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Abstract: The Ashkin–Teller model is a pair of interacting Ising models and has two
parameters: J is a coupling constant in the Ising models and U describes the strength of
the interaction between them. In the ferromagnetic case J, U > 0 on the square lattice,
we establish a complete phase diagram conjectured in physics in 1970s (by Kadanoff and
Wegner, Wu and Lin, Baxter and others): when J < U , the transitions for the Ising spins
and their products occur at two distinct curves that are dual to each other; when J ≥ U ,
both transitions occur at the self-dual curve. All transitions are shown to be sharp using
the OSSS inequality. We use a finite-size criterion argument and continuity to extend the
result of Glazman and Peled (Electron J Probab 28:1-53, 2023) from a self-dual point
to its neighborhood. Our proofs go through the random-cluster representation of the
Ashkin–Teller model introduced by Chayes–Machta and Pfister–Velenik and we rely on
couplings to FK-percolation.

1. Introduction

The Ashkin–Teller (AT) model is named after two physicists who introduced it [AT43]
in 1943 and can be viewed as a pair of interacting Ising models [Fan72a]. For a finite
subgraph � = (V, E) of Z

2, the AT model is supported on pairs of spin configura-
tions (τ, τ ′) ∈ {±1}V × {±1}V and the distribution is defined by

AT�,Jτ ,Jτ ′ ,U (τ, τ ′) = 1

Z
· exp

[∑
uv∈E

Jτ τuτv + Jτ ′τ
′
uτ ′v + Uτuτ ′uτvτ

′
v

]
, (1)

where Jτ , Jτ ′ , U are real parameters and Z = Z(�, Jτ , Jτ ′ , U ) is the unique constant
(called partition function) that renders the above a probability measure.

In the current article, we consider the ferromagnetic symmetric (or isotropic) case

J = Jτ = Jτ ′ ≥ 0, and U ≥ 0
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and denote the measure by AT�,J,U .
Important particular cases: U = 0 gives two independent Ising models; for J = 0, τ

reduces to a Bernoulli site percolation with parameter 1/2, and ττ ′ to an Ising model,
independent of each other; the line U = J corresponds to the 4-state Potts model. These
models are very well-studied and their phase diagram is known; see [FV17,Dum17] for
excellent surveys. Henceforth in this article we assume that J, U > 0. A key observation
in the analysis of the AT model on Z

2 is its relation to the six-vertex model [Fan72b,
Weg72]. This gives a non-staggered six-vertex model (i.e. with shift invariant local
weights) only at the self-dual line of the AT model: it was found in [MS71] and is
described by the equation

sinh(2J ) = e−2U . (SD)

Outside of this line, the corresponding six-vertex model is staggered and thus the seminal
Baxter’s solution [Bax71] does not apply. Kadanoff and Wegner [KW71,Weg72], Wu
and Lin [WL74], and others conjectured that, when J < U , there are two distinct
transition lines in the AT model: one for correlations of spins τ (or τ ′) and the other for
correlations of products ττ ′. In the current article, we prove this conjecture and establish
a complete phase diagram of the AT model in the ferromagnetic regime.

It will be convenient to state the results in infinite volume and to consider also plus
boundary conditions. Denote by ∂� the set of boundary vertices of � –these are all
vertices in � that are adjacent to at least one vertex in Z

2 \ �. We define the measure
with plus boundary conditions by conditioning all boundary vertices to have spin plus
in τ and in τ ′:

AT+,+
�,J,U := AT�,J,U (· | τ|∂� ≡ τ ′|∂� ≡ 1).

Expectations with respect to the AT measures are denoted by brackets:

〈·〉�,J,U := E�,J,U [·] and 〈·〉+,+
�,J,U := E

+,+
�,J,U [·].

The correlations of τ and τ ′ satisfy the Griffiths–Kelly–Sherman (GKS) inequality
[KS68], which states that for any A, B, C, D ⊂ V , one has

〈τA · τ ′B · τC · τ ′D〉�,J,U ≥ 〈τA · τ ′B〉�,J,U 〈τC · τ ′D〉�,J,U , (GKS)

where τA := ∏
u∈A τu and τ ′B :=

∏
v∈B τ ′v , and the same holds under plus boundary

conditions. This implies that, for any A, B ⊂ V ,

〈τA · τ ′B〉�,β J,βU and 〈τA · τ ′B〉+,+
�,β J,βU are increasing in β > 0.

Another standard application of the GKS inequality implies that, as �n ↗ Z
2, the

weak limits under free or plus boundary conditions exist and do not depend on {�n}:
ATJ,U := lim

n→∞AT�n ,J,U and AT+,+
J,U := lim

n→∞AT+,+
�n ,J,U .

Similarly to finite-volume measures, we denote by 〈·〉J,U and 〈·〉+,+
J,U the expectations

with respect to ATJ,U and AT+,+
J,U . It is standard (e.g. can be shown by comparing to the

Ising model) that the AT model undergoes a phase transition in terms of correlations
of τ and those of ττ ′. Moreover, a general OSSS inequality [DRT19] can be used to
show that both transitions are sharp (see Appendix). That is, for each pair J, U , there
exist βτ

c , βττ ′
c ∈ (0,∞) and (cβ)β>0 strictly positive, such that
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〈τ0τx 〉+,+
β J,βU

{
≤ e−cβ ·|x | if β < βτ

c

≥ cβ if β > βτ
c

, 〈τ0τ
′
0τxτ

′
x 〉+,+

β J,βU

{
≤ e−cβ ·|x | if β < βττ ′

c

≥ cβ if β > βττ ′
c

.

(2)

Symmetry between τ and τ ′ and the correlation inequalities (GKS) imply directly that

βτ
c ≥ βττ ′

c . (3)

There exists a unique β, for which (β J, βU ) is on the line (SD). Denote it by βsd =
βsd(J, U ). The following theorem states our main result:

Theorem 1. Let 0 < J < U. Then, βτ
c > βsd > βττ ′

c .

This was previously shown when 2J < U using a direct comparison to the Ising
model [Pfi82]. In addition, in the perturbative regime when J is small enough, the critical
exponents associated to the phase transition for the product ττ ′ have been shown to be
the same as for the Ising model [GM05]1. This is expected to hold for both transitions
whenever J < U , while the exponents should vary continuously when J ≥ U . The
latter has been established in [Mas04] for U sufficiently small. We refer to [DG04] for
a survey on the physics literature on the critical behaviour of the AT model, as well as
predictions on critical exponents using the quantum field theory. Recently, Peled and the
third author have proven that spins τ (or τ ′) and the products ττ ′ exhibit qualitatively
different behavior at the self-dual line when J < U [GP23]: products ττ ′ are ordered,
while τ (and τ ′) exhibits exponential decay of correlations. We derive Theorem 1 by
extending this statement to an open neighborhood of the self-dual line when J < U .
The continuity ideas do not apply directly, since the rate of decay of correlations might,
a priori, not be a continuous function in the pair (J, U ). To circumvent this problem, we
establish exponential decay in finite volume:

Proposition 1.1. Fix 0 < J < U that satisfy sinh 2J = e−2U . Then, there exists
c := c(J, U ) > 0 such that

〈τ0〉+,+
[−n,n]2,J,U

≤ e−cn .

Compared to [GP23], the exponential decay is proven in finite volume and under
the largest boundary conditions. This is crucial for applying the so-called “finite-size
criterion” (or ϕβ(S)) argument [Sim80,Lie80,DT16a,DT16b], since the Simon–Lieb
inequality is not available (the Simon inequality is valid for U ≤ 0 [Lis21]). This
argument, as well as the proof of Proposition 1.1, use the random-cluster representation
of the AT model (that we call ATRC) introduced by Chayes–Machta [CM97] and Pfister–
Velenik [PV97]. As in the seminal Edwards–Sokal coupling for the Potts model [ES88],
connectivities in the ATRC describe correlations in the AT model.

Other ingredients in the proof of Proposition 1.1 are couplings between the AT and
the six-vertex models [Fan72b,Weg72] and between the latter and the FK-percolation
[BKW76]. These two couplings were composed for the first time in the work of Peled
and the third author [GP23]. We also use T-circuits introduced in [GP23] to apply the
non-coexistence theorem [She05,DRT19].

1 Although [GM05] studies the anisotropic case Jτ 
= Jτ ′ when U is small, applying the change of variables
(τ, τ ′) �→ (ττ ′, τ ) allows to treat the case described above.
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Fig. 1. Left: Phase diagram of the Ashkin–Teller model: when J ≥ U , transitions for τ and ττ ′ occur at the
self-dual curve (Theorem 3) and when J < U , the transition occurs at two distinct curves γτ and γττ ′ dual to
each other (Theorems 1 and 2). There are three regimes: disorder in τ and in ττ ′ (gray), order in τ and in τ ′
(white), disorder in τ and order in ττ ′ (dashed gray). Right: Domain � (in bold black) in L and its dual �∗
(in gray). Notice that �∗ is not a domain in L

∗. The even domain D� (dashed) in Z
2

The next result states that the transition lines are dual to each other (see Fig. 1) and
that the critical points for the measures under the free and plus boundary conditions
coincide. We define the critical curves γτ and γττ ′ as follows:

γτ := {(J, U ) ∈ R
2 : 0 < J < U, βτ

c (J, U ) = 1},
and similarly for γττ ′ . Given a pair of parameters (J, U ), we define the dual set of
parameters (J ∗, U∗) as the unique solutions to the following equations

e−2J+2U − 1

e−2J∗+2U∗ − 1
= e2U sinh(2J ) =

[
e2U∗

sinh(2J ∗)
]−1

. (4)

This defines an involution. When J = U , we replace the first equality by J ∗ = U∗.
Finally, we define βτ, f

c and βττ ′, f
c as in (2) but under free boundary conditions.

Theorem 2. Fix 0 < J < U. Then, the following holds:

(i) βτ
c = βτ, f

c and βττ ′
c = βττ ′, f

c ;
(ii) γτ and γττ ′ are dual in the following sense: (J, U ) ∈ γτ if and only if (J ∗, U∗) ∈

γττ ′ .

In contrast, when J ≥ U , both transitions in τ and in ττ ′ occur at the self-dual line.

Theorem 3. Let J ≥ U > 0. Then, the following holds:

(i) βτ
c = βτ, f

c and βττ ′
c = βττ ′, f

c ;
(ii) βτ

c = βττ ′
c = βsd.

Indeed, general approach [DRT19] gives sharpness under plus boundary conditions
and equality of the transition points βτ

c = βττ ′
c =: βc. By standard duality arguments,

one deduces βc ≤ βsd. The bound βc ≥ βsd follows from Zhang-type arguments provided
the transition points for the free and monochromatic measures coincide. We show the
latter by applying to the marginals of the ATRC a neat reformulation of the classical
“convexity of the free energy” argument due to Duminil-Copin [Dum17, Theorem 1.12].
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Open questions. At the self-dual curve (SD), the Ashkin–Teller model is coupled
to the six-vertex model with parameters a = b = 1 and c = coth 2J (see Sect. 3).
When 1 ≤ c ≤ 2, the height function of the six-vertex model has been recently shown to
delocalise [DCKMO20] (see also [GL23] for an alternative argument that does not use
Bethe Ansatz). This implies that the transition in the Ashkin–Teller model is continuous
for all J ≥ U > 0: at the critical curve, correlations 〈τ0τx 〉+,+ and 〈τ0τ

′
0τxτ

′
x 〉+,+ vanish

as |x | → ∞. However, the type of the transitions when J < U remains open:

Question 1. Let 0 < J < U. Show that the Ashkin–Teller model undergoes two con-
tinuous phase transitions: one has 〈τ0τx 〉+,+ → 0 at γτ and 〈τ0τ

′
0τxτ

′
x 〉+,+ → 0 at γττ ′ ,

as |x | → ∞.

As mentioned above [DG04], the correlations should decay like |x |−1/4 (as in the
Ising model). It would be natural to extend Theorem 3 to the case of a negative U :

Question 2. Let J > 0 > U. Show that the Ashkin–Teller model undergoes a sharp
transition at the self-dual curve (SD) in terms of correlations of τ and ττ ′.

Note that this would imply that the transition is continuous, since the delocalisation
results cover this part of the self-dual curve. What is missing to apply the general argu-
ment of [DRT19] and prove sharpness is monotonicity of the correlations along some
curves in the (J, U ) plane when U is negative.

