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Abstract: The Ashkin—Teller model is a pair of interacting Ising models and has two
parameters: J is a coupling constant in the Ising models and U describes the strength of
the interaction between them. In the ferromagnetic case J, U > 0 on the square lattice,
we establish a complete phase diagram conjectured in physics in 1970s (by Kadanoft and
Wegner, Wu and Lin, Baxter and others): when J < U, the transitions for the Ising spins
and their products occur at two distinct curves that are dual to each other; when J > U,
both transitions occur at the self-dual curve. All transitions are shown to be sharp using
the OSSS inequality. We use a finite-size criterion argument and continuity to extend the
result of Glazman and Peled (Electron J Probab 28:1-53, 2023) from a self-dual point
to its neighborhood. Our proofs go through the random-cluster representation of the
Ashkin—Teller model introduced by Chayes—Machta and Pfister—Velenik and we rely on
couplings to FK-percolation.

1. Introduction

The Ashkin—Teller (AT) model is named after two physicists who introduced it [AT43]
in 1943 and can be viewed as a pair of interacting Ising models [Fan72a]. For a finite
subgraph Q = (V, E) of Z?, the AT model is supported on pairs of spin configura-
tions (7, 7') € {1} x {£1}V and the distribution is defined by

1
ATQ s 10 (T, ) = = - exp |: > Lty + Jot + Urut,irvr,ﬁ] : (1

uveE

where J;, Jy7, U are real parameters and Z = Z(2, J;, J;7, U) is the unique constant
(called partition function) that renders the above a probability measure.
In the current article, we consider the ferromagnetic symmetric (or isotropic) case

J=J;=Jy>0,and U >0
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and denote the measure by ATq ;7 ¢.

Important particular cases: U = 0 gives two independent Ising models; for / =0, t
reduces to a Bernoulli site percolation with parameter 1/2, and t7’ to an Ising model,
independent of each other; the line U = J corresponds to the 4-state Potts model. These
models are very well-studied and their phase diagram is known; see [FV17,Dum17] for
excellent surveys. Henceforth in this article we assume that J, U > 0. A key observation
in the analysis of the AT model on 72 is its relation to the six-vertex model [Fan72b,
Weg72]. This gives a non-staggered six-vertex model (i.e. with shift invariant local
weights) only at the self-dual line of the AT model: it was found in [MS71] and is
described by the equation

sinh(2J) = e~ Y. (SD)

Outside of this line, the corresponding six-vertex model is staggered and thus the seminal
Baxter’s solution [Bax71] does not apply. Kadanoff and Wegner [KW71,Weg72], Wu
and Lin [WL74], and others conjectured that, when J < U, there are two distinct
transition lines in the AT model: one for correlations of spins = (or ") and the other for
correlations of products 77’ In the current article, we prove this conjecture and establish
a complete phase diagram of the AT model in the ferromagnetic regime.

It will be convenient to state the results in infinite volume and to consider also plus
boundary conditions. Denote by 92 the set of boundary vertices of Q2 —these are all
vertices in © that are adjacent to at least one vertex in Z? \ Q. We define the measure
with plus boundary conditions by conditioning all boundary vertices to have spin plus
intandin t’:

AT;:ZJU =ATq ju(|the =T =1).

Expectations with respect to the AT measures are denoted by brackets:

(Va.sv =Eq vl and O =Eghyll

The correlations of T and t’ satisfy the Griffiths—Kelly—Sherman (GKS) inequality
[KS68], which states that for any A, B, C, D C V, one has

(ta -7 - Tc - Tpau = (Ta - Tpdeultc  Tp)e.uu. (GKS)
where 74 := [[,c4 T and 75 = [],p 7., and the same holds under plus boundary
conditions. This implies that, for any A, B C V,

(ta-tp)a.pspu and (T4 - @)5*}51 gy areincreasing in > 0.

Another standard application of the GKS inequality implies that, as , ~ Z?2, the
weak limits under free or plus boundary conditions exist and do not depend on {€2,}:

AT u = nli>noloATQ”’J’U and AT+U = hm AT Q U

Similarly to finite-volume measures, we denote by (-); ¢ and (- yor U the expectations
with respect to AT ; ;; and AT+ 7 u- Itis standard (e.g. can be shown by comparing to the
Ising model) that the AT model undergoes a phase transition in terms of correlations
of 7 and those of tt’. Moreover, a general OSSS inequality [DRT19] can be used to
show that both transitions are sharp (see Appendix). That is, for each pair J, U, there
exist 7, ﬂft/ € (0, 00) and (cg) g=0 strictly positive, such that
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Symmetry between t and 7’ and the correlation inequalities (GKS) imply directly that

BT = BT 3)

There exists a unique B, for which (8J, BU) is on the line (SD). Denote it by Bsg =
Bsd(J, U). The following theorem states our main result:

Theorem 1. Let 0 < J < U. Then, Bf > fsq > ﬁc”/.

This was previously shown when 2J < U using a direct comparison to the Ising
model [Pfi82]. In addition, in the perturbative regime when J is small enough, the critical
exponents associated to the phase transition for the product Tt/ have been shown to be
the same as for the Ising model [GMO5]'. This is expected to hold for both transitions
whenever J < U, while the exponents should vary continuously when J > U. The
latter has been established in [Mas04] for U sufficiently small. We refer to [DG04] for
a survey on the physics literature on the critical behaviour of the AT model, as well as
predictions on critical exponents using the quantum field theory. Recently, Peled and the
third author have proven that spins t (or /) and the products 7’ exhibit qualitatively
different behavior at the self-dual line when J < U [GP23]: products 7’ are ordered,
while T (and 1’) exhibits exponential decay of correlations. We derive Theorem 1 by
extending this statement to an open neighborhood of the self-dual line when J < U.
The continuity ideas do not apply directly, since the rate of decay of correlations might,
a priori, not be a continuous function in the pair (J, U). To circumvent this problem, we
establish exponential decay in finite volume:

Proposition 1.1. Fix 0 < J < U that satisfy sinh2J = e~ 2U. Then, there exists
c:=c(J,U) > 0 such that

+,+ —cn
’ <
0 Zynp v =€

Compared to [GP23], the exponential decay is proven in finite volume and under
the largest boundary conditions. This is crucial for applying the so-called “finite-size
criterion” (or @g(S)) argument [Sim80,Lie80,DT16a,DT16b], since the Simon-Lieb
inequality is not available (the Simon inequality is valid for U < 0 [Lis21]). This
argument, as well as the proof of Proposition 1.1, use the random-cluster representation
of the AT model (that we call ATRC) introduced by Chayes—Machta [CM97] and Pfister—
Velenik [PV97]. As in the seminal Edwards—Sokal coupling for the Potts model [ES88],
connectivities in the ATRC describe correlations in the AT model.

Other ingredients in the proof of Proposition 1.1 are couplings between the AT and
the six-vertex models [Fan72b, Weg72] and between the latter and the FK-percolation
[BKW76]. These two couplings were composed for the first time in the work of Peled
and the third author [GP23]. We also use T-circuits introduced in [GP23] to apply the
non-coexistence theorem [She05,DRT19].

1 Although [GMO5] studies the anisotropic case J; # J.» when U is small, applying the change of variables
(t, ") = (z7/, 1) allows to treat the case described above.
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Fig. 1. Left: Phase diagram of the Ashkin—Teller model: when J > U, transitions for r and 77’ occur at the
self-dual curve (Theorem 3) and when J < U, the transition occurs at two distinct curves yr and y, ./ dual to
each other (Theorems 1 and 2). There are three regimes: disorder in 7 and in ¢’ (gray), order in 7 and in t’
(white), disorder in 7 and order in Tt/ (dashed gray). Right: Domain €2 (in bold black) in L and its dual Q*
(in gray). Notice that Q* is not a domain in L*. The even domain Dy, (dashed) in 72

The next result states that the transition lines are dual to each other (see Fig. 1) and
that the critical points for the measures under the free and plus boundary conditions
coincide. We define the critical curves y; and y; ./ as follows:

yr;:{(J,U)eR2:0<J<U, BI(J,U) =1},

and similarly for y;,/. Given a pair of parameters (J, U), we define the dual set of
parameters (J*, U*) as the unique solutions to the following equations

e—2J92U _ - _— 1
e = ¢ sinh(2)) = [e smh(ZJ*)] . (4)
This defines an involution. When J = U, we replace the first equality by J* = U*.
Finally, we define B! -/ and B ./ as in (2) but under free boundary conditions.

Theorem 2. Fix 0 < J < U. Then, the following holds:
() B7 = BrS and B77 = B,
(i) yr and y;,r are dual in the following sense: (J,U) € y, if and only if (J*,U*) €
Vo'

In contrast, when J > U, both transitions in T and in 77’ occur at the self-dual line.
Theorem 3. Let J > U > 0. Then, the following holds:

() BF = B/ and 77 = BT/
(i) g7 = BT = B
Indeed, general approach [DRT19] gives sharpness under plus boundary conditions
and equality of the transition points 7 = B! L B.. By standard duality arguments,
onededuces B. < Bsq. Thebound . > Bq follows from Zhang-type arguments provided
the transition points for the free and monochromatic measures coincide. We show the

latter by applying to the marginals of the ATRC a neat reformulation of the classical
“convexity of the free energy”” argument due to Duminil-Copin [Dum17, Theorem 1.12].



Phase Diagram of the Ashkin-Teller Model Page 50f 33 37

Open questions. At the self-dual curve (SD), the Ashkin—Teller model is coupled
to the six-vertex model with parameters a = b = 1 and ¢ = coth2J (see Sect. 3).
When 1 < ¢ < 2, the height function of the six-vertex model has been recently shown to
delocalise [DCKMO20] (see also [GL23] for an alternative argument that does not use
Bethe Ansatz). This implies that the transition in the Ashkin—Teller model is continuous
forall / > U > 0: at the critical curve, correlations (o7, )** and (ro7jz, 7;)** vanish
as |x| — oo. However, the type of the transitions when J < U remains open:

Question 1. Let 0 < J < U. Show that the Ashkin—Teller model undergoes two con-
tinuous phase transitions: one has (tot)"* — 0 at y; and ()T, 7,)"" — O at y;p,
as |x| — oc.

As mentioned above [DGO04], the correlations should decay like le_l/ 4 (as in the
Ising model). It would be natural to extend Theorem 3 to the case of a negative U:

Question 2. Ler J > 0 > U. Show that the Ashkin—Teller model undergoes a sharp
transition at the self-dual curve (SD) in terms of correlations of T and Tt'.

