nonvanishing intersection product, which as we just
recalled indeed do not fit in a single AdS3×S2 throat in the decoupling limit. To see this,
it suffices to compute for Γa = (0, pAa , q

a
A, q

a
0 ) at BA = DABqB , JA = ΛpA, Λ→∞:

〈Γ1,Γ2〉Im(Z1Z̄2) = −3
8

(pA1 q
2
A − pA2 q1

A)2 +O(Λ−1) < 0. (3.92)

This inequality (valid when 〈Γ1,Γ2〉 6= 0) implies that the initial point can never be on
the stable side of a wall of marginal stability, and hence a flow tree with this initial split
cannot exist. Initial splits involving nonzero D6-charge on the other hand are not excluded
in this way, consistent with expectations.

Thus, we arrive at the following

Conjecture: There is a one to one correspondence between (i) components of the moduli
space of multicentered asymptotically AdS3×S2 solutions with a U(1) isometry and (ii)
attractor flow trees starting at JA = pA∞ and BA = DABqB .

In what follows we will refer to this special point in moduli space as the AdS point. It is
worth pointing out that the AdS point may lie on a wall of threshold stability,13 as defined
in appendix B, for which the inequality (3.92) may become an equality. As discussed

13Note that it cannot lie on a wall of marginal stability Γ → Γ1 + Γ2: if the constituents have nonzero D6-
charge, these D6-charges have to be opposite in sign, so in the J →∞ limit, the central charges cannot possibly
align; if the constituents have zero D6-charge, (3.92) shows that their central charges cannot align either if their
intersection product is non-vanishing.
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there, the solution space becomes non-compact in this case, in the sense that constituents
can be moved off to infinity — in this case to the boundary of AdS. An example is given by
(B.3): since the overall D2-charge vanishes, the AdS point lies on the line B = 0, which
is a line of threshold stability for splitting off the D0. The flow tree becomes degenerate
as well, as it splits in a trivalent vertex. Keeping this in mind, the flow tree picture remains
valid.

Finally, we should comment on our choice of B-field value for the AdS point. In general,
the actual value of BA at the boundary of AdS depends on the angle θ with the direction
of the total angular momentum:

BA|∂AdS =
1

4π

∮
A5d = DABqB − cos θ

J

2Jmax
pA. (3.93)

Hence there is a significant spread of the actual asymptotic value of the B-field, propor-
tional to the total angular momentum, which moreover grows with p. Although natural,
it is therefore not immediately obvious that picking the average value (or equivalently the
value at θ = π

2 ) as starting point is the right thing to do, and this is why our conjecture
above is not an immediate consequence of the split attractor flow conjecture.

3.3 SOME DECOUPLED SOLUTIONS

To explore what AdS/CFT can tell us about the states dual to the solutions introduced in
Section 3.1.2 we will briefly describe the decoupling limit for some simple, but interest-
ing multicentered configurations. The first example is rather straightforward as we show
how the well known case of a single centered black hole/string fits in our more general
story. Afterwards we discuss two 2-center systems of interest. First, we show that the
decoupling limit of a purely fluxed D6−D6 bound state is nothing but global AdS3×S2

and we discuss the link of this interpretation with spectral flow in the CFT. Second we
analyze configurations leading to the Entropy Enigma of [9] in asymptotic AdS space. In
the Section 5.3 we will show how the Entropy Enigma translated to 5d coincides with a
well know instability of small AdS black holes.

Note that from here on we put R ≡ 1.

3.3.1 ONE CENTER: BTZ

In the case of a single black string we expect to reproduce the standard BTZ black hole
(times S2) as the decoupled geometry [28]. As a check on our results we show that this
is indeed the case and that the entropy of the BTZ black hole corresponds to the one of
the 4d black hole/5d black string we took the decoupling limit of. Given an M5M2P
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black string of charge (0, pA, qA, q0) one can easily calculate that the metric (3.46) in the
decoupling limit is

ds2 =
r

U

[
−dtdψ +

1
4

(
1 +

1
rU3

(
S

π

)2
)
dψ2

]
+
U2dr2

r2
+ U2dΩ2

2 , (3.94)

where

S = 4π

√
−q̂0p3

24
, q̂0 = q0 − 1

2
DABqAqB , (3.95)

is the entropy of the 4d black hole. It is clear that this is indeed of the asymptotically local
AdS3×S2 form as found above. But in this case the full geometry, including the interior,
is actually locally AdS3×S2. To see this perform the coordinate transformation

ψ = 2(t+ α) , r = U(ρ2 − ρ2
∗) and ρ∗ =

S

πU2
, (3.96)

to put this metric (3.94) into its well known BTZ form:

ds2 = − (ρ2 − ρ2
∗)

2

ρ2
dt2 +

4ρ2U2

(ρ2 − ρ2
∗)2

dρ2 + ρ2(dα+
ρ2
∗
ρ2
dt)2 + U2dΩ2

2 . (3.97)

This is the geometry of a sphere times an extremal rotating BTZ black hole and as is well
known [78], this can be viewed as a quotient of AdS3×S2. Calculating the Bekenstein
Hawking entropy of this BTZ black hole we find:

SBH =
2πρ∗
4G3

= S , (3.98)

in agreement with our expectations.

Note that the horizon topology is S1 × S2, so from the 5d point of view we have a black
ring.

3.3.2 TWO CENTERS: D6−D6 AND SPINNING ADS3×S2

The first new configurations appear by taking the decoupling limit of 2-center bound
states. As follows from the constraint (3.54), only 2-centered solutions where the centers
carry (opposite) non-vanishing D6 charge exist in asymptotic AdS3×S2 space. Such
centers sit at a fixed distance completely determined by their charges:

r12 =
−4〈Γ1,Γ2〉

p0
1

. (3.99)

In general in the bulk the solution is now fully five-dimensional, mixing up the asymptotic
sphere and AdS geometries in a complicated way.
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The simplest two centered configuration is that of a bound state of a pure D6 and D6
carrying only U(1) flux, say F = ±p2 . The two charges are then:

Γ1 = e
p
2 = [1,

1
2
,

1
8
,

1
48

] ,

Γ2 = −e− p2 = [−1,
1
2
,−1

8
,

1
48

] , (3.100)

where we introduced the following notation for (D6,D4,D2,D0)-charges:

[a, b, c, d] := (a, b pA, cDABCp
BpC , dDABCp

ApBpC) . (3.101)

We now show that the lift of such a 2-centered configuration in the decoupling limit yields
rotating global AdS3×S2. In this limit the harmonic functions are:

H0 =
1

|x− x1| −
1

|x− x2| ,

HA =
pA

2

(
1

|x− x1| +
1

|x− x2|
)
, (3.102)

HA =
DABCp

BpC

8

(
1

|x− x1| −
1

|x− x2|
)
,

H0 =
p3

48

(
1

|x− x1| +
1

|x− x2|
)
− 1

4
.

The equilibrium distance, solution to (3.54), is given by:

|x1 − x2| =
2 p3

3
=: 4U3 . (3.103)

After a change of coordinates (see also [79]):

|x− x1| = 2U3(cosh 2ξ + cos θ̃)

|x− x2| = 2U3(cosh 2ξ − cos θ̃) (3.104)

t = τ (3.105)

ψ = 2(τ + σ) ,

and letting φ be the angular coordinate around the axis through the centers (so the coor-
dinates (2ξ, θ̃, φ) are standard prolate spheroidal coordinates), the metric takes the simple
form:

ds2 = (2U)2(− cosh2ξ dτ2 + sinh2ξ dσ2 + dξ2)

+U2(sin2θ̃ (dφ+ Ã)2 + dθ̃2) ,
(3.106)

where
Ã = d(σ − τ). (3.107)
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The general asymptotic form (3.31) is obtained from this by the coordinate transformation
ξ = η

2U − lnU , θ̃ = θ and taking η →∞.

This metric describes an S2 fibration over global AdS3, with connection Ã. The connec-
tion is flat except at the origin, where it has a delta function curvature singularity. Hence
this is essentially a particular case of the geometries considered in [80, 81].14 The twist
of the sphere around the AdS3 boundary circle σ → σ + 2π is given by the Wilson line∮
Ã. In this case the twist equals a 2π rotation, in accordance with our general consid-

erations under (3.36) and the fact that the angular momentum J = p3/12 is maximal.
Translated to the CFT, this means we have maximal SU(2)R charge. Moreover, as ex-
plained under (3.36), fermions are periodic around the AdS3 boundary circle σ → σ+2π,
so this geometry corresponds, in a semi-classical sense, to a maximally charged R-sector
supersymmetric ground state.15

Since the twist amounts to a full 2π rotation of the sphere, the Wilson line can be removed
by a large gauge transformation, that is, a coordinate transformation on the S2,

φ→ φ′ = φ+ σ − τ , (3.108)

which brings the metric to trivial AdS3 × S2 direct product form, with Ã′ = 0. In
general, large gauge transformations of the bulk act as symmetries (or “spectral flows”)
of the boundary theory — in general they map states to physically different states. Here in
particular this large gauge transformation will affect the periodicity of the fermions, since
a 2π rotation of the sphere will flip the sign of the fermion fields. The fermions are then
no longer periodic, but antiperiodic around σ → σ + 2π — we are now in the NS sector
vacuum of the theory, consistent with the symmetries of global AdS3 with Ã = 0.16

In the dual (0, 4) CFT, this transformation acts as spectral flow generated by the SU(2)R
charge J3

0 . The charges discussed in section 3.2.4 transform under this symmetry as [84]:

L0 → L0 ,

L̃0 → L̃0 + 2εJ3
0 +

c

6
ε2 , (3.109)

J3
0 → J3

0 +
c

6
ε ,

with ε = 1/2 and c = p3. According to our general results (3.82) and (3.89), we get for

14For the case of AdS3 × S3 × Z, i.e. the (4,4) D1-D5 CFT, these geometries were further studied in detail
in [82, 83].

15There is of course a 2J + 1 dimensional space of such ground states in the CFT. Correspondingly, on the
gravity side, a spin J multiplet is obtained by quantizing the 2-particleD6−D6 system [17, 9], or equivalently
the solution moduli space. This and related topics are studied in the companion paper [4].

16Spelled out in more detail, for a fermion field ψ, we have in the old coordinates ψ(σ, φ, . . .) = ψ(σ +

2π, φ, . . .). Expressed in the new coordinates, this boundary condition is ψ(σ, φ, . . .) = ψ(σ + 2π, φ′ +

2π, . . .) = −ψ(σ + 2π, φ′, . . .), where in the last equality we used the fact that φ′ parametrizes rotations of
the sphere.
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Figure 3.4: In the upper left figure, the flow tree for the maximally entropic 2-centered configuration
at h = 0 is shown (i.e. u = 1/3). The other three figures show the total entropy as a function of
h for a number of uniformly spaced values of u between 0 and 1/2, at three different zoom levels
(and different u-spacings). The fat red line is the entropy of the BTZ black hole with the same total
charge.

the original geometry L0 = 0, L̃0 = p3/24, J3
0 = −p3/12. Applying the above spectral

flow, we obtain L0 = 0, L̃0 = 0, J3
0 = 0, as expected for the NS vacuum.

More general geometries corresponding to states in the NS sector, at least in the case
of axially symmetric solutions, can be obtained by applying the spectral flow coordinate
transformation (3.108) to the R sector solutions we have constructed.

3.3.3 ENIGMATIC CONFIGURATIONS

In [9] it was shown that there are some regions in charge space where the entropy cor-
responding to given total charges (with zero total D6 charge) is dominated not by single
centered black holes, but by multicentered ones. This phenomenon was called the Entropy
Enigma. For a short summary see [85].

Interestingly, these enigmatic configurations always survive the decoupling limit, because
their walls of marginal stability are compact, with the stable side on the large type IIA
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volume side. This is to be contrasted with the 4d asymptotically flat case at fixed values of
the asymptotic Kähler moduli; in this case, because the unstable region in Kähler moduli
space grows with p, the enigmatic configurations always disappear when p → ∞ as the
asymptotic moduli will eventually become enclosed by the wall of marginal stability. In
this sense, they are most naturally at home in the decoupled AdS3 × S2 setup under
consideration, where they persist for all p.

In [9] section 3.4, a simple class of examples was given, consisting of 2-centered bound
states with centers of equal entropy. However, this configuration is not the most entropic
one for the given total charge: the total entropy can be increased by moving charge from
one center to the other. The maximal entropic configuration is obtained when all entropy
is carried by one center only; this can be traced back to the fact that the Hessian of the
entropy function of a single black hole has some positive eigenvalues, making multi-
black hole configurations generically thermodynamically unstable as soon as charges are
allowed to be transported between the centers.

We have not been able to find other, more complicated configurations, involving more
centers, with more entropy.

Thus we consider two charges Γi = (p0, pA, qA, q0)i of the form

Γ1 = −e−up =
[
−1, u,−u

2

2
,
u3

6

]
(3.110)

Γ2 = p− h p3 − Γ1 =
[
1, (1− u),

u2

2
,−h− u3

6

]
, (3.111)

where we used the notation (3.101). The total charge of this system is

Γ = (0, pA, 0,−h p3) = [0, 1, 0,−h] . (3.112)

If the bound state exists, the angular momentum (3.18) and rescaled equilibrium separa-
tion (3.54) between the centers are, respectively

J =
1
4

(u2 − 2h)p3 , |~x1 − ~x2| = 2(u2 − 2h)p3 . (3.113)

The entropy is given by

S2c = S1 + S2,

S1 = 0, S2 =
π

3
p3

√
8( 1

2 − u)3 − 9( 1
3 − h− u+ u2

2 )2 . (3.114)

To get a bound state in the decoupling limit, the equilibrium separation in (3.113) must
of course be positive and the expression under the square root in (3.114) must be non-
negative. A more detailed analysis using attractor flow trees shows that if we also require
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u ≥ 0, these conditions are necessary and sufficient. (The latter condition is necessary to
prevent the wall of marginal stability to be enclosed by a wall of anti-marginal stability.)

The minimal possible value of h is − 1
24 , reached at u = 1

2 , where Γ2 = eup. This corre-
sponds to the pure fluxed D6 − D6 of section 3.3.2. The maximal value of h attainable
by the configurations under consideration is 9/128 ≈ 0.07.

The entropy for a single center of the same total charge (the BTZ black hole of section
3.3.1) is given by

S1c = 4π

√
−q0p3

24
=
π
√

2h p3

√
3

. (3.115)

One way of phrasing the Entropy Enigma is that in the limit p→∞ keeping q0 fixed, the
2-centered entropy is always parametrically larger than the 1-centered one,17 as the former
scales as p3, while the latter scales as p3/2. More generally this 2-centered parametric
dominance will occur whenever h = −q0/p

3 → 0. A short computation starting from
(3.114) shows that in this limit, the maximal 2-centered entropy is reached at u = 1/3,
with entropy and angular momentum

S2c =
π p3

18
√

3
≈ 0.100767 p3 , J =

p3

36
=
Jmax

3
. (3.116)

Indeed this entropy is manifestly parametrically larger than S1c when h → 0. More pre-
cisely the crossover point between one and two-centered dominance is at hc ≈ 0.00190622.
This is illustrated in fig. 3.4. The phase transition this crossover suggests will be discussed
further in section 5.3.1.

We should note that we have only analyzed a particular family of 2-centered solutions
here. A slight generalization would be to let both centers have nonzero entropy. However
this turns out to give a lower total entropy for the same total charge — for example in the
symmetric 2-centered case described in [9], the maximal attainable entropy is S = π p3

48 .
Similarly for other generalizations such as sun-earth-moon systems (see [9]), we were
unable to find configurations with higher entropy. We cannot exclude however that they
exist. If so, this would affect the precise value of the crossover point hc, but not its
existence.

All of these 2-centered solutions have nonvanishing angular momentum, except in the de-
generate limit of coalescing centers, when u2 = 2h. In this case the entropy is always less
than the single centered one, as it should be to not violate the holographic principle. One
might therefore suspect that the Entropy Enigma disappears when restricting to configu-
rations with zero angular momentum. This is not the case, however. A simple example
of a multicentered solution with zero angular momentum but entropy S ∼ p3 is obtained
as follows. Instead of one particle of charge Γ1 = −e−up orbiting around a black hole of

17Note that if q0 > 0, there is no single centered black hole, so then this statement is trivially true.
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charge Γ2 = Γ − Γ1, consider k > 1 particles of charge Γ1(u) = −e−up orbiting on a
halo around a black hole of charge Γ′2(k, u, h) = Γ(h)−kΓ1(u). Then by positioning the
particles symmetrically on their equilibrium sphere around the black hole, we get config-
urations of zero angular momentum, but with entropy still of order p3 at large p. This can
be extended quantum mechanically: quantizing these configurations using the technology
introduced in Chapter 4 (see also [17, 9, 4]), we get a number of spin zero singlets from
tensoring k spin j single particle ground states.

Note that the entropy of the k-particle configuration at given u and h can be related to that
of our original k = 1 solution by

S(k, u, h) = S(Γ′2(k, u, h)) =
1
k
S(Γ′2(1, ku, k2h)) =

1
k
S(Γ2(ku, k2h)) . (3.117)

The equilibrium separation between a Γ1(u) particle and the Γ′2 core, for given h and u,
does not depend on k, so

x12(k, u, h) = x12(1, u, h) =
1
k2
x12(1, ku, k2h) . (3.118)

From these relations, we can immediately deduce the existence conditions and maximal
entropy configuration for k > 1 particles using the results for the k = 1 case derived
above. In particular we see that the entropy is maximized at u = 1/3k, and for e.g. h = 0
equal to

S(1+k)c =
1
k
· π p

3

18
√

3
. (3.119)

Note that due to the factor k in the denominator, the k ≥ 2 (possible spin zero) configu-
rations are thermodynamically disfavored compared to the k = 1 (necessarily spinning)
configurations.

3.4 SOME SOLUTION SPACES

So far we have restricted our attention to one or two center configurations where the con-
straint equations (3.11) are essentially trivial. As mentioned in section 3.1.4 the solution
space is 2N − 2 dimensional so the two center case is two dimensional. For two centers
the inter-center separation is fixed by the constraint equation (see e.g. eqn. (3.99)) but
we still have the freedom to rotate the axis defined by the two centers giving an S2 as the
solution space (this is discussed further in section 4.3.2). For three centers the constraint
equations do not completely fix the distance between the centers and there is generally
a more complicated space of solutions. Some of these spaces can be characterized by
particular limit points. Scaling solutions spaces are characterized by containing so called
scaling solutions: solutions for which the inter-center coordinate space separation goes
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to zero. Another class of solutions enjoys the particular property of being (naively) non-
compact in that certain centers are allowed to go to infinity. We will review these here for
reference and then discuss their physics in more detail in the following chapters. We will
also describe more intricate “Dipole Halo” solutions with an arbitrary number of centers
that are nonetheless tractable. The latter have been considered in connection with black
holes [79] and we will have reason to revisit them later.

3.4.1 THREE CENTER SOLUTION SPACE

The three center solution space is four dimensional. Placing one center at the origin
(fixing the translational degrees of freedom) leaves six coordinate degrees of freedom but
these are constrained by two equations. This leaves four degrees of freedom, of which
three correspond to rotations in SO(3) and one of which is related to the separation of the
centers.

The constraint equations take the form

a

u
− b

v
=

Γ12

r12
− Γ31

r31
= 〈h,Γ1〉 =: α

b

v
− c

w
=

Γ31

r31
− Γ23

r23
= 〈h,Γ3〉 =: β (3.120)

in a self-evident notation. The nature of the solution space simplifies considerably if either
α or β vanish so let us first consider this case (if both vanish there is an overall scaling
degree of freedom and the centers are unbound). For definiteness we will take α = 0; we
also have

∑
p〈h,Γp〉 = 0 which implies 〈h,Γ2〉 = −β. Thus from (3.19) we find

~J =
β

2
r23ẑ (3.121)

with ẑ a unit vector in the ~x3 − ~x2 direction.

The solution has an angular momentum vector J i directed between the centers 2 and 3 and
the direction of this vector defines an S2 in the phase space which we will coordinatize
using θ and φ. The third center is free to rotate around the axis defined by this vector (since
this does not change any of the inter-center distances) providing an additionalU(1), which
we will coordinatize by an angle σ, fibred non-trivially over the S2. Finally the angular
momentum has a length which may be bounded from both below and above and this
provides the final coordinate in the phase space, j = | ~J |.
This construction is perhaps not the most obvious one from a spacetime perspective but,
as we will see in the next chapters, these coordinates are the natural ones to use when
quantizing the solution space as a phase space. When α = 0 it is clear from (3.121) that
j is a good coordinate on the solution space but this is not immediately obvious for the
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more complicated case of α 6= 0. This is nonetheless true and, as shown in Appendix A
of [4], this is always a good coordinatization of the three center solution space (though for
α 6= 0 the relation between (j, σ, θ, φ) and the coordinates ~xp is not as straightforward).

The quantization of these solutions is particularly interesting in certain cases where clas-
sical reasoning leads to pathologies. Before proceeding with quantization we will first
briefly review these solutions.

3.4.2 SCALING SOLUTIONS

As noted in [70] and [9], for certain choices of charges it is possible to have points in the
solution space where the coordinate distances between the centers goes to zero. Moreover,
this occurs for any choice of moduli so it is, in fact, a property of the charges alone.

Three center examples of such solutions occur as follows. We take the inter-center dis-
tances to be given by rab = λΓab +O(λ2) (fixing the order of the ab indices by requiring
the leading term to always be positive). As λ → 0 we can always solve (3.120) by
tweaking the λ2 and higher terms (we are no longer restricting to α = 0). The leading
behaviour will be rab ∼ λΓab but clearly this is only possible if the Γab satisfy the triangle
inequality. Thus any three centers with intersection products Γab satisfying the triangle
inequalities have this scaling property.

We will in general refer to such solutions as scaling solutions meaning, in particular,
supergravity solutions corresponding to λ ∼ 0. The space of supergravity solutions con-
tinuously connected (by varying the ~xp continuously) to such solutions will be referred to
as scaling solution spaces. We will, however, occasionally lapse and use the term scaling
solution to refer to the entire solution space connected to a scaling solution. We hope
the reader will be able to determine, from the context, whether a specific supergravity
solution or an entire solution space is intended.

These scaling solutions are interesting because (a) they exist for all values of the moduli;
(b) the coordinate distances between the centers go to zero; and (c) an infinite throat
forms as the scale factor in the metric blows up as λ−2. Combining (b) and (c) we see
that, although the centers naively collapse on top of each other, the actual metric distance
between them remains finite in the λ → 0 limit. In this limit an infinite throat develops
looking much like the throat of a single center black hole with the same charge as the total
charge of all the centers. Moreover, as this configuration exists at any value of the moduli,
it looks a lot more like a single center black hole (when the latter exists) than generic non-
scaling solutions. As a consequence of the moduli independence of these solutions it
is not clear how to understand them in the context of attractor flows; the techniques we
develop in Chapter 4 provide an alternative method to quantize these solutions that applies
even when the attractor tree does not.

68



Chapter 3 - Multicentered Solutions

Unlike the throat of a normal single center black hole the bottom of the scaling throat
has non-trivial structure. If the charges, Γa, are zero entropy bits as described in section
3.1.5 (e.g. D6’s with abelian flux) then the 5-dimensional uplifts of these solutions will
yield smooth solutions in some duality frame and the throat will not end in a horizon but
will be everywhere smooth, even at the bottom of the throat. Outside the throat, however,
such solutions are essentially indistinguishable from single center black holes. Thus such
solutions have been argued to be ideal candidate “microstate geometries” corresponding
to single center black holes. In [9] it was noticed that some of these configurations, when
studied in the Higgs branch of the associated quiver gauge theory, enjoy an exponential
growth in the number of states unlike their non-scaling cousins which have only polyno-
mial growth in the charges.

3.4.3 BARELY BOUND CENTERS

We will be brief here as such configurations are not discussed further in this thesis (though
they are interesting and were treated in section 7 of [4]). For certain values of charges and
moduli it is possible for some centers to move off to infinity. Although this would normal
signal the decay of any associated states (as happens, for instance, for two centers at a
wall of marginal stability [59]) it turns out that this is not always the case. In particular,
it is important to distinguish between cases when centers are forced to infinity (marginal
stability) versus those where there is simply an infinite (flat) direction in the solution
space (threshold stability; see Appendix B). Although the first case clearly signals the
decay of a state, in the second case, when centers move off to infinity along one direction
of the solution space but may also stay within a finite distance in other regions of the
solution space, it is still possible to have bound states, as was demonstrated in [4]. Quite
essential to this argument is the fact that in some cases, although the solution space may
seem naively non-compact (in the standard metric on R2N−2), its symplectic volume is
actually finite and it admits normalizable wave-functions (whose expectation values are
finite). There are also cases with unbound centers where the symplectic form on the
solution space is degenerate and, in such cases, it is not clear if there is a bound state.
Such cases are not amenable to treatment by the methods developed here.

3.4.4 DIPOLE HALOS

So far we have restricted our analysis to some solutions with two or three centers. In
Chapter 6 we will have recourse to study solutions with many more centers. Solution
spaces corresponding to a large number of centers are only amenable to treatment using
methods developed in this thesis if they have a particular, highly symmetric, structure.
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In this section we will study an example of such a symmetric solution space. We con-
sider the D6-D6-D0 system, which seems closely related to the microstates of the D4-D0
black hole [79]. There exist such configurations with a purely fluxed D6-D6 pair and an
arbitrary number of anti18-D0’s. Depending on the sign of the B-field these D0’s bind to
the D6 or D6 respectively. When we take the B-field to be zero at infinity the system is at
threshold and the D0’s are free to move in the equidistant plane between the D6 and anti-
D6. This system and its behaviour under variations of the asymptotic moduli is studied in
detail in appendix B.

In Chapter 6 we will be interested in counting the number of states arising from such
configurations. As this number is independent of the asymptotic moduli (as long as we
don’t cross a wall of marginal stability) we are free to choose them such that the solution
space has its simplest form. The solution space (and particularly the symplectic form
on it) is easiest to analyse at threshold which, in our example, corresponds to B|∞ = 0
so we work at this point. More specifically we will work at the AdS point as we will
ultimately be interested in such configurations in asymptotically AdS3×S2 spaces. Thus
the asymptotic moduli, h, assume their decoupled value

h =
(

0, 0, 0,−R
3/2

4

)
(3.122)

with only the D0 constant, h0, non-vanishing.

For a set of D0’s with charges Γa = {0, 0, 0,−qa} with all the qa positive and
∑
a qa =

N , bound to a D6, Γ6 = (1, p2 ,
p2

8 ,
p3

48 ), and D6, Γ6̄ = (−1, p2 ,−p
2

8 ,
p3

48 ), the constraint
equations take the following form at threshold:

− qa
x6a

+
qa
x6a

= 0 (3.123)

− I

r66̄

+
∑
a

qa
x6a

= −β (3.124)

Here I = −〈Γ6,Γ6〉 = p3

6 is given in terms of the total D4-charge p of the system and
β = 〈Γ6, h〉 with I, β > 0. From the first line we indeed see the D0’s lie in the plane
equidistant from the D6 and D6, as we are at threshold, and so we can simply write
xa := x6a = x6a.

We will find a set of coordinates on this space which are very natural from the perspective
of quantization. In particular, the symplectic form (4.9) we introduce in Chapter 4 takes a
nice form in these coordinates. We define an orthonormal frame (û, v̂, ŵ) fixed to the D6-
D6 pair, such that the D6-D6 lie along the w axis and with the D0’s lying in the u-v plane.
Rotations of the system can then be interpreted as rotations of the (û, v̂, ŵ) frame with

18In our conventions it is anti-D0’s that bind to D4 branes. We will however often just refer to them as D0’s.
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Figure 3.5: The coordinate system used to parameterize the D6-D6-N D0 solution space. The
coordinates (θ, φ) define the orientation of the (û, v̂, ŵ) axis with respect to the fixed, reference,
(x̂, ŷ, ẑ) axis. The D6-D6 lie along the ŵ axis (with the origin between them) and the D0’s lie on
the û-v̂ plane at an angle φa from the û-axis. The radial position of each D0 in the û-v̂ plane is
encoded in the angle θa (between ~x66 and ~x6a).

respect to a fixed (x̂, ŷ, ẑ) frame. We will parameterize these overall rotations in the stan-
dard fashion by two angles, (θ, φ). We can furthermore specify the location of the a’th D0
with respect to D6-D6 pair by two additional angles, (θa, φa). The first angle, θa, is the
one between ~x66 and ~x6a, while φa is a polar angle in the u-v plane (see figure 3.5). Our
2N + 2 independent coordinates on solution space are thus {θ, φ, θ1, φ1, . . . , θN , φN}.
The standard Euclidean coordinates of the centers are then given in terms of the angular
coordinates by

~x6 =
j

β
ŵ û = cosφ x̂− sinφ ŷ

~x6 = − j
β
ŵ v̂ = sinφ cos θ x̂+ cosφ cos θ ŷ − sin θ ẑ

~xa =
j tan θa

β
(cosφaû+ sinφav̂) ŵ = sinφ sin θ x̂+ cosφ sin θ ŷ + cos θ ẑ

The angular momentum, j(θa, φa), is a function of the other coordinates rather than an
independent coordinate (when N = 1 it can be traded for θ1), and is given by

j =
I

2
−
∑
a

qa cos θa . (3.125)

In case N ≥ I/2, which we will refer to as the scaling regime, it is possible to combine
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a sufficient number of centers and form a scaling throat. To see that in the scaling regime
the centers can approach each other, let us place all the D0 charge at one center so q1 = N

and consider solutions of the form

x66̄ = λ I +O(λ2) x61 = λN +O(λ2) (3.126)

For small λ solutions of this form can always be found so long as N ≥ I/2; the latter
requirement coming from the fact that x66̄ and x61 are coordinate separations and must
satisfy triangle inequalities. As λ → 0 the coordinate distance between the centers goes
to zero and the centers coincide in coordinate space. In physical space, however, warp
factors in the metric blow up generating a deep throat that keeps the centers a fixed metric
distance apart even as λ→ 0. Outside of this arbitrarily deep throat the solutions is almost
indistinguishable from a D4D0 black hole. This regime is thus of great physical relevance
and e.g. in [79] it was conjectured to correspond to the deconstruction of a D4D0 black
hole.

This is discussed further in Chapter 6.
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CHAPTER 4

QUANTIZATION

Before proceeding to our study of the black hole Hilbert space using AdS/CFT we would
like to introduce another, complementary, picture and its associated technology. Namely
we will be interested in directly quantizing the solutions introduced in sections 3.1.1 and
3.1.2, something we can do because the BPS phase space associated to these supergrav-
ity solutions is finite dimensional and is not subject to the subtleties generally associated
with quantizing gravity. What’s more the structure of the phase space is (in some fortu-
itous cases) particularly amenable to quantization via the well developed mathematical
procedure of geometric quantization. In order to employ this procedure it will be very
helpful to develop an open string picture of these solutions as was first done in [17]. Cer-
tain essential structures, such as the symplectic form on phase space, are much easier to
determine in this open string picture.

4.1 OVERVIEW

As discussed in Section 2.3 there is, in general, a one-to-one map between the phase space
and the solution space of a theory. In order to be able use this map to quantize a space
of solutions, such as those described in Chapter 3, we need to determine its symplectic
form which is induced from the supergravity Lagrangian. The idea is quite simple; one
first determines the symplectic structure on the full space of solutions to the supergravity
equations of motion, which takes the form

Ω =
∫
dΣl δ

(
∂L

∂(∂lφA)

)
∧ δφA , (4.1)

73



Chapter 4 - Quantization

where L is the relevant supergravity Lagrangian. Here, the integral is over a Cauchy sur-
face, φA represents a basis of the fields that appear in the Lagrangian and it is assumed
that the Lagrangian does not contain second and higher order time derivatives. The in-
duced symplectic form on the space of BPS solutions is then simply the restriction of
(4.1) to that space.

In general, there is no guarantee that the symplectic form so obtained is non-degenerate.
If it turns out to be degenerate then we should have included further degrees of freedom
to arrive at a non-degenerate symplectic form. This happens for example when all centers
are mutually BPS, i.e. if all inner products 〈Γp,Γq〉 vanishes. In this case the symplectic
form, as we will see below, is identically zero, and the BPS solution space is therefore
better thought of as being a configuration space. In order to obtain a non-degenerate
symplectic form, we could try to include, for example, small velocities for the centers
[86]. It is not clear, however, whether this can be done while saturating the BPS bound.

It may sound surprising that generically these BPS solutions spaces carry a non-degenerate
symplectic form, since they are all time-independent. Crucially, the solutions we consider
are stationary but in general not static. Stationary solutions do carry non-trivial momen-
tum despite being time-independent and this is what gives rise to the non-trivial symplec-
tic form. As a consequence of this we will see that the Hilbert space decomposes into
angular momentum multiplets. The symplectic form (4.1), when evaluated on a family of
static solutions, will simply vanish.

The idea to quantize spaces of BPS supergravity solutions using the restriction of (4.1)
was successfully applied in [42][43][55] (see also [50] for an extensive list of older ref-
erences and [51][52][53] for more recent, similar work). However, when we try to apply
similar methods to the space of multicentered black hole solutions, the expressions be-
come very lengthy and tedious and we run into serious technical difficulties due to the
complicated nature of the multicentered solutions. We will therefore proceed differently
and try to derive the required symplectic form from a dual open string description of the
supergravity solutions.

From the open string point of view, which is appropriate for small values of the string cou-
pling constant, black hole bound states correspond to supersymmetric vacua of a suitable
quiver gauge theory. The connection between the supergravity solutions and gauge theory
vacua becomes clear once we study the Coulomb branch of the gauge theory. For simplic-
ity we will assume that all centers have primitive charges; the extension to non-primitive
charges is straightforward, as the supergravity solutions are not specifically sensitive to
whether charges are primitive or not.

In this section we determine the symplectic form of the theory explicitly for the three
center case and show it to be non-degenerate (with some important exceptions where
degenerations have a clear physical interpretation) and proceed to count the number of
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states in this moduli space via geometric quantization. The estimated number of states at
large charge nicely matches the expected number of states from the wall-crossing formula
given in [9].

Motivated by a non-renormalization theorem [17] and the exact agreement of our state
counting with Denef and Moore’s wall-crossing formula we propose that the same sym-
plectic from should be derivable from the super-gravity action following the logic in [42]
(see also [53] and references therein). Actually a structure similar to the quiver quantum
mechanics symplectic form emerges from the gauge field contribution of the supergravity
action. So we may propose the following conjecture: the other putative terms contributing
to the symplectic form from supergravity cancel or only change the normalization 1.

Note that it is not a priori clear that our moduli space of solutions corresponds to a full
phase space rather than a configuration space. The fact that the solution spaces are always
even, (2N − 2), dimensional is a positive indication that they are indeed phase spaces as
is the fact that the symplectic form is non-degenerate in the two and three center cases.
Moreover, when degenerations do occur they have well-defined physical meaning further
supporting this claim.

4.2 OPEN STRING PICTURE

Ultimately our goal will be to study the moduli space of our solutions using a symplectic
form which is derived from the quiver quantum mechanics action of multiple intersecting
branes in the coulomb branch [17]. To do so we first review an open string description of
these multicenter solutions.

The material presented here is an incomplete review of relevant parts of the elegant paper
[17] to which the reader is directed for more details.

4.2.1 QUIVER QUANTUM MECHANICS

When embedded within string theory the multicenter solutions of sections 3.1.1 are be-
lieved to incorporate the backreaction of a large number of D-branes wrapping cycles of
a Calabi-Yau at large string coupling. Such objects can be alternatively understood in an
open string picture as boundary conditions for the open string end-points (see e.g. [87]).
The physics of D-branes is determined by the dynamics of the open strings ending on
them. At low energies it is well-approximated by restricting to the zero modes of these
strings yielding a weakly coupled gauge theory living on the D-brane world-volume with
the gauge coupling related to the string coupling, gs.

1The last possibility is seen for example in [42].
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Let us consider the concrete case of several branes wrapping different cycles on the
Calabi-Yau, which we denote by their associated charge vector Γa. As in [17] we will first
consider D3-branes in IIB as the brane picture and string intersections are more straight-
forward in this context. As we will ultimately dimensionally reduce to a 0+1 dimensional
quiver quantum mechanics in the non-compact spacetime, with the intersection product
〈Γa,Γb〉 as the only CY data we keep, the resulting theory also describes the mirror IIA
setup.

The theory on each brane has several kinds of bosonic excitations: adjoint scalars en-
coding fluctuations of the brane inside the CY, adjoint scalars describing fluctuations in
the non-compact directions and gauge fields on the brane world-volume. On the brane
intersections there are bi-fundamental scalars from zero-modes of strings stretched be-
tween the branes. On the D3-brane lives an N = 1 SYM theory in 4-d which can be
dimensionally reduced along the Calabi-Yau cycle resulting in an N = 4 theory in 0+1
dimensions. This theory has two kinds of multiplets: a vector multiplet (aa, ~xa, Da, λa)
for each brane Γa and κab = 〈Γa,Γb〉 chiral2 multiplets (φα, Fα, ψα) for each pair ab
with α = 1, . . . , κab. The former arise from strings with both ends on the same brane
while the latter arise from strings stretched between two branes.

The vector multiplet contains a 0+1 dimensional gauge field, aa, three scalars, ~xa, de-
scribing motion of the brane in the transverse R3, an auxiliary field Da, as well as
fermions. If Γa wraps a non-rigid 3 cycle in the Calabi-Yau then there are additional
vector multiplets encoding the fluctuations of the brane in the Calabi-Yau but, for the pur-
pose of our analysis here, we will neglect these. In so doing we are assuming that the
low-energy theory factorizes into a spacetime contribution and a contribution from the
Calabi-Yau degrees of freedom. The fact that one-loop effects including only the non-
compact degrees of freedom match perfectly onto the supergravity theory suggests that
this factorization indeed holds.

Since we are interested in connecting to supergravity we will consider primitive branes
described by abelian gauge theories. Whenever we treat non-primitive branes in subse-
quent chapters we essentially restrict our attention to the diagonal degrees of freedom.
Since a direct connection to supergravity is only possible in the coulomb branch of the
theory we can neglect the non-Abelian degrees of freedom.

The Lagrangian for this theory is then the sum of a chiral and a vector part which schemat-
ically take the following form [17]

2More precisely, κab is an index measuring the difference in the number of chiral and anti-chiral modes but
we assume that mass terms generically lift any non-chiral modes so we are left with only κab chiral modes.
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LV =
∑
a

ma

2
(~̇x2
a +D2

a + 2iλ̄aλ̇a)− θaDp

LC =
∑
α:a→b

|Dtφα|2 − (|~xa − ~xb|2 +Db −Da)|φα|2 + |Fα|2 + iψ̄αDtψα

− ψ̄α(~xb − ~xa) · σψα − i
√

2(φ̄αψαε(λ2 − λ1)− (λ̄2 − λ̄1)εψ̄αφα)

The covariant derivative Dt = ∂t + i(Ab − Aa) couples φα to the gauge fields on a and
b branes and ma = |Z(Γa)|/lP is the mass for the brane a in 4-d plank units. The θa
are Fayet-Iliopoulos parameters whose value is related to the phase of the central charge,
Z(Γa) (i.e. a function of Γa and the CY moduli). An intuitive explanation for this is
that they contribute to the mass φa when the auxiliary field Da is integrated out and the
former is proportional to the “angle” between intersecting branes. There are in principle
also superpotential terms for the chiral multiplets but, as we are ultimately interested in
the theory with these multiplets integrated out, we do not bother with them here (we are
ultimately interested in the first order terms involving only the vector multiplets and, as
we will see, these are essentially fixed by supersymmetry).

4.2.2 THE COULOMB BRANCH

The theory described above has an very interesting vacuum structure which is explored
in great depth in [17]. Although classically the theory only has a coulomb branch when
θa = 0, quantum effects renormalize the ground state energy generating zero-energy
ground states in the coulomb branch even at non-zero values of θa. Put another way, inte-
grating out the chiral matter (stretched strings), whose masses are controlled by |~xa− ~xb|
and the θa, generates a potential for the vector multiplets which has supersymmetric min-
ima. Moreover, as we will demonstrate below, this potential has minima corresponding
precisely to the solution to (3.12) once the appropriate identifications between supergrav-
ity and gauge theory quantities are made. Although this is a beautiful story we will only
need one small aspect of it for this thesis and so we direct the interested reader to [17] for
more details.

Fortunately, as demonstrated in [17], the vacuum structure of the coulomb branch can
essentially be deduced from supersymmetry alone. We will only need recourse to full
theory, including chiral multiplets, to relate constants in the coulomb branch theory to the
original D-brane theory. This is because supersymmetry alone constrains the low-energy
effective action for N abelian vector multiplets to take the form

L =
∑
a

(−Ua(x)Da + ~Aa(x) · ~̇xa) + fermions + higher order terms, (4.2)
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where Ua and ~Aa are functions of the ~xa satisfying

∇aUb = ∇bUa =
1
2

(∇a × ~Ab +∇b × ~Aa). (4.3)

Note that the ~Aa(x) are vector-valued functions on the world-line and are not related to
the gauge fields aa in the vector multiplet.

This form of the action is determined by requiring that it is invariant under supersymmetry
(see [17] for the supersymmetry transformation rules). The solutions to (4.3) are given in
terms of harmonic functions. In particular we find that

Ua = 〈Γa, H(xa)〉 (4.4)

where H = θ +
∑
a

Γa
|x−xa| and the pole at x = xa in H does not contribute to (4.4).

We therefore see that except for the tree-level constant term θ, there are only one-loop
contributions to Ua and Aa. Supersymmetry prohibits higher loop contributions to Ua
and Aa.

From the supersymmetry transformation rules [17] it is clear that supersymmetric solu-
tions must satisfy ~̇xa = 0 and Da = 0 so such solutions are governed completely by the
first order part of the Lagrangian in (4.2) whose form is completely fixed by supersymme-
try. Fortunately, this first order part also determines the symplectic form as follows from
the general definition of the latter

Ω =
(
δL

δφ̇

∣∣∣∣
φ̇=0

)
∧ δφ

when restricted to the supersymmetric, φ̇ = 0, solution space. Thus we only need Ua
and Aa to match the gauge theory to supergravity and to extract the symplectic form, and
since they do not receive higher loop corrections we can safely extrapolate the results
from the gauge theory regime at small gs to the supergravity regime at large gs.

Given (4.2), the space of supersymmetric vacua of the gauge theory is given by the solu-
tions of the D-term equations Ua = 0. These are identical to the supergravity constraint
equations (3.11), (3.12), as θa can be identified with the intersection of Γa and the con-
stant term in the supergravity harmonic functions.