Organisation of the article. Sections 2–6 treat the case J < U : in Sect. 2, we introduce
the random-cluster representation of the AT model (ATRC) and derive Theorems 1 and 2
from Proposition 1.1; Sects. 3–6 are dedicated to proving Proposition 1.1. In Sect. 3, we
describe the six-vertex and FK-percolation models and give their background, including
their relation to the AT model. In Sect. 4, we show that τ exhibits exponential decay of
correlations in finite volume under the boundary conditions τ = τ ′. In Sect. 5, we show
that τ exhibits no ordering under AT+,+

J,U . In Sect. 6, we derive Proposition 1.1. Section 7
deals with the case J ≥ U : we introduce the ATRC model and prove Theorem 3.
Appendices provide details regarding sharpness for the AT (A), exponential relaxation
for FK-percolation (B), stochastic ordering of the ATRC with respect to its local weights
(C) and uniqueness of the infinite-volume ATRC measure (D).

2. From Proposition 1.1 to Theorems 1 and 2

From now on, we will consider the AT model on a rotated square lattice that we denote by
L: its vertex set is {(x, y) ∈ Z

2 : x + y is even} and edges connect (x, y) to (x±1, y±1),
see Fig. 1. This is more convenient for the coupling with the six-vertex model (Sect. 3).

In this section, we fix J < U and drop them from the notation. In particular, we
write AT�,β for the measure AT�,β J,βU .

We start by defining the random-cluster representation of the AT model (ATRC)
introduced by Chayes–Machta [CM97] and Pfister–Velenik [PV97]. Using a ϕβ(S) ar-
gument, we prove that (βττ ′

c J, βττ ′
c U ) is strictly above the self-dual line. By duality, this

implies that (βτ
c J, βτ

c U ) is strictly below the self-dual line which concludes the proof.

2.1. ATRC: defintion and basic properties. The ATRC is reminiscent of the Edwards–
Sokal [ES88] coupling between FK-percolation and the Potts model. Since the AT model
is supported on a pair of spin configurations, the ATRC is supported on a pair of bond
percolation configurations.
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Percolation configurations. For a finite subgraph � ⊂ L, the sets of its vertices and
edges are denoted by V� and E�, respectively. We view ω ∈ {0, 1}E� as a percolation
configuration: we say that e is open in ω if ω(e) = 1, and otherwise e is closed. We
identify ω with a spanning subgraph of � and edges that are open in ω. Define |ω| as the
number of edges in ω. Boundary conditions for ω are given by a partition η of ∂�. We
define kη(ω) as the number of connected components in ω when all vertices belonging to
the same element of partition in η are identified. Two important special cases: 1 denotes
wired b.c. given by a trivial partition consisting of one element ∂�; 0 denotes free b.c.
given by a partition of ∂� into singletons.

Definition of ATRC. A configuration of the ATRC model on � is a pair (ωτ , ωττ ′) of
percolation configurations on edges of �. Formally, the ATRC measure is supported on
(ωτ , ωττ ′) ∈ {0, 1}E� × {0, 1}E� . For β > 0 and partitions ητ , ηττ ′ of ∂�, the ATRC
measure is defined by

ATRC
ητ ,ηττ ′
�,β (ωτ , ωττ ′) = 1

Z · 2kητ (ωτ )+kη
ττ ′ (ωττ ′ )

∏
e∈E

a(ωτ (e), ωττ ′(e)), (5)

where Z = Z(�, β, J, U, ητ , ηττ ′) is a normalizing constant and

a(0, 0) := e−2β(J+U ), a(1, 0) := 0, a(0, 1) := e−4β J − e−2β(J+U ), a(1, 1) := 1− e−4β J .

(6)

Since J < U , we have a(i, j) ≥ 0 for all i, j ∈ {0, 1}. We will also use the notation
ATRC

ητ ,ηττ ′
�,J,U for the measure with β = 1.

It will be useful to express the measure as

ATRC
ητ ,ηττ ′
�,β (ωτ , ωττ ′) ∝ w|ωτ |

τ w
|ωττ ′ \ωτ |
ττ ′ 2kητ (ωτ )+kη

ττ ′ (ωττ ′ ) 1ωτ⊆ωττ ′ , (7)

where

wτ = e2βU (e2β J − e−2β J ) and wττ ′ = e2β(U−J ) − 1. (8)

In this context, we will refer to the measure as ATRC
ητ ,ηττ ′
�,wτ ,wττ ′ . In Sect. 4.2, we will

encounter a version of this measure with non-homogeneous weights.

Remark 2.1. The representation can be extended to J ≥ U [PV97], see Sect. 7.1.

There are four special types of boundary conditions given by free/wired ητ and
free/wired ηττ ′ : ATRC

1,1
�,β (both wired), ATRC0,0

�,β (both free), ATRC1,0
�,β (wired for ωτ ,

free for ωττ ′ ), ATRC
0,1
�,β (free for ωτ , wired for ωττ ′ ).

Positive association: general setting. We first introduce the notions of monotone mea-
sures, stochastic domination and positive association following [GHM01, Sect. 4.2].
Let E be a finite set of edges. We introduce a pointwise partial order on percolation
configurations on E : we say that ω � ω′ if and only if ω(e) ≤ ω′(e) for any e ∈ E . A
probability measure μ on {0, 1}E is called monotone if

μ(ω(e) = 1 |ω = η off e) ≤ μ(ω(e) = 1 |ω = η′ off e) (9)

for any e ∈ E , and η, η′ ∈ {0, 1}E\{e} such that η � η′, μ(ω = η off e) > 0 and
μ(ω = η′ off e) > 0.
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An event A ⊆ {0, 1}E is called increasing if 1A is increasing with respect to the
partial order. Given two probability measures μ and ν on {0, 1}E , we say that μ is
stochastically dominated by ν (or ν stochastically dominates μ), and write μ ≤st ν

(or ν ≥st μ), if for every increasing event A ∈ A, we have μ(A) ≤ ν(A). Moreover,
μ is said to be positively associated if, for all increasing bounded functions f and g
on {0, 1}E , we have

μ( f · g) ≥ μ( f )μ(g). (10)

This is called the FKG inequality after the work of Fortuin, Kasteleyn and Ginibre
[FKG71]. Their fundamental contribution consists in introducing the FKG lattice con-
dition (similar to (9)) and showing that it implies positive association (10) when μ is
strictly positive.

The above setting suffices for the ATRC measure, but for our proofs we need a slightly
more general statement. More precisely, we fix K ∈ N

∗ and say that a probability
measure μ on {−K , . . . , K }E is monotone if and only if

μ(ω(e) ≥ a |ω = η off e) ≤ μ(ω(e) ≥ a |ω = η′ off e) (11)

for any e ∈ E , a ∈ R andη, η′ ∈ SE\{e} such that η � η′,μ(ω = η off e) > 0 andμ(ω =
η′ off e) > 0. The notions of stochastic domination and positive association extend in
a natural way. A probability measure μ on {−K , . . . , K }E is called irreducible if, for
any ω,ω′ ∈ {−K , . . . , K }E such that μ(ω), μ(ω′) > 0 there exists a sequence ω0 = ω,
ω1, …, ωN = ω′, for some N > 0, such that ωi−1 and ωi differ at one coordinate
and both have a non-zero probability, for i = 1, . . . , N . Assume that μ is monotone,
irreducible and the set of ω ∈ {−K , . . . , K }E having positive probability contains a
unique maximal element. Then, [GHM01, Theorem 4.11] states that μ is positively
associated.

Finally, we mention that the positive association property (10) naturally extends to
probability measures on {0, 1}N or Z

N. Moreover, for any increasing sequence of finite
sets Ei , if the sequence of positively associated measures μi on Ei converges weakly,
then the limiting measure is also positively associated. Indeed, (10) is preserved under
weak limits when f and g are continuous. Then, by Strassen’s theorem [Str65], the same
holds for any bounded functions (see [GHM01, Theorem 4.6] and the paragraph below
[GHM01, Definition 4.10]).

Monotonicity properties of the ATRC measure. Consider a natural partial order on pairs
of percolation configurations: (ωτ , ωττ ′) � (ω̃τ , ω̃ττ ′) if ωτ (e) ≤ ω̃τ (e) and ωττ ′(e) ≤
ω̃ττ ′(e) for every edge e of �. By [PV97, Proposition 4.1] (and its proof), the measure
ATRC

ητ ,ηττ ′
�,β , for any β > 0 and any boundary conditions ητ , ηττ ′ , is monotone and

hence is positively associated. In particular, for any increasing events A and B,

ATRC
ητ ,ηττ ′
�,β (A ∩ B) ≥ ATRC

ητ ,ηττ ′
�,β (A) · ATRCητ ,ηττ ′

�,β (B). (FKG)

It is standard that monotone measures are stochastically ordered with respect to their
boundary conditions. Indeed, for two partitions η and η̃ of ∂�, we say that η ≥ η̃ if any
two vertices belonging to the same element of η̃ also belong to the same element of η.
Then, for any β > 0, and any boundary conditions such that ητ ≥ η̃τ and ηττ ′ ≥ η̃ττ ′ ,

ATRC
ητ ,ηττ ′
�,β ≥st ATRC

η̃τ ,η̃ττ ′
�,β . (CBC)
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The Holley criterion [Hol74] also allows to show stochastic ordering of the measures in
the parameter β: if β1 ≥ β2, then, for any boundary conditions ητ , ηττ ′ ,

ATRC
ητ ,ηττ ′
�,β1

≥st ATRC
ητ ,ηττ ′
�,β2

. (MON)

See [Gri06, Lemma 11.14] for a proof. In fact, this proof gives a little more. Indeed, it con-
sists of checking inequalities for quantities that are continuous functions of (βi J, βiU )

and the inequalities are strict when β1 > β2. This implies that the ATRC measure with
parameters in a small neighbourhood of (β1 J, β1U ) dominates that with parameters in
a small neighbourhood of (β2 J, β2U ). More precisely, for (x, y) ∈ R

2, define Br (x, y)

as the Euclidian ball of radius r centred at (x, y). If β1 > β2, then there exists ε > 0
such that for any (J1, U1) ∈ Bε(β1 J, β1U ) and (J2, U2) ∈ Bε(β2 J, β2U ),

ATRC
ητ ,ηττ ′
�,J1,U1

≥st ATRC
ητ ,ηττ ′
�,J2,U2

. (MON+)

This extension will be useful for our proof of Theorem 2.

Domain Markov property. As in the standard FK-percolation, one can interpret a con-
figuration outside of a subdomain as boundary conditions. Indeed, let � ⊂ � be two
finite subgraphs of L and ξ ∈ {0, 1}E�\E� a percolation configuration on � \�. Given
boundary conditions η on �, define a partition η ∪ ξ of ∂� by first identifying vertices
belonging to the same element of η and then identifying vertices belonging to the same
cluster of ξ . Then, the following domain Markov property holds:

ATRC
ητ ,ηττ ′
�,β (· | (ωτ , ωττ ′)|�\� = (ξτ , ξττ ′)|�\�) = ATRC

ητ∪ξτ ,ηττ ′∪ξττ ′
�,β (·). (DMP)

Thus, by (CBC), for any increasing sequence of subgraphs �k ↗ L, the measures
ATRC1,1

�k ,β
form a stochastically decreasing sequence. Thus, the weak (or local) limit

exists and is unique, by standard arguments. Denote it by ATRC1,1
β . Define ATRC0,0

β

analogously. We write ATRC1,1
J,U and ATRC0,0

J,U for the corresponding measures with
β = 1.

Coupling between ATRC and AT. For X, Y ⊂ L and a percolation configuration ω ∈
{0, 1}E� , we define X

ω←→ Y as an event that X and Y are linked by a path of open
edges in ω. If X = {x} and Y = {y}, we simply write x

ω←→ y. We also use the notation
x

ω←→∞ for the event of x belonging to an infinite connected component of ω.
The key property of the ATRC is that connectivities in it describe correlations in

the AT model [PV97, Proposition 3.1]: for β > 0 and any finite subgraph � ⊂ L

with x, y ∈ V�,

〈τxτy〉�,β = ATRC0,0
�,β(x

ωτ←→ y), 〈τxτ
′
xτyτ

′
y〉�,β = ATRC0,0

�,β(x
ωττ ′←→ y),

〈τx 〉+,+
�,β = ATRC1,1

�,β(x
ωτ←→ ∂�), 〈τxτ

′
x 〉+,+

�,β = ATRC1,1
�,β(x

ωττ ′←→ ∂�).