Note that this would imply that the transition is continuous, since the delocalisation
results cover this part of the self-dual curve. What is missing to apply the general argu-
ment of [DRT19] and prove sharpness is monotonicity of the correlations along some
curves in the (J, U) plane when U is negative.

Organisation of the article. Sections 2—6 treat the case J < U in Sect. 2, we introduce
the random-cluster representation of the AT model (ATRC) and derive Theorems 1 and 2
from Proposition 1.1; Sects. 3—6 are dedicated to proving Proposition 1.1. In Sect. 3, we
describe the six-vertex and FK-percolation models and give their background, including
their relation to the AT model. In Sect. 4, we show that T exhibits exponential decay of
correlations in finite volume under the boundary conditions T = t’. In Sect. 5, we show
that 7 exhibits no ordering under A ;;} In Sect. 6, we derive Proposition 1.1. Section 7
deals with the case J > U: we introduce the ATRC model and prove Theorem 3.
Appendices provide details regarding sharpness for the AT (A), exponential relaxation
for FK-percolation (B), stochastic ordering of the ATRC with respect to its local weights
(C) and uniqueness of the infinite-volume ATRC measure (D).

2. From Proposition 1.1 to Theorems 1 and 2

From now on, we will consider the AT model on a rotated square lattice that we denote by
LL: its vertex setis {(x, y) € Z2: x +y is even} and edges connect (x, y)to (x £ 1, y£1),
see Fig. 1. This is more convenient for the coupling with the six-vertex model (Sect. 3).
In this section, we fix J < U and drop them from the notation. In particular, we
write AT g for the measure AT gy gu.
We start by defining the random-cluster representation of the AT model (ATRC)
introduced by Chayes—Machta [CM97] and Pfister—Velenik [PV97]. Using a ¢g(S) ar-

gument, we prove that (8} 7y, B “Uyis strictly above the self-dual line. By duality, this
implies that (87 J, B U) is strictly below the self-dual line which concludes the proof.

2.1. ATRC: defintion and basic properties. The ATRC is reminiscent of the Edwards—
Sokal [ES88] coupling between FK-percolation and the Potts model. Since the AT model
is supported on a pair of spin configurations, the ATRC is supported on a pair of bond
percolation configurations.
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Percolation configurations. For a finite subgraph Q C L, the sets of its vertices and
edges are denoted by Vg and Egq, respectively. We view o € {0, 1}£2 as a percolation
configuration: we say that e is open in w if w(e) = 1, and otherwise e is closed. We
identify w with a spanning subgraph of €2 and edges that are open in w. Define |w| as the
number of edges in w. Boundary conditions for @ are given by a partition n of 2. We
define k" () as the number of connected components in w when all vertices belonging to
the same element of partition in 1 are identified. Two important special cases: 1 denotes
wired b.c. given by a trivial partition consisting of one element 9£2; 0 denotes free b.c.
given by a partition of 92 into singletons.

Definition of ATRC. A configuration of the ATRC model on 2 is a pair (w;, w;¢/) of
percolation configurations on edges of €2. Formally, the ATRC measure is supported on
(wr, we) € {0, 1}F2 x {0, 1}F2. For B > 0 and partitions ¢, 17y, of 32, the ATRC
measure is defined by

ATRC?;,’ET” ((X)r s Cl)rr/) ES % . 2k?71 () +k "’ (@) l_[ a(wr (6)7 Wrg! (e)), (5)

eckE

where Z = Z(X2, B, J, U, n¢, nyr/) is a normalizing constant and

a(0,0) := e 2PU+) - 4(1,0) := 0, a(0, 1) := e P/ — 7 2PUHD) (1 1) =1 — 4P/,
(6)

Since J < U, we have a(i, j) > 0 for all i, j € {0, 1}. We will also use the notation
ATRC"QT,’;”[/ for the measure with 8 = 1.
It will be useful to express the measure as

e\l R @ e (D)

NesNee! w |
ATRCQVﬁ” (wr, wepr) X wlr el W

where

W = ez’gU(eM] — 6_2/3]) and w;p = PU=D) . (8)

In this context, we will refer to the measure as ATRC?{’\:’:;/ .- In Sect. 4.2, we will

encounter a version of this measure with non-homogeneous weights.
Remark 2.1. The representation can be extended to J > U [PV97], see Sect. 7.1.

There are four special types of boundary conditions given by free/wired n, and

free/wired 0,/ ATF{C;Q!1 p (both wired), ATRC%’% (both free), ATRC}Z’% (wired for w.,
free for w;/), ATRC?Z’YI/3 (free for w,, wired for w;/).

Positive association: general setting. We first introduce the notions of monotone mea-
sures, stochastic domination and positive association following [GHMO1, Sect. 4.2].
Let E be a finite set of edges. We introduce a pointwise partial order on percolation
configurations on E: we say that ® < o' if and only if w(e) < @'(e) forany e € E. A
probability measure 1 on {0, 1} is called monotone if

ww(e) =1lw=rnoffe) < p(w(e) =1lw=rnoff e) ©)

for any e € E, and n,7’ € {0, 1}EMe} such that n < n/, u(w = noffe) > 0 and
uw(w=n"off e) > 0.
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An event A C {0, 1} is called increasing if 14 is increasing with respect to the
partial order. Given two probability measures x and v on {0, 1}£, we say that u is
stochastically dominated by v (or v stochastically dominates ), and write . <g v
(or v >4 W), if for every increasing event A € A, we have (A) < v(A). Moreover,
W is said to be positively associated if, for all increasing bounded functions f and g
on {0, 1}E, we have

m(f - g) = u(fHu(g). (10)

This is called the FKG inequality after the work of Fortuin, Kasteleyn and Ginibre
[FKG71]. Their fundamental contribution consists in introducing the FKG lattice con-
dition (similar to (9)) and showing that it implies positive association (10) when p is
strictly positive.

The above setting suffices for the ATRC measure, but for our proofs we need a slightly
more general statement. More precisely, we fix K € N* and say that a probability
measure ;1 on {—K, ..., K}F is monotone if and only if

p(@(e) > alw=noffe) < p(w(e) > alw =n"off e) (1)

foranye € E,a € Randn, n € SE\M¢ suchthatn < ', u(w = n off ¢) > Oand pu(w =
n" off ¢) > 0. The notions of stochastic domination and positive association extend in
a natural way. A probability measure i on {—K, ..., K} is called irreducible if, for
anyw, o € {—K, ..., K}E such that w(w), u(w") > 0 there exists a sequence wy = w,
w1, ..., oy = o', for some N > 0, such that w;_; and w; differ at one coordinate
and both have a non-zero probability, fori = 1, ..., N. Assume that y is monotone,
irreducible and the set of w € {—K, ..., K}¥ having positive probability contains a
unique maximal element. Then, [GHMO1, Theorem 4.11] states that w is positively
associated.

Finally, we mention that the positive association property (10) naturally extends to
probability measures on {0, 1} or ZY. Moreover, for any increasing sequence of finite
sets E;, if the sequence of positively associated measures p; on E; converges weakly,
then the limiting measure is also positively associated. Indeed, (10) is preserved under
weak limits when f and g are continuous. Then, by Strassen’s theorem [Str65], the same
holds for any bounded functions (see [GHMO1, Theorem 4.6] and the paragraph below
[GHMO1, Definition 4.10]).

Monotonicity properties of the ATRC measure. Consider a natural partial order on pairs
of percolation configurations: (w;, w;¢) <X (@7, W) if W (€) < @ (e) and w; (e) <
@ (e) for every edge e of 2. By [PV97, Proposition 4.1] (and its proof), the measure
ATRCg’g”', for any 8 > 0 and any boundary conditions 7., n;;/, is monotone and
hence is positively associated. In particular, for any increasing events A and B,

ATRC(J™ (AN B) = ATRCS ;™ (A) - ATRC( ™ (B). (FKG)

It is standard that monotone measures are stochastically ordered with respect to their
boundary conditions. Indeed, for two partitions 7 and 7 of 92, we say that n > 7 if any
two vertices belonging to the same element of 7 also belong to the same element of 7.
Then, for any 8 > 0, and any boundary conditions such that n; > 7, and 9y > 77/,

ATRCY ' >y ATRCY 57" (CBO)
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The Holley criterion [Hol74] also allows to show stochastic ordering of the measures in
the parameter §: if 81 > B, then, for any boundary conditions 71, ¢/,

NeaNpe! NesNpe!
ATRCY 1 =y ATRC e (MON)

See [Gri06, Lemma 11.14] for a proof. In fact, this proof gives a little more. Indeed, it con-
sists of checking inequalities for quantities that are continuous functions of (8; J, B;U)
and the inequalities are strict when 81 > B». This implies that the ATRC measure with
parameters in a small neighbourhood of (81 J, 1U) dominates that with parameters in
a small neighbourhood of (8,J, B2U). More precisely, for (x, y) € R?, define B, (x,y)
as the Euclidian ball of radius r centred at (x, y). If 81 > B2, then there exists ¢ > 0
such that for any (J1, U1) € B:(81J, B1U) and (J2, Us) € B:(B2J, B2U),

ATRC?{:}’;_”{,I > ATRC?{”jzf”i,z. (MON+)

This extension will be useful for our proof of Theorem 2.

Domain Markov property. As in the standard FK-percolation, one can interpret a con-
figuration outside of a subdomain as boundary conditions. Indeed, let 2 C A be two
finite subgraphs of I and £ € {0, 1}£2\E2 a percolation configuration on A \ Q. Given
boundary conditions n on A, define a partition n U & of 92 by first identifying vertices

belonging to the same element of 1 and then identifying vertices belonging to the same
cluster of &. Then, the following domain Markov property holds:

JUE

ATRCY 1 (| (@r. wrr)jave = (e Err)jare) = ATRCE 577757 (). (DMP)

Thus, by (CBC), for any increasing sequence of subgraphs € ' L, the measures
ATRC}Z’:, p form a stochastically decreasing sequence. Thus, the weak (or local) limit
exists and is unique, by standard arguments. Denote it by ATRC}S’I. Define ATRC%’0
analogously. We write ATRC;’IU and ATRC(I):(L), for the corresponding measures with
p=1

Coupling between ATRC and AT. For X,Y C L and a percolation configuration w €
{0, 1})E2, we define X <> Y as an event that X and Y are linked by a path of open
edgesinw. If X = {x}and Y = {y}, we simply write x & y. We also use the notation

x <> oo for the event of x belonging to an infinite connected component of .