4.2.3 SYMPLECTIC FORM FROM QUIVER QM

The symplectic form then follows immediately by restricting
∑
a δ~xa ∧ δ ~Aa obtained

from (4.2) to the solution space
⋂
a{Ua = 0}. This symplectic form is independent of gs

and must therefore agree with the symplectic form obtained from supergravity.
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Phrased in terms of the supergravity solution, the symplectic form becomes

Ω̃ =
1
2

∑
a

δxia ∧ 〈Γa, δAid(xa)〉. (4.5)

where Ad is the “spatial” part of the 4d gauge field defined in (3.5). Notice that

δAid(xa) = (δAid(x))|x=xa + (δxka∂kAid(x))|x=xa . (4.6)

To proceed further we denote

fa =
1

|~x− ~xa| . (4.7)

With some work, one can show that

δAd =
∑
a

Γaεijkδxia ∂jfa dx
k (4.8)

Using the above form of δAd and the fact that ∂kAid(x) can be replaced by 1
2 (∂kAid(x)−

∂iAkd(x)) = 1
2Fkid (x) we finally obtain for the symplectic form

Ω̃ =
1
4

∑
a6=b

〈Γa,Γb〉εijk(δ(xa − xb)i ∧ δ(xa − xb)j) (xa − xb)k
|~xa − ~xb|3 . (4.9)

Note that the overall translational mode does not contribute to this symplectic form.

The symplectic form (4.9) applies for any number of centers but it must still be restricted
to the solution space defined by the constraint eqns. (3.12). Since these spaces are quite
complicated we will only be able to analyse this restriction for the two and three center
case and some simple examples with arbitrary number of centers.

4.3 QUANTIZATION

In Section 3.4.1 we described the solution space of three-centered solutions. Here, we
will describe the quantization of these solution spaces using the symplectic form (4.9).
It turns out that the structure of the solution space is determined to a large extent by
the symmetries of the problem. Recall that we already removed the overall translational
degree of freedom from the solution space, which we can do for example by fixing one
center to be at the origin, e.g. ~x1 = 0, or by fixing the center of mass to be at the origin.
The translational degrees of freedom and their dual momenta give give rise to a continuum
of BPS states, but this continuum yields a fixed overall contribution to the BPS partition
function. By factoring out this piece we are left with the reduced BPS partition function,
and the quantization of the solution space we consider here yields contributions to this
reduced BPS partition function.
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4.3.1 THE SOLUTION SPACE AS A PHASE SPACE

We would now like to quantize the BPS solution space defined by eqns. (3.11) as a phase
space. In order to do so we need to ensure that the symplectic form (4.9) is closed and
non-degenerate on this space implying that the latter is indeed a (sub)phase space.

Ideally, we would demonstrate these properties for Ω̃ in general but the second property
(non-degeneracy) depends on the structure of the solution space (and in fact does not hold
in some degenerate cases as we will see) so we will only be able to demonstrate it for
the two and three center cases. As previously mentioned it is not a priori evident that the
solution spaces are phase spaces so in principle Ω̃ might have been degenerate on all these
spaces.

A direct calculation suffices to show that dΩ̃ is closed as a two-form on the solution space

dΩ̃ ∼
∑
a6=b

〈Γa,Γb〉
|xab|

(
εijk − 3

εlijx
k
abx

l
ab

|xab|2
)
δxiab ∧ δxkab ∧ δxjab = 0 (4.10)

The last equality is most easily worked out in a coordinate basis. Non-degeneracy will
follow in the two and three center case from the explicit form of the symplectic form
as computed below. Before doing so it will be useful to highlight a general structure
that emerges as part of any such solution space; namely, the overall rotational degrees of
freedom.

Besides the overall translational symmetries, the constraint equations (3.12) are also in-
variant under global SO(3) rotations of the ~xa. These rotations do appear in a non-trivial
way in the symplectic form. Indeed, if we insert δxia = εijknjxka, which corresponds to
an infinitesimal rotation around the ~n-axis3, in Ω̃ we obtain

Ω̃ =
1
4

∑
a6=b

〈Γa,Γb〉εijkεilmn
l(xa − xb)mδ(xa − xb)j (xa − xb)k

|~xa − ~xb|3

= niδJ i (4.11)

where J i are the components of the angular momentum vector (see Section 3.1.3)

J i =
1
4

∑
a 6=b

〈Γa,Γb〉 x
i
a − xib
|~xa − ~xb| (4.12)

The fact that the symplectic form takes the simple form in (4.11) is not surprising. This
is merely a reflection of the fact that angular momentum is the generator of rotations.
Fortunately, this simple form completely determines the symplectic form in the two and
three-center case.

3In other words, we compute ıX Ω̃ with X the vector field
P
a ε
ijknjxka

∂
∂xia

.
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4.3.2 TWO-CENTER CASE

The two-center case is easy to describe. There is only a regular bound state for 〈Γ1,Γ2〉 6=
0 and 〈h,Γp〉 6= 0, and the constraint equations immediately tell us that x12 is fixed and
given by

x12 =
〈h,Γ1〉
〈Γ1,Γ2〉 . (4.13)

In other words, ~x1 − ~x2 is a vector of fixed length but its direction is not constrained.
Thus the solution space is consists of all possible orientations of this vector and can be
parameterized by two angles (θ, φ) defining an S2.

Since the solution space is simply the two-sphere the symplectic form must be propor-
tional to the standard volume form on the two-sphere and this is indeed the case. In terms
of standard spherical coordinates it is given by

Ω̃ =
1
2
〈Γ1,Γ2〉 sin θ dθ ∧ dφ = |J | sin θ dθ ∧ dφ. (4.14)

We can now quantize the solution space using the standard rules of geometric quantization
(see e.g. [88] [89]). We introduce a complex variable z by

z2 =
1 + cos θ
1− cos θ

e2iφ (4.15)

and find that the Kähler potential corresponding to Ω̃ is given by

K = −2|J | log(sin θ) = −|J | log
(

zz̄

(1 + zz̄)2

)
. (4.16)

The holomorphic coordinate z represents a section of the line-bundle L (over S2, the so-
lution space) whose first Chern class equals Ω̃/(2π). The Hilbert space consists of global
holomorphic sections of this line bundle and a basis of these is given by ψm(z) = zm.
However, not all of these functions are globally well-behaved. For example, regularity at
z = 0 requires that m ≥ 0, and to examine regularity at z = ∞ one could e.g. change
coordinates z → 1/z and use the transition functions of L to find out that m ≤ 2|J |.
Equivalently, we can directly examine the norm of ψm by computing

|ψm|2 ∼
∫
dvol e−K|ψm(z)|2 (4.17)

where dvol is the volume form induced by the symplectic form. In our case we therefore
find

|ψm|2 ∼
∫
d cos θ dφ (1 + cos θ)|J|+m(1− cos θ)|J|−m (4.18)

and clearly ψm only has a finite norm if −|J | ≤ m ≤ |J |. The total number of states
equals 2|J | + 1. This is in agreement with the wall-crossing formula up to a shift by 1.
We will see later that the inclusion of fermions will get rid of this extra constant.
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The integrand in (4.18) is a useful quantity as it is also the phase space density associated
to the state ψm. According to the logic in [90, 91] the right spacetime description of one
of the microstates ψm should be given by smearing the gravitational solution against the
appropriate phase space density, which here is naturally given by the integrand in (4.18).
We will come back to this point later, but observe, already, that since there are only 2|J |+1
microstates, we cannot localize the angular momentum arbitrarily sharply on the S2, but
it will be spread out over an area of approximately π/|J | on the unit two-sphere. It is
therefore only in the limit of large angular momentum that we can trust the description of
the two-centered solution (with two centers at fixed positions) in supergravity.

4.3.3 THREE CENTER (NON-SCALING) CASE

We now return to the symplectic form (4.11). In the three-center case, we expect four
degrees of freedom. As discussed in section 3.4.1, three of those are related to the possi-
bilities to rotate the system, whilst the fourth one can be taken to be the size of the angular
momentum vector | ~J |. The specific form of (4.11) strongly suggests that these are also
the variables in which the symplectic form takes the nicest form.

We therefore take as our basic variables J i and σ, where σ represents an angular coor-
dinate for rotations around the ~J-axis. Obviously, σ does not correspond to a globally
well-defined coordinate, but rather should be viewed as a local coordinate on an S1-
bundle over the space of allowed angular momenta. Ignoring this fact for now, the rotation
δxip = εiabnaxbp that we used in (4.11) corresponds to the vector field

Xn =
niJ i

|J |
∂

∂σ
+ εijknjJk

∂

∂J i
. (4.19)

The second term is obvious, as ~J is rotated in the same way as the ~xa. The first term
merely states that there is also a rotation around the ~J-axis given by the component of n
in the ~J-direction. The final result in (4.11) therefore states that

Ω̃(Xn,m
i ∂

∂J i
) = nimi Ω̃(Xn,

∂

∂σ
) = 0. (4.20)

It is now easy to determine that

Ω̃(
∂

∂J i
,
∂

∂Jj
) = εijk

Jk

|J |2 , Ω̃(
∂

∂J i
,
∂

∂σ
) = − J

i

|J | . (4.21)

Denoting | ~J | as j, and parameterize J i in terms of j and standard spherical coordinates
θ, φ, the symplectic form defined by (4.21) becomes

Ω̃ = j sin θ dθ ∧ dφ− dj ∧ dσ. (4.22)
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However, we clearly made a mistake since this two-form is not closed. The mistake was
that σ was not a well-defined global coordinate but rather a coordinate on an S1-bundle.
We can take this into account by including a parallel transport in σ when we change J i.
The result at the end of the day is that the symplectic form is modified to

Ω̃ = j sin θ dθ ∧ dφ− dj ∧Dσ (4.23)

with Dσ = dσ −A, and dA = sin θ dθ ∧ dφ, so that A is a standard monopole one-form
on S2. A convenient choice for A is A = − cos θ dφ so that finally the symplectic form
can be written as a manifestly closed two-form as4

Ω̃ = −d(j cos θ) ∧ dφ− dj ∧ dσ. (4.24)

This answer looks very simple but in order to quantize the solution space, we have to
understand what the range of the variables is. Since θ, φ are standard spherical coordinates
on S2, φ is a good coordinate but degenerates at θ = 0, π. The magnitude of the angular
momentum vector j is bounded as can be seen from (4.12). By carefully examining
the various possibilities in the three-center case (see appendix A of [4]), one finds that
generically j takes values in an interval j ∈ [j−, j+], where j = j− or j = j+ only if
the three-centers lie on a straight line. An exceptional case is if j− = 0 implying that the
three-centers can sit arbitrarily close to each other (see appendix A of [4]). Note that this
latter case corresponds exactly to the scaling solutions described in section 3.4.2.

As we mentioned above, at j = j− and j = j+ the centers align, and rotations around the
~J-axis act trivially. In other words, at j = j± the circle parametrized by σ degenerates.
Actually, we have to be quite careful in determining exactly which U(1) degenerates
where. Fortunately, what we have here is a toric Kähler manifold, with the two U(1)
actions given by translations in φ and σ, and we can use results in theory of toric Kähler
manifolds from [92] (see also [93] and Appendix F) to describe the quantization of this
space.

We start by defining x = j and y = j cos θ to be two coordinates on the plane. Then the
ranges of the variables x and y are given by

x− j− ≥ 0, j+ − x ≥ 0, x− y ≥ 0, x+ y ≥ 0. (4.25)

Together these four5 inequalities define a Delzant polytope in R2 which completely spec-
ifies the toric manifold (see Appendix F). At the edges a U(1) degenerates and at the
vertices both U(1)’s degenerate. The geometry and quantization of the solution space
can be done purely in terms of the combinatorial data of the polytope (see figure 4.1).

4This result can be re-derived in a more straightforward but tedious way as a special case of the Dipole Halo
quantization in Chapter 6.

5In the case j− = 0 the first equation is redundant and is not part of the characterization of the polytope.
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y = j cos θ

x = jj− j+

y = j cos θ

x = jj+

Figure 4.1: (Left) The polytope for j− = 0 corresponding to CP2
(1,1,2). (Right) The polytope for

j− > 0. This corresponds to the second Hirzebruch surface, F2, a blow-up of CP2
(1,1,2).

We have to distinguish two cases. First, when j− = 0, which corresponds to a scal-
ing point inside the solution space, our toric manifold is topologically CP2

(1,1,2). In the
case j− > 0, where a scaling point is absent, the solution space becomes the blow-up of
CP2

(1,1,2), which can be identified as the second Hirzebruch surface F2. These statements
can all be verified by e.g. constructing the normal fan to the relevant polytopes.

For the purpose of quantizing the system we will assume that j− > 0; we will return
to the case of j− = 0 in section 5.1.2. Thus the results of the rest of this section only
apply for j− > 0. Furthermore we assume that all three centers carry different charges; if
two centers carry identical charge one needs to take into account their indistinguishability,
quantum mechanically, and take a quotient of the corresponding solution space. We won’t
consider this possibility in this section but come back to it in detail in Chapter 6 when we
consider the Dipole Halo system.

The construction of canonical complex coordinates is done by constructing a function g
as

g =
1
2

[(x− j−) log(x− j−) + (j+ − x) log(j+ − x)

+(x− y) log(x− y) + (x+ y) log(x+ y)] (4.26)

which is related in an obvious way to the four inequalities in (4.25). Then the complex
coordinates can be chosen to be exp(∂xg + iσ) and exp(∂yg + iφ). Explicitly, and after
removing some irrelevant numerical factors, the complex coordinates are

z2 = j2 sin2 θ

(
j − j−
j+ − j

)
e2iσ

w2 =
(

1 + cos θ
1− cos θ

)
e2iφ (4.27)
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and the Kähler potential ends up being equal to

K = j− log(j − j−)− j+ log(j+ − j) + 2j. (4.28)

Again, a basis for the Hilbert space is given by wave functions ψm,n = zmwn. Note that,
as in the two center case, these wave functions are, by construction, sections of a line
bundle, L, whose curvature is given, once more, by Ω̃/(2π).

To find the range of n,m we look at the norm

|ψm,n|2 ∼
∫
e−2r (j+ − r)j+

(r − j−)j−

(
r2 sin2 θ

(
r − j−
j+ − r

))n
(

1 + cos θ
1− cos θ

)m
r dr d cos θ dφ dσ. (4.29)

This is finite if j− ≤ n ≤ j+ and −n ≤ m ≤ n. Not surprisingly, these equations are
identical to the original inequalities that defined the polytope, and the number of states is
equal to the number of lattice points in the polytope; notice that this is not quite identical
to the area of the polytope. In our case that number of points is

N = (j+ − j− + 1)(j+ + j− + 1). (4.30)

This connection holds quite generally for toric Kähler manifolds. As in the two center
case fermionic contributions will correct both the state count, (4.30), and the phase space
measure, (4.29); this will be discussed in the next section.

The integrand in (4.29) can once more (as in the two center case) be viewed as a phase
space density against which the supergravity solution has to be smeared in order to find
the gravitational dual of each microstate [90] [91].

4.3.4 FERMIONIC DEGREES OF FREEDOM

From the open string point of view [17] we know that (4.30) is incorrect and that we
must include fermionic degrees of freedom in order to account for all the BPS states (e.g.
in the two center case). This is because, in the open string description, the centers are
described by N = 4, d=1 supersymmetric quiver quantum mechanics (QQM) with the
position of each center encoded in the scalars of a vector multiplet and the latter also
includes fermionic components (the λa of Section 4.2) which must be accounted for in
any quantization procedure.

Since we expect to see the same number of BPS states in both the open and closed descrip-
tion and since the bosonic phase spaces in both cases match exactly (and the symplectic
forms agree in view the non-renormalization theorem discussed above) we may ask what
the closed string analog of the fermions in the QQM is?
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Consider our phase space: the coordinates, xa, subject to the constraint (3.12), parameter-
ize the space of purely bosonic BPS solutions but, for each such solution, we may still be
able to excite fermions if doing so is allowed by the equations of motion. If we consider
only infinitesimal fermionic perturbations of the bosonic solutions then the former will
always appear linearly in the equations of motion, acted on by a (twisted) Dirac operator.
Thus fermions which are zero modes of this operator may be excited without altering the
bosonic parts of the solution (to first order).

Determining the actual structure of these zero modes is quite non-trivial. A natural guess
is that the bosonic coordinates of the centers must be augmented by fermionic partners
(making the solution space a superspace) as is argued in [94] [95] where there is no
potential. The fact that the bosonic coordinates are constrained by a potential complicates
the problem in our case so we will simply posit the simplest and most natural guess and
justify it, a posteriori, by reproducing the necessary correction to match the open string
picture, the explicit two center and halo quantization of [17], as well as the split attractor
conjecture [9].

Thus we will posit that the full solution space is actually the total space of the spin bundle
over the Kähler phase space described in Section 4.3.3. The correct phase space densities
are now harmonic spinors on the original phase space. This is natural from a mathematical
point of view [96] and can be argued physically as follows.

The space of solutions in the open string picture is spanned by letting the bosonic coordi-
nates take their allowed, constant, values and setting the fermionic coordinates to zero (we
are neglecting the center of mass degrees of freedom). We could of course try to restrict
the symplectic form to this space, and then quantize, but this would miss the possible
non-trivial topology of the fermionic vacuum. Therefore we will proceed in a different
way as follows.

We start with the full classical phase space of the quiver quantum mechanics including all
the fermions. Next we are going to impose the constraints

〈Γa, H(xa)〉 = 0 (4.31)

which will restrict xa to take values in the bosonic solution space. The constraint (4.31),
however, is not invariant under all supersymmetries but only half of them. We can there-
fore impose (4.31) supersymmetrically as long as, at the same time, we remove half the
fermions. The resulting system still has two supersymmetries left which one could, in
principle, work out explicitly. If we assume that the solutions space is Kähler (which
may in fact be a consequence of the two remaining supersymmetries), the resulting su-
persymmetry transformations will necessarily look like those of standard supersymmetric
N = 2 quantum mechanics on a Kähler manifold. Notice that so far we have not used the
symplectic structure for the fermions at all.
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Though it would be interesting to work this out in more detail, we finally expect that,
after geometric quantization of the supersymmetric quantum mechanical system, the su-
persymmetric wave-functions will be L-valued spinors which, at the same time, are zero-
modes of the corresponding Dirac operator.

Recall (see e.g. [97]) that on a Kähler manifoldM there is a canonical Spinc structure
where the spinors take values in Λ0,∗(M). To define a spin structure we need to take a
square root of the canonical bundle K = ΛN,0(M) and twist Λ0,∗(M) by that. We also
need to remember that the coordinate part of the wave functions were sections of a line
bundle, L. Thus altogether the spinors on the solution space are given by sections of

L ⊗ Λ0,∗(M)⊗K1/2. (4.32)

The Dirac operator is given by
D = ∂̄ + ∂̄∗ (4.33)

and we have to look for zero modes of this Dirac operator. These are precisely the har-
monic spinors onM and therefore the BPS states correspond to H(0,∗)(M,L ⊗K1/2).
By the Kodaira vanishing theorem, H(0,n)(M,L ⊗ K1/2) vanishes unless n = 0 if we
take L to be very ample, which it is for large enough charges. Thus, finally, the BPS states
are given by the global holomorphic sections of L ⊗K1/2. The only difference with the
previous purely bosonic analysis is that the line-bundle is twisted by K1/2.

To find the number of BPS states we can therefore follow exactly the same analysis as
in the bosonic case. We just have to make sure that in the inner product we use the
norm appropriate for L ⊗ K1/2. This can be accomplished by inserting an extra factor
of (det ∂i∂j̄K)−1/2 in the inner product. For example, for the two-sphere, this introduces
an extra factor of (1 + cos θ)−1 in the integral, reducing the number of states by one
compared to the purely bosonic analysis. This is in perfect agreement with [17].

For the three-center case (and more generally for toric Kähler manifolds) we find, after
some manipulations, that

(det ∂i∂j̄K)−1/2 ∼ exp
(∑

i

∂g

∂xi

)√
det
[

∂2g

∂xi∂xj

]
(4.34)

in terms of the function g given for the three-center case in (4.26). To get this relation we
used that K is the Legendre transform of g (see Appendix F). Evaluating this explicitly
for the three-center case yields an extra factor

1
j+ − j

√
1 + cos θ
1− cos θ

a(j) (4.35)

with
a(j) =

√
j(j+ − j−) + 2(j+ − j)(j − j−) (4.36)
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This result indicates that, in the presence of spinors, we should take n integral and m
half-integral with −n ≤ m + 1

2 ≤ n and j− ≤ n ≤ j+ − 1. Then, the total number of
normalizable wave-functions becomes

N = (j+ − j−)(j+ + j−) (4.37)

which does not have the unwanted shifts anymore!

For completeness let us provide the modified form of the norm for a wave function, in-
cluding fermionic corrections,

|ψm,n|2 ∼
∫
e−2j (j+ − j)j+−1

(j − j−)j−

(
j2 sin2 θ

(
j − j−
j+ − j

))n
(

1 + cos θ
1− cos θ

)m+ 1
2

a(j) j dj d cos θ dφ dσ. (4.38)

Note that this is only the norm for non-scaling solutions with j− > 0. The norm for
wave-functions on solution spaces with a scaling point (j− = 0) is given in section 5.1.2.

4.3.5 COMPARISON TO THE SPLIT ATTRACTOR FLOW PICTURE

In the previous subsections we computed the number of states corresponding to the po-
sition degrees of freedom of a given set of bound black hole centers. The approach we
developed amounts essentially to calculating the appropriate symplectic volume of the
solution space. To count the total number of BPS states of a given total charge one needs
to take into account the fact that the different black hole centers may themselves carry in-
ternal degrees of freedom and that there may be many multicenter realizations of the same
total charge. In the special case, however, when all the centers correspond to zero entropy
bits without internal degrees of freedom the position degrees of freedom should account
for all states. In this case it is interesting to compare the number of states obtained in our
approach, using geometric quantization, with the number obtained by considering jumps
at marginal stability as in [9] (see also section 3.1.6).

To make this comparison we use the attractor flow conjecture which states that to each
component of solution space there corresponds a unique attractor flow tree. Given a com-
ponent of solution space we can calculate its symplectic volume and hence the number of
states. Given the corresponding attractor flow tree we can calculate the degeneracy using
the wall crossing formula of [9]. To determine which attractor tree corresponds to which
solution space (as needed to compare the two state counts) we will have to assume that
part of the attractor flow conjecture holds. Although this might seem to weaken the com-
parison we should point out that the attractor flow tree has no inherent meaning outside
the context of the attractor flow conjecture thus the need to assume the latter to relate the
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former to our solutions is not surprising. Moreover, the attractor flow conjecture (defined
in [59][73]) is distinct from (and weaker than) the wall crossing formula (defined in [9])
which relies on it.

As mentioned before (around eqn. (4.18); see also the section about the addition of
fermions), in the two center case we get a perfect agreement between the two calcula-
tions. This is not so surprising because both approaches are, in fact, counting the number
of states in an angular momentum multiplet with j = 1

2 〈Γ1, Γ2〉 − 1
2 . Furthermore, there

is no ambiguity in specifying the split attractor tree. Things become more interesting in
the three centers case where there are now naively three attractor trees for a given set of
centers. According to the attractor flow conjecture only one tree should correspond to any
given solution space. It is possible to match solution spaces to attractor trees if we are
willing to assume part of the attractor flow conjecture.

Let us consider the three center attractor flow tree depicted in figure 3.1. For the given
charges, Γ1, Γ2, and Γ3, there are, in fact, many different possible trees but, in terms of
determining the relevant number of states, the only thing that matters is the branching
order. In figure 3.1 the first branching is into charges Γ3 and Γ4 = Γ1 + Γ2 so the
degeneracy associated with this split is |〈Γ4,Γ3〉| and the degeneracy of the second split
is |〈Γ1,Γ2〉| giving a total number of states

Ntree = |Γ12| |(Γ13 + Γ23)| (4.39)

where we have adopted an abbreviated notation, Γij = 〈Γi,Γj〉 and have dropped the
factors of Ω(Γa) in (3.28) (because we are only interested in the spacetime contribution
to the state count so we consider centers with no internal states).

To compare this with the number of states arising from geometric quantization of the so-
lution space, (4.37), we need to determine j+ and j−. As mentioned in Section 4.3.3 (see
also Appendix A of [4]), j+ and j− correspond to two different collinear arrangements
of the centers and, in a connected solution space, there can be only two such configura-
tions. To relate this to a given attractor flow tree we will assume part of the attractor flow
conjecture; namely, that we can tune the moduli to force the centers into two clusters as
dictated by the tree. For the configuration in figure 3.1, for instance, this implies we can
move the moduli at infinity close to the first wall of marginal stability (the horizon dark
blue line) which will force Γ3 very far apart from Γ1 and Γ2. In this regime it is clear that
the only collinear configurations are Γ1-Γ2-Γ3 and Γ2-Γ1-Γ3; it is not possible to have
Γ3 in between the other two charges. Since j+ and j− always correspond to collinear
configurations they must, up to signs, each be one of

j1 =
1
2

(Γ12 + Γ13 + Γ23) (4.40)

j2 =
1
2

(−Γ12 + Γ13 + Γ23) (4.41)
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j+ will correspond to the larger of j1 and j2 and j− to the smaller but, from the form of
(4.37), we see that this will only effectN by an overall sign (the state count depends only
on the absolute value of N ). Thus

N = ±(j1 − j2)(j1 + j2) = ±Γ12 (Γ13 + Γ23) (4.42)

which nicely matches (4.39).

Of course to obtain this matching we have had to assume the attractor flow conjecture
itself (in part) so it does not serve as an entirely independent verification. Another draw-
back of this argument is that it is not applicable to the decoupling limit described in [3]
where the asymptotic moduli, tA, are fixed to the AdS-point [3]. However, it is possible
to circumvent this limitation by gluing an asymptotic flat region to the interior geometry.
This can always be done by choosing the moduli in the new added region to be equal to
the asymptotic moduli, tAdS, of the original solution. The physicality of such gluing relies
on two important observations. The first one is that far away the centers behave like a
one big black hole with charges the sum of all charges carried by the centers. The second
important ingredient is that tAdS is equal to the attractor value of the moduli associated
to this big black hole. Doing so we are back to the asymptotic flat geometry where we
have the freedom to play the asymptotic moduli once again. This is the same argument
used in [3][69] to generalize the existence conjecture from asymptotic flat solutions to the
decoupled limit.

Our result here provides another non-trivial consistency check for the conjecture that there
is a one-to-one map between split-attractor trees and BPS solutions toN = 2 four dimen-
sional supergravity [9]. By explicitly evaluating (4.30), we find it is the product of two
contributions exactly as predicted by the split attractor flow conjecture. Using geometric
quantization it is clear that the three-center entropy always factorizes into a product of
splits along walls of marginal stability matching an attractor flow tree (the only reason
we need to assume part of the attractor flow conjecture for the matching is to determine
which particular tree). This is strong evidence in favor of the fundamental underpinning
of the attractor flow conjecture: namely, that by tuning moduli it is always possible to
disassemble multicenter configurations pairwise.

Let us make some further remarks on the results derived here. The scaling solutions cor-
responding to λ → 0 have j− = 0 even if the centers don’t align at this point. Therefore
the connection to the wall crossing formula breaks down. The procedure of geometric
quantization itself, however, does not seem to suffer any pathologies for these solutions.
The curvature scales always stay small allowing us to trust the supergravity solutions.
Thus one can see the resulting degeneracy as a good prediction. Although the symplectic
form seems to degenerate at j = j− this is, in fact, nothing but a coordinate artifact as
can be seen from studying the polytope associated with scaling solutions.

For fixed j± the Hilbert space is finite dimensional and it is not possible localize the cen-
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ters arbitrarily accurately. Thus the supergravity solutions can only be well approximated
in the large j± limit. In Section 5.1.2 we will study the nature of “classical” states defined
in this limit. We will be interested in particular in the boundary of the solution spaces
where classical pathologies such as infinitely deep throats or barely bound centers (see
[3]) moving off to infinity may appear. We will show that quantum effects resolve these
pathologies since there is less then one unit of phase space volume in the pathological
regions (even for large finite charges) so the pathologies are purely classical artifacts.
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CHAPTER 5

BLACK HOLE MICROSTATES

Having developed several powerful technical tools in Chapters 3 and 4 we proceed now to
study the structure of these black hole microstates. We will be interested, in particular, in
understanding how quantum effects help resolve some classical paradoxes. In particular
we will show how the structure of the phase space implies that certain, nominally well-
behaved classical geometries, do not correspond to well-defined semi-classical states in
the quantum theory. The most interesting such examples are the scaling solutions of
Section 3.4.2. These have arbitrarily deep throats resembling very much the naive black
hole geometry but we will see that quantum effects stretching over macroscopic distances
conspire to destroy these throats.

Another paradox we will investigate is the Entropy Enigma of [9]. Here the (partial)
resolution of the enigma is not a consequence of quantum effects but merely of a more
careful analysis of the partition function associated to the classical solutions. It is of
interest as it suggests a phase transition in the dual CFT as a function of the total charge.
Understanding whether such transitions occur and their exact nature may shed light on
the correct structure of the thermal ensemble dual to a black hole and the super-selection
structure of the dual CFT.

Although the issues discussed here do not directly relate the question of black hole infor-
mation loss they nonetheless demonstrate the effectiveness of our techniques in resolving
classical (or semi-classical) paradoxes, of which information loss is an example, by us-
ing these tools to study the quantum structure of the black hole. Moreover in the course
of our analysis we will show, for the first time (to the author’s knowledge), that some
black hole microstates exhibit exotic characteristics such as quantum fluctuations across
macroscopic spatial regions. Such behaviour has been suggested as a resolution to the
information loss paradox and the emergence of such fluctuations here may be taken as a
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proof of concept.

5.1 QUANTUM STRUCTURE OF SOLUTIONS

Having determined the structure of the quantum states associated with the two and three
center solutions we can now investigate some potential problems with the classical solu-
tions that we expect to be resolved by quantum effects. For instance, although the three
center phase space appears to be non-compact for some choices of charges and moduli
this turns out not to be a problem since the symplectic volume of the phase space is fi-
nite. We show, moreover, that centers cannot move off to infinity once quantum effects
are taken into account. Likewise, as has already been observed in [70] and [9], scaling
solutions can develop an infinitely deep throat classically but we expect the quantization
of phase space to cap this throat off at some finite value and we find that this is indeed the
case.

To investigate these issues we would like to consider the expectation value of the harmonic
functions (3.2) defining the solutions. Of course this will depend on the particular state we
are considering and there are, in general, many possible states one can construct so making
any general statement is quite difficult. We do not, however, need detailed properties of
〈H(r)〉, only its behaviour in various asymptotic limits. We first discuss the non-compact
case and then turn to scaling solutions in the next section. In both instances our main
concern here will be the r dependence at the boundary of the solution space, which we
will be able to extract for a general pure state.

5.1.1 CENTERS NEAR INFINITY

Let us consider the two independent constraint equations (3.120) for the three center case
once more

a

u
− b

v
=

Γ12

r12
− Γ31

r31
= 〈h,Γ1〉 =: α (5.1)

b

v
− c

w
=

Γ31

r31
− Γ23

r23
= 〈h,Γ3〉 =: β (5.2)

where we have (re)introduced a hopefully obvious short-hand notation. We would like to
see when one center can move off to infinity. We will assume that a, b and c are non-zero.
In order to satisfy the triangle inequalities while taking at least one center to infinity we
must have either two or three of the distances u, v, and w become infinite. Let us, for
definiteness, try to set u and v to infinity which corresponds to centers 2 and 3 staying
a finite distance apart while center 1 moves off to infinity. From the constraint equation
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Figure 5.1: Possible locations for ~x1 are given above. The centers ~x3 and ~x2 sit at (0, 0) and
(0,−2) in the (x, z)-plane respectively and the different orbits represent different values of a/b. In
the figure above a/b < 1 and as a/b → 1 the orbit increases until it becomes the line z = −1

when a = b (not depicted).

its clear that this can only be done if α = 0. We can also consider the case when all
three centers move infinitely far apart, which can only occur if β = 0 as well, but this is
a somewhat trivial case as the angular momentum will then, by (3.19), vanish, as will the
symplectic form, so the space cannot be quantized without adding additional degrees of
freedom (momenta).

Thus we restrict to the case α = 0, β 6= 0 which gives

r12

r31
=
u

v
=
a

b
(5.3)

When translated into coordinates this equation defines an ellipse for the possible locations
of center 1 but it is easy to see from this that u and v must be bounded unless a = b, in
which case the orbit is not an ellipse but rather center 1 must lie on the plane between
centers 2 and 3. Hence all unbound three center solutions will be of this form (where
center 1 is fixed on the plane normal to the axis defined by the other two centers). Orbits
for various values of a/b are depicted in figure 5.1. Note that this proves our claim in Ap-
pendix B that for three centers “non-compactness” can only appear when the asymptotic
moduli are at threshold stability, as α = 0, a = b is exactly the definition of threshold
stability (as introduced in [3]) in different notation1.

Recall that
∑
p〈h,Γp〉 = 0 so if we define γ = 〈h,Γ2〉 then α = 0 implies β = −γ.

Using (3.19) we find that

~j =
β

2
r23 ẑ =

βw

2
ẑ (5.4)

1More precisely: a = b⇔ 〈Γ1,Γ2 + Γ3〉 = 0 and α = 0⇔ Im(Z1Z̄2+3) = 0.
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with the positive z axis defined by ~x3 − ~x2.

Let us consider the other equation

b

v
− c

w
= β = 1 (5.5)

where we rescale the coords so β = 1.2 Note that this forces c < 0 if we want to allow
v → ∞. b can be positive or negative but we will assume b < 0 for concreteness (this
will not alter the analysis).

Using the fact that r23/2 ≤ r13 ≤ ∞ we find

j+ =
|c|
2

j− = Min
( |c|

2
− |b|, 0

)
(5.6)

with j+ reached at r13 →∞ and j− at r13 = |c|/2− |b| (unless this is less than zero3).

We can now consider the expectation value of

H(r) =
1

|~r − ~r1| (5.7)

The asymptotic behaviour of this function is particularly important in the decoupling limit
considered in Section 3.2 since if r1 →∞ the classical solutions will no longer be asymp-
totically AdS3. Thus we would like to check if there are wave-functions for which 〈H(r)〉
does not decay as r−1. If such states exist they would spoil the asymptotics of our so-
lutions, particularly in a decoupled AdS3 limit, and it would be hard to interpret them
physically.

We are interested in studying wavefunctions localized near infinity so we could restrict
our attention to the states with the largest angular momentum, n = j+ − 1, but it turns
out to be tractable to study more general pure states φ =

∑
n,m cn,mψn,m (though we

will find contributions from n < j+ − 1 are more strongly suppressed near infinity as
suggested by figure 5.1, right). For this state the expectation value is given by

2We can permute the centers to force a positive sign since β appears in one of the three constraint equations
and −β on the other and we are free to use any two of the three.

3Since a = b, b = c/2 corresponds exactly to the beginning of the scaling regime and is, in fact, nothing
more than N = I/2 in the specific example of D6D6D0. Although we work here with j− > 0 it should not
matter much since the large n states we consider in this section have little support in the small j regime.
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〈φ|H(r)|φ〉 = C
∑

n′,m′,n,m

∫ ∞
r−1

h(r, r1) fn′,m′,n,m(r1) dr1 d cos θ dφ dσ (5.8)

h(r, r1) =
1

(r2 + r2
1 − 2rr1 cosα(θ, φ, σ))1/2

(5.9)

=

{ ∑∞
l=0 C(l)(θ, φ, σ) rl1

rl+1 r > r1∑∞
l=0 C

′
(l)(θ, φ, σ) rl

rl+1
1

r < r1
(5.10)

fn′,m′,n,m(r1) = e−2λj+(j+ − λj+)j+−N/2−1(λj+ − j−)N/2−j−gn′,m′,n,m(θ, φ, σ)√
(λj+)(j+ − j−) + 2j+(1− λ)(λj+ − j−)

λ(r1)2N+1

(r1 − b)2
(5.11)

λ(r1) =
r1

r1 − b (5.12)

Here N = n + n′ so j− ≤ N/2 ≤ j+ − 1 and ~r1 = ~r13 because ~x3 is at the origin.
The function fn′,m′,n,m = c∗n′,m′ cn,m ψ

∗
n′,m′ ψn,m dj/dr which we re-write in terms of

r1 using j = λ(r1)J+.4 Since we are only interested in the large r behaviour of this
function we can integrate out the angular dependence and also neglect constant factors
(both of which have been absorbed into the function g).

The integral splits into two parts given by r > r1 and r < r1. Since λ(r1) ∼ 1+b/r1+. . .
for large r1, in the second region we see that f(r1) ∼ r−1−(J+−N/2)

1 so, after performing
the angular integrals, we are left with

∞∑
l,k=0

C(l,k)r
l

∫ ∞
r

r
−l−k−2−(J+−N/2)
1 (5.13)

The expansion in k comes from expanding λ(r1) in powers of r−1
1 . Clearly the r1 > r

region only contributes negative powers of r to 〈H(r)〉.
In the region r1 < r we cannot expand λ(r1) since r1 may not be larger than |b| but we
can split this integral once more into two regions: r− ≤ r1 ≤ r̃ and r̃ < r1 ≤ r for some
r̃ � |b|. In the first region the integration domain is r-independent so the r dependence
is simply r−l−1. In the second region we can repeat the analysis for the r1 > r integral,
expanding λ in r−1

1 , and we find a similar greater than r−1
1 fall-off.

As was mentioned above, such configurations (with α = 0 and a/b = 1) lie on walls
of Threshold Stability discussed in Appendix B. In fact, our computation nicely agrees
with the fact that, as follows from the wall crossing formula [9], no states actually decay
when crossing such a wall of threshold stability. More loosely speaking, our calculation
roughly excludes the possibility of “states running off to infinity”. This is important e.g.

4Note that we have absorbed a factor of (r1 − b)−2 from the jacobian dj/dr1 into our definition of f(r1).
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in the consistency of the decoupling limit where the limit itself forces the moduli to a
wall of threshold stability for many charge configurations and we do not want this to spoil
the asymptotics of the solution. It is also more important in a more general context as
unbounded centers do not admit an easy physical interpretation.

5.1.2 INFINITELY DEEP THROATS

As described in Section 3.4.2, for certain choices of charge vectors there is a region in
the solution space corresponding to solutions where an infinitely deep throat develops in
spacetime [70, 9, 98]. Smooth solutions with arbitrarily deep throats are quite novel and
are particularly enigmatic in the context of AdS/CFT. An infinite throat suggests that the
bulk excitations localized deep in the throat will give rise to a continuum of states in the
dual CFT. This is not consistent with the finite entropy expected from black hole physics
and also what we know about the dual CFTs at weak coupling.

To make this connection with the dual N = (0, 4) CFT we uplift the 4-dimensional so-
lutions to 5-dimensions and take the decoupling limit described in Chapter 3. The quan-
tization procedure described in Chapter 4 will carry on mutatis mutandis to the uplifted
solutions because they have exactly the same solution space. We will start with a gen-
eral discussion but then specialize to a working example given by a three center D6D6D0
scaling solution where the charge of the D0 center, N , satisfies N > 〈Γ6,Γ6̄〉/2. We
begin with some details on the structure of scaling three-center solution spaces since, as
alluded to in section 4.3.3, there are some subtle differences in the geometry of scaling
and non-scaling solution spaces. After constructing the appropriate wave functions from
the Kähler geometry we will use them to estimate the depth of the throat. We will argue
that these throats get capped at some scale ε and that this also sets the mass gap for the
CFT. We will perform an estimate indicating that ε ∼ N/〈Γ6,Γ6̄〉 and argue that the cor-
responding mass gap in the CFT has the signature 1/c behaviour of a long-string sector
when ε is of order 1.

Note that, although we will work mostly with decoupled AdS3×S2 solutions (since here
the pathologies associated with these throats is most evident) the qualitative structure of
the analysis, with quantum effects capping off the throat, are not particularly sensitive to
the asymptotics of the solution so apply more generally.

QUANTIZING THE THREE CENTER SCALING SOLUTIONS

As was done in the non-scaling case we must first construct the appropriate polytope for
these solutions (see figure 4.1). The only property that differentiates these solution spaces
is that j− = 0 (this is the scaling point). As a result, the associated polytope differs
slightly from the non-scaling one; for instance, the first inequality in (4.25) is redundant.
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Figure 5.2: Normalized probability densities |ψm,n(j)| plotted as a function of j alone (neglecting
angular dependence) for some values of n with J− ≤ n ≤ J+ − 1. In this example J+ = 18 and
J− = 6. Note that as J− > 0 this solution space does not admit scaling solutions.

This may seem to be a small modification but it actually changes the topology of the
solution space, taking the limit from non-scaling to scaling corresponds to a blow down
with a non-contractible S2 vanishing. Furthermore as we will discuss later, the probability
densities at the boundary of solution space, j = j−, will have a very different behavior in
the j− = 0 case (figure 5.3) than in the j− 6= 0 case (fig 5.2). Note that in the scaling case
the polytope doesn’t satisfy the smoothness condition; this corresponds to the point j = 0
being the well known Z2 orbifold singularity of CP2

1,1,2. The presence of this orbifold
fixed point doesn’t seem too essential as the manifold can still be treated by toric orbifold
techniques (see appendix F).

Using the coordinates x = j and y = j cos θ as in section 4.3.3, the scaling solution’s
polytope is defined by

j+ − x ≥ 0 , x+ y ≥ 0 , x− y ≥ 0 (5.14)

The construction of the complex coordinates is achieved through the function g (see ap-
pendix F). We will only need an expression for their norm squared, which is given by

|z1|2 =
j2 sin2 θ

j+ − j , |z2|2 =
1 + cos θ
1− cos θ

. (5.15)

The wave functions must have a finite norm using the measure e−K, modified by fermionic
corrections as discussed in section 4.3.4. K, as usual, stands for the Kähler potential. It is
given by

K = j − j+ log(j+ − j) , (5.16)√
det
(
∂i∂j̄K

)
=

√
1 + cos θ
1− cos θ

√
2j+ − j
j+ − j . (5.17)
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Putting everything together gives the following form for ψn,m = zn1 z
m
2

|ψn,m|2 ∼
∫
e−j

√
2j+ − j (j+ − x)j+−1−n j2n+1

(1 + cos θ)n+(m+1/2) (1− cos θ)n−(m+1/2) dj d cos θ (5.18)

Requiring that the norm is finite imposes the following restrictions

0 ≤ n ≤ j+ − 1 , −n ≤ m+ 1/2 ≤ n (5.19)

So the number of states is given by
N = j2

+

Unfortunately, we cannot compare this prediction to wall-crossing because it is not clear
how to treat scaling solutions within the framework of the attractor flow conjecture [9].
On the other hand this proves the usefulness of the tools developed here as they provide
the only known way to compute the number of BPS states for scaling solutions.

Another important property that is worth mentioning is that the probability density, given
by the integrand of (5.18), vanishes at j = 0. This suggests that, although classically the
coordinate locations of the centers can be arbitrarily close together, quantum mechanically
this is not true any more. The probability that the centers sit on top of each other is zero
which implies that there is a minimum non-vanishing expectation value for the inter-
center distance. Since the depth of the throat is related to the coordinate distance between
the centers it follows that the throat will be capped off once quantum effects are taken into
account. In the following section we will study this phenomena quantitatively and make
some predictions for the depth of the throat and the corresponding mass gap in the CFT.