(12)

By the classical Burton–Keane argument [BK89], infinite clusters in ωτ and ωττ ′ are
unique (if they exist). Then, (12) and (FKG) imply that βτ, f

c and βττ ′, f
c are percolation

thresholds for ωτ and ωττ ′ under ATRC0,0
β . Similarly, the same holds for βτ

c and βττ ′
c

under ATRC1,1
β .

Dual ATRC. Define the dual lattice L
∗ := L + (1, 0). For each edge e of L, there is a

unique edge of L
∗ that intersects it: call this edge dual to e and denote it by e∗. Denote by
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EL and EL∗ the sets of edges of L and L
∗, respectively. Given a percolation configuration

ω ∈ {0, 1}EL , we define its dual configuration ω∗ ∈ {0, 1}EL∗ by setting

ω∗(e∗) := 1− ω(e).

For an ATRC configuration (ωτ , ωττ ′) ∈ {0, 1}EL×{0, 1}EL , we define its dual (ω̂τ , ω̂ττ ′)
∈ {0, 1}EL∗ × {0, 1}EL∗ in the following way,

ω̂τ := ω∗ττ ′ and ω̂ττ ′ := ω∗τ . (13)

We want to emphasize that we are not considering two standard dual percolation con-
figurations but we also swap the order of τ -edges and ττ ′-edges.

The measures ATRC0,0
J,U =: ATRC0,0

L,J,U and ATRC1,1
J,U =: ATRC1,1

L,J,U on L can be

defined on L
∗ in the same manner, and we denote them byATRC0,0

L∗,J,U andATRC1,1
L∗,J,U ,

respectively. Recall the mapping (J, U ) �→ (J ∗, U∗) defined by (4) and note its prop-
erties: it is continuous, an involution, identity on the self-dual line (SD), sends every
point above (SD) to a point below (SD). The pushforward of the ATRC measure under
the duality transformation is also an ATRC measure with the dual parameters:

Lemma 2.2 (Prop 3.2 in [PV97]). Let 0 < J < U. Let (ωτ , ωττ ′) be distributed ac-
cording to ATRC1,1

L,J,U . Then, the distribution of (ω̂τ , ω̂ττ ′) is given by ATRC0,0
L∗,J∗,U∗ .

2.2. Proof of Theorem 2. We first show thatATRC0,0
J,U andATRC1,1

J,U coincide for almost
every (J, U ):

Lemma 2.3. There exists D ⊆ {(J, U ) ∈ R
2 : 0 < J < U } with Lebesgue measure 0

such that, for any (J, U ) ∈ Dc, one has

ATRC0,0
J,U = ATRC1,1

J,U . (14)

Remark 2.4. Note that, by (CBC), equation (14) implies equality of all Gibbs measures.

The proof goes by applying a version of the classical convexity argument to the
marginals of ATRC on ωτ and ωττ ′ , see Appendix D for more details. We are ready to
prove part (i) of Theorem 2. Recall that Br (x, y) is the Euclidean ball of radius r centred
at (x, y).

Proof of Theorem 2(i). Fix J < U . By (CBC), we have βτ
c ≤ βτ, f

c . Assume for con-
tradiction that the inequality is strict, and take β ∈ (βτ

c , βτ, f
c ). Then, by (MON+), there

exists ε > 0 such that, for any (J ′, U ′) ∈ Bε(β J, βU ),

ATRC0,0
J ′,U ′(0

ωτ←→∞) = 0 and ATRC1,1
J ′,U ′(0

ωτ←→∞) > 0.

This contradicts Lemma 2.3. ��
Denote by Hτ

n (resp. Hττ ′
n ) the event that the box [0, 2n− 1]× [0, 2n− 1] is crossed

horizontally by ωτ (resp. ωττ ′ ). Note that the complement of Hτ
n is the event that the box

[0, 2n−1]×[0, 2n−1] is crossed vertically by the dual ω∗τ . The following lemma states
a standard characterisation of non-transition points. It is a consequence of Lemma 2.3
and sharpness of the phase transition in the ATRC. The latter can be derived using a
robust approach going through the OSSS inequality [DRT19]; see Appendix A for more
details.
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Lemma 2.5. Let 0 < J < U. Then, (J, U ) ∈ γτ if and only if, for any ε > 0, there exist
points (J0, U0) and (J1, U1) in Bε(J, U ), such that, as n →∞,

ATRC0,0
J0,U0

[Hτ
n] → 1 and ATRC1,1

J1,U1
[Hτ

n] → 0. (15)

The same holds also when τ is replaced everywhere by ττ ′.

Proof. Assume (J, U ) ∈ γτ . By sharpness, ATRC1,1
β J,βU [Hτ

n] → 0, for any β ∈
(0, 1). Also, it is standard that part (i) of Theorem 2 and Zhang’s argument imply
that ATRC0,0

β J,βU [Hτ
n] → 1, for any β > 1. This gives one direction of the statement.

To show the reverse, assume first that βτ
c := βτ

c (J, U ) > 1 and take β ∈ (1, βτ
c ). By

sharpness, ATRC1,1
β J,βU [Hτ

n] → 0 and, by (MON+), the same holds in some neighbour-
hood of (J, U ). The case βτ

c < 1 is analogous. ��
Proof of Theorem 2(ii). Let (J, U ) ∈ γτ and ε > 0. Since the duality mapping is a
continuous involution, we can find δ > 0 such that the image of Bδ(J, U ) is in-
side Bε(J ∗, U∗). By Lemma 2.5, we get (15) for some (J0, U0) and (J1, U1) in Bδ(J, U ).
By duality and symmetry,

ATRC1,1
J∗0 ,U∗

0
[Hττ ′

n ] → 0 and ATRC0,0
J∗1 ,U∗

1
[Hττ ′

n ] → 1 as n →∞.

Since (J ∗0 , U∗
0 ) and (J ∗1 , U∗

1 ) are in Bε(J ∗, U∗), Lemma 2.5 implies that (J ∗, U∗) ∈
γττ ′ .

Proving that (J ∗, U∗) ∈ γττ ′ implies (J, U ) ∈ γτ is analogous. ��

2.3. ϕβ(S) argument: proof of Theorem 1. Following [Sim80,Lie80] (see also [DT16a]),
for a finite subgraph S ⊂ L containing 0, define

ϕβ(S) = |∂S| · ATRC1,1
S,β(0

ωτ←→ ∂S).

The following lemma states a key property of ϕβ(S): if it is less than 1 for some S,
then ωτ exhibits exponential decay of connection probabilities. This finite-size criterion
allows to use continuity of ϕβ(S) and Proposition 1.1 to extend exponential decay of ωτ

beyond (SD). Let �k be the box of size k in L, that is �k = {u ∈ L : ‖u‖1 ≤ 2k}.
Lemma 2.6. Let β > 0. Assume that ϕβ(S) < 1, for some finite subgraph S ⊂ L

containing 0. Then, there exists c := c(β, S) > 0 such that

ATRC1,1
β (0

ωτ←→ ∂�n) ≤ e−cn .

Remark 2.7. (1) Note that the boundary conditions are free in [DT16a] and wired in our
case. The reason is that an analogue of Lemma 2.6 is proven in [DT16a] via a modified
Simon–Lieb inequality [Lie80,Sim80] for the Ising model. Such inequalities are not
available in our case. While Lemma 2.6 under wired conditions is elementary, proving
exponential decay under wired boundary conditions in finite volume (Proposition 1.1)
is the subject of Sects. 3–6.

(2) We point an interested reader to the work [DS87] that introduces a finite-size criterion
for the completely analytical interactions.



Phase Diagram of the Ashkin–Teller Model Page 11 of 33    37 

Proof of Lemma 2.6. Let S ⊂ L be a finite subgraph containing 0 such that ϕβ(S) < 1

and let k be such that S ⊂ �k . If 0
ωτ←→ ∂�nk , then ∂S

ωτ←→ ∂�nk and 0
ωτ←→ ∂S.

By (CBC) and the union bound,

ATRC1,1
β (0

ωτ←→ ∂�nk) ≤ ATRC1,1
β (0

ωτ←→ ∂S | ∂S
ωτ←→ ∂�nk) · ATRC1,1

β (∂S
ωτ←→ ∂�nk)

≤ ATRC1,1
S,β(0

ωτ←→ ∂S) ·
∑
x∈∂S

ATRC1,1
β (x

ωτ←→ ∂�nk)

≤ ATRC1,1
S,β(0

ωτ←→ ∂S) · |∂S|ATRC1,1
β (0

ωτ←→ ∂�(n−1)k)

= ϕβ(S)ATRC1,1
β (0

ωτ←→ ∂�(n−1)k).

where we also used translation invariance of ATRC1,1
β and that S ⊂ �k .

Since ϕβ(S) < 1, we get that ATRC1,1
β (0

ωτ←→ �nk) decays exponentially fast in n
by induction. Since for any m ∈ N, there exists n such that m ∈ [nk, (n + 1)k], we get

that ATRC1,1
β (0

ωτ←→ ∂�m) decays exponentially fast in m. ��
We are now ready to derive Theorem 1 from Proposition 1.1 and Theorem 2.

Proof of Theorem 1. Fix J < U . By Proposition 1.1 and (12), we can take n > 1 such
that ϕβsd (�n) < 1. Since the function β �→ ϕβ(�n) is increasing and continuous, there
exists ε = ε(J, U ) > 0, such that ϕβ ′(�n) < 1, for all β ′ < βsd + ε. The latter implies
exponential decay by Lemma 2.6 and hence βτ

c > βsd. In other words, all points on γ τ

are strictly above the self-dual curve. Hence their images under the duality mapping (4)
are strictly below the self-dual curve. By Theorem 2, these points are exactly the points
of γ ττ ′ and this finishes the proof. ��
Remark 2.8. Standard arguments similar to the proof of Lemma 2.6 show that

cβ = lim
n→∞−

1

n
logATRC1,1

�n ,β [0
ωτ←→ ∂�n]

exists and is right-continuous in β, which gives another way to argue that the exponential
decay from Proposition 1.1 extends to an open neighbourhood of the self-dual line (SD).

3. Models, Couplings and Required Input

In this section, we introduce the six-vertex model together with its height and spin
representations. We also state couplings of this model with the ATRC model and FK-
percolation that will be crucial to our arguments. A combination of these two couplings
has been made explicit recently in the work of Peled and the third author [GP23] and
we summarize the results of that work that we will rely on.

3.1. Graph notation. Dual subgraphs and configurations. For a finite subgraph � of L,
define its dual graph �∗ in L

∗ formed by edges dual to the edges of �. As for primal
graphs, we denote the sets of its vertices and edges by V�∗ and E�∗ . The boundary ∂�∗
is defined in the same way as for subgraphs of L. Given a percolation configuration ω ∈
{0, 1}E� , its dual configurationω∗ ∈ {0, 1}E�∗ is defined byω∗(e∗) = 1−ω(e), e ∈ E�.
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Fig. 2. Top: The height representation of the six-vertex model in the four vertices of a unit square in Z
2,

normalized to equal 0 at the lower left vertex. Bottom: The spin representation is derived from the heights by
setting the spin state at each vertex to +1 (resp. −1) if the height modulo 4 equals 0, 1 (resp. 2, 3)

Domains in L. A finite induced subgraph � of L (or L
∗) is a domain if it is given by

vertices and edges within a simple cycle (including the cycle itself). We denote the set
of vertices on the surrounding cycle by ∂� and call it the domain-boundary of �. The
set of edges on ∂� is called edge-boundary of � and is denoted by E∂�.

Domains in Z
2. Given a domain � in L, letD� be the subgraph of Z

2 induced by vertices
in � ∪�∗. We call such a domain an even domain of Z

2 (see Fig. 1). Define ∂2D� :=
∂� ∪ ∂�∗. Given a domain �′ on L

∗, we define D�′ in the same manner and call it an
odd domain of Z

2. In particular, odd domains are obtained from even domains by shift
by one to the right. We emphasize that we only consider even and odd domains.

Remark 3.1. These restrictions stem from the coupling to FK-percolation (Sect. 3.6) that
requires two layers of boundary in D�: inner layer ∂� and outer layer ∂�∗.

3.2. Six-vertex model and its representations. In this section, we define the six-vertex
model [Pau35] (more precisely, the F-model) and its different representations in terms
of spins [Rys63] and height functions. For the whole subsection, fix a domain � in L

(or L
∗) and its corresponding even (odd) domain D = D� in Z

2.

