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Abstract 

In this thesis we study physical and geometric aspects of gravity at high energies. On
the one hand, we carry out a detailed investigation of gravitational physics in this regime
with the aid of higher-order gravities. These are extensions of General Relativity including
terms in higher derivatives of the metric and other felds which, in addition to an e˙ec-
tive feld theory interpretation, possess as well an intrinsic interest by themselves. More
concretely, we focus on higher-order gravities of the (Generalized) Quasitopological class,
defned as those admitting static and spherically symmetric solutions characterized by a
single function satisfying an equation of, at most, second order. The motivation for this
is twofold: they are amenable to computations and, at the same time, are generic enough
so as to capture e˙ects and phenomena introduced by higher-order corrections, which one
may use to learn properties of a putative theory of Quantum Gravity.

First, we restrict ourselves to theories of pure gravity and show that all higher-
order gravities can be mapped, via (perturbative) feld redefnitions, to a Generalized
Quasitopological Gravity. Secondly, we consider the addition of a U(1) gauge vector feld
and identify infnite families of Electromagnetic (Generalized) Quasitopological Gravities
(E(G)QGs). We establish several intriguing properties of these theories and explore their
charged, static and spherically symmetric solutions. In particular, we prove that a subset
of EQGs allows for completely regular electrically-charged black holes for arbitrary mass
and non-vanishing charge. Next, we move to the analysis of higher-derivative extensions
of Einstein-Maxwell theory which are duality-invariant. We classify all such theories up
to eight derivatives and fnd that, up to the six-derivative level, they all can be mapped
via feld redefnitions to a higher-curvature gravity with a minimally coupled vector. Also,
we are able to classify all exactly duality-invariant theories which are quadratic in the
Maxwell feld strength. Afterwards, we revisit EQGs and examine some of their holographic
aspects. We manage to obtain fully analytic and non-perturbative results that motivate
us to discover a new universal result valid for all d(≥ 3)-dimensional CFTs, which we
rigorously prove.

On the other hand, we study geometric properties of gravity at high energies. We
choose Supergravity and String Theory as the scenarios in which to test such properties
and we inspect distinct topics on the subject, in an attempt to form a global picture of the
type of geometric structures we may encounter in this context.

We start by exploring real parallel spinors on globally hyperbolic four-manifolds.
We are able to reformulate the problem in terms of a system of di˙erential equations for a
family of functions and coframes on a Cauchy surface that we call the parallel spinor fow.
Remarkably, we fnd that the parallel spinor and the Einstein fows coincide on common
initial data, thus providing an initial data characterization of a real parallel spinor on a
Ricci fat globally hyperbolic four-manifold. Then, we investigate self-dual Einstein four-
manifolds admitting a principal and isometric action of the three-dimensional Heisenberg
group with non-degenerate orbits and manage to classify all of them. Finally, we introduce
ε -contact structures, which encompass the usual notions of (three-dimensional) contact
Riemannian, contact Lorentzian and para-contact metric structures, but also allow for a
lightlike Reeb vector feld. We show explicitly how they can be used for the construction
of solutions of six-dimensional Supergravity.
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Resumen 

En esta tesis se estudian aspectos físicos y geométricos de la gravedad a altas energías. Por
un lado, se realiza una investigación detallada de la física gravitacional en este régimen con
la ayuda de las gravedades de orden superior. Son extensiones de la Relatividad General
que incluyen términos en derivadas superiores de la métrica y otros campos que, además
de una interpretación como teorías efectivas, también poseen una relevancia intrínseca. En
concreto, nos concentramos en gravedades de orden superior de la clase Cuasitopológica
(Generalizada). Se defnen como aquellas que admiten soluciones estáticas y esféricamente
simétricas caracterizadas por una sola función que cumple una ecuación de segundo orden
o inferior en derivadas. La motivación para el estudio de dichas teorías es doble: permiten
cálculos explícitos y son lo sufcientemente genéricas como para capturar efectos de los
términos de orden superior, quizá propios de la teoría subyacente de Gravedad Cuántica.

Primero, nos restringimos a teorías de gravedad pura y demostramos que todas las
gravedades de orden superior se pueden escribir, mediante redefniciones de campo pertur-
bativas, como Gravedades Cuasitopológicas Generalizadas. En segundo lugar, añadimos
un vector gauge U(1) e identifcamos familias infnitas de Gravedades Electromagnéticas
Cuasitopológicas (Generalizadas) (GEC(G)s). Establecemos diversas propiedades intere-
santes de estas teorías y exploramos las soluciones estáticas y esféricamente simétricas
con carga. En particular, probamos que un subconjunto de las GECs admite agujeros
negros con carga eléctrica completamente regulares para cualquier masa y carga no nula.
A continuación, analizamos extensiones con derivadas superiores de la teoría de Einstein-
Maxwell que son invariantes bajo dualidad. Clasifcamos dichas teorías hasta octavo orden
en derivadas y observamos que, hasta sexto orden, todas ellas se pueden reformular como
una gravedad de orden superior con un vector acoplado mínimamente. Asimismo, somos
capaces de clasifcar todas las teorías exactamente invariantes bajo dualidad cuadráticas en
el campo de Maxwell. Después, volvemos a las GECs y examinamos aspectos holográfcos
de las mismas. Logramos obtener resultados completamente analíticos y no perturbativos
que nos ayudan a descubrir un nuevo resultado universal válido para todas las Teorías
Conformes de Campos en dimensiones d ≥ 3, que demostramos rigurosamente.

Por otro lado, estudiamos propiedades geométricas de la gravedad a altas energías.
Elegimos Supergravedad y Teoría de Cuerdas como los escenarios en los que verifcar estas
propiedades y analizamos varias líneas de investigación, tratando de obtener una panorá-
mica general del tipo de estructuras geométricas que podemos hallar en este contexto.

Nos centramos primero en espinores reales paralelos en cuatro-variedades global-
mente hiperbólicas, reformulando el problema en términos de un sistema de ecuaciones
diferenciales para una familia de funciones y bases ortonormales del espacio cotangente
en una superfcie de Cauchy que denominamos fujo de espinor paralelo. Observamos
que el fujo de Einstein y el de espinor paralelo coinciden en datos iniciales comunes, lo
cual nos proporciona una caracterización de los datos iniciales de un espinor real paralelo
en una cuatro-variedad globalmente hiperbólica Ricci plana. Luego, reorientamos nues-
tras pesquisas hacia las cuatro-variedades autoduales Einstein que admiten una acción
isométrica y principal del grupo de Heisenberg tres-dimensional con órbitas no-degeneradas,
logrando clasifcar todas ellas. Finalmente, introducimos las estructuras de ε -contacto, que
además de englobar las nociones habituales de estructuras riemannianas y lorentzianas de
contacto así como las estructuras métricas de para-contacto, incluyen la posibilidad de
un vector de Reeb de tipo luz. Concluimos mostrando cómo se pueden emplear estas
estructuras para la construcción de soluciones de Supergravedad en seis dimensiones.
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I 
Introduction

The current Standard Model (SM) of physics [15–18] is one of the greatest achievements of
humanity. It has involved the most brilliant thinkers and scientists of History, from Ancient
Greece to the today’s world-wide collaborations. It explains the four interactions that we
have identifed so far: the electromagnetic force, the weak interaction, the strong force and
gravity. Together with these four interactions, a suitable framework is needed to depict and
understand the subsequent behaviour of Nature. Before the 20th century, such setup was
provided by Classical Mechanics, which is extremely successful in describing macroscopic
physics. Nevertheless, the observation of certain phenomena (photoelectric e˙ect, black
body radiation, absorption and emission spectra...) which could not be explained in the
framework of Classical Mechanics triggered the discovery of Quantum Mechanics (QM).
The embedding of a special-relativistic Classical Field Theory into the quantum realm
produces a Quantum Field Theory (QFT), which currently provides the most accurate
and appropriate framework to describe Nature. It allows for a remarkably beautiful in-
terpretation — matter is made up of particles (fermions) and interactions are a result of
the exchange of particles (exchange bosons), both of them being continuously created and
annihilated within an enormously dynamical and intricate vacuum.
In this context, it turns out that electromagnetism, the weak and the strong interactions
ft into a QFT description. Nevertheless, gravity does not. In fact, the SM assumes
that gravity is governed by Einstein’s General Relativity (GR) and this theory cannot be
properly quantized because it is not renormalizable [19–24], thus remaining in the realm
of Classical Physics. Consequently, accepting that Nature respects the postulates of QM
and QFT, this poses at the very least a quite substantial conceptual problem: why cannot
GR be consistently quantized? What are we missing in our understanding of physics?
These questions are relevant, since there are experiments and observations which showcase
tensions with the SM.
On the one hand, many of these puzzles originate from the ΛCDM model for cosmology,
which is the most robust description of the Universe at our disposal. The theoretical frame-
work is that of GR together with the Cosmological Principle, which postulates the spatial
sections of spacetime to be homogeneous and isotropic and large scales. However, it also
possesses two key mysterious ingredients, whose existence is strongly supported by the in-
vestigation of the Cosmic Microwave Background (together with other observations): dark
energy, considered to be responsible for the current accelerated expansion of the Universe,
and dark matter, introduced to explain the velocity profle within galaxies. Unveiling their
fundamental physical origin is one of the most longed-for objectives in theoretical physics,
although diverse tantalizing ideas to describe their fundamental nature have already been
put forward in the last years. Regarding dark matter, there have been several interesting
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proposals for its origin, such as weakly interacting massive particles [25, 26], ultra-light
particles [27] or the fairly intriguing possibility of primordial black holes [28–32]. In the
case of dark energy, apart from simply defning it as a (perfect) fuid with negative pres-
sure1, the covariant action or the E˙ective Field Theory approaches can be satisfactorily
followed [32, 34, 35]. Nevertheless, it would also be quite elegant if a potential theory
of Quantum Gravity provided a framework in which both dark energy and dark matter
appeared naturally or which rendered their introduction unnecessary.

On the other hand, a plethora of theoretical challenges are posed as well by the most
elegant and fascinating objects of the Universe, already predicted by GR: black holes.
Leaving their precise defnition for Section I.6, they are characterized by the existence of a
region of spacetime from which even light cannot escape. The boundary of such a region is
called the event horizon. Under physically reasonable conditions, Hawking and Penrose [36]
discovered that the formation (and presence) of black holes is intimately connected to the
existence of singularities which are hidden behind the black hole’s event horizon. Again,
such singularities are warning us that GR is breaking down and that a more sophisticated
understanding of gravity, which would cure this unwanted behaviour, is needed. Also,
the discovery of black hole thermodynamics [37, 38] and, more concretely, of black hole
entropy [39–41], triggered very interesting questions. What does this entropy account for?
What is the microscopic structure behind the event horizon of a black hole that generates
such an entropy? In a similar fashion, it was shown [38] that black holes radiate, so that
they have a defnite temperature and could even evaporate and disappear. However, after
a semiclassical study one would conclude that there is a loss of information through this
process, what is known as the information paradox [42–44]. How can we reconcile black
hole evaporation with unitarity (no information loss)?

The previous reasoning justifes the necessity of a theory of (Quantum) Gravity which
answers some (if not all) of the questions posed above. Unfortunately, such a theory has not
yet been found, although fairly promising candidates have been proposed. Among them,
perhaps the most remarkable one is String Theory (see Section I.2 for a brief review),
but there exist also other promising possibilities, such as Loop Quantum Gravity [45–
48]. In any case, one could adopt an agnostic point of view about the UV completion
to Quantum Gravity and try to examine and characterize generic e˙ects to be expected
from an improved description of gravity. This can be done through the use of higher-order
theories of gravity, which we introduce in Section I.1.

In another vein, GR postulates that gravity is encoded in the spacetime curvature,
and thus establishes a natural correspondence between geometry and gravity. Conse-
quently, the study of geometry is crucial for its proper understanding. Given this funda-
mental connection, we expect quantum corrections not to break it, but rather to modify it
by deforming or twisting the way gravity a˙ects geometry and vice versa. Capturing the
new geometric structures and properties appearing in potential candidates for quantum
UV completions, such as String Theory, is essential to discover new features of gravity
arising from quantum e˙ects.

In this thesis we intend to contribute to the discovery of the quantum theory of
gravity by exploring the physics and geometry of gravity at high-energies. More concretely,
we will try to shed light on some of the theoretical puzzles explained above, in particular

1Interestingly enough, measurements are in agreement with dark energy coming e˙ectively from a
cosmological constant term [33], which corresponds to the equation of state p = wρ with w = −1, p and ρ 
being the pressure and the density of the fuid, respectively.
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those concerning the mysterious and extraordinary physical properties of black holes. In
this spirit, we have divided the thesis into two parts. In the First Part, we will concentrate
on the study of higher-order theories of gravity, examining purely gravitational theories,
non-minimal couplings to electromagnetism and analyzing holographic properties of these
latter theories. In the Second Part we will study geometries that can be found in String
Theory and Supergravity, such as those arising from the existence of parallel spinors, the
intertwining of contact structures or from certain confgurations in the context of scalar
manifolds.

We provide in this introduction all the necessary preparatory material which we
believe is needed for the understanding of the contents of this thesis. We begin by defning
higher-order gravities in Section I.1. Next, a very brief review of String Theory is given,
emphasizing certain physical and mathematical aspects of interest for the thesis. Later,
some celebrated examples of higher-order gravities are provided. Afterwards, we say some
words about duality rotations within theories of gravity and electromagnetism. Then, we
present very succinctly the initial value problem in GR, which is followed by a concise
introduction to black holes. This is continued by a short exposition about the role of
higher-order gravities in holography. Finally, we study the (mathematical) defnition of
spinors and conclude with a summary of the main results of the thesis.

I.1 Introduction to higher-order theories of gravity

Einstein’s General Relativity [49–52] conceives gravity as spacetime curvature. In partic-
ular, it postulates that the Universe can be modeled as a Lorentzian (four-dimensional)
manifold (M, g) whose dynamics is encapsulated in a metric g playing the role of the
gravitational feld. The corresponding equations of motion are derived through the ex-
tremization of the Einstein-Hilbert (EH) action [53]Z p1 

IEH = d4 x |g|R , (I.1)
16πG 

where G is the Newton constant and R is the Ricci scalar associated to the Levi-Civita
connection of g. The equations of motion state that (M, g) has to be Ricci fat, which in
some local coordinates may be expressed as

Rµν = 0 . (I.2)

Despite their apparent simplicity, these equations pose a highly intricate and non-linear
system of partial di˙erential equations whose exact resolution is usually an inaccessible
problem. Requiring the existence of symmetries allows one to obtain explicit solutions,
many of them in the form of black holes (such as the Schwarzschild or Kerr solutions),
which we will deal with afterwards.

GR arose as a result of the need of a more sophisticated theory which could solve
some problems of Newton’s theory of gravity, since the latter was not compatible with
Special Relativity and had tensions with experimental observations — in particular, with
that of the advance of the perihelion of Mercury2. Nevertheless, given the great accuracy

2This discrepancy was initially discovered by Le Verrier in the 19th century, who claimed it was due to
the existence of a planet between Mercury and the Sun. Nonetheless, such an object was never observed.
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and success of Newton’s theory for the description of Solar System mechanics, it should be
recovered when the gravitational feld is suÿciently weak.
A quite interesting regime is given by gravitational felds which are strong enough to surpass
the range of validity of the Newtonian theory, but weak enough so that a full-fedged use
of GR is not required, suÿcing to add to the Newton’s Universal law of Gravitation some
corrections (coming from GR). This formalism has already been developed in the literature
and is called the Post-Newtonian expansion [54,55]. Within this regime of gravity, Newton’s
law for the motion of a test particle in the gravitational feld of a massive body of mass M 
is modifed [56] as follows3:� �� � �� � � 

d~v GM 1 GM dr 12 = −n̂+ 4 − v n̂+ 4 ~v + O , (I.3)
2 2 4dt r c r dt c 

where ~v is the velocity of the test particle, n̂ the unit vector going from the massive body
to the test particle, r the distance separating them and t the associated time coordinate.
We observe that Newton’s law gets corrected through velocity-dependent terms and higher
powers of 1 , whose precise coeÿcients we may determine precisely since we know which isr 
the putative theory that corrects Newtonian gravity — GR.

However, assume we did not know anything about GR and we were just aware of
Newton’s gravitational law and the necessity of fnding an improved theory which solves
the experimental discrepancy with the advance of the perihelion of Mercury. Then, as a
frst attempt to parametrize and capture e˙ects of the correct theory replacing Newton’s
Gravity, we could think of just adding higher-order corrections to Newton’s law as:� �� � �� � � 

d~v GM 1 GM dr 12 = −n̂+ α1 + α2v n̂+ α3 ~v + O , (I.4)
2 2 4dt r c r dt c 

where α1, α2 and α3 would be a priori unknown constants to be fxed experimentally or by
the parent theory of gravity from which such corrections can be derived (looking at (I.3),
α1 = α3 = 4 and α2 = −1).

Now let us try to make some parallelism with the current situation between General
Relativity and the potential theory of Quantum Gravity. First, exactly as with Newtonian
gravity, GR has overcome a fairly large number of experimental tests, which include (apart
from the advance of perihelion of Mercury [51]) light defection [57, 58], Shapiro time
delay [59,60], the very recent detection of gravitational waves coming from black hole and
neutron star binaries mergers [61–67] or the confrmation for the existence of black holes
given by the frst-ever images of the shadow of the supermassive black holes located at the
center of the galaxy M87 [68,69] and the Milky Way [70,71], obtained by the Event Horizon
Telescope collaboration. Secondly, in analogy with the situation between Newton’s theory
and Special Relativity, GR is not compatible with one of essential and fundamental pillars
of physics —Quantum Mechanics, since the EH action (I.1) is not renormalizable. Thirdly,
in the same way that the most well-founded suspicions with Newton’s gravity arose from
the advance of the perihelion of Mercury, the strongest issue with GR comes from the
existence of singularities, where spacetime itself would break down. We summarize all
these points in Table I.1.

3Here we have not set c = 1, since the Post-Newtonian expansion is in fact based on assuming a weak-
feld approximation and expanding around powers of 1/c2 << 1. However, unless otherwise stated, we will
use units such that c = 1 all along the document.
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Newton’s gravity General Relativity

Successes Earth gravity, Solar System
Mechanics

Light defection, black holes,
gravitational waves

Incompatible with Special Relativity Quantum Mechanics

Major Problem Advance perihelion of Mer-
cury

Singularities

Replaced by General Relativity Quantum Gravity

Table I.1: Analogies between the status of Newton’s Gravity in the beginning of the 20th
century and the current situation with General Relativity.

Consequently, nowadays the situation with gravity is surprisingly similar to that existing
just before the advent of GR: a theory which describes extremely well the physics we are
observing in the Universe is known (GR), but, still, it is widely accepted that it has to be
replaced by a more advanced theory (Quantum Gravity). However, the most challenging
and exciting aspect of this problem is that such a theory of Quantum Gravity remains to
be discovered4. And it is precisely at this moment, with the help of the gravitational wave
detectors LIGO/VIRGO, the future space-based interferometer LISA [72] and the Event
Horizon Telescope collaboration, when we are at the verge of testing GR with far more
precision than ever. Therefore, it is mandatory to be ready for any possible deviation with
respect to GR predictions that may be measured in the forthcoming years5.
In case they are observed, such deviations will take place in a regime of gravity in which
the gravitational feld is strong enough to overpass the validity range of GR, but not
suÿciently strong so as to require a complete Quantum Gravity description (see Figure
I.1). Therefore, we could hope to study those phenomena by adding suitable corrections6

to the EH action (I.1). But, since we do not know Quantum Gravity, which corrections
should be added?

At this point, we may try to adopt a philosophy similar to that of (I.4): we can add to
(I.1) corrections controlled by unknown couplings (coeÿcients) and then study which new
phenomena and e˙ects such terms introduce. This approach can be further justifed from
an E˙ective Field Theory (EFT) perspective [15, 73, 74], which requires the introduction
of all possible terms compatible with the symmetries of the theory under consideration,
each of them weighted by a characteristic length scale. They can be thought of as low-
energy approximations to a more fundamental theory which may not even be described

4Assuming that this theory is indeed String Theory, at the very least it needs to be much better
understood.

5With today’s technology we are not yet able to probe ranges of energies in which Quantum Gravity
dominates. Nonetheless, nowadays we are starting to test GR in a regime of moderately strong gravity and
we may hope to detect deviations which trigger the discovery of an improved (e˙ective) theory of gravity.
This may take the form of a classical higher-order gravity which, going one step further, may be thought
of as a low-energy e˙ective theory arising from an underlying theory of Quantum Gravity and capturing
the associated quantum e˙ects.

6This might not provide us with the full theory of Quantum Gravity, but at the very least it can be
extremely helpful to this aim. For instance, knowing the frst e˙ective terms with which to correct GR
could be crucial to discard or validate potential candidates of Quantum Gravity.
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Newton’s Theory
Post-Newtonian
Expansion

General Relativity
Higher-Order 
Gravities

Quantum
Gravity

Low Energies High Energies

Figure I.1: We show in a diagrammatic fashion the most appropriate theory to apply in di˙erent
energy regimes in terms of simplicity and accuracy. Of course, a full-fedged theory of Quantum
Gravity should be able to describe all energies, but it is not necessary to use it for Solar System
mechanics, since Newton’s gravity already provides magnifcent results in this framework.

by a feld theory, thus dropping the worries about non-renormalizability or non-unitarity.
This program has been successfully applied in the past, the paradigmatic example being
that of the Fermi theory of β decays. Although it is non-renormalizable, such e˙ective
theory works extremely well for energies much lower than the mass of the W ± bosons
mediating the weak interaction, but it needs to be replaced by the proper electroweak
theory incorporated in the SM when the energies involved are suÿciently high.
A similar scenario, we argue, might take place in the case of gravity. The EH action has
been found to be not renormalizable, an issue which can be cured through the introduction
of terms of higher order in derivatives7 [75]. Nevertheless, the resulting theories turn out to
be generically non-unitary. Hence a suitable position to adopt is that of interpreting the EH
action as the leading term in an infnite expansion in powers of the spacetime curvature and
its covariant derivatives, the frst-order corrections being given by terms like R2 , Rµν R

µν 

or RµνρσR
µνρσ, where Rµνρσ is the Riemann curvature tensor. Not knowing the full theory

of Quantum Gravity, it is not possible to determine precisely which operators need to be
included in the action (I.1), so it is reasonable to assume an EFT approach and add to the
action all those terms compatible with the symmetries of the theory, with the hope of being
able to capture and parametrize quantum e˙ects. In the case of pure theories of gravity,
these symmetries consist on the full di˙eomorphism group, but in presence of other felds,
such as a electromagnetic gauge feld, gauge symmetry should also be respected.

The previous discussion leads naturally to the defntion of higher-order gravities.

Defnition I.1. A higher-order gravity is a theory of gravity (possibly with non-minimally
coupled matter8) in which the Einstein-Hilbert action (I.1) (maybe including minimally
coupled matter terms) is corrected in a di˙eomorphism-invariant fashion by terms of higher-
order in the spacetime curvature (and, perhaps, in the matter felds as well):⎡ ⎤Z ∞ ∞p X X X 

)µ1...µs Fp,jI = d4 x |g| ⎣R + F0 + αn,k,p,j ̀
σn,k,p (r kRn j µ1...µs 

⎦ , (I.5)
16πG 

j k,p=0 n=1 

7In particular, the introduction of quadratic curvature terms already yields a renormalizable action,
while higher-curvature terms are super-renormalizable.

8Bosonic matter term is said to be minimally coupled to gravity if its only coupling to gravity is via
the metric tensor. If it includes more generic couplings, such as contractions with curvature tensors, it is
said to be non-minimally coupled.
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µ1...µswhere (rkRn)j is constructed out of n curvature tensors and k covariant derivatives
Fp,jof it, labeling j all such possible inequivalent contractions9, F0 (resp. µ1...µs ) stands

for possible minimally coupled matter terms (resp. non-minimally coupled matter terms
with p labeling every tensor that may be formed through matter felds and their covariant
derivatives ), ` is a certain length scale from which on the e˙ects of Quantum Gravity
need to be taken into account, the exponents σn,k,p account for the dimension for the
higher-order operators and the coeÿcients αn,k,p,j are dimensionless couplings.

Higher-order gravities can be called equivalently higher-derivative gravities or higher-
curvature gravities. We will regard them as synonyms. Similarly, we will indistinctly change
the word “gravities” appearing before by “theories”. In this thesis we will be mainly dealing
with purely gravitational higher-order theories and higher-derivative gravities including
a non-minimally coupled U(1) vector feld (electromagnetism). When it is clear from the
context, we will not write explicitly the adjective “purely gravitational” or the prepositional
phrase “with a non-minimally coupled vector feld” for the sake of simplicity. If some
clarifcation is needed, it will be conveniently specifed.

Example I.1. An instance of a (purely gravitational) higher-order gravity is given by:Z 
1 

d4I = x 
p

|g| 
� 
R + `2R2

� 
. (I.6)

16πG 

This is Starobinsky’s model [76], widely used to model infation. On the other hand, an
example of a higher-derivative gravity with a non-minimally coupled vector feld is given
by: Z h i1 p

I = d4 x |g| R − F 2 + `2(2Rµ
αF µν Fαν − Rαβ

ρσF ρσFαβ) . (I.7)
16πG 

This theory will later be identifed as an Electromagnetic Quasitopological Gravity in
Chapter 2.

Adopting an EFT approach, one is entitled to study higher-order gravities and ana-
lyze the e˙ects of higher-derivative corrections even from a classical perspective (i.e., study-
ing the associated action, the classical equations of motion and explicit solutions). How-
ever, their introduction causes the subsequent gravitational equations of motion to contain
generically up to four-derivatives10 of the metric, which brings about certain diÿculties.
On the one hand, having higher-order equations of motions is in general tantamount to the
appearance of instabilities11 by virtue of Ostrogradski’s theorem [77], although we remind
the reader that this issue is to be compensated with renormalizability. On the other hand,
increasing the order of the equations of motion increments drastically the diÿculty of their
resolution, hampering the possibility of obtaining explicit solutions with which to explore
and investigate the new physics introduced by such higher-derivative corrections, even in
highly-symmetric confgurations. Nevertheless, this problem has been circumvented in the
last years with the advent of the so-called Generalized Quasitopological Gravities [78, 79],

9For the sake of concreteness, we exclude from our defnition explicit couplings with a connection which
cannot be rearranged in a curvature tensor, such as in the case of Heterotic String Theory that we briefy
present in Example I.2.

10Except in the case of GR and the so-called Lanczos-Lovelock theories (see Section I.3), which have
second-order equations of motion. In another vein, in presence of terms with covariant derivatives of the
curvature, the order of the equations of motion is further increased.

11And of ghosts, which imply the loss of unitarity in the quantum setup.
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characterized by admitting static and spherically symmetric solutions specifed by a single
function. From this defning feature, it can be seen that these theories satisfy a number of
physically-intriguing properties which make them both amenable to computations and, at
the same time, interesting from a phenomenological perspective. One of the main results
of this thesis is the discovery that these theories turn out to form a (perturbative) span-
ning set of the space of all higher-curvature gravities once feld redefnitions are considered
(Chapter 1), so that they are quite more general than one could have a priori expected.
Similarly, another interesting result is the proof of the existence of analogous higher-order
theories with non-minimal couplings to the electromagnetic feld, see Chapter 2.

I.1.1 Equations of motion and conserved charges

Given that our focus will be on the classical study of higher-order theories, it is of capital
importance for us the derivation of the corresponding set of equations of motion. For
the sake of simplicity and to illustrate the main ideas, we will restrict ourselves12 to the
consideration of four-dimensional higher-order gravities non-minimally coupled to a U(1) 
gauge feld Aµ, invariant under di˙eomorphisms and gauge transformations of Aµ and with
algebraic dependence in the Riemann curvature and the feld strength Fµν = 2∂[µAν]. This
type of theories are captured by the following action:Z p1 

I = d4 x |g|L(Rαβρσ, Fµν ) , (I.8)
16πG 

∞X 
`2(m−1)F2mL(Rαβρσ, Fµν ) = R − 2Λ − F 2 + αm 

m=2 
∞ ∞XXX 

F2m,j+ αn,m,j ̀
2(n+m−1)(Rµ1...µs 

µ1...µs ) (I.9)n,j 
j n=1 m=1 

where, following the notation of Defnition I.1, the subindex j stands for the inequivalent
ways in which the indices of a generic term with n Riemann tensors Rµ1...µs and 2mn,j 

2m,jfeld strengths Fµ1...µs can be contracted. Also, note that F0 would be given by F0 = 
−2Λ − F 2 + 

P∞ αm ̀
2(m−1)F2m , where we have explicitly written the Maxwell term F 2 

m=2 
and a cosmological constant Λ. If we vary the action (I.8) and disregard boundary terms13,
we fnd the following set of equations of motion:

1ρσγ σ αP(µ Rν)ρσγ − 
2 
Lgµν + 2r r ρP(µ|σ|ν)ρ + 2 ? H(µ Fν)α = 0 , (I.10)

dH = 0 , (I.11)

where we have defned
∂L 1 ∂L 

P αβργ Hαβ = , = − ? , (I.12)
∂Rαβργ 2 ∂Fαβ 

the Hodge dual operation ? on two-forms being defned as
1 

? Hµν ≡ εµναβH
αβ , (I.13)

2 
12Along the thesis we will also deal with more intricate theories and in any number of dimensions.
13One must be careful at this point. Appropriate boundary terms have to be added in the action to

make the variational problem set by (I.8) well posed, in a similar fashion to the Gibbons-Hawking-York
term of GR [80, 81].
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where εµναβ denotes the components of the canonical volume form with respect to the
metric. We follow the convention that ε0123 = ±

p
|g| in some local coordinates, where the

± sign stands for the choice of orientation (we will use, unless otherwise indicated, the + 
orientation if 0 is associated to a timelike coordinate).
Observe that the Einstein equation will generically contain four derivatives of the metric

σdue to the term r rρP(µ|σ|ν)ρ. Along with the equations of motion (I.10) and (I.11), we
have to include the Bianchi identity for the feld strength as well:

dF = 0 , (I.14)

since F = dA. On account of this, the set of equations of motion and the previous Bianchi
identity can be conveniently rewritten as follows:

1ρσγ σ αP Rν)ρσγ = Lgµν − 2r r ρP(µ|σ|ν)ρ − 2 ? H(µ Fν)α , (I.15)(µ 2 
1 ∂L 

?Hµν = , (I.16)
2 ∂F µν� � 

d F 
= 0 . (I.17)

H 

First, we note that this rewriting of the set of equations of motion and Bianchi identity
suggests that F and H can be promoted to fundamental variables, although the equations
of motion impose that physical confgurations cannot have arbitrary felds F and H, but
rather they must be related through the so-called constitutive relation (I.16). Secondly, let
us take a look at (I.17), which in this setup can be naturally identifed as Bianchi identities
for both F and H. If current three-forms Jmag and Jelec are placed on the right-hand-side
of the Bianchi identities (I.17), then we would need to have dJmag = dJelec = 0, so the
natural14 defnitions for electric Q and magnetic charge P areZ Z 

Q =
1 

H , P =
1 

F . (I.18)
4π S2 4π S2 

∞ ∞ 

The relevance of these electric and magnetic charges will be apparent in the study of black
hole thermodynamics in the First Part of the thesis. We will say a few words about the
circumstance of having F and H on an equal footing in the set of equations of motion and
Bianchi identities in Section I.4, where we will introduce the notion of duality rotations.

Another fundamental physical magnitude which will play a key role is that of the
spacetime mass. As a consequence of the Equivalence Principle, it is not possible to provide
a local defnition of gravitational energy, since the gravitational feld can always be removed
locally. Nevertheless, in some cases it is possible to defne a notion of conserved mass M 
for the entire spacetime. In GR, the mass of asymptotically fat spacetimes is given by the
celebrated Arnowitt-Deser-Misner (ADM) formula [82–85]:Z 

1 
M = dΣj (∂ihij − ∂j hii) , (I.19)

16πG SD−2 
∞ 

14The fact that Jelec and Jmag are related to electric and magnetic charges respectively follows by
comparison with the well-known situation in pure (Einstein-)Maxwell theory, in which one identifes the
right-hand side of the Maxwell equation (resp. Bianchi identity) with the electric current (resp. magnetic
current, associated to having non-trivial topology).
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where the integral is carried out over a sphere located at infnity, D denotes the dimension
of spacetime and hµν = gµν − ηµν is the metric perturbation written in the Cartesian
coordinates defned at infnity (i, j stand for spatial indices).
A more sophisticated formalism was later developed by Abbott and Deser [86], which allows
to defne a notion of mass which reduces to the ADM mass in case of asymptotically fat
spacetimes. The Abbott-Deser formula is valid for asymptotically Anti-de Sitter (AdS)
(and de Sitter15 (dS)) spacetimes and furthermore admits a straightforward generalization
to arbitrary higher-order gravities, since the modifcation is tantamount to the substitution
of Newton’s constant G by the so-called e˙ective Newton’s constant Geff , which determines
the coupling between gravity and matter [88,89].
We will essentially be interested in studying asymptotically fat or asymptotically AdS
static and spherically symmetric spacetimes, so it will suÿce to provide an algorithm
to compute the associated mass for these particular cases. Four-dimensional static and
spherically symmetric (SSS) confgurations are defned as those admitting four Killing
vectors k(A), with A = 0, 1, 2, 3, satisfying the following algebra:

[k(0), k(a)] = 0 , [k(a), k(b)] = εabck(c) , a, b, c = 1, 2, 3 , (I.20)

where εabc is the totally antisymmetric symbol defned as ε123 = 1 and where k(0) is timelike
and the k(a) are spacelike. For such SSS spacetimes, it can be seen that the associated
metric can be written in the following convenient form:

12 2 2ds = −N2(r)f(r)dt + dr + r 2dΩ2 (I.21)SSS 2 ,f(r) 

where dΩ2 denotes the metric of the unit round two-sphere. This suggests the following2 
natural generalization to D spacetime dimensions:

2 2 2ds = −N2(r)f(r)dt + 
f(

1 
r)
dr + r 2dΩ2 

D−2 , (I.22)SSS 

where dΩ2 is the metric of the unit (D − 2)-dimensional round sphere. Now, accordingD−2 
to the Abbott-Deser prescription [90,91], the spacetime mass can be derived by inspecting
the coeÿcient of the term 1/rD−3 in the asymptotic expansion of f(r):

16πGeff M 1 
f(r) = −κr2 + 1 − + . . . , (I.23)

(D − 2)N∞ΩD−2 rD−3 

where κ is, up to a constant factor, the curvature of the asymptotic spacetime (κ = 0 
in Minkowski, κ < 0 in AdS and κ > 0 in dS), ΩD−2 is the volume of the (D − 2)-
dimensional sphere and N∞ is a constant factor that accounts for the normalization of the
time coordinate at infnity.

I.2 String Theory

Having motivated the introduction of higher-order gravities as an e˙ective approach to
understand the implications of Quantum Gravity at low energies without really knowing
its precise formulation, we now proceed to present an example of a consistent theory of

15There are some subtleties associated to the existence of a cosmological horizon, though [86, 87].
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Quantum Gravity in which higher-derivative terms appear in the subsequent low-energy
e˙ective actions — String Theory (ST). Of course, its relevance in theoretical physics
goes beyond the fact that its low-energy limits can be recast in the form of higher-order
theories. In fact, it would be extremely unfair to just consider it as an instance of a
higher-derivative gravity, specially if one considers its attractive and elegant properties
(for example, anomaly cancellation16 [92–94] or the regularization of UV/IR divergences
[95, 96]) or the number of theoretical successes and new research areas it has catalyzed
since its advent, such as the microscopic interpretation of black hole entropy [97, 98] or
holography (see Section I.7). Nevertheless, it is instructive to show how higher-derivative
theories arise in this setup, since this allows us, to some extent, to circumvent the enormous
complexity of ST and have a way of parametrizing and determining its e˙ects over energy
ranges which we may be able to access in the near future.

In a nutshell, ST [95,96,99–102] postulates that the fundamental constituents of our
Universe are strings which dwell in a D-dimensional target space, in principle undeter-
mined. Wandering within such target space, strings sweep out a worldsheet, which is the
two-dimensional analogue of point-particles’ worldlines. Equipping the worldsheet W with
an auxiliary two-dimensional metric γij , the most general classical two-derivative action
one can write for the string takes the form of a non-linear sigma model in which the dy-
namical variables are given by the embedding coordinates Xµ of the worldsheet into the
ambient space [103]:Z 

1 p �� � � 
γijInlsm = d2ξ |γ| gµν (X) − εij Bµν (X) ∂iXµ∂j X

ν + α0φ(X)R(γ) , (I.24)
4πα0 

W 

where gµν is the target space metric, Bµν is a two-form called the Kalb-Ramond form, φ 
is a scalar feld which receives the name of dilaton, R(γ) is the Ricci scalar of the two-
dimensional metric γij , εij is the totally antisymmetric two-dimensional symbol and α0 is
called the Regge slope and is related to the string tension T and to the string length ls as

= α0−12πT = l−2 .s 

Several comments are in order. We identify the frst term in the action (I.24) as the
Polyakov action for a relativistic string. The second one is known as a Wess-Zumino term
and is the integral of the pullback of the Kalb-Ramond form over the worldsheet. As a
consequence, it is a purely topological term17 (it is independent of the metric) and it is
invariant, up to total derivatives, under gauge transformations B → B + dρ, ρ being a
one-form. Thirdly, the last term is precisely the Euler characteristic of the worldsheet
when the dilaton is constant.
Let us comment further about this last point. If we suppose that the (vacuum expectation
value of the) dilaton barely varies across the worldsheet, it is a very reasonable approach
to assume that over the worldsheet φ(X) ' φ0, with φ0 ∈ R. Then, in this context, one
could think that the last term in (I.24) is dispensable, owing to the fact that it would be
then a topological term. However, it does play a fundamental role in the quantization of
the classical theory18 given by (I.24), since the computation of string amplitudes requires

16This refers particularly to the miraculous cancellation of anomalies happening in Type IIB, Heterotic
and Type I ST.

17By a topological term we mean one whose value (after integration) depends only on the topology of
the underlying manifold. Abusing the nomenclature, one might also call a term topological if it does not
depend on the metric.

18The Ricci scalar of a two-dimensional metric, apart from defning a topological invariant, is locally a
total derivative, and total derivatives are generically relevant in path integrals.
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to sum over all worldsheet topologies. If we denote gs ≡ eφ0 , then each topology (with
−χEuler characteristic χ) in such genus expansion would be weighted by a factor gs so gs 

becomes the string coupling constant and suggests a natural way to study perturbative
quantum worldsheet theory.

On the other hand, we observe that the frst two terms of the action (I.24) are
invariant under Weyl rescalings of the two-dimensional metric γij , while the last term
is not. Nevertheless, even if we do not consider the Ricci scalar term in (I.24), we must
demand conformal invariance to hold at the quantum level for consistency of the theory (in
particular, to guarantee fniteness of string amplitudes), and this requires the introduction
of such last term in (I.24) [103,104]. In fact, considering the embedding coordinates as the
variables of the theory, the background felds gµν , Bµν and φ can be understood as coupling
functions, so we can rephrase the problem of conformal invariance at the quantum level in
terms of the vanishing of the associated beta functionals. These beta functionals (anomaly
Weyl coeÿcients) can be computed as a power series in α0 , the frst terms being [103]:

1 
βg 
µν = Rµν − Hµ

λσHνλσ + 2rµrν φ + O(α0) , (I.25)
4 

−2φβB µ(ee µν = r −2φHµρσ) + O(α0) , (I.26)� � 
D − 26 α0 1 

βφ = + 4(∂φ)2 − 4r 2φ − R + H2 + O(α02) , (I.27)µν 48π2 16π2 12 

where r, Rµν and R denote the (Levi-Civita) covariant derivative, the Ricci tensor and
Ricci scalar associated to the target space metric, respectively and H = dB.
First of all, let us take a look on the beta functional βφ associated to the dilaton. We observe
the presence of a zeroth-order term given by (48π2)−1(D − 26). Conformal invariance then
requires that D = 26, so it actually fxes the target space to be 26-dimensional. Such
dimension (D = 26 for the bosonic string) is called the critical dimension. Secondly,
working in this critical dimension, we can equivalently obtain Equations (I.25), (I.26) and
(I.27) by extremizing the following action:Z � �p 1 

d26 −2φ H2IBS = x |g|e R + 4(∂φ)2 − , (I.28)
12 

which coincides with the e˙ective action of the bosonic string [103], defned from scattering
amplitudes.

However, no fermions appear in the previous e˙ective action nor in the theory it-
self, and their inclusion would be desirable since experiments have clearly shown that they
exist in Nature. This problem can be solved by demanding the theory to be supersym-
metric19. Very briefy, (linearly-realized) supersymmetry associates to every boson at each
mass level a corresponding fermion and provides us with a canonical procedure to add
fermions consistently into the theory. It turns out that there exist fve di˙erent Super-
string Theories, each of them constructed so as to ensure they are anomaly-free and do
not contain tachyons in the physical spectrum. Interestingly enough, when working in
the critical dimension (which is D = 10 for Superstring Theories), it can be seen that

19In particular, we demand spacetime supersymmetry. Demanding just worldsheet supersymmetry is
insuÿcient, since there are examples of theories (Type 0 ST) which possess worldsheet supersymmetry and
yet contain no spacetime fermions in their spectrum [102,105].
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the corresponding bosonic20 e˙ective actions of the Superstring Theories always contain a
Neveu-Schwarz Neveu-Schwarz (NSNS) sector composed by a ten-dimensional metric gµν ,
a two-form Bµν appearing through its feld strength H = dB and the dilaton φ, whose
action at the two-derivative level is21Z � � 

g 1s d10 −2φ H2INSNS = 
2 

x 
p

|g|e R + 4(∂φ)2 − , (I.29)
16πG(10) 12 

which is practically the same action as in (I.28) up to the change in spacetime dimensions.
Also, we have included a factor before the integral in (I.29) to make connection with
the Einstein-Hilbert action, gs being the string coupling and G(10) the ten-dimensional
Newton’s constant which can be expressed in terms of gs and the string length ls as
G(10) 2l8= 8π6g .s s 

At this point, it is important to clarify that the subsequent string e˙ective actions
are defned through the scattering amplitudes, analyzing which terms should be included in
the action so as to obtain these amplitudes [107–109]. However, this procedure is typically
very involved, the usual strategy being to infer some terms of the action via scattering
amplitudes and fnd the rest of them (at a given order) through supersymmetrization22.
In another vein, it has also been observed that such e˙ective actions can be equivalently
derived [110,111] from the computation of the beta functionals [108,109]. This is a highly
non-trivial point and refects the intricacy and beauty of ST.

In any case, whether we work with the bosonic string or with the any of the Super-
string Theories, it is clear that they describe gravity, as can be naively observed from the
fact that the e˙ective action includes the Ricci scalar of the target space metric. Conse-
quently, ST generalizes Einstein’s GR and stands today as the most promising candidate
for the theory of Quantum Gravity. Nevertheless, experimental evidence so far tells us
that the Universe is four-dimensional, so we better fnd a way to convert ST into a four-
dimensional theory. Restricting our analysis from now on to Superstring Theories, the
usual procedure consists in performing a spacetime compactifcation, assuming that the
ten-dimensional spacetime factorizes23 as M10 = M4 × Y6, where Y6 is a compact six-
dimensional space. Then, one decomposes the ten-dimensional felds in accordance to this
compactifcation ansatz and ends up with a collection24 of new scalars and vectors defned in
the four-dimensional space M4 together with a gravitational sector which is always present
and governed by (at leading order in α0) Gµν = 8πG(4)Tµν , where the four-dimensional

= V (Y6)G
(4)Newton’s constant G(4) is related to the ten-dimensional one as G(10) , with

V (Y6) the volume of the compact space. In this way, we can obtain four-dimensional Ein-
stein gravity coupled to di˙erent kinds of matter. However, given the essentially numberless

20It can be checked that setting to zero all fermionic felds is a consistent truncation. Furthermore, if one
is interested in studying gravitational confgurations, this is further supported by the fact that fermions are
not observed macroscopically. In any case, it is important to start from a theory which already contains
fermions — then, whether we truncate them or not is an approximation which could work extremely well
in certain contexts, like gravitational ones.

21This discussion does not apply to Type I ST, whose NSNS sector is di˙erent [106].
22We thank Tomás Ortín and Ángel Uranga for clarifying these points.
23One could think as well of more complicated compactifcations, such as those given by principal bundles

or generic fbrations.
24Such procedure yields a bunch of massless modes as well as an infnite tower of massive ones, whose

masses scale inversely proportional to the size of the compact dimensions. If such size is small enough,
one can safely ignore these massive modes (which is equivalent to neglect the dynamics of the internal
dimensions), since the typical energies of physical processes will be much lower than the mass of the least
massive mode. This is known as dimensional reduction.
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compactifcations given by the possible choices of Y6, there are myriads of four-dimensional
e˙ective theories which actually come from ST compactifcations. This is perhaps one of
the biggest issues with ST and is called the Landscape Problem25.

I.2.1 Higher-derivative corrections from String Theory

The discussion above regarding the e˙ective actions was carried out working to leading
order in the parameters α0 and gs, so, if one wants to incorporate further string corrections,
one should consider the e˙ects of higher-loop contributions. These corrections generically
modify the beta functionals through the inclusion of higher-derivative terms, so that the
full string e˙ective action IST is a double expansion in the Regge slope α0 and the string
coupling gs:

∞ ∞XX 
2kIST = gs (α

0)nIn,k , (I.30)
k=0 n=0 

The higher-order terms in the previous double expansion are interpreted as the proper
quantum corrections coming from ST and those with explicit powers of α0 correspond to
higher-derivative terms26. Therefore, if one compactifes down to four-dimensions, one does
not longer obtain GR with a specifc matter content, but a higher-order gravity.

Obtaining the precise higher-derivative terms appearing in the expansion (I.30) is
an extraordinarily intricate task and only the frst terms have been explicitly computed.
As a matter of fact, gs-corrections are much poorly understood than α0-corrections, and
this is why the latter have been more extensively studied in the literature [13, 115–119].
Indeed, gs-corrections turn out to generically appear at least at order α03 , as it happens
in Type II [120] and Heterotic theories [121, 122]. Let us show two explicit examples of
stringy e˙ective actions with α0- and gs-corrections.

Example I.2. Heterotic String Theory. This case is very interesting, because up to
order α02 the e˙ective action takes a relatively simple expression. In fact, if we truncate the
Yang-Mills felds for the sake of simplicity, such ten-dimensional action is given by [123,124]Z � 

g 1s d10 −2φ Ĥ 2IHet = 
2 

x 
p

|g|e R + 4 (∂φ)2 − 
16πG(10) 12 � (I.31)

a µνb − 
α0 
R(−)µν bR(−) a + O(α03) ,

8 
a a awhere R(−)µν b is the curvature of the torsionful spin connection Ω(−) b = ωa

b − 1 Ĥ 
µ bdx

µ,2 
α0

with ωa
b the spin connection, and Ĥ = dB + ω(

L 
−), where ω

L is the Lorentz-Chern-4 (−) 
aSimons three-form of Ω(−) b.

We explicitly observe in (I.31) the appearance of higher-order terms27. They become
more and more involved as we go further in the expansion (I.30). In fact, quartic terms in

25A related problem is that investigated by the Swampland Program [112–114], which aims at discovering
the criteria to decide whether a particular four-dimensional e˙ective theory does descend from a UV-
complete theory of Quantum Gravity (assuming it is given by ST) or not.

26Observe that gs is dimensionless. Also, note that the leading term in the expansion (I.30) is given by
two-derivative Supergravity actions.

27We observe the presence of terms directly coupled to a connection (not arising from expanding a
Riemann curvature tensor), which was not contemplated explicitly in Defnition I.1. Nevertheless, it is
clear that there also appear terms quadratic in the Riemann curvature tensor, so it is completely reasonable
to call (I.31) a higher-order gravity in the sense of Defnition I.1.
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the curvature already appear at order α03 , which account for both tree-level and one-loop
(gs-)corrections as mentioned before.

When going down to four dimensions, one ends up with theories with di˙erent mat-
ter contents depending on the type of compactifcation under consideration, such as α0-
corrected models with an axidilaton and/or gauge vector felds [125,126]. The appearance
of gauge vector felds in the four-dimensional e˙ective theory is of importance for us, since
Chapters 2 and 3 will be devoted to the study of four-dimensional higher-order gravities
in which a vector feld is non-minimally coupled to gravity. Therefore, apart from their
intrinsic relevance, this shows that such theories already appear in the context of ST, which
illustrates the possibility of using higher-derivative theories to capture stringy corrections.

Example I.3. Type IIB String Theory. As it turns out, the frst non-trivial corrections
to the Type IIB Supergravity action arise at cubic order in α0 , containing as well gs -
corrections. In fact, it can be seen [127] that the corresponding e˙ective action includes
the following terms: Z 

α03 
− 

3 × 210 

�� �� ��p 1 1 
d10 x |g| e −2φζ(3) + IX − IZ ⊂ IIIB ,

26π5 8 
(I.32)

where IX and IZ are certain terms with quartic dependence on the curvature tensor whose
precise expression can be read in [127]. A more manageable expression is obtained if we
consider the theory on (A5 × S5, gA5 ⊕ FgS5 ), with (A5, gA5 ) a fve-dimensional Einstein
manifold with negative curvature (asymptotically AdS5), (S5, gS5 ) the fve-dimensional
round sphere and F ∈ C∞(A5). On this background, it is consistent to truncate all felds
except the metric [128–130] and write the following e˙ective action for the fve-dimensional
metric gA5 [131,132]: Z � � 

1 p 12 ζ(3)
IIIB [gA5 ] = d5 x |gA5 | R + + α03W 4 , (I.33)

A5×S5 `216πG 8 

where R denotes the Ricci scalar of gA5 , ` stands for the AdS radius and the radius of the
sphere and W 4 is a particular combination of contractions of four Weyl tensors Wabcd of
gA5 given by � � 

W 4 1 
WadbcW efbc W ag hd = WabcdW ebcf + W . (I.34)he fg 2 

In Chapter 1 we will use the e˙ective action (I.33) to illustrate the fact that any (purely
gravitational) higher-curvature gravity can be mapped via feld redefnitions to a Gen-
eralized Quasitopological Gravity, which is a specifc and intriguing type of higher-order
gravities that we introduce in Section I.3.

I.2.2 Geometric aspects of moduli spaces: the Supergravity c-map

When carrying out spacetime compactifcations from the ten-dimensional ST or Super-
gravity, the decomposition of the ten-dimensional felds produce a collection of new felds
in the (four-dimensional) spacetimes. Among these, one usually ends up with a bunch of
scalars that defne a non-linear sigma model on a target space, which is called moduli space
or scalar manifold.
Interestingly enough, these moduli spaces or scalar manifolds turn out to possess extraordi-
narily beautiful geometric structures [106, 133–135]. These spaces arise either from string
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compactifcations or from direct Supergravity construction in the corresponding space-
time dimension. We will be primarily interested in four-dimensional scalar manifolds with
(para)hyperKähler or quaternionic (para)Kähler structures, which appear naturally in the
ST and Supergravity context (see the previous Refs.). This justifes to introduce them here,
for which we need to carry out some preliminary defnitions. We shall follow [136–138].

Defnition I.2. An almost (para)complex structure on a smooth manifold M is an endo-
morphism feld J ∈ Γ(End(TM)) such that:

1. J =6 IdTM satisfes J2 = −εIdTM , with ε = ±1.

2. It has exactly two eigenspaces with the same dimension (if ε = 1, complexifcation
of TM is required).

The pair (M, J) is called (almost) (para)complex manifold, which is forced to be even-
dimensional. An almost (para)complex structure J is said to be integrable if the corre-
sponding eigendistributions are both integrable. In such case J is called a (para)complex
structure and (M, J) a (para)complex manifold. In all these cases, the prefx “para” is
added if ε = −1, and dropped if ε = 1.

We will be interested in combining (para)complex structures with a (pseudo-)Riemannian
metric in the form of (para)Kähler structures.

Defnition I.3. A (pseudo-)Riemannian metric g on a (para)complex manifold (M, J) is
(para)Hermitian if J is skew-symmetric with respect to g. For (M, J) (para)Hermitian, if
the non-degenerate two-form ω defned as ω = g(·, J ·) is closed, then (M, J, g) is said to
be a (para)Kähler manifold28. Similarly, the symplectic form ω is called the (para)Kähler
form of (M, J, g).

From the defnition, we observe that:

g(J ·, J ·) = −g(·, J2 ·) = εg . (I.35)

In another vein, it is important to remark that the (para)Kähler form ω in (para)Kähler
manifolds (M, J, g) is parallel with respect to the Levi-Civita connection.
An interesting particular subclass of (para)Kähler manifolds is given by (para)hyperKähler
manifolds, which we defne next. It will suÿce for our purposes to provide the defnition
for four-dimensional spaces.

Defnition I.4. A four-dimensional (para)hyperKähler manifold (M, g, J1, J2, J3) is a four-
dimensional (pseudo-)Riemannian manifold (M, g) such that:

• (M, J1, g) is Kähler and (M, Jl, g) with l = 2, 3 are both Kähler (hyperKähler case)
or paraKähler (parahyperKähler case).

• The (para)complex structures (J1, J2, J3) anticommute with each other and satisfy:

J1J2 = J3 . (I.36)
28Usually one fnds in the literature that a pseudo-Riemannian manifold is called pseudo-Kähler if it is

endowed with a complex structure whose musical two-form is closed. However, for the sake of simplicity
we shall equally call it Kähler manifold.
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In particular, (M, g) is either Riemannian or of neutral signature. In the latter case we
include the prefx “para”, while we drop it for the Riemannian case.

From its defnition, one may infer that (para)hyperKähler manifolds are Ricci fat and
possess a(n) (anti)self-dual Weyl tensor [139,140].

Both (para)Kähler and (para)hyperKähler manifolds turn out to possess special
holonomy, appearing explicitly in the subsequent classifcation of holonomy groups [141,
142]. Another class of (pseudo)-Riemannian manifolds with special holonomy we will be
interested in will be that of quaternionic (para)Kähler four-manifolds, which we defne next
(again, restricting ourselves to four dimensions).

Defnition I.5. Let (M, g) be a four-dimensional Riemannian (resp. neutral-signature) ori-
entable four-manifold. It is said to be quaternionic Kähler (resp. quaternionic paraKähler)
if and only if its Ricci tensor Ricg satisfes Ricg = λg with λ ∈ R/{0} and its Weyl ten-
sor if self-dual for one of the two possible orientations. We shall refer to them jointly as
quaternionic (para)Kähler four-manifolds.

On the one hand, note that the previous defnition is specifc of dimension D = 4. IfD = 4n 
for n > 1, then the corresponding defnition of quaternionic (para)Kähler manifold must
be replaced by the existence of a parallel29 subbundle Q ⊂ End(TM) such that ∀p ∈ M 
there exist I, J, K ∈ Qp such that Qp = span{I, J, K}, IJ = K and I2 = J2 = K2 = −Id 
(resp. I2 = −J2 = −K2 = −Id). This defnition is unsatisfactory for D = 4, since it can
be seen that it would be fulflled by every orientable (pseudo-)Riemannian four-manifold.
An argument showing why Defnition I.5 is the most appropriate in four dimensions one
can be found in [143, 144]. On the other hand, while (para)hyperKähler manifolds are
trivially quaternionic (para)Kähler manifolds, the converse is not true. In fact, quaternionic
(para)Kähler manifolds need not to be even (para)Kähler [144].
Let us now depict how these structures arise in the context of Supergravity and ST for
the purposes of this thesis. In the context of Type II compactifcations, it was observed
that the Lagrangians for the low-energy e˙ective theories of IIA and IIB theories are
related30 through the so-called Supergravity c-map [145–147], nowadays understood from
the mathematical setting31 as a map associating a (para)Kähler manifold of restricted
type —more concretely, a projective special (para)Kähler manifold— and dimension 2n 
with a quaternionic (para)Kähler manifold of dimension 4(n + 1) [148, 149]. This map is
connected with the rigid c-map, which appears in the realm of supersymmetric feld theories
without gravity and associates particular classes of (para)Kähler manifolds — called aÿne
special (para)Kähler manifolds— of dimension (2n + 1) to (para)hyperKähler manifolds of
dimension 4(n + 1). These two maps are intimately related, since the Supergravity c-map
should be obtained from the rigid one by gauging the superconformal symmetry [149–151].
This inspired the search and discovery of the (para)HK/QK correspondence [148,152–156],
which maps certain (para)hyperKähler manifolds to a uniparametric family of quaternionic
(para)Kähler ones.
Particularly appealing is the study of the Supergravity c-map after the consideration of
string one-loop corrections, which require the introduction of α03-terms into the e˙ec-

29That is, preserved under the Levi-Civita connection.
30Today this is interpreted as an instance of T-duality between IIA and IIB string compactifcations.
31From a physical perspective, it is a map between the manifold of vector multiplet scalars of four-

dimensional IIA theory to the manifold of hypermultiplet scalars of four-dimensional IIB theory [137].
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tive action, as mentioned before. Interestingly enough, it can be shown that the subse-
quent one-loop deformed c-map provides a one-parameter family of deformed quaternionic
(para)Kähler manifolds [148,156], so that the property of being quaternionic (para)Kähler
is respected by quantum corrections.
In the four-dimensional setting, the uncorrected metric is called universal hypermultiplet
metric. Its one-loop deformation [120,157] has been scrutinized in the last years [158–160],
specially in the Riemannian setting. Indeed, it has been found [159] that the isometry group
of the deformed quaternionic Kähler manifold is O(2) n H, with H the three-dimensional
Heisenberg group. This motivated to complete the classifcation of all Riemannian Einstein
metrics of non-positive scalar curvature which are invariant under the action of SO(2) n H 
in R4 [160].
Nevertheless, the previous work concerned just positive-defnite metrics and was restricted
to the study of manifolds with symmetry group SO(2) n H. Thus, it would be intriguing to
examine both Riemannian and neutral-signature four-manifolds and reduce the isometry
group to be, for example, just H. Such analysis is carried out in Chapter 6, where we
investigate Heisenberg-invariant self-dual Einstein four-manifolds. When the Ricci tensor
is not identically zero, we discover that the only possibilities32 are the one-loop deformed
universal hypermultiplet metrics (and neutral-signature versions of it) [149, 156] together
with positively-curved (resp. negatively) counterparts in the Riemannian (resp. neutral-
signature) context, which seem not to have been previously considered in the literature.
Similarly, (para)hyperKähler manifolds with Heisenberg symmetry are studied, being able
to present a classifcation result in Section 6.3.

I.2.3 Contact structures and Supergravity

All the mathematical defnitions we presented before, including (para)complex manifolds,
(para)Hermitian manifolds, (para)Kähler manifolds, (para)hyperKähler manifolds or quat-
ernionic (para)Kähler manifolds, only apply in even dimensions (and some of them only
for D = 4n). Therefore, it is natural to ask: is it possible to defne, up to some extent,
odd-dimensional analogues? If so, do they have any potential application to Supergravity
and ST?
We begin by addressing the frst question with the introduction of the notions of con-
tact Riemannian structure, contact Lorentzian structure and para-contact metric struc-
ture [161–164]. They conform the appropriate particularizations of the concept of contact
structure, defned as a (2n+1)-dimensional smooth manifoldM endowed with a one-form α 
such that α∧(dα)n 6= 0 everywhere, in the presence of Riemannian and pseudo-Riemannian
metrics.

Defnition I.6. Let (M, g) be an oriented smooth (pseudo-Riemannian) manifold of dimen-
sion (2n + 1) with n ≥ 1 and let α ∈ Ω1(M). Assume that:

φ2 = σg(−εId + ξ ⊗ α) , g(Id ⊗ φ) = dα , ξ = α] , η(ξ) = g(ξ, ξ) = ε , (I.37)

where σg = sign(det(g)) and ε = ±1. Then:

• If g is Riemannian, then necessarily ε = σg = 1 and the triple (M, g, α) defnes a
contact Riemannian structure on M .

32Additionally, we also discover a family of Lorentzian and neutral-signature conformally fat manifolds
in which the Heisenberg center is lightlike. See Subsection 6.2.3 for more details.
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• If g is Lorentzian and ε = σg = −1, the triple (M, g, α) defnes a contact Lorentzian
structure on M .

• If g is pseudo-Riemannian of signature (n+1, n) and ε = −σg = 1, the triple (M, g, α) 
defnes a para-contact metric structure on M .

Following conventions, ξ is usually called the Reeb vector feld, φ the characteristic endo-
morphism and α the contact form. Given a contact Riemannian, contact Lorentzian or
para-contact metric structure on M , it is usually included as part of their defnition the
formula:

g ◦ φ ⊗ φ = σg(εg − α ⊗ α) , (I.38)

However, we note that it can be easily derived from the skew-symmetry of the characteristic
endomorphism φ and the frst equation in (I.37). Next we display explicit instances of
contact Riemannian, contact Lorentzian and para-contact metric structures.

iExample I.4. Consider M = R2n+1 with Cartesian coordinates (z, x , yi) with i = 1, . . . , n.P P � � n i n i)2 i)2Defne α = dz − idx . Defne g = ε1α ⊗ α + (dx + ε2(dy with ε1, ε2 = i=1 y i=1 
±1. The endomorphism φ : T R2n+1 → T R2n+1 defned as g(X, φ(Y )) = dα(X, Y ) is given
by:

n n � �X X∂ ∂ ∂i i iφ = −ε2 ⊗ dx + y + ⊗ dy . (I.39)
∂yi ∂z ∂xi 

i=1 i=1 

Then φ2 = −ε2Id + ε2ε1ξ ⊗ α, with ξ = α]. Consequently, if ε1 = ε2 = 1 the triple
(R2n+1, g, α) defnes a contact Riemannian structure on R2n+1 , if ε1 = −ε2 = −1 we have
that (R2n+1, g, α) conforms a contact Lorentzian structure on R2n+1 and if ε1 = −ε2 = 1,
(R2n+1, g, α) defnes a para-contact metric structure on R2n+1 .

Let Nφ ∈ End(TM) be the Nijenhuis torsion tensor associated to an endomorphism φ,
which is defned as:

Nφ(X, Y ) = φ2[X, Y ]+[φ(X), φ(Y )]−φ[φ(X), Y ]−φ[X, φ(Y )] , X,Y ∈ X(M) . (I.40)

A very important subclass of contact Riemannnian, contact Lorentzian and para-contact
metric structures is obtained by imposing them to be K-contact [165] or Sasakian [166–168].

Defnition I.7. Let (M, g, α) be a contact Riemannian, contact Lorentzian or para-contact
metric structure on M . It is said to be K-contact if the subsequent Reeb vector feld is
Killing. Similarly, (M, g, α) is Sasakian if Nφ + ξ ⊗ dα = 0.

Two comments are in order. First of all, while the K-contact and Sasaki conditions are
equivalent in three-dimensions for the contact structures we have considered so far, this
is no longer true in higher dimensions, for which the Sasaki condition is stronger than
K-contactness (in fact, if (M, g, α) is Sasakian it is automatically K-contact). Second,
Sasakianity arises from demanding the integrability of the almost (para)complex structure
J defned on the 2(n + 1)-dimensional manifold M × R and given by:

J : T (M × R) → T (M × R) , (v, c ∂q) 7→ (φ(v) − εσgcξ, α(v)∂q) , (I.41)

where q is the canonical coordinate on R and c ∈ R. Observe that J2 = −εσgIdT (M×R).
On the other hand, this condition can be restated equivalently as the metric cone ( ˆ g)M, ̂  
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over (M, g) being (para)Kähler [168, 169]. From this perspective, it is quite natural to
think about Sasakian condition as the odd-dimensional analogue to the (para)Kähler one.
Likewise, non-Sasakian contact Riemannian, contact Lorentzian or para-contact metric
structures would be in correspondence with almost (para)Kähler structures33.

Example I.5. In Example I.4, the contact Riemannian, contact Lorentzian and para-contact
metric structures there presented can be easily seen to be Sasakian. In fact, on account of
(I.39), routine computations show directly that Nφ +dα ⊗ ξ = 0, proving their Sasakianity.
A fortiori, these contact structures are K-contact as well.

There are many examples of non-Sasakian and non K-contact contact structures, as it will
become clear in Chapter 7.
So far, we have introduced special classes of contact structures characterized by their
properties with respect to a (pseudo-)Riemannian metric, but nothing has been said about
the subsequent curvature. In particular, many intriguing properties, specially in the K-
contact and Sasakian case, can be derived [161, 162, 170, 171], but for us it will suÿce
to introduce the notion of η -Einstein contact structure, which generalizes the concept of
Einstein metrics.

Defnition I.8. Let (M, g, α) be either a contact Riemannian, contact Lorentzian or para-
contact structure. It is said to be η -Einstein if the following condition holds:

Ricg = ag + bα ⊗ α , (I.42)

where a, b ∈ C∞(M).

Example I.6. The contact Riemannian, contact Lorentzian and para-contact metric struc-
tures of Example I.4 can be seen to belong, by direct computation, to the η -Einstein class,
since the associated Ricci tensor of (M, g, α) reads:

σg n + 1 
Ricg = − g + εσgα ⊗ α . (I.43)

2 2 

Of course, there are many contact Riemannian, contact Lorentzian and para-contact metric
structures which are not η -Einstein. We will illustrate this point in Chapter 7.
Applications of contact structures to the realm of physics are extremely abundant: in
Hamiltonian mechanics [172–174], thermodynamics [175–179] or in Supergravity and ST
[180–186], among others. In this thesis, we will focus on widening this range of possibilities
within the setup of minimal six-dimensional Supergravity. More concretely, we will be
interested inN = (1, 0) minimal six-dimensional Supergravity coupled to a tensor multiplet
with constant dilaton [187–191]. The bosonic degrees of freedom are described by an
oriented smooth (Lorentzian) manifold g, a two-form B ∈ Ω2(M) and the dilaton. The
set of equations of motion and Bianchi identity for (g, B) after imposing the dilaton to be
constant can be seen to be34:

1 
Ricg − H ◦ H = 0 , dH = 0 , d ? H = 0 , |H|g 

2 = 0 , (I.44)
4 

33We have not defned them before, but they are almost (para)Hermitian manifolds for which the two-
form ω = g(·, J ·) is closed.

34The set of equations of motion and Bianchi identity for (g, B) and generically non-constant dilaton
can be obtained equivalently from trivial dimensional reduction of the ten-dimensional NS-NS action (I.29)
down to four-dimensions.
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where H = dB and where, in some local coordinates, (H ◦ H)µν = Hµ
αβ Hναβ .

When it comes to the resolution of the previous set of equations, one customarily con-
centrates on the subset of supersymmetric solutions, which has been extensively studied
in the literature [192–204]. Apart from their phenomenological interest, supersymmetric
solutions are generically more simple to obtain since typically it turns out to that confg-
urations solving the conditions for spacetime supersymmetry (the so-called Killing spinor
equations) and the corresponding Bianchi identities satisfy automatically all the set of
equations of motion and Bianchi identities [205].
In this context, in Chapter 7 we devote ourselves to the resolution of the system of equa-
tions (I.44) without resorting to any supersymmetric condition, which will allow us to derive
generically non-supersymmetric solutions. Of course, rather than studying the problem of
classifying solutions to minimal Supergravity coupled to a tensor multiplet in its full gen-
erality, which seems to be currently out of reach, we will assume that the six-dimensional
Lorentzian manifold (M, g) splits in the form of a direct product (N × X, χ ⊕ h), where
(N, χ) and (X, h) are three-dimensional oriented Lorentzian and Riemannian manifolds, re-
spectively. Then, we will fnd that the product of so-called εη -Einstein contact structures,
which we will also introduce, yields a bi-parametric family of solutions of six-dimensional
minimal Supergravity coupled to a tensor multiplet with constant dilaton. In particular,
such εη -Einstein contact structures encompass particular η-Einstein Riemannian, Lorentz-
ian and para-contact metric structures, but also allow for the possibility of a lightlike Reeb
vector feld. This latter case seems not to have been previously studied in the literature
and will motivate the defnition of null contact structures, which we will examine in detail.

I.3 Examples of higher-order gravities

Now we proceed to introduce some of the most popular examples of higher-order gravities
in the literature. In particular, we will provide a brief introduction to f(R) theories,
Lanczcos-Lovelock gravities and Generalized Quasitopological Gravities.

I.3.1 f(R) theories

f(R) theories are one of the most celebrated examples and more widely-studied higher-
order gravities. They were frst rigorously studied by Buchdahl back in 1970 [206] and are
given by the following type of actions [207, 208]:

Z p1 
If = dD x |g| [f(R) + Lmatter] , (I.45)

16πG 

where f ∈ C∞(R) is a certain smooth function of the Ricci scalar and Lmatter is the
Lagrangian associated to matter minimally-coupled to gravity. The associated equations
of motion are given by [207,208]:

1 � � 12f 0(R)Rµν − f(R)gµν − rµrν − gµν r f 0(R) = Tµν , (I.46)
2 2 
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where the stress-energy tensor is defned as usual35,

δLmatter
Tµν = −2 . (I.47)

δgµν 

We observe that the Einstein equation (I.46) is clearly of fourth order in derivatives of gµν ,
so one could expect a priori the appearance of Ostrogradski instabilities. Nevertheless, it
can be shown [209, 210] that f(R) theories, as long as f 00(R) 6= 0, are equivalent to the
following Brans-Dicke theory with a scalar potential:Z p

IBD =
1 

dD x |g| [ϕR − V (ϕ) + Lmatter] , (I.48)
16πG 

where the scalar potential V is given by:

V (ϕ) = χ(ϕ)ϕ − f(χ(ϕ)) , (I.49)

χ being obtained by inverting ϕ = f 0(χ). Since the action (I.48) has second-order equations
of motion, we conclude that f(R) theories avoid the Ostrogradski instability [211]. On
account of this property, these models have been very popular in cosmology, specially for
the exploration of infationary and late-time cosmic acceleration scenarios [76, 212–214].
Nevertheless, being equivalent to Brans-Dicke theories, f(R) models do not actually intro-
duce new purely gravitational phenomena. In fact, the Schwarzschild and Kerr black holes,
which are solutions of the vacuum GR Einstein’s equation, solve as well36 the equations
of motion (I.46). Consequently, these models do not actually tell us how higher-derivative
terms correct GR solutions. Furthermore, it can be seen that the Schwarzschild-(A)dS
solution (which is an exact solution of f(R) theories in absence of matter [215]) cannot
correspond to the exterior solution in presence of a spherical distribution of mass [216–220],
so it would be convenient to fnd other higher-derivative theories which do fulfll this con-
dition.

Finally, before closing this example, it is convenient to elucidate a subtle point. In
GR, apart from the usual variation of the metric to obtain Einstein’s equations, there is an
equivalent way of deriving it which receives the name of Palatini formalism [221] (see [222]
for a modern treatment of the topic), in which one considers the connection and the metric
as independent variables and varies them independently. The corresponding equation of
motion for the connection fxes it to be the Levi-Civita connection and, after substitution on
the equation for the metric, one recovers Einstein’s equation. However, for f(R) gravities
(and, in fact, for all higher-order gravities with the exception of Lanczos-Lovelock gravities
to be studied next) this is no longer true and the so-called metric formalism does not yield
the same equations of motion as the Palatini formalism after solving the equation for the
connection [207], so that the two possibilities give rise to di˙erent equations of motion
and di˙erent theories. In our case, all along the thesis we will always work in the metric
formalism and assume the connection is given by the Levi-Civita connection.

35Note, however, that in Chapter 3, we will write the Einstein equation for Einstein-Maxwell theory in
the form Gµν = 2Tµν , where Tµν = FµαFν

α − 1
4 gµν F 2 is the Maxwell stress-energy tensor.

36Assuming that f (R) admits a polynomial expansion around R = 0 and that there is no cosmological
constant (i.e., f (0) = 0), this will always be the case.
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I.3.2 Lanczos-Lovelock gravities

Another prominent example of higher-order gravities is provided by Lanczos-Lovelock the-
ories [223–226]. They are defned as follows:

1 
⎡⎣ ⎤⎦ Z [D/2] 

k=2 (I.50)

Xp
αk ̀

2k−2L(k)
dD |g| + LmatterILL R += x ,LL16πG 

(k) 1 
δν1...ν2k Rµ1µ2 µ2k−1µ2kL = . . . R ,LL µ1...µ2k ν1ν2 ν2k−1ν2k2k 

where δν1...νr = (r)!δν1 δν2 . . . δνr , ` is a length scale, αk are dimensionless couplings andµ1...µr [µ1 µ2 µr ] 
[x] denotes the biggest integer not bigger than x > 0. These theories are relevant since
some of the densities L(k) appear in e˙ective string actions, like the Gauss-Bonnet densityLL 
L(2) 

= RµνρσR
µνρσ −4Rµν R

µν +R2 [110,227,228]. In another vein, note that the number ofLL 

LL 

LL 
it coincides with the Euler characteristic of a compact, oriented (pseudo-)Riemannian
manifold by virtue of the Chern-Gauss-Bonnet theorem [229]. Consequently, by direct
inspection, we observe that Lanczos-Lovelock gravities in four-dimensions just reduce to
Einstein gravity.

As it turns out, Lanczos-Lovelock theories provide the most general di˙eomorphism-

(k)densities included for each dimension is di˙erent, since vanishes identically wheneverL 
(D)Furthermore, when the associated density is topological, sinceLk D/2 D 2k> =. ,

invariant Lagrangians with second-order gravitational equations of motion (Lovelock’s the-

X 
orem, [225, 226]) and propagate the same degrees of freedom as GR37. The corresponding
Einstein’s equations are given by [230]:

[D/2] 
αk ̀

2k−2 
κσ1...σ2k Rλ1λ2 λ2k−1λ2k 1 

gκµδ . . . R = Tµν , (I.51)νλ1...λ2k σ1σ2 σ2k−1σ2kGµν − 
2k+1 2 

k=2 

where Gµν = Rµν − 1 Rgµν . Di˙erently from f(R) gravities, the equations of motion of2 
Lanczos-Lovelock gravities (I.51) in vacuum are no longer solved by Ricci fat (or more
generally, Einstein) metrics, and thus they do modify the intrinsic dynamics of Gravity
(see [227,231–234] for explicit black hole solutions di˙ering from GR’s ones). Also, Lanczos-
Lovelock gravities are the unique theories of gravity for which the metric and Palatini
approaches are strictly equivalent [235–237].

I.3.3 Generalized Quasitopological Gravities

By Lovelock’s theorem, the only possible theories of gravity with second-order equations of
motion are just the Lanczos-Lovelock gravities. As mentioned before, in four-dimensions
they reduce to Einstein’s GR, so the only four-dimensional di˙eomorphism-invariant metric
theory of gravity with second-order equations of motion is GR. However, although it is not
possible to fnd additional theories with this property, we may wonder if there exist theories
whose gravitational equations of motion are second-order under certain circumstances.
A frst step in this direction was given by Oliva and Ray in 2010, who identifed a cubic
theory of gravity in fve dimensions with second-order traced feld equations [238]. Shortly

37Furthermore, for suÿciently weak gravitational felds one recovers precisely the Newton’s law, up to a
renormalized gravitational constant (when non-fat maximally-symmetric backgrounds are considered).
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after, Myers and Robinson further characterized that theory and generalized it for arbitrary
dimension D ≥ 5, naming it Quasitopological Gravity [239]. It is given by the addition to
the Einstein-Hilbert action (I.1) of the following density [239] (weighted by a dimensionful
coupling):

1 3(3D − 8)ρσRνλ µκZD = Rµν σκRλ ρ + RµνρσR
µνρσR 

(2D − 3)(D − 4) 8 

(I.52)− 3(D − 2)RµνρσR
µνρ

κR
σκ + 3DRµνρσR

µρRνσ � 
3(3D − 4) 3D 

+ 6(D − 2)Rµ
ν Rν

ρRρ
µ − Rµν R

µν R + R3 . 
2 8 

These theories possess black hole solutions with spherical, planar or hyperbolic horizons
characterized by a single function determined by an algebraic equation of motion and
whose linearized spectrum only contains a transverse and traceless graviton on maximally
symmetric backgrounds, as in Einstein gravity [238–240]. These features have been shown
to hold as well for the so-called quartic [241] and quintic Quasitopological Gravities [242],
which motivates the defnition of a Quasitopological theory as one admitting static and
spherically symmetric (or planar or hyperbolic) solutions completely specifed by a single
function with algebraic feld equation. Further intriguing properties of these theories which
mimic or generalize aspects of Einstein gravity have been studied in the last years [216,
241,243–247].

Nevertheless, Quasitopological Gravities turn out to be trivial in four dimensions
and they just collapse into Einstein gravity, just like the Lanczos-Lovelock models. There-
fore, we should relax some of the previous properties to try to fnd special theories with
physically-interesting features but still with certain amenability to computations. An im-
portant step in this direction was given by Bueno and Cano in 2016 [78], who discovered
a four-dimensional higher-curvature gravity with the same linear spectrum on maximally
symmetric backgrounds as Einstein gravity. Such theory received the name of Einsteinian
Cubic Gravity (ECG) and is obtained by adding to the Einstein-Hilbert Lagrangian the
following density P with a dimensionful coupling:

ρ γ µ ν µP = 12Rµ ν
σRρ σ

δRγ δ + Rµν
ρσRρσ

γδRγδ
µν − 12RµνρσR

µρRνσ + 8Rµν R
νρRρ . (I.53)

Later on, it was observed that this theory admits static black holes with spherical, pla-
nar or hyperbolic horizons and fully-specifed by a single metric function with second-
order equation of motion [216, 248]. This fact triggered the identifcation of Generalized
Quasitopological Gravities [79] (GQGs), defned precisely as higher-curvature theories ad-
mitting solutions with spherical, planar or hyperbolic symmetry characterized by a single
function satisfying an ordinary di˙erential equation of second or lower order. Einsteinian
Cubic Gravity (I.53) is the paradigmatic example, but instances of such theories have been
constructed to all orders and dimensions [249–251]. Naturally, GQGs encompass those of
the Quasitopological type, and thus they include as well Lanczos-Lovelock gravities and
Einstein gravity, see Figure I.2.

GQGs have been extensively studied in the literature from many points of view,
which include cosmology, black holes, holography and phenomenology [89, 249, 252–284].
However, the strict defnition of GQGs does not involve matter, so an important extension
would be to allow for the inclusion of matter compatible with the single-function condition
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Generalized 
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Quasitopological 
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GR

\

¥409

Figure I.2: We show in a pictorial way how the di˙erent (purely gravitational) higher-order gravities
we have worked so far are embedded (or not) into the di˙erent classes. Observe that all of them
intersect at a point, which stands for GR.

on backgrounds with static and spherical, planar or hyperbolic symmetry [285]. A simple
but relevant instance of this is given by a minimally coupled Maxwell feld, explored in
[248, 254, 268, 271] in the context of ECG and higher-order GQGs. It is possible also to
couple these theories to non-linear electrodynamics, as in [286]. However, these examples
just involve minimally-coupled gauge felds, which is a highly restricted way of coupling a
vector to gravity. In general, higher-derivative e˙ective actions might contain all sorts of
couplings between the felds present in them.

Thus, one interesting question is whether it is possible to identify a family of theories
analogous to Generalized Quasitopological Gravities with non-minimal couplings between
the curvature and a gauge feld. We will answer this question in the positive in Chapter 2,
where we introduce and study the so-called Electromagnetic (Generalized) Quasitopological
Gravities38 (E(G)QGs), defned as those admitting electrically- or magnetically-charged
static solutions with spherical, planar or hyperbolic symmetry. Notwithstanding, in con-
tradistinction to the pure-gravity case, we will be able to fnd theories of the Quasitop-
ological type (that is, with algebraic feld equation for the function which fully specifes
the solution when we consider backgrounds with spherical, planar or hyperbolic symmetry)
already in four dimensions, making it worth keeping oneself in such spacetime dimension
all along Chapter 2. The study of E(G)QGs in higher dimensions is postponed to Chapter
4.

38Not to be confused with the recently constructed “Quasitopological Electromagnetism” [287,288], which
provides a non-linear extension of Maxwell’s electromagnetism with intriguing properties and explicit black
hole solutions when minimally coupled to gravity.
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I.4 Duality rotations in higher-order gravities with electro-
magnetism

Now let us go back momentarily to Eqs. (I.15), (I.16) and (I.17), in the context of higher-
order theories of gravity and electromagnetism. As commented in Subsection I.1.1, it seems
natural to consider the felds F and H on an equal footing39, assuming them to be two a
priori independent variables (at the level of the equations of motion) which in turn have
to satisfy the constitutive relation (I.16). From this point of view, it is licit to wonder
if the set of equations of motion and Bianchi identities (I.15), (I.16) and (I.17) possess
any symmetry under transformations of F and H, such as invariance under continuous
rotations of F and H.
Let us motivate this problem by taking a look at the case of pure Einstein-Maxwell theory
(with Λ = 0), for which the set of equations of motion and Bianchi identities reduce to:

αGµν = −2 ? Hhµ Fνiα , (I.54)

?Hµν = −F , (I.55)� � 
d F 

= 0 , (I.56)
H 

where hµνi represents the symmetric and traceless part of a tensor, Xhµνi = X(µν) − 
1 gµν X

α
α. We directly observe that under the SO(2) rotations4 � � � �� � 

F cos α sin α F 0 
= , (I.57)

H − sin α cos α H 0 

Eqs. (I.54), (I.55) and (I.56) remain formally invariant. It is natural to call these trans-
formations duality rotations. Noting this invariance in the case of the Einstein-Maxwell
theory, one may wonder whether it is possible to fnd analogous duality rotations which
leave invariant the set of equations of motion and Bianchi identities of more generic theo-
ries.
On the one hand, it has been found that duality rotations can indeed be generalized to be
symmetries of U(1)N gauge theories coupled to scalar felds [289], which are omnipresent
in Supergravity and ST [106,290–299]. On the other hand, restricting ourselves to theories
with a single vector feld coupled to gravity, we may wonder at this point whether higher-
derivative corrections to Einstein-Maxwell theory will preserve such invariance. Indeed, the
idea that the laws of Nature are invariant under certain transformations has turned out
to be one of the most fundamental and essential principles of physics, so it is a pertinent
question. Nevertheless, higher-order corrections generically break this invariance, so that
assuming invariance under duality rotations constrains the possible terms to be included
in the e˙ective action. This is particularly appealing from the EFT perspective, since it
allows to reduce the number of terms that can appear in the action. Such idea has been
particularly successful in ST, whose spectrum and amplitudes are believed to be invariant
under T-duality40. This motivates the claim that T-duality is a symmetry of the e˙ective
action [300] at all orders in the α0-expansion41, which restricts signifcantly the higher

39This is only possible when there are no currents which couple directly to the vector potential and if
we are only interested in the gravitational e˙ects of the electromagnetic feld.

40This transformation was discovered in string compactifcations, interchanging winding modes with KK
modes and compactifcation radii with their inverses.

41This fact has been confrmed explicitly, at least, for the lowest-order terms [301–306].
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derivative corrections that may take place in the stringy e˙ective actions42 [312–314].
Therefore, it is clear that the study of higher-order theories which are invariant under
duality rotations can be extremely useful.
The possibility of fnding duality-invariant higher-derivative theories has been explored in
the literature only within the restricted subclass of theories called non-linear electrody-
namics (NLE), which are made of polynomials with arbitrary powers of the gauge feld
strength (so the Maxwell equation is no longer linear in Fµν ). They are usually con-
structed in fat space, although the inclusion of minimal couplings to gravity is typically
straightforward. The most representative examples of NLE we may mention today are
Born-Infeld electrodynamics, whose discovery dates back to almost a century ago, and
ModMax electrodynamics, found just a couple of years ago.

Example I.7. Born-Infeld electrodynamics. This theory was identifed in 1934 by Born
and Infeld [315]. The motivation for its discovery was to fnd a theory that guaranteed
the fniteness of the electric feld self-energy of charged particles. This theory was frst
described in fat space and the Lagrangian is given by:� �q

1 LBI = 1 − det (ηµν − 2bFµν ) . (I.58)
b2 

where b is a constant with units of length squared. In the b → 0 limit, we recover Maxwell
theory, while in the b → ∞ limit one would obtain the so-called Bialynicki-Birula elec-
trodynamics [316, 317]. Born-Infeld theory (I.58) can be shown [318, 319] to be exactly
invariant under duality rotations and it has acquired special relevance in ST as well, since
the Born-Infeld action turns out to appear naturally in the context of ST [320,321].

Example I.8. Mod-Max electrodynamics. Discovered by Bandos, Lechner, Sorokin and
Townsend in 2020 [322], it has attracted a lot of attention [323–327]. It is characterized for
being the most general duality- and conformally-invariant theory. Its Lagrangian is given
by [322,323,328]: q 

LModMax = − cosh γF 2 + sinh γ (F 2)2 + (F µν ? Fµν )
2 , (I.59)

where γ ≥ 0 is a dimensionless parameter. First, we note that in the γ → 0 limit one
recovers Maxwell electrodynamics, while γ → ∞ yields the aforementioned Bialynicki-
Birula electrodynamics. Second, the theory possesses conformal symmetry, as can be
observed by noticing that there is no length scale appearing explicitly in the Lagrangian.

With the notable exception of NLE theories including minimal couplings to gravity,
such as in the case of Einstein-Born-Infeld theory" !#Z qp1 1 

IBI = d4 x |g| R + b−2 1 − p | det(gµν − 2bFµν )| (I.60)
16πG |g| 

or Einstein-ModMax theory [324], the study of general e˙ective extensions of the Einstein-
Maxwell theory with non-minimal couplings between the spacetime curvature and the
gauge feld strength (like Rµναβ F µν F αβ) seems to be largely missing in the literature.
Therefore, since non-minimal couplings generically appear in stringy e˙ective actions [304],
we have found relevant to study in Chapter 3 duality-invariant higher-order theories of
electromagnetism which are non-minimally coupled to gravity.

42Sometimes it is even possible to constrain all α0-corrections in special contexts like cosmological ones
[307–311].
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I.5 Initial value problem in General Relativity

The ultimate goal of physics is to describe the behaviour of Nature. In particular, this
implies discovering the laws that allow us to predict the behaviour of a physical system once
we know its state at a certain initial time. This is precisely the way Classical Mechanics or
Quantum Mechanics work. However, if one takes a look at GR, it is not clear whether we
have such initial value formulation. In fact, one may wonder: which set of initial conditions
do we need in order to state a well-defned Cauchy problem? Where would these initial
conditions be defned? Does it make sense even to consider this problem, given the general
coordinate-invariance of GR and the subsequent relative defnition of time? These are
highly non-trivial questions, since Einstein’s feld equations intertwine space and time in
an intrinsically non-linear fashion.
These questions were answered by Choquet-Bruhat and Geroch [329,330], who showed that
the initial value (or Cauchy) problem of GR is well posed. We will momentarily explain in
greater detail what we mean by well-posedness, but let us remark at this point that the
initial value formulation of GR, which can be identifed with a Hamiltonianian approach
[85, 331–334], has become an essential tool both in Mathematical Relativity [335–337]
and Numerical Relativity [338–340], thus justifying the need of understanding the Cauchy
problem of GR in the present era of Gravitation.
To outline the main features of the GR Cauchy problem, we have found convenient to
follow [335, 341–343]. We begin by introducing the notion of Cauchy hypersurface and
globally hyperbolic manifold, which play a fundamental role in the initial value formulation
of GR.

Defnition I.9. Let (M, g) be an oriented and connected four-dimensional43 Lorentzian
manifold. A Cauchy hypersurface (or Cauchy surface, for short) Σ is an embedded sub-
manifold i : Σ ,→ M which every non-spacelike curve intersects exactly once. In particular,
it has to be a spacelike hypersurface. If (M, g) possesses a Cauchy hypersurface Σ, then
(M, g) is said to be globally hyperbolic.

Globally hyperbolic manifolds are the natural arena on which one could pose the Cauchy
problem of GR. Indeed, given a Cauchy surface Σ on (M, g), one could predict the state of
the universe at any time from the knowledge of some appropriate initial data on Σ, since
every point of M could then be reached by causal (timelike and lightlike) curves departing
from Σ.

For the sake of simplicity, let us restrict our study to the Einstein feld equation
in vacuum. We focus now on the problem of determining what initial data we have to
provide on a Cauchy surface Σ so as to obtain its time evolution, which will yield in turn
the corresponding Ricci fat globally hyperbolic development. For that, let us establish,
frst, that every globally hyperbolic manifold (M, g) splits as [344–346]

2(M, g) = (I × Σ, −β2dt + ht) , (I.61)t 

where I ⊂ R, t ∈ I is identifed with the time coordinate, {ht}t∈I is a family of Riemannian
metrics on Σ and {βt}t∈I is a family of positive functions on Σ. Assume that t = 0 is
the initial time on which we want to pose the subsequent Cauchy problem. By direct
inspection of (I.61), it is very natural to expect the induced metric h = ht|t=0 on Σ to

43We will consider four spacetime dimensions in this section for the sake of simplicity.
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be part of the initial data. Also, it would be also reasonable to expect the information of
how curved (Σ, h) is within (M, g) as part of these initial data. A suitable measure of this
extrinsic curvature is given by the so-called shape operator or second fundamental form
Θ ∈ End(T Σ), which is given by:

Θ = − 
1 
∂tht . (I.62)

2βt t=0 

Interestingly enough, (Σ, h, Θ) conform all the necessary initial data to determine uniquely
a Ricci fat globally hyperbolic manifold (M, g) such that for every t ∈ I the corresponding
induced metric on {t}× Σ is precisely ht, as we will see in Theorem I.1. Nevertheless, it is
convenient to point out frst that not every set of initial data (Σ, h, Θ) is allowed. In fact,
admissible initial values must satisfy the following constraint equations:

Rh = |Θ|2 
h − Trh(Θ)2 , dTrh(Θ) = divh(Θ) , (I.63)

where Rh denotes the Ricci scalar of (Σ, h). The frst equation in (I.63) is called the Hamil-
tonian constraint while the second one receives the name of momentum constraint. These
constraints are obtained by decomposing the Einstein feld equation Ricg = 0 according to
the 3 + 1-splitting canonically induced by (I.61). A triple (Σ, h, Θ) satisfying (I.63) will
be called admissible or allowed indistinctly. If (Σ, h, Θ) denotes some admissible initial
data, the equations determining the temporal evolution {βt, ht}t∈I are obtained from the
remaining components of Ricg = 0.
Note that the constraints (I.63) could be obtained at every time t, i.e., for every Cauchy
surface Σt := {t} × Σ. Consequently, we have to make sure that the subsequent time
evolution preserves the constraints (I.63). In other words, if we start from some initial
data satisfying (I.63) and we time-evolve them according to the Einstein feld equation for
t ∈ I, we have to make sure that the corresponding constraint equations obtained on every
Σt hold as well. Together with ensuring the existence and uniqueness of solutions, this is
what we mean by the well-posedness of the GR initial value problem. These are extremely
subtle and non-trivial points, which may fail to be true.
Remarkably enough, Choquet-Bruhat and Geroch [329, 330] were able to show that the
Cauchy problem of GR is well posed, so that the solution is unique, exists and the restric-
tion at any time of some evolved admissible initial data does also satisfy the subsequent
constraint equations.

Theorem I.1 (Choquet-Bruhat, Geroch). Let (Σ, h) be a smooth Riemannian three-manifold
and let Θ ∈ End(T Σ) be a certain smooth tensor on Σ. Suppose that the triple (Σ, h, Θ) 
satisfes the constraint equations (I.63). Then there exists a unique smooth spacetime
(M, g), called the maximal Cauchy development of (Σ, h, Θ), which fulflls the following
properties:

1. (M, g) is Ricci fat, i.e., it solves the Einstein feld equations44 Ricg = 0.

2. (M, g) is globally hyperbolic with Cauchy surface Σ.

3. The induced metric on Σ and the shape operator of Σ are given by (h, Θ), respectively.
44It is possible to generalize Theorem I.1 in the presence of a cosmological constant and/or matter felds

whose (matter) Lagrangian contains no more than frst derivatives of the felds [342].
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4. Every other spacetime satisfying (1)-(3) can be mapped isometrically into a subset
of (M, g).

Finally, the solution (M, g) depends continuously on the initial data (Σ, h, Θ).

However, observe that it might be possible to extend the maximal Cauchy development
(M, g) of certain allowed initial data (Σ, h, Θ) into a proper subset of a di˙erent spacetime,
although Σ would no longer be a Cauchy surface for this enlarged manifold and, thus, it
would not be globally hyperbolic. In another vein, note that there are quite important
instances of spacetimes which are not globally hyperbolic, such as Anti-de Sitter space, the
Taub-NUT space or the Reissner-Nordström solution. These spaces do not have a Cauchy
surface, but it is possible to formulate the initial value problem and obtain a subsequent
globally hyperbolic development which would just be a proper subset of the total spacetime.
In this thesis, the formulation of GR as an initial value problem will make its appearance
in Chapter 5, where we will study the Cauchy problem of a real parallel spinor (see Section
I.8) on a globally hyperbolic manifold. Although not studying the Cauchy problem of Ricci
fat metrics in itself, we will be able to prove a very powerful result: given some initial
data fulflling the constraint equations (I.63) and the constraint equations associated to the
existence of a real parallel spinor, then the evolution posed by the parallel spinor (which
is frst order in time) matches exactly with the second-order evolution prescribed by Ein-
stein’s feld equations. This is a quite intriguing result, since this suggests the tantalizing
possibility of using frst-order di˙erential equations to construct special solutions of GR.

I.6 Black holes

Shortly after the discovery of GR in 1915 by Einstein, Karl Schwarzschild presented the
frst non-trivial exact solution to Einstein’s feld equations [347]. Today known as the
Schwarzschild solution, it is static, possesses spherical symmetry and represents the grav-
itational feld outside any matter distribution with these symmetries [348, 349]. However,
two issues were observed. On the one hand, a divergence appears at the point r = 0, where
r is a variable for which the spheres selected by the reigning symmetry have area equal to
4πr2 , which was at frst somewhat omitted and just interpreted as the relativistic analogue
of the 1/r2 divergence in the Newton’s law of Universal Gravitation. On the other hand,
another problem was observed to occur at r = rG = 2GM , M being the mass of the object
we are describing45. Indeed, any light ray emitted from r < rG would not be seen by
observers in the region r > rG, since the gravitational feld would be so strong than even
light could not escape from the region r < rG. Although originally ostracized, these dark
objects were not properly understood until almost 50 years after their frst appearance,
during the so-called Golden Age of GR, when the term black hole was coined. For more
historical details, we refer the reader to [350–352].

They are one of the most extraordinary, impressive and elegant predictions of GR,
and today we have compelling evidence of their existence thanks to the gravitational wave
detectors LIGO/Virgo [61–67] and the Event Horizon Telescope collaboration [68–71].
With the additional aid of the future space-based interferometer LISA [72], in the forthcom-
ing years it is expected that experimental data will be accurate enough to permit precision
tests on black holes. Consequently, nowadays is the best moment to make progress in

45As comparison with the Newtonian limit or the ADM formula (reviewed in (I.19)) may reveal.
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the theoretical understanding of black holes, specially in the study of how their physical
properties get modifed after the inclusion of higher-derivative corrections [353]. To this
aim, we commit ourselves in this section to introduce some of the most intriguing and
attractive properties of black holes in GR, which we will examine afterwards in the thesis
in the context of higher-order theories.

I.6.1 Defnition of a black hole. Event horizon

Before going through the defnition of a black hole, let us introduce some preliminary
concepts. We will follow the analyses of [341, 354–356]. First, we begin by defning the
notion of asymptotically simple space. A connected, oriented and time-oriented Lorentzian
four-manifold (M, g) is said to be an asymptotically simple spacetime if there exists another

¯ ¯Lorentzian four-manifold (M, ḡ) and an embedding θ : M → M which embeds M as a
¯manifold with smooth boundary ∂M into M such that:

1. There is a smooth function Ω ∈ C∞(M̄) such that on θ(M), Ω > 0 and θ∗ ḡ = Ω2g.

2. Ω|∂M = 0 and dΩ|∂M =6 0.

3. All null geodesics in M have two endpoints in ∂M.

¯ ¯If (M, ḡ) fulflls at least the frst two conditions above, then (M, ḡ) is said to be a conformal
compactifcation of (M, g), from where the so-called Carter-Penrose diagrams arise, of
extreme utility in understanding the causal structure of the spacetime. On other hand, if
we add to the previous three points the condition:

¯4. Rµν = 0 on a open neighbourhood of ∂M in M,

then (M, g) is said to be asymptotically empty and simple. Examples of these spaces
include Minkowski space or asymptotically simple spaces harbouring compact objects like
planets or stars that have not gone through gravitational collapse. Nevertheless, there are
popular examples of spacetimes, such as the Schwarzschild, Reissner-Nordström or Kerr
ones, which do not satisfy the defnition of being asymptotically simple, since there exist
null geodesics with no endpoints on ∂M.

To overcome this setback, we relax the previous defnition and say that a space-
time (M, g) is weakly asymptotically simple is there exists an asymptotically simple space
(M0, g0) and some open subset U 0 of M0 with ∂M0 ⊂ U 0 such that U 0 ∩ M0 is isomet-
ric to an open set U of M. In simple terms, a weakly asymptotically spacetime has the
conformal infnity of an asymptotically simple one but it may possess additional infnities
too. Finally, a weakly asymptotically simple spacetime if asymptotically fat if it satisfes
condition 4 above.

Now we are in a position to present the defnition of a black hole.

Defnition I.10. Let (M, g) be an asymptotically fat spacetime46. It is said to be or to
contain a black hole if the following region B ⊂ M is non-empty:

B ≡ M \ J−(I +) , (I.64)
46The generalization to asymptotically AdS spacetimes is by no means direct or trivial, since the rigorous

defnition of being asymptotically AdS is already quite involved [357]. However, for the purposes of this
introduction, we believe it is enough to have stated the precise defnition of an asymptotically fat black
hole.
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where J−(I +) denotes the chronological past of the future null infnity I + ⊂ ∂M, which
is defned as the set of points p ∈ M which can be reached from a past-directed null curve
starting from I + . The boundary of B will be denoted by H and is called the event horizon.

Observe that the concept of black hole is a global one — one actually needs the knowledge
of the future history in order to determine it. Thus, the notion of event horizon lacks a
local signifcance, as it is refected by the fact that an observer freely falling into a black
hole would feel nothing special while crossing it.

Nevertheless, from its defnition it seems highly intricate to fnd event horizons and to
study spacetimes with black holes. The situation dramatically improves when we consider
stationary asymptotically fat spacetimes, defned in terms of the existence of a Killing
vector feld ξα which becomes timelike asymptotically. Note that this is a more general
setup that the one we will be mainly dealing with in the thesis, which corresponds to
static spacetimes. These are defned as stationary spacetimes for which the Killing vector
ξα is hypersurface orthogonal, i.e. ξ ∧ dξ = 0, where ξ is the metric-dual one-form of
the Killing vector. According to the so-called rigidity theorems [356, 358, 359], originally
proven by Hawking and Carter, the event horizon of a stationary black hole, under some
generic conditions, is a Killing horizon (defned as a null hypersurface on which a Killing
vector kµ becomes null, which in turn is said to generate the horizon). In particular,
Carter [358] showed by purely geometrical arguments that the event horizon of stationary
and axisymmetric black holes is indeed a Killing horizon (the associated Killing vector being
asymptotically timelike), while Hawking [356] proved that for any stationary (vacuum or
electrovacuum) black hole in GR the associated event horizon must be a Killing horizon.
Therefore, given a stationary spacetime which we suspect contains a black hole, we may
look for its event horizon by studying the potential Killing horizons and then analyzing if
such Killing horizons are event horizons, which greatly simplifes the problem of identifying
event horizons.
In case a Killing horizon H exists, we have that the associated Killing vector satisfes

kν rν k
µ|H = κkµ , (I.65)

where κ is a priori a non-constant function on H called surface gravity and accounts for
how much the integral curves of kµ fail to be aÿnely parametrized. In the case of static
spacetimes, the Killing vector generating the horizon coincides with the one associated to
static symmetry. For axisymmetric stationary spacetimes with a rotating horizon, it turns
out that kµ = tµ + ΩH ω

µ, where tµ and ωµ are the Killing vectors associated to time
translations and rotations around the axis respectively and ΩH is the angular velocity of
the event horizon.
Although κ could be an arbitrary function on H, it can be proved under quite general
conditions that it is constant on the horizon. In fact, this can be shown for stationary
and axisymmetric black holes without relying on Einstein’s feld equations [358,360], or for
any black hole in GR using Einstein’s feld equations and the dominant energy condition
[37, 361]. This (generic) constancy of κ on the horizon is called the zeroth law of black
hole mechanics, a name which we will justify very shortly. If κ 6= 0, one can show that
kµ generates a bifurcate Killing horizon [360,362] while if κ = 0, the horizon is degenerate
and the black hole is said to be extremal.

Before presenting explicit examples of black holes, we delve into their thermodynamic
properties and present a brief review of the singularity theorems.
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I.6.2 Black hole thermodynamics

The discovery and development of black hole thermodynamics was not a linear nor ordered
process, since some results were hypothesized and proposed before they were really proven
and better understood. In fact, some aspects of black hole thermodynamics remain yet to
be understood and lie precisely at the core of the problem of fnding the theory of Quantum
Gravity.

Let us start from the work of Bardeen, Carter and Hawking of 1973 [37], in which
they established the four laws of black hole mechanics47, named this way because of their
resemblance with the four laws of thermodynamics. Firstly, the zeroth law of black hole
mechanics was stated, which claims that the surface gravity of a black hole is constant
(generically non-zero) over the event horizon, as already mentioned. This is in analogy
with the zeroth law of thermodynamics, by which thermodynamic systems in equilibrium
have uniform temperature. Nevertheless, from a purely classical perspective, this is just
a mere coincidence, since the temperature of a classical black hole has to be strictly zero
(classically, they would just absorb particles and they would not radiate).
It was Hawking who rigorously proved that the surface gravity can be properly interpreted
as the black hole temperature [38], showing through semiclassical computations that black
holes do radiate as black bodies with a temperature given by

TBH = 
~κ

. (I.66)
2π 

Regarding the frst law, it claims that under perturbations of a black hole solution, the
following equality holds:

κ 
δM = δAH +ΩH δJ + . . . , (I.67)

8πG 
where M stands for the black hole mass, AH is the area of the event horizon, ΩH is the
rotational velocity of the black hole, J is its angular momentum and the ellipsis stands for
work terms associated to other variables on which the black hole may depend. For instance,
in the case of electrically- and/or magnetically-charged black holes (Reissner-Nordström
solution), we would have to include48 φhδQ + ψhδP , where Q is the electric charge, φh the
electrostatic potential at the horizon49, P the magnetic charge and ψh the electrostatic
potential of the dual vector feld strength (it could be also called magnetostatic potential
or just magnetic potential).
If the zeroth law states that the surface gravity is proportional to the temperature, by
comparison of (I.67) with the frst law of thermodynamics we conclude that black holes
should have an entropy SBH given by:

AH
SBH = , (I.68)

4~G 

where the proportionality constant is fxed by using (I.66). This is the black hole entropy
or the Bekenstein-Hawking entropy [38, 39,41].

47The third law was just conjectured in [37].
48We will fnd this result explicitly in Chapters 2, 3 and 4. Nevertheless, it was argued in [363] (and

references therein) that such frst law could be better expressed as φhδQ − ψhδP .
49In Chapters 2 and 3 we will follow conventions by which the frst law will look precisely this way.

However, in Chapter 4, φh and ψh are replaced by their asymptotic values because of di˙erent conventions
for the associated electrostatic potentials.
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The second law of thermodynamics states that the entropy of an isolated thermody-
namic system never decreases. Hence, to have a complete analogy, the black hole entropy,
or equivalently the area of a black hole, should never decrease. Remarkably enough, this
is precisely the content of the Hawking area theorem [356], which implies that δAH ≥ 0 
with time50. Nevertheless, this theorem is violated on account of the Hawking radiation
predicted by semiclassical computations (the same forcing black holes to have the temper-
ature (I.66)), since this implies a loss of black hole’s mass and, subsequently, a decrease in
the event horizon area. A resolution to this problem is provided by defning the general-
ized entropy [41, 364] Sgen = SBH + Sout, where Sout stands for the entropy of the matter
surrounding the black hole, and establish that for all physical processes δSgen ≥ 0, since
the entropy of the radiated particles would compensate the loss associated to the decrease
of the area.
Finally, the third law of black hole mechanics (proved by Israel [365] under reasonable
energy conditions) claims that the surface gravity (i.e., the black hole temperature) cannot
be lowered down to zero in a fnite time, in resemblance with the usual third law of
thermodynamics which states that the absolute zero of temperature cannot be reached in
a fnite number of steps.

These laws of black hole dynamics were discovered in the context of GR, so a relevant
and pertinent question in the context of this thesis is whether these laws are expected
to hold for higher-derivative gravities. Firstly, Hawking’s computation of the black hole
temperature only relies on the notion of event horizon, without making any reference to
the gravitational feld equations. Consequently, the identifcation of the surface gravity
with the temperature is fully general and must be valid as well in the realm of higher-order
theories. Moreover, since the constancy of κ on the horizon can be rigorously proven at
least for every stationary and axysimmetric black hole [360], this provides strong evidence
for the zeroth law to hold as well for any higher-derivative theory.
Secondly, let us now turn our attention to the validity of the frst law for generic higher-
order theories. In these theories, the black hole solutions will be modifed with respect
to the GR ones. This implies that the expressions for the temperature or the area of the
black hole in the corrected theory will change with respect to the GR solution, so we cannot
expect the frst law (I.67) to hold as it stands for higher-derivative theories. Therefore, if
we want to have any chance of discovering a general frst law of black hole thermodynamics
in this context, we should consider the possibility that the entropy is no longer proportional
to the area. In fact, one could even wonder why we should expect such frst law to hold
for higher-order theories.
This skepticism goes away thanks to Wald [366], who proved the existence of a frst law of
black hole mechanics in any theory of gravity preserving di˙eomorphism invariance. In fact,
following this formalism, the black hole entropy in generic theories of gravity is no longer
given by the event horizon area but rather by the Wald’s entropy formula51 [366,370,371]:Z √ δL 

dD−2SWald = −2π x h �µν �ρσ , (I.69)
H δRµνρσ 

where the integral is carried out over the bifurcation surface of the horizon, h is the corre-
50This observation together with the apparent violation of the second law of thermodynamics in processes

in which black holes are present led Bekenstein to claim that the event horizon area should play the role
of the entropy in a usual thermodynamic system [39, 40].

51Notwithstanding, some subtleties arise when defning the entropy for theories which include matter
with internal gauge freedom [367–369].
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sponding induced metric, �µν is the volume form transverse to the horizon (the binormal)
δLnormalized as �µν �

µν = −2 and where stands for the Euler-Lagrange variation of LδRµνρσ 
with respect to the Riemann curvature tensor, considered as an independent variable:� � 

δL 
δRµνρσ 

∂L 
= − rα
∂Rµνρσ 

∂L 
∂rαRµνρσ 

+ . . . . (I.70)

Using this defnition for black hole entropy, Wald then showed that the following frst law
of black hole thermodynamics:

κ 
δM = δSWald +ΩH δJ + . . . (I.71)

8πG 

holds.
Regarding the extension of the second law to generic higher-order theories, things do not
turn out to be that simple. In fact, the mere consideration of four-dimensional Lovelock
terms into the Einstein-Hilbert action may already violate this law [372]. As a potential
resolution to such problem, it has been suggested that one should replace Wald’s entropy
by a more general quantity which coincides with Dong’s formula [373] for the entanglement
entropy defned in the holographic context (which we defne in Section I.7), so that the
sum of this new entropy and the entropy of the surrounding matter should never decrease
[374, 375]. Finally, the third law of black hole thermodynamics has been examined in the
context of higher-order theories, fnding instances which violate it [376], although it has
been shown that the corresponding solutions are unstable and thus they can be, to some
extent, ruled out [377,378].

I.6.3 Singularity theorems

One of the greatest achievements of the GR’s scientifc community in the past century was
the proof of the so-called singularity theorems. They constitute a historical landmark52 and
a key contribution to the understanding of gravity and GR. Many theoretical physicists
were involved in their development, but perhaps one could mention Penrose, Hawking and
Geroch as the pioneers of this line of research.
These theorems establish generic conditions under which spacetime singularities appear.
Although it is a highly non-trivial task to fnd the most appropriate defnition of singular-
ities, it is accepted that they are linked with the existence of inextendible geodesics with
fnite aÿne length, which is called geodesic incompleteness [379, 380]. Indeed, the pres-
ence of incomplete geodesics is a clear proxy of singularities, since they signal the possible
appearance of particles from nothing or/and the sudden vanishing of freely-falling test
particles. However, even if one eliminates the problem of considering singular spacetimes
obtained by excision of a point (to this aim, one may work with inextendible spacetimes),
there are some issues with this defnition. For example, there exist spacetimes which are
spacelike and null geodesically complete, but not timelike complete, and vice versa. Sim-
ilarly, there exist geodesically complete spacetimes possessing timelike curves of bounded
acceleration which have fnite proper length [380]. Nevertheless, despite these subtleties, it
is conventionally assumed that a spacetime is singular if it contains inextendible timelike

52Indeed, half of the Nobel Prize in Physics in 2020 was awarded to Penrose’s work on singularity
theorems.
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or null geodesics, this property being the one that is proved in the so-called singularity
theorems.
From the frst singularity theorem proven by Penrose [379], many other singularity the-
orems and generalizations of it have been found [36, 341, 381–383]. They commonly pro-
vide conditions under which a given spacetime possesses singularities. More concretely,
they generically state [352] that if a spacetime of suÿcient di˙erentiability satisfes a con-
straint on the curvature, a causality condition and an appropriate initial and/or boundary
condition, then there exist inextendible incomplete causal geodesics. The paradigmatic
singularity theorem is the following one [36].

Theorem I.2 (Hawking and Penrose, 1970). A spacetime is not timelike and null geodesically
complete if:

1. Rµν k
µkν ≥ 0 for every non-spacelike vector kµ.

2. Every non-spacelike geodesic contains a point at which k[µRν]ρσ[λkη]k
ρkσ =6 0, where

kµ is the tangent vector to the geodesic.

3. There are no closed timelike curves.

4. One of the following properties holds:

(a) There exists a compact achronal set (that is, a set in which no pair of two points
are connected by a timelike curve) without edge53.

(b) There is a trapped surface, understood as a two-dimensional closed surface
whose two families of orthogonal null geodesics are converging.

(c) There exists a point such that the expansion of future-directed (or past-directed)
null geodesics emanating from this point becomes negative for every of these
geodesics.

We believe conditions (1), (2), (3) and (4)c for past-directed null geodesics of Theo-
rem I.2 to hold for our Universe54, so that according to this Theorem, the Universe must
have a(n) (initial) singularity [342].

On the other hand, these conditions turn out to hold as well for the usual GR black
hole spacetimes, justifying, thus, the presence of singularities. Although they are hidden
behind the event horizon as required by the Cosmic Censorship Conjecture [384], it is
expected that a UV-complete theory of Quantum Gravity resolves such singularities and
yields regular black holes. In such a case, one would hope to capture this phenomenon
through the associated e˙ective feld theory or, equivalently, the corresponding higher-
order theory.
Indeed, there has been a keen interest in understanding the properties of these hypothet-
ical regular black holes [385–393], although most of the literature so far has only focused
on modelizing these geometries. When it comes to describing a dynamical foundation for
regular black holes, things are much more involved. As explained before, one would ideally

53See [341] for a precise defnition of this feature.
54Indeed, if we assume the Universe is described by a Friedmann-Lemaître-Robertson-Walker (FLRW)

model (not deviating very much from the case of fat time slices), it is known that for these models the
expansion of past-directed null geodesics emanating from the event associated to our present time becomes
negative more recently than the matter-radiation decoupling time.
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wish to fnd an e˙ective high-energy modifcation of GR whose black hole solutions were
naturally singularity-free. There have been some interesting attempts toward this goal in
the literature [394–410], but all of them have certain limitations, such as an unreasonable
amount of fne-tuning [394–396, 406] or the introduction of ad hoc matter [398, 402, 405].
More promising approaches have also been followed [399, 400, 404, 407, 408, 410], although
obtaining exact solutions is usually challenging in those cases. Despite these problems,
in Chapter 2, we will present the very frst instances of theories of gravity with a non-
minimally coupled U(1) gauge vector feld which, to the best of our knowledge, possess
electrically-charged black hole solutions with fully regular gravitational and electromag-
netic felds for any value of the mass and non-vanishing charge.

Next we proceed to study two of the paradigmatic black hole solutions in GR: the
Schwarzschild and the Reissner-Nordström solutions.

I.6.4 The Schwarzschild black hole

As previously stated, this solution was discovered by Schwarzschild [347] and it is the only
spherically symmetric vacuum solution of GR [348, 349]. In the so-called Schwarzschild
coordinates, the metric is given by:� � � �−12GM 2GM2 2 2ds = − 1 − dt + 1 − dr + r 2(dθ2 + sin2 θdφ2) , (I.72)

r r 

where r > 2GM > 0 and where M is the total mass of the spacetime, as can be checked
with (I.19). Since the previous expression exactly fts into the form of (I.21), we explicitly
observe that this metric is static and spherically symmetric. We impose the condition
r > 2GM to guarantee asymptotic fatness and to avoid the metric singularity present at
r = 2GM . Indeed, it can be readily seen that this apparent singularity is not physical and
it is due to a bad choice of coordinates. To this aim, let us introduce the retarded and
advanced Eddington-Finkelstein coordinates [354, 379]:

u = t − r∗ , v = t + r∗ , (I.73)

where r∗ is the so-called tortoise coordinate given by:Z 
dr r 

r∗ = = r + 2GM log − 1 . (I.74)
1 − 2GM/r 2GM 

Observe that the coordinates (u, v) are constant for outgoing and ingoing null radial
0geodesics respectively. Using coordinates (v, r, θ, φ), the metric takes the form g with

the following coordinate expression:� � 
2GM2ds = − 1 − dv 2 + 2dvdr + r 2(dθ2 + sin2 θdφ2) . (I.75)
r 

The metric (I.75) is defned for every r > 0. Therefore, we can extend the initial Lorentzian
manifold (M, g) in which the Schwarzschild metric was originally defned to a larger one
(M0, g0) admitting arbitrary positive values for r. In this larger manifold M0 we clearly
see that r = 2GM defnes a null hypersurface on which the Killing vector k = ∂v becomes
null, defning a Killing horizon. This alerts us about the possibility of this Killing horizon
being actually an event horizon, and careful examination reveals that this is indeed the
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case, since future-directed timelike and null curves only cross this Killing horizon from the
outside (r > 2GM) to the inside (r < 2GM). The surface gravity reads

1 
κ = . (I.76)

4GM 

On the other hand, had we considered the use of the coordinates (u, r, θ, φ), then we would
have derived the following form g00 for the metric:� � 

2GM2ds = − 1 − du 2 − 2dudr + r 2(dθ2 + sin2 θdφ2) . (I.77)
r 

Analogously, this defnes another possible extension (M00, g00) of the original Schwarzschild
manifold (M, g), since the metric (I.77) remains perfectly well defned for r > 0. However,
there is a crucial di˙erence with respect to the previous case: now the null hypersurface
r = 2GM just allows past-directed causal curves cross from the outside (r > 2GM) to the
inside (r < 2GM), defning thus a “white hole”.
As a matter of fact, it is possible to defne a still larger extension (M∗ , g ∗) into which both
(M0, g0) and (M00, g00) can be isometrically embedded, coinciding over the region r > 2GM 
with the starting (M, g). This construction is due to Kruskal and Szekeres [411,412], who
introduced the following coordinates:h i u 

U = − exp − ,
4GM 

V 
h i v 

= exp . 
4GM 

(I.78)

∗In terms of this coordinates, the metric takes the form g given by:

(GM)3 
2 −r/2GM dUdV + rds = −32 e 2(dθ2 + sin2 θdφ2) , (I.79)

r 

where r is now a function of the new coordinates U and V , implicitly defned as� � r r/2GM− UV = − 1 e . (I.80)
2GM 

According to (I.78), −U and V should be positive, but if we allow them to take negative
values as well, then we are actually extending (M, g) into a larger Lorentzian manifold
(M∗ , g ∗) in such a way that (M, g), (M0, g0) and (M00, g00) are each appropriately iso-
metrically embedded. As a matter or fact, the Kruskal-Szekeres extension (M∗ , g ∗) is the
unique analytic and locally inextendible extension of the Schwarzschild solution [341].
In order to study the causal properties of the maximally-extended Schwarzschild solution,
it is convenient to fnd a suitable conformal compactifcation of (M∗ , g ∗). For that, let us
perform the change of coordinates:

¯ ¯U = arctan U , V = arctan V . (I.81)

In these new coordinates the metric reads

(GM)3 
2 −r/2GM 2 ¯ 2 ¯ds = −32 e sec U sec V dŪdV̄ + r 2(dθ2 + r 2 sin2 θdφ2) , (I.82)

r 
2 2¯ ¯Now, multiplying the previous expression by the conformal factor Ω−2 = cos U cos V , we

¯obtain precisely the conformal compactifcation (M, ḡ) of (M∗ , g ∗), which we can conve-
niently depict in the form of a Carter-Penrose diagram as in Figure I.3. There are four
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di˙erent regions. Region I (U < 0, V > 0) corresponds to the black hole exterior originally
described by the Schwarzschild coordinates (I.72). Region II (U > 0, V > 0) represents the
black hole interior and it was covered by the advanced Eddington-Finkelstein coordinates
(I.75). Region IV (U < 0, V < 0) describes the “white hole” interior, being charted by the
retarded Eddington-Finkelstein coordinates (I.77). Region III (U > 0, V < 0) corresponds
to another asymptotically fat Universe isometric to the exterior Schwarzschild solution
(I.72) and has been discovered thanks to the Kruskal-Szkeres extension. The event horizon
bifurcates into two null hypersurfaces given by U = 0 and V = 0 which intersect at the
so-called bifurcation sphere at U = V = 0. The wiggling lines at the top and bottom of the
diagram represent the geometric locus of points with r = 0, which correspond respectively
to a past and a future singularity, since there are timelike and lightlike geodesics which
emerge or disappear at fnite aÿne distance, respectively. This singularity could have been

48G2M 2expected from the fact that the Kretschmann scalar RµνρσR
µνρσ = 6 diverges as

r 
r → 0.

I

II

III

IV

r=0

r=0
r=
2G
Mr=2G

M

ü
'

E
'

¡

&

¡

.it
i ü

Figure I.3: Carter-Penrose diagram of the maximally-extended Schwarzschild spacetime. I + (resp.
I −) denotes the future (past) null infnity, i+ (i−) stands for the future (past) timelike infnity
while i0 is the spacelike infnity. The orientation of the diagram is such that time increases as we
move upwards and light rays correspond to straight lines with slope of 45◦ .

I.6.5 The Reissner-Nordström black hole

Before we introduced the Schwarzschild solution and commented about some of its main
properties. However, it is a vacuum confguration and it would be interesting to obtain an
analogous solution in presence of matter. A very important case is given by the addition
of a minimally coupled Abelian gauge feld Aµ with feld strength Fµν , which defnes the
Einstein-Maxwell action: Z 

1 p � � 
I = d4 x |g| R − F 2 . (I.83)

16πG 
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The set of equations of motion and Bianchi identity is given by:

1 
Gµν = 2Tµν , where Tµν = FµαFν

α − gµν F 2 ,
4 (I.84)

dF = 0 , d ? F = 0 . 

Within the realm of static and spherically symmetric solutions, Reissner, Weyl and Nord-
ström were able to fnd independently [413–415] a solution to the previous system of PDEs,
which is today known as the Reissner-Nordström (RN) solution. Adding both electric and
magnetic charges, the complete solution is given by:

2dr 2GM Q2 + P 2 
2 2ds = −f(r)dt + + r 2(dθ2 + sin2 θdφ2) , f(r) = 1 − + , (I.85)

f(r) r r2 

Q
F = dt ∧ dr + P sin θdθ ∧ dφ . (I.86)

2r p
The function f(r) may at most have two zeros located at r± = GM ± G2M2 − (Q2 + P 2).
In analogy with the Schwarzschild black hole, the zeros of f(r) indicate the presence of
horizons. However, since the argument of the square root present in r± might not be
positive, this motivates us to distinguish the following three di˙erent possibilities:p
Subextremal RN solution. This corresponds to GM > Q2 + P 2, so that f(r) haves
two zeros. In this case, the metric is singular in r = r± and r = 0. As in the Schwarzschild
case, we can show that the points r = r± do not correspond to physical singularities. To
see this, we defne:Z 2dr r+ r 

r∗ = = r + log − 1 
1 − 2GM/r + (Q2 + P 2)/r2 r+ − r− r+ 

(I.87)
2r r − − log − 1 . 

r+ − r− r− 

Then, performing the change of coordinates:� � �� 
−r+ + r− 

= arctan − exp (t − r∗) ,U1 22r+� � �� (I.88)
r+ − r−

V1 = arctan exp 2 (t + r∗)
2r+ 

one arrives to

4r2 +ds = 16f(r) cosec(2U1)cosec(2V1)dU1dV1 + r 2(dθ2 + sin2 θdφ2) , (I.89)
(r+ − r−)2 

r being a function of U1 and V1 implicitly defned as� �� �� �−r2 /r2 
r+ − r− r r − + 

tan U1 tan V1 = − exp r − 1 − 1 . (I.90)2 r−r+ r+ 

The coordinates U1 and V1 allow us to extend the original RN spacetime by admitting
negative values of −U1 and V1. However, they fail at r = r−, so a di˙erent set of coordinates
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must be chosen. A suitable choice of coordinates to cover an open set containing r− could
be given by: � � �� 

−r− + r+
U2 = arctan − exp (t − r∗) ,22r−� � �� (I.91)

r− − r+
V2 = arctan exp 2 (t + r∗) . 

2r− 

Now, in the coordinates (U2, V2), it can be checked that the RN metric is analytic every-
where except at r = r+.
Let us consider a freely-falling observer in the RN spacetime initially located at r > r+.
After some fnite proper time, she will cross the hypersurface r = r+. Inside this region, r 
becomes a timelike coordinate, and thus the motion must proceed with r decreasing (this
implies that the hypersurface r = r+ is an event horizon, so the RN spacetime contains
a black hole). Later, she will cross the hypersurface r = r− as well and she will be able
to reverse course and continue with r increasing, which is allowed since now r is again a
spacelike coordinate. Consequently, she will emerge into a new asymptotically fat region,
and this procedure can be repeated ad infnitum. Therefore, the maximal analytic extension
of RN black hole is obtained by considering infnite tuples of coordinates (U1, V1, θ, φ) and
(U2, V2, θ, φ), constructing, thus, a corresponding atlas.
The situation can be better understood by taking a look at the associated Carter-Penrose
diagram depicted in Figure I.4a (note that the conformal factor can be easily guessed from
(I.89)). In the Schwarzschild black hole, the use of Kruskal-Szekeres coordinates teaches
us the existence of two asymptotically fat regions isometric to the original coordinates
(I.85). Here we fnd an infnite number of such regions, due to the reasoning above. Every
such region is connected to the others by intermediate regions II and III, of which there
are likewise infnitely many. The hypersurface r = 0, located in the interior of Region
III, is an irremovable physical singularity, but its nature is quite di˙erent to that of the
Schwarzschild case. In fact, it is a timelike singularity (note that it is a vertical line in
the Carter-Penrose diagram), meaning that timelike and null curves can avoid it55. As a
consequence, there exist past-directed timelike curves in Region III which do not cross the
surface r = r−, causing a loss of predictability for observers in other Regions (located in
the past). This implies that r = r− is actually a Cauchy horizon, since the solution beyond
r = r− cannot be determined from any spacelike hypersurface at a previous time.p
Extremal RN solution. It occurs when GM = Q2 + P 2. It is a very interesting case,
since for this precise value of the mass in terms of the electromagnetic charges, both outer
and inner horizons r+ and r− merge into a single degenerate horizon located at r = GM .
Extremal black holes play a fundamental role not only within the study of the classical GR
Reissner-Nordström solution, but also in the context of ST and supersymmetric solutions,
since their very special properties generically render them supersymmetric and, having
vanishing temperature (since they satisfy that κ = 0), they are expected to have a simpler
quantum-mechanical description [106]. Furthermore, they provide an extraordinary arena
to test ST and the subsequent higher-derivative e˙ective theories, owing to the fact that
the computation of quantities such as the extremal charge-to-mass ratio (which is equal to
1 in the RN solution, in some appropriate units) allows one to make contact with the Weak

55It turns out that it is a repulsive singularity, since every timelike geodesic evades it (although non-
geodesic timelike or radial null geodesics can hit it).
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(b) Extremal RN black hole.