MACROSCOPIC QUANTUM EFFECTS

Before we analyse a specific type of scaling solution in some more quantitative detail let
us point out some general features of any three center solution space with a scaling point.
As long as we are interested in spherically symmetric quantities, e.g. sizes and distances,
we can neglect the angular part of (5.18) as it will drop out after normalization. For such
questions we can effectively use wave functions on j-space, which depend only on the
quantum number n and the value of j+. The corresponding probability densities are

〈n, j+; j|n, j+; j〉 =
e−jj2n+1(j+ − j)j+−n−1

√
2j+ − j∫ j+

0
e−jj2n+1(j+ − j)j+−n−1

√
2j+ − j dj

, (5.20)

These are plotted for n = 0, 5, 10, 15, 20 and j+ = 21 in figure 5.3 (left).

The state that interests us the most is the n = 0 state as this has the greatest support near
the classical scaling point, j = 0. Note that when there is no scaling point, i.e. j− 6= 0,
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Figure 5.3: (Left) Plot of the probability densities (5.20) for scaling solutions with j+ = 21.
The blue, orange, red, purple and green curves correspond to respectively n = 0, 5, 10, 15, 20.
(Right) Plot of the probability density corresponding to the lowest state n = 0 for the values j+ =

5, 50 (blue) and j+ = ∞ (green) where the curve at j+ = 50 is already barely distinguishable
from the limiting curve j+ = ∞ (see eqn. ( 5.22)). Note that the probability distribution vanishes
at j = 0.

the lowest state, with n = j−, peaks on j− (see figure 5.2). In the scaling case the lowest
state actually has zero support on j− = 0 (see figure 5.3, right). This seems to indicate
that the scaling solutions, supergravity solutions where all centers coincide in coordinate
space and j = 0, are not well defined classical solutions as they correspond to a point in
the phase space where no wave function has finite support. To get an idea of how well
this classical point can be approximated by a quantum expectation value we calculate 〈j〉
in the lowest state, |0, j+; j〉.
For a scaling solution space characterized by j+ this expectation value is given by

〈j〉j+ =
∫ j+

0

〈0, j+; j|j|0, j+; j〉dj =

∫ j+
0

e−jj2(j+ − j)j+−1
√

2j+ − j dj∫ j+
0

e−jj(j+ − j)j+−1
√

2j+ − j dj
(5.21)

In general this expression is not analytically tractable. We are, however, particularly in-
terested in the supergravity regime which coincides with j+ → ∞. In this limit the
expression can be simplified considerably by using the well know expression for the ex-
ponential, limj+→∞(1− j

j+
)j+ = e−j+ , giving

lim
j+→∞

〈0, j+; j|0, j+; j〉 = 4e−2jj , (5.22)

this is the green curve plotted in figure 5.3 (right). Using this limiting behaviour it is
straightforward to calculate that

〈j〉∞ = 1 . (5.23)

In other words, even in the lowest state the expected value of j is one quantum, i.e ~.
Moreover, because the depth of the throat grows very rapidly in the region j ∼ 0 many
macroscopically different configurations sit within the range 0 < j < 1 so, even though
j ∼ 1 is only one plank unit away from the scaling point the corresponding geometry
(expectation value of the metric) is very different.
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As further evidence for the formation of a cap we will also compute the behaviour of the
harmonic functions appearing in the metric in this same state. To make this computation
simpler we will work with the system introduced in section 5.1.1 (α = 0 and a = b but
now we take |b| > |c|/2) and we will also use the notation used in there. We will first be
interested in determining the r-dependence of the (expectation values of the) functions

h1(r) =
1

|~r − ~r1| h2(r) =
1

|~r − ~r2| (5.24)

where r1 and r2 have the same meaning as in section 5.1.1 (~r3 = −~r2 so we need only
work with one of them). Note that the functions hi(r) appear directly in the harmon-
ics {H0(r), HA(r), HA(r), H0(r)} but which harmonics they appear in depends on the
specific form of Γi (which we do not fix at this point).

To compute the r-dependence of hi(r) we proceed very much as in section 5.1.1, and
indeed the computation is mostly analogous,

hi(r, ri) =

{ ∑∞
l=0 C(l)(θ, φ, σ) rli

rl+1 r > ri∑∞
l=0 C

′
(l)(θ, φ, σ) rl

rl+1
i

r < ri
(5.25)

∫ j+

0

〈0, j+; j|hi(r)|0, j+; j〉dj =
1
L

∑
l

[
r−l−1

∫ r

0

C(l) r
l
i f(ri) dri

+ rl
∫ r̃

r

C ′(l) r
−l−1
i f(ri) dri (5.26)

+ rl
∫ r+

r̃

C ′(l) r
−l−1
i f(ri) dri

]
f(ri) = j(ri) e−2j(ri)

√
2J+ − j(ri) dj(ri)

dri
(5.27)

j(r1) ∼ r1

r1 − bj+ (5.28)

j(r2) ∼ r2 (5.29)

Here we are only interested in the regime r � |b| and we define r̃ such that r < r̃ � |b|.
r+ is defined by j(r+) = J+. We have also approximated (1 − j

J+
)J+ = e−j . The

factor of 1/L above is the normalization of the wavefunction which we will not need in
this particular computation. The “∼” in the last two equations reflects an ambiguity by a
constant prefactor that depends on the moduli at infinity (which we set to one in section
5.1.1 by rescaling the coordinates).

The integrals in (5.26) can be solved (in terms of Γ-functions) by expanding in r1/|b|
or r2/J+ yielding an answer in terms of a power-series in r. The lowest order term in
the series is a constant so we find 〈hi(r)〉 ∼ ai + bir

α with α > 0. This implies that
the harmonics in the metric have the same small r behaviour so for r ∼ 0, near the
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scaling point, we can evaluate the behaviour of the five dimensional metric (3.17) in the
decoupling limit and find the metric does not develop a throat.

CUTTING THE THROAT

Finally we would like to translate our insight above, that quantum mechanically one can-
not reach the scaling point, and hence no infinitely deep throat develops, into a rough
quantitative estimate of a mass gap in the dual CFT.

We will do this in the particular example of the D6D6D0 three center solution introduced
in section 3.4.4, which is scaling when N > I/2. In section 3.4.4 we considered the
non-scaling version of these solutions where N < I/2 and we considered multiple D0
centers; here we work with a single D0 center and scaling charges, but we will use the
notation of that section. Note that, from eqns (3.123)-(3.124), this system is actually a
particular instance of the general construction of section 5.1.1 since α = 0 and a = b

(in the notation of section 5.1.1). Thus our computation of the harmonic functions in the
previous subsection applies to this system.

The calculation will proceed in two steps. First, we want to estimate at which scale the
quantum smearing cuts off the naive infinite throat. Second, we will translate this scale
into a mass gap (in the dual CFT) by analysing a scalar field on a toy model geometry
with a throat cut off at this scale. The scale at which we expect a deviation from the naive
infinite throat is of the order of the minimum expected inter-center coordinate distance.
In the case of the D6D6D0 scaling solution j+ = I

2 and, furthermore, the angular mo-
mentum is related to the inter-center distances by (see the constraint eqns. (3.123) with
β = 1

4 for asymptotic AdS space [3])

r66̄ = 8j , r0 =
8jN
I − 2j

' 8j
N

I
, (5.30)

where, in the second expression, we have made a large I approximation. As these expres-
sions are linear in j we see that their expectation value in the n = 0 state is directly given
in terms of 〈j〉∞ = 1. So we find that quantum mechanically one expects the throat to be
cut of at a scale of order ε ∼ N

I > 1/2.

A nice check on this estimate is to determine the charge dependence of the constant term
in (the expansion of) 〈h(r)〉 in the r ∼ 0 limit since, by a small r expansion,

h(r) =
1

|~r − ~ri| =
1
ri

+O(r) (5.31)

Note that this leading, r-independent, term feeds directly into the metric at small r so is
a very relevant physical quantity to compute. A careful computation of this leading term,
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taking into account the normalization L in eqn. (5.26), yields

〈h1(r)〉 ∼ γ j+
|b| +O(r) (5.32)

with γ a small number of order one. For the D6D6D0 system this gives 〈ε−1〉 := 〈r−1
1 〉 ∼

I
N which confirms our previous computation. This shows that the estimate of ε is rela-
tively robust and does not depend very strongly upon which particular quantum expecta-
tion value we use to compute it. Moreover, as the metric and solutions are defined via the
harmonics this expectation value very directly relates to the quantum expectation value of
the metric.

Now that we have understood the charge dependence of ε we wish to translate this into
a mass gap in the dual CFT. The computation of the mass gap in terms of a scalar wave
equation on a capped-throat geometry is somewhat technical and has thus been relegated
to appendix E. Here we will quote the final result for the mass gap ∆(L0 + L̄0) in terms
of ε:

∆(L0 + L̄0) ∼ ε

c
>

1
2c
. (5.33)

with c = p3 = 6I , the central charge of the dual CFT. In the regime where N ≈ I/2 (so
the inequality above is saturated) this matches the expectation from the long string picture
that the lowest energy excitation in the CFT is of order 1/c (see e.g. [26]). Whether the
different scaling in the Cardy regime, N � I , reflects new physics of these solutions or
is an artifact of our toy model geometry (see appendix E) would be interesting to explore.

It would also be interesting to find an interpretation of the dependence of the mass gap on
the parameter ε ∼ N/I ∼ L0

c which seems closely related to h = (L0 − c/24)/c. We
will see in Section 5.3.1 that the latter plays an interesting role as an order parameter in
phase transitions in the dual CFT. Evidence is presented in Section 5.4.3 that this phase
transition is due to a large number of winding modes being turned on. Although this is
speculative, it might, itself, hint at a “long string” picture for the CFT at small h. It is
interesting that the result (5.33) might also hint at such a picture. In any case these results
and speculations only further highlight the importance of better understanding the dual
N = (0, 4) CFT (which is at least partially initiated in Section 5.4.3).

5.2 MACROSCOPIC QUANTUM FLUCTUATIONS FROM

ADS/CFT

That the quantum mechanics of scaling solutions would necessarily involve novel features
was recognized shortly after their study in the AdS/CFT context as it is in this context that
they present the most challenges. The existence of smooth, arbitrarily deep asymptotically
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AdS throats with low curvature everywhere seems to suggest the existence of a continuous
spectrum in the dual conformal field theory. As already mentioned, this would not agree
with the fact that large black holes are dual to thermal states and at the same time carry
finite entropy. It would also disagree with our knowledge of the spectrum of the D1-D5-P
CFT at weak coupling.

As presaged in [98, Section 6] resolving this would require quantum effects that extend
across large portions of classical, smooth solutions and this is precisely what we was find
in Section 5.1.2 by explicit computation. The emergence of such macroscopic quantum
fluctuations can be traced to the fact (first observed in [4]) that the phase space volume
of the system computed at weak coupling, for a system of weakly interacting D-branes,
does not increase as the branes backreact and generate an infinitely deep throat. This
follows naturally from supersymmetry but is nonetheless remarkable as it implies that the
quantized “cells” of the BPS phase space stretch across macroscopic volume as an infinite
throat forms. As such one might worry that this property is somehow an artifact of the
BPS nature of the solutions. Here we would like to present, as supporting evidence for this
phenomenon, a generic AdS/CFT based argument which uses some basic properties of the
solution space, especially the fact that it is a phase space, but which does not explicitly
rely on any supersymmetry.

To make an AdS/CFT based argument we of course require asymptotically AdS solutions
(which was not essential for the arguments of the previous section) which can be obtained
by taking an appropriate decoupling limit of the solutions. Thus we assume that the total
charge Γ =

∑
a Γa has vanishing D6 charge, which allows us to take the decoupling limit

and which allows us to generate a family of asymptotically AdS3×S2 solutions.

The essential observation is that generic harmonics in our solutions can be expanded
asymptotically as

H =
∑
a

Γa
|~x− ~xa| + h =

Γ
r

+ h+O
( |~xa|

r

)
(5.34)

where the terms of order zero in xa generate the base AdS3×S2 geometry (rather they
generate the geometry of an extremal BTZ black hole) and the subleading terms represent
a modification of this base geometry. AdS/CFT arguments relate the expectation values
of CFT operators in a particular state to subleading terms in a boundary expansion of
the geometry dual to the state. In our solutions it is the terms proportional to |~xa| that
generate these subleading terms in the expansion of the fields. For scaling solutions near
the scaling point all the centers can be arbitrarily close to the origin so |~xa| ∼ λ � 1.
As λ → 0 the solution develops an infinitely deep scaling throat that closely resembles
the naive black hole geometry and solutions in this region all have expectation values
proportional to some positive power of λ.

Because the solution spaces we are studying map to a symplectic submanifold of the full
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phase space they contain both configuration and conjugate momenta variables. Hence
we expect that these solutions can be parameterized, in the dual theory, by non-trivial
expectation values of both an operator, O, and its conjugate momentum conjugate, πO.
Heisenberg’s uncertainty principle, however, implies there will be an intrinsic variance in
measuring these expectation values

σOσπO ≥ 1 (5.35)

The crucial observation is that this bound on the variance is finite and independent of λ
so as λ → 0 (recall we are measuring expectation values in a state |λ〉 dual to a throat
parameterized by λ) there will be some approximate value, λc, for which the variance is
of the same order as either 〈O〉 or 〈πO〉. For such states |λ〉 we can no longer think of
the dual geometries as good classical solutions as an observer doing measurements would
not be able to distinguish geometries corresponding to the different values of λ and these
look macroscopically very different.

For instance, if we consider a dipole halo with only one D0 brane then from eqn. (3.125)
(and the definition of the coordinates) we see λ ∼ j ∼ θa so the depth of the throat
is controlled by the distance between the D6 and the D0. This can be measured in the
CFT by measuring Ĵ3 (referred to as J0 in Section 3.2.4). The conjugate variable in the
bulk is φa which parameterizes the phase space and also appears asymptotically in the D0
dipole moment, ~d0 (see e.g. eqn. (3.58)). For scaling solutions both of these asymptotic
coefficients will be first or higher order λ. Thus both Ĵ3 and its conjugate in the CFT will
have expectation values and also variances of this order (for small enough λ). Even if
we take the variance of 〈Ĵ3〉 to be very small in a state |λ〉 implying a fixed throat depth
the corresponding large variance in the dual operator implies that the location of the D0
is smeared in a circle around the origin at the bottom of the throat. Recall that because
of the warp factor the centers remain at a fixed, macroscopic, distance apart so the throat
ends in a large quantum foam rather than a classical cap.

It would clearly be interesting to explore this argument in more general cases, to make it
more quantitative and to examine its validity.

5.3 DEMYSTIFYING THE ENTROPY ENIGMA

From the discussion in section 3.3.3, it transpires that the entropy “enigma” is in fact
nothing but a supersymmetric version of a well known general instability phenomenon
in the (nonsupersymmetric) microcanonical ensemble on AdSp × Sq , first pointed out
in [99]: Schwarzschild-AdS black holes become thermodynamically unstable once their
horizon radius shrinks below a critical value of the order of the AdS radius — at this point
it becomes entropically favorable at the given energy to form a Schwarzschild black hole
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localized on the Sq . Related thermodynamical as well as dynamical instabilities were
studied in [100, 101, 102, 103, 104, 105, 106, 107, 108, 109] and other works.

We see something very similar here: when the BTZ black hole radius is lowered below
a critical value of the order of the AdS radius, it becomes thermodynamically unstable
— at this point it is entropically favorable at the given energy and total charge to form a
BMPV-type BPS black hole [110] localized on the S2, which is precisely the “enigmatic”
configuration studied in the Section 3.3.3. This is illustrated in fig. 5.4.

In particular, we see now that the statement that multicentered black holes dominate the
entropy in the small h regime is somewhat misleading. From the 4d point of view, the
(presumably) dominant solution described in section 3.3.3 is two centered, with one zero
entropy, pure fluxed D6 center; a naked timelike singularity. But from the 5d point of
view, there is really only one black hole, since the 4d D6 singularity lifts to smooth ge-
ometry. Thus, the dominant configuration remains a single black hole — just one that is
localized on the sphere.

To the best of our knowledge, this is the first instance of such an instability in a su-
persymmetric setting. The presence of supersymmetry makes it possible to write down
completely explicit solutions, which is not possible in general nonsupersymmetric cases
studied before. This might make explorations of this phenomenon as well as its dual CFT
description more tractable.

5.3.1 PHASE TRANSITIONS

As suggested by figure 3.4 and the discussion in the previous subsection, the micro-
canonical ensemble exhibits a phase transition in the p → ∞ limit. By microcanoni-
cal ensemble we mean more precisely here the statistical ensemble at fixed total charge
Γ = (0, pA, qA, q0) and fixed total energy saturating the BPS bound, but variable S2 an-
gular momentum. Thus we introduce a potential µ dual to say the 3-component J3. For
concreteness we further specialize to the situation of section 3.3.3, putting qA = 0 and
q0 = −hp3.

Let us assume that, as our analysis suggest, the entropy below a critical value h = hc
is indeed dominated by the black hole localized on the S2, while for h > hc it is domi-
nated by the BTZ black hole. Since the localized black holes have macroscopic angular
momentum, we see that in the limit p→∞ keeping µ fixed, we get

〈J3〉 = ±j∗(h) (h < hc), 〈J3〉 = 0 (h > hc) , (5.36)

where j∗(h) is the angular momentum of the most entropic configuration and the sign
is determined by the sign of µ. This is illustrated in fig. 5.5. If we assume either BTZ
or single sphere localized black holes dominate, the critical value is hc ≈ 0.00190622,
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and in the large p limit, we have a sharp first order phase transition, with order parameter
given by the angular momentum. However as we mentioned before, although we were
unable to find any, we cannot exclude the existence of more complicated, more entropic
multi-black hole / particle gas configurations which would push up hc, and perhaps even
smoothen the entropy and angular momentum as a function of h, changing the order of
the phase transition

We can also consider the “canonical” ensemble, trading −q0 for its dual potential β =
1/T while still keeping the qA fixed (say qA ≡ 0, which for simplicity of exposition we
assume for the rest of this section), and keeping the total energy at BPS saturation.5 As we
will see below, in the dual CFT, T has an interpretation as the “left-moving temperature”,
conjugate to (L0)cyl = H = hp3 = −q0 (see section 5.4.1), while the constraint of BPS
saturation can be enforced by taking the right-moving temperature T̃ → 0. Although T is
strictly speaking not a real temperature, we will use terminology as if it were. The relation
between h and T and the free energy are given by the Legendre transform

1
T

=
∂S

∂H
= − ∂S

∂q0
, F = H − TS .

For the BTZ black hole, (3.115) thus gives

h(T ) =
(2πT )2

24
, F (T ) = −π

2T 2

6
p3 . (5.37)

This means the BTZ black hole charge at thermal equilibrium is Γ(T ) = (0, p, 0,−h(T ) p3).
For the localized black holes of section 3.3.3 we get more complicated expressions. The
localized black hole charge and entropy in thermal equilibrium are, using the notation
(3.101):

S2 = π2T
(1− 2u)3/2 p3

3 (π2T 2 + 1)1/2
,

Γ2 =

[
1, (1− u),

u2

2
,

(1− 2u)3/2

3 (π2T 2 + 1)1/2
− u3

6
− u2

2
+ u− 1

3

]
. (5.38)

The resulting free energies as a function of T are shown in fig. 5.6. Again we see a
phase transition in the large p limit: above a certain temperature Tc, the BTZ black hole
minimizes the free energy due to its large entropy; below it the spinning global AdS3 ×
S2 vacuum (3.106) (with J3 = ±p312 ) takes over, as dumping energy into the reservoir
becomes entropically favorable. (Both phases will also contain a thermal gas of particles,
since we have coupled the system to a heat bath.) The free energy of the vacuum (u =

5As in the microcanonical ensemble we still allow the angular momentum J to vary and work at fixed µ, but
we will suppress this in the explicit formulae below — its only effect in the end at p → ∞ is to select a low
temperature ground state.
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1/2) is easy to compute as it has zero entropy: Fvac = Hvac = −p324 . By equating this
with the BTZ free energy we get the critical temperature:

Tc =
1

2π
(5.39)

(in units of 1/R).

This phase transition is nothing but (a BPS version of) the Hawking-Page transition [23].
Its existence in a supersymmetric context was observed already in [111], by examining
the elliptic genus of the Hilbert scheme of k points on K3 and its AdS3 × S3 ×K3 dual.
Here we see its physical origin more directly.

Note that again the angular momentum jumps: from 〈J3〉 = 0 at T > Tc to 〈J〉 =
±Jmax = ±p312 at T < Tc. The AdS-CFT correspondence therefore implies a phase
transition in the dual 1+1 dimensional CFT breaking the continuous SU(2)R symmetry.
This is not in contradiction with the Coleman-Mermin-Wagner theorem [112, 113], since
there is only a true phase transition in the strict limit p→∞. At any finite p, the combined
free energy is smooth.

In any case, we are led to conclude that BTZ black holes much smaller than the AdS
radius in fact do not provide stable classical (p → ∞) backgrounds representing macro-
scopic (thermodynamic) states in the CFT. This is just as well, as the opposite situation
would lead to various paradoxes. For example, according to the philosophy of the fuzzball
proposal (see Section 2.2 and [6, 26, 90, 91, 114]), the BTZ black hole, when it exists as
a proper classical geometry, should be obtained by coarse graining over all microstates
of given energy or temperature, consistent with its interpretation as a purely thermal state
[28]. However, when the BTZ black hole is small, it is hard to see how it could be the
result of coarse graining over the ensembles of multicentered configurations, which typi-
cally extend far beyond the BTZ horizon size.

We end this subsection by giving an alternative way to arrive at the critical temperature
(5.39). Let us start from the pure fluxed D6 − D6 system studied in section 3.3.2. Now
add a numberN of D0-branes (which according to (3.54) have to lie on the plane equidis-
tant from the D6 and D6). This is essentially the setup of [79] and the Dipole Halos of
Section 3.4.4. It was shown there that the D0-branes together with the D6 and anti-D6
can adiabatically6 collapse into a scaling solution (or abyss) which approaches the single
centered D4-D0 black hole arbitrarily closely, if and only if

N ≥ p3

12
, i.e. h =

N − p3

24

p3
≥ 1

24
.

This is in fact a direct consequence of the equilibrium constraints (3.54). In the AdS3×S2

picture, what we have is a gas of gravitons and other massless modes orbiting at constant

6By adiabatic we mean here by a evolution process with energy arbitrarily close to the BPS bound.
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radius in AdS3 and at fixed φ on the equator of S2, which can adiabatically collapse into
a BTZ black hole if h > 1

24 . From the relation (5.37) between T and h, this is equivalent
to T > 1

2π , coinciding with the critical temperature (5.39).

Thus, below the critical temperature Tc, there is a potential barrier preventing adiabatic
gravitational collapse of the system under consideration into a BTZ black hole, above Tc,
this is not the case. We leave the clarification of the deeper meaning of this coincidence
of critical temperatures, and its implications for the fuzzball proposal (for reviews see
[26, 114]) to future work.

5.4 INTERPRETATION IN THE (0, 4) CFT

We will now discuss the interpretation in the dual CFT of the Entropy Enigma and other
phenomena we observed.

5.4.1 TRANSLATION TO CFT

The quantum numbers of the decoupled solutions were given in section 3.2.4. In partic-
ular, L0 and L̄0 were given in (3.82), and we also defined reduced quantum numbers L′0
and L̃′0 in (3.85). In the regime L′0 � c

24 , the Cardy formula gives the microcanonical
entropy of the CFT:

SCardy = 4π
√

c

24
(L′0 −

c

24
) = 4π

√
− q̂0p3

24
= SBTZ , (5.40)

where c = p3, reproducing precisely the BTZ black hole entropy. Note that the regime
where sphere localized black holes come to dominate is at (L′0 − c

24 )/c � 1; this is the
opposite of the Cardy regime.

In both the microcanonical and the canonical ensembles we consider in the previous sec-
tion, we kept the M2 charge qA fixed and for simplicity we chose

qA = 0 . (5.41)

We will do this here too. In this case the distinction between reduced and original Virasoro
charges disappears, and we have the identifications

(L0)cyl = L0 − c

24
= −q0 = hc, (L̃0)cyl = L̃0 − c

24
= 0. (5.42)

This implies furthermore H = hc, explaining our notation q0 = −hc used in (3.112) and
in the definition of the canonical ensemble in section 5.3.1.

The regime of particular interest to us is h small and positive, which is where the phase
transitions are expected to occur based on the black hole picture.
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5.4.2 ENTROPY FOR L0 ∼ c
24

There are not too many tools available to determine the number of states in a CFT for
h = (L0 − c

24 )/c → 0. There is certainly no universal answer to this question, and in
addition the answer may depend on moduli and other parameters — after all, it is not
a protected quantity. In order for the N = (0, 4) CFT, which is dual to the geometries
we have been studying, to accommodate the sphere localized / multicenter solutions with
entropy S ∼ p3 = c near h→ 0, the number of states at small h in the CFT should grow
accordingly. One can view this as a prediction of AdS/CFT for the (presumably strongly
coupled) N = (0, 4) CFT.

The simplest possible model where one could investigate this question is in the CFT of c
free bosons, which has partition function Z := Tr qL0− c

24 = Zc1 where

Z1 = q−
1
24

∏
i>0

1
(1− qi) =

1
η(q)

. (5.43)

Then the coefficient of q0 can be estimated at large c by saddle point approximation.
Parametrizing q = e2πiτ :

d(0) =
∮
ec logZ1 dτ ≈ ec logZ1(τ∗) ,

∂ logZ1

∂τ
|τ∗ = 0 . (5.44)

The numerical solution to this is

τ∗ ≈ 0.523524, log d(0) ≈ 0.176491 c , (5.45)

so this indeed gives an entropy of order c = p3 at h = 0. Comparing to (3.116), we see
that the coefficient is different; of course there was no reason to expect it to be the same,
since the coefficient is model dependent. For example, replacing Z1 with a more general
weight w modular form

Z1(q) = a0q
b + a1q

b+1 + · · · , (5.46)

we can estimate (5.44) by writing Z1(τ) = a0(−iτ)−we−
2πib
τ + · · · which leads to

τ∗ ≈ 2πib
w

, log d(0) ≈ (log a0 − w(1 + log(2πb/w))) c . (5.47)

For this to be a good approximation we need e
−2πi
τ∗ = e−w/b � 1. For the free boson, we

have w = −1/2 and b = −1/24, so this is satisfied and indeed plugging in the numbers
gives log d(0) ≈ 1

2 (1 + log π
6 )c, reproducing (5.45) to very good accuracy.

In addition to similar saddle point approximations, a more refined analysis of the large
c growth of d(0) for various modular forms, using the Fareytail expansion, was done in
[115], and was in agreement with the simple estimates given here.

111



Chapter 5 - Black Hole Microstates

Of course, since c is a measure for the number of degrees of freedom, it is hardly a
surprise that the entropy for a fixed nonzero amount of energy per degree of freedom
L0/c = 1/24 grows linearly in the number of degrees of freedom c. More interesting
would be to compute the actual proportionality constant. Despite the model dependence
of this number, (3.116) nevertheless suggests a universal number for all CFTs dual to
AdS3×S2×CY3 in the large c limit:

log d(0) =
π

18
√

3
c . (5.48)

As mentioned earlier, this universality might however be an artifact of our lack of imagi-
nation in finding more entropic configurations.

In theories in which a “long string” picture exists, we can count the number of states in
the long string CFT, which typically has reduced central charge ĉ = c/k and increased
excitation energy L̂0 = kL0. For k sufficiently large, we can then use Cardy even if the
original L0 was of the order of c/24, and we find

log d(0) =
π

6
c . (5.49)

This does not agree with (5.48), but clearly our analyses on both sides are far from con-
clusive at this point.

To make further progress, it is necessary to delve into the intricacies of the actual dual
CFTs. We will initiate this in the next subsection, improving the analysis of [27] by more
carefully identifying entropic modes important at small h.

5.4.3 THE MSW STRING

The MSW (0,4) 1+1 dimensional sigma model onW = R×S1 arising from wrapping an
M5 brane on W ×P with P a very ample divisor has the following massless field content
[27, 74, 116]:

• h0,2(P ) ≈ p3/6 complex non-chiral scalars zi arising from holomorphic deforma-
tions of P .7

• 3 real scalars ~x, the position in R3

• b2(P ) ≈ p3 real scalars from the reduction on P of the self-dual 2-form field b on
the M5:

b = bαΣα , (5.50)

7Consistent with our practice throughout this thesis, we suppress (large p) subleading corrections to various
Hodge numbers.
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where {Σα} is an integral basis of the space of harmonic 2-forms H2(P ). In such
a basis the scalars are periodic: bα ' bα + nα, nα ∈ Z. Furthermore they have to
satisfy the self-duality constraint

dbα ∧ Σα = ∗W dbα ∧ ∗PΣα , (5.51)

which implies there are b2+(P ) = 2h2,0(P ) + 1 ≈ p3/3 right-moving (∗W = +1)
degrees of freedom and b2− = h1,1(P )− 1 ≈ 2p3/3 left-moving (∗W = −1). The
left-right split depends on the deformation moduli zi and the background complex
and Kähler moduli.

• 4h2,0(P ) + 4 ≈ 2p3/3 real right-moving fermions ψκ. These pair up with the in
total 4h0,2(P ) + 4 real right-moving scalars, as required by (0, 4) supersymmetry.

Motion of the string is supersymmetric if and only if it is (almost) purely left-moving8 :

zi(τ, σ) = zi(τ + σ), bα(τ, σ) = bα(τ + σ)− 2(q · J̃)J̃α τ . (5.52)

Here q · J̃ = qAJ̃
A with qA the M2-charge and J̃ = J̃ADA proportional to the Kähler

form of X , normalized such that
∫
P
J̃2 ≡ 1. Furthermore the components J̃α are defined

by decomposing J̃ pulled back to P : J̃ = J̃αΣα. The reason for the presence of the
τ -dependent term on the right hand side is the fact that supersymmetry is nonlinearly
realized when q·J̃ is nonvanishing [27], which is related to the fact that q·J̃ is proportional
to the imaginary part of the central charge Z, and therefore that a different subset of four
supercharges out of the original eight is preserved for different q · J̃ . It is also closely
related to the difference between L0 and L′0 as discussed at the end of section 3.2.4.

In addition (5.52) is a solution to the equations of motion if and only if the selfduality
constraint (5.51) is satisfied. On the profile (zi(s), bα(s)), s ∈ S1 introduced in (5.52)
this constraint becomes the anti-selfduality condition

ḃα(s) Σα − (q · J̃)J̃ = − ∗ [(ḃα(s) Σα)− (q · J̃)J̃ ] . (5.53)

The dot denotes derivation with respect to s, and we used the fact that the right-moving
contribution in (5.52) automatically obeys the self-duality constraint (5.51). Harmonic
2-forms on P are anti-selfdual if and only if they are of type (1, 1) and orthogonal to J̃ .
Following appendix G of [9], the first condition can be written as

ḃα(s) ∂iΠα(z(s)) = 0 , (5.54)

while the second one is
ḃα(s) J̃α = q · J̃ . (5.55)

8As usual, the the extra winding term in bα can be written, using τ = 1
2

(τ + σ) + 1
2

(τ − σ) as the sum
of left-movers and right-movers, and the left-moving contribution can be absorbed in bα(τ + σ). We chose for
convenience a convention in which the winding term depends on τ only.
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Here Πα(z) is the period of the holomorphic 3-form on a 3-chain with one boundary on
the 2-cycle in P (z) Poincaré dual to Σα, and Jα is the integral of the Kähler form J over
the same 2-cycle.

SUPERSYMMETRIC SOLUTIONS

One could now try to get the BPS spectrum by quantizing this moduli space of super-
symmetric configurations. In general however this is a complicated system of coupled
equations.

Things simplify when we consider linearized oscillations around some arbitrary fixed
point (zi∗, b

α
∗ ). Because there are about p3 bα and p3/3 zi real degrees of freedom, (5.54)-

(5.55) will to lowest order just constrain the bα to lie on a 2p3/3-dimensional plane, while
δzi can oscillate freely. Hence we can think of this as in total p3 free bosonic modes. At
large L0, these oscillator modes will dominate the entropy, approximately reproducing
the BTZ entropy.

In addition, since they are periodic, we can allow the scalars bα to have nonzero winding
number kα in H2(P ); this corresponds to turning on worldvolume flux on the M5 (and in
particular these modes can therefore carry M2 charge). Still at fixed z∗, integrating (5.54)
over the S1 then gives the constraint

∂iW (z∗) = 0 , W (z) := kαΠα(z) . (5.56)

For generic z∗ and generic integral kα, this will not be satisfied. Only for kα in the
sublattice LX of H2(P,Z) pulled back from the ambient Calabi-Yau X , this will be
automatic (because these forms are always integral (1,1)).

Based on this and the fact that in the full M-theory, M2 instantons can interpolate between
winding numbers except those in LX , [27] rejected the possibility of turning on winding
numbers except for those in LX . However, at special points z∗, (5.56) will have solutions.
Indeed these equations can be viewed as a superpotential critical point condition for zi

(formally identical to the one obtained for D4 flux vacua in appendix G of [9]), and as
such it will have isolated critical points for sufficiently generic kα; all zi have become
effectively massive. Integrating (5.55) over S1 gives the constraint kα Jα = q · J . This
is automatically satisfied, because the winding modes are exactly the origin of the M2
charge, as they correspond to M5 worldvolume flux; in general one can read off from the
WZ terms in the M5-brane effective action that qA =

∫
P
DA ∧ kαΣα.

So, once we specify a winding vector kα, the string will still be supersymmetric when
located at a critical point z∗(k), and some or all of the zi zeromodes will be lifted. At the
semiclassical level, these are definitely valid supersymmetric ground states — and in fact
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there is a huge number of them, not quite unlike the landscape of string flux vacua. Instan-
tons might tunnel between them and mix the states quantum mechanically, but this does
not mean that they should not be considered; in particular when computing the Witten
index, all these semiclassical vacua must be summed over (with signs).

The contribution of these winding modes to −q0 = P = (L0)cyl − (L̃0)cyl is half the
topological intersection product:

∆P = −1
2
Qαβk

αkβ , Qαβ :=
∫
P

Σα ∧ Σβ . (5.57)

If in addition to (5.56) we also set q · J = 0 (for example by restricting to the qA = 0
sector), then kαΣα is anti-selfdual, and therefore ∆L0 = ∆P ≥ 0. Moreover, in the
notation of Section 3.2.4, we have ∆L′0 ≥ 0.

There are more complicated solutions to (5.54) possible, for example when we let the
string loop around a nontrivial closed path z(s) in the divisor moduli space and at the
same time on some loop in the bα-torus. This can give rise to complicated twisted sectors.
As stressed in [74], there will in general be monodromies bα → Mα

βb
β acting on the

b-torus when circling around the discriminant locus in the divisor moduli space. Hence
we should think of the target space of the string as a quotient of the total space of the
b-torus fibration over Teichmüller space by the monodromy group. Closed strings can
begin and end on different points identified by this group, leading to twisted sectors and
possibly long strings.

Finally, we can form bound states of the localized winding strings described above. For
example we can form a bound state of a closed string winding k1 at some z∗(k1) and one
winding k2 at z∗(k2), by connecting them with two interpolating pieces of string. Note
though that now the constraint (5.55) becomes important: indeed generically kα1 Jα 6=
kα2 Jα, so the string we just described cannot have constant ḃαJα and we do not get a
proper supersymmetric solution. It is conceivable however that in some cases at least
the string will be able to relax down to a BPS configuration for which ḃαJα is constant
everywhere.

This is reminiscent of brane recombination. Moreover, note that the condition of having
kα1 Jα = kα2 Jα corresponds to being on a wall of marginal stability for the two M5-branes
represented by the two strings. Hence there is an obvious candidate for the gravitational
interpretation of such configurations: they should correspond to the M5-M5 2-centered
bound states. It would be interesting to make this more precise.

STATISTICAL MECHANICS

In this subsection we will give a rudimentary analysis of the statistical mechanics of the
BPS sector of the MSW string, to see if we can reproduce some of the features we found
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on the black hole side.

We can roughly model the ensemble of winding and oscillator modes ignoring nonlinear-
ities, say in the qA = 0 sector, by the partition function

Z(q) = Tr qL0− c
24 =

(
ϑ3(q)
η(q)

)c
(5.58)

with c = p3. Here the theta function models the winding mode contributions and the
eta function the oscillator contributions.9 By numerical saddle point evaluation, the total
entropy and the (entropy maximizing) distribution of it over the oscillator and winding
modes at given h = (L0− c

24 )/c can be straightforwardly computed. The result is shown
in fig. 5.7. The inclusion of winding modes actually improves the match to the BTZ
entropy compared to the most naive model with only free oscillators; it is almost perfect
already slightly above the threshold. This can also be checked analytically: Because
Z(q) has weight 0, the total entropy computed by saddle point evaluation is exactly S =

4π
√

h
24c = SBTZ; for the free oscillator model, there are corrections.

We also see that at h = 0, there is still an entropy of order c = p3, and almost all of it is
in the winding modes. There are still no phase transitions in this model of course, since
the system is noninteracting.

ANGULAR MOMENTUM AND SU(2)R

Let us turn our attention now to the SU(2)R R-charge J3; the S2 angular momentum on
the gravity side, which appeared as an order parameter J3/p3 for the phase transition we
discussed. The only fields transforming nontrivially under SU(2)R are (i) the fermions,
transforming in the 2, but they are all rightmoving so cannot be excited except for their
zeromodes, and (ii) the position ~x transforming in the 3, but this represents only three
oscillators out of order c = p3, so one expects their contribution to the total R-charge
to be negligible in the thermodynamic limit p → ∞ (in the sense of their J3 having an
expectation value growing slower than p3).

So, where does the large angular momentum, J = p3

12 , of the L0 = 0 gravity solution
come from then? The answer is from the center of mass zero modes of the string. Since
shifting the bα by constants independent of the string coordinate s corresponds to a gauge
transformation, the only physical zero mode space is the deformation moduli spaceMP

of P . These bosonic zero modes together with the fermionic ones (which we can have

9Note that despite the fact that turning on winding modes is generically lifting zeromodes of zi, it is not true
that it also lifts the oscillator modes; in the presence of winding, it remains true that (5.54) reduces the number
of local fluctuation (oscillator) degrees of freedom by p3/3, so at our level of approximation the oscillator
mode counting is essentially unaffected by winding: the number of oscillating degrees of freedom remains
p3/3 + p3 − p3/3 = p3 = c.
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since they are independent of s) will give ground state wave functions in one to one cor-
respondence with harmonic differential forms onMP . The form number corresponds to
fermion number and therefore to R-charge — or in other words the SU(2)R is identified
with Lefschetz SU(2)R on cohomology (see for example [17] for a pedagogical expla-
nation). This is analogous to how angular momentum is produced in the D4-brane model
[9]. Since the moduli space MP = CP p

3/6 (where as before we are dropping terms
subleading to p3), this means the L0 = 0 ground states assemble into a spin J = p3

12

multiplet, exactly as expected from the gravity side.

Now, when we turn on some small L0, we expect from what we observed on the gravity
side that J will go down somewhat (see fig. 5.5). We propose the following picture of
how this happens on the CFT side. At very small L0, a small number of winding modes
will get turned on. This will typically freeze a small number of the moduli zi, reducing
the moduli spaceMP to a lower dimensional space. The maximal Lefschetz spin always
equals half the complex dimension n (this is the spin of the multiplet created by starting
with 1 and subsequently wedging with the Kähler form on the moduli space till the volume
is reached). Therefore the maximal J will go down. The higher L0, the more winding
modes get turned on, the smaller the dimension of the residual moduli spaces, and the
smaller J . Eventually when L0 becomes sufficiently large, so many winding modes will
be turned on that all moduli will generically be frozen, and the expectation value of J
becomes zero. This is in agreement with what we observe on the gravity side.

Again, this is only a rudimentary qualitative picture, and in particular too rough to be able
to address how phase transitions could arise. Perhaps a variant of the toy models of [117]
would be of help to make further progress. A more in depth analysis is left for future
work.

THE FIELD THEORY DESCRIPTION OF THE MSW STRING

One puzzle we have encountered several times has to do with the nature of the MSW
sigma model which describes the low-energy excitations of the wrapped M5-brane. This
sigma model is obtained from a suitable KK reduction of the M5-brane theory over the
four-cycle over which the M5-brane is wrapped. Classically, this sigma model is a (0, 4)
superconformal field theory, and the target space of the sigma model is the entire moduli
space of supersymmetric four-cycles in the Calabi-Yau manifold.

The puzzle is that on the one hand, field theory arguments suggest that this sigma model
also describes a quantum (0, 4) superconformal field theory which still probes the entire
moduli space of supersymmetric four-cycles, whereas the bulk analysis shows that not
all M5-brane bound states fit into a single asymptotically AdS3 × S2 geometry, which
strongly suggests that a quantum SCFT which captures the entire moduli space does not
exist.
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The field theory arguments are based on claims in the literature that, unlike (2, 2) sigma
models, (0, 4) sigma models are always finite [118, 119], in the sense that all renormal-
izations can be absorbed in finite field redefinitions, so that in particular the beta functions
vanish and the theory is conformal also quantum mechanically. However there are poten-
tial caveats [120], to which in turn some counterarguments have been given in [121]; see
also [122]. To the best of our knowledge, this issue remains not fully settled.

Perhaps our results shed some new light on this. As we observed in section 3.2.5 (see
also appendix D of [3]) , M5-M5 bound states will not fit in a single asymptotically
AdS3 × S2 geometry, but split in two (or more) separated AdS3 × S2 throats. At values
of the normalized Kähler moduli Y A sufficiently far away from the AdS attractor point
Y A = pA/U , they do exist as supersymmetric states of the MSW string, and we suggested
a possible explicit MSW string realization of them above. When moving the Y A to the
attractor point, all of these states decay. Hence they cannot be part of the CFT which is
dual to a single AdS3 × S2 geometry.

There are therefore, in our view, two possibilities:

1. The MSW sigma model is a quantum SCFT for all values of the Kähler moduli Y A.
If so, it is not equivalent to quantum gravity in asymptotic AdS3 × S2 × X , and
therefore presents a situation very different from the usual AdS-CFT lore. It is not
clear to us what the precise new prescription for a correspondence would be in this
case.

2. The beta function in fact does not vanish for Y A different from the attractor point
and the Y A undergo RG flow till they reach the attractor point, an IR fixed point.
Along the flow, the constituents of M5-M5 bound states (whose gravity description
is of the type studied in appendix D of [3]) decouple from each other; each of them
has its own IR fixed point corresponding to an AdS3 × S2.