Height functions. A function h : D → Z is called a height function (of the six-vertex
model) if it satisfies the ice rule:

• |h(u)− h(v)| = 1 whenever u, v are connected by an edge in Z
2,

• h takes even values on D ∩ L.

This constraint implies that, for each edge e of �, the value of h is constant at the
endpoints of e or at the endpoints of e∗. Up to an even additive constant, this leaves six
local possibilities (types), where types 5 and 6 correspond to h taking constant values
along both e and e∗, see Fig. 2.

The six-vertex height function measure onD with parameters c, cb > 0 and boundary
conditions t ∈ Z

∂2D is supported on height functions h ∈ Z
D that coincide with t on ∂2D

and is given by

HFt;cb
D,c[h] =

1

Z
cni

5,6(h)c
nb

5,6(h)

b , (16)

where Z = Z(D, c, cb, t) is a normalizing constant and ni
5,6(h) (resp. nb

5,6(h)) is the
number of edges of type 5 or 6 of E�\E∂� (resp. E∂�). When c = cb, we recover the stan-

dard six-vertex probability measure that will be denoted byHFt
D,c. We writeHF2n,2n+1;cb

D,c

for HFt;cb
D,c with t ∈ {2n, 2n + 1}∂2D. We define HF2n,2n−1;cb

D,c analogously.
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Fig. 3. Left: Height function with 0, 1 boundary conditions. Right: Its spin representation is given by σ • on L

(black circles) and σ ◦ on L
∗ (white circles)

Finally, we define HF2n,2n±1;cb
D,c as the probability measure given by (16) and sup-

ported on all height functions in Z
D that have a fixed value 2n on ∂2D∩L. Note that the

value on ∂2D∩L
∗ is not fixed in this case, so the conditions can be viewed as semi-free.

Spin representation. Given a height function h ∈ Z
D, define σ = σ(h) ∈ {±1}D by

σ(u) =
{

1 if h(u) ≡ 0, 1 (mod 4),
−1 otherwise.

The six-vertex spin measures Spin+,+;cb
D,c , Spin+,+

D,c, Spin+,±
D,c are defined as the push-

forwards of HF0,1;cb
D,c , HF0,1

D,c, HF0,±1
D,c under this mapping. The spin measures are sup-

ported on all spin configurations σ ∈ {±1}D with the following restrictions: σ|∂2D ≡ 1

under Spin+,+;cb
D,c and Spin+,+

D,c; σ|∂2D∩L ≡ 1 under Spin+,±
D,c.

3.3. From Ashkin–Teller to six-vertex. In this section, we describe the connection be-
tween the self-dual Ashkin–Teller model on a domain � in L and the spin representation
of the six-vertex model on the corresponding even domain D� in Z

2. This relation has
first been noticed in [Fan72a] comparing their critical properties, it was made explicit in
[Fan72b,Weg72] (see also [HDJS13]), and was upgraded to a coupling in [GP23,Lis22]
(we note that [Lis22] treats a more general case of two interacting Potts models). We
consider two types of boundary conditions that will play an important role in proving
Proposition 1.1.

Let � be a domain of L, J < U be parameters. We will consider the ATRC mea-
sures defined in Sect. 2.1 with boundary conditions on ∂� rather than ∂�. We write
ATRC0,1

�,J,U for the corresponding ATRC measure where 1 refers to the wired boundary

condition on ∂�.
Letητ , ηττ ′ be boundary conditions on ∂�or ∂�. Consider the marginal ofATRC

ητ ,ηττ ′
�,J,U

on ωτ : this is the probability measure supported on {0, 1}E� and defined by

μ
ητ ,ηττ ′
�,J,U (ξ) := ATRC

ητ ,ηττ ′
�,J,U ({ωτ = ξ}).

Also, given σ ∈ {±1}D� , we write σ • and σ ◦ for the restrictions of σ to � and �∗,
respectively (see Fig. 3). We define the sets of disagreement edges:

Eσ • := {uv ∈ E� : σ •(u) 
= σ •(v)} and Eσ ◦ := {u∗v∗ ∈ E�∗ : σ ◦(u∗) 
= σ ◦(v∗)}.
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Finally, we define the compatibility relation on pairs of σ • ∈ {±1}� and ω ∈ {0, 1}E� :

σ ⊥ ω if and only if σ(u) = σ(v), for any uv ∈ ω.

The compatibility relation on pairs of σ ◦ ∈ {±1}�∗ and ω ∈ {0, 1}E�∗ is defined
similarly. The following is a consequence of [GP23, Proposition 8.1] and a remark after
it, or may be proved along the same lines:

Proposition 3.2. Let 0 < J < U be a point on the self-dual line (SD) and c = coth 2J .

(1) If � is a domain in L, then we can couple σ ∼ Spin+,+
D�,c and ωτ ∼ μ

0,1
�,J,U by

P [σ, ωτ ] ∝
(

1
c−1

)|ωτ |+|Eσ• |
1σ •⊥ωτ , σ ◦⊥ω∗τ1σ •≡+ on ∂�, σ ◦≡+ on ∂�∗ .

Thus, σ ◦ is obtained by assigning +1 to the clusters of ω∗τ that intersect ∂�∗ and
assigning ±1 uniformly independently to all other clusters.

(2) If �∗ is a domain in L
∗, then we can couple σ ∼ Spin+,±

D�∗ ,c and ωτ ∼ μ
1,1
�,J,U by

P [σ, ωτ ] ∝
(

1
c−1

)|ωτ |+|Eσ• |
1σ •⊥ωτ , σ ◦⊥ω∗τ1σ •≡+ on ∂�.

Remark 3.3. Part 1 of Proposition 3.2 is a special case of [GP23, Proposition 8.1] while
part 2 may be proved in the same way. The proof relies on the following identity:

k1(ω)− k(ω∗) = |ω∗| + const(�),

where ω = ω∗τ for (1) and ω = ωτ for (2). This follows from Euler’s formula using that
either � or �∗ is a domain and our definition of the domain-boundary.

Corollary 3.4. In the setting of part 1 of Proposition 3.2, take (σ •, σ ◦) ∼ Spin+,+
D�,c.

Sample a percolation configuration ω on E� as follows independently at each edge e: if
the endpoints of e∗ have opposite values in σ ◦, then ωe = 1; if the endpoints of e have
opposite values in σ •, then ωe = 0; if σ ◦ agrees on e∗ and σ • agrees on e, then

P(ωe = 1) = 1
c . (17)

Then, the law of ω is given by μ
0,1
�,J,U .

3.4. Input from the six-vertex model. In this section, we mention basic properties of
six-vertex measures and state some results from [GP23]. The following proposition is
a combination of Theorem 2.2, Proposition 6.1 and Lemma 6.2 in [GP23]. We remark
that we only consider even and odd domains in Z

2.

For u ∈ L, S ⊂ L, define u
h 
=0←−→ S to be the event that u is connected (in L) to S by a

path of heights different from 0. We similarly define u∗ h 
=1←−→ S∗ for u∗ ∈ L
∗, S∗ ⊂ L

∗.

Proposition 3.5 [GP23]. Fix c > 2, and let λ be the unique positive solution of c =
eλ/2 + e−λ/2. Then, for any sequence of domains Dk ↗ Z

2, the measures HF0,1
Dk ,c

and

HF0,1;eλ/2

Dk ,c
converge weakly to the same limit that we denote by HF0,1

c . Moreover, HF0,1
c -

a.s. exist unique infinite clusters in L of height 0 and in L
∗ of height 1. Finally, clusters
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of other heights are exponentially small: for some α > 0 uniform in n ≥ 1, u ∈ L,
u∗ ∈ L

∗,

HF0,1
c

[
u

h 
=0←−→ u + ∂�n

]
< e−αn and HF0,1

c

[
u∗ h 
=1←−→ u∗ + ∂�n

]
< e−αn .

Let us emphasize that, while existence of subsequential limits is a straightforward
consequence of discontinuity of the phase transition in FK-percolation, the ordering of

both even and odd heights is non-trivial. This also implies that the weak limit ofHF0,1;eλ/2

Dk ,c
remains the same, whether it is taken along even or odd domains. Analogously, for any
n ∈ Z, one obtains limit measures HF2n,2n+1

c (resp. HF2n,2n−1
c ) of HF2n,2n+1

Dk ,c
(resp.

HF2n,2n−1
Dk ,c

) satisfying the corresponding properties.
Since the modulo 4 mapping (Sect. 3.2) is local, Propositon 3.5 directly implies the

following corollary.

Corollary 3.6. Fix c > 2, and let λ be the unique positive solution of c = eλ/2 + e−λ/2.
Then, for any sequence of domains Dk increasing to Z

2, the measures Spin+,+
Dk ,c

and

Spin+,+;eλ/2

Dk ,c
converge weakly to some Spin+,+

c , which is independent of the sequence
Dk .

The height function measures admit useful monotonicity properties and correlation
inequalities when c, cb ≥ 1, see [GP23, Proposition 5.1].

Proposition 3.7. Let D be a domain in Z
2, and let c, cb ≥ 1. Then, for any boundary

condition t, the measure HFt;cb
D,c is monotone (11) and satisfies the FKG inequality (10).

In particular, if t ≤ t ′, then HFt;cb
D,c is stochastically dominated by HFt ′;cb

D,c .

It has been established in [GP23, Theorem 2.5] that the marginals of Spin+,+
Dk ,c

on σ •

(resp. σ ◦) satisfy the FKG inequality with respect to the pointwise order on {±1}V�

(resp. {±1}V�∗ ). Though [GP23] deals only with boundary conditions specified on the
whole boundary, the extension to free or semi-free conditions is straightforward. Indeed,
the statement for σ • holds as long as spins σ ◦ on the boundary are not forced to disagree.

Proposition 3.8. ([GP23]) Let � be a domain in L, and let c ≥ 1. The marginals of
Spin+,±

D�,c on σ • and σ ◦ satisfy the FKG inequality (10).

It was also shown in [GP23, Corollary 7.3, Proposition 7.5] that the marginals μ
0,1
�,J,U

converge to some infinite-volume state μ
0,1
J,U that admits exponential decay of connection

probabilities.

Proposition 3.9 [GP23]. Let 0 < J < U be on the self-dual line (SD) and �k be
a sequence of domains increasing to L. The measures μ

0,1
�k ,J,U converge weakly to

some measure μ
0,1
J,U on {0, 1}EL which is independent of the sequence �k and admits

exponential decay of ωτ -connection probabilities: there exist M, α > 0 such that, for
any u, v ∈ L,

μ
0,1
J,U [u

ωτ←→ v] ≤ Me−α|u−v|.

We sketch the argument given in [GP23].
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Sketch of proof of Proposition 3.9. The couplings in Proposition 3.2 and Corollary 4.3
imply convergence of μ

0,1
�,J,U , as � ↗ L, to some μ

0,1
J,U that satisfies FKG and is

invariant under translations. Thus, it is enough to show that it is exponentially unlikely
that ωτ contains a circuit surrounding �n . Indeed, on this event, the marginal of Spin+,+

c
at vertices in (�n)∗ is invariant under the spin flip. By Proposition 4.2, radii of clusters
of minuses have exponential tails and the claim follows. ��

We emphasise a difference between Propositions 3.9 and 1.1: the latter proves expo-
nential decay under the largest boundary conditions and in finite volume. As we saw in
Sect. 2.3, this is necessary for the proof of Theorem 1.

3.5. FK-percolation. Fortuin–Kasteleyn (FK) percolation [FK72] is an archetypical de-
pendent percolation model. It is well-understood thanks to recent remarkable works;
see [Dum17,Gri06] for background. We will transfer some known results from FK-
percolation to the six-vertex model via the BKW coupling (Sect. 3.6) and further to the
self-dual ATRC via the coupling in Proposition 3.2.

Definition. Let � ⊂ L be a finite subgraph and ξ a partition of ∂�. FK-percolation
on � with parameters p ∈ [0, 1] and q > 0 is supported on percolation configurations
η ∈ {0, 1}E� and is given by

FKξ
�,p,q(η) = 1

Z
p|η|(1− p)|E�|−|η|qkξ (η),

where Z = Z(�, p, q, ξ) is a normalizing constant and kξ (η) was defined in Sect. 2.1.