The key property of the ATRC is that connectivities in it describe correlations in
the AT model [PV97, Proposition 3.1]: for 8 > 0 and any finite subgraph 2 C L
with x, y € Vg,

T W/
(TxTy).p = ATRC%?ﬁ(x &y, (TXT)/C‘L'y‘L’)/,)Q,ﬁ = ATRC?Z’?ﬁ(x <5y, 12
(Tl = ATRCG L (xr <5 99),  (nt)gY = ATRCg (r < 99).

By the classical Burton—Keane argument [BK89], infinite clusters in w,; and w,,/ are
unique (if they exist). Then, (12) and (FKG) imply that 8} -/ and B ©.f are percolation
thresholds for w; and w.,/ under ATRC%O. Similarly, the same holds for A7 and 7%
under ATRCE’I .

Dual ATRC. Define the dual lattice L* := L + (1, 0). For each edge e of L, there is a
unique edge of L* that intersects it: call this edge dual to e and denote it by e*. Denote by
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Ep, and E7 » the sets of edges of IL and IL*, respectively. Given a percolation configuration
o € {0, 1}FL, we define its dual configuration w* € {0, 1}£1* by setting

o*e™) :i=1—wle).

For an ATRC configuration (w;, w;,) € {0, 1}L x {0, 1}FL, we defineits dual (¢, dr1/)
€ {0, 1}FL* x {0, 1}£L* in the following way,

D7 1= W), and Dy 1= OF. (13)

We want to emphasize that we are not considering two standard dual percolation con-
figurations but we also swap the order of t-edges and t7’-edges.

The measures ATRC(}:([)] =: ATRCHOJ”OJ’U and ATRCIJ:IIJ =: ATRCHIJ’}J’U on L can be

defined on IL* in the same manner, and we denote them by ATRCE’* U and ATRC]i’*I’ U
respectively. Recall the mapping (J, U) + (J*, U*) defined by (4) and note its prop-
erties: it is continuous, an involution, identity on the self-dual line (SD), sends every
point above (SD) to a point below (SD). The pushforward of the ATRC measure under
the duality transformation is also an ATRC measure with the dual parameters:

Lemma 2.2 (Prop 3.2 in [PV97]). Let 0 < J < U. Let (wr, w;¢') be distributed ac-

cording to ATRC]FJ y- Then, the distribution of (&, @) is given by ATRC(H)A’S’J*’U%

2.2. Proof of Theorem 2. We first show that ATRC(}”(Z, and ATRC IJ}] coincide for almost
every (J,U):

Lemma 2.3. There exists D C {(J,U) € R2:0<J < U} with Lebesgue measure 0
such that, for any (J, U) € D€, one has

0,0 1,1
ATRC;, = ATRC, ;. (14)
Remark 2.4. Note that, by (CBC), equation (14) implies equality of all Gibbs measures.

The proof goes by applying a version of the classical convexity argument to the
marginals of ATRC on w; and w,./, see Appendix D for more details. We are ready to
prove part (i) of Theorem 2. Recall that B, (x, y) is the Euclidean ball of radius » centred

at (x, y).
Proof of Theorem 2(i). Fix J < U. By (CBC), we have 8 < ,Bf’f. Assume for con-

tradiction that the inequality is strict, and take g € (87, B7*/). Then, by (MON+), there
exists ¢ > 0 such that, for any (J', U’) € B.(BJ, BU),

ATRCS,,(0 <% 00) =0 and ATRC}';,(0 <5 00) > 0.

This contradicts Lemma 2.3. O

Denote by H], (resp. H;f/) the event that the box [0, 2n — 1] x [0, 2n — 1] is crossed

horizontally by w? (resp. ™). Note that the complement of 7} is the event that the box
[0,2n —1] % [0, 2n — 1] is crossed vertically by the dual w}. The following lemma states
a standard characterisation of non-transition points. It is a consequence of Lemma 2.3
and sharpness of the phase transition in the ATRC. The latter can be derived using a
robust approach going through the OSSS inequality [DRT19]; see Appendix A for more
details.



37 Page 10 of 33 Y. Aoun, M. Dober, A. Glazman

Lemma 2.5. Let O < J < U. Then, (J, U) € y, if and only if, for any ¢ > 0, there exist
points (Jo, Ug) and (J1, Uy) in Be(J, U), such that, as n — oo,

ATRC%?

30 HEl = 1 and ATRCY', [H7]— 0. (15)

The same holds also when T is replaced everywhere by tt’.

Proof. Assume (J,U) € y;. By sharpness, ATRC}B’JI’/SU[H,Z] — 0, for any B €
(0, 1). Also, it is standard that part (i) of Theorem 2 and Zhang’s argument imply

that ATRC%;)’ BU [H:] — 1, for any 8 > 1. This gives one direction of the statement.

To show the reverse, assume first that 87 := 7 (J, U) > 1 and take 8 € (1, B7). By
sharpness, ATRC}S’JI’ ﬂU[H;] — 0 and, by (MON+), the same holds in some neighbour-
hood of (J, U). The case B! < 1 is analogous. O

Proof of Theorem 2(ii). Let (J,U) € y; and ¢ > 0. Since the duality mapping is a
continuous involution, we can find § > 0 such that the image of Bs(J, U) is in-
side B, (J*, U*). By Lemma?2.5, we get (15) for some (Jy, Up) and (J1, Uy) in Bs(J, U).
By duality and symmetry,

H"]— 0 and ATRC’C, .[HI"]— 1 asn — oo.

L,
ATRC'. 0 el

sl
Since (J, Uy) and (J{, UY) are in B¢(J*, U*), Lemma 2.5 implies that (J*, U*) e

Vee/-
Proving that (J*, U*) € y, implies (J, U) € y; is analogous. O

2.3. ¢g(S) argument: proof of Theorem 1. Following [Sim80,Lie80] (see also [DT16a]),
for a finite subgraph S C L containing 0, define

9p(S) =198 - ATRCg (0 <> 35).

The following lemma states a key property of ¢g(S): if it is less than 1 for some §,
then w, exhibits exponential decay of connection probabilities. This finite-size criterion
allows to use continuity of ¢g(S) and Proposition 1.1 to extend exponential decay of w,
beyond (SD). Let Ay be the box of size k in L, thatis Ay = {u € L : |Ju|l1 < 2k}.

Lemma 2.6. Let § > 0. Assume that ¢g(S) < 1, for some finite subgraph S C L
containing 0. Then, there exists ¢ := c(B, S) > 0 such that

ATRC,'(0 <5 9A,) <™.

Remark 2.7. (1) Note that the boundary conditions are free in [DT16a] and wired in our
case. The reason is that an analogue of Lemma 2.6 is proven in [DT16a] via a modified
Simon—Lieb inequality [Lie80,Sim80] for the Ising model. Such inequalities are not
available in our case. While Lemma 2.6 under wired conditions is elementary, proving
exponential decay under wired boundary conditions in finite volume (Proposition 1.1)
is the subject of Sects. 3-6.

(2) We point an interested reader to the work [DS87] that introduces a finite-size criterion
for the completely analytical interactions.
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Proof of Lemma 2.6. Let S C L be a finite subgraph containing 0 such that ¢g(S) < 1

and let k be such that S C Ag. If0 <5 9 A, then 85 <5 dA,; and 0 <> §S.
By (CBC) and the union bound,

ATRC/lg’](O L A) < ATRC}S’](O 5981985 <5 9Am) .ATRC;*I(aS 9

< ATRCg (0 <5 3S) - > ATRCy'(x <5 dA )
x€dsS

< ATRCy (0 <5 3S) - [9S|ATRC, ' (0 <> 3 A (- 16)

= @ﬁ(S)ATRC}g’I(O & OA(—1)k)-

where we also used translation invariance of ATRC}g‘1 and that S C Ag.

Since ¢g(S) < 1, we get that ATRC}J;I(O & A,i) decays exponentially fast in n
by induction. Since for any m € N, there exists n such that m € [nk, (n + 1)k], we get
that ATRC;;’ L0 <5 9A) decays exponentially fast in m. ]

We are now ready to derive Theorem 1 from Proposition 1.1 and Theorem 2.

Proof of Theorem 1. Fix J < U. By Proposition 1.1 and (12), we can take n > 1 such
that g, (A,) < 1. Since the function 8 — @g(A,) is increasing and continuous, there
exists ¢ = ¢(J, U) > 0, such that g (A,) < 1, for all B’ < Bsa + €. The latter implies
exponential decay by Lemma 2.6 and hence B} > fqq. In other words, all points on y*
are strictly above the self-dual curve. Hence their images under the duality mapping (4)
are strictly below the self-dual curve. By Theorem 2, these points are exactly the points

of y”, and this finishes the proof. O

Remark 2.8. Standard arguments similar to the proof of Lemma 2.6 show that
1
cp = lim ——log ATRC,! ;[0 <5 9A,]
n—-oo n n

exists and is right-continuous in 8, which gives another way to argue that the exponential
decay from Proposition 1.1 extends to an open neighbourhood of the self-dual line (SD).

3. Models, Couplings and Required Input

In this section, we introduce the six-vertex model together with its height and spin
representations. We also state couplings of this model with the ATRC model and FK-
percolation that will be crucial to our arguments. A combination of these two couplings
has been made explicit recently in the work of Peled and the third author [GP23] and
we summarize the results of that work that we will rely on.

3.1. Graph notation. Dual subgraphs and configurations. For a finite subgraph Q of I,
define its dual graph Q* in L* formed by edges dual to the edges of €. As for primal
graphs, we denote the sets of its vertices and edges by Vo« and Eq+. The boundary 9Q*
is defined in the same way as for subgraphs of L. Given a percolation configuration o €
{0, 1}£2  its dual configuration w* € {0, 1}£2* isdefined by w*(¢*) = 1—w(e), e € Eq.
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Fig. 2. Top: The height representation of the six-vertex model in the four vertices of a unit square in 72,
normalized to equal O at the lower left vertex. Bottom: The spin representation is derived from the heights by
setting the spin state at each vertex to +1 (resp. —1) if the height modulo 4 equals 0, 1 (resp. 2, 3)

Domains in L. A finite induced subgraph  of L. (or IL*) is a domain if it is given by
vertices and edges within a simple cycle (including the cycle itself). We denote the set
of vertices on the surrounding cycle by 3K and call it the domain-boundary of Q. The
set of edges on 9X2 is called edge-boundary of 2 and is denoted by E7,.