The second possibility seems much more attractive to us, but would imply that the MSW
(0, 4) model does undergo RG flow. This need not be in contradiction with the finiteness
of (0, 4) models, since the relevant non-renormalization theorems assume that the sigma
model is weakly coupled and non-singular, and both assumptions are almost certainly
violated for the MSW (0, 4) model. The latter can become strongly coupled whenever
two-cycles in the moduli space shrink to zero volume (similar to what happens in the
D1-D5 CFT), and is most likely singular when the four-cycle self-intersects: intersecting
M5-branes support extra light degrees of freedom, coming from stretched M2-branes,
and these need to taken into account in a proper low-energy description. The classical
MSW CFT, however, does not take these additional light degrees of freedom into account,
and usually this gives rise to singularities in the incomplete low-energy theory. Finally,
the nontrivial interaction between the bα and zi modes leading to (5.54), will further
complicate the RG flow.
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It would be interesting to study this further.
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Figure 5.4: On the left a representation is shown of the single centered 4d black hole; this lifts to
the BTZ black hole (times S2) at the center of AdS3. Surfaces of constant spherical coordinate r in
R3 are indicated — these become the S2 fibers of AdS3 × S2. On the right one of the 2-centered
4d configurations of section 3.3.3 is depicted; this lifts to a BMPV-like black hole roughly localized
on the north pole of the S2 and at the center of AdS3. Surfaces of constant prolate spheroidal
coordinate ξ are indicated. As is clear from (3.106), these are the S2 fibers of AdS3 × S2 in the
zero size limit of the black hole at the north pole, i.e. the R vacuum. When the black hole has finite
size, the metric near it will be deformed to that of a BMPV black hole in 5 dimensions.

0.01

0.05

0.10

0.15

0.20

0.25

-0.04 -0.03 -0.02 -0.01

S/p3

h

0.01 0.02

0.5

1.0

-0.04 -0.03 -0.02 -0.01

-0.5

-1.0

J/Jmax

h

Figure 5.5: Left: Entropy as a function of h in the limit p → ∞. Right: J3/Jmax as a function of
h (the branch depending on the sign of µ), for p→∞.
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Figure 5.6: Free energy F as a function of T in the limit p → ∞ for BTZ (fat red line) and
sphere localized black holes at different values of u ranging from 0 to 1/2. The bottom fat blue
line corresponds to u = 1/2, that is, AdS3 × S2 without black holes. The end points of the black
hole lines correspond to the 4d equilibrium separation and angular momentum becoming zero, i.e.
becoming indistinguishable from BTZ in the asymptotic region.
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Figure 5.7: Various entropies as a function of h, for h near 0 (left), and for a larger range of h
(right). The blue line is the total entropy derived from (5.58), the yellow line is the entropy in the
winding modes, the green line is the entropy in the oscillator modes, and the red line is the BTZ
entropy.
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CHAPTER 6

SPECTRUM AND PHASE

TRANSITIONS

Various arguments in the literature [70, 9, 98, 79] have suggested that scaling solutions
carry vastly more entropy than their non-scaling cousins and may even account for a
large fraction of the black hole entropy. This coincides nicely with the fact that scaling
solutions are those that can mimic the black hole geometry to arbitrary accuracy. An
immediate application of the technology developed in Chapters 3 and 4, relevant to the
question of black hole entropy and information loss, is the determination of the entropy
coming from scaling solutions.

In this chapter we compute the entropy of a large class of scaling solutions: the Dipole
Halo configurations of Section 6.1 in both the scaling (N ≥ I/2) and non-scaling regime
(N < I/2). This is almost the most general class accessible using the tools we’ve devel-
oped so far. Unfortunately we will see that the resultant entropy is parametrically smaller
than that of black hole with the same total charge.

One might imagine that there are much larger classes of scaling solutions, inaccessible
using the technology developed here (or not yet even discovered), that would account for
this discrepancy. However, as we will point out, the (leading) entropy coming from these
solutions matches that of free gravitons in AdS3×S2. This suggests that the solutions we
study here constitute the leading contribution to the black hole entropy from supergrav-
ity modes and, as a consequence, it is likely that generic black hole states will not be
representable entirely in terms of supergravity modes.

While investigating this issue we will encounter some interesting surprises. The change
in the leading degeneracy between the non-scaling and scaling regime seems to precisely
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take into account the stringy exclusion principle [28], which for a chiral primary in the
NS sector states that L̃0 ≤ c/12. Moreover there seems to be a phase transition in the
restricted ensemble of BPS supergravity states at N ≈ I that is somewhat reminiscent
of the phase transition of Section 5.3.1 of the fully, unrestricted ensemble of BPS states.
Whether deep meaning is to be ascribed to this new phase transition and its mimicry of
the full theory is not clear.

6.1 COUNTING DIPOLE HALO STATES

In Section 3.4.4 the “Dipole Halo” system, consisting of a D6-D6 pair orbited by a “Halo”
of D0s, was introduced as well as a convenient coordinate system on the solution space
of such configurations. In this section we will count states using techniques of geometric
quantization of the supergravity solution spaces developed in Chapter 4; in the next sec-
tion we will compare this to the calculation of free supergravity states on AdS3 and see
that the two results agree beautifully.

6.1.1 SYMPLECTIC FORM

Let us review the construction of the symplectic form on the solution space. Recall from
Chapters 4 and 5 that once the symplectic form on the solution space (parameterized
by the locations of centers satisfying (3.123)-(3.124)) has been found it can be used to
quantize the system using methods of geometric quantization.

Using the explicit coordinatization in Section 3.4.4 and eqn. (4.9) the symplectic form
turns out to be:

Ω = −1
4
d

[
2j cos θ dφ+ 2

∑
a

qa cos θa dφa

]
(6.1)

with d denoting the exterior derivative.

The symplectic form (6.1) is non-degenerate on the BPS solution space parameterized by
the locations of the centers implying that the latter is in fact a phase space. By virtue
of arguments in Section 2.3 and Chapter 4 this space can be quantized in its own right,
ignoring the much larger non-BPS solution space in which it is embedded, and from this
treatment one might hope to extract information about the BPS states of the full theory
(including at least the number of such states).

Note that, as is manifest from our angular coordinatization, the phase space is actually
toric with a U(1)n+1 action coming from φ and the n φa’s. This is a consequence of the
fact that the D0’s are mutually non-interacting; their sole interaction is via the D6D6. As
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previously mentioned this toric structure is a technical (but not conceptual) requirement
for quantization using the methods of Chapter 4.

6.1.2 PHYSICAL PICTURE

As much of the subsequent presentation will be a rather technical treatment of the phase
space we would like to lend the reader some intuition. We begin by recalling [40] that the
angular momentum carried by these solutions is

~J =
∑
i<j

~Jij , ~Jij :=
〈Γi,Γj〉~xij

2 rij
(6.2)

where now i, j run over all centers, including the D6s. Thus each pair of centers con-
tributes angular momentum ~Jij to the total. The length of these vectors is fixed to
〈Γi,Γj〉/2 but their direction is not fixed. The dependence on the intersction product
〈Γi,Γj〉, pairing electric and magenetic sources, reflects the fact that this angular mo-
mentum is carried by the electromagnetic field and is due to crossed electric and magnetic
fields. Since the D0’s have vanishing intersection product with each other there are only
(2n+ 1) momenta vectors: ~J66, ~J6a, and ~J6a.

As we will see, our quantization can essentially be understood as quantizing the direc-
tion of these vectors, or more precisely the size of their projection on a given “z-axis”,
yielding familiar angular momentum multiplets. Naively the phase space of these angular
momentum vectors is the direct product of (2n+ 1) two-spheres and the number of states
is just the product of the factors (2| ~Jij | + 1) from each multiplet. The geometric origin
of the momenta (i.e. endpoint of multiple vectors fixed to be the same center), however,
as well as the constraint equations (3.123)-(3.124) fix the possible relative orientations of
the different angular momentum vectors. As a result not all states of the full free angular
momentum multiplets are allowed. Rather, the correct phase space is now a more com-
plicated fibration of spheres of varying size and, although intuitively it is still insightful
to think of the states as part of “angular momentum multiplets”, they now only fill out a
constrained subspace of the product of the full multiplets. For instance, since ~J6a and ~J6a

always end at the same point, their orientation relative to the w-axis is not independent so,
rather than two angular momentum multiplets, these vectors yield only a single multiplet
(the diagonal multiplet in their free product).

The best way to get some intuition for this is to consider the symplectic form on the phase
space of our system. Using the coordinate system of Section 3.4.4 and introducing the
notation
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~J = Jz ẑ + Jy ŷ + Jxx̂ (6.3)

~J6a = ~Ja = Jawŵ + Jav v̂ + Jau û (6.4)

~J6a = ~Ja = Jawŵ + Jav v̂ + Jau û (6.5)

we can cast the dipole halo symplectic form in a more suggestive form

Ω = −1
2

[
dJz ∧ dφ+

∑
a

dJaw ∧ dφa +
∑
a

dJaw ∧ dφa
]
. (6.6)

with | ~Ja| = | ~Ja| = qa/2. Because ~Ja and ~Ja are related by the location of the D0 they
end on the last two terms above can be combined yielding

Ω = −1
2

[
dJz ∧ dφ+ 2

∑
a

dJaw ∧ dφa
]
. (6.7)

If there were no other constraints, the Jaw would independently be able to take values
between ±| ~Ja|. However, as we will discuss below, they have to satisfy the bounds
Jaw > 0 and 2

∑
a J

a
w ≤ I/2, leading to a more intricate phase space with a Hilbert

space that is no longer a product of “free” angular momentum multiplets. There is also
another angular momentum multiplet, coming from the total angular momentum ~J , and
this gives rise to a full multiplet with −|J | < Jz < |J |. The size of ~J , however, depends
on the Ja (even classically). Thus, each state in the Hilbert state labelled by Ja quantum
numbers will be tensored with a J multiplet corresponding to the total ~J associated to its
Ja quantum numbers (via J = I/2− 2

∑
a J

a
w).

This is the intuitive physical picture for which we develop a precise mathematical treat-
ment in the next subsection, using the observation above that the phase space is a toric
manifold. The upshot is, however, that we are doing nothing more than quantizing angular
momentum variables, but ones that are non-trivially connected and constrained.

There is a second physical phenomena that only appears when quantizing the system,
which we would like to highlight here. As stressed above, we are in essence quantizing
the classical angular momentum of the system. However, when we quantize we need to
take into account the intrinsic spin of the particles involved, as was beautifully explained
in [17]. As pointed out there, the centers are superparticles containing excitations in
various spin states. Due to the presence of magnetic fields, however, the lowest energy
BPS state is a spin half state, where energy is gained by aligning the intrinsic magnetic
dipole moment with the magnetic field. The situation is sketched for our dipole halo
system in figure 6.1. Including these quantum corrections the size of the total angular
momentum is given by

J =
I − 1

2
−
∑
a

(
qa cos θa +

1
2

)
. (6.8)
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These spins are especially important when considering classical scaling solutions.

q1
2

q1
2

q2
2

q2
2

1
2

1
2

1
2

I
2

Figure 6.1: In this figure all contributions to the total angular momentum are shown. The large
arrows denote the classical angular momenta carried by the electromagnetic field. They are pro-
portional to the intersection products of the charges, D6 (red), D6 (blue) and D0 (green). The small
arrows extending from the D0’s represent their spin aligning with the dipole magnetic field sourced
by the D6D6-pair, the small arrow in the bottom is the spin of the center of mass multiplet of the
D6D6-pair aligning with the magnetic fields.

6.1.3 STATES AND POLYTOPES

In Section 3.4.4 we showed that for the D6D6D0 system the solution space is a toric
manifold. This allows us, in principle, to construct all the normalizable quantum states
explicitly. Here, however, we will be less interested in the explicit form of the wave-
functions than in their number. In appendix G we show how the number of states can be
easily obtained from the combinatorics of the toric polytope. For more information on the
technology of geometric quantization of toric manifolds we refer the reader to Appendices
F and G.

From the symplectic form (6.1) we read off the coordinates on the polytope

y = j cos θ , ya = qa cos θa ≥ 0 (6.9)

So we see that the polytope is bounded by the inequalities

− j ≤ y ≤ j , 0 ≤ ya ≤ qa (6.10)

and furthermore the requirement that the angular momentum is positive

j =
I

2
−
∑
a

ya ≥ 0 . (6.11)
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It is this last condition that differentiates the non-scaling regime N =
∑
a qa < I/2 from

the scaling regime N ≥ I/2. In the former range the condition (6.11) is redundant in
the definition of the polytope as it is automatically satisfied for all values of xa allowed
by the other constraints (6.10). In case N > I/2 the constraint (6.11) actually becomes
essential and can make some of the constraints (6.10) redundant, although this depends on
the specific values of the qa. What is shared by all the solution spaces in the scaling case
is that it is possible to approach the point where all centers coincide arbitrarily closely,
which automatically implies that j has to approach zero. When this happens, an infinitely
deep scaling throat forms in space-time [17, 70]. For more than a single D0 center there
are however different types of solution spaces with a scaling point, depending on the
specific values of the charges qa. We show all the different possible polytope topologies
for the case with two D0 centers in figure 6.2, clearly the number of topologies grows
very fast with the number of D0-centers.

Given the defining inequalities (6.10) and (6.11) we can use eqn. (G.6) from the appendix
(see also the example containing eqn. (G.2)) to see that there is a unique quantum state
corresponding to each set of integers (m,ma) satisfying

0 ≤ ma ≤ qa − 1 ,
∑
a

(ma +
1
2

) ≤ I − 1
2

, (6.12)

−
[
I − 1

2
−
∑
a

(
ma +

1
2

)]
≤ m+

1
2
≤
[
I − 1

2
−
∑
a

(
ma +

1
2

)]
(6.13)

The (m,ma) above are simply quantized angular momenta corresponding to quantizing
the angles (θ, θa) appearing in (6.10)-(6.11). The half-integral shifts are related to the
fermionic nature of the centers as discussed in Section 4.3.4 and the coupling to the ex-
trinsic spin, as explained at the end of Section 6.1.2.

To be precise the constraints above only hold under the assumption that all D0 centers
carry different charges, qa. To relax this assumption we introduce integer multiplicities,
na, for each charge qa so that N =

∑
a naqa and n =

∑
a na. We now have to take into

account the quantum indistinguishability of these (fermionic) particles. This translates to
taking the appropriate orbifold of the polytope (see [4] for a detailed explanation) or, in
terms of (6.13), augmenting the ma by an additional label ia running from 1, . . . , na and
requiring them to satisfy

0 ≤ ma
1 < ma

2 < .... < ma
na < qa ,

∑
a,i

(
ma
ia +

1
2

)
≤ I − 1

2
(6.14)

−
I − 1

2
−
∑
a,i

(
ma
ia +

1
2

) ≤ m+
1
2
≤
I − 1

2
−
∑
a,i

(
ma
ia +

1
2

) (6.15)

These constraints are fermionic, enforcing Pauli exclusion of indistinguishable centers.
Note also that they reduce to (6.13) if all the na = 1.
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A

B

C

D

Figure 6.2: These are the different types of polytopes corresponding to a D6D6D0 system with 4
centers. On the left the ’base’ polytope determined by the coordinates y1 and y2 with y = 0 is
shown, on the right also the fiber spanned by the coordinate y is included, the edges along this
direction are drawn in red, the surface y = 0 is shown in blue. See (6.9) for a definition of the
coordinates. The different cases correspond respectively to: Case A (non-scaling) q1 + q2 <

I
2

,
Case B (scaling) q1+q2 ≥ I

2
and q1, q2 ≤ I

2
, Case C (scaling) q2 ≤ I

2
≤ q1, and Case D (scaling)

I
2
≤ q1, q2. So we see that from 4 centers onward there are different types of scaling polytopes, a

feature that was absent for three scaling centers.
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6.1.4 THE D6D6D0 PARTITION FUNCTION

In this section we will count the combined number of supergravity states dN of all D6D6D0
systems with total charge (0, pA, 0, p

3

24 −N). More precisely we will calculate the leading
term of S(N) = log dN in a large N expansion. We will notice there are two phases
depending on the relative value of I = p3/6 and N , separated by a transition at N = I .
For larger N the appearance of scaling solutions slightly complicates the counting but
can still be performed as shown below. What is interesting is that the existence of scaling
solutions seems only to become dominant at N = I where a phase transition occurs.

As we previously pointed out, in the scaling regime there is an additional constraint that
complicates the polytope and makes the counting of integer points inside slightly more
difficult. We will find it convenient not to calculate a fully explicit generating function Z
but rather, since we are only interested in the large N regime, it will be sufficient for us
to find the leading term of logZ in a large N expansion.

The complication in the scaling regime arises because of the second constraint in equation
(6.14). To proceed let us introduce the quantity

M =
∑
a,i

(
ma
ia +

1
2

)
, (6.16)

As the ma
ia

are the discrete analogues of the classical qa cos θa the interpretation of M is
as the amount of angular momentum carried by the D0 centers (which, by the integrabil-
ity constraints (3.123)-(3.124), is always opposite in direction to the angular momentum
carried by the D6D6 pair):

M =
I

2
− 1

2
− J . (6.17)

Both the 1
2 in the above formula and in (6.16) arise due to the spin contributions to the

quantum mechanical angular momentum (see the end of section 6.1.2).

Now if we succeed in calculating the degeneracy dN,M as a function of M , then the full
degeneracy will be

dN =
(I−1)/2∑
M=1/2

dN,M (6.18)

The full degeneracy will clearly be less than I/2 times dN,M ′ where M ′ is the value of
M which maximizes dN,M . Thus instead of calculating the sum it will be sufficient for
us to find the M ′ that maximizes dN,M because

S(N) = S(N,M ′) + ∆S , (6.19)

where we have defined

∆S = log
(I−1)/2∑
M=1/2

eS(N,M) − S(N,M ′) ≤ log I , (6.20)
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so, as long as the leading entropy is a power-law (rather than a logarithm) in the charges,
we can find the leading term in S(N) by calculating S(N,M) and maximizing over M .

As we will now show it is not too hard to calculate a generating function for dN,M

Z(q, y) =
∞∑
N,M

dN,M qN yM . (6.21)

Note that this does not reduce to a generating function for dN by setting y = 1 as in this
generating function we sum over M = 1, . . . ,∞ while in the case of interest the range of
M is restricted.

Let us derive an expression for (6.21) by approximating it in a few steps. A first key
ingredient is that for a partition of N =

∑
a naqa, one has

0 ≤ ma
1 < ... < ma

na < qa , M =
∑
a,i

(
ma
i +

1
2

)
(6.22)

Forgetting for the moment about N , the above relation is just a fermionic partition of M .
This is given by

Zferm =
∏
l≥1

(
1 + yl−1/2

)
(6.23)

We need to reintroduce the information about N . To do so remember that the sole role of
the partition of N is to specify the number of ma

i above. Keeping this key point in mind
we proceed in two steps. First assume that we have n centers with the same charge k only
(N = nk), then it is easy to see that the appropriate modification of Zferm (6.23) is

Zint =
∏

1≤l≤k

(
1 + qkyl−1/2

)
(6.24)

This comes about because in expanding the expression above the number of centers in
each term is simply the number of qk that appear in it. The product over possible l is
then a reflection of the constraint (6.22). Now to generalize to an arbitrary partition of N
we take a product of the above expression over all possible k ≥ 1. This yields the core
generating function

Z0 =
∏

k≥1,1≤l≤k

(
1 + qkyl−1/2

)
(6.25)

To get the actual generating function we include the contribution from m in equation
(6.15). The generating function is then

Z = (I − 2y∂y)Z0 = (I − 2y∂y)
∏

k≥1,1≤l≤k

(
1 + qkyl−1/2

)
(6.26)

In evaluating the leading contribution to the entropy we can neglect the overall multiplica-
tive factor because it will be subleading. Thus we focus on Z0.

131



Chapter 6 - Spectrum and Phase Transitions

6.1.5 THE ENTROPY AND A PHASE TRANSITION

As is familiar from thermodynamics we can study the large energy regime by evaluating
the partition function at large temperature. We introduce the potentials β and µ through

q = e−β , y = e−µ

and can then look for the behavior of the entropy for β, µ� 1.

logZ0 =
∑

k≥1,1≤l≤k

log
(

1 + qkyl−1/2
)

=
∑
n≥1

 (−1)n+1

n

∑
k≥1

qnk

(
k∑
l=1

yn(l−1/2)

)
=

∑
n≥1

 (−1)n+1

n

yn/2

1− yn

∑
k≥1

qnk (1− ynk)


=

∑
n≥1

(
(−1)n+1

n

qn yn/2

(1− qn) (1− qn yn)

)

∼
(∑
n>1

(−1)n+1

n3

)
1

β (µ+ β)
=:

α

β (µ+ β)
(6.27)

with α = 3
4ζ(3). Using the above relation we find

N = −∂β logZ0 ∼ α(µ+ 2β)
β2 (µ+ β)2

(6.28)

M = −∂µ logZ0 ∼ α

β (µ+ β)2
(6.29)

From the equations above it follows that the approximation is valid for N,M � 1, which
is exactly the regime we are interested in. Furthermore the relative size between M and
N is determined by the ratio µ/β as

N/M = 2 +
µ

β
. (6.30)

The entropy in the large M,N regime then reads

S(N,M) = − logZ0 + βN + µM ∼ α

β (µ+ β)
∼ (αM [N −M ])1/3

. (6.31)

Maximizing S(N,M) over M in the range1 1/2 < M < I/2 we find that

S(N) =


(
αN

2

4

)1/3

if N ≤ I(
α I

2 (N − I
2 )
)1/3

if I ≤ N
(6.32)

1Note that we are interested in the large charge limit I � 1, so throughout the paper we will often neglect
quantum mechanical shifts of 1/2 to I
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The most entropic configuration always has M ′ = N/2 until N = I and then the bound
(6.11) restricts M ′ = I/2. Thus most entropy is realized by low angular momentum
states (remember J ∼ I/2 −M ) and, deep in the scaling regime where N > I , most of
the entropy is given by the j = 0 states.

The saddle point approximation used to obtain eqn. (6.32) is only valid for charges N .
I2 because the discussion above shows we are interested in M ≈ I

2 and in that regime
N & I2 is not consistent with µ, β � 1, as can be seen from (6.28)-(6.29). We will
presently focus on the regimeN � I which is still consistent (in the large charge regime)
so long as their ratio does not scale with I .

For N � I Cardy’s formula implies the leading entropy of the associated black hole
grows as [27]

SBH(N, I) ∼ 4π

√
N I

4
(6.33)

Thus the D6D6D0 configurations we are considering do not exhibit the correct growth of
entropy as a function of the charges to dominate the black hole ensemble, especially for
large charges they are parametrically subleading.

Associated with the change from the first to the second line of (6.32) appears to be a
second order phase transition occurring at N = I . In this phase transition we seem to
move from an asymmetric phase, 〈j〉 6= 0, to a symmetric phase 〈j〉 = 0. It is not
immediately clear that any physical meaning should be ascribed to this “phase transition”
since these configurations are not the dominant constituents of this sector of the BPS
Hilbert space. Curiously, however, this seems to mirror the phase transition of Section
5.3. Although the latter was analyzed for different constituents centers, if we simply
equate the total charges of the two systems then the critical point of Section 5.3 would be
at N ≈ I/4 and would correspond to a (first-order) transition from a phase with 〈j〉 6= 0
to a 〈j〉 = 0 phase as N increases (note that here there is a discontinuous jump in 〈j〉).
It is both curious and interesting that the set of states we obtained, while relatively sparse
in the overall Hilbert space, nonetheless exhibits a non-trivial phase structure that even
seems to qualitatively share some of the structure of the full theory.

In the regime N � I of [27], the number of states we obtained was substantially smaller
than total number of BPS states of the conformal field theory. One may therefore wonder
whether other solutions of supergravity exist with the same asymptotic charges and which
could account for the missing states, or whether this is the best supergravity can do. Such
additional solutions could look like complicated multi-centered solutions of the type we
have been considering, or be of an entirely different form. To address this question we will
now compute the spectrum and degeneracy of a gas of free supergravitons in AdS3×S2.
As we will argue, this will provide an estimate for the maximal number of states we might
expect to be obtainable from supergravity. It turns out that this computation yields a result
whose asymptotic expansion agrees precisely with the number of D6D6D0 states, which
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supports the claim that the supergravity does not give rise to significantly more states in
addition to those that we described.

6.2 FREE SUPERGRAVITY ESTIMATE

In the previous section we calculated the number of BPS states in a given D4D0-charge
sector that can be associated to configurational degrees of freedom of a D6D6D0 system
of that same total charge. As we pointed out, there is an exponential number of states
leading to a macroscopic statistical entropy. However the entropy scales with a different
power of the charges than the D4D0 black hole entropy, making it parametrically sublead-
ing in the large charge supergravity limit. In other words, although we found very many
D6D6D0 states the corresponding single center black hole still has exponentially more of
them, indicating that these are not generic states of the black hole.

One might still wonder, however, if this is due to our restriction to a specific set of smooth
multicenter solutions and if perhaps a larger number of states can be found by quantizing
more complicated multicentered configurations. In this section we will give some non-
trivial evidence that this is not the case and that the black hole degrees of freedom have
to be sought outside of supergravity. An example of such states could be those of the
proposal [123, 124, 79, 125] or the possibly related setup of [126, 127]. Roughly speaking
the degrees of freedom in these pictures seem to reside in non-abelian D-brane degrees of
freedom; see also [35].

The approach we take to get a “bound” on the degrees of freedom coming from super-
gravity states is to exploit the fact that both the D4D0 black hole and the D6D6D0 system
(and its generalizations) can be studied in asymptotically AdS space via the decoupling
limit of Section 3.2. In this context, the counting of the previous section corresponds to
counting backreacted supergravity solutions with the same asymptotics as the D4D0 BTZ
black hole, whereas in this section we will simply count free supergravity modes in empty
AdS. The advantage of working in this limit, where the supergravity fields become free
excitations around a fixed AdS3×S2×CY3 background, is that it becomes relatively easy
to count them. Free supergravitons organize themselves in representations of the (0,4) su-
perconformal isometry algebra, and we merely need to determine the quantum numbers
of the highest weights of the representations. This can be done following e.g. [128, 129]
by performing a KK-reduction of eleven dimensional supergravity fields on the compact
S2×CY3 space2 to fields living on AdS3. The supergravity spectrum can then be deter-
mined using pure representation theoretic methods, in terms of the massless field content

2Note that we will assume the size of the CY3 to be much smaller than that of the S2 so that we will only
consider the massless spectrum on the CY, while keeping track of the full tower of massive harmonic modes on
the sphere.
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of the KK reduction of M-theory on the Calabi-Yau manifold.

6.2.1 SUPERCONFORMAL QUANTUM NUMBERS

We want to compare the number of states we found by counting the possible configura-
tional degrees of freedom of a D6D6D0 system to the number of chiral primaries given by
KK reduction of 5d supergravity in the free field limit. To make this comparison as clear
as possible let us first translate the conserved four dimensional charges of the solutions,
as presented in the previous section, to quantum numbers under the (0,4) superconformal
isometry algebra of the AdS3×S2 background we consider here. Such a dictionary was
derived in Section 3.2.4 and can be straightforwardly applied to the D6D6D0 case. The
map from supergravity to CFT quantum numbers is (recall that c = 6I)

L0 = N , L̃0 =
I

4
, J3 = −J . (6.34)

States with these quantum numbers are Ramond ground states, with minimum eigenvalues
under L̃0, as expected for BPS states. The calculation of the KK-spectrum on AdS3,
however, is most naturally phrased in the NS sector and thus we would like to work in
this sector. Thus we relate the charges (6.34) by spectral flow [130] in the right moving
sector to the charges of the corresponding states in the NS-sector. Performing the spectral
flow explicitly (as in eqn. (3.109)) we find

L0 = N , L̃0 =
I

2
− J , J3 =

I

2
− J . (6.35)

As expected the BPS states manifest themselves in the NS sector as chiral primaries,
satisfying the condition L̄0 = J3. The well known unitarity bound [130] on the R-charge
of chiral primaries implies a bound on the range of the 4d angular momentum:

0 ≤ J ≤ I

2
(6.36)

From the results of the previous section it is clear that the D6D6D0 configurations sat-
isfy this bound. This bound was first observed to have consequences for AdS3/CFT2 in
[28], where it was called a stringy exclusion principle. As was argued there, it has to be
imposed by hand on the free supergravity spectrum. What is perhaps surprising is that
in the fully interacting supergravity theory the bound seems to emerge dynamically as it
follows (at least for the D6D6D0 system) from the integrability equations (3.123) which
are essentially a consequence of the BPS equations of motion. We have no solid proof
of this, but we were unable to find other multicentered supergravity configurations that
violate the bound, even with flat space asymptotics where there is no direct connection to
the exclusion principle in the CFT.
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It is interesting to note that by (6.17) and (6.35) we see that for the D6D6D0 system
L̃0 = M + 1/2 and that indeed also the bound on M , observed in the previous section,
follows directly from the unitarity bound discussed above. Using the identification of M
and L̃0, we can write the following analogue of the generating function (6.21):

Z = TrNS,BPS(−1)F qL0yL̃0−1/2. (6.37)

Some remarks are in order. First we would like to point out that, for computational sim-
plicity, we will calculate, in this section, an index rather than an absolute number of states,
the difference with (6.21) being an explicit insertion of (−1)F . As one can see explicitly
from the derivation below, the difference between the absolute number of states and the
index will be only affect the numerical coefficient of the entropy, not its functional de-
pendence on the charges. Second, note that at y = 0 the above index coincides with the
standard elliptic genus for this theory.

6.2.2 THE SPECTRUM OF BPS STATES

To calculate the degeneracies we are interested in, we need to enumerate the possible BPS
states of linearized (free) supergravity on AdS3×S2. It is often easier to enumerate these
states via their quantum numbers in the CFT so we will use this language.

As we only have supersymmetry in the right moving sector, there are no BPS constraints
on the left moving fields and thus all descendants of highest weight states will appear. The
right-moving sector hasN = 4 supersymmetry and BPS states must be chiral primaries of
a given weight. As a consequence, and as was shown in detail in e.g [128, 129, 131, 132],
the full BPS spectrum can be written in the form3:

{s, h̃} = ⊕n≥0 (L−1)n |h̃+ s〉L ⊗ |h̃〉R (6.38)

where |h〉L are highest weight states of weight h of the left-moving Virasoro algebra and
|h̃〉R are weight h̃ chiral primaries of the right-moving N = 4 super-Virasoro algebra.

Each field of five dimensional supergravity gives rise to a set of BPS states and their
descendants after KK-reduction, where h̃ essentially labels the different spherical har-
monics, while n labels momentum excitations in AdS3 and s the spin of the particle. It
was shown in [128, 129, 131, 132] that, given the precise field content of 5d N = 1 su-
pergravity, the reduction on a 2-sphere gives the set of quantum numbers shown in table
6.1. Notice that the quantum numbers {s, h̃} are of the form {s, h̃min +m}, and for each

3Furthermore, to be fully precise we should point out that there remain so called singleton representations,
but, for our purposes, we can ignore them as one can show they only contribute to subleading terms in the
entropy in the regime studied in the last section: N, I � 1 and N � I2.
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5d origin number {s, h̃}-towers
hypermultiplets 2h1,2 + 2 { 1

2 ,
1
2 +m}

vectormultiplets h1,1 − 1 {0, 1 +m} and {1,m}
gravitymultiplet 1 {−1, 2 +m}, {0, 2 +m}, {1, 1 +m} and {2, 1 +m}

Table 6.1: Summary of the spectrum of chiral primaries on AdS3. The states are organized in
towers of the form (6.38), the number of such towers and their characteristics are determined by
the properties of the original theory and the details of the reduction. In the above table, m is an
arbitrary nonnegative integer.

such set the partition function (6.37) has the following form

Z{s,h̃min} =
∏
n≥0

∏
m≥0

(1− ym+h̃min−1/2qn+m+h̃min+s)(−1)2s+1
(6.39)

with the total partition function given by a product of such factors.

To extract the large N degeneracies we proceed as in (6.27) and calculate the free energy
corresponding to this partition function. We then evaluate it in the β, µ � 1 limit (q =
e−β , y = e−µ):

F{s,hmin} = (−1)2s
∑
n≥1

qn(h̃min+s)ynh̃min

n(1− qn)(1− ynqn)
(6.40)

≈ (−1)2sζ(3)
β(β + µ)

(6.41)

Note that, as might have been expected, at high temperatures only the statistics of the
particles matter, as hmin and s only change the lowest states of the towers. The total free
energy is now the sum over all different towers. Using table 6.1 we find that

F ≈ [−(2h1,2 + 2) + 2(h1,1 − 1) + 4
] ζ(3)
β(β + µ)

= χ
ζ(3)

β(β + µ)
(6.42)

where we used the definition of the Euler characteristic χ of the CY3. Finally we can do
a Legendre transform to obtain the entropy. This is completely analogous to (6.31) and
the result is

S ≈ (χζ(3)M(N −M))1/3 (6.43)

This result is equivalent to (6.31) and maximization with respect to M proceeds analo-
gously, again leading to the result

S(N) =


(
χζ(3)N

2

4

)1/3

if N ≤ I(
χζ(3) I2 (N − I

2 )
)1/3

if I ≤ N
(6.44)
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This might look somewhat unfamiliar when compared with other calculations of the ellip-
tic genus, e.g [15, 76]. This is because those calculations were all performed in the regime
N � I where the unitarity bound on the spectrum can be ignored. It is exactly around
N ≈ I that this bound starts to be relevant leading to a different, slower, growth of the
number of states in the regime I � N . Such a behavior was also seen in the computation
of the elliptic genus in [133].

Note that once more our computation above only applies for N . I2 as the asymptotic
form of the free energy is essentially the same as that of the dipole halo system.

6.2.3 COMPARISON TO BLACK HOLE ENTROPY

As we have seen, calculating the number of free supergravity states at fixed total charge
in the large N,M limit proceeds rather analogously to the counting of section 6.1.5 and,
more importantly, we found a precise match between the leading contributions, up to an
overall prefactor.

It is not hard, however, to see that even this prefactor can be made to match. In the
previous subsection we focussed on the 4 dimensional degrees of freedom of the D6D6D0
-system ignoring the fact that the D0-branes bound to the D6D6 still have degrees of
freedom in the internal CY3 manifold. These internal degrees of freedom can be quantized
via a 0+1 dimensional sigma model4 on the CY. The BPS states of this sigma model
correspond to the cohomology of the Calabi-Yau with even degree mapping to bosonic
states and odd degree to fermionic states. Thus there are exactly χBPS states per D0 when
counted with the correct sign, (−1)F . Including this extra degeneracy in the calculation
of section 6.1.5 will lead to a match with (6.44), including the prefactor.

That the two calculations provide the same amount of states is non-trivial, since earlier
we restricted ourselves to counting only states realized as a D6D6D0 system, while in
the second calculation we count all free supergravity states in AdS3×S2 with given mo-
mentum. This suggests that indeed the leading portion of supergravity entropy is realized
as D6D6D0 configurations once backreaction is included. This is a very strong result
as clearly one can think of many, much more complicated, smooth multicenter config-
urations with the same total charge. Furthermore, we learn from these calculations that
the number of such states is parametrically smaller than the number of black hole states.
This seems to strongly indicate that the generic black hole state is associated to degrees
of freedom beyond supergravity.

From another perspective, however, the match between the free regime and the D6D6D0
entropy is not so surprising. If we consider first a D6D6 bound state we can use a coor-

4In this simplistic model we neglect more complicated interactions coming from strings stretched between
the D0’s and the D6’s in the CY.
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dinate transformation from [79] (see also Section 3.3.2) to map this to global AdS3×S2.
Thus we can think of the D6D6 as simply generating the empty AdS background. Re-
calling that D0 branes lift to gravitational shock waves in 5-dimensions one might already
have anticipated that counting D0’s in the D6D6 background is closely related to counting
free gravitons on an AdS3×S2 background. What makes the result non-trivial is that inter-
actions are apparently not terribly relevant when counting BPS states, but then again the
D0’s only interact very indirectly with each other. We might, therefore, wonder if more
exotic configurations, such as the supereggs of [79] or the wiggling rings of [126, 127],
are perhaps not captured by the free theory and hence not subject to the bound we find
above. The problem with this is that we can compute not only the entropy but also the in-
dex in both regimes and they exhibit the same leading growth. If additional supergravity
configurations are to generate parametrically more states this would either require very
precise cancellations (so that the index is very different from the number of states) or
a phase transition at weak coupling (a phase transition in gs, not the N = I transition
discussed above). Even if many states would cancel in the index, one would still need to
explain why they become invisible in the limit in which interactions are turned off.

In the above, we have only counted multiparticle BPS supergravitons in 5d supergravity.
It is conceivable that additional degrees of freedom could be obtained by allowing fluctu-
ations in the Calabi-Yau as well. For example, as we discussed, D0-branes carry an extra
degeneracy corresponding to the harmonic forms on the Calabi-Yau. Though this can
contribute a finite multiplicative factor to the entropy, it does not change the functional
form. In addition, 5d supergravity does include all massless degrees of freedom that one
gets from the reduction on the Calabi-Yau, and the other massive degrees of freedom
generically do not contain any BPS states.

One might also worry that multiparticle states, which in the free theory are not BPS,
become BPS once interactions are included. Though this is a logical possibility, such
degrees of freedom would not contribute to the index, and therefore the estimate of the
index remains unaffected by this argument.

Finally, we notice that it is possible to do similar computations for AdS3×S3, which leads
to the result that for N . I , S ∼ N3/4, while for I � N � I2, S ∼ I1/2N1/4. It would
be interesting to reproduce these results by counting solutions of 6d supergravity as well.

6.2.4 THE STRINGY EXCLUSION PRINCIPLE

It is also somewhat intriguing to see that in the “free theory” we recover the phase transi-
tion noted in the previous section only after imposing (by hand) the CFT unitarity bound
suggesting that the latter is taken into account by our scaling solutions. A priori this
sounds somewhat mysterious as the stringy exclusion principle was argued in [28] to be
inaccessible to perturbatively string theory. As noted earlier, however, the multicentered
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solutions seem to always satisfy this bound (though there is no general proof of this). In
fact, the origin of the bound in this system can simply be traced back to the fact that the
size of the angular momentum equals j = I/2−M , which cannot be negative, and using
M = L0 this then immediately implies that the unitarity bound will be satisfied by our
solutions.
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BPS States from G2 Manifolds

141





PRELUDE

In Part II of this thesis our focus shifts, somewhat dramatically, to topological string and
field theory on manifolds of G2 holonomy following [1][2].

The main part of this work, based on [1], is a follow up of [12] where closed topological
string theory on manifolds with G2 holonomy was defined and studied. The definition of
the open theory proceeds rather naturally from the closed one but provides a potentially
more computable framework since, mirroring [134], it turns out that topological open
string field theory (OSFT) on G2 manifolds reduces to various Chern-Simons-like field
theories. These theories have, in fact, already occurred in the math literature suggesting
the potential for further cross-fertilization between the mathematics and physics.

A driving theme behind both [1][2] is the relation between topological string theory (on
CY3) and topological M-theory (on e.g. CY3×S1). We explore this in the open theories
by relating the various OSFTs on topological branes in G2 manifolds to the CY3 versions
via dimensional reduction. This hints at a unification of the A and B model within the G2

theory as expected on rather general grounds.

Although it is only very briefly reviewed here [2] was essentially motivated by this idea
and pursued it by considering various Hitchin functionals on G2 manifolds thought to be
related to topological closed string field theory. Here again an attempt was made to con-
nect the dimensional reduction of theories on CY3×S1 manifolds with the A and B model
but this time at the one-loop level. It turns out that the G2 theories match exactly onto the
B-model at the one-loop level but this probably reflects the fact that the A-model topo-
logical string field theory is a Witten-type topological theory (i.e. locally trivial) and we
have neglected, in our analysis, contributions of topologically non-trivial configurations.

It proved harder, on the other hand, to relate the G2 Hitchin functional to closed topolog-
ical string theory on G2 manifolds meaning the former does not, unfortunately, provide
a non-perturbative formulation of the latter. One might still hope to use the relation to
Chern-Simons theories to put the topological G2 string on better footing via geometric
transitions; it may then be possible to explore the relationship between putative M-theory
partition functions and the A and B model.
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CHAPTER 7

G2 MANIFOLDS AND

NON-PERTURBATIVE STRING

THEORY

The first part of this thesis focused quite concretely on particular kinds of states in quan-
tum gravity related to black holes and also the relation of the latter to the full Hilbert space
of string theory. Although great attention was given to the physics of black holes it should
be recalled that the latter are mostly interesting because of their potentially important role
in elucidating the fundamental principles of quantum gravity and it is along these lines
that we made some interesting progress in the first half of this work.

In the second half of this thesis we will step back somewhat and consider seemingly
unrelated questions about the structure of topological string theory. Although the works
involved in the two parts of this thesis were conceived quite independently there has, in
fact, been a strong interplay between black hole physics and topological string theory
as the latter provides a very important window into various foundational questions in
quantum gravity which are often deeply interwoven with the questions posed in Part I, at
least for BPS black holes. An obvious instance of this was [10] which, in fact, was part
of the initial motivation for [3] on which Part I of this thesis is partially based.

In Part II our focus will be topological theories on G2 manifolds. This part of the thesis
is based on [1][2]. Specifically, we will define and explore open topological strings on
G2 manifolds in order to extend the work done in [12]. We will also very briefly review
our work in [2] on topological field theories on G2 manifolds; we eschew a more detailed
treatment, however, and refer the reader to the original paper for all details.
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Although [1] and [2] may seem very far removed from black hole physics or even BPS
states in physical string theory, a central aspect of this part will be how these theories
potentially relates the A/B model topological string theories to each other. The latter have
of course played an essential role in understanding the BPS partition function of N = 2
string theory which plays an essential role in understanding BPS black holes. In [10] the
BPS partition function of N = 2 was argued to be given (to leading order) by the square
of the topological string partition function, with the latter being thought of as some kind
of a wavefunction. An essential goal of studying topological string/membrane theory on
G2 manifolds is to better understand the nature of the CY topological string partition
function. For instance in [8] it is claimed that the wavefunction nature of the latter can be
derived by uplifting to a G2 manifold, namely CY3×S1.

7.1 G2 HITCHIN FUNCTIONAL AT ONE LOOP

Here we will very briefly review the content of [2]. We eschew a more detailed treatment
of this material for reasons of length as this thesis is already somewhat extensive. The
results of this work are nonetheless interesting and relate to those discussed below of [1].
We will this introduce the main ideas and results and refer the reader to the original paper
for more details.

Topological string theory on Calabi-Yau manifolds has been the source of many recent
insights in the structure of gauge theories and black holes. The traditional construction
for topological strings is in terms of topologically twisted worldsheet A- and B-models,
computing Kähler and complex structure deformations. The topological information these
theories compute is encoded in Gromov-Witten invariants.