The free and wired FK-percolation measures FKf
�,p,q and FKw

�,p,q are defined by
free and wired boundary conditions, respectively (as in Sect. 2.1).

We now review several fundamental results about FK-percolation.

Proposition 3.10. Let p ∈ [0, 1], q > 1 and �k ↗ L be a sequence of subgraphs.
Then, the weak limits of FKf

�k ,p,q and FKw
�k ,p,q exist and do not depend on the chosen

sequence:

FKf
p,q := lim

k→∞FKf
�k ,p,q and FKw

p,q := lim
k→∞FKw

�k ,p,q .

Moreover, these measures are positively associated, extremal, invariant under transla-
tions and satisfy the following ordering, for any finite subgraph � ⊂ L,

FKf
�,p,q ≤st FKf

p,q ≤st FKw
p,q ≤st FKw

�,p,q .

As we will see below, the self-dual AT model with J < U corresponds to FK-
percolation with q > 4 at p = psd, where

psd :=
√

q√
q+1 .

This model is self-dual: if ω has law FKf
psd,q , then ω∗(e∗) := 1−ω(e) has law FKw

psd,q .

Theorem 4 [DGH+21]. Let q > 4. Then, FKf
psd,q 
= FKw

psd,q and

(i) FKw
psd,q(there exists a unique infinite cluster) = 1,
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Fig. 4. Left: An edge configuration on the domain � ⊆ L from Fig. 1 (in black), and its dual on �∗ (in gray).
Right: Loops (in red) separating primal and dual clusters within D� after opening all edges in E

∂�
(dashed)

(ii) there exists α > 0 such that FKf
psd,q(0 ↔ ∂�n) ≤ e−αn, for any n ≥ 1, .

The second item of this theorem implies exponential relaxation at psd:

Lemma 3.11. Let q > 4. Then, there exists α > 0 such that, for n ≥ 1 and any finite
subgraph � ⊂ L that contains �2n,

dTV

(
FKw

�,psd,q |�n ,FK
w
psd,q |�n

)
< e−αn,

where dTV denotes the total variation distance.

The proof is standard and goes through the monotone coupling; see Appendix B.

3.6. Baxter–Kelland–Wu (BKW) coupling. FK-percolation and the six-vertex model
were related to each other for the first time by Temperley and Lieb [TL71] on the level
of partition functions. BKW [BKW76] turned this relation into a probabilistic coupling
when c > 2. We follow [GP23] and describe this coupling using a modified boundary
coupling constant cb.

Take q > 4, p = psd. Let λ > 0 be the unique positive solution to

eλ + e−λ = √q, and set c := eλ/2 + e−λ/2.

Let � be a domain in L and recall the notations introduced in Sect. 3.1. The measure
FKw

�,psd,q refers to the FK measure with wired boundary conditions on ∂�. Note that
the statements of Proposition 3.10 and Lemma 3.11 remain valid if we replace w by w.

Consider η ∼ FKw
�,psd,q and draw loops separating primal and dual clusters within

� as in Fig. 4. Given this loop configuration, we define a height function h ∈ Z
D� by:

H1 Set h = 0 on ∂2D� ∩ L and h = 1 on ∂2D� ∩ L
∗;

H2 Assign constant heights to primal and dual clusters by going from ∂2D� inside ofD�

and tossing a coin when crossing a loop: the height increases by 1 with probability
eλ/
√

q and decreases by 1 with probability e−λ/
√

q , independently of one another.

The following result is classical; see e.g. [GP23, Chapter 3] for a proof in this setup.

Proposition 3.12. (BKW coupling) The resulting height function is distributed accord-

ing to HF0,1;eλ/2

D�,c .

Odd domains. Note that, by symmetry, the whole procedure also works on odd domains
with the difference that one needs to replace H2 by
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H2′ each time one crosses a loop, the height decreases by 1 with probability eλ/
√

q and
increases by 1 with probability e−λ/

√
q , independently of one another.

For a domain �′ in L
∗, this gives a coupling of FKw

�′,psd,q and HF0,1;eλ/2

D�′ ,c
.

4. Exponential Decay for ATRC in Finite Volume

The goal of this section is to derive exponential decay of connection probabilities for
μ

0,1
�,J,U , which is the marginal of a finite-volume ATRC measure on ωτ , see Sect. 3.3.

Recall that �n = {u ∈ L : ‖u‖1 ≤ 2n} is the box of size n in L.

Proposition 4.1. Let 0 < J < U be on the self-dual line (SD). There exists α > 0 such
that, for any n ≥ 1 and any domain � in L containing �4n,

μ
0,1
�,J,U [0

ωτ←→ ∂�n] ≤ e−αn .

The proof consists of several steps. We first transfer the exponential relaxation prop-
erty from FK-percolation (Lemma 3.11) to the six-vertex height function (Proposi-
tion 4.2) and then to the marginal ν� of the ATRC model with modified edge weights on
the boundary. Using Proposition 3.5, we also show that the limit of ν� is given by μ

0,1
J,U

(Lemma 4.4), and that ν� dominates μ
0,1
�,J,U (Lemma 4.7). The statement then follows

from exponential decay in μ
0,1
J,U (Proposition 3.9).

4.1. Exponential relaxation for height function measures. As in Sect. 3.6, fix c > 2 and
let λ > 0 be the unique positive solution of c = eλ/2 + e−λ/2. Set q := (eλ + e−λ)2 and
consider p = psd. For n ≥ 1, define an even domain �2n = D�n .

Proposition 4.2. The convergence of HF0,1;eλ/2

D,c towards HF0,1
c admits exponential re-

laxation: there exists α > 0 such that, for any n ≥ 1 and any even domain D ⊃ �8n,

dTV

(
HF0,1;eλ/2

D,c |�2n ,HF
0,1
c |�2n

)
< e−αn . (18)

Proof. We omit q, psd from the notation for brevity. We first construct the limiting
measureHF0,1

c . Consider η ∼ FKw on L. Using known results about η ∼ FKw (Sect. 3.5)
we can sample a height function h as follows. Set h = 0 on the unique infinite cluster
of η and sample h in its holes according to H2 in the BKW coupling (Sect. 3.6).

Define Cn to be the outermost circuit in η surrounding �n and contained in �2n
(if it does not exist, we set Cn := ∅). Stochastic ordering of FK measures, positive
association (10) and exponential decay in η∗ imply existence of α′ > 0 such that, for
any n ≥ 1 and any domain � ⊃ �2n ,

FKw
�[Cn 
= ∅, Cn

η←→ ∂�] ≥ FKw[Cn 
= ∅, Cn
η←→∞] > 1− e−α′n . (19)

By exponential relaxation of the wired FK measures (Lemma 3.11), there exists α′′ > 0
such that, for any n ≥ 1 and any domain � ⊃ �4n ,

dTV

(
FKw

�|�2n ,FK
w|�2n

)
< e−α′′n . (20)



Phase Diagram of the Ashkin–Teller Model Page 19 of 33    37 

Now, given Cn = C and C
η←→∞, the law of h within C is precisely HF0,1;eλ/2

D�(C),c
where

�(C) is the domain in L induced by the vertices within C (including C). Note that �(C)

contains �n , whence D�(C) contains D�n = �2n .

We can also obtain HF0,1;eλ/2

D�(C),c
from FKw

� conditioned on Cn = C and C
η←→ ∂� by

applying H1 and H2. Together with (20) and (19), this proves exponential relaxation. ��
Recall that the six-vertex spin measures introduced in Sects. 3.2 and 3.4 are the

push-forwards of the height function measures under the local modulo 4 mapping.

Corollary 4.3. The convergence of Spin+,+;eλ/2

D,c towards Spin+,+
c admits exponential

relaxation: there exists α > 0 such that, for any n ≥ 1 and any even domain D ⊃ �8n,

dTV

(
Spin+,+;eλ/2

D,c |�2n ,Spin
+,+
c |�2n

)
≤ e−αn . (21)

4.2. A modified ATRC marginal. Fix J < U on the self-dual line (SD), take c = coth 2J
and the unique λ > 0 such that c = eλ/2 + e−λ/2. Let � be a domain on L and D� be
the corresponding even domain on Z

2. Recall the definition of the edge-boundary E∂�

in Sect. 3.1. Sample (σ •, σ ◦) from Spin+,+;eλ/2

D�,c . Define ν� as the distribution of ω ∈
{0, 1}E� sampled independently for each edge e as follows: if the endpoints of e∗ have
opposite values in σ ◦, then ωe = 1; if the endpoints of e have opposite values in σ •,
then ωe = 0; if σ ◦ agrees on e∗ and σ • agrees on e, then

P(ωe = 1) =
{

e−λ/2, if e ∈ E∂�,
1
c , otherwise.

(22)

We call ν� a modified ATRC marginal as it converges to μ
0,1
J,U as �↗ L. Moreover,

this convergence admits exponential relaxation, which is the content of the next lemma.

Lemma 4.4. For any sequence of domains �k increasing to L, the measures ν�k con-
verge to μ

0,1
J,U . Moreover, this convergence admits exponential relaxation: there exists

α > 0 such that, for any n ≥ 1 and any domain � ⊃ �4n,

dTV

(
ν�|�n , μ

0,1
J,U |�n

)
< e−αn . (23)

Recall the representation (7) of the ATRC measures. The previous lemma becomes
more clear once we identify ν� as the marginal ofATRC0,1

wτ ,wττ ′ on ωτ where the weights
are as in (8) except that wτ is modified on the edge-boundary E∂�.

Lemma 4.5. For any domain � in L, the measure ν� coincides with the marginal of
ATRC0,1

�,wτ ,wττ ′ on ωτ , where

wτ (e) =
{

2 c−1
eλ/2−1

, if e ∈ E∂�,

2, otherwise,
and wττ ′ ≡ e2(U−J ) − 1 on E�. (24)

We now derive Proposition 4.1 from Lemmata 4.4 and 4.5. First of all, the ATRC
measure is stochastically increasing in wτ (see Appendix C for the proof).
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Lemma 4.6. Let � be a domain in L. The measures ATRC0,1
�,wτ ,wττ ′ are stochastically

increasing in wτ . More precisely, if wτ (e) ≤ w̃τ (e) for all e ∈ E�, then the measure
ATRC0,1

�,wτ ,wττ ′ is stochastically dominated by ATRC0,1
�,w̃τ ,wττ ′ .

This, together with Lemma 4.5, implies the following stochastic domination:

Lemma 4.7. For any domain � in L, the measure ν� stochastically dominates μ
0,1
�,J,U .

Proof of Proposition 4.1. Fix n ≥ 1 and a domain � ⊃ �4n in L. We have

μ
0,1
�,J,U [0 ↔ ∂�n] ≤ μ

0,1
�,J,U [0 ↔ ∂�n] ≤ ν�[0 ↔ ∂�n],

where we used (CBC) for the first inequality and Lemma 4.7 for the second one.
Now, by Lemma 4.4 and Proposition 3.9, there exist α, M > 0 such that

ν�[0 ↔ ∂�n] ≤ μ
0,1
J,U [0 ↔ ∂�n] + e−αn ≤ 8nMe−αn + e−αn .

��
It remains to show Lemmata 4.4 and 4.5.

Proof of Lemma 4.4. By construction, ν� can be sampled fromSpin+,+;cb
D�,c using (22). By

Corollary 3.4,μ0,1
�,J,U can be sampled fromSpin+,+

D�,c using (17). The measuresSpin+,+;cb
D�,c

andSpin+,+
D�,c both converge toSpin+,+

c , as �↗ L, by Corollary 3.6. Also, the rules (22)
and (17) are local and coincide outside of the boundary (which is irrelevant in the limit).
Thus, ν� and μ

0,1
�,J,U have the same limit and it can be sampled from Spin+,+

c using
the same rules. Their locality implies that the convergence inherits the exponential re-
laxation property (21) (recall that D�4n = �8n) and, by Proposition 3.9, the limit is
μ

0,1
J,U . ��

Proof of Lemma 4.5. Fix a domain � in L, and take cb := eλ/2. Recall that Eσ • denotes
the set of disagreement edges in σ • (Sect. 3.3).