Domains in 72 . Given a domain  in IL, let Dg, be the subgraph of Z? induced by vertices
in U €*. We call such a domain an even domain of Z? (see Fig. 1). Define 92Dq =
99 U dQ*. Given a domain € on L*, we define Dgy in the same manner and call it an
odd domain of Z?. In particular, odd domains are obtained from even domains by shift
by one to the right. We emphasize that we only consider even and odd domains.

Remark 3.1. These restrictions stem from the coupling to FK-percolation (Sect. 3.6) that
requires two layers of boundary in Dg: inner layer 92 and outer layer 9 2*.

3.2. Six-vertex model and its representations. In this section, we define the six-vertex
model [Pau35] (more precisely, the F-model) and its different representations in terms
of spins [Rys63] and height functions. For the whole subsection, fix a domain 2 in L
(or IL*) and its corresponding even (odd) domain D = Dg, in Z2.

Height functions. A function h : D — Z is called a height function (of the six-vertex
model) if it satisfies the ice rule:

e |h(u) — h(v)| = 1 whenever u, v are connected by an edge in 72,
e /1 takes even values on D N L.

This constraint implies that, for each edge e of €2, the value of 4 is constant at the
endpoints of e or at the endpoints of e*. Up to an even additive constant, this leaves six
local possibilities (types), where types 5 and 6 correspond to % taking constant values
along both e and e*, see Fig. 2.

The six-vertex height function measure on D with parameters c, ¢, > 0 and boundary

ZS'D

conditions ¢t € is supported on height functions 2 € 7. that coincide with 7 on 92D

and is given by
i b
F’ ich [h] ns’ﬁ(h)CZS.G( )7 (16)

where Z = Z(D, c, ¢p, t) is a normalizing constant and n‘5 ¢(h) (resp. nl5’ ¢(h)) is the
number of edges of type 5 or 6 of Eq\ E5, (resp. E5q,). Whenc = ¢, werecover the stan-

dard six-vertex probability measure that will be denoted by H FD .- We write H an 2n+licy

for HFS? with € {20, 20 + 1}7"P. We define HF 72"~ analogously.
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Fig. 3. Left: Height function with 0, 1 boundary conditions. Right: Its spin representation is given by ® on L
(black circles) and o° on IL* (white circles)

Finally, we define HF%’?”il;cb as the probability measure given by (16) and sup-

ported on all height functions in ZP that have a fixed value 2r on 82D N L. Note that the
value on 82D N1L* is not fixed in this case, so the conditions can be viewed as semi-free.

Spin representation. Given a height function & € ZP, define o = o (h) € {£1}P by

1 if h(u) =0, 1 (mod 4),
o(u) = .
-1 otherwise.

. . s+t Cp s+t i+t
The six-vertex spin measures Sping ™", Spiny’., Spiny " are defined as the push-

forwards of HF%,IC;%, HF%}C, HF%ﬁ under this mapping. The spin measures are sup-

ported on all spin configurations o € {1} with the following restrictions: opp =1

P S e _ e
under Sping; 1™ and Sping” ; ojj2pry, = 1 under Sping” ..

3.3. From Ashkin—Teller to six-vertex. In this section, we describe the connection be-
tween the self-dual Ashkin—Teller model on a domain €2 in L and the spin representation
of the six-vertex model on the corresponding even domain Dg, in Z>. This relation has
first been noticed in [Fan72a] comparing their critical properties, it was made explicit in
[Fan72b, Weg72] (see also [HDJS13]), and was upgraded to a coupling in [GP23,Lis22]
(we note that [Lis22] treats a more general case of two interacting Potts models). We
consider two types of boundary conditions that will play an important role in proving
Proposition 1.1.

Let €2 be a domain of I, J < U be parameters. We will consider the ATRC mea-
sures defined in Sect. 2.1 with boundary conditions on 92 rather than 9<2. We write

ATRC?Z’ ,]ljﬁ y for the corresponding ATRC measure where 1 refers to the wired boundary

condition on 9. B
Letn;, n;¢» be boundary conditions on 92 or 3 2. Consider the marginal of ATF{CUQr ’Jn’l;/

on wy : this is the probability measure supported on {0, 1}¥2 and defined by
ne 7 €)= ATRCG ) ({wr = &)).
Also, given o € {j:I}DQ, we write o® and o° for the restrictions of o to Q and Q*,
respectively (see Fig. 3). We define the sets of disagreement edges:
Ege :={uv € Eq:0°(u) #0°(v)} and Ego :={u"v* € Eq+ : 6°(u™) # o°(v™)}.
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Finally, we define the compatibility relation on pairs of o® € {£1}* and w € {0, 1}£2:
o L w ifandonlyif o(u)=o0(v), forany uv € w.

The compatibility relation on pairs of o° € (£1}¥ and w € {0, 1}Fo* is defined
similarly. The following is a consequence of [GP23, Proposition 8.1] and a remark after
it, or may be proved along the same lines:

Proposition 3.2. Let 0 < J < U be a point on the self-dual line (SD) and ¢ = coth2J.
(1) If Q is a domain in 1L, then we can couple o ~ Sping;C and w; ~ u?z’,]lJ’U by

Plo. ] o (L>|wr‘+|EU'|

c—1 0L, 0° Lof ]la's+on5§2,<7°s+on I

Thus, o° is obtained by assigning +1 to the clusters of w} that intersect 9Q* and
assigning £ 1 uniformly independently to all other clusters.

(2) If 2* is a domain in L*, then we can couple o ~ Sping?; . and wr ~ //,éz’lj u by

Plo, o] o<< 1 )\wrl+|EU.|

—1 0°Llw;,0° Lw} ﬂa°z+ on 02+

Remark 3.3. Part 1 of Proposition 3.2 is a special case of [GP23, Proposition 8.1] while
part 2 may be proved in the same way. The proof relies on the following identity:

k() — k(0*) = |0*| + const($),

where @ = w7 for (1) and @ = w; for (2). This follows from Euler’s formula using that
either  or Q* is a domain and our definition of the domain-boundary.

Corollary 3.4. In the setting of part 1 of Proposition 3.2, take (®,c°) ~ Sping; -

Sample a percolation configuration w on Egq as follows independently at each edge e: if
the endpoints of e* have opposite values in 0°, then w, = 1; if the endpoints of e have
opposite values in o ®, then w, = 0; if 0° agrees on e* and o® agrees on e, then

P(w. = 1) = 1. (17)

c

Then, the law of w is given by M?i Jl1,u~

3.4. Input from the six-vertex model. In this section, we mention basic properties of
six-vertex measures and state some results from [GP23]. The following proposition is
a combination of Theorem 2.2, Proposition 6.1 and Lemma 6.2 in [GP23]. We remark
that we only consider even and odd domains in Z2.

h#0
Foru e L, S C L, define u <i> S to be the event that u is connected (in L) to S by a
h#1
path of heights different from 0. We similarly define u* 27 s* foru* e L*, §* c L*.
Proposition 3.5 [GP23]. Fix ¢ > 2, and let A be the unique positive solution of ¢ =
e*? + =22 Then, for any sequence of domains Dy /' 72, the measures HF%I{ . and

L2
HF%i’z converge weakly to the same limit that we denote by HF(C)’ ! Moreover, HF?’ I
a.s. exist unique infinite clusters in L of height 0 and in IL* of height 1. Finally, clusters
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of other heights are exponentially small: for some o > O uniforminn > 1, u € L,
u* e L*

h#0 h#1
HF! |:u Bia g +8Ani| <e ™ and HFY! |:u* Vi +8Ani| <e .

Let us emphasize that, while existence of subsequential limits is a straightforward

consequence of discontinuity of the phase transition in FK-percolation, the ordering of
1/2
both even and odd heights is non-trivial. This also implies that the weak limit of H F0 Lie

remains the same, whether it is taken along even or odd domains. Analogously, for any
n € 7, one obtains limit measures HF>"2"*! (resp. HF2"2"~1) of HF2" 2"+1 (resp.

HF2" 2” 1) satisfying the corresponding properties.

Slnce the modulo 4 mapping (Sect. 3.2) is local, Propositon 3.5 directly implies the
following corollary.

Corollary 3.6. Fix ¢ > 2, and let A be the unique positive solution of ¢ = e*/* + e=*/2.

; H ; 2 iAot
Then, for any sequence of domains Dy increasing to 7.°, the measures SplnDk’c and

++e/2

Spinj
D.

converge weakly to some Spin_*, which is independent of the sequence

The height function measures admit useful monotonicity properties and correlation
inequalities when c, ¢, > 1, see [GP23, Proposition 5.1].

Proposition 3.7. Let D be a domain in 7?2, and let ¢, ¢, > 1. Then, for any boundary

condition t, the measure HF%CIL is monotone (11) and satisfies the FKG inequality (10).

In particular, ift <1, then HF lS stochastically dominated by HFI Cb

It has been established in [GP23, Theorem 2.5] that the marginals of Spin%’: .ong®

(resp. 0°) satisfy the FKG inequality with respect to the pointwise order on {£1}"2
(resp. {£1}"2*). Though [GP23] deals only with boundary conditions specified on the
whole boundary, the extension to free or semi-free conditions is straightforward. Indeed,
the statement for o ® holds as long as spins ¢ ° on the boundary are not forced to disagree.

PropOSItlon 3.8. ([GP23]) Let Q be a domain in 1L, and let ¢ > 1. The marginals of
SpInD on o*® and o° satisfy the FKG inequality (10).

It was also shown in [GP23, Corollary 7.3, Proposition 7.5] that the marginals /L?z’ le U

converge to some infinite-volume state u(}lu that admits exponential decay of connection
probabilities.

Proposition 3.9 [GP23]. Let 0 < J < U be on the self-dual line (SD) and 2 be
a sequence of domains increasing to L. The measures ,u%il J.u converge weakly to

some measure ,ug’b on {0, 1YEL which is independent of the sequence Q. and admits
exponential decay of w.-connection probabilities: there exist M, o > 0 such that, for
anyu,v €L,

/LJU[M<—>U]<M€ alu=vl,

We sketch the argument given in [GP23].
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Sketch of proof of Proposition 3.9. The couplings in Proposition 3.2 and Corollary 4.3
imply convergence of M%”]lj, y-as 2 /L, to some u(}b that satisfies FKG and is
invariant under translations. Thus, it is enough to show that it is exponentially unlikely
that @, contains a circuit surrounding A, . Indeed, on this event, the marginal of Spin;r’Jr
at vertices in (A,)* is invariant under the spin flip. By Proposition 4.2, radii of clusters
of minuses have exponential tails and the claim follows. O

We emphasise a difference between Propositions 3.9 and 1.1: the latter proves expo-
nential decay under the largest boundary conditions and in finite volume. As we saw in
Sect. 2.3, this is necessary for the proof of Theorem 1.