More recently a target space quantum foam reformulation of the A-model in terms of
the Kähler structure has emerged [135, 14]. The topological information computed are
the Donaldson-Thomas invariants, providing a powerful reformulation of Gromov-Witten
invariants. For topological string theories on Calabi-Yau manifolds there are additional
well-developed computational tools using open-closed duality such as the topological ver-
tex or matrix models.

In comparison, topological theories on G2 manifold target spaces are much less explored.
One motivation to consider such theories is that G2 structure couples Kähler and com-
plex structure naturally so such a theory might couple topological A- and B-models non-
perturbatively, a coupling which we expect to exist following recent work on topological
string theory. A recent proposal for topological theories on G2 manifolds that goes under
the name of topological M-theory was given in [8].

The classical effective description of topological M-theory is in terms of a Hitchin func-
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tional [136]. Alternative topological theories onG2 manifolds employing quantum world-
sheet/worldvolume formulations have been proposed in terms of topological strings [12]
and topological membranes [137, 138, 139, 140] 1. The topological G2 string and topo-
logical membrane theories [139] have the same structure of local observables associated
to the de Rham cohomology of G2 manifolds. The full quantum worldvolume formula-
tion of these theories, especially the computation of the complete path integral is much
more difficult though than for the usual topological string theories on Calabi-Yau target
spaces2.

In [2] we attempted to understand the moduli space of topological M-theory in terms of
a G2 target space description. Our strategy was similar to the A-model quantum foam,
where one considers fluctuations around a fixed background Kähler form. Here the quan-
tum path integral is computed in terms of a topologically twisted six-dimensional abelian
gauge theory.

Analogously, the stable closed 3-form encoding the G2 structure in seven dimensions can
be understood as a perturbation around a fixed background associative 3-form. Locally the
fluctuation can be regarded as the field strength of an abelian 2-form gauge field. Unlike
the A-model quantum foam, however, expanding the Hitchin functional to quadratic order
around this fixed background gives a seven-dimensional gauge theory that is not quite
topological but which is only invariant under diffeomorphisms of the G2 manifold.

We analyzed the quantum structure of this theory by taking the 2-form gauge field to be
topologically trivial. In practise this means we neglected certain ‘total derivative’ terms
in the expansion of the Hitchin functional involving components of the bare 2-form gauge
field 3 . This allowed us to generalize to seven dimensions the approach used by Pestun
and Witten [13] to quantize the Hitchin functional for a stable 3-form in six dimensions to
1-loop order. This approach is based on the powerful techniques developed by Schwarz
[142] for evaluating the partition function of a degenerate quadratic action functional. The
structure of the partition function here is most naturally understood by fixing the gauge
symmetry of the action using the antifield-BRST method of Batalin and Vilkovisky [143].
See also [8, 144] for possible alternatives to the perturbative quantization we considered
in [2].

We first computed the 1-loop partition function of the ordinary G2 Hitchin functional and

1A topological version of F-theory on Spin(7) manifolds which are trivial torus fibrations over Calabi-Yau
spaces was also considered in [141].

2The topological G2 string partition function is only well-understood below genus two. At genus zero
it computes the Hitchin functional while its genus one contribution was calculated in [2]. The topological
membrane partition function is written only formally.

3For more conventional gauge theories such local ‘total derivative’ terms usually correspond to topological
invariants computing certain characteristic classes for the gauge bundle from the patching conditions. Unlike in
conventional abelian gauge theory where the gauge field corresponds to a connection on a line bundle over the
base space, the 2-form gauge field we have here corresponds to a connection on a gerbe.
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found agreement between the local degrees of freedom for the reduction of this theory
on a circle and the corresponding theory of Pestun and Witten [13], obtained from the
Hitchin functional for a stable 3-form in 6 dimensions. The calculation was repeated for
the generalized G2 Hitchin functional and a certain truncation of the circle reduction of
this theory was related to the extended Hitchin functional in 6 dimensions, whose 1-loop
partition function was equated with the topological B-model in [13].

The 1-loop partition function for the topological G2 string [12] was also computed here
and found to agree with the generalized G2 theory only up to a power of the Ray-Singer
torsion of the background G2 manifold. It is not clear to us whether precise agreement
could have been obtained by a more careful analysis incorporating the global topologi-
cal structure of the local total derivative terms we dropped. Nonetheless, it seems that
the topologically structure of such terms could potentially give rise to non-trivial 1-loop
determinants which we ignored.

Our 1-loop quantization of the generalized G2 Hitchin functional was in terms of linear
variations of a closed stable odd-form in seven dimensions. However, the odd-form can
be parameterized non-linearly in terms of other fields, that would be related to the dilaton,
B-field, metric and RR flux moduli in compactifications of physical string theory on gen-
eralized G2 manifolds. Hence an additional question is if we were using the appropriate
degrees of freedom to describe the quantum theory. It would be interesting to see if our
results could be checked by comparison with the couplings appearing in effective actions
for generalized G2 compactifications of physical string and M-theory.

Finally, since general background G2 metric variations contain complex structure varia-
tions in 6 dimensions, it is natural to ask whether the wavefunction behaviour of B-model
has a nice interpretation in 7 dimensions? Indeed this was one of the original motiva-
tions for the proposal of topological M-theory in [8]. It is possible that this could be
understood from the structure of partition functions we calculated in [2] and this was
one motivation for this work. Unfortunately the complexity of the 7-dimensional Hitchin
functional makes such a relationship rather difficult to determine.

7.2 TOPOLOGICAL G2 STRINGS

As mentioned above, topological strings have been studied quite intensively as a toy
model of ordinary string theory. Besides displaying a rich mathematical structure, they
partially or completely control certain BPS quantities in ordinary string theory, and as
such have found applications e.g. in the study BPS black holes and non-perturbative
contributions to superpotentials.

Unfortunately, a full non-perturbative definition of topological string theory is still lack-
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ing, but it is clear that it will involve ingredients from both the A- and B-model, and that
both open and closed topological strings will play a role. Since M-theory is crucial in
understanding the strong coupling limit and nonperturbative properties of string theory,
one may wonder whether something similar is true in the topological case, i.e. does there
exist a seven-dimensional topological theory which reduces to topological string theory
in six dimensions when compactified on a circle? And could such a seven-dimensional
theory shed light on the non-perturbative properties of topological string theory?

In order to find such a seven-dimensional theory one can use various strategies. One
can try to directly guess the spacetime theory, as we described in Section 7.1 (see also
[8, 145]), or one can try to construct a topological membrane theory as in [146, 138, 139,
140, 147] (after all, M-theory appears to be a theory of membranes, though the precise
meaning of this sentence remains opaque). Here and in the next section we will describe
a different approach involving studying a topological version of strings propagating on a
manifold of G2 holonomy, following [12] [1] (for an earlier work on G2 sigma-models
see [148]).

In [12] the topological twist was defined using the extended worldsheet algebra that
sigma-models on manifolds with exceptional holonomy possess [149]. For manifolds
of G2 holonomy the extended worldsheet algebra contains the c = 7/10 superconformal
algebra [148] that describes the tricritical Ising model, and the conformal block structure
of this theory was crucial in defining the twist. In [12] it was furthermore shown that the
BRST cohomology of the topological G2 string is equivalent to the ordinary de Rham
cohomology of the seven-manifold, and that the genus zero three-point functions are the
third derivatives of a suitable prepotential, which turned out to be equal to the seven-
dimensional Hitchin functional of [150]. The latter also features prominently in [8, 145],
suggesting a close connection between the spacetime and worldsheet approaches.

In Chapter 8 we will study open topological strings on seven-manifolds of G2 holonomy,
using the same twist as in [12]. There are several motivations to do this. First of all, we
hope that this formalism will eventually lead to a better understanding of the open topo-
logical string in six dimensions. Second, some of the results may be relevant for the study
of realistic compactifications of M-theory on manifolds of G2 holonomy4, for a recent
discussion of the latter see e.g. [151]. Third, by studying branes wrapping three-cycles
we may establish a connection between topological strings and topological membranes in
seven dimensions. And finally, for open topological strings one can completely determine
the corresponding open string field theory [134], from which one can compute arbitrary
higher genus partition functions and from which one can also extract highly non-trivial
all-order results for the closed topological string using geometric transitions [152]. Re-
peating such an analysis in the G2 case would allow us to use open G2 string field theory

4This will require an extension of our results to singular manifolds which is an interesting direction for future
research.
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to perform computations at higher genus in both the open and closed topological G2

string. This is of special importance since the definition and existence of the topological
twist at higher genus has not yet been rigorously established in the G2 case.

Along the way we will run into various interesting mathematical structures and topologi-
cal field theories in various dimensions that may be of interest in their own right.

7.3 THE CLOSED TOPOLOGICAL G2 STRING

Let us briefly review the definition of the closed topological G2 string found in [12] as
we will need this background when defining the open theory in Chapter 8. We will cover
only essential points. For further details we refer the reader to [12].

7.3.1 SIGMA MODEL FOR THE G2 STRING

The topologicalG2 string constructs a topological string theory with target space a seven-
dimensional G2-holonomy manifold Y . This topological string theory is defined in terms
of a topological twist of the relevant sigma-model. In order to have N = 1 target space
supersymmetry, one starts with anN = (1, 1) sigma model on a G2 holonomy manifold.
The special holonomy of the target space implies an extended supersymmetry algebra
for the worldsheet sigma-model [149]. That is, additional conserved supercurrents are
generated by pulling back the covariantly constant 3-form φ and its hodge dual ∗φ to the
worldsheet as

φµνρ(X)DXµDXνDXρ ,

where X is a worldsheet chiral superfield, whose bosonic component corresponds to the
world-sheet embedding map. From the classical theory it is then postulated that the ex-
tended symmetry algebra survives quantization, and is present in the quantum theory.
This postulate is also based on analyzing all possible quantum extensions of the symme-
try algebra compatible with spacetime supersymmetry and G2 holonomy.

A crucial property of the extended symmetry algebra is that it contains an N = 1 SCFT
sub-algebra, which has the correct central charge of c = 7/10 to correspond to the tri-
critical Ising unitary minimal model. Unitary minimal models have central charges in the
series c = 1− 6

p(p+1) (for p an integer) so the tri-critical Ising model has p = 4.

The conformal primaries for such models are labelled by two integer Kac labels, n′ and
n, as φ(n′,n) where 1 ≤ n′ ≤ p and 1 ≤ n < p. The Kac labels determine the con-

formal weight of the state as hn′,n = [pn′−(p+1)n]2−1
4p(p+1) . The Kac table for this mini-

mal model is reproduced in [12, Table 1]. Note that primaries with label (n′, n) and
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(p+ 1− n′, p− n) are equivalent. This model has six conformal primaries with weights
hI = 0, 1/10, 6/10, 3/2 (for the NS states) and hI = 7/16, 3/80 (for the R states).

The conformal block structure of the weight 1/10, φ(2,1), and of the weight 7/16 primary,
φ(1,2), is particularly simple,

φ(2,1) × φ(n′,n) = φ(n′−1,n) + φ(n′+1,n) ,

φ(1,2) × φ(n′,n) = φ(n′,n−1) + φ(n′,n+1) ,

where φ(n′,n) is any primary. This conformal block decomposition is schematically de-
noted as

Φ(2,1) = Φ↓(2,1) ⊕ Φ↑(2,1) ,

Φ(1,2) = Φ−(1,2) ⊕ Φ+
(1,2) . (7.1)

The conformal primaries of the full sigma-model are labelled by their tri-critical Ising
model highest weight, hI , and the highest weight corresponding to the rest of the algebra,
hr, as |hI , hr〉. This is possible because the stress tensors, TI , of the tricritical sub-
algebra and of the ‘rest’ of the algebra, Tr = T − TI (where T is the stress tensor of the
full algebra), satisfy TI · Tr ∼ 0.

7.3.2 THE G2 TWIST

The standard N = (2, 2) sigma-models can be twisted by making use of the U(1) R-
symmetry of their algebra. Using the U(1) symmetry, the twisting can be regarded as
changing the worldsheet sigma-model with a Calabi-Yau target space by the addition of
the following term:

± ω

2
ψψ , (7.2)

with ω the spin connection on the world-sheet. This effectively changes the charge of the
fermions under worldsheet gravity to be integral, resulting in the topological A/B-model
depending on the relative sign of the twist in the left and right sector of the theory (for
fermions with holomorphic or anti-holomorphic target space indices). Here ψ and ψ can
be either left- or right-moving worldsheet fermions and ω is the spin-connection on the
worldsheet. In the topological theory, before coupling to gravity, there are no ghosts or
anti-ghosts so these are the only spinors/fermions in the system.

This twist has been re-interpreted [153, 154] as follows. First think of the exponentiation
of (7.2) as an insertion in the path integral rather than a modification of the action. By
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bosonising the world-sheet fermions we can write ψψ = ∂H for a free boson field so the
above becomes

∫
ω

2
∂H = −

∫
H
∂ω

2
=
∫
HR , (7.3)

where R is the curvature of the world-sheet. We can always choose a gauge for the metric
such that R will only have support on a number of points given by the Euler number of
the worldsheet.

For closed strings on a sphere the Euler class has support on two points which can be
chosen to be at 0 and∞ (in the CFT defined on the sphere) so the correlation functions in
the topological theory can be calculated in terms of the original CFT using the following
dictionary:

〈. . .〉twisted =
〈
eH(∞) . . . eH(0)

〉
untwisted

. (7.4)

The ‘untwisted’ theory should not be confused with the physical theory, because it does
not include integration over world-sheet metrics and hence has no ghost or superghost
system and also it is still not at the critical dimension. The equation above simply relates
the original untwisted N = 2 sigma-model theory to the twisted one.

In [12] a related prescription is given to define the twisted ‘topological’ sigma-model on
a 7-dimensional target space with G2 holonomy. Here the role of the U(1) R-symmetry
is played by the tri-critical Ising model sub-algebra. However, a difference is that the
topological G2 sigma-model is formulated in terms of conformal blocks rather than in
terms of local operators. In particular the operator H in the above is replaced by the
conformal block Φ+

(1,2).

The main point of the topological twisting is to redefine the theory in such a way that it
contains a scalar BRST operator. In the G2 sigma model, the BRST operator is defined to
be related to the conformal block of the weight 3/2 currentG(z) of the super stress-energy
tensor5,

Q = G↓− 1
2
. (7.5)

The states of the twisted G2 theory are defined to be in the cohomology of this operator.
See [12] for a more detailed definition of this operator.

5The super stress-energy tensor is given as T(z, θ) = G(z) + θT (z). The current G(z) can be further
decomposed as G(z) = Φ(2,1) ⊗ Ψ 14

10
, in terms of the tri-critical Ising-model part and the rest of the algebra,

respectively. Since its tri-critical Ising model part contains only the primary Φ(2,1), it can be decomposed into
conformal blocks accordingly.
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It should be pointed out that in [12] it was not possible to explicitly construct the twisted
stress tensor, and although there is circumstantial evidence that the topological theory
does exist beyond tree level this statement remains conjectural.

7.3.3 THE G2 STRING HILBERT SPACE

In a general CFT the set of states can be generated by acting with primary operators and
their decendants on the vacuum state, resulting in an infinite dimensional Fock space.
In string sigma models this Fock space contains unphysical states, and so the physical
Hilbert space is given by the cohomology of the BRST operator on this physical Hilbert
space which is still generally infinite-dimensional.

In the topological A- and B-models a localization argument [154] implies that only BRST
fixed-points contribute to the path integral and these correspond to holomorphic and con-
stant maps, respectively. Thus the set of field configurations that when quantized, generate
states in the Hilbert space is restricted to this subclass of all field configurations and so
the Fock space is much smaller. Upon passing to BRST cohomology this space actually
becomes finite-dimensional.

In the G2 string the localization argument cannot be made rigorous, because the action
of the BRST operator on the worldsheet fields is inherently quantum, and so is not well
defined on the classical fields. Neglecting this issue and proceeding naively, however, one
can construct a localization argument for G2 strings that suggests that the path integral
localizes on the space of constant maps [12]. Thus we will take our initial Hilbert space
to consist of states generated by constant modes Xµ

0 and ψµ0 on the world-sheet (in the
NS-sector there is no constant fermionic mode but the lowest energy mode ψµ− 1

2
is used

instead). These correspond to solutions of worldsheet equations of motion with minimal
action which dominate the path integral in the large volume limit.

In [154] the fact that the path integral can be evaluated by restricting to the space of
BRST fixed points is related to another feature of the A/B-models: namely the coupling-
invariance (modulo topological terms) of the worldsheet path integral. Variations of the
path integral with respect to the inverse string coupling constant t ∝ (α′)−1 are Q-exact,
so one may freely take the weak coupling limit t → ∞ in which the classical configu-
rations dominate. This limit is equivalent to rescaling the target space metric, and so we
will refer to it as the large volume limit.

Accordingly, calculations in the A- and B- model can be performed in the limit where the
Calabi-Yau space has a large volume relative to the string scale, and the worldsheet the-
ory can be approximated by a free theory (this neglects, of course, the important instanton
effects in the A-model). The G2 string also has the characteristics of a topological theory,
such as correlators being independent of the operator’s positions, and the fact that the
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BRST cohomology corresponds to chiral primaries. On the other hand since the theory
is defined in terms of the conformal blocks, it is difficult to explicitly check the coupling
constant independence. Based on the topological arguments, and on the postulate of the
quantum symmetry algebra, in this thesis we will assume the coupling constant indepen-
dence and the validity of localization arguments. Even if these arguments should fail for
subtle reasons, the results derived here are still valid in the large volume limit.

7.3.4 THE G2 STRING AND GEOMETRY

As in the topological A- and B-model, for the topological G2 string there is a one-to-
one correspondence between local operators of the form Oωp = ωi1...ipψ

i1 . . . ψip and
target space p-forms ωp = ωi1...ipdx

i1 ∧ . . . ∧ dxip . In [12] it is found that the BRST
cohomology of the left (right) sector alone maps to a certain refinement of the de Rham
cohomology described by the ‘G2 Dolbeault’ complex

0→ Λ0
1
Ď−→ Λ1

7
Ď−→ Λ2

7
Ď−→ Λ3

1 → 0 . (7.6)

The notation is that Λpn denotes differential forms of degree p, transforming in the irre-
ducible representation n ofG2. The operator Ď acts as the exterior derivative on 0-forms,
and as

Ď(α) = π2
7(dα) if α ∈ Λ1 ,

Ď(β) = π3
1(dβ) if β ∈ Λ2 ,

where π2
7 and π3

1 are projectors onto the relevant representations. The explicit expres-
sions for the projectors and the standard decomposition of the de Rham cohomology are
included in appendix H. Thus, the BRST operatorG↓−1/2 maps to the differential operator
of the complex Ď. In the closed theory, combining the left- and right-movers, one obtains
the full cohomology of the target manifold, accounting for all geometric moduli: metric
deformations, the B-field moduli, and rescaling of the associative 3-form φ. The relevant
cohomology for the open string states will be worked out in the next chapter.
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CHAPTER 8

OPEN G2 STRINGS

In the last chapter we reviewed the closed topological G2 string and its Hilbert space as
derived in [12]. Here we would like to study the open version of this theory. We start by
considering open topological strings and their boundary conditions. Consistent boundary
conditions are those which preserve one copy of the non-linearG2 worldsheet algebra and
were previously analyzed in [155, 156]. One finds that there are topological zero-, three-,
four- and seven-branes in the theory1. The three- and four-branes wrap associative and
coassociative cycles respectively and are calibrated by the covariantly constant three-form
and its Hodge-dual which define the G2 structure.

We would like to compute the topological open string spectrum in the presence of these
branes which we do in Section 8.1. For a seven-brane, the spectrum has a simple geomet-
ric interpretation in terms of the Dolbeault cohomology of the G2 manifold. To define
the Dolbeault cohomology, we need to use the fact that G2 ⊂ SO(7) acts naturally on
differential forms, and we can decompose them into G2 representations. Recall that the
notation πpn denotes the projection of the space of p-forms Λp onto the irreducible repre-
sentation n of G2 (see Appendix H). The Dolbeault complex is then

0 −→ Λ0 d−→ Λ1 π2
7d−→ π2

7(Λ2)
π3
1d−→ π3

1(Λ3) −→ 0 . (8.1)

The topological open string BRST cohomology is the cohomology of this complex and
yields states at ghost numbers 0, 1, 2, 3. For zero-, three- and four-branes the cohomology
is obtained by reducing the above complex to the brane in question.

In section 8.2 we will verify explicitly that the BRST cohomology in ghost number one
contains not only the space of (generalized) flat connections on the brane but also the

1It is unclear to us how we could incorporate coisotropic six-branes in our theory, whose existence is sug-
gested in [157].
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infinitesimal moduli of the topological brane. In particular, we will see that the topological
open string reproduces precisely the results in the mathematics literature [158] regarding
deformations of calibrated cycles in manifolds of G2 holonomy.

We briefly discuss scattering amplitudes in section 8.3 and use them to construct, in Sec-
tion 8.4, the open topological string field theory following methods discussed in [134].
The final answer for the open topological string field theory turns out to be very simple.
For seven-branes we obtain the associative Chern-Simons (CS) action

S =
∫
Y

∗φ ∧ CS3(A) , (8.2)

with CS3(A) the standard Chern-Simons three-form and ∗φ the harmonic four-form on
the G2 manifold Y . For the other branes we obtain the dimensional reduction of this ac-
tion to the appropriate brane. The action (8.2) was first considered in [159, 160], and it is
gratifying to have a direct derivation of this action from string theory. We will also discuss
the dimensional reduction of this theory on CY3×S1, which leads to various real versions
of the open A- and B-model, depending on the brane one is looking at. The situation is
very similar to the closed topological G2 string, which also reduced to a combination of
real versions of the A- and B-models. It is presently unclear to us whether we should
interpret this as meaning that the partition functions of the open and closed topological
G2 strings should not be interpreted as wave functions, as opposed to the partition func-
tions of the open and closed A- and B-models, which are most naturally viewed as wave
functions.

The last subject we discuss in section 8.4 is the emergence of worldsheet instanton con-
tributions of the topological string theory on Calabi-Yau manifolds from the topological
G2 string on CY3×S1. Though our analysis is not yet conclusive, it appears that these
worldsheet instanton effects arise from wrapped branes in the G2 theory and not directly
from worldsheet instantons.

We conclude with a list of open problems and briefly mention some additional results.
The results of this chapter are based on [1].

We will adhere to the following conventions: M will refer to a calibrated submanifold of
dimension 3 or 4 (i.e. calibrated by φ or ∗φ, respectively); these are known, respectively,
as associative and coassociative submanifolds. The ambient G2 manifold will be denoted
Y .

8.1 OPEN STRING COHOMOLOGY

We will now consider theQ cohomology of the open string states. Later, we will interpret
part of this cohomology in terms of geometric and non-geometric (gauge field) moduli on
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calibrated 3- and 4-cycles.

In [12] states in the G2 CFT were shown to satisfy a certain non-linear bound in terms of
hI and hr and states saturating this bound are argued to fall into shorter, BPS, representa-
tion of the non-linear G2 operator algebra. Such states are referred to as chiral primaries.
Analogous to theN = 2 case, it is the physics of these primaries that the twist is intended
to capture and thus they are the states that occur in the BRST cohomology. The chiral
primaries in the NS sector have h = 0, 1/2, 1, 3/2 and hI = 0, 1/10, 6/10, 3/2 and they
are the image of the RR ground states under spectral flow.

Recall that we are working in the zero mode approximation (corresponding to the large
volume limit, t→∞, where oscillator modes can be neglected) and in this limit a general
state is of the form Aµ1...µn(X0)ψµ1

0 . . . ψµn0 . On such states L0 acts as t�+ n
2 so states

with h = 0, 1/2, 1, 3/2 correspond to 0, 1, 2, and 3 forms (f(X0), Aµ(X0)ψµ0 , . . . ). As
argued in [12] we can thus consider Q-cohomology on the space of 0, 1, 2, and 3 forms
restricted to those that have hI = 0, 1/10, 6/10, 3/2, respectively.

In general we are interested in harmonic representatives of the Q cohomology so we will
look for operators (corresponding to states) that are both Q- and Q†-closed. The results
we obtain are essentially the same as those for one side of the closed worldsheet theory
[12].

8.1.1 DEGREE ONE

We will start by looking at the h = 1/2 state, because it is the only one that will generate a
marginal deformation of the theory. A general state with h = 1/2 is of the formAµ(X)ψµ

so long as 2

[L0, Aµ(X)] = t�Aµ(X) = 0 (8.3)

It also satisfies
[LI0, Aµ(X)ψµ] =

1
10
Aµ(X)ψµ ,

so it is a chiral primary (i.e. it saturates the chiral bound). Because it is a chiral primary, it
has to be Q-closed [12]. Rather than proceed along these lines, however, we will consider
the Q-cohomology directly from the definition of Q.

Let us determine the Q-cohomology of 1-forms A = Aµ(X)ψµ. We first calculate
{G− 1

2
, Aµ(X)ψµ} in the CFT on the complex plane with z complex ‘bulk’ coordinates

and y ‘boundary’ coordinates on the real line

2Although we will sometimes use the full fieldsX and ψ in the CFT and also consider OPE’s which generate
deriviatives of these fields the reader should recall that we are always working in the large volume limit where
these reduce to X0 and ψ0.
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{G−1/2, Aµ(X)ψµ} =
∮
dz G(z) ·Aµ(X)ψµ(y) ,

G(z) ·Aµ(X)ψµ(y) = gρσ(X)ψρ∂Xσ(z) ·Aµ(X)ψµ(y)

∼ ∂(ln |z − y|2 + ln |z − y|2)∇ρAµψρ(z)ψµ(y)

+
1

z − y ∂X
µ(z)Aµ(X(y)) .

(8.4)

This gives3

{G−1/2, Aµ(X)ψµ} = Aµ∂X
µ(y) +

1
2
∂[µAν]ψ

µψν . (8.5)

To compute the action of Q we now project onto the ↓ part (recall the twisted BRST
operator corresponds toG↓−1/2), which includes only the part with tri-critical Ising weight
6/10. The term Aµ∂X

µ vanishes in the zero mode limit so we only need to consider the
second term. The condition that this term has hI = 6

10 is [12]

(π2
14)ρσµν∂[ρAσ] = 0 , (8.6)

where π2
14 is the projector onto the 2-form subspace Λ2

14 ⊂ Λ2, in the 14 representation
of G2.

This result implies that the 6
10 part of ∂[ρAσ] (or any 2-form) is in Λ2

7, so on a 1-form we
can define Q as

{Q,Aµψµ} = (π2
7){G− 1

2
, Aµψ

µ} = 6φ γ
µν φ ρσ

γ ∂[ρAσ]dx
µ ∧ dxν = ĎA = 0 , (8.7)

where we have used

(π2
7)ρσµν = 4(∗φ)ρσµν +

1
6

(δρµδ
σ
ν − δσµδρν) = 6φ γ

µν φ ρσ
γ . (8.8)

Note thatQ acting on 1-forms has reduced essentially to Ď; the same will occur for forms
of other degrees.

Let us now consider Q-coclosure. The inner product of states

3We have not been careful about the relative normalizations of the bosonic and fermionic bulk-boundary
OPE’s, but this is not relevant as in all computations of this type that occur below, we will only end up keeping
one of the terms.
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〈
A[µν]ψ

µψν |B[αβ]ψ
αψβ

〉
,

becomes the inner product of forms
∫
Y

(∗A ∧B), so Q† acting on A is given by
〈Q · f(X)|Aµ(X)ψµ〉 =

〈
f(X)|Q† ·Aµψµ

〉
, which can be determined as

〈Q · f(X)|Aµ(X)ψµ〉 =
∫ √

g∂µf(X)Aµ(X) = −
∫ √

gf(X)∇µAµ(X) . (8.9)

So if Aµ is also required to satisfy

Q† ·Aµ(X)ψµ = −∇µAµ(X) = 0 , (8.10)

then it is Q- and Q†-closed and hence a harmonic represenative of Q-cohomology.

8.1.2 DEGREE ZERO

The cohomology in degree zero is rather trivial. Given a degree zero mode f(X) we have
{Q, f(X)} = ∂µf(x)ψµ. This follows from Q = G↓− 1

2
= G− 1

2
, because the projection

onto the ↓ component is trivial since all operators of the form Aµ(X)ψµ automatically
have LI0 weight 1

10 . So Q-closure implies

∂µf(X) = 0 . (8.11)

The Q†-closure here is vacuous since there are no lower degree fields.

8.1.3 DEGREE TWO

In degree two we start with a two form ωρσψ
ρψσ which should have LI0 weight 6

10 , so it
should satisfy π2

7(ω) = ω. The need to restrict ω ∈ Λ2
7 comes from the way Q is defined

in [12]. We must once more calculate the action of G− 1
2

, and then project it onto the ↓
part

{G− 1
2
, ω} =

∮
dz gµνψ

µ∂Xν(z) · ωρσψρψσ

=
∮
dz

1
z
gµν∂

νωρσψ
µψρψσ +

1
z
gµν∂X

νωρσg
µρψσ − 1

z
gµν∂X

νωρσg
µσψρ

= ∂µωρσψ
µψρψσ + 2ωρσ∂Xρψσ . (8.12)
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Once more we can drop the second term in the large volume limit in which we are work-
ing. We use the result in [12] that the projector onto the LI0 weight 3

2 corresponds to
the projector onto Λ3

1, and is given by contracting with the associative 3-form φ. So for
Ω ∈ Λ3

1

φαβγΩαβγφµνρ = 7Ωµνρ . (8.13)

In particular, we can project onto the 3
2 part of {G− 1

2
, ω} = ∂µωρσ using φαβγ , so Q-

closure implies

φαβγ∂[αωβγ] = 0 . (8.14)

Note that this once again can be written as Ďω = 0.

We will now derive the Q†-closure condition. This is done in exactly the same way as
was done for the degree one components

〈ω|Q ·Aµ(X)ψµ〉 =
∫ √

gωµν(π2
7)αβµν∂αAβ

= −
∫ √

gAβ
(
(π2

7)αβµν∇αωµν
)
,

(8.15)

so

Q† · ω = −(π2
7)µναβ∇αωµνdxβ

= −6φµνγφ
γ
αβ∇αωµνdxβ = −∇αωαβdxβ = 0 .

(8.16)

Here we have used π2
7(ω) = ω.

8.1.4 DEGREE THREE

A 3-form Ωµνρψµψνψρ is first projected onto its Λ3
1 component byQ, so we take π3

1(Ω) =
Ω, which means that Ω is a function times φ. From the definition of Q it is evident that it
acts trivially on Ω since there is no higher LI0 eigenstate in the NS sector for Q to project
onto. This impliesQ = 0 on three forms which matches (7.6). Thus we see that the action
of Q on states in the zero mode approximation maps into the complex (7.6) as anticipated
in Section 7.3.4.

The Q-coclosure of Ω is derived similarly to the 1- and 2-form case and gives
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Q† · Ω = ∇µΩµνρdxν ∧ dxρ = 0 . (8.17)

8.1.5 HARMONIC CONSTRAINTS

In the previous subsections we considered the conditions for Q- and Q†-closure on the
states in the G2 CFT. These conditions are all linear in derivatives but they must be en-
forced simultaneously to generate unique representatives of Q-cohomology. As Q corre-
sponds to the operator Ď discussed in section 7.3.4, it generates the Dolbeault complex
(7.6) which is known to be elliptic [161, 159] and so can be studied using Hodge theory.
This implies that physical states in the theory correspond to the kernel of the Laplacian op-
erator {Q,Q†}, so one can equivalently consider this single non-linear condition instead
of the two seperate linear conditions imposed by Q and Q†.

These Q-harmonic conditions (derived from the actions of Q and Q†) are

{Q,Q†} · f = ∇µ∂µf = 0 ,

{Q,Q†} ·Aνψν =
(∇ν∇µAµ + (π2

7) γµσ
ν ∇γ∇µAσ

)
ψν = 0 , (8.18)

{Q,Q†} · ωµνψµψν =
(
(π2

7) αβ
µν ∇α∇γωβγ + (π3

1) αβγ
µνρ ∇ρ∇αωβγ

)
ψµψν = 0 .

We have used π2
7(ω) = ω to simplify the last expression above.

8.2 OPEN STRING MODULI

In a general topological theory one can use elements of degree one cohomology to deform
the theory using descendant operators. If O is a degree one operator, in the A/B-model
this means that it has ghost number one, whereas in the G2 string this means that it
corresponds to one ‘+’ conformal block. Then one can deform the action by adding a
term

∫
∂Σ
{G↑− 1

2
,O}, which is Q = G↓− 1

2
closed and of degree 0. Thus the elements

of H1
Q cohomology should correspond to possible deformations of the theory or tangent

vectors to the moduli space of open topological G2 strings.

Since open strings correspond to supersymmetric4 branes, the full moduli space should
include both the moduli space of the field theory on the brane as well as the geometric
moduli of the branes. For G2 manifolds the latter are simply the moduli of associative
and coassociative 3- and 4-cycles, respectively, which have been studied in [158]. Below

4In the sense of preserving the extended worldsheet superalgebra.
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we will show that the operators O corresponding to normal modes do satisfy the correct
constraints to be deformations of the relevant calibrated submanifolds. Since a priori it is
not known what the field theory on these branes will be, in the topological case we will
study the constraints on the tangential modes (which in physical strings would correspond
to gauge fields on the brane), and attempt to interpret these as infinitesimal deformations
in the moduli space of some gauge theory on the brane.

8.2.1 CALIBRATED GEOMETRY

In order to preserve the extended symmetry algebra (such as N = 2 or G2) of the world-
sheet SCFT in the presence of a boundary, certain constraints must be imposed on the
worldsheet currents. These have been studied in [162] [155], and more extensively in
[163] [164] [156]. One imposes the boundary condition on the left- and right-moving
components of the worldsheet fermions, ψµL = Rµν (X)ψνR, and then conservation of the
worldsheet currents in the presence of the boundary implies that, on the subspace M
where open strings can end,

φµνσ = ηφR
α
µR

β
νR

γ
σφαβγ ,

(∗φ)µνσλ = ηφR
α
µR

β
νR

γ
σR

ρ
λ(∗φ)αβγλ det(R)

= RαµR
β
νR

γ
σR

ρ
λ(∗φ)αβγλ .

(8.19)

Note that Rαµ(X) (for any X ∈ M ) is generally a position-dependent invertible matrix,
but locally it can be diagonalized with eigenvalues +1 in Neumann directions and −1
in Dirichlet directions. ηφ = ±1 gives two different possible boundary conditions with
the choice of ηφ = 1 corresponding to open strings ending on a calibrated 3-cycle, while
ηφ = −1 corresponds to strings on a calibrated 4-cycle [155]. Calibrated submanifolds,
first studied in [165], are characterized by the property that their volume form induced by
the metric in the ambient space is the pull-back of particular global forms, in this case φ
(for associative 3-cycles) or ∗φ (for coassociative 4-cycles). This implies the volume of
the calibrated submanifold is minimal in its homology class.

Remark. There are several subtleties regarding boundary conditions in topological sigma-
models that deserve to be mentioned. Below, we will advocate the perspective that any
boundary condition preserving the extended algebra5 should also be a boundary condition
of the topological theory, because the presence of an extended algebra allows one to de-
fine a twisted theory. In the A- and B-model, however, although both the A- and B-brane

5To be precise the boundary conditions preserve some linear combination of the extended algebra in the
left/right sector of the worldsheet. So a brane may reduce anN = (2, 2) theory to anN = 2 theory.
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boundary conditions preserve theN = 2 algebra, each is compatible with only one of the
twists, so a given topological twist is not necessarily compatible with an arbitrary algebra-
preserving boundary condition. Moreover, a given topological twist might only depend
on the existence of a subalgebra of the full extended algebra, so may be possible even with
boundary conditions that do not preserve the full extended algebra. A concrete example
of this is the Lagrangian boundary condition for the A-model branes proposed by Witten
[134]. This condition is considerably less restrictive that the special Lagrangian condition
required to preserve the full N = 2 algebra in the physical string [162] and reflects the
fact that the A-model is well-defined for any Kähler manifold and does not require a strict
Calabi-Yau target space. While similar subtleties might, in principle, exist for the G2

twist they are concealed by the fact that the twist does not have a classical realization that
we know of. So we will tentatively assume the correct boundary conditions are those that
preserve the full G2 algebra on one half of the worldsheet theory.

8.2.2 NORMAL MODES

Let us now consider the cohomology of open strings ending on a D-brane which wraps
either an associative 3-cycle or a co-associative 4-cycle. We adopt the convention that
I, J,K, . . . are indices normal to the brane while a, b, c, . . . are tangential, and Greek
letters run over all indices. The state Aµψµ decomposes into normal and tangential
modes which will be denoted θIψI and Aaψa respectively; all momenta is tangential,
denoted by ka. The normal modes will have the form A = θI(Xa)ψI so G−1/2 · A =
∂aθI(Xb)ψaψI . Here A will denote a general operator/state in the CFT and should not
be confused with the gauge field (or operator) Aµψµ.

Associative 3-cycles. Let us now consider the Q-cohomology when restricted to an
associative 3-cycle M . On the 3-cycle the form φ must satisfy [156]

φµνσ = RαµR
β
νR

γ
σφαβγ . (8.20)

Since M is associative, φ acts as a volume form on this cycle and, from the above, it is
only non-vanishing for an odd number of tangential indices6

6Here, and throughout the paper, we will take ε to be the volume form on the (sub)manifold not merely the
antisymmetric tensor.
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φabc = εabc ,

φIbc = 0 ,

φIJK = 0 .

(8.21)

The Q-closure of normal modes is given by (8.7)

φ J
bK φ aI

J ∇aθI = 0 , (8.22)

where the index structure is enforced by the requirement that φ has an even number of
normal indices.

To understand the geometric significance of equation (8.22) in the abelian theory, recall
that θI is just a section of the normal bundle NM of M in Y , which by the tubular
neighborhood theorem can be identified with an infinitesimal deformation of M . This
equation is the linear condition on θI such that the exponential map (defined by flowing
along a geodesic in Y defined by θI ) expθ(M) takes M to a new associative submanifold
M ′. This is just a reformulation of the condition given in [158].

In [158] McLean defines a functional on the space of (integrable) normal bundle sections
by

Fγ(θ) = (∗φ(x))µνργ
∂xµ

∂σa
∂xν

∂σb
∂xρ

∂σc
εabc ∝ (∗φ(x))µνργ

∂xµ

∂σa
∂xν

∂σb
∂xρ

∂σc
φabc . (8.23)

Here x(t, θ, σ) = expθ(σ, t) is a geodesic curve parameterized by the variable 0 < t < t1,
which starts at a point σ ∈ M with ẋ(σ) = θ at t = 0, and flows after a fixed time to
x(t = t1, θ, σ) ∈ M ′, the new putative associative submanifold. The functional is just
the pull-back7 of ∗φ from M ′ to M and it should vanish if M ′ is associative.

For M ′ to be a associative it turns out to be sufficient to require that the time derivative of
F at t = 0 vanishes, which gives

Ḟγ(θ)|t=0 = (∗φ(x))Ibcγ∂aθIφabc = φ a
Iγ ∂aθ

I . (8.24)

This is equivalent to (8.22) since each choice of bK indices in that equation gives only one
non-vanishing term. The space of such deformations is generally not a smooth manifold

7More precisely we are pulling back χ ∈ Ω3(Y, TY ), a tangent bundle valued 3-form, defined using the
G2 metric χαµνρ = gαβ(∗φ)βµνρ.
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and currently the moduli space of associative submanifolds of a given G2 manifold is not
well understood (but see [166] for some recent work on this).

At first glance (8.22) looks like the linearized equation (4.7) in [139] but the fields in that
action are actually embedding maps which are non-linear, whereas the θI above are more
closely related to linearized fluctuations around fixed embedding maps 8 .

Remark. The harmonic condition as follows from eqn. (8.18) for normal modes is

(π2
7)a bJ

I ∇a∇bθJ = 0 . (8.25)

This also has a nice geometrical interpretation as vector fields θI extremizing the action

∫
M

〈Q · θ,Q · θ〉 , (8.26)

on the associative 3-cycle. Theorem 5-3 in [158] shows that the zeros of this action (which
are extrema since it is positive semi-definite) correspond to a family of deformations
through minimal submanifolds.

Coassociative 4-cycles. The consideration of the 4-cycle M is similar to that of the
3-cycle, but now in the boundary condition we have ηφ = −1, so the non-vanishing
components of φ must have an odd number of normal indices and

φabc = 0 . (8.27)

Let us first consider the Q-closure of θI

φ b
Ic φ

aJ
b ∂[aθJ] = 0 . (8.28)

These are 24 equations depending on a choice of I and c. Examining the index structure,
eqn. (8.28) reduces to 4 independent equations

8In [139], maps x : Σ3 → Y from an arbitrary three-manifold to a G2 manifold are considered and a
functional which localizes on associative embeddings is defined. There a reference associative embedding x0

is chosen and used to define a local coordinate splitting of xµ into tangential xa and normal yI parts. This is
different from the present situation where θI is an infinitesimal normal deformation of an associative cycle. θI

can be identified with a section of the normal bundle (via the tubular neighborhood theorem) and is essentially a
linear object, whereas the yI above are a local coordinate representation of a non-linear map. Basically θI here
are related to the linear variation δyI |x0 (evaluated at x = x0) in [139].
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φ aJ
b ∇aθJ = 0 , (8.29)

where we replaced the commutator of a derivative with the covariant derivative on M in
the induced metric.

Following [158], let us observe an isomorphism between the normal bundle NM of the
4-cycle M , and the space of self-dual 2-forms Λ2

+(M) on M , given by

θI → θIφIab ≡ Ωab , (8.30)

Ωab → φIabΩab = φIabφJabθ
J =

1
6
θI , (8.31)

where we have used the first identity in (H.3).

To see that Ωab is self-dual we use the second identity in (H.3) and the fact that ∗φ cd
ab ∝

ε cd
ab on M , so that

(∗4Ω)ab ∝ ∗φ cd
ab Ωcd = φ cd

ab θIφIcd =
1
6
φIabθ

I =
1
6

Ωab . (8.32)

Let us now use (8.31) to see what (8.29) implies for Ωab;

0 = φ aJ
b ∇aφ cd

J Ωcd = ∇a
(
φ aJ
b φ cd

J Ωcd
)

= ∇a[(1
9

Ωba +
1
18

Ωba
)]

=
1
6
∇aΩba .

(8.33)

This equation is just d†Ω = 0, and since Ω is self-dual, it also implies dΩ = 0 so that Ω
must be harmonic. Thus the Q-cohomology for the normal modes is given by θI which
map to harmonic self-dual 2-forms on M .

Since the Q†-cohomology on the normal modes is trivial (eqn. (8.10) is trivially true for
normal directions), such θI are Q-closed and co-closed, and hence Q-harmonic. Thus
their Q-cohomology is isomorphic to the de Rham cohomology group H2

+(M) of har-
monic self-dual 2-forms on M . This corresponds to the geometric moduli space of defor-
mations of a coassociative 4-cycle, determined by McLean in [158].