Step 1 The measure ν� can be written in the following form:

ν�[ω] ∝
(

2
c−1

)|ω\E∂�| ( 2
cb−1

)|ω∩E∂�|
2k(ω)

∑
σ •∈{±1}�

σ •⊥ω, σ •|∂�≡1

(
1

c−1

)|Eσ• |
. (25)

For brevity, we write E for E� and ∂ E for E∂�. In a slight abuse of notation, we also
set (Eσ ◦)∗ = {e∗ : e ∈ Eσ ◦}. The law of (σ, ω) defined by (22) satisfies:

P[σ, ω] = Spin+,+;cb
D�,c [σ ]1σ •⊥ω, σ ◦⊥ω∗ ×

( 1
c

)|ω\((Eσ◦ )∗∪∂ E)| ( c−1
c

)|E\(ω∪Eσ•∪∂ E)|

×
(

1
cb

)|ω∩∂ E\(Eσ◦ )∗| ( cb−1
cb

)|∂ E\(ω∪Eσ• )|

∝ (c − 1)−|(ω∪Eσ• )\∂ E | (cb − 1)−|(ω∪Eσ• )∩∂ E | 1σ |
∂2D≡1 1σ •⊥ω, σ ◦⊥ω∗ .

Note that Eσ • ∩ ∂ E = ∅ since σ|∂� ≡ 1. Summing over σ then gives

P[ω] ∝ (c − 1)−|ω\∂ E |(cb − 1)−|ω∩∂ E | 2k1(ω∗) ∑
σ •∈{±1}�

σ •⊥ω, σ •|∂�≡1

(c − 1)−|Eσ• |.
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Finally, by Euler’s formula (or induction), k1(ω∗) = k(ω) + |ω| + const(D�).

Step 2: The marginal of ATRC0,1
�,wτ ,wττ ′ on ωτ with weights wτ , wττ ′ given by (24)

coincides with the right-hand side of (25).
Given (ωτ , ωττ ′) ∼ ATRC0,1

�,wτ ,wττ ′ , define a spin configuration σ • ∈ {±1}� by
assigning +1 to domain-boundary clusters of ωττ ′ and ±1 to interior clusters of ωττ ′
uniformly independently. Then their joint law can be written as

P[ωτ , ωττ ′ , σ
•] ∝

∏
e∈ωτ

wτ (e) · w|ωττ ′ \ωτ |
ττ ′ 2k(ωτ ) 1ωτ⊆ωττ ′ 1σ •⊥ωττ ′ 1σ •|∂�≡1.

Now, σ • ⊥ ωττ ′ precisely if σ • ⊥ ωτ and (ωττ ′ \ ωτ ) ∩ Eσ • = ∅. Sum over ω :=
ωττ ′ \ ωτ :

P[ωτ , σ
•] ∝

∏
e∈ωτ

wτ (e) · 2k(ωτ ) 1σ •⊥ωτ 1σ •|∂�≡1

∑
ω⊆E\(ωτ∪Eσ• )

w|ω|
ττ ′ .

The last term equals (wττ ′ + 1)|E |−|ωτ |−|Eσ• |. Finally, summing over σ •, we arrive at

P[ωτ ] ∝
∏

e∈ωτ

wτ (e)
wττ ′+1 · 2k(ωτ )

∑
σ •∈{±1}�

σ •⊥ωτ , σ •|∂�≡1

(
1

wττ ′+1

)|Eσ• |
. (26)

Plugging in the weights (24) while using that sinh 2J = e−2U and c = coth(2J ) gives
that (26) agrees with (25), which finishes the proof. ��

5. No Infinite Cluster in the Wired Self-dual ATRC

Proposition 5.1. Let 0 < J < U satisfy sinh 2J = e−2U . Then, ATRC1,1
J,U [0

ωτ←→∞] =
0.

The proof of Proposition 5.1 again relies on the coupling with the six-vertex model,
Proposition 3.2. First of all, by the non-coextistence theorem [She05,DRT19], it is
sufficient to show that ATRC1,1

J,U admits an infinite ω∗τ -cluster. If the latter is not the

case, the infinite-volume limit of the marginals of Spin+,±
D,c on {±1}L∗ can be shown to

be tail-trivial. Exploring clusters of 1 and −1 (in T-connectivity) and using the non-
coexistence theorem, we obtain that the limit of HF0,±1

D,c is either HF0,1
c or HF0,−1

c ,

thereby contradicting the invariance of HF0,±1
D,c under h �→ −h.

In the following remark, we summarise some basic properties of the ATRC marginals
μ

1,1
�,J,U (defined in Sect. 3.3) and their infinite-volume limit that we will use in Sects. 5.1

and 5.2.

Remark 5.2. Recall that, for domains �k ↗ L, the measures ATRC1,1
�k ,J,U form a

decreasing sequence and converge to ATRC1,1
J,U . In particular, the same holds for the

marginals on ωτ : μ
1,1
�k ,J,U converges to μ

1,1
J,U . It is then standard ([Gri06, Chapter 4.3])

that μ
1,1
J,U is invariant under translations and tail-trivial (and hence ergodic). Moreover,

ATRC1,1
�k ,J,U (and thus their limit and its marginals) satisfies the finite-energy prop-

erty. Therefore, the Burton–Keane argument [BK89] and the non-coexistence theorem
[She05,DRT19] apply.
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5.1. Semi-free measures in infinite volume. In this section, we will show weak conver-
gence for some finite-volume spin and height function measures defined in Sect. 3.2.

Lemma 5.3. Let 0 < J < U be on the self-dual line (SD) and take c := coth 2J .
Let ωτ ∼ μ

1,1
J,U . Define χ

+,±
c as the distribution on {±1}L∗ obtained by assigning±1 to

every cluster of ω∗τ uniformly and independently. Then, for any sequence of odd domains
Dk ↗ Z

2, the marginals of Spin+,±
Dk ,c

on σ ◦ converge weakly to χ
+,±
c . Moreover, χ

+,±
c

is translation-invariant, positively associated and satisfies the finite-energy property.

Proof. Fix J < U . Let Dk be a sequence of odd domains on Z
2 and �k the corre-

sponding subgraphs of L such that Dk = D(�k)
∗ . Let ωk

τ be sampled from μ
1,1
�k ,J,U . By

Proposition 3.2, assigning ±1 to clusters of (ωk
τ )
∗ uniformly independently gives the

marginal of Spin+,±
Dk ,c

on σ ◦. Since μ
1,1
�k ,J,U converges to μ

1,1
J,U that exhibits at most one

infinite cluster in ω∗τ , the marginal of Spin+,±
Dk ,c

on σ ◦ converges to χ
+,±
c .

Clearly, χ
+,±
c inherits translation-invariance and the finite-energy property from

μ
1,1
J,U . By Proposition 3.8, the marginal of Spin+,±

Dk ,c
on σ ◦ satisfies the FKG inequality.

Hence, the same holds for its limit χ
+,±
c . ��

Working with measures on height functions (rather than spins) is more convenient as
they satisfy stochastic ordering in boundary conditions. In the proof of Proposition 5.1,
we use an infinite-volume version of HF0,±1

D,c . We show existence of such subsequential

limit in the next lemma by sandwiching HF0,±1
D,c between HF0,−1

D,c and HF0,1
D,c.

Lemma 5.4. Let c > 2. For any sequence of domains Dk increasing to Z
2, there exists

a subsequence (k�) such that the measures HF0,±1
Dk� ,c converge weakly to some HF0,±1

c as

� tends to infinity.

Remark 5.5. Proposition 5.6 and its proof allow to show that the limiting measure
is 1

2 (HF0,1
c + HF0,−1

c ) for any (sub)sequence. We do not use this statement and omit
the details.

Proof of Lemma 5.4. By [Geo11, Proposition 4.9], it suffices to show that (HF0,±1
Dk ,c

)k≥1

is locally equicontinuous: for any finite V ⊂ Z
2 and any decreasing sequence of local

events (Am)m≥1 supported on V and with ∩m≥1 Am = ∅, it holds that

lim sup
k→∞

HF0,±1
Dk ,c

[Am] → 0 as m →∞.

By Proposition 3.7, finite-volume six-vertex height function measures are stochastically
ordered with respect to the boundary conditions, whence

HF0,−1
Dk ,c

≤st HF
0,±1
Dk ,c

≤st HF
0,1
Dk ,c

.

Moreover, by Proposition 3.5, HF0,−1
Dk ,c

converges to HF0,−1
c and HF0,1

Dk ,c
to HF0,1

c as k
tends to infinity. These statements together easily imply the required local
equicontinuity. ��
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5.2. Proof of Proposition 5.1. As we argued in Remark 5.2, it suffices to find a dual
infinite cluster:

Proposition 5.6. Let 0 < J < U satisfy sinh 2J = e−2U . Then, ATRC1,1
J,U [0

ω∗τ←→∞] >
0.

Remark 5.7. By the duality relation described in Sect. 2.1, this is equivalent to saying

that ATRC0,0
J,U [0

ωττ ′←−→∞] > 0, for any J < U on the self-dual line (SD).

The proof of Proposition 5.6 also relies on the non-coexistence theorem – but in the
context of site percolation. Following the notation of [GP23], we let T

◦ be the graph
with vertex set L

∗ where a vertex (x, y) ∈ L
∗ is adjacent to

(x, y)± (1, 1), (x, y)± (1,−1) and (x ± 2, y).

Note that T
◦ is isomorphic to the triangular lattice.

Proof of Proposition 5.6. Fix J < U . Recall that μ
1,1
J,U is the marginal of ATRC1,1

J,U

on ωτ . Assume for contradiction that μ
1,1
J,U does not admit an infinite dual cluster.

Set c = coth 2J . Recall that χ+,±
c is obtained from ω ∼ μ

1,1
J,U by assigning uniformly

independently±1 to its dual clusters. Since all of them are finite by our assumption, χ+,±
c

inherits ergodicity from μ
1,1
J,U . Also, by Lemma 5.3, χ

+,±
c is translation-invariant and

satisfies the FKG inequality. Thus, by the non-coexistence theorem, in T
◦-connectivity,

either χ
+,±
c admits no infinite cluster of minuses, whence

χ+,±
c (∃ infinitely many disjoint T

◦-circuits of + around the origin) = 1, (27)

or the same holds for T
◦-circuits of −. By symmetry, we can assume (27).

By Lemma 5.4, there exists a sequence of odd domainsDk such thatHF0,±1
Dk ,c

converge

to some infinite-volume height function measure HF0,±1
c weakly. Recall that Spin+,±

D,c

is the push-forward of HF0,±1
D,c under the modulo 4 mapping and, by Lemma 5.3, the

marginals of Spin+,±
D,c on σ ◦ converge to χ

+,±
c weakly. Then, (27) implies that HF0,±1

c
admits infinitely many disjoint T

◦-circuits around the origin of constant height that is
congruent to 1 modulo 4. By Proposition 3.7, the measure HF0,±1

c is between HF0,−1
c

and HF0,1
c in the sense of stochastic domination. By Proposition 3.5, HF0,−1

c and HF0,1
c

admit infinite clusters of −1 and +1, respectively. Hence, the above implies

HF0,±1
c (∃ infinitely many disjoint T

◦-circuits of + 1 around the origin) = 1. (28)

By a standard exploration argument and FKG inequality (details below), (28) implies
that HF0,±1

c stochastically dominates and hence equals HF0,1
c . This leads to a contradic-

tion since HF0,±1
c is invariant under h �→ −h while HF0,1

c is not.
It remains to show that (28) implies HF0,±1

c = HF0,1
c . It is sufficient to prove HF0,±1

c

[A] = HF0,1
c [A], for any increasing local event A. Take any ε > 0. Since HF0,1

D,c

converges to HF0,1
c weakly as D ↗ Z

2, we can find n ≥ 1 such that, for any domain D
containing �n ,

|HF0,1
D,c[A] − HF0,1

c [A]| < ε. (29)



   37 Page 24 of 33 Y. Aoun, M. Dober, A. Glazman

We can find D ⊇ �n large enough such that∣∣∣HF0,±1
c [A] − HF0,±1

c [A | ∃ T
◦-circuit of + 1 in D surrounding �n]

∣∣∣ < ε. (30)

Let C be the outermost T
◦-circuit of height +1 in D surrounding �n (if such circuit does

not exist, we set C := ∅). By the domain Markov property and stochastic ordering in
boundary conditions, for any T

◦-circuit C surrounding �n and contained in D,

HF0,±1
c [A | C = C] ≥ HF0,1

DC ,c[A], (31)

where DC is the connected component of the origin in the graph obtained from Z
2 after

removing all vertices on C or adjacent to it in Z
2. SinceDC ⊃ �n , by (29), the right-hand

side in (31) is ε-close to HF0,1
c [A]. Putting this together with (30), we get HF0,±1

c [A] ≥
HF0,1

c [A] − 2ε. Since ε > 0 was arbitrary, we obtain HF0,±1
c [A] ≥ HF0,1

c [A]. The
opposite inequality follows by the comparison of boundary conditions. ��

6. Proof of Proposition 1.1

Our goal is to use exponential decay under 0, 1 conditions, Proposition 4.1, to improve the
non-percolation statement, Proposition 5.1, and get exponential decay in finite volume,
Proposition 1.1. We use the approach of [CM10] and [CIV08, Appendix]. Additional
difficulties in our case come from a weaker domain Markov property of the ATRC
measure.