3.5. FK-percolation. Fortuin—Kasteleyn (FK) percolation [FK72] is an archetypical de-
pendent percolation model. It is well-understood thanks to recent remarkable works;
see [Dum17,Gri06] for background. We will transfer some known results from FK-
percolation to the six-vertex model via the BKW coupling (Sect. 3.6) and further to the
self-dual ATRC via the coupling in Proposition 3.2.

Definition. Let 2 C L be a finite subgraph and £ a partition of dS2. FK-percolation
on 2 with parameters p € [0, 1] and ¢ > 0 is supported on percolation configurations
n € {0, 1}£2 and is given by

FKEM(U) |n|(1_ p)|Eal=lnl k=),

where Z = Z(Q, p, ¢, £) is a normalizing constant and k% (17) was defined in Sect. 2.1.

The free and wired FK-percolation measures FKL, ~ and FKg, .4 are defined by
free and wired boundary conditions, respectively (as i in Sect. 2.1).
We now review several fundamental results about FK-percolation.

Proposition 3.10. Let p € [0,1], ¢ > 1 and Q. /' L be a sequence of subgraphs.
Then, the weak limits of Fng g and FKS, - exist and do not depend on the chosen
sequence:

f 5 f LA w
FK, 4 = kli)ngo FKo,pg and  FKJ = klirrgo FKSp.g-

Moreover, these measures are positively associated, extremal, invariant under transla-
tions and satisfy the following ordering, for any finite subgraph Q C L,

f f w w
FKE <ot FKD <q FKY <o FKY .

As we will see below, the self-dual AT model with J < U corresponds to FK-
percolation with g > 4 at p = pgq, where

/]
Psd *= T

This model is self-dual: if w has law FK; 4.q> then @ *(e*) := 1 —w(e) has law FKp E

Theorem 4 [DGH+21]. Let g > 4. Then, FK[,d ¢ 7 FKpSd q

(1) FKY (there exists a unique infinite cluster) = 1,

Psd»q
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Fig. 4. Left: An edge configuration on the domain  C L from Fig. 1 (in black), and its dual on Q* (in gray).
Right: Loops (in red) separating primal and dual clusters within D, after opening all edges in E7, (dashed)

(ii) there exists a > 0 such that FK;sd,q 0 <« 0A,) <e " foranyn > 1, .
The second item of this theorem implies exponential relaxation at pgq:

Lemma 3.11. Let g > 4. Then, there exists « > 0 such that, for n > 1 and any finite
subgraph Q C L that contains Ay,

w w —an
drv (FKQ,psd,an’ FKpmﬂ"‘n) <€

where dtvy denotes the total variation distance.

The proof is standard and goes through the monotone coupling; see Appendix B.

3.6. Baxter—Kelland—Wu (BKW) coupling. FK-percolation and the six-vertex model
were related to each other for the first time by Temperley and Lieb [TL71] on the level
of partition functions. BKW [BKW76] turned this relation into a probabilistic coupling
when ¢ > 2. We follow [GP23] and describe this coupling using a modified boundary
coupling constant cj,.

Take g > 4, p = psq. Let A > 0 be the unique positive solution to

A —A

et +e " =./q, andsetc := M2

+e M2,
Let €2 be a domain in I and recall the notations introduced in Sect. 3.1. The measure
FKS. pu.q Tefers to the FK measure with wired boundary conditions on 9<2. Note that
the statements of Proposition 3.10 and Lemma 3.11 remain valid if we replace w by w.
Consider 1 ~ FKg’ pu,q and draw loops separating primal and dual clusters within
 as in Fig. 4. Given this loop configuration, we define a height function i € ZP2 by:
H1 Seth =00n3*DgNLand h = 1o0n3d*Dg NL*;
H2 Assign constant heights to primal and dual clusters by going from 32Dg, inside of Dgq,

and tossing a coin when crossing a loop: the height increases by 1 with probability

er/ +/q and decreases by 1 with probability e/ /4, independently of one another.

The following result is classical; see e.g. [GP23, Chapter 3] for a proof in this setup.
Proposition 3.12. (BKW coupling) The resulting height function is distributed accord-
ing to HFOD’;;“”:/Z

0dd domains. Note that, by symmetry, the whole procedure also works on odd domains
with the difference that one needs to replace H2 by
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H2' each time one crosses a loop, the height decreases by 1 with probability e’ / /g and
increases by 1 with probability e~/ /9, independently of one another.

22

. ;. * L . W 0,1;e
For a domain " in L*, this gives a coupling of FK ' pag A0 HFDQ/,C .

4. Exponential Decay for ATRC in Finite Volume

The goal of this section is to derive exponential decay of connection probabilities for

,u%‘ ! 7 > Which is the marginal of a finite-volume ATRC measure on w., see Sect. 3.3.
Recall that A, = {u € L : ||u||1 < 2n} is the box of size n in L.

Proposition 4.1. Let 0 < J < U be on the self-dual line (SD). There exists « > 0 such
that, for any n > 1 and any domain Q2 in IL. containing A4y,

ut 10 &5 9, < emen,

The proof consists of several steps. We first transfer the exponential relaxation prop-
erty from FK-percolation (Lemma 3.11) to the six-vertex height function (Proposi-
tion 4.2) and then to the marginal vg of the ATRC model with modified edge weights on

the boundary. Using Proposition 3.5, we also show that the limit of v, is given by ,ug’j]
(Lemma 4.4), and that vy dominates u%} .y (Lemma 4.7). The statement then follows
from exponential decay in /A%] (Proposition 3.9).

4.1. Exponential relaxation for height function measures. Asin Sect. 3.6, fix ¢ > 2 and
let A > 0 be the unique positive solution of ¢ = ¢*/? + ¢=*/2. Set ¢ := (e* + ¢~ )% and
consider p = pgq. For n > 1, define an even domain Ay, = Dy,,.

e et/? . .
Proposition 4.2. The convergence of HF%IL’,e towards HF(C)’l admits exponential re-
laxation: there exists a > O such that, for any n > 1 and any even domain D O Agy,

A2 _
drv (HF%}j | Any» HF3’1|A2,,) <, (18)

Proof. We omit ¢, psg from the notation for brevity. We first construct the limiting
measure HF?’ ! Consider 7 ~ FK¥ on L. Using known results about n ~ FKY (Sect. 3.5)
we can sample a height function % as follows. Set # = 0 on the unique infinite cluster
of  and sample 4 in its holes according to H2 in the BKW coupling (Sect. 3.6).

Define C, to be the outermost circuit in n surrounding A, and contained in Ay,
(if it does not exist, we set C, := ¢). Stochastic ordering of FK measures, positive
association (10) and exponential decay in n* imply existence of &’ > 0 such that, for
any n > 1 and any domain 2 D Ay,

FKY[Cy # @, Cy <> 0Q] > FKV[C, # @, Cy <> 00l > 1 —e %" (19)

By exponential relaxation of the wired FK measures (Lemma 3.11), there exists ” > 0
such that, for any n > 1 and any domain Q D Ay,

dry (FK&A%, FKW|A2n) <e o, (20)
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L Lh/2
Now, given C,, = C and C BN 00, the law of /& within C is precisely HF%I"CMC where

Q(C) is the domain in [l induced by the vertices within C (including C). Note that 2 (C)
contains A,, whence Dq(c) contains Dy, = Ao,.

We can also obtain HFOD’:;:;/ZC from FK{ conditioned on C, = C and C < o by
applying H1 and H2. Together with (20) and (19), this proves exponential relaxation. O

Recall that the six-vertex spin measures introduced in Sects. 3.2 and 3.4 are the
push-forwards of the height function measures under the local modulo 4 mapping.

A
Corollary 4.3. The convergence of SpInJr +Helf? towards Spin}"* admits exponential

relaxation: there exists a > 0 such that, for any n > 1 and any even domain D O Ag,,

drv (Spm+ s A Spin;~+|A2n) <eon, @1

4.2. Amodified ATRC marginal. Fix J < U onthe self-dual line (SD), take ¢ = coth2J
and the unique A > 0 such that ¢ = ¢*/? + ¢7*/2, Let Q be a domain on LL and Dg, be
the corresponding even domain on Z?2. Recall the definition of the edge-boundary E7,

+,+;et

in Sect. 3.1. Sample (¢°®, ¢°) from Spln . Define vg as the distribution of w €

{0, 1}£2 sampled independently for each edge e as follows: if the endpoints of e* have
opposite values in o°, then w, = 1; if the endpoints of e have opposite values in ¢°,
then w, = 0; if 0° agrees on ¢* and o® agrees on ¢, then

—2/2

Q

. ifee By,
22
R otherwise. (22)

]P’(wezl)z{

=

We call vg a modified ATRC marginal as it converges to u 7 U as Q ' L. Moreover,
this convergence admits exponential relaxation, which is the content of the next lemma.

Lemma 4. 4 For any sequence of domains 2 increasing to L, the measures vg, con-

verge to ,u 7 U Moreover, this convergence admits exponential relaxation: there exists
a > 0 such that, for any n > 1 and any domain & O Ay,

0,1 -
drv (VQIA,,»MJ:U|A,,> <e ¥, (23)

Recall the representation (7) of the ATRC measures. The previous lemma becomes
more clear once we identify vg as the marginal of ATRCW \w,,, On@r where the weights
are as in (8) except that w; is modified on the edge- boundary E5q.

Lemma 4.5. For any domain Q2 in 1L, the measure vq coincides with the marginal of
ATRCY! . on wy, where

QW W,

2&, ife € Exo,
wf(e)z{zek/m ife € Ejq

, otherwise,

2(U—-J)

and Wiy =e — lon Eq. 24)

We now derive Proposition 4.1 from Lemmata 4.4 and 4.5. First of all, the ATRC
measure is stochastically increasing in w; (see Appendix C for the proof).
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Lemma 4.6. Let Q be a domain in L. The measures ATRC(S)2 le w,,, are stochastically

increasing in Wy. More precisely, if w;(e) < Wy (e) forall e € EQ, then the measure
ATRC! is stochastically dominated by ATRCY, L

QW W, QWW/

This, together with Lemma 4.5, implies the following stochastic domination:

Lemma 4.7. For any domain Q2 in 1L, the measure vg stochastically dominates M(s)i 111 U

Proof of Proposition 4.1. Fix n > 1 and a domain 2 D Ay, in L. We have
el ul0 < 9AN] < 1G ) 410 © DA] < vl0 < DA,

where we used (CBC) for the first inequality and Lemma 4.7 for the second one.
Now, by Lemma 4.4 and Proposition 3.9, there exist @, M > 0 such that

vol0 <> 9AL] < Y [0 < dA,]+e " < 8nMe ™" + 7",

It remains to show Lemmata 4.4 and 4.5.