(a) Subextremal RN black hole. (c) Overextremal RN black hole.

Figure I.4: Carter-Penrose diagram of the maximally-extended subextremal RN black hole, ex-
tremal RN black hole and overextremal RN black hole. We use the notation of Fig. I.3.

Gravity Conjecture [416] (WGC) and decide which e˙ective theories do actually have the
possibility of arising from a UV complete theory of Quantum Gravity, in the spirit of the
Swampland Program [112–114].

Focusing on the extremal RN solution, let us indicate how one may arrive to the
maximally-extended solution. In analogy with the previous cases, the hypersurface r = 
GM does not correspond to an actual singularity and signals the presence of an event
horizon. To see this, let us defne:Z � �2 G2M2 

r∗ =
dr 

= r + GM log 
r − 1 − . (I.92)

1 − 2GM/r + G2M2/r2 GM r − GM 

Now, following equivalent steps to those carried out before with the subextremal solution56,
we end up with the Carter-Penrose diagram presented in Figure I.4b. It is qualitatively
di˙erent to that of the subextremal case, since there is no region II whatsoever, and it
consists on an infnite array of consecutively-connected regions I and III. As in the non-
extremal case, the hypersurface r = 0 is again a timelike singularity which can be avoided

56Nevertheless, it was shown by Carter [417] that one can fnd a single coordinate patch to cover the
whole extremal RN spacetime.
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by timelike geodesics. p
Overextremal RN solution. This happens when GM < Q2 + P 2. For these values
of the mass, no horizon exists and we are left with a naked singularity at r = 0. Such type
of scenarios are excluded according to the Cosmic Censorship Conjecture [384], by which
singularities visible from infnity cannot arise from the gravitational collapse of any object
with a physically acceptable energy-momentum tensor. The corresponding Carter-Penrose
diagram is given by I.4c.

I.7 Higher-order gravities and holography

Perhaps, the most exciting and intriguing discovery in high-energy theoretical physics
in the last 25 years corresponds to the foundation and development of holography. Its
crucial importance nowadays stems from the pioneering work of Maldacena [418], who
conjectured the celebrated AdS/CFT correspondence57. It states the physical equivalence
between Type IIB ST on AdS5 × S5 with radius of curvature L and N units of the fux of
the self-dual fve-form58 on S5 and four-dimensional N = 4 Super-Yang-Mills theory with
gauge group SU(N). More concretely, the correspondence claims the partition functions
of both theories to be exactly identical,

ZCFT = ZST . (I.93)

Note that the previous identity has no meaning unless we fnd a way of identifying the
felds between each of the sides of the correspondence or, in other words, unless we possess
a holographic dictionary relating quantities of both theories. The correspondence is con-
jectured to be true for all values of the parameters, but there is a very interesting regime in
which the ST part can be described with great accuracy by a classical Supergravity theory,

2obtained by taking N → ∞, gs → 0 and assuming the ’t Hooft coupling λ = gYMN to be
suÿciently large. In such a case, the partition function of the bulk theory may be obtained
through the saddle-point approximation:

−Igrav ,ZST ∼ e (I.94)

where Igrav denotes the Supergravity e˙ective action evaluated on a certain confguration
and where Euclidean signature has been employed. The massive amount of evidence gath-
ered so far, specially in the large N limit, provides enormously strong support for the
validity of the conjecture.

This AdS/CFT correspondence [418–420] embodies the frst realization of the holo-
graphic principle [421–423]. More concretely, under the name of gauge/gravity duality
or holography we understand the web of frmly established correspondences between d-
dimensional CFTs and d + 1 = D-dimensional theories of gravity, not necessarily within
the ST setup. It is interpreted that the CFT is defned on the boundary of an asymptot-
ically AdS space, and then the physics in the bulk (the spacetime interior) is determined
by the physics of the boundary CFT and vice versa. This is a quite amazing picture, since
the D-dimensional spacetime is emerging as a hologram of the d-dimensional physics.

57CFT stands for Conformal Field Theory.
58Type IIB ST/Supergravity contains in its spectrum a self-dual (with respect to the ten-dimensional

spacetime) fve-form [106].
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Interestingly enough, holography can be employed in a two-fold way. On the one
hand, one may capture aspects of Quantum Gravity by studying the boundary or dual
quantum feld theory, whose treatment is more manageable than that of a UV-complete
theory of Quantum Gravity, which we have not even yet discovered59. On the other hand,
this duality may be used in the opposite direction, and we could try to learn aspects of
CFTs by exploring theories of gravity. These points might seem in contradiction, but they
can be reconciled on noting that the gravitational theory becomes classical when working
in certain limits as mentioned before, so that bulk computations within these regimes have
the possibility of being much more simple than those in the CFT dual. In this thesis, we will
actually exploit this second direction and we will devote ourselves to the study of features
and properties of CFTs through the examination of gravitational dual confgurations in
higher-derivative theories. As we will briefy explain afterwards, the validity and interest
of this strategy may be justifed from the fact that higher-order gravities allow us to explore
di˙erent universality classes and discover universal relationships which hold for every CFT.

I.7.1 CFT correlators from the bulk

Ever since the advent of the AdS/CFT correspondence, studies of the holographic principle
in the wider context of higher-derivative gravities have been developed (see [243, 265, 266,
281,424–430], among others), which have allowed the construction of generic prescriptions
to derive properties of CFTs from the associated (higher-derivative) dual bulk theories.
Since CFTs are determined by correlators involving the stress-energy tensor Tab and, in case
of couplings to a vector feld (as our case will be), currents Ja, these are the quantities we
would like to access from the gravitational side. For example, according to the holographic
dictionary, if we consider the following perturbation of Euclidean AdS space in d + 1 
dimensions expressed in Poincaré coordinates:

2 
2 2ds = 

L 
dr + 

r 
dx adx (I.95)

2 L2 
b(δab + hab(x)) , 

r 

then the correlator of two stress-energy tensors, also called 2-point function, in the dual
CFT can be computed through [431, 432]:

δ2Wgrav 
Tab(x)Tcd(x 0) = 4 , (I.96)

δhab(x)hcd(x0) h=0 

where Wgrav denotes the generating functional associated to the Euclidean gravitational
action Igrav. Conformal symmetry constrains the form of the 2-point function to be60

Tab(x)Tce(x 0) = 
|x − 

CT 
x0|2d Iab,ce(x − x 0) , (I.97)

where Iab,cd is a tensorial structure given by:

1 1 yaybIab,cd(y) = (Iac(y)Ibd(y) + Iad(y)Ibc(y)) − δabδcd , Iab(y) = δab − 2 . (I.98)
2 d y2 

59In fact, it has been proposed to defne a quantum theory of gravity by the application of the holographic
principle.

60We just show the terms in the correlators which become the leading singularities as the spacetime
points (where the CFT is defned) tend to be coincident.
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Consequently, the only theory-dependent information is encoded in the quantity CT , which
receives the name of central charge. For instance, for Einstein gravity with a negative
cosmological constant: Z � �p1 d(d − 1)

I = dd+1 x |g| + R , (I.99)
16πG L2 

where L is a length scale representing the AdS radius, the central charge is

Γ(d + 2)Ld−1 
CE = . (I.100)T 8(d − 1)Γ(d/2)π(d+2)/2G 

When one considers modifcations of GR, such as adding a Gauss-Bonnet term X4 in
dimensions d ≥ 4: Z � � 

1 p d(d − 1) λ 
I = dd+1 x |g| + R + L2X4 , (I.101)

16πG L2 (d − 2)(d − 3) 

then it turns out that the central charge di˙ers from the pure Einstein value and reads [426]:
√ 

Ld−1 
CGB Γ(d + 2) ̃  1 − 1 − 4λ 
T = (1 − 2λf∞) , f∞ = . (I.102)

8(d − 1)Γ(d/2)π(d+2)/2G 2λ 

where L̃ = L/ 
√ 
f∞ is the new AdS radius. Consequently, we see explicitly that higher-order

gravities have the ability to modify the value of the CFT central charge.
An analogous situation takes place for correlators hJaJbi of CFTs dual to higher-order

theories of gravities and electromagnetism, where Ja stands for the current that couples to
the CFT vector feld. Conformal symmetry completely fxes the structure of this correlator
up to a constant CJ :

hJa(x)Jb(x 0)i = 
CJ 

Iab(x − x 0) , (I.103)
|x − x0|2(d−1) 

where CJ is called the central charge of the current CJ . In the case of Einstein-Maxwell
theory with a negative cosmological constant:Z � � 

1 p d(d − 1)
dd+1I = x |g| + R − F 2 , (I.104)

16πG L2 

the associated CJ is given by:

Γ(d) `2 
∗L

d−3 
CEM = , (I.105)J 4πd/2+1GΓ(d/2 − 1) 

where ` ∗ is a length scale which relates the bulk gauge feld Aµ with the CFT vector feld
Ã 

µ = `−1Aµ that couples to the current. In Chapter 4 we will illustrate how higher-∗ 
derivative theories are capable of modifying this value.
Let us now turn into the analysis of 3-point functions. It can be shown that the correlator
hTTT i is uniquely specifed by conformal symmetry up to three constants61 [433,434], one
of which can be chosen to be the central charge CT , while the correlator hTJJi is fxed up

61At least, in parity-preserving theories.
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to two constants [433, 434], being possible to pick one of them as CJ . To determine the
remaining constants for both correlators, a convenient way to proceed is by examination
of the energy fuxes in the AdS boundary after the insertion of operators associated to
local perturbations [435]. Following this reference, the operator for the energy fux in the
direction ~n is given by: Z ∞ 

d−2 0T 0 0 iE(~n) = lim r dx i(x , r~n)n , (I.106)
r→∞ −∞ 

with r2 = δij xixj and where i denotes a spatial index on the boundary. Assume the
operator representing the local perturbation to be given by:Z 

−iEx0 OE = dd x O(x) e ψ(x/σ) , (I.107)

awhere ψ(x/σ) is a distribution function localizing the perturbation at x = 0 as σ → 0 
(for the sake of simplicity, we could think of a Gaussian). Then, the expectation value for
the energy fux after such insertion is provided by:

h0|O† E(~n) OE |0iEhE(~n)iOE 
= . (I.108)†h0|O OE |0iE 

If one frst considers O ∼ εij T ij , then from the subsequent correlator hE(~n)iT it is possible
to extract the remaining coeÿcients of the 3-point function hTTT i [426]. In the case of
Einstein gravity, these constants turn out to be exactly zero and hTTT i is completely fxed
by CT , so to get a generic 3-point correlator we need to explore CFTs belonging to di˙erent
universality classes. This can be achieved via higher-derivative theories [243,426,428,436–
438] such as Quasitopological Gravities, which already provide dual CFTs with the most
general hTTT i structure62.
Analogously, if we consider O ∼ εiJ i , we will show in Chapter 4 that it is possible to
obtain the remaining coeÿcient characterizing the correlator hTJJi through the expression
of hE(~n)iJ . Again, in the case of Einstein gravity, this correlator is fully specifed by
CJ , so to fnd CFTs with a generic hTJJi we must fnd di˙erent (higher-order) bulk
theories which allow us to probe di˙erent universality classes. In Chapter 4 we will present
explicit examples of higher-order theories of gravity and electromagnetism for which the
corresponding dual CFTs do have the most general correlator hTJJi.

I.7.2 Holographic entanglement entropy

Another important quantity we may compute through the use of the holographic principle is
entanglement entropy (EE). For a bipartition of the Hilbert space into two complementary
subspaces A and B, we defne the EE of A with respect to B as [439,440]

SEE(A) = −Tr [ρA log ρA] , (I.109)

where ρA is the reduced density matrix of A obtained by summing over the degrees of
freedom of B. By defnition, it can be checked that SEE(A) = SEE(B). It is possible to
generalize the EE with the notion of Rényi entropies (RE) [441,442], which are defned as:

Sn(A) = 
1 

log Tr ρAn . (I.110)
1 − n 

62Nevertheless, it is necessary to resort to GQGs such as ECG for the case of CFTs in d = 3 [257], for
which the correlator hTTT i is just specifed just by two constants, one of which can be chosen to be CT .
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In particular, observe that limn→1 Sn(A) = SEE(A). The algebraic properties of RE and,
thus, of EE, make them specially suited to provide a quantitative measure of the amount
of entanglement between complementary subsets [441–444].

Working in the context of CFTs, we will be interested in the case in which A andB are
two spatial regions (at a given time) with common boundary given by an entangling surface
S. Nevertheless, the direct computation of the corresponding RE or EE is typically quite
involved, even in the weakly coupled regime, so it turns out to be much more convenient
to resort to the holographic principle and calculate these entropies from the gravitational
counterpart. Furthermore, this can be very useful, since the holographic computation may
provide further insights into the properties of RE and EE.
Let us illustrate how the holographic principle may help us compute RE. For that, choose
the CFT to be defned in fat space and consider S to be a sphere of radius R (so that A can
be taken to be its interior). In such a case, it can be shown, through the so-called Casini-
Huerta-Myers map [445], that the RE are in correspondence with the thermal entropy
Sthermal of the same theory defned on a cylinder with hyperbolic slices of curvature scale
R [446]: Z T0n 1 

Sn(A) = Sthermal(T )dT , (I.111)
n − 1 T0 T0/n 

where T0 = (2πR)−1 denotes the temperature of the thermal bath in the hyperbolic cylinder
to which the vacuum of the CFT in the original spacetime is mapped. Therefore, if we
now make use of the holographic principle, then Sthermal(T ) equals the Wald entropy of
a black hole with hyperbolic horizon, whose computation is usually more manageable.
Consequently, by considering families of higher-order gravities in the bulk, we will obtain a
collection of black hole solutions and RE which will allow us to probe and analyze di˙erent
classes of CFTs.
In presence of matter felds charged under global symmetries, the appropriate generaliza-
tion to RE is given by the so-called charged RE [447]. In Chapter 4 we will derive the
charged RE of certain higher-order theories of gravity and electromagnetism and observe
that the conjugate chemical potential always increases the amount of entanglement and
that the usual properties of RE are preserved if sensible physical constraints are met. Fur-
thermore, inspired by the examination of these theories, we will show that for a general
d(≥ 3)-dimensional CFT, the leading correction to the uncharged entanglement entropy
across a spherical entangling surface is quadratic in the chemical potential, positive def-
nite, and universally controlled (up to fxed d-dependent constants) by the coeÿcients CJ 
and a2, being the latter a coeÿcient characterizing the energy fux hE(~n)iJ associated to
O ∼ εiJ i .

I.8 Spinors

We devote this section to the physical and mathematical introduction of spinors, which are
indispensable to describe Nature. In fact, electrons, which are present in every atom we
are made of, happen to be properly described by spinors. We will begin with a historical
introduction.

Shortly after the discovery of the (non-relativistic) Schrödinger equation in 1926
[448], the quest of its proper special-relativistic generalization started o˙. The frst candi-
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date was the Klein-Gordon equation [449, 450]:

(2 − m 2)φ = 0 , (I.112)

ηµν ∂µwhere 2 = ∂ν for ηµν = diag(−1, 1, 1, 1) and where φ is a complex scalar. This
equation is clearly Lorentz-invariant, although an essential problem with this equation was
soon spotted — the subsequent would-be probability density is not positive defnite and,
thus, it is not well defned63 [451,452].
Dirac attributed this behaviour to the fact that (I.112) was second-order in (time) deriva-
tives, so he committed himself to the search of some relativistic wave equation which was
frst-order in derivatives. The genial idea happened to be to look for the square root of
the Klein-Gordon equation. More concretely, Dirac attempted to look for a frst-order
di˙erential operator iΓµ∂µ such that:

i2(Γµ∂µ)(Γ
ν ∂ν ) = −ΓµΓν ∂µ∂ν = 2 . (I.113)

For the latter to hold, we must demand:

= −2ηµνΓµΓν + Γν Γµ , (I.114)

On observing this expression, Dirac realized that these Γµ needed to be matrices. In
particular, he found that it was necessary at least for the matrices to be 4 ×4. A particular
(purely imaginary) representation for these matrices is given by Γµ = −iγµ, where� � � � 

0 −iσ2 σ3 0 
γ0 = , γ1 = −iσ2 0 0 σ3 � � � � (I.115)

0 iσ2 σ1 0 
γ2 = , γ3 = − ,−iσ2 0 0 σ1 

where σi for i = 1, 2, 3 stands for the Pauli matrices given by:� � � � � � 
0 1 0 −i 1 0 

σ1 = , σ2 = , σ3 = . (I.116)
1 0 i 0 0 −1 

This way, the square root of the equation 2ψ = m2ψ turns out to be

(iΓµ∂µ − m)ψ = 0 . (I.117)

Dirac discovered this equation in 1928 [453], today known as the Dirac equation. Its fnding
was one of the greatest successes of the 20th century physics, since it stands as the dynamic
equation to be satisfed64 by every fermion in the Standard Model. Indeed, such equation
admits a well-defned probability density (positive-defnite) and, furthermore, motivated
Dirac to conjecture the existence of positrons [454], which was awarded with the Nobel
Prize in Physics in 1933.
Nevertheless, we also observe a key feature — the feld ψ must have four (complex) compo-
nents, no longer being a scalar. Furthermore, after a very careful and patient examination

63Nowadays, it is understood that the solution to this problem is to reinterpret the Klein-Gordon equation
as one for an operator, so that the mistakenly-considered probability density should be thought of as a
charge density. In fact, the Klein-Gordon equation has proved to be very useful for the description of scalar
particles like pions.

64Up to a slight generalization of it to account for gauge invariance.
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of the Lorentz invariance of (I.117), one can realize that the feld ψ acquires a minus
sign under rotations by 2π, what is absolutely counter-intuitive! This extremely exotic
behaviour has amazed physicists and mathematicians ever since and nowadays such ψ 
receives the name of a spinor. We proceed in the following to provide all the necessary
mathematical material to understand the present concept of a spinor65 and the elements
appearing in (I.117). Our exposition will be based on [455–457].

I.8.1 Cli˙ord algebras

Let K denote either the feld R or C and let V be a fnite-dimensional K-vector space.
We remind that a unital associative K-algebra is a fnite-dimensional K-vector space A 
together with a bilinear and associative product · : A × A → A and an element 1 ∈ A such
that 1 · a = a · 1 = a for all a ∈ A.

Defnition I.11. Let (V,Q) be a fnite-dimensional K-vector space equipped with a sym-
metric bilinear form Q : V × V → K. A Cli˙ord algebra for (V, Q) is a pair (Cl(V, Q), ι) 
such that:

1. Cl(V, Q) is a unital associative K-algebra.

2. ι : V → Cl(V, Q) is a linear map such that ι(v)2 = Q(v, v) · 1 for every v ∈ V .

3. It satisfes the universal property: if A0 is another unital associative K-algebra with
a linear map δ : V → A0 satisfying δ(v)2 = Q(v, v) · 1, then there exists a unique
algebra homomorphism φ : Cl(V, Q) → A0 such that the diagram commutes:

ι 
V Cl(V, Q) 

δ 
φ 

A0 

From now on, let us denote by (Cl(V, Q), ι) a Cli˙ord algebra for (V, Q). The condition66

ι2(v) = Q(v, v) turns out to be equivalent to ι(v)ι(w) + ι(w)ι(v) = 2Q(v, w) for every
v, w ∈ V , as can be shown by expanding ι2(v + w) = Q(v + w, v + w). We observe this
condition is highly reminiscent of Eq. (I.114), but for the moment let us leave this fact as
an aside comment and continue.
It can be checked that Cli˙ord algebras for (V, Q) exist and are unique for each (V, Q).

Proposition I.1. For every (V, Q) there exists a unique Cli˙ord algebra (Cl(V, Q), ι).

Proof. Let T (V ) stand for the tensor algebra of V :M 
V ⊗nT (V ) = = K ⊕ V ⊕ (V ⊗ V ) ⊕ (V ⊗ V ⊗ V ) ⊕ . . . , (I.118)

n≥0 

65Note, however, that our spinors are not anticommuting objects, as required by Quantum Mechanics.
In some sense, we could say that we are working with classical spinors.

66Whenever no possible confusion may arise, we may write λ · 1 ∈ Cl(V, Q) for λ ∈ K simply as λ.
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Consider the two-sided ideal I(Q) in T (V ) generated by the set of elements {v ⊗ v − 
Q(v, v)|v ∈ V }. Thus:( )

nX 
I(Q) = κi ⊗ (vi ⊗ vi − Q(vi, vi)) ⊗ σi | κi, σi ∈ T (V ) , vi ∈ V , n ∈ N . (I.119)

i=1 

Defne the quotient space Cl(V, Q) = T (V )/I(Q) through the equivalence relation a ∼ b+x 
if x ∈ I(Q) for any a, b ∈ T (V ). This is naturally equipped with a well-defned associative
product · given by [a] · [b] = [a ⊗ b] , since:

(a+x)⊗(b+y) = a⊗b+a⊗y+x⊗b+x⊗y ∼ a⊗b , a, b ∈ T (V ) , x, y ∈ I(Q) . (I.120)

Consider the inclusion of V into T (V ) i : V → T (V ) and the canonical projection π : 
T (V ) → Cl(V, Q) given by π(a) = [a] for every a ∈ T (V ). Defne:

ι = π ◦ i : V → Cl(V, Q) . (I.121)

This map ι is clearly linear and satisfes ι(v)2 = [v] · [v] = [v ⊗ v] = Q(v, v) for every v ∈ V .
Furthermore, ι(V ) generates multiplicatively Cl(V, Q) since T (V ) is generated by tensor
products of V .
Consequently, we just need to check that Cl(V, Q) satisfes the universal property from
the defnition of Cli˙ord algebras to prove existence. For that, assume there is another
associative unital K-algebra with a K-linear map δ : V → A0 with δ(v)2 = Q(v, v) for
all v ∈ V . We can trivially extend δ to be an algebra homomorphism Δ : T (V ) → A0 by
imposing that δ(c) = c for c ∈ K and δ(v ⊗v) = δ(v) · A0 δ(v), where · A0 denotes the product
operation in A0 . By construction, we note that Δ(w) = 0 for every w ∈ I(Q), so the map
Δ descends to a homomorphism φ : Cl(V, Q) → A0 with φ ◦ ι = δ. Consequently, the
homomorphism φ is uniquely specifed, on account of the fact that ι(V ) generates Cl(V, Q) 
and φ is fxed on ι(V ). This proves existence of a Cli˙ord algebra Cl(V, Q) for every (V, Q).
Uniqueness of Cl(V, Q) is then guaranteed by the universal property we have just proven
and we conclude.

It can be shown that any Cli˙ord algebra Cl(V, Q) is isomorphic as a vector space67

to the exterior algebra Λ∗V of V , so the dimension of Cl(V, Q) is dimKCl(V, Q) = 2n ,
where n = dimKV . In particular, if {e1, . . . , en} denotes an orthonormal basis for (V, Q),
then the set of elements

ι(ei1 ) · ι(ei2 ) · · · ι(eik ) , 1 ≤ i1 < i2 < · · · ik ≤ n (I.122)

with k ≤ n span Cl(V, Q) as a vector space, if we take the convention that k = 0 implies
taking the unit element. This shows that the image ι(V ) ⊂ Cl(V, Q) is isomorphic to V 
(as a vector space).
Let ρ : Cl(V, Q) → EndK(W ) be a representation of Cl(V, Q) in the n-dimensional K-vector
spaceW — i.e., an algebra homomorphism ρ between Cl(V, Q) and the algebra of matrices
on W . We defne the mathematical gamma matrices :

γa = ρ ◦ ι(ea) , a = 1, . . . , n , (I.123)
67More precisely, if Q = 0 there exists an algebra isomorphism between Cl(V, 0) and the exterior algebra

(Λ ∗ V, ∧) equipped with the wedge product. Therefore, we may understand Cli˙ord algebras as exterior
algebras with a twisted wedge product.
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where {ea}a=1,...,n denotes and orthonormal basis for (V,Q). If we defne γa = ηabγb and
assume Q is of Lorentzian signature, then we observe:

γaγb + γbγa = 2ηabIn , (I.124)

where In is the n-dimensional identity matrix. We note that this expression is, up to a
minus sign, equivalent to (I.114). In order to precisely obtain (I.114), we defne the physical
gamma matrices:

Γa = −iγa , (I.125)

= −2ηabInso that now ΓaΓb + ΓbΓa coincides with (I.114).

Example I.9. Let us consider (V, Q) = (R2, η), where η is the (two-dimensional) Minkowski
metric. Let (e0, e1) be an orthonormal basis with η(e0, e0) = −1. The associated Cli˙ord
algebra Cl(R2, η) is spanned by {1, ι(e0), ι(e1), ι(e0)ι(e1)} and satisfes:

ι(e0)
2 = −1 , ι(e0)ι(e1) = −ι(e1)ι(e0) , ι(e1)

2 = 1 . (I.126)

An irreducible representation ρ : Cl(R2, η) → EndR2 (R2) is provided in terms of the
Pauli matrices (I.116) by ρ(ι(e0)) = γ1 = iσ2 and ρ(ι(e1)) = σ1. In fact, EndR(R2) = 
SpanR{I2, ρ(ι(e0)), ρ(ι(e1)), ρ(ι(e0)ι(e1)) = σ3}.

Example I.10. Let us consider (V, Q) = (R4, η), with η the (four-dimensional) Minkowski
metric. Let (e0, e1, e2, e3) be an orthonormal basis with η(e0, e0) = −1. The associated
Cli˙ord algebra Cl(R4, η) is spanned by

B = {1, ι(ei), ι(ei)ι(ej ), ι(ei)ι(ej )ι(ek), ι(e0)ι(e1)ι(e2)ι(e3)} , 1 ≤ i < j < k ≤ 4 (I.127)

and satisfes ι(ei)ι(ej ) + ι(ej )ι(ei) = 2ηij . An irreducible representation ρ : Cl(R4, η) → 
EndR4 (R4) is given by the matrices γa = ηabγb , being γb as in (I.115). Moreover, we have
that EndR(R4) = SpanR{ρ(B)}.

I.8.2 Spinor bundles and spinors

The analysis so far was restricted to a single quadratic vector space, and we would actually
like to have a way to generalize these defnitions when we substitute the vector space by
the tangent bundle of an orientable (pseudo-)Riemannian manifold (M, g). To this aim,
we introduce the following defnitions [458, 459].

Defnition I.12. A Cli˙ord bundle Cl(M, g) over (M, g) is a smooth bundle over M whose
fbers are Cli˙ord algebras Cl(TpM, gp) for all p ∈ M . In particular, the fberwise multi-
plication in Cl(M, g) gives an algebra structure to the space of sections of Cl(M, g).

Equipped with the notion of Cli˙ord bundle, we would like to defne a notion of bundle of
representations of Cl(M, g).

Defnition I.13. Let Cl(M, g) be a Cli˙ord bundle over (M, g). A spinor bundle is a pair
(S, ρ), where S is a K-vector bundle over (M, g) and ρ : Cl(M, g) → EndK(S) is a smooth
morphism of vector bundles such that all fber maps ρp : Cl(TpM, gp) → EndK(Sp) defne
isomorphic representations for all p ∈ M . In case they are irreducible, (S, ρ) is said to be
an irreducible spinor bundle.
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After these preliminary defnitions, we are fnally ready to present the defnition of a spinor.

Defnition I.14. A(n) (irreducible) spinor ψ ∈ Γ(S) is a section of a(n) (irreducible) spinor
bundle (S, ρ) over (M, g). Such a spinor is additionally said to be real if ρp : Cl(TpM, gp) → 
EndR(Sp) defnes a real representation for all p ∈ M .

Observe that the existence of a spinor bundle on an orientable (pseudo-)Riemannian
manifold is not always guaranteed. In signature p − q = 0, 2 mod 8, where p (resp. q)
denotes the number of spacelike (resp. timelike) directions, it can be shown [459] that such
obstruction is equivalent to the existence of a spin structure68, understood as a lift of the
frame bundle with respect to the double-covering of SO(p, q). In this case, (S, ρ) can be
interpreted as the vector bundle naturally associated to the frame bundle.

Once we have specifed the notion of a spinor, our next objective will be to under-
stand, from a mathematical perspective, the remaining elements taking place in the Dirac
equation (I.117). The frst step in this direction is provided by the following defnition.

Defnition I.15. Let (S, ρ) be a spinor bundle over (M, g). We defne Cli˙ord multiplication
or Cli˙ord product between a vector feld X ∈ X(M) and a spinor ψ ∈ Γ(S) as:

X(M) × Γ(S) → Γ(S) 
(I.128)

(X, ψ) 7→ X · ψ = ρ(ι(X))ψ . 

If {ea}a=1,...,n denotes a local orthonormal frame on (M, g), then locally we have

ea · ψ = γa · ψ , γa = ρ(ι(ea)) (I.129)

In another vein, since a spinor bundle (S, ρ) is a vector bundle, it is natural to consider
the possibility of defning covariant derivatives on it. Of course, there exist infnitely many
di˙erent covariant derivatives one could defne on (S, ρ), but there exists a very canonical
choice of connection associated to the Levi-Civita one defned on the tangent bundle. Such
connection is called the spin connection.

Defnition I.16. The spin connection r : Γ(S) → Γ(T ∗M ⊗ S) is defned as the equivariant
lift of the Levi-Civita one into the spinor bundle (S, ρ).

Locally, the covariant derivative rX ψ of ψ along X takes the following form:

rX ψ = dψ(X) + 
1 
ωab(X)γabψ , (I.130)

4 

where ωab, in some local orthonormal frame {ea}a=1,...,n, is given by rea = ωabη
bc ⊗ ec,

γab 1 = (γaγb −γbγa) and dψ(X) = Xα∂αψ. In particular, a spinor ψ is parallel ifrX ψ = 02 
for every X ∈ X(M).
The spin connection satisfes the following Leibniz rule with respect to Cli˙ord product:

rX (Y · ψ) = rX Y · ψ + Y · rX ψ , (I.131)

which makes manifest the naturalness of the spin connection and its compatibility with
the Cli˙ord product. In fact, it is precisely the combination of these two concepts which
leads us to the defnition of Dirac operator.

68A spin structure exists if and only if the so-called second Karoubi Stiefel-Whitney class [455, 460,461]
vanishes.
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Defnition I.17. The Dirac operator D : Γ(S) → Γ(S) is defned as the composition D = 
c ◦r, where c : Γ(T ∗M ⊗S) → Γ(S) is given in terms of a local coordinate frame {ea}a=1,...,n 
by:

c(β ⊗ ψ) = βaγaψ , β ∈ Ω1(M) . (I.132)

The specifc choice of orthonormal frame does not a˙ect c, and thus both c and D are well
defned.

In some local orthonormal frame, the Dirac operator on a spinor ψ takes the form:

Dψ = γa rea ψ . (I.133)

Using the physical gamma matrices Γa:

Dψ = iΓa rea ψ . (I.134)

Observe that if we consider (M, g) to be the Minkowski space, then the previous operator
matches precisely that of (I.117), so have managed our goal of contextualizing within the
mathematical and di˙erential-geometric framework the Dirac equation.

Example I.11. Now that we have a deeper understanding of (I.117), let us provide the most
canonical examples of solutions to (I.117) in four-dimensional Minkowski spacetime (R4, η) 
which are usually presented in the literature [15, 17, 18]. Introducing the slash notation
Γµaµ = a/ for any covector aµ, we want to solve the equation:

(i∂/ − m)ψ = 0 . (I.135)

Let us assume the following ansatz for ψ:
ipµxµ µ−ipµxψ = u(p~)e + v(p~)e , (I.136)p

0 0where pµ = (−p , p~) is the four-momentum satisfying that p = m2 + (p~)2 and u, v are
momentum-dependent spinors. If we substitute (I.136) into (I.135), we fnd the following
two independent equations:

(/p + m)u(p~) = 0 , (p/ − m)v(p~) = 0 . (I.137)

At this point, it is convenient to distinguish between the massive and massless cases. If
m =6 0, we can go to the rest frame in which ~p = 0 with no loss of generality. Then,
/p = −mΓ0 and, on account of (I.115), the solutions to (I.137) are trivially given by:

~ ~ u(0) = (a1, a2, −ia2, ia1)T , v(0) = (b1, b2, ib2, −ib1)T , (I.138)

where ai, bi ∈ C. By performing arbitrary boosts, we obtain the solution for arbitrary p~.
z 1 2If m = 0, we can choose a reference frame such that p = ±p0 and p = p = 0. In such a

z zcase, denoting u(p = ±p0) = u(±p0) and v(p = ±p0) = v(±p0), (I.137) reduces to:

(−Γ0 ± Γ3)u(±p 0) = 0 , (−Γ0 ± Γ3)v(±p 0) = 0 . (I.139)

Evidently, both u(±p0) and v(±p0) satisfy the same equations and the solutions now
correspond to:

u(p 0) = (a1, a2, −a1, a2)T , v(p 0) = (b1, b2, −b1, b2)T , 
(I.140)

u(−p 0) = (a1, a2, a1, −a2)T , v(−p 0) = (b1, b2, b1, −b2)T , 

with ai, bi ∈ C. As before, by appropriate boosts one gets the most general solution for
any p~.
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In the previous example, we have obtained explicit solutions in the case (M, g) is
given by four-dimensional Minkowski space. Nevertheless, one may consider the Dirac
equation in generic curved backgrounds, where ∂/ has to be replaced by the Dirac operator
(I.134). Even if we restrict ourselves to macroscopic confgurations, spinorial equations
such as the parallel condition rψ = 0 turn out to be ubiquitous in the Supergravity and
ST context, since they naturally arise as the conditions to ensure the supersymmetry69 of
the underlying solution [106,133]. However, such spinorial equations are terribly involved,
the usual procedure being to try to solve these equations by fnding a set of equivalent
conditions which do not involve spinors but tensors, which are much more manageable
[204,462–472].
In this thesis, we are going to apply this idea to the case of globally hyperbolic four-
manifolds endowed with a real parallel spinor. Indeed, by the seminal work of Cortés,
Lazaroiu and Shahbazi [473], a parallel real spinor can be equivalently described by a
pair of one-forms called parabolic pair satisfying a prescribed system of frst-order partial
di˙erential equations. We will observe in Chapter 5 that such description will prove to be
very useful, since it will allow us to study properties of globally hyperbolic four-manifolds
harboring real parallel spinors without even making reference to the spinor itself.

I.9 Summary of main results

This thesis in essentially based on References [1–11]. Its main goal consists in contributing
to the understanding of the physics and geometry of gravity at high energies. To this
aim, it has been convenient to split the manuscript into two parts. Firstly, we shall devote
ourselves to the study of higher-order theories from a bottom-up approach, focusing mostly
on their physical properties. Secondly, we will adopt a more mathematical attitude and
try to understand the geometric structures underlying in diverse setups which arise in the
context of high-energy physics.
In the spirit of this Robert Louis Stevenson’s70 duality, we intent to follow the formal-
ism, notation and conventions best suited for each part. For instance, in the study of
higher-order gravities it will suÿce to mainly work in a certain local coordinate system,
so that expressions will be very often accompanied by indices. However, when changing
into a more mathematical position, we will be generically more interested in coordinate-
invariant expressions, dealing with the corresponding tensors and di˙erential forms rather
than with the associated components in a given (coordinate) basis. Also, we have tried to
balance uniformization of notation along the thesis with following the usual conventions of
theoretical physics and di˙erential geometry in the corresponding chapters, in an attempt
of presenting computations and results in the most transparent way. We shall describe
some conventions employed along the document at the very end of this introduction, while
other specifc notation taking place in the thesis will be introduced in the (hopefully) most
appropriate place of the manuscript.
We now proceed to provide a summary of the main results presented in each chapter of the
thesis. Chapters 1, 2, 3 and 4 conform the First Part of the thesis, Higher-order gravities,

69One is usually interested in supersymmetric solutions because of their intriguing properties, such as
amenability to computations, stability or very special behaviour under quantum corrections.

70We leave up to the reader to decide which part is to be associated to Dr. Jekyll and which to Mr.
Hyde.
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while the Second Part, Geometric aspects of Supergravity and String Theory, is made up
of Chapters 5, 6 and 7.

Chapter 1 (based on [1])

We begin by carrying out a thorough study of Generalized Quasitopological Gravities
(GQGs), which we already introduced back in Section I.3. We then consider the possibil-
ity of performing (perturbative) feld redefnitions of the metric, which at the end of the day
are tantamount to a change of variables and, therefore, should leave physical observables
invariant. In particular, we justify that black hole thermodynamics should remain unaf-
fected under feld redefnitions [371]. Then, we exhibit how feld redefnitions generically
modify higher-derivative Lagrangians. More concretely, we show that invariants including
Ricci curvatures —or, more generally, those becoming a total derivative when evaluated
on Ricci fat backgrounds— can always be removed from the action.
Later, we present the most general quadratic and cubic higher-order gravities one may
write after identifying two theories as equivalent if they are related by feld redefnitions.
Interestingly enough, it is found that such general quadratic and cubic theories belong to
the GQG type, motivating the (highly non-trivial) idea that all higher-curvature gravities
may be mapped, by feld redefnitions, to a GQG. This is rigorously proved in a perturbative
fashion shortly after for any higher-derivative gravity with no explicit covariant derivatives
of the curvature, on taking into account that there exists a non-trivial GQG at each order in
curvature [250]. Next we move to the more general case of higher-curvature densities with
covariant derivatives of the Riemann tensor, showing explicitly that all quartic gravities
as well as densities constructed from an arbitrary number of Riemann tensors and two
covariant derivatives can be mapped to GQGs. In all cases, we observe that the resulting
GQGs are equivalent to other GQGs without covariant derivatives as long as static and
spherically symmetric solutions are concerned. This motivates us two state the following
two conjectures:

1. Any higher-derivative gravity Lagrangian can be mapped, order by order, to a sum
of GQGs by implementing redefnitions of the metric.

2. Any higher-derivative gravity Lagrangian can be mapped, order by order, to a sum
of GQGs which, when evaluated on a SSS metric, are equivalent to GQGs with no
explicit covariant derivatives of the curvature.

Finally, we illustrate some of the generic statements presented in the chapter for the grav-
ity sector of Type IIB ST truncated at order α03 on AdS5 × S5 , showcasing the explicit
(perturbative) feld redefnition to map the associated e˙ective action to a GQG.

Chapter 2 (based on [3, 4])

In this chapter we discover a set of (four-dimensional) higher-derivative extensions of
Einstein-Maxwell theory with very intriguing properties which render them as the nat-
ural generalizations of GQGs in the presence of a non-minimally coupled vector feld. We
name these theories Electromagnetic (Generalized) Quasitopological Gravities (E(G)QGs).
They satisfy the following features:
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1. They allow for electrically- or magnetically-charged static and spherically symmetric
(SSS) solutions characterized by a single metric function f(r) = −gtt = 1/grr.

2. The equation for the function f can be integrated once yielding at most a second-
order equation where the mass appears as an integration constant.

3. The only gravitational mode propagated on maximally symmetric backgrounds is a
massless graviton.

4. (Conjecture) The thermodynamic properties of the subsequent charged SSS black
holes may be obtained analytically.

We establish the defnition of E(G)QGs and the properties presented above after reviewing
some basic aspects of general L(Rµνρσ, Fαβ ) theories such as their equations of motion,
dualization, conserved charges or the frst law of black hole mechanics. We observe that
E(G)QGs can be naturally divided into two subclasses: those for which the equation for f 
is algebraic (EQGs) and those for which it is di˙erential (EGQGs). Regarding the case of
algebraic equation for f , we discover two infnite families of Lagrangians belonging to this
class and we exactly solve the equations for magnetically charged SSS solutions. We show
that in many cases the solutions are non-singular, corresponding to regular black holes
or smooth horizonless geometries. Afterwards, we examine the thermodynamic properties
of black holes in these theories, showing that the frst law of black hole mechanics holds
exactly. In addition, we analyze the properties of extremal black holes. Next we introduce
infnite family of proper EGQGs, i.e., those for which the equation for f is not algebraic.
We study how this equation could be solved and we manage to determine analytically the
thermodynamic properties of the subsequent black hole solutions. The extremal limit is
discussed as well.
Finally, through the dualization of EQGs with completely regular magnetically-charged
SSS solutions, we are able to identify a non-minimal higher-derivative extension of Einstein-
Maxwell theory (belonging to the EQG type by defnition) in which electrically-charged
black holes and point charges have globally regular gravitational and electromagnetic felds.
We present an exact SSS solution of this theory which reduces to the Reissner-Nordström
one at weak coupling, but in which the singularity at r = 0 is regularized for arbitrary
mass and (non-vanishing) charge. We then discuss the properties of these solutions and
comment on the physical signifcance of these results.

Chapter 3 (based on [6, 7])

We study higher-order extensions of Einstein-Maxwell theory which are invariant under
electromagnetic duality rotations, allowing for non-minimal couplings between gravity and
the gauge feld. For that, we start by determining the necessary and suÿcient conditions
on the most general 4-,6- and 8- derivative Lagrangians to preserve electromagnetic duality.
Afterwards, using this result, we obtain explicitly the most general duality-invariant theory
up to eight derivatives. Next we examine the e˙ect of metric redefnitions on duality-
invariant theories, showing that, to the six-derivative level, all the higher-order terms
involving Maxwell feld strengths can be removed via (perturbative) feld redefnitions,
proving along the way that the number of (gravitational) higher-order operators in the six-
derivative action can be further reduced to fve, of which one is topological. Therefore, the
most general six-derivative duality-invariant action can be mapped via feld redefnitions

56



Introduction

to Maxwell theory minimally coupled to a purely gravitational higher-derivative theory,
which motivates us to conjecture the same to hold at higher orders. Later we study the
charged SSS black hole solutions of this special six-derivative theory and compute their
thermodynamic properties, paying special attention to the corrections to the extremal
charge-to-mass ratio and discussing several additional bounds on the couplings by using
the recently proposed mild form of the WGC [474, 475].
Finally, we focus on the family of higher-order gravities whose action is quadratic in the
(non-minimally coupled) Maxwell feld strength. Any such theory involves an infnite tower
of higher-derivative terms whose computation and summation usually poses an incredibly
challenging problem. Despite that, we manage to derive a closed form for the action of all
the theories with a quadratic dependence on the vector feld strength, fnding a very pe-
culiar expression for such action, which is reminiscent of that of Born-Infeld Lagrangians.
Then we study the SSS black hole solutions of the simplest of these models with non-
minimal couplings, observing that the corresponding equations of motion are invariant
under rotations of the electric and magnetic charges. We work out the perturbative cor-
rections to the Reissner-Nordström solution in this theory, determining the near-horizon
geometry as well as the entropy in the case of extremal black holes. Remarkably, the en-
tropy just possesses a constant correction despite the action containing an infnite number
of terms. In addition, we discover that there is a lower bound for the charge and the mass
of extremal black holes. When the sign of the coupling is such that the WGC is satisfed,
the area and the entropy of extremal black holes vanish at the minimal charge.

Chapter 4 (based on [10,11])

We present an extensive study of holographic aspects of any-dimensional higher-order gen-
eralizations of Einstein-Maxwell theories in a fully analytic and non-perturbative fashion.
We achieve this by introducing the D-dimensional version of EQGs, most naturally written
in terms of a (D − 3)-form B and characterized by admitting SSS magnetically-charged
solutions under B whose metric depends on a single function (the B-feld can be properly
dualized into a vector feld, in terms of which the solutions become electrically charged).
We are able to fnd EQGs at arbitrary order in the feld strength and in the curvature, but
for the sake of simplicity and concreteness we opt to restrict ourselves to a four-derivative
EQG including four di˙erent operators, in which we focus for the rest of the chapter. Then
we examine asymptotically AdS black holes with spherical, planar and hyperbolic horizons
of the four-derivative EQG and establish various basic entries of the holographic dictionary
associated to these theories. Next we carry out a detailed computation of the central charge
CJ associated to hJJi as well as of the parameter a2 controlling the angular distribution of
energy radiated after a local insertion of J [435], by means of which we obtain explicitly the
coeÿcients of the 3-point function hTJJi. Afterwards we aim to constrain the couplings
of the bulk higher-derivative theory by imposing several physical conditions. We examine
unitarity and positivity-of-energy bounds on the boundary and we show that the latter are
exactly equivalent to forbidding superluminal propagation of electromagnetic waves in the
bulk. We further study the constraints coming from the mild form of the WGC, recently
explored in the case of AdS [476].
Next we study the charged Rényi entropies Sn [447] for our holographic EQGs, which
are functions of the chemical potential µ conjugate to the charge contained in the entan-
gling region and reduce to the usual notion when µ → 0. We prove that, as long as the
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unitarity constraints are met, a small chemical potential always increases the amount of
entanglement. Furthermore, we show that, if the WGC bounds are also satisfed, then the
Rényi entropies satisfy a series of standard inequalities as a function of the index n, but
we observe that these can be violated if the WGC does not hold. We then concentrate on
the very special case given by n = 1, which we naturally identify with a notion of charged
entanglement entropy. We are able to show in complete generality that for any d(≥ 3)-
dimensional CFT, the leading correction to the (uncharged) entanglement entropy across
a spherical entangling surface is quadratic in the chemical potential, positive defnite, and
universally controlled (up to fxed d-dependent constants) by the coeÿcients CJ and a2.
This proof follows from already known identities involving the magnetic response of twist
operators [447] and fundamental thermodynamic relations.

Chapter 5 (based on [5, 8])

In this chapter we inaugurate the Second Part of the thesis and examine the evolution
problem posed by a real parallel and irreducible spinor feld defned on a globally hyper-
bolic Lorentzian four-manifold (M, g), which is well posed by the results of Leistner and
Lischewski [477, 478]. The starting point is the theory of parabolic pairs [473] which al-
lows to study frst-order spinorial equations on pseudo-Riemannian manifolds in terms of
di˙erential systems for an algebraically constrained pair of one-forms, which is especially
convenient for the study of global geometric and topological aspects of such equations. By
means of this formalism, we are able to reformulate the evolution problem of a parallel
spinor as a system of fow equations for a family of functions {βt}t∈I and a family of
coframes {et}t∈I on an appropriately chosen Cauchy hypersurface Σ ⊂ M , which defnes
the notion of parallel spinor fow. Such initial value problem imposes constraint equations
on Σ, which conform the parallel Cauchy di˙erential system and whose variables are the
so-called parallel Cauchy pairs (e, Θ) given by a coframe e and a symmetric two-tensor Θ on
Σ. Comparing the fow dictated by the vacuum Einstein feld equations together with the
parallel spinor fow on common admissible initial data, we are able to state an initial data
characterization of parallel spinors on Ricci fat Lorentzian four-manifolds, discovering the
following result.

Theorem I.3. A globally hyperbolic Lorentzian four-manifold (M, g) admitting a paral-
lel spinor is Ricci fat if and only if there exists an adapted Cauchy hypersurface whose
Hamiltonian constraint vanishes.

Afterwards we investigate in more detail the parallel Cauchy di˙erential system, charac-
terizing all parallel Cauchy pairs on simply connected Cauchy surfaces and classifying all
compact three-manifolds admitting parallel Cauchy pairs. Later we fnd all left-invariant
parallel Cauchy pairs on simply connected Lie groups, specifying when they are allowed
initial data for the Ricci fat equations. Next we classify all left-invariant parallel spinor
fows on simply connected three-dimensional Lie groups, elaborating on some of their prop-
erties. We obtain furthermore the necessary and suÿcient conditions for such fows to be
immortal. Finally, we study a particularly simple subclass of parallel spinor fows, which
we characterize geometrically and solve explicitly in some concrete cases.

58



�

Introduction

Chapter 6 (based on [9])

We classify all self-dual Einstein four-manifolds invariant under a principal action of the
(three-dimensional) Heisenberg group H with non-degenerate orbits. This is motivated
by the fact that the one-loop deformed universal hypermultiplet metrics [120, 157] have
as isometry group O(2) n H [159], so that it is interesting to elucidate whether it suÿces
to recover these deformed metrics to only demand symmetry under the Heisenberg group
together with a di˙erent condition, which we choose to be self-duality. We allow for
Riemannian and neutral-signature metrics, permitting additionally in the latter case the
possibility for the Heisenberg center to be of any causal character (timelike, lightlike or
spacelike). Up to an overall sign in the metric, the manifolds under consideration can be
decomposed as (I × H, εdt2 + χt), being I ⊂ R an open interval parametrized by time t,
ε = ±1 and {χt}t∈I a family of Riemannian or Lorentzian metrics on H, respectively.
After introducing the notation to be used in the chapter, we begin by showing that the
causal character of the Heisenberg center in Einstein manifolds with Heisenberg symme-
try is preserved along time, which suggests to divide the study of the neutral-signature
case in terms of the causal character of the Heisenberg center. Then we determine all
quaternionic (para)Kähler four-manifolds admitting an isometric principal action of the
Heisenberg group with non-degenerate orbits. In addition to the lightlike case for neutral-
signature metrics, which we also explore, we identify the negatively-curved (respectively
positively-curved) in the Riemannian (resp. neutral-signature) case with the quater-
nionic (para)Kähler geometries arising from the one-loop deformed spatial Supergrav-
ity c-map (resp. temporal and Euclidean Supergravity c-maps) [136] metrics, fnding
as well counterparts with positive (resp. negative) curvature. Later we also classify
all (para)hyperKähler four-manifolds with an isometric principal action of the Heisen-
berg group with non-degenerate orbits. Both for (para)hyperKähler and quaternionic
(para)Kähler geometries, the metric typically possesses the following schematic form:

3X 
2 j k g = εdt + ajk(t) ηjke e , (I.141)t0 t0 

j,k=1 

iwhere (e ) denotes a certain left-invariant coframe of the Heisenberg group, ηjk stands fort0 
the three-dimensional Euclidean or Minkowski metric (in an orthonormal or Witt basis),
t ∈ I and ajk ∈ C∞(I) for i, j = 1, 2, 3 is a symmetric matrix of positive-defnite functions.
Finally, we also study when the corresponding (Riemannian or neutral-signature) metrics
are (geodesically) complete.

Chapter 7 (based on [2])

In the last chapter of the thesis we explore the possibility of using three-dimensional con-
tact structures for the construction of Lorentzian six-manifolds with Ricci fat metric-
compatible connections with isotropic, totally antisymmetric, closed and co-closed torsion,
which in turn provide solutions of six-dimensional minimal Supergravity coupled to a tensor
multiplet with constant dilaton. For that, we begin by introducing the notion of ε -contact
structure, which encompasses as particular cases the usual three-dimensional contact Rie-
mannian, contact Lorentzian and para-contact metric structures, but which also allows for
a null Reeb vector feld. Next we devote ourselves to the study of ε -contact structures
with lightlike Reeb vector feld, which seem not to have been previously explored in the
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literature. We call them null contact structures. We introduce the associated notions of
Sasakianity and K-contactness and classify all null contact structures on simply connected
three-dimensional Lie groups which are left-invariant.
Afterwards we introduce the concept of εη -Einstein contact structures, which include par-
ticular cases of the usual η -Einstein Riemannian and Lorentzian (para-)contact metric
three-manifolds for non-null Reeb vector felds. We also classify all left-invariant εη -
Einstein contact structures on simply connected three-dimensional Lie groups. Later we
prove the following theorem, which establishes the link between εη -Einstein contact struc-
tures and solutions of Supergravity in six dimensions:

Theorem I.4. Let (N, χ, αN , εN ) and (X, h, αX ) be εη -Einstein contact structures, where
(N, χ) and (X, h) are Lorentzian and Riemannian three-manifolds, respectively. Then, for
appropriate choices of parameters in the εη -Einstein condition (specifed in Theorem 7.5),
the oriented Cartesian product manifold

M = N × X , (I.142)

carries a family of solutions of six-dimensional minimal Supergravity coupled to a tensor
multiplet with constant dilaton given by:

g = χ ⊕ h , Hλ,l = λ νχ + 
l 
(∗ χαN ) ∧ αX + 

l
αN ∧ (∗ hαX ) + λ νh (I.143)

3 3 

and parametrized by (λ, l) ∈ R2 . Equivalently, (M = N × X, g = χ ⊕ h) admits a
bi-parametric family of metric-compatible Ricci fat connections rHλ,l with totally skew-
symmetric, isotropic, closed and co-closed torsion Hλ,l.

Finally, we illustrate the type of solutions of six-dimensional Supergravity which are ob-
tained through the previous theorem by using the left-invariant εη -Einstein contact struc-
tures previously mentioned.

Note on conventions

Unless otherwise stated, we use natural units c = ~ = 1 all along the thesis, leaving
Newton’s gravitational constant G explicit. As explained before, D will stand for the
number of spacetime dimensions, while d = D − 1 will be the dimension of the boundary
CFT theory in the holographic context (Chapter 4). Similarly, we will be using the mostly-
plus signature for Lorentzian metrics, (−, +, +, . . . , +). We will be following two defnitions
of the Riemann tensor that di˙er by a minus sign. In the First Part of the thesis, we follow
Wald’s convention [342] for the Riemann tensor:

rµrν ωρ −rν rµωρ = Rµνρ 
σωσ . (I.144)

On the other hand, in the Second Part of the thesis, the Riemann curvature tensor Rg is
given by the conventions of Kobayashi and Nomizu [479]:

Rg(u, v)w = rurvw −rvruw −r[u,v]w , u, v, w ∈ X(M) . (I.145)

Nonetheless, the subsequent Ricci curvatures are defned so as they coincide. In particular,
Rµν = Rµαν 

α and Ricg(X, Y ) = Tr(Rg(·, X)Y ). The scalar curvature is denoted by either
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R = Rµ
µ or Scalg = Trg(Ricg). Unless otherwise stated, we will assume the connection is

given by the Levi-Civita one. Also, while the Lie derivative of a tensor T along a vector ξ 
will be expressed as LξT in the First Part of the thesis, we will denote such derivative as
LξT in the Second Part.
On the other hand, given a certain (gravitational) action functional:Z p

I[gµν , φ
i] = dD x |g|L(gµν , Rµνρσ, φ

i , rφi) , (I.146)

depending on generic (possibly tensorial) felds φi , the corresponding equations of motion
are given by the corresponding Euler-Lagrange equations, which we denote as:

1 δI 1 δI p = 0 , p = 0 . (I.147)
|g| δgµν |g| δφi 

Analogously, in case we want to emphasize the Lagrangian (density) from which the action
functional is constructed, we may equivalently write the corresponding equations of motion�p p�−1 δ( |g|L) δL δL 
as |g| = 0 (or even just as = 0) and = 0, denoting the derivative

δgµν δgµν δφi 

operation with δ the functional or Euler-Lagrange derivative.
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First Part

Higher-order gravities 



1 
All higher-order gravities as Generalized

Quasitopological Gravities

Even in the purely gravitational case, there exist infnitely many instances of higher-order
gravities one may think of. Moreover, the corresponding equations of motion are typically
of fourth-order in derivatives, which obscures the study of their physical properties. These
two features have generically led to the belief that the problem of understanding generic
features of higher-derivative gravities is practically unmanageable. However, as an attempt
to try to circumvent this problem, we may wonder: is it possible to fnd a very special class
of higher-order gravities which enjoy for amenability to computations and, furthermore,
span —in some sense— the whole set of higher-curvature gravities?

In this frst chapter of the thesis1, we will devote ourselves to answer this question in
the positive. In particular, we will show that such special class of theories is provided by
the so-called Generalized Quasitopological Gravities (GQGs) [78,79,216,248,249,252,253],
which were already described in Section I.3.3. They are characterized by admitting non-
hairy generalizations of the (static and spherically symmetric) Schwarzschild black hole
determined by a single metric function f(r) = −gtt = 1/grr whose associated equation
of motion is at most second-order. These properties, already known in the literature,
guarantee that GQGs satisfy the frst requirement above of being manageable enough
so as to make explicit computations, at least in situations with a suÿcient amount of
symmetry.

Interestingly enough, we will be able to show that GQGs also fulfll the second con-
dition previously proposed — they conform as well a generating set of the space of all
higher-derivative gravities. In particular, we will prove that if a higher-order gravity con-
tains no explicit covariant derivatives of the curvature or, in case it does possess such
covariant derivatives, it is either an eight-derivative theory at most or just contains terms
with up to two covariant derivatives of the curvature, then it can be mapped via (pertur-
bative) feld redefnitions to a GQG. Since feld redefnitions, at the end of the day, are no
more than a change of variables, physical observables should remain invariant and in this
way we may interpret that GQGs provide a very convenient spanning set for the study of
generic properties of any (purely gravitational) higher-derivative theory.

Having said this, the chapter is organized as follows. First, we present the defnition
of GQGs and their most relevant properties. Next, we study the generic e˙ects of feld re-

1As aforementioned, the content of this chapter is mainly based on [1]. One of the authors of the
previous work presented his PhD thesis [89] including selected parts of [1] before the submission of the
present thesis, while other author of [1] will defend his PhD thesis [480] with contents from [1] after the
submission of the present PhD thesis but before its public defense.
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defnitions in higher-curvature gravities. Then we show explicitly how to map all quadratic
and cubic gravities to GQGs via feld redefnitions and that any higher-order gravity with
no covariant derivatives of the curvature is equivalent to a GQG once feld redefnitions are
considered. In the case of terms of covariant derivatives, we prove that all theories with at
most eight-derivative terms or containing densities with at most two covariant derivatives
of the curvature can be mapped as well to GQGs. Afterwards we illustrate some of these
points by mapping the higher-order theory arising from the gravity sector of Type IIB
Supergravity in AdS5 up to order O(α03) to a GQG and we conclude with a discussion of
our fndings.

1.1 Generalized Quasitopological Gravities (GQGs)

The action of any GQG [79] can be written schematically as" #Z p XX1 
`2(n−1) (n) (n)

I = dD x |g| −2Λ + R + µ R , (1.1)in in16πG 
n=2 in 

(n) (n)where ` is some length scale, µ are dimensionless couplings, andR are particular linearin in 
combinations of densities constructed in each case from contractions of n Riemann tensors
and the metric. The subindex in refers to the number of independent GQG invariants at
each order n.

The technical requirement which makes a generic L(gab, Rabcd, raRbcde, . . . ) theory
belong to the GQG class is the following. Consider a general static and spherically sym-
metric ansatz (SSS),

2dr2 2ds = −N(r)2f(r)dt + + r 2dΩ2 (1.2)SSS (D−2) ,f(r) 

and let LN,f be the e˙ective Lagrangian which results from evaluating
p

|g|L in (1.2),
namely

LN,f (r, f(r), N(r), f 0(r), N 0(r), . . . ) = N(r)r D−2L|SSS , (1.3)

(up to an irrelevant angular contribution). Also, let Lf = L1,f , i.e., the expression resulting
from imposing N = 1 in LN,f .

Defnition 1.1. We say that L(gab, Rabcd, raRbcde, . . . ) belongs to the GQG family if the
Euler-Lagrange equation of Lf vanishes identically, i.e., if

∂Lf d ∂Lf d2 ∂Lf− + − · · · = 0 , ∀ f(r) . (1.4)
∂f dr ∂f 0 dr2 ∂f 00 

The consequences of imposing (1.4) have been explored quite extensively by now,
and they can be summarized as follows.

1. When linearized around any maximally symmetric background, the equations of
motion of GQGs become second-order i.e., they only propagate the usual mass-
less and traceless graviton characteristic of Einstein gravity on such backgrounds
[78,79,216,248,249,252,253].2

2Note that higher-curvature gravities satisfying property “1.” —and not necessarily the rest of properties
appearing in the list, nor condition (1.4)— have been studied in several other papers, e.g., [88, 481–490].
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2. They have a continuous and well-defned Einstein gravity limit, which corresponds
to setting µi 

( 
n 

n) → 0 for all n and in.

3. They admit generalizations of the (asymptotically fat, de Sitter or Anti-de Sitter)
Schwarzschild black hole —i.e., solutions which reduce to it in the Einstein gravity
limit— characterized by a single function f(r) [79,216,248,249,252,253]. For them,
N(r) = 1 (or some other constant) in (1.2) and gttgrr = −1.

4. The metric function f(r) is determined from a di˙erential equation of order ≤ 2 —
which can be obtained from the Euler-Lagrange equation of N(r) associated to the ef-
fective Lagrangian LN,f defned in (1.3)3—when the action does not include covariant

(n)derivatives of the Riemann tensor.4 Schematically, E [r, f(r), f 0(r), f 00(r); µ ] = 0.in 
In that case, there are typically three situations:

• The corresponding density does not contribute at all to the equation and then
we call it trivial.

• The density contributes to the equation with an algebraic dependence on f(r) —
namely, with terms involving powers of f(r). This is the case of Quasitopological
[238,239,241,242,249] and Lovelock [225,226] terms. This kind of contributions
only exist for D ≥ 5.

• The density contributes to the equation with terms containing up to two deriva-
tives of f(r). This is the case of Einsteinian Cubic Gravity inD = 4 [78,248,252].

It has been proven that non-trivial GQGs exist in any number of dimensions, includ-
ing D = 4, and for arbitrarily high orders of curvature [250, 251]. These references
also showed that the equation that determines f(r) can only be modifed in a sin-
gle way at each order in curvature in D = 4 and in two ways in D ≥ 5. Namely,
given a curvature order n, in D = 4 there is a linear combination of parametersP 
µ(n) = cin µ

(n) such that the contribution to the equation of f(r) will only de-in in 

pend on µ(n): as long as the equation of f(r) is concerned, we can turn on and o˙
as many densities as we want, provided at least one of them (corresponding to a
nontrivial density) is nonzero at each order in curvature [253]. The explicit form of
the equation reads [250, 251,253]

2GM Λr2 X 
(n)`2(n−1) f

0(n−3) � f 03 (n − 3)f + 2 
f 02(1 − f) − − − µ + (1.5)

rn−2r 3 n (n − 1)r 
n � 
2 1 � � 

− f(f − 1)f 0 − ff 00 f 0 r − 2(f − 1) = 0 ,
2r r 

where M stands for the ADM mass of the solution [82,491,492].

In D ≥ 5 we can split the couplings in two sums of couplings. The frst group
of densities, belonging to the Quasitopological subset, will modify the equation of
f(r) algebraically, whereas the second group will introduce derivatives of f(r). The

δLN,f 3Namely, the equation reads = 0, and it can be proven that it takes the form of a total
δN N =1 

derivative for any theory satisfying (1.4).
4When it does, the di˙erential equation would be of order ≤ 2m+2, where m is the number of covariant

derivatives of the term with the greatest number of them.
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equation of f(r) will only depend on a particular combination of couplings of each
one of these groups [79, 249–251]. Schematically we haveXh i 

(n) EQG (n) EGQGEE[r, f(r)] + µ [r, f(r)n] + µ [r, f(r), f 0(r), f 00(r)] = 0 , (1.6)QG n GQG n 
n 

where EE[r, f(r)] is the Einstein gravity contribution

216πGM 2Λr EE[r, f(r)] = (1 − f) − − , (1.7)
D−3(D − 2)Ω(D−2)r (D − 1)(D − 2) 

(n) (n)where Ω(D−2) = 2π(D−1)/2/Γ[(D − 2)/2] and µ and µ stand for the sums of allQG GQG 
couplings corresponding to densities contributing algebraically and with derivatives
of f(r) to the equation respectively. For planar and hyperbolic horizons, exactly
the same story holds with small modifcations in the corresponding equations for the
metric function.

5. Both when the equation is algebraic and when it is di˙erential of order 2, given a fxed
set of µi 

( 
n 

n) , the equation admits a single black-hole solution representing a smooth
deformation of Schwarzschild’s one, which is completely characterized by its ADM
energy. For spherically symmetric confgurations, the corresponding metric describes
the exterior feld of matter distributions [216].

6. The thermodynamic properties of black holes can be computed analytically by solving
a system of algebraic equations without free parameters. At least in D = 4, black
holes typically become stable below certain mass, which substantially modifes their
evaporation process [253].

7. A certain subset of GQGs admit additional solutions of the Taub-NUT/Bolt class
in even dimensions [258]. Similarly to black holes, these are also characterized by a
single metric function and their thermodynamic properties can be computed analyt-
ically.

8. A (generally) di˙erent subset of four-dimensional GQGs also gives rise to second-
order equations for the scale factor when evaluated on a FLRW ansatz, giving rise
to a well-posed cosmological evolution [260, 262, 263]. Remarkably, an infationary
period smoothly connected with late-time standard ΛCDM evolution is naturally
generated by the higher-curvature terms.

In addition to this more or less structural properties, GQGs have been considered in
various contexts, and many interesting additional properties and applications explored
—see e.g., [254–257,259,261,264–267,493,494].

At cubic order in curvature, the most general (nontrivial) GQG can be written asZ p h � �idDx |g| (2) (3) (3) (3)
I = −2Λ + R + `2 µ X4 + `4 µ X6 + µ ZD + µ SD , (1.8)1 1 2 316πG 

where we used the notation of (1.1) to denote the couplings. Here, X4 and X6 stand for the
dimensionally-extended Euler quadratic and cubic densities, also known as Gauss-Bonnet
and cubic Lovelock terms, respectively,

X4 =+ R2 − 4RabR
ab + RabcdR

abcd , (1.9)
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c dR e f R a b cd ef ab RdeX6 = − 8Ra b c d e f + 4Rab Rcd Ref − 24RabcdR
abc

e 

+ 3RabcdR
abcdR + 24RabcdR

acRbd + 16Rb Rb
cRa − 12RabR

abR + R3 . (1.10)a c 

X4 is topological in D = 4 and trivial for D ≤ 3, while X6 is topological in D = 6 
and trivial for D ≤ 5. On the other hand, ZD is the so-called Quasitopological Gravity
density [238, 239] � 

1 3(3D − 8)b e a cZD =+ Ra
dRb

f Re + RabcdR
abcdRc d f (2D − 3)(D − 4) 8 

3(3D − 4)− Ra
cRc

aR − 3(D − 2)RacbdR
acb

eR
de + 3DRacbdR

abRcd (1.11)
2 � 

a+6(D − 2)Ra
cRc

bRb +
3D

R3 . 
8 

Note that when only the above three terms are included in addition to the usual Einstein-
Hibert action, the equation satisfed by the metric function f(r) is algebraic —which
partially explains why they were identifed before the last term, SD. We also stress that
for D ≥ 6, ZD a˙ects the equation of f(r) in the same way as X6 does. For D = 5,
X6 is trivial, and the e˙ect of Z5 is nontrivial —from this perspective, we could have
just omitted X6 from (1.8). These observations are in agreement with our comments in
“4.” above regarding the fact that at each order and for each D there is a single way of
modifying the equation of f(r) algebraically (and another single way involving derivatives
of f(r) —see below).

When SD is included, the equation becomes di˙erential of order 2. The explicitly
form of this density can be chosen to be [79]

(38 − 29D + 4D2)c dR e f b Rde −SD = + 14Ra b c d Re
a
f + 2RabcdR

abc
e RabcdR

abcdR 
4(D − 2)(2D − 1) 

2(−30 + 9D + 4D2) 4(66 − 35D + 2D2))− Rb Rb
cRa (1.12)RabcdR

acRbd − a c(D − 2)(2D − 1) 3(D − 2)(2D − 1) 
(34 − 21D + 4D2) (30 − 13D + 4D2)

+ RabR
abR − R3 . 

(D − 2)(2D − 1) 12(D − 2)(2D − 1) 

The explicit form of the equation of f(r) corresponding to (1.8) can be found e.g., in [79].
In D = 4, S4 is usually rewritten in terms of the so-called Einsteinian Cubic Gravity
density,5 defned as [78]

+ Rcd ef RabP = 12Ra
c
b
dR c

e
d
f Re

a
f
b 

abRcd ef − 12RabcdR
acRbd + 8Ra

b Rb
cRc

a , (1.13)

which was in fact the frst GQG identifed beyond the Lovelock and Quasitopological
ones [248,252]. Both densities are connected through [79]

S4 − 
1 X6 + 4C = P , (1.14)
4 

5The original construction of Einsteinian Cubic Gravity in [78] was based on the fact that it satisfes
properties “1.” and “2.” for general dimensions, and it does so in a way such that the relative coeÿcients
appearing in its defnition in (1.13) are the same for general D —just like for Lovelock theories. It was
later realized that the four-dimensional version of the theory satisfes the rest of properties listed.
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where C is an example of a trivial GQG, in the sense that it has no e˙ect on the equation
of f(r), as its contribution to it vanishes identically. It is given by

1 1 C =
2 
Ra

b Rb
aR − 2RacRbdRabcd − 

4 
RRabcdR

abcd + RdeRabcdR
abc 

e . (1.15)

Although we will not be particularly interested in trivial GQGs, we emphasize that those
terms are only trivial for SSS metrics, but they can —and they do [260, 262, 263]— play
an important role when other kinds of metrics are considered.

As we mention later on, the structure of GQGs above described seems to extend to
general dimensions and arbitrary orders in curvature. So far, examples of GQGs including
covariant derivatives of the Riemann tensor have not appeared in the literature, but we are
confdent that they do exist as well —see Sections 1.5 and 1.7 for discussions on the role
played by invariants containing covariant derivatives of the Riemann tensor in our setup.

1.2 Field redefnitions in higher-curvature gravities

In this section we explore some of the e˙ects resulting from redefning the metric tensor
on higher-curvature gravities. In subsection 1.2.1, we make some technical comments
regarding metric redefnitions involving derivatives of the metric itself and explain how
on-shell actions evaluated on solutions related by metric redefnitions agree with each
other. Then, in subsection 1.2.2, we explain how higher-curvature densities involving Ricci
curvatures —or, more generally, densities which become a total derivative when evaluated
on Ricci fat metrics— can be removed from the gravitational e˙ective action by convenient
metric redefnitions.

1.2.1 On-shell action invariance

Let us consider the most general metric-covariant theory of gravity6Z p � � 
I[gab] = dD x |g|L g ab, Rabcd, reRabcd, rerf Rabcd, . . . . (1.16)

We are interested in determining how (1.16) transforms under a redefnition of the metric
tensor gab of the form

gab = g̃ab + Q̃ab , (1.17)

where Q̃ab is a symmetric tensor constructed from the new metric g̃ab. Ideally, we would like
the feld redefnition to be algebraic, so that the relation between gab and g̃ab is functional.
However, the most general tensor we can build using the metric without introducing higher
derivatives is proportional to the metric itself. Hence, Q̃ab generically involves curvature
tensors, and (1.17) is a di˙erential relation. The action Ĩ  for the new metric g̃ab is simply
obtained by substituting (1.17) in the original action, namely

Ĩ[g̃ab] = I[g̃ab + Q̃ab] . (1.18)

Observe that since (1.17) involves derivatives of the metric, extremizing the action with
respect to g̃ab is, in general, inequivalent from extremizing it with respect to gab. Whenever

6We also assume that parity is preserved so that we do not have to include terms containing the
Levi-Civita symbol. Nevertheless, all results in this section also apply when those terms are included.
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sol solg is a solution of the original theory, the relation (1.17) always produces a solution g̃ab ab 
of the transformed theory when we invert it. However, the converse is not true: there exist
solutions of the equations of motion obtained from the variation with respect to g̃ab which
do not produce a solution of the original theory when we apply the map (1.17). The reason
behind this is the presence of extra derivatives in the feld redefnition. This increases the
number of derivatives in the equations of motion derived from Ĩ, which introduces spurious
solutions that need be discarded. This issue is further discussed in Appendix 1.A. Provided
it is taken into account, both theories, I and Ĩ, are equivalent.

Note that when we keep only the meaningful solutions —i.e., those which are related
by (1.17)— the corresponding on-shell actions match,h i h i 

sol solĨ  g̃ = I g . (1.19)ab ab 

Since, e.g., black hole thermodynamics can be determined —in the Euclidean path-integral
approach [81]— by evaluating the on-shell action, this simple observation proves that black
hole thermodynamics can be equivalently computed in both frames. The same conclusion
can be reached [371] using Wald’s formula [366] —see [495–499] for additional discussions
regarding this issue.7

sol solOf particular interest for us will be situations in which both g and g̃ representab ab 
static and spherically symmetric black holes. As argued in [371], feld redefnitions of the

solform (1.17) preserve both the asymptotic and horizon structures of gab , so they map black
holes into black holes. Particularizing even more, from the following subsection on, we will
consider higher-derivative theories controlled by small parameters and perturbative feld
redefnitions weighted by them. Ultimately, one of the reasons for considering redefnitions
mapping generic higher-derivative theories to GQGs is the fact that the equations of motion
of the latter on static and spherically symmetric confgurations become particularly simple
and universal. In this particular setup, (1.19) will relate the on-shell action corresponding
to a certain generalization of the Schwarzschild-(A)dS black hole (continuously connected
to it) for a given higher-derivative theory at leading order in the corresponding coupling
to the on-shell action of the black hole solution corresponding to the transformed GQG.
We will provide an explicit example of this match between on-shell actions in Section 1.6.

1.2.2 Ricci curvatures and reducible densities

Let us now determine how the redefnition (1.17) changes the action (1.16). For that, we
assume the redefnition to be perturbative, i.e., we treat Q̃ab as a perturbation and we
work at linear order. This is enough for our purposes, since, following the EFT approach,
we will also expand the action in a perturbative series of higher-derivative terms. Observe
that in this case the relation (1.17) can be inverted as

g̃ab = gab − Qab + O(Q2) , (1.20)

where Qab has the same expression as Q̃ab but replacing g̃ab → gab. Let us introduce the
equations of motion of the original theory as

Eab = p 1 δI 
. (1.21)

|g| δgab 

˜7In order to prove this statement rigorously, it is necessary to assume some mild conditions on Qab,
namely, its fall-o˙ at infnity should be fast enough. All redefnitions we will consider are well-behaved in
this sense.
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Then, at linear order in Q̃ab, the transformed action Ĩ  readsZ p h i 
˜ dD ˜ Q̃ab + O(Q2)I = x |g̃| L − Ẽab . (1.22)

where the tildes denote evaluation on g̃ab. Thus, the redefnition introduces a term in
the action proportional to the equations of motion of the original theory. Let us be more
explicit about the form of the Lagrangian by expanding it as a sum over all possible
higher-derivative terms " #Z p X∞1 

dD `2(n−1)L(n)I = x |g| R + , (1.23)
16πG 

n=2 

where ` is a length scale and L(n) represents the most general Lagrangian involving 2n 
derivatives of the metric. The explicit form of the invariants at orders n = 2 and n = 3 can
be found below in (1.29) and (1.30) respectively. The number of terms grows very rapidly,
and the n = 4 Lagrangian already contains 92 terms [500].8

Let Q̃(k) be a symmetric tensor containing 2k derivatives of the metric. Then, weab 
perform the following feld redefnition

gab = g̃ab + `2kQ̃(k) 
. (1.24)ab 

Then, the transformed action (1.22) reads

Z k � � ∞
dDx 

p
|g̃| 
" X X # 

˜ ˜ `2(n−1)L̃(n) + `2k L̃(k+1) − R̃ab ˆ(k) `2(n−1)L̃0(n)I = R + Qab + ,
16πG 

n=2 n=k+2 
(1.25)

where all quantities are evaluated on g̃ab, and9

ˆ(k) ˜(k) 1 
Q̃(k) Q̃(k) ab ˜(k)Q = Q − g̃ab , = g̃ Q . (1.26)ab ab ab2 

Hence, all terms containing up to 2k derivatives of the metric remain una˙ected, while
Rab ˆ(k)those with 2(k + 1) derivatives receive a correction of the form − ˜ Q The higher-ab .

order terms also get corrections which depend in a more complicated way on Q̃(k) If theab .
starting action already contained all possible terms, the net e˙ect of these corrections is
just to change the couplings in the Lagrangian. We denote these modifed terms as L̃0(n).

From this, it is clear that performing this type of feld redefnitions order by order,
starting at k = 1, we can remove all terms in the action which involve contractions of the
Ricci tensor —except, of course, the Einstein-Hilbert term. At each order, it suÿces to

(k) (k)choose Q̃ in (1.24) such that Q̂ equals the tensorial structure which appears contractedab ab 

8Ref. [500] provides the number of linearly independent invariants, but many of them di˙er by total
derivative terms, which are irrelevant for the action. The number of relevant terms is, in general, much
smaller —yet quite large. For instance, besides the 3 quadratic densities and the 10 cubic densities which
we include in (1.29) and (1.30), [500] adds rar aR to the former list, and 7 more terms of the form:

a b a a b c a bRcd aRbc aRbcde rar rbr R, Rrar R, r r RRab, Rab rcr Rab, r r Rcadb, r rcRba, r raRbcde to
the latter. All these terms are either total derivatives or can be written in terms of the others plus total
derivatives, so they can be discarded —see e.g., [239, 240].

(k) 
= (Rab − 1 ab (k) 

= Rab ˆ(k)9We have EabQ̃ g R)Q̃ Q .ab 2 ab ab 
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with Rab in the corresponding density. In other words, any term containing Ricci curvatures
is meaningless from the EFT point of view, and we are free to add or remove terms of that
type. From a di˙erent perspective, it has been argued —e.g., in [501]— that if some higher-
curvature correction controlled by `2k involves operators which vanish on the equations of
motion produced by the lower-order action, the relevant physics is not a˙ected at O(`2k),
and we can just ignore it. For the gravitational e˙ective action, this is equivalent to the
possibility of removing all terms involving Ricci curvatures.

Observe that in (1.23) we (intentionally) did not include a cosmological constant.
When we add it, the e˙ect of the redefnition (1.24) is" Z p k−1 � �X 

˜ dDx |g̃| 
`2(n−1)L̃(n) + `2(k−1) L̃(k) 2(Λ`2) 

Q̂(k)I = −2Λ + R̃+ + 
16πG (D − 2)

n=2 # (1.27)� � ∞X 
+`2k L̃(k+1) − R̃ab ˆ(k) `2nL̃0(n)Qab + . 

n=k+2 

Namely, not only the terms involving 2(k + 1) derivatives of the metric get modifed, those
involving 2k derivatives also receive a correction. This is a complication with respect to
the case without cosmological constant. If we remove terms involving Ricci curvatures at
a given order, the feld redefnition of the following order will introduce a correction of

ˆthe form 2(Λ`2) Q(k) which will generically include again terms involving Ricci curvatures.(D−2)
Hence, the process cannot be carried out order-by-order because all steps are coupled. If
one wants to remove all the terms with Ricci curvature up to order 2k, it is necessary to
consider the most general feld redefnition up to that order, i.e., including all the terms
Q̃

(m) of order m ≤ k at the same time. Nevertheless, we stress that this is just a technicalab 
complication: fnding the precise feld redefnition that removes the corresponding Ricci
curvature terms is more involved, but it can certainly be done.

Motivated by the above analysis, let us close this section with a defnition which will
be useful in the remainder of the chapter.

Defnition 1.2. A curvature invariant is said to be reducible if it is a total derivative when
evaluated on any Ricci fat metric. The rest of them are said to be irreducible.

Note that this trivially contains the case in which the invariant vanishes on Ricci
fat metrics. Intuitively, the irreducible terms correspond to those formed purely from con-
tractions of the Riemann tensor, without explicit factors of Ricci curvature. As we have
explained, all reducible terms can be removed or introduced by using feld redefnitions,
whereas the irreducible ones cannot. Therefore, the most general higher-derivative gravi-
tational e˙ective action is obtained by including all possible irreducible terms. Then, we
are free to add as many reducible terms as we wish: these would simply correspond to
di˙erent frame choices.

1.3 All quadratic and cubic gravities as GQGs

In the absence of cosmological constant, the gravitational e˙ective action can be written
as a series of operators with an increasing number of derivatives of the metric:Z ∞p X `2n−21 

I(2n)I = dD x |g|R + . (1.28)
16πG 16πG 

n=2 
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Again, ` is some length scale, and I(2n) is the most general action involving curvature
invariants of order n. Ignoring total derivatives, the four- and six-derivative actions readZ h i 
I(4) dD α1R

2 + α2RabR
ab + α3RabcdR

abcd = x 
p

|g| , (1.29)Z p h 
I(6) c dR e f b cd ef ab Rde = dD x |g| β1Ra b c d Re

a
f + β2Rab Rcd Ref + β3RabcdR

abc
e (1.30)

+β4RabcdR
abcdR + β5RabcdR

acRbd + β6R bRb
cR a + β7RabR

abRa ci 
dRab aR+β8R

3 + β9rdRabr + β10raRr . 

In the case of the four-derivative action, the Riemann-squared term can be traded by the
Gauss-Bonnet density (1.9), so that the most general action reads10Z p h i 

I(4) dD α1R
2 + α2RabR

ab = x |g| + α3X4 . (1.31)

Similarly to the quadratic case, we can trade two of the cubic invariants involving contrac-
tions of the Riemann tensor alone by the cubic Lovelock density X6, defned in (1.10), and
one of the cubic Generalized Quasitopological densities, SD, defned in (1.12). Therefore,
I(6) can be alternatively written asZ p h 
I(6) dD Rde = x |g| β1X6 + β2SD + β3RabcdR

abc
e + β4RabcdR

abcdR + β5RabcdR
acRbd i 

dRab+β6Ra
bRb

cRc
a + β7RabR

abR + β8R3 + β9rdRabr + β10raRr aR . (1.32)

Note that in D ≥ 5, we can alternatively replace either SD or X6 by the cubic Quasitop-
ological term ZD defned in (1.11). Also, in D = 4 we can replace S4 by the Einsteinian
Cubic Gravity density (1.13) using (1.14). Regardless of these choices, we observe that
in addition to the frst two terms, belonging to the GQG family, we are left with a series
of reducible terms which, as we have argued in the previous section, can be removed by
convenient feld redefnitions of the metric.

The explicit redefnition which removes all terms but X4, X6 and SD goes as follows.
First, in order to remove the R2 and RabR

ab terms, we perform

`2 R̃ 
gab = g̃ab + α2 ̀

2R̃ab − g̃ab(2α1 + α2) . (1.33)
D − 2 

Then: Z p
I(4) → Ĩ(4) = dD x |g̃|α3X̃4 . (1.34)

Now, this redefnition also a˙ects the higher-order terms, but since we are starting from
the most general theory, the only e˙ect is to change the coeÿcients of these terms. In
particular, for the six-derivative ones: βi → β̃i. Then, the following redefnition of the
metric h ̃

˜ R̃ ecd R̃ef ˜ ˜ e ˜ ˜ ˜ 2 ˜g̃ab = g̃ab + `4 β3Raecd b + β̃5 Raebf + β̃6Ra Rbe + β̃7RR̃ab − β̃9r Rab (1.35)

10The coeÿcients αi are not the same as in the previous action, but we prefer not to introduce additional
unnecessary notation whenever possible.
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� �� gab 
Refcd( ˜ Ref ( ˜ 2 ˜− 

˜ 
R̃ 

efcd 
˜ β3 + 2β̃4) + R̃ef ˜ β5 + β̃6) + R̃2(β̃7 + 2β̃8) − r̃ R(β̃9 − 2β̃10) ,

D − 2 

leaves the four-derivative terms una˙ected, while cancelling all six-derivative terms that
contain Ricci curvatures, Z q h i 

Ĩ(6) → Ĩ(6) dD ˜ ˜ ˜= x |g̃| β1X6 + β̃2SD . (1.36)

Hence, the most general action can be written, after all, asZ 
1 q h � � i 

˜ dD ˜ ˜ ˜ ˜ ˜I = x |g̃| R + `2α3X4 + `4 β1X6 + β̃2SD + O(`6) , (1.37)
16πG 

which only contains GQG terms, as anticipated —compare with (1.8). In D = 4, the cubic
Lovelock density vanishes identically and the Gauss-Bonnet term is topological, which
leaves us with Z 

1 p � � 
d4I = x |g| R + β`4P + O(`6) , (1.38)

16πG 
where we traded S4 by the ECG density P using (1.14) and renamed the gravitational
coupling. Hence, Einsteinian Cubic Gravity [78] is (up to feld redefnitions) the most
general four-dimensional gravitational e˙ective action we can write including up to six
derivatives of the metric.11

1.4 All L(gab, Rabcd) gravities as GQGs

Let us now move on to a more general case, namely, general higher-curvature gravities
constructed from arbitrary contractions of the metric and the Riemann tensor. In addition
to the notion of reducible densities introduced in Section 1.2, it is convenient to defne here
another concept:

Defnition 1.3. We say that a curvature invariant L is completable to a Generalized Quasitop-
ological density (or just completable for short), if there exists a GQG density Q such that
L −Q is reducible.

In other words, L is completable if by adding reducible terms to it, we are able to
obtain a GQG term. Note that reducible terms are trivially completable to 0. Then, the
question whether any higher-derivative gravity can be expressed as a sum of GQG terms is
equivalent to the following question: Are all irreducible densities completable to a GQG?
We have just found that the answer is positive at least up to six-derivative terms. The
reason is that there exist more independent GQG densities than irreducible terms, which
allowed us to “complete” all of them. In the case of the four-derivative terms, the only
irreducible density is the Riemann-squared term, and this can be completed to the Gauss-
Bonnet density. For the six-derivative terms, we saw that all terms containing derivatives
of the Riemann tensor are reducible, and that the only irreducible terms are the two
Riemann-cube contributions respectively controlled by β1 and β2 in (1.30). In general

ef R
ef 

abR
ab11This is consistent with the result in [501], where P appears traded by the density ∼ Rcd 

cd .
That is also the kind of term which appears in the two-loop e˙ective action of perturbative quantum
gravity [23, 24].

75



���

Chapter 1. All higher-order gravities as Generalized Quasitopological Gravities

dimensions D there are 3 GQGs involving di˙erent combinations of these cubic terms, so
they can always be completed.

Observe that the problem of completing irreducible invariants depends on the num-
ber of spacetime dimensions. In lower dimensions, many of the densities are not linearly
independent, so the number of irreducible densities is signifcantly smaller, and this sim-
plifes the problem of completing them to GQGs. As a consequence, on general grounds
we expect that if all irreducible invariants are completable for high enough D, they will
also be completable for smaller D. For instance, going back to the six-derivative example,
we fnd that the two cubic densities are independent when D ≥ 6. In D = 4, 5 only one
of them is linearly independent, and in D < 4 there is only Ricci curvature so all theories
are reducible to Einstein gravity. On the other hand, the number of independent GQGs
in D = 4 is four, whereas in D > 4 there are only three of them. Therefore, in lower
dimensions there are less irreducible terms and more ways to complete them to a GQG
theory. The lower the dimension, the easier the task.

As we will see in a moment, the problem of completing all invariants constructed
from an arbitrary contraction of metrics and n Riemann tensors —a number which grows
very rapidly with n— can be drastically simplifed. In order to formulate this result, we
will need the following somewhat surprising result:

Lemma 1.1 (Deser, Ryzhov, 2005 [502]). When evaluated on a general static and spherically
symmetric ansatz (1.2), all possible contractions of n Weyl tensors12 are proportional to
each other. More precisely, let (W n)i be one of the possible independent ways of contracting
n Weyl tensors. Then for all i 

(W n)i|SSS = F (r)n ci , (1.40)

where ci is some constant which depends on the particular contraction, and F (r) is an
i-independent function of r given in terms of the functions appearing in the SSS ansatz
(1.2). In other words, the ratio [(W n)1/(W n)2]|SSS for any pair of contractions of n Weyl
tensors is a constant which does not depend on the radial coordinate r.

Proof. When evaluated on (1.2) the Weyl tensor (with two covariant and two contravariant
indices) takes the form

(D − 3)
W ab ab = −2χ(r) w (1.41)cd cd , 

SSS (D − 1) 

where
2f 00) N 0 fN 00(−2 + 2f − 2rf 0 + r 

χ(r) = + (−2f + 3rf 0) + (1.42)
22r 2rN N 

is a function which contains the full dependence on the radial coordinate. On the other
abhand, w is a r-independent tensorial structure which can be written as [502]cd � � 
ab [a b] 2 [a b] [a b] 2 [a b]

w = 2τ ρ − τ σ + ρ σ + σ σ , (1.43)cd [c d] [c d] [c d] [c d](D − 2) (D − 2)(D − 3) 
12Recall that the Weyl tensor is defned as

2 � � 2 
Wabcd = Rabcd − ga[cRd]b − gb[cRd]a + Rga[cgd]b . (1.39)

(D − 2) (D − 2)(D − 1) 
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where τ , ρ and σ are orthogonal projectors defned as13

DX 
τ b = δ0δb ρb = δ1δb σb = δmδb . (1.44)a a 0 , a a 1 , a a m 

m=2 

The precise form of the projectors is not particularly relevant for our purposes. The
important point is that any possible invariant (W n)i constructed from the contraction of
n Weyl tensors will be given by � �n(D − 3)

(W n)i|SSS = −2χ(r) (w n)i , (1.45)
(D − 1) 

where (wn)i stands for the constant resulting from the contraction induced on the w tensors,
which we can identify with ci in (1.40). Therefore, (W n)i|SSS takes the form (1.40) with
F (r) given by the function between brackets.

Now, we are ready to formulate the following result:

Proposition 1.1. Every irreducible curvature invariant constructed out of any number of
Riemann curvature tensors is completable.

Proof. Let us consider frst the case of irreducible curvature invariants with any number
of Riemann tensors and no explicit covariant derivatives of them. Let the order of these
invariants be 2n in derivatives of the metric, i.e., n in curvature. Since they are irreducible
and they do not contain derivatives of the curvature, they are formed from contractions
of a product of n Riemann tensors. We can write schematically Li = (Riemn)i, where the
subscript i denotes again a specifc way of contracting the indices. We can consider an
alternative basis by replacing the Riemann tensor by the Weyl tensor in the expressions
of these densities. Both ways of expressing these invariants are equivalent since they
di˙er by terms containing Ricci curvatures, which are reducible. We denote the densities
resulting from replacing Rabcd → Wabcd everywhere in the Li by L̃i = (W n)i. Let L̃i0 

denote a non-trivial GQG constructed out of the contraction of n Riemann tensors with
no covariant derivatives, which is known to always exist [250]. As we explained in Section
1.1, the condition that determines if a given density belongs to the GQG class exclusively
depends on the evaluation of the density on the general static and spherically symmetric
(SSS) metric ansatz (1.2), i.e., on the way the corresponding density depends on the radial
coordinate r. But from Lemma 1.1 we know that all order-n invariants constructed from
contractions of the Weyl tensor are proportional to each other when evaluated on (1.2), in
the sense that the dependence on the radial coordinate is identical for all i, and given by a
fxed function —which we called F (r)n in (1.40). Then, since by assumption L̃i0 =6 0,

SSS 
all invariants L̃i are proportional to L̃i0 when evaluated on SSS metrics. As a consequence,
the fact that L̃i0 is completable implies that all the rest of densities of order n are.

The result can be reformulated as follows:

Corollary 1.1. Any higher-derivative gravity Lagrangian built out of curvature invariants
without covariant derivatives can be mapped, order by order, to a sum of GQG terms by
implementing redefnitions of the metric of the form (1.17).

13Namely, they satisfy ττ = τ , ρρ = ρ, σσ = σ, τρ = τσ = ρσ = 0. Also, their traces read Trτ = Trρ = 1,
Trσ = D − 2.
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Let us note that the result above shows the existence of a feld redefnition that takes
the Lagrangian L(gab, Rabcd) to a sum of GQGs, but it does not guarantee uniqueness.
Indeed, if at a given order one has several types of non-trivial GQGs —namely, Quasitop-
ological and proper GQG— it is possible to map the Lagrangian to a sum of terms whose
equations for SSS metrics match the ones of the chosen theory (again, Quasitopological or
proper GQG). More generally, the Lagrangian can be mapped to a combination of those
terms. Note that this implies that Quasitopological Gravities and GQGs are related by
feld redefnitions.14

Before closing this section, let us mention that our conclusions also hold if one
includes parity-breaking terms in the e˙ective action, i.e., those that involve the Levi-Civita
symbol �a1...aD . In fact, all such terms vanish for spherically symmetric confgurations,
hence all of them trivially belong to the GQG family.

1.5 Terms involving covariant derivatives of the Riemann
tensor

In the previous section we proved that all L(gab, Rabcd) gravities can be either removed
from the action or written as GQGs using feld redefnitions. Let us now see what happens
with higher-curvature terms involving covariant derivatives of the Riemann tensor. The
role of these terms is less clear. In particular, they have not been used to construct GQGs
so far —although, for what we know, this type of theories should exist as well. On the
other hand, as we saw in Section 1.3, up to six-order in derivatives all these terms are
actually reducible. This is no longer the case at quartic order in curvature.

In order to gain some insight about the general behavior of this kind of terms, let us
consider what happens at that order. There exist 26 independent quartic invariants which
do not involve covariant derivatives of the Riemann tensor, namely —see e.g., [88,249,500],Z p h 
I(8) = dD x |g| γ1RabcdRa

e
c
f R e

g
b
hRfgdh + γ2RabcdRa

e
c
f R e

g
f
hRbgch (1.46)

+ γ3RabcdR ef R g h ef gh ef gh 
c e Rdgfh + γ4RabcdR Rce Rdfgh + γ5RabcdR R Rcdgh ab ab ab ef 

+ γ6RabcdR e + γ8RabRcdef R g+ γ7(RabcdR
abcd)2 

abc RfghdR
fgh 

e c eaRdgfb 

+ γ9RabRcdef R g c d efg c dR e f R a b 
cd a Refgb + γ10RabRa b RefgcR d + γ11RRa b c d e f 

ef Rab f f + γ12RRcd 
ef + γ13RabRcdRe 

abRcd a cRebfd + γ14RabRcdRe
a bRecfd 

+ γ15RabRcdRef 
bR

def 
acRefbd + γ16RabRc

aRdefc + γ17Ref R
ef RabcdR

abcd 

Rde + γ19R2RabcdR
abcd+ γ18RRabcdR

abc
e + γ20RabRacbdR

ecRe
d � �2 

Rb
cRdRa RabR

ab + γ24RRb Rb
cRa+ γ21RRabcdR

acRbd + γ22Ra
b 

c d + γ23 a c 

14Imagine, for instance, that we start with a Quasitopological density Z and a GQG density S of certain
order. Replacing all Riemann tensors by Weyl tensors gives rise to new densities Z̃ = Z + RCZ and
S̃ = S + RCS where RCS,Z are certain reducible densities involving Ricci curvatures. Now, from Lemma

˜ ˜1.1 we know that Z|SSS = cS|SSS, for some constant c. Then, it follows that Z = c(S + RCS ) − RCZ + T ,
where T is a trivial GQG density, i.e., one such that T |SSS = 0. Naturally, S 0 ≡ cS + T is another GQG
density. It follows that Quasitopological densities can be mapped to GQG densities of the same order
—and viceversa— via feld redefnitions, the mapping generically involving trivial GQG densities (which
play no role as far as the equations of SSS metrics are concerned).
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i 
+γ25R

2RabR
ab + γ26R4 . 

Of these, at most the frst 7 are irreducible —this happens for D > 7. Now, in [249]
several non-trivial and irreducible GQG theories were constructed using those invariants.
Consequently, by virtue of Corollary 1.1, it is clear that the 26 invariants can always be
written as a sum of GQGs using feld redefnitions. Hence, just like in the quadratic and
cubic cases, all quartic gravities of the form L(gab, Rabcd) can be written as GQGs.

What about terms with covariant derivatives of the Riemann tensor? Looking at
[500], we fnd fve apparently irreducible terms of that kind, namely

Rabcd rbR
efg L1 = ardRefgc , (1.47)

Rabcd Refg L2 = rc (1.48)ardRefgb , 

Rabcd gRe fL3 = r a crgRebfd , (1.49)

RabcdR efg L4 = a rdrgRbecf , (1.50)
e f RabcdL5 = rerf Rabcdr r . (1.51)

However, a careful analysis —using commutation of covariant derivatives, the symmetries
of the Riemann tensor and the Bianchi identities15— reveals that all of them can be
decomposed as a sum of total derivative terms plus quartic curvature terms (without
covariant derivatives) plus terms with Ricci curvature (hence reducible). This is, they can
be expressed (for each i) as

Li = raJ( 
a
i) + Q(i) + RabF ab (1.52)(i) , 

for certain tensors Ja and F ab and some quartic density Q(i). In order to illustrate this,(i) (i) 
let us show how L1 is reduced to an expression of the form (1.52). First, we have

= Rabcd rbR
efg 1 

Rabcd gRefL1 ardRefgc = r abrgRefcd (1.53)
4� �1 1 1 

Rabcd gRef Rabcd 2Ref Rabcd gRef = rg r − r rg rabRefcd abRefcd − abRefcd ,4 4 4 

where in the frst equality we applied the di˙erential Bianchi identity twice, and in the
second we integrated by parts. Now we note that the last term in the second line is actually
−L1, so we get � �1 

Rabcd ef 1 
Rabcd g efL1 =

8 
rg rgR abRefcd − 

8 
r rgR abRefcd . (1.54)

Then we are done, because the Laplacian of the Riemann tensor decomposes, using a
schematic notation, as r2Riem = rrRicci + Riem2 ,16 so we can indeed express L1 as in
(1.52). Proceeding similarly with the rest of terms we arrive at the same conclusion.

15Recall that these read: Rabcd + Racdb + Radbc = 0 and reRabcd + rcRabde + rdRabec = 0 respectively.
16Explicitly, one has [503] h i 

e q qRpr reRabcd =+ 2r[a|rcR|b]d + 2r[b|rdR|a]c − 4 a bRp[c|q|d] + Rp
a [c|Rpbq|d] (1.55)

pq+ g [RqbcdRpa + RaqcdRpb] . 
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Since total derivatives are irrelevant for the action, and since we can remove all
terms containing Ricci curvatures by means of feld redefnitions, the terms with covariant
derivatives of the Riemann tensor only change the coeÿcients of the quartic terms, which
are already present in the action. Hence, from the point of view of e˙ective feld theory,
these densities are meaningless and can be removed. In addition, we conclude that all
eight-derivative terms can be recast as a sum of GQGs by implementing feld redefnitions.

Let us now turn to a more general case. Any higher-derivative gravity can be written
as the span of all monomials formed from contractions of ra, Wabcd and Rab. Such a set
can be written schematically as A = ∪q,n,r∈NAq,n,r where Aq,n,r = {rq × W n × Ricr}. Out
of these subsets, the only ones susceptible of containing irreducible terms are Aq,n,0, so the
ultimate goal would be to prove that all elements in[

Iq = Aq,n,0 (1.56)
n∈N 

are completable to a GQG. First, let us note that these sets can be split according to the
partitions of the number of covariant derivatives, q,

p[(q) 
IPk(q)Iq = , (1.57)q 

k=1 

where p(q) is the the number of partitions of q and Pk(q) denotes the k-th partition of q 
(we assume partitions to be ordered in some way). For instance, the frst few cases are: I0,
which is the set of monomials formed from general contractions of Weyl tensors; I2, which is
the set of monomials formed from Weyl tensors and two covariant derivatives —this can be

{1,1} {2}in turn split as the union of I and I : in the former set the two covariant derivatives2 2 
act on two di˙erent Weyl tensors, while in the second the two derivatives act on the same
Weyl; I4, which contains terms with four covariant derivatives and an arbitrary number of

{1,1,1,1} {2,1,1} {2,2} {3,1} {4}Weyl tensors —this can be decomposed as I4 = I ∪ I ∪ I ∪ I ∪ I .2 2 2 2 2 
Observe that not all subsets are independent. For example, we see that any term belonging

{2} {1,1}to I can be written as a sum of terms in I upon integration by parts. For the same2 2 
{1,1,1,1} {2,1,1} {2,2}reason, for q = 4 it is enough to keep the subsets I , I and I .2 2 2 

We know that all terms in I0 can be completed to GQGs, and the purpose of the
remainder of this section is to show explicitly that all terms in I2 satisfy the same property.
We expect the trend to go on for all sets Iq but a general proof seems quite challenging
—not so much a case-by-case partial proof for the following Iq≥4.

{1,1}As we have said, the only subset of I2 which needs to be considered is I . Any2 
term belonging to this subset can be written schematically as

{1,1} {1,1}I 3 R = W n rW rW , (1.58)2 2 

for some value of n. We saw in (1.41) that, when evaluated on a SSS metric the Weyl
tensor has a very simple structure so that any scalar formed from it is proportional to the
same quantity. In Appendix 1.B we show that any term of the form (1.58) can be written
in turn as � � 

χ2 
{1,1} χχ0 

R = f(r)χn c1(χ
0)2 + c2 + c3 , (1.59)2 2SSS r r 
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where χ0 = dχ(r)/dr and c1,2,3 are constants. Thus, there are at most three linearly
{1,1}independent terms in I when one considers SSS metrics. Hence, if we are able to fnd2 

{1,1}three independent terms in I which are completable to a GQG, that will imply that2 
{1,1}all densities in I are completable. Three possible terms of that type are2 

nX{1,1} a3a4 a5a6 a7a8 a1a2W = rbW (W n−k) r bW (W n) , (1.60)1 a1a2 a3a4 a5a6 a7a8 
k=0 

{1,1} 
=rbW bcd a3a4 a5a6 a1a2W rcW W . . .W , (1.61)2 a1 da2 a3a4 a2n+1a2n+2 

{1,1} 
=rbW bcde f a3a4 a1a2W rf W W . . .W , (1.62)3 cde a1a2 a2n−1a2n 

df a1a2 df a3a4where (W n) denotes a n-Weyl product of the form W W . . .W .bc bc a1a2 a2na2n+1 

We can check that when evaluated on a SSS metric the previous terms are linearly inde-
pendent. For instance, in D = 4 we obtain the expressions� �� � 

3−n−24 2(−1)n + 2n+1 f(r)(−χ)n (n + 1)r2 (χ0) + 6χ2 
{1,1}W = , (1.63)1 2r � � 
{1,1} χ0χ χ2 

W =3−n−1 (2n − (−1)n) f(r)(−χ)n + 3 , (1.64)2 2r r 

{1,1} 
� χ�2 (2 − (−1)n−122−n)W =f(r) χ0 + 3 (−χ)n , (1.65)3 r 3 

which are linearly independent for any integer value of n. Hence, any term of the form
(1.59) can be expressed a sum of these three combinations (the same conclusion holds for

{1,1}arbitrary D). Therefore all invariants in I can be expressed as a linear combination2 
of these terms when evaluated on SSS metrics. This can be alternatively written as

{1,1} {1,1} {1,1} {1,1}R = C1W + C2W + C3W + . . . , (1.66)2 1 2 3 

where the ellipsis denote terms that vanish on SSS metrics —which are trivially completable
to a GQG. Now, it is easy to check that, by means of feld redefnitions, the densities

{1,1} {1,1} {1,1}W are completable. Actually, both W and W are reducible because they are1,2,3 2 3 
proportional to the divergence of Weyl tensor, which depends only on Ricci curvatures� � 

2(D − 3) 1 rcW cabd = r[bRd]a − ga[drb]R . (1.67)
D − 2 2(D − 1) 

{1,1}On the other hand, W can be written as1 � � 
{1,1} a3a4 a5a6 a7a8 a1a2W = rb r bW W W . . .W1 a1a2 a3a4 a5a6 a2n+3a2n+4 (1.68)

a3a4 a5a6 a7a8 a1a2−r 2W W W . . .W .a1a2 a3a4 a5a6 a2n+3a2n+4 

Since the Laplacian of the Weyl tensor can be expressed as r2Weyl = rrRicci+ Riem2 ,
{1,1}we conclude that, by means of feld redefnitions, W can be reduced to a sum of terms1 

without covariant derivatives. We know that those terms are completable, so the densities
{1,1} {1,1}W and any other R are also completable. The result is actually stronger than that:1,2,3 2 
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{1,1}since the densities W can be completed to a GQG without covariant derivatives of the1,2,3 
{1,1}Riemann tensor, this implies that any other R can be completed to a GQG which,2 

when evaluated on a SSS metric, is equivalent to a GQG without covariant derivatives.
Collecting all the results of this section, together with Proposition 1.1, we are ready to
formulate the main result of this chapter:

Theorem 1.1. Assume that an irreducible curvature invariant satisfes one of the following
conditions:

1. It is constructed out of any number of Riemann curvature tensors with no covariant
derivatives.

2. It is an eight-derivative term.

3. It contains at most two covariant derivatives.

Then it is completable to a GQG which does not involve covariant derivatives when evalu-
ated on SSS metrics. Equivalently, consider a certain higher-derivative gravity Lagrangian
built out of curvature invariants fulflling each of them at least one of the conditions above.
Then, by implementing redefnitions of the metric of the form (1.17), it can be mapped, or-
der by order, to a sum of GQG terms which evaluated on a SSS background are equivalent
to GQGs without covariant derivatives.

In sum, we have shown that, at least for densities including eight (or less) derivatives
of the metric as well as for densities constructed from an arbitrary number of Riemann
tensors and two covariant derivatives, all densities can be mapped to GQGs. In all cases,
those GQGs become equivalent to GQGs which do not involve covariant derivatives when
evaluated on SSS metrics. We postpone a discussion on the role of this kind of terms in
ever more general situations to Section 1.7. Before doing so, we wish to illustrate, for a
particularly charismatic higher-derivative gravity action, how the mapping to a GQG is
done and how this preserves the thermodynamic properties of black hole solutions.

1.6 Type IIB e˙ective action at O(α03) as a GQG

In this section we show how the gravitational sector of the Type IIB ST e˙ective action
on AdS5 × S5 truncated at (sub)leading order in α0 can be mapped to a generic quartic
GQG. Then we show, in spite of the very di˙erent appearance of the equations of motion
evaluated on a SSS ansatz in both frames —and therefore of the corresponding black hole
metrics—, that their thermodynamic properties exactly match, as expected.

The usual ten-dimensional Type IIB Supergravity action receives stringy corrections
weighted by powers of α0 . The frst correction appears at α03 order [108,504], so schemat-
ically we have

(0) (1)
IIIB = IIIB + α03IIIB + . . . , (1.69)

(0)where IIIB is the usual two-derivative Supergravity action [505], and the dots stand for
subleading corrections in α0 . When the theory is considered in A5 × S5 where A5 is a
negatively curved Einstein manifold, it is consistent to truncate all felds except the metric
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and it is possible to write an e˙ective action for the fve-dimensional metric [128–130]. This
is given by [131,132] Z � � 

1 p 12 ζ(3) 
W 4IIIB [gab] = d5 x |g| R + + α03 

, (1.70)
A5×S5 `216πG 8 

where W 4 is a particular combination of contractions of four Weyl tensors given by� � 
W 4 WabcdW ebcf 1 

WadbcW efbc W ag hd = + W . (1.71)he fg 2 

As we mentioned in Section 1.5, at quartic order in curvature, there are 26 invariants
involving contractions of the Riemann tensor of the metric —see (1.46). The last 19 
densities involve explicit Ricci tensors, so they are reducible and we can use them to
complete the Type IIB e˙ective action in (1.70) to GQGs by means of feld redefnitions.
The structure of quartic GQGs was completely characterized in [249]. As usual in D ≥ 5,
there exist three kinds of terms: those which belong to the Quasitopological class (including
the one previously constructed in [241] and the quartic Lovelock density X8) —namely,
their contribution to the equation which determines the metric function f(r) when the
SSS ansatz (1.2) is considered is algebraic —, those which contribute with up to two
derivatives to the equation of f(r) and those which do not contribute to the equation of
f(r) at all. As explained in Section 1.1, in spite of the degeneracy of GQG densities, there
are only two functional modifcations of the equation of f(r) at each curvature order, so
when the full set of n = 4 GQG invariants is introduced, the di˙erent couplings only appear
summed to each other in two groups in front of each kind of contribution to the equation
as in (1.6).

Let us now consider the following metric redefnition� � 
ζ(3) 1 

α03 ˆ ˆgab → gab − Cab − Cgab , (1.72)
8 3 

abwhere Ĉab is some cubic-curvature rank-2 symmetric tensor and Ĉ = Ĉabg . The original
action (1.70) is transformed to

Ĩ = 
1 

16πG 

Z �p 12 
d5 x |g| 

`2 + R + 
ζ(3)α03 

Ĉ + 
2`2 

�ζ(3)
α03 

W 4 
8 

�� 
+ Rab Ĉab , (1.73)

up to subleading terms in α0 . Observe that the presence of the cosmological constant gives
rise to the appearance of a cubic contribution. The most general Ĉab we can write is17

ˆ = a8Rcdef R g g c d efg Cab c eaRdgfb + a9Rcdef Rcd a Refgb + a10Ra b RefgcR d (1.74)
c dR e f R g h cd ef gh + a13RcdRe f+ a11gabRg h c d e f + a12gabRgh Rcd Ref a cRebfd 

+ a14RcdRe f 
bR

def 
a bRecfd + a15RcdRef

acRefbd + a16Rc
aRdefc + a17RabRcdef R

cdef 

Rde ghc + a18gabRghcdR
ghc 

e + b18RRghcaR + a19RabRRghcdR
ghcd + a20RacbdR

ecRe
d 

b 
c+ b20RghRgahdRb

d + a21gabRghcdR
gcRhd + b21RRgacbR

gc + a22Ra Rbc 

17We denote the di˙erent coeÿcients by ai and bi. The ai correspond to terms which, when contracted
with Rab , produce a scalar numbered as in (1.46); the bi are used in cases in which there is a second term
which produces the same scalar.
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e c+ a23RabRef R
ef + a24gabRc

dRd Re
c + b24RRa Rbc + a25gabRRef R

ef 

+ b25R2Rab + a26gabR3 . 

Then we have

Rab ˆ = a8RabRcdef R g g c d efg Cab c eaRdgfb + a9RabRcdef Rcd a Refgb + a10RabRa b RefgcR d 
c dR e f b cd ef ab f+ a11RR R a + a12RR R R + a13RabRcdRe 

a b c d e f ab cd ef a cRebfd 
f

bR
def+ a14RabRcdRe

a bRecfd + a15RabRcdRef
acRefbd + a16RabRc

aRdefc (1.75)

Rde+ a17Ref R
ef RabcdR

abcd + (a18 + b18)RRabcdR
abc + a19R2RabcdR

abcd 
e 

Rb
cRdRa+ (a20 + b20)RabRacbdR

ecRe
d + (a21 + b21)RRabcdR

acRbd + a22Rb
a c d � �2 

+ a23 RabR
ab + (a24 + b24)RRa

b Rb
cRc

a + (a25 + b25)R2RabR
ab + a26R4 , 

as well as

c d f b cd ef abĈ =(a8 + 5a11)R R e R a + (a9 + 5a12)R R R (1.76)a b c d e f ab cd ef 

Rde + (a17 + b18 + 5a19)RabcdR
abcdR+ (a10 + a13 + a15 + a16 + 5a18)RabcdR

abc
e 

Rb
cR a+ (a14 + b20 + 5a21)RabcdR

acRbd + (a20 + a22 + 5a24)Ra
b 

c 

+ (b21 + a23 + b24 + 5a25)RabR
abR + (b25 + 5a26)R

3 . 

+ Rab ˆImposing the terms Ĉ and W 4 Cab to be of the GQG type independently, we fnd the
following constraints

43 13σ a8 6a9 
a10 = − − − − , (1.77)

32 32 10 5 
1 σ a8 a9 a11 

a12 = + − − − , (1.78)
16 16 10 5 2 
3451 1241σ 3a8 3a9 7a13 25a14 19a15 11a16 

a17 = + + + − − − − , (1.79)
2880 2880 100 50 40 72 180 45 

113 233σ 31a8 6a9 a13 a15 a16 
a18 = − − + + + 3a11 − − − , (1.80)

640 640 50 25 5 5 5 
43 13σ 7a8 9a9 a13 a15 a16

b18 = − − + − − − − , (1.81)
640 640 100 25 5 5 5 
449 17σ 19a8 3a9 3a11 3a13 5a14 11a15 4a16 

a19 = − − − + − + + + + , (1.82)
2880 1440 200 50 8 40 72 180 45 
439 83σ 3a8 24a9 4a14 8a15 4a16

b20 = − − + − − 2a13 + − − − a20 , (1.83)
144 48 5 5 3 3 3 

1553 391σ 18a8 24a9 2a13 7a14 8a15 4a16 a20 
a21 = + − + − 3a11 + − + + + , (1.84)

1440 480 25 25 5 15 15 15 5 
253 41σ a8 6a9 3a13 11a14 a15 4a16 a20

b21 = + − + + − + + − , (1.85)
288 96 5 5 10 30 3 15 5 

539 11σ 4a8 56a9 a13 a14 17a15 13a16 7a22 
a23 = − − − + + + + + − , (1.86)

810 90 25 75 3 90 45 45 30 
27 27σ 2a8 a20 a22 

a24 = + − − 2a11 − − , (1.87)
64 64 5 5 5 
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439 83σ 7a8 18a9 a13 a14 2a15 a20 3a22
b24 = + − + + − + + − , (1.88)

960 320 50 25 5 5 5 5 5 
599 127σ 2a8 8a9 3a11 a13 a14 2a15 a16 a22 

a25 = − − + − + − + − − + , (1.89)
1296 288 5 15 2 6 9 9 9 6 
317 11σ a8 7a9 a13 a14 a15 a22

b25 = − − + − − + − + , (1.90)
5184 192 20 30 24 24 12 6 

1127 41σ 7a8 7a9 a11 a13 a14 a15 a22 
a26 = + − + − + − + − . (1.91)

25920 960 200 150 8 120 120 60 30 
We have 10 free parameters, which can be chosen to be a8, a9, a10, a11, a13, a14, a15, a16,
a20, a22. However, we rewrote one of them, a10, in terms of another constant that we called
σ —this is convenient when studying black hole solutions as we show below.

1.6.1 Black hole solutions in the original frame

Let us frst study the black hole solutions of the Type IIB action in the original frame
(1.70). We extend the spherical symmetry of (1.2) to planar and hyperbolic geometries as
well, so that we search for solutions of the form ⎧ ⎪`2dΩ2

3 , for k = 1 , 
dr2 r2 ⎨ 

2 2 2ds = −N(r)2f(r)dt + + dΣ2 
k , dΣ2 = d~x3 , for k = 0 , (1.92)k ⎩f(r) `2 ⎪ ̀

2dΞ2
3 , for k = −1 . 

The simplest way of computing the equations of motion is to use the reduced action method
—see e.g., [216,248,506,507]. After plugging the metric ansatz (1.92) into (1.70) and taking
the corresponding functional derivatives with respect to N(r) and f(r), we proceed to solve
the subsequent equations of motion perturbatively in α0 . Keeping only the leading (α0)3 

correction, we fnd the following expressions for N(r) and f(r):18

2 � � �� 
r ω4 360ω12 320ω12k`2 285ω16 

f(r) = k + 1 − + γ + − ,
4 12 14 16`2 r r r r � � (1.93)

120ω12 
N(r) = Nk 1 − γ ,

12r 

where we introduced γ = ζ(3)α03/(8`6) and where Nk and ω4 are integration constants.
In particular, ω4 defned in this way is proportional to the total energy of the solutions.
In the k = −1 case, the expressions in (1.93) can be seen to agree with those appearing
in [130], but one should take into account that the integration constants have been chosen
di˙erently. Now, the temperature T of any black hole solution of the type considered is
given by

N(rh)f
0(rh)

T = , (1.94)
4π 

where rh ≡ max{ri|f(ri) = 0} is the value of the radial coordinate at which the event
horizon is located. As a function of rh, the temperature and the parameter ω4 read� � �� 

Nk 2k 4rh 60rh 20k4`6 120k2`2 160k 
T = + + γ − + + , (1.95)7 34π rh `2 `2 rh rh rh 

18Note that for general values of γ, the equations of motion of (1.70) evaluated on the ansatz (1.92)
become two fourth-order coupled di˙erential equations for N(r) and f(r). This is in contrast with the
GQG frame, in which the corresponding equations of motion reduce to a single second-order equation for
a single metric function —see (1.101) below— for general γ.
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� �� �3 15 7k`2 
4 2 2ω4 = rh + k`2 rh + 5γ rh + k`2 + , (1.96)2 4r rh h 

where again we are working perturbatively in γ. Let us now compute the on-shell action of
these solutions in order to determine their free energy, from which we can obtain the rest of
relevant thermodynamic quantities. In order to do this, we need to include an appropriate
generalized Gibbons-Hawking-York term [81] as well as counterterms for the action (1.70).
To the best of our knowledge, specifc boundary terms have not been constructed for
this theory. However, we can use the e˙ective boundary terms introduced in [257]. In
that reference, it was argued that for theories with second-order linearized equations of
motion around maximally symmetric backgrounds, one can write an e˙ective boundary
term that works for asymptotically AdS solutions. The prescription is that the same GHY
term and counterterms that appear for Einstein gravity must be multiplied by an overall
constant, which in the holographic context is identifed with the universal contribution to

∗the entanglement entropy across a spherical region, a —see e.g., [445,508]. In the case of
the theory (1.70), the condition of second-order linearized equations is satisfed —in fact,

∗the Weyl4 term does not contribute to the linearized equations at all— and the charge a 
coincides with the Einstein gravity one. Therefore, we can use directly the same boundary
terms and counterterms as for Einstein gravity [509–511], and the Euclidean action reads#Z p � � Z √ � 

d5x |g| 12 d4x h 3 ` 
IE = − R + + γ`6W 4 − K − − R . (1.97)IIBA5×S5 

M 16πG `2 
∂M 8πG ` 4 

The computation is more or less straightforward, and we get the result� � 
βNkVk 3k2`4 5γ � � � �32 4 2 2IE = + k`2 rh − rh + k`2 − 15r k`2 + r , (1.98)IIB 4 h hA5×S5 16πG`5 4 rh 

where Vk is the dimensionful volume of the transverse space (for instance, V1 = 2π2`3) and
β is the inverse temperature, corresponding to the Euclidean time periodicity. When we
express this result in terms of the black hole temperature we get

Vk 
� � �3/2 

IE 3  IIB = 3kx − x x 2 − 2k 
A5×S5 32G � �� (1.99)

− 
15 
γ

k2 
− 28kx + 34x 3 ± (6k − 30x 2) 

p 
x2 − 2k ,

2 x 

where we have introduced the notation x = π`T/Nk.

1.6.2 Black hole solutions in the GQG frame

Let us now compare this result with the one corresponding to the transformed GQG
frame (1.73). This theory possesses black hole solutions characterized by a single function,
namely, of the form ⎧ ⎪`2dΩ3

2 , for k = 1 , 
dr2 r2 ⎨ 

2 2 2ds = −Nk 
2f(r)dt + + dΣ2 

k , dΣ2 = d~x for k = 0 , (1.100)k 3 ,f(r) `2 ⎪⎩ ̀2dΞ2
3 , for k = −1 , 
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where Nk is now a constant. It is convenient to write f = k+g(r)r2/`2 . Then, the equation
which determines the metric function reads� � hω4 5ζ(3)α03 � �0 02 g − 1 − = − g − 8 2r 3(1 + σ) + 3gr 3(1 + 2σ) + 2k`2 r(3 + 5σ) g 

r4 2048`6 � �
2 00+ 3r 4(1 + 2σ)g 03 − 48(−1 + g)r k`2 + gr (1 + σ)g� � �0 2 00− 12g 10g r 2(1 + σ) + k`2 −14(1 + σ) + r 2(1 + 2σ)g (1.101)� � � � �i 

2 00+ g 2 7k`2 − 5r (1 + σ) + r 4(1 + 2σ)g , 

where again ω4 is an integration constant related to the ADM energy of the solution.
Observe that, while there are a lot of independent free couplings, they all a˙ect the equation
of g(r) in a very universal way controlled by the combination of coeÿcients given by σ.
Solving perturbatively the above equation one is left with�

2 ω4r 
f(r) = k + 1 − 

4`2 r � �� (1.102)
5(5 − 13σ)ω12 5k`2(3 − 11σ)ω12 15(−1 + 3σ)ω16 

+ γ + + .
12 14 162r 2r 2r 

Besides, it is not diÿcult to solve exactly the equation above using numerical methods.
However, the most interesting aspect about GQGs is that the thermodynamic proper-
ties of black holes can be determined exactly — namely, nonperturbatively in γ — and
analytically. First, expanding f(r) near the horizon, according to

4πT � � 
f(r) = (r − rh) + O (r − rh)2 , (1.103)

Nk 

and plugging this in (1.101), we get two equations that relate ω4 , T and rh:

5`3γ �
2 4ω4 =k`2 rh + rh − (k` + 2xrh) 2 k2`3(3 + 2σ) (1.104)416rh �

2+4k`rh (−`x(3 + 2σ) + (1 + σ)rh) + 4xrh (3`x(1 + 2σ) − 4(1 + σ)rh) , � � 5`3γ � 
0 =2rh kL

2 + 2rh (−`x + rh) + (k` + 2xrh) 2 k2`3(3 + 2σ) (1.105)54rh �
3+2k`rh (−`xσ + rh + σrh) − 2x(1 + σ)r ,h 

where we defned again x = π`T/Nk. These equations are analogous to the ones in (1.95),
but now they are exact for the theory (1.73). However, we only expect the thermodynamic
relations to match in both frames at frst order in γ. At that order, one fnds" � � � �# 

2 3 2Nk 2k 4rh 5 rh + k`2 k`2(σ + 3) − 2(σ + 1)rhT = + + γ , (1.106)74π rh `2 4π`2rh 

5γ � �3 � �
4 2 2 2ω4 = rh + k`2 rh − kL2 + r kL2σ + rh(2σ − 1) . (1.107)4 h rh 

These are di˙erent from the ones in (1.95). However, note that the relations T (rh) or ω(rh) 
are not really physically meaningful. T (ω) is though, since ω4 is defned in both frames as
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(proportional to) the total energy. One can check that, at leading order in γ this relation
has the same form in both frames. Finally, we compute the Euclidean action, for which
the same boundary terms as before are valid, namely

ĨE = − 

− 

Z �p1 12 
d5 x |g|

16πG `2 
M Z �√1 

d4 x h K − 

ζ(3)α03 
ˆ+ R + C + 

2`2 # 
3 ` − R . 

�ζ(3)
α03 

W 4 
8 

�� 
+ Rab Ĉab (1.108)

8πG ∂M ` 4 

Due to the properties of the GQG theory, the action can be computed exactly: the La-
grangian is a total derivative and the integration only requires knowing the solution near
the horizon (1.103) and asymptotically — see [257] for a similar explicit computation.
Since in both limits we know the exact form of f(r), we obtain the following exact result� 

ĨE 2 3 = 
Vk 3 

k2`4 + 3k`2 rh + rh (3rh − 4`x) (1.109)
16G`4x 4 � 

15`3γ � �
2− (k` + 2xrh) 3 k`2(3 + 2σ) − 2`x(1 + 2σ)rh + 4(1 + σ)r .4 h16rh 

The last step is to use relation (1.105) to express ĨE as a function of the temperature. We
see that in general the action depends on σ. However, when we expand it at leading order
in γ the dependence on σ disappears and we get exactly the same result as in the original
frame given in (1.99).

1.7 Discussion

We close the chapter with some additional comments and conjectures. Firstly, based on
the evidence presented here we state the following:

Conjecture 1.1. Any higher-derivative gravity Lagrangian can be mapped, order by order,
to a sum of GQG terms by implementing redefnitions of the metric of the form (1.17).

We know there are many theories satisfying the GQG condition (1.4), and the amount
of terms we can modify in the action with feld redefnitions is also very large. All in all,
there is so much freedom that feld redefnitions seem to be able to bring the most general
action (1.23) into a sum of GQG terms, order by order in the curvature.

Our main result is Theorem 1.1, which essentially tells us that all densities of the
form L(gab, Rabcd) are completable to a GQG, as well as those either belonging to the
eight-derivative level or possessing at most two covariant derivatives. Regarding these last
cases, we have seen that, interestingly, densities containing explicit covariant derivatives
of the Riemann tensor do not seem to play any role. In fact, we have checked that, up to
eighth order, all terms involving derivatives of the Riemann tensor are irrelevant —they
can always be mapped to other terms which already appear in the action. More generally,
we have been able to prove that any term with two covariant derivatives can be completed
to a GQG which is equivalent to a GQG of the form L(gab, Rabcd) when evaluated on a
SSS metric. Note that the last claim is slightly di˙erent from stating that the original
term can be completed to a GQG of the form L(gab, Rabcd). It means that the GQG to
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which the original density is completed may, in principle, contain covariant derivatives of
the curvature, but it is guaranteed that those terms vanish for a SSS metric. We argued
that the previous conclusion may, very likely, extend to densities with an arbitrary number
of covariant derivatives, which suggests a stronger conjecture:

Conjecture 1.2. Any higher-derivative gravity Lagrangian can be mapped, order by order,
to a sum of GQG terms which, when evaluated on a SSS metric, are equivalent to GQGs
of the L(gab, Rabcd) type.

If true, the second statement in this conjecture implies that we can study the spheri-
cally symmetric black holes of the most general higher-derivative gravity e˙ective action by
analyzing only the solutions of the GQGs of the form L(gab, Rabcd) —like in the example of
Section 1.6. While, in general, the profle of the solutions will be di˙erent in every frame,
recall that black hole thermodynamics is invariant under the change of frame. That kind
of analysis was already performed in D = 4 for a general GQG involving arbitrarily high
curvature terms [253]. It revealed a high degree of universality for the thermodynamic
behavior of the Schwarzschild black hole generalizations, including asymptotically fat sta-
ble small black holes and infnite evaporation times. Our fndings here suggest that those
results may actually extend to arbitrary higher-derivative theories.