Fix J < U and n ≥ 1. For any vertex x ∈ �n , define

η(x) = 1{x ωτ←→∂�n}.

The next lemma provides a lower bound on the size of the boundary cluster of ωτ .
Recall that we denote by μ the marginal of the ATRC measure on ωτ .

Lemma 6.1. For any δ > 0, there exists α := α(δ, βsd) > 0 such that

μ
1,1
�n ,βsd

⎛
⎝∑

x∈�n

ηx ≥ δn2

⎞
⎠ ≤ e−αn2

.

Proof. Fix δ > 0. It follows from Proposition 5.1 that

lim
n→∞μ

1,1
�n ,βsd

(0
ωτ←→ ∂�n) = 0.

This implies that one can find M := M(δ) > 0 such that

E
1,1
�M ,βsd

⎡
⎣ 1
|�M |

∑
x∈�M

ηx

⎤
⎦ <

δ

2
.

Fix n $ M . Without loss of generality, assume that n = (2k + 1)M . One has

1

|�n|
∑

x∈�n

ηx ≤ 1

|�k |
∑

x∈�k

⎛
⎝ 1

|�M |
∑

y∈2Mx+�M

1y↔∂(2Mx+�M )

⎞
⎠ .
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Denote the expression in the brackets by Yx,M . Then,

μ
1,1
�n ,βsd

⎛
⎝ 1

|�n|
∑

x∈�n

ηx ≥ δ

⎞
⎠ ≤ μ

1,1
�n ,βsd

⎛
⎝ 1

|�k |
∑

x∈�k

Yx,M ≥ δ

⎞
⎠

≤ μ
1,1
�n ,βsd

⎛
⎝ 1

|�k |
∑

x∈�k

Yx,M ≥ δ

∣∣∣ BM

⎞
⎠ ,

where BM = ⋂
x∈�k

{ωτ |∂(2Mx+�M ) ≡ 1} and the last inequality uses (FKG) and that

BM is increasing. Note that under μ
1,1
�n ,βsd

(·|BM ), the random variables Yx,M are i.i.d.
The statement then follows from Hoeffding’s inequality. ��
Proof of Proposition 1.1. Recall (12). We aim to show that, up to an arbitrary small
exponential error, there exists a blocking surface of closed edges around � 4n

5
in �n .

For each � ∈ [1, n] and x ∈ ∂��, define

f (x) := 1
{x ωτ ,�n\��←−−−−→∂�n}

and N (�) :=
∑

x∈∂��

f (x).

Define A� as the event that N (�) ≤ δn. Since f (x) ≤ η(x), Lemma 6.1 implies that, up
to an error e−αn2

, event A� occurs for some � ∈ [4n/5, n], whence

μ
1,1
�n ,βsd

(0
ωτ←→ ∂�n/5)

≤ e−αn2
+

∑
4n/5≤�≤n

μ
1,1
�n ,βsd

(0
ωτ←→ ∂�n/5 | A�) · μ1,1

�n ,βsd
(A�)

≤ e−αn2
+ eα′δn

∑
4n/5≤�≤n

μ
1,1
�n ,βsd

(0
ωτ←→ ∂�n/5,�4n/5 /

ωτ←→ ∂�n | A�) · μ1,1
�n ,βsd

(A�)

= e−αn2
+ eα′δnμ

1,1
�n ,βsd

(0
ωτ←→ ∂�n/5,�4n/5 /

ωτ←→ ∂�n),

where we used that A� is measurable with respect to edges of ωτ in �n \ �� and that,
conditioned on A�, there are maximum 4δn edges that are incident to vertices on ∂��

that are connected to �n and we can disconnect �4n/5 from ∂�n by closing all these
edges.

On the event {�4n/5 /
ωτ←→ ∂�n}, there exists a circuit of closed edges in ωτ that

surrounds �4n/5. Denote the exterior-most such circuit by ζ an explore it from the
outside:

μ
1,1
�n ,βsd

(0
ωτ←→ ∂�n/5, ∂�4n/5 /

ωτ←→ ∂�n) =
∑

C

μ
1,1
�n ,βsd

(0
ωτ←→ ∂�n/5 | ζ = C)μ

1,1
�n ,βsd

(ζ = C)

≤
∑

C

μ
0,1
�C ,βsd

(0
ωτ←→ ∂�n/5)μ

1,1
�n ,βsd

(ζ = C),

where the sum is over all possible values of ζ and we define �C as the subgraph of L

bounded by C ; the inequality relies on (CBC) and on the 0, 1 boundary conditions being
domain Markov for μ. Note that �C can be turned into a domain by consecutively
removing vertices of degree 1 – denote it by �′C . Such operations can only increase the
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measure, whence μ
0,1
�C ,βsd

≤st μ
0,1
�′C ,βsd

, and �4n/5 ⊂ �′C . Thus, the right-hand side in

the last equation is exponentially small by Proposition 4.1. Combining the bounds, we
get

μ
1,1
�n ,βsd

(0
ωτ←→ ∂�n/5) ≤ e−αn2

+ eα′δn · e−α′′n .

Taking δ small enough finishes the proof. ��

7. The Case J ≥ U: Proof of Theorem 3

7.1. ATRC for J ≥ U. We fix J ≥ U and a finite subgraph � of L. The ATRC
model is defined via an Edwards–Sokal-type expansion. Since J ≥ U , the leading
terms will correspond to interactions in τ and in τ ′. Thus, the ATRC measure on �

with boundary conditions ητ , ητ ′ is supported on pairs of percolation configurations
(ωτ , ωτ ′) ∈ {0, 1}E� × {0, 1}E� , and is defined by

ATRC
ητ ,ητ ′
�,J,U (ωτ , ωτ ′) = 1

Z · 2kητ (ωτ )+kη
τ ′ (ωτ ′ )

∏
e∈E

a(ωτ (e), ωτ ′(e)), (32)

where Z = Z(�, J, U, ητ , ητ ′) is a normalizing constant and

a(0, 0) := e−4J , a(1, 0) = a(0, 1) := e−2(J+U ) − e−4J , a(1, 1) := 1− 2e−2(J+U ) + e−4J .

(33)

Similarly to (7), if J > U , we can write the measure as

ATRC
ητ ,ητ ′
�,J,U (ωτ , ωτ ′) ∝

(
a(1,0)
a(0,0)

)|ωτ |+|ωτ ′ | ( a(0,0)a(1,1)

a(1,0)2

)|ωτ∩ωτ ′ |
2kητ (ωτ )+kη

τ ′ (ωτ ′ ). (34)

Basic properties. The analogues of the properties (FKG), (CBC), (MON), (MON+)
and (DMP) hold in this context as well. In particular, the measures ATRC0,0

�,J,U and

ATRC1,1
�,J,U converge weakly to someATRC0,0

J,U andATRC1,1
J,U , respectively, as �↗ L.

As before, if the parameters J, U are fixed, we write ATRC
ητ ,ητ ′
�,β for ATRC

ητ ,ητ ′
�,β J,βU and

analogously for the infinite-volume measures.

Coupling of ATRC and AT. As mentioned above, edges in ωτ and in ωτ ′ describe interac-
tions in τ and in τ ′. In contrast to (12), the correlations of the product ττ ′ are described
by simultaneous connections in both ωτ and ωτ ′ : for any x, y ∈ V�,

〈τxτy〉�,J,U = ATRC0,0
�,J,U (x

ωτ←→ y), 〈τxτ
′
xτyτ

′
y〉�,J,U = ATRC0,0

�,J,U (x
ωτ←→ y, x

ωτ ′←→ y).

(35)

As in Sect. 2.1, the statement extends to infinite volume in a standard way, and β
τ, f
c

and β
ττ ′, f
c coincide with the corresponding percolation thresholds under ATRC0,0

J,U .

Similarly, the same holds for βτ
c and βττ ′

c under ATRC1,1
J,U .

Duality. Given an ATRC configuration (ωτ , ωτ ′), we define its dual (ω̂τ , ω̂τ ′) := (ω∗τ , ω∗τ ′).
This extends Lemma 2.2 to all J, U > 0.



Phase Diagram of the Ashkin–Teller Model Page 27 of 33    37 

7.2. Proof of Theorem 3. Fix J ≥ U . Positive association (FKG), symmetry and inclu-
sion give

ATRC1,1
β (0

ωτ←→∞)2 ≤ ATRC1,1
β (0

ωτ←→∞, 0
ωτ ′←→∞) ≤ ATRC1,1

β (0
ωτ←→∞).

Since βτ
c and βττ ′

c coincide with the corresponding percolation thresholds, this im-
plies βτ

c = βττ ′
c =: βc. Analogously, βτ, f

c = βττ ′, f
c =: β f

c .
To derive Theorem 3, it remains to show that βc = β f

c = βsd. The inequality βc ≤ βsd
follows from a standard argument once the transition is shown to be sharp: for β < βc,
there exists c = c(β) > 0 such that, for every n ≥ 1,

ATRC1,1
β (0

ωτ←→ ∂�n) ≤ e−cn . (36)

This can be derived via a general approach [DRT19], see Appendix A.
The reverse inequality is a consequence of Zhang’s argument provided that βc = β f

c ,
i.e. the transitions for the free and wired measures occur at the same point. This follows
from an analogue of Lemma 2.3 (see Appendix D for the proof of both lemmata):

Lemma 7.1. There exists D ⊆ {(J, U ) ∈ R
2 : J ≥ U > 0} with Lebesgue measure 0

such that, for any (J, U ) ∈ Dc, one has

ATRC0,0
J,U = ATRC1,1

J,U .

Proof of Theorem 3. Fix J ≥ U . Part (i) follows from Lemma 7.1 and (MON+) in the
same way as for J < U , see Sect. 2.2.

Recall the definition of the event Hτ
n in Sect. 2.2. By duality, symmetry and (CBC),

ATRC0,0
βsd

(Hτ
n) ≤ 1

2
≤ ATRC1,1

βsd
(Hτ

n). (37)

If βc > βsd, then, by (36),ATRC1,1
βsd

(Hτ
n) converges to 0 as n tends to infinity, If βc < βsd,

then (since βc = β f
c ) Zhang’s argument implies that ATRC0,0

βsd
(Hτ

n) converges to 1 as n
tends to infinity. Both statements contradict (37). ��
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A. Sharpness

The proof of sharpness for FK-percolation via the OSSS inequality [DRT19,OSSS05]
adapts to the ATRC. For completeness, we present a sketch of this argument and give
details for the steps that are specific for the ATRC.

A.1. Sharpness for J < U. We start by bounding the derivative in β by a covariance:

Lemma A.1. Let 0 < J < U and ε > 0. Then, there exists c = c(ε, J, U ) > 0 such
that, for any finite subgraph � ⊆ L, any increasing event A, and any β0 ∈ [ε, ε−1],(

d

dβ
ATRC1,1

�,β [A]
) ∣∣∣∣

β=β0

≥ c
∑

e∈E�

Cov[1A, ωτ (e)] + Cov[1A, ωττ ′(e)].

Proof. Fix J < U . Recall that we can write the measureATRC1,1
�,β as in (7) with weights

given by (8). Then, as in FK-percolation, we get a covariance formula:

d

dβ
ATRC1,1

�,β [A] = Cov

[
1A,

w′τ (β)

wτ (β)
· |ωτ | +

w′
ττ ′(β)

wττ ′(β)
· |ωττ ′ \ ωτ |

]
.