Proof of Lemma 4 4. By construction, vg can be sampled from SpInJr "¢ using (22). By

Corollary 3.4 MQ J.u canbesampled from Spln . using (17). The measures Spln%; ‘Cb

and SplnD+ both converge to Spin}**,as Q2 ]L by Corollary 3.6. Also, the rules (22)
and (17) are local and coincide outside of the boundary (which is irrelevant in the limit).

Thus, vg and ,uQ ;v have the same limit and it can be sampled from Spin/** using

the same rules. Their locality implies that the convergence inherits the exponential re-

laxation property (21) (recall that Dp,, = Agy,) and, by Proposition 3.9, the limit is
0,1

Hry- o

Proof of Lemma 4.5. Fix a domain € in I, and take ¢, := ¢*/?. Recall that E,+ denotes
the set of disagreement edges in o® (Sect. 3.3).

Step 1 The measure vg can be written in the following form:

volo] x (CT21>|w\EEQ| <Cb2_1>|w0559| k(@) Z <C1—l)\Ea.\ . @5)

o e{:l:l}Q
0 Llw, 0% 75=1

For brevity, we write E for Eq and dE for E7,. In a slight abuse of notation, we also
set (Ego)* = {€* : e € Eyo}. The law of (o, w) defined by (22) satisfies:

(%)\w\((EGO)*UaE)I (ﬂ

|E\(@UE, e UJE)|
=)

Plo, ] = SpInp 0] Los 1w, 00 Lt X

» (i)lwﬂdE\(EJo)* (cbfl)ldE\(a)UE”')‘
cp Ch
o (¢ — 1)7|(qu(,-)\8E\ (ch — 1)7\(a)UEJ-)ﬁ3E| 10|32951 Loo o, 00 Lo*
Note that E;+ N dE = @ since oj3q = 1. Summing over o then gives

Plo] o (¢ — 1)71VWEl (g, — 1)~ lnEIl @D N py=Eeel,

oe{x1)¥
U'J_w,n'|5951
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Finally, by Euler’s formula (or induction), H(o*) = k(w) + |w| + const(Dg).

Step 2: The marginal of ATRCY!

QW W,
coincides with the right-hand side of (25)
Given (w;, wegr) ~ ATRC?Z{V o define a spin configuration o® € {£1}¥ by
assigning +1 to domain-boundary clusters of w:¢ and %1 to interior clusters of w;4

uniformly independently. Then their joint law can be written as

on w; with weights w;, w;, given by (24)

‘w o\

]P)[(,()-[, Wy, o ] o8 1_[ Wr (e) W 2k(w1') :[I‘wrgwr.[/ II-U'J_(A)TT/ 1

ecwr

o°l5o=I"-

Now, 6® L w. precisely if 0®* L w; and (w; \ w;) N Ege = &. Sum over o =
Wepr \ W

Ploc, 0l o [ we(@) - 2509 Toero, Loppmt D Wi

ecwyr wCE\(w;UE,e)

The last term equals (W;¢/ + D)IEl-lor—lEqe] Finally, summing over ¢®, we arrive at

‘Ea'l
Plw, ] « 1_[ \;Nrfi) . ok(wr) Z (ﬁ) ) (26)

ecwr o®e{+1}
o lwyg, o'|§gzl
Plugging in the weights (24) while using that sinh2J = =2V and ¢ = coth(2J) gives
that (26) agrees with (25), which finishes the proof. O

5. No Infinite Cluster in the Wired Self-dual ATRC

Proposition 5.1. Ler0 < J < U satisfy sinh 2J = =2V, Then, ATRCY |, [0 <5 oo] =
0. ’

The proof of Proposition 5.1 again relies on the coupling with the six-vertex model,
Proposition 3.2. First of all, by the non-coextistence theorem [She05,DRT19], it is

sufficient to show that ATRCIJ y admits an infinite w-cluster. If the latter is not the
case, the infinite-volume limit of the marginals of SplnD on {+1}" can be shown to
be tail-trivial. Exploring clusters of 1 and —1 (in T- connect1v1ty) and using the non-

coexistence theorem, we obtain that the limit of HF%DE1 is either HFY! or HF® 1,

thereby contradicting the invariance of HF%jEC1 under i — —h.

In the following remark, we summarise some basic properties of the ATRC marginals

,u}z’ 1 U (defined in Sect. 3.3) and their infinite-volume limit that we will use in Sects. 5.1
and 5.2.

Remark 5.2. Recall that, for domains 2; ' L, the measures ATRCSlikly U form a
decreasing sequence and converge to ATRCIJ”;]. In particular, the same holds for the
marginals on w;: ,uéz : J.u converges to MH} It is then standard ([Gri06, Chapter 4.3])
that ulle is invariant under translations and tail-trivial (and hence ergodic). Moreover,

ATRCéZ1 s,y (and thus their limit and its marginals) satisfies the finite-energy prop-
erty. Therefore the Burton—Keane argument [BK89] and the non-coexistence theorem
[She05,DRT19] apply.
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5.1. Semi-free measures in infinite volume. In this section, we will show weak conver-
gence for some finite-volume spin and height function measures defined in Sect. 3.2.

Lemma 5.3. Let 0 < J < U be on the self-dual line (SD) and take ¢ := coth?2J.
Let w; ~ MIJIU Define X:’i as the distribution on {:i:l}]L* obtained by assigning £1 to
every cluster of w} uniformly and independently. Then, for any sequence of odd domains
Dy /' 72, the marginals of SpinBic on o° converge weakly to xo £ Moreover, X =
is translation-invariant, positively associated and satisfies the finite-energy property.

Proof. Fix J < U. Let Dy be a sequence of odd domains on 72 and Q the corre-
sponding subgraphs of L such that Dy = Dq,)+. Let a)’r‘ be sampled from ,uélkl su-BY
Proposition 3.2, assigning 1 to clusters of (a)]t‘)* uniformly independently gives the

+j:

marginal of Spinz;~  on o°. Since ,u}zkl 7.y converges to Mlle that exhibits at most one

infinite cluster in a)r, the marginal of Spin;)’:c on o° converges to . i+
Clearly, . “* inherits translation-invariance and the finite-energy property from
,u,]JlU By Proposition 3.8, the marginal of Spingkic on o ° satisfies the FKG inequality.

Hence, the same holds for its limit x. * |

Working with measures on height functions (rather than spins) is more convenient as
they satisfy stochastic ordering in boundary conditions. In the proof of Proposition 5.1,

il . .
we use an infinite-volume version of HFO . We show existence of such subsequential

limit in the next lemma by sandwiching HFO il between HF0 - and HF0 1

Lemma 5.4. Let ¢ > 2. For any sequence of domains Dy, increasing to 7.2, there exists
a subsequence (kg) such that the measures HF%kilC converge weakly to some HFS’jtl as
”

¢ tends to infinity.

Remark 5.5. Proposition 5.6 and its proof allow to show that the limiting measure
is %(HF?’1 + HF(C)’_I) for any (sub)sequence. We do not use this statement and omit
the details.

Proof of Lemma 5.4. By [Geoll, Proposition 4.9], it suffices to show that (HF0 ﬂEl)k>1

is locally equicontinuous: for any finite V C Z?> and any decreasing sequence of local
events (A;;)m>1 supported on V and with Ny,>1A,, = &, it holds that

lim sup HF%kil[Am] — 0 asm — oo.
k—o0 ’

By Proposition 3.7, finite-volume six-vertex height function measures are stochastically
ordered with respect to the boundary conditions, whence

0,~1 0,£1 0,1
HFR, o <ss HFp - < HFp .
Moreover, by Proposition 3.5, HF converges to HFO and HFO ! . to HFO Vask

tends to infinity. These statements together easily imply the requlred local
equicontinuity. ]
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5.2. Proof of Proposition 5.1. As we argued in Remark 5.2, it suffices to find a dual
infinite cluster:

Proposition 5.6. Let 0 < J < U satisfy sinh2J = e=2V. Then, ATRC;’IU[O & o] >
0. ’

Remark 5.7. By the duality relation described in Sect. 2.1, this is equivalent to saying
that ATRC(}’(Z)][O Pii oo] > 0, for any J < U on the self-dual line (SD).

The proof of Proposition 5.6 also relies on the non-coexistence theorem — but in the
context of site percolation. Following the notation of [GP23], we let T° be the graph
with vertex set L* where a vertex (x, y) € IL* is adjacent to

(-xv )’) + (11 1)a (xy y) + (1, _1) and (.x :i:2, y)
Note that T° is isomorphic to the triangular lattice.

Proof of Proposition 5.6. Fix J < U. Recall that MIJIU is the marginal of ATRC;’IU
on w;. Assume for contradiction that ;LIJIU does not admit an inﬁnite dual cluster.

Set ¢ = coth 2. Recall that x. * is obtained from & ~ M J U by assigning uniformly
independently %1 to its dual clusters. Since all of them are finite by our assumption, x.~ et
inherits ergodicity from ,uH] Also, by Lemma 5.3, x. * is translation-invariant and
satisfies the FKG inequality. Thus, by the non-coexistence theorem, in T°-connectivity,
either Xc+ ** admits no infinite cluster of minuses, whence

xr ’i(EI infinitely many disjoint T°-circuits of + around the origin) =1,  (27)

or the same holds for T°-circuits of —. By symmetry, we can assume (27).
By Lemma 5.4, there exists a sequence of odd domains Dy, such that H FO . converge

to some infinite-volume height function measure HF? *1 weakly. Recall that SplnD .

FO,il

is the push-forward of H D under the modulo 4 mapping and, by Lemma 5.3, the

marginals of SplnD on o° converge to x. weakly. Then, (27) implies that HFS’jEl
admits infinitely many disjoint T°-circuits around the origin of constant height that is
congruent to 1 modulo 4. By Proposition 3.7, the measure HF?’jEl is between HFS’_1

and HF%! in the sense of stochastic domination. By Proposition 3.5, HF~! and HF%!
admit infinite clusters of —1 and +1, respectively. Hence, the above implies

HFg‘i] (3 infinitely many disjoint T°-circuits of + 1 around the origin) = 1. (28)

By a standard exploration argument and FKG inequality (details below), (28) implies
that HF% %! stochastically dominates and hence equals HF% !, This leads to a contradic-
tion since HF®'*! is invariant under & — —h while HF>! is not.