8.2.3 TANGENTIAL MODES

For the tangential modes the Q- and Q†-closure conditions are just (8.7) and (8.10) with
all the indices replaced by worldvolume indices a, b, c, . . . .
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Associative 3-cycles. On the 3-cycle it is convenient to represent the Q-closure condi-
tion using the projector π2

7 in terms of φ which gives

φ c
ab φ

de
c ∂[dAe] = 0 . (8.34)

When pulled back to the associative cycle, φ is proportional to the volume form and so
this is

ε c
ab ε

de
c ∂[dAe] = 0 , (8.35)

which is just multiple copies of the equation ∂[dAe] = 0. Therefore any tangential defor-
mation corresponds to a flat connection on the 3-cycle.

Requiring the deformation Aaψa be also be Q†-closed, and hence a harmonic represen-
tative of Q-cohomology, implies (8.10), which can be viewed as enforcing a covariant
gauge condition.

Combined together this means that the Q-cohomology for tangential modes on M is
spanned by the space of gauge-inequivalent flat connections on M . This matches the
result for Lagrangian submanifolds in the A-model and also the results derived using κ-
symmetry for physical branes in [167].

Coassociative 4-cycles. On the 4-cycle it is easier to use the representation ofQ-closure

(
(δac δ

b
d − δbcδad) + 24(∗φ)abcd

)
∂[aAb]ψ

cψd = 0 , (8.36)

in terms of the 4-form ∗φ, which is now proportional to the volume form on M . Defining
Fab = ∂[aAb] to be the field strength of the U(1) gauge field, the equation above implies

(∗4F )ab = 12(∗φ)cdabFcd = −Fab . (8.37)

Thus Fab is constrained to be anti-self-dual (ASD) on M . Therefore any tangential defor-
mation on the 4-cycle is given by a gauge field with ASD field strength. Note an important
difference with the case of normal modes. In the latter case each θI is mapped uniquely
to a harmonic self-dual 2-form Ωab on M , so there are exactly b2+(M) such modes. In
this case however the tangential mode Aa is the potential for a gauge field with ASD field
strength (i.e. an (anti-)instanton configuration). Hence the tangential modes correspond
to tangent vectors on the moduli space of instanton configurations on M .
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Again the condition ∇aAa = 0 for Q†-closure is simply a gauge choice, implying that
each Q-harmonic representative is associated to a unique orbit of the gauge group (up to
Gribov ambiguity in the path integral). In fact, these harmonic constraints ∗4F = −F ,
d†A = 0 are precisely (linearized versions of) the conditions cited in equation (5.22) of
[168] as defining the deformations of an instanton configuration.

In physical string theory the anti-self-duality constraint on the field strength of a coasso-
ciative brane has been determined in [167] using κ-symmetry of the DBI action. In [169],
a topological field theory is proposed on calibrated 4-cycles whose total moduli space is
a product of the moduli space of geometric deformations with the moduli space of ASD
connections on M . We will see shortly that this is indeed the worldvolume theory on
coassociative 4-cycles for the open G2 string.

8.3 SCATTERING AMPLITUDES

Before considering the nature of the worldvolume theory of the calibrated 3- and 4-cycles,
it will be useful to consider some scattering amplitudes in the open G2 theory, as these
can be compared with field theoretic scattering amplitudes and will help constrain the
interaction terms in the worldvolume action. In fact, as will be discussed in the next
section, these interactions can actually be related to string field theory, not just to effective
field theory, if one concedes that the G2 string is independent of its coupling constant, as
argued in [12].

8.3.1 3-POINT AMPLITUDE

The simplest amplitudes to calculate (and the only ones we will need) are the 3-point
functions of degree one fields Aµψµ, which are essentially already calculated in [12].
Introducing Chan-Paton factors into the calculation performed there gives the 3-point
function of three ghost number one fields as

λ3 3
2
fjik

∫
Y

φαβγ(x)Aiα(x)Ajβ(x)Akγ(x) , (8.38)

where fijk are the structure functions for the Lie algebra of the gauge groupG and λ is the
normalization of the bulk-boundary 2-point function in the G2 CFT (these are generally
not relevant and will not be treated with a great deal of care).

Tangential modes. For an associative 3-cycle embedding i : M → Y , we have the
relation i∗(φ) = ε, where ε is the volume form on M . If we now consider the previous
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calculation but where now the fields ψµ are restricted to be along the 3-brane (so they
have indices a, b, c . . . ), we find that

〈AAA〉 = λ3 3
2
fjik

∫
M

εabc(x)Aia(x)Ajb(x)Akc (x) . (8.39)

As will be discussed in the next section, this is an interaction vertex for Chern-Simons
theory, which is the part of the effective worldvolume theory for the 3-cycle.

As mentioned in previous section, on a coassociative 4-cycle φabc = 0 so the 3-point
function of tangential modes vanishes.

Normal and mixed modes. We can now try to consider a mixture of normal or tan-
gential modes in the 3-point function. The boundary conditions on the open G2 string,
preserving the extended algebra on a 3-cycle, imply [155] that only φabc and φIJc are
non-vanishing. Thus φ is only non-vanishing for an even number of indices in Dirichlet
directions, so we can only scatter two normal modes and one tangential mode. This gives

〈θθA〉 = λ3 3
2
fjik

∫
M

φIJc(x)θiI(x)θjJ(x)Akc (x) . (8.40)

On a 4-cycle the non-vanishing components of φ have an odd number of normal indices,
and it is easy to see that the only non-vanishing 3-point functions of degree one modes
are

〈θAA〉 = λ3 3
2
fjik

∫
M

φIab(x)θiI(x)Aja(x)Akb (x) ,

〈θθθ〉 = λ3 3
2
fjik

∫
M

φIJK(x)θiI(x)θjJ(x)θkK(x) .
(8.41)

8.4 WORLDVOLUME THEORIES

We have already determined the BRST cohomology of normal and tangential modes on 3-
and 4-cycles. These should be thought of as marginal deformations of the theory preserv-
ing the twisting on the worldsheet (by general arguments that map an element of BRST
cohomology to a descendant that can generate a deformation). When considered from the
spacetime perspective, the elements of BRST cohomology should translate into spacetime
fields and we expect the BRST closure condition to correspond to the linearized space-
time equations of motion. This is true in physical string theory and can be derived more
rigorously via open string field theory for topological strings, as will be reviewed below.
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For the normal modes, the BRST cohomology condition can be translated into constraints
on deformations of the calibrated submanifolds, such that these modes correspond to
tangent vectors on the moduli space of (co)associative cycles in the G2 manifold.

For tangential modes, the BRST cohomology condition looks different for the different
cycles. On the 3-cycle, BRST closure and co-closure of the tangential mode Aa imply
dA = 0 and d†A = 0, so that A is a flat connection in a fixed gauge, and we expect a
gauge theory whose solutions correspond to gauge-inequivalent flat connections. On the
4-cycle, BRST closure and co-closure of Aa imply

∗4 dA = −dA , d†A = 0 . (8.42)

These equations are the linearization of the condition for a variation of a gauge field to
be a deformation of an instanton solution (c.f. equation (5.50) in [168]). This suggests,
in analogy with the geometric moduli, that the theory on the worldvolume should be a
gauge theory extremizing on instantons and that marginal tangential deformations of the
worldsheet theory should correspond to tangent vectors on the moduli space of instantons.

In the case of both the 3- and 4-cycle, the worldvolume theory will include contributions
from the normal and tangential modes, and so should result in a theory whose moduli
space includes the normal and tangential deformations that we have determined in section
8.2. We also expect that the other physical states, which are massless in the twisted theory,
may still play a role in the spacetime action even though they cannot be used to generate
boundary deformations of the CFT9, and hence are not moduli of the theory.

To determine the relevant spacetime actions and how the normal and tangential moduli,
as well as the higher ghost number fields, come into play we will start by considering
Witten’s derivation of Chern-Simons theory from open string field theory (OSFT). We will
find that by restricting our attention to tangential modes on a calibrated 3-cycle we can
re-derive Witten’s Chern-Simons theory simply by following the arguments of [134]. We
will then attempt to generalize this derivation to include normal modes. Their contribution
is expected to be related to the topological theories in [139, 140], whose actions also
localize on the moduli space of associative 3-cycles (though, as we will see, this relation
is mostly at the level of equations of motion). Following a comment in [134], we expect
the higher string modes to be related to additional fields generated by gauge-fixing the CS
action. This is discussed in appendix B of [1].

Once we have transplanted Witten’s arguments for special Lagrangian branes in a Calabi-
Yau to associative branes in a G2 manifold, we will apply them to branes wrapping coas-
sociative cycles and branes wrapping all of Y .

9Only a ghost number one state has a 1-form descendant with ghost number 0; ghost number p states have
p-form descendants with ghost number zero, so to preserve the ghost number in the worldsheet action we would
have to integrate them over a p-cycle on the worldsheet.
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8.4.1 CHERN-SIMONS THEORY AS A STRING THEORY

In [134] Witten argues that the open A-model on T ∗M reduces exactly to Chern-Simons
theory on M , for any 3-manifold M . There are several arguments supporting this claim
and we will attempt to generalize them below to the G2 case. Before doing so, we first
review them briefly.

The first argument concerns Q-invariance of a boundary term in the string path integral.
In general the open string path integral can be augmented by coupling to a ‘classical’
background gauge field. This is done by including an additional piece in the integrand of
the path integral which is of the form

TrP exp
(∮

∂Σ

X∗(A)
)
. (8.43)

Here A is a (non-abelian) connection defined on the brane M and the term above is a
Wilson loop for the pull-back of this connection along the boundary of the worldsheet Σ.
Requiring that this new term preserve the Q-invariance of the action implies that the field
strength F = dA + A ∧ A must vanish. Hence open strings in the A-model can only
couple to flat connections.

To more rigorously establish that the relevant spacetime theory is Chern-Simons theory,
Witten considers the OSFT action

∫
A ? QA+

2
3
A ?A ?A , (8.44)

where A is a functional of the open string modes quantized on a fixed time slice, and
Q is the appropriate BRST operator of the theory. The integration measure is defined
by the path integral over the disc10. The linearized equations of motion (coming from
the quadratic part of the OSFT action) enforce the requirement that physical states are
BRST-closed on-shell:

QA = 0 . (8.45)

In the large coupling constant limit (t → ∞) the Q-cohomology can be studied by re-
stricting to functionals A that depend only on the string zero-modes, Xµ

0 and ψµ0 . The
BRST operator, Q, acting on such states, reduces to the exterior derivative d on T ∗M
(which we can write in terms of the zero modes)

10There is a subtlety here. In OSFT for the bosonic string this measure involves gluing together several discs
using conformal transformations, but in the setting of a topological theory all the states have conformal weight
zero under the twisted stress-tensor so they do not transform under conformal transformations.
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d = dxµ
∂

∂xµ
= ψµ0

∂

∂Xµ
0

. (8.46)

Since the t→∞ limit is exact in the A-model (modulo world-sheet instantons which are
not present when the target space is T ∗M ), these identifications are not approximations
but rather exact statements. This allows one to identify the string field action with Chern-
Simons theory.

To make this identification one must identify the string fieldAwith the target space gauge
field Aµ(x)dxµ. The general form for A at large t is given by the expansion

A(Xµ, ψµ) = f(X0) +Aµ(X0)ψµ0 + βµν(X0)ψµ0ψ
ν
0 + Cµνρ(X0)ψµ0ψ

ν
0ψ

ρ
0 , (8.47)

in 3 dimensions. The reason that A reduces to Aµ(X0)ψµ0 is simply that only ghost
number one string fields should be considered, and here ghost number coincides with
fermion number. Witten comments that it is possible to relate the other terms in the
expansion to ghost and anti-ghosts fields derived from gauge-fixing CS theory [170], or
alternatively gauge-fixing OSFT. In appendix B of [1] it was shown that this is indeed the
case when this derivation is repeated on an associative cycle in a G2 manifold.

Witten provides a final argument for CS theory as the string field theory for the A-model,
namely that the open string propagator on the strip reduces to the CS propagator in the
large t limit. This is essentially the statement that b0

L0
= d†

� . For the topological string, b0
is replaced by the superpartner of the stress-energy tensor in the twisted theory (i.e. Q† in
T = {Q,Q†}). In the G2 case this would be (tentatively) G↑− 1

2
[12].

We will now attempt to establish the validity of these arguments for the open G2 string
ending on a calibrated 3-cycle. Before doing so we should mention that what was missing
in this treatment is a discussion of the normal modes on the brane. It is not immediately
clear whether these modes modify the Chern-Simons action on the special Lagrangian
cycle (though one would imagine they should in order to capture the dependence of the
theory on the geometric moduli of the brane).

8.4.2 CHERN-SIMONS THEORY ON CALIBRATED SUBMANIFOLDS

If we consider only the tangential modes on a calibrated cycle then the Q-closure condi-
tions become (in the free field approximation)

172



Chapter 8 - Open G2 Strings

∂af(X) = 0 , (8.48)

εabc∂aAb = 0 ,

εabc∂aβbc = 0 , (8.49)

for the degree 0, 1, and 2 components of the string field. Here we have already used that
φabc ∝ εabc on the 3-cycle. This is consistent with the notion that Q = G↓− 1

2
= d in the

large t limit. More generally, the complex (7.6), which encodes the BRST cohomology,
reduces, when restricted to the tangential directions on an associative 3-cycle, to the de
Rham complex so Q = d and Q† = d†.

Recall, from the discussion in Section 7.3.3, that, in contrast to the situation in the A-
model, we do not have an explicit worldsheet action to work with and hence do not have
a Hamiltonian formulation which might directly establish the t invariance of the action.
Assuming this invariance none-the-less, the equations above imply that the quadratic part
of the string field action reduces to the quadratic part of Chern-Simons theory. That is, in
the large t limit, the Q-closure constraint becomes the linearized CS equation of motion.
Here we have also considered modes with fermion number different from one; these are
discussed in appendix B of [1] in relation to gauge-fixing Chern-Simons theory.

Also in this limit (of free string theory approximation), theQ†-closure constraints become

∇aAa = 0 ,

∇aβab = 0 . (8.50)

The first term is just the gauge-choice d†A = 0. The spacetime interpretation of βab is
discussed in appendix B of [1] but, as it is not needed here, we will not review it. Let us
now translate the rest of Witten’s arguments to the G2 case.

The argument is essentially that open string field theory with the action (8.44) reduces
to Chern-Simons theory in the large t limit, if one restricts the string field to have ghost
number 1 (which, in the G2 case, translates into fermion number 1 because the ghost
number is the grading for the Q-cohomology, and that is given by the fermion number).
That this holds for the kinetic term follows because we have shown that the linearized CS
action is the same as the linearized Q-closure condition.

For the interaction term this just follows from the fact that the 3-pt function of the ghost
number one parts of A reduces to the wedge products of the Lie algebra valued 1-forms,
Aa(x)dxa. This is because, at large t, A depends only on the zero modes so the ghost
number one part has the formAa(X0)ψa0 which can be mapped to one-forms in spacetime.
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We showed in section 8.3.1 that the 3-pt function of these modes is just the 3-pt correlator
of CS theory.

Witten also shows that the propagator of the OSFT reduces, in the t→∞ limit, to the CS
propagator. We will reproduce this argument briefly here for the G2 case. A much more
complete treatment (of the analogous A/B-model argument) can be found in section 4.2
of [134]. The open string propagator is simply given by the partition function of a finite
strip, of length T and width 1 with the standard metric

ds2 = dσ2 + dτ2 . (8.51)

In OSFT the moduli space of open Riemann surfaces is built by gluing such strips to-
gether. The strip has one modulus, namely its length, so in calculating the partition func-
tion one insertion of G↑− 1

2
folded against a Beltrami differential µ is required [12]

∫
dσdτ µ(σ, τ)G↑(σ, τ) . (8.52)

The Beltrami differential here is just given by a change to the metric that changes the
length of the strip and corresponds to a function f(τ) = δT · δ(τ − τ0) for any τ0 on
the strip. Here δT is the infinitesimal change in the length of the strip generated by this
differential. Thus the insertion becomes

∫
dσdτ δT · δ(τ − τ0)G↑(σ, τ) = δT

∫
dσ G↑(σ, τ0) . (8.53)

Because we have been working in the NS sector, the integral of the current G↑(z) around
a contour (given by fixed τ0 which maps to a half-circle in the complex plane) will just
give a G↑− 1

2
insertion in the world-sheet path integral, so its overall form is

∫ ∞
0

DT (G↑− 1
2
)e−TL0 =

G↑− 1
2

L0
. (8.54)

By our previous identification of G↑− 1
2

with d† (this becomes d† on M for tangential

modes) and L0 with � in the large t limit, this becomes d†
� which is the CS propagator

[134]. One should note that in the A-model this follows rather directly but in the G2

string it depends on the fact that φabc ∝ εabc on the associative cycle (so, as previously
mentioned, Q = Ď reduces to d) and thus, in particular, might not hold on a coassociative
cycle.
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There is a final argument one can make in favour of CS theory, though it is more heuristic.
We want to argue, as Witten has, that coupling the worldsheet to a classical background
gauge field via a term such as (8.43) requires this background to satisfy F = 0 which is
the equation of motion for Chern-Simons theory.

In [12], a heuristic version of the twisted G2 action is derived using the decomposition of
worldsheet fermions into ↑ and ↓ components, ψ = ψ↑+ψ↓. This is heuristic because this
decomposition is essentially quantum and is not understood at the level of classical fields.
Using this decomposition we can check Witten’s argument for the BRST-invariance of a
boundary coupling to a classical configuration of the gauge field

TrP exp
(∮

∂Σ

Aµ∂tX
µ

)
. (8.55)

The variation of this factor in the partition function under [Q,Xµ] = δXµ is given by

TrP
∮
∂Σ

δXµ∂tX
νFµνdτ · exp

(∫
∂Σ;τ

Aµ∂tX
µ

)
, (8.56)

where the contour in the exponent must start and end at the point τ [134]. To make this
variation vanish requires that the first term vanish and since [12]

δXµ = iεLψ
↓µ
L + iεRψ

↑µ
R , (8.57)

this implies that Fµν = ∂[µAν] + [Aµ, Aν ] = 0 for classical configurations of the back-
ground gauge field A. This is, of course, the Chern-Simons equation of motion.

In the physical theory one could also couple to a term of the form Cµνψ
µψν , but no such

terms seem to effect the derivation of F = 0 above in the A-model, because any such
coupling results in a variation which cannot cancel the gauge-field coupling.

The only boundary term in a topological theory should be generated by the descent proce-
dure starting from aQ-closed ghost number one field whose descendent is a ghost number
zero one-form that is given by

{G↑− 1
2
, Aµψ

µ} = Aµ∂tX
µ + π2

14(∂µAνψµψν) . (8.58)

Both these terms have conformal weight 1 and, by virtue of a standard descent argument,
are Q-closed up to a total derivative. To apply Witten’s argument here it is necessary to
understand why the second term cannot appear on the boundary. This follows because we
are considering modes tangential to an associative cycle and one can check that on such
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a cycle Λ2T ∗M ⊂ ι∗(Λ2
7(Y )) (here ι : M → Y is the embedding of the three cycle into

the ambient G2).

To derive the Chern-Simons action we have considered only the ghost number one part of
the string field A as this is the standard prescription in OSFT. In some cases, however, it
is desirable to consider the full expansion of A and include fields of all ghost number in
the action. This is because the higher modes just play the role of ghosts in gauge-fixing
the OSFT action [171]. This is a special feature of Chern-Simons like theories [170] and
so will apply for all the brane theories that we derive. Appendix B of [1] descibes the
general form of the gauge-fixed actions for these theories but we omit such a discussion
here as we will not consider the quantum versions of these theories and simply refer the
reader to [1] instead.

8.4.3 NORMAL MODE CONTRIBUTIONS

In the previous section we argued that the tangential modes of the G2 worldsheet corre-
spond to gauge fields in a CS theory on the 3-cycle and when higher string modes are
included this becomes gauge-fixed CS theory.

We are also interested in terms in the effective action that include the normal modes. The
most direct way to to get at a normal mode action is to simply expand the terms A ? QA
and A ?A ?A in the OSFT action. Ignoring the higher string modes, we have

A = Aaψ
a + θJψ

J ,

QA = {Q,Aaψa}+ {Q, θIψI}
= φIJcφ

cde∇dAeψIψJ + φabcφ
cde∇dAeψaψb + φaIJφ

JbK∇bθKψaψI .
(8.59)

Recall that the integration of expressions involving string fields, A, in the OSFT action
corresponds to evaluating the correlator of the integrand, decomposed in individual string
modes on the disc. In the G2 string only certain combinations of string modes will have a
non-vanishing 3-pt function depending on the conformal blocks the modes correspond to
(see [12]). In our calculation of the 3-pt functions above, this translates into non-vanishing
3-pt functions when we can contract the spacetime indices of the string modes with the
3-form φ. From our previous calculation of three point functions in sections 8.3.1 (see
also Appendix B of [1]) we find the generic form of a 3-pt function on the disc

〈λω〉 =
∫
M

φµνρTr (λµωνρ) ,

〈αβγ〉 =
∫
M

φµνρTr (αµβνγρ) ,
(8.60)
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(where, e.g. ω = 1/2ωµν(x)ψµψν). Doing this gives the following action

Sdeg 1 =
∫
M

φabc Tr
(
Aa∇bAc +

2
3
AaAbAc

)
+ φIaJ Tr

(
θI(∇aθJ + [Aa, θJ ])

)
,

(8.61)

where the trace Tr is over Lie algebra indices. The interaction terms can be calculated
directly in string perturbation theory by checking 3-pt disc amplitudes whereas the kinetic
terms coming from A ? QA vanish in perturbation theory because on-shell string modes
satisfy QA = 0. To determine them we either simply consider all the terms of the correct
degree in the string mode decomposition ofA?QA or ‘formally’ calculate 3-pt functions
assuming the field A is off-shell. Both result in the same action and as a consistency
check, the linearized equations of motion for this action correspond to the BRST closure
of the string modes. We have not been too careful with the coefficients in (8.61) but this
is because most coefficients either follow from gauge invariance or can be absorbed into
field redefinitions.

The equations of motion for this action are

εabcFbc = φIaJ [θI , θJ ] , (8.62)

φaIJ
(∇aθJ + [Aa, θJ ]

)
= 0 . (8.63)

In the abelian case this just reduces to F = 0 and the geometric constraint (8.29) on
the normal modes describing associative deformations. In the non-abelian case this is no
longer true but of course in this setting we have lost the simple association of θI with
normal deformations of the brane, as the string modes become matrix-valued.

At first glance the equations above look similar in form to the Seiberg-Witten type equa-
tions (32) and (40) in [166]. This reference is concerned with resolving the singular
structure of the moduli space of deformations of associative submanifolds in a general
G2 manifold by considering a larger space of deformations where one is allowed to also
deform the induced connection on the normal bundle to make the deformed submanifold
associative. This amounts to a choice of complex structure on the normal bundle, for each
deformation of the 3-submanifold, such that its reduced structure group U(2) ⊂ SO(4)
in the G2 manifold is compatible with the induced metric connection. This additional
topological restriction on the G2 manifold is something we have not assumed and indeed,
for general gauge group, there is no obvious relation between (8.62), (8.63) and the purely
geometric equations in [166]11.

11It is possible that the U(1) part of our gauge connection could be related to the U(1) ⊂ U(2) part of the
induced connection on the normal bundle with fixed complex structure in [166].
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8.4.4 ANTI-SELF-DUAL CONNECTIONS ON COASSOCIATIVE SUB-
MANIFOLDS

We expect that the worldvolume theory on the 4-cycle should have equations of motion
corresponding to the BRST closure of the associated string modes. Let us consider the
following action

S[A, θ] =
∫
M

φIabTr
(
θIFab

)
+

2
3
φIJKTr

(
θIθJθK

)
. (8.64)

As with the action on a 3-cycle we cannot directly check the quadratic terms by con-
sidering a string correlator because the relevant correlators vanish for on-shell states as
dictated by the fact that the quadratic terms in the action determine the BRST closure
condition. Rather, we can compare the linearized equations of motion (generated purely
by the quadratic terms) and the string BRST closure condition and these should match.

The abelian θI equation of motion is now just φIabFab = 0, which implies anti-self-
duality of F and so matches the BRST closure condition. The Aa equation of motion
is

φabIDbθI = 0 , (8.65)

whereDa = ∇a+[Aa, ] onM . This equation is more conveniently expressed in terms of
the self-dual 2-form ωab = φabIθ

I on M . At the linear level, the equation above implies
ω is co-closed, and hence also closed since it is self-dual. Thus we have the correct
linearized condition for coassociative deformations found by McLean.

We can also consider the formal structure of the term A ·QA in the OSFT action, letting
A go ‘off-shell’, and indeed we find matching.

As a further check we should compare the interaction term to string scattering amplitudes.
The 3-pt function for a general degree one vertex operator in the topological theory is
given by

λ3 3
2

∫
Y

φαβγ(x)Tr
(
Aα(x)Aβ(x)Aγ(x)

)
. (8.66)

On the 4-cycle the only non-vanishing components of φ must have an even number of
tangential indices, which implies the following non-vanishing amplitudes
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λ3 3
2

∫
M

φIabTr
(
θIAaAb

)
,

λ3 3
2

∫
M

φIJKTr
(
θIθJθK

)
.

(8.67)

The first line above corresponds to the cubic interaction θAA in the first term of (8.64)
while second correlator in (8.67) implies the cubic vertex in the second term. This last
term, of course, only corrects the non-abelian instanton equation of motion

φIabFab = −φIJK [θJ , θK ] , (8.68)

and so has no effect on the geometric interpretation in the abelian case.

In [169] Leung proposes a 1-form on the space C = Map(M,Y ) × A(M) where M is
a 4-manifold, Y is a G2 7-manifold and A(M) is the space of Hermitian connections on
the gauge bundle E →M (with fibre G)

S(f,DE)(v,B) =
∫
M

Tr (f∗(ιvφ) ∧ FE + f∗(φ) ∧B) . (8.69)

Here (f,DE) ∈ C and (v,B) ∈ T(f,DE)C with v a section of TY , B ∈ Λ1(M, adG) and
FE the curvature of DE (here f is an element of Map(M,Y ) and should not be confused
with the f used to denote the zero fermion component of the string field). The one-form
S is invariant under diffeomorphisms of M and its zeros correspond to coassociative
embeddings f(M) ⊂ Y with anti-self-dual connections on them. This follows from the
fact that S must vanish when evaluated on arbitrary vectors, B, implying f∗(φ) = 0, and
arbitrary v implying that FE = −∗FE .

To compare with our theory we do not want to consider the space of all such maps, but
only the local deformations of a given coassociative f(M) in Y , so we only consider
fluctuations around a fixed coassociative submanifold. Thus we will take f to be a coas-
sociative embedding implying that the second term in the action above vanishes and ∗φ
defines the volume form on the embedded coassociative 4-cycle f(M). Thus, we rewrite
Leung’s functional to generate the following action functional12

S0[A, θ] =
∫
M

Tr (f∗(ιθφ) ∧ F ) =
∫
M

φIabTr
(
θI (∂aAb +AaAb)

)
, (8.70)

12More precisely, Leung’s one-form, Φ0, descends to a closed one-form on the space ‘C/Diffeo(M)’ and this
form is locally the derivative of a functional,F , whose critical points are zeros of Φ0. Our action is most closely
related to this functional.
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using the identity εabcd φcdI = 2φ I
ab on the coassociative cycle.

Thus we see that the open G2 string has reproduced the action Leung suggested in order
to study SYZ in the G2 setting and it has also introduced an additional term that is not
present in Leung’s action.

8.4.5 SEVEN-CYCLE WORLDVOLUME THEORY

As in physical string theory, it is natural to expect the 3- and 4-cycle theory to look like the
dimensional reduction of a theory on the whole 7-manifold (which is trivially calibrated
by its volume form φ ∧ ∗φ). Lee et al [172], who propose theories closely related to our
3- and 4-cycle theories, claim that this theory should be related to (deformed) Donaldson-
Thomas theory [159].

The 7-cycle theory can be determined exactly the same way as the 3- and 4- cycle theory.
For the interaction term we just calculate the 3-pt functions of the (ghost number one)
terms in 〈A ?A ?A〉 given by (8.60). The kinetic terms, defining the linearized equations
of motion, should correspond to QA = 0 and they should match A ? QA.

This gives the following action

S =
∫
Y

φµνρTr
(
Aµ∂νAρ +

2
3
AµAνAρ

)
=
∫
Y

∗φ ∧ CS3(A) . (8.71)

The equation of motion for this action is

∗ φ ∧ F = 0 . (8.72)

This is one of the equations in [159] where it is argued to be associated with the 7-
dimensional generalization of Chern-Simons theory. In the abelian theory this equation of
motion is simply ĎA = 0 which has no global solutions which are not exact (i.e. A = df )
because H1

7 (Y ) = 0 for G2 manifolds. Of course, as a gauge field A need not be a global
one form and then this result no longer applies. This is similar to the situation one finds
for Chern-Simons theory on a simply connected manifold.

Note that for the action (8.71) to be gauge invariant under large gauge transformations
∗φ must actually be an integral cohomology class. A similar issue arises in holomorphic
Chern-Simons theory as mentioned by Nekrasov in [145] but, as the three-form Ω is
holomorphic, it is not clear that it can always be normalized to be integral. Nekrasov
notes, however, that the integrality condition is precisely the condition on the complex
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moduli of the CY to be solutions of the attractor equations. It would be interesting to
understand if the integrality of ∗φ has a similar interpretation.

In [172] the authors want to consider solutions to the deformed Donaldson-Thomas equa-
tion

∗ φ ∧ F =
1
6
F ∧ F ∧ F , (8.73)

which would involve adding a term CS7(A) to the Lagrangian above. It is not at all clear
why such a term would appear in OSFT but in Section 7 of [1] we see that such a term
does emerge in a rather interesting way when quantizing this theory.

8.4.6 DIMENSIONAL REDUCTION, A- AND B-BRANES

Reducing the open topologicalG2 string on CY3×S1 gives rise to both special Lagrangian
A-branes and holomorphic B-branes on CY3. This follows from the decomposition of φ
and ∗φ in terms of the holomorphic 3-form and Kähler form on CY3 (see appendix H).
The A-branes arise when reducing the associative 3-cycle action (8.61) in the normal
direction. The resulting action

∫
M

εabcTr
(
Aa∇bAc +

2
3
AaAbAc

)
+ ρaijTr

(
θi(∇aθj + [Aa, θj ])

)
, (8.74)

is the real part of complex Chern-Simons theory, where the indices a, b, c = 1, 2, 3 are
in the SLag while i, j = 4, 5, 6 are in the normal direction. The normal modes appear
quadratically and can be integrated out (see Section 7 in [1] for a discussion of this issue
on an associated cycle).

Similarly we can reduce the 4-cycle action (8.64) in the tangential direction. This is
again a special Lagrangian brane in CY3 but now calibrated by ρ̂ instead of ρ, and the
worldvolume action is given by the imaginary part of complex Chern-Simons theory∫

M

ρiabTr(θiFab) +
2
3
ρijkTr(θiθjθk) , (8.75)

with the additional constraint Daθi = 0 for the normal modes.

The B-branes are simplest to find starting from the 7-cycle worldvolume theory (8.71)
and reducing on the CY3. We find
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S =
∫
CY3

ρ̂ ∧ CS(A) + k ∧ k ∧ Tr(λF )

=
1
2i

∫
CY3

Ω ∧ CS(A)− 1
2i

∫
CY3

Ω̄ ∧ CS(Ā) +
∫
CY3

k ∧ k ∧ Tr(λF ) ,
(8.76)

where ∗φ = ρ̂ ∧ dt + 1
2k ∧ k, t parametrizes the circle direction, Ω = ρ + iρ̂ is the

holomorphic 3-form of the Calabi-Yau, and λ = At is the scalar component of the gauge
field in the reduction. The action is the sum of B-model 6-brane and B̄-model 6-brane
actions (the appearance of the imaginary part of the holomorphic 3-form rather than the
real part is just a matter of convention). The extra term in the action comes with the
Lagrange multiplier λ, and so it expresses the constraint

k ∧ k ∧ F = 0 .

This extra condition is related to stability of the brane (complexifies theU(N) symmetry).
Lower-dimensional 4-branes and 2-branes then follow by further dimensional reduction,
where again we obtain B- and B̄-model actions together with a stability condition.

It is remarkable that like the closed topological M-theory, the open topological string also
contains the A and B+B̄ models. Perturbatively the B+B̄-models are decoupled, and it
would be interesting to understand if there is a non-perturbative coupling between them.

8.5 REMARKS AND OPEN PROBLEMS

So far we have determined the spectrum of the open G2 string and related it to the world-
volume field theories of branes in a G2 manifold. In this section we would like to con-
clude by making some final remarks regarding issues that still need to be resolved as well
as interesting directions for further research.

8.5.1 QUANTIZATION

Although we have omitted a discussion of quantum aspects of these theories in this thesis
the latter were considered in detail in our original work [1]. There we made a preliminary
investigation of the gauge-fixing and quantization of (8.2) and its reductions to four- and
three-dimensional branes. As was the case in the open string field theory for A-branes,
the gauge-fixed actions look very similar to the action (8.2) once we replace the ghost
number one field A by a field of arbitrary ghost number. We also studied the one-loop
partition functions of the various open string field theories, and found that they tend to
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have the effect of shifting the tree-level theories in a rather simple way. This is similar to
the one-loop shift k → k + h(G) of the level k in ordinary Chern-Simons theory, with
h(G) the dual Coxeter number of the gauge group G. In particular, we found that ∗φ in
(8.2) is shifted by a four-form proportional to the first Pontrjagin class of the manifold Y .
We have not yet attempted to determine whether (8.2) is renormalizable and well-defined
as a quantum theory (which, by naive power-counting, it is not) but we expect that it
should be as it is equivalent to a string theory (a similar issue occurs for holomorphic
Chern-Simons in the B-model). For a more detailed discussion of quantization of these
theories the reader is referred to [1].

8.5.2 HOLOMORPHIC INSTANTONS ON SPECIAL LAGRANGIANS

In dimensionally reducing theG2 branes on a Calabi-Yau Z times a circle, we have found
that we almost reproduce the real versions of the gauge theories for the open A- and B-
models. There is a discrepancy, however. If one considers a special Lagrangian M ⊂ Z,
with holomorphic open curves Σ ⊂ Z ending on M so that ∂Σ ⊂ M , then the A-
model branes will receive worldsheet instanton corrections to the standard Chern-Simons
action. A naive dimensional reduction of the associative theory on a G2 manifold Y =
Z × S1 gives a special Lagrangian in Z with the Chern-Simons action without instanton
corrections.

This issue is already present in the closed topological G2 string. When reducing on
CY3×S1, the closed G2 string gives a combination of A and B+B̄ models. But it is
non-trivial to see where the worldsheet instanton corrections in the A-model would come
from, given that the G2 theory appears to localize on constant maps. A possible resolu-
tion suggested in [12] is that since, unlike a generic G2 manifold, the manifold CY3×S1

has 2-cycles, worldsheet instantons may now wrap these 2-cycles. However, upon closer
inspection, this possibility appears rather unlikely. A much more straightforward expla-
nation is that the worldsheet instanton contribution is due to topological membranes (i.e.
topological 3-branes of the type discussed in this paper) that wrap associative cycles of
the form Σ × S1 in CY3×S1. Such 3-cycles are indeed associative as long as Σ is a
holomorphic curve in the Calabi-Yau manifold.

Returning to the open worldsheet instanton contribution to branes in the A-model, there
are two ways to obtain these from the topological G2 string on CY3×S1. The first way is
to lift the A-model brane together with the open worldsheet instanton to a single associa-
tive cycle in CY3×S1. This is similar to the M-theory lift in terms of a single M2-brane
of a configuration of a fundamental string ending on a D2-brane in type IIA string theory.
To describe it, we take a special Lagrangian 3-cycle C in a Calabi-Yau manifold X , plus
an open holomorphic curve Σ. We denote the boundary of Σ by γ ⊂ C. We first lift C
to X × S1, which we describe in terms of a map C → X × S1 which takes x ∈ C to
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(x, θ(x)) ∈ X × S1. Here, θ(x) describes an S1-valued function on C which we want
to have the property that it winds once around the S1 as we wind once around the curve
γ ⊂ C. The lift is therefore one-to-many, as the image of a point in γ is an entire circle,
and because of this the lift of C is an open submanifold of X×S1 with boundary γ×S1.
We can now glue the naive lift of Σ, which is Σ × S1, to the lift of C to form a closed
3-manifoldM , since the boundary of Σ×S1 is also γ×S1. In this way we have obtained
a closed 3-manifold M ⊂ X × S1 which projects down to C and Σ upon reduction over
the S1. The 3-manifold M is not calibrated, but we can compute the integral of φ over
M . The result is simply

∫
C
ρ+
∫

Σ
k if we normalize the size of the S1 appropriately. The

fact that the lift of C winds around the circle does not yield any additional contribution to∫
M
φ because the restriction of k to C vanishes identically.

We have thus constructed a closed 3-cycle M such that the integral of φ over it has the
correct structure, geometrically, to yield the worldsheet instanton contribution. The final
step is to minimize the volume of M while keeping its homology class fixed. This will
not change

∫
M
φ but presumably lead to the sought-for associative 3-cycle with the right

properties.

In order to push this program further and relate
∫

Σ
k to the (exponentiated) weight of a

holomorphic instanton we note that maps θ(x) which wind about γ n times will gener-
ate contributions such as n

∫
Σ
k. Carefully summing over all lifts of this form with the

appropriate weight might properly reproduce the instanton contributions.

An entirely alternative approach is to lift both C and Σ to C × S1 and Σ × S1. In this
way we obtain an open associative 3-cycle ending on a coassociative 4-cycle in X × S1.
To analyze whether this makes sense, we consider the simple example of an open 3-brane
in R7 stretched along the 123-direction, ending on a coassociative cycle stretching in the
2345-direction. If we vary the action (8.61) on the 3-brane we obtain a boundary term

Sbndry =
∫
dx2dx3tr(A3δA2 −A2δA3 + θ5δθ4 − θ4δθ5 + θ7δθ6 − θ6δθ7) . (8.77)

We obviously want Dirichlet boundary conditions for θ6 and θ7 so that the endpoint of the
open 3-brane is confined to lie in the 4-brane. We also want θ4 and θ5 to be unconstrained
at the boundary. If we therefore choose the boundary condition

A2 = θ5 A3 = θ4 , (8.78)

the variations all cancel. To preserve these boundary conditions under a gauge transfor-
mation, we need to restrict the gauge parameter in such a way that its derivatives in the
2, 3 vanish at the boundary. In this way we indeed find a consistent open 3-brane ending
on a 4-brane.
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8.5.3 EXTENSIONS

The actions we have discovered on topological branes wrapping cycles in a G2 manifold
are variants of Chern-Simons theories derived from OSFT. OSFT itself, as a generator
of perturbative string amplitudes, might need to be augmented by terms that are locally
BRST trivial but none-the-less have global meaning deriving from the topological struc-
ture of the space of string fields. In the bosonic open string such questions are currently
inaccessible but in the topological case we see some motivation for local total derivative
terms to be added to the action. One such potential term is

∫
Y

F ∧ F ∧ φ (8.79)

that might describe lower dimensional branes dissolved in the seven dimensional brane.
Such terms might be motivated by analogy with the Wess-Zumino terms on physical
branes. Note, also, that this reduces to F ∧ F ∧ k in six-dimensions, a term which ap-
pears in the A-model Kähler quantum foam theory [14] which Nekrasov suggests should
be related to holomorphic Chern-Simons theory [145] (the latter is, of course, related to
our theory by dimensional reduction). It would be interesting to try and probe for the
existence of such terms directly in the G2 world-sheet or OSFT theory.

The appearance of the CS7(A) term in the one-loop partition function in [1] suggests that
perhaps this term appears in quantizing the theory and so should have been included in
the original classical action.

Understanding if such terms do actually appear in these effective actions is interesting
as it may play a role in the conjectured S-duality of the A/B model topological strings.
In the latter it seems that one may need to consider both the open and closed theory
simultaneously and then terms such as (8.79) might play a role in coupling these theories.

8.5.4 RELATION TO TWISTS OF SUPER YANG-MILLS

The theories we have found on G2 branes are all topological theories of the Schwarz type
(see [168] for the terminology) which is no doubt linked to the fact that they are generated
by OSFT. A similar statement holds for branes in the A- and B-model.

The worldvolume theory on a brane in a G2 or Calabi-Yau manifold in a physical model
is a twisted, dimensionally reduced super Yang-Mills (SYM) theory [173] whose ground
states are topological in nature. These are related to the topological field theories that
can be constructed by twisting SYM and considering only the supersymmetric states (by
promoting the twisted supercharge to a BRST operator). Such theories include the topo-
logical action for Donaldson-Witten theory [174] as well as its generalizations to higher

185



Chapter 8 - Open G2 Strings

dimensions [175]. These are generally field theories of the Witten type meaning that the
action is itself a BRST commutator plus a locally trivial term.

Aside from the obvious connection to Chern-Simons theory via OSFT it would be inter-
esting to understand why the topological theories on branes in topological string theory
are generally of the Schwarz type (which are locally non-trivial) while the supersymmet-
ric states of the twisted theories on a physical brane can be studied in a theory that is of
the Witten type.

8.5.5 GEOMETRIC INVARIANTS

One of the most interesting open directions is to investigate the geometric or topologi-
cal invariants our open worldvolume gauge theories compute, and perhaps use them, via
open-closed duality, to discover the connection to the closed topological G2 theory. It
would be interesting to explore the full quantum open string partition function on a few
examples of G2 manifolds. The theory on the 3-cycle is basically Chern-Simons theory,
while on the 4-cycle the gauge theory of ASD connections will be related naturally to
Donaldson theory. It would very interesting to find a role for the partition functions in
terms of the full physical string theory, as well as deepen connections with the mathemat-
ics results in [169]. Another open problem is to analyze these invariants in the special
case of CY3×S1, and find a physical understanding of related mathematical invariants
such as the one proposed by Joyce [176] counting special Lagrangian cycles in a Calabi-
Yau manifold.

8.5.6 GEOMETRIC TRANSITIONS

Open-closed duality techniques have proven very useful for topological string theory on
Calabi-Yau manifolds. In particular, geometric transitions provide nice examples where
closed topological string amplitudes can be computed from the gauge theory on the
branes, which in this case is just Chern-Simons theory with possible worldsheet instanton
corrections. Geometric transitions on G2 manifolds in general are less studied, but inter-
esting examples from the full string theory point of view are exhibited in e.g. [177][178].
In the present paper we derived the relevant worldvolume gauge theory actions from open
topological strings and so, one of the immediate applications of our results is to study
geometric transitions from the topological G2 string point of view.
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8.5.7 MIRROR SYMMETRY FOR G2

Mirror symmetry on a Calabi-Yau 3-fold can be described in terms of the Strominger-
Yau-Zaslow (SYZ) conjecture. One starts with a special Lagrangian fibration, and then
the mirror manifold is conjectured to be the dual torus fibration over the same base. In
physics language, the action of mirror symmetry on the fibres is T-duality. In [172], a
G2 version of the SYZ conjecture was suggested, relating coassociative to associative
geometry. Evidence for the G2 mirror symmetry was also found in G2 compactifications
of the physical IIA/IIB string theory on G2 holonomy manifolds [178] [179]. It would
be interesting to explore the action of mirror symmetry in the case of the topological G2

models. A good starting point for this is by examining automorphisms of the closed G2

string algebra such as those discussed in [180].