Since J < U , we have w′
ττ ′(β), w′τ (β) > 0 and the statement follows. ��

Fix J < U . We prove sharpness only for ωτ , since the proof for ωττ ′ is the same. Recall
that μ

1,1
�,β is the marginal of ATRC1,1

�,β on ωτ . The key step in the proof of sharpness in
[DRT19] is the extension of the OSSS inequality [OSSS05] to dependent measures. The
inequality holds for any monotone (9) measure on {0, 1}E , for a finite set of edges E .
In particular, it applies also to μ

1,1
�2n ,β on {0, 1}E2n with E2n = E�2n , for n ≥ 1. Instead

of stating the OSSS inequality, we state its consequence that can be derived in the same
way as in [DRT19]:

Lemma A.2. ([DRT19], Lemma 3.2) For any n ≥ 1, one has∑
e∈E2n

Cov[1{0↔∂�n}, ωe]

≥ n

16
n−1∑
k=0

μ
1,1
�2k ,β

[0 ↔ ∂�k]
μ

1,1
�2n ,β [0 ↔ ∂�n]

(
1− μ

1,1
�2n ,β [0 ↔ ∂�n]

)
,

where the covariance is taken with respect to the measure μ
1,1
�2n ,β .

We proceed as in [DRT19]. Fix β0 > 0. For n, k ≥ 1, ε < 1 and β ∈ [ε, ε−1], define

θk(β) := μ
1,1
�2k ,β

[0 ↔ ∂�k], Sn :=
n−1∑
k=0

θk .

Lemma A.1 applied to A = {0 ωτ←→ ∂�n} and � = �2n implies

θ
′
n(β) ≥ c

∑
e∈E2n

Cov[1A, ωτ (e)] + Cov[1A, ωττ ′(e)] ≥ c
∑

e∈E2n

Cov[1A, ωτ (e)],
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(38)

where we used FKG inequality in the last line. By Lemma A.2,

θ
′
n ≥ c

n

16Sn
θn(1− θn).

By (CBC) and monotonicty in β ≤ ε−1, we have θn(β) ≤ θ1(ε
−1). Then, for some c1 >

0,

θ
′
n ≥ c1

n

Sn
θn . (39)

By [DRT19, Lemma 3.1], this inequality implies sharpness of the phase transition.

A.2. Sharpness for J ≥ U. The proof is the same as for J < U and we only show the
analogue of Lemma A.1.

Lemma A.3. Let J ≥ U > 0 and ε > 0. Then, there exists c = c(ε, J, U ) > 0 such
that, for any finite subgraph � ⊆ L, any increasing event A, and any β0 ∈ [ε, ε−1],

(
d

dβ
ATRC1,1

�,β [A]
) ∣∣∣∣

β=β0

≥ c
∑

e∈E�

(Cov[1A, ωτ (e)] + Cov[1A, ωτ ′(e)]) .

Proof. For J = U , the model reduces to FK-percolation with cluster-weight q = 4, and
the statement follows from [Gri06, Theorem 3.12]. Fix J > U . Define r(β), s(β) > 0
by

r(β) = a(1,0)
a(0,0)

= a(0,1)
a(0,0)

and s(β) = a(0,0)a(1,1)

a(1,0)2 ,

where the a(i, j) are given by (33) evaluated at (β J, βU ). Recall that we can write the
ATRC measure as in (34). Then, for any c > 0 and any increasing event A,

d

dβ
ATRC1,1

�,β [A] − c
∑

e∈E�

Cov[1A, ωτ (e) + ωτ ′(e)] = Cov[1A, Xc],

where

Xc =
∑

e∈E�

(
r ′
r − c

)
(ωτ (e) + ωτ ′(e)) + s′

s ωτ (e) ωτ ′(e).

It is easy to see that Xc is increasing in ω when β ∈ [ε, ε−1] and c is small enough.
Then, by (FKG), Cov[1A, Xc] ≥ 0 and this finishes the proof. ��
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B. Proof of Lemma 3.11

Proof of Lemma 3.11. Fix q > 4 and p = psd(q) and omit them in the notation below.
Let n ≥ 1 and � ⊃ �2n be a finite subgraph of L. By Proposition 3.10 and Strassen’s
theorem [Str65], there exists a coupling P of η− ∼ FKw and η+ ∼ FKw

� such that
P(η− ≤ η+) = 1.
Define C to be the outermost circuit of edges in η− surrounding �n and contained in
�2n (if there is no such circuit, set C := ∅). By exponential decay of connections for the
dual η∗− (Theorem 4), there exists α > 0 such that, for any n ≥ 1,

P [C = ∅] ≤ FKw[�∗n
η∗−←→ �∗2n] < 8ne−αn .

Take any event A depending only on edges in �n . We have

|FKw
�[A] − FKw[A]| ≤ |P [η+ ∈ A,C 
= ∅

]− P
[
η− ∈ A,C 
= ∅

]| + 16ne−αn

=
∑
C 
=∅

|P [η+ ∈ A | C = C
]− P

[
η− ∈ A | C = C

]|P [C = C
]

+ 16ne−αn,

where the sum runs over all realisations C 
= ∅ of C. Now, the event {C = C} is
measurable with respect to the exterior of C . Moreover, on {C = C}, the circuit C is
open both in η+ and η−, whence the distributions of η+ and η− in the interior of C are
equal. ��

C. Proof of Lemma 4.6

Proof of Lemma 4.6. By a generalization of the Holley criterion, see [GHM01, Section
4], it suffices to check that, for all e ∈ E� and (ζτ , ζττ ′) ∈ {(0, 0), (0, 1), (1, 1)}E�\{e},
both

fe(wτ , ζτ , ζττ ′) := ATRC0,1
�,wτ ,wττ ′

[
ωτ (e) = 1

∣∣∣ (ωτ , ωττ ′)|E�\{e} = (ζτ , ζττ ′)
]
,

ge(wτ , ζτ , ζττ ′) := ATRC0,1
�,wτ ,wττ ′

[
ωττ ′(e) = 1

∣∣∣ (ωτ , ωττ ′)|E�\{e} = (ζτ , ζττ ′)
]

are increasing in (ζτ , ζττ ′) and wτ .
Fix e, ζτ , ζττ ′ as above. Write ζτ and ζτ for the configurations that agree with ζτ on

E� \ {e} while ζτ (e) = 0 and ζτ (e) = 1, and analogously for ζττ ′ . Then,

fe(wτ , ψ, ζ ) = wτ (e)2k(ζτ )+k1(ζττ ′ )

2k(ζτ )+k1(ζττ ′ ) + wττ ′(e)2
k(ζτ )+k1(ζττ ′ ) + wτ (e)2k(ζτ )+k1(ζττ ′ )

=
(

2k(ζτ )−k(ζτ )(2k1(ζττ ′ )−k1(ζττ ′ ) + wττ ′(e))

wτ (e)
+ 1

)−1

,

which is clearly increasing in wτ . Moreover k(ζτ ) − k(ζτ ) and k1(ζττ ′) − k1(ζττ ′) are
decreasing in (ζτ , ζττ ′), respectively.
We now check that 1− ge is decreasing in wτ and (ζτ , ζττ ′). We have

1− ge(wτ , ζτ , ζττ ′) = 2k(ζτ )+k1(ζττ ′ )

2k(ζτ )+k1(ζττ ′ ) + wττ ′(e)2
k(ζτ )+k1(ζττ ′ ) + wτ (e)2k(ζτ )+k1(ζττ ′ )
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=
(

1 + 2k1(ζττ ′ )−k1(ζττ ′ )
(

wττ ′(e) + wτ (e)2
k(ζτ )−k(ζτ )

))−1
,

which is clearly decreasing in wτ and (ζτ , ζττ ′). ��

D. Equality of Infinite-Volume ATRC Measures

In this section, we prove Lemmata 2.3 and 7.1.

The case J < U . The following statement will imply Lemma 2.3.

Lemma D.1. There exist two families of smooth curves (γ τ
r )r>0 and (γ ττ ′

s )s>0 such
that (i): for any 0 < J < U, there exist s, r > 0 such that (J, U ) ∈ γ τ

r ∩γ ττ ′
s , and (i i):

for any r, s > 0, the set of points (J, U ) on γ τ
r (resp. γ ττ ′

s ) such that the marginals
of ATRC0,0

J,U and ATRC1,1
J,U on ωτ (resp. ωττ ′ ) differ is at most countable.

This implies that the set of pairs J < U , for whichATRC0,0
J,U andATRC1,1

J,U have different
marginals on ωτ or ωττ ′ , has Lebesgue measure 0. By a monotone coupling argument,
equality of both marginals implies that ATRC0,0

J,U = ATRC1,1
J,U , and Lemma 2.3 follows.

We mention that (γ τ
r )r>0 and (γ ττ ′

s )s>0 are dual to each other.

Proof of Lemma D.1. We follow a strategy presented in [Dum17, Theorem 1.12] which
is a rephrased version of an argument in [LL72]. For any J < U , any finite subgraph
� ⊆ L and any boundary conditions ητ and ηττ ′ , we can write

ATRC
ητ ,ηττ ′
�,J,U [ωτ , ωττ ′ ] ∝

(
a(0,0)
a(0,1)

)|E�|−|ωττ ′ | ( a(1,1)
a(0,1)

)|ωτ |
2kητ (ωτ )+kη

ττ ′ (ωττ ′ ) 1ωτ⊆ωττ ′ .

Consider the curves where a(0, 0)/a(0, 1) is constant (precisely if U − J is constant).
Fix an edge e of L. The Holley criterion [Hol74] easily gives that the function (J, U ) �→
ATRC1,1

J,U [ωτ (e)] is increasing along these curves, see e.g. the proof of [Gri06, Lemma
11.14]. In particular, the set of discontinuity points is countable along each of them. Fix
C > 0 and (J, U ), (J ′, U ′) on the curve a(0, 0)/a(0, 1) ≡ C with J ′ < J (then also
U ′ < U ), and assume that (J, U ) is a continuity point. Define a = ATRC0,0

J,U [ωτ (e)]
and b = ATRC1,1

J ′,U ′ [ωτ (e)].
Note that, along the curve a(0, 0)/a(0, 1) ≡ C , the quantity a(1, 1)/a(0, 1) is strictly

increasing. Using this fact, analogous reasoning as in [Dum17] gives that a ≥ b. Letting
(J ′, U ′) tend to (J, U ) along a(0, 0)/a(0, 1) ≡ C and using that (J, U ) is a continuity
point of (J ′, U ′) �→ b, we deduce

ATRC0,0
J,U [ωτ (e)] ≥ ATRC1,1

J,U [ωτ (e)].
Since the reversed inequality follows from (CBC), we obtain equality. By considering
a monotone coupling of the corresponding marginals on ωτ , it is easy to see that this
implies that the marginals on ωτ coincide. The statement for ωττ ′ is derived along the
same lines when considering the curves where a(1, 1)/a(0, 1) is constant. ��
The case J ≥ U . Below is the analogue of Lemma D.1 that implies Lemma 7.1.

Lemma D.2. There exists a family of smooth curves (γ τ
r )r>0 such that (i): for any J ≥

U > 0, there exists r > 0 for which (J, U ) ∈ γ τ
r , and (i i): for any r > 0, there exist

only countably many points (J, U ) on γ τ
r for which ATRC0,0

J,U 
= ATRC1,1
J,U .
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Proof. For J = U , the model reduces to FK-percolation with cluster-weight q = 4, and
the statement follows from [Dum17, Theorem 1.12]. Recall that, for any J > U and
any finite subgraph � ⊆ L, we can write the measure as in (34). Consider the curves
where the weight w := (a(0, 0)a(1, 1))/(a(1, 0)2) is constant. The Holley criterion
again allows to show that the ATRC measures are stochastically ordered along these
lines. Moreover, the weight a(1, 0)/a(0, 0) is increasing along each of them.

Fix an edge e of L and C ≥ 1, and let (J, U ) be a continuity point of (J ′, U ′) �→
ATRC1,1

J ′,U ′ [ωτ (e)] along the curve w ≡ C . Take (J ′, U ′) on the same curve with J ′ < J .
Analogous reasoning as in the proof of [Dum17, Theorem 1.12] gives

ATRC1,1
J ′,U ′ [ωτ (e)] ≤ ATRC0,0

J,U [ωτ (e)],
with the only difference that one has to apply (FKG) to control |ωτ | and |ωτ ′ | simultane-
ously. Letting (J ′, U ′) tend to (J, U ) along w ≡ C from below and using (CBC) gives
ATRC0,0

J,U [ωτ (e)] = ATRC1,1
J,U [ωτ (e)]. A monotone coupling argument and symmetry

between ωτ and ωτ ′ finish the proof. ��
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