It remains to show that (28) implies HFO + HF0 " . Itis sufficient to prove HFO +1
[A] = HF(C)’I[A], for any increasing local event A. Take any ¢ > 0. Since HFODL

converges to HF(C)’1 weakly as D 7 72, we can find n > 1 such that, for any domain D
containing A,

IHF! [A] — HFY[A]] <e. (29)
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We can find D 2 A, large enough such that
HFg’il[A] - HFg’il[A | 3 T°-circuit of + 1 in D surrounding A, ]| < e. (30)

Let C be the outermost T°-circuit of height +1 in D surrounding A, (if such circuit does
not exist, we set C := (). By the domain Markov property and stochastic ordering in
boundary conditions, for any T°-circuit C surrounding A, and contained in D,

HFO*[A|C = C] = HF] [A], (31)

where D¢ is the connected component of the origin in the graph obtained from Z? after
removing all vertices on C or adjacent to it in Z2. Since D¢ D A, by (29), the right-hand
side in (31) is e-close to HF?’ A1 Putting this together with (30), we get HF?.il [A] >
HF%1[A] — 2¢. Since & > 0 was arbitrary, we obtain HF>*![A] > HFY![A]. The
opposite inequality follows by the comparison of boundary conditions. O

6. Proof of Proposition 1.1

Our goal is to use exponential decay under O, 1 conditions, Proposition 4.1, to improve the
non-percolation statement, Proposition 5.1, and get exponential decay in finite volume,
Proposition 1.1. We use the approach of [CM10] and [CIV08, Appendix]. Additional
difficulties in our case come from a weaker domain Markov property of the ATRC
measure.

Fix J < U and n > 1. For any vertex x € A,, define

n(x) = l{x&aAn}'

The next lemma provides a lower bound on the size of the boundary cluster of w;.
Recall that we denote by u the marginal of the ATRC measure on w;.

Lemma 6.1. For any 6 > 0, there exists o := «(8, Bsq) > 0 such that

1,1 2 —an?
MAnvlg,\'d Z Mx 2 (Sn S e :

xelA,

Proof. Fix § > 0. It follows from Proposition 5.1 that
: 1,1 Wt _
nlgrgo Bp, gy (0 < 3A,) =0.
This implies that one can find M := M (§) > 0 such that

5
11 1
EXypa | T 22 M| <35

xeAy

Fix n > M. Without loss of generality, assume that n = (2k + 1) M. One has

1 1 1
A Z Ny = m m Z Iycoemxran
e, xeA ye2Mx+Ay
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Denote the expression in the brackets by Y js. Then,

1

1,1
’uAn Bsd |A | XEZA nx - 8 = /J’Any/gsd |Ak| = YX’M 2 8
k
1
S /“l’ ’ A Y M z 8 ’ BM ’
An,Bsd | Ak = *

where By = (), eAL {wclaomxen M) = 1} and the last inequality uses (FKG) and that

By is increasing. Note that under y, A B d( |Bu), the random variables Yy s are i.i.d.
The statement then follows from Hoeffdmg s inequality. O

Proof of Proposition 1.1. Recall (12). We aim to show that, up to an arbitrary small
exponential error, there exists a blocking surface of closed edges around A 4 in A,.

Foreach £ € [1,n] and x € dAy, define

FE =1 et and  N(0):= Y f(0).

A} X€IAy

Define A, as the event that N (£) < én. Since f(x) < n(x), Lemma 6.1 implies that, up
to an error e’“”z, event Ay occurs for some ¢ € [4n/5, n], whence

1t g (0 <5 0A,5)
e R D DTy e (R T YR V0 BTy N )

4n/5<€<n
_ T 1,1
< e g Yyl 5 0SS 9Auss, Aanys <5 0AL 1A - iy 5 (Ar)
4n/5<l<n

9
— U 4 oY "sn Anﬁd(o <_> 8An/5,A4n/5 <7L> IA,),

where we used that A, is measurable with respect to edges of w; in A, \ A, and that,
conditioned on Ay, there are maximum 48n edges that are incident to vertices on d Ay
that are connected to A, and we can disconnect Ag,/5 from 0A, by closing all these
edges.

On the event {A4,/5 <+> dA,}, there exists a circuit of closed edges in w; that
surrounds Agy/5. Denote the exterior-most such circuit by ¢ an explore it from the
outside:

Wy

1t 5 (0S5 0,5, 0Ranss <5 08 =Y uy! 4 (0S5 0As 18 = Oy, (£=0)
C

<D MG 5, 0 S5 IAwSLR) 5, (6 = O,
C

where the sum is over all possible values of ¢ and we define Q¢ as the subgraph of L
bounded by C; the inequality relies on (CBC) and on the 0, 1 boundary conditions being
domain Markov for u. Note that Q¢ can be turned into a domain by consecutively
removing vertices of degree 1 — denote it by (.. Such operations can only increase the
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measure, whence ugz’] <st uo’,] ,and Agyys C Q.. Thus, the right-hand side in
c:Bsd Qcaﬁsd C

the last equation is exponentially small by Proposition 4.1. Combining the bounds, we

get

1,1 W 701}12 o'sn —a’’n
s < + .
Mhnvssd(O(—) 8An/5) e e e .

Taking § small enough finishes the proof. O

7. The Case J > U': Proof of Theorem 3

7.1. ATRC for J > U. We fix J > U and a finite subgraph Q of .. The ATRC
model is defined via an Edwards—Sokal-type expansion. Since J > U, the leading
terms will correspond to interactions in 7 and in 7’. Thus, the ATRC measure on §2
with boundary conditions 7, s is supported on pairs of percolation configurations
(wr, wpr) € {0, 1}E2 x {0, 1}£2, and is defined by

T N/ T T Ne! ’
ATRCY [ (wr, wp) = & - 2K @O @) TT 4w (e), wpr(e)). (32)

eckE

where Z = Z(R2, J, U, n¢, ny) is a normalizing constant and

a(0,0):=e¢*, a(1,0) = a0, 1) := e 2V _ o= 4(1,1) := 1 — 22U+ 4 o4
(33)

Similarly to (7), if J/ > U, we can write the measure as

| |[+]w, /]| |lw:Nw_/| s
ATR NesNy 1,0 T 0,0)a(1,1 T 2 T (e 4 ,
CQ,J,U(Q)T’ Wyr) X (%) (%) F oo (o )' (34)

Basic properties. The analogues of the properties (FKG), (CBC), (MON), (MON+)
and (DMP) hold in this context as well. In particular, the measures ATRC%’?J‘ v and
ATRC}Z”1 J.u converge weakly to some ATRCg:(L), and ATRCb”lU, respectively, as 2 7 L.
As before, if the parameters J, U are fixed, we write ATF%CZ{)’};7 ” for ATRC?;”;’}C sU and
analogously for the infinite-volume measures.

Coupling of ATRC and AT. As mentioned above, edges in @, and in w,/ describe interac-
tions in T and in ’. In contrast to (12), the correlations of the product Tz’ are described
by simultaneous connections in both w; and w./: for any x, y € Vg,

T T W/
(tety)@.uu = ATRC?Z’?J’U(X &y, (TXT)/CTyT}/»QqJ’U = ATRC?Z’?J’U(x &y x < y).
(33)

As in Sect. 2.1, the statement extends to infinite volume in a standard way, and ﬂf f
and B." /" coincide with the corresponding percolation thresholds under ATRC(}:?].
Similarly, the same holds for 87 and 877 under ATRC]J:IIJ.

Duality. Given an ATRC configuration (w:, w./), we defineits dual (o, @) 1= (@7, })).
This extends Lemma 2.2 to all J, U > 0.
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7.2. Proof of Theorem 3. Fix J > U. Positive association (FKG), symmetry and inclu-
sion give

wr

ATRCY' (0 <5 00)? < ATRC' (0 <5 00,0 <% 00) < ATRCL' (0 <5 o).

Since A7 and B77 coincide with the corresponding percolation thresholds, this im-
plies Bf = ,BC”/ =: B.. Analogously, ,BJ’f = ,BC”/’f = ,BCf.

To derive Theorem 3, it remains to show that 8, = ﬁéf = fsd. The inequality B. < Bsq
follows from a standard argument once the transition is shown to be sharp: for 8 < B,
there exists ¢ = c¢() > 0 such that, for every n > 1,

ATRCy' (0 <5 0A,) < ™. (36)

This can be derived via a general approach [DRT19], see Appendix A.

The reverse inequality is a consequence of Zhang’s argument provided that 8. = ﬂéf R
i.e. the transitions for the free and wired measures occur at the same point. This follows
from an analogue of Lemma 2.3 (see Appendix D for the proof of both lemmata):

Lemma 7.1. There exists D C {(J,U) € R? : J > U > 0} with Lebesgue measure 0
such that, for any (J, U) € D€, one has
0,0 1,1
ATRC]’U = ATRCJ,U.
Proof of Theorem 3. Fix J > U. Part (i) follows from Lemma 7.1 and (MON+) in the
same way as for J < U, see Sect. 2.2.
Recall the definition of the event 7 in Sect. 2.2. By duality, symmetry and (CBC),

ATRCY(H}) < ~ < ATRCy ! (H}). (37)

N =

If B. > Bsd, then, by (36), ATRC /I%i (H}) converges to 0 as n tends to infinity, If 8. < B,

then (since . = B/) Zhang’s argument implies that ATRC%’SS (H}) converges to 1 as n
tends to infinity. Both statements contradict (37). |
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A. Sharpness

The proof of sharpness for FK-percolation via the OSSS inequality [DRT19,0SSS05]
adapts to the ATRC. For completeness, we present a sketch of this argument and give
details for the steps that are specific for the ATRC.

A.l. Sharpness for J < U. We start by bounding the derivative in 8 by a covariance:

Lemma A.l. Let 0 < J < U and ¢ > 0. Then, there exists ¢ = c(g, J, U) > 0 such
that, for any finite subgraph Q C L, any increasing event A, and any By € [e, 7],

(iATch}B[AO ' >c Y Covlla, wr(e)] +Covlla, wrr(e)].
d'B B=Bo ecEq

Proof. Fix J < U.Recall that we can write the measure ATF%CQ pas in (7) with weights
given by (8). Then, as in FK-percolation, we get a covariance formula:

d 1.1 W (B) W (B)
—ATRCg [A]:Cov[]l, 2 o] + = |wp \ @r| |-
T “ @ N ey o]

Since J < U, we have W/ _,(8), w;(B) > 0 and the statement follows. |

Fix J < U. We prove sharpness only for w., since the proof for w;’ is the same. Recall
that MQ p is the marginal of ATF%C1 0. on @r. The key step in the proof of sharpness in

[DRT19] is the extension of the OSSS inequality [OSSSOS] to dependent measures. The
inequality holds for any monotone (9) measure on {0, 1}, for a finite set of edges E.