8.5.8 ZERO BRANES

Although we have not attempted a treatment here it should be possible to reduce the
action (8.71) to zero dimensions to determine the world-volume of D0-branes on the G2

manifold. This will be a matrix model which may be related in an interesting way to the
G2 geometry.
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APPENDIX A

SUPERGRAVITY CONVENTIONS

AND NOTATION

For various common definitions we refer to appendix A of [9], whose notation we follow.

In this appendix we give some more details on the conventions we take for various phys-
ical quantities mostly relevant for Part I. We work in units in which c = ~ = kB = 1 but
we will keep dimensions of length explicitly in much of Chapter 3 where we take the de-
coupling limit of multicentered solutions. The coordinates x, t we take to have dimension
of length. Angular coordinates, most of the time denoted by Greek letters as α , θ , ψ etc
will be dimensionless however. Furthermore we will take forms to be dimensionless. As
e.g. ω = ωidx

i is dimensionless this implies the components of forms have dimensions
of inverse length, i.e. [dxi] = L, [ωi] = L−1 and [ω] = 1. This convention implies that
the Hodge star is dimensionful: [?] = Ld−2p when acting on a p-form.

In each dimension we define a natural Planck length ld ([ld] = L of course) by normalising
the Einstein-Hilbert action as

SEH
d =

2π
(ld)d−2

∫ √−gdRd , (A.1)

and a reduced planck length by

`d =
ld
4π

. (A.2)
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A.1 M-THEORY VS IIA CONVENTIONS

We start from the following 11d M-theory metric:

ds2
11d = R2 e4φ/3 Θ2 + e−2φ/3 ds2

10d , (A.3)

where ds2
10d is a ten-dimensional metric and R is a constant with dimensions of length.

The one form Θ = dθ+2π A, with θ = θ+2π andA is a one form on the ten dimensional
space. Furthermore φ is normalized in such a way that φ(∞) = 0. The M2-branes of this
theory have a tension

TM2 =
2π
l3M

, (A.4)

with lM = l11 is the 11 dimensional Planck length.

We can relate these to IIA quantities by reduction on the θ circle. As an M2 wrapped
around this circle is a fundamental string we find:

TF1 =
2π
l2s

= 2πRTM2 =
4π2

l3M
R ⇒ l3M = 2πR l2s . (A.5)

From the relation between M2 and D2 one easily infers

l3M = gs l
3
s , (A.6)

where in our conventions TDp = 2π

gs l
p+1
s

. The constants gs and ls are respectively the
string coupling constant (at infinity) and the string length. They are arbitrary constants
related to the 10 dimensional Planck length l10 by

l410 = gs l
4
s . (A.7)

We can now reduce both the 11d and 10d theory on the same Calabi-Yau manifold X .
Since

ds2
11d = R2 e4φ/3 Θ2 + e−2φ/3

(
ds2

4d + ds2
CY IIA

)
, (A.8)

we can relate the effective 5d and 4d metrics:

ds2
5d = R2

(
VIIA

VM

)2/3

Θ2 +
(
VIIA

VM

)−1/3

ds2
4d , (A.9)

where we used that
e2φ =

VIIA

VM
. (A.10)

In a slightly more transparent form this is

ds2
5d = Ṽ

2/3
IIA `25 (2Θ)2 + Ṽ

−1/3
IIA

R̂

2
ds2

4d , (A.11)
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with `5 the reduced 5 dimensional Planck length, we will also use the notation 2Θ =
dψ +A0

4d. We use various dimensionless objects:

ṼM =
VM
l6M

, ṼIIA =
VIIA

l6s
, R̂ =

R

`5
. (A.12)

The Calabi-Yau reduction relates all the different parameters at infinity. We will give the
relations that will be of most importance to us. The relation between the 4d Planck length
l4 and the string length is

l4 = g4d ls , (A.13)

where

g2
4d =

g2
s

Ṽ∞IIA
=

1
ṼM

. (A.14)

The effective 4d string coupling g4d is in a hypermultiplet and thus constant in the solu-
tions we will consider. Note that the same is true for ṼM . The 4d and 5d Planck lengths
are related by the size of the M-theory circle:

`5 =

√
R̂

2
`4 . (A.15)

Furthermore this size of the circle is immediately related to the size of the Calabi-Yau at
infinity and thus to the value of the Kähler moduli at infinity, i.e.

R̂3

8
= Ṽ∞IIA =

1
6

(J∞)3 . (A.16)

Finally let us relate the reduced 4d plank length `4 to Newton’s constant that appears in
front of the 4d Einstein-Hilbert action as

SEH
4 =

1
16πG4

∫ √−g4R4 . (A.17)

This gives the relation
`4 =

√
2G4 , (A.18)

and by (A.15) this implies √
G4 =

`
3/2
5√
R
. (A.19)
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APPENDIX B

MARGINAL VS THRESHOLD

STABILITY

In this appendix we refine the commonly used notion of marginal stability. This refine-
ment is, in our view, useful as there are two different physical situations that both go under
the name of marginal stability in the current literature. Distinguishing between them is
useful in analyzing the decoupling limit of Chapter 3. A somewhat similar distinction was
already proposed in [68].

The notion that we want to refine and that is commonly referred to as marginal stability
is that of two BPS states having aligned central charges for certain values of the moduli.
In our case of interest, multicentered black holes in N=2 supergravity, the BPS states
are characterised by their charge Γ and their central charge is determined in terms of this
charge and the scalar moduli t by Z(Γ, t) = 〈Γ,Ω(t)〉. The length of the central charge
vector, |Z|, corresponds to the mass, as we are considering BPS states, and its phase, α,
characterises the supersymmetries left unbroken by this state. In case the moduli are such
that for two BPS states Γ1 and Γ2 the phase aligns, the two BPS particles preserve the
same supersymmetries and the binding energy of a BPS bounds state of them vanishes (if
it exists), as |Z1+2| = |Z1|+ |Z2|. This is equivalent to the condition

Im(Z̄1Z2) = 0 and Re(Z̄1Z2) > 0 . (B.1)

The second inequality is needed to ensure that the central charges not only align but also
point in the same direction. As the condition (B.1) is a single real equation it will, in
general, be satisfied on a codimension one surface in moduli space. Crossing such a sur-
face or ’wall’ may correspond to the decay of the bound state formed by the two charges,
but it does not have to. Whether a bound state decays or not depends on the intersection
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product of these charges. In the case 〈Γ1,Γ2〉 = 0, i.e. the charges are mutually local,
there will be no decay whereas if charges are mutually non-local, 〈Γ1,Γ2〉 6= 0, there will
be a decay. This follows because in the constraint equation, (3.12), the RHS depends on
Im(Z̄1Z2) so the inter-center separation is given by

r12 =
〈Γ1,Γ2〉
〈h,Γ1〉 =

〈Γ1,Γ2〉 |Z1 + Z2|
2 Im(Z̄2Z1)

∣∣∣∣
∞
. (B.2)

This qualitative difference when approaching or crossing such a hypersurface in mod-
uli space prompts us to name them differently so we can easily refer to the appropriate
picture. Therefor we define

Marginal stability: Im(Z̄1Z2) = 0 , Re(Z̄1Z2) > 0 and 〈Γ1,Γ2〉 6= 0

Threshold stability: Im(Z̄1Z2) = 0 , Re(Z̄1Z2) > 0 and 〈Γ1,Γ2〉 = 0

Thus we will refer to the codimension one hypersurfaces on which this condition is sat-
isfied as walls of marginal/threshold stability, respectively. As mentioned above the
physics of bound states is rather different when crossing a wall of marginal stability or
one of threshold stability. So let us shortly review this physics to make things clear. The
discussion can be most easily understood when illustrated by an example although the
story is general and holds for all multicenter black holes.

We take as our example a simple three center solution consisting of the charges

Γ1 = (1,
p

2
,
p2

8
,
p3

48
) , Γ2 = (−1,

p

2
,−p

2

8
,
p3

48
) and Γ3 = (0, 0, 0,−n) . (B.3)

This configuration is discussed in some detail in [9] and an attractor flow tree is given in
figure B.1.

B

−1.5 −1.0 −0.5

J

0.5 1.0 1.5

2.5

2.0

1.5

1.0

0.5

Figure B.1: Attractor flow for the charges Γ1 = (1, 1, 1/2, 1/6), Γ2 = (−1, 1,−1/2, 1/6) and
Γ3 = (0, 0, 0,−1/100). The attractor point for Γ1 is the box on the B-axis on the left, that for Γ2

the one on the right. The attractor point for Γ3 lies at infinite J .

In this figure B.1 the green line is a wall of marginal stability for the charges Γ2 and
Γ1 + Γ3. More precisely on this line Im(Z̄2Z1+3) = 0. As the intersection product

194



Appendix B - Marginal vs threshold stability

〈Γ2,Γ1 + Γ3〉 = p3

6 − n is non-vanishing this is thus a wall of marginal stability in our
refined sense. In this same example the J-axis, i.e. B = 0, is a wall of threshold stability
for the charges Γ1 + Γ2 and Γ3, i.e. Im(Z̄1+2Z3) = 0 at B = 0 and 〈Γ1 + Γ2,Γ3〉 = 0.
We will now look at the behavior of the split flow and the solution space in approaching
this wall of marginal or threshold stability respectively. In both cases we start from the
attractor flow depicted in figure B.1, which has its starting point at B = −1 and J = 9/4.
First we will discuss what happens while we keep B fixed and lower J thus approaching
the wall of marginal stability discussed above. Secondly we will see what happens when
one keeps J fixed but movesB towards positive values thus crossing the wall of threshold
stability at B = 0 pointed to above.

Starting at a negative value for the B-field modulus and a large enough Kähler modulus
a split flow (Γ2, (Γ1,Γ3)) exists and in spacetime this corresponds to a supergravity so-
lution corresponding to the D0 “orbiting” the D6 which then together bind to the D6, see
figure B.2 (A). We can now see what happens in case we start moving the starting point
of the attractor flow tree. We keep the value of the B-field fixed and lower the Kähler
modulus towards zero. In this way we will approach the wall of marginal stability for the
charges Γ2 and Γ1 + Γ3, the green line in figure B.1. Approaching this wall corresponds
to the (Γ1,Γ3) cluster being forced further and further away from the Γ2 center. A plot of
the solution space for values of the moduli closer and closer to marginal stability is given
in figure B.2 (A) through (C). The centers are forced infinitely far apart and decay the
moment the starting point coincides with the wall of marginal stability and the solution
ceases to exist once the wall has been crossed. This is the familiar decay of multicenter
bound states when crossing a wall of marginal stability. Also microscopically the bound
state disappears out of the spectrum and the BPS index makes a jump. The way this is
manifested in the split flow picture is by the fact that the split flow tree only exists on one
side of the wall of marginal stability.

In case of crossing a wall of threshold stability the physics is different. We can start from
the same initial configuration but now deform it in a different way. We now move the
starting point in moduli space towards the J-axis along a trajectory of constant J . We have
plotted the solution space along this trajectory in figure B.3 (A) through (E). Approaching
the wall of threshold stabilityB = 0, the orbit of the D0 around the D6 becomes more and
more deformed and it expands. Once we reach threshold stability the D0 is equally bound
to the D6 as to the D6 and can sit anywhere on the equidistant plane between D6 and
D6. Note that this plane is non-compact, i.e. the D0 can move arbitrarily far away along
this plane, while the orbits before were large but always compact. Continuing further to
positive values for B the orbit of the D0 becomes compact again but has now become
an orbit around the D6. This corresponds to the fact that the split flow has now changed
topology from (Γ2, (Γ1,Γ3)) to (Γ1, (Γ2,Γ3)). In this process no states have decayed and
no solutions have been lost.
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This example illustrates the general behavior that we can summarize as follows:

• A wall of marginal stability (in the refined sense) corresponds to a boundary be-
tween a region in moduli space where a certain multicenter solution exists and a
region where it no longer exists. In the supergravity picture the disappearance of
the bound state happens as a number of centers separate further and further towards
infinite separation at marginal stability. Crossing a wall of marginal stability corre-
sponds to a decay of states and a jump in the index counting these states.

• A wall of threshold stability corresponds to a boundary between two regions of
different ’topology’. This holds both on the level of the flow tree that changes
topology, i.e. the type and order of splits changes, as on the level of the solution
space that changes topology as a manifold. This change of topology of the solution
manifold can happen as exactly at threshold stability the solution space becomes
non compact. Note that when crossing a wall of threshold stability no states decay,
they only change character.

So at threshold stability some centers are allowed to move of to infinity but it is also possi-
ble for them to sit at finite distance to the other centers; they are not forced to infinite sep-
aration as is the case for marginal stability. Although the solution space is non-compact,
it turns out to have finite symplectic volume when considered as a phase space [4]. One
can check explicitly that this number of states equals that on both sides of the wall of
threshold stability and so crossing a wall of threshold stability does not correspond to a
decay of states — rather, at the wall, the BPS states exist as bound states at threshold
(hence the name), similar to D0-branes in type IIA string theory in flat space.
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Figure B.2: On the left the attractor flows for the charges of fig. B.1 are shown for different values
of the starting moduli. On the right the corresponding solution moduli space is plotted. The red
points are the positions of Γ1 (right) and Γ2 (left). In blue are the possible positions of Γ3. Note
the difference in the scale in the last plot, this as once we approach marginal stability the relative
position of the centers diverges.
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Figure B.3: Here we show the same type of plots as in fig. B.2, but now taking the starting point
through a wall of threshold stability, in this case the J-axis.
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RESCALED SOLUTIONS

In this appendix we provide the explicit form of the multicentered solutions in rescaled
coordinates xi and in terms of the rescaled harmonics H (see Section 3.2.1),

H =
∑
a

Γa√
R |x− xa|

− 2`3/25 Im(e−iαΩ)|∞ . (C.1)

The rescaled solution is given by

ds2
4d = − 1

Σ
(dt+

ω√
R

)2 + Σ dxidxi ,

A0 =
−L
Σ2

(√
Rdt+ ω

)
+ ω0 , (C.2)

AA =
HAL−Q3/2yA

H0Σ2

(√
Rdt+ ω

)
+Ad ,

tA = BA + i JA =
HA

H0
+
yA

Q
3
2

(
iΣ− L

H0

)
.
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These relate to the other rescaled functions appearing in (C.2) through:

dω0 =
√
R ? dH0 ,

dAAd =
√
R ? dHA ,

?dω =
√
R 〈dH, ,H〉

Σ =

√
Q3 − L2

(H0)2
, (C.3)

L = H0(H0)2 +
1
3
DABCHAHBHC − HAHAH0 ,

Q3 = (
1
3
DABCy

AyByC)2 ,

DABCy
AyB = −2HCH0 +DABCHAHB .

Of course the form of the rescaled consistency condition doesn’t change:

〈H,Γs〉|x=xs = 0 . (C.4)

The rescaled 5d lift is

1
`25
ds2

5d = Ṽ
2/3
IIA

(
dψ +A0

)2
+
R

2
Ṽ
−1/3
IIA ds2

4D ,

AA5d = AA +BA
(
dψ +A0

)
, (C.5)

Y A = Ṽ
−1/3
IIA JA , ṼIIA =

DABC

6
JAJBJC =

1
2

(
Σ
Q

)3

.

The more explicit form of the five dimensional metric becomes in terms of the rescaled
variables

1
`25
ds2

5d = 2−2/3Q−2

[
−(H0)2(

√
Rdt+ ω)2 − 2L(

√
Rdt+ ω)(dψ + ω0)

+Σ2(dψ + ω0)2

]
+ 2−2/3RQdxidxi . (C.6)
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APPENDIX D

GAUGE FIELD CONTRIBUTION

TO CONSERVED CHARGES

In this appendix we give some more detail concerning the contribution of the various
gauge fields to the conserved boundary charges in the decoupled solutions of Chapter
3. The five dimensional N=1 supergravity theory of which our asymptotic AdS3×S2

configurations are solutions has b2 U(1) vectorfields, where b2 is the second Betti number
of the Calabi-Yau we compactified on. After reduction over the asymptotic two-sphere
we end up with an additional SU(2) gauge field as will be explained in some detail below.
Analyzing how the action on the boundary of AdS varies with respect to these gauge fields
and the metric gives the conserved currents of the boundary theory that can be identified
with a 2d CFT.

Before doing this analysis for our solutions we can avoid some work by considering the
behavior of a general theory near an asymptotic AdS3 boundary. As in (3.77) we can, in
general, write an asymptotic AdS3 metric as

ds2
3d = dη2 + (e

2η
RAdS g

(0)
ij + g

(2)
ij )duiduj , (D.1)

where the boundary is at η =∞ and g(0)
ij is the metric on the boundary. A generic action

for a gauge field in 3 dimensions has the following form

S = a

∫
Tr(F ∧ ?F ) + b

∫
Tr(A ∧ F +

2
3
A ∧A ∧A) , (D.2)

with a and b some coupling constants. Now one should remark that due to the appearance
of the metric in the first term it decreases as e−η near the boundary while the second
term is purely topological and will thus dominate near the boundary. This implies that
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Appendix D - Gauge field contribution to conserved charges

to calculate the boundary charges we only need to keep track of the topological Chern-
Simons part of the gauge field action. In the following section D.1 we calculate these
3d Chern-Simons terms explicitly for the case we are concerned with. In section D.2
we quickly review the general idea behind the calculation of the boundary charges from
Chern-Simons theory and in D.3 and D.4 we calculate these for our solutions.

D.1 REDUCTION OF THE CHERN-SIMONS TERM

The three dimensional Chern-Simons term is a reduction over the sphere of the Chern-
Simons term of five dimensional N=1 supergravity, which itself has its origin in such a
topological term in the M-theory action. Starting from the Chern-Simons part of the 11-
dimensional supergravity action and reducing over a CY3, one gets the following action
in 5-dimensions (in Euclidean signature)

ICS =
i

192π2

∫
DABCA

A ∧ FB ∧ FC . (D.3)

The ansatz for the gauge fieldAA to further reduce to 3 dimensions is given by the asymp-
totic form found in (3.73). So we propose as our general reduction ansatz a field strength
of the form

FA =
1
2
pAe2 + dCA , (D.4)

whereCA is a one-form on AdS3. The two-from e2 is known in the literature as the global
angular 2-form [181], [182], [183]; it is the generalisation of the standard volume of the
sphere to an S2 fibration and is defined as follows:

e2 = εijk(Dyi ∧Dyj − F̃ ij)yk ,
ds2 = ds2

AdS3
+

1
l2

(dyi − Ãijyj)(dyi − Ãikyk) , (D.5)

Dyi = dyi − Ãijyj ,
F̃ ij = dÃij − Ãik ∧ Ãkj .

Summation over repeated indices is assumed and the yi are the embedding coordinates of
S2 in flat R3, i.e. yiyi = 1. The Ã are the SU(2) gauge fields coming from the reduction
of the metric over the S2. Keep in mind that Ã depends only on the AdS3 coordinates.

To make the reduction a bit more tractable we introduce the following quantities

Ãij = εijkA
k, F ij = εijkF

k . (D.6)
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To get compact expressions, we will associate to every quantity with an SU(2) index i, j,
... the following notation

O =
i

2
Ojσj , (D.7)

where σj are the Pauli matrices satisfying

[σi, σj ] = 2iεijkσk, Tr(σiσj) = 2δij , Tr(σiσjσk) = 2iεijk . (D.8)

(D.9)

For example, one has

DY = dY + [Y ,A], F = dA−A ∧A ,
e2 = 4Tr [YdY ∧ dY + d(YA)] = 2[sin θdθ ∧ dφ− d(yiAi)] , (D.10)

where in the last equation we used spherical coordinates.

Plugging in eqn (D.3) and reducing over S2, bearing in mind that the only dependence on
S2 resides in e2, one ends up with the following Chern-Simons term on AdS3:

Igauge = − i

4π
p3

6

∫
Tr
(
A ∧ dA− 2

3
A ∧A ∧A

)
+

i

16π
DAB

∫
CA∧dCB . (D.11)

As one sees the A and C fields don’t interact with each other, this is as expected from
SU(2) gauge invariance. The SU(2) gauge field A does change under such a gauge trans-
formation but C does not. So one needs two A and one C for a consistent interaction
term. But TrA ∧A = 0. So there is no interaction term between A and C.

D.2 BOUNDARY CHARGES: LIGHTNING REVIEW

How in general the presence of Chern-Simons terms leads to contributions to both the
boundary SU(2) and U(1) currents and the boundary energy momentum tensor is very
nicely reviewed in [76] and so we will restrict ourselves to a short recapitulation here.
Essential in the derivation is the addition of extra boundary terms to the bulk Chern-
Simons action. Let’s take the simple example of single U(1) field:

S = ik

∫
AdS

A ∧ dA . (D.12)

We can make the gauge choice Aη = 0 and furthermore the equations of motion imply
thatA is a flat connection. As argued in [76] there are two reasons to include an additional
boundary term to this bulk action. The first is that imposing Dirichlet conditions for both
components of the gauge fields, i.e. δA|∂AdS = 0, is too strict. Second is that one
wants the current associated to the gauge field to be purely left or rightmoving. This
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last argument is natural from the canonical quantization of Chern-Simons theory [184].
Without the boundary term one has δS ∼ ∫

∂AdS
pδq + qδp, where p and q are both a

component of the boundary gauge field. Adding the correct boundary term cancels the
second term and gives the natural interpretation to p as the momentum conjugate to q.
The boundary term that does this is

Sbd = −|k|
2

∫
∂AdS

A ∧ ?A . (D.13)

The absolute value of k is needed to have positive energy as we will see shortly. Intro-
ducing the standard complex coordinates w, w̄ on the boundary cylinder and noting that
?dw = idw, ?dw̄ = −idw̄ one can verify that that once one adds the boundary term
indeed

δS =

{
2i
∫
∂AdS

(δAw)Aw̄ if k > 0 ,

2i
∫
∂AdS

(δAw̄)Aw if k < 0 ,
(D.14)

where we have assumed the bulk fields to be on shell. Now we can impose the Dirichlet
boundary conditions δAw = 0 and leave δAw̄ arbitrary in case k > 0 and vice versa if
k < 0. The addition of this boundary term influences the boundary currents; these are
defined as

δS =
∫
∂AdS

√
g(0)(

i

2π
J iδAi +

1
2
Tijδg

ij
(0)) , (D.15)

so we sees that e.g. the contribution to the energy momentum tensor comes completely
from the boundary term as the bulk term is purely topological. It is now easy to calculate
these currents:

Tww =
|k|
2
AwAw , Tww̄ = 0 , Tw̄w̄ =

|k|
2
Aw̄Aw̄ ,

Jw =

{
0 if k > 0 ,

2πAw if k < 0 ,
(D.16)

Jw̄ =

{
2πAw̄ if k > 0 ,

0 if k < 0 .

Having reviewed the general philosophy we can now calculate the charges in our case of
interest. Note that the story generalizes straightforward to the non-abelian case [76].

D.3 THE U(1) PART

The U(1) part of the Chern-Simons term (D.11) is given by

i

16π
DAB

∫
CA ∧ dCB . (D.17)
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Due to the fact that DAB as a metric on H2(X) has a single positive eigenvector and
b2 − 1 negative ones (see e.g. [27]) we have to treat the two cases slightly differently (see
the discussion above). The projectors to the positive and negative eigenspaces are

(P+)AB =
1
p3
pADBC p

C , (P−)AB = δAB − (P+)AB , (D.18)

which gives

CA+ =
1
p3
pADBC p

B CC =
1
p3

(pBqB) pA dψ =
2
p3

(pBqB) pA dw, (D.19)

CA− =
(
DAB − 1

p3
pB pA

)
qB dψ = 2

(
DAB − 1

p3
pB pA

)
qB dw ,

where we used the asymptotic from of our gauge field, eqn. (3.73).

As explained in the previous section, once we add the correct boundary term we have the
following boundary conditions left δC+A

w = 0 and δC−Aw̄ = 0. So we have to choose a
fixed value for those gauge fields at the boundary. It turns out that the correct choice is
C+A
w = 0 and C−Aw̄ = 0.

However our asymptotic gauge field (3.73) doesn’t satisfy this boundary condition as one
can see from (D.19). This is however easily corrected by the following gauge transforma-
tion

CA −→ CA − 4
R

pBqB
p3

pA dt ,

which gives

CA+ = 2
1
p3
pB qB p

A dw̄ . (D.20)

Given this split into positive and negative modes one can now apply the general procedure
as reviewed in the previous section to find

Tw̄w̄ =
1

4π
1
p3

(pA qA)2 ,

Tww =
1

4π
1
p3

[
(pA qA)2 − p3(qADABqB)

]
, (D.21)

J+
w̄ =

1
4

1
p3
pB qBp

A ,

J−w =
1
4

(
DAB − 1

p3
pB pA

)
qB .
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D.4 THE SU(2) PART

The SU(2) part of (D.11) is

− i

4π
p3

6

∫
Tr
(
A ∧ dA− 2

3
A ∧A ∧A

)
(D.22)

with k = 1
4πU

3 > 0. Let’s look at the value the SU(2) gauge fieldA takes in our solution.
The general sphere reduction Ansatz has the form

ds2 = gµνdx
µdxν + gαβ

(
dxα +AIµX

α
I dx

µ
) (
dxβ +AIνX

β
I dx

ν
)
, (D.23)

where the xµ are in our case the coordinates on AdS3 and the xα coordinates on the S2,
theXα

I ∂α are the killing vectors of the sphere. So using the form of the asymptotic metric
(3.72), we have

dθ2 + sin2 θ(dφ+
Rd0

2U3
dv)2 = (dθ+AIµX

θ
I dx

µ)2 + sin2 θ(dφ+AIµX
φ
I dx

µ)2 (D.24)

which then implies that the only non vanishing component of the gauge field is

A3
v =

Rd0

2U3
, (D.25)

or in the complex coordinates we introduced

A3
w̄ = −R

2d0

4U3
. (D.26)

And following the by now standard procedure its contribution to the energy momentum
tensor is

Tw̄w̄ =
R4

8π
(d0)2

16U3
. (D.27)

206



APPENDIX E

GRAVITATIONAL THROATS AND

CFT MASS GAPS

Having an infinitely deep throat in AdS spaces seems paradoxal as it suggests a contin-
uous spectrum on the CFT side, as one can make arbitrarily small energy excitations by
localizing them deep enough in the throat. In this appendix we would like to calculate the
correspondence between the size of the mass gap and a smoothly capped off throat in the
bulk (as we find in Section 5.1.2). We are going to approximate the finite throat by a toy
model metric with a throat that is crudely cut off at a scale ε and try to solve the scalar
wave equation in this background. Due to the technical difficulty of the full problem we
resort to matching the far (r � ε) and near (r � ε) region solutions. By doing so we are
able to relate the inverse of the depth of the throat to the mass gap on the CFT. The result
we find agrees with what one expects for CFT’s with a long string picture. We use this
result in section 5.1.2 to relate the cutoff scale ε we calculate there to the size of a mass
gap.

To get a reasonable guess to what the capped off geometry would be, we use that far away
from the tip of the throat the geometry looks like the one of a D4D2D0 BTZ black hole.
So our starting point is the following metric (see e.g. (3.94))

ds2 = − r
U
dtdψ +

1
4
r + C

U
dψ2 + U2 dr

2

r2
(E.1)

with C = S2

π2C3 some constant determined by the charges. Let us assume this metric to
be a good approximation for r ≥ ε, whereas we take

ds2 = − ε

U
dtdψ +

r2U2

ε2
dψ2 +

U2

ε2
dr2 (E.2)
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valid for r ≤ ε. We find the following radial equations for a free scalar field in these two
“sub-geometries”. In the outer region(

−∂r r
2

U2
∂r +m2 − ω2(C + r)U

r2
− 4Uωk

r

)
φ = 0 (E.3)

and in the inner region(
−∂r ε

2

U2
∂r +m2 − ω2r2U4

ε4
− 4Uωk

ε

)
φ = 0. (E.4)

Let us solve these equations. The first one has two solutions but only one is normalizable
at infinity. Define λ via

1
4
− λ2 = −m2U2 (E.5)

and also

ξ ≡ −iω
2

√
U

C
(ω + 4k) (E.6)

and the variable
z = 2ωi

√
UC/r (E.7)

then the field equation for φ becomes(
∂2
z +

(
−1

4
+
ξ

z
+

1
4 − λ2

z2

))
φ = 0 (E.8)

and the solution in the outer region in terms of Whittaker functions is (see e.g. eq (84) in
[185])

φ(z) = Mξ,λ(z) +M−ξ,λ(−z). (E.9)

These two terms are proportional to each other but this answer is the linear combination
which yields a real answer. The large z behavior is

φ(z) ∼ ez/2z−ξ

Γ( 1
2 + λ− ξ) + c.c. (E.10)

Next we turn to the cap region. Here, the field equation is usually solved in terms of
parabolic cylinder functions. We need the right linear combination which vanishes as
r → 0 to be smooth there. Define

a =
εm2

2U
− 2k, r = x

√
ε3

2ωU3
(E.11)

then the field equation is (∂2
y + y2

4 − a)φ = 0 and then we find the following large x
behavior of the solution (notice that r = ε is at large x)

φ ∼ exp(−ix2/4)xia−1/2 (−1)3/82−1/4−ia/2eaπ/4
√
π

Γ( 3
4 + ia

2 )
+ c.c. (E.12)
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Notice that the coefficients are important, only for this particular coefficient (and includ-
ing the c.c.) this function has the asymptotics of the regular solution.

In order to match the solutions (E.9) and (E.12) at r = ε, both the fields and their first
derivatives should match. A priori this need not be possible since we already have unique
solutions up to overall normalization. Since the overall normalization is not fixed, the
condition that we need to impose is

∂z

∂r

φ′(z)
φ(z)

∣∣∣∣
r=ε

=
∂x

∂r

φ′(x)
φ(x)

∣∣∣∣
r=ε

. (E.13)

In the small ε-limit the derivatives of the exponentials give the largest contributions to φ′

thus we only need to differentiate those.

To proceed, we define eiρ to be the phase of 1/Γ(1/2 +λ− ξ), and eiσ to be the phase of

(−1)3/82−1/4−ia/2eaπ/4
√
π

Γ( 3
4 + ia

2 )
. (E.14)

Then we find

φouter ∼ cos(
z

2i
− (ξ/i) log(z/i) + ρ),

φinner ∼ 1√
x

cos(−x
2

4
+ a log(x) + σ)

(E.15)

up to irrelevant overall normalizations. We now evaluate the matching condition keeping
only the leading terms for small ε, i.e. we only differentiate z/2i and −x2/4. After doing
this, various factors of ε and ω happily cancel and we are left with the matching condition
(evaluated at r = ε)

− U5/2

C1/2
tan(−x

2

4
+ a log(x) + σ) = tan(

z

2i
− (ξ/i) log(z/i) + ρ). (E.16)

As we increase ω, but keeping ω small enough so the matching strategy remains sensible,
the first tangent seems to oscillate most rapidly (as long as U3 > 2

√
UC, otherwise the

other tangent seems to win). Because of this oscillatory nature we get a gapped spectrum.
A crude estimate for the gap can therefore be made by looking at the values of ω for which
the first tangent makes a π period. Since x2/4, evaluated at r = ε, is ωU3/(2ε), we find
the following rough estimate:

∆ω ∼ 2επ
U3

. (E.17)

Since the eigenvalue of ∂t is like that of L0 + L̄0, without any further factors, we finally
conclude that

∆(L0 + L̄0) ∼ 2επ
U3

. (E.18)
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In case ε is of order 1 the gap in the conformal weights scales like 1/U3 which is pre-
cisely 1/c, with c the central charge of the dual CFT, as one would get from long string
fractionation. This suggests that long strings might play an important role in the physics
of four dimensional black holes and the dual N = (0, 4) SCFT.
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APPENDIX F

ASPECTS OF TORIC GEOMETRY

In this appendix we review some techniques in toric geometry that we use in Part I. By
construction we start in our description of solution space in the main text from a symplec-
tic point of view. It is however more convenient for geometrical quantization to have a
Kähler description, which can always be made in the case of a symplectic toric manifold.
The main formulas in this appendix are thus the expressions (F.5)-(F.6) for the complex
coordinates and Kähler potential in terms of the symplectic coordinates on a symplectic
toric manifold. Before giving these formulas we review some of the basics of symplectic
toric manifolds and symplectic toric orbifolds.

POLYTOPES

As is customary we will refer to the convex hull of a finite number of points in Rn as a
polytope. The boundary of such a polytope is itself the union of various lower dimensional
polytopes that are called faces. In particular a zero-dimensional face is called a vertex ,
a one-dimensional face an edge and a n − 1-dimensional face a facet. Note that we
can view any polytope as the intersection of a number of affine half spaces in Rn. A
polytope P can thus be uniquely characterized by a set of inequalities, namely ~x ∈ P iff
∀i = 1, . . . ,#(facets)

〈~ci, ~x〉 ≥ λi ⇔
∑
j

cijxj ≥ λi . (F.1)

Given a polytope we will call the set ~ci ∈ Zn, given by the inward pointing normals to
the various facets, the normal fan.

An n-dimensional polytope is called a Delzant polytope if it satisfies the following three
conditions
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• simplicity: in each vertex exactly n edges meet,

• rationality: each of the n edges that meet at the vertex p is of the form p+ tui with
t ∈ R+ and ui ∈ Zn,

• smoothness: for each vertex the ui form a Z-basis of Zn.

The polytope is called rational instead of Delzant if we replace in the third condition the
requirement of a Z-basis by that of a Q-basis.

SYMPLECTIC TORIC MANIFOLDS

Before giving the precise technical definition of a symplectic toric manifold, let us first
sketch the idea. Roughly speaking a toric manifold is a Tn fibration over a given n-
dimensional polytope, such that at each facet a single U(1) inside the Tn shrinks to zero
size. On the intersections of the different facets multiple U(1)’s collapse, e.g. at the
vertices all circles have shrunk. On the interior of the polytope the toric manifold is simply
of the form P ◦ × Tn and the full toric manifold is the compactification of this space. On
the interior there is thus a standard set of coordinates of the form (xi, θi) with xi ∈ P ◦
and θi ∈ T and the manifold comes with a standard symplectic form Ω =

∑
i dxi∧dθi. It

is of course rather non-trivial that this manifold can be smoothly compactified, but when
the polytope is Delzant this is the case. Let us now state the above ideas more precisely.

A symplectic toric manifold is a compact connected 2n-dimensional symplectic manifold
(M,Ω) that allows an effective Hamiltonian action of an n-dimensional torus Tn. Re-
member that the action of a Lie group on a symplectic manifold is called Hamiltonian if
there exists a moment map µ from the manifold to the dual Lie algebra that satisfies

d〈µ(p), X〉 = Ω(·, X̃) , (F.2)

with p ∈ M , X a generator of the Lie algebra and X̃ the corresponding vector field.
Furthermore the moment map should be equivariant with respect to the group action, i.e.
µ(g(p)) = Ad∗g ◦ µ(p), with Ad∗ the coadjoint representation.

By a theorem of Delzant [186] every symplectic toric manifold is uniquely characterized
by a Delzant polytope. Given a symplectic toric manifold the corresponding polytope is
given by the image of the moment map. To conversely reconstruct the manifold from the
polytope is slightly more involved and relies on the technique of symplectic reduction;
we refer readers interested in further details to e.g. [187]. Note that the normal fan to
the polytope can be interpreted as a fan, which is used to characterize toric varieties in
algebraic geometry, see e.g. [188] for a nice introduction. This can be useful to identify
a symplectic manifold given by a polytope and furthermore provides an embedding in
projective space.
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KÄHLER TORIC MANIFOLDS

What will be of use in this thesis is that Delzant’s construction also associates a set of
canonical complex coordinates to every symplectic toric manifold, effectively implying
that every closed symplectic toric manifold is actually a Kähler manifold. As throughout
Part I we will make use of the explicit construction of these complex coordinates in terms
of the symplectic coordinates (xi, θi), we will detail the general procedure here, be it
without proofs or motivation. Those can be found in references [92, 93].

As mentioned above (F.1) any polytope P is characterized by a set of inequalities. Given
this combinatorial data of the polytope one can define associated functions

li(x) =
∑
j

cijxj − λi , l∞ =
∑
i,j

cijxj , (F.3)

which are everywhere positive on P . Using these functions one can define a ’potential’
as follows

g(x) =
1
2

∑
i

li(x) log li(x) . (F.4)

In case the polytope is Delzant, it is shown in [92] that this potential defines good complex
coordinates on the toric manifold as follows

zi = exp
(

∂

∂xi
g(x) + iθi

)
. (F.5)

Furthermore a Kähler potential for the corresponding Kähler metric Ω(·, J ·) is given by

K =
∑
i

λi log li(x) + l∞ . (F.6)

It follows from the construction [92, 93] thatK is the Legendre transform of g, i.e. K(z) =
∂g
∂xx− g(x). This can be used to derive that

det ∂i∂j̄K = exp

(∑
i

∂g

∂xi

)
det

∂2g

∂xi∂xj
, (F.7)

which will be a useful formula in the bulk of the thesis.

TORIC ORBIFOLDS

As we also consider quotients of symplectic toric manifolds by a permutation group in
this thesis, it will be necessary to introduce the generalization of the above construction
of complex coordinates to that of symplectic toric orbifolds. As in the manifold case, a
symplectic toric orbifold is a 2n-dimensional symplectic orbifold that allows a Hamil-
tonian Tn action. As was shown in [189] such symplectic toric orbifolds are in one to
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one correspondence with labeled rational polytopes. Such a labeled rational polytope is
nothing but a rational polytope with a natural number attached to each facet. The label
mi denotes that the i’th facet is a Zmi singularity. Again the explicit construction of the
toric orbifold from the labeled polytope is rather involved and we refer those who are
interested to [189]. The labeled polytope corresponding to the quotient of a symplectic
toric manifold by a group respecting the torus action is, however, easy to find. It is given
by the quotient of the original polytope and attaching a label m to each facet that is a Zm
fixed point under the group action.

Given a labeled rational polytope one can construct complex coordinates on the toric
orbifold in a way similar to the manifold case. The functions li from (F.3) are generalized
to [189, 190]

li(x) = mi

∑
j

cijxj − λi
 , l∞ =

∑
i,j

micijxj , (F.8)

where mi is the label attached to the facet orthogonal to the vector ~ci. The construction
of the complex coordinates and the kähler potential from these functions then carries on
analogously to (F.5)-(F.6).
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APPENDIX G

NUMBER OF STATES AS

DISCRETE POINTS INSIDE THE

POLYTOPE

In this appendix we show that for rational polytopes the number of normalizable modes
can simply be computed from the ’discretized volume’ of the polytope. This can be useful
as it saves time in cases where we are only interested in the number of states and not in
the explicit wave functions.

Let us very shortly review the description we use for polytopes. For the full definition and
the algorithms and formulae to calculate the associated complex coordinates and wave-
functions we refer the reader to appendix F.

Recall that we can think of a toric polytope as a region in Rn, parameterized by coordi-
nates xi, on which a certain set of first order polynomials are positive. That is, given such
a set of m first order functions:

lj(x) =
n∑
i=1

cijx
i + λj (G.1)

the polytope is defined as Pl = {x ∈ Rn|lj(x) ≥ 0}. A few remarks are in order:

• It follows from this definition that the polytope is an intersection of m half spaces.

• Note that from that interpretation it follows that m ≥ 2 + n to have a compact
polytope, so cij is never a square matrix! (this has some consequences later)
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• Note that cij here is actually the transpose of the one defined in appendix F. This
because we now use the more natural definition cij = ∂lj

∂xi .

• Finally note that c and λ cannot be completely arbitrary (i.e. not every intersection
of half planes gives a sensible polytope).

Example For the readers convenience we will give the defining functions corresponding
to the dipole halos of equations (6.10)-(6.11). Let us first define a coordinate system using
the n + 1 coordinates (y0, y1, . . . , yn) corresponding to (6.9) with y0 = y.. To encode
these constraints in a polytope we require an (n+ 1)× (2n+ 3) cij matrix which which
we will think of instead as 2n + 3 vectors of length n + 1 given below. In addition we
will also need a 2n+ 3-component vector λ with components given below as well.

~c0 = (−1, . . . ,−1) λ0 = I/2

~c1 = (1,−1, . . . , 1) λ1 = I/2

~c2a = (0, . . . ,−1, . . . , 0) λ2a = qa (G.2)

~c2a+1 = (0, . . . , 1, . . . , 0) λ2a+1 = 0

~c2n+2 = (0,−1, . . . ,−1) λ2n+2 = I/2

The ~c2a and ~c2a+1 are non-zero only on the (a+ 1)’th entry (recall that a = 1, . . . , n and
our coordinates are labelled from 0, . . . , n). Note that the indices on ~c correspond to the
labels j in (G.1). With this in mind the reader can check that the 2n+ 3 equations defined
by substituting the ~c and λ above into (G.1) reproduce (6.10)-(6.11). The corresponding
polytopes are shown in figure 6.2.

As discussed in the Appendix F and references therein, all relevant functions (i.e. complex
coordinates, Kähler potential, etc.) are defined in terms of the c and λ. Hence we can write
the norm square of the wavefunction ψa =

∏
i(z

i)(ai), with a ∈ Zn and the zi appropriate
complex coordinates on the toric manifold, in terms of these objects:

|ψa|2 ∼ e
P
i ∂ig

√
det ∂i∂jg e−K

∏
i

|zi|(2ai)

∼ e
P
i ∂ig

√
det ∂i∂jg

m∏
j=1

l
(
Pn
i=1 cija

i+λj)
j (G.3)

∼
m∏
j=1

l
(Pn

i=1 cij(ai+1/2)+λj−1/2)
j (G.4)

where ∼ indicates proportionality up to constants and functions that have no poles and
also contain no overall lj factors. The first step is rather straightforward while the last
step is more subtle to prove so that proof is relegated to a separate subsection below.
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Let us first focus on the interpretation of the above result. We see that, without taking into
account the fermionic contribution e

P
i ∂ig

√
det ∂i∂jg, normalizability of the wavefunc-

tions requires the a ∈ Zn to satisfy

n∑
i=1

cija
i + λj > −1 (G.5)

while, when also including those necessary fermionic corrections, we find the final precise
condition is

n∑
i=1

cij(ai + 1/2) + λj − 1/2 > −1 (G.6)

Up to some shifts these equations essentially tell us that a has to lie “inside” the polytope,
making the number of states essentially the discretized volume of the polytope, i.e. the
volume dived in Planck size cells. Furthermore, as we discuss in detail in the specific case
studied in the main text, the shifts of 1/2 introduced by taking into account the fermionic
nature of the wavefunctions has a very natural physical interpretation. As was discussed
in Part I, the quantization of the polytopes roughly corresponds to quantizing the angular
momentum of the system. That the lowest energy state corresponds to a specific alignment
of the spins of the constituents then leads to various half integer shifts of the quantum
angular momentum, giving rise to the 1/2’s in (G.6).