The conclusion is that theories of the GQG class are not just toy models with inter-
esting properties. According to our results, they capture, at the very least, a very large
part of all possible e˙ective theories of gravity, and very likely —if Conjecture 1.2 is true—
they capture all of them. From this point of view, we could think of GQGs as the most
general EFT expressed in a frame in which the study of spherically symmetric black holes
is particularly simple and universal.

As mentioned in Section 1.1, a certain subset of four-dimensional GQGs possess
second-order equations for the scale factor when evaluated on a FLRW ansatz, which gives
rise to a well-posed cosmological evolution [260, 262, 263]. The possibility that in fact
all D = 4 higher-derivative e˙ective actions can be mapped to GQGs belonging to this
particular subset does not sound unreasonable and deserves further exploration. More
generally, assuming Conjecture 1.2 and/or Conjecture 1.1 hold, one could try to impose
further constraints on the GQG family of theories targeted by the feld redefnitions and
then provide refnements of those conjectures.

In another vein, it would be highly interesting to obtain a complete characterization
of GQGs at each level in derivatives. In the case of theories with no covariant derivatives,
it has been recently proven [251] that at each order n there exist n − 1 inequivalent GQGs,
one of them being of the Quasitological type and the remaining n − 2, proper GQGs. Out
of the n − 2 inequivalent GQGs, it was possible to obtain the precise covariant expression
of one of them [250] for every n, so it would be intriguing to fnd the explicit covariant
form of every inequivalent GQG at arbitrary order n. Finally, it could also be intriguing
to investigate the possibility of GQGs with covariant derivatives19.

19In a very recent work [512], it has been argued that higher-order gravities with explicit covariant
derivatives cannot have an Einstein-like linearized spectrum (that is, they would always contain ghosts).
Nevertheless, by private communication with Pablo Bueno, we have learned that GQGs with covariant
derivatives do exist, being quite abundant. This clearly shows that this is a very active topic of research
and that further investigation is needed.
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Appendix 1.A Redefning the metric

Implementing a di˙erential change of variables directly in the action can be problematic
if one is not careful enough. In order to see this, let us consider the equations of motion
of g̃ab —defned so that gab = g̃ab + Kab — by computing the variation of the new action
Ĩ[g̃ab] = I[gab]:20

δĨ  δI δI δKef 
= + . (1.111)

δg̃ab δgab δgef δg̃ab 
gab=g̃ab+Kab 

Now, it is clear that we can always solve these equations if

δI 
= 0 . (1.112)

δgab 
gab=g̃ab+Kab 

In other words, implementing the change of variables directly in the equations of the
original theory produces an equation that solves the equations of Ĩ. However, the equations
of Ĩ  contain more solutions. These additional solutions are spurious and appear as a
consequence of increasing the number of derivatives in the action, so they should not be
considered. A possible way to formalize this intuitive argument consists in introducing
auxiliary felds so that the redefnition of the metric becomes algebraic. Let us consider
the following actionZ p h � �1 

dDIχ = x |g| − 2Λ + R + f g ab, χabcd, χe1,abcd, χe1e2,abcd, . . . (1.113)
16πG 

∂f ∂f 
+ (Rabcd − χabcd) + (re1 Rabcd − χe1,abcd)∂χabcd ∂χe1,abcd i∂f 
+ (re1 re2 Rabcd − χe1e2,abcd) + . . . ,
∂χe1e2,abcd 

where we have introduced some auxiliary felds χabcd, χe1,abcd, . . .χe1...en,abcd. Let us con-
vince ourselves that this action is equivalent to (1.16). When we take the variation with
respect to χe1...ei,abcd, we get

X ∂2f � � 
ra1 . . . raj Rghmn − χa1...aj ,ghmn = 0 . (1.114)

j=0 
∂χe1...ei,abcd∂χa1...aj ,ghmn 

In this way, we get a system of algebraic equations for the variables χe1...ei,abcd that always
has the following solution

χabcd = Rabcd , (1.115)

χe1,abcd = re1 Rabcd , (1.116)

χe1e2,abcd = re1 re2 Rabcd , (1.117)

. . . (1.118)
20Note that in the second term we used the chain law for the functional derivative, which is in general

given by � � 
δI δφ δI ∂φ δI ∂φ 

= − ∂a + . . . (1.110)
δφ δψ δφ ∂ψ δφ ∂aψ 
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Chapter 1. All higher-order gravities as Generalized Quasitopological Gravities

This is the unique solution if the matrix of the system is invertible, and this is the expected
case if f is general. When we plug this solution back in the action we recover (1.16) (with
explicit Einstein-Hilbert and cosmological constant terms), so that both formulations are
equivalent.

Now let us perform the following redefnition of the metric in Iχ:� � 
gab = g̃ab + αKab , where Kab = Kab g̃

ef , χefcd, χa1,efcd, . . . , (1.119)

this is, Kab is a symmetric tensor formed from contractions of the χ variables and the
metric, but it contains no derivatives of any feld. In this way, the change of variables is
algebraic and can be directly implemented in the action. We therefore get

Ĩχ [g̃ab, χ] = Iχ [g̃ab + αKab, χ] , (1.120)

where, for simplicity, we are collectively denoting all auxiliary variables by χ. Now, both
actions are equivalent and so are the feld equations:

δĨχ δIχ 
= , (1.121)

δg̃ab δgab gab=g̃ab+αKab 

δĨχ δIχ δIχ δKab 
= + α . (1.122)

δχ δχ δgab δχ gab=g̃ab+αKab 

Substituting the frst equation into the second one, we see that the equations for the
auxiliary variables become δIχ/δχ = 0, which of course have the same solution as before
(1.115). When we take that into account, Kab becomes a tensor constructed from the
curvature of the original metric gab, so that we get� � 

gab = g̃ab + αKab g̃
ef , Refcd, rα1 Refcd, . . . . (1.123)

Then, according to Eq. (1.121), the equation for the metric g̃ab is simply obtained from
the equation of gab by substituting the change of variables:

δIχ 
= 0 . (1.124)

δgab gab=g̃ab+αKab 

However, note that this is not the same as substituting (1.115) in the action and taking
the variation. This would yield instead

δĨχ [g̃ab, χ(g̃ab)] δĨχ δĨχ δχ 
= + 

δg̃ab δg̃ab δχ δg̃ab (1.125)
δIχ δIχ δKef δχ 

= + α . 
δgab δgef δχ δg̃abgab=g̃ab+αKab gab=g̃ab+αKab 

This equation is formally di˙erent to (1.121) due to the second term, and it is equivalent
to (1.111). The second term appears because the auxiliary variables χ(g̃µν ) do not solve
the equation δĨχ/δχ = 0, but δIχ/δχ = 0. However, we must solve δĨχ/δχ = 0 in
order to get a solution of Ĩχ [g̃ab, χ], and according to (1.122) this would only happen if
(δIχ/δgab)(δKab/δχ) = 0, so that the only consistent solutions of (1.125) are those which
satisfy (1.124). This explains why the only solutions of (1.111) we should consider are the
ones satisfying (1.112).
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Chapter 1. All higher-order gravities as Generalized Quasitopological Gravities

Appendix 1.B W nrW rW terms on SSS backgrounds

In this appendix we show that (1.59) holds. In order to do that, it is convenient to carry
out the following change or radial coordinate in the SSS ansatz (1.2):

2dr2dr̃ = . (1.126)
r2f(r) 

In these coordinates, the SSS metric reads� � 
2ds = r(r̃)2 − Ñ(r̃)2f̃(r̃)dt2 + dr̃ 2 + dΩ2 , (1.127)(D−2) 

where we denoted Ñ(r̃) = N(r(r̃)) and f̃(r̃) = f(r(r̃)).
We use a tilde to denote tensor components in the new coordinates. Direct computa-

tion shows that the components of the Weyl tensor in these new coordinates have formally
the same expression as in the original ones, namely,

(D − 3)
W̃ ab ab = −2χ̃(r̃) w̃ (1.128)cd cd ,(D − 1) 

abwhere the tensorial structure w̃ is given bycd � � 
ab [a b] 2 [a b] [a b] 2 [a b]

w̃ = 2τ̃ ρ̃  − τ̃  σ̃ + ρ̃ σ̃ + σ̃ σ̃ , (1.129)cd [c d] [c d] [c d] [c d](D − 2) (D − 2)(D − 3) 

and where ρ̃b denotes the projection onto our new radial coordinate r̃. If we defne H̃ b = a a 
abτ̃a

b + ρ̃ab , we may express w̃ cd as

ab [a b] [a b] [a b]
w̃ = H̃ H̃ − 

2 
H̃ σ̃ + 

2 
σ̃ σ̃ . (1.130)cd [c d] [c d] [c d](D − 2) (D − 2)(D − 3) 

Consequently, the covariant derivative of the Weyl tensor turns out to be� � 
(D − 3) dχ̃ 

W̃ ab δ1 ab ab re = −2 w̃ χ(r̃) rew̃ , (1.131)cd e cd + ˜ cd 
SSS (D − 1) dr̃ SSS 

where we are denoting the components of the covariant derivative of any tensor T in our
T̃ cd... abnew coordinates as re w̃ . Using (1.130),ab... . Hence we just need to work out re cd SSS 

we fnd

ab [a b] 2 [a b]˜ ˜ ˜rew̃ = 2reH H − reH σ̃cd [c d] [c d](D − 2) 
(1.132)

2 [a b] 4 [a b]˜− reσ̃ H + reσ̃ σ̃ .[c d] [c d](D − 2) (D − 2)(D − 3) 

Since reH̃ b + reσ̃
b = 0, we just need to compute reH̃ b . A straightforward calculationa a a 

produces
1 dr 1 dr reH̃ b = g̃egσ̃

f δ1 
b + (D − 2)σ̃bδ1 . (1.133)a a e a(r(r̃))3 dr̃ r(r̃) dr̃ 

Using this, the covariant derivative of the Weyl tensor gives� 
W ab (D − 3) dχ̃ ab (D − 3) dr 2 f [a b]re ˜ = − 2 δ1 w̃ χ̃(r̃) ˜ σ δ H̃ (1.134)cd 

SSS (D − 1) dr̃ e cd − 2
(D − 1) dr̃ (r(r̃))3 gef ˜[c| 1 |d] 
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Chapter 1. All higher-order gravities as Generalized Quasitopological Gravities

2(D − 2) |b] 2 f [a b]
+ σ̃[a|δ1 H̃ − ˜ σ δ σ̃ 

r(r̃) e [c d] (D − 2)(r(r̃))3 gef ˜[c| 1 |d] 

2 
σ[a|δ1 |b] 2 f [a ˜ b] 2 

σ[a|δ1 ˜ |b]− ˜ σ̃ + ˜ σ δ H + ˜ H 
r(r̃) e [c d] (D − 2)(r(r̃))3 gef ˜[c| 1 |d] r(r̃) e [c d] � 

4 f [a b] 4 
σ[a|

|b]− ˜ σ δ σ̃ − ˜ δ1 σ̃ .gef ˜[c| 1 |d] e [c d](D − 2)(D − 3)(r(r̃))3 (D − 3)r(r̃) 

{1,1}Equipped with (1.134), we may infer the general form of any invariant R as de-2 
SSS 

{1,1}fned in (1.58). Since the R are scalars, we can obtain them expressed in the2 
SSS 

original coordinates by performing all calculations in the new ones and then substituting
any dependence on r̃  by the initial radial coordinate r.

{1,1}We notice the following facts: a) any R will have three types of terms:2 
SSS 

those carrying a factor χ̃n (dχ̃/dr̃)2 , those involving a factor χ̃n+1(dχ̃/dr̃)(dr/dr̃) and a
third type of terms with the common factor χ̃n+2(dr/dr̃)2; b) since r̃  is dimensionless, we
infer that the frst type of terms is not weighted by any power of r, the second type is

−1 −2 −2accompanied by r and the third type, by r . An additional overall factor of r is
required by dimensional analysis. Using these observations, it follows that� � �2 � �2 � �2 � 

{1,1} χ̃n(r̃) dχ̃ dχ̃ dr χ̃(r̃) χ̃(r̃) dr R = c1 + c2 + c3 , (1.135)2 
SSS r(r̃)2 dr̃ dr̃ dr̃ r(r̃) r(r̃) dr̃ 

for some constants c1, c2, c3 which will depend on the specifc term. Taking into accountp
that dr̃/dr = 1/(r f(r)) we fnally fnd � � 

{1,1} χχ0 χ2 
R = χnf(r) c1(χ

0)2 + c2 + c3 , (1.136)2 2SSS r r 

where χ0 = dχ/dr.
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2 
Electromagnetic Quasitopological Gravities

In the previous chapter we focused on purely gravitational higher-order gravities and found
that GQGs are a very special subset of higher-curvature theories which are amenable to
computations and, additionally, span the set of all higher-derivative theories of pure gravity.
Nevertheless, by defnition GQGs are higher-order theories that do not involve matter, so
it would be interesting to fnd an extension which admits the possibility of considering
couplings to other felds. This is an intriguing exercise if the matter felds also respect the
property of producing SSS solutions satisfying gttgrr = −1 [285]. A nice and important
instance of this is the addition of a minimally coupled Maxwell feld, which has proven to
be a successful strategy [248,254,268,271,286]. Notwithstanding, limiting ourselves to the
consideration of minimal couplings to gravity is highly restrictive — in fact, if one already
includes purely gravitational higher-derivative terms, why should not one add higher-order
terms in which matter is non-minimally coupled to gravity?

We will show in this chapter that such generalization is indeed possible. The subse-
quent higher-order theories of gravity and electromagnetism receive the name of Electro-
magnetic (Generalized) Quasitopological Gravities (E(G)QGs), and are characterized by
admitting electrically- or magnetically-charged, static and spherically symmetric solutions
completely specifed by a single function f(r) = −gtt = 1/grr whose associated equation
of motion is (at most) second-order. As with the purely gravitational counterparts, it is
natural to divide E(G)QGs into two subclasses: those for which the equation of motion
for f(r) is algebraic (corresponding to the EQG type) and those possessing a second-order
equation for f(r) (these would be the proper EGQGs). We will work in four dimensions
all along the chapter and we will present explicit non-trivial examples of both EQGs and
proper EGQGs, studying the properties of the subsequent charged black hole solutions.
Interestingly enough, there is a crucial di˙erence with respect to the pure gravity case—
theories of the Quasitopological type, with algebraic equation of motion, already exist in
four dimensions.

More concretely, the most natural way to construct E(G)QGs is through the consid-
eration of theories canonically admitting for magnetically-charged, static and spherically
symmetric solutions (as we will justify), while those with electric solutions are obtained
by dualization of the vector feld. When studying the subsequent (magnetically-)charged
black hole solutions in theories of the EQG subclass, we will observe that, quite generally,
the singularity at the core of the black hole is removed by the higher-derivative correc-
tions, yielding a solution which describes a globally regular geometry. Consequently, this
suggests the intriguing possibility of constructing, through dualization, EQGs which allow
for electrically-charged black hole solutions with completely regular electromagnetic and
gravitational felds for arbitrary values of the mass and non-vanishing charge. Remarkably,
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we will explicitly show that this feature is realizable, by writing down the frst (to the best
of our knowledge) such theory. This is an explicit confrmation of the proof of principle
that higher-derivative corrections possess the ability to resolve singularities.

The chapter is divided as follows. First, general aspects of higher-order theories of
gravity and electromagnetism are examined. Secondly, we focus on the study of static
and spherically solutions and present the defnition of E(G)QGs. Afterwards, we study
charged black hole solutions in explicit instances of EQGs and proper EGQGs. Then
we show an explicit example of an EQ which regularizes the singularities existing in the
Reissner-Nordström black hole and we conclude with a discussion of the main results.

2.1 Aspects of L(Rµνρσ, Fαβ) theories

In this Section we will present and review some generalities of non-minimal extensions
of Einstein-Maxwell theory (EM). For that, we shall consider the most general gauge-
and di˙eomorphism-invariant theory for the metric gµν and a U(1) gauge feld Aµ, whose
Lagrangian must necessarily be constructed from contractions of the Riemann tensor Rµνρσ 
and the gauge feld strength1 F = dA. Consequently, the corresponding action I[g, A] will
adopt the form: Z 

dnI[g, A] = 
1 

x 
p

|g|L(Rµνρσ, Fαβ) , (2.1)
16πG M 

where n denotes the spacetime dimension which we will fx to n = 4 all along the chapter
with the exception of Subsection 2.1.1, where we will keep it arbitrary. We will begin by
deriving the the equations of motion of the theory (2.1), afterwards we will introduce the
Electromagnetic Duality Map (EDM) and fnally we will review some notions of black hole
thermodynamics.

2.1.1 Equations of motion

In the case of pure theories of gravity, a general formula for the equation of motion associ-
ated to the gravitational feld (the Einstein equation) is already known [230, 513]. There-
fore, our frst objective will be to derive an analogous formula for the Einstein equation of
theories L(Rµνρσ, Fαβ ) which include arbitrary non-minimal couplings between gravity and
electromagnetism. To this aim, we consider the variation of the action (2.1) with respect
to the inverse metric: Z � �p1 1 ∂L ∂L 
δI[g, A](δgµν , 0) = dn x |g| − gµν δg

µν L + δgµν + δRαβργ ,
16πG 2 ∂gµν ∂Rαβργ M 

(2.2)
where we remind that the term δRαβργ is not independent from δgµν . Let us defne

∂L 1 ∂L 
P αβργ Mαβ = , = − , (2.3)

∂Rαβργ 2 ∂Fαβ 

Up to total derivatives, one observes that

σ σµν P αβργ δRαβργ = −2r r βPµσβν δg
µν − P Rρσµν δg

ρβ . (2.4)β 

1For the sake of simplicity we will be assuming no covariant derivatives of the Riemann tensor nor of
the gauge feld strength.
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On the other hand, it is possible to work out the Lie derivative LξL with respect to an
arbitrary vector feld ξ ∈ X(M) in the following two di˙erent ways:

L = ξµP νρσβ LξL = ξµrµ rµRνρσβ − 2ξµMαβ rµFαβ , (2.5)

LξL = P νρσβ LξRνρσβ + 
∂g 
∂L 
αβ 
Lξgαβ − 2Mαβ LξFαβ . (2.6)

Taking into account that

= ξµP νρσβ ξν )P µρσβ RνP νρσβ LξRνρσβ rµRνρσβ + 4(rµ (2.7)ρσβ , 

Lξgαβ = 2r(αξβ) , (2.8)

Mαβ LξFαβ = ξµrµFαβ Mαβ + 2rαξ
µFµβ Mαβ , (2.9)

we fnd that2
∂L αβγ α = 2P Rναβγ − 2M Fνα . (2.10)µ µ∂gµν 

Therefore, Eq. (2.2) may be rewritten asZ � 
1 p 1 αβγ δI[g, A](δgµν , 0) = dn x |g| − gµν δg

µν L + 2Pµ Rναβγ δg
µν − 2Mµ

αFναδg
µν 

16πG 2M o 
σ σαβ −2r r β Pµσβν δg

µν − Pµ Rνσαβ δg
µν , (2.11)

Hence the Einstein equation of any theory given by the action (2.1), which represents
the most general theory of gravity and electromagnetism and includes all possible terms
constructed out of curvature tensors, metrics and feld strengths, is given by3

1ρσγ σ αEµν = P(µ Rν)ρσγ − 
2
gµν L + 2r r ρP(µ|σ|ν)ρ − 2M(µ Fν)α = 0 . (2.12)

In another vein, the derivation of the generalized Maxwell equation is direct and it yields

MµνEν = rµ = 0 . (2.13)

2.1.2 Dualization

As before, let L(Rµνρσ, Fαβ ) be a generic theory of gravity and electromagnetism. Observe
that the Maxwell equation (2.13) and the Bianchi identity of F can be written in the
following compact fashion: � � 

d F 
= 0 , (2.14)

H 
where we have implicitly defned

1 ∂L 
Hµν = − ? , (2.15)

2 ∂F µν 

2Note that
∂L ∂L 

= −gµα gνβ . 
∂gµν ∂gαβ 

3In the case of pure gravity we do not have to include an explicit symmetrization in the µν indices
ρσγ σ ρbecause the terms Pµ Rνρσγ and r r Pµσνρ are automatically symmetric [230]. However, in the case

at hands we have not been able to show that the di˙erent structures appearing in Eµν are necessarily
symmetric — although we highly suspect it — and thus we have symmetrized explicitly.
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denoting ? the Hodge dual map. The two-form H receives the name of dual feld strength
and (2.15) is the constitutive relation. We note that (2.14) suggests to consider F and H 
on an equal footing. In particular, we may think about the possibility of fnding a new
theory Ldual(Rµνρσ, Hαβ) which depends solely the dual feld strength H (and gravity, of
course), being independent of F . This can be done through the process of dualization or
duality transformation, which consists in a Legendre transformation of L(Rµνρσ, Fαβ) that
takes a theory L(Rµνρσ, Fαβ) into its dual given by4

Ldual(Rµνρσ, Hαβ) = L(Rµνρσ, Fαβ (?Hλκ, Rεγπζ )) − 2F µν (?Hλκ, Rεγπζ )) ? Hµν , (2.16)

where the expression of Fαβ = Fαβ (?Hλκ, Rεγπζ )) is obtained by inverting the constitutive
relation (2.15), which on general grounds can be a rather challenging (if not impossible)
problem. Dualization satisfes the following nice property.

Proposition 2.1. Let (gµν , Fαβ ) be a solution of the set of equations of motion and Bianchi
identity of L(Rµνρσ, Fαβ ). Then

1 ∂L 
(gµν , Hαβ ) , Hαβ = − ? 

2 ∂F αβ 

is a solution of the set of equations of motion and Bianchi identity of Ldual(Rµνρσ, Hαβ ).

Proof. Assume that (gµν , Fαβ ) is a solution of the set of equations of motion and Bianchi
identity of L(Rµνρσ, Fαβ). This automatically implies that dH = 0, since this corresponds
to the Maxwell equation for F , as checked by direct inspection of (2.15). Regarding the
Maxwell equation for H, the variation of the action Idual with respect to B, H = dB,
reveals5 that: Z �p1 ∂L ∂Fαβ ∂Fαβ

d4δIdual(0, δBµ) = x |g| ∂µδBν − 2 ? Hαβ∂µδBν (2.17)
8πG ∂Fαβ ∂Hµν ∂HµνM � Z 

1 p
− 2 ? F µν ∂µδBν = d4 x |g|∂µ ? F µν δBν ,

4πG M 

where we discarded total derivatives and where we are taking into account that F depends
on H through (inverting) Eq. (2.15). Consequently, we learn that the Maxwell equation
for H is nothing else than the Bianchi identity for F . Finally, regarding the Einstein
equation, since

p
|g|F µν ?Hµν is a topological term, we infer that the Einstein equation of

Ldual(Rµνρσ, Hαβ) would be that of L(Rµνρσ, Fαβ ) after exchanging Fαβ → Fαβ(H). This
proves that (gµν , Hαβ) is a solution of the set of equations of motion and Bianchi identity
of Ldual(Rµνρσ, Hαβ ) and we conclude.

Furthermore, it can be checked that dualization is an involutive map, in the sense
that the dual of the dual theory is the theory itself.

4Here we do not consider the issue of boundary terms in the dualization process. They will be explicitly
included in Chapter 4.

5At least locally, dH = 0 implies that H = dB for a certain 1-form.
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2.1.3 Mass, charges and thermodynamics

For the purposes of the chapter, it will be very convenient to briefy review the issue of
conserved charges and black hole thermodynamics. In the case of electric and magnetic
charges, one obtains them directly from the equations of motion. In particular, the gener-
alized Maxwell equation can be written as

d ? M = 0 , where M = − 
1 ∂L 

dxµ ∧ dxν . (2.18)
4 ∂F µν 

If we place a current three-form J on the right-hand-side, the equation implies that the
current is conserved, dJ = 0. Therefore, the natural defnition of electric charge isZ 

1 
Q = ?M , (2.19)

4πG S2 
∞ 

where the integration is taken at spatial infnity. In asymptotically fat spacetimes, with a
Lagrangian L = R − F 2+higher-order, we have M → F asymptotically, so in practice we
can exchange M by F as long as the integral is performed at infnity. In the asymptotically
AdS case, there is a theory-dependent constant cq such that M → cqF at the boundary
of AdS, as we will see in Chapter 4. On the other hand, the magnetic charge is defned in
the standard way: Z 

1 
P = F . (2.20)

4π S2 
∞ 

Gravitational conserved charges in higher-order gravities were examined in Refs.
[90,91,514], but here we are just interested in the total mass. In the case of asymptotically
fat spacetimes, the mass can be formally computed using the same prescriptions as for
GR, for instance via the ADM [85,492] or the Abbott-Deser [86] formulae. Thus, the mass
can be computed by studying the asymptotic behaviour of the metric in the usual way, i.e.,
identifying the term 2GM/r ∈ gtt. In the AdS case, a global theory-dependent factor should
be added to those formulas, corresponding to the replacement of the Newton’s constant
by the so-called e˙ective Newton’s constant Geff [88]. However, for L(Rµνρσ, Fαβ) theories
we do not expect these results to be a˙ected, since the higher-order operators formed from
Fαβ decay too fast at infnity to contribute to the mass.

Regarding black hole thermodynamics, it is known that higher-curvature gravities
minimally coupled to a Maxwell Lagrangian F 2 satisfy the following frst law of black hole
mechanics [37, 515]

dM = T dS +ΦhdQ +ΨhdP . (2.21)

HereM , Q and P are the mass and charges computed as specifed above, T is the Hawking
temperature of the black hole [38] and S is Wald’s entropy [366, 370], given by6Z √ 

S = −2π d2 x h 
∂L 

�µν �ρσ , (2.22)
Σ ∂Rµνρσ 

where the integral is carried out on the bifurcation surface of the event horizon and �µν 
is the binormal to this surface. In another vein, Φh is the electrostatic potential at the

6There are some subtleties when defning the Noether charge for theories involving felds with internal
gauge freedom — see e.g. Refs. [367,368] for recent discussions on this topic. Nevertheless, we will observe
afterwards that defning the entropy according to the Wald prescription will yield an entropy which satisfes
the frst law of black hole thermodynamics as defned in (2.21). This is a highly non-trivial consistency
check.
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horizon and Ψh is the electrostatic potential of the dual vector feld whose feld strength
is given by (2.15). These can be computed according to

ξν Fµν = ∂µΦ , ξν Hµν = ∂µΨ , (2.23)

where ξν is the Killing vector that generates the horizon, with the condition that Φ and Ψ 
vanish asymptotically7.

It was shown in Ref. [516] that the form of the frst law remains unmodifed when
instead of the Maxwell Lagrangian one considers non-linear electrodynamics minimally
coupled to Einstein gravity. Nevertheless, such analysis does not include the case of non-
minimally coupled terms, and one may wonder if the form of the frst law could change.
This is, just like the entropy is no longer proportional to the area in presence of higher-
curvature terms, S 6= A/4, the question is whether the quantities Φ or Q in (2.21) could
have to be replaced by others in order for the frst law to hold. Another non-trivial question
is whether the Noether-charge and the Euclidean path integral approaches yield equivalent
results for black hole thermodynamics [517, 518]. We will provide strong arguments for a
positive answer to both questions in the following sections.

2.2 Static and spherically symmetric solutions

Once we have reviewed some aspects of generic higher-order theories of gravity and elec-
tromagnetism, now we commit ourselves to the problem of fnding static, spherically sym-
metric (SSS) solutions of such theories. Obviously, the equations of motion are far too
general to be solved without specifying a Lagrangian, so instead our aim is to understand
the structure of those equations and to describe a class of theories for which the problem
can be simplifed.
If we have a SSS confguration for a metric g and a feld strength F , then the following
conditions must hold:

Lk(A) gµν = Lk(A) Fµν = 0 , (2.24)

where k(A) with A = 0, 1, 2, 3 are the Killing vectors associated to these spacetime sym-
metries. Working with canonical spherical coordinates (t, r, θ, φ), they can be chosen to
be:

k(0) k(1) k(2)= ∂t , = ∂φ , = − sin φ∂θ − cos φ cot θ ∂φ , 
(2.25)

k(3) = cos φ∂θ − sin φ cot θ ∂φ . 

The most general ansatz for the subsequent SSS metric takes the form of Eq. (I.21):

2dr � �
2 2 2ds = −N2(r)f(r)dt + + r dθ2 + sin2 θdφ2 , (2.26)N,f f(r) 

which depends on two functions N and f . Imposing Lk(i) Fµν = 0 together with the Bianchi
condition for8 F , the most general form for F consistent with static and spherical symmetry

7This is the convention we follow here and in Chapter 3. However, in Chapter 4 we will fnd convenient
to defne the electrostatic potentials in such a way that they vanish at the black hole horizon (whenever it
exists).

8Without imposing dF = 0, we would have F = Φ(r)dt ∧ dr + χ(r) cos θdθ ∧ dφ. Then dF = 0 implies
χ(r) = P , for constant P .
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is:
FSSS = −Φ0(r)dt ∧ dr + P cos θdθ ∧ dφ . (2.27)

Note that FSSS is the linear combination of an electric ansatz Ae and a magnetic ansatz
Am for the vector feld:

Ae = Φ(r)dt ⇒ F e = −Φ0(r)dt ∧ dr , (2.28)

Am = −P cos θdφ ⇒ F m = P sin θdθ ∧ dφ . (2.29)

Interestingly enough, while the electric ansatz is undetermined up to a choice of electric
potential Φ(r) (to be fxed by the Maxwell equation), a magnetic feld strength is completely
fxed by static and spherical symmetry and the Bianchi identity, being the only degree of
freedom the choice of magnetic charge9 P .

We will assume in the following either an electric or a magnetic ansatz for the vector
feld, whose feld strengths F e and F m are given above. One could also consider dyonic
vectors, but this increases the diÿculty of the problem because of the non-linearity of
the associated Maxwell equations, so we will restrict ourselves to purely electric or purely
magnetic confgurations.

2.2.1 The reduced Lagrangian

If one is interested in the study of SSS solutions, one could try to obtain them by frst
deriving the equations of motion in full generality and, afterwards, setting the SSS ansatz
(2.26) in these equations. However, as seen by direct inspection of (2.12) and (2.13), this is
a quite intricate procedure and it would be convenient to have at disposal a more amenable
method for SSS solutions.

In fact, it is possible to derive the equations of motion associated to these confgu-
rations by just varying the Lagrangian evaluated on a SSS ansatz, which we call reduced
Lagrangian. On electric and magnetic SSS confgurations, this is defned as10

LN,f,Φ = 
p

|g|L . (2.30)
ds2 ,FSSSN,f 

Proposition 2.2. For any theory L(Rµνρσ, Fαβ ), the Einstein and Maxwell equations eval-
uated on a SSS ansatz are equivalent to

δLN,f,Φ δLN,f,Φ δLN,f,ΦEN = = 0 , Ef = = 0 , EΦ = = 0 . (2.31)
δN δf δΦ 

Proof. Let us show frst the equivalence between the Maxwell equation and EΦ = 0. The
SSS condition implies that H = −1 ? ∂L must have the structure2 ∂F 

H = Htr(r)dt ∧ dr + Hθφ(r)dθ ∧ dφ . (2.32)

9This is due to the fact of choosing a SSS feld strength, what is natural if one already imposes this
condition on the metric. In [4], this condition was not imposed, but it was found afterwards that the
resolution of the subsequent Maxwell equation for the magnetic feld strength requires precisely F to have
the form (2.29).

10It is important to distinguish such reduced Lagrangian LN,f,Φ from the Lie derivative of a certain
tensor T along a vector ξ, given by LξT . It should be clear from the context the actual meaning implied.
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Consequently, the only component of the Maxwell equation Eν = (?dH)ν = 0 which is not
automatically solved is E0 (note that dH = H 0 (r)dr ∧ dθ ∧ dφ, so H 0 (r) = 0 would beθφ θφ 
the equation of motion). On the other hand, if IN,f,Φ denotes the evaluation of the action
on the SSS ansatz given by (2.26) and (2.27):

δIN,f,Φ δIN,f,Φ ∂Aµ δIN,f,ΦEΦ = = = = E0 . (2.33)
δΦ δAµ ∂Φ δA0 

Therefore, varying the action evaluated on the SSS ansatz with respect to Φ(r) yields the
zeroth component of the Maxwell equation, which is the only non-trivial one on a SSS
ansatz. This proves the equivalence between the Maxwell equation and EΦ = 0. Regarding
the Einstein equation, let Eµν denote the gravitational equations:

δI Eµν = . (2.34)
δgµν 

Using the chain rule, we fnd that:

∂gµνδIN,f,Φ 2 EN = = Eµν |SSS = Ett ,
δN ∂N N3f 

(2.35)
∂gµνδIN,f,Φ 1 Ef = = Eµν |SSS = Ett + Err . 

δf ∂f N2f2 

We see that EN = 0 and Ef = 0 imply Ett = Err = 0. Next, let us check that all the
o˙-diagonal components of the gravitational equations are trivial. The easiest way to show
this is by taking into account that

Lk(A) Eµν = 0 , (2.36)

as demanded by static and spherical symmetry, where k(A) are the Killing vectors (2.25).
On the one hand, both Lk(0) Eµν = Lk(1) Eµν = 0 directly imply that all components
of Eµν are independent of time t and azimuthal coordinate φ. Computing now Ek,φ = 
cos φLk(2) Eµν + sin φLk(3) Eµν , we fnd that⎛ ⎜⎜⎝ 

0 0 csc2 θEtφ −Etθ 
0 0 csc2 θErφ −Erθ 

⎞ ⎟⎟⎠ . (2.37)

and that all o˙-

csc2 θEtφ csc2 θErφ 2csc2 θEθφ −Eθθ + csc2 θEφφ 
−Etθ −Erθ −Eθθ + csc2 θEφφ −2Eθφ 

Since the latter must be identically zero, we learn that Eθθ = csc2 θEφφ 

Ek,φ = 

diagonal components of Eµν , except for Etr, vanish. In order to show that Etr also vanishes,
we can perform a direct computation using (2.12).

The term proportional to the metric in (2.12) is trivially diagonal, as well as that
αcorresponding to M(µ Fν)α, after taking into account that Mµν has necessarily the same

components as Fµν . Indeed, both antisymmetric tensors take the same schematic form
after the consideration of the electric/magnetic SSS ansatz:

ρr φ ρr φFµν = q(r)τ[ 
t
µ ν] + p(r)σ[ 

θ
µ σν] , Mµν = q̃(r)τ[ 

t
µ ν] + p̃(r)σ[ 

θ
µ σν] , (2.38)

where q(r), q̃(r), p(r) and p̃(r) are some radial functions and where we defned the projectors

X2 

τµ
ν = δµt δtν , ρνµ = δµr δr

ν , σµ
ν = δµ

i δi
ν , (2.39)

i=1 
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where the index i runs over the angular coordinates.
On the other hand, the Riemann tensor, and thence the Pµναβ tensor, only have the

following type of components11 when evaluated on (2.26) [502]:

[α β] [α β] [α β] [α β]
R αβ = A(r)τ ρ + B(r)τ σ + C(r)ρ σ + D(r)σ σ ,µν [µ ν] [µ ν] [µ ν] [µ ν] 

(2.40)
αβ [α β] [α β] [α β] [α β]˜ + ˜ + ˜ + ˜P = A(r)τ ρ B(r)τ σ C(r)ρ σ D(r)σ σ ,µν [µ ν] [µ ν] [µ ν] [µ ν] 

where we used the projectors defned above and where A(r), Ã(r), B(r) . . . are certain
radial functions. Taking into account (2.40), we check by direct computation that both

αβγ σP(µ Rν)αβγ and r rρP(µ|σ|ν)ρ have vanishing o˙-diagonal components.
Finally we must check that the θθ and φφ components of the Einstein equations

are satisfed once the tt and rr are. For that, consider the Bianchi identity associated to
di˙eomorphism invariance of any action of the form (2.2). Evidently this Bianchi identity� � 

µis di˙erent from the usual r Rµν − 1 gµν R = 0 (which holds too) since there are higher-2 
order terms in the curvature in addition to non-trivial couplings to electromagnetism.
However we can equally apply Noether’s second theorem to (2.2) in order to obtain the
following o˙-shell identity: � � 

rµ 
δg 
δI 
µν 

+ B = 0 , (2.41)

δI where B is a certain quantity that vanishes when = 0. Therefore, if the vector feld isδAν 
a solution of the generalized Maxwell equation (2.13) — for instance, the magnetic vector
given by (2.29) — we obtain that � � 

rµ 
δI 

= 0 . (2.42)
δgµν F =Fsol 

EµνThus, we can assume the Bianchi identity rµ = 0 once the Maxwell equation is solved.
Evaluating this identity on the SSS metric (2.26) and taking into account that Eµν has no
o˙-diagonal components, we may fnd after some algebra that the ν = r component of the
divergence of the Einstein equation (2.12) takes the form:� � � � 

2 1 1 f Err E tt − 
dErr 

+ − f−1f 0 + N−1N 0 + f2NN 0 + N2ff 0 gij E ij = 0 , (2.43)
dr r 2 2 r 

where i, j are the angular components. Since due to spherical symmetric Eθθ and Eφφ are
E ttproportional to each other, then this identity implies that whenever Err = = 0, then

Eθθ = Eφφ = 0, and the equations of motion are solved.

Proposition 2.2 is quite powerful, since it allows us to obtain the equations of motion
through a much simplifed procedure, by which we just have to vary the action evaluated
on the SSS ansatz. Furthermore, we note that, by direct inspection of the proof of the
equivalence between the Maxwell equation and EΦ = 0, a pure magnetic ansatz F m always
solves the Maxwell equation. Indeed, since any term in the Lagrangian must contain

11One may see, upon use of the conditions Lk(i) Rµνρσ = Lk(i) Pµνρσ = 0 for i = 1, . . . , 4, that any of
the two expressions given at (2.40) represents the most general tensor with the same symmetries as the
Riemann and consistent with the static and spherical symmetry.
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an even number of feld strengths (assuming that the Lagrangian admits a polynomial
expansion in terms of Fαβ and Rµνρσ) by virtue of di˙eomorphism and gauge invariance,
then EΦ = 0 is always satisfed if we choose Φ = 0, and hence a pure magnetic ansatz is
an automatic solution of the Maxwell equation.
Notwithstanding, this is no longer the case when we set an electric ansatz for the vector
feld. This is easily illustrated if we suppose as before that the Lagrangian is a polynomial
in Fαβ and Rµνρσ, i.e, it is composed of terms of the form F 2mRn , with the indices
contracted appropriately. In fact, by studying the structure of the curvature tensor on a
SSS metric [502], it is not hard to show that a monomial built out from 2m feld strengths12

and n curvatures has the following structure when evaluated on such electric confguration:� �2m imax jmax 
(N 0)i(N 00)jΦ0 XX 

(F e)2mRn ∼ 
N i+j Fij (f, f 0, f 00 , r) . (2.44)

N 
i=0 j=0 

where the sum is always fnite and the functions Fij are polynomial in f , f 0 and f 00 . Now,P 
schematically the reduced Lagrangian is LN,f,Φ = Nr2 sin θ F 2mRn . Therefore, then,m 
Maxwell equation, obtained from variation with respect to Φ, reads

d ∂LN,f,Φ ∂LN,f,ΦEΦ = − = 0 ⇒ = Q , (2.45)
dr ∂Φ0 ∂Φ0 

where Q is an integration constant. Since the left-hand-side of the last equation is a
(polynomial) function of Φ0 , we can in principle invert it so that we get13

Φ0 = Φ0 
sol(f, f

0, f 00, N, N 0, N 00, r, Q). (2.46)

In this way we have eliminated one of the variables in the system of equations. Now we
have to plug the value of Φ0 in the equations for N and f and we get two di˙erential
equations for these functions,

EN = 0 , Ef = 0 . (2.47)
Φ0=Φ0 Φ0=Φ0 

sol sol 

Since Φ0 is generically a highly nonlinear (not even polynomial) function of the variablessol 
f and N and their derivatives, solving these equations is in general an inaccessible problem.

2.2.2 The condition gttgrr = −1: Generalized Quasitopological theories

The lesson we extract from the previous discussion is that magnetic solutions are much
simpler to study than electric ones. However, even if we restrict ourselves to these magnetic
solutions, the equations for N and f are typically too complicated to obtain relevant
information in general, so further simplifcation is desirable.

In the case of pure gravity, an intriguing class of theories has been identifed in
recent years. These theories are known as Generalized Quasitopological Gravities14 (GQGs)
[79,216] and they are characterized by possessing SSS solutions of the form

2 
2 2ds = −f(r)dt + 

f 
d

( 
r

r)
+ r 2dΩ2 (2.48)f (2) , 

12Whenever no possible confusion may arise, we use the same letter m to denote the power of feld
strengths F present in a given monomial and the label for the magnetic ansatz.

13Of course, there may be more than one solution.
14The works [79, 216] could be considered as the ones establishing the general properties of the new

family of theories, but these were motivated by earlier works on Einsteinian Cubic Gravity [78, 248,252].
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i.e., with N = 1, and where in addition the equation of motion for f can be partially
integrated. Other remarkable properties of these theories are that the thermodynamic
properties of black holes can be studied in a completely analytic fashion and that they
only propagate a massless graviton on constant curvature backgrounds.

Interestingly, GQGs can be nicely combined with minimally coupled vector felds,
since they respect the property of having solutions with gttgrr = −1. In this context,
it is tantalizing to wonder about the possibility of generalizing these theories in the case
of non-minimally coupled vector felds. The defning property of GQGs, from which all
the rest are derived15 [79,216], is that their reduced Lagrangian becomes a total derivative
when evaluated on the single-function ansatz (2.48), so we may try to extend this defnition
when a non-minimally coupled vector is present.

However, the main problem is that the reduced Lagrangian LN,f,A for arbitrary
electromagnetic vector feld Aµ will not in general enjoy the same structure as for pure
gravities, since it will strongly depend on Aµ. Thus, for instance, it does not seem possible
to impose L1,f,A to be a total derivative without specifying the form of Aµ. A more
reasonable property to demand would be that the Euler-Lagrange equation of f vanishes
identically when it is evaluated on N = 1 and on a gauge feld that solves the Maxwell
equation:

δL1,f,A 
= 0 . (2.49)

δf A=Asol 

Still, in the electric case we have seen that Asol generically has a non-polynomial depen-
dence on f and its derivatives, so it seems complicated to fnd by brute force theories
satisfying this property.

Fortunately enough, the situation is di˙erent for magnetic confgurations. In fact, we
have seen that in the magnetic case we can work with a reduced Lagrangian that depends
only on N and f , since the Maxwell equation is automatically solved. In fact, the reduced
Lagrangian LN,f for non-minimally coupled theories F 2pRn with a magnetic vector feld
has the same structure as for pure gravity theories, since it can be seen that

imax jmaxXX (N 0)i(N 00)j 
(F m)2pRn ∼ 

N i+j Fij (f, f 0, f 00 , r) , (2.50)
i=0 j=0 

where Fij are polynomials in f , f 0 and f 00 . Therefore one can extend straightforwardly the
defnition of Generalized Quasitopological Gravities to these non-minimally coupled terms.
In particular, we are able to state the following result.

Theorem 2.1. Let us consider a theory with a Lagrangian L(Rµνρσ, Fαβ ) of the form

L(Rµνρσ, Fαβ ) = R − F 2 + higher-derivative terms, (2.51)

where the higher-derivative terms are formed from monomials of the Riemann tensor and
the feld strength,16 schematically RnF 2m . Let us consider a SSS confguration given by
the metric (2.48) and by a magnetic vector feld with feld strength (2.29) and let us defne
the reduced Lagrangian of the system as

Lf = r 2L . (2.52)
2dsf ,F m 

15See also Chapter 3 of [89] for a refnement on some of the results in [216].
16With this we mean that we do not allow terms such as e.g. F 2/R.

105



Chapter 2. Electromagnetic Quasitopological Gravities

If the Euler-Lagrange equation for the reduced Lagrangian Lf vanishes identically, i.e.,

∂Lf d ∂Lf d ∂Lf− + = 0 , (2.53)
∂f dr ∂f 0 dr2 ∂f 00 

then the following properties hold:

1. the theory allows for magnetically-charged SSS solutions of the form (2.48), (2.29),

2. the equation for the function f can be integrated once yielding at most a second-order
equation where the mass appears as an integration constant,

3. the only gravitational mode propagated on maximally symmetric backgrounds is the
spin-2 massless graviton, and

4. (Conjecture) the thermodynamic properties of magnetically-charged static black holes
can be obtained analytically.

The points 1 and 2 follow from the results in [216] by noticing that the reduced La-
grangian has the same structure as in the case of pure gravity. Point 3 is also a consequence
of the results there — see also [89] —, but it is somewhat trivial, since terms RnF 2m with
m > 0 do not contribute to the linearized equations of the metric17, while the pure gravity
terms satisfying (2.53) are known to produce Einstein-like linearized equations. Further-
more, let us note that the degrees of freedom corresponding to the vector feld are the
same as in Maxwell theory, since the Maxwell equation for any theory of the form (2.51)
is of second-order in Aµ. Regarding point 4, it technically stands as a conjecture since no
formal proof has been o˙ered so far, though we strongly believe this conjecture to be true
due to the large evidence collected in the GQG case [79, 248, 249, 252, 253]. Moreover, we
will show in the next sections that it also holds for all the non-minimally coupled theories
we construct.

These results involve magnetically-charged black hole solutions. Nonetheless, by
using the dualization procedure explained in Section 2.1.2, one can dualize any theory
satisfying (2.53) and obtain a new theory with electric solutions of the form (2.48). Conse-
quently all the items in the Theorem 2.1 hold as well for the dual theories after replacing
“magnetically-charged” by “electrically-charged”. This motivates the following defnition of
Electromagnetic Generalized Quasitopological Gravities (EGQGs):

Defnition 2.1. A theory L(Rµνρσ, Fαβ) belongs to the family of Electromagnetic General-
ized Quasitopological Gravities (EGQG) if and only if its Lagrangian or the Lagrangian of
its dual theory satisfes the condition (2.53).

One could name these theories as “Magnetic” and “Electric” GQGs respectively, but
we shall refer to them collectively by Electromagnetic GQGs for two reasons. Firstly, be-
cause it makes sense to use the adjective electromagnetic to express the fact that these
theories are (non-minimally) coupled to an electromagnetic feld. Secondly, because the-
ories of one and another class are simply related by dualization, and therefore they are
equivalent. However, even though the condition (2.53) can be fulflled by simple polyno-
mial Lagrangians (see next sections), the dual (electric) theory is generically much more
involved and will typically contain an infnite number of terms.

17Note that, in the vacuum, F = 0.
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In complete analogy to their pure gravity counterparts18, we may distinguish two
di˙erent classes of EGQGs: the general case in which the equations of motion of these
theories for charged SSS confgurations take the form of a second-order equation for the
function f and the special subset of theories for which the order of this equation can be
reduced twice again, being left with an algebraic equation. In this case we say that the
theories belong to the Quasitopological class (without the “generalized” adjective). For
pure gravity theories, Quasitopological Gravities only exist D ≥ 5, but as we show below,
infnitely many Electromagnetic Quasitopological Gravities (EQGs) exist in D = 4.

2.3 Electromagnetic Quasitopological Gravities

As stated above, the family of theories admitting single-function SSS solutions can be
further divided into two classes: those for which the equation for f is algebraic (“Quasitop-
ological”) and those for which f satisfes a 2nd order equation (“Generalized Quasitop-
ological”). In order to discover theories of the E(G)QG class, one frst writes down a
generic Lagrangian (including for example all the densities of the form F 2mRn up to a
given order), then evaluates the Lagrangian on the confguration given by (2.48), (2.29)
and fnally demands the condition (2.53) to be satisfed, which yields constraints on the
couplings of the higher-derivative terms.

In this section we shall focus on Electromagnetic Quasitopological Gravities, so we
will be interested in the subset of theories with an algebraic equation for f . At low orders
in the derivative expansion, one can easily fnd all the theories of this type. However, the
process becomes more and more intricate at higher orders, since the number of independent
densities one can include grows very fast. Thus, a completely general analysis does not
seem a priori accessible. Nevertheless, from the analysis of the lower-order densities we can
probably extract a general conclusion on the structure of EQGs. Indeed, in the Appendix
2.A we observe the following two facts. First, that there are only two Lagrangians of the
form F 2R belonging to the Electromagnetic Quasitopological class19. Second, that at order
F 2R2 , despite the larger number of linearly independent invariants one can construct, there
are only two di˙erent ways in which these densities modify the equation of f . Thus, if we
are only interested in studying SSS solutions, it suÿces to keep two representative EQG
densities at a given order. By repeating a similar analysis at higher orders, we observe
that the situation appears to be general: there are many independent EQGs but their
equations on SSS metric are degenerate, owing to the fact that there are only two di˙erent
contributions at every order. So, instead of studying the whole set of EQGs, we will provide
a set of representative theories which — we conjecture — span and capture all the possible
modifcations to SSS solutions. This will be enough for our goal, which is to study black
holes in these theories.

It turns out that it is not diÿcult to provide a set of two representative Lagrangians
of the EQG type at every order. Let us introduce the following notation:

(Rn)µν µν α1β1 . . . Rαn−1βn−1 
ρσ = R α1β1 

R α2β2 ρσ , (2.54)

18There is an important qualitative di˙erence between EGQGs and purely gravitational GQGs though.
While Lovelock gravities belong naturally to the GQG family, EGQGs do not include Lovelock-like theories
in which a gauge feld is non-minimally coupled to gravity, like the ones defned at Refs. [518–520].

19In this very particular case it even happens that the proper EGQG family coincides with the Quasitop-
ological one. This is of course not a general feature.
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R0 �µν µν [µ ν]with the convention that = δ ρσ ≡ δ δ . Defne the following Lagrangians
ρσ [ρ σ] 

of order RnF 2m:� � � � � 
L(a) αδ β Rn−1

�µν 
F 2 m−1 

n,m = 2nRµ ν − (3n − 3 + 4m)Rαβ
µν F ρσFαβ , (2.55)

ρσ 

L(b) � 
F 2
�m−1 

Fµν F ρσ 
� 
n � 

Rn−1
�µν 1 

� 
= R + (n + 4 − 4m)(3n − 3 + 4m) (Rn)µν 

n,m ρσρσ2 4 � �� � � �m−1 α Rn−1
�µν 

Rn−2
�µν− n F 2 Fαν F ρσRµ (1 + 2n) − (n − 1)Rβ

ρ . (2.56)
ρσ βσ 

(a) (b)Note that for n = 0 we have (m − 1)L = L = (m − 1)(3 − 4m)(F 2)m , so that these0,m 0,m 
Lagrangians are well defned for all integers n ≥ 0 and m ≥ 1.

Proposition 2.3. The theories given by (2.55) and (2.56) are Electromagnetic Quasitop-
ological Gravities.

Proof. In order to show that the Lagrangians (2.55) and (2.56) belong to the EQG family,
we have to check that they become a total derivative when evaluated on the single-function
ansatz (2.48) with a vector feld strength given by (2.29). For that, we evaluate the
Lagrangians on the general SSS metric ansatz given by (2.26) and we get:� � 

2m+nψn−1P 2m 
L(a) = nH − (3n − 3 + 4m)ψ , (2.57)n,m 2 4mds ,F m rN,f � 

2m+n−2ψn−2P 2m 
L(b) = nψ(F + G + 2Ĥ) + (n + 4 − 4m)(3n − 3 + 4m)ψ2 
n,m 2 4mdsN,f ,F m r � 

− 2n(1 + 2n)ψĤ + n(n − 1)Ĥ 2 , (2.58)

where, following the notation of [502], we have introduced

1 − f fN 0 1 − f − rf 0 
ψ = , Ĥ = − + , (2.59)

2 2r rN r 
−4fN 0 − 2rfN 00 − 3rN 0f 0 − N(2f 0 + rf 00)

F = , (2.60)
2rN 

−2rfN 00 − 3rN 0f 0 − N(2f 0 + rf 00)
G = . (2.61)

2rN 

which represent several components of the Riemann and Ricci tensors. Evaluating (2.57)
and (2.58) on N = 1, we fnd:

2L(a) I(a)r =
d 

, (2.62)n,m n,m2ds ,F m drf 

2L(b) I(b)r =
d 

, (2.63)n,m n,m2ds ,F m drf 

where � � 
d I(a) = 2m+nP 2m 3−4mψn r , (2.64)n,m dr 
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� � 
d I(b) = 2m+n−2P 2m 3−4mψn 4−4mψ0ψn−1(−4 + 2n + 4m)r + nr . (2.65)n,m dr 

Since these Lagrangians are total derivatives, the corresponding Euler-Lagrange equations
for the single-function SSS ansatz vanish identically, showing that they are truly EGQG
theories. Finally, Proposition 2.4 (right after this proof) ensures that (2.55) and (2.56)
belong to the Quasitopological type after noticing that the equation of motion for the
metric function f(r) is algebraic, so we conclude.

Proposition 2.4. Let us consider the theory built from the Einstein-Maxwell action and
the most general linear combination of (2.55) and (2.56):Z 

1 p
|g|LEQGI = d4 x ,

16πG 
∞ ∞XX � � 

LEQG `2(n+m−1) L(a) L(b)= R + λn,m + γn,m , λn,m, γn,m ∈ R , λ0,1 = 1 .n,m n,m 
n=0 m=1 

(2.66)
When evaluated on (2.26), the equation of motion for f is algebraic and takes the form:

∞X2M 
1 − f − + (1 − f)n−1 [αn(r) + βn(r)f ] = 0 , (2.67)

r 
n=0 

where M is the mass20 of the solution and
∞ � �X 2m+n−1P 2m`2(n+m−1) 

αn(r) = λn,m + (m − 1)γn,m , (2.68)
4m+2n−2r 

m=1 
∞ �X 2m+n−2P 2m`2(n+m−1) 

βn(r) = 2(n − 1)λn,m (2.69)
4m+2n−2r 

m=1 � 
+ (n 2 − 4n + 2 + m(−2 + 4n))γn,m . 

Proof. We already know that the Maxwell equation is always solved by magnetic vectors
with feld strength (2.29) and Proposition 2.3 guarantees that the Einstein’s equations
allow for solutions with N = 1. Thus, we only have to determine the equation of the
function f in the SSS metric (2.26), which can be obtained by evaluating the action on the
SSS ansatz (2.26) (with the help of (2.58)), varying with respect to N , and then evaluating
at N = 1. The resulting equation takes the form of a total derivative, dÊ(f, r)/dr = 0,
and upon integration we obtain the algebraic equation (2.67) and we conclude.

Note that we set λ0,1 = 1 to ensure that the usual Maxwell term −F 2 in included
in the action (2.66). Also, as we remarked earlier, the equation of motion for f(r) (2.67)
seems to be the most general equation one can get for the set of all Electromagnetic
Quasitopological Gravities. This is, we suspect that any other EQG will only have the
e˙ect of changing the value of the coeÿcients αn,m and βn,m above. We explicitly show in

20Properly speaking, the mass of the solution would be given byM/G. However, for the sake of simplicity,
in the present chapter and in Chapter 3 we will refer to M as the mass. In Chapter 4 we will substitute
M → GM and write G explicitly.
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Appendix 2.A that any Quasitopological theory built with two curvature tensors and two
gauge feld strengths indeed satisfes this property.

Along with the metric and the (magnetic) feld strength there is an additional phys-
ical magnitude of interest: the electric potential associated to the dual feld strength.
Indeed, if (gµν , Fµν ) is a magnetic solution of a given theory, then (gµν , Hµν ), where Hµν 
is the dual feld strength as defned in Equation (2.15), is a solution of the associated dual
theory. In this latter theory, the potential of Hµν will be electric. This electric potential
will make its appearance in the subsequent frst law of black hole thermodynamics (see
Subsection 2.3.2), so it will be useful to compute it. For that, using the notation employed
in Eq. (2.3), frst we notice that

− 2Mµν = YµναβF αβ (F 2)m−1 + (m − 1)YληαβF αβ F ληFµν (F 2)m−2 , (2.70)

where we have implicitly defned

∞ ∞XX � � 
= nR (Rn−1)µ + nR (Rn−1)µ − (3n − 3 + 4m)(Rn)ληαβ Yληαβ 2λn,m µ[α β]λη µ[λ η]αβ 

n=0 m=1 
∞ ∞ �XX 

+ γn,m nR(Rn−1)ληαβ + 
1
(n + 4 − 4m)(3n − 3 + 4m)(Rn)ληαβ 

2 
n=0 m=1 

− n(1 + 2n)R (Rn−1)µ − n(1 + 2n)R (Rn−1)µ (2.71)µ[α β]λη µ[λ η]αβ � 
+2n(n − 1)Rµ 

[λ(R
n−2)η]µσ[αR

σ
β] . 

Imposing the feld strength to be magnetic (2.29) and evaluating on the general SSS ansatz
(2.26), we fnd that the dual feld strength H, given by Equation (2.15), takes the form

∞ ∞XX 
H = `2(n+m−1)2n+m−3mP 2m−1Hn,mdt ∧ dr , (2.72)

n=0 m=1 

where we defned

ψn−2 � 
Hn,m = − 2nr(nγn,m + 2λn,m)ψψ0 + (n − 1)nr 2γn,m(ψ0)2 

4m−2r (2.73)� 
ψ00)+ψ(−2(4m − 3)((n + 2m − 2)γn,m + 2λn,m)ψ + nr 2γn,m . 

Amusingly, the latter can be explicitly rephrased as H = −Ψ0(r)dt ∧ dr, Ψ being the
electric potential. It takes the form

∞ ∞ � � � �XX mP 2m−1`2(n+m−1) ψ0 
Ψ = ψn 4λn,m + (−4 + 2n + 4m) + nr γn,m . (2.74)

23−n−mr4m−3 ψ 
n=0 m=1 

Once we have under control all the physically relevant magnitudes, we are going to present
next some explicit examples of SSS solutions of particular Electromagnetic Quasitop-
ological Gravities, since it will help us illustrate some of the most important features
of this new type of theories. In fact, with the exception of the n = m = 1 case, for
which the existence of Lagrangians with simple magnetic spherically symmetric solutions
has been previously noticed in the literature [401,521,522], general theories with magnetic
SSS solutions with general n, m have not been constructed to the best of our knowledge.
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2.3.1 Explicit non-singular solutions in quadratic-curvature theories

In general, an explicit solution of Eq. (2.67) in a theory involving an arbitrary number n of
Riemann curvature tensors is not available, since one would need to obtain the roots of an
nth-degree polynomial. Therefore, for the sake of simplicity, let us study the solutions of
theories that are just of second order in the curvature (n ≤ 2) but including an arbitrary
number of gauge feld strengths (m ≥ 1). In this case, the equation of motion for the
metric function f(r) turns out to be:

2M 
1 − f − + α0(r) + [α1(r) + β1(r)f ] + (1 − f) [α2(r) + β2(r)f ] = 0 . (2.75)

r 

where we have taken into account that α0(r) = −β0(r). Since this is a quadratic polynomial
in f one may solve the equation directly to obtain two possible solutions

−α2(r) + β1(r) + β2(r) − 1 
f±(r) = (2.76)

2β2(r) s � � 
2M 

(−α2(r) + β2(r) + β1(r) − 1)2 + 4β2(r) α2(r) + α1(r) + α0(r) − + 1 
r 

± . 
2β2(r) 

Now, one can check that the solution f+ is asymptotically fat and that it satisfes f+(r) = 
1 − 2M/r + . . . when r → ∞. In addition, this solution reduces to Reissner-Nordström in
the limit in which the corrections vanish ` → 0,

2M P 2 
lim f+(r) = 1 − + , (2.77)

2`→0 r r 

where one has to take into account that α0 → P 2/r2 while α1, α2, β1 and β2 vanish in
that limit. On the other hand, f− has an exotic asymptotic behaviour, f−(r) ∼ −1/β2(r),
and it does not have an Einstein gravity limit, so we will consider only f+ as the physically
relevant solution.

A quite remarkable property of these solutions is that, in many cases, the curvature
singularity at r = 0 is regularized by the higher-order corrections. To analyze the behaviour
of the solution near r = 0, let us assume that we only include terms containing up to 2mc 
feld strengths (so that 1 ≤ m ≤ mc). Then, the functions αi and βi read

mc mcX Xαn,m βn,m
αn(r) = , βn(r) = , (2.78)

4m+2n−2 4m+2n−2r r 
m=1 m=1 

and we can see that, except for certain fne-tuned values for the couplings, α2(r) and β2(r) 
are the dominant terms in the limit r → 0. Hence, from (2.76) we get

−α2,mc + β2,mc + |α2,mc + β2,mc | 2)f+(r) = + O(r when r → 0 . (2.79)
2β2,mc 

Thus, whenever α2,mc + β2,mc > 0 and β2,mc =6 0 we have f+(r) ∼ 1 + O(r2) near r = 0,
implying that the geometry is regular there. Notice that this is rather remarkable, since
we do not need to fne-tune the couplings, just require that they satisfy a bound. In order
for the solution to be globally regular we also have to make sure that there are no other
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singularities, e.g., the term inside the square root in (2.76) should not become negative, but
again this is easily achievable (for instance, if all the couplings are positive). Let us note
that the regularization is also possible if we only include linear curvature terms (n = 1) —
in fact this has been previously observed in the literature in the case of F 2R theories [401],
although in that case the couplings must be related in a specifc way. By analyzing the
solutions of Eq. (2.67) near r = 0, one can see that the regularization at r = 0 can also
be achieved in the general case in which we include terms F 2mRn of arbitrary order. The
form of the equation (2.67) forces f(r) ∼ 1 + O(r2) near r = 0 in most of the cases in a
quite natural way. Therefore we conclude that, without the need of much tuning on the
coupling constants, the magnetically-charged SSS solutions of the EQG theories (2.66) are
singularity-free.21

Notice that we have made not reference yet to black hole solutions, because, as in
Einstein-Maxwell theory, not all the charged solutions are black holes. If the charge is too
large compared to the mass, the solution does not have a horizon and in GR this means
that we have a naked singularity. However, in our theories the gravitational feld does not
diverge, so horizonless regular solutions exist. In Fig. 2.1a we show the profle of f(r) for
a black hole solution while in Fig. 2.1b we show the one corresponding to a gravitating
point charge. In both cases, the gravitational feld is regular everywhere.

Since regular black holes are not possible in GR due to the singularity theorems by
Hawking and Penrose [36,341], as explained in Subsection I.6.3, it follows that some of the
hypotheses of these theorems are broken by our higher-derivative theories. In particular,
these theorems rely on di˙erent energy conditions, and these may not be satisfed. One of
them is the null energy condition (NEC), which is satisfed if for any future-pointing null
vector feld kµ it holds that Tµν k

µkν ≥ 0, where Tµν is the stress-energy tensor, defned
1—as if we were working in GR — by the equation Gµν = Tµν . When evaluated on the2 

metric (2.48), it is not diÿcult to show that, for any null vector kµ we have� � 
2(1 − f(r))2Tµν k

µkν = a f 00(r) + , (2.80)
2r 

where a2 is a non-negative quantity related to the normalization and direction of the null
vector. We have checked that this quantity does in fact become negative for our regular
black hole solutions for some intervals of r, and hence the NEC is violated. Let us mention
anyway that there is no objective way of distinguishing what goes into the right-hand-side
or left-hand-side of Einstein’s equations in the theory (2.66), so that the defnition of the
stress-energy tensor is somewhat arbitrary.

Another physical quantity of interest is the dual electric potential Ψ, which was
calculated back in Eq. (2.74). In the particular Electromagnetic Quasitopological theories
we are considering, it turns out that the electric potential takes the form

∞ ∞ � �X Xα0,mm m β1,m 2 − 2f + rf 0 
Ψ(r) = + (1 − f) (α1,m + β1,m) −

4m−3 4m−1P r P r 2(2m − 1) 1 − f 
m=1 m=1 
∞ � �X m β2,m − α2,m β2,m − α2,m 2 − 2f + rf 0 

+ (1 − f)2 α2,m + − . (2.81)
4m+1P r 2m 4m 1 − f 

m=1 

21See, e.g., Refs. [288, 394–396, 398, 400, 402, 405, 406] for other examples of non-singular black holes in
di˙erent setups.
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(a) A black hole solution. We have set 2P = M = 2`, (b) A non-black hole solution. We have set P = 
532γ1,1 = 2 = −2γ1,2 = λ1,1 and λ1,2 = 25 . M and λ1,2 = .16 = `, 3γ1,1 = 6 = −6γ1,2 = λ1,1 4 

Figure 2.1: The metric function f(r) and the potential Ψ (in appropriate units) for two given
particular sets of couplings, magnetic charge P and mass M . Note that Fig. 2.1a represents a
black hole solution with an inner and outer horizon while Fig. 2.1b is an instance of a horizonless
solution. In both cases, couplings have been chosen so that Ψ is regular at r = 0, and we see that
it vanishes in this limit.

While the geometry is generally regular, this is not the always case for the electric
potential. If we want to have a regular potential at r = 0, not any set of couplings is
allowed. Indeed, since around r = 0 the metric function f(r) can be approximated by
f(r) ∼ 1 + Ar2 , we have

r∼0 

∞ � � ��X m β2,m − α2,m
lim Ψ(r) = α0,m − A(α1,m + β1,m) − A2 α2,m + . (2.82)

4m−3r→0 P r 2m 
m=1 

1Therefore regularity requires that α0,m − A(α1,m + β1,m) − A2(α2,m + (β2,m − α2,m)) = 02m 
for all m. This will happen for a certain subset of the whole moduli space of couplings,
but it is a realizable feature, as it is shown in Fig. 2.1a and Fig. 2.1b. Thus, in these cases
black holes and horizonless solutions have regular gravitational and electromagnetic felds
everywhere. We will explore in more detail this phenomenon in Section 2.5 for a particular
quadratic theory.

2.3.2 Black hole thermodynamics

After describing some generic aspects of SSS solutions of Electromagnetic Quasitopological
Gravities (2.66), in this subsection we focus on black holes and their thermodynamic de-
scription. One of our goals is to check that the frst law of black hole mechanics holds in
these theories and to identify the relevant thermodynamic potentials.

Let us begin with the solution given by (2.48) and assume the metric function f(r) 
has some zero for r ∈ R+ . The black hole horizon would be consequently located at
rh = max{r ∈ R+|f(r) = 0}. Using the equation of motion for f(r) (2.67), after evaluation
on r = rh we fnd that

∞X 
1 − 

2M 
+ αn(rh) = 0 . (2.83)

rh n=0 
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From here we can solve for the mass M of the black hole and get

∞X 
2M = rh + rh αn(rh) . (2.84)

n=0 

We can also obtain the temperature, for which we frst work out the derivative of (2.67)
at r = rh,

∞ � �X2M − f 0(rh) + + − f 0(rh)(n − 1)αn(rh) + α0 (rh) + βn(rh)f 0(rh) = 0 . (2.85)2 n rh n=0 

Substituting the expression for the mass found at (2.84) and taking into account that the
temperature T of the black hole is given by 4πT = f 0(rh), we are left with� �P∞1 + αn(rh) + rhα0 

n(rh)n=0 
T =

1 � � . (2.86)
4πrh P∞1 − βn(rh) − (n − 1)αn(rh)n=0 

Our next objective is the computation of the black hole entropy S, which is given by
Iyer-Wald’s formula [366, 370] Z √ ∂L 

S = −2π d2 x h �µν �ρσ , (2.87)
Σ ∂Rµνρσ 

where �µν denotes the binormal to the horizon Σ. After contraction with the binormals,
∂L 

we realize that we just have to care about the component , which turns out to be
∂Rtrtr � ∞ ∞ �XX P 2m∂L 1 1 

2n+m−3 = − + n `2(n+m−1)γn,m . (2.88)4m+2n−2∂Rtrtr 16π 2 rr=rh n=0 m=1 h 

Plugging this result into Eq. (2.87) and integrating over the angular variables, we fnd the
black hole entropy: � ∞ ∞ �XX P 2m 

2n+m−2S = πrh 
2 1 + n `2(n+m−1)γn,m . (2.89)4m+2n−2 r 

n=0 m=1 h 

We see that the entropy is no longer just the black hole area divided by 4 and we generically
have corrections. In particular, we check that the type (a) theory described by (2.55) does
not introduce any corrections to the entropy, being just the type (b) theory (and more
concretely, the term involving a Ricci scalar) (2.56) the one which causes deviations from
the Bekenstein-Hawking result [40].

In order to check the frst law of black hole mechanics we need to bear in mind that
we have a magnetically-charged solution. Consequently, if we consider the dual theory,
this magnetic solution will become an electric one after dualization. However, we know
that electric solutions satisfy a frst law which includes the associated electric potential (at
least, in the Reissner-Nordström solution). Therefore, taking into account that black hole
thermodynamics remain unchanged under duality transformations (since solutions in one
frame are mapped into solutions of the other), we conclude that the dual of any electric
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solution, which will be magnetic, will satisfy a frst law including the aforementioned
electric potential. Hence we can consider this argument backwards to justify that it is
the dual electric potential the one entering in the frst law of thermodynamics of these
magnetic solutions.

From (2.74) we get the following value of the dual electrostatic potential evaluated
at the horizon:

∞ ∞ � �XX 2n+m−1P 2m−1 
`2(n+m−1)Ψh = m λn,m + (m − 1)γn,m − nπrhTγn,m , (2.90)4m+2n−3 r 

n=0 m=1 h 

where at the same time we may use the expression for T in (2.86). At this point we have
the quantities M , T , S and Ψh expressed explicitly as functions of rh and P , and it is not
hard to check, by using (2.84), (2.86), (2.89) and (2.90) that the following relations hold:

∂rh M ∂rh M 
T = , Ψh = ∂P M − ∂P S , (2.91)

∂rh S ∂rh S 

where ∂rh and ∂P denote partial di˙erentiation with respect to rh and P , respectively.
When expressed this way, one may directly check that the following frst law

dM = T dS +ΨhdP , (2.92)

is satisfed. Hence we have shown that there exists a frst law of thermodynamics for the
Electromagnetic Quasitopological Gravities given by the action (2.66) which holds exactly.
Despite the presence of non-minimally coupled terms, this result shows that the frst law
is formally unchanged, with the e˙ect of the charge appearing through the standard term
ΨhdP , whereΨh is the electrostatic potential at the horizon. We will observe this behaviour
for EQGs in generic dimensions in Chapter 4, where Ψh will be identifed with the chemical
potential22.

In order to complete our study of the thermodynamic properties of these black holes,
let us compute the free energy. This can be defned from the rest of thermodynamic
potentials as

F = M − TS . (2.93)

As a consistency check, we will obtain F from the on-shell evaluation of the Euclidean
action according to F = TIE and observe that it matches exactly with (2.93).

To this aim, we will have to add to the action an appropriate boundary term and
suitable counterterms. Finding these boundary terms for higher-curvature theories of grav-
ity is a highly non-trivial issue, e.g. [523–527], but nevertheless one can see that, whatever
these terms are, they do not contribute to the on-shell evaluation of the action in the case
at hands. On general grounds, we expect that the boundary terms will be proportional
to the frst derivative of the Lagrangian with respect to the curvature [257], and since we
are considering asymptotically fat situations, all such terms decay too fast at infnity to
make a fnite contribution.23 Thus, we may use as a boundary term the standard Gibbons-
Hawking-York term [80, 81] minus its background contribution. Therefore we propose the

22Up to a minus sign. See Chapter 4.
23The situation is di˙erent for asymptotically AdS solutions, but in that case one may introduce an

e˙ective boundary term which is proportional to the Gibbons-Hawking-York term [257]. This procedure is
known to work at least for theories of the GQG class and has been tested in several occasions [258,259,270].
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following Euclidean actionZ Z � � 
1 p 1 √ √ 

IE = − d4 x |g|LEQG − d3 x hK − hflatKflat , (2.94)
16πG 8πG M ∂M 

where we have already Wick-rotated the time coordinate. In order to evaluate this action
on our black hole solutions, note that the on-shell Lagrangian takes the form of an explicit
total derivative when evaluated on the single-function metric (2.48). This follows from
(2.62), (2.63) and from a similar property satisfed by the Ricci scalar. Thus we have

1 dI LEQG 
ds2 ,F m 

= 
r2 dr

, 
f 

(2.95)∞ ∞ � �XX 
2f 0 `2(n+m−1) I(a) I(b)I = 2r(1 − f) − r + .λn,m n,m + γn,m n,m 

n=0 m=1 

and the Euclidean action takes the form Z � � 
∞ √ √ 

IE = − 
β I(r) − 

1
d3 x hK − hflatKflat , (2.96)

4G rh 8πG ∂M 

where β = 1/T . Then, one can check that the evaluation of I(r) at r → ∞ is exactly
cancelled by the boundary terms, so we are left with the evaluation at the horizon, IE = 
βI(rh)/4. This yields the following value:

∞ ∞ 
rh XX ̀2(n+m−1)2m+n−2P 2m � � 

IE/β = + λn,m + (m − 1)γn,m4m+2n−32 r 
n=0 m=1 h 

(2.97)� ∞ ∞ �XX ̀2(m+n−1)2m+n−2P 2m 
− T πrh 

2 + πnγn,m .4m+2n−4 r 
n=0 m=1 h 

By comparison with (2.93) we check that F = IE/β, and consequently, we show that the
Noether-charge and the Euclidean path integral approaches to black hole thermodynamics
give equivalent results.

Finally, let us work out the specifc heat CP at constant magnetic charge. A direct
application of the inverse function theorem shows that� �−1∂T ∂M T (∂rh S)

2 
CP = = . (2.98)

∂rh ∂rh ∂2 M − T ∂2 Srh rh 

We check that CP generally vanishes in the extremal limit T → 0, which we study in more
detail next.

2.3.3 Extremal black holes

We conclude the study of black holes in Electromagnetic Quasitopological theories by
pinpointing some characteristic aspects of their extremal limit. For simplicity, we restrict
our analysis to the particular class of theories which are quadratic in the vector feld
strength (m = 1). Defning the dimensionless parameter ρ = rh/`, then we can express
the black hole mass M for this class of theories as

2M P 2 
= ρ − U(ρ) , (2.99)

` `2 

116



����

��

Chapter 2. Electromagnetic Quasitopological Gravities

6 8 10 12 14 16 18 20

0.  

1.00

1.01

1.02

1.03

1.04

1.05

1.06

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

(a) (b)

Figure 2.2: The extremal charge-to-mass ratio of particular EQGs as a function of the mass (in
units of `). On the one hand, in Fig. 2.2a we notice the existence of two branches (just the upper
one would be connected to the Reissner-Nordström black hole), and the charge-to-mass ratio is
monotonically decreasing with the mass for both branches. However, there are no extremal black
holes below the mass at which both branches merge. On the other hand, in Fig. 2.2b we consider
two di˙erent functions U(ρ) and we realize that in both cases the extremal charge-to-mass ratio is
monotonically increasing.

where we have introduced the function

∞X 2n 
U(ρ) = − λn,1 . (2.100)

ρ2n+1 
n=0 

From (2.86), we see that the extremality condition T = 0 consequently takes the form

P 2 
0 = 1 − U 0(ρ) . (2.101)

`2 

From here one can solve for P 2 and obtain the following extremal charge-to-mass ratio:p
P 2 U 0(ρ) 

= . (2.102)
M (ρU 0(ρ) − U(ρ))ext 

Thus, we have an explicit a non-perturbative expression for the extremal charge-to-mass
ratio in terms of the radius. Note that if only a fnite number of terms is included in the
action, the function U is a polynomial in 1/ρ. However, if an infnite number of them is
added, U can actually be any function of the form U(ρ) = u(ρ−2)/ρ, where u(x) is an
arbitrary analytic function (to recover Einstein-Maxwell theory at low energies it must
satisfy u(x) → 1 when x → 0, though). In Fig. 2.2 we show P/M | as a function of theext 
mass for several choices of this function.

The e˙ect of higher-derivative corrections on extremal black holes has a particular
interest in the context of the Weak Gravity Conjecture (WGC) [416]. In fact, a mild form of
the WGC states that the extremal charge-to-mass ratio in a consistent theory of Quantum
Gravity must not decrease as the mass decreases. Thus, P/M must be a growing (or

ext 
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Figure 2.3: Profle of the metric function f(r) for black holes corresponding to the same theory
as in Fig. 2.2a. We show the solutions for a mass M = 5` (which is below the minimal extremal
mass) and, from less to more opacity, P/` = 2, 4, . . . , 20. As we see, extremality is not reached.

constant) function when when we move from larger to smaller masses24. This condition
ensures that the decay of an extremal black hole into a set of smaller black holes is possible,
at least from the point of view of energy and charge conservation. Perturbative higher-
derivative corrections to the extremal charge-to-mass ratio have been recently explored
in a number of papers, e.g. [125, 126, 474, 475, 528–533]. Nevertheless, our study is fully
non-perturbative, so we can analyze what happens when the corrections become important.

According to the WGC, just the theory depicted at Fig. 2.2a would be acceptable,
since it satisfes (for the two branches) that the charge-to-mass ratio decreases when the
mass grows. However, note that extremal black hole solutions cease to exist below a min-
imal mass (when the two branches merge). Although this might seem to be a peculiar
feature of the particular model considered, such behaviour turns out to appear quite gen-
erally. Additional examples of this situation are shown in Section 2.4.2 for a di˙erent family
of theories. One should wonder what happens with the evaporation process of black holes
at this point. For that, let us consider an initially large (M >> `) non-extremal black
hole. Due to Hawking radiation, it loses mass until it approaches extremality. At that
moment, it also needs to lose charge in order to continue evaporating, and this is achieved
if the WGC holds by emitting a particle with charge-to-mass ratio p/m ≥ 1. Note that
since our black holes satisfy P/M > 1 and this quantity becomes larger for smaller

ext 
black holes, evaporation is not obstructed. In addition, a process by which an extremal
black hole decays into a set of smaller, non-extremal black holes would be in principle
allowed in terms of energy and charge conservation. Through this process, the black hole
evaporates down to arbitrarily small masses, following approximately the line of extremal
black holes in Fig. 2.2a (we may assume the black hole remains near-extremal during the

24In following chapters we will implement the WGC by demanding that Mext(Q1 + Q2) ≥ Mext(Q1) + 
Mext(Q2). We consider this last condition to be more accurate, since it connects very clearly with the
physical content of the WGC. However, for asymptotically fat black holes, dimensional analysis reveals
that Mext ∼ Qext + c`2/Qext for certain coeÿcient c, so requiring P/M to decrease for larges masses

ext 
and superadditivity of Mext are equivalent, at least perturbatively. Since we intent to remain close to the
argumentation of [4], this suÿces for our purposes.
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Figure 2.4: The electrostatic potential at the event horizon of extremal black holes as a function
of the black hole mass. We plot three di˙erent EQGs, specifed at the legend of the graph.

evaporation process). Then, it will reach the minimal mass in order for extremal black
holes to exist, and this can have several meanings. One possibility is that below that line
there are no black holes at all, e.g., all the solutions are naked singularities or horizonless
smooth confgurations. Black holes could then transition to one of these objects, but this
is highly speculative. A more interesting possibility is that below that mass any black
hole is non-extremal, and this is precisely the case with the model depicted in Fig. 2.2a,
corresponding to λ1,1 = −2, λ2,1 = 1/4. The black hole solutions of that theory with
M = 5` (below the minimal extremal mass) are shown in Fig. 2.3. We see that, no matter
how large the charge is, the black hole is non-extremal. Thus, in this case, the black hole
can always lose mass by means of Hawking radiation without imposing any conditions on
kind of particles emitted. The fact that there is no obstruction to achieve the black hole’s
evaporation is in fully agreement with the spirit of the WGC.

Finally, let us comment on another interesting property that we can study in the
extremal limit, namely, the value of the electrostatic potential Ψ at the event horizon.
Indeed, in the limit T → 0 the quantity Ψh takes the following simple expression:

U(ρ)
Ψh = −p . (2.103)

U 0(ρ) 

Let us remark that Ψh = 1 for extremal Reissner-Nordström black holes, but this is no
longer the case for our black holes. In Fig. 2.4 we represent the electrostatic potential
for the same three theories we considered in Fig. 2.2. We observe that in general such
electric potential does not necessarily monotonically increase or decrease with the mass.
We discover a rather counter-intuitive fact: rapid decreases in the charge-to-mass ratio
plots seem to correspond to increases of the electric potential. Indeed, one would expect
that as the charge diminishes, the potential to decrease as well, but we are fnding precisely
the opposite behaviour. This phenomenon not only happens for the theories forbidden by
the WGC, but it also takes place for theories which, a priori, would be allowed. This
is explicitly seen for one branch (the one disconnected from Reissner-Nordström) of the
theory with U(ρ) = −1/ρ + 4/ρ3 − 1/ρ5 .
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2.4 Electromagnetic Generalized Quasitopological Gravities

In the previous section we have studied two families of EGQGs that belong to the Quasitop-
ological subset, since they yield an algebraic equation for the metric function f when evalu-
ated on the (magnetic) single-function ansatz (2.48). However, these are not the only type
of EGQGs that exist. Analogously to the case for pure gravity, there are some theories for
which f does not satisfy an algebraic equation, but a 2nd order di˙erential equation —
these are the proper Generalized Quasitopological theories. One may wonder why study
these theories since we have already described two infnite classes of theories with simpler
black hole solutions. There is a good reason, though. It turns out that, despite the fact
that it is not usually possible to provide explicit black hole solutions for proper EGQGs,
we can obtain the thermodynamic properties of black holes exactly. As we show below,
the thermodynamic relations can have a quite di˙erent form with respect to the Quasitop-
ological case, so that these new theories yield qualitatively di˙erent modifcations of the
Reissner-Nordström solution.

Based on our previous experience with (purely gravitational) GQGs, we expect that
there are many of these theories at each order. Consequently, we will not attempt to provide
a complete classifcation of this family of theories. Instead, our goal is to show that these
theories indeed exist and to study some of their properties. A general characterization of
EGQG theories may be addressed elsewhere.

Defne the following family of Lagrangians:

LEGQG � 
Rn−1

�µν 
h i � 

F 2
�m−1 

= nRgαβ − (4n + 4m − 3)Rαβ FµαFνβ , (2.104)n,m 

where (Rn)µν is the n-power of the Ricci tensor,

(Rn)µ = Rµ Rα1 . . . Rαn−1 
ν , (2.105)ν α1 α2 � �µwith the convention that R0 = δµν .ν 

Proposition 2.5. Every Lagrangian of the family (2.104) defnes an Electromagnetic Gen-
eralized Quasitopological Gravity for every n, m ∈ N.

Proof. If we evaluate (2.104) on the magnetic ansatz SSS given by (2.26), that we rewrite
here for the sake of convenience:

2 �dr �
2 2 2ds = − N2(r)f(r)dt + + r dθ2 + sin2 θdφ2 ,N,f f(r) (2.106)
F =P dθ sin θ ∧ dφ , 

we fnd that: � �m h i2P 2 
LEGQG Ĥ n−1 = nR − (4n + 4m − 3)Ĥ , (2.107)n,m 2 4ds rN,f 

where � � 
4f 0 2f 2 N 0 4f 2fN 00 

R = − f 00 − − + − 3f 0 + − , (2.108)
2 2r r r N r N 

1 − f − rf 0 N 0f 
Ĥ = − . (2.109)

2r Nr 
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Further evaluation on N = 1 shows that the Lagrangian becomes a total derivative,� �m � �n1 d 2P 2 1 − f − rf 0 LEGQG 3 
n,m = In,m , In,m = r . (2.110)

2 2 4 2ds r dr r r1,f 

and therefore it belongs to the EGQG class. Proposition 2.6 (right after this proof) guar-
antees that the equation of motion for f is of second-order, defning thus a proper EGQG,
and we conclude.

Proposition 2.6. Let us consider an extension of Einstein-Maxwell theory with the terms
of the EGQG class (2.104) above:" #Z ∞ ∞

1 
`2(n+m−1) LEGQGI = d4 x 

p
|g| R + 

XX 
µn,m , µn,m ∈ R , (2.111)n,m16π 

n=0 m=1 

where ` is an overall length scale while µn,m are dimensionless couplings such that µ0,1 = 1.
The equation of motion for f is second-order25 and takes the form:

Gf = 2M , (2.112)

where M is the mass of the solution and� �m � �n−2 hX `2(n+m−1) 2P 2 1 − f − rf 0 2f 02Gf = r(1 − f) + µn,m − (n − 1)r
4 22r r r 

n,m � �
2f 00+ (n − 2)rf 0 + f (n − 1)nr + r(2 − 4mn)f 0 + 4mn + 2n 2 − 3n − 2 (2.113)i� � 

+ f2 (3 − 4m)n − 2n 2 + 1 + 1 . 

Proof. Proposition 2.5 ensures that the theory (2.111) admits magnetic SSS solutions char-
acterized by a single function f , whose equation of motion we may obtain by direct vari-
ation of the reduced action evaluated on the SSS ansatz (2.26). Such equation is given
by the evaluation on N = 1 of the Euler-Lagrange equation for N , and this must be a

dtotal derivative by construction. We encounter that such equation is given by Gf , whichdr 
yields (2.112) after direct integration and we conclude.

Note that the usual Maxwell term −F 2 is included in the sum, since we have
LEGQG = −(4m − 3)(F 2)m and we have set µ0,1 = 1. By defnition, this theory has0,m 
magnetically-charged solutions of the form (2.48), and hence we only have to deal with
the equation of motion for f , which is given by (2.112). Since in general this equation is a
di˙erential equation of second order, there are two more integration constants which need
to be fxed by the boundary conditions. This is analogous to the recently studied case of
purely gravitational GQG theories [79, 248,249,253], so let us just comment briefy on it.

First, we impose that the solution is asymptotically fat (we do not have a cosmo-
logical constant), which implies that f(r) → 1 when r → ∞. In the asymptotic region, we
may expand the general solution in the following form:

f(r) = fp(r) + fh(r) , (2.114)

25Whenever not all µn,m vanish.
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where fp is a particular solution while fh represents a deviation with respect to that
solution (and will satisfy a homogeneous equation). We can obtain a particular solution
by assuming a 1/r expansion, which yields the following result

2M P 2 `2P 2 
fp(r) = 1 − + + 3µ1,1 + O(r −5) . (2.115)

2 4r r r 
On the other hand, the boundary conditions imply that fh → 0 asymptotically, and hence
we can assume that it is arbitrarily small. Thus, plugging (2.114) into (2.112) and expand-
ing linearly in fh we get

afh 
00 + bfh 

0 + cfh = 0 , (2.116)

where the asymptotic expansion of the coeÿcient reads� � � � � � 
2µ2,1 ̀

4P 2 1 6µ2,1 ̀
4P 2 1 1 

a = + O , b = − + O , c = −r + O . (2.117)
3 4 4 5 3r r r r r 

The equation above can be solved in terms of Bessel functions, but for our purposes it
suÿces to observe that the asymptotic solution behaves as" # " # 

3 3r r 
fh(r) ∼ A exp p + B exp − p , (2.118)

3P`2 2µ2,1 3P`2 2µ2,1 

where A and B are integration constants. Thus, when µ2,1 > 0 one of the modes is expo-
nentially growing and the other one is exponentially decaying. By setting the appropriate
constant to 0 we achieve an asymptotically fat solution with a free integration constant.
When µ2,1 < 0, the solutions become highly oscillating at infnity and the only way to ob-
tain a regular solution is to set A = B = 0, thus there are no further boundary conditions
that one can fx. This is problematic because we cannot impose regularity at the horizon
(see below), and therefore there are no regular black hole solutions in this case. Thus,
we only consider µ2,1 > 0. If this coeÿcient is 0, the constraint will appear in the next
coeÿcient in the expansion.

On the other hand, we impose the existence of a regular horizon, i.e., a point rh at
which f(rh) = 0 and around which f is analytic. In particular, we assume that f has a
Taylor expansion of the form

∞X 
f(r) = 4πT (r − rh) + bn(r − rh)n , (2.119)

n=2 

where we are making explicit that f 0(rh) = 4πT , where T is Hawking’s temperature. When
we insert this expansion into the equation (2.112), we get a system of equations that relate
the coeÿcients bn. Nonetheless, the frst two equations are special, since they only involve
rh and T . These read" #� �n−1 � �mXrh 1 `2(1 − 4πT rh) 2`2P 2 
M = 1 + µn,m (1 + (n − 1)4πT rh) , (2.120)2 42 2 r rh h � �n−1 � �m � n,m X 2`2P 21 `2(1 − 4πT rh)
0 =1 − 4πT rh + µn,m 3 − 4m − 2n2 42 r rh hn,m � 

+ (n + 4m − 3)4πT rh . (2.121)
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These two equations allow one to get (implicitly) the temperature T and the radius rh 
once M and P are given. The rest of the equations provide relations for the coeÿcients
bn. A simple inspection reveals the only free parameter in the expansion is b2, and the
rest of the bn are fxed in terms of it. Finally, b2 is fxed by demanding that the solution
be asymptotically fat. The full solution f(r) can be obtained by a numeric integration of
(2.112) using (2.119) as initial condition, and implementing a shooting algorithm to search
for the value of b2 that yields the correct asymptotic behaviour. Such numeric resolution
will be carried out elsewhere, but comparing with previous works on neutral black holes in
GQG theories, we expect that the solution exists providing the condition on the couplings
discussed above is satisfed. Fortunately, a great deal of information about these black
holes can be obtained without resorting to the numeric solution.

2.4.1 Black hole thermodynamics

Even though the profle of solutions has to be determined numerically, one remarkable prop-
erty of the theories in Eq. (2.111) — which is shared by all the theories of the GQG class
— is that the thermodynamic properties of black holes can be found analytically. First,
observe that (2.120), (2.121) above give us the relation between M , P and T . Although
such relation cannot be written explicitly due to the complicated form of the equations, it
is nevertheless possible to solve the system of equations parametrically. To this aim, let us
frst introduce two dimensionless parameters p and x defned as

2`2P 2 `2(1 − 4πT rh) 
p = , x = . (2.122)4 2r rh h 

Then, we can defne the 2-variable function

∞ ∞XX1 n mW(x, p) = µn,mx p . (2.123)
2 

n=0 m=1 

In terms of these quantities we can rewrite (2.120) and (2.121) as� � 2 � 2 � 
rh xr rh hM = 1 + 1 − ∂xW + W , (2.124)
2 `2 `2 

20 = rh (x∂xW + 4p∂pW − 3W − x) + `2∂xW . (2.125)

Whenever ∂xW 6= 0, we can obtain explicitly rh(x, p) from the second equation. On the
other hand, if W does not depend on x, the same equation determines the relation x(p),
while rh remains free. Note that this only happens in the trivial case in which the higher-
order Lagrangians do not depend on the curvature, so it is not relevant for our purposes.
Then, inserting rh(x, p) in (2.124) we derive the explicit relation M(x, p), and analogously,
we get T (x, p) and P (x, p) from (2.122), namely,r � � 

r2 p 1 xr2 
h hP = , T = 1 − . (2.126)
` 2 4πrh `2 

Thus, we have been able to write all these thermodynamic quantities, as well as the radius,
in terms of two independent parameters x and p. This is a convenient way to study the
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thermodynamic phase space of these theories. Let us now work out the rest of thermody-
namic properties of these black holes.

The entropy is computed by Wald’s formula, as introduced previously in Section 2.3Z √ 
S = −2π d2 x h 

∂L 
�µν �ρσ . (2.127)

∂Rµνρσ 

When computing the derivative with respect to the curvature of the Lagrangians (2.104),
each time we di˙erentiate one of the Ricci tensors Rαβ we end up generating a contraction
between the binormal �αβ and a feld strength. Note that such contractions are always
0 for magnetic confgurations, since � and F are orthogonal in that case. Thus, only the
derivative on the Ricci scalar appearing in (2.104) will contribute and yield a non-vanishing
contribution. The result reads" # 

αS = πrh 
2 1 + 

X 
µn,mn 

� 
Rn−1

�µν 
FµαFν 

� 
F 2
�m−1 

, (2.128)
n,m r=rh 

where we have already performed the integration on the horizon. Evaluating this expression
at r = rh and using the parameters (2.122) and the function (2.123), we get the simple
result

S = πrh 
2 [1 + 2∂xW] . (2.129)

Again, using (2.125) we obtain the explicit relation S(x, p).
Let us now compute the electrostatic potential at the horizon. As we saw in Section

2.1.2, the dual feld strength is given by (2.15). The derivative of our Lagrangians (2.104)
with respect to the feld strength is

∂Ln,m 
= 2(m − 1)Fµν (F 2)m−2FραFσβZ

ρσαβ + 2(F 2)m−1F αβZ[µ|α|ν]β , (2.130)
∂F µν 

where � � 
Rn−1Zρσαβ = 

ρσ (nRgαβ − (4n + 4m − 3)Rαβ) . (2.131)

Evaluating this expression for a magnetic vector feld (2.29) and for the metric (2.48) we
obtain the value of the dual feld strength,

X � 
2`2P 2 �m−1 � � 

`2nĤ n−1H = dt ∧ dr µn,mm
P 
2 −nR + (4n + 4m − 3)Ĥ , (2.132)

4r r 
n,m 

where R and Ĥ are given by (2.108) and (2.109). Remarkably enough, this expression takes
the form of an explicit total derivative, namely H = −Ψ0(r)dt ∧ dr, where the electrostatic
potential reads � �m−1 � �nX P 2`2P 2 `2(1 − f − rf 0)

Ψ(r) = µn,mm 
2 . (2.133)

4r r r 
n,m 

Finally, evaluating at the horizon and using (2.122) and (2.123), we may express the result
as p

Ψh = 
rh 

2p∂pW . (2.134)
` 
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Additionally, we can derive the free energy from the on-shell Euclidean action. The
computation can be done using the same prescription for the boundary terms as in Eq.
(2.94). The bulk action can be evaluated right away thanks to our on-shell Lagrangians
being total derivatives (2.110). Then, we fnd that the evaluation at infnity gets cancelled
with the contribution from the boundary terms and we are left with the evaluation of
the quantities In,m in (2.110) at the horizon. This yields the following result for the free
energy, F = IE/β: � 2 2 � rh r rh hF = 1 + x + 2W . (2.135)

4 `2 `2 

In sum, the equations (2.124), (2.126), (2.129), (2.134) and (2.135), together with
the relation (2.125), give us explicit expressions for all the thermodynamic quantities M ,
P , T , S, Ψh, F and the radius rh in terms of two independent parameters x and p. The
theory-dependence of all these formulas is encoded in the function W , defned in (2.123).
Let us now check that these quantities satisfy consistent thermodynamic relations. In
particular, they should satisfy the 1st law of black hole mechanics,

dM = T dS +ΨhdP . (2.136)

This relation is in fact verifed. The easiest way to prove this consists in assuming frst that
rh is an independent variable in the expressions of M , S and P (Eqs. (2.124), (2.129) and
(2.126), respectively). Then, the variations of those quantities with respect to just x and p 
automatically satisfy the frst law above. Afterwards, we may take the variation only with
respect to rh (assuming that now x and p are independent variables) and we check that it
also satisfes the frst law once we take into account the constraint (2.125). Hence when
the dependence of rh on x and p is taken into account, the frst law holds too for arbitrary
variations of the free parameters.

On the other hand one can also check that F = M − TS, which is a non-trivial
consistency test of our results, indicating that the Wald’s entropy (Noether charge) and
the Euclidean action approaches are equivalent.

2.4.2 Extremal and near-extremal black holes

Let us study how the corrections present in (2.111) a˙ect extremal black holes. In terms of
the variable x, the extremality condition T = 0 implies that x and rh are related according
to

`2 
x = . (2.137)2rh 

Due to this, (2.125) becomes a complicated equation relating p and x at extremality:

2x∂xW + 4p∂pW − 3W − x = 0 . (2.138)

To simplify the discussion, let us consider the subset of theories that are only quadratic
in the Maxwell feld strength (but which have an arbitrary number of higher-curvature
terms). In such case, the function W takes the form

∞X 
nW = 

p
U(x) , where U(x) = 1 + µn,1x . (2.139)

2 
n=1 
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For this function, it is possible to solve (2.138) explicitly to obtain p(x) at extremality:

2x 
p = . (2.140)

2xU 0 + U 

Then, from (2.124) and (2.126) we obtain the mass and the charge26� � 
` xU 0 + U ` 1 

Mext = √ , Pext = √ √ , (2.141)
x 2xU 0 + U x 2xU 0 + U 

and the extremal charge-to-mass ratio
√ 

P 2xU 0 + U 
= . (2.142)

M xU 0 + Uext 

The entropy in turn reads � � 
π`2 4xU 0 + U 

Sext = . (2.143)
x 2xU 0 + U 

Then, as we did in Subsection 2.3.3 we can check some particular cases to study if it is
possible to satisfy the mild form of the Weak Gravity Conjecture at a non-perturbative
level.

Since x = `2/rh 
2 , we must demand that P/M is monotonically growing with x,

ext 
although in that case we also have to make sure that M is a decreasing function of x. As
an example, let us consider the case in which there is a single higher-derivative term in the

naction so that U = 1 + µnx . Then we have� � p
n` 1 + (n + 1)µnx P 1 + (2n + 1)µnxn 

Mext = √ , = , (2.144)
x 1 + (2n + 1)µnxn M 1 + (n + 1)µnxn 

ext 

For µn > 0, the extremal charge-to-mass ratio and the mass are actually monotonically
decreasing with x, so this case should be discarded according to the WGC. On the other
hand, if we take µn < 0 we observe that for small x (large M) the charge-to-mass ratio
is in fact growing with x. However, it soon reaches a maximum value and then decreases
again. Moreover, M has a minimum value, so there are no extremal black holes below
certain mass — see Fig. 2.5. One can also consider other choices of higher-derivative
terms that produce di˙erent forms of the function U(x), and a few examples are shown in
Fig. 2.5. We fnd the same qualitative behaviour in all of these cases, namely, P/M has a
maximum value which happens for the minimum mass. Thus, it seems quite diÿcult for
P/M to be a growing function all the way down toM = 0, at least within this family of

ext 
theories. Nevertheless, this can be interesting from the point of view of the WGC, since, as
explained in Subsection 2.3.3, it may imply that below the minimal mass all the solutions
are non-extremal black holes, and hence there is no obstacle to prevent the evaporation of
these black holes.

Another intriguing fact about these examples is that the corrections to the extremal
nentropy are negative. For instance, in the case of U = 1 + µnx we have� � 

nπ`2 1 + (4n + 1)µnx 
Sext = < πP 2 if µn < 0. (2.145)

x 1 + (2n + 1)µnxn 

26We stumble upon the following fact: the results for the extremal mass and charge given by Eq. (2.141)
coincide exactly with those for EQGs — see Eqs. (2.99) and (2.101) — after performing the replacement
U(x) → −ρU(ρ), where U(x) and U(ρ) are given by Eqs. (2.139) and (2.100) respectively and where
x = 

ρ2 .
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Figure 2.5: Extremal charge-to-mass ratio for some higher-derivative theories. The couplings of
the higher-derivative terms are chosen so that P/M increases when M decreases, but we see it is
not possible to continue this trend all the way down to M = 0. There is a minimum mass below
which extremal black holes do not exist. In these examples we observe that each curve has two
branches, but only the upper one is smoothly connected with the Reissner-Nordström solution
when the higher-derivative couplings are set to 0.

This seems in contradiction with claims and results in the literature [528,531] which relate
positive corrections to the extremal charge-to-mass ratio with positive corrections to the
entropy. However, the contradiction is not such, since, as noted in Ref. [125], the compar-
ison must be done with the corrections to the near extremal entropy, while the corrections
to the extremal entropy are independent. This is an example of that situation.

Finally, let us also comment on near-extremal black holes. A characteristic feature
of extremal black holes in Einstein gravity is that the specifc heat at constant charge goes
to zero, while its frst derivative is positive. This means that near-extremal black holes
satisfy M − Mext = cT 2 with c > 0, and therefore the black hole mass grows as we increase
the temperature. Interestingly enough, this is not always the case for our black holes� �

∂M with higher-derivative corrections. The specifc heat, defned as CP = , vanishes at∂T P 
extremality, but its frst derivative reads instead� � � � 

3U 0U 00∂2M 4`3π2 −6x2UU 00 − 10x + U2 
= . (2.146)

∂T 2 x3/2 (2xU 0 + U) (x (2xU 00 + 5U 0) + U)P ext 

This quantity can have either sign, depending on the model and on the value of x. If it
is positive, then near-extremal black holes behave as in Einstein-Maxwell theory and they
are stable, in the sense that when we increase the temperature (hence we depart from
extremality), the mass also increases. The case in which this quantity is negative is quite
intriguing. It implies that in order to get away from extremality, the black hole must
lose mass. Therefore, extremal black holes are thermodynamically unstable and they do
not represent the minimal mass state for a given charge. Instead, the minimal mass state
will take place at a di˙erent point in which CP = 0, and this is the solution to which
the black hole tends when it evaporates. An example of this situation is represented in
Fig. 2.6, where we show T vs M at fxed charge for a particular set of higher-derivative
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Figure 2.6: Temperature vs mass diagram at fxed charge for near-extremal black holes with� � 
∂2M/∂T 2 < 0. The extremal black hole is not the state with the minimal mass. We

P ext 
2consider the model U(x) = 1 + x , but nevertheless the profle of the curve will be similar for any� � 

other case in which ∂2M/∂T 2 < 0.
P ext 

terms. Another consequence of this e˙ect is that, in a certain region of the parameter
space, there exists more than one black hole solution with the same mass and charge.
This non-uniqueness of solutions can be thought of as a discrete violation of the no-hair
conjecture and is analogous to the situation with charged black holes in Einsteinian Cubic
Gravity that was recently reported in Ref. [271].

2.5 Resolution of Reissner-Nordström singularities: electric
black holes

In previous sections we introduced the notion of Electromagnetic (Generalized) Quasitop-
ological Gravities and presented infnite instances of such theories. Afterwards, both in
the Quasitopological (algebraic equation for f(r)) and in the Generalized Quasitopological
(second-order equation for f(r)) cases, we focused on magnetic SSS confgurations. Never-
theless, as indicated in Defnition 2.1, a given theory L(Rµν,ρ,σ, Fαβ ) is an E(G)QG if the
theory itself or its electromagnetic dual (obtained through dualization (2.16)) becomes a
total derivative when evaluated on the magnetic SSS ansatz given by (2.26) and (2.29) with
N = 1, a condition refected in Eq. (2.53). Consequently, if we consider an E(G)QG with
magnetic solutions, the corresponding dual theory will allow by construction for electric
SSS solutions characterized by a single metric function f , which furthermore will be the
same as in the magnetic frame.

We will devote ourselves in this section to the study of Electromagnetic Quasitop-
ological Gravities with electric solutions. Of course, the most direct way to construct such
theories will be through the dualization of EQG theories admitting magnetic solutions. In
general, this requires to express the original feld strength in terms of the dual one, which
is in general a inaccessible process. This is why we restrict ourselves to the dualization of
EQG theories of quadratic order in F — a process which we study in Subsection 2.5.1.
More concretely, we will be interested in studying such EQGs allowing for magnetic SSS
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solutions with completely regular gravitational feld and electric potential (defned as the
potential associated to the dual feld strength), since then the corresponding dual theory
will naturally admit regular electric solutions. Following this procedure, we are able to
fnd which is, to the best of our knowledge, the frst explicit example of a theory that fully
regularizes both gravitational and electromagnetic felds for solutions of arbitrary mass
and non-vanishing charge.

It is important to remark the relevance of this discovery. In fact, one of the most
demanded features of a theory of Quantum Gravity is its ability to resolve the singularities
that arise in General Relativity. Assuming that Nature should have no singularities, we
interpret these singularities as a signal of the failure of this theory. Thus, ideally one would
wish to fnd an e˙ective high-energy modifcation of General Relativity whose black hole
solutions were singularity-free. Therefore, fnding a higher-order theory with completely
regular gravitational and electromagnetic felds would give us a proof of principle of the fact
that singularities can be indeed regularized by higher-derivative corrections. We present
the frst instance of such a theory with fully regular electric solutions in Subsection 2.5.2,
computing explicit, exact and regular electric SSS solutions and studying some physical
aspects of them.

2.5.1 Dualization of theories of quadratic order in F 

As explained above, we will be interested in fnding the electromagnetic dual of EQGs with
quadratic dependence on the gauge feld strength F , since this will allow us to construct
theories which canonically admit electrically-charged solutions. To this aim, let us consider
a theory of gravity coupled to electromagnetism given by the following action:Z p1 

I = d4 x |g| [R −Qµνρσ(g, Rαβλγ )F µν F ρσ] , (2.147)
16πG 

where Qµνρσ depends exclusively on the metric gµν and the Riemann tensor Rµνρσ. Note
the following symmetry properties of Qµνρσ:

Qµνρσ = −Qνµρσ = −Qµνσρ = Qρσµν . (2.148)

From (2.147), one can easily compute that

1 ∂L Mµν = − = QµνρσF ρσ . (2.149)
2 ∂F µν 

Taking into account Eq. (2.15), we have:

1 
Hµν = (?M)µν = εµναβ QαβρσFρσ . (2.150)

2 

Therefore the action Idual dual to (2.147) turns out to beZ 
1 p

d4Idual = x |g| [R + Mµν F µν ] , (2.151)
16πG 

which is the result one gets from direct application of (2.16). Defne now an inverse tensor
Q−1 

µνρσ with the same symmetries as Qµνρσ and satisfying

αβ 
µνρσQρσαβ Q−1 = δ . (2.152)µν 
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Using this inverse tensor of Q, it is clear that

= Q−1 . (2.153)Fµν µνρσMρσ 

Therefore, on taking into account Eq. (2.150), we infer that the dual theory may be
expressed in the following compact form:Z 

1 p
d4Idual = x |g| [R − χµνρσH

µν Hρσ] , (2.154)
16π 

where we have defned the tensor χµνρσ as

1 −1 αβχµνρσ = − εµναβ (Q−1)αβληερσλη = 6δµν[ρσQ . (2.155)αβ]4 
Consequently, the problem of dualizing a theory with quadratic dependence on Fµν is
equivalent to fnding the inverse of the tensor Qµνρσ. We will exploit this fact in the
following subsection.

2.5.2 A higher-order theory with fully regular electric solutions

Now we proceed to construct the frst-ever theory of gravity and electromagnetism with
completely regular electrically-charged black hole solutions. As described above, such a
theory can be found by frst studying magnetic SSS solutions with regular geometry and
electric potential (associated to the dual feld strength), and then applying the dualization
procedure to obtain a theory with regular electric solutions.

2.5.2.1 Regular magnetic SSS confgurations

Let us start by fnding an instance of a higher-order theory of electromagnetism non-
minimally-coupled to gravity with regular SSS magnetic solutions, in the sense explained
above. One should bear in mind that the ultimate goal of such process is to fnd a theory
with regular electric confgurations through dualization, so it is convenient to work with
theories for which the computation of their electromagnetic dual is, to some extent, a
manageable task, such as theories with quadratic dependence on the gauge feld strength.
In fact, we presented in Subsection 2.5.1 a procedure to dualize any theory quadratic in
Fµν , so we can use the results exposed there.

Among this subset of theories, we must fnd one (at a minimum) with magnetic SSS
solutions whose geometry and electric potential are fully regular. We demonstrated, via
explicit examples in Subsection 2.3.1, that this is indeed a realizable feature, at least in
the context of theories with quadratic dependence on the Riemann curvature tensor. Let
us show this is possible as well for theories quadratic in Fµν .

Again, our objective is to provide a proof of principle of the fact that there exist
theories with regular electric solutions, so it suÿces to fnd one concrete instance of such
a theory. In particular, let us consider the quadratic (on Fµν ) theory:Z � � � � �� 

1 p 
(a) 3 (a) (b) 1 (a) 1 (b)

d4I = x |g| R + L0,1 + α L1,1 − L1,1 + α2 L2,1 − L2,1 , (2.156)
16πG 2 2 4 

(a) (b)where Ln,m and Ln,m are defned as in Eqs. (2.55) and (2.56) and where α > 0 is a constant
with units of length squared . These theories were shown to be EQGs, admitting magnetic
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SSS solutions characterized by a single metric-function f(r). Setting the magnetic SSS
ansatz (2.26) with N = 1, the equation of motion for f can be found by setting in Eq.

2(2.67) λ0,1 = λ1,1 = −γ1,1 = 2λ2,1 = 4γ2,1 = 1 and the remaining λn,m, γn,m to zero:3 

2M P 2 αP 2(3 − f) 2α2P 2(1 − f)
1 − f − + + + = 0 , (2.157)

2 4 6r r r r 
from where we can solve for f and obtain:

2r4(r2 − 2Mr + Q2) + αQ2(3r + α)
f = . (2.158)

r6 + αQ2(r2 + 2α) 

Similarly, the electric potential Ψ can be found by particularizing (2.74) for our theory
(2.156). One fnds: � �� � 

P α(1 − f) α(4 − 4f + rf 0)
Ψ = 1 + 1 + . (2.159)

2 2r r 2r 

It is convenient to pinpoint three aspects. First of all, note that the denominator of f in
Eq. (2.158) is never-vanishing. Second, observe that f(r) = 1 + r2/α2 + O(r3) . Third,

r∼0 
the electrostatic potential and its frst derivative vanish at the origin r = 0. Noticing that
f asymptotes to the (magnetic) Reissner-Nordström solution, we conclude that we have
encountered a completely regular magnetic SSS confguration. Dualization of such theory
will produce a theory which canonically admits regular electric solutions.

2.5.2.2 Regular electric solutions

Expanding (2.156) , we can rewrite it in the following way:Z 
1 p

I = d4 x |g| {R −QµνρσFµν Fρσ} , (2.160)
16πG 

where � � � 
1 9 Qµν = δµν [µ ν] 

R [µRν]α 
ρσ ρσ + α 6R [σ δ ρ] + 7Rµν

ρσ + Rδµνρσ + α2 
α ρσ2 4 � (2.161)

9 µν 1 35 1 [µ ν]λ β + Rα R + RRµν Rµναβ Rαβρσ + R δ R .[ρ σ]α ρσ + λ β[ρ σ]4 4 8 2 

We observe that this is formally equivalent to Eq. (2.147), so the dual theory to (2.160) is
given by: Z p

d4I =
1 

x |g| {R − χµνρσFµν Fρσ} , (2.162)
16πG 

where, as in Eq. (2.155),

1 αβχµνρσ = − εµναβ (Q−1)αβληερσλη = 6δµν[ρσQ
−1 , (2.163)αβ]4 

being Q−1 the inverse tensor of Q, in the sense of (2.152). It is important to note that the
theory (2.162) contains a free coupling constant α and when it is set to zero one recovers
Einstein-Maxwell theory. In fact, at low energies we haveZ � � � � 

1 p 9 
d4 R − F 2I = x |g| + α 7Fµν FρσR

µνρσ − 22FµαF αRµν + F 2R + O(α2) ,ν16πG 2 
(2.164)
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so that the action reduces to the Einstein-Maxwell one when the curvature and the feld
strength are small enough (or when α → 0). Thus, we can think of this theory as a toy
model for a UV-completion of GR containing an infnite tower of higher-derivative terms.
On the other hand, as we will see below, for any value of the coupling we are able to
fnd exact solutions of arbitrary mass and charge (we do not need to tune M and Q to
particular values), making this a very useful theory for practical purposes.

In order to fnd SSS electric solutions of (2.162), we may resort to Proposition 2.1, ac-
cording to which the metric and the dual feld strength of a magnetic confguration produce
an electric solution of the dual theory. Consequently, from the results of Subsubsection
2.5.2.1, the electric SSS confguration

2 
2 2ds = −f(r)dt + dr 

+ r 2dΩ2 A = Φ(r)dt , (2.165)(2) ,f(r) 

with � � 
4r r2 − 2Mr + Q2 + αQ2(3r2 + 2α)

f(r) = , 
r6 + αQ2(r2 + 2α)� �� � (2.166)

Q α(1 − f) α(4 − 4f + rf 0)
Φ(r) = 1 + 

2 1 + 
2r r 2r 

is an exact solution to the theory given by (2.162), with M and Q being two integration
constants that will be (re)identifed later with the mass and the electric charge, respectively.
We would like to remark at this point that one could have arrived to the solution (2.166)
without need of resorting to the theory (2.160). As a matter of fact, one can derive the
Einstein and Maxwell equations of (2.166) in an exact fashion by varying directly the

F µνaction. Defning the auxiliary tensor ˆ = χµνρσFρσ , these equations take the form:

1 α ˆ ρσ F̂αβ ˆ ρσ2EE F Q + 3 gµν Qµν = Rµν − 
2
gµν R − 12 ˆ 

µ F[να ρσ] F[αβ ρσ]!ρσ ρσ∂Q ∂Q
F αβ ˆ ρσ] 

R λτγ λ γ F αβ ˆ ρσ]
+ 6 ˆ + 12r r ˆ + (µ ↔ ν) , (2.167)F[αβ ∂Rµλτγ ν F[αβ ∂Rµλνγ 

EM = rµF̂
µ
ν , (2.168)ν 

where the proper feld strength Fµν can be recovered from F̂  using 27

ρσFµν = 6F̂  
[ρσ Qµν] . (2.169)

Thus, we realize that the equations of motion can be expressed solely in terms of F̂  and
Q, hence circumventing the highly intricate task of computing the inverse tensor Q−1 .
Indeed, we are able to show explicitly in Appendix 2.B the process of fnding the SSS
solution (2.165) by direct resolution of the Einstein and Maxwell equations (2.167) and
(2.168).

Let us now explore the physical properties of the electric solution (2.166), whose
profle is shown in Fig. 2.7 for specifc values of M and Q. We discussed very briefy
the regularity properties of the magnetic SSS solutions of the theory (2.156), so let us be
more explicit in the context of electric solutions. First, notice that the felds asymptotically

)µν [µν αβ]27This follows from the fact that (χ−1 
ρσ = 6δ ρσ Q αβ .
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Figure 2.7: Profle of the metric function f(r) and the electrostatic potential Φ(r) appearing in√ 
(2.166) as functions of the radial coordinate. In these plots we use Q = 2 α and various values of
the mass. Solid line: black hole with outer and inner horizons. Dashed line: extremal black hole,√ 
which in this case takes place for Mext ' 2.4 α. Dotted line: horizonless solution. In all cases the
point r = 0 is a smooth cap of the geometry and both f(r) and Φ(r) are fnite everywhere.

behave as in the Reissner-Nordström solution, f(r) ∼ 1−2M/r +Q2/r2 , Φ(r) ∼ Q/r, from
where one can identify M with the mass and Q with the electric charge. Also, the full RN
solution is recovered when we set α = 0. Thus, this solution is a continuous deformation
of the RN one and the deviations with respect to it are small as long as the curvature and
the feld strength take suÿciently small values. On the other hand, the corrections have a
drastic e˙ect near the would-be singularities, where these quantities would diverge. Indeed,
the most remarkable property of this solution, as can be easily seen from (2.166), is that
the geometry is smooth everywhere. More precisely, as discussed above with the magnetic
solution (2.158), we observe that f(r) has no divergences, and we fnd that around r = 0 
it behaves as

2r 
f(r) = 1 + + O(r 3) , (2.170)

α 
which implies that the point r = 0 is a smooth cap of the geometry. In particular, the region√ 
near r = 0 is a locally AdS space of radius α. Interestingly enough, the electromagnetic
feld is also fnite everywhere and one can see that near the origin the electrostatic potential
is given by

M2 5r 
Φ(r) ∼ − + O(r 7) . (2.171)

2Q3α2 

The feld strength F = −Φ0dt ∧ dr is also fnite and vanishes at r = 0. Thus, whenever
Q =6 0 these solutions are free of singularities. In the absence of charge, the theory
(2.162) e˙ectively reduces to GR, so the solution (2.166) becomes the Schwarzschild black
hole. This clearly signals that the non-minimal coupling to electromagnetism is crucial
for singularity-resolution. In fact, regularization of neutral black holes remains elusive,
and the evidence so far seems to indicate that black hole solutions in purely gravitational
higher-order theories are still singular, although their curvature divergence usually gets
softened — see e.g. [227,231,233,239,248].

Depending on the relative values of the mass and the charge, these solutions have
a di˙erent nature. As we can see in Eq. (2.166), only the term proportional to the mass
comes with a negative sign, so if M is large enough compared to the charge, f(r) will
vanish at certain point. In that case the solution contains a horizon and hence it is a black

133



Chapter 2. Electromagnetic Quasitopological Gravities

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-2

0

2

4

6

Figure 2.8: E˙ective charge density of an electron (defned as in Eq. (2.173)) predicted by the
theory (2.162). We assume that the corrections appear at Planck scale, α = `2P.

hole — see the solid lines in Fig. 2.7. In addition, this black hole has always a second,
inner horizon (except in the extremal limit), so the causal structure is very similar to that
of the RN black hole, with the di˙erence that the timelike singularity at r = 0 is removed.
The Penrose diagram of this regular black hole is identical to that of other models already
discussed in the literature [388, 390], so we refer to those works for further details. For a
specifc value of the mass, M = Mext(Q), both horizons merge into a degenerate horizon
and we have a extremal black hole — depicted by the dashed lines in Fig. 2.7. Let us
note that the extremality condition is modifed with respect to the case of the Reissner-
Nordström black hole, so that Mext 6= Q. Finally, if the mass is below the extremal value,
then the e˙ect of the charge dominates and the solution does not possess a horizon. This
situation is represented by the dotted lines in Fig. 2.7. This horizonless smooth solution
is particularly interesting and, in principle, one could interpret it as a soliton or a fuzzball.

One intriguing question is that about the origin of the charge and the mass in these
solutions. Apparently, there are no matter sources involved, so one might conclude that
the mass and charge arise due to the non-linear interactions between gravity and electro-
magnetism. However, a closer look reveals that this is not entirely correct. While the
geometry is smooth (C∞) everywhere, one can check that the potential Φ (and hence the
vector A) is only C4 at28 r = 0. This means that some of the equations of motion may not
be satisfed at r = 0, which typically indicates the presence of point-like sources. In fact,
in the case of the Maxwell equation (2.168) it is easy to see that we have a Dirac delta on
the right-hand-side,

F̂µν = 4πQδ(3)(r)δν rµ , (2.172)t 

and hence, these solutions do have a point-like source of electric charge. This means that
the horizonless solutions we have found should be really interpreted in terms of felds of
charged point particles rather than as solitons. Thus, higher-derivatives seem to have the
e˙ect of “smearing” the charge, so that, even though it is concentrated at a single point, the

28While the potential is a smooth function when expressed in terms of the radial coordinate r, afterp
expressing r = x2 + y2 + z2 for some local Cartesian coordinates (x, y, z) ∈ R3 , we observe that the
potential Φ is just of class C4 when understood as a function from R3 to R.
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felds are fnite. As an interesting example, we may consider the case of an electron. Let
us assume that the corrections appear at Planck scale and√ that α = P. In Planck units`2 

the charge of the electron is Q = −eG1/2(4π�0)
−1/2 ≈ −1/ 137, where e is the elementary

charge. We may also approximate me ≈ 0, since it is much smaller than Planck’s mass.
Then, even though we treat the electron as a point particle, we may defne an e˙ective
charge density in the usual way, d?F = 4πρeff V3, where V3 is the volume form of constant-t 
spatial slices. This leads to the identifcation

√ � � 
f d 2 dΦ 

4πρeff = − 
2 r . (2.173)
r dr dr 

The profle of this e˙ective charge density is shown in Fig. 2.8, where we can check that
it is fnite everywhere and concentrated around the region r < ` P. Thus, higher-derivative
corrections delocalize the charge, yielding the electron some apparent structure. In this
sense, by direct inspection of Fig. 2.8, we may associate the outermost minimum of ρeff 
with the electron charge-radius, since it expresses the distance from which the charge
density starts to asymptote to zero. We observe that such charge-radius is of the order of
the Planck length, but one should be aware that this is related to the fact that we have
chosen α = ; in general the e˙ective charge-radius will be a given function of α, so it`2 

P 
can be always tuned to an appropriate value. A similar discussion would apply in the case
of the e˙ective mass density.

On the other hand, the gravitational and electromagnetic potentials f(r) and Φ(r) 
have qualitatively similar profles to those shown represented by dotted lines in Fig. 2.7. All
of this provides us with a remarkable physical picture. In the frst place, the electron sources
the electromagnetic feld, which at the same time creates a gravitational feld. Then, due
to the non-minimal couplings between them, a non-linear backreaction is produced which
at the end renders both felds fnite.

Consequently, we have shown that the theory (2.162) is able to resolve the singu-
larities of charged black holes and point-like charged particles. The regular black holes
we have obtained have similar properties to some of the models analyzed in the litera-
ture [388,390], with the timelike singularity of RN black holes replaced by a smooth “AdS
core”. On the other hand, point charges acquire an e˙ective structure of fnite size due
to the short-distance modifcations of gravity and electromagnetism implied by the theory
(2.162). Thus, we have proven that the regularization of singularities is possible within
the framework of Einstein-Maxwell theory with higher derivatives. In this sense, it suÿces
to show that it can be achieved by some theories to prove that e˙ective actions can cap-
ture this property of a UV-complete theory. In fact, this makes the action (2.162) a very
interesting model for a UV-completion of Einstein-Maxwell theory.

2.6 Discussion

In this chapter we have introduced a new class of non-minimally coupled higher-derivative
extensions of Einstein-Maxwell theory. These theories are characterized by possessing
magnetic or electric SSS solutions characterized by a single metric function f (see (2.48))
whose equation of motion is (at least partially) integrable. In addition, within this set
of theories, the thermodynamic properties of black holes can be computed exactly. Such
theories are analogous to GQGs and thus we refer to them as EGQGs. As in the case of pure
gravity, we have seen EGQGs come in two main classes: those for which the SSS equations

135



��

Chapter 2. Electromagnetic Quasitopological Gravities

of motion can be reduced to an algebraic equation for f belong to the Quasitopological
class, while if the equation is of second order we say that the theory is properly of the
Generalized Quasitopological class. We have constructed an infnite number of densities
of both types, although we suspect that there are many others, especially in Generalized
Quasitopological case. Determining the most general structure of these Lagrangians would
be an interesting problem.

In the case of Quasitopological theories, we have shown some explicit examples of
black hole and non-black hole solutions — see Section 2.3. We observed that, in a quite
remarkable and general way, these solutions possess globally regular geometries, i.e., the
timelike singularity at r = 0 characteristic of charged black holes or point charges is
smoothed away by the higher-derivative corrections. In slightly more restrictive cases, we
showed that the electrostatic potential of the dual theory also remains fnite everywhere,
thus making these solutions particularly appealing. In particular, in the horizonless case,
one may regard these objects as solitons or even as four-dimensional fuzzballs.

For both Quasitopological and Generalized Quasitopological theories, we have per-
formed a detailed study of black hole thermodynamics — see Sections 2.3.2 and 2.4.1. We
have been able to provide explicit expressions for all the relevant thermodynamic potentials
and we have shown that the frst law of black hole mechanics,

dM = T dS +ΨhdP , (2.174)

holds exactly. Here S is Wald’s entropy and Ψh is the electrostatic potential of the dual
theory evaluated on the event horizon. Thus, the frst law is formally unchanged with
respect to the case of a minimally coupled gauge feld. This is not a general proof of the
frst law, but rather a check of it for a large class of theories. It would be interesting
to actually attempt a proof in the case of general L(Rµνρσ, Fαβ ) theories, as done in
Ref. [516] in the case of non-linear electromagnetism coupled to Einstein gravity29. In
addition, we have checked that the Euclidean methods provide the same answer for black
hole thermodynamics than the Noether-charge approach. In particular, we have seen that
the on-shell Euclidean action yields indeed the free energy, TIE = F = M − TS. Due to
the large space of theories that we consider, we have not made a general analysis of the
features of the new thermodynamic relations, so a more detailed study is left for future
work.

Motivated by the WGC, we studied the properties of extremal and near-extremal
black holes in these theories. A mild form of the WGC states that, in a consistent quan-
tum theory of gravity, the charge-to-mass ratio of extremal black holes should grow mono-
tonically as the mass decreases. This would allow for the decay of extremal black holes
in terms of energy and charge conservation. Previous literature had studied perturbative
corrections to the extremality bound in a variety of theories, ranging from general EFTs to
stringy e˙ective actions [125, 126, 474, 475, 528–533]. Although our theories do not belong
(a priori) to those categories, they have the advantage of allowing us to perform exact,
non-perturbative computations. Thus, they may be used to learn about the corrections to
extremality at large coupling. As we observed in Sections 2.3.3 and 2.4.2, it is always easy
(e.g., by choosing the signs of the couplings appropriately) to impose P/M to satisfy

ext 
the WGC when the mass is large (i.e., in the perturbative regime). However, when the

29By private communication with T. Ortín and D. Pereñíguez, we have been informed that it is actually
possible to show that the frst law of black hole thermodynamics holds for any higher-order gravity with a
non-minimally coupled vector feld. They hope to publish their fndings soon.
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curve P/M vs Mext is continued to lower masses, one often fnds that it stops at a min-
ext 

imal mass, meaning that there are no extremal black holes below that mass. There can be
di˙erent reasons for this behaviour, but we have shown with an example (see Fig. 2.3) that
a possibility is that below that mass all solutions are non-extremal black holes, regardless
the value of the charge. This is actually appealing from the point of view of the WGC,
since it implies that, below the minimal mass, charged black holes fnd no obstruction to
evaporate.