In particular, it applies also to ,ukzlm g on {0, 1}E2" with Ey, = Ep,,, forn > 1. Instead

of stating the OSSS inequality, we state its consequence that can be derived in the same
way as in [DRT19]:

Lemma A.2. ((DRT19], Lemma 3.2) For any n > 1, one has

Z Cov[Ljoean,), wel

ecEy,
n

> s, 10 3001 (1= k) 10 & aA1),
16 Z /LAZk ﬂ[O < dAL]

. . . 1,1
where the covariance is taken with respect to the measure ., B

We proceed as in [DRT19]. Fix By > 0. Forn,k > 1,& < 1 and 8 € [, e~1], define
Oc(B) =ty 4l0 < IAL, Sni= D bk

Lemma A.1 applied to A = {0 & dA,}and Q2 = Aj, implies

0,() = ¢ Y Covlla, wr(e)]+Covlla, wer(e)] = ¢ Y Cov[la, ()],

eckEyy, eekEy,
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(38)

where we used FKG inequality in the last line. By Lemma A.2,

9/ . n
C
"7 168,

On (1 — 6p).

By (CBC) and monotonicty in 8 < ¢!, we have 6, (8) < 0;(¢~"). Then, for some c| >

)

’ n
On = €15-6n. (39)

n

By [DRT19, Lemma 3.1], this inequality implies sharpness of the phase transition.

A.2. Sharpness for J > U. The proof is the same as for / < U and we only show the
analogue of Lemma A.1.

Lemma A.3. Let J > U > 0and ¢ > 0. Then, there exists ¢c = c(e, J,U) > 0 such
that, for any finite subgraph Q. C 1L, any increasing event A, and any Bo € [g, e '],

(iATRCg}ﬂ[A]> ' >c Y (Cov[la, wr(e)]+Covlla, wy(e)]).
dﬂ B=Po ecEq

Proof. For J = U, the model reduces to FK-percolation with cluster-weight ¢ = 4, and
the statement follows from [Gri06, Theorem 3.12]. Fix J > U. Define r(8), s(8) > 0
by

_a(l,0) _ a©,D _ a(0,0)a(1,1)
r(B) = Z©00) = a0y, and s(B) = a(1,02

where the a(i, j) are given by (33) evaluated at (8J, BU). Recall that we can write the
ATRC measure as in (34). Then, for any ¢ > 0 and any increasing event A,

d 11
@ATRCQ’ﬁ[A] —c Z Cov[la, w(e) + wy(e)] = Cov[la, Xc],

ecEq

where

Xe= Y (_ - c) (@ (&) + @y (€) + 5 wr (e) wr(e).

ecEq

It is easy to see that X, is increasing in @ when B € [g, ¢~'] and ¢ is small enough.
Then, by (FKG), Cov[14, X.] > 0 and this finishes the proof. O
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B. Proof of Lemma 3.11

Proof of Lemma 3.11. Fix g > 4 and p = ps4(g) and omit them in the notation below.
Letn > 1 and 2 D Ay, be a finite subgraph of L. By Proposition 3.10 and Strassen’s
theorem [Str65], there exists a coupling P of n— ~ FKY and n, ~ FKJ such that
Pn- <ns) =1.

Define C to be the outermost circuit of edges in n— surrounding A, and contained in
Ag, (if there is no such circuit, set C := (). By exponential decay of connections for the
dual n* (Theorem 4), there exists & > 0 such that, for any n > 1,

P[C = @] < FK¥[AY <5 A% ] < 8ne™o".
Take any event A depending only on edges in A,. We have

IFKS[A] — FKY[A]| < [P[n: € A,C # @] —P[1- € A,C # ]| + 16ne™"

=Y IP[n,€A|C=C]-P[n_eA|C=C]P[C=C]+16ne",
C#0

where the sum runs over all realisations C # @ of C. Now, the event {C = C} is
measurable with respect to the exterior of C. Moreover, on {C = C}, the circuit C is
open both in n; and n_, whence the distributions of 7, and 7_ in the interior of C are
equal. O

C. Proof of Lemma 4.6

Proof of Lemma 4.6. By a generalization of the Holley criterion, see [GHMO1, Section
4], it suffices to check that, for all e € Eq and (¢7, &) € {(0,0), (0, 1), (1, 1)}Ee\e),
both

Je(We, 8oy Eopr) = ATRC%,]IWZ,W”, [wr (e)=1 ‘ (w1, W) Eg\(e} = (x, frr’)] s
8e(We, 8r, Lrr) 1= ATRC%,]IW%W”, [wrr’(e) =1 ’ (wr, wn’)'EQ\{e} = (¢r, Crr’):l

are increasing in (¢;, {;¢) and wy. .
Fix e, ¢, £r¢ as above. Write ¢; and ¢, for the configurations that agree with ¢; on

Eq \ {e} while {7 (e) = 0 and Z;(e) = 1, and analogously for ¢;,. Then,

Wy (e)2k @+ o)

fe(wta ‘(/fa é‘) =
2

e Car) gy (092K G Cert) gy (o) 2k @k Trr)

—k(Z2) k! N—k" (T e B
~ <2k(¢,) k(&) (R G =R ) 4y (o)) +1)

we(e)

which is clearly increasing in w,. Moreover k({_, ) — k(g_,) and k! (ﬁ ) — k! (a) are
decreasing in (¢, {;¢/), respectively.
We now check that 1 — g, is decreasing in w; and (¢, {;/). We have

1
DKk Cprr)

L —ge(Wr, &r, Eoer) = 1 — — —
PKEO+K ) W”,(e)zk(gﬂkl((n/) + Wi (€)2kE+K € o)
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17yl — -1
_ (1 + oK G =K' (&) (W”,(e) +Wr(e)zk(§r)—k(§i))) ’

which is clearly decreasing in w; and ({7, {77/). O

D. Equality of Infinite-Volume ATRC Measures

In this section, we prove Lemmata 2.3 and 7.1.

The case J < U. The following statement will imply Lemma 2.3.

Lemma D.1. There exist two families of smooth curves (y,),~0 and (V;T,)s>0 such
that (i): forany 0 < J < U, there exist s, r > 0 such that (J,U) € yF N )/S”,, and (ii):
for any r,s > 0, the set of points (J, U) on y* (resp. yS”/ ) such that the marginals
of ATRC(}”% and ATRCIJ:IIJ on wy (resp. wyy) differ is at most countable.

This implies that the set of pairs J < U, for which ATRC(}”% and ATRC ;IU have different
marginals on w; or w;,/, has Lebesgue measure 0. By a monotone coupling argument,
equality of both marginals implies that ATRC(;’(I)] = ATRCIJ’ lU, and Lemma 2.3 follows.

We mention that (y,),~0 and (ys”l) s>0 are dual to each other.
Proof of Lemma D.1. We follow a strategy presented in [Dum17, Theorem 1.12] which

is a rephrased version of an argument in [LL72]. For any J < U, any finite subgraph
Q C L and any boundary conditions 1, and 7,,/, we can write

Eq|— ’ T ’
ATRCUQT:Z‘[II]/ [Cl)r, (1)‘[1'/] X (Zggz?;)‘ al o] (Z%’B)lw | 2kﬂr (wr)+knfr (@) ﬂwrgw”/ .
Consider the curves where a(0, 0)/a(0, 1) is constant (precisely if U — J is constant).
Fix an edge e of IL. The Holley criterion [Hol74] easily gives that the function (J, U)
ATRClj’Y]U[a), (e)] is increasing along these curves, see e.g. the proof of [Gri06, Lemma
11.14]. In particular, the set of discontinuity points is countable along each of them. Fix
C > 0and (J,U), (J',U’) on the curve a(0, 0)/a(0, 1) = C with J' < J (then also
U’ < U), and assume that (J, U) is a continuity point. Define a = ATRC(}:% [we(e)]
and b = ATRCIJ’/IU/[a)T (e)].

Note that, alongg the curve a(0, 0)/a(0, 1) = C, the quantity a(1, 1)/a(0, 1) is strictly
increasing. Using this fact, analogous reasoning as in [Dum17] gives that a > b. Letting
(J',U") tend to (J, U) along a(0, 0)/a(0, 1) = C and using that (J, U) is a continuity
point of (J', U’) — b, we deduce

ATRCY, [w: (e)] = ATRC} [ (e)].

Since the reversed inequality follows from (CBC), we obtain equality. By considering
a monotone coupling of the corresponding marginals on wy, it is easy to see that this
implies that the marginals on w; coincide. The statement for w,, is derived along the
same lines when considering the curves where a(1, 1)/a(0, 1) is constant. |

The case J > U. Below is the analogue of Lemma D.1 that implies Lemma 7.1.

Lemma D.2. There exists a family of smooth curves (y,*)r~o such that (i): for any J >
U > 0, there exists r > 0 for which (J,U) € yS, and (ii): for any r > 0, there exist

only countably many points (J, U) on y,} for which ATRC(}:(Z)] * ATRCIJ’}].
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Proof. For J = U, the model reduces to FK-percolation with cluster-weight ¢ = 4, and
the statement follows from [Dum17, Theorem 1.12]. Recall that, for any J > U and
any finite subgraph @ C L, we can write the measure as in (34). Consider the curves
where the weight w := (a(0, 0)a(1, 1))/(a(1, 0)2) is constant. The Holley criterion
again allows to show that the ATRC measures are stochastically ordered along these
lines. Moreover, the weight a(1, 0)/a(0, 0) is increasing along each of them.

Fix an edge e of L. and C > 1, and let (J, U) be a continuity point of (J', U’) >
ATRCl’,lU,[a)t (e)] along the curve w = C. Take (J', U’) on the same curve with J' < J.
Analogous reasoning as in the proof of [Dum17, Theorem 1.12] gives

ATRC)' [w: ()] < ATRCSY [ (o)1,

with the only difference that one has to apply (FKG) to control |, | and |w,/| simultane-
ously. Letting (J’, U’) tend to (J, U) along w = C from below and using (CBC) gives

ATRC(}”(()] [w:(e)] = ATF{CIJ"IU[a)t (e)]. A monotone coupling argument and symmetry

between w; and w, finish the proof. O
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