Plugging the ~c’s and λ’s defined in (G.2) into eqn. (G.6) should allow the reader to
reproduce the constraints found in (6.13).

G.1 EVALUATION OF det ∂i∂jg

In this section we give a detailed description of the steps which lead from (G.3) to (G.4).
These steps are based on an intermediate result, which states that

det ∂i∂jg =

 m∏
j=1

1
lj

A(l) , (G.7)

where, as we will show, A(l) is a homogeneous polynomial of order m− n in the lj with
such coefficients that for no rational polytopes will it contain an overall lj factor.

We will prove this in two steps. First we will evaluate the relevant determinant to show
the form (G.7) explicitly. In the second step we then use this explicit form of A(l) to
argue its relevant properties, namely that it has no poles nor contains an overall lj factor.
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Calculating the determinant It is straightforward to check that

∂i∂jg =
1
2

m∑
k=1

cikcjk
lk

=
1
2
(
C · L−1 · CT )

ij
(G.8)

with Cij = cij (recall that dimC = n×m) and Lij = ljδij an m×m matrix. So indeed
CL−1CT is a square n × n matrix and the determinant makes sense. Sadly the factors
inside are not square matrices, making the evaluation a bit less straightforward (we are
not interested in constant factors so we will forget about the 1/2 in the following).

Using the basic definition of the determinant and using some symmetry properties it is
not too difficult, though somewhat tedious, to show that

det
(
CL−1CT

)
=

 m∏
j=1

l−1
j

(∑
S

lS(detCS)2

)
. (G.9)

The second factor might need some explanation as it uses some unconventional notation.
The sum is over all different subsets S ⊂ {1, . . . ,m} with m − n elements, i.e. #S =
m − n. Furthermore we use the shorthand lS :=

∏
j∈S lj . Finally there is the definition

of the n × n matrix CS . Note that C was an n × m matrix, CS is now defined as the
matrix C but with the i1, . . . , im−n’th columns removed where S = {i1, . . . , im−n}.

Properties ofA(l) We found the result (G.7) with the explicit formA(l) =
∑
S l

S(detCS)2.
We now want to show that A(l) has no poles nor contains an overall lj factor. As is clear
from its definition A(l) is a homogeneous polynomial of order m − n in the lj . As the
lj themselves are simply first order in the xi, the polynomial A has no poles in the xi.
The second point, that there is no overall lj factor, is more subtle to see. To show it, pick
a particular element j ∈ 1, . . . ,m. By relabeling we can just take j = 1. Now from
its definition it is clear that A(l) only has an overall l1 factor if the coefficients of all the
terms lS̃ , with S̃ such that 1 /∈ S̃, vanish.

We can now easily show that this never happens using some basic properties of C and
CS̃ . We will argue that there is always at least one S̃? among the S̃ for which detCS̃?
doesn’t vanish. By the definition of the CS , all the CS̃ include the first column of C,
given by ci1. Furthermore let us go go back to the definition of C and the cij . Note that
the original definition of cij was that it consisted of the n components of the ~cj , which
were the normals to the m facets of the polytope. The statement ∃S̃? | detCS̃? 6= 0 thus
translates to: ”there exists a set of (n− 1) vectors among the m different normals ~cj that
together with ~c1 form a basis of Rn ”. We will use the notation ~ca for these n vectors and
now show their existence.

Pick one of the vertices that is a corner of the facet orthogonal to ~c1 and let’s call it v1. As
the polytopes of our interest are rational there are exactly n edges ~ei meeting in the vertex
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v1, that furthermore form a basis of Rn. Now the different facets meeting in v1 each lie
in a subspace generated by a set of (n− 1) of the n edges ei 1. So we find n facets that all
meet in the vertex v1. Let us label the n normals to these facets as ~ca, by their definition
they can be labelled such that they satisfy ~ei ·~ca ∼ δi,j . So we see that the ~ca form a basis
of Rn that includes ~c1, which concludes the proof, i.e. we now know that detCS̃? 6= 0
for (CS̃?)ia = cia.

1Note that all facets are of this form by the definition of the edges. That furthermore each of the n com-
binations of n − 1 linearly independent edges generates a facet is maybe less straightforward and actually not
true for a generic non-rational polytope. However here the fact that for each subspace generated by (n-1) of the
n-edges there is only one remaining edge not contained in that subset, implies that the subspace must be on the
boundary of the polytope and hence generate a facet.
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APPENDIX H

G2 CONVENTIONS

In this section we will detail the conventions used in dealing with the associative 3-form
and coassociative 4-form on a 7-manifold with G2 holonomy that we will use in Part II of
this thesis. We adopt the conventions of [12] since we use many results from that paper.
More details and original references for G2 holonomy manifolds can be found in that
paper.

Although we will generally not have need for the explicit form of φ or ∗φ we provide a
definition in terms of local coordinates, using the conventions of [12]

φ = ω123 + ω1 ∧ (ω45 + ω67) + ω2 ∧ (ω46 − ω57)− ω3 ∧ (ω47 + ω56) , (H.1)

∗φ = ω4567 + ω23 ∧ (ω67 + ω45) + ω13 ∧ (ω57 − ω46)− ω12 ∧ (ω56 + ω47) , (H.2)

where ωi are vielbeins and ωij = ωi ∧ ωj etc.

We also reproduce some identities for φ and ∗φ from [12] that we will have need of. The
precise factors in these identities depends on a choice of conventions and normalizations
(e.g. their normalizations are related to those used in [139] by φhere

µνρ = 1
3!φ

there
MNP and

∗φhere
µνρσ = 1

4!∗φthere
MNPQ).
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φµαβφαβν =
1
6
δµν ,

(∗φ)µναβφαβγ =
1
6
φ γ
µν ,

φµνγφ
γαβ =

2
3

(∗φ) αβ
µν +

1
18
δα[µδ

β
ν] ,

(∗φ)µνγρ(∗φ)γραβ =
1
12

(∗φ) αβ
µν +

1
72
δα[µδ

β
ν] .

(H.3)

The exterior algebra on aG2 manifold can be decomposed into irreducible representations
of G2. The decomposition is given as follows

Λ0 = Λ0
1 , Λ1 = Λ1

7 ,

Λ2 = Λ2
7 ⊕ Λ2

14 , Λ3 = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27 .

(H.4)

Subscripts here indicate the dimension of the irreducible representation of G2. The de-
composition of higher degree forms follows by Hodge duality ∗Λin = Λ7−i

n .

We will frequently have use for the explicit form of the projectors onto these representa-
tions

(π2
7) αβ
µν = 6φµνγφγαβ ,

(π2
14) αβ

µν = −4(∗φ) αβ
µν +

2
3
δα[µδ

β
ν] ,

(π3
1) αβγ
µνρ =

1
7
φµνρφ

αβγ .

(H.5)

When a G2 manifold has the structure CY3×S1, there is a decomposition of φ and ∗φ in
terms of ρ = Re(eiαΩ), ρ̂ = Im(eiαΩ) and k (where Ω is the holomorphic 3-form and
k is the Kähler form on CY3). Let η be the volume form on S1 such that

∫
S1 η = 2πR,

then one has the decompositions

φ = ρ+ k ∧ η ,
∗φ = ρ̂ ∧ η +

1
2
k ∧ k .

(H.6)

Note that the arbitrary phase α implies that the real/imaginary part of Ω is not canonically
related to φ or ∗φ. In Chapter 8 we frequently take α = 0 but it is possible to have a CY3

sitting in a G2 with a different alignment of its complex structure.
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SUMMARY

In this thesis we review two independent lines of research directed towards helping us
construct a theory of “Quantum Gravity”. While, in string/M-theory, we already enjoy a
potential theory of this type there remain many unanswered foundational questions and
missing precepts. By probing the consistency of this theory and exploring paradoxical
phenomena we can hope to make progress in this difficult task.

BACKGROUND

By “Quantum Gravity” we refer to the reconciliation of Einstein’s theory of general rel-
ativity (GR), describing the gravitational interaction of massive objects and spacetime,
and the precepts of quantum mechanics (QM). The latter generally has no observable
consequences for large objects where GR is important, whereas the former is essentially
negligible for light objects such as subatomic particles, where the effects of quantum me-
chanics are most observable. As such there has been no experimental testing grounds in
which these theories could be simultaneously checked. On the other hand, theoretically,
it is quite possible to have a very massive yet very small objects and nature provides can-
didates in the form of black holes. For such objects both these theories must be applied
simultaneously and the difficulty of this problem has challenged theoretical physicists for
several decades.

Consistency provides relatively strong constraints on such a theory and the initial chal-
lenge is simply to formulate a theory that can consistently incorporate the precepts of
general relativity and quantum mechanics even in the most basic way. String/M-theory is
a leading candidate theory of “Quantum Gravity” that does exactly this (and significantly
more). A disadvantage of string theory, however, is that it is formulated “perturbatively”
rather than being defined from the ground up. Our understanding of the theory has come
by constructing several different pieces and seeing how they fit together to give a tantaliz-
ing glimpse into an exciting and beautiful theory. We are still searching, however, for the
foundation stones upon which all these pieces lie.
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INFORMATION LOSS

Given a framework for quantum gravity such as string theory it becomes possible to more
extensively check it against constraints coming from well-known physics.

For instance, by applying experimentally proven techniques from quantum field theory
Stephen Hawking was able to demonstrate that black holes should radiate away their mass
in the form of thermal radiation. Before explaining this let us recall that a black hole is
produced when a star or other large object collapses due to its own gravitational pressure
into something that just gets smaller and smaller. At some point the density of matter and
energy at its core become so high that our existing description of physics breaks down:
this region is termed the singularity and is the heart of the black hole. Indeed it is the
physics of regions such as the singularity that quantum gravity is intended to describe.
This is because at the singularity a huge amount of matter and energy are in a region that
is subatomic and both quantum mechanics and gravity are relevant. An important property
of such regions is that spacetime becomes very strongly “curved” due to the high density
of matter and energy.

Surrounding the singularity, possibly quite far from it, is the so-called “Event Horizon”
or just horizon. This is a fictitious envelope (there is no physical object making up the
horizon; it simply delimits a sphere of fixed distance from the singularity) from within
which nothing can escape. This is the origin of the infamous “blackness” of a black hole.
However, because the horizon region can be quite far from the singularity (kilometers or
even light-years depending on the mass of the black hole) it is just a regular region of
spacetime and our physical theories should accurately describe what occurs in this region
(even without resorting to quantum gravity).

Using this fact Hawking was able to demonstrate that in the vicinity of the black hole
horizon quantum fluctuations, of the sort well described by standard quantum mechanics,
would create pairs of correlated particles out of “nothing”. If one member of a pair should
fall into the black hole while the other escapes to infinity the black hole effectively losses
energy or mass and becomes smaller while simultaneously seeming to emit a particle.
This in itself is not a problem but recall that the in-falling and out-going particles are
correlated at their creation meaning that they contain information about each other. A
particular feature of quantum mechanics tells us that this correlation should persists even
as they are separated so the particles actually “know” about the state of the other (this is
a difficult concept that we cannot do justice to here; suffice to say the particles somehow
remain connected even though they can be very far apart). We are left with many particles
far away from the black hole correlated with many particles in the black hole. At the
same time, however, the black hole is losing its mass and, as a consequence, the horizon
is shrinking.

Ultimately, the black hole will have almost entirely disappeared yet we expect it to contain
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a lot of “information” about the particles it emitted that it should still be correlated with.
This is difficult to reconcile as the black hole can essentially entirely “evaporate” while
seeming to be correlated with a huge number of particles that it has emitted. Moreover it
should also contain information about all the matter that fell into it and since this matter
is localized at the singularity, far from the horizon, this information cannot be encoded in
the outgoing particles created near the horizon.

The above is one facet of what is referred to as the “Information Loss Paradox”. One
of the goals of this thesis is to contribute some insight into to how such a problem can
be resolved. Addressing the “Information Loss Paradox” will likely (and has already to
some degree) require us to re-examine our naive guess as to what quantum gravity really
is.

NON-PERTURBATIVE ASPECTS

A somewhat unrelated issue is the question of how the many parts of string theory fit
together to form a coherent theory. The current formulation of string theory is “perturba-
tive” meaning the theory can explain the dynamics of quantum gravity once we fix some
“background” data but does not provide a (direct) way of understanding the dynamics of
the “backgrounds” themselves. There are many indirect ways to do this, however, and,
taken as a whole, we have a picture of what the full version of the theory should look like.

To more fully flesh out what such a theory should be it is often possible to work with
“topological” versions of string theory which are vastly simplified versions of the theory
that nonetheless capture some of its essential character and can even address interesting
and difficult problems.

An important notion when considering such simplified theories is supersymmetry. This
is a potential symmetry of nature (which may well be observed at the upcoming LHC
experiment) that requires a very precise relationship between the different kinds of par-
ticles that exist and strongly constraints their interactions. Even if a given theory has
the capacity for a symmetry, however, it is not always realized by every configuration
allowed by this theory. A useful analogy here is a theory describing carbon atoms. When
freely moving as a gas they exhibit no preferred direction so enjoy, for example, a ro-
tational symmetry. When compressed, however, carbon atoms organize themselves into
a diamond which has a lattice structure singling out certain directions and breaking this
rotational symmetry. This is why diamonds can be cut only along particular planes.

The topological versions of string theory generally describes only the part of the theory
which enjoys this higher degree of (super)symmetry. While this is quite restrictive and is
not capable, even in principle, of reproducing the physics of our world it can nonetheless
teach us important conceptual lessons about the theory.
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RESULTS

To address the questions raised above we study two quite different systems. We first con-
sider four and five dimensional multicentered solutions. These are solutions to Einstein’s
equations (the defining equations of GR) describing different possible shapes of four and
five dimensional spacetimes. They can either describe single or multiple black holes or
even “smooth” configurations without black holes but that, far enough away, do look like
black holes. The main point is that the latter non-black hole configurations do not have
horizons or singularities like black holes so they are not subject to the same paradoxes
as black holes. A recent idea, entitled the fuzzball proposal posits that a black hole is
actually nothing more than an approximate description of such a smooth configuration or
even a quantum “average” over such solutions (or possibly solutions with more stringy
ingredients that nonetheless are horizon and singularity free).

If this is the case then information would not be lost because these objects would be-
have differently than black holes in subtle ways. For such effects to resolve the puzzle,
however, it is necessary for several important changes in our understanding of quantum
gravity. For instance, since Hawking’s computation involved only the area near the black
hole horizon, which is generally thought to be well described without needing to resort to
quantum gravity, it is assumed, by many, to be independent of the exact nature of quantum
gravity. In order for the putative description of the black hole in terms of some horizon-
free spacetime (or an average thereof) to actually resolve information loss the effects of
quantum gravity would have to extend all the way to the horizon. This is a rather dras-
tic change as it is usually believed that quantum gravity is only important in regions of
spacetime where space is very strongly curved, e.g. near the singularity of a black hole.
At the horizon, on the other hand, spacetime can be approximately flat, with a very weak
gravitational field, so if quantum gravity is important in this region we need to reexamine
our understanding of the latter.

Two important questions emerge in this context:

• Can quantum gravity effects be important, even in regions of spacetime which are
not strongly curved?

• What is the nature of the real black hole “geometry”? More specifically: is it a
quantum average over smooth spacetimes or a quantum average over spacetimes
which cannot be described by GR but require string theory to describe them?

The main results of Part I of this thesis concern precisely the above two questions.
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LARGE QUANTUM FLUCTUATIONS

In this thesis we study particular multicentered configurations of the sort described above
and make an important discovery. Because of the special properties of these spacetimes,
namely that they are supersymmetric, we can study how quantum mechanics effects them.
What we find is, surprisingly, that quantum effects are sometimes important even when
these spacetimes are not strongly curved and have no singularities.

What we find indeed is that some such spacetimes develop very deep “throats”: regions
where space is stretched and nearby objects effectively would be pulled inwards. These
spacetimes look very much like the region near the horizon of a black hole and indeed we
can find examples that approximate the latter to arbitrary accuracy. On the other hand,
these spacetimes never actually have horizons or singularities so, while they can be made
to look a lot like black holes, they avoid the problems of the latter. Thus such spacetimes
are ideal candidates for the objects that form the underlying description of a black hole.

At the same time, it is precisely for such spacetimes that we find that quantum gravity
effects become important even where one might naively have imagined they would not.
This is quite suggestive that such effects may be important in resolving the “Information
Loss Paradox”.

THE INCONSISTENCY OF GRAVITY

Our discovery above was really in the context of gravity. By restricting to a special class
of supersymmetric spacetimes in theories of gravity which are themselves supersymmetric
we managed to combine quantum mechanics and gravity and get reasonable results. This
large degree of symmetry allows us to go considerably further than is generally possible
when trying to combine gravity and quantum mechanics, even without the use of string
theory.

Within this context we can consider supersymmetric black holes (i.e. black holes that
themselves exhibit this symmetry) and attempt to address the question of whether such
supersymmetric black holes can be thought of as quantum “averages” of the supersym-
metric smooth spacetimes we describe above or if gravity itself is not sufficient and ad-
ditional stringy ingredients are necessary. We do precisely this and find that the smooth
gravitational spacetimes described above are not numerous enough to account for some
properties of the black hole (in particular, its entropy), strongly suggesting that additional,
stringy, ingredients are necessary.

This result is both technically and conceptually interesting. Technically it means that to
understand black holes better it is not sufficient to just work with gravity but we must also
understand the additional ingredients coming from string theory. Conceptually it suggests
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that gravity is not a complete theory in itself since additional “degrees of freedom” from
string theory are necessary to make the theory complete. An interesting aspect of this
is that gravity may then be seen as an emergent phenomena providing an “effective”
description of these hidden stringy degrees of freedom, a viewpoint for which there is
considerable evidence from many different sources. Alternatively, perhaps gravity is a
complete theory but then the way we have applied quantum mechanics to these spacetimes
was incorrect.

TOPOLOGICAL M VS. STRING THEORY

A final product of this thesis is an exploration of the relation between topological string
and M-theory. String theory is a theory that lives naturally in 10 dimensions but it is
believed to be an approximate description of a more complete theory mysteriously enti-
tled M-theory which is actually an 11 dimensional theory. To recover the 4 dimensions
of spacetime that we are familiar with (three spatial directions and one time direction)
it is necessary to posit that there are either 6 or 7 very small dimensions which are not
visible to our experiments because their small size is far beyond the resolution of cur-
rent technology. Consistency of string/M-theory constrains somewhat the shape of these
small dimensions and relates them to mathematically well studied manifolds (higher di-
mensional shapes, analogous to e.g. a two-dimensional sphere or torus). Calabi-Yau are
such six dimensional manifolds whereas G2 manifolds are seven dimensional manifolds
satisfying the necessary constraints of M-theory. Calabi-Yau can actually be embedded
within G2 manifolds in much the same way as a line (a 1-dimensional manifold) can be
embedded in a plane (a 2-dimensional manifold). This provides a link between string
and M-theory as we can think of string theory with a Calabi-Yau as an approximate de-
scription of M-theory with aG2 manifold that has that same Calabi-Yau embedded within
it.

Topological string theory, as mentioned before, is a simplified toy model of string theory
that captures mostly its supersymmetric aspects and, indeed, focuses on strings moving
in a Calabi-Yau manifold. This is a subject that has been studied at great length and has
generated a wealth of interesting results for physicists and mathematicians alike. There
are two kinds of topological string theories on Calabi-Yau manifolds: the A- and the
B-model. In fact, these mimic two facets of ordinary (non-topological) string theory
known as type IIA and IIB string theory, which are believed to be non-perturbatively
related. An immediate question that interests us is if the A- and B-model are related non-
perturbatively and, if so, what can this tell us about the fundamental formulation of the
theory? Recall that string theory, even its topological version, is formulated against fixed
“backgrounds” and we would like to find a (non-perturbative) theory that also encodes the
dynamics of these backgrounds. There is evidence that the A- and B-models are nothing
but separate aspects of this single non-perturbative theory which we might optimistically

242



Summary

label “topological M-theory” much as IIA and IIB string theory are believed to be different
aspects of regular M-theory.

In order to study the subtle relationship between M-theory and string theory we explore
the relationship between the simplified “topological” versions of these theories. M-theory
is actually a theory of membranes, not strings, but we prefer to study strings moving in
a G2 manifold as there are technical reasons why this might be related to membranes on
the same manifold. Moreover, the study of membranes on such manifolds has proven
technically quite difficult.

We identify the various kinds of “branes” (higher dimensional objects ubiquitous in M/string
theory) allowed by topological strings on G2 manifolds and the theories describing their
dynamics. In certain cases these theories are very computationally tractable and one can
hope to gain a great amount of information about the topological G2 string itself from the
fact that its related to these brane theories. While we lay the foundation for this we do not
pursue it further here though it is certainly an interesting avenue for future research.

We also relate the brane theories we find on G2 manifolds to brane theories derived from
topological strings on a Calabi-Yau embedded on G2 manifolds. With this we find con-
nections between the topologicalG2 theory and both the A- and B-model on Calabi-Yaus.
This hints that there is indeed a unification of the two six-dimensional theories within the
seven-dimensional theory. Unfortunately topological string theory on G2 manifolds is
still in its infancy and much work is required developing the latter before we can more
fully test how it integrates the A- and B-model and what their relationship might be. Do-
ing so may help shed light on the different facets of string theory and how they are unified
under the auspices of M-theory.
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SAMENVATTING

In dit proefschrift bestuderen we twee onafhankelijke onderzoekslijnen die beide gericht
zijn op het construeren van een theorie van “kwantumzwaartekracht”. Hoewel snaar/M-
theorie al een potentiële theorie van dit type is, blijven er ook daarbinnen nog veel on-
beantwoorde fundamentele vragen en ontbrekende concepten. Door de consistentie van
deze theorie te testen en door paradoxale fenomenen te bestuderen hopen we vooruitgang
te boeken in deze lastige taak.

ACHTERGROND

Met “kwantumzwaartekracht” bedoelen we de unificatie van Einstein’s algemene rela-
tiviteitstheorie (ART), die de gravitationele interacties van massieve objecten en de ruimtetijd
beschrijft, met de uitgangspunten van de kwantummechanica. De kwantummechanica
heeft echter in het algemeen geen observeerbare gevolgen voor de massieve objecten
waarvoor de ART belangrijk is, en de ART is in essentie verwaarloosbaar voor lichte
objecten zoals sub-atomische deeltjes waar de gevolgen van de kwantummechanica het
duidelijkst zijn. Er zijn daarom nog geen experimentele situaties waarin deze theorieën
tegelijkertijd getest kunnen worden. Aan de andere kant is het theoretisch zeer goed mo-
gelijk dat er objecten bestaan die zowel zeer massief als zeer klein zijn, zoals zwarte
gaten. Voor zulke objecten moeten de beide theorieën tegelijkertijd toegepast worden en
de moeilijkheid hiervan is al tientallen jaren lang een uitdaging gebleken voor theoretisch
fysici.

Alleen al de consistentie van zo’n theorie legt relatief sterke beperkingen op en de eerste
uitdaging is dan ook om simpelweg een theorie te formuleren die op een consistente wi-
jze de fundamenten van ART en kwantummechanica kan unificeren, zelfs op de meest
simpele manier. Snaar/M-theorie is een belangrijke kandidaat voor een theorie van de
kwantumzwaartekracht die precies deze unificatie bewerkstelligt (en niet alleen dat). Een
nadeel van de snaartheorie is echter dat deze “perturbatief” geformuleerd is en niet va-
nuit fundamentele basisprincipes. Ons begrip van de theorie is onstaan door verschillende
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delen te construeren en te bestuderen hoe ze samengevoegd kunnen worden om daarmee
een idee te geven van een spannende en mooie nieuwe theorie. We zijn echter nog steeds
op zoek naar de fundamenten waarop al deze delen steunen.

INFORMATIEVERLIES

In een framework zoals snaartheorie wordt het mogelijk om uitgebreider te controleren
of deze voldoet aan de beperkingen zoals die opgelegd worden door de ons al bekende
natuurkunde.

Zo heeft Stephen Hawking bijvoorbeeld de experimenteel bewezen technieken van kwan-
tumveldentheorie gebruikt om aan te tonen dat zwarte gaten thermische straling uit moeten
zenden en hun massa kwijtraken. Zwarte gaten worden geproduceerd als een ster of een
ander groot object ineenstort vanwege zijn eigen gravitationele aantrekkingskracht in iets
wat alleen maar kleiner en kleiner wordt. Op een gegeven moment is de dichtheid van
energie en materie in het centrum zo hoog dat onze beschrijving van de natuurkunde
niet meer geldig is: dit heet de singulariteit en is het hart van het zwarte gat. Het is
juist de natuurkunde in gebieden zoals deze die beschreven zou moeten worden door de
kwantumzwaartekracht. In zo’n singulariteit zijn namelijk grote hoeveelheden materie en
energie samengeperst in een gebied van subatomische grootte, waardoor zowel de kwan-
tummechanica als de zwaartekracht belangrijk zijn. Een belangrijke eigenschap van zulke
gebieden is dat de ruimtetijd sterk “gekromd” raakt vanwege de hoge dichtheden van en-
ergie en materie.

Rond de singulariteit, maar mogelijkerwijs op grote afstand, is de zogenaamde “horizon”
van het zwarte gat. Dit is een soort fictief omhulsel (er is geen fysisch object waaruit
de horizon bestaat; deze is simpelweg gegeven door een bol op vaste afstand van de
singulariteit) van waaruit niets aan het zwarte gat kan ontsnappen. Dit is de oorsprong
van de beruchte “zwartheid” van zwarte gaten. Omdat de horizon zich ver weg van de
singulariteit van het zwarte gat kan bevinden (kilometers of soms lichtjaren afhankelijk
van de massa van het zwarte gat) is het echter gewoon een regulier gebied in de ruimtetijd
en dus zouden onze huidige theorieën een accurate beschrijving moeten geven van de
fysica in zo’n gebied (zelfs zonder kwantumzwaartekracht te gebruiken).

Door van dit laatste feit gebruik te maken was Hawking in staat om aan te tonen dat in de
nabijheid van de horizon van een zwart gat bepaalde kwantumfluctuaties (van het soort dat
goed beschreven wordt door standaard kwantummechanica) tweetallen van gecorreleerde
deeltjes vanuit het “niets” konden creëren. Als nu één van deze deeltjes in het zwarte
gat valt terwijl het andere deeltje naar het oneindige ontsnapt dan verliest het zwarte gat
effectief energie of massa en het wordt daarom kleiner terwijl het een deeltje uitzendt. Dit
is op zichzelf geen probleem, maar het invallende en uitgaande deeltje zijn gecorreleerd
en daarom bevatten zij informatie over elkaar. De kwantummechanica vertelt ons dat
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deze correlatie niet verloren kan gaan als de deeltjes van elkaar gescheiden worden, dus
de deeltjes “weten” van elkaars toestand (dit is een lastig concept dat we hier niet volledig
kunnen uitleggen; het is voldoende om te weten dat de deeltjes op een bepaalde manier
verbonden blijven hoewel ze ver van elkaar verwijdered zijn). Dit proces leidt dus tot
veel deeltjes die ver weg van het zwarte gat zijn, maar gecorreleerd met de deeltjes in
het zwarte gat. Daarnaast verliest het zwarte gat tegelijkertijd zijn massa en krimpt de
horizon als gevolg daarvan.

Uiteindelijk zal het zwarte gat bijna geheel verdwenen zijn, terwijl we aan de andere kant
juist verwachten dat het veel “informatie” bevat over de uitgezonden deeltjes waarmee het
nog steeds gecorreleerd zou moeten zijn. Dit lijkt tegenstrijdig, omdat het zwarte gat kan
“verdampen” terwijl het gecorreleerd lijkt te zijn met de grote hoeveelheid uitgezonden
deeltjes.

Het bovenstaande is één van de aspecten van wat de “informatieverlies-paradox” wordt
genoemd. Eén van de doelstellingen van dit proefschrift is om bepaalde inzichten bij te
dragen aan de oplossing van dit probleem. Het verklaren van de informatieverlies-paradox
vereist waarschijnlijk dat wij ons naı̈eve begrip van wat kwantumzwaartekracht nu echt is
zullen moeten bijstellen (wat in zekere mate al gebeurd is).

NIET-PERTURBATIEVE ASPECTEN

Een enigszins ongerelateerd probleem is de vraag hoe de vele verschillende delen van de
snaartheorie samengevoegd kunnen worden tot een coherente theorie. De huidige formu-
lering van snaartheorie is “perturbatief”, wat inhoudt dat de theorie de dynamische as-
pecten van kwantumzwaartekracht kan beschrijven zodra we zekere “achtergrond”-data
voorschrijven, maar nog geen methode bevat om de dynamica van deze “achtergronden”
zelf te beschrijven. Er zijn echter veel indirecte manieren om dit te doen en uit al deze
manieren samen is het mogelijk om een beeld te vormen van de volledige versie van de
theorie.

Om dit beeld te completeren is het vaak mogelijk om met zogenaamde “topologische”
versies van de snaartheorie te werken. Dit zijn sterk versimpelde versies van de theorie
die echter nog steeds de kern van de volledige theorie bevatten en die soms zelfs gebruikt
kunnen worden om bepaalde interessante en moeilijke problemen te bevatten.

Een belangrijk concept bij het bestuderen van zulke versimpelde theorieën is supersym-
metrie. Dit is een mogelijke symmetrie van de natuur (die mogelijkerwijs geobserveerd
kan worden bij het aanstaande LHC experiment) die een zeer precieze relatie oplegt tussen
de verschillende soorten deeltjes en ook hun mogelijke interacties in sterke mate beperkt.
Echter, zelfs als de theorie aan deze symmetrie voldoet is dat niet altijd het geval voor
elke configuratie die in deze theorie gerealiseerd kan worden. Als voorbeeld kan men
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een theorie die koolstofatomen beschrijft beschouwen. Als de atomen zich vrij bewegen
in een gas is er geen voorkeursrichting en daarom is er bijvoorbeeld een rotatiesymme-
trie. Als men de atomen echter samendrukt dan organiseren de koolstofatomen zich in
een diamant met een roosterstructuur waarin wél bepaalde voorkeursrichtingen aanwezig
zijn. Dit breekt de rotatiesymmetrie en is de reden dat diamanten alleen langs bepaalde
vlakken gesneden kunnen worden.

De topologische versies van de snaartheorie beschrijven in het algemeen slechts dat deel
van de theorie dat een hogere mate van (super)symmetrie bevat. Dit is nogal restrictief
en het is zelfs principieel onmogelijk om hiermee de natuurkunde van onze wereld te
beschrijven, maar aan de andere kant kunnen we hiermee belangrijke conceptuele lessen
over de theorie leren.

RESULTATEN

Om de hierboven gestelde vragen te beantwoorden bestuderen we twee nogal verschil-
lende systemen. We beginnen met het bestuderen van vier- en vijfdimensionale “multi-
center” oplossingen. Dit zijn oplossingen van de Einsteinvergelijkingen (de vergelijkin-
gen die ART definiëren) die de mogelijke vormen van zulke vier- en vijfdimensionale
ruimtetijden beschrijven. Zij kunnen zowel een enkel zwart gat als meerdere zwarte gaten
beschrijven, alsmede “gladde” configuraties zonder zwart gat die er echter van grote af-
stand precies zo uitzien als een zwart gat. Het idee hier is dat zulke configuraties zon-
der zwart gat geen horizons of singulariteiten hebben en daarom niet tot dezelfde para-
doxen leiden als ruimtetijden met een zwart gat. Een recent idee, het zogeheten fuzzball-
idee stelt nu dat een zwart gat niets meer is dan een gemiddelde of zelfs “kwantum-
gemiddelde” beschrijving van zulke gladde configuraties (of mogelijkerwijs configuraties
met meer “snaar-achtige” ingrediënten die echter nog steeds geen horizon of singulariteit
bevatten).

Als dit het geval was dan zou er geen informatieverlies optreden omdat zulke objecten
zich op een subtiele manier anders gedragen dan zwarte gaten. Zulke effecten kunnen
echter alleen de paradox oplossen als wij ons idee van kwantumzwaartekracht aanpassen.
Hawking’s berekening beperkte zich namelijk tot het gebied in de buurt van de hori-
zon, waarvan wij meenden dat het goed beschreven zou worden met de bekende wetten
van de natuurkunde, zonder de kwantumzwaartekracht te gebruiken. Het resultaat wordt
daarom door velen onafhankelijk geacht van de exacte vorm van de theorie van de kwan-
tumzwaartekracht.

Echter, als de beschrijving van een zwart gat in termen van ruimtetijden zonder horizon
(of een gemiddelde daarvan) echt de informatieverlies-paradox op zou moeten lossen,
dan zouden de effecten van kwantumzwaartekracht ook bij de horizon voelbaar moeten
zijn. Dit is een nogal drastische verandering omdat de gebruikelijke gedachte is dat
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kwantumzwaartekracht alleen belangrijk is in die gebieden van de ruimtetijd waar de
ruimte sterk gekromd is, zoals in de buurt van de singulariteit van een zwart gat. Bij de
horizon kan de ruimtetijd echter bijna vlak zijn, met een zeer zwak zwaartekrachtsveld,
en als kwantumzwaartekracht daar belangrijk is dan moeten we ons begrip van kwan-
tumzwaartekracht bijstellen.

In dit licht zijn de volgende twee vragen erg belangrijk:

• Kunnen de effecten van kwantumzwaartekracht belangrijk zijn in gebieden van de
ruimtetijd die niet sterk gekromd zijn?

• Wat is de oorsprong van de “geometrie” van een zwart gat? Specifieker gesteld: is
het een kwantumgemiddelde over gladde ruimtetijden of over ruimtetijden die niet
door de ART beschreven kunnen worden maar waarvoor we snaartheorie moeten
gebruiken?

De belangrijkste resultaten van deel I van dit proefschrift gaan precies over deze twee
vragen.

GROTE KWANTUMFLUCTUATIES

In dit proefschrift doen we een belangrijke ontdekking in de context van de multi-center
configuraties van het bovengenoemde type. Vanwege de speciale eigenschappen van deze
ruimtetijden, namelijk het feit dat ze supersymmetrisch zijn, kunnen we de invloed van
kwantum-effecten bestuderen. We doen dan de verrassende ontdekking dat deze effecten
zelfs belangrijk kunnen zijn als de ruimte niet sterk gekromd is en geen singulariteit bevat.

In de plaats daarvan vinden we dat sommige ruimtetijden een zogenoemde “throat” on-
twikkelen, waarin de ruimte uitgerekt tot een lange tube die een effectieve aantrekkingskracht
uitoefent op nabije objecten. Deze ruimtetijden lijken erg op de gebieden in de buurt
van de horizon van een zwart gat en er zijn inderdaad voorbeelden waar het verschil
willekeurig klein gemaakt kan worden. Aan de andere kant hebben deze ruimtetijden
nooit horizons of singulariteiten en dus, hoewel ze erg op een zwart gat kunnen lijken,
voorkomen ze de problemen van de zwarte gaten. Zulke ruimtetijden zijn dus ideale kan-
didaten voor de objecten die de onderliggende beschrijving geven van een zwart gat.

Het is nu precies voor deze ruimtetijden dat we vinden dat de effecten van kwantumzwaartekracht
belangrijk worden, zelfs wanneer men naı̈ef gezien deze niet belangrijk achtte.

DE INCONSISTENTIE VAN ZWAARTEKRACHT

Onze bovengenoemde ontdekking had eigenlijk plaats in de context van de klassieke the-
orie van de zwaartekracht. In het specifieke geval van de speciale supersymmetrische
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ruimtetijden (in een supersymmetrische theorie van de zwaartekracht) kunnen we kwan-
tummechanica en zwaartekracht combineren, wat veelal goede resultaten oplevert. Van-
wege de extra symmetrie kunnen we hierin veel verder gaan dan normaal gesproken mo-
gelijk is, zelfs zonder de snaartheorie te gebruiken.

In deze context kunnen we supersymmetrische zwarte gaten beschouwen (dus zwarte
gaten die zelf ook deze extra symmetrie bezitten). We kunnen dan bestuderen of deze
beschouwd kunnen worden als kwantum “gemiddelden” van de supersymmetrische gladde
ruimtetijden die we hierboven beschreven, of dat de klassieke zwaartekracht onvoldoende
is en er ook snaartheoretische ingrediënten nodig zijn. Wij vinden dan dat er niet vol-
doende gladde ruimtetijden zijn om alle eigenschappen van het zwarte gat te reproduc-
eren (met name diens entropie), wat suggereert dat er inderdaad extra, snaartheoretische,
ingrediënten nodig zijn.

Dit resultaat is zowel technisch als conceptueel interessant. Technisch, omdat het betekent
dat wij zwarte gaten alleen beter kunnen begrijpen als we ook de extra ingrediënten vanuit
de snaartheorie gebruiken. Conceptueel, omdat het suggereert dat de zwaartekracht op
zichzelf geen complete theorie is en extra “vrijheidsgraden” nodig zijn vanuit de snaarthe-
orie. Een interessant aspect hiervan, en waarvoor ook veel andere aanwijzingen zijn, is dat
zwaartekracht dan gezien kan worden als emergent fenomeen en een “effectieve” beschri-
jving geeft van deze verborgen snaartheoretische vrijheidsgraden. Aan de andere kant zou
de zwaartekracht in zichzelf nog steeds een complete theorie op kunnen leveren, maar dan
is de manier waarop wij kwantummechanica erop hebben toegepast niet correct.

TOPOLOGISCHE M- VERSUS SNAARTHEORIE

Een laatste onderwerp in dit proefschrift is de studie van de relatie tussen topologis-
che snaartheorie en M-theorie. De snaartheorie “leeft” normaal gesproken in 10 dimen-
sies, maar tegelijkertijd meent men dat het een benadering is van een meer complete,
11-dimensionale theorie, die mysterieus genoeg M-theorie genoemd wordt. Omdat wij
maar 4 dimensies observeren (drie ruimte plus één tijd) is het noodzakelijk om 6 of 7
dimensies zo klein te maken dat ze niet meer zichtbaar zijn in onze huidige fysische ex-
perimenten. Vanwege de interne consistentie van de snaar- of M-theorie is de vorm van
deze kleine dimensies niet compleet willekeurig; deze blijkt gerelateerd aan variëteiten
(hoger-dimensionale vormen, analoog aan bijvoorbeeld een bol of een torus) die goed
bekend zijn bij wiskundigen. De zes-dimensionale variëteiten heten Calabi-Yau en de
zeven-dimensionale variëtieten die aan de beperkingen van M-theorie voldoen heten G2.
Een Calabi-Yau kan ingebed worden in een G2, net zoals een lijn (een 1-dimensionale
variëteit) ingebed kan worden in een vlak (een 2-dimensionale variëteit). Dit leidt tot een
relatie tussen snaar- en M-theorie en we kunnen daarom de snaartheorie met een Calabi-
Yau zien als de benadering van M-theorie met een G2-variëteit waar de Calabi-Yau is
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ingebed.

Zoals hierboven al vermeld is de topologische snaartheorie een versimpeld model van
de echte snaartheorie, en beschrijft deze simpele versie vooral de supersymmetrische as-
pecten. De topologische theorie bestudeert de snaren die zich in een Calabi-Yau variëteit
bewegen. Dit onderwerp is grondig bestudeerd en heeft dan ook vele interessant resul-
taten opgeleverd, zowel voor wis- als voor natuurkundigen. Er zijn twee typen topologis-
che snaartheorie op Calabi-Yau variéteiten: het A- en het B-model. Deze zijn overigens
gerelateerd aan twee vormen van de gewone (niet-topologische) snaartheorie die bekend
staan als type IIA en type IIB en die waarschijnlijk niet-perturbatief gerelateerd zijn. Een
belangrijke vraag is dan of het A- en het B-model ook niet-perturbatief gerelateerd zijn
en, zo ja, of dit ons iets kan vertellen over de fundamenten van de theorie. We vermeld-
den hierboven al dat snaartheorie, zelfs in de topologische variant, is beschreven in vaste
“achtergronden” en dat we een theorie zouden willen vinden die ook de dynamica van
deze achtergronden beschrijft. Er is enig bewijs dat het A- en het B-model twee verschil-
lende kanten zijn van een enkele niet-perturbatieve theorie die we optimisch “topologische
M-theorie” kunnen noemen. Dit is analoog aan IIA en IIB snaartheorie, die waarschijnlijk
twee verschillende kanten zijn van de gewone M-theorie.

Om de subtiele relatie tussen M- en snaartheorie bloot te leggen beschouwen we de re-
latie tussen de versimpelde “topologische” versies van deze theorieën. De M-theorie is
een theorie van membranen, dus niet van snaren, maar wij bestudeerden snaren die in een
G2 variëteit bewegen, wat om technische redenen gerelateerd is aan de studie van mem-
branen op dezelfde variëteit. Bovendien is de studie van membranen op zulke variëteiten
technisch erg gecompliceerd.

We identificeren de verschillende soorten “branen” (hoger-dimensionale objecten die veel
voorkomen in snaar- en M-theorie) die toegestaan zijn in de topologische snaartheorie op
G2-variëteiten en de theorieën die de dynamica van deze branen beschrijven. In bepaalde
gevallen zijn deze theorieën erg goed onder controle en middels de relatie met de topol-
ogische snaartheorie op G2 kan men proberen iets over die topologische theorie te leren.
Hoewel we hier de basis voor leggen zullen we het niet verder ontwikkelen, maar het is
zeker een interessante richting voor nieuw onderzoek.

We relateren ook de braan-theorieën op G2-variëteiten aan braan-theorieën die afgeleid
zijn van topologische snaren op Calabi-Yau variëteiten die ingebed zijn in deze G2. Hi-
ermee vinden we relaties tussen de topologische G2-theorie en zowel het A- als het B-
model op Calabi-Yaus. Dit wijst inderdaad op een mogelijke unificatie tussen de twee
zes-dimensionale theorieën in de zeven-dimensionale theorie. Helaas staat de topologis-
che snaartheorie op G2-variëteiten nog altijd in de kinderschoenen en is er nog veel werk
nodig om deze verder te ontwikkelen. Daarna kunnen we verder testen hoe deze het A-
en het B-model integreert en wat hun relatie zou kunnen zijn. Dit zou ook licht kunnen
werpen op de vele kanten van de snaartheorie en hoe die geünificeerd kunnen worden in
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de context van M-theorie.
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