Higher-derivative corrections can introduce new e˙ects into the game, and in par-
ticular we observed another situation that has implications for black hole evaporation. In
some instances — as shown in Fig. 2.6 — it may occur that the extremal black hole is
not the one with a minimum mass for a given charge. In those cases, (near-)extremal
black holes are unstable, and tend to decay to this minimum mass black hole, which has a
non-vanishing temperature. Thus, in that situation one does not have to worry about the
charge-to-mass ratio of the extremal black hole, but about the one of the minimum mass
black hole. An analogous example has been recently reported in Ref. [271] in the context
of Einsteinian cubic gravity with a (minimally-coupled) Maxwell feld.

Via dualization of EQGs possessing magnetically-charged solutions with regular grav-
itational feld and smooth electrostatic potential (associated to the dual vector feld), in Sec-
tion 2.5 we have been able to identify the very frst instance, to the best of our knowledge,
of a higher-order theory which fully regularizes the gravitational and electromagnetic felds
for arbitrary values of the mass and (non-vanishing) charge. These solutions are interpreted
as generalizations of the Reissner-Nordström solution and provide a proof of principle of
the long-lasted dream of curing singularities through the introduction of higher-derivative
corrections. Probably, many other higher-derivative theories (not necessarily EQGs) are
also singularity-free, but one cannot check this easily due to the complicated form of the
equations of motion in the general case. In any case, given the infnite amount of EQGs
with magnetic regular solutions found in Section 2.3, this suggests that the regularization of
singularities by non-minimal higher-derivative terms could be a more general phenomenon
than expected. Nevertheless, the regularization of the Schwarzschild black hole remains
elusive, being highly interesting to fnd a purely gravitational higher-order gravity with
regular black holes in vacuum.

The new theories o˙er various possibilities since they allow us to perform many
explicit computations that are inaccessible in general higher-derivative theories. Thus,
let us close the chapter by commenting on future directions. As we have already men-
tioned, it would be interesting to complete the characterization of EGQG Lagrangians to
fnd the most general action of this type. On the other hand, here we have focused on
asymptotically fat solutions, so one could extend this work by including a non-vanishing
cosmological constant. The asymptotically anti-de Sitter case is particularly relevant due
to its connection to holography. In fact, it is known that higher-derivative gravities with
a negative cosmological constant are very useful holographic toy models that can be used
to learn non-trivial information about CFTs — see Refs. [259, 270] for recent results in-
volving GQGs. Since EGQGs contain higher-derivatives not only of the metric but also of
a vector feld, these may be used to probe additional aspects of a CFT. We will explore
these features in Chapter 4, where we will also defne higher-dimensional examples of the
(four-dimensional) EQGs we have here identifed.

One could also characterize subsets of these theories satisfying additional properties.
For instance, we expect some EGQGs to allow for single-function Taub-NUT solutions
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whose thermodynamic properties can be studied exactly, as the ones in [258]. In particular,
some theories of the Quasitopological subclass might allow for explicit Taub-NUT solutions.
In addition, non-minimally coupled electrodynamics may be of interest in cosmology —
see e.g. [534] — so we may wonder if some of these theories could be useful in that context,
as the ones in [260,262,263].

Finally, it would be interesting to explore the e˙ect of feld redefnitions in E(G)QGs.
In particular, since GQGs turn out to span the space of all purely gravitational higher-
curvature theories once feld redefnitions are taken into account, it is natural to investigate
whether this behaviour replicates somehow for E(G)QGs.
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Appendix 2.A All E(G)QGs of the form RF 2 and R2F 2 

In this appendix we are going to build all Electromagnetic (Generalized) Quasitopological
Gravities constructed by linear combinations of terms up to quadratic order both in the
Riemann curvature tensor Rµνρσ and in the gauge feld strength Fµν . For that, we frst
classify all E(G)QGs of the form RF 2 , made up of scalar terms with one Riemann and two
feld strength and, afterwards, we proceed analogously for E(G)QG theories R2F 2 , whose
constituent terms contain exactly two Riemann tensors and two feld strengths.

RF 2 theories

Our frst task is to fnd a set of di˙eomorphism-invariant terms which span all possible
scalars of the form RF 2 . This can be done straightforwardly and we fnd the following
basis of invariants containing one Riemann tensor and two feld strengths:

I1 = RF 2 , I2 = Rµν F µαF να , I3 = RµνρσF µν F ρσ . (2.175)

Now we build the Lagrangian density

3X 
L = R + `2 aiIi , ai ∈ R (2.176)

i=1 

and wonder when the corresponding theory belongs to the Electromagnetic (Generalized)
Quasitopological type. For that, we just need to check when the Defnition 2.1 is fulflled.

2Setting Lf = r2 L|ds2 ,F m , where dsf and F m are given by (2.48) and (2.29) respectively,
f 

we have that

∂Lf d ∂Lf d ∂Lf 4P 2`2(10a1 + 2a2 + a3)− + = − . (2.177)
∂f dr ∂f 0 dr2 ∂f 00 r4 

For the theory to be of the (Generalized) Quasitopological type, we must ensure that the
latter expression vanishes. This is accomplished by

a3 = −10a1 − 2a2 . (2.178)

Now the equation of motion for the metric function f(r) is obtained by evaluating the
Lagrangian (2.176) on the general SSS ansatz (2.26) with a magnetic vector (2.29), varying
the subsequent action with respect to N and, fnally, imposing the condition N = 1.
Through this procedure, one fnds the following equation of motion for f(r):� � 

d 2P 2`2(6a1 + a2 + 2a1f(r)
2r(1 − f) + = 0 . (2.179)

3dr r 

This equation can be directly integrated to yield

2M P 2`2 
1 − f − + (6a1 + a2 + 2a1f(r)) = 0 , (2.180)

4r r 

where M is an integration constant appropriately chosen to be identifed with the mass,
as done in the main text.
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There are two important conclusions to extract from Eq. (2.180). Firstly, we rec-
ognize precisely the same structure as in Eq. (2.67), if we limit ourselves to the Einstein-
Hilbert term and the terms with n = 1,m = 2. Secondly, we check that the set of EGQGs
and EQGs coincide for theories of the form RF 2 , since Eq. (2.180) is algebraic. This
property does not hold generally of course and is very particular of RF 2 theories. As a
matter of fact, the special properties of these Lagrangians had been previously noticed in
the literature [401,521,522].

R2F 2 theories

Again, frst of all we shall concentrate on fnding a set of invariants spanning all possibles
scalars built out with precisely two Riemanns and two feld strengths. After some work, it
is possible to choose such set to be30:

ν F µβF αI1 = R2F 2 , I2 = RRµν F µαF να , I3 = Rµν R
µν F 2 , I4 = Rµν Rα β , 

= Rµν R
µανβFαρF ρI5 = Rµν RαβF µαF νβ , I6 = RRµνρσF µν F ρσ , I7 ,β 

F βσF αν F αβF σν I8 = Rµν R
µ , I9 = Rµν R

µ , I10 = RµνρσR
µνρσF 2 

αβσ αβσ 

I11 = RµνραR
µνρβ F αλFβλ , I12 = RµνρσR

µναβ F ρσFαβ , I13 = RµνρσR
µναβ F ρα F σβ , 

I14 = RµνρσR
µαρβ F νσFαβ , I15 = RµνρσR

µαρβF να F σβ . (2.181)

Proceeding in the same way as with RF 2 theories, now we consider the Lagrangian density

15X 
L = R + `4 biIi , bi ∈ R (2.182)

i=1 

and investigate when the corresponding theory belongs to the E(G)QG type. Defning as
before Lf = r2 L|ds2 ,F m , we have that

f 

∂Lf d ∂Lf d ∂Lf− + (2.183)
∂f dr ∂f 0 dr2 ∂f 00 � �P 2`4 

2f 00 − 4A4r 3f (3) 4f (4)= A1 −A1f + A2rf
0 + A3r + A4r ,

6r 

where we have defned

A1 = −2(168b1 + 8b10 + 4b11 + 8b12 + 4b13 + 2b14 + 54b2 + 24b3 + 12b4 

+ 12b5 + 88b6 + 7(b7 − 2b8 + b9)) , 

A2 = 4(96b1 + 2(8b10 + 2b11 + b15 + 9b2 + 2(7b3 + b4 + b5 − 2b6)) + 7b7) , (2.184)

A3 = −2(36b1 − 4b10 + 2b11 + b15 + 9b2 + 2(4b3 + b4 + b5 − 2b6)) − 7b7 , 

A4 = 4(b1 + b10) + 2b3 , 

The theory is a (Generalized) Quasitopological one if all Ai vanish simultaneously. Such
a system of linear equations is solved by:

b3 = − 2b1 − 2b10 , 7b7 = −40b1 + 40b10 − 4b11 − 2b15 − 18b2 − 4b4 − 4b5 + 8b6 , 
30Note that we are not claiming that all terms in this set are linearly independent.
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7b9 = −80b1 − 8b12 − 4b13 − 2b14 + 2b15 − 36b2 − 8b4 − 8b5 − 96b6 + 14b8 . (2.185)

Imposing these constraints, one obtains the generic expression for any EGQG constructed
out of terms with two Riemanns and two feld strengths. However, we still need to fgure
out which of these EGQGs are actually Quasitopological.

For that, we must learn when the equation for f(r) is algebraic. As aforementioned,
this equation is derived after evaluating the Lagrangian (2.182) on our magnetic SSS ansatz,
varying the subsequent action respect to N and afterwards setting N = 1. One obtains:� � 
d P 2`4 � �

2f 002r(1 − f) + B1 + B2f + B3f
2 + 6B4rff

0 + B4r 2f 02 − 2B4r = 0 , (2.186)
5dr 7r 

where

B1 = 2(24b1 − 8b10 − 2b11 − 4b12 − 2b13 − b14 + 8b2 + b4 + b5 + 12b6) , 

B2 = 56(4b1 + b2 + 2b6) , 
(2.187)

B3 = −2(136b1 − 8b10 − 2b11 − 4b12 − 2b13 − b14 + 36b2 + b4 + b5 + 68b6 , 

B4 = −8b1 + 8b10 + 2b11 + b15 + 2b2 + 2b4 + 2b5 − 4b6 . 

EQGs are characterized by having an algebraic equation of motion for the metric function
f(r). Interestingly enough, this is achieved if we just impose the vanishing of B4. Therefore,
setting B4 = 0, we get the most general form for the equation of motion of f(r) in any EQG
built out of linear combinations of scalars with at most two Riemann curvature tensors
and two gauge feld strengths. This equation reads as follows:� � 

d 2P 2`4 
2r(1 − f) + (1 − f)(C1 + C2f) = 0 , (2.188)

5dr 7r 

where

C1 = 16b10 + 4b11 − 4b12 − 2b13 − b14 + 3b15 + 14b2 + 7b4 + 7b5 , 
(2.189)

C2 = 128b10 + 32b11 − 4b12 − 2b13 − b14 + 17b15 + 70b2 + 35b4 + 35b5 . 

Upon direct integration of the previous expression, choosing appropriately the constant of
integration M , we end up with

2M P 2`4 
1 − f − + (1 − f)(C1 + C2f) = 0 , (2.190)

6r 7r 

and we recognize the same structure as in Eq. (2.67) after restricting ourselves to those
terms with n = 2,m = 1. Hence we have proven that the equation for f(r) of the most
general EQG constructed from terms with at most two Riemann tensors and two gauge
feld strengths is indeed represented by Eq. (2.67), after an appropriate choice of couplings.
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Appendix 2.B Solving the equations of motion of the theory
(2.162) 

First, one can see that, due to the form of the ansatz in Eqs (2.26) and (2.28), the only
non-vanishing component of F̂µν is F̂  

tr = −F̂  
rt. Then, Eq. (2.13) implies that this tensor

must have the form
QN(r)

F̂ = dt ∧ dr , (2.191)
2r 

where Q is an integration constant that represents the electric charge. The next step
is to substitute (2.191) on the Einstein equation (2.12). Before that, we note that the
static condition and spherical symmetry imply that all its o˙-diagonal components vanish
identically. Furthermore, using the Bianchi identity one may deduce that the angular
components are satisfed once the tt and rr components hold. Therefore these are the only
non-trivial equations we obtain from (2.12). Imposing the static and spherically symmetric
ansatz (2.26) together with the expression of F̂  presented in Eq. (2.191), we fnd:

fN2 � � αfN2Q2 � �
2EE = − r 3f 0 + (f − 1)r + Q2 − rf 0 − 3f + 9 tt 4 6r r 

α2fQ2 � � � 
+ −f2N 02 r 2 + 4N2 −rf 0 + 5f − 5

82r � �� 
+2fNr 2N 0rf 0 − 4fN 0 + fN 00 r = 0 , (2.192)� � 

1 Q2α Q2α2(−2N + rfN 0)EE + f2N2EE =2NN 0f2 + − = 0 . (2.193)tt rr r r5 Nr7 

Despite the intricateness of Eq. (2.192), we see by direct inspection that the combination
of EE and EE in Eq. (2.193) imposes N = constant (another possible solution could bett rr 
obtained by setting the quantity between brackets to zero, but this yields an unphysical
solution which is not asymptotically fat). In particular, we may always set N = 1 after
an appropriate rescaling of the time coordinate. Imposing N = 1 simplifes Eq. (2.192),
which takes the form

f � � αQ2f � �
2EE = − r 3f 0 + (f − 1)r + Q2 − rf 0 − 3f + 9 tt N =1 4 6r r (2.194)

2α2Q2f � � 
− 5 − 5f + rf 0 = 0 .

8r 
2EEr tt N=1Interestingly enough, the combination can be easily integrated. One fnds that
f Z 2EE1 r tt Q2 3αQ2 αQ2f (1 − f)N=1 dr = r(1 − f) + + − + 2α2Q2 = 2M , (2.195)
3 3 52 f r r r r 

where M is an integration constant that we identify with the mass of the solution. Thus,
we have a linear equation for the metric function f whose solution reads� � 

4r r2 − 2Mr + Q2 + αQ2(3r2 + 2α)
f(r) = . (2.196)

r6 + αQ2(r2 + 2α) 

This is the expression for f given at Eq. (2.166). The following task is to derive the original
gauge feld strength F . Using Eq. (2.169) we have that

ρσ αβ αβFµν = Q Fρσ + 4Q + Q Fµν . (2.197)µν 
ˆ 

α[µ F̂
 
ν]β αβ 

ˆ 
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On the one hand, F̂  was already obtained back at Eq. (2.191). On the other hand, we
ρσhave just derived the expression for the metric functions f and N , so the tensor Qµν is

also determined as well. Assuming the electric ansatz (2.28), which implies that

F = −Φ0(r)dt ∧ dr , (2.198)

we fnd, after equating this last expression with Eq. (2.197), a frst-order ODE for Φ(r) in
terms of the electric charge Q and the metric functions f and N . Such equation readsh � iQN αQ � � �� � 
Φ0(r) = − + r 3rf 0N 0 + f 2rN 00 − 8N 0 + N r 2f 00 − 8rf 0 + 18f − 18

2 4r 2r 
α2Qh �� � � � � i 

− − 3rf 0N 0 + f 5rf 0 + 12 N 0 − 2rN 00 + 2f2 rN 00 − 6N 0 (2.199)
52r h iα2Q � � � � 

2f2 N
02 

− N r 2f 02 − r 2f 00 + 12rf 0 + f r 2f 00 − 12rf 0 − 40 + 20f2 + 20 + r ,
62r N 

where we remark that we have not replaced yet the expressions obtained for N and f .
After setting N = 1, however, we fnd that a great simplifcation takes place and (2.199)
boils down to

Q αQ � � 
Φ0(r) = − + r 2f 00 − 8rf 0 + 18f − 18

2 4r 2r (2.200)
α2Qh � 2f 00 

� � � i 
− 20 − r + r 2f 02 + 12rf 0 + f r 2f 00 + 20f − 12rf 0 − 40 .

62r 

Imposing a vanishing electric potential at infnity, this equation can be integrated to yield� �� � 
Q α(1 − f) α(4 − 4f + rf 0)

Φ(r) = 1 + 1 + , (2.201)
2 2r r 2r 

which is precisely what appears in Eq. (2.166).
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3 
Duality-invariant extensions of

Einstein-Maxwell theory

In the previous chapter we studied an interesting class of higher-order theories of grav-
ity with a non-minimally coupled gauge vector feld which satisfes two fairly remarkable
properties: amenability to computations and some reasonable physical requirements. This
special set of theories, named E(G)QGs, are defned precisely by admitting electrically- or
magnetically-charged, static and spherically symmetric solutions characterized by a sin-
gle metric function f(r) with (at most) second-order equation of motion. However, while
theories with such magnetic confgurations can be typically obtained by adding higher-
derivative monomials RnF 2m to the Einstein-Hilbert action, this is no longer the case for
electric solution. Despite that, one can circumvent this diÿculty by dualization of theories
with magnetic solutions.

Now we will be interested in investigating higher-derivative extensions of Einstein-
Maxwell theory which are invariant under duality rotations. Indeed, the set of equations of
motion and Bianchi identity of Einstein-Maxwell theory is invariant under the continuous
group of SO(2) duality rotations of the feld strength into its dual and vice versa, as ex-
plained in Section I.4. Nevertheless, such invariance under duality rotations is generically
broken after the addition of higher-derivative terms into the action, so demanding a the-
ory with higher-order terms to be invariant under continuous duality rotations constrains
drastically the type of terms that may appear in the action. Since the idea that the laws
of Nature must be invariant under certain transformations is one of the most fundamental
principles of modern physics, this motivates the study of those particular theories whose
set of equations of motion and Bianchi identity enjoy invariance under duality rotations.

In the case of purely electromagnetic theories, for which gravity is absent, the
existence of duality-invariant higher-derivative extensions of the Maxwell Lagrangian is
known [315–317, 322]. However, the characterization of generic e˙ective extensions of
Einstein-Maxwell theory, in which one considers the addition of non-minimal couplings be-
tween curvature and the gauge feld strength, seems not to have been previously addressed
in the literature, so in this chapter we will commit ourselves to a thorough characterization
of such theories.

In particular, the presence of non-minimal couplings makes it virtually impossible
to obtain exactly invariant Lagrangians, so we will begin to approach this problem by
assuming a derivative expansion of the action. We will obtain the conditions on the 4-,
6- and 8-derivative Lagrangians that ensure that the theory is a truncation of a duality-
preserving one. In addition, we will see that, due to the coupling to gravity, metric feld
redefnitions acquire a very interesting role in the case of duality-invariant theories. In
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fact, we will show that, to six-derivatives, one can get rid of all the higher-derivative terms
involving feld strengths in any duality-preserving theory by performing such redefnitions,
and we conjecture the same to be true at all orders. We will furthermore study the charged,
static and spherically symmetric black hole solutions of this six-derivative theory.

Despite the apparent impossibility of constructing a higher-order theory with exact
electromagnetic duality invariance, we will observe that the task becomes dramatically
more manageable if we restrict ourselves to the subset of theories which have at most
quadratic dependence on the vector feld strength. Remarkably enough, we will be able
to obtain a closed form of the action for all such theories, noting that the Maxwell feld
couples to gravity through a curvature-dependent susceptibility tensor that takes a peculiar
form, reminiscent of that of Born-Infeld Lagrangians. We will then particularize to the
most simple of these models and study the corresponding static and spherically symmetric
black hole solutions.

This chapter is organized as follows. First we obtain the conditions for (up to) eight-
derivative theories to be (perturbatively) duality-invariant and then we construct the most
general eight-derivative theory coming from a truncation of an exactly duality-invariant
one. Afterwards we examine the e˙ect of metric redefnitions and, up to the six-derivative
level, we prove that any duality-invariant action can be mapped to a higher-derivative
gravity minimally coupled to the Maxwell Lagrangian. Later we study the black hole
solutions of this special six-derivative theory. Next we focus on theories whose action
is quadratic in the Maxwell feld strength and obtain a closed form for all such theories
(with non-minimal couplings) which are exactly duality-invariant, studying the subsequent
physical properties of black holes in the most tractable of these theories. Finally we
conclude with a discussion of our fndings and future directions.

3.1 Duality-invariant actions

As announced in the Preamble of the chapter, our goal is the study of higher-order theories
whose set of equations of motion and Bianchi identity is invariant under continuous duality
rotations. To this aim, in this section we determine the necessary and suÿcient conditions
for a higher-derivative theory to be invariant under duality rotations.

Let us start by writing a general higher-derivative extension of Einstein-Maxwell
theory, Z 

1 p � � 
I = d4 x |g| R − F 2 + L (gµν , Rµνρσ, rαRµνρσ, . . . ; Fµν , rαFµν , . . .) , (3.1)

16πG 

where as usual Fµν = 2∂[µAν] is the feld strength of the gauge feld Aµ and Rµνρσ is the
curvature tensor of the metric gµν . On the other hand, L represents a general invariant
formed out of these quantities and their derivatives, and we will assume it allows for a
polynomial expansion in terms with an increasing number of derivatives. The equations of
motion coming from the variation of this action read

Gµν 

p
1 δ( |g|L) 

= 2Tµν − p
δgµν|g|� � , (3.2)

0 = rν F µν − 
1 δL 
2 δFµν 

, (3.3)
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where
1αTµν = FµαF − gµν F 2 , (3.4)ν 4 

is the Maxwell stress-energy tensor, and

δL ∂L ∂L ∂L 
= −rα + rβrα − . . . . (3.5)

δFµν ∂Fµν ∂rαFµν ∂rαrβ Fµν 

For our purposes, it is convenient to rewrite this system of equations by introducing the
dual feld strength H as follows

Gµν = 2T̂µν + Eµν , (3.6)

1 δL 
?Hµν = −Fµν + , (3.7)

2 δF µν� � 
d F 

= 0 , (3.8)
H 

where now

αT̂µν = −Fhµ|α ? H|νi , (3.9)

1 δ(
p

|g|L) δL Eµν = −p + Fhµ|α , (3.10)
δgµν |νi|g| δF α 

representing hµνi the symmetric and traceless part of a tensor, this is

1 
Xhµνi = X(µν) − 

4
gµν g αβ Xαβ . (3.11)

In addition, the Hodge dual is defned as

1 
? Hµν ≡ �µναβ H

αβ , (3.12)
2 

where the Levi-Civita symbol �µναβ is such that �0123 = 
p

|g|.
Eq. (3.6) is the Einstein equation, Eq.(3.7) is the so-called constitutive relation that

defnes the dual feld strength H in terms of the original one F and Eq. (3.8) includes the
Bianchi identities of F and H. In this formulation, F and H are taken as independent
fundamental variables, and the equations of motion impose that they are closed 2-forms
and related by the constitutive relation (3.7).

Let us now analyze if the equations (3.6), (3.7) and (3.8) have any symmetry. It
is clear that the form of the two Bianchi identities (3.8) is preserved if we consider any
GL(2, R) transformation of F and H. In the case without corrections, it can be easily
checked, as justifed in Section I.4, that the the constitutive relation (3.7) and the Einstein
equation are invariant under the SO(2) transformations� � � � � � 

F cos α sin α F 0 
= . (3.13)

H − sin α cos α H 0 

Once the corrections are taken into consideration, however, the equations are generally not
invariant under this rotation, so, our goal is to determine which Lagrangians do give rise
to duality-invariant equations of motion.
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Let us frst start by stating that, if the Lagrangian L depends non-degenerately on
the derivatives of Fµν , then the relation H(F ) given by (3.7) is di˙erential. This means
that the inverse relation F (H) involves integration. Now imagine, for instance, a rotation
with an angle α = π/2. In that case, the new felds F 0 , H 0 satisfy the relation

? F 0 = H 0 1 δL 
. (3.14)µν µν − 

2 δF µν 
F →H0 

Then, if the equations of motion are invariant under duality rotations, this relation should
be equivalent to the one obtained by inverting (3.7). However, we see that this is not
possible since, as we mentioned, F (H) must involve integration while (3.14) is again dif-
ferential. The conclusion is that the equations of motion cannot be duality-invariant if the
Lagrangian contains derivatives of the feld strength, so duality restricts the set of allowed
Lagrangians to be of the form

L (gµν , Rµνρσ, rαRµνρσ, . . . ; Fµν ) . (3.15)

It is important to clarify a subtle point, though. If one assumes a perturbative expansion
of the Lagrangian, then one may, in fact, invert (3.7) in a perturbative fashion, obtaining a
di˙erential relation for F (H). Thus, one can fnd theories with a di˙erential relation (3.7)
that are invariant under duality rotations in this perturbative sense [535]. Nonetheless, by
the argument above, those theories cannot arise from the truncation of a complete theory
that is exactly invariant. In other words, this means that the summation of the whole
perturbative series would not give rise to a well-defned theory. Thus, we will restrict
ourselves to theories that depend only algebraically on the feld strength Fµν . Let us now
study which further constraints duality invariance imposes on the Lagrangian.

3.1.1 Invariance of the constitutive relation

Let us focus frst on the constitutive relation (3.7). After some algebraic manipulations
one can show that the rotated felds F 0 and H 0 in (3.13) satisfy the relation

? H 0 = −F 0 
1 
R

∂L 
, (3.16)µν µν +

ˆ 
2 ∂F µν 

F →F 0 cos α+H0 sin α 

where we have tacitly defned the operator

R̂ = cos α + ? sin α . (3.17)

Duality invariance requires the transformed felds F 0 and H 0 to be also a solution of the
original equation (3.7). This will happen if

∂L ∂L 
R̂ = . (3.18)
∂F µν ∂F µνF →F 0 cos α+H0 sin α F →F 0 

Of course, this equality can never hold o˙-shell since the left-hand-side depends on H 0 ,
while the right-hand-side does not. However, we only require that both quantities be equal
on-shell, which ensures that F 0 and H 0 indeed solve the original equation. Thus, we can
conveniently write this consistency equation as

∂L ∂L 
R̂ = . (3.19)
∂F µν 

F →F 0 ∂L ∂F µν 
F →F 0cos α+?(F 0− 1 ) sin α

2 ∂F 

148



���� �����

�����

���� �����

�����

���� ���

Chapter 3. Duality-invariant extensions of Einstein-Maxwell theory

This is a highly nonlinear equation that constrains the form of L. In order to make
additional progress, at this point it is convenient to expand the Lagrangian in a derivative
expansion, as

L = `2L(4) + `4L(6) + `6L(8) + . . . , (3.20)

where ` is a length scale and each Lagrangian L(2n) contains 2n derivatives of the felds.
Then, we will impose duality invariance order by order, assuming that the full Lagrangian
defnes an exactly invariant theory. We can solve (3.16) perturbatively in ` and we get

`2 ∂L(4)
?H 0 = −F 0 R̂ (3.21)µν µν + 

2 ∂F µν 
F → R̂F 0 " #� �αβ

1 ∂L(6) 1 ∂L(4) ∂2L(4)
+ `4 ˆ ˆ s ? ˆR − R R 

2 ∂F µν 4 ∂F ∂F αβ∂F µν 
F → R̂F 0 " �αβ �αβ

1 ∂L(8) 1 
� 

∂L(4) ∂2L(6) 1 
� 

∂L(6) ∂2L(4)ˆ ˆ ˆ+`6 R − R s ? R̂ − R s ? R̂ 
2 ∂F µν 4 ∂F ∂F αβ ∂F µν 4 δF ∂F αβ ∂F µν ( )# � �αβ � �ρσ
1 ∂ ∂2L(4) ∂L(4) ∂L(4)

+ R̂ s ? R̂ s ? R̂ + O(`8) ,
16 ∂F µν ∂F αβ∂F ρσ ∂F ∂F 

F → R̂F 0 

where s ≡ sin α. Note that the operator R̂ in the left always acts on the indices µν.
Now, from (3.18) we derive the following necessary conditions in order for the theory to
be invariant under duality rotations (we remove the F 0 notation for clarity)

∂L(4) ∂L(4) 
= R̂ , (3.22)

∂F µν ∂F µν 
F → ˆ " RF # 

∂L(6) ∂L(6) 1 
� 

∂L(4) 
�αβ ∂2L(4) 

= R̂ − R̂ s ? R̂ , (3.23)
∂F µν ∂F µν 2 ∂F ∂F αβ ∂F µν 

F → R̂F " � �αβ � �αβ∂L(8) ∂L(8) 1 ∂L(4) ∂2L(6) 1 ∂L(6) ∂2L(4)ˆ ˆ ˆ= R − R s ? R̂ − R s ? R̂ 
∂F µν ∂F µν 2 ∂F ∂F αβ ∂F µν 2 ∂F ∂F αβ ∂F µν ( )# � �αβ � �ρσ

1 ∂ ∂2L(4) ∂L(4) ∂L(4)
+ R̂ s ? R̂ s ? R̂ . (3.24)

8 ∂F µν ∂F αβ ∂F ρσ ∂F ∂F 
F → R̂F 

Let us further investigate the implications of these relations for the Lagrangian. First,
notice that each Lagrangian is built out of monomials that can be schematically denoted
by F nrqRp. Clearly, duality rotations do not mix terms with di˙erent values of n, q and
p, and hence, if the theory preserves duality, the relations above are satisfed by each of
these families of monomials independently. Now, let us note that, for every such monomial
we have the identity

∂L 
F µν = nL , (3.25)

∂F µν 

since they are homogeneous functions of degree n in F . Likewise, we have� � 
F µν R̂ ∂L 

= nL . (3.26)
∂F µν F → R̂F F → R̂F 
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Chapter 3. Duality-invariant extensions of Einstein-Maxwell theory

Let us then apply these results to the four-derivative case L(4). Since the equation (3.22)
must hold for every type of monomial, we conclude that the four-derivative Lagrangian
must satisfy the condition

L(4)( ˆ (3.27)RF ) = L(4)(F ) , 

so L(4) remains invariant under a rotation of F and ?F . Let us now consider the case of
L(6). First, it is convenient to rewrite Eq. (3.23) as follows:" !#� 

∂L(6) ∂L(6) 1 ∂ ∂L(4) 
�αβ ∂L(4) 

= R̂ − R̂ s ? R̂ . (3.28)
∂F µν ∂F µν 4 ∂F µν ∂F ∂F αβ 

F → R̂F 

Then, proceeding with the same logic as before, we can split this expression into monomials
of degree n in F , and contracting with F µν we fnd that� 

1 ∂L(4) 
�αβ ∂L(4)L(6)( ˆ s ? R̂ . (3.29)RF ) − L(6)(F ) = 

4 ∂F ∂F αβ 
F → R̂F 

This tells us that L(6) does not remains invariant under a rotation of F and ?F since there
is an inhomogeneous term associated to L(4). Clearly, this can be traced back to the fact
that duality is non-linearly realized in the Lagrangian formulation. The general solution
to this equation can be expressed as

L(6) = LH 
(6) , (3.30)(6) + LIH 

where LH is the general solution of associated homogeneous equation, and therefore sat-(6) 
isfes

LH (R̂F ) = LH (F ) , (3.31)(6) (6) 

and LIH is a particular solution of the full inhomogeneous equation. Let us show that a(6)
particular solution is given by

LIH 1 ∂L(4) ∂L(4) 
(6) = − . (3.32)

8 ∂F αβ ∂Fαβ 

In fact, using the property of L(4) in (3.22), we have� �αβ � � 
LIH 1 ˆ ∂L(4) ˆ ∂L(4)

(F ) = − R R(6) 8 ∂F ∂F αβ F → R̂F (3.33)� 
1 ∂L(4) 

�αβ ∂L(4)
R̂2 = − ,

8 ∂F ∂F αβ 
F → R̂F 

and, on the other hand, � 
1 ∂L(4) ∂L(4) 1 ∂L(4) 

�αβ ∂L(4)LIH R̂−1 ˆ 
(6)(RF

ˆ ) = − = − R . (3.34)
8 ∂F αβ ∂Fαβ 8 ∂F ∂F αβ 

F →RFˆ F → R̂F 

Thus, combining both expressions and using that R̂−1 = cos α − ? sin α one easily checks
that (3.29) is satisfed. Let us fnally turn to the case of the eight-derivative Lagrangian.
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Chapter 3. Duality-invariant extensions of Einstein-Maxwell theory

After making use of the decomposition of L(6) in (3.30), we can write the equation (3.24)
as: " � �αβ ∂LH ! 

∂L(8) ˆ ∂L(8) 1 ˆ ∂ ∂L(4) (6) 
= R − R s ? R̂ 

∂F µν ∂F µν 2 ∂F µν ∂F ∂F αβ ( )# � �αβ � �ρσ
1 ∂ ∂2L(4) ∂L(4) ∂L(4)

+ R̂ s ? R̂ cR̂ . (3.35)
8 ∂F µν ∂F αβ ∂F ρσ ∂F ∂F 

F → R̂F 

Splitting this expression into monomials and contracting with F µν we arrive at the equation" � �αβ ∂LH 
1 ∂L(4) (6)L(8)( ˆ s ? R̂RF ) − L(8)(F ) = 
2 ∂F ∂F αβ #�αβ � �ρσ

1 ∂2L(4) 
� 

∂L(4) ∂L(4)− s ? R̂ cR̂ . (3.36)
8 ∂F αβ∂F ρσ ∂F ∂F 

F → R̂F 

The general solution can again be written as

L(8) = LH 
(8) , (3.37)(8) + LIH 

where LH satisfes(8) 

LH (RFˆ ) = LH (F ) (3.38)(8) (8) 

and LIH is a particular solution of the complete inhomogeneous equation. In this case, one(8) 
can check that a particular solution is given by

∂LH 

LIH 1 ∂L(4) (6) 1 ∂2L(4) ∂L(4) ∂L(4) 
(8) = − + . (3.39)

4 ∂F αβ ∂Fαβ 32 ∂F αβ∂F ρσ ∂Fαβ ∂Fρσ 

In this way, the theory is determined up to the eight-derivative level once the set of La-
grangians L(4), LH , LH , is specifed, so our fnal task consist in characterizing these.(6) (8) 

In order to characterize the Lagrangians that are invariant under a rotation of F and
?F , it is useful to introduce the vector of 2-forms� � 

FA = F
, (3.40)

?F 

where A is an SO(2) index. The only way of obtaining SO(2) invariant quantities is
by considering the contraction FA δAB . Note that the contraction with the symplecticµν FB 

αβ 
matrix σAB also yields an invariant, but however it is not independent since FA = µν FB σABαβ 
FA δAB, and thus it has the same e˙ect as applying the Hodge dual on the indicesµν ? FB 

αβ 
αβ. Let us then evaluate this contraction explicitly,

µν FB αβ δABFA = Fµν F αβ + ?Fµν ? F αβ 

(3.41)
β [α β]

= Fµν F αβ − 6F ρσF[ρσδ
α δ = 4T δ ,µ ν] [µ ν] 

where T α is the Maxwell stress tensor as defned in (3.4). Consequently, this resultµ 
indicates that any SO(2) invariant quantity must depend on Fµν only through the stress
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tensor Tµν . Therefore, we conclude that the homogeneous part of the Lagrangians LH
(n) 

(including L(4) = LH ) must be of the form(4) 

LH
(n) = LH

(n) (g
µν , Tµν , Rµνρσ, rαRµνρσ, . . .) . (3.42)

This result together with the relations (3.32) and (3.39) fully characterizes the set of
theories that have a duality-invariant constitutive relation (3.7) to the eight-derivative
level.

3.1.2 Invariance of Einstein’s equations

We have just obtained the conditions the Lagrangian must satisfy for the constitutive
relation (3.7) to be invariant under a duality rotation. Now the question is whether these
necessary conditions ensure the invariance of Einstein’s equations as well, so that they
are actually suÿcient for the existence of duality invariance. For that, we see frst in
Eq. (3.6) that the energy-momentum tensor T̂µν (see (3.9)) is exactly invariant under a
rotation, so we just have to make sure that the quantity Eµν — defned in (3.10) — remains
invariant. At this point it is convenient to study frst those theories which are algebraic in
the curvature tensor, since the proof for generic theories with covariant derivatives of the
curvature is a direct generalization of that.

We derived back in Eq. (2.12) the Einstein equation for the most general theory of
gravity and electromagnetism with algebraic dependence in the curvature and the gauge
feld strength. Consequently, we have that the tensor Eµν defned in Eq. (3.10) can be
written as � � 

1 1 ∂Lρσγ σEµν = −P Rν)ρσγ − 2r r ρP(µ|σ|ν)ρ + gµν L − Fαβ , (3.43)(µ 2 2 ∂Fαβ 

where
∂L 

Pµνρσ = . (3.44)
∂Rµνρσ 

Let us expand this in powers of `,

= `2E(4) + `4E(6) + `6E(8)Eµν µν µν µν . . . , (3.45)

where every term E(n) is computed from the corresponding Lagrangian L(n). Let us examineµν 
these terms. The Lagrangian L(4) only depends on Fµν through the Maxwell stress-energy
tensor. Since every monomial Li in the Lagrangian satisfes that Fαβ 

∂Li ∝ Li, by looking∂Fαβ 
(4)at (3.43) we conclude that the tensor Eµν also depends on Fµν through Tµν only. We can

(4) (4)express this fact by writing Eµν = Eµν (T ). Now, since under a duality transformation,
Tµν is invariant up to terms of order `2 , we already conclude that the Einstein’s equations
are invariant up to terms of order `4 .

Let us see now what happens with the O(`4) and O(`6) terms. First, we remind that
+LIHwe can split L(6) and L(8) in a homogeneous plus an inhomogeneous part, L(6) = LH 

(6) (6) 
+ LIHand L(8) = LH , where(8) (8) 

∂LH 

LIH 1 ∂L(4) ∂L(4) LIH 1 (6) ∂L(4) 1 ∂2L(4) ∂L(4) ∂L(4) 
= − , = − + . (3.46)(6) (8)8 ∂F αβ ∂Fαβ 4 ∂F αβ ∂Fαβ 32 ∂F αβ F ρσ ∂Fαβ ∂Fρσ 
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(n)Correspondingly, each Eµν splits as

E (6) = EH(6) + E IH(6) E(8) = EH(8) + E IH(8) 
µν µν µν , µν µν µν . (3.47)

H(n)It is useful to rewrite the terms coming from the homogeneous parts, Eµν , in terms of
the exactly-invariant tensor T̂µν . We recall that it is related to the Maxwell stress-energy
tensor Tµν by

1 ∂LˆTµν = Tµν + Fhµ|α . (3.48)
2 |νi

∂F α 

Since LH and LH are built out only of the Maxwell stress-energy tensor Tµν , for the(6) (8) 
H(6) H(8)same reason as before it follows that Eµν and Eµν depend on Fµν only through Tµν .

ˆExpressing Tµν = Tµν + δTµν , by expanding around T̂  we fnd:

(4) (4)
`2 `4 

Eµν 
(4)(T ) = E (4) δEµν 

( ˆ ∂L(4) δEµν 
( ˆ ∂L(6) 

µν (T̂ ) + T ) ◦ Fhα|σ + T ) ◦ Fhα|σ2 δTαβ ∂F |βi σ 2 δTαβ ∂F |βi σ 
(4)

`4 δ2Eµν ∂L(4) ∂L(4)
+ (T̂ ) ◦ Fhα|λ ◦ Fhρ|γ + O(`6) , (3.49)

8 |βi |σiδTαβ δTρσ ∂F λ ∂F γ 

H(6)
`2 δEµν ∂L(4)EH(6)(T ) = EH(6)(T̂ ) + (T̂ ) ◦ Fhα|σ + O(`4) , (3.50)µν µν 2 δTαβ ∂F |βi σ 

EH(8)(T ) = EH(8) 
µν µν (T̂ ) + O(`2) , (3.51)

where we have defned:

δ ∂ ∂ ◦ Cµ1...µp = Cµ1...µp + rν Cµ1...µpδBµ1...µp ∂Bµ1...µp ∂rν Bµ1...µp (3.52)
∂ 

+ rν1 rν2 Cµ1...µp + . . . ,
∂rν1 rν2 Bµ1...µp 

being B and C arbitrary tensors. Taking into account that T̂µν = Tµν + O(`2), we can
express (3.49), (3.50) and (3.51) in the form:

(4) (4)
`2 `4 

E(4) δEµν ∂L(4) δEµν ∂L(6) 
µν (T ) = E (4) ( ˆ 

µν (T̂ ) + T ) ◦ Fhα|σ + (T ) ◦ Fhα|σ2 δTαβ ∂F |βi σ 2 δTαβ ∂F |βi σ 
(4)

`4 δ2Eµν ∂L(4) ∂L(4)
+ (T ) ◦ Fhα|λ ◦ Fhρ|γ + O(`6) , (3.53)

8 δTαβ δTρσ |βi |σi
∂F λ ∂F γ 

H(6)
`2 

EH(6)(T ) = EH(6) δEµν ∂L(4) 
µν µν (T̂ ) + (T ) ◦ Fhα|σ |βi + O(`4) , (3.54)

2 δTαβ ∂F σ 

EH(8)(T ) = EH(8) 
µν µν (T̂ ) + O(`2) , (3.55)

Let us further rewrite (3.53) as follows,

(4) (4)
`2 `4 

E(4) δEµν ∂L(4) δEµν ∂L(6) 
µν (T ) = E (4) 

µν (T̂ ) + (T ) ◦ Fhα|σ |βi + (T ) ◦ Fhα|σ |βi2 δTαβ 2 δTαβ∂F σ ∂F σ 
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(4)
`4 δ2Eµν ∂L(4) ∂L(4)− (T ) ◦ Fhα|λ ◦ Fhρ|γ + O(`6) , (3.56)
8 |βi |σiδTαβ δTρσ ∂F λ ∂F γ 

where we have replaced T̂ = T − δT in the O(`2) term and expanded in δT once again.
Now, taking into account the following identity:

δ 1 δσ◦ Fhα|σA|βi = ◦ Aαβ , (3.57)
δTαβ 2 δFαβ 

which is valid for any antisymmetric tensor Aαβ , we fnd that ! 
(4) 

= `2E(4) EH(6) T ) + E IH(6) 1 δEµν ∂L(4)Eµν µν (T̂ ) + `4 
µν ( ˆ 

µν (T ) + 
δFαβ 

(T ) ◦ + 
4 ∂F αβ 

(4) (4) 
`6 EH(8)(T̂ ) + E IH(8) 1 δEµν ∂L(6) 1 δ2Eµν ∂L(4) ∂L(4)

(T ) + (T ) ◦ − (T ) ◦ ◦µν µν 4 δFαβ ∂Fαβ 16 δFαβ δFρσ ∂F αβ ∂F ρσ ! 
H(6)

1 δEµν ∂L(4)
+ (T ) ◦ + O(`8) ,
4 δFαβ ∂F αβ 

(3.58)
Finally, one can prove the following identities:

(4) 
E IH(6) µν ∂L(4) 
µν (T ) + 

1 δE 
(T ) ◦ = 0 , (3.59)

4 δFαβ ∂F αβ 

(4) (4) 
E IH(8) 1 δEµν ∂L(6) 1 δ2Eµν ∂L(4) ∂L(4)

(T ) + (T ) ◦ − (T ) ◦ ◦µν 4 δFαβ ∂Fαβ 16 δFαβ δFρσ ∂F αβ ∂F ρσ 

H(6)
1 δEµν ∂L(4)

+ (T ) ◦ = 0 . (3.60)
4 δFαβ ∂F αβ 

In order to show this, it is useful to take into account the following property,� � 
δrµ1 rµ2 Qν1...νp ∂Qν1...νp◦ Aαβ = rµ1 rµ2 Aαβ , (3.61)

δFαβ ∂Fαβ 

where Qν1...νp is an arbitrary tensor which depends algebraically on Fµν and where Aαβ 
is any antisymmetric tensor. Let us illustrate how to use (3.61) to prove the frst identity
(3.59). On the one hand, since L(4) depends algebraically on the curvature, we have,
explicitly, � �(4)

δEµν ∂L(4) (4) 1 ∂L(4) ∂ 1 ∂L(4)◦ = −P̂  ρσγ Rν)ρσγ + gµν L(4) − Fρσ(µδFαβ ∂F αβ 2 ∂F αβ ∂Fαβ 2 ∂Fρσ 

(4)
δr rσ ρP(µ|σ|ν)ρ ∂L(4)− 2 ◦ (3.62)

∂F αβδFαβ 

(4) σ ρ ˆ(4)= −P̂  ρσγ Rν)ρσγ − 2r r P(µ (µ|σ|ν)ρ � � 
1 ∂L(4) ∂ 1 ∂L(4)

+ gµν L(4) − Fρσ ,
2 ∂F αβ ∂Fαβ 2 ∂Fρσ 
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where
∂P (4)µνρσ 

P (4)µνρσ ∂L(4) 
P̂ (4)µνρσ ∂L(4) 

= , = . (3.63)
∂Rµνρσ ∂F αβ ∂Fαβ 

IH(6)After some direct computations, we recognize at the last line of (3.62) the term −4Eµν (T ),
so we prove (3.59). Showing that (3.60) holds is a more intricate task, but it can be done
by using (3.61) and following a completely analogous procedure to that of the proof of
(3.59). Consequently, we have shown that the Einstein’s equations can be written as

= `2E(4) T ) + `4EH(6) T ) + `6EH(8)Eµν µν (
ˆ 

µν ( ˆ 
µν (T̂ ) + O(`8) , (3.64)

so that they are manifestly duality-invariant to order `6 . Thus, the conclusion is that the
invariance of the constitutive relation implies the invariance of Einstein’s equations, so
the conditions found in the previous subsection are necessary and suÿcient in order for a
theory with algebraic dependence on the Riemann tensor to be duality-invariant.

These results can be generalized to the case of theories that contain covariant deriva-
tives of the curvature. The proof of the invariance of Einstein’s equations in that case can
be obtained along similar lines, although it is slightly more technical and thus we include
it in Appendix 3.

3.2 All duality-invariant theories up to eight derivatives

The goal of this section is to obtain explicitly the Lagrangian of the most general duality-
invariant theory up to eight-derivative terms. To this aim, we will use Eqs. (3.32), (3.39)
and (3.42). In addition, we will also assume that parity is preserved, so that we will discard
parity-breaking operators.

We start by analyzing the fourth-derivative terms. Since all the dependence of L(4) 
on Fµν must be through the Maxwell stress-energy tensor Tµν , we observe that the most
general duality-invariant four-derivative Lagrangian will take the form:

L(4) = α1Tµν T µν + α2R
µν Tµν + α3X4 + α4R

µν Rµν + α5R
2 , (3.65)

where X4 denotes the topological Gauss-Bonnet density, given by X4 = RµνρσR
µνρσ − 

4Rµν R
µν + R2 . Now we move into the most general six-derivative Lagrangian L(6). In

the previous section we decomposed it into a homogeneous part LH which takes the(6) 
functional form given at (3.42) and an inhomogeneous part LIH which is obtained from(6)
the four-derivative Lagrangian and whose particular form we rewrite here:

LIH 1 ∂L(4) ∂L(4) 
(6) = − . (3.66)

8 ∂F αβ ∂Fαβ 

Now, taking into account that

∂L(4) σ]ˆ= 4α1T µ[ρFµ
σ] + 2α2R

µ[ρFµ , (3.67)
∂Fρσ 

where ˆ = Rhµνi, we obtain the following expression for LIH :Rµν (6) 

1 LIH σ] ˆ σ] ˆ 
(6) = −2α1

2T µ[ρFµ
σ]TνρF νσ − 2α1α2T µ[ρFµ RνρF νσ − α2

2R̂µ[ρFµ RνρF νσ . (3.68)
2 
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Once we have obtained the inhomogeneous part, now we write down the most general
homogeneous Lagrangian LH that preserves duality and parity. This can be seen to have(6)
the following form:

= Rµναβ LH Tµν Tαβ + Rµν Tµν + R(6) , (3.69)(6) (6) (6) 

where Rµναβ and Rµν are tensors formed out of the curvature and R(6) is the general six-(6) (6)
derivative Lagrangian for the metric. After discarding trivial terms and total derivatives,
the general form of these quantities reads [500]:

Rµναβ = β1Rµανβ + β2Rµα βν + β3Rgµα βν 
(6) g g , (3.70)

Rµν µRαβγν + β5Rρµαν Rρα + β6RµαRα
ν + β7RRµν= β4Rαβγ 

(µ 2Rµν 

(6) 

+ β8r r ν)R + β9r , (3.71)

= β10Rρσµν Rµν 
αR(6) 

ληRληρσ + β11RRµνρσRµνρσ + β12Rµν RρσRµρνσ + β13Rµν RµαRν 

σRµν+ β14RRµν Rµν + β15R3 + β16r σRrσR + β17rσRµν r . (3.72)

The eight-derivative Lagrangian L(8) also decomposes in a homogeneous part LH 
(8) 

and an inhomogeneous one LIH 
(8). This last piece could be expressed in terms of the lower-

derivative Lagrangians L(4) and LH as(6) 

∂LH 

LIH 1 ∂L(4) (6) 1 ∂2L(4) ∂L(4) ∂L(4) 
(8) = − + . (3.73)

4 ∂F αβ ∂Fαβ 32 ∂F αβ∂F ρσ ∂Fαβ ∂Fρσ 

Taking into account that

∂LH 
(6) αβν[ρ ν[ρ σ]ˆ= 4TαβR Fν

σ] + 2R̂ Fν , (3.74)(6) (6)∂Fρσ 

∂2L(4) β] β]= 4α1F α 
[ρF βσ] − 2α1FρσF αβ + 8α1T[ρ 

[αδσ] + α1F 2δ[ρ 
[αδσ]∂Fαβ F ρσ 

β]+ 2α2R̂ 
[ρ 
[αδσ] , (3.75)

where a hat over Rαβνρ means that we take its traceless part over each pair of indices, we(6) 
conclude that (3.39) is given by:

LIH ˆαβν[ρ ˆαβν[ρ σ] ˆ ˆν[ρR Fν R Fν σ − 2α1R Fν(8) = −4α1Tαβ (6) 
σ]TµρF µσ − 2α2Tαβ (6) RµρF µ 

(6) 
σ]TµρF µσ 

ˆν[ρ σ] ˆ 
β T νρFν

σF α β T νρFν− α2R Fν RµρF µσ + 2α1
3TµαF µ 

[ρF βσ] − α1
3TµαF µ σFρσF αβ 

(6) 

β T νρFν+ 4α1
3TµαF µ σT[ρ 

[αδσ] 
β] + 1/2α3

1F 2T µ[ρFµ
σ]TνρF νσ 

1α2T νρFν
σ ˆ 

1α2T νρFν
σ ˆ 

βFρσF αβ+ 2α2 RµαF µβ F α 
[ρF βσ] − α2 RµαF µ 

1α2T νρFν
σ ˆ β] 

βT νρFν
σ ˆ[α β]+ 4α2 RµαF µβ T[ρ 

[αδσ] + α1
2α2TµαF µ R δσ][ρ 

σ] ˆ ˆ R̂νρFν
σF α+ 1/2α1

2α2F 2T µ[ρFµ RνρF νσ + 1/2α1α2
2RµαF µβ [ρF βσ] 

ˆ R̂νρFν ˆ R̂νρFν
β]− 1/4α1α

2
2RµαF µβ 

σFρσF αβ + α1α
2
2RµαF µβ 

σT[ρ 
[αδσ] 

2T νρFν 
[α 

+ α1α
2 σR̂µαF µβ R̂ 

[ρ δσ] 
β] + 1/8α1α2

2F 2R̂µ[ρFµ
σ]R̂νρF νσ 
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ˆ R̂νρFν
σ ˆ[α β]+ 1/4α2

3RµαF µβ R[ρ δσ] . (3.76)

Finally, the homogeneous part LH must take the form (3.42). Hence, it can be written as(8) 

ν α β µ µνρσαβ LH = γ1(Tµν T µν )2 + γ2T T T T + R Tµν TρσTαβ(8) µ ν α β (8) 
(3.77)

+ RµνρσTµν Tρσ + Rµν 
(8) (8)Tµν + R(8) . 

A list with all the possible tensors appearing in these expressions can be obtained from
[500]. We get the following general expressions:

R(8)µνρσαβ = γ3Rµρναgσβ + γ4Rµν gραgσβ + γ5Rµρgαν gσβ , (3.78)

= γ6Rµν Rρσ + γ7RµρRνσ + γ8RRµρνσ + γ9Rαβ βR(8)µνρσ µρRαβνσ + γ10Rα
µ ν Rαβρσ 

β+ γ11Rα
µ ρRανβσ + γ12rµrρRgνσ + γ13r 2Rµρgνσ + γ14RRµρgνσ (3.79)

+ γ15Rα
µRαρgνσ + γ16RαβRαµβρgνσ + γ17Rαβγ 

µRαβγρgνσ + γ18r 2Rgµρgνσ 

+ γ19R2 gµρgνσ + γ20RαβRαβ gµρgνσ + γ21RαβληRαβληgµρgνσ , 
2R(8)µν = γ22rµrν r 2R + γ23r r 2Rµν + γ24Rrµrν R + γ25Rµν r 2R (3.80)

+ γ26Rαβ rαrβ Rµν + γ27Rr 2Rµν + γ28Rαβ rµrν Rαβ + γ29Rαβ rν rβ Rµα 

α ρ+ γ30r rµRRαν + γ31r r σRRρµσν + γ32r 2RρσRρµσν 

ρ β ρRα+ γ33r rµR
αβRαρβν + γ34r r µRαβρν + γ35Rαβρσ rµrν Rαβρσ 

Rαβ αRβ β Rα+ γ36rµ rν Rαβ + γ37rαRβµr ν + γ38r µrαRβν 
α+ γ39r ρRαβrν Rαρβµ + γ40rµRrν R + γ41rαRrν Rµ + γ42rαRr αRµν 

Rαβ σRαβ Rαβσλ + γ43rµ rβRαν + γ44r rσRαµβν + γ45rµ rν Rαβσλ 

λRαβσ + γ46r µrλRαβσν + γ47R2Rµν + γ48RRα
µRαν + γ49Rµν R

αβ Rαβ 

+ γ50Rαβ RαµRβν + γ51RRαβ Rαµβν + γ52Rα
σRβµσν + γ53Rαβ Rσ

µRασβν 

+ γ54RRαβσ Rβρσ 
µRαβσν + γ55Rµν R

αβλσRαβλσ + γ56Rα
µ αRβρσν 

+ γ57Rαβ Rρσ ρ σ 
αµRρσβν + γ58Rαβ Rα β

σRρµσν + γ59Rαβ Rρ
α µRρβσν 

+ γ60RαβρσRαβ
λ λ 
µRρσλν + γ61RαβρσRα ρµRβλσν + γ62RαβρσRαβρ 

λRσµλν . 

On the other hand, the list of the eight-derivative curvature invariants appearing in R(8) 
can also be checked in [500].

Let us note that here and also in the case of LH we are including a set of densi-(6) 
ties that spans the set of all duality-invariant Lagrangians, but they may be not linearly
independent. Even though we are removing redundant terms in the Rµ 

(n 
1 
) 
µ2... tensors follow-

ing [500], the densities formed by contracting these tensors with Tµν may still be linearly
dependent or be related up to total derivatives. The determination of a linearly inde-
pendent set of generating densities for the Lagrangians LH and LH may be carried out(6) (8) 
elsewhere.
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3.3 Field redefnitions

In the previous section we obtained the most general duality-invariant action up to the
eight derivative level. This can be understood as the truncation of an exactly duality-
invariant theory that necessarily contains an infnite tower of higher-derivative terms. But
at the same time, it can be interpreted as the e˙ective feld theory of some underlying UV-
complete theory that respects electromagnetic duality. From this point of view, it is very
natural to consider feld redefnitions of the metric and vector felds, since these correspond
simply to di˙erent choices of renormalization schemes of the hypothetical quantum theory,
leaving the physics invariant. One can of course redefne the variables of any given theory,
and if the original theory possess a symmetry, so must the transformed one. However,
if the change of variables is not invariant under that symmetry, then the new action will
not be manifestly symmetric. The goal of this section is to investigate this question in
the case of the duality-invariant theories under consideration. We would like to fnd feld
redefnitions that map these theories into other of the same class, with the fnal aim of
removing as many parameters as we can from the Lagrangian.

Let us start by writing down our duality-invariant action up to the six-derivative
level: ( ! )Z p1 1 ∂L(4) ∂L(4)

d4 LHI = x |g| R − F 2 + `2L(4) + `4 
(6) − + O(`6) , (3.81)

16πG 8 ∂F αβ ∂Fαβ 

where we recall that L(4) reads

L(4) = α1Tµν T µν + α2Tµν R
µν + α3X4 + α4Rµν R

µν + α5R
2 , (3.82)

and LH is given by (3.69). Let us then consider a redefnition of the metric of the form(6) 

gµν → gµν + `2hµν , (3.83)

where hµν is some symmetric 2-derivative tensor. Performing such feld redefnition, ex-
panding in powers of `2 , and neglecting total derivatives, the action I undergoes the trans-
formation (Z p � � �1 1 
I 0 = I + d4 x |g| − `2hµν (Gµν − 2Tµν ) + `4 2hαβh

αβ − h2 (R − F 2)
16πG 8 � � 

1 1 1 
hµαhν µhαβ 

α − hhµν (Gµν − 2Tµν ) − hµν hαβFµαFνβ − rµhαβ r + rµhrµh 
2 4 4 � 

1 
hαβ µ 1 

hµαrαh − hµν Rλ ∂L(4) 1 α β ∂L(4)
+ rµ rβh − rµ + gµν r rα µ2 2 ∂Rνλ 2 ∂Rαβ ��) 

∂L(4) 1 ∂L(4) 1 ∂L(4)α 2−r rµ + r − gµν L(4) + Fµα . (3.84)
∂Rνα 2 ∂Rµν 2 ∂F να 

Then, the idea is to choose a tensor hµν which simplifes the Lagrangian. Note that, in the
four-derivative Lagrangian, the redefnition introduces terms proportional to Tµν , allowing
one to remove all the terms depending on the Maxwell stress tensor. This is achieved by
the redefnition

α1 α1 + 2α2
hµν = − Tµν − R̂µν + σRgµν , (3.85)

2 4 
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where R̂µν = Rµν − 1 gµν R and σ is a free parameter. This has the following e˙ect on L(4):4 

L0 
(4) = α3X4 + α0 

4Rµν R
µν + α5 

0 R2 , (3.86)

where
α1 α2 α1 α2

α0 = α4 + + , α0 = α5 − − + σ . (3.87)4 54 2 16 8 
Therefore, we have removed all the terms containing feld strengths in the four-derivative
Lagrangian, and hence, the new theory is obviously duality-invariant at that order. How-
ever, this redefnition also a˙ects the 6- and higher-derivative Lagrangians, so we must
investigate if duality is also preserved at those higher orders. Let us note that, in this
new frame, the Maxwell stress tensor Tµν is invariant to order `2 under a duality rotation
due to the absence of feld strengths in L(4). Thus, it follows that the redefnition (3.83)
is invariant to order `4 , and hence once would expect the transformed theory to be also
duality-invariant at that order. We recall that the presence of terms with Tµν in L(4) 
induces inhomogenous terms in L(6) that are required by duality. Now, since the redef-
nition removes the terms with Tµν in L(4), our intuition is that it should also remove the
inhomogeneous terms associated with these, since otherwise duality symmetry would be
broken. In fact, this is almost exactly what happens.

After a somewhat lengthy computation, we arrive at the following expression for the
transformed action up to O(`4):(Z 

1 p � � 
I 0 d4 + `2 + α0 = x |g| R − F 2 α3X4 + α4 

0 Rµν R
µν 

5R
2 + 

16πG )�� ��0 α2 α2 
1 1`4 LH 

(6) + O (rT ) − Eµν EhµνiF 2 − E hµνiEhαβiFαµFβν + O(`6) , (3.88)
64 16 � �0 

where Eµν = Gµν − 2Tµν are the zeroth order equations of motion. Here, LH is(6) 
the homogeneous duality-invariant Lagrangian (3.69) with renormalized couplings, while
O (rT ) represents new terms that, besides depending on the curvature and the Maxwell
stress tensor, also contain derivatives of the latter. These terms were not included in the
original action because, as we argued, they cannot arise in the truncation of a theory
that is exactly invariant under duality rotations. However, the feld redefnitions we are
considering are defned only perturbatively and they generically introduce this type of
terms, which indeed preserve duality in a perturbative sense. In any case, as we show
below, one can easily get rid of them. Thus, the only problematic terms are those that
depend explicitly on the feld strength. Apparently, these terms break duality invariance,
but a closer look reveals that this is not so. Indeed, since they are proportional to the square
of the zeroth-order equations of motion, this implies that, on-shell, their contribution is
of order . Hence the equations of the new theory are actually invariant under duality`6 

`4rotations at order . Moreover, we can simply remove those terms from the action by
performing an additional redefnition of the metric,

gµν → gµν + `4h(4) µν . (3.89)

This yields, (Z 
1 

I 00 d4 R − F 2 + `2 α3X4 + α4 
0 Rµν R

µν + α5 
0 R2 = x 

p
|g| 

� � 
+ (3.90)

16πG 
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)�� ��0 α2 α2 
1 1`4 LH + O (rT ) − Eµν EhµνiF 2 − E hµνiEhαβiFαµFβν − Eµν h(4) + O(`6) ,(6) µν64 16 

so that, by choosing,

α2 α2 
h(4) = − 1 1 EhαβiFαhµ|Fβ|νi , (3.91)µν EhµνiF 2 − 

64 16 
we cancel those terms. Note that, again, this redefnition is of order `6 on-shell, and hence it
is trivially invariant at order `4 . In fact, it makes sense that duality invariance is preserved
only on-shell, since this is a symmetry of the equations of motion, not of the action.

We can now perform additional O(`4) redefnitions in order to simplify the six-
(4) (4)derivative Lagrangian. Since these introduce terms of the form Gµν hµν − 2T µν hµν , this

means that we can remove all the terms depending on the stress-energy tensor Tµν , or more
precisely, we can simply perform the replacement Tµν → Gµν /2. Note that this works, too,
for the terms that contain derivatives of Tµν , since, by integration by parts, it is always
possible to remove the derivatives from one stress-energy tensor, and then the replacement
above can be applied. Since all pure-metric higher-derivative terms were already included
in the original action, these redefnitions have the only e˙ect of renormalizing their cou-
plings while removing the dependence on Tµν — and hence, Fµν — in the six-derivative
Lagrangian.

Thus, we have reached a quite remarkable result: to the six-derivative level, the most
general duality-invariant extension of Einstein-Maxwell theory is equivalent to the most
general higher-order gravity minimally coupled to Maxwell theory. Explicitly, the action
reads1 (Z 

1 p � � 
I 000 d4 = x |g| R − F 2 + `2 α3X4 + α0 

4Rµν R
µν + α5 

0 R2 + 
16πG � 
`4 ρ σR α β µ ν ρσ αβ µν 

αR
σα β1Rµ ν ρ σ Rα β + β2Rµν Rρσ Rαβ + β3RµνρσR

µνρ 

ν R ρR µ + β7Rµν R
µν R+β4RµνρσR

µνρσR + β5RµνρσR
µρRνσ + β6Rµ ν ρ)�

σRµν µR+β8R
3 + β9rσRµν r + β10rµRr + O(`6) , (3.92)

where we are including all the six-derivative Riemann invariants modulo total derivatives
[500]. However, we can further decrease the number of terms in this action. To begin with,
not all the cubic invariants are independent, since they satisfy two constraints [500], and
this allows us to set, for instance β1 = β3 = 0. On the other hand, there are residual
redefnitions of the metric that cancel some of these curvature terms without introducing
feld strengths. In the four-derivative Lagrangian, we recall that α0 is given by (3.87), where5 

α1 α2σ is arbitrary. Thus, we are free to choose σ = −α5 + + 8 , so that α0 = 0. In the case16 5 
→ gµν (1 + `4h(4))of the six-derivative terms, notice that a redefnition of the form gµν 

adds the term `4h(4)R to the Lagrangian. Hence, we can cancel all the terms that contain
at least one Ricci scalar, and thus we can set β4 = β7 = β8 = β10 = 0. Finally, since we
can transform all Ricci tensors into Maxwell stress-energy tensors via metric redefnitions
(up to terms that involve Ricci scalars, and that hence can be removed), we have the map

ν ν ρ µRµ Rν
ρRρ

µ → 8Tµ Tν Tρ = 0 . (3.93)
1Note that the numbering in the βi couplings is di˙erent from the one used in Section 3.2.
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Therefore, we can also set β6 = 0. In sum, the action is simplifed to2(Z 
1 p

d4I = x |g| R − F 2 + `2 (α1X4 + α2Rµν R
µν )+ 

16πG )� � 
ρσ αβ σRµν`4 β1Rµν Rρσ Rαβ

µν + β2RµνρσR
µρRνσ + β3rσRµν r + O(`6) , (3.94)

and it only contains fve independent operators, of which one is topological. Thus, duality
invariance together with feld redefnitions is a powerful tool that removes most of the
higher-order terms one can include in the action.

One may wonder if this result extends to even higher-derivative terms. As we have
discussed, at order n, the Lagrangian of a duality-invariant theory can be decomposed as

LH + LIHL(2n) = (2n), where LH contains new independent terms that depend on Fµν(2n) (2n) 
only through Tµν , and LIH

(2n) is determined by the lower-order Lagrangians. Now, if up
to order n − 1 we have been able to cancel all the higher-order terms containing Fµν via
feld redefnitions, we expect that those redefnitions also cancel LIH

(2n) up to terms which
are duality-invariant at that order, and that hence depend on Tµν . This is precisely what
happened with LIH when we performed the redefnition that cancels the F -dependent(6) 
terms in L(4). If this is the case, then the corresponding transformed Lagrangian L0 

(2n) will
depend on Fµν only through Tµν and therefore there is an additional metric redefnition
of 2n − 2 derivatives that maps that Lagrangian into a pure gravity one. By induction,
one would conclude that this process can be carried out to all orders. As we have seen,
things are not so simple, since in this process of feld redefnitions duality is only preserved
on-shell, which adds some additional complications to the argument. Still, the evidence
gathered so far makes us confdent to propose the following

Conjecture 3.1. Any duality-invariant theory that allows for a derivative expansion around
Einstein-Maxwell theory is perturbatively equivalent to Maxwell theory minimally coupled
to a higher-derivative gravity at any order in the derivative expansion.

As a further support of this conjecture, it would be interesting to carry out the
explicit computation for the eight-derivative terms, although this is a highly challenging
task that entails the computation of the third variation of the Einstein-Maxwell action
as well as the second variation of the Lagrangian L(4). Interestingly, if the conjecture
holds, then it means that, when coupled to Einstein gravity, non-linear duality-invariant
electromagnetic theories such as Born-Infeld theory are in fact perturbatively equivalent
to Maxwell theory coupled to higher-derivative gravity. Another interesting question is
whether one can fnd a fully non-perturbative equivalence.

Let us close this section with a few additional comments. In our approach to feld
redefnitions we have not included a cosmological constant since it introduces a new length
scale besides `. This makes the computations more involved since now a redefnition of
order n a˙ects linearly the Lagrangians of order n and n + 1 and new scales Λ`2n are
generated. However, upon the assumption that Λ`2 << 1 we believe our qualitative
results for the asymptotically fat case can be applied as well — see Chapter 1. Finally, we
have been able to map any duality-invariant action to a theory that only contains metric

2With respect to (3.92), we are relabeling the couplings as α3 → α1, α0 
4 → α2, β2 → β1, β5 → β2 and

β9 → β3.
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higher-derivative terms, so one may wonder if one can make an analogous transformation
to a frame in which the theory takes the form of Einstein gravity coupled to non-linear
electrodynamics. However, this is not the case since terms that depend explicitly on the

ρσ αβ µν or RµναβTµαTνβ Riemann curvature such as Rµν Rρσ R cannot be mapped intoαβ 
terms containing only feld strengths. Therefore, the action (3.94) represents possibly the
simplest form for a general six-derivative duality-invariant theory.

3.4 Black holes

As a fnal application of our results, in this section we study the spherically symmetric black
hole solutions of (3.94), which, as we have shown, is equivalent to the most general duality-
invariant theory to the six-derivative level. A general static and spherically symmetric
ansatz can be written as

2 � �
2 2 2ds = −N(r)2f(r)dt + 

f 
d

( 
r

r)
+ r dθ2 + sin2 θdφ2 , (3.95)

A = At(r)dt − P cos θdφ , (3.96)

where N(r), f(r) and At(r) are functions and P is a constant. The feld strength F then
reads

F = −A0 (r)dt ∧ dr + P sin θdθ ∧ dφ , (3.97)t 

and the Maxwell equation, which does not receive any corrections, reads simply d ?F = 0.
The magnetic part of F automatically satisfes this equation, while At satisfes� �

2A0d r NQ t = 0 , ⇒ A0 = − , (3.98)
2dr N t r 

where Q is an integration constant. This fully characterizes the feld strength in terms of
the parameters Q and P , which are the electric and magnetic charges, defned asZ Z 

1 1 
Q = ?F , P = F , (3.99)

4π 4πΣ Σ 

where Σ is any surface that encloses r = 0. Finally, Einstein’s equations can be easily
solved if one assumes a perturbative expansion of the functions N(r) and f(r) as

∞ ∞X X 
N(r) = Nn(r)`

2n , f(r) = fn(r)`
2n . (3.100)

n=0 n=0 

In this way, at each order the functions {fn, Nn} with n > 0 satisfy the inhomogeneous
linearized Einstein’s equations, whose resolution is straightforward. The integration con-
stants in this process are fxed so that N(r → ∞) = 1 and f(r → ∞) = 1 − 2M/r + . . ..
Then, the result reads � � � � � 

2`2Q2α2 128M 80Q2 48 32M 60Q2 
N(r)2 = 1 + + `4 Q2α2 − − + Q2β2 −24 7 8 6 7 8r r r r r r � � � �� 

416MQ2 51Q4 18M2 192M 150Q2 48 
+12β1 − − + Q2β3 − − , (3.101)

7 8 6 7 8 67r r r r r r 
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2M Q2 � 
12Q2 6M 4 

� 
f(r) = 1 − + + `2Q2α2 − + −

2 6 5 4r r 5r r r " ! 
1192Q2 

1408Q4 351MQ2 320M2 + 304M 727+ `4 α2
2Q2 − + − +

10 9 8 7 615r r r r r � � 
11064M2Q2 

1724Q6 1884MQ4 + 672Q4 8 49M3 + 96MQ2 
+ β1 − + 7 −

10 9 8 73r r r r � � � 
216M2 521Q4 158MQ2 72M2 + 68Q2 40M 

+ + β2Q2 − + −
6 10 9 8 7r 9r r r r !# 

1752Q2 
1472Q4 566MQ2 464M2 + 384M 727+ β3Q2 − + − + , (3.102)

10 9 8 7 69r r r r r 

where p
Q = Q2 + P 2 . (3.103)

This solution obviously reduces to the (dyonic) Reissner-Nordström solution when all the
couplings are set to zero. Note also that in the case of vanishing charge the only non-
trivial correction is the one associated to β1, since the rest of the interactions involve
Ricci curvature. Let us now study some properties of this solution. When the charge-to-
mass ratio is small enough, it represents a black hole, whose horizon r+ corresponds to the
largest root of the equation f(r+) = 0. Since near extremality the zeroth-order solution has
a double root, one has to be careful when studying the solutions to the corrected equation.
Thus, let us frst consider the case in which we are far from extremality, meaning that
0 < M2 −Q2 >> `2 . Note that, if Q >> `, this condition still allows us to get relatively
close to extremality, in the sense that we can have M2 − Q2 << Q2 , but not too close.
In this regime the horizon radius receives corrections of order `2 , and it is not diÿcult to
solve the equation f(r+) = 0 perturbatively in ` in order to get� � � � 

`2 1 + 3ζ − 4ζ2 α2 `4(1 − ζ)2 21 + 147ζ + 773ζ2 + 1984ζ3 α2 
2 r+ =M(1 + ζ) + − 

5Mζ(1 + ζ)2 1050M3ζ3(1 + ζ)5 � � 
2`4 4 − 39ζ + 336ζ2 − 511ζ3 β1 `4(1 − ζ)(−1 + 7ζ)(−1 + 13ζ)β2 

+ + 
21M3ζ(1 + ζ)5 18M3ζ(1 + ζ)5 

`4(1 − ζ)(5 + ζ(35 + 464ζ))β3 
+ + O(`6) , (3.104)

63M3ζ(1 + ζ)5 

where ζ is the “extremality parameter” r 
Q2 

ζ = 1 − , (3.105)
M2 

which ranges from 1 in the uncharged case to (near) 0 at extremality. Note that the
corrections seem to diverge when ζ → 0, but this is only because the assumption that the
corrections are of order `2 is no longer correct. Indeed, when M2 − Q2 ∼ `2 one can see
that the leading correction to r+ is of order ` rather than `2 . Thus, the expression above
is reliable for ζ & `/M , which can in fact be very small.

Let us then study what happens exactly at extremality. This is achieved when r+ 
is a double root of f , and hence we also have the condition f 0(r+) = 0. We fnd that the

163



Chapter 3. Duality-invariant extensions of Einstein-Maxwell theory

radius and mass at extremality read

3`4(4β1 + β2)ext r =Q− + O(`6) , (3.106)+ 2Q3 

M ext α2 ̀
2 `4(3α2

2 + 48β1 + 7β2 + 10β3) 
=Q− − + O(`6) . (3.107)

5Q 126Q3 

3.4.1 Black hole thermodynamics

Once we have found perturbatively the most general static and spherically solution to
the theory given by (3.94), our next objective is to study the thermodynamics of the
corresponding black hole solutions. To this aim, we are interested in several physical
magnitudes, namely: the black hole mass M , its temperature T , its entropy S, and the
electric and “magnetic” potentials at the horizon, Φ(r+) and Ψ(r+) respectively3. For
convenience, we shall express all these quantities in terms of r+ and Q.

We begin by obtaining the black hole mass as a function M = M(r+, Q). This can
be done by imposing the condition f(r+) = 0, and one gets

2Q2 Q2(3Q2 − 5r )α2 ̀
2 α2

2Q4`4r+ + 2M = + + + (7Q2 − 9r )+2 2r+ 10r5 84r9 
+ + 

β1 ̀
4 Q2β2 ̀

4 
2 4 6 2 4+ (−445Q6 + 909Q4 r − 585Q2 r + 105r ) − (28Q4 − 45Q2 r + 18r )+ + + + +9 942r+ 18r+ 

Q2β3 ̀
4 

2 4− (217Q4 − 459Q2 r + 252r ) + O(`6) . (3.108)+ +9126r+ 

The black hole temperature is given by the general formula

f 0(r+)N(r+)
T = , (3.109)

4π 

and when expressed in terms of r+ and Q yields the following result,

2 2r −Q2 Q2(r −Q2)α2 ̀
2 Q4α2

2 ̀
4 

+ + 2T = + − (r −Q2)+4πr3 4πr7 8πr11 
+ + + 

3β1 ̀
4 β2Q2`4 

2 2 6 2 4+ (109Q6 − 147Q4 r + 73Q2 r − 7r ) + (7Q4 − 6Q2 r + 2r )+ + + + +28πr11 4πr11 
+ + 

β3Q2`4 
2 4+ (7Q4 − 11Q2 r + 4r ) + O(`6) . (3.110)+ +4πr11 

+ 

Our next goal is the computation of the black hole entropy. According to the Iyer-Wald
prescription [366,370], the entropy S of a black hole arising as a solution of a theory with
Lagrangian density L is given by Z 

δL 
S = −2π volΣ �µν �ρσ , (3.111)

Σ δRµνρσ 

3It is also possible to compute the on-shell action, which can be seen to be invariant under rotations of
the electric and magnetic charges when appropriate boundary terms are included [536].

164



�����

Chapter 3. Duality-invariant extensions of Einstein-Maxwell theory

where Σ is the bifurcation surface of the horizon and volΣ its (induced) volume form. Being
the same formula as in (I.69), �µν denotes the binormal to the Σ, which is nothing else
than the components of the volume form in the orthogonal space to the horizon, and

δL ∂L ∂L 
= −rα + . . . (3.112)

δRµνρσ ∂Rµνρσ ∂rαRµνρσ 

is the functional derivative of the Lagrangian with respect to the Riemann tensor. From
the spherical symmetry of the black hole horizon, it follows that we just have to work out

δL
the component , which reads:

δRtrtr 

δL 1 α1 ̀
2 α2 ̀

2Q2 α1α2 ̀
4Q2 α2

2 ̀
4Q2 

2 = − − + + + (−3Q2 + 2r )+δRtrtr 32π 8πr2 8πr4 4πr6 4πr8 
+ + + +Σ � � � �2 4β1 ̀

4 1252Q4 519Q2r 33r β2 ̀
4Q2 51+ ++ − + − + − Q2 + 5r 2 (3.113)

+πr8 112 56 16 8πr8 4+ + 

β3 ̀
4Q2 

2+ (−31Q2 + 32r ) .+16πr8 
+ 

After these computations, direct application of the Iyer-Wald formula (3.111) yields

2πQ2α2 ̀
2 12πβ1 ̀

4 πQ2β2 ̀
4 

2 2S =πr2 + 4πα1 ̀
2 − + (r − 2Q2)2 + (7Q2 − 4r )+ + +2 6 6r r r+ + + 

8πQ2β3 ̀
4 

2+ (Q2 − r ) + O(`6) . (3.114)+6r+ 

While the Gauss-Bonnet term, being topological, does not a˙ect at all to the equations of
motion of the theory, we observe that it does contribute to the corresponding black hole
entropy by introducing a constant term which, in turn, does not have any infuence on the
frst law of black hole thermodynamics.

Let us fnally compute the electrostatic and magnetic potentials at the horizon, Φ(r+) 
and Ψ(r+). These are defned as

F = d(Φ(r)dt) − ?d(Ψ(r)dt) , (3.115)

and comparing to (3.97), we have that

N(r)
Φ(r) = Qχ(r) , Ψ(r) = Pχ(r) , where χ0(r) = . (3.116)

2r 
Imposing both Φ(r) and Ψ(r) to vanish at infnity, and using the perturbative expression
for N(r) found in (3.101), we encounter

1 Q2α2 ̀
2 Q2α2

2`4 2Q2β2 ̀
4 

χ(r) = + + (16(7M − 3r)r − 63Q2) + (3Mr − 5Q2) (3.117)
5 9 9r 5r 14r 3r 

2β1 ̀
4 Q2β3 ̀

4 
− (119Q4 − 156MQ2 r + 54M2 r 2) − (175Q2 + 36r(2r − 7M))) + O(`6) .

9 97r 21r 
Evaluation at the black hole horizon yields:

1 Q2α2 ̀
2 Q2α2

2 ̀
4 β1 ̀

4 
2 2 4χ(r+) = + − (7Q2 − 8r ) − (109Q4 − 102Q2 r + 27r )5 9 95r 14r + 7r + + r+ + + + 
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Q2β2 ̀
4 Q2β3 ̀

4 
2 2+ (3r − 7Q2) + (−49Q2 + 54r ) + O(`6) . (3.118)+ +3r+

9 21r+
9 

Making use of (3.108), (3.114), (3.110) and (3.118) we observe that the following identities
hold:

∂M ∂S 1 ∂M T ∂S 
= T , = + χ(r+) . (3.119)

∂r+ ∂r+ Q ∂Q Q ∂Q 
From this, it immediately follows that the frst law of black hole thermodynamics,

dM = T dS + Φ(r+)dQ + Ψ(r+)dP , (3.120)

is identically satisfed.

3.4.2 Constraints from the Weak Gravity Conjecture

The string Swampland Program [112] aims at fnding universal features of low-energy
e˙ective theories with a consistent UV completion, so that one can discard those that do not
satisfy those properties. In this respect, one of the most successful proposals is that of the
Weak Gravity Conjecture (WGC) [416], which has recently motivated the study of higher-
derivative corrections to charged extremal black holes [4,125,126,474,475,528–530,532,533].

Corrections to the charge-to-mass ratio

Let us briefy review how the WGC can be used to constrain e˙ective gravitational theories.
A heuristic form of this conjecture states that all black holes, including extremal ones,
should be able to decay. In order for (near-) extremal black holes to decay, it follows that
there must exist a particle with a charge-to-mass ratio larger than the one of a extremal
black hole — otherwise the black hole cannot be discharged due to the extremality bound
in GR: M ≥ |Q|. However, in the presence of higher-derivative corrections, the extremal
charge-to-mass ratio is not a constant but a function of the charge, and hence this statement
depends on the size of the black hole. To see this, let us consider an extremal black hole
with charge Q and mass Mext(Q), and let us assume that it discharges by emitting a
particle with charge q and mass m. The resulting black hole will have mass and charge
M 0 = Mext(Q) − m, Q0 = Q− q, but, on account of the extremality bound, the mass must
satisfy M 0 ≥ Mext(Q0). Then, assuming that q << Q, one can see that this condition is
satisfed only if

m dMext≤ . (3.121)
q dQ 

This provides the bound on the particle’s charge-to-mass ratio in order for the black hole
to discharge. For large black holes dMext = 1 and hence it is enough to have a particle withdQ 
q/m ≥ 1. However, if dMext decreases as the black hole discharges, the bound (3.121) maydQ
be violated at certain point, and hence the evaporation is obstructed. A simple way to
avoid this problem consists in demanding dM 

dQ 
ext to grow as Q decreases, or in other words,

d2Mext ≤ 0 . (3.122)
dQ2 

A more robust argument can be obtained from a slightly di˙erent form of the WGC
which states that the decay of a black hole into a set of smaller black holes should be
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possible in terms of energy and charge conservation [474]. This is like saying that smaller
black holes play the role of the particle hypothesized by the WGC. Let us suppose that
the initial black hole is extremal (or arbitrarily close to extremality), so that it has mass
Mext(Q), while the fnal black holes are not necessarily extremal and have charges Q1, Q2 
with Q1 + Q2 = Q, and masses M1, M2. A necessary condition in order for this process
to be admissible is that Mext(Q1 + Q2) ≥ M1 + M2, which, upon use of the extremality
bound Mi ≥ Mext(Qi), yields the following constraint

Mext(Q1 + Q2) ≥ Mext(Q1) + Mext(Q2) . (3.123)

Thus, the higher-derivative corrections toMext must be such that this condition is satisfed.
When applied to our result (3.107), either condition (3.122) or (3.123) yields equiv-

alent constraints. For instance, from (3.122) we get

2α2 ̀
2 2`4(3α2

2 + 48β1 + 7β2 + 10β3)− − + O(`6) ≤ 0 . (3.124)
5Q3 21Q5 

Obviously, in the regime where Q >> ` the frst term is dominant and this implies that

α2 ≥ 0 . (3.125)

Now, the second term only becomes relevant when Q ∼ `, but this point marks the limit
of applicability of the perturbative expansion, so it is not clear what constraint one should
impose on the additional couplings. Still, one may argue that, if the coeÿcient of 1/Q5 

is positive, then the bound may be eventually violated. In order to avoid this problem, it
seems reasonable to impose as well the condition

3α2
2 + 48β1 + 7β2 + 10β3 ≥ 0 . (3.126)

In this way, we guarantee that the mild form of the WGC is satisfed.

Positivity of the corrections to the entropy

In another vein, it has been argued [528] that negative corrections to the mass of extremal
black holes are in correlation with positive corrections to the black hole entropy. Although
such connection has been proven in [531], the relation is not complete. Strictly speaking,
only the corrections to the near-extremal entropy are related to the corrections to the
extremal mass, while the corrections to the extremal entropy are independent, as explained
in [125]. Likewise, the corrections for neutral BHs are also independent. On the other
hand, the relation proven in [531] only applies for the leading order corrections, but it will
probably not hold for the subleading ones. This motivates us to study the range of values
of the couplings of the theory defned in (3.94) for which the corrections to the entropy
are non-negative. We will demand that, for any charge and mass, the corrections of each
order are non-negative independently, which is the strongest condition one may impose.

We shall study the corrections in the non-extremal and extremal regimes. We begin
by considering this latter case, since it is simpler. In fact, by replacing (3.106) in (3.114)
we fnd the following remarkably compact expression for the extremal entropy Sext:

Sext = πQ2 + 2π(2α1 − α2)`
2 + O(`6) , (3.127)
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which contains no `4 corrections. These extremal corrections are non-negative whenever

α2
α1 ≥ . (3.128)

2 

Although the Gauss-Bonnet term is topological, we observe that demanding the corrections
to extremal entropy to be non-negative imposes a bound on α1 — in particular, it cannot
vanish if α2 > 0. This condition did not appear when studying corrections to the extremal
charge-to-mass ratio, since, as we anticipated, the corrections to the extremal black hole
entropy are unrelated to those of the extremal charge-to-mass ratio [125].

Let us now study the entropy of non-extremal black holes. For that, we need to
express frst the black hole entropy in terms of the mass and charge, S = S(M, Q). Note
that back in (3.114) we wrote the black hole entropy as a function of r+ and Q, but we
must bear in mind that the truly thermodynamic variables in which to express the entropy
are the mass and charge. This is an important issue since the corrections at fxed r+ are
not the same as those at fxed M , the reason for this being that for a fxed mass M the
horizon radius r+ is altered after the inclusion of corrections, and vice-versa. In terms ofq 
the extremality parameter ζ = 1 − 

M
Q2

2 , we fnd that the entropy Sne in the non-extremal
regime reads

2π`2α2(1 − ζ)2 aπ`4(ζ − 1)2(8ζ + 1) 
Sne = πM2(1 + ζ)2 + 4π`2α1 + + (3.129)

5ζ(1 + ζ) 63M2ζ(1 + ζ)4 

8β1π`
4(3 + 4ζ)ζ π(1 − ζ)2`4α2 

2+ + (−21 − 126ζ − 185ζ2 + 32ζ3) + O(`6) ,
7M2(1 + ζ)4 525M2ζ3(1 + ζ)4 

where we have defned a = 48β1 + 7β2 + 10β3. We recall that this expression is valid for
ζ & `/M , which in practice can be very small. Regarding the O(`2) corrections, we see
that the term with α2 is dominant for small ζ, and therefore positivity demands that

α2 ≥ 0 , (3.130)

which is the same condition as the one from the corrections to the extremality bound. On
the other hand, (3.128) ensures that the O(`2) corrections are positive for any other value
of ζ. If we now demand that the O(`4) corrections be non-negative independently, we see
that the following constraints are obtained,

α2 = 0 , 48β1 + 7β2 + 10β3 ≥ 0 , β1 ≥ 0 . (3.131)

The frst two are obtained by examining the corrections for small ζ while the bound on β1 
is obtained in the opposite limit ζ = 1. On the one hand, note that we recover (3.126) with
α2 = 0. On the other hand, we observe that these constraints are quite strong since they
imply the vanishing of α2, so one may wonder if imposing the non-negativity of entropy
corrections at each order is a well-motivated bound.

Indeed, one must bear in mind that imposing the corrections to the entropy to be
positive (or, analogously, requiring the corrections to the extremal mass to be negative) is
not equivalent to demanding the coeÿcients at every order of the expansion to be positive,
being the latter a much stronger condition. In fact, the condition α2 = 0 would imply in
the context of string theory that the metric does not receive any correction at all at frst
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order in α0 , but it is known that such corrections at frst order in α0 do take place4 [125].
This shows that the WGC may be applied just to the leading-order corrections, not order
by order in the expansion.

3.5 Quadratic theories. Exact duality invariance with non-
minimal couplings

As we have seen, any duality-invariant modifcation of Einstein-Maxwell theory requires
the introduction of an infnite tower of higher-derivative terms, due to the non-linearity of
this symmetry. Finding these terms becomes very hard and there seems to be no simple
way of obtaining a formula for the n-th order density. Thus, here we focus on a subset of
these theories that have a simpler form: those which are quadratic in the Maxwell feld
strength. First, we will obtain a necessary and suÿcient condition for such linear theories
to be exactly duality-invariant and, afterwards, we will present the explicit form of all of
them.

Let us consider the action Z 
1 p � � 

I = d4 x |g| R − χµνρσFµν Fρσ , (3.132)
16πG 

where χµνρσ is a tensor built out of the metric, the Riemann tensor and covariant derivatives
of it. Such tensor χµνρσ will be called susceptibility tensor since the relation between the
dual feld H and the original feld strength F will be seen to be linear and governed by
such χµνρσ. Without loss of generality, we can assume that it has the symmetries

χµνρσ = −χνµρσ = −χµνσρ = χρσµν . (3.133)

Then, we are going to show that the equations of motion of this theory are invariant under
duality rotations if and only if

αβ ρσ [ρ σ]
(?χ) (?χ) = −δ δ , (3.134)µν αβ [µ ν] 

where
1αβ(?χ)µν = �µνλγ χ

λγαβ . (3.135)
2 

Let us prove that (3.134) is indeed a necessary condition for duality invariance. For
that, we start with the constitutive relation, which can be written as

αβ? Hµν = −χµν Fαβ . (3.136)

If we consider the SO(2) transformation which sends H → −F and F → H, duality
invariance then requires:

αβ αβ? Hµν = −χµν Fαβ , ?Fµν = χµν Hαβ . (3.137)

4Although the solution presented in Reference [125] contains more felds, at zeroth order in α0 the only
active ones are the metric and an Abelian gauge feld. Moreover, it can be checked that the subsequent
4-dimensional Einstein equation (in the Einstein frame) at frst order in α0 is not a˙ected by the new
felds that become active at this order, so we conclude that the presence of leading-order corrections in the
metric must be due to the existence of non-trivial operators in the action at frst order in α0 .
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Applying the star operator in both sides,

αβ αβHµν = (?χ)µν Fαβ , Fµν = −(?χ)µν Hαβ . (3.138)

Substituting the second equation into the frst one,

αβ ρσHµν = −(?χ)µν (?χ)αβ Hρσ , (3.139)

so (3.134) must hold. In order to prove suÿciency, we must ensure that the constitutive
relation and the Einstein’s equations remain invariant. The constitutive relation is easily
seen to be invariant, since the equation (3.136) together with its inverse can be written in
a manifestly duality-invariant way as follows:

αβσAB FB = (?χ) FA (3.140)µν µν αβ 

where FA is the vector of 2-forms � � 
F FA = (3.141)
H 

and σA is the symplectic matrixB � � 
σA = 0 1 (3.142)B −1 0 

The SO(2) invariance of this equation follows from that of σAB , and also note that the
αβequation is consistent because both operators σA and (?χ)µν satisfy that their squareB 

is minus the identity.
Let us now show that the Einstein’s equations are invariant as well. Adapting the

results of Appendix 3, the gravitational equations of motion of (3.132) can be seen to be:
nmax �X 

α1...αn σ β α1...αnGµν = (−1)n rαn...α1 Prn (µ
ρσγ Rν)ρσγ − 2(−1)n r r rαn...α1 Prn (µ|σ|ν)β 

n=0 
n �X1α1...αn λρσ α1... ...αnλκρσ− 2Prn (µ| rα1...αn R|ν)λρσ − P rn (µ̂| rα1...|ν̂)...αn Rλκρσ

2 
i=1 

αρσFρσ ,+ 2Fhµ|αχ|νi (3.143)

where the hats over the free indices µ and ν denote that they replace the indices αi in the
i-th position, nmax is the maximum number of explicit covariant derivatives appearing in
the action and

∂χκπγλ 
α1...αnµνρσ Prn = − FκπFγλ , (3.144)

∂rα1...αn Rµνρσ 

standing rα1...αn Rµνρσ for rα1 . . . rαn Rµνρσ. The last term of (3.143) can be arranged in
a duality-invariant fashion, because

2Fhµ|αχ|νi 
αρσFρσ = −2Fhµ|α ? H|νi 

α = −σABFA 
hµ|α ? FB 

|νi 
α , (3.145)

α1...αnµνρσ where σAB has the same matrix form as σAB . On the other hand, the tensors P rn 

are also invariant. To see this, let us frst rewrite them as follows:

∂χκπγλ 
α1...αnµνρσ τ� Prn = (?χ)γλ FκπHτ� (3.146)

∂rα1...αn Rµνρσ 
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where we are using the inverse of (3.136). Now, di˙erentiating (3.134) with respect to the
n-th covariant derivative of the curvature, it follows that

γλ τ� 
∂(?χ)κπ ∂(?χ)γλ τ� γλ (?χ) + (?χ) = 0 , (3.147)γλ κπ∂rα1...αn Rµνρσ ∂rα1...αn Rµνρσ 

which is equivalent to

∂χαβγλ ∂χτ�γλ 
τ� αβ(?χ) + (?χ) = 0 . (3.148)γλ γλ ∂rα1...αn Rµνρσ ∂rα1...αn Rµνρσ 

This allows us to write the tensors Prn α1...αnµνρσ in the manifestly duality-invariant form

∂χκπγλ 
α1...αnµνρσ τ� Prn =

1 
(?χ)γλ σAB FA

κπ FB
τ� 2 ∂rα1...αn Rµνρσ 

(3.149)
∂χκπγλ 

= − 
1 FA

κπ FA
γλ ,2 ∂rα1...αn Rµνρσ 

where in the last equality we used (3.140) and (3.134) in order to simplify the result. In
sum, all the equations can be written as

nmax � � �X ∂χκπγλ 
Gµν FA = (−1)n rσrβ rαn...α1 κπ FA

γλ ∂rα1...αn R(µ|σ|ν)β n=0 � � 
∂χκπγλ (−1)n 

FA R|ν)− rαn...α1 κπ FA
γλ ξηζ 

2 ∂rα1...αn R(µ|ξηζ 

∂χκπγλ 
+ FA

κπ FA
γλ rα1...αn R

|ν)
ξηζ (3.150)

∂rα1...αn R(µ|ξηζ � 
∂χκπγλ 1 FA |ν̂)+ κπ FA

γλ rα1... ...αn Rξηζ� − σAB FAhµ|α ? FB|νi 
α4 ∂rα1...(µ̂|...αn Rξηζ� 

αβσAB FB = (?χ) FA (3.151)µν µν αβ , 

dFA = 0 . (3.152)

Thus, we have proven the following Proposition.

Proposition 3.1. Any theory of gravity and electromagnetism with at most quadratic de-
pendence on Fµν (as in (3.132)) is exactly duality-invariant if and only if

αβ ρσ [ρ σ]
(?χ) (?χ) = −δ δ . (3.153)µν αβ [µ ν] 

Proposition 3.1 is very interesting, since it shows that invariance under the whole
group of SO(2) rotations is guaranteed if the equations of motion are invariant under the
very particular rotation of electromagnetic felds given by π 

2 . This is a very peculiar feature
of theories with quadratic dependence on the gauge feld strength Fµν which we do not
expect for more generic theories, because the constitutive relation relating H and F would
no longer be linear.
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3.5.1 All exactly duality-invariant quadratic theories

Now we commit ourselves to fnd the explicit form of all exactly duality-invariant theories
with quadratic dependence on the feld strength Fµν and including non-minimal couplings
to gravity. For that, frst we note that, making use of the properties of the Levi-Civita
tensor, the equation (3.134) can be rewritten as

αβ ρσ [ρ σ]
6χ χ = δ δ . (3.154)[αβ µν] [µ ν] 

This is a quadratic tensor equation that admits infnitely many solutions. However, since
we are interested in theories that reduce to Einstein-Maxwell’s theory at low energies, the
tensor χµνρσ should reduce to the indentity when the curvature is small, and we can expand
it as

∞X 
ρσ [ρ σ] 

αnχ(n) ρσχµν = δ[µ δν] + µν , (3.155)
n=1 

(n) ρσwhere α is a parameter with units of length2 and each χ µν contains 2n derivatives of
the metric. Inserting this expansion in the equation above yields the following relation for
the n-th order tensor

n−1X
(n) αβ ρ σ (n) ρσ α β (p) αβ (n−p) ρσ

6χ δ δ + 6χ δ δ + 6 χ χ = 0 , (3.156)[αβ µ ν] [µν α β] [αβ µν] 
p=1 

and after expanding the antisymmetrization in the frst two terms, we can write this as
follows,

n−1X 
ρσ (n) α[ρ σ] (n) αβ ρ σ (p) αβ (n−p) ρσ

2χ(n) − 4χ δ + χ δ δ = −6 χ χ . (3.157)µν α[µ ν] αβ [µ ν] [αβ µν] 
p=1 

(n) ρσNow, this is an inhomogeneous linear tensor equation for χ µν , and so, the general
solution can be expressed as the sum of a particular solution plus the general solution of
the associated homogeneous equation. The latter reads

(n) ρσ (n) α[ρ σ] (n) αβ ρ σ2χ − 4χ δ + χ δ δ = 0 , (3.158)h µν h α[µ ν] h αβ [µ ν] 

and taking the trace in νσ we have

1 (n) αβ ρχ δ = 0 . (3.159)h αβ µ2 
(n) αβTherefore, we have χ = 0 and the general solution of the homogeneous equationh αβ 

can be expressed as
(n) ρσ (n) [ρ σ] µT (n)χ = T δ , where = 0 . (3.160)h µν [µ ν] µ 

This is, the solution is characterized by an arbitrary traceless (and symmetric) tensor Tµν 
(n) .

Now, coming back to the inhomogeneous equation, we realize that, since the trace of the
left-hand-side of (3.157) is proportional to the identity, a necessary condition in order for
a solution to exist is that

n−1X 
(p) αβ (n−p) ρν ρχ χ ∝ δ . (3.161)[αβ µν] µ 

p=1 
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However, this is guaranteed by the following property satisfed by all tensors Q(1)
µνρσ and

Q(2)
µνρσ which are antisymmetric in the indices {µν} and {ρσ}:

Q(1) αβ Q(2) λ + Q(2) αβ Q(1) λ 1 
Q(1) αβ Q(2) γλ 

[αβ µλ]ν [αβ µλ]ν =
2 [αβ γλ] gµν . (3.162)

This property is proven by expanding the antisymmetrization in the identity (valid in four
αβQ(2) γλ dimensions) Q(1)

[αβ γλ gµ]ν = 0. Since the summation in (3.161) is symmetric in the
exchange of χ(p) and χ(n−p) and every such χ(p) and χ(n−p) have the required symmetries
for (3.162) to hold, we conclude that (3.161) is always satisfed.

Hence, taking into account (3.162), one can see that the general solution to (3.157)
reads:

n−1X 
χ(n) ρσ (n) [ρ σ] (p) αβ (n−p) ρσ 

= T δ − 3 χ χ , (3.163)µν [µ ν] [αβ µν] 
p=1 

(n)and thus it is determined by a set of traceless symmetric tensors {Tµν }n≥1. Once these
ρσtensors are specifed, one can compute the tensor χµν at arbitrary orders by using this

recursive relation. Note that even when the set of non-vanishing Tµν 
(n) tensors is fnite, the

series contains always an infnite number of terms.

Collect now all tensors Tµν 
(n) in a single traceless symmetric tensor:

∞X 
αn−1T (n)Tµν = µν . (3.164)

n=1 

ρσLet us expand the susceptibility tensor χµν in terms of this general Tµν :

∞X 

being the frst term of the sequence χ̂ = T[µ 
[ρδν] 

σ]. The fact that (3.155) and (3.163)

ρσχµν 
[ρ σ]

= δ δ[µ ν] 
σ]+ αT[µ 

[ρδν] + χ(n) ρσαn ˆ µν , (3.165)
n=2 

where5

χ(n) ρσˆ µν 

n−1X 
(p) αβ (n−p) ρσ 

= −3 χ̂ χ̂[αβ µν] 
p=1 

= 
1 
2 

n−1X� � αβ 
χ(p)? ̂  

µν 
p=1 

� � ρσ 
χ(n−p)? ̂  

αβ 
, (3.167)

(1) ρσ 
µν 

are equivalent to (3.165) and (3.167) can be seen by expanding in powers of α and noticing
that the corresponding expressions match order by order.

The recursive relations (3.167) allow us to write the Lagrangian at arbitrary orders
(n) ρσin the curvature. In fact, all the previous terms χ̂ µν can be explicitly summed to

yield a fully-non perturbative duality-invariant theory. For that we frst note the following
results, obtained through direct computation:

χ(1)αβ χ(1) αβ�µναβ ˆ ρσ = −ˆ µν �αβρσ , (3.168)

(1) (2)5We have used that for tensors Qµνρσ and Qµνρσ which are antisymmetric in the indices {µν} and {ρσ}
but symmetric in the exchange of these pairs of indices, the following holds:

(1) αβ (2) ρσ (1) αβ (2) ρσ
(?Q) µν (?Q) αβ = −6Q Q . (3.166)[αβ µν] 

(n) ρσObserve that the di˙erent χ̂ µν are symmetric in the exchange of the pairs of indices {µν} and {ρσ},
as guaranteed by the construction of the complete χµν

ρσ .
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χ(2) ρσ 1 
χ(1) αβ (1) ρσ

ˆ µν = ˆ µν χ̂ αβ . (3.169)
2 

√ P∞Now let bn denote the n-th coeÿcient of the Taylor series 1 + x = . We2 
n=0 bnx

2n 

have that b0 = 1, b1 = 1/2 and

(2n − 3)!
bn = (−1)n+1 , n > 1 . (3.170)

n!(n − 2)!22n−2 

We note that these coeÿcients satisfy the property
nX 

bn+1 = −1/2 bpbn+1−p , (3.171)
p=1 

which we will need later. We are going to prove that that for n > 1:� �2n 
χ(2n) ρσ χ(1) ρσˆ µν = bn ˆ µν , (3.172)

χ(2n+1) ρσˆ µν = 0 , (3.173)

where we have defned � �k 
χ(1) ρσ χ(1) α1β1 (1) α2β2ˆ µν = ˆ µν χ̂ · · · α1β1 

(1) ρσ · · · χ̂ , k > 1 . (3.174)αk−1βk−1 

The proof for (3.172) can be done by induction. First, we notice that (3.169) guarantees
that (3.172) is true for n = 1. Next assume that it is valid for generic n. For m, p ∈ 2N 
such that m + p = 2n + 2 we fnd that� � αβ � � ρσ � � λγ � �p−1 � � ηκ � �m−1 

χ(p) χ(m) χ(1) χ(1) αβ χ(1) χ(1) ρσ?ˆ ? ̂ = bpbm ? ̂ ˆ λγ ? ̂ ˆ ηκ 
µν αβ µν αβ � �2n+2 

χ(1) ρσ = −bpbm ˆ µν , (3.175)

where we have exploited Eq. (3.168) to get rid of the Hodge star operators appropriately.
Now, taking into account (3.171), by virtue of (3.167) we observe that (3.172) is indeed
satisfed for n +1 as well. On the other hand, in order to see that (3.173) holds, it suÿces
to check that it satisfes the recursive relations (3.167). However, after noticing that� � αβ � � ρσ � � αβ � � λγ � �2n−1 

χ(1) χ(2n) χ(1) χ(1) χ(1) ρσ? ̂  ?ˆ = bn ? ̂  ? ̂ ˆ λγ 
µν αβ µν αβ � � αβ � �2n−1 � � ρσ 

χ(1) χ(1) λγ χ(1)= −bn ? ̂ ˆ αβ ? ̂  
µν λγ � � αβ � � ρσ 

χ(2n) χ(1)= − ? ̂  ? ̂  , (3.176)
µν αβ 

where we have made a wide use of Eq. (3.168), we realize that the recursive relations are
identically satisfed. Hence (3.172) and (3.173) are the solution to the recursive relations√ 

2(3.167). Since the bn are the coeÿcients of the Taylor series of 1 + x , one can explicitly
(n) ρσ sum all tensors χ̂ µν to obtain: r � �2ρσ = αχ(1) ρσ [ρ σ] 

χ(1) ρσχµν µν + δ[µ δν] + α2 
µν , (3.177)
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(1) ρσ (1) ρσwhere we have relabelled χ̂ µν → χ µν for the sake of simplicity. By taking (3.177)
into (3.132), we fnd a fully non-perturbative expression for all exactly duality-invariant
theories with non-minimal couplings between gravity and electromagnetism. These are the
very frst instances of such theories and, interestingly enough, we observe that it possesses a
high grade of resemblance with the usual (Einstein)Born-Infeld theories, as the Lagrangian
involves the square root of certain quantity. Altogether, we have shown the following
theorem.

Theorem 3.1. Any theory of gravity and electromagnetism with at most quadratic de-
pendence on Fµν is exactly duality-invariant if and only if it takes the form (3.132) with
susceptibility tensor r � �2ρσ = αχ(1) ρσ [ρ σ] 

χ(1) ρσ χ(1) ρσ σ]χµν µν + δ δ + α2 
µν , µν = T[µ 

[ρδν] , (3.178)[µ ν] 

where Tµν is a traceless and symmetric tensor built out from the curvature and covariant
derivatives of it.

From now on we will now concentrate on the study of the particular exactly duality-
invariant theory given by

χ(1) ρσ ˆ σ] 
µν = R[µ 

[ρδν] , (3.179)

where R̂µν is the traceless Ricci tensor. The reason for doing this is twofold. First,
because it does not seem possible to say anything concrete about (black hole) solutions
of the subsequent theories if we do not even specify the particular theory we are working
with. Secondly, while exactly duality-invariant theories with minimal couplings have been
previously considered in the literature [315, 317–319, 322, 535, 537–543], this is no longer
the case when one adds non-minimal couplings, and therefore we decide to initiate the
exploration of this set of theories with the choice given by (3.179).

3.5.2 Static and spherically symmetric confgurations

Once we have obtained exactly duality-invariant fully non-perturbative theories with non-
minimal couplings, our next objective will be to try to understand some features about
its solutions. As explained before, we will concentrate on the theory given by (3.179) and
we will focus on static and spherically symmetric (SSS) confgurations, since they possess
enough symmetry to be amenable to computations but still they are physically meaningful.
These can in general be written in terms of the following ansatz:

2dr � �
2 2 2ds = −N(r)2f(r)dt + + r dθ2 + sin2 θdφ2 , (3.180)

f(r) 

F = −A0 (r)dt ∧ dr + P sin θdθ ∧ dφ . (3.181)t 

Here the metric depends on two functions f(r) and N(r), while At(r) is the electrostatic
potential and P is a constant that represents the magnetic charge in Planck units. In order
to compute the explicit form of the susceptibility tensor, note frst that the traceless part
of the Ricci tensor for an SSS metric reads

R̂α = (X + Y )τ α + (X − Y )ραβ − Xσαβ , (3.182)β β 
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where
N(2f − 2 − r2f 00) − r(3rf 0N 0 + 2frN 00) fN 0 

X = , Y = − (3.183)
4r2N rN 

and where τ , ρ and σ are the orthogonal projectors X 
τα = δα δt ρα = δα δrβ , σα = δαi δ

i (3.184)β t β , β r β β . 
i=θ,φ 

On the other hand, static and spherical symmetry force χ (and a fortiori all the di˙erent
χ(n)) to take the form

ρσ [ρ σ] [ρ σ] [ρ σ] [ρ σ]
χ = Bτ ρ + Cτ σ + Dρ σ + Eσ σ , (3.185)µν [µ ν] [µ ν] [µ ν] [µ ν] 

where B, C, D, E are functions of r. Taking into account that
[ρ σ] [ρ σ] [ρ σ] [ρ σ] [ρ σ]

δ δ = 2τ ρ + 2τ σ + 2ρ σ + σ σ , (3.186)[µ ν] [µ ν] [µ ν] [µ ν] [µ ν] 

χ(1) ρσ [ρ σ] [ρ σ] [ρ σ] [ρ σ]
= −2Xτ ρ − Y τ σ + Y ρ σ + Xσ σ . (3.187)µν [µ ν] [µ ν] [µ ν] [µ ν] 

and that the projectors τ , ρ and σ are mutually orthogonal, it is not diÿcult to obtain the
coeÿcients B, C, D, E from (3.177). These take the following simple values:p 

B = −2αX + 2 1 + α2X2 , (3.188)r 
α2Y 2 

C = −αY + 2 1 + , (3.189)
4 p 

E = 
2

= αX + 1 + α2X2 , (3.190)
B r 
4 α2Y 2 

D = = αY + 2 1 + , (3.191)
C 4 

Consequently, we have been able to fnd the exact form of the susceptibility tensor. This
allows us to evaluate the reduced Lagrangian for the SSS ansatz given by (3.180) and
(3.181), which takes the formZ � 

2 �p 1 r 
)2L = dθdφ |g|L|SSS = Nr2R|SSS − 2P 2 NE 

+ 2(A0 . (3.192)
24 r t NE 

Then we can fnd the equations of motion by varying this Lagrangian with respect to At,
f and N 6. The variation with respect to At yields� 

2 � δL d At 
0 r 

= − = 0 , (3.193)
δAt dr NE 

from where it follows that
A0 = 

QNE 
, (3.194)t 2r 

where the integration constant Q represents the electric charge in Planck units. On the
other hand, taking the variation with respect to f and N and using the previous result,
we fnd that the equations for the metric functions can be expressed as� � 

−(P 2 + Q2) 
δ NE 

f − 1 + rf 0 = , (3.195)
2δN r 

6This process is indeed equivalent to computing frst the complete Einstein and Maxwell equations and
evaluating them on the SSS ansatz, as explained in Chapter 2 and [4].
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� � 
δ NE 

rN 0 = (P 2 + Q2) . (3.196)
2δf r 

Therefore, they are manifestly invariant under a rotation of the charges Q and P , and
it follows that the metric only depends on the combination P 2 + Q2 ≡ Q2 . Due to the
complicated form of E in (3.190), these are highly-non linear fourth-order equations for
N and f , whose solution cannot be obtained analytically. However, for small α one can
obtain the solution as a power series in this parameter. To order α2 it reads� � 

2M Q2 7Q4 + 5Q2r(2r − 3M) α 
f = 1 − + − (3.197)

2 6r r 10r� � 
5012Q6 + 15Q4r(408r − 721M) α2 

+ + O(α3) ,
101680r 

Q2α 41Q4α2 
N = 1 + − + O(α3) , (3.198)

4 84r 32r 
where M is the mass. We can see this solution is a deformation of the Reissner-Nordström
one. However, the perturbative expansion in α is only valid as long as the corrections are
small and hence we cannot see what happens to black holes when α ∼ Q2 . In that regime,
one would need to resort to numeric methods to solve the equations of motion.

3.5.3 Extremal black holes and near-horizon geometries

Fortunately, the situation improves if we are interested in extremal black holes. In that
case, it is possible to obtain the near-horizon metric as well as the black hole entropy
by using the Sen’s method [496, 544]. This method essentially consists in evaluating the
Lagrangian on an AdS2 × S2 geometry. The near-horizon solution is then obtained by
extremizing the action, while the entropy is given by the Legendre transform of the La-
grangian with respect to the electric feld. We follow this process in detail next.

We start by considering the following AdS2 × S2 ansatz for the metric and the feld
strength: � � 

1 � �
2 2ds = a −ρ2dt + 

ρ2 dρ
2 + b dθ2 + sin2 θdϕ2 , (3.199)

F = −edt ∧ dρ + P sin θdθ ∧ dϕ . (3.200)

Here a = R2 , b = R2 are the radii squared of the AdS2 factor and of the black holeAdS2 S2 

horizon, respectively, P is the magnetic charge and e will be related to the electric charge.
This geometry can be obtained from the general SSS ansatz in Eqs. (3.180) and (3.181)√ 
by setting r = b + ρ, f = ρ2/a, N = a, A0 = e and keeping the leading terms in thet 
expansion around ρ → 0. Thus, the reduced Lagrangian reads in this case� � 

1 2 1 
L(a, b, e, P ) = a − b − P 2Ê + e , (3.201)

2 Ê 

where r 
a + b a (a + b)2 

Ê = −α + 1 + α2
2b2 . (3.202)

2b2 b 4a 
The entropy function E(a, b, e; Q, P ) is then defned as:

E(a, b, e; Q, P ) = 2π(eQ − L(a, b, e, P )) , (3.203)
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where Q is the electric charge of the confguration. Extremizing the entropy function with
respect to a, b and e yields the equations satisfed by a and b as well as the relation between
the electric charge and e. Indeed, the equation ∂E/∂e = 0 yields

e = EQ .ˆ (3.204)

On the other hand, by di˙erentiating with respect to a and b and using this result we
obtain the following sets of equations for a and b:

1 ∂E ∂Ê 
= −1 + (P 2 + Q2) = 0 , (3.205)

π ∂a ∂a 
1 ∂E ∂Ê 

= 1 + (P 2 + Q2) = 0 . (3.206)
π ∂b ∂b 

We observe again that the equations are invariant under a rotation of the electric and
magnetic charges. Notice also that these equations are highly nonlinear — in fact, they
are not even polynomial — due to the form of Ê given above. In spite of this, these
equations can be solved in full generality and we observe that they admit four di˙erent
solutions. However, there is only one solution with a, b > 0, and it is given by� p �1 

a = P 2 + Q2 + α + (P 2 + Q2)2 − α2 , (3.207)
2 � p �1 

b = P 2 + Q2 − α + (P 2 + Q2)2 − α2 . (3.208)
2 

Interestingly, this implies that Ê = 1 and hence e = Q. Finally, substituting these values
for a, b, e in the entropy function (3.203) we arrive to the following result for the entropy
of these extremal black holes:

S = π(P 2 + Q2 − α) . (3.209)

Surprisingly enough, we fnd that there is only a constant correction to the entropy with
respect to the Einstein-Maxwell value — we remark that this is the exact value of the
entropy and not just an approximation. Notice that, even when one adds only a fnite
number of higher-order terms in the action, the entropy (and the rest of the quantities)
will be typically modifed by an infnite tower of α terms. Here we observe the opposite: the
action contains an infnite number of higher-order terms as dictated by duality invariance,
but in turn the entropy only has a correction of order α.

Let us take a closer look at this solution. While the entropy is fnite and real for any
value of the charges, we see that this is not the case for a and b. In fact, for any sign of α 
we see that these extremal geometries only exist for

P 2 + Q2 ≥ |α| . (3.210)

Therefore, there is a minimum amount of charge needed to produce an extremal black hole,
implying that all black holes with P 2 + Q2 < |α| must be necessarily non-extremal. On the
other hand, the properties of these black holes near the minimal charge are quite di˙erent
depending on the sign of α. When α > 0, the radius of the AdS2 tends to the constant
value a = α as P 2 + Q2 → α, while the area of the horizon and the entropy vanish in
this limit. In the case of α < 0 we observe the contrary: the radius of AdS2 goes to zero,
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while both the entropy and the area tend to a constant value, namely, S = A/2 = 2π|α|,
as P 2 + Q2 → |α|.

In order to determine the sign of α, one may use the mild form [474, 528] of the
WGC [416], which (we remind) states that the corrections to the mass of extremal black
holes must be non-positive, so that the decay of an extremal black hole into a set of smaller
black holes is possible. The near-horizon geometry does not allow one to obtain the mass
of the black hole, but we can obtain it from the perturbative solution (3.198). Imposing
the extremality condition f(r+) = f 0(r+) = 0, we fnd that

Mext = Q− 
α − 

α2 
+ O(α3) , (3.211)

10Q 84Q3 

√ 
while the extremal radius r+ agrees exactly with the expansion of b in (3.208). We have
checked that the α-expansion of the mass converges very rapidly and the expression above
turns out to be very accurate even for Q = 

p
|α|. We see that in order for the corrections to√

the mass to be non-positive we must have α ≥ 0. Then, at the minimal charge Qmin = α 
the mass becomesMmin ≈ 0.88 

√ 
α and the entropy and area of extremal black holes vanish.ext 

3.6 Discussion

In this chapter we have studied higher-order extensions of Einstein-Maxwell theory which
are invariant under electromagnetic duality rotations. We started by considering a general
higher-derivative theory of gravity and electromagnetism and obtained the necessary and
suÿcient conditions for theories up to eight derivatives to preserve electromagnetic duality
at a perturbative level. It would be interesting to extend this result to all orders in the
derivative expansion, but we leave this task for the future. Then we used these results to
derive the most general parity- and duality-invariant theory up to eight derivatives.

Next we studied the e˙ect of feld redefnitions on duality-invariant theories, which led
us to a remarkable simplifcation of those actions. We showed that, up to six derivatives,
one can always remove all the higher-order terms with explicit Maxwell feld strengths,
leaving one with a higher-derivative gravity minimally coupled to the Maxwell Lagrangian.
In other words, this result implies that, in a duality-invariant theory, higher-derivative
corrections can always be chosen in a scheme such that they do not modify the Maxwell
Lagrangian at all. We argued that this phenomenon should take place for any theory with
any number of derivatives, but so far this claim remains as a conjecture. Appealing open
questions are those of providing a proof for the conjecture or showing that any theory is
equivalent via metric redefnitions to Maxwell theory coupled to a higher-order gravity at
a non-perturbative level as well.

In this context, we wrote the most general six-derivative duality-invariant action af-
ter the use of metric redefnitions, noticing that the number of higher-order operators can
be e˙ectively reduced to four, plus a topological one. We studied the charged, static and
spherically symmetric black hole solutions of this theory and computed their thermody-
namic properties — entropy, temperature and electromagnetic potentials at the horizon —
allowing us to check explicitly that the frst law of thermodynamics holds.

Using these results, we obtained additional constraints on the higher-derivative cou-
plings by applying the recently proposed mild form of the WGC [474, 475]. According
to this conjecture, the corrections to the charge-to-mass ratio of extremal black holes in
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any consistent theory of quantum gravity should be non-negative, thus allowing the de-
cay of extremal black holes and evading the existence of remnants. This has also been
related to the non-negativity of entropy corrections [528, 531], although, as we discussed,
the connection is not complete. We determined the constraints coming from these condi-
tions not only for the leading higher-derivative corrections but also for the subleading ones.
Demanding that the subleading corrections to the entropy remain non-negative leads to
especially strong constraints — see (3.131) —, implying in particular the non-existence of
leading-order corrections in ST solutions. However, we observe this is in contradiction to
well-established results in the literature [125], so we check that the mild form of the WGC
should only be applied to the leading entropy corrections.

Afterwards we focused on higher-order theories with a quadratic dependence on the
feld strength, being able to write the explicit form of all such theories which are exactly
duality-invariant. It would also be interesting to look for more general nonminimal duality-
preserving theories, i.e., including as well higher powers of the Maxwell feld strength, but
this is a challenging problem which will be treated elsewhere.

Focusing on the simplest of these theories, we have studied its static and spherically
symmetric solutions. As we have shown, the equations of motion satisfed by the metric
in the latter theory are invariant under rotations of the electric and magnetic charges, but
due to their complexity they can only be solved analytically in the perturbative regime —
see (3.198). However, we found that the near-horizon geometry of extremal black holes can
be obtained exactly. A remarkable aspect about these extremal black holes is that their
entropy only receives a constant correction, which is striking since the action is modifed in
a very nonlinear way. A similar result is observed in the case of Einstein-Born-Infeld theory,
which suggests that duality somehow simplifes the corrections to the entropy. It would be
interesting to explore other theories to understand this possible connection better, but we
do not have as of this moment a simple explanation for this observation.

In addition, these extremal black holes possess a minimal charge below which no
solutions exist. Thus, it would follow that any black hole with a charge below this minimum
value must be non-extremal — no matter how small the mass is. We have also shown that
the WGC imposes the coupling constant α to be positive, which led us to the conclusion
that, at the minimal charge, the area and entropy of extremal black hole vanish. This is
an intriguing behavior, and it is tantalizing to assume that this minimal charge coincides
precisely with the elementary electric charge. An extremal black hole with the charge of
an electron is trivially the one with the lowest (non-zero) charge, and one could argue that
its entropy would vanish because it would contain only one microstate. However, we note
that the entropy can always be shifted by the introduction of a topological Gauss-Bonnet
term in the action, so the entropy of the minimal extremal black hole can be changed.

These issues could be better understood by trying to embed this theory in ST, in
whose case, a precise entropy counting is available, e.g. [97, 496, 545–547]. In fact, it
is possible to check that our solution (3.198) coincides with the α0-corrected Reissner-
Nordström black hole of Ref. [125], upon the identifcation α = α0/8 7. This shows that
our theory (3.132) captures some of the stringy α0-corrections, at least in the situations
where the additional degrees of freedom besides the metric and the electromagnetic feld
can be neglected.

ST ours7More precisely, both metrics are related by a redefnition gµν = gµν + 3αTµν to frst order in α, but
this only means that the theories are written in di˙erent frames.
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Appendix 3 Invariance of Einstein equation in theories with
covariant derivatives

In this appendix we are going to show that the invariance of the constitutive relation (3.7)
under duality transformations implies the invariance of the Einstein’s equations also for
those theories with explicit covariant derivatives of the curvature. For that, we shall follow
an analogous reasoning to that of Subsection 3.1.2, where we showed the invariance of the
Einstein’s equations under duality rotations once that of (3.7) is guaranteed.

If we consider a generic theory with arbitrary dependence on the covariant derivatives
of the Riemann curvature tensor (as in (3.1), with no derivatives of Fµν ), so that L = 
L(gµν , Fµν , Rµνρσ, rαRµνρσ, . . . ), the main diÿculty we encounter is that the tensor Eµν ,
defned back in Eq. (3.10), takes a much more complicated form to that given at (3.43).
However, we can make use of many computations and results presented in Subsection 3.1.2
for algebraic theories to achieve our goal. In fact, the arguments used for algebraic theories
are valid in this general case up to Eq. (3.58). Thus, our task will be to show the validity
of the equations (3.59) and (3.60) also for these general theories so that the invariance
of the Einstein’s equations will be guaranteed. We rewrite here those equations for the
beneft of the reader:

(4)
1 δEµν ∂L(4)E IH(6) 

µν (T ) + (T ) ◦ = 0 , (3.212)
4 δFαβ ∂F αβ 

(4) (4) 
E IH(8) 1 δEµν ∂L(6) 1 δ2Eµν ∂L(4) ∂L(4)

(T ) + (T ) ◦ − (T ) ◦ ◦µν 4 δFαβ ∂Fαβ 16 δFαβ δFρσ ∂F αβ ∂F ρσ 

H(6)
1 δEµν ∂L(4)

+ (T ) ◦ = 0 . (3.213)
4 δFαβ ∂F αβ 

Let us frst of all fnd the form of the equations of motion for theories with dependence
on derivatives of the curvature. For that, let us defne

∂Lα1...αnµνρσ P rn = , (3.214)
∂rα1...αn Rµνρσ 

which enjoys the same symmetries as rα1...αn Rµνρσ, which is a short-hand notation for
rα1 . . . rαn Rµνρσ. Consequently, the metric variation of the corresponding action I[g, A] 
associated to L(gµν , Fµν , Rµνρσ, rαRµνρσ, . . . ) takes the form:Z �p1 1 ∂L 

δI[g, A](δgµν , 0) = d4 x |g| − gµν δg
µν L + δgµν 

16πG 2 ∂gµνM ) (3.215)∞X 
+ P rn α1...αnµνρσδrα1...αn Rµνρσ . 

n=0 

If ξ ∈ X(M) denotes an arbitrary vector feld, we can write that the Lie derivative LξL in
two di˙erent ways:

∞X 
α1...αnµνρσ ∂L rκF αβLξL = ξκ rκL = ξκ P rn rκrα1 . . . rαn Rµνρσ + ξκ , (3.216)

∂F αβ 
n=0 
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∞X ∂L ∂L 
LξL = P rn α1...αnµνρσLξrα1...αn Rµνρσ + LξFαβ + Lξgαβ . (3.217)

n=0 
∂Fαβ ∂gαβ 

On the other hand, we have the following identities:
α1...αnµνρσLξrα1...αn = ξκP rn α1...αnµνρσ P rn Rµνρσ rκα1...αn Rµνρσ 

α1...αnκνρσ + 4(rκξγ )P rn rα1...αn R
γ
νρσ (3.218)

nX 
+ α1...αi...αnµνρσ βi(rαi ξβi )P rn rα1... ...αn Rµνρσ , 

i=0 

Lξgαβ = 2r(αξβ) , (3.219)

∂L 
LξFαβ

∂Fαβ 

∂L 
= ξµrµFαβ 

∂Fαβ 

∂L 
+ 2rαξ

µFµβ 
∂Fαβ 

. (3.220)

Consequently, we learn that

∂L 
∂gµν 

α1...αnµλρσ Rν = −2P rn rα1...αn λρσ − 
∂L 

F νρ 
∂Fµρ 

− 
1 
2 

nX 
α1...µ̂...αnλκρσ ν̂P rn rα1... ...αn Rλκρσ , 

(3.221)

i=1 

where the hats over the free indices µ and ν denote that they replace the indices αi in the
i-th position. Taking into account that, up to total derivatives,

α1...αnα1...αnµνρσδrα1...αn P rn Rµνρσ = (−1)n+1 rαn...α1 P rn µ
νρσRβνρσδg

µβ 

(3.222)
σ β α1...αn+ 2(−1)n r r rαn...α1 P rn µσνβ δg

µν , 

we fnd that
nmax �X 

σ β α1...αn α1...αnEµν = 2(−1)n+1 r r rαn...α1 Prn (µ|σ|ν)β + (−1)n rαn...α1 Prn ρσγ Rν)ρσγ (µ 
n=0 

n �X1α1...αn λρσ α1... ...αnλκρσ− 2Prn (µ| rα1...αn R|ν)λρσ − P rn (µ̂| rα1...|ν̂)...αn Rλκρσ
2 � � i=1 

1 1 ∂L 
+ gµν L − Fαβ , (3.223)

2 2 ∂Fαβ 

where nmax is the maximum number of explicit covariant derivatives appearing in the
action.

Let us remark at this point that, as in the case of algebraic theories, the equations
H(2n)Eµν associated to the homogeneous Lagrangians LH

(2n) only depend on Fµν through the
Maxwell stress tensor Tµν . This follows from the fact that for every monomial we have

∂LiFαβ ∂Fαβ 
∝ Li. On the other hand, if L is a function of Tµν so are the various Prn tensors.

H(2n)Thus we can in fact write Eµν (T ), so that we can apply Eq. (3.58).
Finally, in order to show (3.212) and (3.213), let us note the following formula, which

generalizes (3.61) for an arbitrary number of covariant derivatives:� � 
δrµ1...µn Qν1...νn δQν1...νn◦ Aαβ = rµ1...µn ◦ Aαβ , (3.224)

δFαβ δFαβ 
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where Qν1...νn is any tensor with dependence on Fαβ and its covariant derivatives and where
Aαβ is an arbitrary antisymmetric tensor. Using this formula, and noting the structure
of (3.223), we check after some computations that both (3.212) and (3.213) hold. For the
sake of clarity, let us illustrate this fact more explicitly for Eq. (3.212). By use of (3.224),
we have that �(4) nmaxXδEµν ∂L(4) σ β α1...αn(T ) ◦ = 2(−1)n+1 r r rαn...α1 P̂

 rn (µ|σ|ν)β∂F αβδFαβ n=0 
α1...αn α1...αn λρσˆ ρσγ Rν)ρσγ − 2 ˆ+ (−1)n rαn...α1 Prn (µ Prn (µ| rα1...αn R|ν)λρσ 

n �X1 α1... ...αnλκρσˆ− P rn (µ̂| rα1...|ν̂)...αn Rλκρσ
2 

i=1 � � 
1 ∂L(4) ∂ 1 ∂L(4)

+ gµν L(4) − Fρσ ,
2 ∂F αβ ∂Fαβ 2 ∂Fρσ 

(3.225)

where we have defned

(4) α1...αnµνρσ 
α1...αnµνρσ ∂P rn ∂L(4)

P̂  rn = . (3.226)
∂F λκ ∂Fλκ 

IH(6)We identify in (3.225) precisely the term −4Eµν (T ), so we conclude. The proof of (3.213)
goes along similar lines.
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4 
Higher-derivative holography with a

chemical potential

In previous chapters, we analyzed higher-derivative extensions of Einstein-Maxwell theory.
In particular, we were able to identify infnite instances of EQGs in Chapter 2, which
are defned as those possessing magnetically- or electrically-charged, static and spherically
symmetric solutions completely characterized by a single function with (at most) second-
order equation of motion. Such defnition was coined in the context of four-dimensional
theories, so it might be necessary to adapt it when considering higher-order theories of
gravity and electromagnetism in arbitrary spacetime dimensions, what could be specially
useful in the holographic context.

Indeed, higher-derivative theories of gravity play a relevant role in the context of the
AdS/CFT correspondence [418–420], as they can lead to new insights on the physics of
conformal feld theories. On the one hand, certain higher-derivative terms capture fnite
N and fnite coupling e˙ects in the boundary CFT, as is the case, for instance, for the
corrections that appear explicitly in Type IIB ST [108,128,131,132,504]. In this situation,
one is typically interested in a perturbative treatment of the corrections, as the 1/N and
1/λ e˙ects are supposed to be small. On the other hand, higher-derivative gravities can
be used to probe more general universality classes of CFTs than those covered by Einstein
gravity [424,425,435,548,549]. In other words, they allow one to explore a larger region in
the space of CFTs via holography. A paradigmatic example of this is provided by the three-
point function of the stress-energy tensor hTTT i, which for a general d-dimensional CFT
depends on three parameters. As is well known, for holographic CFTs dual to Einstein
gravity only one of these parameters is non-vanishing, but one can achieve a general hTTT i 
structure by considering a higher-curvature theory in the bulk [243, 426, 550]. It is also
worth noting that, since for a given CFT all the parameters of this correlator could be of
order one, from this point of view it even makes sense to study the higher-derivative theory
in a non-perturbative fashion.

The program of studying the holographic aspects of higher-derivative theories as
models for more general classes of CFTs has provided many insights into the dynamics
of highly-interacting quantum feld theories. One of the most impressive applications of
this approach consists in unveiling universal properties valid for arbitrary CFTs, whose
determination from frst principles is sometimes obscure. In this line we can mention
the holographic c-theorem established by Refs. [508, 551], the universal behavior of corner
contributions to the entanglement entropy found in Refs. [429, 552], and more recently,
the universal relationship between the free energy of a CFT in a squashed sphere and the
coeÿcients of hTTT i observed in [259, 270] — see also [488, 553–555] for other interesting
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examples. On broader terms, higher-order gravities allow one to inspect which features of
holographic CFTs dual to Einstein gravity are general and which ones can be changed. In
this way, it is natural to wonder about the possible e˙ects of higher-derivative terms on the
holographic predictions regarding, for example, hydrodynamics, entanglement structure,
superconductors, etc. — see e.g. [128,130,132,284,427,446,493,556–565] for an incomplete
list of references on these topics.

In this chapter we will be interested in higher-derivative bulk theories that contain
not only the metric, but also a vector feld, which according to the holographic duality
couples to a current operator Ja in the boundary. Similarly to the case of pure gravity,
the higher-derivative terms permit us to study more general classes of dual CFTs. An
important quantity in this regard is the mixed correlator hTJJi, which has a fxed form
for holographic Einstein-Maxwell (EM) theory, but which for a general CFT may contain an
additional structure. The presence of this extra structure can be encoded in the energy-fux
parameter a2 of Ref. [435], which is zero for EM theory, but which can get a non-vanishing
value for higher-derivative theories — in particular, it requires non-minimal couplings.

The presence of a vector feld also allows us to explore the e˙ect of a chemical poten-
tial in the CFT. It is then interesting to study how the holographic predictions for certain
properties of the CFT, such as charged entanglement and Rényi entropies [447], change
when we vary the couplings of the higher-order terms. Although some of these questions
have already been explored, most of the analyses so far have followed a perturbative ap-
proach [497, 566–569], or have either stick to particular models, e.g., [558, 559, 570]. On
the other hand, our goal is to perform a non-perturbative analysis of this type of theories
taking into account all kinds of interactions between gravity and electromagnetism. This
includes, in particular, non-minimal couplings of the form RF F , which, to the best of
our knowledge, have not been studied in a non-perturbative fashion in the holographic
context yet. As we show, these are actually the most interesting terms to be added to the
Einstein-Maxwell action due to their e˙ects on the dual CFT.

A key question in order to carry out an exact exploration rather than a perturbative
one is to have a bulk theory which is amenable to analytic computations, which is typically
not the case when there are higher derivatives involved. From previous chapters, it is
clear that EQGs conform very intriguing candidates for these purposes. Consequently, we
will generalize the construction of EQGs to arbitrary dimensions and, afterwards, study
the holographic aspects of these theories. Apart from establishing basic entries of the
holographic dictionary, these theories will inspire us to discover a new universal relation
for the charged entanglement entropy, which we will rigorously prove.

This chapter is arranged as follows. First, we describe the proper generalization of
EQGs in arbitrary dimensions and display infnite instances of such theories of arbitrary
order in the curvature and the feld strength. Then, restricting ourselves to the most
generic four-derivative EQG, we study asymptotically AdS black hole solutions. Next,
some fundamental entries of the holographic dictionary of these theories are settled, in
particular those related to hTTT i and hTJJi correlators. Then we study the relationship
between constraints imposed by causality in the bulk and unitarity in the boundary, as
well as those constraints arising from the WGC for the bulk theory. Later we compute
the charged Rényi entropies to quadratic order in the chemical potential and we prove a
universal formula for the associated charged entanglement entropy in d(≥ 3)-dimensional
CFTs. Finally, we conclude with a discussion of the most important results.
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4.1 Electromagnetic Quasitopological Gravities in arbitrary
dimension

4.1.1 Gravity, (d − 2)-forms and their electromagnetic dual

In this chapter, we consider (d + 1)-dimensional theories of gravity and of a (d − 2)-form
B with an action given by Z p

I = dd+1 x |g| L(gµν , Rµνρσ, Hµ1···µd−1 ) , (4.1)

where Rµνρσ is the Riemann tensor of the metric gµν , and the (d − 1)-form H is the feld
strength of B, H = dB. The Lagrangian is supposed to be a scalar function built out of
these tensors, and we implicitly assume that it has a polynomial form or that it can be
expanded as such. In particular, we are interested in theories that reduce to the standard
Einstein-(d − 2)-form Lagrangian for small curvatures and feld strengths,� � 

1 d(d − 1) 2 
Hµ1...µd−1L = R + − Hµ1...µd−1 + . . . . (4.2)

16πG L2 (d − 1)! 

These theories are invariant under di˙eomorphisms and under gauge transformations
B → B + dΛ, where Λ is a (d − 3)-form, and their equations of motion obtained from the
variation of the action read

ρσγ 1 σ α1...αd−2P(µ Rν)ρσγ − 
2
gµν L + 2r r ρP(µ|σ|ν)ρ − (d − 1)M(µ Hν)α1...αd−2 

= 0 , (4.3)

Mµν1...νd−2rµ = 0 , (4.4)

where
∂L 1 ∂L 

P αβργ Mα1...αd−1= , = − . (4.5)
∂Rαβργ 2 ∂Hα1...αd−1 

Our interest in these theories lies on the fact that they allow for black hole solutions
magnetically charged under the form B, as we explain below. Furthermore, the (d − 2)-
form can be related to a 1-form (a vector feld) by means of a duality transformation, and
therefore we can map any of these theories to a higher-derivative extension of Einstein-
Maxwell theory, which is the interpretation in which we are most interested.

Let us quickly review the process of dualization, which we already explained in four
dimensions in Section 2.1.2. Starting from the theory (4.1), we can dualize the (d−2)-form
B into a 1-form by introducing the Bianchi identity dH = 0 in the action as follows1Z � �p �α1...αD 

dd+1 Aα1 ∂α2 Hα3...αDĨ = x |g| L(gµν , Rµνρσ, Hµ1···µd−1 ) + . (4.6)
4πG(d − 1)! 

At this point, Aµ is a Lagrange multiplier whose variation yields the Bianchi identity of
H, which is now considered as a fundamental variable instead of B. We can integrate by
parts to express the action asZ � �p 1˜ dd+1 Hα1...αD−2I = x |g| L(gµν , Rµνρσ, Hµ1···µd−1 ) + (?F )α1...αD−24πG(d − 1)!M 

1We introduce the factor 1/(4πG) bearing in mind that the Lagrangian L will contain an overall
1/(16πG) normalization.
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Z 
1 p

dd− x |h|nµAν (?H)µν , (4.7)
4πG ∂M 

where we have defned F = dA. The variation with respect to Aµ still yields the Bianchi
identity of H, but now it becomes clear that the variation with respect to H yields an
algebraic relation between this feld and F , namely

∂L 
F = 4πG(d − 1)! ? . (4.8)

∂H 

Then, one should invert this relation in order to get H(F ), and inserting this back into
the action one would get the dual theory for the vector Aµ. Note that the dualization
process also generates a boundary term, which is precisely the term that makes the varia-
tional principle for the vector well posed, and that, when computing the Euclidean action,
corresponds to working in the canonical ensemble (fxed electric charge).

It is important to notice that the dual Lagrangian L̃ is the Legendre transform of L 
with respect to H. Then, by the properties of the Legendre transform one can write the
inverse relation between H and F as follows

∂L̃ 
H = −8πG ? . (4.9)

∂F 

This relation is useful because it allows us to identify the electric and magnetic charges in
both frames. In fact, in the frame of the (d − 2)-form we will have solutions with magnetic
charge, which in the frame of the vector feld correspond to electrically charged solutions.
We defne this charge in either frame asZ Z 

1 ∂L̃ 
Q = H = −2 ? , (4.10)

4πG ∂F Sd−1 Sd−1 

where the integral is performed over any spacelike co-dimension two hypersurface Sd−1 that
encloses the charge source. In the case of black hole solutions, Sd−1 can be any surface
that encloses the black hole horizon.

Inverting (4.8) explicitly in order to obtain the dual Lagrangian is in general not
possible. However, an important type of theories that we will consider in this chapter are
those quadratic in H, and all of them can be written asZ p n o1 2 

I = dd+1 x |g| Lgrav − (H2)µν
ρσQµν

ρσ , (4.11)
16πG (d − 1)! 

where Lgrav = R + . . . only depends on the curvature, and where we are introducing the
notation2 � �µ1···µn

H2 ≡ Hµ1···µnµn+1···µd−1 Hν1···νnµn+1···µd−1 . (4.12)
ν1···νn 

In this case, it is possible to fnd the dual theory explicitly. The relation (4.8) can
be written in this case as

(?F )α1...αd−1 = Qµν Hα3...αd−1]µν . (4.13)[α1α2 

2That the most general quadratic Lagrangian can be written using only the object (H2)µν
ρσ (i.e, with

only four free indices) can be proven by writing the Lagrangian in terms of ?H frst.
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This can be inverted in the following way. Let us frst introduce the following tensor,

Q̃µν 12 [αβ 
δµρδ

ν]= Q σ , (4.14)ρσ αβ(d − 1)(d − 2) 

and its inverse, that we denote by (Q̃−1)µνρσ, and which by defnition is determined from
the equation

µν Q̃αβ [µ ν]
(Q̃−1) = δ δ . (4.15)αβ ρσ [ρ σ] 

Then, one can check that (4.13) is inverted by

1 ρσ F αβHα1...αd−1 = �α1...αd−1ρσ(Q̃
−1) . (4.16)αβ2 

and the dual action reads simplyZ p n o1 
Ĩ = dd+1 x |g| Lgrav − Fµν F ρσ(Q̃−1)µνρσ16πGZ (4.17)
+

1 
dd x 
p

|h|nµAν (Q̃−1)αβµν Fαβ . 
4πG ∂M 

When the Lagrangian contains terms beyond quadratic order inH, such as (H2)2, the
equation (4.8) becomes a tensorial polynomial equation, whose resolution is more involved.
One could nevertheless solve it by assuming a series expansion in F .

4.1.2 Electromagnetic Quasitopological Gravities: general defnition

We are interested in studying the charged static solutions with spherical, planar or hy-
perbolic sections of the theories (4.1). A general metric ansatz for these confgurations
reads

2dr2 2ds = −N2(r)f(r)dt + + r 2dΣ2 (4.18)N,f k,(d−1) ,f(r) 

where the metric dΣ2 is given byk,(d−1) ⎧ 
dΩ2 for k = 1 (spherical),(d−1)⎪⎨ 1 2dΣ2 = 
L2 dx for k = 0 (fat), (4.19)k,(d−1) (d−1)⎪⎩ 
dΞ2 for k = −1 (hyperbolic).(d−1) 

In addition, we assume the following magnetic ansatz for the H feld,

Hq = q ωk,(d−1) , (4.20)

where q is a constant related to the magnetic charge and ωk,(d−1) is the volume form of
dΣ2 , whose integral yields the volume of this space, that we denote by Vk,(d−1) = k,(d−1)R 
ωk,(d−1). It is obvious that this H satisfes the Bianchi identity dH = 0, but one can also

check that, for any theory of the form (4.1), it also solves its equation of motion (4.4) when
we use the metric (4.18). Since we do not have to worry about the “Maxwell equation”
anymore, the problem of fnding the solutions becomes simpler: one only has to solve the

189



���

��

Chapter 4. Higher-derivative holography with a chemical potential

equations for the metric functions N and f , that, as shown in [4], can be obtained by
means of the reduced Lagrangian,

LN,f = 
p

|g|L|ds2 . (4.21)
N,f ,Hq 

The equations of motion are obtained simply by varying this Lagrangian with respect to
the functions f and N ,

δLN,f δLN,f EN = , Ef = . (4.22)
δN δf 

One can then prove that EN = Ef = 0 imply that the Einstein equations (4.3) are satisfed,
taking into account that Hq solved its own equation (4.4),

So far the analysis is completely general, but typically one would not be able to
solve these equations for a generic Lagrangian. For this reason, it is interesting to restrict
ourselves to a subset of theories, introduced as Electromagnetic Quasitopological Gravities
(EQG) in [4] (in d + 1 = 4), that make possible to perform analytic computations. These
theories are simply characterized by the condition that

δLN,f ≡ 0 ∀ f(r) . (4.23)
δf N=const.

In other words, for these theories the reduced Lagrangian LN,f is a total derivative when
N(r) takes a constant value. In the purely gravitational case, this defnition gives rise to the
Generalized Quasitopological Gravities [78,79,216,249,250], which include Quasitopological
[238,239,241,242] and Lovelock gravities [225,226,230] as particular cases. Our construction
extends the defnition of those theories to include a (d − 2)-form (or equivalently, a vector
feld upon dualization), allowing one to study charged black hole solutions. Let us note that
the standard two-derivative theory (4.2) satisfes (4.23) and therefore belongs to the EQG
class. In general, all the theories in this family satisfy a number of properties, which are
the same as for their four-dimensional counterparts studied in [4], and that we summarize
here.

1. The degrees of freedom that propagate in maximally symmetric backgrounds are the
same as in the two-derivative theory. This is particularly relevant for the gravitational
sector of the theory, since general higher-order gravities typically propagate a massive
ghost-like graviton and a scalar mode along with the massless graviton. The condition
(4.23) guarantees that these modes are absent on the vacuum.

2. The theory allows for charged solutions of the form (4.18), (4.20) with N(r) = Nk = 
const., i.e, characterized by a single function f(r).

3. The equation for the function f(r), which is obtained from EN N=Nk 
= 0, can be

integrated once, and the integration constant is proportional to the total mass of the
spacetime.

4. For some theories the integrated equation for f(r) is algebraic and hence it can be
solved trivially: if this happens, the theory is of the “Quasitopological” subclass.
Other times the integrated equation is a second order ODE for f(r), and that type
of theories is of the “Generalized Quasitopological” subclass.

5. In all cases, the thermodynamic properties of charged black holes can be accessed
analytically.
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In this Chapter we will only deal with the Quasitopological class of Lagrangians,
which already constitute a quite extensive set, as we show below.

4.1.3 Four-derivative EQGs

Let us begin by classifying the theories belonging to the EQG family at the four-derivative
level. There are four types of terms one could include in the Lagrangian at that order,
namely, those of the types R2 , RH2 , H4 and (rH)2 , although our interest lies mostly on
the frst two. In the case of quadratic curvature Lagrangians, we know there are three
independent densities,

LR2 = λ1R2 + λ2Rµν R
µν + λ3RµνρσR

µνρσ , (4.24)

but there is only one combination of these that satisfes the “single-function" condition
(4.23): the Gauss-Bonnet density (i.e., the quadratic Lovelock Lagrangian),

X4 = R2 − 4Rµν R
µν + RµνρσR

µνρσ . (4.25)

That Lovelock gravity satisfes (4.23) and possesses single-function solutions of the form
(4.18) is well known [227,231–233], so let us turn our attention to the next case.

Regarding the operators of the form RH2 , there are again three of them, that can
3be written as � � �µ �µν 

RρσLRH2 = α1H
2R + α2 H

2 
ν R

ν
µ + α3 H

2 
ρσ µν , (4.26)

where we recall that we are using the notation introduced in Eq. (4.12). Evaluating this
Lagrangian on (4.18) and (4.20) with N(r) equal to a constant value Nk, we obtainh q2(d − 1)! 

r d−1LRH2 = (−2α3 + α1(1 − d)(d − 2) − α2(d − 2)) (f − k)
d+1Nk,f r (4.27)i 

2f 00+ f 0 (2α1(1 − d)r − α2r) − α1r , 

d−1where we included the factor r from the volume element
p

|g|. In order for this La-
grangian to belong to the EQG family we apply the condition (4.23) that tells us that the
quantity above should be a total derivative. It is straightforward to compute the functional
derivative of this Lagrangian with respect to f and we fnd that there is a single condition
in order for it to vanish identically,

α3 = −(2d − 1)(d − 1)α1 − (d − 1)α2 . (4.28)

Therefore, there are two linearly independent contractions of the form H2R that we can
add to the two-derivative Lagrangian and maintain single-function solutions. Moving to
the next case, in general dimensions there are two independent operators of the form H4 

that do not violate parity, which can be chosen as4� �2 � �µ � �νLH4 = β1 H
2 + β2 H

2 
ν H

2 
µ . (4.29)� �µν ρ σ3There is a fourth contraction of the form H2 Rµ ν , but it can be checked that this is related

ρσ 
to the term multiplied by α3 by means of the Bianchi identity of the Riemann tensor.

4In order to see that there are only two independent terms, it is clearer to work in terms of the two-form
2 ν α β µG = ?H. There are only two inequivalent quartic contractions: (Gµν G

µν ) and Gµ Gν Gα Gβ .
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When evaluated on (4.18) and (4.20) we see that both on-shell densities are independent
of f(r) and therefore they both belong to the EQG class straightforwardly. However, it
will be enough for our purposes to only keep one of them, as both terms contribute to
spherical/planar/hyperbolic black hole solutions in the exactly same way. Thus, we will
take for simplicity the (H2)2 operator. Finally, we fnd that there are no terms of the form
(rH)2 belonging to the EQG class.

Therefore, introducing appropriate normalization factors, we have the following four-
derivative EQG theoryZ �p1 d(d − 1) 2 λ 

dd+1 H2IEQG,4 = x |g| R + − + L2X4
16πG L2 (d − 1)! (d − 2)(d − 3) � �2α1L

2 � �ρσ 
+ H2R − (d − 1)(2d − 1)Rµν

ρσ H
2 

µν + (4.30)(d − 1)! #� �2α2L
2 � �ν � �ρσ βL2 � �2 

Rµ H2 − (d − 1)Rµν H2 H2+ + .ν ρσ(d − 1)! µ µν (d − 1)!2 

This is the theory in which we are going to focus in the rest of the chapter. Certainly, the
most interesting part of it is given by the non-minimally coupled terms RH2 , which have
not been considered before in the literature.

Interestingly, having four independent parameters, this theory is general enough from
the point of view of E˙ective Field Theory. As shown by Refs. [497,567], an EFT extension
of Einstein-Maxwell theory (or in our case, Einstein-(d − 2)-form theory) only requires
four independent parity-preserving terms, as the rest of higher-derivative operators can be
removed via feld redefnitions. We have checked that our Lagrangian above indeed spans
this basis of four independent operators, which means that we can capture any parity-
preserving four-derivative correction to Einstein-Maxwell theory. It could be particularly
interesting to use it to capture the corrections arising from supersymmetric theories in
d = 4 [571–573]. Although fve-dimensional Supergravity theories with higher-derivative
corrections also have parity-breaking Chern-Simons terms, which we are not including, it
turns out those terms do not a˙ect most (or none) of the results we are going to discuss
in this chapter.

There is a crucial di˙erence between our approach and the EFT one, though, which is
the fact that we are going to carry out a fully non-perturbative analysis of our theory (4.30),
while in EFT one is usually restricted to the linear perturbative regime. Of course, one can
always recover this perturbative regime from our analytic and exact results by expanding
linearly in the couplings. However, the exact result is clearly more interesting and it could
serve as an educated guess for the behavior of these theories and their holographic duals
beyond the limited perturbative approach.

Let us close this section by taking note of the electromagnetic dual theory of (4.30).
The fact that we have an H4 term makes it diÿcult to invert (4.8) explicitly, so obtaining
a closed expression for the dual action is involved (although perhaps not impossible).
However, it is easy to obtain the dual action if we perform a derivative expansion. In that
case we can write H(F ) = H0(F ) + H2(F )L2 + O(L4), and the inversion of (4.8) at each
order in L is straightforward. We fnd that the dual theory, to fourth order in derivatives,
reads " Z p1 d(d − 1) λ 
ĨEQT,4 = dd+1 x |g| R + − F 2 + L2X4

16πG L2 (d − 2)(d − 3) 
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� � � � 
L2 dα2 2L2 (3d − 2)α2αRµν+ RF 2 3dα1 + − FµαF 4(2d − 1)α1 +νd − 2 (d − 1) d − 2 (d − 1)# 
2L2 β 

Fµν FρσR
µνρσ((2d − 1)α1 + α2) + + L2(F 2)2 + O(L4) , (4.31)

d − 2 4 

and it contains an infnite tower of higher-order terms that we could also compute.
We study the black hole solutions of (4.30) in Section 4.2 next.

4.2 AdS vacua and black hole solutions

In this section we focus on the solutions of the theory (4.30), starting by determining its
AdS vacua. As is well known, the higher-derivative terms modify the length scale of AdS,
L̃, which no longer coincides with the cosmological-constant scale L. It is customary to
denote

L 
L̃ = √ (4.32)

f∞ 

for a dimensionless constant f∞, so that for pure AdS space the Riemann tensor takes the
form

Rµν 2f∞ [µ ν]
= − δ δ . (4.33)ρσ L2 [ρ σ] 

Taking this into the Einstein equations (4.3), one fnds that f∞ must satisfy

1 − f∞ + λf2 = 0 , (4.34)∞ 

which is the well-known result for Gauss-Bonnet (GB) gravity [243]. This polynomial
equation has two real roots if λ ≤ 1/4, but only one is continuously connected to the
Einstein gravity vacuum when λ = 0, and this ish i√1 

f∞ = 1 − 1 − 4λ . (4.35)
2λ 

When λ > 1/4 there is no AdS solution, so this is the maximum value λ can take. As
corresponding to Lovelock gravity, but also to the complete family of Generalized Quasitop-
ological Gravities, the linearized gravitational equations around this vacuum are identical
to the linearized Einstein equations, up to the identifcation of an e˙ective Newton’s con-
stant that determines the coupling to matter [88]. In the case of GB gravity, the e˙ective
Newton’s constant reads

Geff = 
G

. (4.36)
1 − 2λf∞ 

Observe that the denominator in this expression is the slope of the AdS vacuum equation
(4.34). This is in fact no accident and the same property holds for all theories with an
Einstein-like spectrum [89, 259]. We also note that Geff is divergent in the limit λ → 1/4,
which is known as the critical theory [574, 575].

Let us now obtain the static spherically/plane/hyperbolic-symmetric solutions of
(4.30). By construction, this theory belongs to the EQG class, and therefore it allows for
solutions of the form (4.18) and (4.20)with N(r) = Nk = constant. As a matter of fact, the
equation δLN,f /δf = 0 computed from the reduced Lagrangian implies that N 0(r) = 0, so
that these are the only solutions. Then, we only have to fnd the function f(r) by solving
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the equation δLN,f /δN |N = 0. This equation takes the form of a total derivative —=Nk 

as it should happen according to the results in [216] — and explicitly it reads" � �
d L2 L4δLN,f d r 

= (d − 1) 1 − (f(r) − k) + λ (f(r) − k)2 (4.37)
L2 2 4δN dr r r 

2q2 1 � � ��# 
+ r 2 + (d − 1)(d − 2)L2α1f(r) + (d − 2)kL2 3(d − 1)α1 + α2 = 0 .

dd − 2 r 

We note that the integrated equation is algebraic in f(r), not di˙erential, which character-
izes this theory as belonging to the proper Quasitopological subclass. Let us also remark
that in this equation one should take λ = 0 in d = 3, as in that case the GB invariant
does not really contribute to the equations of motion (note that the normalization factor
of the GB term in (4.30) diverges for d = 3, so the limit d → 3 would seem to give a fnite
contribution5). Equating the argument of the derivative to a constant m, which will be
related to the physical mass of the black hole, and introducing

L2 
X := (f(r) − k) , (4.38)

2r 
we can rewrite the equation as follows,

λX2 − Γ(r)X + 1 +  (r) = 0 , (4.39)

where
22α1L

2q
Γ(r) =1 − , (4.40)

r2(d−1) � � 
2L2 2 L2mL2 q

 (r) = − + 1 + k(d − 2) (4(d − 1)α1 + α2)d 2(d−1) 2(d − 1)r (d − 1)(d − 2)r r 
4βL4q− . (4.41)

4(d−1)(3d − 4)(d − 1)r 

This is simply a quadratic polynomial in X and thus we can solve it straightforwardly
obtaining

2 h p i r 
f(r) = k + Γ(r) ± Γ2(r) − 4λ(1 +  (r)) . (4.42)

2λL2 

We have two roots, that correspond to two solutions connected to di˙erent AdS vacua at
r → ∞. We should choose the one that reduces to the Einstein gravity result in the limit
λ = 0, and this is the one with the “−” sign. It is worth noting that, when λ = 0 (which
is always the case for d ≤ 3), this solution simply becomes

r2(1 +  (r))
f(r) = k + . (4.43)

L2Γ(r) 

Let us then identify the physical properties of this solution. For r → ∞, f(r) behaves as

2 � � 
r m 1 

f(r) = f∞ + k − + O + · · · , (4.44)
d−2 2(d−2)L2 (d − 1)(1 − 2λf∞)r r 

5This and similar observations were noted by Ref. [576] to propose a non-trivial D → 4 limit for GB
gravity, but the validity of this approach has been contested [577–579].
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where f∞ is given by (4.35). Therefore, it asymptotes to the AdS vacuum that we have
determined above. On the other hand, the mass M is identifed by looking at the following
term in the asymptotic expansion of f [86, 90,91,514,580],

16πGeff M 1 − ∈ f(r) . (4.45)
d−2(d − 1)NkVk,d−1 r 

where Geff is the e˙ective Newton’s constant and the factor Nk takes into account the
normalization of the time coordinate at infnity, which is equivalent to a change of units.
Also note that, in the cases in which the volume of the transverse sections Vk,d−1 is infnite,
one would instead defne an energy density ρ = M/Vk,d−1.

Using the value of Geff given by (4.36), we get that the physical mass of the black
hole is

NkVk,d−1
M = m, (4.46)

16πG 
which is proportional tom, as mentioned before. On the other hand, we defne the magnetic
charge of the (d − 2)-form B by Z 

1 
Q = H , (4.47)

4πG Sd−1 

where the integral is performed over any spacelike co-dimension two hypersurface Sd−1 
that encloses r = 0. Note that, as we discussed around (4.10), this quantity is also the
electric charge of the dual theory. It is straightforward to see that

Vk,d−1
Q = q , (4.48)

4πG 

and again in the cases k = 0, −1 one could defne instead a charge density Q/Vk,d−1.
It will also be important for later purposes to determine the electrostatic potential

of the dual theory. The feld strength of the dual vector feld Aµ is obtained according to
(4.8). Evaluating that expression on the metric (4.18) and on the H-feld (4.20), we fnd
that it corresponds to a pure electric feld," 

1 L2α1 � 2f 00(r) 
� 

F =dt ∧ drNkq − − 3d(d − 1)k − 3d(d − 1)f(r) + 2(d − 1)rf 0(r) + r
d−1 d+1r r # 

L2α2 � � L2q2β − dk − df(r) + rf 0(r) + . (4.49)
d+1 3(d−1)r r 

Surprisingly, this can be written explicitly as a total derivative, Ftr = −Φ0(r), where" 
1 L2α1 � � 

Φ(r) = − Nkq + 3(d − 1)k − 3(d − 1)f(r) − rf 0(r)
d−2 d(d − 2)r r # (4.50)

L2α2 L2q2β 
+ (k − f(r)) − +Φ∞d 3d−4r (3d − 4)r 

is the electrostatic potential. We are adding an integration constant Φ∞ that represents
the value of the potential at infnity.
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The solution given by (4.42) represents a black hole as long as the function f(r) has
a zero f(r+) = 0 (which would correspond to a horizon) which is smoothly connected to
infnity (this is, there should be no singularities between r = r+ and r → ∞). It is easier
to look at the position of the horizon directly from (4.39). In fact, at the horizon we have
X(r+) = −kL2/r+

2 , and hence we get

k2L4 kL2 
λ + Γ(r+) + 1 +  (r+) = 0 . (4.51)4 2r r+ + 

We cannot obtain the value of r+ explicitly from this equation, but it is useful to express
instead the mass as a function of r+ and the charge," � d � rNkVk,d−1 + d−4M = (d − 1) krd−2 + + λk2L2 r+ +16πG L2 # (4.52)

2 � � 
42q L2 βL2q

+ 1 + k(d − 2) (3(d − 1)α1 + α2) − .
d−2 2 3d−4(d − 2)r r+ (3d − 4)r+ + 

The Hawking temperature of the black hole is given by T = Nkf
0(r+)/4π. This can

be easily evaluated by di˙erentiating the equation (4.39) with respect to r and evaluating
at r+, which yields " � �2 L2Nk r+T = � � (d − 2)k + d + (d − 4)k2λ 

−2(d−1) L2 r2 
4πr+ 1 − 2L2q2α1r + 2kL2λr−2 ++ + # 

2 42q � � βL2q2− r + dkL2(3(d − 1)α1 + α2) + . (4.53)
2(d−1) + 2(2d−3)

(d − 1)r (d − 1)r+ + 

On the other hand, we impose the electrostatic potential (4.50) to vanish at the
horizon.6 In this way, the asymptotic value of the potential reads" � � 

1 L2α1 4πT 
Φ∞ = Nkq + 3(d − 1)k − r+d−2 d(d − 2)r r Nk+ + # (4.54)

L2α2k L2q2β 
+ − .

d 3d−4r (3d − 4)r+ + 

Finally, let us compute the entropy of the black hole. This is given by the Iyer-Wald’s
formula [366, 370] Z √ ∂L 

dd−1S = −2π x h �µν �ρσ , (4.55)
Σ ∂Rµνρσ 

where h is the determinant of the induced metric at the horizon, and �µν is the binormal,
normalized as �µν �

µν = −2. Evaluating this expression, one fnds the value of the entropy! 
d−1 r Vk,d−1 2L2q2α1 2L2k(d − 1)λ+S = 1 + + . (4.56)24G r 2d−2 (d − 3)r++ 

6The motivation for this is clearer if one works in Euclidean signature, t = iτ : the vector A = Aτ dτ 
would be singular at r = r+ unless Aτ (r+) = 0. In Chapters 2 and 3 we did not need to account for this.
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Now we devote ourselves to the computation of the free energy through the Euclidean
action. For that, let us work in the frame of the (d − 2)-form B. We frst perform a
Wick rotation of our black hole solutions by writing t = iτ . The Euclidean time τ has a
periodicity τ ∼ β + τ , with β = 1/T , where the temperature is given by (4.53). The bulk
part of the Euclidean action readsZ � 

1 √ d(d − 1) 2 λ 
Ibulk dd+1 H2 = − x g R + − + L2X4E 16πG L2 (d − 1)! (d − 2)(d − 3)M � �2α1L

2 � �ρσ 
+ H2R − (d − 1)(2d − 1)Rµν

ρσ H
2 

µν + (4.57)(d − 1)! #� �2α2L
2 � �ν � �ρσ βL2 � �2 

Rµ H2 − (d − 1)Rµν H2 H2+ + .ν µ ρσ µν(d − 1)! (d − 1)!2 

On top of this, we need to include generalized York-Gibbons-Hawking boundary terms to
make the variational problem well posed [80,81], as well as counterterms, to make the action
fnite [511]. The generalized YGH term for the Gauss-Bonnet density is known [523, 524],
as well as the appropriate conterterms [581]. However, for the sake of simplicity, we can
use instead the e˙ective boundary terms proposed in Ref. [257] (see also [582]),!Z √ ˜ 

bdry d − 1 LΘ[d − 3]
I = −2C dd x h K − − R + . . . . (4.58)E L̃ 2(d − 2)∂M 

Here, K is the trace of the extrinsic curvature of the boundary, R is the Ricci scalar of the
boundary metric, and Θ[d − 3] = 1 for d ≥ 3 and 0 otherwise. Additional O(Rn) terms
appear for d ≥ 5. These are simply the same boundary terms as in Einstein gravity, but
with a di˙erent proportionality constant, which reads

L̃2 
C = − L , (4.59)

2d AdS 

where L|AdS is the Lagrangian evaluated on the AdS vacuum to which the solutions asymp-
tote. This prescription is valid for asymptotically AdS solutions (as in our case) and at
least for theories that do not propagate additional degrees of freedom over AdS vacua (as
in the case of Generalized Quasitopological theories), although we suspect this method
actually works for general theories. For our Lagrangian, we have� � 

1 2(d − 1)
C = 1 − λf∞ , (4.60)

16πG d − 3 

where we recall that L̃2 = L2/f∞. On the other hand, the variation of the terms RH2 with
respect to the metric decays very fast at infnity, so one does not need to include boundary
terms. Also, they behave at infnity as the H2 term, so no counterterms are needed either.

In order to compute the Euclidean action, we note that the Lagrangian becomes an
explicit total derivative when evaluated on (4.18) with N(r) = Nk = const. (this is actually
the defning property of the Electromagnetic Quasitopological Gravities). We fnd

1 dI(r)
16πGL = , (4.61)

on−shell d−1r dr 
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where
d 2 2−d(d − 1)r 2q r I(r) = − r d−1f 0(r) − (d − 1)r d−2(f(r) − k) + + 

L2 d − 2� �
2 −d 2− 2α1L

2 q r 3(d − 1)(f(r) − k) + rf 0(r) − 2α2L
2 q r −d(f(r) − k) (4.62)

4 4−3d(d − 1)λ � � βL2q r 
+ r d−4(f(r) − k) (d − 3)(f(r) − k) + 2rf 0(r) + . 

d − 3 4 − 3d 

Therefore, the bulk part of the Euclidean action is given byZ ∞ h i 
Ibulk βNkVk,(d−1) βNkVk,(d−1) 

= − dr r d−1L = I(r+) − I(r → ∞) . (4.63)E 16πG r+ 16πG 

The evaluation at infnity I(r → ∞) is divergent, but one can check all these divergencies
are exactly cancelled by the boundary contributions (4.58). Furthermore, the boundary
terms do not introduce any meaningful fnite terms to the on-shell action.7 Hence, we get

= Ibulk bdry βNkVk,(d−1)
IE + I = I(r+) . (4.64)E E 16πG 

Now, let us note that the fact that we are computing the Euclidean action in the
frame of the B-form has a non-trivial e˙ect. As we observed in Section 4.1.1, when we
dualize the B-form into a vector feld, we generate a boundary term in the Maxwell frame,
that in the thermodynamic context corresponds to working in the canonical ensemble.
This implies that the Euclidean action we have computed corresponds to the Helmholtz
free energy F = TIE, which is a function of the temperature and of the charge. From the
result above, we fnd " 

d 2 2−dNkVk,(d−1) NkVk,(d−1) (d − 1)r+ d−1 4πT d−2 2q r+F = I(r+) = − r + k(d − 1)r ++ +16πG 16πG L2 Nk d − 2 � � 
4πT r+2 −d 2 −d− 2α1L

2 q r −3k(d − 1) + + 2kα2L
2 q r+ +Nk #� � 4 4−3d8πT r+ βL2q r++ (d − 1)λrd−4k k − + , (4.65)+ (d − 3)Nk 4 − 3d 

We also introduce the chemical potential µ as µ = limr→∞ `
−1At, where ` ∗ is a length scale∗ 

whose inclusion will be justifed in Section 4.3. From (4.54) it takes the form" #� � 
Nkq 1 L2α1 4πT L2α2k L2q2β 

µ = + 3(d − 1)k − r+ + − . (4.66)
d−2 d d 3d−4` ∗ (d − 2)r r Nk r (3d − 4)r+ + + + 

We then check that this free energy satisfes the usual frst law8,

dF = −SdT + µ dN , (4.67)
7In odd d some counterterms can introduce contributions of the form IE → IE + cβ, for a constant

c, but this simply represents a global shift in the free energy. We will simply assume that these fnite
counterterms have been chosen so that pure AdS has zero free energy.

8Di˙erently from Chapters 2 and 3, here we demanded the gauge vector to vanish at the horizon. This
in turn implies that it is its asymptotic value, which we identify with the chemical potential, what appears
in the frst law.
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where S is Wald’s entropy given by (4.56), and where N = Q`∗, where Q is the physical
charge introduced in (4.47), i.e.,

Vk,(d−1) ̀  ∗qN = , (4.68)
4πG 

and it represents the number of charged particles under the current J in the boundary
theory.

We wish to work in the grand canonical ensemble (i.e., at fxed chemical potential),
so instead of F we are interested in the grand potential (or grand free energy), defned as

Ω = F − µ N . (4.69)

This can also be obtained directly from the Euclidean action by adding or removing appro-
priate boundary terms (depending of whether we are in the Maxwell or B-form frames).
By construction, this satisfes

dΩ = −SdT −N dµ , (4.70)

and it is to be understood as a function of T and µ. Explicitly, it reads" � �d 2 2−d 4 4−3dNkVk,(d−1) (d − 1)r 2q r 4πT r+ 3βL2q r+ + d−2 +Ω = − + r (d − 1)k − ++16πG L2 d − 2 Nk 3d − 4 � � � � 
8πT r+ 4πT r+−4+d 2 −d+ (d − 1)λkL2 r k − + 2α1L

2 q r −3(d − 1)k ++ +Nk(d − 3) Nk# 
2 −d− 2kα2L

2 q r . (4.71)+ 

4.3 Holographic dictionary

The family of Electromagnetic Quasitopological Gravities introduced in Section 4.1 is most
naturally written in terms of a (d − 2)-form feld. However, as we saw in Subsection
4.1.1, this (d − 2)-form can be dualized into a vector feld, and hence these theories are
actually equivalent to higher-derivative extensions of Einstein-Maxwell theory. While we
will perform many computations in the frame of the (d−2)-form, their holographic aspects
are better understood in terms of the vector feld in the “Maxwell frame”.

Vector felds in the bulk of AdS couple to currents in the boundary theory. In our
case, we are working with a dimensionless gauge feld Aµ, but the holographic dictionary
actually requires that the vector has dimensions of energy. Thus, the feld that couples to
the dual current, Ja , is not Aµ but rather

Ã 
µ = `−∗ 

1Aµ , (4.72)

where ` ∗ is a length scale that should be fxed by the particular duality in each case. Here
we do not know what the dual theory is, so we keep ` ∗ general. This implies that, for
instance, the chemical potential in the dual theory is identifed as

µ = lim Ã 
t = lim `−1At . (4.73)∗ r→∞ r→∞ 
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In this section we compute other entries of the holographic dictionary of these the-
ories: the two-point function hJJi and the energy fux after an insertion of Ja , which is
equivalent to the 3-point function hTJJi. We also review the hTT i and hTTT i correlators.

Our goal is to study the electromagnetic dual of the four-derivative Electromagnetic
Quasitopological theory given by (4.30). Observe however that the term H4 will not play
any role in this section, since in order to compute hJJi and hTJJi we only need the
quadratic terms. Thus, we can ignore the H4 term for all practical purposes. In addition,
in this section we do not really need to stick to the EQG family, so out of generality we
can consider the action #Z � ρσ µν1 p d(d − 1) λL2X4 2(H2) Q ρσ
I = dd+1 x |g| R + + − µν 

, (4.74)
16πG L2 (d − 2)(d − 3) (d − 1)! 

where Qµν
ρσ contains the three possible couplings at linear order in the curvature,� � 

Qµν [µ ν] [µ ν] − α3L
2Rµν= δ δ 1 − α1L

2R − α2L
2R δ (4.75)ρσ [ρ σ] [ρ σ] ρσ . 

Then, the tensor Q̃ defned in (4.14) reads� � �� 
Qµν [µ ν] α2 2α3˜ =δ δ 1 − L2R α1 + +ρσ [ρ σ] d − 1 (d − 1)(d − 2)� � (4.76)

α2 4α3 [µ ν] 2α3 
L2Rµν+ 2L2 + R δ −[ρ σ] ρσ ,d − 1 (d − 1)(d − 2) (d − 1)(d − 2) 

and we can write the dual theory using the inverse of this tensor as #Z � 
1 p d(d − 1) λL2X4

Ĩ = dd+1 x |g| R + + − (Q̃−1)µνρσFµν Fρσ . (4.77)
16πG L2 (d − 2)(d − 3) 

The EQG case (4.30) is then recovered by setting

α3 = −(2d − 1)(d − 1)α1 − (d − 1)α2 . (4.78)

4.3.1 Stress tensor 2- and 3-point functions

It is a well-known fact that holographic higher-order gravities give rise to a di˙erent corre-
lator structure of the dual stress-energy tensor. For the Gauss-Bonnet correction in (4.77)
this e˙ect is well known [426, 550, 583], and thus we only need to quote the results from
the literature.

The 2-point function of the stress-energy tensor in any CFT has the form

CThTab(x)Tcd(0)i = Iab,cd(x) , (4.79)
|x|2d 

where Iab,cd(x) is a fxed tensorial structure and CT is the central charge. Holographically,
this correlator is determined by studying linearized gravitational fuctuations around the
AdS vacuum and evaluating the action on this solution. Now, since the linearized equations
of GB gravity are identical to those of Einstein gravity upon a renormalization of Newton’s
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constant, the value of CT is essentially obtained from the one in GR by replacing G by
Geff in Eq. (4.36), this is

L̃d−1(1 − 2λf∞)Γ(d + 2) 
CT = . (4.80)

8(d − 1)Γ(d/2)π(d+2)/2 G 

We recall that L̃ = L/ 
√ 
f∞ is the AdS radius, where f∞ is given by (4.35).

On the other hand, the 3-point function hTTT i in theories that preserve parity is
only characterized by three constants [433]. The Ward identity of the stress tensor provides
a relation between these constants and the central charge CT , so only two additional
parameters are necessary to determine the 3-point function. These parameters can be
chosen to be the coeÿcients t2 and t4 that measure the energy fuxes at infnity after an
insertion of the stress tensor [435]. In fact, the explicit relation between the coeÿcients A,
B, C of the 3-point function and the parameters t2 and t4 was found in Ref. [426].

In holographic Einstein gravity one fnds t2 = t4 = 0, and thus higher-order gravities
allow one to explore more general universality classes of dual CFTs. In particular, in
Gauss-Bonnet gravity the coeÿcient t2 is non-vanishing for d > 3 and it reads [426]

4λf∞ d(d − 1)
t2 = . (4.81)

1 − 2λf∞ (d − 2)(d − 3) 

On the other hand, t4 = 0 for the theory (4.77). A non-vanishing t4 can be achieved by
introducing other higher-derivative terms such as Quasitopological [243] and Generalized
Quasitopological Gravity [257,270], or more general theories with an Einstein-like spectrum
[489]. However, since our focus in this chapter is the presence of non-minimally coupled
gauge felds, it will be enough to stick to the case of the Gauss-Bonnet correction.

4.3.2 Current 2-point function

In a CFT, the two-point function of any pair of operators is constrained by conformal
symmetry up to a proportionality constant. In the case of a current Ja , we have

CJhJa(x)Jb(y)i = (4.82)
|x − y|2(d−1) Iab(x − y) , 

where the quantity Iab(x) is defned as
a bx x 

Iab(x) = g ab − 2 , (4.83)
2x 

and the constant CJ is the central charge of the current J . As a frst example, let us
compute this constant for a CFT dual to the following theory,Z � 

1 p d(d − 1)
dd+1Iexample = x |g| R + − F 2 + �1L2RF 2 + �2L2Rµν F µαF να16πG L2 � 

+ �3L2RµνρσF µν F ρσ . (4.84)

Notice that, in terms of Ã 
µ = `−∗ 

1Aµ, the Maxwell term in the action can be written as
1−

4g2 F̃
2 , from where we identify the gauge coupling constant g,

`2 
−2 ∗ g = . (4.85)

4πG 
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Now, in order to compute CJ , we have to consider a small perturbation of Aµ around
pure AdS space and to evaluate the action in the corresponding solution with appropriate
boundary conditions. Since in this example we do not have a GB term in the action, the
AdS curvature is simply

Rµν 2 [µ ν]
= − δ δ , (4.86)ρσ L2 [ρ σ] 

and we have the following

F 2 − �1L2RF 2−�2L2Rµν F µαF να − �3L2RµνρσF µρF νσ 
AdS (4.87)

= (1 + d(d + 1)�1 + d�2 + 2�3) F 2 . 

Thus, around pure AdS spacetime, the only e˙ect of the non-minimal couplings is to rescale
the gauge coupling constant, so that we get an e˙ective constant that reads

−2 g = g −2 (1 + d(d + 1)�1 + d�2 + 2�3) . (4.88)eff 

Therefore, it is already clear that the central charge CJ in the theory (4.84) is the same
one as in Einstein-Maxwell theory, but replacing g by geff . This yields

exampleC = (1 + d(d + 1)�1 + d�2 + 2�3) CEM , (4.89)J J 

where the Einstein-Maxwell central charge CEM reads9J 

`2L̃d−3Γ(d)
CEM ∗ = , (4.90)J 4πd/2+1GΓ(d/2 − 1) 

and in this case L̃ = L. Note that unitarity requires that CJ > 0, which sets a bound on
the couplings �i.

Let us now turn to the case of interest here, corresponding to the theory for the
(d − 2)-form (4.74), which we expressed in the Maxwell frame in (4.77). The most diÿcult
aspect of this theory is that it involves computing the inverse of a tensor, Q̃µν

ρσ. However,
this can be trivially inverted on an AdS background. On account of the GB term, the AdS
radius is in this case is L̃ = L/ 

√ 
f∞, and when evaluated on the curvature tensor (4.33),

both tensors (4.75) and (4.76) take the following value

Q̃µν 
ρσ 

[µ ν]
= αeff δ δ[ρ σ] , (4.91)

where
αeff = 1 + f∞α1d(d + 1) + f∞α2d + 2f∞α3 . (4.92)

Thus, the inverse of this tensor is simply

Q−1)µν( ˜ ρσ = 
1 [µ ν]
δ δ[ρ σ]αeff 

. (4.93)

Therefore, around an AdS vacuum, the quadratic term of the feld Ãµ = `−1 
∗ Aµ in the

action (4.77) is given by

L ̃F 2 
1 
F̃ 2 = − ,24geff 

2 geff = 
4πG 

αeff . 
`2 
∗ 

(4.94)

9This charge is four times that of [447] to account for the di˙erent normalization of the vector feld.

202



Chapter 4. Higher-derivative holography with a chemical potential

Following the same logic as in the previous example, we conclude that the central
charge CJ is the same as for Einstein-Maxwell theory, but rescaled by the constant αeff ,

CEM 
JCJ = . (4.95)
αeff 

Interestingly, since the duality transformation has the e˙ect of inverting the e˙ective gauge
coupling, the combination αeff appears in the denominator rather than in the numerator of
CJ . Thus, the 2-point function can now diverge for fnite values of the couplings αi while
it vanishes if we take any of these couplings to infnity. In any case, due to unitarity we
have to impose the constraint

αeff > 0 , (4.96)

which sets a bound on the αi parameters. For the Electromagnetic Quasitopological Grav-
ity (4.30), this reduces to the result

EQGα = 1 − f∞α1(3d
2 − 7d + 2) − f∞α2(d − 2) . (4.97)

eff 

4.3.3 Energy fuxes

We wish now to perform a conformal collider thought experiment as introduced in Ref. [435].
Consider a CFTd in fat space ds2 = −dt2 + δij dxidxj in its vacuum state, that we denote
by |0i. For future reference, we note that the bulk geometry dual to this CFT in this state
is pure AdS in the Poincaré patch, expressed as

L̃2 � �
2 2ds = −(dx 0)2 + δij dx idxj + dz , (4.98)

2z 
0with x = t. We then want to perform an insertion of a current operator of the form �iJ

i ,
where �i is a constant polarization tensor, and we wish to obtain the energy fux measured
at infnity. More precisely, we consider an operator of the formZ 

−iEx0 OE = ddx�iJ
i e ψ(x/σ) , (4.99)

awhere ψ(x/σ) is a distribution function that localizes the insertion at x = 0 for σ → 0,
aand E is the energy. In terms of the cartesian coordinates x , the operator for the energy

fux in the direction ~n is given by Z ∞ � �
d−2 0 T 0 0 iE (~n) = lim r dx x , r~n n , (4.100)i r→∞ −∞ 

where r2 ≡ δij xixj . We are interested in the expectation value for the energy fux after
the insertion of the operator OE ,

h0|O† E (~n) OE |0iEhE (~n)iOE = . (4.101)
h0|O† OE |0iE 

By making use of the O(d − 1) symmetry of the problem, one can then see that the
expectation value of this energy fux takes the form [435]� � �� 

E |� · n|2 1 hE (~n)iJ = 1 + a2 − , (4.102)
Ω(d−2) |�|2 d − 1 
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where Ω(d−2) is the volume of the (d−2)-sphere of unit radius and a2 is a theory-dependent
constant. By the construction of hE (~n)i, it is clear that it involves an integrated hTJJi 
correlator over an integrated two-point function hJJi. As it turns out, the three-point
function hTJJi is constrained by conformal symmetry up to two constants. The parame-
ter a2 is clearly a function of these constants, and the Ward symmetry of the stress-energy
tensor provides an additional relation between these and CJ . Therefore, the 3-point func-
tion hTJJi is fully determined by the central charge CJ together with the parameter a2.
We show the explicit relation in the next section.

Holographically, the energy fuxes can be obtained by evaluating the gravitational
action on the background of a shock wave, given by the metric" # 

d−2
L̃2 � � � �2 X� �22 i + − i 2ds = δ(y +)W y , u dy − dy +dy + dy + du . (4.103)
2u 

i=1 

aIt is important that the coordinates (y , u) are not the same as the original cartesian
acoordinates (x , z) of (4.98), but related to them according toPd−2 i)2 2 i1 (x z x z+ i=1y = − , y − ≡ x − − − , y i ≡ , u = , (4.104)
x+ x+ x+ x+ x+ 

± d−1for i = 1, 2, . . . , d − 2, and where x = x0 ± x . We refer to the Refs. [243, 435] for
additional details on this construction. This metric is a solution of the gravitational feld
equations if W satisfes the equation

d−2Xd − 1 
∂2W − ∂uW + ∂i 

2W = 0 , (4.105)u u 
i=1 

which holds for Einstein gravity and for general higher-derivative extensions of it [584].
We are interested in the following solution of the previous equation,

d 
i W0 u W(y , u) = � , (4.106)�d−1 

2 + 
Pd−2 i )2u (yi − yi=1 0 

iwhere W0 is a normalization constant and y = ni/(1+nd−1), where ni are the components0 
i i +of the vector ~n in the frame described by the coordinates x , related to y , y and y− as

given in (4.104).
Now, since we want to measure energy fuxes of an excited state, we must consider a

perturbation of the vector feld Aµ on top of this background. In particular, an insertion
with the operator (4.100) is dual to a non-normalizable perturbation of the vector feld.
Choosing for instance a constant polarization in the x1 direction, this means that we must

0 −iEx0consider a vector with boundary condition A 1 ∝ z e when z → 0. When extendedx 
ato the bulk and expressed in the (y , u) coordinate system, it is known [435] that this kind

+of perturbation behaves near y = 0 as

− i iEy−/2δ(yAy1 (y + ≈ 0, y , y , u) ∼ e 1) . . . δ(y d−2)δ(u − 1) . (4.107)

+This will be important later, as the shock wave is localized at y = 0 and hence we will
+eventually have to evaluate Aµ at y = 0.
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aWorking directly in terms of the (y , u) coordinates, we may simply consider a per-
turbation of the form

A = dy 1Ay1 + dy +Ay+ . (4.108)

The non-vanishing components of its feld strength tensor Fµν = ∂µAν − ∂ν Aµ are simply

Fµν = 2∂[µ|Ay1 δ| 
1 
ν] + 2∂[µ|Ay+ δ| 

+ 
ν] . (4.109)

In principle, the dynamics of the feld A is determined by the action with higher-order
corrections, in the background (4.103). However, if we ignore contact terms (this is, terms
of the form AW) in its equations of motion, they reduce simply to Maxwell’s equations,

F µνrµ = 0 , (4.110)

in the same way that the dual Lagrangian on vacuum AdS is equal to the Maxwell La-
grangian with a modifed coupling constant. By imposing the following condition,

∂−Ay+ =
1 
∂y1 Ay1 , (4.111)

2 
which ensures that the perturbation is transverse, rµA

µ = 0, the Maxwell equation is
reduced to the following equation for Ay1 

d−2Xd − 3 − 4∂+∂−Ay1 + ∂u 
2Ay1 − ∂uAy1 + ∂i 

2Ay1 = 0 . (4.112)
u 

i=1 

The solution to this equation with the boundary conditions discussed above (note that
they are expressed in terms of the x coordinates) then develops the behavior in (4.107).

In order to compute the energy fux we have to evaluate the on-shell action and
extract the piece proportional to WA2 (since this is the piece in the action that couples to
TJJ). For our theory (4.77), this requires us to evaluate frst the tensor Q̃µν

ρσ, and then
Q−1)µνcompute the components of its inverse ( ˜ 

ρσ using the relation (4.15). The tensor
Q̃µν

ρσ is given by (4.76), and taking into account that the shockwave (4.103) is an Einstein
space satisfying

df∞
Rµν = − gµν , (4.113)

L2 

we fnd that
Q̃µν [µ ν] 2α3 

L2W µν 
ρσ =αeff δ [ρ δ σ] − ρσ . (4.114)

(d − 1)(d − 2) 
Here the constant αe˙ is given by (4.92) andW µνρσ is the Weyl tensor, whose non-vanishing
components read

f∞u � � 
W −i 

+j = δ(y +) 
L2 u∂i∂j W − δji ∂uW , 

W −i = W u− +) 
f∞ 

= −δ(y u 2∂i∂uW , (4.115)u+ +i L2 

f∞u 
W u− = δ(y +) [u∂i∂iW − (d − 2)∂uW] ,u+ L2 

plus those obtained interchanging indices. These expressions have been simplifed by using
the equation of motion (4.105), since we will use them to evaluate the on-shell action. We
note that, as corresponding to a wave, the Weyl tensor satisfes

W µν ρσ 
ρσ W αβ = 0 , (4.116)
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and therefore, the inverse of Q̃ simply reads

Q−1)µν 1 [µ ν] 2α3 
L2W µν( ˜ 

ρσ = δ δ + ρσ . (4.117)[ρ σ] α2αeff eff (d − 1)(d − 2) 

We are then ready to evaluate the on-shell action (4.77). Since we are only interested in
the piece of the form WA2 , we only need to compute the following term,Z 

1 p
˜ = − dd+1 x |g|(Q̃−1)µνρσFµν FρσIWA2 

16πG #Z � (4.118)
= − 

1
dd+1 x 

p
|g| 1 

F 2 +
2α3L

2 
W µνρσFµν Fρσ . 

16πG α2 (d − 1)(d − 2)αeff eff 

−−Since the only component of the inverse metric that depends on W is g , we have

8f∞ 
2 u4δ(y+)W−− 11F 2 = 2(F−1)

2 g g + . . . = − 
L4 (∂−Ay1 )2 + . . . , (4.119)

where the ellipsis denote terms that do not depend on W and therefore are irrelevant for
this computation. On the other hand, we have

6 � � 
W µνρσFµν Fρσ 

8f∞ 
3 u 1 

= 4W −1−1(F−1)
2 = −δ(y +) 

L6 ∂1
2W − ∂uW (∂−Ay1 )2 . (4.120)

u 

Then, putting these two contributions together and integrating by parts, we fndZ � � 
L̃d−31 2f∞α3

Ĩ  
WA2 = − dudd y δ(y +)WAy1 ∂− 

2 Ay1 1 + T2 , (4.121)
4πGαeff ud−3 αeff (d − 1)(d − 2) 

where we defned
u(u∂1∂1W − ∂uW)

T2 = . (4.122)
W 
+Since the shock wave localizes the integral to y = 0, and since A 1 behaves as in (4.107),y 

iwe have to evaluate the integrand at u = 1 and y = 0, which can be done in a straight-
forward manner by plugging in the solution for W (4.106). Taking into account that the
perturbation in (4.108) has a polarization � = (�1, 0, . . . , 0), we have the following value of
T2, � � � � 

1 |� · n|2 12T2 = d(d − 1) n1 − = d(d − 1) − . (4.123)
u=1,yi=0 d − 1 |�|2 d − 1 

Therefore, comparing the expressions of the energy fux (4.102) and the on-shell action
(4.121), we immediately read o˙ the coeÿcient a2,

2dα3f∞ 2dα3f∞ 
a2 = = , (4.124)

(d − 2)αeff (d − 2)(1 + f∞α1d(d + 1) + f∞α2d + 2f∞α3) 

where we have made use of (4.92). In the case of EQG, given by the action (4.30), this
result reduces to

EQG 2d(d − 1) ((2d − 1)α1 + α2) f∞ 
a = − . (4.125)2 (d − 2)(1 − (3d2 − 7d + 2)f∞α1 − (d − 2)f∞α2) 
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4.3.4 Three-point function hTJJi 

The three point correlator hTJJi in position space in a CFT is constrained by conformal
symmetry to have the form [433, 434]

tabef (X23)g
eggfhIcg(x21)Idh(x31)hTab(x1)Jc(x2)Jd(x3)i = , (4.126)

|x12|d|x13|d|x23|d−2 

where Iab(x) is the structure introduced in Eq. (4.83) and

(1) (1) (1) (2) (3)
tabcd(X

a) = ˆ Xa)gcd +ˆ Xa) + ˆ Xa) + ˆah ( ˆ bh (X̂ a)h ( ˆ ch ( ˆ ehab ab cd abcd abcd , 
1(1)

h ( X̂a) = ab 
ˆ ˆXaXb − gab ,

d

(2) ˆh ( X̂a) = 4 ˆ Xabcd X(a gb)(d c) 
4 ˆ ˆ− XaXbgcd − 
d 

4 ˆ ˆXcXdgab + 
d 

4 
gabgcd ,

d2 

(4.127)

(3)
habcd = gacgbd + gadgbc − 

2 
gabgcd ,
d

where we also have

a x12 
a a = x1 − x2 , Xa 

23 = 
ax13 

|x13|2 − 
ax23 

|x23|2 , X̂a 
12 = 

Xa 
12 

|X12| 
, (4.128)

and so on with their corresponding permutations. This expression depends on four theory-
dependent constants â, b̂, ĉ, and ê. However, only two of them are free parameters because
of the following constraints coming from current conservation:

ˆdâ − 2b̂ + 2(d − 2)ĉ = 0, b − d(d − 2)ê = 0 . (4.129)

Following Ref. [447], we will work in terms of ĉ  and ê. In addition, there is one Ward
identity that relates the central charge CJ to these coeÿcients, namely,

2πd/2 
= � �(ĉ + ê) . (4.130)CJ 

Γ d+2 
2 

This reduces the number of independent parameters to just one, and this one can be related
to the coeÿcient a2 entering into the expectation value of the energy fux (4.102). As is
clear from Eq. (4.101), this fux involves an integrated hTJJi correlator, and therefore it is
a somewhat straightforward (but tedious) feld theory computation to obtain the desired
relationship. This was performed in general dimensions by Ref. [585], fnding the result10

(d − 1)((d − 2)dê  − ĉ) 
a2 = . (4.131)

(d − 2)(ĉ + ê) 

In this way, we can fully determine the 3-point function hTJJi from CJ and a2. Inverting
the two equations above we can indeed write� �

d+2CJ (d − 2)Γ 2 ĉ = (d(d − 1) − a2) , (4.132)
2πd/2(d − 1)3 

10The fnal result o˙ered by Ref. [585] (their formula (6.14)) has a minus sign with respect to the value
we show here. However, we have reviewed their computations and we believe that this sign is a typo. Also,
our formula here coincides with the value of a2 for the d = 4 case provided by Ref. [435].
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� � 
CJ Γ d+2 

2 ê = (d − 1 + (d − 2)a2) . (4.133)
2πd/2(d − 1)3 

Finally, using the values of a2 and CJ found for our EQGs, given by Eqs. (4.125) and (4.95)
respectively, we have h i 

(d−1)d(d − 2)2d!Ld−3`2 1 − (3d2 − 10d + 2)f∞α1 − d2−4d+2 f∞α2∗ d−2 d−2 
ĉEQG = , (4.134)

(d−3)/2
25(d − 1)2πd+1f∞ G [1 − (d − 2)f∞ ((3d − 1)α1 + α2)]

2 

d(d − 2)(d − 2)!Ld−3`2 
∗ [1 − (d − 1)(7d − 2)f∞α1 − (3d − 2)f∞α2] 

êEQG = . (4.135)
(d−3)/2

25(d + 1)πd+1f∞ G [1 − (d − 2)f∞ ((3d − 1)α1 + α2)]
2 

This result will be important for us in Section 4.5.

4.4 Causality, unitarity and constraints from the Weak Grav-
ity Conjecture

The theory (4.30), which is going to be the focus of our holographic explorations in Sections
4.4 and 4.5, depends on four free parameters. As we have seen in the previous section, these
parameters modify several entries of the holographic dictionary allowing us to probe more
general universality classes of holographic CFTs than those covered by Einstein-Maxwell
theory. However, they are not completely free, as one must demand that the hypothetical
dual theory satisfes reasonable physical properties, such as unitarity. Thus, we must
determine the allowed values of these parameters if we want to obtain any sensible answers
from holography.

4.4.1 Unitarity in the boundary

In the boundary theory, several constraints are found by demanding that the di˙erent
correlators and energy fuxes defned in the previous section respect unitarity.

There is an even more fundamental condition that our theory must satisfy: the
existence of an AdS vacuum. From Eq. (4.35), which determines the AdS scale L̃ = L/ 

√ 
f∞ 

we see that this happens if
1 

λ ≤ , (d > 3) , (4.136)
4 

which we take into account from the start.

Constraints from hTT i and hTTT i 

One frst condition comes from demanding that the central charge of the stress-tensor two-
point function be positive, CT > 0. This is also directly interpreted as a unitarity condition
in the bulk, as it is equivalent to imposing Geff > 0, hence preventing the graviton from
having a negative energy. In the presence of the Gauss-Bonnet term, the central charge is
given by (4.80), and therefore we must impose

1 − 2λf∞ > 0 . (4.137)
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One can see this is always satisfed for all the allowed values of λ, λ < 1/4, and therefore
this condition does not provide additional constraints.

On the other hand, a stronger bound is achieved by demanding positivity of the
energy 1-point function. Analogously to what we saw in Subsection 4.3.3, the expectation
value of the energy fux produced after an insertion of the stress-energy tensor �ij T ij in
general reads [435] " ! !# 

�∗ j l iE ij�iln n 1 |�ij n nj | 2 hE (~n)iT = 1 + t2 − + t4 − . (4.138)
Ω(d−2) �∗ �ij d − 1 �∗ �ij d2 − 1ij ij 

For holographic CFTs dual to (4.30), we have t4 = 0 while t2 is given by (4.81). The
ienergy fux must be positive in any direction n and for any choice of polarization �ij .

These conditions were analyzed by Ref. [426] in general dimensions, fnding that λ is
bound to the following interval,

(3d + 2)(d − 2) (d − 2)(d − 3)(d2 − d + 6) − ≤ λ ≤ . (4.139)
4(d + 2)2 4(d2 − 3d + 6)2 

We note that λ = 1/4 is not allowed by the upper bound in any dimension, while the lower
bound prevents λ to become too negative.

Constraints from hJJi and hTJJi 

The unitarity constraints on the Gauss-Bonnet coupling were known since Refs. [426,550,
583]. Let us now discuss the novel constraints on the parameters α1 and α2 of the non-
minimally coupled terms. These work very similarly to the gravitational case and follow
from the unitarity of hJJi and the energy one-point function.

The central charge of the current two-point function is given by Eq. (4.95), and, as
we already discussed there, its positivity implies that

EQGα = 1 − f∞α1(3d
2 − 7d + 2) − f∞α2(d − 2) > 0 . (4.140)eff 

Again, since this quantity is, up to a constant, the coupling constant of the Maxwell feld,
its positivity is equivalent to demanding that photons carry positive energy in the bulk.

We can obtain more interesting bounds from the energy fux created after an insertion
of the current operator, given by (4.102). Demanding that the energy fux is positive in
any direction, we fnd that the parameter a2 must satisfy

d − 1 − ≤ a2 ≤ d − 1 , (4.141)
d − 2 

where the upper bound comes from ~n ⊥ ~� and the lower bound from ~n ∝ ~�. Using the value
of a2 for our Electromagnetic Quasitopological Gravities, given by (4.125), this translates
into

2d ((2d − 1)α1 + α2) f∞− 1 ≤ − ≤ d − 2 . (4.142)
1 − (3d2 − 7d + 2)f∞α1 − (d − 2)f∞α2 

Now, since the denominator of this expression is precisely αEQG , which is assumed to beeff 
positive, by multiplying the whole inequality by αEQG we can express the two constraintseff 
as follows

1 − (7d2 − 9d + 2)f∞α1 − (3d − 2)f∞α2 ≥ 0 , (4.143)
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(d − 1)(3d2 − 14d + 4) d2 − 6d + 4 
1 − f∞α1 − f∞α2 ≥ 0 . (4.144)

(d − 2) (d − 2) 

One should not forget to impose (4.140) together with these constraints. We note that the
last inequality has a di˙erent character depending on the dimension: the coeÿcient of α1 
is positive for d = 3, 4 and negative for d ≥ 5, while that of α2 is positive for d = 3, 4, 5 
and changes sign for d ≥ 6. For instance, if α2 = 0 we fnd that α1 must lie within the
interval

(d − 1)(−3d2 + 14d − 4) 1 − ≤ f∞α1 ≤ , d = 3, 4 , α2 = 0 , (4.145)
(d − 2) 7d2 − 9d + 2 

but the lower bound disappears for d ≥ 5.
We note that the bounds are imposed directly on the renormalized couplings f∞α1,2 

rather than on the original couplings. However, observe that the value of f∞ is always
close to one for the allowed values of λ in (4.139) (and it is one in d = 3). In Fig. 4.1 we
show the di˙erent constraints and the allowed region in the (f∞α1, f∞α2) plane. We see
that the permitted region grows bigger with the dimension. A very interesting property is
that, in d = 3, 4, 5, there is an absolute upper bound for α1, regardless of the value of α2.
This value is found at the intersection of the three constraints and it reads

1 
f∞α1 ≤ , (d = 3, 4, 5) . (4.146)

d(d − 2) 

Likewise, there is an absolute lower bound for α2 in d = 3, 4:

2d − 1 
f∞α2 ≥ − , (d = 3, 4) . (4.147)

d(d − 2) 

For higher dimensions, these parameters can take values in the full real line, but interest-
ingly they both cannot be too positive. In fact, only very small values are allowed in that
case, as follows from the graph (d) in Fig. 4.1.

4.4.2 Causality in the bulk

On general grounds, it is to be expected that physically consistent bulk theories give rise to
consistent dual CFTs, and vice versa. Hence, the unitarity constraints we have discussed
must also have a meaning in the bulk. In the case of the constraints coming from the
two-point functions hTT i and hJJi, the interpretation is direct, as the positivity of the
central charges is related to that of the energy of gravitational and electromagnetic waves
in the bulk. However, the bulk interpretation of the constraints coming from the positivity
of the energy one-point function is more subtle. At least in the case of Lovelock gravity,
it is known that demanding hE (~n)iT ≥ 0 is equivalent to enforcing the bulk theory to
respect causality [436,438,583,586], in the sense that one avoids superluminal propagation
of gravitational waves [557, 559, 586, 587].11 Here we investigate the analogous connection
between causality of electromagnetic waves and positivity of hE (~n)iJ , given by (4.102).

Our starting point is a neutral planar black hole solution of the theory (4.30), with
a metric

f(r) dr2 r2 
2 2 2ds = − dt + + dx (4.148)(d−1) ,f∞ f(r) L2 

11This connection is less clear in other theories outside the Lovelock family [243, 425].
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Figure 4.1: Bounds in the constants α̃1 = f∞α1 and α̃2 = f∞α2 obtained from unitarity and
positivity of energy fuxes, given by (4.140), (4.143) and (4.144), in di˙erent dimensions. The
allowed region in each case is shaded in blue, and is infnite. For any d > 6 the allowing region
looks qualitatively similar to that obtained for d = 6.

where the function f(r) is given by s ! 
r2 4λL2m 

f(r) = 1 − 1 − 4λ + . (4.149)
d2λL2 (d − 1)r 

Note that this is the metric (4.18) in which we have set N2 = 1/f∞, so that the speed0 
of light at the boundary is one. In order to study the speed of electromagnetic waves in
the theory (4.30), we can either use its formulation in terms of the (d − 2)-form B or in
terms of the dual vector A — the result will be independent of the frame employed. Let us
consider then a perturbation of the (d − 2)-form in this black hole background. At linear
order, the equation for B can be written as� � 

Q̃[µν
µν H

α1...αd−1]rα1 = 0 , (4.150)

where Q̃µν
ρσ is the tensor introduced in (4.76). Particularized to the EQG case, this tensor

reads � � � � 
Q̃µν [µ ν] 3dα1 dα2 2 

ρσ =δ [ρδ σ] 1 + + L2R + ((2d − 1)α1 + α2)L
2Rµν

ρσd − 2 (d − 1)(d − 2) d − 2 
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� � 
4(2d − 1)α1 (3d − 2)α2 [µ ν]− 2 + L2R [ρδ σ] . (4.151)

d − 2 (d − 1)(d − 2) 

When evaluated on the metric (4.148), it takes the form

ρσ [ρ σ] [ρ σ] [ρ σ]
Q̃ = γ1ρ ρ + 2γ2ρ σ + γ3σ σ , (4.152)µν [µ ν] [µ ν] [µ ν] 

where
d−1X 

ρα = δα δtβ + δα δr σα = δαiδ
i (4.153)β t r β , β β , 

i=1 

are the projectors in the (t, r) and transverse directions, and γ1,2,3 are the following func-
tions,

α1L
2 � � α2L

2 � � 
γ1 = 1 − 3d(d − 1)f − 2(d − 1)rf 0 − r 2f 00 − df − rf 0 , (4.154)

2 2r r 
α1L

2 � �
2f 00γ2 = 1 − (3d2 − 11d + 4)f + 2drf 0(r) − r

2r 
(4.155)

α2L
2 � �

2f 00− 2(d2 − 4d + 2)f + (d + 1)rf 0 − r ,
22(d − 1)r 

α1L
2 � � 

γ3 = 1 − (d − 5)(3d2 − 10d + 4)f + 2(3d2 − 11d + 4)rf 0 + 3dr2f 00 
2(d − 2)r 

(4.156)
α2L

2 � � 
− (d − 3)(d2 − 6d + 4)f + 2(d2 − 4d + 2)rf 0 + dr2f 00 .

2(d − 1)(d − 2)r 

1Now, let us consider the following fuctuation of B, with a polarization orthogonal to x ,

−iωt+ikx1 d−1B = ψ(r)e dx 2 ∧ · · · ∧ dx . (4.157)

Its feld strength H = dB is given by� 
−iωt+ikx1 d−1H = e ψ0(r)dr ∧ dx 2 ∧ · · · ∧ dx d−1 − iωdt ∧ dx 2 ∧ · · · ∧ dx � (4.158)

1 ∧ dx 2 ∧ · d−1+ ikdx · · ∧ dx , 

and one can see that, with this ansatz, the equations of motion (4.150) are reduced to a
2single component (corresponding to the indices α2 . . . αd−1 = x . . . xd−1), so that we do

not need to activate other components of B. Since we want to study the small wavelength
1limit ω, k → ∞ we only need to keep the derivatives with respect to t and x . Under this

approximation, we get

� 
d−1] 
� L2(d−2) � f∞ L2 � 

2 d−1 
Q̃[µν ...x ...x rα µν H

αx2 ∝ − (iω)2γ2 + (ik)2γ1 Bx , (4.159)
r2(d−2) 2f(r) r 

and hence we get the following dispersion relation

ω2 γ1L
2f(r) 

= . (4.160)
k2 2γ2f∞r 
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If we expand this near infnity, we obtain� � � � 
ω2 L2m 1 − (7d2 − 9d + 2)f∞α1 − (3d − 2)f∞α2 1 

= 1 − + O . (4.161)EQG 2dk2 d r(d − 1)(2 − f∞)α re˙

Now, this is the phase velocity (squared) of the wave front, and consistency with causality
requires that it be smaller than the speed of light, ω/k ≤ 1. Since f∞ < 2 and we take
EQGαe˙ > 0, the condition ω/k ≤ 1 implies

1 − (7d2 − 9d + 2)f∞α1 − (3d − 2)f∞α2 ≥ 0 , (4.162)

which matches precisely the constraint (4.143) computed from the lower bound in the
allowed range of values of a2. Now, playing with several values of the parameters that
respect this bound, it appears that no other constraints are necessary: once (4.162) is
satisfed, then ω2/k2 ≤ 1 everywhere inside the bulk. A more thorough of these causality
constraints deeper in the bulk interior would be convenient, though.

We can obtain di˙erent constraints by choosing inequivalent polarizations for the
B feld. This means that we have to consider a B feld which is polarized along the r 
direction. However, since the physical constraints on the Maxwell frame are the same, it
is simpler to just study a perturbation of the dual vector feld Aµ of the form

−iωt+ikx2 1A = φ(r)e dx . (4.163)

One can see that the H form obtained by dualizing this vector is not of the form (4.158),
d−1and in particular it has a term ∼ kdt ∧ dr ∧ dx3 ∧ . . . ∧ dx , indicating polarization of

B along the r direction. The (linearized) modifed Maxwell equation for this vector readsh i 
Q−1)µνrµ ( ˜ 

ρσF ρσ = 0 , (4.164)

Q−1)µνwhere ( ˜ 
ρσ is the inverse of the tensor in Eq. (4.152). One can see the inverse is

simply given by

1 2 1ρσ [ρ σ] [ρ σ] [ρ σ]
(Q̃−1) = ρ ρ + ρ σ + σ σ . (4.165)µν [µ ν] [µ ν] [µ ν]γ1 γ2 γ3 

Now, the Maxwell equation for the ansatz in Eq. (4.163) is reduced to the single component
1ν = x , which reads� 

ω2L2f∞ 

r2fγ2 
− 

� 
k2L4 

φ + 
r4γ3 

(d − 1)fL2 
φ0 

3γ2r
+ 

d 
dr 

� � 
fL2φ0 

r2γ2 
= 0 . (4.166)

Thus, in the short-wavelength limit we get

ω2 

k2 = 
L2f(r)γ2 

r2f∞γ3 
, (4.167)

and expanding this near infnity we have

ω2 

k2 = 1 − 

h i 
L2 1 − d−1 m (3d2 − 14d + 4)f∞α1 − d2−6d+4 f∞α2d−2 d−2 

EQG d(d − 1)(2 − f∞)α re˙

� � 
1 

+ O 
2dr

, (4.168)
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where we plugged in the values of γ2 and γ3 given in (4.155) and (4.156). In order for this
perturbation not to violate causality, it is necessary that ω2/k2 ≤ 1 as we move away from
the boundary, and therefore, we obtain the constraint

d − 2 − (d − 1)(3d2 − 14d + 4)f∞α1 − (d2 − 6d + 4)f∞α2 ≥ 0 , (4.169)

which is precisely the condition obtained by looking at the upper bound in the value of a2,
given in Eq. (4.144). By looking at the behavior of (4.167) in the bulk for several choices
of the parameters, we seem to fnd that, whenever Eq. (4.169) is satisfed, then ω2/k2 ≤ 1 
everywhere. However, it would again be interesting to perform a more thorough analysis
in this regard.

One can be convinced that there are no other inequivalent polarizations by counting
the number of them captured by (4.157) and (4.163). If we fx the direction of propagation,
(4.157) is the only possible B feld orthogonal to the direction of propagation and with no
t and r components, while there are d − 2 polarizations of the type (4.163) for A obtained

iby exchanging dx1 with dx , i =6 2. In total we have d − 1 = D − 2 di˙erent polarizations,
which is the number of degrees of freedom of a massless vector feld (and of a (D − 3)-
form) in D dimensions. Therefore, we conclude that there are no additional constraints
from causality in the background of a neutral black brane.

It would be interesting to study as well the case of charged black branes, which would
indeed be relevant if one wishes to perform holography in such backgrounds. In that case,
gravitational and electromagnetic perturbations are linearly coupled, making the analysis
of the speed of propagation a bit more involved. However, this could perhaps lead to even
stronger constraints than the ones we have derived.

Finally, let us note that there are other types of causality violations, like the ones
found in Ref. [428] involving the graviton three-point vertex. One of the implications of
that work in the holographic context is that the Gauss-Bonnet coupling (in units of the AdS
scale) must be very small: |λ| << 1. These bounds would be applicable in principle to any
higher-order gravity that modifes the three-point function structure of Einstein gravity,
but let us note that there are non-trivial higher-curvature terms that do not modify this
three-point function, and one could not apply these results to them. In any case, we do
not know of similar constraints for the RH2 and H4 terms in our theory (4.30). As a
matter of fact, there are theories, as QCD, that have a large value of a2, and in order to
capture these holographically one needs bulk theories with non-minimal higher-derivative
terms with ∼ O(1) couplings, as noted in [435].

4.4.3 WGC and positivity of entropy corrections

So far, we have been able to constrain three of the four parameters of our theory (4.30)
by imposing unitarity of the boundary theory, which is equivalent to causality in the bulk
theory. However, the parameter β is still unconstrained as it does not a˙ect any 2- or 3-
point function. Also, the existing constraints basically prevent the couplings from becoming
too large, but they do not say anything about the sign of these parameters. Interestingly
enough, additional constraints can be found by applying the mild form of the Weak Gravity
Conjecture (WGC) [474,528], which has recently received a lot of attention in the context
of higher-derivative theories [6, 119, 125, 126, 475, 529, 530, 532, 533, 588, 589]. In the case
of AdS spacetime, the implications of the WGC were recently studied in Ref. [476] — see
also [590–592]. One of the heuristic ideas behind the WGC is that extremal black holes
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should be able to decay. This will happen if there exists a particle whose charge-to-mass
ratio is larger than the one of an extremal black hole, which is the standard form of the
WGC [416,593]. However, the mild form involves only black holes and essentially it claims
that the decay of an extremal black hole into a set of smaller black holes should be possible,
at least from the point of view of energy and charge conservation. Since extremal black
holes have a fxed mass for a given value of the charge, Mext(Q), such decay process is only
possible if

Mext(Q1 + Q2) ≥ Mext(Q1) + Mext(Q2) . (4.170)

For asymptotically fat black holes in Einstein-Maxwell theory we have Mext(Q) ∝ |Q|, so
the inequality above is saturated. On the other hand, higher-derivative corrections will
modify the charge-mass relation, and by demanding that the deviations respect the prop-
erty (4.170) one obtains a constraint on the coeÿcients of the higher-derivative operators.
In all cases, one can see that, in order to preserve (4.170), the corrections to the extremal
mass must be negative, δMext < 0 [594].

In Anti-de Sitter space, however, things work di˙erently. As noted in [476], the
bound (4.170) is no longer saturated for extremal AdS black holes, and hence perturbative
(arbitrarily small) higher-derivative corrections cannot violate it.12 Instead, that reference
makes use of the proposal of Ref. [528] that the corrections to the entropy of black holes
of arbitrary charge and mass should be positive as long as those black holes are thermo-
dynamically stable. It is known [531] that, when applied to near-extremal black holes, the
positivity of corrections to the entropy is connected to the negativity of the corrections to
the extremal mass (see also [595]). Therefore, one can still use the condition δMext < 0 
to bound the higher-order coeÿcients, just like in the asymptotically fat case. However,
the conditions studied in [476] are more ambitious, as they demand δS > 0 for arbitrary
charge and mass (as long as the specifc heats are positive), not only for near-extremal
black holes. Let us work out these conditions for our theory (4.30).

The Wald entropy of static black holes was computed in (4.56), which we reproduce
here for convenience, ! 

d−1 2L2r Vk,d−1 q2α1 2kL2(d − 1)λ+S = 1 + + . (4.171)
2d−2 24G r (d − 3)r++ 

This expression together with the relation (4.52) give us the exact value of the entropy
S(M, q). However, here we only need the perturbative correction to the entropy at fxed
charge and mass. It is useful to introduce the variable

(0)
r+ x = , (4.172)
L 

where r(0) is the zeroth-order value of the radius, which is obtained implicitly from (4.52)+ 
by setting to zero the higher-order terms. We also note that the extremal value of the
charge in the two-derivative theory readsr 

d − 1(0)
qext = (Lx)d−2 

2 
p
dx2 + k(d − 2) , (4.173)

12Note however, that in the limit of small size, AdS black holes behave as asymptotically fat ones, and
in that limit (4.170) could still be applied to constrain the higher-derivative corrections.
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and thus let us introduce the variable
q

ξ = 
(0) , (4.174)
qext 

that ranges from 0 to 1. Since we are working at fxed M and q, the equation (4.52) allows
us to obtain the correction to the horizon radius,

(0) (1)
r+ = r + r + . . . , (4.175)+ + 

where the frst-order correction reads

(1) k2λL 3α1(d − 1)kLξ2 α2kLξ
2 

r = + ++ (ξ2 − 1) x ((d − 2)k + dx2) (ξ2 − 1) x (ξ2 − 1) x � � (4.176)
β(d − 1)Lξ4 (d − 2)k + dx2 

− . 
4(3d − 4) (ξ2 − 1) x 

Inserting this into our expression for the entropy, we get the following shift at linear order," � � 
(d − 1)Ld−1xd−3Vk,d−1 k 2 

δS(M, q) = kλ + 
4G (ξ2 − 1) ((d − 2)k + dx2) d − 3 � � ! 

k ξ2(d − 2) + 2d − 1 α2kξ
2 

+ α1ξ
2 + dx2 + 

ξ2 − 1 ξ2 − 1 � �# 
β(d − 1)ξ4 (d − 2)k + dx2 

− . (4.177)
4(3d − 4) (ξ2 − 1) 

According to [476], we should then demand this correction to be positive for any black hole
that is thermodynamically stable at zeroth order. Let us focus on spherically symmetric
black holes k = 1. The k = 0 case is obtained as the limit of large size of spherical black
holes, while the k = −1 case is somewhat di˙erent and we will comment on it below. We
can consider frst neutral black holes, ξ = 0, in whose case only the Gauss-Bonnet term is
relevant, � � 

(d − 1)Ld−1xd−3V1,d−1 1 2 
δS(M, q) 

ξ=0 = λ − + . (4.178)
4G (d − 2) + dx2 d − 3 

The variable x can range between 0 and infnity, and for any of these values the quantity
between parenthesis is positive for d ≥ 3.13 Now, neutral large black holes are known to
be stable in AdS, and therefore, the WGC would imply that the GB coupling must be
non-negative,

λ ≥ 0 . (4.179)

This actually makes sense, as the Gauss-Bonnet density arises explicitly from stringy e˙ec-
tive actions and in many instances14 this indeed has a positive coupling [110,124,596,597]
— see also [598] and the discussion in the Appendix B of [424]. Next, we can look at the

13For d = 3 one should redefne λ̂ = λ/(d − 3) and take the limit d → 3 with fxed λ̂. The correction to
the entropy is topological and identical for any spherical black hole.

14However, Ref. [572] showed that a negative λ can also be achieved, indicating that λ can actually have
di˙erent signs depending on the setup.
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case of (near-) extremal black holes, which are also stable in the two-derivative theory.
This corresponds to the limit ξ → 1, and hence we get" 

(d − 1)Ld−1xd−3V1,d−1 λ 
δS(M, q) 

ξ→1 = − − 3(d − 1)α1 − α2
4G(1 − ξ2) (d − 2) + dx2 � �# (4.180)

β(d − 1) (d − 2) + dx2 
+ . 

4(3d − 4) 

This correction has a non-trivial dependence on the radius of the black hole, and therefore
imposing that it be positive implies several constraints on the coupling constants. For large
black holes, the β correction dominates and δS ≥ 0 implies

β ≥ 0 . (4.181)

On the other hand, in the limit of small black holes x → 0 we have

λ β(d − 1)(d − 2)− − 3(d − 1)α1 − α2 + ≥ 0 . (4.182)
d − 2 4(3d − 4) 

This is arguably the most reliable constraint we can produce from the WGC, as small black
holes behave as asymptotically fat ones, and one recovers the argument of Eq. (4.170).
The condition above implies that the shift in the extremal mass is negative hence ensuring
that (4.170) is satisfed for black holes much smaller than the AdS scale.

Finally, another interesting condition comes from large black holes x → ∞ (or equiv-
alently, black branes, k = 0), of arbitrary charge. In that case we have" # 

d(d − 1)Ld−1xd−1V1,d−1 β(d − 1)ξ4 
δS(M, q) = α1ξ

2 + , (4.183)
x→∞ 4G 4(3d − 4) (1 − ξ2) 

and in order for this quantity to remain positive for any value of ξ ∈ [0, 1), we must impose
not only β ≥ 0, but also

α1 ≥ 0 . (4.184)

This is a very powerful constraint, since, when combined with the unitarity bounds shown
in Fig. 4.1, it implies that α1 and α2 can only lie in a small compact set of the plane
for d = 3, 4, 5. The Gauss-Bonnet coupling is also bound to a small interval 0 ≤ λ ≤ 
(d−2)(d−3)(d2−d+6) , so only β can take arbitrarily high values with the current constraints.

4(d2−3d+6)2 

It would be interesting to investigate whether di˙erent constraints could impose an upper
bound on β. The results from next section suggest indeed that β should not be too large.

Before closing this section, let us discuss what happens if one attempts to enforce
the WGC bounds on hyperbolic black holes as well. For simplicity, we can consider neutral
black holes, ξ = 0. One can check that all of these solutions are thermally stable in the
two-derivative theory, and therefore one should impose δS ≥ 0. From (4.177) we obtain� � 

(d − 1)Ld−1xd−3V−1,d−1 1 
δS(M, q) = (−λ) +

2 
, (4.185)

k=−1,ξ=0 4G dx2 − (d − 2) d − 3 

and since hyperbolic black holes have dx2 − (d − 2) ≥ 0, the positivity of δS implies in
this case that λ ≤ 0, which is the opposite that what we found for spherical and planar
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black holes.15 In principle, these constraints should hold at the same time for any choice
of boundary geometry, since the dual CFT is always the same. However, this would lead
to the conclusion that λ = 0, which seems an unreasonably strong constraint. Likewise
we fnd similar stringent bounds on the other couplings if we combine the cases k = 1 
and k = −1. We do not know how to resolve this issue, but we feel more inclined to
trust the constraints for spherical black holes, and ignore those for k = −1. On the one
hand, spherical black holes make direct connection with the original motivation of the
WGC regarding black hole evaporation, while the evaporation of a hyperbolic black hole is
probably a meaningless problem (they are always stable). On the other, as we mentioned
above, a positive GB coupling λ > 0 is actually realized in many explicit string models (in
particular, this is the case in the Heterotic string e˙ective action [110,124]). This suggests
that the positivity-of-entropy bounds might not be applicable to hyperbolic black holes,
but it would be interesting to understand why.

4.5 Charged Rényi entropies and generalized twist operators

Entanglement entropy (EE) [600] and Rényi entropies (RE) [441, 442] — as well as their
holographic counterparts [446,601,602] — constitute a very useful way to probe the amount
of entanglement in quantum feld theories [603,604]. Given a biparition of the Hilbert space
into two subspaces A and B, Rényi entropies are defned as

1 
Sn(A) = log TrρnA , (4.186)

1 − n 

where ρA = TrBρ is the reduced density matrix of the subsystem A, obtained by taking the
partial trace over the subsystem B of the total density matrix. Here, we are interested in
the case in which A and B correspond to the subsystems associated to two spatial regions
(at a fxed time) separated by an entangling surface Σ. The Rényi index n is usually
considered an integer, which allows one to compute these entropies by using the replica
trick [600]. However, if one is able to continue n to an arbitrary real number, then one can
recover the entanglement entropy as the limit n → 1,

SEE(A) = −Tr [ρA log(ρA)] = lim Sn(A) . (4.187)
n→1 

Now, these entropies can be generalized to the case in which the QFT is charged
under a global symmetry. The appropriate generalization, proposed in Ref. [447], reads

Sn(µ) = 
1 

log Tr [ρ̄A(µ)]
n , (4.188)

1 − n 

where
µQAρAe 

ρ̄ A(µ) = (4.189)
µQA ]Tr [ρAe 

is a new density matrix that depends on the chemical potential µ, conjugate to the charge
QA enclosed in the region A.

Let us focus on the case in which the quantum theory is defned in fat space and
the entanglement surface Σ is a sphere of radius R, namely Σ = Sd−2(R). For a CFT,

15In d = 3, Ref. [599] already noticed that the correction to the entropy associated to the GB term
cannot have a defnite sign, since one can have black holes of di˙erent topologies.
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one can then prove, by using the Casini-Huerta-Myers map [445], that these charged Rényi
entropies are related to the thermal entropy of the same theory placed on the hyperbolic
cylinder S1 × Hd−1(R). The precise relation reads [446, 447]Z T0 

Sn(µ) = 
n 1 

Sthermal(T, µ)dT , (4.190)
n − 1 T0 T0/n 

where
T0 =

1 
. (4.191)

2πR 
We remark that this is a formula that applies to a CFT, but from here it is evident how
to compute these quantities holographically. In fact, the thermal entropy of a holographic
CFT on S1 × Hd−1(R) is nothing but the Wald’s entropy of a black hole with a hyperbolic
horizon. In this section we explore the properties of the holographic RE for the theory
(4.30), and afterwards we also analyze a couple of related quantities: the scaling dimension
and the magnetic response of generalized twist operators [447].

4.5.1 Rényi entropies

In order to compute charged Rényi entropies for the holographic CFTs dual to (4.30),
we have to consider charged black hole solutions with hyperbolic horizons, which for our
theories take the form

2 
2 2ds = −N− 

2
1f(r)dt +

dr 
+ r 2dΞ2 , (4.192)

f(r) 

where N−1 is a constant, dΞ2 is the hyperbolic space of unit radius and f(r) is given by
Eq. (4.42) with k = −1. Since f(r) behaves asymptotically as f(r) ∼ r2f∞/L2 , we set the
constant N−1 to

N−1 = √ L . (4.193)
f∞R 

In this way, the boundary metric is conformal to

2 2dsbdry = −dt + R2dΞ2 , (4.194)

so that the spatial slices are hyperbolic spaces of radius R. The Rényi entropies across
a spherical region are then computed through the integral (4.190), where Sthermal is the
black hole entropy, given by (4.56). Notice that it is important that Sthermal is considered
as a function of T and µ, so that the integration is carried out at constant µ. Although at
frst sight the integration may look tricky, it is nonetheless straightforward, since the frst
law (4.70) implies

S 
∂Ω(T, µ) 

= − 
∂T 

. (4.195)

We then obtain
Sn = 

n 1 
n − 1 T0 

(Ω(T0/n, µ) − Ω(T0, µ)) . (4.196)

Back in Eq. (4.71) we already obtained the expression for the grand canonical potential Ω 
in terms of the horizon radius and the charge for spherical, planar or hyperbolic horizon
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d−1Ld−2topologies. Setting k = −1, defning x = r+/L and q = px and writing T = 
T0/n = (2πRn)−1 , the expression for Ω reduces to" � 

d2 d √ � 
Ld−1V−1,(d−1) d − 

2p x d−2 2x f∞ 3βp4x 
Ω = √ (d − 1)x − x (d − 1) + + (4.197)

16πG f∞R d − 2 n 3d − 4 #� √ � � √ � 
4x f∞ 2 d−2 f∞R 2 d−2− (d − 1)λxd−4 1 + + 2α1p x 3(d − 1) + 

2x 
+ 2α2p x . 

n(d − 3) n 

However, on account of (4.196), we need to write Ω in terms of n and µ, so that we have
to fnd the relations x = x(n, µ) and p = p(n, µ). For that, it is convenient to present the
expressions of n and µ in terms of x and p, which follow after setting k = −1 in Eqs. (4.53)
and (4.66): " 

1 1 � � 
= √ −(d − 2) + dx2 + (d − 4)λx−2 

n 2x f∞ (1 − 2p2α1 − 2λx−2) # 
2 42p � � βx2p− x 2 − d(3(d − 1)α1 + α2) + , (4.198)

(d − 1) (d − 1) " #� √ � 
Lp x α1 2x f∞ α2 xp2β 

µ = √ − 3(d − 1) + − − . (4.199)
` ∗ f∞R (d − 2) x n x (3d − 4) 

The equations (4.197), (4.198) and (4.199) allow us to study the Rényi entropies (4.196)
exactly. A useful intermediate expression for Ωn(µ) ≡ Ω(T0/n, µ), is the following one," 

dLd−1V−1,(d−1) βp4x2Ωn(µ) = √ (d − 1)x d−4(x 4 − x + λ) + 
16πG f∞R (3d − 4) # (4.200)√ � � √ 

2λ(d − 1) ` ∗Rf∞ d−1 f∞ d−1− 2 x 1 − − 2 µpx ,
2n (d − 3)x L 

which is a bit simpler, but it still depends on x = x(n, µ) and p = p(n, µ). In practice, it
seems extremely challenging (if not impossible) to analytically invert the equations (4.198)
and (4.199) to encounter x = x(n, µ) and p = p(n, µ) explicitly. To circumvent this
impediment, we focus next in two limiting regimes, namely, small µ and µ → ∞.

4.5.1.1 Small µ 

In order to reduce the clutter, let us introduce the notation
√ 

` ∗R f∞ 
µ̄ = µ , (4.201)

L 

as this combination appears everywhere. We consider here the case in which µ̄ << 1, so
that carrying out the inversion procedure of Eqs. (4.198) and (4.199) in a perturbative
expansion in µ̄ suÿces. Furthermore, as an attempt to make explicit computations and
capture the e˙ects produced by the non-minimal couplings, we are going to set λ = 0 all
along this section (so f∞ = 1). After all, the e˙ect of the GB coupling on (uncharged)
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Rényi entropies is known [446] — see also [130,257,493,605] for other studies of holographic
RE in higher-order gravities.

Consequently, we can expand x(n, µ) and p(n, µ) as� � � �
2 4 3 x(n, µ) = x̂n + δx̂n µ̄ + O µ̄ , p(n, µ) = δpnµ̄+ O µ̄ . (4.202)

By solving Eqs. (4.198) and (4.199), the coeÿcients x̂n, δx̂n and δp̃n can be found to bep−1n + n−2 + d(d − 2) 
x̂n = , (4.203)

d � � � � 
3 2 1 d2(d − 2)2x̂ 2(d + 1)α1 + x̂ dα1 − + α2n n d−1 d−1 

δx̂n = − , (4.204)
2 2(d(x̂ + 1) − 2)(x̂ (d(d − 2)α1 − 1) + (d − 2)((2d − 1)α1 + α2))2 
n n 

(d − 2)x̂n
δpn = 

EQG . (4.205)
2α − (x̂ − 1)(d(d − 2)α1 − 1)eff n 

We recall that αEQG , given in Eq. (4.97), is the combination that appears in the denom-eff 
inator of the central charge CJ in Eq. (4.95). Taking into account these perturbative
expansions, Ωn can be written in the following explicit form:" 

Ld−1V−1,(d−1) d−2 2Ωn(µ) = − x̂ (x̂ + 1) n n16πGR # (4.206)
d2(d − 2)x̂ � � 
n 2 4+ 

EQG µ̄ + O µ̄ . 
2α − (x̂ − 1)(d(d − 2)α1 − 1)eff n 

Now, noting that x̂1 = 1, we have " # 
Ld−1V−1,(d−1) d − 2 � �

2 4Ω1(µ) = − 1 + 
EQG µ̄ + O µ̄ . (4.207)

8πGR αeff 

From here, we can infer the following form for the n-th Rényi entropy:" 
d−2 2nLd−1V−1,(d−1) 2 − x̂ (x̂ + 1) n nSn = (4.208)

4(n − 1)G 2 ⎛ ⎞ # 
d(d − 2) x̂ � � 
n 2 4+ ⎝1 − 2 

⎠ µ̄ + O µ̄ .
EQG 

1 − (x̂ −1)nα (d(d − 2)α1 − 1)eff EQGαeff 

Let us remark at this point that the volume V−1,(d−1) is a (diverging) function of the ratio
between the radius of the entangling surface R and a cut-o˙ δ. In fact, the leading term
gives an area law,

Rd−2 2π(d−1)/2VSd−2 
V−1,(d−1) = + . . . , where VSd−2 = . (4.209)

δd−2d − 2 Γ[(d − 1)/2] 

It is interesting to keep only the universal part in this expansion, which will provide
us with the regularized RE. In even d, the series expansion of the volume contains a term
log(R/δ), and it is clear that the coeÿcient of this term is universal as it is invariant under
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rescalings of the cut-o˙. On the other hand, for odd d the series contains a constant term.
The universality of this term is less clear, as it could be shifted by performing a rescaling
of R of the form R → R(1 + cδ), but we will not worry about this issue here.16 Taking
this into account, one can see that the universal part of the volume reads [445]

νd−1 = 

⎧⎪⎨ ⎪⎩ 
d−2 

(−) 2 4 log(R/δ) d even , 

d−1 
(−) 2 2π d odd . 

(4.210)V univ. 
νd−1 

= where−1,d−1 VSd−1 ,
4π 

We will use this regularized volume from now on. It is also useful to introduce the following
quantity,

Ld−1 π(d−2)/2 
∗ a = , (4.211)

8G Γ(d/2) 
which represents the universal contribution to the regularized EE in holographic Einstein
gravity. This parameter can also be easily computed for higher-curvature gravities [508,551]
and in general it coincides with the a-type trace-anomaly charge in the case of even d, while
in odd dimensions it is proportional to the free energy of the corresponding theory evaluated
on Sd [445]. Using this parameter, we can fnally write our holographic REs as" 

d−2 2na ∗νd−1 2 − x̂ (x̂ + 1) n nSn = 
(n − 1) 2 ⎛⎝1 − 

⎞⎠ µ̄2 

# (4.212)�d(d − 2) x̂ 
µ̄4n + O+ . 

1 − (x̂
2 −1)n 
EQGαeff 

αEQG 
eff (d(d − 2)α1 − 1) 

Let us then explore the properties of these entropies, starting with the relevant case
of the entanglement entropy n → 1. This limit yields

SEE = lim Sn = a ∗ νd−1 

⎡ ⎢⎣1 + 
n→1 EQG(d − 1) αeff 

�(d − 2)2(1 − 3d(d − 1)α1 − dα2)�2 µ̄2 

⎤ ⎥⎦+ O µ̄4
� 
. (4.213)

It is interesting to wonder about the sign of the coeÿcient of µ2 in (4.213), or more precisely,
of the quantity

∂2 
µ̄SEE 2(d − 2)2(1 − 3d(d − 1)α1 − dα2)�2 . (4.214)� 

µ=0 (d − 1) αEQG 
eff 

= 
SEE 

In Einstein-Maxwell theory we can see it is positive, so that the holographic entanglement
entropy grows when we turn on a chemical potential. Could this be di˙erent in other
theories? If the parameters α1 and α2 were arbitrary, this coeÿcient could have either
sign, but we must take into account the constraints in Sec. 4.4. In fact, it suÿces to
consider the unitarity constraints in 4.4.1. Let us frst note that the unitarity constraint
(4.143) can be expressed as

2 3d − 2 − + 2dα1 + αEQG ≥ 0 . (4.215)eff d − 2 d(d − 2) 
16A natural regulator in that case is provided by the mutual information [606], which is a UV fnite

quantity.
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Chapter 4. Higher-derivative holography with a chemical potential

Then, we have

2 d 
1 − 3d(d − 1)α1 − dα2 = − + 2dα1 + αEQG 

eff d − 2 d − 2 
(4.216)

2 3d − 2 EQG> − + 2dα1 + αeff ≥ 0 ,
d − 2 d(d − 2) 

EQG 3d−2 dwhere we simply used that α > 0 and that < for d ≥ 3. Note that theeff d(d−2) d−2 

result we obtain is a strict inequality, since αEQG = 0 is not allowed. Thus, this resulteff 
implies that

∂2 
µ̄SEE 

> 0 (4.217)
SEE µ=0 

for all the (unitary) holographic CFTs dual to our bulk theories. Given the robustness of
this result, it is very tempting to conjecture that the entanglement entropy should always
grow with the chemical potential for any unitary CFT at zero temperature17. In fact, in
Section 4.6 we will explicitly prove that, for general d-dimensional CFTs with d ≥ 3, the
leading correction to the uncharged entanglement entropy across a spherical entangling
surface is quadratic in the chemical potential, positive defnite, and universally controlled
(up to fxed d-dependent constants) by the coeÿcients CJ and a2.

Remarkably, it is possible to extend this result to prove that the coeÿcient of µ2 for
all Rényi entropies associated to (4.30) (in Eq. (4.212)) with n ≥ 1 is strictly positive. Forp
that, let us note that for n > 1 we have (d − 2)/d < xn < 1. On noting the inequality

(3d − 2) 2 d1 − (1 − x̂ ) < x̂ , d ≥ 3 , n > 1 (4.218)n n2d 
we observe that, defning ξ = d(d − 2)α1 − 1, for n > 1 we have

d (3d−2) 2 3d−2 2 EQG 2 x̂ 1 − (1 − x̂ ) (1 − x̂ )α + (1 − x̂ )ξ n 2d n 2d n eff n1 − > 1 − = ≥ 0 . (4.219)
(x̂2 −1) (x̂2 −1) EQG 2n n1 − ξ 1 − ξ α + (1 − x̂ )ξEQG EQG eff nα αeff eff 

The inequalities here follow from the fact that both the numerator and the denominator
in the last term are positive:

2 � � 
3d − 2 2 EQG 2 (1 − x̂n)(d − 2) (3d − 2) EQG 2 

(1 − x̂ )α + (1 − x̂ )ξ = α + 2dα1 − ≥ 0 ,n eff n eff 2d 2 d(d − 2) d − 2 
3d − 2EQG 2 2 EQG 2α + (1 − x̂ )ξ > (1 − x̂ )α + (1 − x̂ )ξ ≥ 0 , (4.220)eff n n eff n2d 

2where have used (4.215) and taken into account that 1 > 1 − x̂ ≥ 0 and that (3d−2) (1 −n 2d 
2x̂ ) < 1 for every d ≥ 3. By applying (4.219) in (4.212) and taking into account (4.217),n 

it follows that
∂2 
µ̄Sn 

> 0 , n ≥ 1 . (4.221)
Sn µ=0 

Therefore, we have proven that, as long as unitarity is respected, the Rényi entropies (with
n ≥ 1) always grow when a chemical potential is turned on. Again, it is interesting to
speculate about the possible validity of this result beyond our current holographic setup.

17This is in line with the results of Ref. [607] for the holographic EE of an infnite rectangular strip in
the case of µ 6= 0 and T = 0.
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Chapter 4. Higher-derivative holography with a chemical potential

Regarding the case n < 1, we can consider the limit n → 0, which yields

2d−1a ∗νd−1 
� 

(d − 1)n2d2 (d − 2)n2d2 � � �
2 4lim Sn = 1 + + µ̄ + O µ̄ . (4.222)

d−1ddn→0 n 4 2(1 − d(d − 2)α1) 

For n → 0 the e˙ect of the chemical potential becomes irrelevant, as it scales with n 
relative to the leading term, but we observe that the coeÿcient of µ̄2 is necessarily positive
in d = 3, 4, 5, on account of the bound (4.146), coming again only from unitarity con-
straints. However, this fails to be true in higher-dimensions, since α1 can take arbitrarily
large values in d ≥ 6.

We can fnally study the dependence of the REs on the index n. It is known that
standard (i.e., at zero chemical potential) REs must satisfy the following inequalities [446]:� � 

∂ ∂ n − 1 

∂ 

Sn
∂n 

≤ 0 , 
∂n 
∂2 

n 
Sn ≥ 0 , 

(4.223)

((n − 1)Sn) ≥ 0 ,
∂n

((n − 1)Sn) ≤ 0 . 
∂n2 

It was shown in Ref. [447] that these inequalities are also satisfed by the holographic
charged Rényi entropies in Einstein-Maxwell theory. It is therefore interesting to check
whether these inequalities still hold for our holographic higher-derivative theories, assuming
that the values of the couplings satisfy the unitarity and WGC constraints in Sec. 4.4. Since
the uncharged Rényi entropies for holographic Einstein gravity (obtained by setting µ̄ = 0 
in Eq. (4.212)) already satisfy such inequalities [446], it suÿces to check that the coeÿcient

2of µ̄ in Eq. (4.212) fulflls them. This will guarantee that the charged RE also satisfy
those inequalities, at least in the regime where the O(µ4) terms are subleading. To this
aim, we show in Fig 4.2 the profle of ∂2Sn/S1 for a few values of α1 and α2 which areµ̄ µ=0 
allowed by the physical constraints in d = 3, 4. We check that all the previous inequalities
indeed hold for our EQG theories.

It is quite impressive that all of the properties one expects to fnd in Rényi entropies
are satisfed whenever the parameters of the bulk theory are taken to satisfy a minimal
set of physical constraints. We remark that for arbitrary values of α1 and α2 one could
obtain very di˙erent results, and even divergencies in the RE. In fact, we have been able
to observe that choosing values of these couplings that do not satisfy all the constraints
obtained from causality/unitarity and the WGC does lead to these problems. Instead, for
the physically sensible values of these parameters, the chemical potential always increases
the amount of entanglement and the REs have the same qualitative features found for
Einstein-Maxwell theory.

4.5.1.2 Large µ 

Let us now study the opposite limit, µ → ∞. First it is convenient to revise this limit in
the case of Einstein-Maxwell theory [447], since this will inspire us to properly generalize
the study for our EQG (4.30). For that, let us write the temperature T = (2πRn)−1 and
the chemical potential µ̄ in this particular case:� � 

1 1 2p2x2 px 
= dx2 − (d − 2) − , µ̄|EM = . (4.224)

2x d − 1 d − 2n EM 
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Figure 4.2: The coeÿcient of µ̄2 in the Rényi entropies for d = 3, 4. We have used di˙erent values
for the couplings α1 and α2 which are compatible with unitarity and the WGC. Remarkably
enough, we fnd that all inequalities (4.223) are satisfed.

From here, one can solve for x to fnd:" s # 
21 2d(d − 2)2n

2 + 2x|EM = 1 + 1 + d(d − 2)n µ̄ . (4.225)
nd (d − 1) 

In the limit µ̄ → ∞, we infer that s � � 
2 1 1 

x|EM = (d − 2) µ̄+ + O ,
d(d − 1) nd µ̄ 

(4.226)r � � 
d(d − 1) d − 1 1 

= − + O .p|EM 22 2n(d − 2)µ̄ µ̄ 
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Given this structure for the perturbative expansions of x and p as µ̄ → ∞ in the Einstein-
Maxwell limit, we expect the corresponding perturbative expansions for our EQG theories
to keep the same form: � � � � 

1 p−1 1 
x = x1µ̄+ x0 + O , p = p0 + + O . (4.227)

µ̄ µ̄ µ̄2 

In fact, taking these ansätze into Eqs. (4.198) and (4.199), we fnd:s p
1 − 1 − βd(d − 1) (d − 2)(3d − 4)p0 

p0 = ± , x1 = ,2β d(p + (d − 1)(d − 2))0 √ 
2(d − 1) f∞(1 − 2p0α1)p0 (4.228)p−1 = − ,22nx1(d(d − 1) − p )0 √

2 3((3d − 8)p0 − 3d(d − 1)(d − 2))p−1x1 + 2/n(3d − 4)(d − 2) f∞p0α1 
x0 = ,2dp0(p0 + d(d − 3) + 2) 

where the sign of p0 coincides with that of µ̄. Taking into account the previous relations
and Eqs. (4.196) and (4.200), the Rényi entropy in the limit µ → ∞ turns out to be:� √ �d−1

(` ∗Rµ)d−1π(d−2)/2 (d − 2)(3d − 4)p02 f∞
lim Sn = νd−1 (1 + 2α1p0) . (4.229)

2µ̄→∞ 8GΓ(d/2) d(p + (d − 1)(d − 2))0 

In analogous fashion to the Einstein-Maxwell case, we observe that Rényi entropies are
d−1independent of n as µ → ∞ and they scale with µ . Let us note that, since the depen-

dence with n becomes trivial for large µ, it is very likely that the inequalities (4.223), that
we showed to hold for small µ, are actually satisfed for every µ. Regarding the sign of the
corrections, we note that this is not defnite. Since α1 > 0 on account of the WGC, this
coupling always has the e˙ect of increasing the value of the RE. On the other hand, by
looking at the dependence of x1 on β (which again must be non-negative) we see that it
is a decreasing function for d = 3, 4 and a non-monotonic function for d ≥ 5. Hence, the
corrections can either increase or decrease the value of the RE depending on the relative
values of the couplings and on the dimension. In spite of this, we notice that this quantity
is always positive providing that the WGC is satisfed. If, contrarily, one was not to impose
the WGC bounds, then α1 could get arbitrarily negative, since this behavior is allowed
by the unitarity constraints as shown in Fig. 4.1. Therefore, in order to avoid the RE to
become negative at large chemical potential, unitarity is not enough, but we also need to
impose the WGC.

4.5.1.3 Exact result: an example in connection to the WGC

Let us fnally take a look at the exact value of the Rényi entropy as a function of µ and
n. Performing a thorough analysis would require a separate work due to the large number
of parameters and variables involved, so let us study a quite illustrative example. First,
we set d = 4, since this is the most interesting case. Then, for a given choice of couplings
{λ, α1, α2, β} we need to solve (4.198) and (4.199) in order to obtain Sn(µ) according to
(4.196). However, it can happen (and we have observed that this is the case for some values
of the couplings) that the equations (4.198) and (4.199) have several admissible solutions
for the same n and µ. If this happens, it denotes the existence of multiple phases, and
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in that case one must choose the one with smallest value of Ω, which is the dominant
one. Then, we wish to study the profle of Sn(µ) when we take into account the physical
constraints in Sec. 4.4.

We perform the following experiment: we take a set of random values of the cou-
plings satisfying both WGC and unitarity constraints, and a second set of couplings that
satisfy unitarity but not the WGC. We then study the properties of the RE for each set.
The details of course depend on the particular values of the couplings, but we show a
representative example in Fig. 4.3. In the left column we have represented Sn/S1 (and
also (n − 1)/n(Sn/S1) and (n − 1)Sn/S1) as a function of n, for several values of µ̄, for a
set of couplings that do not satisfy the WGC (but that do respect unitarity). In the right
column, we show the same quantities for a di˙erent choice of couplings that now respect
both unitarity and the WGC. The di˙erences are stark. While in the right column, the
RE is always positive and respects the inequalities (4.223), the RE for the theory that
breaks the WGC violates the second and third of them when µ̄ becomes large enough.
Furthermore, the RE even become negative in that case.

Certainly, this is only an example, but looking at randomly generated couplings we
have not found any instance of a theory that satisfes the WGC and unitarity and behaves
as in the left column. In fact, in all those cases we obtain plots similar to those in the right
column of Fig. 4.3. Thus, it seems that the WGC bounds are key to produce a sensible
dual CFT.

4.5.2 Generalized twist operators

A very interesting notion in the context of Rényi entropies is that of twist operators,
which possess a great deal of information about the CFT. Let us remember that in the
computation of Rényi entropies for some region A via the replica trick one uses the following
result

Zn
TrρnA = 

Zn , (4.230)
1 

where Zn is the partition function of an n-fold cover of Euclidean space in which cuts have
been introduced in A. Along these cuts the k-th geometry must be glued to the (k + 1)-th
one by implementing appropriate boundary conditions [600].

However, an alternative route to compute this quantity involves the insertion of
dimension-(d − 2) operators σn (the twist operators) extending over the entangling surface
Σ = ∂A [446, 564, 600, 608]. Then, the path integral over the replicated geometry can be
replaced by a path integral for the symmetric product of n copies of the CFT, with the
σn inserted, on a single copy of the geometry. One can then obtain the desired trace of
ρnA as the expectation value of these twist operators, TrρnA = hσni, computed in the n-fold
symmetric product CFT.

It is possible to defne a generalized notion of conformal dimension for the twist
operators by performing an insertion of the stress-energy tensor Tab at a small distance
y from Σ. In particular, the leading singularity of the correlator hTabσni takes the form
[446,564],

hn babhTabσni = − 
d , (4.231)

2π y 
where bab is a fxed tensorial structure and hn is the conformal dimension of σn. In the
case of a spherical entangling surface, and with a fnite chemical potential, the conformal
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Figure 4.3: Rényi entropies as function of n for two particular choices of couplings in d = 4.√ 
From blue to red, the di˙erent curves correspond to ¯ f∞ = 0, 1, . . . 10. Left: a theory thatµ/ 
satisfes unitarity constraints but not the WGC: {λ, α1, α2, β} = {0.052, −0.100, 0.875, 0.0049}.
Right: a theory that satisfes both both unitarity and WGC bounds: {λ, α1, α2, β} = 
{0.077, 0.057, −0.596, 0.023}. The standard properties of Rényi entropies may be violated if the
WGC is not satisfed.

mapping from fat space to the hyperbolic cylinder allows one to show that [446,447]

2πn 
hn(µ) = Rd (E(T0, µ = 0) − E(T0/n, µ)) , (4.232)

d − 1 

where E(T, µ) is the thermal energy density of the theory placed on S1 × Hd−1(R).
Likewise, when a chemical potential is present, we also have at hand its associated

current Ja , and one can also study the correlator hJaσn(µ)i. In this case, the leading
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singularity takes the form [447]

ikn(µ) τahJaσn(µ)i = (4.233)
2π yd−1 

where τa is again a fxed structure determined by the geometry of the setup. The coeÿcient
kn(µ) is the magnetic response of the generalized twist operators, and for a spherical
entangling surface it can be computed as [447]

kn(µ) = 2πnRd−1ρ(n, µ) , (4.234)

where ρ(n, µ) is the charge density of the theory on S1 ×Hd−1(R) at temperature T = T0/n 
and with chemical potential µ.

It is then interesting to consider the expansion of hn(µ) and kn(µ) around n = 1 and
µ = 0,

∞ ∞XX 
mhn(µ) = 

1 
hlm(n − 1)l µ ,

l!m! 
l=0 m=0 

(4.235)∞ ∞XX 
mkn(µ) = 

1 
klm(n − 1)l µ ,

l!m! 
l=0 m=0 

where

hlm = (∂n)
l(∂µ)

mhn(µ) , klm = (∂n)
l(∂µ)

mkn(µ) . (4.236)
n=1,µ=0 n=1,µ=0 

As shown by Ref. [447] (and by Refs. [446, 555, 564] in the case of hn for µ = 0), these
coeÿcients involve integrated correlators of the form hT . . . TJ . . . Ji. In particular, the
few frst coeÿcients are related to two or three-point functions of T and J , and therefore
have a universal form for any CFT. These relations were derived in [446,447,564] from frst
principles, but here we will see that they can be equivalently derived by using holography
with higher-derivative terms.

4.5.2.1 Conformal dimension of generalized twist operators

Let us start by studying the conformal dimension of the generalized twist operators, given
by Eq. (4.232). Holographically, the energy density E is nothing but the mass of a hyper-
bolic black hole over the volume of the hyperbolic boundary, i.e.,

M(T, µ)E(T, µ) = . (4.237)
V−1,d−1Rd−1 

This can be obtained from Eq. (4.52) by setting k = −1. Observing thatM(T0, µ = 0) = 0,
by virtue of (4.232) we have " � �nLd−1 

d−2 dhn(µ) = − √ (d − 1) − x + x + λxd−4 
8(d − 1) f∞G # (4.238)

2 d � � 
d2p x (d − 2) βp4x 

+ 1 − (3(d − 1)α1 + α2) − ,
2(d − 2) x (3d − 4) 
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where as usual we have introduced x = r+/L, p = qL/rd−1 , which depend on n and µ+ 
through the relations (4.198) and (4.199). For n = 1 and µ = 0, those equations are solved√ 
by x = 1/ f∞ and p = 0. We can then perform an expansion around those values to fnd

d − n 
x =√ (4.239)

f∞(d − 1) � �2 3/2
µ`∗R (d − 2)2f∞ (1 − α1(3d + 2)(d − 1)f∞ − α2df∞)

+ � �2 + . . . ,
L EQG(d − 1)2(2 − f∞) αeff " � � 

µ`∗R (d − 2)f∞ 
p = 

EQG (4.240)
L αeff ⎤ 

(d − 2)f∞ (1 + α1 (d − 2) (d − 1)f∞ + α2(d − 2)f∞) ⎥
+(n − 1) � �2 + . . .⎦+ . . . , 

(d − 1) αEQG 
eff 

where we only show the terms that we will need. From these expressions it is straightfor-
ward to obtain the expansion of hn in (4.238) and to read o˙ the values of the derivatives.
In the frst place, we fnd � �d−11 − 2λf∞ L 

h10 = √ , (4.241)
4(d − 1)G f∞ 

and comparing with the value of the central charge CT four our theory, given by Eq. (4.80),
we realize that this relation can be written as

Γ(d/2) 
= 2πd/2+1h10 CT . (4.242)

Γ(d + 2) 
This is precisely the relation found in Ref. [446]. In a similar way, the second derivative of
hn at vanishing µ, that is, h20, is completely determined in terms of CT and the 3-point
function coeÿcients t2 and t4 [555,564]. Those relations have been shown to be identically
satisfed for holographic higher-curvature gravities [257, 270, 555]. Thus, let us turn our
attention to the derivatives of hn with respect to µ, which, to the best of our knowledge,
have not been studied in detail for higher-derivative theories.

From (4.239), (4.240) and (4.238) we fnd� 
(d − 2)2`2 

∗R
2 L 

�d−3 f∞ ((6d − 1)(d − 1)α1 + (2d − 1)α2) + 3−2d 
h02 = √ � d−2 .�2 (4.243)2(d − 1)2G f∞ EQGαeff 

Now, looking at Eqs. (4.95), (4.97) and (4.125), we see that this expression can be written
in terms of the central charge CJ and the fux parameter a2 as

d � �−1Γ d
2 � �CJ π 2h02 = −(2πR)2 (d − 1)d(2d − 3) + a2(d − 2)2 . (4.244)

(d − 1)3Γ(d + 1) 
Finally, we can write it in terms of the hTJJi coeÿcients ĉ  and ê using the relations (4.130)
and (4.131), and we get18 � � 

4πd−1 
h02 = −(2πR)2 2 

ĉ+ ê , (4.245)
Γ(d + 1) d 

18We could of course derive this relation directly from the values of ĉ  and ê for EQG, given by Eqs.
(4.134) and (4.135), but we fnd it interesting to show the intermediate expression in terms of CJ and a2.
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which is precisely the result in Eq. (2.45) of [447] and which applies to any CFT.19

4.5.2.2 Magnetic response of generalized twist operators

Let us now take a look at the magnetic response kn(µ), which we can compute using the
relation (4.234). The charge density in the boundary theory is simply

` ∗Q
ρ(n, µ) = , (4.246)

Rd−1V−1,d−1 

where Q is given by Eq. (4.48). Therefore we get

n`∗q ` ∗Ld−2 
d−1kn(µ) = = npx . (4.247)

2G 2G 

By using (4.239) and (4.240) we can easily expand this quantity near n = 1 and µ = 0 and
read o˙ its derivatives. For the frst derivative with respect to µ we obtain

� � ��d−3 d+2(d − 2)`2 
∗R L 

= 8πd/2+1R 
Γ 2k01 = √ CJ , (4.248)

2GαEQG f∞ Γ(d + 1) 
eff 

where in the second equality we used (4.95). Again, up to a factor of (2πR) that arises
from di˙erent normalization conventions for µ, this coincides with Eq. (2.57) of [447]. We
can also compute the mixed partial derivative k11, which yields

� �d−3(d − 2)`2 
∗R [1 + (d − 2)f∞ ((d − 1)α1 + α2)] L 

k11 = � �2 √ . (4.249)
EQG f∞4(d − 1)G αeff 

This can be express in terms of CJ (4.95) and a2 (4.125) as

+1Γ d4RCJ π 
d 
2 

� � � �
2k11 = d(d − 1) − a2(d − 2)2 , (4.250)

(d − 1)2Γ(d + 1) 

or in terms of the hTJJi coeÿcients (4.134) and (4.135) as

16πd+1R 
k11 = (2ĉ − d(d − 3)ê) . (4.251)

dΓ(d + 1) 

Thus, we reproduce in this case Eq. (2.56) of [447]. Let us remark that Ref. [447] checked
that these relations held for holographic Einstein-Maxwell theory, but that case is some-
what restricted as the dual theory has a2 = 0. To the best of our knowledge, this is the frst
holographic derivation of these universal relationships in a theory with a general hTJJi 
three-point function.

19Note that we have an additional (2πR)2 factor with respect to [447], which comes from the fact that
they normalize the chemical potential with a factor of 1/(2πR), that we do not introduce.
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4.6 A universal feature of charged entanglement entropy

In this last section of the chapter we devote ourselves to the proof of the following identity
for the charged entanglement entropy of a spherical region in d-dimensional CFTs with
d ≥ 3: � � 

SEE ∗ πdCJ (d − 2) 
= a + 1 + a2 (µR)2 + O(µ 3) . (4.252)

νd−1 (d − 1)2Γ(d − 2) d(d − 1) 

First, we will motivate this result by showing its validity for an infnite set of higher-
derivative theories of gravity coupled to a (d − 2) form, which are of arbitrary order in
the curvature and in the gauge feld strength and generalize those written in Eq. (4.30).
Similarly, we will also show that they hold for free fermions and free bosons in d = 4 using
heat-kernel techniques. Finally, we will present the general proof of (4.252), which will be
carried out by employing the notions of twist operators and magnetic response, already
coined in Section 4.5.

4.6.1 Charged entanglement entropy in EQGs in any dimension d ≥ 3 

It is possible to construct EQGs in any spacetime dimension D = d + 1 at arbitrary
order in the curvature tensor and the feld strength. In the case of pure gravity theories,
Quasitopological and Generalized Quasitopological at all orders were obtained in Ref. [250],
so let us focus here in the case of non-minimally coupled theories. In analogy with the
four-dimensional theories identifed in [4], we have been able to fnd the following infnite
families of EQGs:

Igen 1 
Z 

dd+1 
� 

d(d − 1) 2H2 λL2X4 
= x 

p
|g| R + − + (4.253)EQG 16πG L2 (d − 1)! (d − 2)(d − 3) 

∞ ∞ �� 2 XX � 
L2(s+m−1) (a) (b)

+ α1,s,mL + α2,s,mL ,d,s,m d,s,m(d − 1)! 
s=0 m=1 

where

X4 ≡ +R2 − 4Rµν R
µν + RµνρσR

µνρσ , (4.254)

(a) � �µν
Rs−1L ≡ (sR + κd,s,m (R

s)µν 
d,s,m ρσ ρσ �� �γν 

Rs−2 ρσ(H2)m−1+2s(s − 1)Rγ
µRβ

ρ (H2)µν , (4.255)
βσ 

1 � � � 
L(b) ≡ 2sRµ

αδν
β + gd,s,mRαβ

µν Rs−1
�µν 

(H2)ρσαβ(H
2)m−1 , (4.256)d,s,m ρσ2 

and where we used the notation� �ρσ 
H2 

µν ≡ Hρσα3α4...αd−1 Hµνα3α4...αd−1 , � �µν (4.257)
Rk ≡ Rµν Rα1β1 . . . Rαk−1βk−1 

α1β1 α2β2 ρσ 
ρσ 

and introduce the constants gd,s,m ≡ −d(s−1)−2(d−1)m and κd,s,m ≡ (1−gd,s,m)gd,s,m/2.
Any members of the infnite family of theories captured by Eq. (4.253) are examples of

Electromagnetic Quasitopological Gravities [4]. By taking the only non-vanishing couplings
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to be α1,1,1 ≡ α1 and α2,1,1 ≡ α2 we recover the four-derivative theories discussed in
previous sections and defned in Eq. (4.30). The theories (4.253) admit charged black-hole
solutions with spherical, planar or hyperbolic sections. Their computational treatment is
fairly similar and, since here we are interested only in solutions with hyperbolic sections,
we restrict ourselves to this case. Such solutions are of the form� 

2 � 
2 

2 −L2 r 2 dr 
ds = f − 1 dt + h i + r 2dΞ2 , Hq = q ω−1,(d−1) , (4.258)

2f∞R2 L2 r 
L2 f − 1 

where dΞ2 is the metric of the unit hyperbolic space, ω−1,(d−1) the associated volume
form and we remind that f∞ ≡ L2/L̃2 —where L̃ is the AdS(d+1) radius— can be written√ 
in terms of the Gauss-Bonnet coupling as 2λf∞ = 1 − 1 − 4λ. Remarkably, the above
solutions are characterized by a single metric function f(r). The full non-linear equations of
(4.253) collapse to a single frst-order di˙erential equation for f(r) which can be integrated
once, yielding the following algebraic equation

√
2 2r 16πR f∞GM 2q λr2 

0 = + (1 − f) − + + f2 
d−2 2(d−2)L2 (d − 1)LV−1,d−1r (d − 2)(d − 1)r L2 �X q2mL2m(−2)sΓ(d)m−1 2s sα2,s,m

f s−1+ ((2m − 1)(d − 1) − 1 + ds)α1,s,m + 
r2m(d−1) d − 1 d − 1 

s,m �� � � 
2 � 2s(ds − 1) (s − 1)α2,s,m r − 1 − 2m − 4s + 4ms + α1,s,m + f . (4.259)

d − 1 d − 1 L2 

Here M is an integration constant to be identifed with the mass of the solution andP P∞ P∞≡ m=1. Assume now that gtt has some zero along the positive real axis ands,m s=0n o 
L2

let r+ = max r ∈ R+|f(r) = 2 . Defning x ≡ r+/L and p ≡ qL2−dx1−d, and evaluating
r 

(4.259) at r = r+, the mass M of the subsequent black hole solution can be seen to to be� √ � 
16πR f∞G � � 2p2xd 

d−2M =+ (d − 1)x x 2 − 1 + + (d − 1)λxd−4 (4.260)
Ld−1V−1,d−1 (d − 2) X 2m(−2)sΓ(d)m−1p

+ (−(d − 1)(1 − 2m − 2s)α1,s,m + α2,s,m) .
2s−dx 

s,m 

2Similarly, taking into account that the temperature T is given by 4πRL 
√ 
f∞T = r f 0(r+)+ + 

2L 
, we fnd the following expression,

r+ p 2 2(d − 1)(2 + d(x2 − 1) + (d − 4)λx−2) − 2p x 
4πR f∞T = P 

2m(d − 1)(x − 2λx−1) + (−2)sΓ(d)m−1p x3−2ssds,mα1,s,ms,mP (4.261)
2m −2(s−1)(−2)sΓ(d)m−1p x ts,ms,m− P ,

2mx − 2λx−1 + (−2)sΓ(d)m−1(d − 1)−1p x3−2ssds,mα1,s,ms,m 

where we have implicitly defned: � � 
α2,s,m

ds,m = (2s+d(2m−1)−2m−1) , ts,m = ds,m (2m + 2s − 1)α1,s,m + . (4.262)
d − 1 
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The computation of the black hole entropy S is carried out using the Iyer-Wald formula
[366,370], Z √ ∂L 

dd−1S = −2π x h �µν �ρσ , (4.263)
Σ ∂Rµνρσ 

where Σ is a cross section of the black hole horizon and �µν is its binormal. This can be
straightforwardly applied to the theories (4.253) and further evaluated for the black hole
metric (4.258), yielding � 

2m �Xxd−1Ld−1V−1,d−1 2(d − 1)λ (−2)sΓ(d)m−1sp
S = 1 − − α1,s,m . (4.264)

2 2(s−1)4G (d − 3)x x 
s,m 

Interestingly, the entropy does not receive any corrections from the density L(b) but onlyd,s,m 
(a)from X4 and Ld,s,m.

As explained in Section 4.3, the chemical potential µ is defned as the asymptotic
value of the electrostatic potential Ã 

t after demanding that Ã 
t = 0 (see (4.73)). For
r+ 

the any-derivative EQGs given by (4.253), it can be checked that the chemical potential µ 
reads � � 

Ld−2xd−1V−1,d−1 ̀  ∗ ∂M ∂S 
µ = − T . (4.265)

4πG ∂p ∂p 
Taking into account this expression and the previous presented thermodynamic magni-
tudes, it is possible to show that the frst law of black hole thermodynamics holds, namely,� � 

V−1,d−1 ̀  ∗ 
dM = T dS + µ dN , where N ≡ q · (4.266)

4πG 

is the total charge in the boundary theory.
Now, our goal is to compute the vacuum charged EE for the boundary theory across a

spherical entangling surface of radius R. Such entanglement entropy can be obtained from
the thermal entropy of the same theory placed on the hyperbolic cylinder S1 × Hd−1(R) 
at temperature T0 = 1/(2πR) [445–447]. Then, using the holographic dictionary, such
thermal entropy turns out to be just the Wald entropy of a black hole with hyperbolic
horizon, i.e.,

SEE(µ) = S(T0, µ) . (4.267)

Consequently, for the derivation of the charged entanglement entropy, we need to evaluate
the Wald entropy (4.264) at temperature T = T0 and in terms of the chemical potential
µ. Above, in Eq. (4.264) we wrote S = S(x, p), so we need to fnd the inverse functions
x = x(T0, µ) and p = p(T0, µ). We will carry out this procedure in a perturbative fashion
in µ and we will restrict ourselves to the leading-order corrections (so that it suÿces to
keep only the terms quadratic in H). We fnd

x = x̂+ δx2(` ∗µ)2 + O(µ 4) , p = δp1(` ∗µ) + O(µ 3) , x̂ = √ 1 
, (4.268)

f∞ 

δp1 = � 2f∞R � , (4.269)P∞2L + (−2f∞)s((d + 2ds − 1)α1,s + α2,sd−2 s=0 P∞(δp1)
2(2 + (−2)sf∞ 

s δx2,s)s=0δx2 = − √ , (4.270)
2(d − 1)2(f∞ − 2) f∞ 
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where δx2,s = 2 − 4s + d(d − 3 + 2(d − 1)s + 4s2)α1,s + (d − 2 + 2s)α2,s. Plugging the
(perturbative) expressions found above into Eq. (4.264), we fnd that the entanglement
entropy to quadratic order in µ reads� 

L̃d−1V−1,d−1 2(d − 1)
SEE = 1 − λf∞

4G d − 3 
(4.271)�√ �2 � �� 

f∞R (` ∗µ)2 (d − 2)2 (d − 2)2βeff 
+ + + O(µ 4) ,

L αeff d − 1 (d − 1)2αeff 

where we have defned the parameters

∞X 
αeff ≡ 1 + (−2)s−1f∞ 

s (2 − d) ((d − 1 + 2ds)α1,s + α2,s) , 
s=0 (4.272)∞X 

βeff ≡ (−2f∞)s(d − 1)s ((2ds − 1)α1,s + α2,s) . 
s=0 

Our next goal will be trying to express the charged entanglement entropy (up to
quadratic order in µ2) in terms of the charges CJ and a2 of the CFT dual to the theories
(4.253). On the one hand, if F denotes the dual feld strength of H, CJ is obtained by
working out the e˙ective gauge coupling of F 2 when we evaluate the action on a pure AdS
background [447]. Owing the fact that we will restrict ourselves to quadratic terms in µ,
it is enough to keep in the action (4.253) those terms up to quadratic order in H. If IF 2 

dual 
denotes the dual theory to any theory containing terms of up to second-order in H, then
according to Section 4.1 IF 2 can be shown to bedual Z p � � 

IF 2 x |g| d(d − 1) λL2X4 ρσF µν Fρσdual =
dd+1 

R + + − (Q̃−1)µν , (4.273)
16πG L2 (d − 2)(d − 3) 

where

Q̃µν 12 
Q[αβ 

ρσ ≡ αβ δ
µν]

ρσ , (4.274)
(d − 1)(d − 2) 

∞ �X � � � 
ρσ ≡ δαβ δ β]Qαβ 

ρσ − 
1 
Rs−1

�µν 
2sRµ 

[α
ν + gd,s,1Rαβ

µν α2,s (4.275)
ρσ2 

s=0 � � �αβ � �µ[α 
� � 

Rs−1 Rs−2 β]Rν+ sR + 2s(s − 1) R α1,s ,ρσ + κd,s,1 (R
s)αβρσ ν[ρ| µ |σ] 

and where
ρσ ˜ αβ αβ(Q̃−1)µν Qρσ = δµν , (4.276)

ρσso that Q̃−1 is the inverse tensor of Q̃, as described in the previous equation, and δµν = 
δ[µ 

[ρδν] 
σ]. We are also defning α1,s,1 ≡ α1,s and α2,s,1 ≡ α2,s. Finding such inverse

tensor is generically a rather challenging task, but it is a more manageable one when we
restrict ourselves to backgrounds with enough symmetry. In the case at hand, since we are

L2δµν ˜considering a pure AdS space with Rµν
ρσ = −2/ ̃  

ρσ, L = L/ 
√ 
f∞, we have

Qµν Q̃µν ( ˜ ρσ 1 
δµνρσ = ρσ = αeff δ

µν 
ρσ , Q−1)µν = ρσ . (4.277)

αeff 
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Consequently, the coeÿcient of F 2 in (4.273) turns out to be 1/αeff . This implies that the
net e˙ect of the higher-order terms, as in the four-derivative theory, is the renormalization
of the gauge coupling constant, producing in turn the central charge

CEM L̃d−3 
EQG J CEM Γ(d) ` ∗ 

2 
C = , = , (4.278)JJ 4πd/2+1Gαeff Γ(d/2 − 1) 

being CEM the Einstein-Maxwell central charge. On the other hand, the computation of a2J 
requires the knowledge of the inverse tensor Q̃−1 on a shock-wave background —see [435]
and Section 4.3 for more details in this computation— given by the metric� d−2 � 

L̃2 � �2 X� �22 i + − j 2ds = δ(y +)W(y , u) dy − dy +dy + dy + du , (4.279)
2u 

j=1 

d 
i W0u jW(y , u) = � , y ∈ R . (4.280)�d−1 0Pd−2 ju2 + (yj − y )2 

j=1 0 

This shock-wave background satisfes that Rµν = −d/L̃2gµν and, being a Brinkmann
spacetime, the square of its Weyl tensor vanishes, i.e. WµνρσW ρσαβ = 0. Taking into
account this properties, it can be seen that

˜ ρσ ρσ − 
βeff ρσQµν = αeff δµν Wµν , (4.281)

f∞(d − 1)(d − 2) 
1ρσ ρσ βeff ρσ(Q̃−1)µν = δµν + Wµν , (4.282)
αeff f∞(d − 1)(d − 2)αeff

2 

where βeff is the parameter introduced in (4.272). We identify this result as formally
equivalent to that of Eq. (4.14), obtained in the context of the four-derivative theory
(4.30), upon exchange of −(2(2d − 1)(d − 1)α1 + 2(d − 1)α2) 7→ βeff /f∞. Hence the coeÿ-
cient a2 associated to (4.253) will be that of Eq. (4.124), after making the aforementioned
substitution, namely,

EQG dβeff 
a = . (4.283)2 (d − 2)αeff 

Therefore, taking into account Eqs. (4.278) and (4.283), we notice that the entanglement
entropy can be rewritten as� � 

L̃d−1V−1,d−1 2(d − 1)
SEE = 1 − λf∞ (4.284)

4G d − 3 ! 
Γ(d/2 − 1)πd/2+1V−1,d−1 

EQG 
EQG (d − 2)2 (d − 2)3a2+ C + (µR)2 + O(µ 4) .JΓ(d) d − 1 d(d − 1)2 

The regularized volume of the unit hyperbolic space is given by the quantity [445] V−1,d−1 = 
νd−1/(4π)Ω

d−1 , where Ωd−1 is the volume of the unit sphere Sd−1 and νd−1 is defned as
in (4.210). We then arrive at our fnal result" # 

EQGSEE(µ) πd 
EQG (d − 2)a∗ 2 = aGB + CJ 1 + (µR)2 + O(µ 4) , (4.285)

νd−1 (d − 1)2Γ(d − 2) d(d − 1) 
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∗where we have introduced the a charge of Gauss-Bonnet theory, given by� � 
L̃d−1 π(d−2)/2 2(d − 1)∗ a = 1 − λf∞ . (4.286)GB 8G Γ(d/2) d − 3 

Eq. (4.285) fts precisely into the form of (4.252). On the other hand, apart from having
derived the frst correction to entanglement entropy for infnite families of theories of
arbitrary order in the curvature and the gauge feld strength, note that if we restrict the
result to the four-dimensional theory (4.30), we have in fact generalized the results for the
charged entanglement entropy obtained in Section 4.5, since here we have not set λ to zero
and thus we have been able to capture as well the e˙ects of the Gauss-Bonnet term.

As a fnal comment, one may wonder about the e˙ect of including arbitrary pure-
gravity Quasitopological higher-order terms [238, 239, 241, 242, 249, 250] into the action
(4.253). Given the structure and derivation of Eq. (4.285), we expect such pure-gravity
terms to simply produce a renormalization of the constant f∞, while leaving Eq. (4.285)
invariant.

4.6.2 Free feld calculations

In this subsection we present the calculation of the charged Rényi entropies for free scalars
and fermions in d = 4 using heat-kernel techniques [609–612]. Our results here closely
follow the derivation in [447], but we use the opportunity to correct a few typos that
appear in that paper, which include the fnal expression for Sn(µ) in the case of the free
fermion.

We will compute the charged Rényi entropy from the free energy on S1 ×H3 . In order
to do that, we will use the heat-kernel on such space. For product spaces this factorizes,
so one has

KS1×H3 = KS1 (θ1, θ2, t)KH3 (~y1, ~y2, t) . (4.287)

Following [447], we consider a purely imaginary chemical potential for a global U(1) charge
associated to phase rotations of the felds. This is related to the real chemical potential
we use throughout the rest of the section by µE = 2πiRµ. Incorporating the chemical
potential in the heat-kernel amounts to requiring this to satisfy an appropriate boundary
condition. This reads

KS1 (θ1 + 2πn, θ2, t) = (−)f e −inµE KS1 (θ1, θ2, t) , (4.288)

where f = 1 for Dirac fermions and f = 0 for scalars. This is achieved by a modifed disk
heat-kernel of the form20

1 X (θ2−θ1+2πnm)2 
− −im(nµE+πf)KS1 (θ1, θ2, t) = √ e 4t e . (4.289)

4πt 
m∈Z 

Indeed, upon substitution of θ1 → θ1 + 2πn, the numerator of the exponent of the frst
term becomes (θ2 − θ1 + 2πn(m − 1))2 . Since the sum is over all integers, one can shift
the index m = m0 + 1 leaving the frst term as it was originally and producing an overall

−inµE(−)f e from the second term. The equal-point heat kernel then readsX 2 21 − π
2 n m −im(nµE+πf)KS1 (0, 0, t) = √ e t e . (4.290)

4πt 
m∈Z 

20In [447] there is a missing “n” that should be multiplying “2πm” in Eq. (A.6) and which propagates
throughout the whole appendix.
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On the other hand, the equal-point heat kernel for the hyperbolic space reads [447]� � 
(1 + 3f) tf 

KH3 (0, 0, t) = 1 + . (4.291)
(4πt)3/2 2 

From these, the grand free energy on S1 × H3 can be computed as(2πn) Z 
(−)f+1 ∞ dt 

Ωn(µE) = VH3 (2πn) KS1 (0, 0, t)KH3 (0, 0, t) ,
2 t0 Z ∞ � � 

= (−)f+1 n(1 + 3f) X dt tf − π
2 n 2 m 2 

−im(nµE+πf)VH3 e 1 + e t , (4.292)
16π 0 t3 2 

m∈Z 

where we have rewritten V−1,3 as VH3 . The zero mode in the disk heat kernel gives rise to
a divergence in the grand free energy [447], so we can ignore it and get for the regulated
grand free energy

= (−)f+1 (1 + 3f)VH3 X (2 + fm2n2π2)
Ωn (−)mf cos[mnµE] ,

16π5n3 m4 
m∈Z+ " � � 

= (−)f+1 (1 + 3f)VH3 fn2π2 
inµE ]Li2[(−)f e −inµE ] + Li2[(−)f e + 

16π5n3 2 # 
Li4[(−)f e −inµE ] + Li4[(−)f einµE . (4.293)

From this, the charged Rényi entropy can be obtained as

Sn(µE) = 
1

[Ωn(µE) − nΩ1(µE)] . (4.294)
n − 1 

We fnd, respectively, for the Dirac fermion and the free scalar,� 
2 � VH3 (1 + n)(7 + 37n2) (1 + n)µESf (µE) = − , (4.295)n 48π 30n3 nπ2 � 

2 � 
VH3 (1 + n)(1 + n2) (1 + n)µ |µE|3 

Ss E(µE) = − + . (4.296)n 48π 15n3 2nπ2 2π3 

The scalar formula agrees with the one presented in [447], but the fermion one is di˙erent.
2There seems to be a missing 1/(4π2) multiplying µE in their Eq. (A.25). Finally, writing

these in terms of µ and ν3 (the particularization of the expression for νd−1 in (4.210) for
d = 4), we fnd � � 

ν3 (1 + n)(7 + 37n2) (1 + n)(µR)2 
Sf = + , (4.297)n 324 120n n � � 

ν3 (1 + n)(1 + n (1 + n)(µR)2 
Ss = 

2)
+ + |µR|3 . (4.298)n 324 60n 2n 

Interestingly, the exact dependence on µ is much simpler than for our holographic theories,
for which, as we saw earlier, a completely explicit formula cannot be obtained. Taking the
limit n → 1 we obtain the expression for the entanglement entropies, which read

Sf Ss(µ) (µR)2 (µ) (µR)2 |µR|3 
EE ∗ EE ∗ = a + , = a + + , (4.299)
ν3

f 12 ν3
s 24 24 
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∗ ∗where a = 11/360, a = 1/360 are the trace-anomaly coeÿcients corresponding to af s 
Dirac fermion and a real scalar feld, respectively [613–615]. The values of the charges CJ 
and a2 for these two models are also well known and read [433, 435,585,616]

C f =
1 
, Cs =

1 
,J π4 J 4π4 

(4.300)
3f s a2 = − , a2 = 3 . 
2 

Using these values of the charges CJ and a2, it is straightforward to verify that the expres-
sion (4.252) � � 

SEE(µ) πdCJ (d − 2)a2∗ = a + 1 + (µR)2 + O(µ 3) , (4.301)
νd−1 (d − 1)2Γ(d − 2) d(d − 1) 

restricted to d = 4, holds for both theories.

4.6.3 Proof of the universal relation for charged entanglement entropies
for general CFTs

The previous results strongly suggest that Eq. (4.252) holds for general CFTs. As it turns
out, a proof of such universality can be easily achieved using a combination of the results
presented in Ref. [447] along with some thermodynamic identities. In order to do this, we
need to depart momentarily from the vacuum temperature T0 and consider a CFT on the
hyperbolic cylinder at an arbitrary temperature T . The thermal entropy of a given CFT in
such state can be used to compute the Rényi entropy Sn(µ) across a spherical entangling
region [446, 447], the Rényi index being related to the temperature by n = T0/T .

In order to proceed, we need to consider a set of related quantities: the twist operators
σn(µ). In the replica trick approach to the evaluation of Rényi/entanglement entropy, the
entangling region is cut from each of the spacetime copies and consecutive copies are sewn
together along the entangling surface. Such boundary conditions can be understood as
produced by the insertion of (d − 2)-dimensional operators along the entangling surface
[446,564,600,617]. In the charged Rényi/EE case, the entangling surface carries a “magnetic
fux” −inµ which can be understood as attaching a Dirac sheet to the twist operators [447].

The leading divergence in the correlator of σn(µ) with the current operator defnes
the so called “magnetic response” kn(µ) as [447]

ikn(µ) �abnb 
hJaσn(µ)i = , (4.302)

2π yd−1 

bwhere y is the distance between the insertions, n is a unit vector normal to Ja from the
twist operator insertion and �ab is the volume form of the two-dimensional space orthogonal
to the entangling surface. In the case of a spherical entangling surface, the magnetic
response is given by (4.234), and we rewrite here for the sake of convenience:

kn(µ) = 2πnRd−1ρ(n, µ) , (4.303)

where ρ(n, µ) is the charge density of the CFT on the hyperbolic cylinder at temperature
T = T0/n. As it turns out, this quantity has a universal expansion around n = 1 and
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Chapter 4. Higher-derivative holography with a chemical potential

µ = 0 whose leading terms can be expressed in terms of the coeÿcients characterizing the
hTJJi correlator. Collecting results from [447] and Subsection 4.5.2, we have

kn = ∂nkn = 0 , 
n=1,µ=0 n=1,µ=0 

16Rπd+1 
∂µkn = [ĉ + ê] , (4.304)

n=1,µ=0 Γ(d + 1) 

16Rπd+1 
∂n∂µkn = [2ĉ − d(d − 3)ê] , 

n=1,µ=0 dΓ(d + 1) 

where the charges c,̂ ê are related to CJ , a2 by [447,585]� �
d+2CJ (d − 2)Γ 2 ĉ = [d(d − 1) − a2] ,

2πd/2(d − 1)3 � � (4.305)
d+2CJ Γ 2 ê = [d − 1 + (d − 2)a2] . 

2πd/2(d − 1)3 

Let us now consider the thermal entropy S of the CFT on the hyperbolic cylinder.
In the grand canonical ensemble, the frst law of thermodynamics reads

dΩ = −SdT −N dµ , (4.306)

where Ω is the grand potential and N = V−1,d−1R
d−1ρ is the total charge. From the frst

law the following thermodynamic relation can be obtained

∂µS = −∂µ∂T Ω = −∂T ∂µΩ = ∂T N . (4.307)

Writing N in terms of the magnetic response kn(µ), and using that ∂T = −
T
T0
2 ∂n, we have� � 

T0V−1,d−1 kn(µ)
∂µS = − ∂n . (4.308)

2πT 2 n 

Expanding the derivatives, evaluating for n = 1 (T = T0) and µ = 0 and using Eqs. (4.248),
it immediately follows that the frst derivative term vanishes, i.e.,

∂µSEE µ=0 = 0 . (4.309)

Taking a second derivative with respect to µ in Eq. (4.308), we have� � 
T0V−1,d−1 kn(µ)

∂2S = − ∂µ∂n . (4.310)µ 2πT 2 n 

Evaluating again for n = 1 (T = T0) and µ = 0, we have

∂µ 
2SEE µ=0 = RV−1,d−1 [∂µkn − ∂µ∂nkn] . (4.311)

n=1,µ=0 

Using then Eq. (4.248), we can rewrite this as

16(d − 2)R2πd+1 
∂µ 
2SEE µ=0 = V−1,d−1 [ĉ + dê] , (4.312)

dΓ(d + 1) 

which, via Eq. (4.305) reduces to Eq. (4.252). This therefore completes the proof that such
relation is universally valid for arbitrary CFTs.
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4.7 Discussion

We have carried out a general analysis of the holographic aspects of the EQG given by
(4.30). This is a theory containing a (d−2)-form, but as we have seen it can be dualized into
a theory with a vector feld, and we use this formulation to make contact with holography.
One of the most interesting aspects of this theory is that it contains non-minimal couplings,
which a˙ect the central charge of the two-point function hJJi, and more importantly, give
rise to a non-vanishing parameter a2 (see (4.125)) that controls the angular distribution
of the energy one-point function (4.102). This in turn means that the boundary theory
has a general hTJJi correlator. Therefore, we can probe holographic CFTs beyond the
universality class given by Einstein-Maxwell theory. In addition, the special properties of
the EQG theories allow us to carry out a fully analytic and exact study of many of their
holographic aspects, so we do not have to restrict ourselves to the perturbative regime.
Regarding the any-order EQGs constructed in Subsection 4.6.1, it is clear that they provide
interesting holographic models for future endeavors.

One of the main questions we tried to answer is that of how the physics of the CFT
can change while satisfying physically reasonable conditions. Thus, we have constrained
the couplings of our bulk theory by demanding that the boundary CFT respects unitarity.
This means that the central charges CT and CJ , as well as the energy fuxes hE (~n)iJ and
hE (~n)iT (see resp. (4.102) and (4.138)), have to remain positive. We also studied the
constraints coming from demanding causality in the bulk in the background of a planar
neutral black hole. In the case of gravitational fuctuations, it is known that these causality
constraints imply the positivity of the energy fux hE (~n)iT [436,438,583,586]. Here we have
shown that demanding that the electromagnetic waves do not propagate faster than light
is equivalent to the constraints obtained from the positivity of hE (~n)iJ . These causality
bounds follow from looking at the phase velocity of electromagnetic waves close to the
boundary of AdS. We have not observed additional causality constraints when extending
these conditions deeper into the bulk, but our analysis in this regard is limited due to the
number of parameters involved, so it would be interesting to do a more thorough search of
causality constraints in the bulk interior, as in Ref. [437]. Likewise, it would be desirable
to extend these bounds to the case of charged black hole backgrounds.

One of the novelties in our analysis was the inclusion of constraints from the Weak
Gravity Conjecture. As proposed by Ref. [528] and recently explored by Ref. [476] in the
case of AdS, the so-called mild form of the WGC demands that the corrections to the
entropy of thermally stable black holes be positive in the microcanonical ensemble. This
implies in particular that the charge-to-mass ratio of extremal black holes is corrected
positively [531], which is the most familiar form of the WGC for asymptotically fat black
holes [474, 594]. However, demanding the entropy corrections to be positive is a more
general condition than that and is amenable to the AdS case. When applied to spherical
(and planar) black holes, we obtain constraints on the signs of (certain combinations of)
the couplings, and these become very powerful when combined with unitarity/causality
bounds. In fact, we obtain that the couplings α1, α2 and λ of (4.30) can only lie in a
very small compact set of R3 in d = 3, 4, 5. The only parameter that can be unbounded
is β, which is simply required to satisfy β ≥ 0 by the WGC. However, we suspect that
additional causality/unitarity conditions should provide an upper limit for β. In another
vein, it is necessary on general grounds to get a better understanding of the WGC in AdS
space; in particular, to understand what are the implications of this conjecture for the dual
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CFT.
Now, when the positivity-of-entropy bounds are implemented instead for hyperbolic

black holes we fnd something quite remarkable that was not noticed in Ref. [476]: some
of the constraints become incompatible with those coming from spherical black holes. For
instance, demanding that the corrections to the entropy for large spherical black holes
and for hyperbolic black holes (both of which are stable) be non-negative can only be
achieved if the GB coupling is vanishing, λ = 0. This looks like an unreasonably strong
constraint, even more taking into account that a positive GB coupling (which is the sign
imposed by δS > 0 in spherical black holes) is explicitly realized in string theory e˙ective
actions [110,124], which should be compatible with the WGC. This calls into question the
validity of the WGC bounds for hyperbolic black holes, and thus we decided to trust only
the conditions imposed by the spherical case. As we see later, this leads to quite reasonable
physics even when hyperbolic black holes are concerned, e.g., for Rényi entropies — we
comment on this below. However, it is also worth mentioning that Ref. [572] recently
provided examples of string theory realizations in which λ < 0. If the sign of λ can be
arbitrary within string theory, this would indeed contradict the positive-entropy bounds
of [528] as well as the results of [598]. Hence, one would conclude that these bounds are
too strong, and perhaps only a weaker version of them holds true — for instance, one could
think of applying these bounds only to spherical near-extremal black holes. Clearly, all of
this deserves further attention.

Next, we studied holographic charged Rényi entropies and their associated general-
ized twist operators, both of which are related to the thermodynamic properties of black
holes with hyperbolic horizons. We observed that, providing that the dual CFT respects
unitarity, the chemical potential always increases Rényi entropies with n ≥ 1. Furthermore,
standard Rényi entropies are known to satisfy a number of inequalities as a function of the
index n — see (4.223) — so we wondered if these held in our higher-derivative theories as
well. As it turns out, these seem to be always satisfed if one assumes all of the constraints
we have studied. However, if one gives up the WGC bounds, it is found that the RE can
violate some of these inequalities, and they could even become negative — see Fig. 4.3.
It is quite remarkable that the WGC avoids this behavior, which points in the direction
that the WGC bounds in AdS are necessary in order to give rise to a sensible theory in
the boundary.

We then computed the scaling dimension hn(µ) and magnetic response kn(µ) of
generalized twist operators, as introduced by Ref. [447]. By using the entries for the holo-
graphic dictionary of the EQG (4.30), we have obtained a series of relationships between
the derivatives of hn(µ) and kn(µ) at n = 1, µ = 0 and CT , CJ and the coeÿcients of hTJJi 
(see Eqs. (4.242), (4.245), (4.304) and (4.251)). These are actually universal relations that
hold for any CFT, and they were frst derived from frst principles in Refs. [446,447]. The
fact that one can independently derive these results by using holographic higher-derivative
theories is a proof of the power of this approach to learn about universality in CFTs. It is
remarkable how everything comes together taking into account the number of computations
involved in obtaining these formulas from two completely di˙erent approaches.

Finally, inspired by the results for the four-derivative EQG (4.30), we have explicitly
proven that the universal formula (4.252) holds for general CFTs in d ≥ 3. In d = 2, there
are various reasons to expect a di˙erent situation. On the one hand, observe that the
coeÿcient a2 is not even defned in that case. Similarly, from Eq. (4.95) it is clear that
CJ for our holographic calculations is divergent for d = 2 and therefore meaningless. The
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free-feld results reported in [447] also suggest a di˙erent structure in that case, including
possible linear terms in µ or jumps in Sn(µ) as n and µ vary. Additional two-dimensional
counterexamples to the subleading quadratic behavior in µ have appeared in [618]. It
would be interesting to investigate these features further —natural candidates would be
three-dimensional holographic EQGs [619].

On a di˙erent front, it would also be interesting to rederive Eq. (4.252) using the
techniques developed in [620]. In the case of a small perturbation by a relevant operator
O, the leading correction to the EE across a sphere was shown to be quadratic in the
perturbation and proportional to a double integral of hKOOi − hOOi, where K is the
modular Hamiltonian of ρA —which for spheres involves an integral of the stress tensor.
In the present context, it would be natural to relate O to the charge operator, which would
bring about integrals of hTJJi and hJJi, precisely as expected from Eq. (4.252).

In [621], a somewhat similar universal relation for charged Rényi entropies —involving
the uncharged result plus an extra term— was obtained in the case of discrete symmetry
groups. It would be nice to study the connection between Eq. (4.252) and the approach
developed in that paper and [622] in the case of continuous groups.

A particularly interesting application of our formula is to the case of supersymmetric
(S) CFTs, which come with a global R-symmetry group. For instance, for d = 4, N = 1 
SCFTs one has a U(1)R current with [435, 623,624] � � 

N =1, U(1)R 4c N =1, U(1)R a 
C = , a = 3 1 − , (4.313)J π4 2 c 

and therefore, our formula (4.252) yields the prediction� �� � 
N =1, U(1)R 2 a 

S = ν3 a + c − (µR)2 + . . . , (4.314)EE 3 3 

∗where we used a = a and c is the other trace-anomaly coeÿcient. Similarly, for N = 2 
SCFTs, the R-symmetry group is U(1)R× SU(2)R. Using the corresponding values of CJ 
and a2 [425,625], one fnds21 h � � i 

N =2, U(1)R a 
S = ν3 a + 2 c − (µR)2 + . . . ,EE 3� � (4.315)
N =2, SU(2)R 1 

S = ν3 a + (2c − a) (µR)2 + . . . .EE 6 

It would be interesting to verify these predictions using alternative methods.
Finally, it is natural to wonder what additional relations connecting quantum infor-

mation measures and universal CFT quantities may still remain to be discovered.

21In the SU(2)R case one should understand that µ couples to a U(1) subgroup of it.
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5 
Spinor fows on three-dimensional Cauchy

hypersurfaces

This chapter initiates the Second Part of the thesis, devoted to the study of geometric
aspects of Supergravity and ST. It consists of Chapters 5, 6 and 7 and covers some math-
ematical topics of high relevance in the context of theoretical physics. More concretely,
in this part we will study real parallel spinors on globally hyperbolic manifolds, self-dual
Einstein four-manifolds admitting a principal isometric action of the three-dimensional
Heisenberg group and the use of contact metric structures for the construction of Super-
gravity solutions. Among these problems, in the present chapter we will be interested in
the frst of them.

Globally hyperbolic four-dimensional Lorentzian manifolds play a fundamental role
in Lorentzian geometry and mathematical physics, especially in mathematical General
Relativity, where they provide a natural class of four-dimensional spacetimes for which
the initial value problem of Einstein feld equations is well posed [329, 335]. A natural
geometric condition to impose on a globally hyperbolic spin four-manifold (M, g) is the
existence of a (real) spinor parallel with respect to the Levi-Civita associated to g. In
particular, in the context of N = 1 pure Supergravity in four dimensions, a spacetime is
said to be supersymmetric if it is endowed with a parallel spinor [106]. Despite the fact that
the local structure of Lorentzian four-manifolds admitting a parallel spinor is well known
since the early days of mathematical GR and Supergravity [462], see also [626], the more
refned global di˙erential geometric and topological aspects of such Lorentzian manifolds
have been addressed in the literature only recently [477, 478, 627–629], see also [630–634]
for related global problems in Lorentzian geometry.

The main goal of this chapter is to investigate the di˙erential geometry and topology
of connected, oriented and time-oriented globally hyperbolic Lorentzian four-manifolds
(M, g) carrying a real parallel spinor feld ε ∈ Γ(Sg), understood as a section of a bundle
of irreducible real Cli˙ord modules over the bundle of Cli˙ord algebras of (M, g) (see
Section I.8). In order to do this, we will exploit the theory of parabolic pairs, recently
developed in [473], which provides an equivalent description of a parallel spinor as a pair
of certain one-forms satisfying a specifc system of frst order partial di˙erential equations.
The theory of parabolic pairs is a particular case of a general framework developed in that
reference to study irreducible real spinors satisfying a generalized Killing spinor equation.

Using this formalism, we will be able to reformulate the evolution problem for a
parallel spinor as a system of fow (partial di˙erential) equations for a family of functions� 

t{βt} and a family of coframes e on an appropriately chosen Cauchy hypersurfacet∈I t∈I� 
tΣ ⊂ M . We will say that a family is a parallel spinor fow if it satisfes theβt, e t∈I 
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aforementioned system of di˙erential equations. Using the notion of parallel spinor fow,
the corresponding constraint equations of the initial value problem of a parallel spinor can
be shown to be equivalent to a di˙erential system, the parallel Cauchy di˙erential system,
for a pair (e, Θ), where e is a coframe and Θ is a symmetric two-tensor on Σ. One of
the salient features of this formulation is that the Riemannian h metric induced by (M, g) 
on Σ is given by the canonical metric for which e = (eu, el, en) becomes an orthonormal
coframe, that is, he = eu ⊗ eu + el ⊗ el + en ⊗ en.

However, interestingly enough, (h, Θ) are precisely the variables of the confguration
space of the vacuum Hamiltonian and momentum constraint equations [335]. This allows
to defne the notion of initial data admissible to both the parallel spinor fow and the
vacuum Einstein fow, which immediately leads to the natural question of the compatibility
of both fows when starting on common admissible data. We will solve this question in
the aÿrmative and prove that a parallel spinor fow whose initial data are admissible to
both problems preserves the Hamiltonian and momentum constraints and yields a Ricci
fat Lorentzian four-manifold (M, g). We fnd this result non-trivial due to the fact that a
Lorentzian manifold admitting a parallel spinor need not be Ricci fat [626]. As a corollary,
we obtain the initial data characterization of a parallel spinor on a Ricci fat Lorentzian
four-manifold which, to the best of our knowledge, is the frst of its type in the literature.

Another important feature of parallel spinorial fows is that they admit a canonical
notion of left-invariance in terms of which we can defne the notion of left-invariance of
parallel spinors. Similarly, we also introduce the notion of left-invariant parallel Cauchy
pairs, being able to provide a classifcation of all left-invariant Cauchy pairs on connected
and simply connected Lie groups. We use this result to obtain the classifcation of all
associated left-invariant parallel spinor fows. As expected, the result strongly depends on
the initial data (e, Θ).

The outline of the chapter is as follows. First we present the theory of parallel spinors
in terms of parabolic pairs and we use it to characterize all standard Brinkmann space-
times admitting parallel spinors. Then we provide the description of parallel spinors on
globally hyperbolic Lorentzian four-manifolds as parallel spinor fows on an appropriately
chosen Cauchy surface and prove the compatibility of the parallel spinor fow with the vac-
uum Einstein fow. Afterwards we characterize parallel Cauchy pairs on simply connected
Cauchy surfaces and we characterize all parallel Cauchy pairs and associated foliations
in the compact case. Next we classify all left-invariant parallel Cauchy pairs on simply
connected Lie groups, which allows us to classify all left-invariant parallel spinor fows on
simply connected three-dimensional Lie groups, elaborating on some of their properties.
Later, we study a particular class of parallel spinor fows which we characterize geometri-
cally and solve explicitly in particular cases. Finally, we conclude with a brief discussion
of our results.

5.1 Parallel real spinors on Lorentzian four-manifolds

In this section we develop the theory of parallel spinors on four-dimensional Lorentzian
manifolds, assuming as the starting point of our investigation one of the main results
of [473], which characterizes parallel spinors in terms of a certain type of distribution
satisfying a prescribed system of partial di˙erential equations.
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5.1.1 General theory

Let (M, g) be a four-dimensional spacetime, that is, a connected, oriented and time oriented
Lorentzian four-manifold equipped with a Lorentzian metric g. We assume that (M, g) is
equipped with a bundle of irreducible real spinors Sg. This is by defnition a bundle of
irreducible real Cli˙ord modules over the bundle of Cli˙ord algebras of (M, g). Existence of
such Sg is in general obstructed. The obstruction was shown in [459,635] to be equivalent
to the existence of a spin structure Qg, in which case Sg can be considered to be a vector
bundle associated to Qg through the tautological representation induced by the natural
embedding Spin+(3, 1) ⊂ Cl(3, 1), where Spin+(3, 1) denotes the connected component of
the identity of the spin group in signature (3, 1) = − + ++ and Cl(3, 1) denotes the real
Cli˙ord algebra in signature (3, 1).

Remark 5.1. The tautological representation of Spin+(3, 1) ⊂ Cl(3, 1) is the representation
obtained by restriction of the unique irreducible real Cli˙ord representation γ : Cl(3, 1) → 
End(R4) of Cl(3, 1). This representation is real of real type (the commutant of the image of
γ in End(R4) is trivial) and γ is in fact an isomorphism of unital and associative algebras. In
particular R4 admits a skew-symmetric non-degenerate bilinear pairing which is invariant
under Spin+(3, 1) transformations [636, 637] (note that this bilinear cannot be chosen to
be symmetric).

We will assume, without loss of generality, that (M, g) is spin and equipped with a fxed
gspin structure Qg. Then, the Levi-Civita connection r on (M, g) induces canonically a

connection on Sg, the spinorial Levi-Civita connection, which we denote for simplicity by
the same symbol.

Defnition 5.1. A spinor feld ε on (M, g, Sg) is a smooth section ε ∈ Γ(Sg) of Sg. A spinor
feld ε is said to be parallel if rgε = 0.

For every lightlike one-form u ∈ Ω1(M) we defne an equivalence relation ∼u on the vector
space of one-forms as follows. Given l1, l2 ∈ Ω1(M) the equivalence relation ∼u declares
l1 ∼u l2 to be equivalent if and only if l1 = l2 + fu for a function f ∈ C∞(M). We denote
by:

Ω1(M)def.
Ω1 (M) = , (5.1)u ∼u 

the C∞(M)-module of equivalence classes given by ∼u.

Defnition 5.2. A parabolic pair (u, [l]) on (M, g) consists of a nowhere vanishing null
one-form u ∈ Ω1(M) and an equivalence class of one-forms:

[l] ∈ Ω1 (M) , (5.2)u 

such that the following equations hold:

g(l, u) = 0 , g(l, l) = 1 , (5.3)

for some, and hence for all, representatives l ∈ [l].

The starting point of our analysis is the following result, which follows from [473, Theorems
4.26 and 4.32] and gives the characterization of parallel spinors on (M, g) that will be most
convenient for our purposes.

249



Chapter 5. Spinor fows on three-dimensional Cauchy hypersurfaces

Proposition 5.1. A spacetime four-manifold (M, g) admits a real parallel spinor feld ε ∈ 
Γ(Sg) for some bundle of irreducible spinors Sg over (M, g) if and only if there exists a
parabolic pair (u, [l]) on (M, g) satisfying:

gr u = 0 , rgl = κ ⊗ u , (5.4)

for some representative (and hence for all) l ∈ [l] and a one-form κ ∈ Ω1(M). Unless
additional emphasis is needed, we will just write parallel spinors for real parallel spinors.

Remark 5.2. More precisely, Reference [473] proves that a nowhere vanishing spinor ε ∈ 
Γ(Sg) on (M, g) defnes a unique distribution of co-oriented parabolic two-planes in M ,
which in turn determines uniquely both u and the equivalence class of one-forms [l]. Con-
versely, any such distribution determines a nowhere vanishing spinor on (M, g), unique
up to a global sign, with respect to a spin structure on (M, g). Moreover, [473, Theorem
4.26] establishes a correspondence between a certain type of frst-order partial di˙erential
equations for ε and their equivalent as systems of partial di˙erential equations for (u, [l]),
of which equations (5.4) constitute the simplest case. The reader is referred to [473] for
further details.

Remark 5.3. Given a parabolic pair (u, [l]), constructing its associated spinor feld ε ∈ 
Γ(Sg) can be diÿcult, since it requires computing the preimage of the polyform u + u ∧ 
l through the square spinor map [455, §IV]. This is however not problematic for our
purposes, since we are not interested in the parallel spinor ε ∈ Γ(Sg) per se but only in the
geometric and topological consequences of its existence. In this context, the main point
of equations (5.4) and the general formalism presented in [473] is to provide a framework
to study spinorial di˙erential equations without having to consider the spinorial geometry
of the underlying pseudo-Riemannian manifold (M, g). This point of view is motivated
by the study of supersymmetric solutions of Supergravity, where ε corresponds to the
supersymmetry parameter, an auxiliary object that a priori bears no physical meaning and
is only used to defne mathematically the notion of supersymmetric solution.

Remark 5.4. Recall that if a pair (u, l), with l ∈ [l], satisfes equations (5.4) with respect
to a given κ ∈ Ω1(M) then any other representative l0 = l + fu satisfes again equation
(5.4) with respect to the same null one-form u and a possibly di˙erent one-form κ0 given
by:

κ0 = κ + df . (5.5)

We will say that a parabolic pair (u, [l]) is parallel if it corresponds to a parallel spinor feld,
that is, if it satisfes (5.4) for a representative l ∈ [l]. The dual u] ∈ X(M) of u is a parallel
vector feld onM which is usually referred to as the Dirac current of ε in the literature. The
fact that the Dirac current of ε is always null is specifc (although not exclusive) of the type
of irreducible real representation γ : Cl(3, 1) → End(R4) that we have used to construct
the spinor bundle Sg. Indeed, it can be seen (see for instance [473, Proposition 3.22])
that the pseudo-norm of the Dirac current u] is given by the pseudo-norm of ε computed
with respect to the admissible bilinear pairing B used to construct u]. Admissible bilinear
pairings were classifed in [636, 637], from which it follows that in our case there exist two
admissible pairings, both of them skew-symmetric. Therefore, B(ε, ε) = 0 automatically
and u] is always null.

Proposition 5.1 immediately implies that four-dimensional spacetimes admitting a
parallel spinor feld whose Dirac current is complete are particular instances of Brinkmann
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manifolds, which are precisely defned as spacetimes equipped with a complete and paral-
lel null vector feld [638]. Other well-known properties of spacetimes admitting a parallel
spinor feld, such as the special form of their Ricci tensor, are also immediate consequences
of Proposition 5.1, which provides an adequate global and coordinate-independent frame-
work to study the geometry and topology of four-dimensional spacetimes admitting parallel
spinors. In particular, such framework seems to be specially well-adapted to prove splitting
theorems in the spirit of [639], where the global geometry of Brinkmann spacetimes was
investigated.

5.1.2 Standard Brinkmann spacetimes

In order to illustrate the various uses of Proposition 5.1 and make contact with the ex-
isting literature, in this subsection we recover the well-known local characterization of a
Lorentzian four-manifold (M, g) admitting a parallel spinor, obtaining along the way the
global characterization of standard Brinkmann spacetimes that admit a parallel spinor,
which seems to be new in the literature. Recall that by defnition a Brinkmann space-
time [638,640] is a Lorentzian four-manifold equipped with a complete parallel null vector.
Let (u, [l]) be a parallel parabolic pair on (M, g), which by Proposition 5.1 is equiva-
lent to the existence of a parallel spinor. Since u is parallel, (M, g) is locally isometric
to a Brinkmann spacetime, whence it suÿces to consider (M, g) to be standard, namely
M = R2 × X in terms of an oriented two-dimensional manifold X, equipped with the
metric:

g = Hxu dxu ⊗ dxu + dxu αxu + dxu dxv + qxu . (5.6)

where (xu, xv) denotes the Cartesian coordinates of R2 , and

{Hxu } {αxu } {qxu } (5.7)xu∈R , xu∈R , xu∈R , 

respectively denote a family of functions, a family of one-forms and a family of complete
Riemannian metrics on X parametrized by xu ∈ R. The vector feld ∂xv is null and
parallel, so g(∂xv ) = dxu is a null parallel one-form which we identify with u. We will refer
to a parallel spinor on a standard Brinkmann spacetime as adapted if its Dirac current is
proportional to ∂xv . In such case, the frst equation in (5.4) is automatically satisfed and
we only need to be concerned with the second equation in (5.4), namely:

rgl = κ ⊗ dxu , l ∈ [l] , κ ∈ Ω1(M) , (5.8)

which needs to be satisfed for a representative in [l]. This equation is equivalent to

dl = κ ∧ dxu , Ll] g = κ dxu , (5.9)

where l] denotes the metric dual of l with respect to g. Using that u = dxu and g−1(l, u) = 
l(∂xv ) = 0, it follows that there exists a representative l ∈ [l] of the form:

l = l⊥ , (5.10)

where l⊥ denotes a bi-parametric family of unit-norm one-forms on X parametrized by
(xu, xv) ∈ R2 . The frst equation in (5.9) is equivalent to

κv dxu ∧ dxv − ∂xv l
⊥ ∧ dxv − (κ⊥ + ∂xu l

⊥) ∧ dxu + dX l
⊥ = 0 , (5.11)
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Chapter 5. Spinor fows on three-dimensional Cauchy hypersurfaces

where we have used the splitting κ = κudxu + κvdxv + κ⊥ and dX denotes the exterior
derivative operator on X. Hence:

κv = 0 , ∂xv l
⊥ = 0 , κ⊥ = −∂xu l

⊥ , dX l
⊥ = 0 . (5.12)

On the other hand, recall that the dual l] with respect to g is given by the following
expression:

l] = −αxu (l
⊥) ∂xv + q −1(l⊥) (5.13)xu 

which we use to compute the Lie derivative of g along l]:

Ll] g = dHxu (l
⊥) dxu ⊗ dxu + dxu (αxu (∂xu l

⊥)dxu + Ll
X 
⊥ αxu ) 

(5.14)
− dxu d(αxu (l

⊥)) + LX
l⊥ qxu , 

where LX denotes the Lie derivative on the surface X and where we have used:

Ll] dxu = 0 , Ll] dxv = −d(αxu (l
⊥)) = −∂xu (αxu (l

⊥))dxu − dX (αxu (l
⊥)) , (5.15)

Ll] αxu = αxu (∂xu l
⊥)dxu + Ll

X 
⊥ αxu , (5.16)

Ll] qxu = Ll
X 
⊥ qxu + dxu ∂xu l

⊥ − dxu (∂xu qxu )((l
⊥)]q ) . (5.17)

Hence, the second equation in (5.9) is equivalent to

1 
κu = dHxu (l

⊥) − (∂xu αxu )(l
⊥) , (5.18)

2 
qxu l⊥ r = 0 , 2∂xu l

⊥ − 2(∂xu qxu )((l
⊥)]q ) + l⊥y dX αxu = 0 , (5.19)

qxuwhere we have used that dX l
⊥ = 0 and where r denotes the Levi-Civita connection of

the Riemannian metric qxu on X. Altogether we obtain the following result.

Proposition 5.2. A standard Brinkmann spacetime admits an adapted parallel spinor if
and only if it is isometric to the following model:

(M, g) = (R2 × X, Hxu dxu ⊗ dxu + dxu αxu + dxu dxv + qxu ) , (5.20)

where {qxu } is a family of complete fat metrics on X, and there exists a family ofxu∈R � 
unit-norm one-forms lx 

⊥ 
u xu∈R such that

1 
∂xu l

⊥ − (∂xu qxu )((l
⊥)]q ) + l⊥y dX αxu = 0 , rqxu l⊥ = 0 . (5.21)

2 

In particular, ∂xu l
⊥ = µxu ?qxu l

⊥ for a family of constants {µxu }xu∈R, ?qxu being the
Hodge dual with respect to qxu .

By uniformization, we conclude that X is di˙eomorphic to either R2 , R2\ {0} or T 2 .
Appropriately choosing local coordinates the previous result directly implies that a four-
dimensional spacetime admitting parallel spinors is locally isometric to a pp-wave [640–642],
defned as a Brinkmann space for which the Riemann curvature tensor Rg satisfes that1

|Rg|2 = 0.g 

1Using some local coordinates, |Rg |2 
g = 1 

4
Rg )µνρσ 

µνρσ (R
g .
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5.2 Globally hyperbolic case

Rather than investigating the global geometry and topology of general spacetimes admit-
ting parallel spinors, exploiting for instance the refned screen bundle construction that can
be developed in the presence of a parabolic pair, we restrict the causality of (M, g) and we
assume in the following that (M, g) is a globally hyperbolic four-dimensional spacetime, as
proposed in [478, 627]. A celebrated theorem of Bernal and Sánchez [345, 346] states that
in this case (M, g) has the following isometry type:

(M, g) = (R × Σ, −β2dt ⊗ dt + ht) , (5.22)t 

where t is the canonical coordinate on R, {βt}t∈R is a smooth family of nowhere vanishing
functions on Σ and {ht}t∈R is a family of complete Riemannian metrics2 on Σ. From now
on we consider the identifcation (5.22) to be fxed. We set

def. def.
Σt = {t} × Σ ,→ M , Σ = {0} × Σ ,→ M , (5.23)

and defne
tt = βt dt , (5.24)

to be the outward-pointing unit time-like one-form orthogonal to Σt for every t ∈ R. We
will consider Σ ,→ M , endowed with the induced Riemannian metric

def.
h = h0|T Σ×T Σ , (5.25)

to be the Cauchy hypersurface of (M, g). The shape operator or scalar second fundamental
form Θt of the embedded manifold Σt ,→ M is defned in the usual way as follows:

def. gΘt = r tt|T Σt×T Σt , (5.26)

This defnition can be seen to be equivalent to

1 
Θt = − ∂tht ∈ Γ(T ∗ Σt T ∗ Σt) . (5.27)

2βt 

Moreover, it can be seen that

rgα|T Σt×TM = r ht α +Θt(α) ⊗ tt , ∀ α ∈ Ω1(Σt) , (5.28)

htwhere r denotes the Levi-Civita connection on (Σt, ht) and Θt(α) := Θt(α
]ht ) is by

defnition the evaluation of Θt on the metric dual of α. Given a parabolic pair (u, [l]), we
write

0 ⊥ l = l0 u = u tt + u , tt + l⊥ ∈ [l] , (5.29)t t t t 

where the superscript ⊥ denotes orthogonal projection to T ∗Σt and where we have defned
0 u = −g(u, tt) , l0 = −g(l, tt) , (5.30)t t 

Using the previous orthogonal splitting of u and l we can obtain an equivalent characteri-
zation of parallel spinors on a globally hyperbolic spacetime in terms of fow equations on
Σ. First we prove the following two lemmas.

2Note that these are not the most general globally hyperbolic manifolds one may consider, since examples
with non-complete Cauchy slices are known [643].
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Lemma 5.1. [627, Lemma 3.1] Let u ∈ Ω1(M) be a null one-form on the globally hyperbolic
gmanifold (5.22). Then, r u = 0 if and only if

g(r u)(v2) = 0 , (5.31)v1 

for every v1 ∈ X(M) and every v2 ∈ X(Σt).

Proof. We compute:

⊥0 
t g(r 0 g 

t g(r u, tt) , (5.32)g g g ) = u 

gwhere we have used that the spatial projection of r u is zero by assumption.

Lemma 5.2. A globally hyperbolic four-manifold (M, g) = (R × Σ, −β2dt ⊗ dt + ht) admitst 
a parabolic pair, and hence a parallel spinor feld, if and only if there exists a family of� 

0 = g(r u, u) = u u, tt) + g(r u, ut 

⊥ ⊥orthogonal one-forms on Σ satisfying the following equations:, l u 
t∈Rt t 

∂tu
⊥ 
t 

⊥ 
t 

⊥ Θt(l
⊥ 
t 

⊥ 
t )u

⊥ 
t 

0 0 0 (5.33)+ βtΘt(u ) = u dβt , ∂tl + βtut t ) + dβt(l = 0 ,ut t 
⊥ 
t + u ⊥ 

t 
⊥ 
t ) ⊗ u⊥rht u 0Θt = 0 , u0rht l (5.34)= Θt(l ,t t t 

as well as
0(u )2 
t 

⊥ 
t |2 

ht , 
⊥ 
t |2 = 1 , (5.35)ht = |u |l 

In particular, ∂tu0 
t = dβt(u⊥ 

t 
⊥ 
t) and du0 

t If equations (5.33) and (5.34) are+ Θ(u ) = 0.
satisfed, the corresponding parabolic pair (u, [l]) is given by:

⊥ [l] = [l⊥ 
t ] . 0 (5.36)tt + uu = u ,t t 

where |u⊥ 
t |2 

ht 
= ht(u⊥ ⊥) and |l⊥ 

t |2 
ht 

⊥ 
t , l ⊥ 

t ).= ht(l, u t t 

⊥ 
t . We0Proof. Let (u, [l]) be a parabolic pair satisfying equations (5.4). Write u = u tt + ut 

can fnd a representative l ∈ [l] such that

l = l⊥ 
t ∈ Ω1(Σt) , t ∈ R , (5.37)

that is, with l purely spatial. Using this representative together with Lemma 5.1, it follows
that equations (5.4) are equivalent to

g gr u|T Σt = 0 , r u|T Σt = 0 , (5.38)∂t vt 

rg 
∂t 
l⊥ 
t = κ(∂t) u , rg 

vt l
⊥ 
t = κ(vt) u , ∀ vt ∈ T Σt . (5.39)

⊥ 
t the spatial projection of κ ∈ Ω1(M). We compute:Denote by κ 

= ∂tu⊥ 
t + βtΘt(u

⊥ 
t 

⊥ 
t 

0 g ht udβt , r = r 0 
t Θt ,rg 

∂t 
(5.40)u|T Σt ) − u u|T Σt×T Σt + ut 

l⊥ 
t = ∂tl⊥ 

t 
⊥ 
t 

⊥ 
t 

⊥ 
t ) , 0 

t tt + ug 
∂t 

(5.41)− dβt(l )tt + βtΘt(l ) = κ(∂t)(ur 
⊥ 
t 

⊥ 
t +Θt(l

⊥ 
t = κ⊥ 

t tt + u⊥ 
t ) .= rht l ⊗ (u0 

t (5.42)gl |T Σt×TM ) ⊗ ttr 

Isolating κ in the previous equations we obtain:

1 1⊥ 
t 

⊥ Θt(l
⊥ 
t ) , (5.43)κ(∂t) = − dβt(l0 ) , κ = t 0u ut t 
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Plugging these equations back into the expressions for the covariant derivatives of l⊥ wet 
obtain all equations in (5.33) and (5.34). The fact that these equations imply ∂tu = t 

⊥ 0 ⊥dβt(u ) and du + Θ(u ) = 0 follows now by respectively manipulating the time andt t t 
0 ⊥exterior derivatives of (u )2 = |u |2 . The converse follows directly by construction andt t ht 

hence we conclude.

Remark 5.5. In the previous discussion we have used informally the notion of family of
tensors parametrized by R. This notion can be given a rigorous meaning as follows. A
family of, say, one-forms {αt}t∈R on Σ is by defnition a smooth section α : R×Σ → p ∗(T ∗Σ) 
of the pull-back of T ∗Σ by the canonical projection p: R × Σ → Σ. Families of other types
of tensors are defned similarly.

The previous lemma gives the necessary and suÿcient conditions for a globally hy-
perbolic Lorentzian four-manifold (M, g) to admit a real parallel spinor feld. We may
consider as variables of these equations tuples of the form:� n o n o �� 

0 ⊥ l⊥{βt}t∈I , {ht}t∈I , ut , ut , t . (5.44)
t∈I t∈I t∈I 

These tuples contain the information about both the spinor and the underlying globally
hyperbolic Lorentzian metric. However, we can actually reformulate the problem of a real
parallel spinor on a globally hyperbolic manifold in terms of a family of functions and
coframes on Σ satisfying some prescribed system of partial di˙erential equations, as the
following theorem shows.

Theorem 5.1. An oriented globally hyperbolic Lorentzian four-manifold (M, g) admits a
parallel spinor feld if and only if there exists an orientation preserving di˙eomorphism
identifying M = I × Σ, where Σ is an oriented three-manifold equipped with a family of� 

tstrictly positive functions {βt}t∈I on Σ and a family e of sections of F(Σ) satisfying
t∈I 

the following system of di˙erential equations:

t t t t t t∂te + dβt(e )e + βtΘt(e ) = δaudβt , de = Θt(e
t) ∧ e , (5.45)a a u a u 

t t t∂t(Θt(e )) + d(dβt(e )) = 0 , [Θt(e )] = 0 ∈ H1(Σ, R) (5.46)u u u 

t t t twhere e = (e , el , e ) : Σ → F(Σ) andu n 

1t t t t t thet = e ⊗ e + el ⊗ el + e ⊗ e , Θt = − ∂thet . (5.47)u u n n 2βt 

In this case, the globally hyperbolic metric g is given by:

g = −β2dt ⊗ dt + het , (5.48)t 

where t is the Cartesian coordinate in the splitting M = R × Σ.

Proof. By Lemma 5.2, a globally hyperbolic Lorentzian four-manifold (M, g) admits a real
parallel spinor if and only if there exists a Cauchy surface Σ ,→ M equipped with a tuple
(5.44) satisfying equations (5.33), (5.34) and (5.35). Let� n o n o �� 

0 ⊥ l⊥{βt}t∈I , {ht}t∈I , ut t∈I , ut , t , (5.49)
t∈I t∈I 
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be such a solution and defne
⊥ut t t eu = 0 , el = lt ⊥ . (5.50)
ut 

t tThen (e , e ) is a family of nowhere vanishing and orthonormal one-forms on Σ, whichu l � 
t t t tcan be canonically completed to a family of orthonormal coframes e = (e , el , e ) byu n 

t � 
defning the family of one-forms e as follows:n t∈I 

t t t e := ?ht (e ∧ el ) , (5.51)n u 

where ?ht denotes the Hodge dual associated to the family of metrics {ht} Pluggingt∈I .
equations (5.50) into the frst and second equations in (5.33) and manipulating the time� ⊥derivative of u we obtain the frst equation in (5.33) for a = u and a = l. Fort� t∈I 

te we compute as follows:n t∈I 

t t t t t t t t0 = ∂t(h−1(e , e )) = (∂th−1)(e , e ) + h−1(∂te , e ) + h−1(e , ∂te )t n u t n u t n u t n u 
t t t t t t = 2βtΘt(e , e ) + h−1(∂te , e ) + h−1(e , dβt − βtΘt(e ))n u t n u t n u 

t t t t t = βtΘt(e , e ) + h−1(∂te , e ) + dβt(e ) , (5.52)n u t n u n 
t t t t t t t t t t0 = ∂t(h−1(e , el )) = (∂th−1)(e , el ) + h−1(∂te , el ) + h−1(e , ∂tel ) = 2βtΘt(e , e )t n t n t n t n n u 

t t t t t t t t+ h−1(∂te , el ) + h−1(e , βtΘt(el )) = βtΘt(e , e ) + h−1(∂te , el ) , (5.53)t n t n n u t n 

which immediately implies the frst equation in (5.45) for the remaining case a = n. On
the other hand, by Lemma 5.2, we have:

0dut t+Θt(e ) = 0 , (5.54)0 u ut 

twhence [Θt(e )] = 0 ∈ H1(Σ, R), which yields the second equation in (5.46). Taking theu 
time derivative of the previous equations we obtain:

0 td∂t log |u | + ∂t(Θt(e )) = 0 . (5.55)t u 

0 ⊥Since by Lemma 5.2 we have ∂tu = dβt(u ), the previous equation implies the frstt t 
equation in (5.46). We compute:

ht t t t ht t t t ht t t t r e = r h ?ht (e ∧ el ) = ?ht (r e ∧ el ) + ?ht (e ∧r el ) = Θt(e ) ⊗ e . (5.56)n u u u n u 

The skew-symmetrization of the previous equation together with the skew-symmetrization� 
of equations (5.34) yields the second equation in (5.45). Conversely, suppose that et, βt t∈I 
is a solution of equations (5.45) and (5.46), and set

t t t t t thet = eu ⊗ eu + el ⊗ el + en ⊗ en , Θt = − 
1 
∂thet . (5.57)

2βt � 
t ¯Since [Θt(eu)] = 0 in H1(Σ, R) = 0, there exists a smooth family of functions ft such

t∈R 
that

td̄ft = −Θt(eu) . (5.58)
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Taking the time-derivative of the previous expression we obtain:

t¯d∂tft = −∂t(Θt(e )) . (5.59)u 

Hence, comparing with the frst equation in (5.46) we conclude:

t¯d∂tft = d(dβt(eu)) . (5.60)

t¯implying ∂tft = dβt(e ) + c(t) for a certain function c(t) depending exclusively on t. Setu 
t R 

ft := ̄ft − c(τ)dτ , By construction we have ∂tft = dβt(e ). Furthermore,u 

td∂tft = −∂tΘt(e ) . (5.61)u 

⊥ ft et t t tDefne now u := e and l⊥ := el . The fact that both e and e satisfy the frst equationt u t u l 
in (5.45) implies:

⊥ ⊥ t ⊥ 0∂tu + βtΘt(u ) + (dβt(e ) − ∂tft)u = u dβt , (5.62)t t u t t 

as well as:
0 0 ⊥ u ∂tl

⊥ + βtu Θt(l
⊥) + dβt(l

⊥)u = 0 , (5.63)t t t t t t 

0 ft twhere we have identifed u := e . Using the fact that ∂tft = dβt(e ) we obtain equationst u 
(5.33). Equations (5.34) follow directly by interpreting the second equation in (5.45) as

tthe frst Cartan structure equations for the coframe e , considered as orthonormal with
t t t t t trespect to the metric het = e ⊗ e + e ⊗ e + e ⊗ e . Finally, equations (5.35) hold byu u l l n n 

construction and hence we conclude.

Defnition 5.3. Equations (5.45) and (5.46) are the (real) parallel spinor fow equations. A� 
treal parallel spinor fow is a family of functions and coframes on Σ satisfyingβt, e t∈I 

the real parallel spinor fow equations.

Therefore, a globally hyperbolic Lorentzian four-manifold admits a parallel spinor if and� 
tonly if it admits a Cauchy surface carrying a parallel spinor fow βt, e . In particular,� t∈I 

tthe corresponding parallel spinor ε can be fully reconstructed from βt, e . We remark
t∈I 

that for our purposes the explicit expression of the parallel spinor associated to a given� 
tparallel spinor fow βt, e is of no relevance in itself. Instead, we are interested in the

t∈I 
geometric and topological consequences associated to the existence of a parallel spinor ε,
rather than on its specifc expression.

5.2.1 The constraint equations

The parallel spinor fow equations pose an evolution problem whose associated constraint
equations are equivalent to the constraint equations of the evolution problem posed by a
parallel spinor on a globally hyperbolic Lorentzian four-manifold. Take Σ := Σ0 as the
Cauchy hypersurface of (M, g) and set

0 e := e , Θ := Θ0 . (5.64)
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Proposition 5.3. A globally hyperbolic four-manifold (M, g) with Cauchy surface Σ ,→ M 
and second fundamental form Θ ∈ Γ(T ∗Σ T ∗Σ) admits a parallel spinor ε ∈ Γ(Sg) if and
only if Σ admits an orthonormal frame e = (eu, el, en) such that

deu = Θ(eu) ∧ eu , del = Θ(el) ∧ eu , den = Θ(en) ∧ eu , (5.65)

[Θ(eu)] = 0 ∈ H1(Σ, R) . (5.66)

Proof. Equation (5.65) and (5.66) are the restriction of the second set of equations in (5.45)
and of the second equation in (5.46) to Σ, so it is clear that they are necessary conditions.
Regarding suÿciency, note that the initial value problem of a parallel null spinor is well
posed by the results of [477, 478, 627] and a parallel spinor is equivalent to a parallel
parabolic pair (see Proposition 5.1). Hence every solution to (5.65) and (5.66) admits a
Lorentzian development carrying a parallel spinor and containing as Cauchy surface the
submanifold (Σ, h) with associated second fundamental form Θ and we conclude.

Remark 5.6. The constraint equations corresponding to a parallel spinor on a globally
hyperbolic Lorentzian manifold are well known to correspond to the imaginary generalized
Killing spinor equation with respect to the shape operator of the Cauchy hypersurface
[478, 628, 644]. Such type of characterization also applies to our problem, however we do
not need to consider it thanks to the description of parallel spinors as parabolic pairs
provided in Proposition 5.1.

Remark 5.7. Equation (5.66) is to be interpreted as a cohomological condition, which is
equivalent to d(Θ(eu)) = 0 if H1(Σ, R) = 0. However, it may restrict the discrete quotients
to which a given solution on the universal cover descends, since an exact one-form on Σ 
may descend to a closed non-exact one-form on certain quotients of Σ.

We will consider equations (5.65) and (5.66) as the constraint equations of the parallel
spinor fow, whose solutions (e, Θ) are by defnition the allowed initial data of the parallel
spinor fow. We will refer to equations (5.65) and (5.66) as the parallel Cauchy di˙erential
system.

Defnition 5.4. A parallel Cauchy pair (e, Θ) is a solution of the parallel Cauchy di˙erential
system.

For further reference, we also introduce the notion of Codazzi spinors. According to
standard usage in the literature, if the shape operator of a given solution (e, Θ) satisfes

r hΘ ∈ Γ(S3T ∗ Σ) , (5.67)

(r Θ)(v2, v3) = (r Θ)(v1, v3) , (5.68)

then we say that Θ is a Codazzi tensor on Σ. More explicitly, a shape operator Θ is a
Codazzi tensor if and only if

h h 
v1 v2 

for every v1, v2, v3 ∈ X(Σ). Such (imaginary) Codazzi spinors were studied [628] and corre-
spond to the constraint equations of a parallel spinor on a globally hyperbolic Lorentzian
manifold of constant curvature. More recently, Reference [478] determines the local isom-
etry type of the Cauchy surface of any Lorentzian manifold carrying a parallel spinor,
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Chapter 5. Spinor fows on three-dimensional Cauchy hypersurfaces

showing that, in the four-dimensional case, corresponds to a certain warped product in-
volving a family of two-dimensional fat metrics. Therefore, the results of this article can
be considered as a continuation of those of [478] in the specifc case of four Lorentzian
dimensions.

Let Conf(Σ) denote the confguration space of the parallel Cauchy di˙erential system,
that is, its space of variables (e, Θ), and let Sol(Σ) be the space of parallel Cauchy pairs.
Note that the function β0 does not occur in the parallel Cauchy di˙erential system, exactly
as it happens with the initial value problem posed by the Ricci fat condition of a Lorentzian
metric [329, 335]. Given a pair (e, Θ) ∈ Conf(Σ), we denote by he the Riemannian metric
on Σ defned as:

he = eu ⊗ eu + el ⊗ el + en ⊗ en , (5.69)

where e = (eu, el, en). We say that (e, Θ) is complete if he is a complete Riemannian metric
on Σ. Denote by Met(Σ)×Γ(T ∗Σ T ∗Σ) the set of pairs consisting of Riemannian metrics
and symmetric two-tensors on Σ. We obtain a canonical map

Ψ: Conf(Σ) → Met(Σ) × Γ(T ∗ M T ∗ M) , (e, Θ) 7→ (he, Θ) . (5.70)

The set Met(Σ) × Γ(T ∗M T ∗M) is in fact the confguration space of the constraint
equations associated to the Cauchy problem posed by the Ricci fat condition on a globally
hyperbolic Lorentzian four-manifold with Cauchy surface Σ, which are given by [329,335]:

Rh = |Θ|2 
h − Trh(Θ)2 , dTrh(Θ) = divh(Θ) , (5.71)

for pairs (h, e) ∈ Met(Σ) × Γ(T ∗M T ∗M).

Remark 5.8. The frst equation in (5.71) is usually called the Hamiltonian constraint
whereas the second equation in (5.71) is usually called the momentum constraint.

Therefore, the map Ψ provides a natural link between the initial value problem associated
to a parallel spinor and the initial value problem associated to the Ricci-fatness condition.
In particular, it allows introducing a natural notion of admissible initial data to both
evolution problems.

Defnition 5.5. A parallel Cauchy pair (e, Θ) is constrained Ricci fat if (he, Θ) satisfes the
momentum and Hamiltonian constraints (5.71).

Lemma 5.3. Let (e, Θ) be a parallel Cauchy pair and write e = (eu, el, en). Then

divh(Θ) ∧ eu = dTr(Θ) ∧ eu . (5.72)

Proof. The statement is equivalent to

divhe (Θ)(el) = dTr(Θ)(el) , divhe (Θ)(en) = dTrhe (Θ)(en) . (5.73)

Note that we indistinctly denote with the same symbol one-forms and their duals by the
metric wherever no possible confusion may arise. Now we write:

Θ = Θab ea ⊗ eb , Θab ∈ C∞(Σ) , a, b = u, l, n , (5.74)

259



Chapter 5. Spinor fows on three-dimensional Cauchy hypersurfaces

where Θab ∈ C∞(Σ) are smooth functions. Also, recall that by the defnition of parallel
Cauchy coframe, e = (eu, el, en) satisfes

hereb 
ea = −δauΘ(eb) + Θ(ea, eb)eu . (5.75)

Using the previous equation, we compute:X X X 
divh(Θ)(el) = he(r Θ)(ea, el) = ea ea(Θal) − ΘulΘaa , (5.76)

a a a 

as well as: X 
dTr(Θ)(el) = el(Θaa) . (5.77)

a 

Hence,

dTrhe (Θ)(el)−divh(Θ)(el) = −eu(Θul)−en(Θln)+el(Θuu)+el(Θnn)+ΘulTrhe (Θ) . (5.78)

Using now that d2en = 0 we obtain el(Θnn) − en(Θln) = ΘlnΘun − ΘnnΘul, which in turn
implies dTr(Θ)(el) = divh(Θ)(el). Similarly divh(Θ)(en) = dTr(Θ)(en) and we conclude.

For further reference, we obtain the Ricci tensor and scalar curvature of the Riemannian
metric he associated to a parallel Cauchy pair (e, Θ).

Proposition 5.4. Let (e, Θ) be a parallel Cauchy pair. The Ricci curvature of he is given
by:

eRice = Θ ◦ Θ − Tre(Θ)Θ + (dTre(Θ) − dive(Θ)) ⊗ eu + r Θ − (r eΘ)(eu) , (5.79)eu 

whereas the scalar curvature of he reads

] ]Re = |Θ|2 − Tre(Θ)2 − 2(dive(Θ)(e ) − dTre(Θ)(e )) , (5.80)e u u 

hwhere drh denotes the exterior covariant derivative associated to r .

Proof. The result is proven through a direct computation using the fact that for a parallel
Cauchy pair (e, Θ) we have:

he ] ] ]r ea = Θ(ea) ⊗ eu − δuaΘ] , a = u, l, n (5.81)

as well as:

rhe (Θ(ea
] )) = 

P 
b(dΘab ⊗ eb +ΘabΘb ⊗ eu) − ΘuaΘ , (5.82)

where we have written Θ = Θabea ⊗eb, a, b = u, l, n. In our conventions the Ricci curvature
reads X X 

Rice = e] ydre (ec ⊗ Θc) − e] ydre (Θa ⊗ eu) , (5.83)u a 
c a 

where dre denotes the exterior covariant derivative for one-forms taking values on one-
forms. Expanding the desired result for the Ricci tensor follows. Taking the trace of
Equation (5.79), we obtain:

Rh ] ]= |Θ|2 − Tr(Θ)2 − divh(Θ)(e ) + dTr(Θ)(e ) + Tre(reu Θ − (rΘ)(eu)) . (5.84)u u 
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The last term can be written as follows:X 
] ] ] ] ] ]((r ] Θ)(e , e ) − (r ] Θ)(e , e )) = dTre(Θ)(e ) − dive(Θ)(e ) , (5.85)a a u a u ue eu a 

a 

whence
] ]Re = |Θ|2 − Tr(Θ)2 − 2(divh(Θ)(e ) − dTre(Θ)(e )) , (5.86)u u 

and we conclude.

Remark 5.9. If Θ is Codazzi then Equation (5.79) simplifes to:

Rice = Θ ◦ Θ − Tre(Θ)Θ , (5.87)

which matches [628, Proposition 5] modulo an unimportant constant factor.

Proposition 5.5. A Cauchy pair (e, Θ) satisfes the Hamiltonian constraint, that is, the
frst equation in (5.71), if and only if (e, Θ) satisfes the momentum constraint, that is, the
second equation in (5.71).

Proof. Follows from the explicit expression (5.80) for the scalar curvature of he upon use
of Lemma 5.3.

Proposition 5.6. A pair (e, Θ) ∈ Conf(Σ) is a constrained Ricci fat parallel Cauchy pair
if and only if

deu = Θ(eu) ∧ eu , del = Θ(el) ∧ eu , den = Θ(en) ∧ eu , (5.88)

Rhe[Θ(eu)] = 0 ∈ H1(Σ, R) , = |Θ|2 − Tr(Θ)2 . (5.89)

where he is the Riemannian metric associated to (e, Θ). In particular, every Cauchy pair
(e, Θ) whose shape operator Θ is Codazzi is constrained Ricci fat.

Proof. By Proposition 5.5 we only need to prove that if (e, Θ) is a parallel Cauchy pair and
Θ is a Codazzi shape operator then the momentum constraint is automatically satisfed.
Fix a point p ∈ Σ and an orthonormal (with respect to he) frame {ea}, a = 1, 2, 3, such
that rhe ea|p = 0. We compute at p ∈ Σ:X X X 

hedTr(Θ)|p = d(Θ(ea, ea))|p = (r he Θ)(ea, ea)|p + 2 Θ(r ea, ea)|p 
a a aX (5.90)

he= (r Θ)(ea)|p = divhe (Θ)|p ,ea 
a 

and hence we conclude.

Remark 5.10. We will refer to a parallel Cauchy pair (e, Θ) whose shape operator is Codazzi
as a Codazzi parallel Cauchy pair.

Proposition 5.6 summarizes necessary conditions that a pair (e, Θ) needs to satisfy in
order for the Lorentzian development of (Σ, he) to be a Ricci fat Lorentzian four-manifold
admitting a parallel spinor feld. These conditions are satisfed by all examples in [628].
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Example 5.1. Take Σ = τ3,µ to be the simply-connected non-unimodular Lie group τ3,µ 
where −1 < µ ≤ 1, µ 6= 0, is a constant, see [645, Chapter 7] for its precise defnition. On

1 2τ3,µ there exists a left-invariant coframe (e , e , e3) satisfying
1 2 1 3 1de = 0 , de = µ e 2 ∧ e , de = e 3 ∧ e . (5.91)

Set
1 2 e = (eu, el, en) := (e , e ,e 3) , he = eu ⊗ eu + el ⊗ el + en ⊗ en , 

(5.92)
Θ := h + (µ − 1) el ⊗ el . 

A direct computation shows that (e, Θ) defnes a parallel Cauchy pair on τ3,µ, that is, (e, Θ) 
is a solution of equations (5.65) and (5.66). Note that since deu = 0 and τ3,µ is simply
connected, the one-form eu = Θ(eu) is automatically exact. In particular, we have:

h h h r eu = −µ el ⊗ el − en ⊗ en , r el = µ el ⊗ eu , r en = en ⊗ eu , (5.93)

conditions which are equivalent to equations (5.65). More explicitly, write eu = df for a
real function f ∈ C∞(Σ). Then (êl = eµfel, ên = efen) defnes a pair of closed nowhere
vanishing one-forms. In particular, ê = (eu, êl, ên) is a closed global coframe on Σ. Set

def.
hê = eu ⊗ eu + êl ⊗ êl + ên ⊗ ên , (5.94)

def.to be the Riemannian metric defned as ê = (eu, êl, ên). Since dê = 0, the metric hˆ is fat
and therefore

e 

−2µf ̂  −2fˆhe = eu ⊗ eu + e el ⊗ êl + e en ⊗ ên , (5.95)

is a warped product of fat metrics. Even more, since ê = (eu, êl, ên) is a closed coframe
there exist local coordinates (z, x, y) (global, if ê is complete) such that:

eu = df = dz , êl = dx , ên = dy . (5.96)

Therefore, the metric can be written as follows:
−2µzdx ⊗ dx + ehe = dz ⊗ dz + e −2zdy ⊗ dy . (5.97)

The scalar curvature of he can be computed to be:

Rh = −2(1 + µ + µ 2) . (5.98)

2which, together with the fact that |Θ|2 = 2 + µ and Trh(Θ)2 = (2 + µ)2 shows that theh 
Hamiltonian constraint is satisfed if and only if3:

µ = 1 . (5.99)

Since the momentum constraint is clearly satisfed if and only if µ = 1, we conclude that if
µ 6= 1 we obtain a solution to the constraint equations (5.33) and (5.34) whose Lorentzian
development yields a non Ricci fat Lorentzian four manifold. On the other hand, if µ = 1,
the Riemannian three-manifold (Σ, he) admits a Lorentzian development which is Ricci
fat and admits a parallel spinor, by virtue of Theorem 5.2 (which we will state and prove
afterwards). Finally, when µ = 1, the parallel Cauchy pair turns out to be additionally
Codazzi and (Σ, he) ,→ (M, g) is a totally umbilical submanifold of (M, g).

3Recall that −1 < µ ≤ 1 and µ 6= 0.
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A Cauchy pair is said to be complete if (Σ, he) is a complete Riemannian three-manifold.
] ] ] ]When necessary, the dual of a Cauchy coframe e will be denoted by e = (eu, el , en). Denote

by
def.

Conf(Σ) = Γ(S2T ∗ Σ) × Γ(F(Σ)) , (5.100)

the confguration space of the Cauchy di˙erential system that is, its space of variables.
Likewise, denote by

Sol(Σ) ⊂ Conf(Σ) , (5.101)

the subspace of solutions of the Cauchy di˙erential system. We have a canonical map

Sol(Σ) → Metc(Σ) , (e, Θ) 7→ he , (5.102)

where Metc(Σ) denotes the space of complete Riemannian metrics on Σ. The image of
the previous map, which we denote by Mets(Σ), is by defnition the space of completec 
Riemannian metrics on Σ that admit a solution to the Cauchy di˙erential system for
a shape operator Θ ∈ Γ(S2T ∗Σ). The group of orientation preserving di˙eomorphisms
Diff(Σ) has a natural left action on Conf(Σ) given by push-forward:

A : Diff(Σ) × Conf(Σ) → Conf(Σ) , (u, (e, Θ)) 7→ (u∗e, u∗Θ) . (5.103)

For every u ∈ Diff(Σ), defne

Au : Conf(Σ) → Conf(Σ) , (e, Θ) 7→ (u∗e, u∗Θ) . (5.104)

Lemma 5.4. Let u ∈ Diff(Σ). Then, (e, Θ) ∈ Sol(Σ) if and only if Au(e, Θ) ∈ Sol(Σ).

Proof. We compute:

deu = Θ(eu) ∧ eu ⇔ u∗deu = u∗(Θ(eu) ∧ eu) ⇔ du∗eu = (u∗Θ)(u∗eu) ∧ u∗eu , (5.105)

and similarly for the remaining equations of the Cauchy di˙erential system (5.65).

Therefore, the orientation-preserving di˙eomorphism group of Σ has a well-defned action
on the space of parallel Cauchy pairs and we can consider the quotient

def. 
M(Σ) = Sol(Σ)/Diff(Σ) , (5.106)

defned through the action A. We call M(Σ) the moduli space of parallel Cauchy pairs
on Σ, which we will hopefully investigate in the future. In the following we will consider
two parallel Cauchy pairs to be isomorphic if they are related by an orientation preserving
di˙eomorphism of Σ as prescribed by the action A.

5.2.2 Initial data characterization � 
tDenote by P(Σ) the set of parallel spinor fows on Σ, that is, the set of families βt, e t∈I 

satisfying the parallel spinor fow equations (5.45) and (5.46). We have a canonical map� 
t 2Φ: P(Σ) → Lor◦(M) , βt, e 7→ g = −β2dt + het , (5.107)tt∈I 
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Chapter 5. Spinor fows on three-dimensional Cauchy hypersurfaces

from P(Σ) to the set Lor◦(M) of globally hyperbolic Lorentzian metrics on M = I × Σ.� 
tFor simplicity in the exposition, we will refer to Φ( βt, e ) as the globally hyperbolic� � 

t tmetric determined by βt, e . Given a left-invariant parallel spinor fow βt, e ,
t∈I t∈I 

there exists a smooth family functions {ft} such thatt∈I 

t tdft = −Θt(e ) , ∂tft = dβt(e ) , (5.108)u u 

which is unique modulo the addition of a real constant. Using this family of functions, we
obtain a canonical map: � 

t t tΞ: P(Σ) → B(M) , βt, e 7→ (u = e ft (βtdt + e ), [l = el ]) , (5.109)
t∈I u 

from the set of parallel spinor fows on Σ to the set B(M) of parabolic pairs on M with
respect to the globally hyperbolic metric determined by the given parallel spinor fow.
The previous maps provide a construction which is essentially inverse to the splitting and
reduction implemented at the beginning of this Section 5.2 and which allows us to relate
properties of a given parallel spinor fow to properties of its associated globally hyperbolic
four-dimensional Lorentzian metric. For further reference, we introduce the Hamiltonian� 

tfunction of a parallel spinor fow βt, e as follows:
t∈I 

H : M = R × Σ → R , (t, p) 7→ (Rht − |Θt|2 + Trht (Θt)
2)|p , (5.110)ht 

where ht := het denotes the three-dimensional metric restricted to the Cauchy surface Σt 
and Rh t its scalar curvature.e � 

tProposition 5.7. Let βt, e be a parallel spinor fow on Σ. The Ricci curvature of� t∈I 
tg = Φ( βt, e ) reads

1 
Ricg = He −2ft u ⊗ u , (5.111)

2 � 
t twhere Ξ( βt, e ) = (u, [l]) and u = eft (βtdt + e ).u � � 

t tProof. Let βt, e be a parallel spinor fow on Σ and let g = Φ( βt, e ) = −β2dt⊗dt+tt∈I � 
tht its associated globally hyperbolic metric on M = R × Σ. The pair βt, e defnes a

t∈I 
global orthonormal coframe (e0, e1, e2, e3) on (M, g) given by:

t t t e0|(t,p) := βt|pdt , e1|(t,p) := eu|p , e2|(t,p) := el |p , e3|(t,p) := en|p . (5.112)

� 
tThe fact that βt, e is a parallel spinor fow implies that the exterior derivatives of

t∈I 
the coframe (e0, e1, e2, e3) on M are prescribed as follows:

de0 = d log(βt) ∧ e0 , (5.113)

dea = (d log(βt)(ea) e1 +Θt(ea) − δa1d log(βt)) ∧ e0 +Θt(ea) ∧ e1 , (5.114)

where a = 1, 2, 3. Interpreting the previous expression as the frst Cartan structure equa-
gtions for r with respect to the orthonormal coframe (e0, e1, e2, e3) and using repeatedly

equations (5.45) and (5.46), a tedious calculation yields (5.111) and hence we conclude.

264



	

	 	

Chapter 5. Spinor fows on three-dimensional Cauchy hypersurfaces

Remark 5.11. It is well known that the Ricci curvature Ricg of a Lorentzian four-manifold
admitting parallel spinors is of the form Ricg = fu ⊗ u for some function f ∈ C∞(M) 
[640]. Nonetheless, and to the best of our knowledge, equation (5.111) is the frst precise
characterization of such function f in the case of globally hyperbolic Lorentzian four-
manifolds.

Theorem 5.2. The parallel spinor fow preserves the vacuum momentum and Hamiltonian
constraints.� 
Proof. Let tβt, e t∈I be a parallel spinor fow. Taking the divergence of Equation (5.111)
we obtain:

d(He −2ft )(u]) = 0 , (5.115)

which can be equivalently written as follows:

D(H) = ρH , (5.116)

where D is a frst-order symmetric hyperbolic di˙erential operator and ρ is a function com-� � 
t tpletely determined by βt, e . Given such D and ρ associated to βt, e , consider

t∈I t∈I 
now the initial value problem:

D(F ) = ρF , F |Σ = 0 , (5.117)

for an arbitrary function F on M . By the existence and uniqueness theorem for this type
of equations, see [646, Theorem 19] and references therein, every solution must be zero on
a neighborhood of Σ. Since H is in particular a solution of this equation, it must vanish on
a neighborhood of Σ. Therefore, there exists a subinterval I 0 = (a, b) ⊆ I containing zero
such that H|t = 0 for every t ∈ I 0 . By Proposition 5.5 this implies that the momentum
constraint is also satisfed for every t ∈ I 0 and hence the parallel spinor fow preserves the
Hamiltonian and momentum constraints on I 0 . If I 0 = I we conclude, so assume that
I 0 = (a, b) ⊂ I is the proper maximal subinterval of I for which the result holds. Since the
parallel spinor fow {βt, et}t∈I is well defned in I, then both ρ and H must be well defned
on I × Σ. Hence, by point-wise continuity on Σ we must have that H|b = 0 and therefore
we can apply the previous argument to the initial value problem starting at b ∈ I. Hence
there exists an ε > 0 for which the result holds on (a, b + ε), in contradiction with (a, b) 
being maximal. Therefore, I 0 = I and we conclude.

Call a triple (Σ, h, Θ) an initial vacuum data if (h, Θ) satisfes the Hamiltonian and mo-
mentum constraints. The previous theorem can be applied to prove an initial data char-
acterization of parallel spinors on Ricci fat Lorentzian four-manifolds.

Corollary 5.1. An initial vacuum data (Σ, h, Θ) admits a Ricci fat Lorentzian development
carrying a parallel spinor if and only if there exists a global orthonormal coframe e on Σ 
such that (e, Θ) is a parallel Cauchy pair.

Proof. The only if condition follows from Theorem 5.1. For the if condition, let (Σ, h, Θ) 
be an initial vacuum data. If in addition there exists a global orthonormal coframe e on
Σ such that (e, Θ) is a parallel Cauchy pair, then the constraint equations of the initial
value problem of a parallel spinor are satisfed. By [477, 478], the initial value problem
is well posed and there exists a Lorentzian development of Σ carrying a parallel spinor.
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By Theorem 5.2, this Lorentzian development satisfes the Hamiltonian and momentum
constraint for every t ∈ I, and by equation (5.111) we conclude that this Lorentzian
development is Ricci fat.

Additionally, we obtain the following corollary.

Corollary 5.2. A globally hyperbolic Lorentzian four-manifold (M, g) admitting a parallel
spinor is Ricci fat if and only if there exists an adapted Cauchy hypersurface Σ ⊂ M 
whose Hamiltonian constraint vanishes.

Here we say that a Cauchy surface Σ in (M, g) is adapted if (M, g) has the isometry type
(5.22) with h0 given by the pull-back of g to Σ.

5.3 The topology and geometry of Cauchy pairs

In this section we investigate the di˙eomorphism and isometry type of oriented three-
manifolds Σ admitting a complete Cauchy pair (e, Θ) ∈ Sol(Σ).

5.3.1 General considerations

] ] ] ]Lemma 5.5. Let (e, Θ) be a complete Cauchy pair on Σ. The frame e = (eu, el , en) dual
of e is complete, that is, each of its elements is a complete vector feld on Σ.

Proof. Follows from the fact that he is by assumption a complete Riemannian metric on
Σ respect to which each of the elements of e has unit norm, see4 [647, Page 154, Exercise
11].

Lemma 5.6. Let e = (eu, el, en) be a complete Cauchy coframe. The distribution ker(eu) ⊂ 
T Σ is integrable and defnes a codimension one transversely orientable foliation in (Σ, he) 
whose leaves are complete and fat Riemann surfaces with respect to the metric induced
by he.

Proof. The frst equation in the Cauchy di˙erential system (5.65) immediately implies

eu ∧ deu = 0 , (5.118)

and thus Cartan’s criterion implies in turn that ker(eu) ⊂ T Σ defnes an integrable trans-
versely orientable codimension one distribution, whose associated foliation we denote by
Fe. Let p ∈ Σ and denote by Fe,p ⊂ Σ the maximal leaf of Fe passing through p. The
cotangent space of Fe,p is spanned over C∞(Fe,p) by the restriction of el and en:

T ∗ Fe,p = SpanC∞(Fe,p)(el|T Fe,p , en|T Fe,p ) . (5.119)

Furthermore:
he|Fe,p = el|T Fe,p ⊗ el|T Fe,p + en|T Fe,p ⊗ en|T Fe,p . (5.120)

4Note however that there is a typo in Exercise 11, the correct condition being, using the notation of
the exercise, |X(p)| < c rather than |X(p)| > c.

266



Chapter 5. Spinor fows on three-dimensional Cauchy hypersurfaces

A direct computation, using the fact that e is a parallel Cauchy coframe, shows that
(el|T Fe,p , en|T Fe,p ) is a fat coframe with respect to the Levi-Civita connection of the metric
induced by he whence he|Fe,p is fat. The fact that the leaves of Fe equipped with the
metric induced by he are complete manifolds follows from completeness of he and is proved
explicitly in [648, Proposition 1.26].

Since the leaves of Fe are complete and fat they must be isometric to either the Euclidean
plane, the Euclidean cylinder or a fat torus. As we will see momentarily, this poses
strong constraints on the di˙erentiable topology of Σ. Given a Cauchy pair (e, Θ), the
cohomological condition (5.66) guarantees that there exists a function f ∈ C∞(Σ) such
that

Θ(eu) = −df . (5.121)

fTherefore, by the frst equation in (5.65), the one-form êu := e eu ∈ Ω1(Σ) is closed and
satisfes ker(êu) = ker(eu), implying that we can consider Fe ⊂ Σ as a foliation given by
the kernel of the nowhere vanishing closed one-form êu, a type of foliation that has been
extensively studied in the literature, see for example [649, 650]. It can be easily seen that
the metric he will not be, in general, bundle-like with respect to Fe. On the other hand,
given a Cauchy pair (e, Θ), the following modifed Riemannian metric:

hê = êu ⊗ êu + el ⊗ el + en ⊗ en , ê = (êu, el, en) , (5.122)

is indeed bundle-like, that is, it satisfes the following condition:

Lvhê| ⊥he = 0 , ∀ v ∈ Γ(T Fe) . (5.123)
T Fe 

In other words, hˆ| is a holonomy invariant transversal metric.e ⊥heT Fe 

Remark 5.12. By Lemma 5.5, eu] ∈ X(Σ) is a complete vector feld on Σ. However, the
same statement may not hold for êu] ∈ X(Σ), the metric dual of êu with respect to ĥ 

e.

Defnition 5.6. A Cauchy pair (e, Θ) is fully complete if it is complete and in addition
êu
] ∈ X(Σ) is complete.

The notion of fully complete Cauchy pair is convenient to obtain global results about
Cauchy pairs by using completeness of êu to identify the leaves of Fe ⊂ Σ.

Proposition 5.8. Let (e, Θ) be a fully complete Cauchy pair on Σ with associated foliation
Fe ⊂ Σ. The following holds:

1. All leaves are di˙eomorphic to a model leaf given by either the plane R2 , the cylinder
or the torus.

2. Either all leaves are closed or all leaves are dense in Σ.

¯3. The Riemannian universal cover of (Σ, he) is isometric to (R3 , he) with metric h̄ 
e given

by:
def.

h̄e = e 2udx ⊗ dx + hx , (5.124)

where x is the frst Cartesian coordinate of R3 , u ∈ C∞(R3) is a smooth function and,
for every x ∈ R, hx is a fat Euclidean metric on {x} × R2 ⊂ R3 . If (e, Θ) is not fully
complete the previous characterization is only guaranteed to hold locally.
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Remark 5.13. Item (3) in the previous proposition recovers, in the specifc case of four
Lorentzian dimensions, items (1) and (2) in [478, Theorem 4].

¯Proof. Bar over a symbol will denote lift to the universal cover of Σ, denoted by Σ. We
prove the proposition point by point:

1. Since Fe is determined by a closed nowhere-vanishing one-form the fact that all its
leaves must be di˙eomorphic is classical, see [649, 651]. To motivate it, recall that the
Lie derivative of êu along ê

]
u is zero (note that this is not true in general for eu and e

]
u).

Hence, the fow (ψt)t∈R given by the complete vector feld êu] preserves the leaves of Fe,
that is, maps leaves to leaves di˙eomorphically. Furthermore, for every p, q ∈ Σ there
exists a t0 ∈ R such that

ψt0 |Fe,p : Fe,p → Fe,q . (5.125)

Hence, all leaves of Fe are di˙eomorphic and by Lemma 5.6 they must be all di˙eomor-
phic to either the plane, the cylinder or the torus.

2. Follows from [652, Proposition 5.1].

¯ ¯ ¯3. The fact that the universal cover Σ is di˙eomorphic to R × Fe, where Fe denotes the
universal cover of the typical leaf of Fe is proven in detail in [629, Proposition 8].
Furthermore, the foliation Fe ⊂ Σ lifts to the foliation whose leaves are given by {x} × 
¯ ¯Fe ⊂ R × Fe for x ∈ R. Since the typical leaf of Fe is either the plane, the cylinder or

¯the torus, then F̄ 
e = R2 and therefore Σ̄ = R3 . The lift ē u of eu to Σ is orthogonal to

T ∗F̄ 
e ⊂ T ∗Σ̄ , whence:

ē u = e udx , u ∈ C∞(R3) , (5.126)

¯ ⊂ T ¯where u is a function on R3 satisfying Θ(ēu) = −du. Since the distribution T F̄ 
e Σ 

is determined by the kernel of ē u we conclude that the lift of he to Σ̄ can be written as
follows:

def.
h̄e = e 2udx ⊗ dx + hx , (5.127)

for a family {hx}x∈R of two-dimensional metrics on R2 , which must be fat by Lemma
5.6.

The leaves of the foliation Fe are all mutually di˙eomorphic but a priori may not be
mutually isometric since (the dual of) êu which generates the fow that allows to identify
di˙erent leaves of Fe may not be an isometry of he. We will refer to the type of any leaf of
Fe as the typical leaf of Fe, considered as a Riemann surface with the induced orientation.
If the typical leaf of Fe is compact we obtain the following result.

Proposition 5.9. Let (e, Θ) be a fully complete Cauchy pair on Σ with associated foliation
Fe ⊂ Σ. If the typical leaf of Fe is a fat torus then either Σ = R × T 2 or Σ admits the
structure of a fber bundle πe : Σ → S1 inducing Fe.

Proof. Follows directly from [653, Corollary 8.6] by using the fact that every locally trivial
fbration over R is trivial as well as the fact that if the leaves of Fe are compact then they
must be di˙eomorphic to the torus.

Lemma 5.7. Let (e, Θ) be a complete Cauchy pair on Σ with associated foliation Fe ⊂ Σ.
Then, Σ admits a canonical locally free action of R2 whose orbits are the leaves of Fe.
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Proof. Consider a Cauchy pair (e, Θ) and defne the map

Ψ: R2 × Σ → Σ , (t1, t2, p) 7→ Φt1 ◦ Φt2 (p) , (5.128)el en 

where Φt1 (respectively Φt2 ) denotes the fow generated by e] (respectively e] ) at the timeel en l n 
t1 (respectively t2). Using that e is a solution of the Cauchy di˙erential system, we obtain:

] ] he ] he ]−r (5.129)[e ] = r = 0 ,, e e e]
l 

]
n l ln n e e 

hence Ψ defnes a smooth action of R2 on Σ, which, since both el and en are nowhere
vanishing, is locally free. Furthermore, the fact that e] and en

] are complete and spanl 
T Fe ⊂ T Σ implies that the orbits of Φ correspond to the leaves of Fe.

Locally free actions of the group R2 on three-manifolds have been extensively studied
extensively in the literature, see [654–657] and references therein, especially in relation
with the problem of fnding the number of nowhere vanishing and everywhere linearly
independent commuting vector felds on a compact three-manifold.

Proposition 5.10. Let (e, Θ) be a fully complete Cauchy pair on Σ such that the restriction
of Θ to T Fe ⊂ T Σ vanishes, that is, Θ|T Fe×T Fe = 0. Then, Σ is di˙eomorphic to T k ×R3−k 

for some integer k ∈ {0, 1, 2, 3}.

Proof. Let (e, Θ) be a Cauchy pair such that Θ|T Fe×T Fe = 0. Then, ê] is a global frame of
commuting vector felds, which can be used to defne a smooth action of R3 on Σ exactly
as it occurred in the proof of Lemma 5.7 to defne an action of R2 . Since ê is assumed to
be complete, this action is transitive. The fnal step of the proof consist in showing that
the stabilizer of the action is of the form Zk × {0} ⊂ Rk × R3−k acting naturally on R3 .
This is explicitly proven in [649, Chapter 4].

5.3.2 Complete Cauchy pairs on the universal Riemannian cover

Let (e, Θ) be a fully complete Cauchy pair on Σ. Proposition 5.8 states that the universal
Riemannian cover of (Σ, he) is isometric to R3 when the latter is equipped with the metric:

def.
h̄e = e 2udx ⊗ dx + hx , (5.130)

where hx is a fat metric on {x} × R2 ⊂ R3 for every x ∈ R. The corresponding Cauchy
coframe reads

eu = e udx , el = el(x) , en = en(x) , (5.131)

where el and en depend only on the coordinate x. A quick computation shows that the
exterior derivative of this frame is given by:

−u −udeu = du ∧ eu , del = e eu ∧ Lxel , den = e eu ∧ Lxen , (5.132)

where the symbol Lx denotes Lie derivative with respect to ∂x. Plugging the previous
equations into the Cauchy di˙erential system (5.65) we obtain the following lemma.
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Lemma 5.8. A pair (e, Θ) ∈ Conf(R3), where e is given by the coframe (5.131), is a Cauchy
pair if and only if the following equations are satisfed:

(du−Θ(eu))∧eu = 0 , (Θ(el)+e −uLxel)∧eu = 0 , (Θ(en)+e −uLxen)∧eu = 0 . (5.133)

The previous lemma is used in the following theorem to solve the shape operator of a
parallel Cauchy pair (e, Θ) defned on a connected and simply connected three-manifold Σ 
in terms of the Cauchy coframe e.

Theorem 5.3. A pair (e, Θ) ∈ Conf(Σ) is a parallel and fully complete Cauchy pair on a
connected and simply connected three-manifold Σ if and only if there exist global coordi-
nates (x, y, z) identifying Σ = R3 such that e satisfes:

e = (e udx, el(x), en(x)) , (Lxel)(e
] ) = (Lxen)(e

]) , (5.134)n l 

and in addition:

1−uΘ = (F(x) e + ∂xe −u) eu ⊗ eu + eu ⊗ du + du ⊗ eu − e −uLxhx , (5.135)
2 

where F ∈ C∞(R) is a function of x.

Remark 5.14. The second equation in (5.134) is non-trivial in general and hence restricts
the type of coframes that can occur as part of a parallel Cauchy pair.

Proof. Let (e, Θ) be a Cauchy pair on a connected and simply connected three-manifold
Σ. The fact that there exist global coordinates (x, y, z) identifying Σ with R3 respect to
which e is given by:

e = (e udx, el(x), en(x)) , (5.136)

follows directly from Proposition 5.8. On the other hand, Lemma 5.8 implies

Θ(eu) = du + fu eu , Θ(el) = fl eu − e −uLxel , Θ(en) = fn eu − e −uLxen , (5.137)

for functions fu, fl, fn ∈ C∞(R3). Symmetry of Θ is equivalent to the following equations:

] ] ] ]= du(e ) , = du(e ) , (Lxel)(e ) = (Lxen)(e ) . (5.138)fl l fn n n l 

These conditions imply that Θ must be of the form:

1 
Θ = (fu − du(e] )) eu ⊗ eu + eu ⊗ du + du ⊗ eu − e −uLxhx , (5.139)u 2 

Furthermore, the fact that Θ(eu) must be closed, whence exact, is equivalent to

d(fu eu) = d(fue u) ∧ dx = 0 . (5.140)

uTherefore, fue = F(x) for a smooth function F depending exclusively on the coordinate
x. Plugging this expression back in (5.139) we obtain (5.135). The converse follows by
construction and can be verifed explicitly by inserting (5.135) in the parallel Cauchy
di˙erential system (5.65) and (5.66).
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Remark 5.15. Theorem 5.3 recovers [478, Theorem 4] in the language of parallel Cauchy
pairs and in the specifc case of four Lorentzian dimensions, refning it and providing
an alternative proof of the result. The refnement is contained in the extra information
provided by the Cauchy coframe e, which needs to satisfy equations (5.134). On the other
hand, equation (5.135) does not specify uniquely Θ but allows the freedom of choosing the
arbitrary function F(x). This arbitrary function seems to be absent in [478, Theorem 4].

Example 5.2. Using the notation and framework established by Theorem 5.3, assume that

hx = e 2w(x)(dy ⊗ dy + dz ⊗ dz) , (5.141)

where (x, y, z) are the Cartesian coordinates of R3 and w(x) is a function on R3 depending
only on the coordinate x. As defned above, hx is clearly a family of fat metrics on R2 

parametrized by x ∈ R. The corresponding parallel Cauchy coframe reads

e = (e udx, e w(x)dy, e w(x)dz) , (5.142)

One easily checks that the second equation in (5.134) is automatically satisfed. On the
other hand, the corresponding parallel shape operator is given by:

−uΘ = (F e + ∂xe −u) eu ⊗ eu + eu ⊗ du + du ⊗ eu − ∂xw(x) e −uhx . (5.143)

Using the previous expression, we compute:

Tre(Θ) = e−u(F + ∂xu − 2∂xw) , (5.144)

|Θ|2 = e−2u((F + ∂xu)2 + 2(∂xw)2) + 2e−2w((∂yu)
2 + (∂zu)

2) . (5.145)e 

In particular,

|Θ|2 − Tre(Θ)2 = 2e −2u∂xw(x)(2(F(x)+ ∂xu) − ∂xw(x))+2e −2w((∂yu)
2 +(∂zu)

2) , (5.146)e 

and since the scalar curvature of he is given by:� � � � 
Re −2u −2w = e 4∂xw∂xu − 4∂2 w − 6(∂xw)2 − 2e (∂yu)

2 + (∂zu)
2 + ∂2 u + ∂2 u , (5.147)x y z 

we conclude that such parallel Cauchy pair (e, Θ) is constrained Ricci fat if and only if� � � �
2w 2u2e F∂xw + ∂2 w + (∂xw)2 + e 2(∂yu)

2 + 2(∂zu)2 + ∂2 u + ∂2 u = 0 . (5.148)x y z 

If the second term in the previous equation only depends on x and ∂xw 6= 0 everywhere,
then we can always solve it by choosing F as follows:

2(u−w)1 � � e � � 
F = − ∂2 w + (∂xw)2 − 2(∂yu)

2 + 2(∂zu)2 + ∂2 u + ∂2 u . (5.149)
∂xw x 2∂xw y z 

5.3.3 Parallel Cauchy pairs on compact three-manifolds

In this section we consider the isometry type of Cauchy pairs on closed three-manifolds,
commenting briefy on the compact case with boundary.
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Proposition 5.11. Let Σ be an oriented closed three-manifold admitting a Cauchy pair
(e, Θ). Then Σ is di˙eomorphic to a torus bundle over S1 , that is, it is di˙eomorphic to
the suspension Xk of T 2 by an element k ∈ SL(2, Z).

Proof. Let (e, Θ) be a Cauchy pair on Σ. By Lemma 5.7 Σ admits locally free action of
R2 . Reference [657] proves that Σ admits such an action if and only if Σ is di˙eomorphic
to a locally trivial torus bundle over S1 , which can always be constructed as a suspension
of T 2 by an element k ∈ SL(2, Z) acting linearly on T 2 .

Since it will be of importance in the following, we briefy recall the suspension construc-
tion of a torus bundle over S1 , which depends on a choice of orientation preserving dif-
feomorphism of T 2 modulo homotopy equivalence. Since Diff(T 2) is homotopy equivalent
to SL(2, Z) acting linearly on T 2 , it is enough to consider elements in SL(2, Z). Let
k ∈ SL(2, Z) and denote by hki ⊂ SL(2, Z) the cyclic group generated by the element k.
There exists a natural properly discontinuous fxed point free action of hki on R × T 2 given
by:

k · (z, v) = (z + 1, k(v)) , (z, v) ∈ R × T 2 , (5.150)

where k acts linearly on R2/Z2 . The suspension of R × T 2 by k ∈ SL(2, Z) is by defnition
the quotient:

Xk = 
R × T 2 

hki 
, (5.151)

equipped with the projection:

π : Xk → S1 = R/Z , [z, v] 7→ [z] . (5.152)

Equivalently, Xk can be constructed by gluing {0}×T 2 and {1}×T 2 in [0, 1]×T 2 through the
di˙eomorphism k : T 2 → T 2 . The element k ∈ SL(2, Z) determines completely the topology
of Xk and in particular determines if a given foliation of Xk admits a bundle-like metric.
Note that, given a Cauchy pair (e, Θ) on Σ = Xk, the leaves of the foliation Fe ⊂ Xk will
not coincide in general with the fbers of Xk. We summarize now two important methods
for constructing foliations in Xk.

• Linear plane foliations on T 3 . Denote by Diff(S1) the group of orientation preserving
di˙eomorphisms of S1 and consider the three-manifold R2 × S1 . Fix a representation

ρ = (ρa, ρb) : π1(T 2) = Z ⊕ Z → Diff(S1) , (5.153)

such that the rotational numbers ra ∈ S1 and rb ∈ S1 of ρa(1) and ρb(1) are both
irrational and rationally independent. Then, ρa(1) and ρb(1) generate a subgroup of the
orientation preserving di˙eomorphism group Diff(S1), which we denote by

hρa(1), ρb(1)i ⊂ Diff(S1) . (5.154)

There is a canonical fxed point free action of hρa(1), ρb(1)i on R2 × S1 given by:

ρa(1) · (x1, x2, θ) = (x1 + 1, x2, ρa(1)(θ)) , (5.155)

ρb(1) · (x1, x2, θ) = (x1, x2 + 1, ρb(1)(θ)) , (5.156)
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on the generators ρa(1) and ρb(1). The quotient

Xρ := R2 × S1/hρa(1), ρb(1)i , (5.157)

of R2 ×S1 by the previous action is di˙eomorphic to T 3 and the plane foliation of R2 ×S1 

whose leaves are embedded planes R2 × {θ} ⊂ R2 × S1 , θ ∈ S1 , descends to a foliation
by planes of R2 × S1/hρa(1), ρb(1)i, which is called the suspension foliation defned by
ρ and it is denoted by

Fρ ⊂ Xρ = R2 × S1/hρa(1), ρb(1)i . (5.158)

In particular, Xρ admits the structure of a S1 bundle over T 2 transverse to Fρ, which
is obtained by the standard associated bundle construction. Note that ρa(1) and ρb(1) 
may not be rotations of S1 by a constant angle. In general, the foliation Fρ is only C0 

isomorphic to a foliation for which ρa(1) and ρb(1) are rotations, see [658] for a explicit
counterexample. However, if Fρ is defned by a non-singular closed one-form then Fρ is
at least C1 isomorphic to a foliation for which ρa(1) and ρb(1) are rotations [658].

• Cylinder foliations of circle bundles. Consider the foliation F0 ⊂ T 2 × R whose leaves
are defned to be the embedded submanifolds {θ1} × S1 × R ⊂ T 2 × R = S1 × S1 × R 
for θ1 ∈ S1 . For every di˙eomorphism f : T 2 → T 2 preserving the foliation by standard
circles {θ1} × S1 ⊂ T 2 = S1 × S1 and such that its restriction to the frst circle factor
f|S1×{θ2} : S1 → S1 has an irrational rotation number, we defne a di˙eomorphism of
T 2 × R as follows:

T 2 × R → T 2 × R , (θ1, θ2, x) 7→ (f(θ1, θ2), x + 1) . (5.159)

By [655, Theorem 2] and [659, Page 254 Théorème 1] f ∈ SL(2, Z) is conjugate to an
element of the form: � � 

1 n ∈ SL(2, Z) , (5.160)
0 1 

where n ∈ Z is an integer. Denote by hfi ⊂ Diff(T 2 ×R) the cyclic subgroup of Diff(T 2 × 
R) generated by the previous action, and defne:

R × T 2 
Xf := , (5.161)

hfi 

to be the quotient of R × T 2 by hfi, which defnes a fber bundle πf : Xf → S1 with
projection:

πf([θ1, θ2, x]) = [x] ∈ S1 . (5.162)

We see that the action of hfi preserves by construction F0, whence F0 descends to a
foliation Ff ⊂ Xf whose fbers are all di˙eomorphic to the cylinder. More explicitly, the
leaves of the foliation are given by:

pf({θ} × S1 × R) ⊂ Xf , θ ∈ S1 , (5.163)

where pf : T 2 × R → Xf denotes the canonical projection.
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Proposition 5.12. Every codimension-one foliation of Xk defned by the kernel of a nowhere
vanishing closed one-form whose leaves are all di˙eomorphic to either the plane R2 or the
cylinder R2\ {0} is isomorphic to one of the foliations defned above.

Remark 5.16. By isomorphic foliations we mean foliations for which there exists a C1 

di˙eomorphism between their total spaces of the foliations mapping leaves to leaves di˙eo-
morphically.

Proof. The result is proven in [659] for the case of cylinder leaves and in [658] for the case
of plane leaves.

Theorem 5.4. Let (e, Θ) be a Cauchy pair on an oriented closed three-manifold Σ with
associated foliation Fe ⊂ Σ and Riemannian metric he. Then, one and only one of the
following cases occur:

1. Fe ⊂ Σ is a foliation by plane leaves and there exists an isometry

(Σ, he) = (R2 × S1 , dx1 ⊗ dx1 + dx2 ⊗ dx2 + e 2udθ ⊗ dθ)/hρa(1), ρb(1)i , (5.164)

where ρa(1), ρb(1) ∈ Diff(S1) are rotations of rationally independent constant irrational
angle, respectively, and u ∈ C∞(R2) is a function depending only on x1 and x2. In
particular, Σ is di˙eomorphic to T 3 and Fe is isomorphic to the foliation Fρ described
above.

2. Fe ⊂ Σ is a foliation by cylinder leaves and there exists an isometry

(Σ, he) = (S1 × S1 × R, e 2udθ ⊗ dθ + h)/hfi , (5.165)

where f ∈ Diff(T 2 × R) is as prescribed in (5.159) and (5.160), u ∈ C∞(S1 × R) is a
function depending only on the second factor S1 × R above and h is a fat metric on
S1 × R. In particular, Fe is isomorphic to the foliation Ff previously described.

3. Fe ⊂ Σ is a foliation by torus leaves and (Σ, he) is a conformal Riemannian submersion
over S1 with fat fbers and whose conformal factor is determined, modulo constant
multiplicative factors, by

Θ(eu) = −df . (5.166)

In particular, Σ is di˙eomorphic to a torus suspension by an element t ∈ SL(2, Z).

Proof. We prove the statement point by point.

1. Let (e, Θ) be a parallel Cauchy pair with associated foliation Fe ⊂ Σ by planes. Then,
and as explained above, Σ is di˙eomorphic to T 3 (any compact connected 3-manifold
with a foliation by planes is di˙eomorphic to T 3), (Σ, he) is covered by S1 × R2 and Fe 
lifts to the plane foliation of S1 × R2 whose leaves are embedded planes {θ} × R2 ⊂ 
S1 × R2 , θ ∈ S1 . Hence, the lift of he to S1 × R2 reads

ˆ(S1 × R2 , he = e 2udθ ⊗ dθ + hθ) , (5.167)
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where u is a function on S1 × R2 , θ is an angular coordinate on S1 and hθ is a family
of fat metrics on R2 parametrized by θ ∈ S1 . Consequently, (Σ, he) has the following
isometry type:

(Σ, he) = (S1 × R2 , e 2udθ ⊗ dθ + hθ)/hρa(1), ρb(1)i , (5.168)

For the metric e2udθ ⊗ dθ + hθ to descend to Σ through the previous quotient we must
have:

ρa(1) ∗ (e 2udθ ⊗ dθ + hθ) = e 2udθ ⊗ dθ + hθ , 
(5.169)

ρb(1) ∗ (e 2udθ ⊗ dθ + hθ) = e 2udθ ⊗ dθ + hθ , 

which immediately implies:

u ◦ ρo(1) = u , hθ◦ρo(1) = hθ , (5.170)

for o = a, b. Since hρa(1), ρb(1)i generates a dense subgroup (recall that the action of
any di˙eomorphism χ : S1 → S1 with constant irrational rotation number has dense
orbits) of S1 this implies in turn that hθ and u are constant along S1 .

2. Let (e, Θ) be a parallel Cauchy pair with associated foliation Fe ⊂ Σ by cylinder leaves.
Then, and as explained above, (Σ, he) is covered by T 2 × R and Fe lifts to the cylinder
foliation of T 2 × R whose leaves are the embedded cylinders R × S1 × {θ} ⊂ T 2 × R,
θ ∈ S1 . Hence, the lift of he to S1 × S1 × R is given by:

(S1 × S1 × R, ĥ 
e = e 2udθ1 ⊗ dθ1 + hθ1 ) , (5.171)

where u is a function on S1 × S1 × R, (θ1, θ2) are angular coordinates on S1 × S1 and
hθ1 is a family of fat metrics on S1 × R parametrized by θ1 ∈ S1 . Then:

(Σ, he) = (S1 × S1 × R, e 2udθ1 ⊗ dθ1 + hθ1 )/hfi , (5.172)

For the metric e2udθ ⊗ dθ + hθ1 to descend to Σ the group we must have:

f ∗ (e 2udθ1 ⊗ dθ1 + hθ1 ) = e 2udθ1 ⊗ dθ1 + hθ1 , (5.173)

which, since the rotation number of f is irrational, immediately implies, as in the previous
case, that neither hθ1 nor u depend on θ1.

3. Let (e, Θ) be a parallel Cauchy pair with associated foliation Fe ⊂ Σ by torus leaves.
Since Fe has trivial holonomy and Σ is connected and compact, [653, Corollary 8.6]
implies that Fe arises as the fbers of a fbration π : Σ → S1 and

T Σ = H ⊕ V , (5.174)

where V := ker(dπ) and H is spanned by e]u. In particular, the vertical bundle V is
spanned by e] and en] , so the fbers of π are fat and we obtain a conformal submersionl 
over S1 . The fact that the conformal factor ef is as described in the statement follows
from the frst equation of the parallel Cauchy di˙erential system, namely:

deu = −df ∧ eu , (5.175)

f fwhich implies d(e eu) = 0. Hence e eu is locally the exterior derivative of a coordinate
x̂ and the horizontal metric is locally dx̂ ⊗ dx̂.
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5.4 Left-invariant parallel Cauchy pairs on Lie groups

In this section we investigate left-invariant parallel Cauchy pairs on connected and simply
connected three-dimensional Lie groups. In order to do this, we will exploit the classifca-
tion of connected and simply connected three-dimensional Riemannian Lie groups devel-
oped in [660], together with the fact that every left-invariant Cauchy pair (e, Θ) defnes a
left-invariant metric he.

Let (e, Θ) ∈ Conf(Σ) be a left-invariant Cauchy pair on a three-dimensional con-
nected and simply connected Lie group Σ = G, that is, e is a left-invariant coframe and Θ 
is a left-invariant shape operator on G. Write:X 

Θ = Θab ea ⊗ eb , Θab ∈ R , a, b = u, l, n . (5.176)
a,b 

in terms of the left-invariant Cauchy coframe e = (eu, el, en). Using the previous expression
for Θ, the Cauchy di˙erential system (5.65) evaluated on (e, Θ) is equivalent to

deu = (Θulel +Θunen) ∧ eu , del = (Θllel +Θlnen) ∧ eu , 
(5.177)

den = (Θnlel +Θnnen) ∧ eu . 

Taking the exterior derivative of the previous equations, we obtain the corresponding
integrability conditions :

ΘllΘun − ΘlnΘul = 0 , ΘlnΘun − ΘnnΘul = 0 . (5.178)

For further reference, we defne the following quantities:

T := Θll +Θnn , − Θ2 (5.179)Δ := ΘllΘnn ln , 

which respectively correspond to the trace and determinant of Θ restricted to the distri-
bution defned by the kernel of eu.

Proposition 5.13. A left-invariant Cauchy pair (e, Θ) satisfes the cohomological condition
[Θ(eu)] = 0 if and only if:

(Θ2 
ul +Θ2 )Tre(Θ) = 0 . (5.180)un 

Proof. Since Σ is by assumption simply connected we have H1(Σ) = 0 and it suÿces to
prove that Θ(eu) is closed. We impose:

dΘ(eu) = Θuudeu +Θuldel +Θunden = 0 . (5.181)

Using the parallel Cauchy di˙erential system (5.65), the previous condition is equivalent
to the following equations:

ΘuuΘul +ΘulΘll +ΘunΘln = 0 , ΘuuΘun +ΘulΘln +ΘunΘnn = 0 , (5.182)

which, upon the use of the integrability condition (5.178) of (e, Θ), are in turn equivalent
to

ΘulTre(Θ) = 0 , ΘunTre(Θ) = 0 . (5.183)

These equations are satisfed if and only if Θul = Θun = 0 or Tre(Θ) = 0 (or both) hold.
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We consider now the case in which G is unimodular.

Lemma 5.9. Let (e, Θ) ∈ Sol(G) be a parallel Cauchy pair. Then, the simply connected
three-dimensional group G is unimodular if and only if:

T = Θll +Θnn = 0 , Θun = Θul = 0 . (5.184)

Proof. A Lie group G is unimodular if and only if the adjoint map of the associated Lie
algebra has vanishing trace. Since the parallel Cauchy coframe e = (eu, el, en) is left-
invariant, unimodularity of G is equivalent to:

] ] ] ] ] ] ] ]del(e , e ) + den(e ,e ) = 0 , deu(el , e ) + den(el , e ) = 0 ,u l u n u n 
(5.185)

] ] ] ]deu(en, eu) + del(en, el ) = 0 , 

which in turn is equivalent to:

Θll +Θnn = 0 , Θul = 0 , Θun = 0 , (5.186)

upon the use of the parallel Cauchy di˙erential system (5.177).

Proposition 5.14. Let (e, Θ) be a left-invariant Cauchy pair on an unimodular Lie group
G. Then, one and only one of the following holds:

• Δ = 0 and (G, he) is isometric to the additive abelian Lie group R3 equipped with its
standard invariant fat Riemannian metric.

• Δ 6= 0 and Σ is isometric to the group E(1, 1) of rigid motions of two-dimensional
Minkowski space equipped with a left-invariant Riemannian metric.

Proof. We distinguish between the cases Δ = 0 and Δ 6= 0.

• Δ = 0. Since ΘllΘnn = Θ2 and we have Θll +Θnn = 0 by unimodularity, we obtain thatln 
Θll = Θnn = Θln = 0. Also, again by unimodularity, Θul = Θun = 0, so we conclude
that de = 0 and Σ is isomorphic to the abelian Lie group R3 .

• Δ 6= 0. By unimodularity, see equation (5.184), we have Θll = −Θnn and hence Δ < 0.
The exterior derivative of the Cauchy coframe e can be then written as follows:

deu = 0 , del = (Θllel +Θlnen) ∧ eu , den = (Θlnel − Θllen) ∧ eu . (5.187)

If Θll = 0 the previous equations reduce to

deu = 0 , del = Θlnen ∧ eu , den = Θlnel ∧ eu . (5.188)

Since Δ < 0, we have Θln 6= 0 and after rescaling eu by Θln we obtain:

0 0 0deu = 0 , del = en ∧ eu , den = el ∧ eu . (5.189)

Comparing with the classifcation of unimodular Riemannian Lie groups [660], see also
Appendix A of [661] for a concise summary, existence of such left-invariant coframe
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implies that G is isomorphic to the Lie group E(1, 1). If Θll 6= 0 we consider following
change of coframes: ⎛⎝ e1 

e2 

⎞⎠ = 

⎛⎝ ⎛⎝ ⎞⎠ ⎞⎠ cos β − sin β 0 p el 
en (5.190)sin β cos β 0 

|Δ| 
, 

e3 0 0 eu 

where √ s √ 
Θll p
| |Δ 

The exterior derivative of the transformed coframe (e1, e2, e3) reads

de1 = e2 ∧ e3 , de2 = e1 ∧ e3 , de3 = 0 . (5.192)

By the classifcation of unimodular Riemannian Lie groups [660], existence of such left-
invariant coframe implies that G is again isomorphic to the Lie group E(1, 1), and hence
we conclude.

We consider now the case in which G is non-unimodular.

Proposition 5.15. Let (e, Θ) be a left-invariant Cauchy pair on a non-unimodular Lie group
G. Then, one and only one of the following holds:

• Δ = 0 and (G, he) is isometric to the Lie group τ2 ⊕ R equipped with a left-invariant
Riemannian metric.

• Δ =6 0 and (G, he) is isometric to τ3,µ equipped with a left-invariant Riemannian metric,
where µ is given by one of the following possibilities:

Θnn 

1. If Θln 6= 0, by: √ 
µ = 

T − sign(T ) T 2 − 4Δ √ 
T + sign(T ) T 2 − 4Δ 

. (5.193)

2. If Θln = 0 and |Θll| ≥ |Θnn|, by:

µ = 
Θnn 

Θll 
. (5.194)

3. If Θln = 0 and |Θnn| ≥ |Θll|, by:

µ = 
Θll 

. (5.195)

Recall that the possible values of µ satisfy −1 < µ ≤ 1, µ 6= 0.

Proof. We distinguish between the cases Δ = 0 and Δ 6= 0.

2 Θln 

|Δ|
p 2 1 

. (5.191)sin β = 1 − cos β r=,
2 2 √Θln1 − 

|Δ| 
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• Δ = 0. Assume frst that T = Θll + Θnn = 0. Conditions T = 0 and Δ = 0 can hold
simultaneously if and only if Θll = Θnn = Θln = 0. Hence:

deu = Θulel ∧ eu +Θunen ∧ eu , del = 0 , den = 0 , Θuu = 0 , (5.196)

where the last equation is equivalent to the one-form Θ(eu) being exact. Since the
coeÿcients Θul and Θun cannot simultaneously vanish (otherwise G would be unimod-
ular) defning e1 = eu, e2 = Θunel − Θulen, e3 = Θulel + Θunen we conclude that G is
isomorphic to τ2 ⊕ R.
If T =6 0, then either Θll 6= 0 or Θnn =6 0 or both are non-vanishing. Assume Θll 6= 0 
(completely analogous results hold if we consider Θnn 6= 0). In this case, the integrability
conditions (5.178) demand

Θln 
Θun = Θul . (5.197)

Θll 

This equation, together with condition Δ = 0, implies

Θln Θln 
deu = Θul(el + en) ∧ eu , del = Θll(el + en) ∧ eu ,

Θll Θll (5.198)
Θln 

den = Θln(el + en) ∧ eu ,
Θll 

which must be considered together with equation (Θ2 + Θ2 )Tre(Θ) = 0 to guaranteeul un 
that Θ(eu) is closed. We distinguish the following possibilities:

1. Θul = Θln = 0. In this case, it can be easily seen that G is isomorphic to τ2 ⊕ R.
2. Θul = 0 and Θln 6= 0. In this case, we obtain:

Θln Θln 
deu = 0 , del = Θll(el + en) ∧ eu , den = Θln(el + en) ∧ eu . (5.199)

Θll Θll 

Θln en, e2 := el − ΘllDefning e1 := el + en and e3 := Teu, we get:Θll Θln 

de1 = e1 ∧ e3 , de2 = de3 = 0 , (5.200)

Hence G is isomorphic to τ2 ⊕ R.
3. Θln = 0, but Θul 6= 0. In this case, we fnd:

deu = Θulel ∧ eu , del = Θllel ∧ eu , den = 0 . (5.201)

Θll ΘllDefning e1 := el + eu, e2 := el − eu and e3 := en, we conclude that G isΘul Θul 
isomorphic to τ2 ⊕ R once we impose Θuu = −T in order to satisfy [Θ(eu)] = 0.

4. Θln 6= 0 and Θul =6 0. Defne e2 := el + Θln en and e3 := el − Θll en. We obtain:Θll Θln 

deu = Θule2 ∧ eu , de2 = Te2 ∧ eu , de3 = 0 . (5.202)

TWe redefne ẽ2 = e2 − Θul 
eu and e1 = eu, we fnally obtain:

de1 = −Θule1 ∧ ẽ2 , dẽ2 = 0 , de3 = 0 , (5.203)

so G is isomorphic to τ2 ⊕ R on observing that Θuu = −T for Θ(eu) to be closed.
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• Δ =6 0. Since Δ =6 0, the only possible solution to the integrability conditions (5.178) is
Θul = Θun = 0. Hence, non-unimodularity necessarily requires that T = Θll +Θnn =6 0 
and the parallel Cauchy di˙erential system reduces to

deu = 0 , del = (Θllel +Θlnen) ∧ eu , den = (Θlnel +Θnnen) ∧ eu . (5.204)

Assume Θln = 0 and defne a global coframe (e1, e2, e3) as follows:6 

e3 0 0 λ eu 

⎞ ⎟⎟⎟⎟⎟⎠ 
where:

⎛ ⎜⎜⎜⎜⎜⎝ 
⎛ ⎜⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎟⎠ 
⎛ ⎜⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎟ , ⎠ 
λ−Θll1 0e1 elΘln 

µ−Θll (5.205)1 0e2 = enΘln 

p p1 1 
(T + sign(T ) T 2 − 4Δ) , µ = (T − sign(T ) T 2 − 4Δ) . (5.206)λ = 

2 2 
Note that λ = µ if and only if Θll = Θnn and Θln = 0, which is not possible since we are
assuming Θln 6= 0. The exterior derivative of (e1, e2, e3) can be shown to be given by:

de1 = e1 ∧ e3 , de2 = ˜ de3 = 0 ,µe2 ∧ e3 , (5.207)
µwhere we defned µ̃ = λ . Note that 1 > |µ̃| > 0, since Θln 6= 0 and Δ 6= 0. Hence, G is

isomorphic to τ3,µ̃.

If Θln = 0, the exterior derivative of the Cauchy coframe e reads

deu = 0 , del = Θllel ∧ eu , den = Θnnen ∧ eu . (5.208)

Assume frst that |Θll| ≥ |Θnn|. Note that Θll =6 −Θnn by non-unimodularity. By
rescaling eu, we obtain:

Θnn
deu = 0 , del = el ∧ eu , den = en ∧ eu . (5.209)

Θll 

Since 1 ≥ Θnn > −1 and Θnn 6= 0 (otherwise Δ = 0), we conclude Σ is isomorphic toΘll 
τ Θnn . An analogous conclusion holds if |Θnn| ≥ |Θll|.3, 

Θll 

Proposition 5.16. The shape operator Θ of a parallel Cauchy pair (e, Θ) on G is Codazzi
if and only if:

def.
Ca = eu ⊗ Θ ◦ Θ(ea) − Θ(eu) ⊗ Θ(ea) − δuaΘ ◦ Θ+ΘuaΘ = 0 (5.210)

for every a = u, l, n.

Proof. We compute:
e r Θ = −Θ(eu) ⊗ Θ(ea) − Θ(ea) ⊗ Θ(eu) + Θ ◦ Θ(ea) ⊗ eu + eu ⊗ Θ ◦ Θ(ea) , (5.211)ea 

Similarly,

(r eΘ)(ea) = −ΘuaΘ+ δuaΘ ◦ Θ+Θ ◦ Θ(ea) ⊗ eu − Θ(ea) ⊗ Θ(eu) . (5.212)

eSince Θ is Codazzi if and only if r Θ = (reΘ)(ea) for all a = u, l, n, matching theea 
previous pair of equations we obtain (5.210) and we conclude.
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Remark 5.17. It is not hard to see that:

Ca(eb, ed) = −Cb(ea, ed) , (5.213)

for every a, b, c = u, l, n. We will use this identity momentarily.

Proposition 5.17. A parallel Cauchy pair (e, Θ) on G is constrained Ricci fat if and only
if:

ΘuuTreΘ = |Θ|e 2 . (5.214)

Proof. By Proposition 5.5, the Hamiltonian and momentum constraints for a Cauchy pair
are equivalent. We consider the momentum constraint. We have dTrhe (Θ) = 0. Hence, by
Lemma 5.3 the constraint Ricci-fatness condition for (Θ, e) is equivalent to

dive(Θ)(eu) = 0 . (5.215)

Using Equation (5.211) we compute:X 
ediveΘ = (r Θ)(ea) = −Tre(Θ)Θ(eu) + |Θ|2 eu , (5.216)ea e 

a 

and therefore we conclude.

Lemma 5.10. The shape operator Θ of a parallel Cauchy pair (e, Θ) is Codazzi if and only
if it satisfes one of the following conditions:

• Θul = Θun = Θln = 0, Θ2 
ll = ΘllΘuu, Θ2 

nn = ΘnnΘuu .

• Θ(eu) = Teu, Δ = 0 .

Proof. Let Ca ∈ Γ(T ∗G ⊗ T ∗G) denote the tensor defned in Proposition 5.16. Remark
5.17 states that the only non-trivial and independent components are those corresponding
to Ca(eu, el), Ca(eu, en) and C(el, en). Imposing these components to vanish we obtain:

2Θ2 +Θ2 +Θ2 = 0 , 2Θ2 +Θ2 +Θ2 = 0 ,ul ll ln − ΘuuΘll un nn ln − ΘuuΘnn 

2ΘulΘun +ΘnnΘln +ΘlnΘll − ΘuuΘln = 0 , (5.217)

In order to solve them we impose the cohomological condition as stated in Proposition
5.13. Since the cohomological condition is satisfed if either Θul = Θun = 0 or Θuu = −T ,
we distinguish between these two cases:

• Θul = Θun = 0. Let us split this case into two subcategories:

– = 0. One notices that the equations reduce directly to Θuu = Θ2 andΘln Θnn nn 
= Θ2ΘuuΘll ll.

– Θln =6 0. In such a case, from the last equation of (5.217) one fnds Θuu = T and,
upon substitution in the remaining equations they become linearly dependent and
equivalent to the condition Δ = 0.
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• Θuu = −T . In such a case, by summing the frst and the second equations of (5.217)
and performing explicitly the substitution Θuu = −T , we fnd

2Θ2 
ul + 2Θ2 + (Θll +Θnn)

2 + 2Θ2 
ll +Θ2 = 0 . (5.218)ln +Θ2 

un nn 

This implies Θul = Θun = Θll = Θnn = Θln = Θuu = 0, which brings us to the previous
bullet-point.

We elaborate now on the results of the previous discussion in order to obtain a full clas-
sifcation result about left-invariant parallel Cauchy pairs (e, Θ) on connected and simply
connected three-dimensional Lie groups, characterizing those which are in addition Co-
dazzi or constrained Ricci fat. Collecting all results from Propositions 5.14 and 5.15 and
bearing in mind Proposition 5.17 and Lemma 5.10, we obtain the following result.

Theorem 5.5. A connected and simply-connected Lie group G admits left-invariant parallel
Cauchy pairs (respectively constrained Ricci fat parallel Cauchy pairs or a Codazzi parallel
Cauchy pairs) if and only if G is isomorphic to one of the Lie groups listed in the Table
5.1. If that is the case, a left-invariant shape operator Θ belongs to a Cauchy pair (e, Θ) 
for certain left-invariant coframe e if and only if Θ is of the form listed at Table 5.1 when
written in terms of e = (eu, el, en).

The previous theorem will be used extensively in the next section. We have the
following corollary.

Corollary 5.3. Let G be a connected and simply connected Lie group with a left-invariantq 
Cauchy pair. Then the isomorphism type of G is prescribed by T , Δ and λ = Θ2 +Θ2 

ul un 
as follows:

• If T = Δ = λ = 0, then G ' R3 .

• If T = λ = 0 but Δ =6 0, then G ' E(1, 1).

• If Δ = 0 but λ2 + T 2 6= 0, then G ' τ2 ⊕ R.

• If T, Δ 6= 0 and λ = 0, then G ' τ3,µ.

Observe that the case λ =6 0 and Δ =6 0 is not allowed.

Noe that we are using standard notation for the groups G as explained for example in [661,
Appendix A].

5.5 Left-invariant parallel spinor fows

In this section we introduce the notion of left-invariant parallel spinor fow and solve it
explicitly.
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G Cauchy parallel pair Constrained Ricci fat Codazzi

R3 Θ = Θuueu ⊗ eu Θ = Θuueu ⊗ eu Θ = Θuueu ⊗ eu 

E(1, 1) 
Θ = Θuueu ⊗ eu + Θij ei ⊗ ej 

i, j = l, n, Θll = −Θnn 
Not allowed Not allowed

Θ = (Θulel + Θunen) eu 

Θ2 + Θ2 6= 0ul un 

Not allowed Not allowed

Θ = Θuueu ⊗ eu + Θij ei ⊗ ej Θ = T eu ⊗eu +Θij ei ⊗ 
ej 

Θ = T eu ⊗ eu + 
Θij ei ⊗ ej 

i, j = l, n, i, j = l, n, i, j = l, n, 

τ2 ⊕ R 
T 6= 0 , Δ = 0 T 6= 0 , Δ = 0 T 6= 0 , Δ = 0 

Θ = −T eu ⊗ eu + Θuleu el + 
Θllel ⊗ el , Θul, Θnn 6= 0 

Not allowed Not allowed

Θ = −T eu ⊗ eu + Θuneu en + 
Θnnen ⊗ en , Θun, Θll 6= 0 

Not allowed Not allowed

Θ = −T eu ⊗ eu + Θuleu el + 
Θuneu en + Θij ei ⊗ ej 
i, j = l, n, Θln(Θ

2 
ul + Θ2 ) 6= 0 ,un

Θun Θul
Θnn = Θln , Θll = Θln 

Θul Θun 

Not allowed

� � 

Not allowed

τ3,µ 
Θ = Θuueu ⊗ eu + Θij ei ⊗ ej 

i, j = l, n, T, Δ 6= 0 

T 2−2ΔΘ = eu ⊗T 
eu + Θij ei ⊗ ej 

i, j = l, n, T, Δ 6= 0 

Not allowed

Table 5.1: Classifcation of left-invariant Cauchy pairs, indicating if they are constrained
Ricci fat and Codazzi. In the case G ' τ3,µ, µ is equal to (5.193) (if Θln 6= 0), (5.194) (if
Θln = 0 and |Θll| ≥ Θnn) or (5.195) (if Θln = 0 and |Θnn| ≥ Θll).

5.5.1 Reformulation

Let G be a simply connected three-dimensional Lie-group. We say that a parallel spinor� 
t tfow βt, e defned on G is left-invariant if both βt and e are left-invariant for every

t∈I 
t ∈ I. The latter condition immediately implies that het is a left-invariant Riemannian� 

tmetric and βt is constant for every t ∈ I. Let e be a family of left-invariant coframes
t∈I � 

ton G. Any square matrix A ∈ Mat(3, R) acts naturally on e as follows:
t∈I ⎛P ⎞ 

t Pb Aubeb 
A(e t) := ⎝P b Albe

t
b 
⎠ (5.219)

t 
b Anbeb 

where we label the entries Aab of A by the indices a, b = u, l, n. As a direct consequence
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of Theorem 5.1 we have the following result.

Proposition 5.18. A simply connected three-dimensional Lie group G admits a left-invariant
parallel spinor fow if and only if there exists a smooth family of non-zero constants {βt}� t∈I 

tand a family e of left-invariant coframes on G satisfying the following di˙erential
t∈I 

system:
t t t t t∂te + βtΘt(e t) = 0 , de = Θt(e t) ∧ e , ∂t(Θt(e )) = 0 , dΘt(e ) = 0 , (5.220)u u u 

to which we will refer as the left-invariant (real) parallel spinor fow equations.� 
tWe will refer to solutions βt, e of the left-invariant parallel spinor fow equations as

t∈I � 
tleft-invariant parallel spinor fows. Given a left-invariant parallel spinor fow βt, e ,

t∈I 
we write: X 

t tΘt = Θt ⊗ e , a, b = u, l, n , (5.221)abea n 
a,b 

in terms of uniquely defned functions (Θt ) on I.ab 

Lemma 5.11. Let {βt, et}t∈I be a left-invariant parallel spinor fow. The following equa-
tions hold:

∂tΘ
t = βt((Θt )2 + (Θt

ul)
2 + (Θt )2) , ∂tΘ

t = ∂tΘt = 0 , (5.222)uu uu un ul un 

∂tΘ
t = βtΘt − βt(Θt , ∂tΘ

t = βtΘt − βtΘt Θt (5.223)uu uu 

∂tΘ
t = βtΘt Θt − βt(Θt )2 , Θt = Θt , Θt = Θt Θt (5.224)
ll llΘ

t 
ul)

2 
ln lnΘ

t 
un ul , 

nn nn uu un lnΘ
t
ul llΘ

t
un lnΘun

t 
nn ul , 

Θt Θt Θt Θt 
llΘ

t
ul +Θln 

t Θt +Θul
t Θt = 0 , lnΘ

t
ul +Θnn

t 
un +Θun

t 
uu = 0 . (5.225)un uu 

In particular, Θt = Θul and Θt for some constants Θul, Θun ∈ R.ul un = Θun 

tProof. A direct computation shows that equation ∂t(Θt(e )) = 0 is equivalent tou 

∂tΘ
t = βtΘt Θt (5.226)ub ua ab . 

tOn the other hand, equation dΘt(e ) = 0 is equivalent tou 

Θt Θt = 0 , Θt Θt = 0 . (5.227)ua al ua an 

The previous equations can be combined into the following equivalent conditions:

∂tΘ
t = βt((Θt )2 + (Θt )2 + (Θt )2) , ∂tΘ

t = ∂tΘt = 0 , (5.228)uu uu ul un ul un 

Θt Θt +Θt Θt +Θt Θt = 0 , Θt Θt +Θt Θt +Θt Θt = 0 , (5.229)ll ul ln un ul uu ln ul nn un un uu 

twhich recover (5.222) and (5.225). Similarly, equation d(Θt(e
t) ∧ e ) = 0 is equivalent tou 

Θt Θt Θt 
lnΘ

t
ul = Θt

llΘ
t
un , lnΘ

t
un = Θt

nn ul , (5.230)

which yields the two rightmost equations in (5.224). We take now the exterior derivative
of the frst equation in (5.220) and combine the result with the second equation in (5.220):

t t t t t td(∂te +βtΘt(e )) = ∂t(Θt
b ∧ e ) + βtΘt ∧ ea a abe u abΘ

t
bcec u (5.231)

t t = (∂tΘ
t − βtΘt )e = 0 .abδuc abΘ

t
b ∧ ecuc 

Expanding the previous equation we obtain (5.223) and the frst equation in (5.224) and
we conclude.
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Chapter 5. Spinor fows on three-dimensional Cauchy hypersurfaces

Remark 5.18. We will refer to the equations of Lemma 5.11 as the integrability conditions
of the left-invariant parallel spinor fow.

The following observation is crucial in order to decouple the left-invariant parallel spinor
fow equations. � 

tLemma 5.12. A pair βt, e is a left-invariant parallel spinor fow if and only if there
t∈I 

exists a family of left-invariant two-tensors {Kt} such that the following equations aret∈I 
satisfed:

t t t t t∂te + βtKt(e t) = 0 , de = Kt(e t) ∧ e , ∂t(Kt(e )) = 0 , d(Kt(e )) = 0 . (5.232)u u u 

Proof. The only if direction follows immediately from the defnition of left-invariant par-
allel Cauchy pair by taking {Kt}t∈I = {Θt}t∈I . For the if direction we simply compute:

t t t tΘt = − 
1 
∂thet = − 

1 
((∂te ) ⊗ e + e ⊗ (∂te )) = Kt , (5.233)a a a a2βt 2βt � 

thence equations (5.220) are satisfed and βt, e is a left-invariant parallel spinor fow.
t∈I 

By the previous Lemma we promote the components of {Θt} with respect to the ba-� t∈I 
tsis e to be independent variables of the left-invariant parallel spinor fow equations

t∈I 
(5.220). Within this interpretation, the variables of left-invariant parallel spinor fow equa-� � 

ttions consist of triples βt, e , Θt , where Θt is a family of symmetric matrices.ab t∈I ab t∈I 
On the other hand, the integrability conditions of Lemma 5.11 are interpreted as a system� 
of equations for a pair βt, Θt . In particular, the frst equation in (5.220) is linear inab t∈I 

tthe variable e and can be conveniently rewritten as follows. For any family of coframes� 
te , set e = e0 and consider the unique smooth path

t∈I 

U t : I → Gl+(3, R) , t 7→ U t , (5.234)

tsuch that e = U t(e), where Gl+(3, R) denotes the identity component in the general linear
group Gl(3, R). More explicitly, X 

t ea = Uab
t eb , a, b = u, l, n , (5.235)

b 

twhere U t ∈ C∞(G) are the components of U t . Plugging e = U t(e) in the frst equationab 
in (5.220) we obtain the following equivalent equation:

∂tU t + βtΘt = 0 , a, b, c = u, l, n , (5.236)ac abUbc
t 

with initial condition U0 = Id. � 
A necessary condition for a solution βt, Θt of the integrability conditions to ariseab t∈I 
from an honest left-invariant parallel spinor pair is the existence of a left-invariant coframe
e on Σ such that (e, Θ) is a Cauchy pair, where Θ = Θ0 ⊗ eb. Consequently we de-abea 
fne the set I(Σ) of admissible solutions to the integrability equations as the set of pairs� � 
( βt, Θt , e) such that βt, Θt is a solution to the integrability equations andab t∈I ab t∈I 
(e, Θ) is a left-invariant parallel Cauchy pair.
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Chapter 5. Spinor fows on three-dimensional Cauchy hypersurfaces

Proposition 5.19. There exists a natural bijection ϕ : I(Σ) → P(Σ) which maps every pair:� 
( βt, Θt 

ab t∈I , e) ∈ I(Σ) , (5.237)� � 
to the pair tβt, e = U t(e) 

t∈I ∈ P(Σ), where U t 
t∈I is the unique solution of (5.236)

with initial condition U0 = Id. � 
tRemark 5.19. The inverse of ϕ maps every left-invariant parallel spinor fow βt, e to� t∈I 

the pair ( βt, Θt , e), where Θab
t are the components of the shape operator associated to� ab � 

t t 0βt, e in the basis e and e = e .
t∈I t∈I � � 

Proof. Let ( βt, Θt , e) ∈ I(Σ) and let U t be the solution of (5.236) with initialab t∈I 
condition U0 = Id, which exists and is unique on I by standard ODE theory [662, Theorem� 

t5.2]. We need to prove that βt, e = U t(e) is a left-invariant parallel spinor fow. Since� � t∈I 
t tU t satisfes (5.236) for the given βt, Θt , it follows that Θt = Θt ⊗e is the shape

t∈I ab abea b� 
toperator associated to βt, e whence the frst equation in (5.220) is satisfed. On the

t∈I 
other hand, the third and fourth equations in (5.220) are immediately implied by the� 
integrability conditions satisfed by βt, Θt . Regarding the second equation in (5.220),ab 

twe observe that the integrability conditions contain the equation d(Θt(e
t) ∧ e ) = 0 andu 

thus
t t tde = Θt(e t) ∧ e + w , (5.238)u 

where {wt}t∈I is a family of triplets of closed two-forms on Σ. Taking the time derivative of
the previous equations, plugging the exterior derivative of the frst equation in (5.220) and
using again the integrability conditions, we obtain that wt satisfes the following di˙erential
equation:

t t∂tw = −βtΘt
d , (5.239)a adw 

0with initial condition w = w. Restricting equation (5.238) to t = 0 it follows that w 
satisfes

de = Θ(e) ∧ eu + w , (5.240)

Since by assumption (e, Θ) is left-invariant Cauchy pair, the previous equation is satisfed
tif and only if w = 0 whence w = 0 by uniqueness of solutions of the linear di˙erential

equation (5.239). Therefore, the second equation in (5.220) follows and ϕ is well defned.
The fact that ϕ is in addition a bijection follows directly by Remark 5.19 and hence we
conclude. � � 

tCorollary 5.4. A pair βt, e is a parallel spinor fow if and only if ( βt, Θt , e) is an
t∈I ab 

admissible solution to the integrability equations.

Therefore, solving the left-invariant parallel spinor fow is equivalent to solving the inte-
grability conditions with initial condition Θab being part of a left-invariant parallel Cauchy
pair (e, Θ). We remark that {βt} is of no relevance locally since it can be eliminatedt∈I 
through a reparametrization of time after possibly shrinking I. However, regarding the
long time existence of the fow as well as for applications to the construction of four-
dimensional Lorentzian metrics it is convenient to keep track of I, whence we maintain
{βt} in the equations.t∈I 
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Chapter 5. Spinor fows on three-dimensional Cauchy hypersurfaces

For further reference we defne a quasi-diagonal left-invariant parallel spinor fow asq R t one for which λ = Θ2 +Θ2 = 0. Since the function t → βτ dτ is going to be aul un 0 
common occurrence in the following, we defneZ t 

Bt := βτ dτ . (5.241)
0 

We distinguish now between the cases λ = 0 and λ 6= 0.

Lemma 5.13. Let {βt, et}t∈I be a quasi-diagonal left-invariant parallel spinor fow. Then,
the only non-zero components of Θt are:

Θuu Θij
Θt Θt 

uu = , ij = , i, j = l, n , (5.242)
1 − ΘuuBt 1 − ΘuuBt 

where Θt is the shape operator associated to {βt, et}t∈I and Θ = Θ0 . Furthermore, every
such Θt satisfes the integrability equations with quasi-diagonal initial data.

Proof. Setting Θul = Θun = 0 in the integrability conditions we obtain the following
equations:

∂tΘ
t = βt(Θt )2 , ∂tΘij

t = βtΘt 
uu , i, j = l, n , (5.243)uu uu ij Θ
t 

whose general solution is given in the statement of the lemma.

Remark 5.20. Let Θuu 6= 0 and defne t0 to be the real number (in case it exists) with the
smallest absolute value such that Z t0 

βτ dτ = Θ−1 . (5.244)uu 
0 

Then the maximal interval on which Θt is defned is I = (−∞, t0) if Θuu > 0 and I = 
(t0, ∞) if Θuu < 0. This is also the maximal interval on which the left-invariant parallel
spinor fow in the quasi-diagonal case can be defned. If such t0 does not exist, then I = R.� 
We consider now the non-quasi-diagonal case λ =6 0. Given a pair βt, Θt , we intro-ab t∈I 
duce for convenience the following function: � � 

ΘuuI 3 t 7→ yt = λ Bt + arctan , (5.245)
λ 

where Θab are the components of Θ in the basis e.� 
Lemma 5.14. A pair βt, Θt satisfes the integrability equations with non-quasi-ab t∈I 
diagonal initial value Θab if and only if:

Θt = λ tan [yt] , Θt Θt = Θun , (5.246)uu ul = Θul , un 
ΘuiΘujΘt

ij = cij sec [yt] − λ tan [yt] , i, j = l, n , (5.247)

where cll, cnn, cln ∈ R are real constants given by:

Θllλ
2 +Θ2 λ2 +Θ2 Θlnλ

2 +ΘulΘunulΘuu Θnn unΘuu Θuu 
cll = p , cnn = p , cln = p , (5.248)

λ λ2 +Θ2 λ λ2 +Θ2 λ λ2 +Θ2 
uu uu uu 
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such that the following algebraic equations are satisfed:

ΘlnΘul = ΘllΘun , ΘnnΘul = ΘlnΘun , 

ΘlnΘun +Θul(Θll +Θuu) = 0 , ΘlnΘul +Θun(Θnn +Θuu) = 0 . (5.249)

Remark 5.21. Note that equations (5.249) form an algebraic system for the entries of the
initial condition Θ, therefore restricting the allowed initial data that can be used to solve
the integrability conditions. This is a manifestation of the fact that the initial data of the
parallel spinor fow is constrained by the parallel Cauchy equations. The latter were solved
and classifed in the left-invariant case in Theorem 5.5 (see Table 5.1), and its solutions
can be easily verifed to satisfy equations (5.249) automatically.

Proof. By Lemma 5.11 we have ∂tΘt = ∂tΘt = 0 whence Θt for someun 
real constants Θul, Θun ∈ R. Plugging these constants into the frst equation of Lemma

ul un ul = Θul, Θt = Θun 

5.11 it becomes immediately integrable with solution:

Θt = λtan [λ(Bt + k1)] , (5.250)uu 

for a certain constant k1 ∈ R. Imposing Θ0 we obtain:uu = Θuu � � 
1 Θuu

k1 = (arctan + nπ) , n ∈ Z , (5.251)
λ λ 

and the expression for Θt follows. Plugging now Θt = λ tan [yt] in the remaining di˙er-uu uu 
ential equations of Lemma 5.11 they can be directly integrated, yielding the expressions in
the statement after imposing Θ0 Plugging the explicit expressions for Θt in theab = Θab. ab 
algebraic equations of Lemma 5.11, these can be equivalently reformulated as the algebraic
system (5.249) for Θt at t = 0 and we conclude.ab � �

Θuu −πRemark 5.22. Let t− < 0 denote the largest value for which λBt− + arctan = � � λ 2 
πand let t+ > 0 denote the smallest value for which λBt+ + arctan Θuu = (if t−, t+λ 2 

or both do not exist, we take by convention t± = ±∞). Then, the maximal interval of
defnition on which Θt is defned is I = (t−, t+).

5.5.2 Classifcation of left-invariant spinor fows

Proposition 5.11 states that Θt = and Θt = for constants Θul, Θun ∈ R.ul Θul un Θun 
Therefore, we proceed to classify left-invariant parallel spinor fows in terms of the possible
values of Θul and Θun. We begin with the classifcation of quasi-diagonal left-invariant
parallel spinor fows, characterized by the condition Θul = Θun = 0, that is, λ = 0.

Proposition 5.20. Let {βt, et}t∈I be a quasi-diagonal left-invariant parallel spinor fow with
initial data (e, Θ) satisfying Θuu =6 0. Defne Q to be the orthogonal two by two matrix
diagonalizing θ/Θuu as follows: � � 

θ ρ+ 0 
= Q Q ∗ (5.252)

0Θuu ρ− 

with eigenvalues ρ+ and ρ− and where Q∗ denotes the matrix transpose of Q. Then:� � � � � � 
te [1 − ΘuuBt]

ρ+ 0 elt le = (1 − ΘuuBt)eu , = Q Q ∗ (5.253)u ten 0 [1 − ΘuuBt]
ρ− en 
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Chapter 5. Spinor fows on three-dimensional Cauchy hypersurfaces

Conversely, for every family of functions {βt} the previous expression defnes a parallelt∈I 
spinor fow on G. The case Θuu = 0 is recovered by taking the formal limit Θuu → 0.

Proof. Defne momentarily the function I 3 t → xt := Log [1 − ΘuuBt]. By Proposition
5.19 and Corollary 5.4 it suÿces to use the explicit expression for Θt obtained in Lemma
5.13 to solve Equation (5.236) with initial condition U0 = Id on a simply connected Lie
group admitting quasi-diagonal parallel Cauchy pairs. Plugging the explicit expression of
Θt in (5.236) we obtain: � � � �� � 

∂tU t U t 
lc ∂txt Θll Θln lc ∂t U t = ∂txt U t , = , c = u, l, n . (5.254)uc uc ∂tU t U t 
nc Θuu Θln Θnn nc 

The general solution to the equations for U t with initial condition U0 = Id is given by:uc 

U t = 1 − ΘuuBt , U t = U t = 0 . (5.255)uu ul un 

Consider now the diagonalization of the constant matrix occurring in the di˙erential equa-
tions for U t :ic � � � � 

1 Θll Θln ρ+ 0 
= Q Q ∗ , (5.256)

Θuu Θln Θnn 0 ρ− 

where Q is a two by two orthogonal matrix and Q∗ is its transpose. The eigenvalues are
explicitly given by: √ 

T ± T 2 − 4Δ 
ρ± = . (5.257)

2Θuu 

We obtain: � � � � � � 
Q ∗ ∂tUlc 

t 
= ∂txt 

ρ+ 0 
Q ∗ Ulc 

t 
, c = u, l, n , (5.258)

∂tU t 0 ρ− U t 
nc nc 

whose general solution is given by:� � � � � � 
U t k+eρ+xt k+ [1 − ΘuuBt]

ρ+ 
lc c c= Q ρ−xt = Q , c = u, l, n , (5.259)U t k− k− [1 − ΘuuBt]

ρ−enc c c 

for constants k+, k− ∈ R. Imposing the initial condition U0 = Id we obtain the followingc c 
expression for k+ and k−:c c � � � � 

c δlc k+ 
= Q ∗ , c = u, l, n , (5.260)

k− 
c δnc 

whence:� � � � � � � � � � � � � � 
k+ k+ 1 Q∗ k+ 0 Q∗ 
u l ll n ln = 0 , = Q ∗ = , = Q ∗ = . (5.261)
k− k− 0 Q∗ k− 1 Q∗ 
u l nl n nn 

We infer that� � � � � �
ρ+xtU t U t e 0 [1 − ΘuuBt]

ρ+ 0ll ln = Q Q ∗ = Q Q ∗ (5.262)U t U t 0 eρ−xt 0 [1 − ΘuuBt]
ρ− 

nl nn 

and the statement is proven. The converse follows by construction upon use of Lemma
5.12 and Proposition 5.19. It can be easily seen that the case Θuu = 0 is obtained by
taking the formal limit Θuu → 0 and we conclude.
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Chapter 5. Spinor fows on three-dimensional Cauchy hypersurfaces

et } associatedt∈IRemark 5.23. The Ricci tensor of the family of Riemannian metrics {h 
to a a left-invariant quasi-diagonal parallel spinor fow is given by:

� 
tβt, e t∈I 

t Ht t tRich e = −T tΘt + e ⊗ e , (5.263)u u2 

where T t 
tby βt, e is constrained Ricci fat, then:

t∈I 

tRich e = 
T t 

∂thet , (5.264)
2βt 

which, after a reparametrization of the time coordinate can be brought into the form
τRiche = −2∂τ heτ after possibly shrinking I. Hence, this gives a particular example of a

left-invariant Ricci fow on G.

We consider now ΘulΘun = 0 but Θ2 + Θ2 =6 0. This case necessarily corresponds toul un 
G = τ2 ⊕ R.

Proposition 5.21. Let {βt, et}t∈I be a left-invariant parallel spinor fow with initial parallel
Cauchy pair (e, Θ) satisfying ΘulΘun = 0 and λ =6 0. Then:

• If Θul = 0 the following holds:

� = Θt +Θt . If Ht = 0 for every t ∈ I, that is, if the parallel Cauchy pair givenll nn 

(5.265)� t t− ΘunBt = (1 − ΘuuBt) eue 
t Θuu λ e = − (1 − ΘuuBt)tan [yt] eu + (1 + λBt tan [yt]) en . (5.266)n Θun Θun 

• If Θun = 0 the following holds:

en , e = el ,lu� 

= en , (5.267)� t t− ΘulBt = (1 − ΘuuBt) eue el , eu n� 
t Θuu λ e = − (1 − ΘuuBt)tan [yt] eu + (1 + λBt tan [yt]) el . (5.268)l Θul Θul 

Conversely, every such family {βt, et}t∈I is a left-invariant parallel spinor fow for every
{βt}t∈I .

Proof. We prove the case Θul = 0 and Θun 6= 0 since the case Θun = 0 and Θul 6= 0 follows
similarly. Setting Θul = 0 and assuming Θun =6 0 in Lemma 5.14 we immediately obtain:

Θt = −Θt = λtan [yt] , Θt = Θt = 0 . (5.269)uu nn ll ln 

where we have also used that, in this case, Θln = Θll = 0 and Θuu = −Θnn as summarized
in Theorem 5.5. Hence:

Θt = Θun 

⎛⎝ 0 0 1 
0 0 0 

⎞⎠+ λtan [yt] 

⎛⎝ 1 0 0 
0 0 0 

⎞⎠ (5.270), 
1 0 0 0 0 −1 

and equation (5.236) reduces to⎛⎝ U t U t U t 
nu nl nn 

⎞⎠ ⎛⎝ U t U t U t 
uu ul un 

⎞⎠∂tU t + βtΘun 0 0 0 + λβttan [yt] 0 0 0 = 0 , (5.271)
U t U t U t −U t −U t −U t 
uu ul un nu nl nn 
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or, equivalently:

∂tU t + βtλtan [yt] U t U t = 0 , ∂t U t = 0 , (5.272)uc uc + βtΘun nc lc 

∂t U t − βtλtan [yt] Unc + βtΘunU t = 0 . (5.273)nc uc 

The general solution to this system with initial condition U0 = Id is given by:

U t = 1 − ΘuuBt , U t = −ΘunBt , U t = U t = U t = U t = 0 , U t = 1 , (5.274)uu un ul lu ln nl ll 

U t U t Θuu λ = 1 + λBttan [yt] , = − (1 − ΘuuBt)tan [yt] , (5.275)nn nu Θun Θun 

which implies the statement. The converse follows by construction upon use of Lemma
5.12 and Proposition 5.19.

Remark 5.24. The Ricci tensor of the family of metrics {het } associated to a left-t∈I 
invariant parallel spinor with if Θul = 0 but Θun =6 0 reads

t t tRich e = −Θt ◦ Θt = 
Ht 

(het − e ⊗ e ) . (5.276)n n4 

Recall that rh et et = 0 and thusn 
� 
h , e te 

t 
n t∈I defnes a family of η -Einstein cosymplectic

structures [663,664]. On the other hand, if Θun = 0 but Θul =6 0 the curvature of {het }t∈I 
is given by:

t Ht t tRich e = −Θt ◦ Θt = (het − el ⊗ el ) . (5.277)
4 

twhence {het , e }t∈I defnes as well a family of η -Einstein cosymplectic structures on G.l 

Finally we consider ΘulΘun 6= 0, a case that again corresponds to G = τ2 ⊕ R.

Proposition 5.22. Let {βt, et}t∈I be a left-invariant parallel spinor fow with initial parallel
Cauchy pair (e, Θ) satisfying ΘulΘun 6= 0. Then:

(5.278)t 
u � = eu + Bt(Teu 

Θ2 
ulBt 

� − Θulel − Θunen 

ΘulΘunBt 

) ,e 

= −Θul 
λ (5.279)t   eu + 1 + tan[yt] tan[yt] en ,el +el λ λ 

Θ2 Btun

�� 
= −Θun ΘulΘunBt 

λ   eu + λ (5.280)t 
n tan[yt] el + 1 + tan[yt]e en ,λ 

Twhere  = +(1 + T Bt) tan[yt]. Conversely, every such family {βt, et}t∈I is a left-invariantλ 
parallel spinor fow for every {βt}t∈I .

Proof. Assuming Θul, Θun 6= 0 in Lemma 5.14 we obtain:

Θul Θun ΘulΘun
Θt = λtan [yt] , Θt = Θt Θt = Θt Θt = − Θt .(5.281)uu ll ln , nn ln , ln uuΘ2Θun Θul +Θ2 

ul un 

Note that Θt = −Θt − Θt . Hence:uu ll nn ⎛⎝ 0 Θul Θun 
⎞⎠ ⎛⎝ −λ2 0 0 

⎞⎠tan [yt]
Θt = 0 Θ2 

ul , (5.282)Θul 0 0 − ΘulΘun
λ 

Θ2 
unΘun 0 0 0 ΘulΘun 
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and Equation (5.236) reduces to

1 ∂tU t + U t Θt = 0 , (5.283)βt uc lcΘul + U t Θun + U t 
uunc uc � �

1 ∂tU t +Θul U t − λ−1(ΘulU t +ΘunU t )tan [yt] = 0 , (5.284)βt lc uc lc nc � �
1 ∂tU t +Θun U t − λ−1(ΘulU t +ΘunU t )tan [yt] = 0 . (5.285)βt nc uc lc nc 

The general solution to this system with initial condition U0 = Id is given by:

U t U t U t 
uu = 1 − ΘuuBt , ul = −ΘulBt , un = −ΘunBt , (5.286)

U t = −Θul   , U t = 1 + Θul 
2 Bt tan[yt] , U t = ΘulΘunBt tan[yt] , (5.287)lu λ ll λ ln λ 

BtU t = −Θun   , U t = ΘulΘunBt tan[yt] , U t = 1 + Θ
2 
un tan[yt] , (5.288)nu λ nl λ nn λ 

Twhere  = + (1 + T Bt) tan[yt] and we conclude.λ 

Remark 5.25. The three-dimensional Ricci tensor of the family of Riemannian metrics
{het } associated to a left-invariant parallel spinor fow with ΘulΘun =6 0 readst∈I 

t Ht 1 t tRich e = −Θt ◦ Θt = (het − ηt ⊗ ηt) , ηt = q (Θunel − Θulen) . (5.289)
4 Θ2 +Θ2 

ul un 

hNote that r et ηt = 0, so {het , ηt}t∈I defnes a family of η -Einstein cosymplectic Rieman-
nian structures on G.

As a corollary to the classifcation of left-invariant parallel spinor fows presented in Propo-
sitions 5.20, 5.21 and 5.22 we can explicitly obtain the evolution of the Hamiltonian con-
straint in each case.� 

tCorollary 5.5. Let βt, e be a left-invariant parallel spinor in (M, g).
t∈I 

• If Θul = Θun = 0, then Ht = H0 
(1−ΘuuBt)2 .

Θ2 � � �� 
unH0 2 Θuu• If Θul = 0 but Θun =6 0 then Ht = 

Θ2 sec λBt + arctan λ .
+Θ2 

Θ2 H0 � � �� uu un

ul 2 Θuu• If Θun = 0 but Θul =6 0 then Ht = sec λBt + arctan .
Θ2 +Θ2 λ uu ul � � ��

λ2H0 2 Θuu• If Θul, Θun =6 0 then Ht = sec λBt + arctan .
λ2+Θ2 λuu 

where H0 is the Hamiltonian constraint at time t = 0.

Since the secant function has no zeroes, the Hamiltonian constraint vanishes for a given
t ∈ I, and hence for every t ∈ I, if and only if it vanish at t = 0, consistently with Theorem
5.2. Theorem 5.5 implies that only quasi-diagonal left-invariant parallel spinor fows admit
constrained Ricci fat initial data. Therefore the Hamiltonian constraint of left-invariant
parallel spinor fows with λ 6= 0 is non-vanishing for every t ∈ I and such left-invariant
parallel spinor fows cannot produce four-dimensional Ricci fat Lorentzian metrics.

Altogether, we prove the following theorem.
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Chapter 5. Spinor fows on three-dimensional Cauchy hypersurfaces

Theorem 5.6. Let {βt, et}t∈I be a left-invariant parallel spinor on a simply-connected Lie
group G. Denote by {het } the family of Riemannian metrics associated to {βt, et}t∈It∈I 
and by (e, Θ) its initial parallel Cauchy pair.

• If Θ2 +Θ2 = 0 and Θuu 6= 0 then:ul un 

het = (1 − ΘuuBt)
2 eu ⊗ eu � � � � 

[1 − ΘuuBt]
2ρ+ 0 el (5.290)

+ (el, en) Q Q ∗ . 
0 [1 − ΘuuBt]

2ρ− en 

√ 
T ± T 2−4Δwhere ρ± = 2Θuu 

are the eigenvalues of θ/Θuu and Q is its orthogonal diagonaliza-
tion matrix. In particular, G = R3 if θ = 0, G = E(1, 1) if T = 0 and θ =6 0, G = τ2 ⊕ R 
if T =6 0 and Δ = 0 and G = τ3,µ if T 6= 0 and Δ 6= 0. The case Θuu = 0 is obtained by
taking the formal limit Θuu → 0 in the previous expressions.

• If Θul = 0 but Θun =6 0, we have:� � 
Bt)

2 Θuu 
2 

− 2Θuuhet = (1 − Θuu sec2[yt] + 
λ2 λ (1 − ΘuuBt) tan[yt] eu ⊗ eu � � 

Θuu λ− ΘunBt sec
2[yt] (1 − ΘuuBt) − tan[yt] (1 − 2ΘuuBt) eu en (5.291)Θun Θun � � 

+el ⊗ el + 1 + λ2B2 sec2[yt] + 2 Btλtan[yt] en ⊗ en ,t � � 
where yt = λ Bt +arctan Θuu . In particular G = τ2 ⊕R. The case Θul 6= 0 but Θun = 0λ 
is obtained by just exchanging the subindices l and n in the previous expression.

• If ΘulΘun 6= 0 then: � �� �2 
het = (1 + T Bt)

2 + tan[yt](1 + T Bt) + T eu ⊗ euλ � � 
T tan[yt]− 
λ2 + λ (1 + 2T Bt) + Bt(1 + T Bt)) sec2[yt] (Θuleu el +Θuneu en) � � �� � � 

2tan[yt] sin[2yt]+ 1 + Θ2 Bt Bt sec
2[yt] + el ⊗ el +ΘulΘunBt sec

2[yt] Bt + el enul λ λ � � �� 
2tan[yt]+ 1 + Θ2 Bt Bt sec

2[yt] + en ⊗ en , (5.292)un λ 

In particular, G = τ2 ⊕ R. R∞Furthermore, if λ = 0 the fow is globally defned (namely I = R) if and only if βτ dτ <0 
π|Θ−1|, whereas if λ 6= 0 the fow is globally defned if and only if |yt| < ∀t ∈ R.uu 2 

Proof. Theorem 5.6 follows through a direct computation by using the explicit form of the
left-invariant parallel spinor fow obtained in Propositions 5.20, 5.21 and 5.22 for each of
the possible cases, after using Theorem 5.5 to identify the underlying Lie group in each
case.

5.6 Comoving parallel spinor fows

Finally, in this section we consider a specifc type of parallel spinor fow which admits
a particularly neat geometric description, with the goal of obtaining explicit non-left-
invariant time-dependent Lorentzian four-manifolds admitting parallel spinors.
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Chapter 5. Spinor fows on three-dimensional Cauchy hypersurfaces

5.6.1 Globally hyperbolic comoving spacetimes

We consider a particular class of parallel spinor fows given by imposing the condition
βt = 1 for all t ∈ I.

Defnition 5.7. A parallel spinor fow {βt, et}t∈R) is comoving if βt = 1 for every t ∈ I.

A comoving parallel spinor fow on a manifold of the form M = I × Σ, where Σ is an
oriented three-manifold, will be always understood as a parallel spinor fow on Σ with
respect to the cartesian coordinate of the open interval I ⊂ R.

Defnition 5.8. A four-dimensional spacetime (M, g) is a comoving globally hyperbolic
spacetime if it is isometric to a model of the form:

(M, g) = (I × Σ, −dt ⊗ dt + ht) , (5.293)

for a family {ht} of complete Riemannian metrics on Σ, where I ⊂ R is an interval.t∈I 

A metric of the type g = −dt2 + ht will be called a comoving globally hyperbolic.

Remark 5.26. The term comoving is motivated by the fact that the local metric of a
comoving observer in a cosmological background is of comoving globally hyperbolic type.
In particular, the time factor of the metric is constant.

Proposition 5.23. An oriented four-manifold (M, g) admits a comoving parallel spinor
fow if and only if the associated family of coframes {et}t∈I satisfes the following system
of partial di˙erential equations:

t t t t∂te t +Θt(e t) = 0 , de = Θt(e t) ∧ e , [Θt(e )] = 0 ∈ H1(Σ, R) , ∂tΘt(e ) = 0 , (5.294)u u u 

If this is the case, the corresponding comoving globally hyperbolic metric is given by:

t t t t t t g = −dt ⊗ dt + het , het = e ⊗ e + el ⊗ el + e ⊗ e . (5.295)u u n n 

Proof. Just by setting βt = 1 in Theorem 5.1.

We will refer to equations (5.294) as the comoving parallel-spinor fow equations, and we
will refer to its solutions as comoving parallel spinor fows. The general investigation of
comoving parallel spinor fows is beyond the scope of this article and will be considered
elsewhere. Instead, we consider two particular important cases in detail.

5.6.2 A diagonal example on R3 .

Set Σ = R3 with Cartesian coordinates (x, y, z) and consider comoving parallel spinor fows� 
te of the form:

t∈I 
t e = (ft dx, ftl dy, f

t dz) , (5.296)u n � � � 
for families of functions ft ft and ft on R3 . Hence,u nt∈R, l t∈R t∈R � � 
het = (ft )2dx ⊗ dx + (ft l )

2dy ⊗ dy + (ft )2dz ⊗ dz ,u n
t)](e = 

1 1 1 
∂x, ∂y, ∂z

ft ft ft u l n 
, (5.297)
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We compute:

Θt = −(ftu∂tf
t
u dx ⊗ dx + ftl ∂tfl

t dy ⊗ dy + ftn∂tftn dz ⊗ dz) . (5.298)

Therefore, equation ∂tet +Θt(e
t) = 0 is automatically satisfed. On the other hand, equa-

t ttions [Θt(e )] = 0 and ∂tΘt(e ) = 0 are equivalent tou u 

∂tdfu ∧ dx = 0 , ∂2fu = 0 , (5.299)t 

implying that
ft = a + b t , (5.300)u 

where b = b(x) is a function of the coordinate x and a = a(x, y, z) is a function of all
coordinates of R3 . Note that, in order to have a well-defned comoving parallel spinor fow,
we must impose the constraint

ft (t, x, y, z) = a(x, y, z) + b(x) t 6= 0 , (5.301)u 

for every t ∈ I and (x, y, z) ∈ R3 , which translates into a constraint in the allowed domain
of defnition I ⊂ R of t. The only equations that remain to be solved for

t e = ((a + b t)dx, fl
tdy, ft dz) (5.302)n 

t tto be a comoving parallel spinor fow are de = Θ(et) ∧ e , which can be shown to beu 
equivalent to

da ∧ dx = 0 , (dfl
t − ∂tftl f

t dx) ∧ dy = 0 , (dft − ∂tft ft dx) ∧ dz = 0 . (5.303)u n n u 

These equations are in turn equivalent to:

a = a(x) , ∂xf
t = ft ∂tfl

t , ∂zf
t = 0 , ∂xf

t = ft ∂tft , ∂yf
t = 0 , (5.304)l u l n u n n 

which do have explicit solutions, as we will show later in particular examples. On the
other hand a direct computation shows that the Ricci curvature of the comoving globally
hyperbolic Lorentzian metric g = −dt ⊗ dt + het associated to such et vanishes if and only
if the following condition holds:� � 

∂tf
t ∂tf

t ∂t∂xf
t ∂t∂xf

t 
l n l nb + − − = 0 . (5.305)

fl fn fl fn 

This condition will be explored in the examples below.

Example 5.3. Suppose that both a and b are constants, with b 6= 0. With this assumption,
a general solution of equations (5.304) is of the form:

ft ft = Ll(x + log |a + b t|/b, y) , = Ln(x + log |a + b t|/b, z) , (5.306)l n 

tfor nowhere vanishing smooth functions Ll, Ln ∈ C∞(R2). The corresponding coframe e 
reads

t e = ((a + bt)dx, Ll(x + log |a + b t|/b, y)dy, Ln(x + log |a + b t|/b, z)dz) , (5.307)
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which is well defned in the intervals t ∈ I1 = (−∞, − a ) or t ∈ I2 = (− a , ∞). The metricb b 
associated to the previous global coframe is given by:

g = −dt ⊗ dt + (a + b t)2dx ⊗ dx + Ll(x + log |a + b t|/b, y)2dy ⊗ dy 
(5.308)

+ Ln(x + log |a + b t|/b, z)2dz ⊗ dz , 

which provides a large family of four-dimensional Lorentzian metrics admitting a parallel
spinor. If the induced Riemannian spatial metric:

het = (a + b t)2dx ⊗ dx + Ll(x + log |a + b t|/b, y)2dy ⊗ dy 
(5.309)

+ Ln(x + log |a + b t|/b, z)2dz ⊗ dz , 

on {t}×R3 ⊂ Ii ×R3 (for i = 1, 2) is complete for all t ∈ Ii we obtain a family of comoving
globally hyperbolic metrics on Ii × R3 . Equation (5.305), implies now that g is Ricci fat
if and only if

b∂ζ Ll − ∂ζ ∂ζ Ll b∂ζ Ln − ∂ζ ∂ζ Ln 
+ = 0 , (5.310)

Ll Ln 

where we have defned ζ(t, x) := x +log |a +b t|/b. This Ricci-fatness condition is satisfed
if the functions Ll(ζ, y) and Ln(ζ, z) take the form:

bζ bζLl(ζ, y) = w1(y)e + w2(y) , Ln(ζ, z) = w3(z)e + w4(z) , (5.311)

where w1, w2, w3, w4 are arbitrary smooth functions.

Example 5.4. Assume that a is a possibly non-constant strictly positive function and b = 0.
With this assumption, the general solution of equations (5.304) is of the form:� Z � � Z � x x 

ft = Ll t + a(τ )dτ, y , ft = Ln t + a(τ)dτ, z , (5.312)l n 
0 0 

tfor nowhere vanishing smooth functions Ll, Ln ∈ C∞(R2). The corresponding coframe e 
reads: � � Z � � Z � � x x 

t e = a(x)dx, Ll t + a(τ)dτ, y dy, Ln t + a(τ)dτ, z dz , (5.313)
0 0 

which is well defned for t ∈ I = R. The metric associated to the previous global coframe
is given, after a change and relabeling of coordinates, by the following expression:

g = −dt ⊗ dt + dx ⊗ dx + Ll(t + x, y)2dy ⊗ dy + Ln(t + x, z)2dz ⊗ dz , (5.314)

which provides a large family of four-dimensional Lorentzian metrics admitting a parallel
spinor. If the induced Riemannian spatial metric:

het = dx ⊗ dx + Ll(t + x, y)2dy ⊗ dy + Ln(t + x, z)2dz ⊗ dz , (5.315)

on {t} × R3 ⊂ I × R3 is complete for all t ∈ I we obtain a family of comoving globally
hyperbolic metrics on I × R3 . Implementing the change of coordinates

t + x −t + x+ − x = √ , x = √ , (5.316)
2 2 
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the metric g is given by:

+ − + + g = dx dx + Ll(x , y)2dy ⊗ dy + Ln(x , z)2dz ⊗ dz , (5.317)

after a suitable redefnition of the functions Ll and Ln. This metric is a particular case
of a Lorentzian metric expressed in Schimming coordiantes [665], which exists in every
Lorentzian manifold admitting a parallel null vector feld. Equation (5.305) implies now
that g is Ricci fat if and only if

∂x+ ∂x+ Ll ∂x+ ∂x+ Ln 
+ = 0 , (5.318)

Ll Ln 

Some simple solutions can be found just by setting ∂x+ ∂x+ Ll = ∂x+ ∂x+ Ln = 0:

+ +Ll = w1(y)x + w2(y) , Ln = w3(z)x + w4(z) , (5.319)

where w1, w2, w3, w4 are arbitrary smooth functions.

5.6.3 An example in Schimming coordinates.

In Reference [665] it was proven that any four-dimensional spacetime (M, g) equipped with
+ −a parallel lightlike vector feld u] ∈ X(M) admits local coordinates (x , x , y1, y2) in which

the metric g and the vector feld u] are written as follows:

∂+ − ]g = dx dx + kx+ , u = . (5.320)
∂x− 

where
kx+ (y1, y2) = kx+ ij dyi ⊗ dyj , i, j = 1, 2 . (5.321)

+is a family of two-dimensional metrics parametrized by the coordinate x . A simple change√ √ 
+ −of coordinates 2x = t + x and 2x = x − t allows to write the previous metric g as

g = −dt ⊗ dt + dx ⊗ dx + kt+x , (5.322)

whence we obtain a particular type of comoving globally hyperbolic spacetimes. Therefore,
it is natural to study comoving parallel spinor fows adapted to the structure of the metric
(5.322). Assume that the previous coordinate system is globally defned. Then, the Cauchy
surface is given by Σ = R × X, with X an oriented two-dimensional manifold, and the
metric takes the form ht = dx ⊗ dx + kt+x. Consequently, we assume that our comoving
parallel spinor fow is of the form:

t t t e = (dx, el (x), e (x)) , (5.323)n 

t t t twhere kt+x = e ⊗ e + e ⊗ e . The comoving parallel spinor fow equations (5.294) reducel l n n 
to

t t t t t∂tei(x) + Θt(ei(x)) = 0 , ∂xei(x) + Θt(ei(x)) = 0 , dei(x)|X = 0 , Θt(∂x) = 0 . (5.324)

Hence, the comoving parallel spinor fow can be considered as a bi-parametric fow which
is parametrized by t and x, for a family of closed oriented frames on X. In particular
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(X, kt+x) is fat for every (t, x) ∈ R2 and therefore isometric to Euclidean space, the fat
cylinder or a fat torus. Equations (5.324) immediately imply

t t∂tei(x) = ∂xei(x) , i = l, n . (5.325)

Therefore, choosing coordinates (y1, y2) on X, global for the plane and local for the torus
and cylinder cases, every such family of solutions can be written as follows:

t t el (x) = fl 1(t + x)dy1 + f2 
l (t + x)dy2 , e (x) = fn 

1 (t + x)dy1 + fn 
2 (t + x)dy2 , (5.326)n 

for functions fl 1, f2 
l , fn 

1 , fn ∈ C∞(R) satisfying the following condition everywhere:2 

δ = fl 1f2 
n − fn 

1 f
l 6= 0 . (5.327)2 

If this condition is satisfed, the dual frame is given by:

t 1 t 1 
el (x)

] = (f2 
n∂y1 − f1 

n∂y2 ) , e (x)] = (−f2 
l ∂y1 + f1 

l ∂y2 ) . (5.328)nδ δ 

In order to guarantee that (5.327) is satisfed, we assume the following ansatz:

fnf1 
l := e fl p := f l = −f1 

n , fn := e (5.329)2 2 

fl+fn 2in terms of functions fl fn, p ∈ C∞(R). This implies δ = e + p > 0 and therefore
equations (5.324) further reduce to

+ + + + + + +x x x x x x x∂x+ e = (∂x+ e )((e )])e + (∂x+ e )((e )])e , (5.330)l l l l n l n 
+ + + + + + +x x x x x x x∂x+ e = (∂x+ e )((e )])e + (∂x+ e )((e )])e , (5.331)n l n l n n n 

+ x twhere we have gone back to the coordinate x = t + x and written e + 
:= e (x), i = l, n.i i 

+ + + +x x x xIn particular, note that the condition (∂x+ e )((e )]) = (∂x+ e )((e )]) is necessarilyn l l n 
satisfed, as required by Theorem 5.3. By direct computation one fnds that equations
(5.330) and equations (5.331) turn out to yield a single linearly independent equation
which takes the form:

fl flp(∂x+ e + ∂x+ e fn ) = (e + e fn )∂x+ p . (5.332)

The general solution of the previous equation is given by:

flp = c (e + e fn ) , (5.333)

for any real constant c. Therefore we are led to the following Lorentzian metric, which by
construction admits a parallel lightlike vector feld given by ∂ − :x 

+ 2fl fl 2flg = dx dx − + (e + c 2(e + e fn )2)dy1 ⊗ dy1 + c(e − e 2fn )dy1 dy2 
(5.334)

2fn fl+ (e + c 2(e + e fn )2)dy2 ⊗ dy2 . 

The Ricci tensor of the previous metric is given by:� 
2 2Ricg = 2c e fl ((∂x+ fl)

2 + ∂x+ ∂x+ fl) + 2c e fn ((∂x+ fn)
2 + ∂x+ ∂x+ fn) (5.335)
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� 
++ (1 + 2c 2)e fl+fn ((∂x+ fl)

2 + ∂x+ ∂x+ fl + (∂x+ fn)
2 + ∂x+ ∂x+ fn) dx + ⊗ dx , 

which vanishes if the following conditions are satisfed:

(∂x+ fl)
2 + ∂x+ ∂x+ fl = 0 , (∂x+ fn)

2 + ∂x+ ∂x+ fn = 0 . (5.336)

These ODEs are solved by:

fl(x +) = a + log |x + − b| , fn(x +) = c + log |x + − d| , (5.337)

for real constants a, b, c, d ∈ R. These solutions are well defned if x+ ∈ (−∞, min(b, d)) or
+if x ∈ (max(b, d), +∞). However, although fl and fn present divergences whenever the

argument of the logarithm vanishes, this is not problematic for the metric (5.334) as long
+as b 6= d (otherwise the metric would be degenerate at x = b = d), since both functions fl 

and fn appear exponentiated. In addition, it can be checked that the space time (R2 ×X, g) 
is a plane wave, since the Riemann curvature tensor Rg : Λ2T (R2 × X) → Λ2T (R2 × X) 
satisfes Rg|(∂ = 0 and rV R

g = 0 for all V ∈ (∂ − )⊥ .− )⊥∧(∂ − )⊥ x 
x x 

5.7 Discussion

In this chapter we have introduced the parallel spinor fow, defned as the evolution fow
prescribed by a parallel spinor on a globally hyperbolic Lorentzian four-manifold. It con-
sists of a system of partial di˙erential equations for a family of functions and coframes on
an appropriate Cauchy surface Σ ⊂ M . We have proved such parallel spinor fow to be
equivalent to the existence of a real parallel spinor, thanks to the description of a real par-
allel spinor in terms of a pair of one-forms satisfying a certain system of partial di˙erential
equations. This way, we have obtained a reformulation of the a priori more abstruse spino-
rial problem, which could facilitate, among other aspects that we have explicitly shown,
the proof of the well-posedness of the initial value problem of a real parallel spinor. It
would be highly interesting to extend these results in the case of real Killing spinor [106].

We also examined all standard Brinkmann spacetimes allowing for real parallel
spinors, rederiving along the way the well-known result [626, 642] that Lorentzian man-
ifolds with real parallel spinors are examples of pp-waves. Beyond its intrinsic mathemati-
cal defnition, these spacetimes are extremely relevant for gravitational wave physics, since
they are exact solutions to Einstein’s feld equations that can be used to model gravita-
tional radiation, satisfy in some cases a (linear) superposition principle and around null
geodesics every spacetime looks like a (plane) pp-wave [666]. Consequently, given this
novel reformulation of a real parallel spinor in terms of the parallel spinor fow, it would be
very interesting to reinterpret the physical properties of the associated pp-waves in terms
of geometrical features of the corresponding family of coframes (for instance, it could be
intriguing to understand what geometric structures front waves may correspond to within
the context of parallel spinor fows).

In the case of globally hyperbolic spacetimes, we were able to show a very powerful
result: although Lorentzian metrics admitting parallel spinors are not necessarily Ricci fat,
the parallel spinor fow preserves the vacuum momentum and Hamiltonian constraints and
therefore the Einstein and parallel spinor fows coincide on common initial data. Using
this result, we provide an initial data characterization of real parallel spinors on Ricci
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fat Lorentzian four-manifolds. This is highly remarkable, since we are solving the Einstein
fow, which is second-order, through the parallel spinor fow, which frst-order in derivatives,
suggesting thus the intriguing possibility of using frst-order hyperbolic spinorial fows to
construct special solutions of curvature fows and GR.

Afterwards, we concentrated on the study of the topology and geometry of the subse-
quent parallel Cauchy pairs. We managed to classify all compact three-manifolds admitting
parallel Cauchy pairs, proving that they are canonically equipped with a locally free action
of R2 and are isomorphic to certain torus bundles over S1 , whose Riemannian structure
we characterized in detail. Since the constraint equations of a parallel spinor correspond
to a certain type of imaginary generalized Killing spinor equations [628], these results can
be interpreted as classifcation results for three-manifolds admitting imaginary generalized
Killing spinors.

Next, we committed ourselves to the study of left-invariant parallel spinor fows. We
carried out frst the classifcation of the associated left-invariant parallel Cauchy pairs on
simply connected Lie groups in order to obtain, in a second stage, the classifcation of left-
invariant parallel spinor fows on simply connected Lie groups, deriving the corresponding
necessary and suÿcient conditions for such fows to be immortal. These are, to the best of
our knowledge, the frst non-trivial examples of evolution fows of parallel spinors. Also, we
used some of these examples to construct families of η -Einstein cosymplectic structures and
to produce solutions to the left-invariant Ricci fow in three dimensions. This is surprising
since the hyperbolic type of fow we have considered has a priori no relation with any
parabolic type of curvature fows. It would be interesting to explore this potential relation
in more generality and for more complicated types of spinorial equations, especially for
those appearing as Killing spinor equations in four-dimensional Supergravity theories.

Finally, we defned the so-called comoving parallel spinor fows, which are special
cases of parallel spinor fows which admit a neat and novel geometric interpretation. Re-
stricting to this class, we have solved the corresponding equations in several examples, ob-
taining explicit families of four-dimensional Lorentzian manifolds carrying parallel spinors.
As previously mentioned, the general investigation of comoving parallel spinor fows de-
serves further exploration and will be hopefully treated elsewhere.
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6 
Heisenberg-invariant self-dual Einstein

four-manifolds

In the previous chapter, we studied the geometric properties of globally hyperbolic four-
manifolds which are endowed with a real parallel spinor through its equivalent formulation
in terms of a parallel spinor fow. This was of interest because these types of equations
appear within the study of supersymmetric solutions of N = 1 pure Supergravity in four
dimensions.

Now we concentrate on the geometry of certain scalar manifolds appearing in Su-
pergravity and ST. Although they do not describe the spacetime dynamics, they are fun-
damental for the understanding of the ST moduli spaces. In the case of four-dimensional
scalar manifolds, it is known that particularly relevant instances of such four-manifolds are
those with a principal and isometric action of the three-dimensional Heisenberg group (see
the explanation below), so we will commit ourselves in this chapter to their investigation.

Indeed, principal group actions on pseudo-Riemannian manifolds play a prominent
role in di˙erential geometry. Many fundamental concepts, such as principal bundles or
homogeneous spaces, are based on this notion. Among them, it is particularly interesting
to consider cohomogeneity one principal actions, in which the corresponding orbits are of
codimension one. This allows to reduce interesting systems of partial di˙erential equa-
tions, such as the Einstein equation, to systems of ordinary di˙erential equations. This is
extremely relevant in theoretical physics as well, since the above principle allows to solve
the feld equations of GR in many important cases, for instance, within the context of
cosmological models [667].

On the other hand, the homogeneous quaternionic Kähler manifolds of negative
scalar curvature (except the quaternionic hyperbolic spaces) have been shown to admit a
canonical deformation to a complete quaternionic Kähler manifold with a cohomogeneity-
one isometric action [159]. This deformation is a particular case of what is called one-
loop deformation [120, 157], which appears in the study of scalar manifolds in ST and
Supergravity with one-loop corrections. In four dimensions it is found [159] that the
isometry group of the deformed quaternionic Kähler manifold is O(2) n H, with H the
three-dimensional Heisenberg group, and this motivated to carry out the classifcation
of all Riemannian Einstein metrics of non-positive scalar curvature which are invariant
under the action of SO(2) n H in R4 [160]. Apart of a wealth of incomplete metrics, the
authors of [160] showed that the only complete manifolds in the above class are the complex
hyperbolic plane (also know as universal hypermultiplet in the physics literature) and its
complete one-loop deformation.

Recall that a four-dimensional Riemannian metric is called quaternionic-Kähler if it
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is Einstein and self-dual (for appropriate choice of orientation). The notion of self-duality
is also meaningful for metrics of neutral signature1 and self-dual Einstein metrics of neutral
signature are also called quaternionic paraKähler.

In this context, the objective of this work is the classifcation of all self-dual pseudo-
Riemannian Einstein four-manifolds which admit a principal (cohomogeneity-one) isomet-
ric action of the Heisenberg group. The hypotheses are, on the one hand, more general
than those of [160] in that we allow indefnite metrics and assume only the symmetry group
H rather than SO(2) n H but, on the other hand, more specifc as we restrict to self-dual
metrics.

Up to an overall sign in the metric, the manifolds considered can be decomposed as
(I × H, εdt2 + χt), being I ⊂ R an open interval parametrized by t (that we call time),
ε = ±1 and {χt}t∈I a family of Riemannian or Lorentzian metrics on H, respectively.
The key feature that will allow us to perform such classifcation is the use of a family of
orthonormal or Witt frames on H, which are interpreted as the time evolution of an initial
(orthonormal or Witt) frame on H.

More concretely, on the one hand we frst consider the proper (i.e. Scal 6= 0) quater-
nionic (para)Kähler four-manifolds with a Heisenberg principal group action and, attending
to the causal character of the center of the Heisenberg group (for neutral-signature mani-
folds), we determine completely their isometry type. In the Riemannian case, apart from
encountering the complex hyperbolic metric and the complete and incomplete one-loop de-
formed universal hypermultiplet metrics of negative scalar curvature as reported in [160],
we also fnd counterparts positive scalar curvature.

For neutral-signature metrics, we are able to identify the solutions of positive scalar
curvature as quaternionic paraKähler geometries arising from the so-called temporal and
Euclidean Supergravity (one-loop deformed) c-maps2 while those with negative scalar cur-
vature do not seem to have been previously considered. Furthermore, we study when such
metrics are complete.

On the other hand, we also investigate (para)hyperKähler four-manifolds endowed
with a principal action of the Heisenberg group and provide a classifcation of all of them
in terms of their isometry type, in similar lines to the quaternionic case. It turns out that
the Ricci fat examples are incomplete with exception of a class of fat examples of neutral
signature.

The outline of the chapter is as follows3. First we derive some preliminary results
that will be key for the subsequent classifcations we intend to make, such as proving that
Einstein Heisenberg four-manifolds preserve the causal character of the Heisenberg center.
Afterwards, we determine all quaternionic (para)Kähler four-manifolds which admit an iso-
metric principal action of the Heisenberg group with non-degenerate orbits, distinguishing
between Riemannian and neutral-signature signatures and, in the latter case, splitting the

1But not for Lorentzian signature, cf. Remark 6.22.
2We remind that the temporal (respectively, Euclidean) Supergravity c-map is induced by the reduction

of four-dimensional Minkowskian (respectively, Euclidean) N = 2 Supergravity coupled to vector multiplets
over a timelike (respectively, spacelike) dimension, while the the usual Supergravity c-map (also called
spatial c-map), from which the one-loop deformed universal hypermultiplet metric arises, is induced by the
reduction of four-dimensional N = 2 Supergravity coupled to vector multiplets over a spacelike dimension
[137, 149].

3Most of the computations presented in this chapter have been carried out with the help of Mathe-
matica 12.3, using the license of the University of Hamburg. The input and output of all computer-based
computations can be downloaded at http://www.math.uni-hamburg.de/home/cortes/cortes murcia.nb.
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Chapter 6. Heisenberg-invariant self-dual Einstein four-manifolds

study between timelike, spacelike or lightlike quaternionic (para)Kähler Heisenberg four-
manifolds, depending on the causal character of the Heisenberg center. Next, we classify
similarly all (para)hyperKähler four-manifolds with an isometric principal action of the
Heisenberg group with non-degenerate orbits. Finally, we conclude with a discussion of
our fndings.

6.1 The Heisenberg group and Heisenberg four-manifolds

In this section we revise basic features concerning left-invariant pseudo-Riemannian metrics
on the Heisenberg group, introduce the concept of a Heisenberg four-manifold and prove
some preliminary results about Einstein Heisenberg manifolds.

6.1.1 Heisenberg group

Recall that the three-dimensional Heisenberg group H is the unique, up to isomorphism,
connected and simply connected non-abelian nilpotent three-dimensional Lie group. Its
Lie algebra h is called the Heisenberg algebra. As for any Lie group, there is a natural
bijection between left-invariant pseudo-Riemannian metrics on H and pseudo-Euclidean
scalar products on h. We will thus often refer to such a scalar product χ as a pseudo-
Riemannian metric on h and to the pair (h, χ) as a pseudo-Riemannian Heisenberg algebra.

Let χ be a pseudo-Riemannian metric on h. Then there always exists an orthonormal
or a Witt basis4 v1, v2, v3 ∈ h such that the Lie brackets are given by:

[v1, v2] = 0 , [v1, v3] = 0 , [v2, v3] = −2kv1 , k ∈ R>0 . (6.1)

Note that k 6= 0 cannot be absorbed into a redefnition of the basis {v1, v2, v3}. (However,
it can be assumed positive, since the sign can be always switched by multiplying the vectors
of the basis by minus one.) We observe that the center of the Heisenberg algebra, to which
we will refer as the Heisenberg center, is spanned by v1, which can be timelike, spacelike
or lightlike. Given a pseudo-Riemannian Heisenberg algebra (h, χ), the isometry type of
the corresponding pseudo-Riemannian metric on H is uniquely fxed after the specifcation
of an orthonormal or Witt basis {v1, v2, v3} satisfying (6.1).

The three-dimensional Heisenberg group can be realized as R3 together with the
following product:

(x, y, z) · (a, b, c) = (a + x, b + y, c + z + ya − xb) , (x, y, z), (a, b, c) ∈ R3 . (6.2)

From (6.2) one can readily get a basis5 {w1, w2, w3} of h, given by the left-invariant vector
felds

w1 = ∂z , w2 = ∂x + ky∂z , w3 = ∂y − kx∂z , (6.3)

where (x, y, z) are standard coordinates on R3 . In particular, note that the only non-
vanishing Lie bracket of these vectors is that of [w2, w3] = −2kw1. The dual basis of

1 2one-forms {w , w , w3} is given by:

1 2 3 w = dz + kxdy − kydx , w = dx , w = dy . (6.4)
4If (V, χ) is a three-dimensional Lorentzian vector space, we defne a Witt basis {eu, ev , e3} as one which

satisfes χ(eu, ev ) = χ(e3, e3) = 1 and χ(eu, eu) = χ(ev , ev ) = χ(eu, e3) = χ(ev, e3) = 0.
5Not necessarily orthonormal.

303



Chapter 6. Heisenberg-invariant self-dual Einstein four-manifolds

6.1.2 Heisenberg four-manifolds

Defnition 6.1. A four-dimensional pseudo-Riemannian manifold (M, g) is said to be a
Heisenberg four-manifold if it is foliated by the orbits of a principal and isometric action
of the three-dimensional Heisenberg group.

Note that a Heisenberg four-manifold (M, g) admits an H-equivariant di˙eomorphism iden-
tifying M with I × H, where I ⊂ R is either an open interval or a circle. Replacing M by
its universal covering, if necessary, we can assume the former.

Within the class of Heisenberg four-manifolds (M, g), we shall restrict ourselves to
those for which the restriction of g to the leaves is non-degenerate. In such a case, the
metric g can be written in the form:

2 g = εdt + χt, (6.5)

where ε = ±1 and {χt}t∈I is a family of left-invariant metrics on H parametrized by the
time coordinate t. The di˙erent H-orbits are identifed by means of the normal geodesic
fow6 generated by ∂t, such that {(H, χt)}t∈I defnes a family of pseudo-Riemannian Heisen-

tberg groups. Up to orthogonal transformations, we can associate it to a family {(ei)}t∈I of
t tleft-invariant sections (ei) of the frame bundle F(H) such that (ei) ∈ F(H) is an orthonor-

tmal (i = 1, 2, 3) or Witt (i = u, v, 3) frame for χt. Then {∂t, (e )} conforms an orthonormali 
tor Witt frame for (M, g). For ease of notation we may denote the triplet (e ) simply byi 

t t t t tei, thus writing {ei}t∈I and {∂t, ei} instead of {(ei)}t∈I and {∂t, (ei)}. Analogously, we
denote the corresponding family of dual orthonormal or Witt coframes on {(H, χt)}t∈I by

i i{et}t∈I and the corresponding dual orthonormal or Witt coframe on (M, g) by {dt, et}.
Having said this, we consider g to have the form:

2 i jg = εdt + ηij et ⊗ et , ε = ±1 , (6.6)

where:

η = 

⎛⎝ ε 0 0 
0 1 0 

⎞⎠ for orthonormal bases , η = 

⎛⎝ 0 1 0 
1 0 0 

⎞⎠ for Witt bases . (6.7)
0 0 1 0 0 1 

Given the equivalent description of metrics (6.5) in terms of families of orthonormal or
tWitt frames {ei}t∈I in H, we may think of metrics on M as time evolutions of frames on

H. (The evolution will be determined later from the self-dual Einstein equations.) In fact,
let t0 ∈ I be an initial time and e t0 an initial orthonormal or Witt frame for the initiali 

tmetric χt0 . Then the time evolution {e }t∈I of such initial frame determines the metrici 
{χt}t∈I and, in turn, the four-dimensional pseudo-Riemannian manifold (M, g). We can
write

t = U t t0 i j (U t)−1 U t0ei ij ej , et = et0 ji , U t ∈ GL(3, R) , = Id , (6.8)

where U t0 = Id is the initial condition for the time evolution now encoded in t 7→ U t .
We denote by Z ⊂ h = TeH the Heisenberg center and by Zt ⊂ T(t,e)({t} × H) =∼ h the
(constant) line which corresponds to Z under the canonical identifcation {t} × H ∼= H.

6We have also properly reparametrized t in order to correspond to the arc length parameter along a
normal geodesic.
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Defnition 6.2. Let (M, g) be a Heisenberg four-manifold of neutral signature. We say it is
timelike, spacelike or lightlike if Zt is timelike, spacelike or lightlike respectively for every
t ∈ I.

It will be shown later that the causal character of Zt is constant for Einstein Heisen-
berg four-manifolds.

6.1.3 Choice of adapted frames for Einstein Heisenberg four-manifolds

On studying Riemannian Heisenberg four-manifolds and neutral-signature timelike, space-
like or lightlike Heisenberg four-manifolds (M, g), it is convenient to use the following

tspecial frames {ei}t∈I to describe the four-dimensional metric g.

Proposition 6.1. Let (M, g) be a Heisenberg four-manifold.

t• If ε = 1, then (M, g) is Riemannian and there exists an orthonormal frame {ei}t∈I 
t t t0 t0such that e generates Zt and e is a linear combination of e and e for all t ∈ I.1 2 2 3 

This implies:

U t = 

⎛⎝ ⎞⎠ a(t) 0 0 
0 b(t) f(t) t0 t0 t0 (6.9)] = −2ke, [e k > 0 ,, e 1 ,2 3 

1 

j(t) h(t) c(t) 

where a, b, c, f, j, h ∈ C∞(I).

• If ε = −1, then (M, g) is of neutral signature and:

– If (M, g) is a timelike Heisenberg four-manifold, then there exists an orthonor-
t t t t0such that e and e is a linear combination of emal frame {e 

and e t0 for all t ∈ I. The conclusion is again (6.9).
}t∈I spans Zt 2i 2 

3 
– For spacelike Heisenberg four-manifolds (M, g), we may choose7 the center Zt 

3 ⎛⎝ 
tto be spanned by e ⎞⎠ 
for every t ∈ I and thus we may use the ansatz:

c(t) h(t) j(t) 
t0 t0 t0U t (6.10)] = −2kef(t) b(t) p(t) , [e k > 0 ,= , e ,1 2 3 

0 0 a(t) 

where a, b, c, f, j, h, p ∈ C∞(I).
1√ 

) is an orthonormal frame such that e 
If (M, g) is a lightlike Heisenberg four-manifold, we defne e ) andt t t− e(e– = 2 1u 2 

1√ 

For a certain interval I 0 ⊂ I containing t0, we may choose el 

), where (et t t t t t t0 ∈ Zt0u(e + e=e , e , e .1 2 1 2 3v 2 
to be parallel tot 

3 
} is a (local) Witt basis such that8:for every t ∈ Il 0 . Then {e t0 t t te , e , e33 u v ⎛⎝f(t) 

0 0 a(t) 
t t7The reason to choose e3 rather than e1 is (6.7), where we fxed the frst vector of the orthonormal basis

to be timelike.
8Di˙erently from the timelike and spacelike cases, where we impose a vector of the time-dependent

orthonormal basis to be parallel to the Heisenberg center, here we opt to fx the spacelike direction in the
t t t0 ttime-evolving Witt basis {ei}t∈I0 , so that e3 remains parallel to e and eu freely changes. As shown in3l 

Proposition 6.2, if we impose the lightlike Heisenberg four-manifold to be Einstein, it occurs additionally
that eut stays parallel to the direction of the center given by eu

t0 .

⎞⎠ c(t) h(t) j(t) 
t0U t 

W 
t0 t0] = −2ke , k > 0 , (6.11)ub(t) p(t) , [e= , e3v 
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where we write UW
t to indicate that this matrix is related to the Witt basis and

a, b, c, f, j, h, p ∈ C∞(I 0).l 

Proof. In the case ε = 1 and in the case ε = −1 with timelike center the plane E = 
t0 t0span{e2 , e } is spacelike and the line Zt is defnite with respect to χt. Therefore, it suÿces3 

t t tto choose a unit vector e1 ∈ Zt, a unit vector e2 ∈ E perpendicular to e with respect to1 
χt and to complement this pair to an orthonormal frame. When ε = −1 with spacelike

tcenter, we can still choose a unit vector e3 ∈ Zt, which suÿces for the claim. Note that we
cannot specialize further our choice of ansatz, since we do not know a priori the spacetime

t0 t0character of the intersection of span{e1 , e } with Z⊥t , the orthogonal complement to the2 t 
center with respect to χt. Finally, in the lightlike case there exists a subinterval I 0 ⊂ Il 

t0containing t0 in which the line generated by e is spacelike, since this is an open condition.3 
t t0Choosing e to be parallel to e for every t ∈ I 0 we conclude.3 3 l 

Proposition 6.2. Let (M, g) = (I × H, εdt2 + χt) be an Einstein Heisenberg four-manifold
of neutral signature. Assume that Zt0 for some t0 ∈ I is timelike (resp. spacelike or
lightlike). Then Zt remains timelike (resp. spacelike or lightlike) for all t ∈ I.

Proof. First we will show that if the causal or spacetime character of Zt0 is lightlike, then
it remains invariant in an open subinterval of I containing t0. For that, assuming that

is lightlike, in an open subinterval I 0 we pick up the ansatz (6.11) for U t and the LieZt0 l W 
brackets at t0. If Ricg denotes the Riemann tensor of (M, g), we have:

0−2ab(bc − fh)(bj − hp)a + f 0(bj − hp)3 
tRicg(∂t, e ) = kv a2(bc − fh)2 

(bj − hp)2(c(pb0 − bp0)) + f(−jb0 + hp0))
+ k 

a2(bc − fh)2 

−2fh2pb0 + b3cj0 − b2(h(2jf 0 + fj0)) + c(−jb0 + ph0 + hp0)
+ k 

(bc − fh)2 

bh(2hpf 0 + f(jb0 + ph0 + hp0))
+ k , (6.12)

(bc − fh)2 

b3j(jc0 − cj0) + b2(chpj0 + 2a2(−hc0 + ch0) + j2(hf 0 − fh0))tRicg(∂t, e3) = −k 
a2(bc − fh)2 

0b2j(cph0 + h(−2pc + fj0 − cp0) + h2(2a2fb0 + p2(−cb0 + hf 0))− k 
a2(bc − fh)2 

2pfh2(jb0 − hp0) + bh2(p c0 − 2a2f 0 − 2jpf 0)− k 
a2(bc − fh)2 

bhcp(jb0 − ph0 + hp0) + bhf(−j2b0 − hpj0 + j(ph0 + hp0))− k . (6.13)
a2(bc − fh)2 

t tThe Einstein condition implies that Ricg(∂t, e ) = Ricg(∂t, e3) = 0. We can solve for j0(t)v 
and h0(t) and we get:

q1(a, b, c, f, h, j, p, a0, b0, c0, f 0, p0)
j0(t) = , (6.14)

a2b(bc − fh)(2a2b2c − f(bj − hp)2) 
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q2(a, b, c, f, h, j, p, a0, b0, c0, f 0, p0)
h0(t) = , (6.15)

a2b(2a2b2c − f(bj − hp)2) 

: R12 ⊂ R12where q1, q2 → R are polynomials that vanish on the subspace V given by
j = h = 0. (Note that the denominators are non-zero in a neighborhood of V , by non-
degeneracy of U t .) By a continuity argument, we can guarantee that h(t) = j(t) = 0 inW 
I 0 and therefore Zt is lightlike for all t ∈ Il 0 .
Similarly, if Zt0 is timelike (resp. spacelike), then Zt remains timelike (resp. spacelike) in
a local subset of I around t0, since these are open conditions. Therefore, the three subsets
Itime, Ispace, Ilight of I consisting of t at which Zt is respectively timelike, spacelike or
lightlike are open. By connectedness of I this proves that I coincides with one of these
three subsets.

Remark 6.1. Proposition 6.2 implies that timelike, spacelike and lightlike Einstein Heisen-
berg four-manifolds cover all possibilities of neutral-signature Einstein Heisenberg four-
manifolds.

Remark 6.2. Observe that the Einstein condition in the previous proposition is too strong,
and one may actually require much weaker conditions for the proposition to equally hold,
such as requiring that Ricg(∂t)|{t×H} = 0.

Proposition 6.3. Let (M, g) be a Riemannian or neutral-signature Einstein Heisenberg
four-manifold. Then:

• If (M, g) is either Riemannian or of neutral-signature and timelike, then we can
choose:

U t = 

⎛⎝ a(t) 0 0 
0 b(t) 0 

⎞⎠ , [e t0 t0 t0 
2 , e k > 0 . (6.16)] = −2ke1 ,3 

0 h(t) c(t) 

• If (M, g) is neutral-signature and spacelike, we can choose the following ansatz in an
open subinterval I 0 ⊂ I containing t0:s 

U t = 

⎛⎝ c(t) h(t) 0 
−h(t) b(t) 0 

⎞⎠ , [e t0 t0 t0 
1 , e k > 0 . (6.17)] = −2ke3 ,2 

0 0 a(t) 

• If (M, g) is neutral-signature and lightlike, we can pick up in an open interval I 0 ⊂ I:l 

U t 
W = 

⎛⎝ 1 0 0 
f(t) b(t) p(t) 

⎞⎠ , [e t0 t0 t0] = −2ke , k > 0 . (6.18)u, e3v 
0 0 a(t) 

Proof. Regarding the neutral-signature case:

• If (M, g) is timelike, we can choose for every t ∈ I the ansatz (6.9) for the matrix U t 

and for the Lie brackets at t0. If Ricg denotes the Ricci tensor of (M, g), we fnd:

k (b (jc0 − cj0) − f (jh0 − hj0)) kj (fb0 − bf 0)t tRicg(∂t, e , Ricg(∂t, e . (6.19)2) = 
2 3) = 

2a a 
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If (M, g) is in addition Einstein, then the previous components must identically
vanish. Assume j(t) =6 0. Then we would fnd that f(t) = f0b(t) in an interval
I0 ⊂ I in which b(t) 6= 0 (which always exists given that b(t0) = 1). Since f(t0) = 0,
then f(t) = 0 in I0. Assume now there exists a lower (or upper) bound t1 ∈ I for I0 
such that b(t1) = 0. By continuity we would have that f(t1) = 0 and the matrix U t 

twould be degenerate at t1, what contradicts the fact that {ei}t∈I is an orthonormal
basis. Then we learn that such t1 does not exist and f(t) = 0 in the entire interval
in I, which in turn implies that j(t) = j0c(t) in some open subinterval of I. Owing
the fact that j(t0) = 0, by the same reasoning as above we conclude that j(t) = 0 in
the whole I.

• If (M, g) is spacelike we can choose for every t ∈ I the ansatz (6.10) for U t and the
Lie brackets at t0. If Ricg denotes the Ricci tensor of (M, g), we have:

f 0(bj − hp) + c(pb0 − bp0) + f(hp0 − jb0))tRicg(∂t, e1) = k , (6.20)
2a 

b(jc0 − cj0) + h(fj0 − pc0) + h0(cp − fj))tRicg(∂t, e2) = k . (6.21)
2a 

t tIn order to have Ricg(∂t, e1) = Ricg(∂t, e2) = 0 we must demand:

cpb0 − fjb0 + f 0(bj − hp) 
p 0(t) = , (6.22)

bc − fh 
bjc0 − hpc0 + h0(cp − fj)

j0(t) = . (6.23)
bc − fh 

However, taking into account the initial conditions a(t0) = b(t0) = c(t0) = 1, f(t0) = 
h(t0) = j(t0) = p(t0) = 0 and bc − fh 6= 0 (from the non-degeneracy of U t), through
the use of the uniqueness and existence theorem of ODEs we infer that p(t) = j(t) = 0 
for all t ∈ I. Performing now appropriate SO(1, 1) rotations, we can fnally impose
Ut to have the same form as in (6.17) in an open subinterval I 0 ⊂ I.s 

• If (M, g) is lightlike, then (6.18) just follows from the results obtained in the proof of
Proposition 6.2 and by absorbing9 the factor c(t) in the functions f(t), b(t) and p(t),
which yields the same metric.

Regarding the Riemannian case, using (6.9) we compute:

k (b (cj0 − jc0) + f (jh0 − hj0)) kj (bf 0 − fb0)t tRicg(∂t, e , Ricg(∂t, e3) = . (6.24)2) = 
2 2a a 

We observe that, up to a global sign, this is exactly the same as the result obtained in
(6.19) for timelike Einstein Heisenberg four-manifolds. Then we equivalently conclude that
j(t) = 0, and by an appropriate SO(2) rotation, we arrive to (6.16).

9Another way to see this is by noticing that e 1 = e , so that g = −dt2 + 1 
c(t) 

u
te 0 e vt + e 3 3 . Byu

t0 

, we observe that we can set c(t) = 1.

u
t ⊗ et tc(t) 

redefning 1 e vt → e vtc(t) 
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6.2 Quaternionic (para)Kähler Heisenberg four-manifolds

In this section we classify all Heisenberg four-manifolds which satisfy the condition of
being quaternionic (para)Kähler. For that, we revise frst the defnition of a quaternio-
nic (para)Kähler four-manifold. Recall frst that an orientable pseudo-Riemannian four-
manifold of Riemannian or neutral signature is called half-conformally fat if its Weyl tensor
is self-dual for one of the two orientations.

Defnition 6.3. Let (M, g) be a Riemannian or neutral-signature orientable four-manifold.
It is said to be quaternionic Kähler (resp. quaternionic paraKähler ) if and only if it is
Einstein with non-zero Einstein constant and half-conformally fat. We shall refer to them
jointly as quaternionic (para)Kähler four-manifolds.

Remark 6.3. We observe that the defnition of a quaternionic (para)Kähler four-manifold
cannot be applied for larger dimensions, since the notion of self-duality is restricted to
four-dimensions. Actually, for dimensions D = 4m with m > 1 the defnition of quater-
nionic (para)Kähler manifolds is that of pseudo-Riemannian manifolds admitting a par-
allel skew-symmetric (para)quaternionic structure Q. We recall that such a structure Q 
is locally spanned by three anticommuting endomorphism felds I, J, K = IJ such that
I2 = J2 = ±Id. However, in four dimensions this defnition is too weak, since every ori-
entable four-manifold satisfes it, and it turns out that the natural defnition of quaternionic
(para)Kähler four-manifold is that of Defnition 6.3 [143].

Let Wg denote the Weyl tensor of (M, g). We defne the Weyl self-duality tensor Wg 

as the (0, 4)-tensor given by:

Wg(X, Y, U, V ) = g((?Wg)(X, Y )U, V )−g(Wg(X, Y )U, V ) , X,Y, U, V ∈ X(M) , (6.25)

where ? denotes the Hodge star map with respect to a given orientation on (M, g). Up to a
factor, it is the antiself-dual part of the Weyl tensor and, hence, the obstruction to (M, g, ?) 
being self-dual. Then we have that a four-manifold will be quaternionic (para)Kähler if
and only if

Wg = 0 , Ricg = Λg , Λ ∈ R \ {0} , (6.26)

for one of the two orientations, where Ricg denotes the Ricci tensor of (M, g). (We will
always consider the orientation such that Wg = 0.)
Now we proceed to the classifcation of quaternionic (para)Kähler Heisenberg four-manifolds
attending to the signature of the metric and the spacetime character of Zt0 .

6.2.1 Quaternionic Kähler and timelike quaternionic paraKähler Heisen-
berg four-manifolds

We start by classifying all (Riemannian) quaternionic Kähler Heisenberg four-manifolds
and all timelike quaternionic paraKähler Heisenberg four-manifolds. Since we will carry out
such classifcation simultaneously, it is convenient to coin the term (timelike) quaternionic
(para)Kähler Heisenberg four-manifolds to refer to both of them at once. To particularize
our results to one of these cases, we just have to set ε = ±1 correspondingly.
The reason for treating them at the same time is that we can use the same identical ansatz
to describe the three-dimensional metric χt for both quaternionic Kähler and timelike
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quaternionic paraKähler Heisenberg four-manifolds. Indeed, such ansatz is given by (6.16):⎛ ⎞ 
a(t) 0 0 

t0 t0 t0U t = ⎝ 0 b(t) 0 ⎠ , [e2 , e ] = −2ke1 , k > 0 . (6.27)3 
0 h(t) c(t) 

Proposition 6.4. The non-zero components of the Ricci tensor Ricg of the metric obtained
from (6.27) are: � �� � 2 2 222 00 4b2 + h2 (c0) + c 4 (b0) + (h0) − 2bb00 2 (a0) a 
Ricg(∂t, ∂t) = − + − 

a2 a 2b2c2 � � 
hc0h0 + b2c00 

+ , (6.28)
b2c 

22b3c3k2 − 2bc (a0) − aa0 (cb0 + bc0) + abca00 t tRicg(e1, e1) = , (6.29)
a2bc� � 

4k2 2 2 2 0b04b4c + a 4c2 (b0) − (hc0 − ch0) + 2abc (ca + ab0c0 − acb00) 
t tRicg(e2, e2) = , (6.30)

−2a2b2c2ε� � 
2 c (hc0 − ch0) (3ab0 + ba0) + ab h (c0) − cc0h0 + c (−hc00 + ch00) 

t tRicg(e2, e3) = , (6.31)
2ab2c2ε � � 

4k2 0 + a 2 0 2 002b4c + a2bcb0c 2 
(hc0 − ch0) + ab2 ca c0 + 2a (c0) − acc2t tRicg(e3, e3) = . (6.32)

−a2b2c2ε 

Proof. Just by direct computation.

Proposition 6.5. Let (M, g) be a (timelike) quaternionic (para)Kähler Heisenberg four-
manifold. Then:

k2b6 + a2(εΛb2 + (b0)2) 3(kb3 − ab0)3 
a 0(t) = − , εΛ = , c = b , h = 0 . (6.33)

2abb0 a2b2(−3kb3 + ab0) 

Proof. Remember that a (timelike) quaternionic (para)Kähler Heisenberg four-manifold is
Einstein (with non-zero Einstein constant) and is half-conformally fat. Therefore, we have
to impose conditions (6.26).

t tFirstly, we observe that the Einstein condition imposes that Ricg(e2, e3) = 0. By Proposi-
tion 6.4, one can solve for h00 and get:

−h(c0)2 + cc0h0 + chc00 ca0(−hc0 + ch0) 3cb0(−hc0 + ch0)
h00 = + + . (6.34)

c2 ac2 bc2 

Now we move into the Weyl self-duality tensor Wg defned back at (6.25). The component
t t t tWg(e1, e2, e1, e3) reads

(kbc + a0)(−hc0 + ch0)t t t tWg(e1, e2, e1, e3) = − . (6.35)
2abc 

0 0For the latter to be zero, either kbc + a = 0 or −hc0 + ch0 = 0. If kbc + a = 0, we would
fnd that the Einstein constant has to vanish, so if we assume that Λ 6= 0, we must have
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−hc0 + ch0 = 0, which implies in turn that h(t) = h0c(t). However, since h(t0) = 0, then
h(t) = 0.
Setting h = 0 in Proposition 6.4, on imposing the Einstein condition Ricg = Λg we can
solve for a00(t), b00(t), c00(t) and a0(t) and obtain:

3k2b3c + a2(εΛbc + b0c0) 
a 0(t) = − , (6.36)

a(cb0 + bc0) 
7 0 

00(t) = 
2k4b7c + k2a2b3c3(−3c2(b0)2 − 2bcb0c + b2(4εΛc2 − 3(c0)2) 

a 
a3bc(cb0 + c0b)2 

a4(2Λ2b3c3 − c2(b0)3c0 − b2b0c0(−4εΛc2 + (c0)2))
+ , (6.37)

a3bc(cb0 + c0b)2 

b00(t) = 
k2c3b4(2bc0 + cb0) + a2(b2(c0)2b0 + 2c2(b0)3 + bcc0(εΛb2 + 2(b0)2)) 

, (6.38)
a2bc(cb0 + bc0) 

00(t) = 
k2b3c4(2cb0 + bc0) + a2(c2(b0)2c0 + 2b2(c0)3 + bcb0(εΛc2 + 2(c0)2)) 

c . (6.39)
a2bc(cb0 + bc0) 

More precisely, these equations should be written with the (cb0 + bc0)-factors on the left-
hand side, to avoid possible zeros of the denominator, which we will not do to keep the
formulas simple. The same comments apply to the formulas below. On substituting these
results into the Weyl self-duality tensor, we encounter

−3k3b5c4 + 3k2ab3c2(2cb0 + bc0) − 3ka2bc(εΛb2c + c(b0)2 + 2bb0c0)t t t tWg(e1, e2, e1, e2) = 
3a3b(bc0 + cb0) 
02εΛbcb0 − εΛb2c0 + 3(b0)2c 

+ . (6.40)
3b(bc0 + cb0) 

From here one can solve for Λ and obtain

(kb2c − ab0)2(−kbc2 + ac0)
Λ = 3 . (6.41)

εa2b(3kb2c2 − 2acb0 + abc0) 

Taking this result into the rest of the components of Wg, we fnd in particular:

ε(cb0 − bc0)(−kb2c + ab0)(−kc2b + ac0)t tWg(∂t, e1, ∂t, e1) = . (6.42)
abc(3kb2c2 − 2acb0 + abc0) 

It follows that the frst term, the second or the third term in brackets vanishes. If the
second or third one is identically zero, then we fnd that Λ = 0, upon substitution in
(6.41). Since we are assuming non-zero Einstein constant, we discard this possibility and
then c0b = b0c, which in turn implies that b = c since b(t0) = c(t0) = 1. Imposing this
condition, we fnd that all components of Wg vanish identically. Finally, we observe that
(6.41) can be simplifed to take the form:

3(kb3 − ab0)3 
Λ = . (6.43)

εa2b2(−3kb3 + ab0) 

Upon use of this expression, its frst time derivative as well as equation (6.36) we check
that (6.37), (6.38) and (6.39) are satisfed as well and we conclude.
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Proposition 6.6. Let (M, g) be a (timelike) quaternionic (para)Kähler Heisenberg four-
manifold. Then:

• The eigenvalues of the Weyl tensor, understood as a symmetric endomorphism of the
bundle of two-forms, are given by (−2ν, ν, ν), where:

16k3b7 
ν = . (6.44)

εa3(−3kb3 + ab0) 

• (M, g) is conformally Kähler for two complex structures with opposite orientations.

Proof. Defne the following triplet of self-dual two-forms:

i iωi = dt ∧ e + ?(dt ∧ e ) , (6.45)t t 

where ? denotes the Hodge dual operation. Interpreting the Weyl tensor as a symmetric
endomorphism of the bundle of two-forms in the canonical way10, we observe that:

Wg(ω1) = −2νω1 , Wg(ω2) = νω2 , Wg(ω3) = νω3 . (6.46)

This proves the frst part of the proposition. Regarding the second one, we frst note that
the rescaled two-form

ω̃1 = |Wg|2 
g
/3ω1 (6.47)

2/3is closed and satisfes that |ω̃1|2 = 4 with respect to the rescaled metric g̃ = |Wg|g g,g̃ 
in agreement with [668, 669] in the Riemannian case. We claim that g̃ is pseudo-Kähler
with the Kähler form ω̃1. To prove the integrability of the almost complex structure
J1 = g̃−1ω̃1 = g−1ω1 we use that the following rescaled two-forms

ω̃2 = ab ω2 , ω̃3 = ab ω3 (6.48)

are closed. This is a consequence of Lemma 6.1, a simple generalization of the Hitchin
lemma [139]. By introducing a relative sign in (6.45) we can likewise obtain a conformally
Kähler structure (M, g, J1 

0 ) for the opposite orientation. (So contrary to J1 the complex
structure J 0 is not subordinate to the (para)quaternionic structure Q = span{J1, J2, J3}.)1 

Lemma 6.1. Let (M, g) be a pseudo-Riemannian manifold endowed with two anticommut-
ing skew-symmetric endomorphism felds J2, J3 such that J2 = J2 = −εId, where ε = ±1.2 3 
Assume that the two-forms ωi = g ◦ Ji are closed for i = 2, 3. Then J1 := J2J3 is an
integrable skew-symmetric complex structure.

Proof. It is trivial to check that J1 is a skew-symmetric almost complex structure. To
prove the integrability we use that Ω = ω2 + iεω3 is of type (2, 0) with respect to J1 
and non-degenerate (as a complex bilinear form). Due to these properties, it suÿces to
show that Ω([X,¯ Ȳ ], Z) = 0, for all vector felds X, Y, Z of type (1, 0), since this implies
the involutivity of the (−i)-eigendistribution of J1. This is an immediate consequence of
dΩ = 0, since (dΩ)(X,¯ Ȳ , Z) = −Ω([X,¯ Ȳ ], Z).

10In components, (Wg (ωi))µν = (Wg )µνρσ ωi
ρσ .
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Remark 6.4. We have shown in the proof of Proposition 6.6 that (M, g) is not only confor-
mally Kähler but admits two almost (para)Kähler structures ω̃2 and ω̃3 compatible with

0a second conformally rescaled metric g := ab g, such that |ω̃2|2 = |ω̃3|2 = 4ε.g0 g0 

Remark 6.5. Note that Lemma 6.1 can be easily adapted to include the case J2 = −J2 = 2 3 
Id. The conclusion is then that J1 is an integrable skew-symmetric paracomplex structure.
In fact, in that case one can consider Ω = ω2 + eω3, which takes values in the ring

2R[e] ∼= R ⊕ R generated by e with the relation e = 1 (the ring of paracomplex numbers).
Note that Ω has type (2, 0) in the sense that Ω(J1·, ·) = Ω(·, J1·) = eΩ and is non-
degenerate in the sense that a real vector X satisfes Ω(X + eJ1X, Y + eJ1Y ) = 0 for all
real vectors Y if and only if X = 0.

The second equation in (6.33) is a cubic equation for b0(t), and depending on the
values of k and Λ, we may have one or more real solutions. Defne11:

6b2 −2iπ(l−1)/31 εΛa e Bl = 3ka2b3 − p (6.49)
3a3 8b5 + Λ2a16b6(εΛa(9kεΛa 2 + 81k2b4))1/3 ! p
2iπ(l−1)/3(9kεΛa 8b5 Λ2a16b6(εΛa+ e + 2 + 81k2b4))1/3 , l = 1, 2, 3 . 

Proposition 6.7. Let (M, g) be a (timelike) quaternionic (para)Kähler Heisenberg four-
k2b6+a2(εΛb2+(b0)2)manifold. Then a0 = − and:2abb0 

• If εΛ > −81k2 , b0 = B1.

• If εΛ ≤ −81k2 , there are three solutions for b0 obtained by setting l = 1, 2, 3 in (6.49),
b0 l = Bl.

0Proof. The result for a was derived in Proposition 6.5. If we defne now β = kb3 − ab0 ,
the second equation in (6.33) is equivalent to

εa2b2Λ 2kε 
β3 + β + a 2b5Λ = 0 . (6.50)

3 3 
At t0, this equation reads

εΛ 2kε 
β3 + β + Λ = 0 . (6.51)

3 3 
The discriminant Δ of this equation takes the form:

4 � � 
Δ = − Λ2 εΛ + 81k2 . (6.52)

27 
By standard theory of cubic equations, if Δ < 0 then there is just one real solution to
(6.51) and if Δ ≥ 0 there exist three (maybe multiple) real roots. Thus if εΛ > −81k2 ,
there is only a unique real solution to (6.51) (given by12 (6.49) with l = 1) and therefore
there is a unique solution for b0(t0), which in turn produces one real solution for (a(t), b(t)) 
defned on an appropriate interval I. If εΛ ≤ −81k2 , there are three real roots (with at
least two identical roots when the equality holds) to (6.51) and therefore there are three
real solutions for b0(t0) (given by (6.49), l = 1, 2, 3). These yield three real solutions for
(a(t), b(t)), each defned on intervals Il.

11Given a complex number z ∈ C, it has always three cubic roots. When we write z 1/3 we will mean by
1/3 = |z|1/3 i/3 arg(z)convention the cubic root z e .

12It can be checked that the expression (6.49) with l = 1 takes real values for all εΛ 6= 0.
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Proposition 6.7 provides a system of ordinary di˙erential equations for (a(t), b(t)) 
with the initial condition a(t0) = b(t0) = 1. By virtue of the theorem of existence and
uniqueness of ordinary di˙erential equations, it is enough to fnd one solution for each
possible value of k and εΛ, since it will be unique13. In fact, we fnd it is convenient to
split our study into three di˙erent possibilities according to the value of εΛ, and we will
distinguish between stationary, negative and positive (timelike) quaternionic (para)Kähler
Heisenberg four-manifolds (to be defned below).

6.2.1.1 Stationary solutions

Defnition 6.4. A (timelike) quaternionic (para)Kähler Heisenberg four-manifold is said to
be stationary if εΛ = −6k2 .

The name stationary comes from the fact that if we set b = c and h = 0 in the
expression for the Ricci tensor given at Proposition 6.4, then the Einstein condition reads:

εΛ = µ 0 + 2λ0 − µ 2 − 2λ2 , (6.53)

k2b4 
εΛ = 2 − (−µ 0 + 2µλ + µ 2) , (6.54)

2a 
k2b4 

Λ = −2ε − ε(−λ0 + λµ + 2λ2) , (6.55)
2a 

0 λ0where µ = log(a)0 and λ = log(b)0 . If we set µ = = 0 we fnd that εΛ = −6k2 , hence
the name stationary.

Theorem 6.1. If (M, g) is a stationary (timelike) quaternionic (para)Kähler Heisenberg
four-manifold, then � �

2 1 1 2k(t−t0) 2 2 3 3 g = εdt + εe4k(t−t0)e ⊗ e + e e ⊗ e + e ⊗ e , (6.56)t0 t0 t0 t0 t0 t0 

where t ∈ R. They are isometric to an open orbit of the solvable Iwasawa subgroup of
SU(1, 2) ∼= SU(2, 1) on the symmetric space� � 

3 + ε 3 − ε 
SU , � 2� 2 �� , (6.57)

3 + ε 1 − ε 
S U(1) × U ,

2 2 

where U(p, q) denotes the (pseudo-)unitary group of the Hermitian sesquilinear form of
index q. Moreover, when (M, g) is Riemannian (resp. neutral signature) it is complete
(resp. incomplete).

0 0Proof. Since µ = λ0 = 0 implies εΛ = −6k2 , let us start by assuming µ = λ0 = 0.
Consistency then requires � �0

b4 
= 0 . (6.58)

2a 
13It can be seen that the conditions for the existence and uniqueness theorem to hold are satisfed, at

least locally around the initial condition. Note that the derivatives are already solved at one side of the
equations, which facilitates this check.
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This implies that µ = 2λ. On substituting in (6.53) we encounter:

− 6λ2 = εΛ , (6.59)q
−εΛand hence λ = ± = ±k (remember that k > 0). By the above, µ = ±2k. We observe6 

in turn that the other equations (6.54), (6.55) are satisfed and therefore the solution is:

±2k(t−t0) ±k(t−t0)a = e , b = e , (6.60)

where we have already imposed that a(t0) = b(t0) = 1. From here we directly derive
(6.56). Finally, we fnd that that Weyl tensor is self-dual only if we pick up the minus14

sign above, so we check that these solutions are indeed stationary (timelike) quaternionic
(para)Kähler four-manifolds.
In fact, solution (6.56) exhausts the list of possible stationary (timelike) quaternionic
(para)Kähler four-manifolds. First, we note that Proposition 6.7 guarantees that if εΛ > 
−81k2 , then the cubic equation for b0 in (6.33) has a unique real solution given by b0 = B0.
Consequently, as explained before, the existence and uniqueness theorem for ODEs guaran-
tees that the static solution (6.56) represents the unique solution for εΛ = −6k2, completing
thus the classifcation of stationary (timelike) quaternionic (para)Kähler four-manifolds.
On the other hand, after some computations we fnd that these confgurations satisfy that
rRg = 0, where Rg is the Riemann curvature tensor of g. Comparing to the classifcation of
pseudo-Riemannian symmetric spaces of quaternionic Kähler type, see [670] and [671,672],
we conclude (comparing curvature tensors) that the resulting spaces are locally isometric
to the symmetric spaces (6.57). More precisely, the solutions are locally isometric to
a left-invariant metric on the simply transitive solvable Iwasawa subgroup of SU(1, 2) 
and SU(2, 1) when ε = 1 and ε = −1, respectively. To see this it suÿces to observe
that the Heisenberg group is included in a four-dimensional group of isometries, which is
precisely the above-mentioned Iwasawa group. In fact, the one-parameter group t 7→ t+ t0,
x 7→ et0 x, y 7→ et0 y, z 7→ e2t0 z acts by isometries, enlarging the Heisenberg group by a
one-parametric group of automorphisms to the aforementioned solvable group. Finally,
in the Riemannian case the metric is complete, since the interval I of defnition of g can
be extended to the whole real line R, while in the neutral-signature case the metric is

SU (1, 2)
(geodesically) incomplete, because is homotopically equivalent to S2 

S (U(1) × U (1, 1)) 
and hence it cannot be di˙eomorphic to R4 .

Remark 6.6. We have not used the second equation in (6.33) together with equation (6.49)
because it was easier to directly obtain the stationary solutions from the Ricci tensor

−2k(t−t0)given at Proposition (6.4). However, it is worth noting that the solution a = e ,
b = e−k(t−t0) does indeed solve the second equation in (6.33) and (6.49).

Remark 6.7. In the Riemannian case, it is possible to see that the solution (6.56) is com-
pletely equivalent to that obtained in [160, Proposition 4.1]. Using the subindex CS to

i imake reference to quantities of that article, by performing the identifcations e = ke ,CS t0 
k−2 k−2 −2kt0aCS(t) = a−2(t), bCS(t) = k−2b−2(t), µCS = 2k and CCS = e , we conclude

that our stationary quaternionic Kähler Heisenberg four-manifolds are equivalent to the
stationary solutions of [160].

14Choosing the plus sign, the Weyl tensor is antiself-dual.
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6.2.1.2 Negative solutions

Defnition 6.5. A (timelike) quaternionic (para)Kähler Heisenberg four-manifold is said to
be negative if εΛ < 0 with εΛ 6= −6k2 .

Remark 6.8. Observe that negative quaternionic Kähler Heisenberg four-manifolds have
Λ < 0 while the negative timelike quaternionic paraKähler ones have Λ > 0.

Let γ ∈ R and let I be a connected component of the set

{ρ ∈ R | ρ 6= 0, ρ + γ > 0 and ρ + 2γ > 0} . (6.61)

∼Let ρ : J → I, t 7→ ρ(t) be a maximal solution of the ordinary di˙erential equationsr 
2εΛ ρ(t) + γ 

ρ0(t) = − ρ(t) , (6.62)
3 ρ(t) + 2γ 

with the initial condition ρ(0) = ρ0. Defnesr r 
2εΛ ρ(t) + 2γ εΛ ρ(t)

As(ρ0, γ) = sk − ρ(t) , Bs(ρ0, γ) = s − p , (6.63)
3 ρ(t) + γ 3 ρ(t) + 2γ 

with s ∈ Z2 a sign.

Proposition 6.8. Let (As(ρ0, γ), Bs(ρ0, γ)) as in (6.63). On the one hand, if s = 1 and
εΛ < 0, then there exists a unique pair (ρ1, γ1) such that:

As(ρ1, γ1) = Bs(ρ1, γ1) = 1 . (6.64)

On the other hand, if s = −1 and εΛ ≤ −81k2 there exist two pairs of solutions (ρ2, γ2) 
(ρ3, γ3) such that:

As(ρ2, γ2) = Bs(ρ2, γ2) = 1 , As(ρ3, γ3) = Bs(ρ3, γ3) = 1 . (6.65)

Such initial conditions (ρl, γl) with l = 1, 2, 3 are given by:
√ −(4−2l)iπ/3e 81k2 + εΛ)1/3 

(4−2l)iπ/3 (9k + 
ρl = − √ + e , (6.66)

2k(εΛ)1/3(9k + 81k2 + εΛ)1/3 2k(εΛ)2/3 � � 
2γl = −ρl 1 + 

εΛ 
ρl . (6.67)

3 

Proof. Demanding As(ρ0, γ) = Bs(ρ0, γ) = 1, we can solve for γ in the last equation
obtaining: � � 

2γ = −ρ0 1 + 
εΛ 
ρ0 . (6.68)

3 

Squaring the equation As(ρ0, γ) = 1 and substituting this result for γ, we arrive at the
following cubic polynomial for ρ0:

3 9 
ρ30 + ρ0 − = 0 . (6.69)

4εΛk2 4k2Λ2 
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The (maybe complex) solutions to this cubic equations are

√ −(4−2l)iπ/3e 81k2 + εΛ)1/3 
(4−2l)iπ/3 (9k + 

ρl = − √ + e , l = 1, 2, 3 . 
2k(εΛ)1/3(9k + 81k2 + εΛ)1/3 2k(εΛ)2/3 

(6.70)
At least one of the previous solution is real. However, not all real solutions of these
equations need to satisfy a posteriori As(ρ0, γ) = Bs(ρ0, γ) = 1, since in the process of
arriving (6.69) one has squared some expressions. Let us split this analysis between the
cases s = ±1:

• If s = 1 we fnd that there is a unique real solution of (6.70) which in turn satisfes
(6.64) for all values of εΛ < 0. This solution is the one in (6.70) for l = 1, that
we denote as ρ1. Substituting this expression of ρ1 in (6.68) we obtain the unique
solution (ρ1, γ1). Also, a posteriori we check that ρ1 + 2γ1 > 0, ρ1 + γ1 > 0 and
ρ1 =6 0 for all εΛ < 0. On varying the value of εΛ, we observe by direct inspection
that ρ0 ∈ (0, +∞), while γ ∈ (−∞, (8k2)−1). Interestingly, γ is negative when
0 > εΛ > −6k2 and positive if εΛ < −6k2 .

• If s = −1, we fnd interestingly enough that no real solutions exist (after checking
if they satisfy (6.65)) for εΛ > −81k2 , while for εΛ ≤ −81k2 we have two possible
solutions15. These solutions are the ones in (6.70) with l = 2 and l = 3, that we
denote respectively as ρ2 and ρ3. Substituting them in (6.68) we obtain two solutions
(ρ2, γ2) and (ρ3, γ3). We check a posteriori that both satisfy ρl +2γl > 0, ρl + γl > 0 
and ρl 6= 0 with l = 2, 3 for all εΛ ≤ 81k2 . On the other hand, for the di˙erent
values of εΛ ≤ −81k2 , by direct inspection we see that ρ2 ∈ (−(18k2)−1 , 0) and� � � � � �

5 5 5ρ3 ∈ −
80k2 , 0 , while γ2 ∈ 0, and γ3 ∈ 

72k2 , (8k2)−1 
72k2 .

According to Proposition 6.7, there exists a unique solution for the pair (a(t), b(t)) if
εΛ > −81k2 , while there are three (some of them identical for εΛ = −81k2) if εΛ ≤ −81k2 .
By use of Proposition 6.8, it is possible to fnd such solutions, which we write next.

Proposition 6.9. Let (ρl, γl) for l = 1, 2, 3 denote the pairs of Proposition 6.8 and let
(As(ρl, γl), Bs(ρl, γl)) as in (6.63). Set:

(a1(t), b1(t)) = (A1(ρ1, γ1), B1(ρ1, γ1)) , (6.71)

(a2(t), b2(t)) = (A−1(ρ2, γ2), B−1(ρ2, γ2)) , (6.72)

(a3(t), b3(t)) = (A−1(ρ3, γ3), B−1(ρ3, γ3)) . (6.73)

These are all the solutions to (6.33) (or (6.49)) and, consequently, all negative (timelike)
quaternionic (para)Kähler Heisenberg four-manifolds. In particular, (a1(t), b1(t)) is defned
for all εΛ < 0 while (a2(t), b2(t)) and (a3(t), b3(t)) are defned for all εΛ ≤ −81k2 . The
corresponding pseudo-Riemannian manifolds arising from (6.72) and (6.73), together with
those stemming from (6.71) for εΛ > −6k2 , are incomplete, while in the case (6.71) for
ε = 1 and Λ < −6k2 the solution is complete.

15They actually coincide for εΛ = −81k2 .
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Proof. The fact that (6.71), (6.72) and (6.73) solve equations (6.33) (or (6.49)) with the
initial condition a(t0) = b(t0) = 1 follows from direct computation and by Proposition 6.8.
Regarding completeness, we go on a case by case fashion:

• Let us begin by analyzing solutions (6.72) and (6.73). In these cases, we have ρ0 < 0,
γ > 0 but ρ0 + γ > 0. We consider the canonical geodesic determined by the
coordinate ρ (related to the time coordinate as in (6.62)), with ρ defned between
(−γ, ρ0). We compute its length:s sZ Zρ0 ρ0+γ3 1 ρ + 2γ 1 

dρ ≤ C √ dτ < ∞ , (6.74)
2εΛ |ρ| ρ + γ τ−γ 0 q 

3where C > 0 is given by C = (ρ0 + γ)ζ, being ζ the maximum of the function2εΛ√ 
ρ+2γ on the compact interval [−γ, ρ0]. Since the length of this curve, which arrives|ρ|

to the boundary of the domain defnition of the parameter ρ, is fnite, we conclude
that solutions (6.72) and (6.73) are incomplete.

• For solutions (6.71) with −6k2 < εΛ < 0, by virtue of Proposition 6.8 and its proof we
realize that γ < 0 (but again, ρ0 > −γ). Therefore, through a completely equivalent
proof to that provided in the previous bullet-point, we observe that these solutions
are incomplete too.

• As explained in Remark 6.10 below, solutions (6.71), (6.72) and (6.73) with ε = 1 are
identifed with the one-loop deformed universal hypermultiplet metrics (see Remark
6.10) described in [120, 157]. They are known to be complete if and only if γ and
the initial condition ρ0 are positive [148]. For ε = 1 and Λ < −6k2 , we observe
that Proposition 6.8 and its proof ensure that γ and ρ0 are positive for (6.71), and
consequently we infer that they are complete.

Remark 6.9. We strongly believe the case (6.71) with ε = −1 and Λ > 6k2 to be incomplete
as well. Indeed, let us use the coordinates (6.3) to describe the Heisenberg group H. Let
us consider a geodesic Γ : J → (I × H) for J ⊂ R whose coordinates are given by
(ρ(τ), x(τ), y(τ), z(τ)) with τ ∈ J an aÿne parameter and with the initial conditions
ρ(0) = ρ0 > 0, x(0) = y(0) = z(0) = 0, y0(0) = z0(0) = 0 and x0(0) = v0. On the one hand,
we fnd that y(τ) = z(τ ) = 0. On the other hand, the solution for x(τ) can be seen to be:Z τ ρ2(σ) 

x(τ ) = κ dσ , (6.75)
t0 ρ(σ) + 2γ 

where κ ∈ R is some constant ensuring that x0(0) = v0. Using this result, the equation for
ρ = ρ(τ) turns out to be:

2 
ρ00 

v0ρ
3(ρ + γ)(ρ + 4γ) (ρ0)2(4γ2 + 7γρ + 2ρ2) 

= + . (6.76)
(ρ + 2γ)3 2ρ(ρ + γ)(ρ + 2γ) 

By numerical analysis, it can be seen that the solutions for the previous second-order
di˙erential equation equation are, typically, only defned in a fnite interval J . Hence this
provides a robust argument in favour of the incompleteness of the solutions.
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Remark 6.10. Let us show that the solution (6.71) for ε = 1 is equivalent up to homothety
to the one-loop deformed universal hypermultiplet described in [160]. For that, let us
denote the quantities of that work by a superscript or a subindex CS. Following theirq 

−2Λnotation, we defne dtCS = dt, rescale their metric with the factor −2Λ (remember3 3 
3 1 1 1 1 2 2 1 3Λ < 0) and defne e = e , e = √ e and e = √ e with w > 0 such thatCS kw t0 CS k w t0 CS k w t0 

CS CS CScCS = wγ. Note that the corresponding dual vectors satisfy16[e2 , e3 ] = −2e1 . We also
2set aCS = −2Λk2w a−2/3 and bCS = −2Λk2wb−2/3 and rescale ρ = wρCS . After all these

identifcations, we still have the freedom to perform time shifts on tCS. In order to match
cCS > 0 and the initial condition for ρCS , ρ0 :CS 

• If cCS > 0 and ρ0 > 0, then we recover our solution (6.71) with Λ < −6k2 . ToCS 
see this, we note that in this case 0 < γ < (8k2)−1 (as Proposition 6.8 and its proof� � 
reveal). Consequently after an appropriate time shift and choosing w = tan 4πk2γ ,
we observe that we may obtain all possible cCS > 0 and ρ0 

CS > 0.

• If cCS < 0 and ρ0 > 0, then they correspond to the solution (6.71) with 0 > Λ >CS 
−6k2 . The identifcation with (cCS, ρ

0 ) is obtained by setting w = 1 and performingCS 
a suitable time shift on tCS. � � 

• If cCS > 0 and ρ0 = tan asCS < 0, we distinguish two di˙erent cases. Set w 4πk2γ� � ��
5 5πbefore. Then we identify (Riemannian) solutions (6.72) with cCS ∈ 0, tan� � � � 72k2 18 

5 5πand (6.73) with cCS ∈ tan , +∞ after performing time translations, if
72k2 � � 18 

5 5πnecessary. If cCS = tan , then the corresponding γ is the one for which
72k2 18 

(6.72) and (6.73) coincide and we can take any of them.

Remark 6.11. Regarding the ε = −1 case, it can be seen that they correspond to a neutral-
signature version of the one-loop deformed universal hypermultiplet. More concretely,
these negative timelike quaternionic paraKähler Heisenberg four-manifolds can be obtained
through the local temporal Supergravity c-map [149]. In order to see this, we just have to

¯start from the trivial zero-dimensional manifold M given by a point and set in Equation
0(59) of Reference [673] (following their notation) �1 = −�2 = −1, I = 0, z = 1 and

i�1 K Hab)F0 = (X0)2 , what implies in turn that e = 1/2 and ( ˆ = diag(1, 1). Finally, by2 
a completely analogous procedure to that described in Remark 6.10, we observe that we
get, up to a global sign, our negative timelike quaternionic paraKähler Heisenberg four-
manifolds.

6.2.1.3 Positive solutions

Defnition 6.6. A (timelike) quaternionic (para)Kähler Heisenberg four-manifold is said to
be positive if εΛ > 0.

Remark 6.12. Note that positive quaternionic Kähler Heisenberg four-manifolds have Λ > 
0 while the positive timelike quaternionic paraKähler ones have Λ < 0.

Let γ ∈ R and let I be a connected component of the set

{ρ ∈ R | ρ 6= 0, ρ + γ > 0 and ρ + 2γ < 0 } . (6.77)
16Therefore we may use the coordinates (6.3) and their dual basis of one-forms (6.4) for e i by settingCS 

k = 1.

319



Chapter 6. Heisenberg-invariant self-dual Einstein four-manifolds

∼Clearly, ρ > 0 and γ < 0. Let ρ : J → I, t 7→ ρ(t) be a maximal solution of the ordinary
di˙erential equation sr 

2εΛ ρ(t) + γ 
ρ0(t) = ρ(t) − , (6.78)

3 ρ(t) + 2γ 

with initial condition ρ(0) = ρ0. Defnesr r 
2εΛ ρ(t) + 2γ εΛ ρ(t)

A(ρ0, γ) = k ρ(t) − , B(ρ0, γ) = p . (6.79)
3 ρ(t) + γ 3 −ρ(t) − 2γ 

Proposition 6.10. Let (A(ρ0, γ), B(ρ0, γ)) as in (6.79). If εΛ > 0, there exists a unique
pair (ρ0, γ) such that:

A(ρ0, γ) = B(ρ0, γ) = 1 . (6.80)

Such initial condition (ρ0, γ) is given by:
√ � � 

−1 + (εΛ)−1/3(9k + 81k2 + εΛ)2/3 εΛ 
ρ0 = √ , 2γ = −ρ0 1 + ρ0 . (6.81)

2k(εΛ)1/3(9k + 81k2 + εΛ)1/3 3 

Proof. If we impose A(ρ0, γ) = B(ρ0, γ) = 1, we can solve for γ in the equation B(ρ0, γ) = 1 
and get � � 

εΛ 
2γ = −ρ0 1 + ρ0 . (6.82)

3 

Now substituting this result in A(ρ0, γ) = 1 we fnd the following cubic equation:

ρ30 +
3 

ρ0 − 
9 

= 0 . (6.83)
4εΛk2 4k2Λ2 

This is formally equivalent to that found for negative (timelike) quaternionic (para)Kähler
Heisenberg four-manifolds, although now εΛ > 0. The previous cubic equation has a
unique real root when εΛ > 0 and it turns out to be

√ 
−1 + (εΛ)−1/3(9k + 81k2 + εΛ)2/3 

ρ0 = √ > 0 . (6.84)
2k(εΛ)1/3(9k + 81k2 + εΛ)1/3 

Taking this expression into that of γ given at (6.82), we fnd the unique solution (ρ0, γ).
Finally, after a careful study, in addition to ρ0 6= 0 we may learn that ρ0 + γ > 0 and
ρ0 + 2γ < 0 for all εΛ > 0 and we conclude.

According to Proposition 6.7, there exists a unique solution (a(t), b(t)) for εΛ > 0, which
we proceed to present now.

Proposition 6.11. Let (ρ0, γ) denote the pair of Proposition 6.10 and (A(ρ0, γ), B(ρ0, γ)) 
as in (6.79). Set:

(a(t), b(t)) = (A(ρ0, γ), B(ρ0, γ)) , (6.85)

These are all the solutions to (6.33) with εΛ > 0 and, consequently, all positive (timelike)
quaternionic (para)Kähler Heisenberg four-manifolds. They all are incomplete.
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Proof. The fact that they all are solutions to (6.33) with εΛ > 0 follows by direct compu-
tations and by use of Proposition 6.10. Regarding the incompleteness, since ρ0 > 0 and
γ < 0, let us consider the geodesic determined by the coordinate ρ (related to the temporal
coordinate as in (6.62)), with ρ defned between (−γ, −2γ). We calculate its length:sr Z Z−2γ −γ3 1 ρ + 2γ 1 

dρ ≤ C √ dτ < ∞ , (6.86)
2εΛ |ρ| ρ + γ τ−γ 0 q √ 

|ρ+2γ|3where C > 0 is given by C = − γζ, being ζ the maximum of the function on2εΛ ρ 
the compact interval [−γ, −2γ]. Since the length of this curve, which reaches the boundary
of the domain of defnition of the parameter ρ, is fnite, we conclude that the solution (6.85)
is incomplete.

Remark 6.13. The non-stationary solutions with εΛ > 0 are obtained from those with
εΛ < 0 basically by replacing εΛ → −εΛ and changing suitably the domain of ρ to ensure
the reality of the coordinate.

Remark 6.14. We may interpret positive (timelike) quaternionic (para)Kähler Heisenberg
four-manifolds as positively (negatively) curved versions of the one-loop deformed universal
hypermultiplet solution.

Collecting the results given in Propositions 6.8, 6.9, 6.10 and 6.11 and expressing the
metric in terms of the coordinate ρ, as given in (6.61) and (6.62) in the negative case and
by (6.77) and (6.78) in the positive case, we can state the following theorem.

Theorem 6.2. If (M, g) is a (timelike) quaternionic (para)Kähler Heisenberg four-manifold,
then � � 

3(ρ + 2γ) ε ε ρ + γ � �
1 1 2 2 3 3 g = − dρ2 + e ⊗ e + 2 e ⊗ e + e ⊗ e , (6.87)t0 t0 t0 t0 t0 t02εΛρ2 ρ + γ k2 (ρ + 2γ)2 

i t0 t0where (e ) denotes a left-invariant coframe of the Heisenberg group H such that [e2 , e ] = t0 3 
t0−2ke with k 6= 0 and where ρ ∈ I for certain open interval I ⊆ R specifed as follows.1 

For l = 1, 2, 3, defne the real numbers:
√ −(4−2l)iπ/3e 81k2 + εΛ)1/3 

(4−2l)iπ/3 (9k + 
ρl = − √ + e , (6.88)

2k(εΛ)1/3(9k + 81k2 + εΛ)1/3 2k(εΛ)2/3 

√ 
−1 + (εΛ)−1/3(9k + 81k2 + εΛ)2/3 

ρ4 = √ . (6.89)
2k(εΛ)1/3(9k + 81k2 + εΛ)1/3 

For any element ρ0 of the set

{ρ ∈ R | ρ 6= 0 , ρ + γ > 0 and (−1)j+1(ρ + 2γ) > 0} , � � 
we denote by Ij the connected component containing ρ0, where 2γ = −ρ0 1 + εΛ ρ0 andρ0 3 
where εΛ 6= 0 is the Einstein constant. Then:
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1. Setting I = Iρ 
1 
l 
, l = 1, 2, 3, we obtain all (timelike) quaternionic (para)Kähler Heisen-

berg four-manifolds with εΛ < 0. In particular, the solution given by ρ1 is defned for
all εΛ < 0 while the other two are defned for all εΛ ≤ −81k2 . The corresponding
pseudo-Riemannian manifolds arising from these last two cases, together with those
stemming from the frst one for εΛ > −6k2 , are incomplete while the frst for ε = 1 
and Λ ≤ −6k2 is complete.

2. Setting I = Iρ 
2 
4 , we fnd all (timelike) quaternionic (para)Kähler Heisenberg four-

manifolds with εΛ > 0. They all are incomplete.

Remark 6.15. Note that Theorem 6.2 includes the positive and negative cases, but also
the stationary ones. Indeed, regarding this last case, observe that the proof of Proposition
6.8 shows that γ = 0 when εΛ = −6k2 . Hence (6.62) becomes ρ0(t) = 2kρ(t) and we
easily recover the results of Theorem 6.1 (choosing the correct initial condition for ρ from
Proposition (6.8)), which we decided to state separately for the beneft of the reader.

6.2.2 Spacelike quaternionic paraKähler Heisenberg four-manifolds

Now we continue with the classifcation of all spacelike quaternionic paraKähler Heisenberg
four-manifolds. For that, we shall use the ansatz described in (6.17), valid in an open
subinterval I 0 ⊂ I, which we rewrite here for the beneft of the reader:s 

U t = 

⎛⎝ c(t) h(t) 0 
−h(t) b(t) 0 

⎞⎠ , [e t0 t0 t0 
1 , e2 ] = −2ke3 , k > 0 . (6.90)

0 0 a(t) 

Proposition 6.12. The non-zero components of the Ricci curvature tensor Ricg of the
metric obtained from (6.90) are:

2(−2a2ch(7b0 + c0)h0 + a c2(−4(b0)2 + (h0)2) + h4(−4(a0)2 + 2aa00))
Ricg(∂t, ∂t) = 

2a2(bc + h2)2 

a2h2((b0)2 + 6b0c0 + (c0)2 − 8(h0)2 + 2cb00) + b2a2(−4(c0)2 + (h0)2)
+ 

2a2(bc + h2)2 

2+b2(c2(−4(a0)2 + 2aa00) + 2a cc00)) + 4a2h3h00 + 2ba2c2b00 − 2ba2hb0h0 

2a2(bc + h2)2 

2b(a2h(hc00 − 7c0h0) + c(3a2(h0)2 + h2(−4(a0)2 + 2aa00) + 2a2hh00))
+ , (6.91)

2a2(bc + h2)2 

1) = −2k2 (bc + h2)2 2bcb0c0 + 4b2(c0)2 + b2(h0)2 − 2bc(h0)2 − c2(h0)2 
t tRicg(e1, e −

2a 2(bc + h2)2 

2b2 00a0(bc0 + hh0) cc + h2(−(b0)2 + 2b0c0 + (c0)2 − 6(h0)2 + 2bc00))− + 
a(bc + h2) 2(bc + h2)2 

2h3h00 + 2h((b0(b − 2c) − c0(6b + c))h0 + bch00)
+ , (6.92)

2(bc + h2)2 

0h0 h2(h(b003b2c a0(−h(b0 + c0) + (b + c)h0) + c00) − 4(b0 + c0)h0)t tRicg(e1, e2) = + + 
2(bc + h2)2 2a(bc + h2) 2(bc + h2)2 
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c2(3b0h0 − bh00) − bh(3b0c0 + (c0)2 − 4(h0)2 + hh00) − chb0(b0 + 3c0)
+ 

2(bc + h2)2 

+ b(b00 00)) − c(h2h00 0)h0 − bh00))ch(4(h0)2 + c + b((b0 + c 
+ , (6.93)

2(bc + h2)2 

2) = 2k2 (bc + h2)2 a0(cb0 + hh0) b0(4c2b0 − h2b0 − 2h2c0 + 2bcc0) + h2(c0)2 
t tRicg(e + +

22, e a a(bc + h2) 2(bc + h2)2 

h0((c2 − b2 + 6h2 − 2bc)h0 + 12chb0 − 2cc0h + 2bh(b0 + 2c0)))
+ 

2(bc + h2)2 

b00(ch2 + bc2) + h00h(h2 + bc)− , (6.94)
(bc + h2)2 

00 

3) = −2k2 (bc + h2)2 2(a0)2 a0(cb0 + bc0 + 2hh0) at tRicg(e3, e + + − . (6.95)
2 2a a a(bc + h2) a 

Proof. By direct computation.

Proposition 6.13. Let (M, g) be a spacelike quaternionic paraKähler Heisenberg four-
manifold. Then:

k2b6 + a2(−Λb2 + (b0)2) 3(kb3 + ab0)3 
a 0(t) = − , Λ = , c = b , h = 0 . (6.96)

2abb0 a2b2(3kb3 + ab0) 

Furthermore, I 0 = I.s 

Proof. We remind that a spacelike quaternionic para Kähler Heisenberg four-manifold is
t tEinstein and its Weyl tensor is self-dual. On the one hand, by setting that Ricg(e1, e2) = 0,

one infers:

3ac2b0h0 + b2(ca0 + 3ac0)h0 + h2(ca0 − 4a(b0 + c0))h0 − ach((b0)2 + 3b0c0 − 4(h0)2)
h00 = 

a(b + c)(bc + h2) 
h3(a(b00 00) − a 2+ c 0(b0 + c0)) + b(c a0h0 − hac0(3b0 + c0) + h2a0h0 + 4ah(h0)2)

+ 
a(b + c)(bc + h2) 

+ h(a(b00 00) − abc(a(b0 + c0)h0 + c 0(b0 + c0)))
+ . (6.97)

a(b + c)(bc + h2) 

Computing the Weyl self-duality tensor Wg for the ansatz (6.90) and substituting the
previous result, we have that

(kbc + kh2 − a0)(−h(b0 + c0) + (b + c)h0)t t tW(e1, ∂t, e3, e1) = = 0 . (6.98)
2a(bc + h2) 

If a = k(bc + h2), this would in turn imply that Λ = 0, but we are imposing the condition
that Λ 6= 0 to study proper quaternionic paraKähler four-manifolds, so we conclude that
necessarily −h(b0 + c0)+(b + c)h0 = 0. Since h(t0) = 0 and b(t0)+ c(t0) = 2, there exists an
open subinterval of I 0 in which b(t) + c(t) 6= 0 and h(t) = 0. In fact, b(t) + c(t) 6= 0 for alls 
t ∈ I 0 , because otherwise there would be t1 ∈ I 0 satisfying b(t1) = −c(t1) and h(t1) = 0.s s 
This would imply in turn that det U t1 = −a(t1)b(t1)2 . If a(t1) < 0, we see that there was
a time t2 ∈ I 0 in which a(t2) = det U t2 = 0 (remember that a(t0) = 1) and if a(t1) > 0,s 
then det U t1 < 0 and there was a time t3 in which det U t3 = 0 (note that det U t0 = 1).

323

0 



Chapter 6. Heisenberg-invariant self-dual Einstein four-manifolds

Since U t is non-degenerate by hypothesis for all t ∈ I 0 , we conclude that h(t) = 0 ands 
b(t) + c(t) 6= 0 in the entire I 0 .s 

Now we can solve for a00, b00, c00 and a0 from the Einstein condition Ricg = Λg and we
get:

3k2b3c + a2(−Λbc + b0c0) 
a 0(t) = − , (6.99)

a(cb0 + bc0)� � �� 
3 2−k2a2b3c 2bcb0c0 + 3c2(b0)2 + b2 3(c0)2 + 4Λc00(t) =a 

a3bc (cb0 + bc0)2 � � � � 
4 0 2 3 7a −b2b0c (c0)2 + 4Λc − c2(b0)3c0 + 2Λ2b3c + 2k4b7c 

+ , (6.100)
a3bc (cb0 + bc0)2 

2 2b3 0 3 0 
b00(t) = 

a2b2b0(c0)2 + 2a2bc(b0)2c0 + 2a c2(b0)3 − Λa cc + k2b4c4b0 + 2k2b5c c 
, (6.101)

a2bc (cb0 + bc0)� � � � 
2 2 0)3a bcb0 2(c0)2 − Λc + c2(b0)2c0 + 2b2(c + k2b3c4 (2cb0 + bc0)00(t) =c . (6.102)

a2bc (cb0 + bc0) 

Taking these results into the remaining components of the Weyl self-duality tensor, we fnd
in particular that

t t t t b4c4 
− k2 b

2c2(2cb0 + bc0) 2bb0c0 + c(b0)2 − Λb2c Wg(e2, e3, e2, e3) = −k3 − kc 
a3(cb0 + bc0) a2(cb0 + bc0) a(cb0 + bc0) 

c0(Λb2 + 3(b0)2) − 2Λbcb0 − . (6.103)
3b(cb0 + bc0) 

Equating the last expression to zero, one solves for Λ and fnds

3(kb2c + ab0)2(kbc2 + ac0)
Λ = − . (6.104)

a2b(−3kb2c2 − 2acb0 + abc0) 

Plugging this last result into the other components of Wg, we encounter in particular:

(kb2c + ab0)(kbc2 + ac0)(cb0 − bc0)t t tWg(e1, e2, ∂t, e3) = . (6.105)
(abc(−3kb2c2 − 2acb0 + abc0)) 

For the latter to be zero, either one of the three terms in brackets must be zero. However,
if any of the two frst terms in brackets is zero, then Λ = 0, so we discard this possibility
and hence cb0 − bc0 = 0, which in turn implies that c(t) = b(t) since c(t0) = b(t0) = 1.
Imposing then that c(t) = b(t) we fnd that all the components of Wg vanish identically
and, collecting all the results derived up to this point, we arrive to (6.96). We check
as well that equations (6.96) are consistent with (6.100),(6.101) and (6.102). Finally,
we observe that h(t) = 0 and c(t) = b(t) is equivalent to the metric adopting the form

1 1 2 2 3 3g = −dt2 − b−2(t)(e ⊗ e − e ⊗ e )+ a−2(t)e ⊗ e , so it is clear that the metric has at0 t0 t0 t0 t0 t0 
singularity whenever any of the functions a(t) or b(t) converges to zero or diverges. Hence
I 0 , the interval of defnition of the ansatz (6.90), must coincide with I and we conclude.s 

Proposition 6.14. Let (M, g) be a spacelike quaternionic paraKähler Heisenberg four-
manifold. Then:
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• The eigenvalues of the Weyl tensor, understood as a symmetric endomorphism of the
bundle of two-forms, are given by (−2ν 0, ν 0, ν 0), where:

16k3b7 
ν 0 = . (6.106)

εa3(3kb3 + ab0) 

• (M, g) is conformally paraKähler for two paracomplex structures with opposite ori-
entations.

Proof. The proof is analogous to the timelike case. We defne:
i iωi = dt ∧ e + ?(dt ∧ e ) . (6.107)t t 

Interpreting the Weyl tensor as a symmetric endomorphism of the bundle of two-forms in
the canonical way, we have:

Wg(ω1) = ν 0ω1 , Wg(ω2) = ν 0ω2 , Wg(ω3) = −2ν 0ω3 . (6.108)

This proves the frst bullet-point of the proposition. With regard to the second one, observe
that the rescaled two-form

ω̃3 = |Wg|g 
2/3ω3 (6.109)

2/3is closed and satisfes that |ω̃3|2 = −4 with respect to the rescaled metric g̃ = |Wg|g g.g̃ 
Then, using that the following two-forms

ω̃1 = ab ω2 , ω̃2 = ab ω3 (6.110)

are closed, direct application of the para-version of Lemma 6.1, see Remark 6.5, proves
that g̃ is paraKähler with paraKähler form ω̃3 and we conclude. A conformally paraKähler
structure for the opposite orientation can be obtained by introducing a relative sign in
(6.107).

Remark 6.16. In complete analogy to the situation in the timelike case, in the proof of
Proposition 6.14 we have shown that (M, g) not only is conformally paraKähler but admits
as well two almost (para)Kähler structures ω̃1 and ω̃2 compatible with a second conformally

0rescaled metric g := ab g, such that |ω̃1|2 
0 = −|ω̃2|2 

0 = 4.g g 

We can construct all solutions to equations (6.96) from solutions to the equations
(6.33) for timelike quaternionic paraKähler Heisenberg four-manifolds, as the following
proposition shows.

Proposition 6.15. Let (a(t), b(t)) solve equations (6.33) for ε = −1 and a given value of
Λ. Then (a(2t0 − t), b(2t0 − t)) solve (6.96) for the same value of Λ.

0Proof. Defning aS(t) = a(2t0−t) and bS(t) = b(2t0−t), we observe that a (t) = −a0(2t0−t)S 
and b0 (t) = −b0(2t0 − t). If a(t) and b(t) solve (6.33) for a given Λ, then aS(t) and bS(t)S 
solve (6.96). Furthermore, aS(t0) = a(t0) = bS(t0) = b(t0) = 1 and we conclude.

Remark 6.17. If Itimelike denotes the interval in which a timelike solution (a(t), b(t)) is
defned, then the spacelike counterpart (a(2t0 − t), b(2t0 − t)) is defned in the interval
Ispacelike = {t ∈ R | 2t0 − t ∈ Itimelike}.

Given this correspondence between timelike and spacelike quaternionic paraKähler
Heisenberg four-manifolds, it is natural to split the study into stationary, negative and
positive spacelike quaternionic paraKähler Heisenberg four-manifolds, which are obtained
from the associated stationary, negative and positive timelike counterparts.
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6.2.2.1 Stationary solutions

Defnition 6.7. A spacelike quaternionic (para)Kähler Heisenberg four-manifold is said to
be stationary if Λ = 6k2 .

As in the timelike case, the name stationary comes from the fact that if we set b = c 
and h = 0 in the expression for the Ricci tensor in Proposition 6.12:

0Ricg(∂t, ∂t) = −2λ2 − µ 2 + 2λ0 + µ , (6.111)

2k2b4 
t tRicg(e1, e1) = − − 2λ2 − µλ + λ0 , (6.112)

2a 
2k2b4 

t tRicg(e2, e2) = + 2λ2 + λµ − λ0 , (6.113)
2a 
2k2b4 

t t 0Ricg(e3, e3) = − + 2λµ + µ 2 − µ , (6.114)
2a 

0where µ = (log a(t))0 and λ = (log b(t))0 , then if we set µ = λ0 = 0 we have that Λ = 6k2 

and hence the name stationary.

Theorem 6.3. All stationary spacelike quaternionic paraKähler Heisenberg four-manifolds
are given by: � �

2 −2k(t−t0) 1 1 2 2 −4k(t−t0) 3 3 g = −dt + e −e ⊗ e + e ⊗ e + e e ⊗ e , (6.115)t0 t0 t0 t0 t0 t0 

where t ∈ R. These solutions are isometric to an open orbit of a four-dimensional solvable
subgroup (which contains a Heisenberg subgroup) of SL(3, R) on the symmetric space

SL(3, R) 
. (6.116)

S(GL(1, R) × GL(2, R)) 

Furthermore, they all are incomplete.

Proof. These stationary solutions are just obtained by using Proposition 6.15 and carrying
out the change t → 2t0 − t in the stationary solutions found in (6.56). Also, the fact that
these solutions are the unique stationary spacelike quaternionic paraKähler Heisenberg
four-manifolds follows by the use of Proposition 6.15 and Theorem 6.1.

In complete analogy with the timelike case, we encounter that rgRg = 0, where Rg 

is Riemann curvature tensor of g. Upon use of the classifcation of pseudo-Riemannian
symmetric spaces of quaternionic paraKähler type [671,672], we conclude (by comparison
of curvature tensors) that the resulting space is locally isometric to the symmetric space
(6.116). In particular, the solutions turn out to be isometric to a left-invariant metric on a
simply transitive solvable subgroup of SL(3, R). This can be seen by following analogous
arguments to that of the proof of Theorem 6.1. Finally, we infer that the underlying pseudo-
Riemannian manifold is incomplete since the timelike quaternionic paraKähler solution,
from which the spacelike one is obtained, is incomplete (and this property does not change
under a change of coordinate t → 2t0 − t).

6.2.2.2 Negative and positive solutions

Defnition 6.8. A spacelike quaternionic paraKähler Heisenberg four-manifold is said to
be negative if Λ < 0. Similarly, it is said to be positive if Λ > 0 but Λ 6= 6k2 .

326



Chapter 6. Heisenberg-invariant self-dual Einstein four-manifolds

By the use of the Proposition 6.15 together with the classifcation of timelike quat-
ernionic paraKähler Heisenberg four-manifolds, we may actually obtain all negative and
positive spacelike counterparts.

Proposition 6.16. Let (a(t), b(t)) as in (6.85). Then (a(2t0 − t), b(2t0 − t)) are all solutions
to (6.96) with Λ < 0 and, consequently, all the negative spacelike quaternionic paraKähler
Heisenberg four-manifolds. They all are incomplete.

Proposition 6.17. Let (a1(t), b1(t)), (a2(t), b2(t)) and (a3(t), b3(t)) be as in (6.71), (6.72)
and (6.73), respectively. Then (a1(2t0 − t), b1(2t0 − t)) (defned for all Λ > 0), (a2(2t0 − 
t), b2(2t0 − t)) and (a3(2t0 − t), b3(2t0 − t)) (the last two defned for all Λ ≥ 81k2) are all
solutions to (6.96) with Λ > 0 and Λ 6= 6k2 and, consequently, all the positive spacelike
quaternionic paraKähler Heisenberg four-manifolds. Solutions (a2(2t0 − t), b2(2t0 − t)) 
and (a3(2t0 − t), b3(2t0 − t)), as well as those arising from (a1(2t0 − t), b1(2t0 − t)) for
0 < Λ < 6k2 , are incomplete17.

Proof. The previous two Propositions are shown by direct use of Proposition 6.15 and by
the fact that all timelike quaternionic paraKähler Heisenberg four-manifolds are incom-
plete, a geometric property that does not change after the trivial change of coordinate
t → 2t0 − t.

Remark 6.18. Negative (resp. positive) timelike quaternionic paraKähler Heisenberg four-
manifolds are in correspondence with their positive (resp. negative) spacelike counterparts.
We must bear in mind that, in the negative timelike case, Λ > 0, while Λ < 0 for positive
timelike quaternionic paraKähler Heisenberg four-manifolds, so the results are consistent.

Remark 6.19. In complete analogy with Remark 6.11, positive spacelike quaternionic
paraKähler Heisenberg four-manifolds correspond to neutral-signature analogues of the
one-loop deformed universal hypermultiplet, since they can be obtained from the so-called
Euclidean Supergravity c-map [149]. In fact, if in Equation (59) of Reference [673] we

¯ 0 i�1 (X0)2 KchooseM to be a point, �1 = 1, �2 = ±1, I = 0, z = 1 and F0 = , e = −1/2 and2 
(Ĥ)ab = diag(1, −1), we observe that after an equivalent procedure to that of Remark 6.10
we have, up to a global sign, the positive spacelike quaternionic paraKähler Heisenberg
four-manifolds derived before. Regarding their negative counterparts, we may interpret
them as negatively-curved versions of the neutral-signature one-loop deformed universal
hypermultiplet.

By taking into account Propositions 6.15, 6.16 and 6.17, we prove the following
theorem.

Theorem 6.4. There exists a one-to-one correspondence between spacelike and timelike
quaternionic paraKähler Heisenberg four-manifolds. Any spacelike quaternionic paraKäh-
ler Heisenberg four-manifold is isometric to:� � 

3(ρ + 2γ) 1 � � ρ + γ1 1 2 2 3 3 g = − dρ2 + 2 −e ⊗ e + e ⊗ e + e ⊗ e , (6.117)t0 t0 t0 t0 t0 t02Λρ2 ρ + γ k2(ρ + 2γ)2 

where ρ is defned in the appropriate intervals I1 , l = 1, 2, 3 or I2 , like in the timelikeρl ρ4 
icase presented in Theorem 6.2, and where Λ is the Einstein constant. Here (e ) denotest0 

17We expect, in the light of Remark 6.9, solutions (a1(2t0 − t), b1(2t0 − t)) with Λ > 6k2 to be incomplete
too.
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t0 t0 t0a left-invariant coframe of H such that [e1 , e ] = −2ke3 , k =6 0. The (in)completeness2 
properties are the same as those of their timelike analogues.

Remark 6.20. By a similar argument to that of Remark 6.15, one observes that the The-
orem 6.4 also contains the stationary case presented in Theorem 6.3.

6.2.3 Lightlike quaternionic paraKähler Heisenberg four-manifolds

Finally we classify all lightlike quaternionic paraKähler Heisenberg four-manifolds. We will
make use of the ansatz (6.18), which gives us a simple way to describe, through a suit-

t t table Witt basis {e , e , e3}, the corresponding metrics of lightlike quaternionic paraKähleru v 
Heisenberg four-manifolds. We rewrite here this ansatz, valid in principle in a subinterval
Il 0 ⊂ I:

U t 
W = 

⎛⎝ 1 0 0 
f(t) b(t) p(t) 

⎞⎠ , [e t0 t0 t0] = −2ke , k > 0 , (6.118)u, e3v 
0 0 a(t) 

We write frst the Ricci curvature tensor Ricg arising from (6.118).

Proposition 6.18. Let (M, g) denote a lightlike quaternionic paraKähler Heisenberg four-
manifold. The non-zero components of the Ricci curvature tensor Ricg read:

00 − 2(a0)2 3(b0)2 − 2bb00 
Ricg(∂t, ∂t) = − , (6.119)

aa

a2 2b2 

(b0)2 a0b0 − ab00 t tRicg(e , e ) = + , (6.120)u v b2 2ab 
f 00a0(bf 0 − fb0) (pb0 − bp0)2 3f(b0)2 − b(3b0f 0 + fb00))t tRicg(ev, ev) = + 

2b2 − 
b2 − 

2 , (6.121)
ab 2a a 

0 0 00)−2ap(b0)2 + b(2ab0p + p(−3a0b0 + ab00)) + b2(3a p0 − apt tRicg(e , e3) = , (6.122)v 2b22a
002(a0)2 − aa a0b0 t tRicg(e3, e3) = + . (6.123)

2a ab 

Proof. By direct computation.

Proposition 6.19. Let (M, g) be a lightlike Heisenberg four-manifold. It is Einstein with
Einstein constant Λ 6= 0 if and only if:

2(a0)2 
0 b

0 
00 a = −Λa + + a , (6.124)

a b 
7(b0)2 

b00 = −Λb + , (6.125)
4b 

a0(−fb0 + bf 0) (pb0 − bp0)2 (−3f(b0)2 + 3bb0f 0 + bfb00))
f 00 = + + , (6.126)

2b2 b2ab 2a
0 0 0−2p(b0)2 3a p 2ab0p + p(−3a0b0 + ab00)00 p = + + , (6.127)

b2 a ab� � 
Λb b0 0 (6.128)−a = a . 
b0 4b 
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00:Proof. Assume Ricg = Λg. Using Proposition 6.18, from (6.123) we may solve for a 

2(a0)2 
0 b

0 
00 a = −Λa + + a . (6.129)

a b 
00:Now from (6.121) and (6.122) we may solve for f 00 and p 

a0(−fb0 + bf 0) (pb0 − bp0)2 (−3f(b0)2 + 3bb0f 0 + bfb00))
f 00 = + + , (6.130)

2b2 

0 0 0 0b0 + ab00) 
ab 2a b2 

−2p(b0)2 3a p 2ab0p + p(−3a00 p = + + . (6.131)
b2 a ab 

Substituting these results we have obtained on the rest of the components of the Ricci
tensor, the Einstein condition is fulflled if:� � 

Λb b0 7(b0)2 
0 b00 a = a − , = −Λb + . (6.132)

b0 4b 4b 

After imposing this last condition, we observe that Ricg = Λg. Checking that the derivative
of previous equation is consistent with (6.129), we collect now all the results we have
obtained and we conclude.

In order to classify all lightlike quaternionic paraKähler Heisenberg four-manifolds,
we need to know the conditions for an Einstein lightlike Heisenberg four-manifold to be
half-conformally fat, which is equivalent to Wg = 0.

Proposition 6.20. Let (M, g) be a lightlike Einstein Heisenberg four-manifold with Einstein
constant Λ 6= 0. The Weyl self-duality tensor Wg vanishes identically if and only if:

√ q
2√ Λ Λ(t−t0) (t−t0)3b(t) = e 3 , a(t) = e , f(t) = p(t) = 0 , Λ > 0 . (6.133)

In particular, if (M, g) is half-conformally fat, it is actually conformally fat.

Proof. Using the results of Proposition 6.19, we fnd that� �2Λ 1 b0 t tW(e , ∂t, ∂t, e ) = − . (6.134)u v 6 8 b 

Hence, � �23 b0 
Λ = > 0 . (6.135)

4 b 

Note that this equation is consistent, since by di˙erentiating with respect to t and using
the expression for b00 found in Proposition 6.19, we indeed get that the right-hand side of
the previous equation is indeed zero. Similarly, we have that

b0(−pb0 + bp0)t t tW(∂t, e3, e , e3) = = 0 . (6.136)v 4ab2 

If b0 = 0, this would imply in turn that Λ = 0. Since we are assuming that Λ =6 0, we fnd
that −pb0 + bp0 = 0, which is equivalent to p(t) = 0 on taking into account that p(t0) = 0 
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and that b(t) 6= 0 since otherwise U t would be degenerate. Finally, on substituting theseW 
results, we also see that

b0(−fb0 + bf 0)t tW(e , ∂t, e , ∂t) = = 0 . (6.137)v v 2b2 

From here we fnd that f(t) = 0 and then we encounter that not only the self-duality
tensor vanishes, but also the Weyl tensor itself, so the subsequent metric is conformally

0fat. Simplifying the result for a obtained in Proposition 6.19 by using (6.135), we have
that the remaining di˙erential equations to solve are:� �2 

0 b0 3 b0 
a = a , Λ = . (6.138)

2b 4 b 

The solution to the previous system of ordinary ODEs with the initial conditions a(t0) = 
b(t0) = 1 is:

√ q
2√ Λ Λ(t−t0) (t−t0)b(t) = e 3 , a(t) = e 3 , (6.139)

and we conclude.

1 2 3Remark 6.21. The metric g, in terms of the coframe {dt, e , e , e } reads:t0 t0 t0 

1 12 u v 3 3 g = −dt + e e + e ⊗ et0 t0 t0 t0b(t) (a(t))2 
√ √ (6.140)

− 2√ Λ − 2√ Λ 
2 3 

(t−t0) u v 3 
(t−t0) 3 3 = −dt + e e e + e e ⊗ e .t0 t0 t0 t0 

We observe from the previous expression that the metric is indeed conformally fat: by√ 
− (t(t̃)−t0)defning a new coordinate dt √ = e √Λ

3 dt̃, it is clear that the metric is conformally
− 2√ Λ (t(t̃)−t0)fat with conformal factor e 3 .

Theorem 6.5. All lightlike quaternionic paraKähler Heisenberg four-manifolds are confor-
mally fat and isometric to the solution given by:

√ √ 
− 2√ Λ − 2√ Λ 

2 (t−t0) u v (t−t0) 3 3 g = −dt + e 3 e e + e 3 e ⊗ e , Λ > 0 , (6.141)t0 t0 t0 t0 

where t ∈ I 0 = I = R. The subsequent pseudo-Riemannian manifolds are incomplete.l 

Proof. The fact that t ∈ I 0 = I = R follows by seeing that (6.141) is defned in thel 
entire real line. Consequently, we only have to show that the corresponding metrics are
incomplete. For that, let us set t0 = 0 for the sake of simplicity (we can always achieve it
by shifting the time coordinate) and let us use the coordinates (6.3) for H. We consider
the geodesic Γ : J → (I × H) with J ⊂ R (and aÿne parameter τ) whose coordinates are
given by: !√ � � Z τ3 4Λ sinh2(τ/2 + B) 3 − √ log , 0, dσ, 0 , (6.142)

2 Λ 3 0 4Λ sinh2(σ/2 + B) 

where we choose a certain B ∈ R>0 . This geodesic is not defned ∀τ ∈ R and we conclude
that the underlying pseudo-Riemannian manifold cannot be complete.
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Remark 6.22. Di˙erently from what happens in the previous cases, when the Heisenberg
center is lightlike it is possible to fnd Lorentzian conformally fat18 Einstein metrics. Set-
ting the metric to be

Lor 2 u v 3 3 g = dt + e e + e ⊗ et , (6.143)t t t 

we can fnd, in a completely analogous manner to that presented in the study of light-
like quaternionic paraKähler Heisenberg four-manifolds, that the following choice for the
functions in UW

t :
√ q

2 −Λ −Λ√ (t−t0) (t−t0)b(t) = e 3 , a(t) = e 3 , f(t) = p(t) = 0 , Λ < 0 (6.144)

yields Lorentzian conformally fat Einstein metrics. As for the neutral-signature metrics,
these metrics are incomplete.

6.3 (Para)HyperKähler Heisenberg four-manifolds

In this section we are going to classify all Heisenberg four-manifolds which are further-
more (para)hyperKähler. For that, we begin by providing the most adequate defnition of
(para)hyperKähler four-manifold for our purposes.

Defnition 6.9. Let (M, g) be a neutral-signature or Riemannian orientable four-manifold.
It is said to be (para)hyperKähler if there exist three closed self-dual two-forms (called
Kähler forms) ωi on M , with i = 1, 2, 3 or i = u, v, 3 which satisfy the condition:

ωi ∧ ωj = 2εηij dvolM , i, j = 1, 2, 3 , or i, j = u, v, 3 , (6.145)

where ε = 1 if (M, g) is Riemannian and ε = −1 if (M, g) is of neutral signature, η is given
by (6.7) and where dvolM denotes the canonical volume form given by the metric and the
fxed orientation on (M, g).

Remark 6.23. The usual defnition of (para)hyperKähler four-manifold (M, g) is that of a
Riemannian (resp. neutral-signature) four-manifold whose holonomy group is contained in
the compact symplectic group Sp(1) (resp. in the pseudo-symplectic group SL(2, R)). This
is equivalent to the existence of three parallel (with respect to the Levi-Civita connection
of (M, g)) (para)complex structures Ji ∈ End(TM) which are antisymmetric and satisfy19

Ji ◦ Jj + Jj ◦ Ji = −2εηij IdTM . The relation between this defnition and ours is given
by the Hitchin lemma [139], which can be rephrased by saying that the existence of three
closed and self-dual two-forms ωi ∈ Ω2(M) on (M, g) satisfying ωi ∧ ωj = 2εηij dvolM 
is equivalent to the existence of three (integrable) parallel (para)complex structures Ji 
satisfying the aforementioned relations.

Remark 6.24. We would like to remind the reader that (para)hyperKähler manifolds are
Ricci fat and antiself-dual20.

18Note that for a Lorentzian metric the two components of the Weyl tensor (±i-eigenvectors of the Hodge
operator) are related by complex conjugation. So half-conformal fatness in the Lorentzian setting implies
conformal fatness.

19We allow the possibility of having two (integrable) nilpotent endomorphisms and a paracomplex struc-
ture. Note however that these can be obtained from linear combinations of two paracomplex structures
and a complex one satisfying the relations Ji ◦ Jj + Jj ◦ Ji = −2εηij IdTM .

20Note that we are fxing the orientation for which the Kähler forms are self-dual.
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From the previous remark and Proposition 6.2, we have that timelike, spacelike
and lightlike parahyperKähler Heisenberg four-manifolds comprise all possible types of
parahyperKähler Heisenberg four-manifolds. We introduce the following notation.

Defnition 6.10. Let (M, g) be a Riemannian or neutral-signature Heisenberg four-manifold
t tand let {e }t∈I be a family of orthonormal or Witt frames on H. For t0 ∈ I, we say {e }t∈Ii i 

is a t0-canonical frame if the only non-vanishing Lie bracket at t0 is:

• For (M, g) a Riemannian or a timelike Heisenberg four-manifold:

t0 t0 t0[e2 , e ] = −2ke , k > 0 . (6.146)3 1 

• For spacelike Heisenberg four-manifolds:

t0 t0 t0[e1 , e ] = −2ke , k > 0 . (6.147)2 3 

• For lightlike Heisenberg four-manifolds:

t0 t0 t0[e , e ] = −2ke , k > 0 . (6.148)v 3 u 

Lemma 6.2. Let (M, g) be a Riemannian or neutral-signature Heisenberg four-manifold.
tIt is (para)hyperKähler if and only if, for t0 ∈ I, there exists a t0-canonical frame {e }t∈Ii 

such that the following self-dual two-forms:

ωi = σij dt ∧ et
j + σij ? (dt ∧ et

j ) . (6.149)

iare closed, where {e }t∈I denotes the associated family of coframes dual to the t0-canonicalt 
frame and σi1j ∈ C∞(I), σi2j , σi3j ∈ C∞(M) such that (σij (p)) ∈ SO(R3, η) for all p ∈ M 
with:

• i1 = 1, i2 = 2 and i3 = 3 if (M, g) is a Riemannian or a timelike Heisenberg four-
manifold,

• i1 = 3, i2 = 1 and i3 = 2 if (M, g) is a spacelike Heisenberg four-manifold,

• i1 = u, i2 = v and i3 = 3 if (M, g) is a lightlike Heisenberg four-manifold.

Proof. Assume frst that the self-dual two-forms ωi in Equation (6.149) are closed. By di-
rect computation, we check that ωi ∧ωj = 2εηij dvolM whence (M, g) is (para)hyperKähler.

Conversely, assume that (M, g) is a (para)hyperKähler Heisenberg four-manifold.
Let ωi be the corresponding Kähler forms. Note frst that the (para)quaternionic structure
Qp at any point p ∈ M is given by one of the two simple ideals of so(TpM) = Qp ⊕ Qp 

0 ,
∼ Q0 ∼ ∼ Q0 ∼where Qp = = su(2) or Qp = = sl(2, R). Therefore it is invariant under anyp p 

orientation-preserving isometry. Consider the vector space V ∼= R3 consisting of all parallel
sections of Q endowed with the Euclidean or Lorentzian scalar product hA, Bi = − ε Tr AB.4 
Since the Heisenberg group acts through orientation-preserving isometries, we obtain a
representation ρ : H → SO(V ), whose image is a nilpotent subgroup of SO(V ). In the
Riemannian case, this leads us to the conclusion that the image of ρ is contained in an
SO(2)-subgroup and, therefore, preserves a non-zero vector in V . In the neutral-signature
case, the image is contained in a one-dimensional subgroup conjugate to SO(2), SO0(1, 1) 
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or to a unipotent group that preserves a lightlike vector. Again, we can conclude that
the representation ρ, independently of the signature, always leaves invariant a non-zero
vector of V . This implies there is an orthonormal or Witt basis (J1, J2, J3) of V which
contains an invariant element. (We recall that according to our conventions hJi, Jj i = ηij 
with η as in 6.7.) If the element has stabilizer SO(2) in SO(3), we can assume it is J1. If
it has stabilizer SO(1, 1) we can take it to be J3. If it is lightlike, the basis (J1, J2, J3) is
a Witt basis (Ju, Jv, J3) and we can assume that the invariant element is Ju. Then the
corresponding left-invariant Kähler forms ωi1 can be chosen so that σi1j ∈ C∞(I) with
i1 ∈ {1, 3, u} as in the the statement of the lemma and we conclude.

After these preliminary results, now we continue with the classifcation of Riemannian
and neutral-signature (para)hyperKähler Heisenberg four-manifolds.

6.3.1 (Timelike) (para)HyperKähler Heisenberg four-manifolds

We carry out the classifcation of hyperKähler and timelike parahyperKähler Heisenberg
four-manifolds at once, since we will see that the procedure is strictly analogous. We fx
a t0-canonical frame {e 
matrix U t:

t 
i}t∈I which satisfes (6.146) and we set the ansatz (6.16) for the⎛ 

( )ta ⎝ 0 

⎞⎠ 0 0 
U t , a, b, c, h ∈ C∞(I) . (6.150)b(t) 0= 

0 h(t) c(t) 

Proposition 6.21. Let (M, g) be a (timelike) (para)hyperKähler Heisenberg four-manifold.
Then it is isometric to

a = (1 + 3k(t − t0))1/3 , b = c = (1 + 3k(t − t0))−1/3 , h = 0 . (6.151)

The maximal domain of defnition of these incomplete metrics is (t0 − (3k)−1 , +∞) × H.

Proof. According to Lemma 6.2, there exists (at least) a Kähler form ω1 belonging to the
(para)hyperKähler structure which is additionally invariant under the Heisenberg group
action. If ω1 = σ1jdt ∧ ej + σ1j ? (dt ∧ ej ), then it can be seen that the equation rω1 = 0t t 
is equivalent to

σ0 σ0 0 b0 0hc0 − h0c c c bc12 13 0σ0 = 0 , = − = , a = kbc , h0 = h , = = −k . (6.152)11 σ13 σ12 2bc c b c a 

The unique solution to the previous system of ordinary di˙erential equations with the
initial conditions a(t0) = b(t0) = c(t0) = 1, h(t0) = 0 and σ1j |t0 = σ10 

j , for σ
0 ∈ R, turns1j 

out to be

a = (1 + 3k(t − t0))1/3 , b = c = (1 + 3k(t − t0))−1/3 , h = 0 , σ1j = σ10 
j . (6.153)

This solution is defned in the interval I = (t0 − (3k)−1 , +∞) and we observe that the
isometry type of (M, g) is completely fxed. Now, using (6.153), we note that the following
two-forms:

i iωi = dt ∧ e + ?(dt ∧ e ) , i = 1, 2, 3 (6.154)t t 

are self-dual, closed and satisfy ωi ∧ ωj = 2εηijdvolM . Hence we conclude.
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iRemark 6.25. In terms of the coframe {dt, e }, the metric of a (timelike) (para)hyperKählert0 
Heisenberg four-manifold (M, g) reads �

2 1 1+ 
ε 

e ⊗ e + (1 + 3k(t − t0))2/3 
t0 t0 

2 2 3 3 . (6.155)⊗ e ⊗ eg = εdt + eet0 t0 t0 t0(1 + 3k(t − t0))2/3 

We fnd that (M, g) is Ricci fat and that the Weyl tensor is antiself-dual.

3kt̃Remark 6.26. Redefne the time coordinate as e = 1 + 3k(t − t0). Then the metric g 
reads

2 t 1 1 2k˜ 2 2 3 3 g = εe6kt̃dt̃ + εe−2k˜ 
e ⊗ e + e t(e ⊗ e + e ⊗ e ) . (6.156)t0 t0 t0 t0 t0 t0 

−6kt̃Now if we consider the rescaled metric ĝ = e g, it takes the form:

2 1 1 2 2 3 3 ĝ = εdt̃ + εe ⊗ e + e ⊗ e + e ⊗ e , (6.157)˜ ˜ ˜ ˜ ˜ ˜t t t t t t 

1 −4kt̃ 1 2 −2kt̃ 2 3 −2kt̃ 3with e = e e , e = e e and e = e e . We compute:˜ t0 ˜ t0 ˜ t0t t t 

1 1 2 3 2 2 3 3de = 4ke ∧ dt̃+ 2ke ∧ e , de = 2ke ∧ dt ,˜ de = 2ke ∧ dt̃ . (6.158)˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜t t t t t t t t 

1 2 3So we observe that {dt, e , e , e } defnes a left-invariant coframe on R+ × H. Therefore˜ ˜ ˜t t t 
the singularity in the metric (6.155) is just present up to a conformal factor, compare
with [674].

6.3.2 Spacelike parahyperKähler Heisenberg four-manifolds

Now we continue with the classifcation of spacelike parahyperKähler Heisenberg four-
tmanifolds. We set a t0-canonical frame {ei}t∈I which satisfes (6.147) and we use the

ansatz (6.17) for the matrix U t (valid for a subinterval I 0 ⊂ I containing t0), which wes 
rewrite here for the sake of clarity:

U t = 

⎛⎝ c(t) h(t) 0 
−h(t) b(t) 0 

⎞⎠ , a, b, c, h ∈ C∞(I 0 
s) . (6.159)

0 0 a(t) 

Proposition 6.22. Let (M, g) be a spacelike parahyperKähler Heisenberg four-manifold.
Then it is isometric to

a = (1 − 3k(t − t0))1/3 , b = c = (1 − 3k(t − t0))−1/3 , h = 0 . (6.160)

The maximal domain of defnition of these incomplete metrics is (−∞, t0 + (3k)−1) × H.

Proof. In an analogous fashion to the proof of Proposition 6.21, we consider a Kähler form
ω3 invariant under the Heisenberg group, which we know to exist by virtue of Lemma 6.2.
Writing ω3 = σ3j dt ∧ ej + σ3j ? (dt ∧ ej ), the parallel condition rω3 = 0 implies that:t t 

σ0 σ0 h(c0 − b0) + h0(b − c)31 32 = = , (6.161)
σ32 σ31 2(bc + h2) 

kb2c2 + 2kbch2 + kh4 + acc0 kb2c2 + kh4 + 2kbch2 + abb0 
h0 = h = h . (6.162)

a(bc + c2 + h2) a(bc + b2 + h2) 
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2 2 0kb3c + kch4 + kbh2(2c + h2) + kb2c(c2 + 2h2) − ah2c 
b0 = , (6.163)

a(bc + c2 + h2) 
2 2kb3c + kch4 + kbh2(2c + h2) + kb2c(c2 + 2h2) − ah2b0 0 c = , (6.164)

a(bc + b2 + h2) 
0 a = −k(bc + h2) . (6.165)

This is a system of frst-order ordinary di˙erential equations with the initial condition
a(t0) = b(t0) = c(t0) = 1, h(t0) = 0 and σ3j |t0 = σ30 

j , for σ
0 ∈ R. It can be see to admit a3j 

unique solution, which turns out to be

a = (1 − 3k(t − t0))1/3 , b = c = (1 − 3k(t − t0))−1/3 , h = 0 , σ3j = σ30 
j . (6.166)

This solution is defned in the interval I 0 = (−∞, t0 + (3k)−1)). Ansatz (6.159) was ins 
principle valid only for a subinterval I 0 ⊂ I containing t0, but we note that actually I 0 = I,s s 
since at t = t0 + (3k)−1 the metric has a singularity and cannot be extended for larger
values of t. Using now (6.166), we observe that the following two-forms:

i iωi = dt ∧ et + ?(dt ∧ et) , i = 1, 2, 3 (6.167)

are self-dual, closed and satisfy ωi ∧ ωj = −2ηij dvolM . Hence we conclude.

Remark 6.27. We observe that the subsequent pseudo-Riemannian manifold is Ricci fat
and the Weyl tensor is antiself-dual. The metric turns out to be� 1 
g = −dt2 +(1−3k(t−t0))2/3 1 1 2 2 3 3⊗e . (6.168)t0 t0 −e ⊗ e ⊗ e+ e + e 

(1 − 3k(t − t0))2/3t0 t0 t0 t0 

6.3.3 Lightlike parahyperKähler Heisenberg four-manifolds

Finally we carry out the classifcation of all lightlike parahyperKähler Heisenberg four-
tmanifolds. In analogy with the previous cases, we pick a t0-canonical frame {e }t∈I whichi 

satisfes (6.148) at t0 ∈ I and we choose the ansatz (6.18) for U t (valid for a subintervalW 
I 0 ⊂ I containing t0), which we present here again:l 

U t 
W = 

⎛⎝ 1 0 0 
f(t) b(t) p(t) 

⎞⎠ , a, b, c, f, p ∈ C∞(Il 0) (6.169)
0 0 a(t) 

Proposition 6.23. All lightlike parahyperKähler Heisenberg four-manifolds are isometric
tto (R × H, g), where g is the metric (6.5) constructed from a t0-canonical frame {e }t∈Ri 

such that
a = b = 1 , f = −2k(t − t0) , p = 0 (6.170)

Furthermore, such metric is fat and isometric to (R4, η) (and therefore, complete).

Proof. Following Lemma 6.2 and its notation, let ωu denote the corresponding Kähler form
that is additionally invariant under the Heisenberg group, which it is guaranteed to exist.
If ωu = σuj dt ∧ et

j + σuj ? (dt ∧ et
j ), then ωu being parallel implies:

� b0 σuv(pb
0 − bp0)1 σuv 

2b 
ab0σuu + (bp0 − pb0)σu3 σ0 uv = − (6.171)σuu = σu3 =, ,

2ab 2ab 
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f 0 
σuu + 2fσuv 

b0 0 pσuv + aσu3 
b0 

pb0 0 = b0 = −2kab + , p = = , a = 0 . (6.172)
2bσuv bσuv b 

The unique solution to the previous system of ODEs with the initial conditions a(t0) = 
b(t0) = 1 and p(t0) = f(t0) = 0 turns out to be21

a = b = 1 , f = −2k(t − t0) , p = 0 , = σ0 (6.173)σuj uj , 

where σ0 ∈ R are constants. This solution is trivially defned for t ∈ R, so we can actuallyuj 
extend I 0 to be the entire I and I 0 = I = R. Using now (6.173), we observe that thel l 
two-forms

i iωi = dt ∧ et + ?(dt ∧ et) , i = u, v, 3 (6.174)

are self-dual, closed and satisfy ωi ∧ ωj = 2εηij dvolM . This way we obtain all lightlike
parahyperKähler Heisenberg four-manifolds, which we easily see to be fat. Finally, af-
ter using the coordinates (6.3), it is possible to see that all geodesics with coordinates
(t(τ), x(τ), y(τ), z(τ )) and aÿne parameter τ take the form:

t(τ ) = A1 + A2τ − kA2
3τ 2 , x(τ) = A4 + A3τ , y(τ) = A5 + A6τ − kA3

2τ2 , 
(6.175)

z(τ) = A7 + A8τ + kA3τ
2(kA3x(τ) − 2A2 + A6) , 

with Al ∈ R for l = 1, 2, . . . , 8. Since these geodesics are defned ∀τ ∈ R we conclude
that the subsequent pseudo-Riemannian manifolds are complete and therefore all lightlike
parahyperKähler Heisenberg four-manifolds are isometric to four-dimensional fat space
(R4, η).

Remark 6.28. The metric of any lightlike parahyperKähler Heisenberg four-manifold in
terms is isometric to

2 u v v v 3 3 g = −dt + e e + 4k(t − t0)e ⊗ e + e ⊗ e . (6.176)t0 t0 t0 t0 t0 t0 

We check by direct inspection that it is indeed fat.

Gathering the results given in Propositions 6.21, 6.22 and 6.23, we prove the following
theorem.

Theorem 6.6. All (timelike) (para)hyperKähler Heisenberg four-manifolds are incomplete
and isometric to

ε2 1 1 2 2 3 3 g = εdt + e ⊗ e + (1 + 3k(t − t0))2/3(e ⊗ e + e ⊗ e ) , (6.177)t0 t0 t0 t0 t0 t0(1 + 3k(t − t0))2/3 

i t0 t0 t0where (e ) is a left-invariant coframe of H such that [e2 , e ] = −2ke for k 6= 0. Allt0 3 1 
spacelike parahyperKähler Heisenberg four-manifolds are incomplete and isometric to:

1 1 2 2 3 3 g = −dt2 + (1 − 3k(t − t0))2/3(−e ⊗ e + e ⊗ e )+ 
1 

e ⊗ e , (6.178)t0 t0 t0 t0 t0 t0(1 − 3k(t − t0))2/3 

t0 t0 t0where now [e1 , e ] = −2ke Finally, all lightlike parahyperKähler Heisenberg four-2 3 .
manifolds are isometric to fat space (R4, η).

21After using b0 = 0 in the rest of equations, the possible divergences arising from the possibility that
σuv = 0 disappear.
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6.4 Discussion

We have managed to classify all Riemannian and neutral-signature four-manifolds admit-
ting a cohomogeneity one principal action of the Heisenberg group with non-degenerate
orbits and whose Weyl tensor is (anti)self-dual. They are either quaternionic (para)Kähler
(if the Einstein constant is non-zero) or (para)hyperKähler (if they are Ricci fat).

We began with the study of the quaternionic (para)Kähler Heisenberg four-manifolds.
In the Riemannian case, as well as in the case of timelike or spacelike Heisenberg center,
we reduced the problem to a system ordinary di˙erential equations of frst order for two
functions a and b. The resulting quaternionic Kähler manifolds proved to be conformally
Kähler whereas the resulting quaternionic paraKähler manifolds were conformally Kähler
or conformally paraKähler, depending on the causal character of the Heisenberg center

It turned out that the ODE system took a particularly nice form when εΛ = −6k2 ,
where k is the structure constant of the adapted frame at initial time, up to a numerical
factor. We referred to this case as the stationary case, as its solutions were stationary in
the sense that the logarithmic derivatives of the unknown functions were constant. We
determined all maximal stationary solutions and showed that they defne homogeneous
spaces. More precisely, each of these homogeneous spaces could be realized as an open
orbit of a four-dimensional solvable Lie group acting by isometries on a symmetric space.

In the non-stationary case, we showed that the above ODE system could be explicitly
and completely solved. We found that the solutions occur in one-parametric families and
that the parameter could be identifed with the one-loop parameter in the perturbative
quantum correction of the Supergravity c-map and its temporal and Euclidean versions.
Setting the parameter to zero (whenever possible on the considered branch) resulted in
one of the stationary solutions. Geometrically this corresponds to a deformation of the
locally symmetric space in the class of quaternionic (para)Kähler manifolds. In the case of
lightlike center, we found analogously all solutions to the aforementioned system of ODEs
and observed that they are conformally fat.

Regarding the (para)hyperKähler counterparts, we were also able to carry out the
complete classifcation result. In the Riemannian case and in the case of timelike and
spacelike Heisenberg center, we wrote the explicit form of the (Ricci fat) metrics and
proved that they are incomplete. This is in contradistinction to the lightlike case, which
we found to be just isometric to fat space (and therefore, complete).

These conclusions suggest many questions and future directions. In particular, could
it be possible to provide (partial) classifcation results if we remove the condition of self-
duality for the Weyl tensor? Indeed, it would be very natural in the Ricci fat case to
investigate the more general setup of (para)Kähler Heisenberg four-manifolds. Also, it
could help us identifying more Lorentzian Einstein Heisenberg four-manifolds, apart from
the one given by Remark 6.22. Analogously, we may proceed in the opposite direction:
what happens if we keep the self-duality condition, but remove the Einstein condition?

Another interesting question to pose is about the possibility of providing an inter-
pretation of all quaternionic (para)Kähler self-dual Einstein Heisenberg four-manifolds in
the context of Supergravity and ST. Indeed, we explained that positively-curved (resp.
negatively-curved) Riemannian (resp. timelike and spacelike) quaternionic (para)Kähler
Heisenberg four-manifolds can be understood as scalar manifolds appearing in Supergrav-
ity and ST. Thus, it would be interesting to analyze if there exists any interpretation for
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the negatively-curved (resp. positively-curved) ones (as well as for lightlike quaternionic
paraKähler Heisenberg four-manifolds). In this direction, it is known that the quaternionic
(para)Kähler manifolds constructed through the spatial, temporal and Euclidean Super-
gravity c-maps and their one-loop deformations can be obtained through the rigid versions
of the previous c-maps and the (para)hyperKähler/quaternionic (para)Kähler correspon-
dence [153, 156,675]. This triggers the question: is it possible that the (para)hyperKähler
Heisenberg four-manifolds we have obtained in this chapter can be mapped, through the
aforementioned correspondence, to the quaternionic (para)Kähler solutions we have de-
rived? This would strongly suggest that the (para)hyperKähler manifolds we have found
arise from the rigid Supergravity c-maps.

Finally, it could be intriguing as well to investigate the possibility of having principal
and isometric actions with degenerate orbits or work in higher dimensions D = 4m with
m > 1.
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7 
Contact structures in six-dimensional

Supergravity

In the last chapter of the thesis we will continue with the study of selected topics belonging
to the realm of geometry of Supergravity and ST. More concretely, we will now concentrate
on the construction of particular solutions of minimal six-dimensional Supergravity coupled
to a tensor multiplet, which can be obtained by intertwining special classes of contact
structures.

Indeed, as we have already observed, the ongoing mathematical study and devel-
opment of Supergravity [106, 133, 134] poses novel and occasionally striking mathematical
problems in diverse areas of di˙erential geometry and topology. Some of these mathemati-
cal problems are specifcally concerned with the classifcation of Supergravity solutions and
the study of the associated moduli spaces of solutions. In this context, the classifcation
of all simply connected Lorentzian manifolds admitting bosonic solutions of Supergravity
in the considered dimension remains as an outstanding open problem in the mathematical
theory of Supergravity. The purpose of this chapter is to propose a contribution to this
problem in the specifc case of minimal Supergravity in six Lorentzian dimensions [188,189]
coupled to a tensor multiplet with constant dilaton, a theory that can be neatly rephrased
as a natural geometric problem in the realm of six-dimensional Lorentzian geometry with
torsion. More concretely, the bosonic confguration space of this six-dimensional Super-
gravity on a six-manifold M consists on pairs (g, H), where g is a Lorentzian metric on M 
and H is a three-form.

Rather than intending to provide a full classifcation result, which seems currently
out of reach, we shall try to make some simplifying assumptions, with the aim of developing
a method to construct families of solutions as a frst step towards the understanding of
the general classifcation problem. In particular, we will assume that the six-dimensional
Lorentzian manifold splits as (M, g) = (N × X, χ ⊕ h), where (N, χ) and (X, h) are three-
dimensional Lorentzian and Riemannian three-manifolds, respectively.

In this context, we will be able to prove that appropriate combinations of so-called
εη -Einstein contact structures in (N, χ) and (X, h) yield in turn solutions of six-dimensional
minimal Supergravity coupled to a tensor multiplet with constant dilaton, which can be
rephrased in the mathematical setting as producing Lorentzian six-manifolds (M, g) with a
Ricci fat metric-compatible connection with isotropic, totally skew-symmetric, closed and
co-closed torsion. Such εη -Einstein contact structures are particular cases of ε -contact
structures, which encompass usual (three-dimensional) contact Riemannian, contact Lo-
rentzian and para-contact metric structures, but which allow for the Reeb vector feld to
be null (lightlike). In particular, in the non-null cases they are restricted versions of the
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usual notion of η -Einstein strutures [161,164].
The case with null Reeb vector feld seems not to have been previously studied in

the literature and we have called it null contact structure. We show that the Sasaki and K-
contact notions can be extended in these cases but are however not equivalent conditions,
in contrast to the situation occurring when the Reeb vector feld is not lightlike. We defne
a notion of left-invariant null contact structure and provide a classifcation of all of them
in simply connected three-dimensional Lie groups.

Afterwards, we focus on εη -Einstein contact structures, deriving a classifcation re-
sult for such (left-invariant) structures on three-dimensional simply connected Lie groups
for any causal character of the Reeb vector feld. This is used later for the construction of
novel families of six-dimensional Supergravity solutions, some of which can be interpreted
as continuous deformations of the maximally supersymmetric solution on f ,SL(2, R) × S3 fSL(2, R) denoting the universal cover of SL(2, R).

This chapter is organized is as follows. First we introduce the notion of ε -contact
structure and explore some of its generic properties, including its formulation on a glob-
ally hyperbolic Lorentzian three-manifold. Next we focus on ε -contact structures with
lightlike Reeb vector feld, introducing the concepts of Sasakian and null K-contact con-
tact structures and classifying those on simply connected three-dimensional Lie groups
which are left-invariant. Then we introduce the notion of εη -Einstein ε -contact structure
and we classify all left-invariant εη -Einstein contact structures on simply connected three-
dimensional Lie groups. Afterwards we present the main result of our work in which we
establish the link between εη -Einstein contact structures and solutions of Supergravity in
six dimensions. Later we illustrate the type of solutions of six-dimensional Supergravity
that are obtained through the combination of εη -Einstein contact structures and conclude
with a discussion of our most relevant fndings.

7.1 ε -contact metric three-manifolds

In this section we introduce the notion of ε -contact metric structure, which encompasses
as particular cases the standard defnition of contact Riemannian metric structure, contact
Lorentzian structure and para-contact metric structure in three dimensions, but which also
allows for the Reeb vector feld to be null.

Defnition 7.1. Let M be an oriented three-manifold. An ε -contact metric structure (or
ε -contact structure, in short) on M consists of a triple (g, α, ε), with ε ∈ {−1, 0, 1}, g a
Riemannian or pseudo-Riemannian metric on M and α a one-form α ∈ Ω1(M), satisfying:

α = ?dα , |α|2 = ε, (7.1)g 

where ? : Ωr(M) → Ω3−r(M) (r = 0, 1, 2, 3) denotes the Hodge-dual with respect to g and
the fxed orientation on M , which is then said to be an ε -contact metric three-manifold
(or ε -contact three-manifold, in short). When g is Lorentzian, we will assume that (M, g) 
is oriented and time-oriented.

Remark 7.1. Note that equation α = ?dα is equivalent to

? α = σg dα , (7.2)

where σg = +1 if g is Riemannian and σg = −1 if g is Lorentzian.
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Remark 7.2. The motivation to introduce the previous defnition will be apparent in Sec-
tion 7.4, see Theorem 7.5.

Let (g, α, ε) be an ε -contact metric structure on M and let νg be the pseudo-Riemannian
volume form associated to g and the fxed orientation on M . If g is Riemannian then
necessarily ε = 1 (whence it can be omitted) and (g, α) defnes in this case a standard
contact metric structure on M [161]. To see this, note that the kernel of α defnes an
oriented non-integrable rank-two distribution,

def.D = ker(α) ⊂ TM . (7.3)

Denote by gD the restriction of g to D. Being oriented, the Riemannian volume form of
(D, gD) defnes a canonical almost complex structure JD : D → D with respect to which
νD is of type (1, 1). Furthermore, the vector feld ξ = α] dual to α satisfes by defnition
α(ξ) = 1. Equation (7.1) implies

dα(v1, v2) = ?α(v1, v2) = νD(v1, v2) = gD(v1, JDv2) , v1, v2 ∈ D (7.4)

Therefore, the tuple (D, g, ξ, φ), where φ|D = JD and φ(ξ) = 0, defnes a standard contact
metric structure on M . Conversely, any such Riemannian contact metric structure gives
rise to a canonical Riemannian ε -contact metric structure on M . Similar remarks apply
when g is Lorentzian and ε = −1, in which case we recover the usual notion of Lorentzian
contact metric structure, and when g is Lorentzian and ε = 1, in which case we recover
the usual notion of para-contact metric structure. Hence the following holds.

Proposition 7.1. Let M be an oriented three-manifold. An ε -contact metric structure
(g, α, ε) on M defnes a canonical Riemannian contact metric structure if g is Riemannian,
a canonical Lorentzian contact metric structure if g is Lorentzian and ε = −1, and a
canonical para-contact metric structure if g is Lorentzian and ε = 1. The converse also
holds for the three previous cases.

Remark 7.3. By the previous argument, if (g, α, ε) is an ε -contact metric structure on
a Riemannian manifold (M, g), we shall just denote it as a Riemannian contact metric
structure in order to keep the usual nomenclature in the literature.

Given an ε -contact structure (g, α, ε), we will refer to ξ = α] (the metric dual of α) as the
Reeb vector feld of (g, α, ε). The notion of morphism of ε -contact manifolds we consider
is the expected one.

Defnition 7.2. Let (Ma, ga, αa, εa), a = 1, 2, be ε -contact three-manifolds. A morphism
F from (M1, g1, α1, ε1) to (M2, g2, α2, ε2) with ε1 = ε2 is an orientation preserving smooth
map F : M1 → M2 such that

g1 = F ∗ g2 , α1 = F ∗ α2 . (7.5)

If such F is not orientation preserving, then we will say that it is an orientation-reversing
morphism.

Remark 7.4. We denote by PCont the category whose objects are ε -contact three-manifolds
and whose morphisms are defned as above. Relevant subcategories of PCont are the sub-
category of contact Riemannian three-manifolds PContR and the category PContL(ε) of
ε -contact Lorentzian three-manifolds with Reeb vector feld of norm ε ∈ {−1, 0, 1}.
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In analogy with the standard theory of Riemannian contact structures, we introduce, as-
sociated to every ε -contact metric structure (g, α, ε), two endomorphisms φ : TM → TM 
and h : TM → TM :

φ(v) = −σg (ιv ? α)
] , h(v) = (Lξφ)(v) ∀ v ∈ TM , (7.6)

where ξ = α] is the Reeb vector feld of (g, α, ε) and the symbol L denotes Lie deriva-
tive. We will refer to φ ∈ Γ(TM ⊗ T ∗M) as the characteristic endomorphism of (g, α, ε).
Furthermore, from φ and h we defne

def.
τ = h ◦ φ : TM → TM . (7.7)

These endomorphisms will play an important role later on. The following lemma summa-
rizes some of the properties enjoyed by φ.

Lemma 7.1. Let (M, g, α, ε) ∈ PCont be an ε -contact metric manifold. The characteristic
endomorphism φ satisfes:

g(Id ⊗ φ) = dα , φ(ξ) = 0 , α ◦ φ = 0 , (7.8)

φ2 = σg (−ε Id + ξ ⊗ α) , g ◦ φ ⊗ φ = σg(ε g − α ⊗ α) . (7.9)

def.where ξ = α] denotes the Reeb vector feld of (g, α, ε).

Proof. Using the defnition of φ given in Equation (7.6), we compute:

g(v1, φ(v2)) = −σgg(v1, (ιv2 ?α)
]) = −σg ?α(v2, v1) = dα(v1, v2) , v1, v2 ∈ X(M) , (7.10)

whence the frst equation of the lemma holds. The second and third equations of the lemma
follow directly from the defnition of φ. On the other hand, the square of the endomorphism
φ can be computed to be:

φ(φ(v)) = [ι(ιv ?α)] (?α)]] = [(?α)((ιv ? α)
])]] = [?(α ∧ (ιv ? α))]

] 

(7.11)
= [− ? (ιv(α ∧ ?α)) + α(v)(? ? α)]] = −σgε v + σgα(v)ξ , v ∈ X(M) , 

which implies the fourth equation of the lemma. Finally, this last equation follows from

g(φ(v1), φ(v2)) = dα(φ(v1), v2) = −dα(v2, φ(v1)) = −g(v2, φ2(v1)) 
(7.12)

= σgεg(v1, v2) − σgα(v1)α(v2) . 

Remark 7.5. Lemma 7.1 recovers key identities satisfed by ε-contact structures which in
classical references are taken as part of the defnition of Riemannian contact structures
[161] (ε = sg = 1), Lorentzian contact structures [164] (ε = sg = −1) or para-contact
structures [676] (ε = −sg = 1).

Remark 7.6. Note that the characteristic endomorphism of an ε -contact metric structure
(g, α, ε) is always skew-symmetric with respect to g, that is,

g(φ(v1), v2) + g(v1, φ(v2)) = 0 , ∀ v1, v2 ∈ TM . (7.13)
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Given an ε -contact structure (g, α, ε) we defne yet another endomorphism, denoted by
l ∈ End(TM), as follows:

l(v) = Rg(v, ξ)ξ , ∀ v ∈ X(M) , (7.14)

where Rg denotes the Riemann curvature tensor of g. The endomorphism l : TM → TM 
should not be confused with the endomorphism determined by the Ricci curvature, which
we denote by Qg. This makes fve the endomorphisms (φ, h, τ, l, Qg) canonically associated
to every ε -contact structure (g, α, ε). Manifolds equipped with an ε -contact structure
(g, α, ε) admit a special frame which is very convenient for computations.

Defnition 7.3. Let (g, α, ε) be an ε -contact metric structure on M with Reeb vector feld
ξ ∈ X(M). An ε -contact frame is a local frame {ξ, u, φ(u)}, where u ∈ X(M) is a nowhere
vanishing vector feld satisfying:

g(u, u) = σg ε , g(u, ξ) = 1 − ε2 . (7.15)

When ε = 0 we will refer to {ξ, u, φ(u)} as a light-cone frame for (g, α, 0), following
standard usage in Lorentzian geometry.

Remark 7.7. It is a direct calculation to verify that {ξ, u, φ(u)} is indeed a local frame.
We have:

g(ξ, ξ) = ε , g(u, φ(u)) = 0 , g(ξ, φ(u)) = 0 , g(φ(u), φ(u)) = 1 , (7.16)

whence φ(u) is locally nowhere vanishing and point-wise orthogonal to the real span of ξ 
and u.

Proposition 7.2. Let (g, α, ε) be an ε -contact metric structure. The following equations
hold:

rξξ = 0 , rξφ = 0 , h(ξ) = 0 , l(ξ) = 0 , Tr(h) = 0 , (7.17)

Lξα = 0 , Tr(τ) = 0 , h ◦ φ + φ ◦ h = 0 , 

where r denotes the Levi-Civita connection with respect to g. Furthermore, both h and
τ are symmetric with respect to g.

Proof. The proof of Equations (7.17) follows by direct computation on an ε -contact frame.
Thus, we prove only the symmetry properties of h and τ . We compute:

g(h(v1), v2) = g((Lξφ)(v1), v2) = g(Lξφ(v1) − φ(Lξv1), v2) 
(7.18)

= g(−rφ(v1)ξ + φ(rv1 ξ), v2) . 

This expression vanishes whenever v1 or v2 are equal to ξ. Given an ε -contact frame
{ξ, u, φ(u)}, assume now that both v1 and v2 belong to the span of of u and φ(u). We
obtain that

g(h(v1), v2) = α(rφ(v1)v2 + rv1 φ(v2)) = α(rφ(v2)v1 + rv2 φ(v1)) = g(v1, h(v2)) , (7.19)

where we have used that α([φ(v1), v2]) + α([v1, φ(v2)]) = 0, since

0 = g(φ(v1), φ(v2)) = dα(φ(v1), v2) − dα(φ(v2), v1) = (Lφ(v1)α)(v2) − (Lφ(v2)α)(v1) 
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= α([φ(v1), v2]) + α([v1, φ(v2)]) . (7.20)

The symmetry of τ follows now directly:

g(τ (v1), v2) = g(h(φ(v1)), v2) = g(φ(v1), h(v2)) = −g(v1, φ(h(v2))) = g(v1, τ(v2)) , (7.21)

and we conclude.

An ε -contact structure (g, α, ε) also satisfes the following identities, which play a key role
in the classifcation of εη -Einstein contact structures.

Proposition 7.3. Let (g, α, ε) be an ε -contact metric structure. The following equation
holds:

2φ(rξ) = h + σg(ε − ξ ⊗ α) , (7.22)

Remark 7.8. We can apply φ to the second equation in the previous proposition, obtaining

2φ2(rξ) = −2σgε rgξ = σgε φ + φ ◦ h . (7.23)

For ε 6= 0, that is, for ε -contact structures with non-null Reeb vector feld, this equation
gives the well-known formula for the covariant derivative of ξ [161, 677]. For ε = 0 this
equation reduces to τ = 0, which we will prove independently in Lemma 7.3. Therefore,
for ε -contact structures with null Reeb vector feld, the covariant derivative of the Reeb
vector is not prescribed in terms of φ and h. This has important consequences in the
classifcation of εη -Einstein ε -contact structures with null Reeb vector feld.

Proof. We use Koszul’s formula for the Levi-Civita connection:

− 2g(φ(rv1 ξ), v2) = 2g(rv1 ξ, φ(v2)) = ξ · g(v1, φ(v2)) − φ(v2) · α(v1) − g(Lξv1, φ(v2)) 

+ g([φ(v2), v1], ξ) − g(Lξ(φ(v2)), v1) = −g(h(v1), v2) − φ(v2) · α(v1) − α([v1, φ(v2)]) 

= −g(h(v1), v2) + g(φ2(v1), v2) = −g(h(v1), v2) + g(σg(−εv1 + α(v1)ξ), v2) , (7.24)

for every v1, v2 ∈ X(M), where we have used φ2 = σg (−ε Id + ξ ⊗ α) and the equation

dα(v1, φ(v2)) = v1 · α(φ(v2)) − φ(v2) · α(v1) − α([v1, φ(v2)]) 
(7.25)

= −φ(v2) · α(v1) − α([v1, φ(v2)]) . 

Also, observe that we have used the notation v ·f for v ∈ X(M) and f ∈ C∞(M) to denote
v(f) ∈ C∞(M).

Remark 7.9. Note that the equation for rξ given by Proposition 7.3 di˙ers from the one
usually found in the literature by a factor of 1

2 . This discrepancy is due to the di˙erent
convention we are using for the exterior derivative. Given any p-form ω, we defne its
exterior derivative dω as the (p + 1)-form given by:X 

dω(X0, . . . , Xp) = ˆ(−1)iXi(ω(X0, . . . , Xi, . . . , Xi)) (7.26)

X i 

ˆ ˆ+ (−1)i+j ω([Xi, Xj ], X0, . . . ,Xi, . . . ,Xj , . . . , Xp) . (7.27)
i<j 

Much of the literature on contact geometry, see for example [161], uses the conventions of
Kobayashi and Nomizu [479], in which the formula of the exterior derivative di˙ers by a
factor of 1 from the one stated above.p+1 
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Proceeding by analogy with the theory of Riemannian contact metric structures we intro-
duce the notions of Sasakian and K-contact ε -contact metric structures.

Defnition 7.4. An ε -contact metric structure (g, α, ε) is said to be Sasakian if h = 0. It
is said to be K-contact if the Reeb vector feld is Killing, that is, if Lξg = 0.

Remark 7.10. The Sasakian and K-contact conditions are well known to be equivalent for
ε -contact structures with ε 6= 0 in three dimensions, see [161, 164, 676]. However, as we
will see in Section 7.2, this fails to be the case for null contact metric structures. Indeed,
Example 7.4 shows that the theory of Sasakian null contact metric structures is strictly
richer that the theory of null K-contact structures.

Sasakian ε -contact metric structures with ε 6= 0 have been extensively studied in the
literature, see for instance [161], [164] or [678] for more details and an exhaustive list of
references. In particular, it is well known that the Sasakian condition can sometimes be
equivalently formulated as a curvature condition involving the Ricci curvature tensor Ricg.
Since this will be of use later, we briefy review this result using our conventions.

Proposition 7.4. Let (g, α, ε) be an ε -contact structure with ε 6= 0. Then� � 
Ricg(ξ, ξ) = ε σg 

1 
2 

1 − Tr(h2)
4 

. (7.28)

where Ricg is the Ricci curvature of g.

Proof. The proofs of the proposition in the Riemannian and Lorentzian ε = −1 cases are
presented in detail in [161] and [164], respectively. Hence we focus on the para-contact
case.

1Proposition 7.3 adapted to the para-contact case yields rξ = −1 φ + φ ◦ h. Hence,2 2 
denoting by Rg the Riemann curvature tensor, we have that

Rg(ξ, v)ξ = rξrvξ −rvrξξ −r[ξ,v]ξ 
(7.29)1 1 1 1 

= − rξ(φ(v)) + rξ(φ(h(v))) + φ([ξ, v]) − φ(h([ξ, v])) ,
2 2 2 2 

for v ∈ ker(α) and where we used that rξξ = 0. Applying φ to the previous equation,
taking into account that φ2 = Id− ξ ⊗ α and that rξφ = 0, we obtain:

1 1 1 
φ(Rg(ξ, v)ξ) = rξ(−v + h(v)) + [ξ, v] − h([ξ, v])) , (7.30)

2 2 2 

where we have used that α ◦ φ = α ◦ h = 0 and that α([ξ, v]) = 0 (the latter equation
follows from the para-contact condition dα = − ? α). Applying now Proposition 7.3, we
conclude:

1 1 1 
φ(Rg(ξ, v)ξ) = (rξh)(v) + φ(v) − h2(φ(v)) . (7.31)

2 4 4 

On the other hand, φ2(Rg(ξ, v)ξ) = Rg(ξ, v)ξ since α(Rg(ξ, v)ξ) = 0 vanishes identically.
Consequently,

1 1 1 
Rg(ξ, v)ξ = φ(rξh)(v) + φ2(v) − h2(v) . (7.32)

2 4 4 
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Equation (7.31) implies that

1 1 1 
φ(Rg(ξ, φ(v))ξ) = − φ(rξh)(v) + φ2(v) − h2(v) . (7.33)

2 4 4 

Using now the previous formulae for v of unit norm we obtain:

1 1 
g(Rg(ξ, v)ξ, v) + g(φ(Rg(ξ, φ(v))ξ), v) = − Tr(h2) = −Ricg(ξ, ξ) , (7.34)

2 4 

1where we used the fact that g(h2φ(v), v) = −g(h2(v), v), so g(h2(v), v) = Tr(h2). Hence,2 

1 
Ricg(ξ, ξ) = − 

2 
1 

+ Tr(h2) ,
4 

(7.35)

and we conclude.

Remark 7.11. The equation proved in Proposition 7.4 di˙ers from the one found usually in
the literature by a factor of 1 . This di˙erence can be traced back to the di˙erent convention4 
used in this work for the exterior derivative and h with respect to the conventions used in
References [161] and [164].

Proposition 7.5. An ε -contact structure (g, α, ε) with ε σg = 1 is Sasakian if and only if

ε
Ricg(ξ, ξ) = σg . (7.36)

2 

Proof. The only if direction follows by setting h = 0 in Proposition 7.4. Conversely, if
εRicg(ξ, ξ) = σg then Proposition 7.4 implies that Tr(h2) = 0. Taking into account that2 

φ is skew-adjoint with respect to g and that h is self-adjoint with respect to g, we obtain
g(h2(X), φ(X)) = 0 for every vector feld X. Since h(ξ) = 0 and g is positive defnite when
restricted to ker(α) (assuming εσg = 1), then condition Tr(h2) = 0 implies that h2 = 0.
Since h is self-adjoint, this yields h = 0.

7.1.1 Globally hyperbolic ε -contact metric three-manifolds

In this section we describe ε -contact metric structures on globally hyperoblic Lorentzian
manifolds. This class of ε -contact metric three-manifolds is specially relevant for our pur-
poses, since they can be used to construct globally hyperbolic Lorentzian six-manifolds
equipped with a Ricci fat metric connection with totally skew-symmetric and closed tor-
sion, as described in Section 7.4 and Theorem 7.5. At the same time, globally hyperbolic
solutions of six-dimensional Supergravity play a prominent role in the celebrated fuzzball
proposal to describe the microscopic entropy of a black hole, see [42, 197] and references
therein for more details.

Let (M, g) be a globally hyperbolic Lorentzian three-manifold. A celebrated theorem
of Bernal and Sánchez [345] states that (M, g) admits the following presentation:

(M, g) = (R × X, −β2 dt ⊗ dt + qt) , (7.37)t 

def.where t is a coordinate on R, {βt}t∈R is a family of nowhere vanishing functions on X = 
{0} × X and {qt} is a family of complete Riemannian metrics on X. In this presentation,
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(M, g) is oriented and time-oriented, which immediately fxes an orientation on X. We
denote by νqt the Riemannian volume form associated to qt. Let α be a one form on M .
Set e = βt dt. We writet 

0α = Ft e + α⊥ , (7.38)t 

where {Ft}t∈R is a unique family of nowhere vanishing functions on X and {αt}t∈R is a
unique family of one-forms on X. With these provisos in mind, the dual of α can be
computed to be:

? α = −Ft νqt − e 0 ∧ ?qt α
⊥ , (7.39)t 

where ?qt denotes the Hodge dual of (X, qt). On the other hand, the exterior derivative of
α reads

0 0 0dα = dXFt ∧ e + 
Ft 

dXβt ∧ e +
1 
e ∧ ∂tα⊥ + dXα

⊥ , (7.40)t t t t tβt βt 

def. 1where dX is the exterior derivative on X. Defne nt = ∂t. Altogether, the previousβt 
discussion implies the following characterization of ε -contact structures on (M, g).

Proposition 7.6. Let (M, g) = (R×X, −β2 dt⊗dt+qt) be a globally hyperbolic Lorentziant 
three-manifold. A one-form α ∈ Ω1(M) defnes an ε -contact metric structure on (M, g) if
and only if:

1 
dXαt 

⊥ = Ft νqt , ?qt αt 
⊥ + dX(βtFt) = Lnt αt 

⊥ , |αt 
⊥|q 

2 
t = ε + Ft 

2 , (7.41)
βt � 

α⊥ 0 + α⊥where {Ft}t∈R, {βt} and are defned above and α = Ft e .t tt∈R 

Remark 7.12. The previous proposition yields a system of fow equations for a pair of� 
α⊥families of functions {Ft}t∈R, {βt}t∈R, a family of one-forms t and a family of

t∈R 
complete Riemannian metrics {qt}t∈R on an oriented two-manifold X. To the best of our
knowledge, this system has not been studied in the literature. We hope to study it in more
detail elsewhere.

Defnition 7.5. Given a three-manifold M = R × X, a globally hyperbolic ε -contact struc-
ture on M is a tuple n o 

({βt}t∈R , {Ft} α⊥ , {qt}t∈R) , (7.42)t∈R , t 
t∈R 

defned as specifed in Remark 7.12, which satisfes Equations (7.41).� 
α⊥Given a globally hyperbolic ε -contact structure ({βt}t∈R , {Ft} 

t∈R , {qt}t∈R), itt∈R , t 
is clear from the previous discussion how to reconstruct (g, α, ε). We consider now a
particular example in the case ε = 1.

Example 7.1. In the conditions of Proposition 7.6 set

Ft = 0 , βt = 1 . (7.43)

With these choices for {Ft}t∈R and {βt}t∈R, Equations (7.41) read

dXα
⊥ = 0 , ?qt α

⊥ = ∂tα⊥ , |α⊥|2 = ε , (7.44)t t t t qt 
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which immediately implies ε = 1, corresponding to the case in which the Reeb vector feld
is spacelike and the associated pair (g, α, ε = 1) defnes a para-contact metric structure.
Consider now

(X, qt) = (R2 , e 2Ut (dx ⊗ dx + dy ⊗ dy)) , (7.45)

where {Ut}t∈R is a family of constant functions and (x, y) are coordinates on R2 . Let us
write α⊥ = eUt (α⊥ 

1 dx + α2 
⊥dy). With these assumptions, Equations (7.44) are equivalent

to
Ut∂t(α1 

⊥ e Ut ) = −α2 
⊥ e , ∂t(α2 

⊥ e Ut ) = α1 
⊥ e Ut , (α1 

⊥)2 + (α2 
⊥)2 = 1 . (7.46)

These equations are solved by:

α⊥ 
1 e Ut = l2 cos(t) − l1 sin(t) , α⊥ 

2 e Ut = l1 cos(t) + l2 sin(t) , e 2Ut = l12 + l22 , (7.47)

for real constants l1 and l2 such that l12 + l2 6= 0.2 

7.2 Null contact metric structures

The case of ε -contact metric structures with null Reeb vector feld (ε = 0) seems to be
new in the literature and thus deserves further attention. For simplicity in the exposition,
we will refer to Lorentzian ε -contact metric structures with ε = 0 simply as null contact
structures. The defnition of null contact metric structure allows for the Reeb vector feld
to be identically zero. We will refer to this case as being trivial. Unless otherwise specifed,
we will always consider non-trivial null contact metric structures.

Remark 7.13. Let (g, α) be a null contact structure. We have:

α ∧ dα = −α ∧ ?α = 0 , (7.48)

where we have used that |α|2 = 0. Therefore, the previous computation implies thatg 
the one-form α of a null contact structure is not a contact form since it does not satisfy
α ∧ dα =6 0. Nevertheless, given that the defnition of ε -contact structure encompasses
Riemannian contact (ε = 1), Lorentzian contact (ε = −1) and para-contact (ε = 1) metric
structures, we interpret the remaining case ε = 0 as a natural generalization of the formers
but in which the Reeb vector feld is null. Hence, we will continue referring to the case
ε = 0 as a null contact structure. Moreover, we will show later in this section that null
contact structures admit meaningful notions of Sasakianity and K-contactness, analogously
to the ε 6= 0 cases.

Having shed some light onto the nature of null contact structures, we proceed to investigate
their most relevant properties. We recall that Lemma 7.1 applied to a null contact structure
(g, α) implies:

φ2 = −ξ ⊗ α , (7.49)

from which the following lemma follows.

Lemma 7.2. The characteristic endomorphism φ of a null contact metric structure (g, α) 
satisfes

φ3 = 0 . (7.50)

Therefore, φ is nilpotent.
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def.In the null contact case, the tensor feld h = Lξφ satisfes additional properties not listed
in Proposition 7.3 (compare also with Remark 7.8).

Lemma 7.3. Let (g, α) be a null contact structure. Then φ ◦ h = h ◦ φ = 0.

Proof. Let v1, v2 ∈ TM . Combining the frst and ffth equations in Lemma 7.1, we have

dα(v1, φ(v2)) = −α(v1)α(v2) . (7.51)

Applying the Lie derivative along the Reeb vector feld ξ to both sides of the previous
equation, we obtain

dα(Lξv1, φ(v2))+dα(v1, h(v2))+dα(v1, φ(Lξv2)) = −α(Lξv1)α(v2)−α(v1)α(Lξv2) , (7.52)

whence
dα(v1, h(v2)) = 0 , (7.53)

which by the frst equation in Lemma 7.1 is equivalent to

g(v1, φ ◦ h(v2)) = 0 , (7.54)

for every v1, v2 ∈ TM . Hence, φ ◦ h = 0, which, combined with Proposition 7.2 implies
h ◦ φ = 0 and we conclude.

Proposition 7.7. The tensor feld h associated to a null contact structure (g, α) over M 
can always be written as

h = µ ξ ⊗ α , (7.55)

for a function µ ∈ C∞(M).

Remark 7.14. The previous proposition implies that h cannot have non-zero eigenvalues,
in notable contrast with the situation occurring when ε 6= 0 [161, 162, 164], where certain
eigenbundles of h with non-zero eigenvalue play a crucial role in the classifcation of εη -
Einstein and so-called (κ, µ) contact metric three-manifolds [161, 679].

Proof. Choose a light-cone frame {ξ, u, φ(u)}. By Lemma 7.3, φ(ξ) = 0 hence ξ ∈ ker(φ).
By Remark 7.7 we have g(φ(u), φ(u)) = 1, whence u ∈/ ker(φ). Furthermore, φ2(u) = −ξ,
so φ(u) ∈/ ker(φ) and we conclude that ker(φ) = SpanC∞ {ξ}. By Lemma 7.3 we have
φ ◦ h = 0, and thus Im(h) ⊆ ker(φ), whence

h = γ ⊗ ξ (7.56)

for a certain one-form γ. Since h(ξ) = 0 (see Proposition 7.3) we conclude that γ = 
µα + c φ(u)[ for some functions µ and c. On the other hand, by Lemma 7.3 we have
h ◦ φ = 0, which is equivalent to γ ◦ φ = 0. This implies that c = 0 after evaluating at u,
that is, imposing γ(φ(u)) = 0.

Remark 7.15. Expressed in a light-cone frame {ξ, u, φ(u)}, the endomorphism h has the
following point-wise matrix form: ⎡⎣ 0 µ 0 

0 0 0 

⎤⎦h = , 
0 0 0 
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whence it has a unique type as an endomorphism of the tangent space. This shall be
compared with the results of [677] where, in the para-contact case, the possible types of h 
in an orthonormal special basis were classifed.

The additional properties satisfed by the tensor feld h allows us to obtain an explicit
expression for the Lie brackets of a light-cone frame {ξ, u, φ(u)}.

Lemma 7.4. Let (g, α) be a null contact structure overM . For a light-cone frame {ξ, u, φ(u)}
we have:

[ξ, u] = b ξ + c φ(u) , [ξ, φ(u)] = (µ − c) ξ , [u, φ(u)] = e ξ + u + f φ(u), (7.57)

where µ = g(u, h(u)) and b, c, e and f are local functions.

Proof. Equation Lξα = 0 implies that α([ξ, u]) = 0, whence [ξ, u] = b ξ +c φ(u). Therefore,

[ξ, φ(u)] = φ([ξ, u]) + h(u) = −c ξ + µ ξ = (µ − c) ξ . (7.58)

Furthermore, by the ε -contact structure condition ?α = −dα, we deduce that α([u, φ(u)]) = 
1, so necessarily [u, φ(u)] = e ξ + u + f φ(u).

The following examples show that null contact metric structures are abundant.

Example 7.2. TakeM = R3 and fx g = δ to be the standard Minkowski metric of signature
(−, +, +) in R3 with orthonormal coordinates (t, x, y), t being timelike. Then

δ = −dt ⊗ dt + dx ⊗ dx + dy ⊗ dy , α = ey (dt − dx) (7.59)

is a null contact metric structure. The characteristic endomorphism of this null contact
structure can be found to be

φ = ey ∂y ⊗ dt − ey ∂y ⊗ dx + ey (∂t + ∂x) ⊗ dy . (7.60)

A direct computation shows that

φ2 = e 2y(∂t + ∂x) ⊗ dt − e 2y(∂t + ∂x) ⊗ dx = −ξ ⊗ α , φ3 = 0 , (7.61)

as expected. The Reeb vector feld is given by ξ = α] = −ey (∂t + ∂x) and we have

Lξδ = ey (dt dy − dx dy) . (7.62)

Hence (δ, α) is not K-contact, and by Proposition 7.11 below, it cannot be Sasakian either.
On the other hand, the endomorphism h can be found to be

def. 
h = Lξφ = −ξ ⊗ α , (7.63)

in agreement with Proposition 7.7 with µ = −1.
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Example 7.3. Consider the M = SL(2, R), where fSL(2, R) denotes the universal cover
group of SL(2, R). There exists a Lorentzian metric g with left-invariant orthonormal

0 1 2, e , e SL(2, R) satisfying [680]:on f 
f 

� 
global frame e 

0 2 1 2 2 1de = e 1 ∧ e , de = e 0 ∧ e , de = −e 0 ∧ e (7.64)

and whose associated Lorentzian metric g is given by:

0 1 2 g = −e 0 ⊗ e + e 1 ⊗ e + e 2 ⊗ e . (7.65)

2 2Hence ?e0 = −e1 ∧ e , ?e1 = −e0 ∧ e and ?e2 �0 ∧ e 
0 1 2left-invariant one-form on M and we expand it the basis e , e , e ,

0 1 2α = α0e + α1e + α2e , (7.66)

for some real constant coeÿcients {αa}, a = 0, 1, 2, satisfying α2 = α1
2 + α2

2 . We compute:0 

2 1dα = α0e 1 ∧ e + α1e 0 ∧ e 2 − α2e 0 ∧ e = − ? α . (7.67)

1= e We take α to be a null and.

fSL(2, R) equipped with the Lorentzian
metric g defnes a null contact structure (g, α). We obtain now the characteristic endomor-
Therefore, every null left-invariant one-form on

�phism φ of (g, α) as well as its square. A direct computation yields the following matrix
0 1 2representation for φ in the basis e , e , e :

φ = 

⎡⎣ 0 α2 −α1 
α2 0 α0 

⎤⎦ 
−α1 −α0 0 

For the square and cubic powers of φ we obtain:

φ2 = 

⎡⎣ α2 
0 α0α1 α0α2 

−α2−α0α1 1 −α1α2 

⎤⎦ = − [ξ ⊗ α] , φ3 = 0 , 
−α0α2 −α1α2 −α2 

2 

as expected from Lemma 7.2.

Remark 7.16. By the results of [681, 682], see in particular Theorem A in [682], Exam-
ples 7.2 and 7.3 show that all closed Lorentzian three-manifolds admitting a non-compact
isometry group carry null contact structures.

We generalize now Example 7.3 by classifying all simply connected, Lorentzian, three-
dimensional Lie groups admitting left-invariant null contact structures. For this, we will
exploit the classifcation of this type of groups available in the literature [679, 680, 683],
which we summarize for completeness in Appendix 7.A.

Proposition 7.8. A three-dimensional connected and simply connected Lie group G admits
a left-invariant null contact structure (g, α) if and only if (G, g, α) is isomorphic, through
a possibly orientation-reversing isometry, to one of the items listed in the following table
in terms of the orthonormal frame {e0, e1, e2} appearing in Theorem 7.6:
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g Structure constants (s ∈ Z2) α G 

g1 a 6= 0 , b = s α1 = 0 , α0 = −α2 fSL(2, R) 
a 6= 0 , b = c = s α1 = 0 , α2 = α2 

0 2 fSL(2, R) 
g3 

a = c = s , b 6= 0 
α2 = 0 , α2 = α2 

0 1 

fSL(2, R) 
a = s , b = 0 , c = s eE(1, 1) 
a = b = c = s α2 = α2 

1 + α2 
2 , α1, α2 6= 00 

fSL(2, R) 
g4 

b = s + µ , a 6= 0 , µ ∈ Z2 
α1 = 0 , α0 = µα2 

fSL(2, R) 
b = s + µ , a = 0 , µ ∈ Z2 eE(1, 1) 

g6 
µa = (b + s) , µd = (c + s) 

b = c , a = d 6= 0 
α1 = 0 , α0 = −µα2 G6 

Proof. Every connected and simply connected three-dimensional Lorentzian Lie group is
isometric to one of the items listed in Theorem 7.6 through an isometry which may be
orientation-reversing. Therefore we proceed on a case by case basis by solving the equation

? α = −s dα , s ∈ {−1, +1} (7.68)

in each of the cases listed in the table appearing in Theorem 7.6. The sign s is introduced
because the ε -contact condition is not invariant under orientation reversing morphisms. If
a solution is found with s = −1 then an orientation reversing isometry yields an isomorphic
Lorentzian Lie algebra admitting a null-contact structure satisfying equation ?α = −dα.

0 1Let {e0, e1, e2} be the frame appearing in Theorem 7.6 and let {e , e , e2} be its dual frame.
2We fx the volume form to be ν = e0 ∧ e1 ∧ e . For the rest of the proof we will write

0 1 2α = α0 e + α1 e + α2 e , (7.69)

where α0, α1 and α2 are real coeÿcients satisfying α2 = α1
2 + α2 (hence α0 6= 0 in order0 2 

0 1for α to be non-zero). If {e , e , e2} denotes the dual coframe, we compute:

2 1? α = −α0e 1 ∧ e 2 − α1e 0 ∧ e + α2e 0 ∧ e . (7.70)

• Case g1. In the orthonormal frame for g1 given in Appendix 7.A, Equation ?α = 
−s dα is equivalent to

0 ∧ e 0 ∧ e 1 ∧ e 2(−aα1 − bα2) e 1 + (aα0 + bα1 + aα2) e 2 + (bα0 − aα1) e 
(7.71)

2 = s (α0 e 1 ∧ e + α1 e 0 ∧ e 2 − α2 e 0 ∧ e 1) , 

A solution (a, b) exists for a non-zero α if and only if b = s. Using that a 6= 0 by
Theorem 7.6, if b = s we obtain α0 = −α2, so α1 = 0.

• Case g2. In the orthonormal frame for g2 given in Appendix 7.A, Equation ?α = 
−s dα is equivalent to

2aα1e 0 ∧ e 2 + (cα0 − bα2) e 0 ∧ e 1 + (cα2 + bα0) e 1 ∧ e 
(7.72)

2 1 = sα0 e 1 ∧ e + sα1 e 0 ∧ e 2 − sα2 e 0 ∧ e . 
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The previous equations imply the condition c2 + (b − s)2 = 0, whose unique solution
is c = 0 and b = s. However the value c = 0 is forbidden for g2 algebras, so no null
contact structures exist on this type of algebras.

• Case g3. In the orthonormal frame for g3 given in Appendix 7.A, Equation ?α = 
−s dα is equivalent to

2 1 2 1cα0 e 1 ∧ e + aα1 e 0 ∧ e 2 − bα2 e 0 ∧ e = sα0e 1 ∧ e + sα1e 0 ∧ e 2 − sα2e 0 ∧ e . (7.73)

Since α0 =6 0 if α is non-vanishing, we have c = s. If α1 = 0, then α2 = α2 and b = s.0 2 
If α2 = 0, then α2 = α2 and a = s. If α1, α2 6= 0, then a = b = s.0 1 

• Case g4. In the orthonormal frame for g4 given in Appendix 7.A, Equation ?α = 
−s dα is equivalent to

1aα1 e 0 ∧ e 2 + (−(2µ − b)α0 + α2)e 1 ∧ e 2 + (α0 − bα2) e 0 ∧ e 
(7.74)

2 1 = sα0 e 1 ∧ e + sα1 e 0 ∧ e 2 − sα2 e 0 ∧ e . 

This equation admits non-trivial solutions only if α2 =6 0, b =6 s (which is required in
order to have α0 6= 0) and

b2 − 2b(s + µ) + 2(sµ + 1) = 0 . (7.75)

The previous equation has the unique solution b = µ + s, which satisfes b 6= s.
Setting b = µ + s we obtain α0 = µα2, whence α1 = 0.

• Case g5. In the orthonormal frame for g5 given in Appendix 7.A, Equation ?α = 
−s dα is equivalent to

2 2(aα1 +bα2) e 0 ∧e 1 +(cα1 +dα2) e 0 ∧e = s (α0 e 1 ∧e +α1 e 0 ∧e 2 −α2 e 0 ∧e 1) . (7.76)

This equation implies α0 = 0, which in turn yields α = 0. Therefore, g5 does not
admit null contact structures.

• Case g6. In the orthonormal frame for g6 given in Appendix 7.A, Equation ?α = 
−s dα is equivalent to

2 2(dα0 +cα2) e 0 ∧e 1 +(−bα0 −aα2) e 1 ∧e = s (α0 e 1 ∧e +α1 e 0 ∧e 2 −α2 e 0 ∧e 1) . (7.77)

We obtain α1 = 0, so that α0 = −µα2 for µ ∈ Z2. Consequently, µa = s + b and
µd = s + c. The remaining conditions follow from equations ac = bd and a + d 6= 0,
which must hold by Theorem 7.6.

• Case g7. In the orthonormal frame for g7 given in Appendix 7.A, Equation ?α = 
−s dα is equivalent to

2(bα0 + aα1 + bα2) e 0 ∧ e 1 + (dα0 + cα1 + dα2) e 0 ∧ e 2 + (bα0 + aα1 + bα2) e 1 ∧ e 
2 = s(α0e 1 ∧ e + α1e 0 ∧ e 2 − α2e 0 ∧ e 1) . (7.78)

with a + d =6 0 and ac = 0. Imposing ac = 0 implies α0 = 0, whence a Lorentzian
Lie group with Lie algebra isomorphic to g7 does not admit non-trivial null contact
structures.
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7.2.1 Sasakian null contact structures

The Sasakian condition of a Riemannian or Lorentzian (para-)contact metric structure
with non-null Reeb vector feld can be defned in terms of the integrability of certain
endomorphism defned from φ on T (M × R) [161, 169, 679]. In the null case ε = 0, we
proceed in analogous way and we introduce the following endomorphism, which mimics
the defnition occurring in the case ε 6= 0:

J : T (M × R) → T (M × R) , (v, c ∂q) 7→ (φ(v) + c ξ, α(v)∂q) , (7.79)

where q is the fxed canonical coordinate on R and c ∈ R. A direct computation shows that
J2 = 0. We clarify frst the relevant notion of integrability of a feld of endomorphisms.

⎤ ⎥⎥⎦ 

Defnition 7.6. Let E ∈ Γ(TN ⊗ T ∗N) be a feld of endomorphisms on a manifold N .
Then, E is said to be integrable if around every point n ∈ N there exists a coordinate
system on which the local matrix representation of E has constant coeÿcients.

For almost complex structures the previous defnition is equivalent to the standard defni-

⎡ ⎢⎢⎣ 

tion of integrability in terms of existence of holomorphic charts. Necessary and suÿcient
conditions for a nilpotent endomorphism (such as J) to be integrable have been studied
in the literature, see [684–688] and [689] for a thorough exposition of this and related top-
ics. By a result of Thomson [687, Theorem 2], we have that J ∈ Γ(End(T (M × R))) is
integrable if and only if the following three conditions hold simultaneously:

• The Nijenhuis torsion tensor of J vanishes.

• J is a zero-deformable feld of endomorphisms.

• The distribution Ker(J) ⊂ T (M × R) is involutive.

Recall that the Nijenhuis torsion tensor associated to J is defned as

NJ (v1, v2) = [J(v1), J(v2)] − J [v1, J(v2)] − J [J(v1), v2] + J2[v1, v2] . (7.80)

Note that since J2 = 0, the last term in the right hand side identically vanishes. Also,
we remind the reader that a certain feld of endomorphisms is said to be zero-deformable
if around every point of M there exists a frame relative to which the Jordan form of this
endomorphism feld is constant.

Lemma 7.5. The endomorphism J ∈ Γ(End(T (M × R))) is zero-deformable.

Proof. Fix a point in M × R and consider the tangent-space basis {ξ, u, φ(u), ∂q}, where
{ξ, u, φ(u)} is a light-cone basis. In this basis J has the following matrix representation:

0 0 −1 1 
0 0 0 0 

J = . 
0 1 0 0 
0 1 0 0 

Since the basis (ξ, u, φ(u), ∂q) exists at every point in M × R, we conclude that J is always
locally conjugate to the same constant Jordan form.
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Lemma 7.6. The distribution Ker(J) ⊂ T (M × R) is involutive.

Proof. Fix a local frame {ξ, u, φ(u), ∂q} on M × R, where {ξ, u, φ(u)} is a light-cone frame
for M . The kernel of J is locally spanned by

Ker(J) = SpanC∞ (ξ, φ(u) + ∂q) . (7.81)

Lemma 7.4 implies now:

[ξ, φ(u) + ∂q] = [ξ, φ(u)] = (µ − c) ξ , (7.82)

and we conclude.

Proposition 7.9. A null contact metric structure (g, α) is Sasakian if and only if its asso-
ciated endomorphism J : T (M × R) → T (M × R) is integrable.

Proof. Assume frst that (g, α) is Sasakian, that is, h = 0. By Lemma 7.5 the endomor-
phism J is zero-deformable and by Lemma 7.6 its kernel Ker(J) is involutive. Therefore
by Theorem [687, Theorem 2] we only need to show that NJ vanishes to prove that J is
integrable. Since NJ is a tensor, it is enough to prove that it vanishes on a light cone frame
{ξ, u, φ(u), ∂q}. We compute:

NJ (ξ, u) = −J [ξ, φ(u)] = 0 , NJ (ξ, φ(u)) = −J [ξ, J(φ(u))] = 0 , (7.83)

NJ (u, φ(u)) = −J [J(φ(u)), J(φ(u))] = 0 , NJ (ξ, ∂q) = −J [ξ, J(∂q)] = 0 , (7.84)

NJ (u, ∂q) = [φ(u), ξ] − J [u, ξ] = −Lξ(φ(u)) + J(Lξu) 

= −Lξ(φ(u)) + φ(Lξu) = −h(u) = 0 , (7.85)

NJ (φ(u), ∂q) = [J(φ(u)), J(∂q)] − J [φ(u), J(∂q)] 

= [φ2(u), ξ] − J [φ(u), ξ] = φ2(Lξu) = 0 , (7.86)

whence J is integrable. The converse follows now directly by applying the previous formu-
lae, upon use of Lemmas 7.5 and 7.6 and the fact that h(u) = 0 if and only if h = 0.

We proceed now to classify all left-invariant Sasakian null contact structures on
simply connected, Lorentzian, three-dimensional Lie groups by exploiting Proposition 7.8.

Proposition 7.10. A three-dimensional connected and simply connected Lie group G ad-
mits a left-invariant Sasakian null contact structure (g, α) if and only if (G, g, α) is isomor-
phic, through a possibly orientation-reversing isometry, to one of the items listed in the
following table in terms of the orthonormal frame {e0, e1, e2} appearing in Theorem 7.6:

g Structure constants (s ∈ Z2) α G 

g1 a 6= 0 , b = s α1 = 0 , α0 = −α2 fSL(2, R) 
g3 a = b = c = s α2 = α2 

1 + α2 
0 2 

fSL(2, R) 
g4 b = s + µ , a = s , µ ∈ Z2 α1 = 0 , α0 = µα2 fSL(2, R) 
g6 

µsb = c = − s , a = d = ,2 2 α1 = 0 , α0 = −µα2 G6 
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Proof. We proceed by verifying which cases in Proposition 7.8 satisfy h = 0. By Proposition
7.7, it is enough to prove that h(u) = 0, where u ∈ {ξ, u, φ(u)} belongs to a light-cone
frame. In the following computations it will be very convenient to use that the matrix
expression of the characteristic endomorphism φ in the orthonormal basis {e0, e1, e2} used
at Theorem 7.6 is given by

φ = 

⎡⎣ 0 α2 −α1 
α2 0 α0 

⎤⎦ . (7.87)
−α1 −α0 0 

Furthermore, the Reeb vector feld ξ is given by ξ = −α0e0 + α1e1 + α2e2.

• Case g1. Since α1 = 0 by Proposition 7.8, then the Reeb vector feld reads ξ = 
1−α0(e0 + e2). A direct computation shows that (ξ, u = 2α0 
(e0 − e2), −e1) is a light-

cone frame (where φ(u) = −e1). Hence,

h(u) = α0[e0, e1] + α0[e2, e1] + φ([e2, e0]) = 0 , (7.88)

implying that every null contact structure on g1 is Sasakian.

• Case g3. According to Proposition 7.8 we distinguish between the cases α1 = 0 with
α2 =6 0, α2 = 0 with α1 6= 0 and α1, α2 =6 0. If α1 = 0, then ξ = α0(−e0 + µe2) 

1and (ξ, u = 2α0 
(e0 + µe2), µe1) is a light-cone frame. We obtain, after using that

b = c = s:
h(u) = α0(s − a)e0 + µα0(a − s)e2. (7.89)

Hence, h = 0 if and only if a = s. Similarly, if α2 = 0, then ξ = α0(−e0 + µe1) and
1{ξ, u = (e0 + µe1), µe2} is a light-cone frame (with φ(u) = µe2). Since a = c = s,2α0 

we compute:
h(u) = α0(s − b)e0 + µα0(b − s)e1 . (7.90)

Hence h = 0 if and only if b = s. The case α1, α2 6= 0 follows along similar lines.

• Case g4. In this case we have ξ = α0(−e0 + µe2) and get a light-cone frame (ξ, u = 
1 

2α0 
(e0 + µe2), µe1). We obtain:

h(u) = α0(−(2µ − b) + µ − a)e0 + α0(1 − µb + µa)e2 , (7.91)

which vanishes if and only if
1 − µb + µa = 0 . (7.92)

This is in turn equivalent to the constraint a = s.

• Case g6. In this case we have ξ = −α0(e0 + µe2) and the light-cone frame {ξ, u = 
1 (e0 − µe2), −µe1}, where φ(u) = −µe1. We fnd:2α0 

h(u) = −α0µ(d + µb)e0 − α0µ(c + µa)e2 , (7.93)

whence c = −µa and d = −µb. Taking into account now the constraints stated in
Proposition 7.8 we conclude.
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7.2.2 Null K-contact structures

For three-dimensional Riemannian contact structures, Lorentzian contact structures and
para-contact structures, the K-contact and Sasakian conditions are equivalent. However,
this fails to be the case for null contact structures, as the following example shows.

Example 7.4. Take M to be a connected and simply connected Lie group admitting a
+ −left-invariant global coframe {e , e , e2} satisfying:

+ 2 − 2 2 2de = −a e + ∧ e − − e + ∧ e , de = e − ∧ e , de = e + ∧ e − − a e − ∧ e , (7.94)

+ −where a ∈ R\ {0}. We denote by {e+, e−, e2} the frame dual to {e , e , e2}. We equip M 
with the Lorentzian metric

+ − 2 g = e e + e 2 ⊗ e (7.95)

− ∧ e+ ∧ e2 def. −and we fx the volume form to be ν = e . Set α = e , whence ξ = e+. Then,
(g, α) defnes a null contact structure on M since g(ξ, ξ) = 0 and

2? α = −α ∧ e = −dα . (7.96)

The characteristic endomorphism φ is given by:

φ(ξ) = 0 , φ(e−) = (ιe− ? α)
] = −e2 , φ(e2) = (ιe2 ? α)

] = ξ . (7.97)

Therefore, {ξ, e−, −e2} yields a light-cone frame. Similarly, φ2 can be shown to satisfy:

φ2(ξ) = 0 , φ2(e−) = −φ(e2) = −ξ , φ2(e2) = 0 . (7.98)

Hence we obtain φ2 = −ξ ⊗ α and φ3 = 0, as required. The fact that (g, α) is Sasakian
follows now from the following computation:

h(e−) = [ξ, φ(e−)] − φ([ξ, e−]) = −ξ + ξ = 0 . (7.99)

which, together with Proposition 7.7 implies that h vanishes identically. On the other
hand, ξ cannot be a Killing vector feld, because

(Lξg)(e−, e−) = −2 g([ξ, e−], e−) = −2a g(ξ, e−) = −2a 6= 0 , (7.100)

and a 6= 0 by assumption. Therefore, (g, α) is a Sasakian null contact structure which fails
to be K-contact.

Hence, the Sasakian condition does not imply the K-contact condition.

Proposition 7.11. Every three-dimensional null K-contact structure (g, α) is Sasakian.

Proof. Let ξ denote the Reeb vector feld associated to (g, α) and choose a light-cone frame
{ξ, u, φ(u)}. From the K-contact condition we have:

0 = −(Lξg)(u, φ(u)) = g(Lξu, φ(u)) + g(u, φ(Lξu)) + g(u, h(u)) = g(u, h(u)) , (7.101)

where we have used that φ is skew-adjoint with respect to g. On the other hand, Corollary
7.7 implies that h(u) = µ ξ for some function µ ∈ C∞(M). Since g(u, ξ) = 1, equation
g(u, h(u)) = 0 is equivalent to µ = 0 and thus h = 0.
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Proposition 7.12. Let ξ denote the Reeb vector feld associated to a Sasakian null-contact
structure (g, α), and let {ξ, u, φ(u)} be a light-cone frame. Then, (g, α) is K-contact if and
only if:

g(Lξu, u) = 0 , (7.102)

Proof. We evaluate Lξg on a light-cone frame {ξ, u, φ(u)}. A direct computation using
Lemma 7.4 shows that the only non-trivial term is

(Lξg)(u, u) = −2g(Lξu, u) (7.103)

and we conclude.

Remark 7.17. Indeed, not every Sasakian null contact structure satisfes that g(Lξu, u) = 
0. For instance, in Example 7.4, we have that:

g(Lξu, u) = g([e+, e−], e−) = a 6= 0 , (7.104)

as expected. Therefore we learn that the Sasakian condition for null contact structures
is weaker than the K-contact condition. Interestingly enough, this is in sharp contrast
to what occurs for non-null contact structures: for such structures these conditions are
equivalent in three dimensions whereas in higher dimensions the Sasakian condition is
stronger than the K-contact condition [161,164].

Using the classifcation of simply connected, Lorentzian, three-dimensional Lie groups ad-
mitting left-invariant Sasakian null contact structures presented in Proposition 7.10, we
obtain in the following an analogous classifcation for null K-contact structures.

Proposition 7.13. A three-dimensional connected and simply connected Lie group G ad-
mits a left-invariant null K-contact contact structure (g, α) if and only if (G, g, α) is iso-
morphic, through a possibly orientation-reversing isometry, to one of the items listed in
the following table in terms of the orthonormal frame {e0, e1, e2} appearing in Theorem
7.6:

g Structure constants (s ∈ Z2) α G 

g3 a = b = c = s α2 = α2 
1 + α2 

0 2 
fSL(2, R) 

g4 b = s + µ , a = s , µ ∈ Z2 α1 = 0 , α0 = µα2 fSL(2, R) 
g6 

µsb = c = − s 
2 , a = d = 2 α1 = 0 , α0 = −µα2 G6 

Proof. Proposition 7.11 states that every null K-contact structure is Sasakian. Therefore,
we proceed by checking which cases in Proposition 7.10 are in fact K-contact. By Proposi-
tion 7.12, we will test K-contactness by verifying if g([ξ, u], u) = 0. We use the terminology
introduced in Propositions 7.10 and 7.11:

• Case g1. We obtain [ξ, u] = [e0, e2] = −se1 −ae2 −ae0 =6 0, where a =6 0 by Theorem
7.6. Hence:

a 
g([ξ, u], u) = 6= 0 , (7.105)

α0 

whence g1 does not admit left-invariant null K-contact structures. In fact, Example
7.4 corresponds to a Lie group of type g1.
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• Case g3. We distinguish between the cases α1 = 0 or α2 = 0 and α1, α2 =6 0. If
α1 = 0, then [ξ, u] = µ[e2, e0] = µe1 = φ(u). Hence g([ξ, u], u) = 0. Similarly, if
α2 = 0, then [ξ, u] = µ[e1, e0] = −µe2 = φ(u) and g([ξ, u], u) = 0. For α1, α2 6= 0 
a direct computation shows that (Lξg)(ei, ej ) = 0 for every i, j ∈ {1, 2, 3}, whence
Lξg = 0 and every left-invariant Sasakian null contact structure on g3 is also K-
contact.

• Case g4. We have [ξ, u] = µ[e2, e0] = µae1 = aφ(u), so g([ξ, u], u) = 0 and the
Sasakian and K-contact conditions are equivalent on g4.

• Case g6. We have [ξ, u] = −µ[e2, e0] = 0, so g([ξ, u], u) = 0. Hence the Sasakian
and K-contact conditions are equivalent on g6.

The previous proposition and Example 7.4 show that the theory of null K-contact structures
and Sasakian null contact structures in three dimensions has the potential to be richer than
its ε 6= 0 counterpart, where the Sasakian and K-contact conditions are equivalent. Further
investigation of this issue is beyond the scope of this thesis.

7.3 εη -Einstein ε -contact metric manifolds

We introduce in this section the notion of εη -Einstein ε -contact metric structure on an ori-
ented three-manifoldM , which is a particular case of the standard notion of η -Einstein Rie-
mannian/Lorentzian contact metric structure when the Reeb vector feld has non-vanishing
norm. The defnition is motivated by the structure of six-dimensional Supergravity (cou-
pled to a tensor multiplet) and its solutions, see Section 7.4 and Theorem 7.5 for details
and applications.

Defnition 7.7. An ε -contact metric structure (g, α, ε) on M is said to be εη -Einstein if
the Ricci curvature tensor Ricg of g satisfes

Ricg =
sg 
(λ2 + κ ε) g − sg κα ⊗ α , (7.106)

2 
where sg = 1 if g is Riemannian, sg = −1 if g is Lorentzian and λ, κ ∈ R are real constants
such that κ ≥ 0 if sg = −1.

Remark 7.18. Whenever there is no possible confusion, we may abbreviate notation and
denote an εη -Einstein ε -contact metric structure (g, α, ε) just by εη -Einstein contact
structure.

Remark 7.19. Recall that we denote by Qg ∈ Γ(TM ⊗T ∗M) the endomorphism associated
to Ricg. Then, (g, α, ε) is εη -Einstein if and only if

Qg =
sg 
(λ2 + κ ε) Id − sg κ ξ ⊗ α , (7.107)

2 

in which case
Qg(ξ) = 

sg 
(λ2 − κ ε) ξ . (7.108)

2 
sgTherefore ξ is an eigenvector of Qg with eigenvalue ρξ = (λ2 − κ ε).2 
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Defnition 7.8. We denote by PContεη(ε, λ2, κ) the category of εη -Einstein ε -contact struc-
tures with respect to λ2 and κ and whose Reeb vector feld is of norm ε. Likewise, denote by

εη εηPCont (ε, λ2, κ) (PCont (λ2, κ)) the category of Lorentzian (Riemannian) εη -EinsteinL R 
ε -contact structures with respect to λ2 , κ and whose Reeb vector feld is of norm ε.

Remark 7.20. Let (g, α, ε) ∈ PContεη(ε, λ2, κ) with ε σg = 1. By Defnition 7.7, we have
σg

Ricg(ξ, ξ) = (λ2ε − κ) . (7.109)
2 

εOn the other hand, by Proposition 7.5 (g, α, ε) is Sasakian if and only if Ricg(ξ, ξ) = σg 2 .
This is equivalent to

λ2 = 1 + κε , (7.110)

In other words, an εη -Einstein ε -contact structure (g, α, ε) such that σgε = 1 is Sasakian
if and only if (g, α, ε) ∈ PContεη(ε, 1 + εκ, κ).

Lemma 7.7. Let (M, g, α, ε) ∈ PContεη(ε, λ2, κ). Then, the following equation holds:

Rg(v1, v2)(ξ) = K (α(v2) v1 − α(v1) v2) , (7.111)

where
def. σg(λ

2 − εκ)K = , (7.112)
4 

and Rg denotes the Riemann tensor on (M, g).

Proof. The results follows directly by plugging the εη -Einstein condition in the expression
for the Riemann tensor of a (pseudo-)Riemannian three-manifold in terms of its Ricci
curvature.

Remark 7.21. The previous proposition implies that a Riemannian εη -Einstein contact
εηmanifold (M, g, α, ε) ∈ PCont (λ2, κ) is a (κ, µ) manifold or, alternatively, a RiemannianR 

contact three-manifold whose Reeb vector feld belongs to the nullity distribution [690].

In connection to Section 7.1.1, where the ε -contact condition for a one-form on a globally
hyperbolic Lorentzian three-manifold was examined, now we consider the εη -Einstein con-
dition on globally hyperbolic Lorentzian three-manifolds. Using the notation of Section
7.1.1, we set

0(M, g) = (R × Xt, g = −β2 dt ⊗ dt + qt) , α = Ft e + α⊥ , (7.113)t t 

0where {βt}t∈R, {Ft}t∈R, {αt}t∈R and {qt}t∈R are parametric families on Xt, e = βt dt is
the normalized timelike one-form induced by the globally hyperbolic presentation of (M, g) 
and where we have considered, for every t ∈ R,

def.
Xt = {t} × X ⊂ M (7.114)

as an embedded manifold. We introduce the familiar Weingarten tensor Wt and second
fundamental form Θt:

1 
Wt = −rnt|T Xt ∈ Ω1(T Xt) , Θt = − L∂t g|T Xt×T Xt ∈ Γ(T ∗ Xt T ∗ Xt) , (7.115)

2βt 

associated to the embedding Xt ⊂ M . The trace of Θt with respect to qt, which we denote
by Trqt (Θt), is the mean curvature of the embedded surface Xt ⊂ M .
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α⊥Proposition 7.14. A tuple ({βt}t∈R , {Ft}t∈R , t t∈R , {qt}t∈R) on Xt is an εη -Einstein

contact structure as prescribed in (7.113) if and only if:

1 
dXt αt 

⊥ = Ft νqt , ?qt α
⊥ 
t + dX(βtFt) = Lnt α

⊥ 
t , |αt 

⊥|2 
qt = ε + Ft 

2 , (7.116)
βt 

Rqt − |Θt|2 
qt + (Trqt Θ)2 + c = 2κFt 

2 , dXt Trqt (Θt) + divqt (Θt) = κFt α
⊥ 
t , (7.117)

1 
Ricqt + Trqt (Θt)Θt − 2Θt(Id ⊗ Wt) − (Θ̇ 

t + rqt dXt βt)βt (7.118)
= κα⊥ ⊗ α⊥ − 

1
(λ2 + κε)qt ,t t 2 

where L denotes Lie derivative, dXt denotes the exterior derivative on Xt, Trqt denotes trace
with respect to qt, rqt represents the Levi-Civita connection of qt and c = 1 (5λ2 +3κε) is2 
a constant.

Proof. The frst line of equations in (7.116) is proven in Proposition 7.6. A direct compu-
tation shows that:

1 ˙Ricg(n, n) = |Θt|2 + ((Trqt Θ)2 +Δqt βt) , (7.119)qt βt 

Ricg(n)|T Xt = dXt Trqt (Θt) + divqt (Θt) , (7.120)
1 

Ricg|T Xt⊗T Xt = Ricqt + Tr(Θt)Θt − 2Θt(Id ⊗ Wt) − (Θ̇ 
t + rqt dXt βt) . (7.121)

βt 

Plugging these equations in the εη -Einstein condition (7.106) and combining them with
the trace of (7.106) we obtain the second and third lines in (7.116). For more details the
reader is referred to [627] and references therein.

Therefore, the εη -Einstein condition on a globally hyperbolic Lorentian three manifold
becomes, as expected, a dynamical equation on the evolution of a pair of functions, a one-
form and a metric on a two-dimensional oriented manifold. Note that the only equations
in (7.116) that contain time derivatives correspond to the second equation in the frst line
and the equation in the third line. These become the evolution equations for the tuple� 

α⊥({βt}t∈R , {Ft} 
t∈R , {qt}t∈R), while the rest of equations can be considered ast∈R , t 

constraint equations in order to formulate a Cauchy or initial value problem for Lorentzian
εη -Einstein ε -contact structures. Set

def. def. def. 
α⊥ def. def. def.

X = X0 , Θ = Θ0 , q = q0 , = α⊥ , β = β0 , F = F0 , (7.122)0 

and consider X as the Cauchy surface for the zero-time intial values (q, Θ, F, α⊥) associated
to a given tuple n o 

({βt}t∈R , {Ft}t∈R , α⊥ 
t , {qt}t∈R) (7.123)

t∈R 

satisfying equations (7.116). The following result is a direct consequence Proposition 7.14.� 
α⊥Proposition 7.15. If ({βt}t∈R , {Ft} 

t∈R , {qt}t∈R) is a solution of (7.116) thent∈R , t 
(q, Θ, F, α⊥) satisfes:

dXα
⊥ = F νq , |α⊥|2 = ε + F 2 , (7.124)q 

361



	

Chapter 7. Contact structures in six-dimensional Supergravity

Rq − |Θ|2 + (TrqΘ)2 + c = 2 κF 2 , dXTrq(Θ) + divq(Θ) = κF α⊥ , (7.125)q 

where Θ is a symmetric bilinear form on X.

Remark 7.22. Equations (7.124), to which we will refer as the constraint equations of an
εη -Einstein structure, generalize the well-known constraint equations of General Relativity
coupled to a cosmological constant in (2 + 1) dimensions via the coupling of an ε -contact
structure. If we take F = 0 then, the second equation in the frst line of (7.124) forces
ε = 1 and the whole system decouples. The second line in (7.124) corresponds in this case
to the constraint equations of General Relativity coupled to a cosmological constant. This
system has been studied in the literature, see [691, 692] and references therein. In fact, it
would be interesting to explore if a Hamiltonian formulation on (the cotangent space of)
Teichmüller space, in the lines of the one presented in [691,692], can be developed also for
εη -Einstein structures. Note that, under the assumption F = 0 the frst line reduces to
the condition of α⊥ being closed and of constant norm, a condition which if X is compact
can only be satisfed on the torus.

Proving the converse of Proposition 7.15, that is, proving that for every solution of (7.124)� 
α⊥ 

initial value problem of εη -Einstein ε -contact structures. This problem will be considered
elsewhere. Having said this, we expect the converse to hold due to the fact that εη -Einstein
ε -contact condition arises in a Supergravity theory, which is expected to pose consistent
initial value problems due to their supersymmetric structure [693].

We distinguish the cases κ = 0 and κ 6= 0. For the sake of simplicity, we focus
on the case κ = 0 in the following, with the goal of showing the existence of particular
solutions. If κ = 0 then Equations (7.124) decouple again (see Remark 7.22) and the second
line in (7.124) corresponds to the constraint equations of General Relativity coupled to a
cosmological constant. Hence, we focus on the frst line in (7.124), which we rewrite as
follows: q 

? dX α
⊥ + |α⊥|2 − ε = 0 , (7.126)

there exists a tuple ({βt}t∈R , {Ft}t∈R , t t∈R , {qt}t∈R) fulflling (7.116), would solve the

q 

with variable given by a one-form α⊥ ∈ Ω1(X) on a complete Riemann surface (X, q). We
focus on the null contact case ε = 0, since it seems to be new in the literature. In this
case, the previous equation reduces simply to

? dX α
⊥ + |α⊥|q = 0 . (7.127)

We introduce now local isothermal coordinates (x, y) on X, in which the metric q reads
q = F 2 (dx2 + dy2) for a local function F . In this coordinates, Equation (7.127) reads

∂xαy − ∂yαx = F (αx 
2 + αy 

2) 2
1 
, (7.128)

where we have written α⊥ = αxdx + αydy. Assuming αx = 0 the previous equation admits
the solution R 

F dx+f (y)αy = e , (7.129)

where f(y) is a local function depending only on y. Assuming on the other hand αy = 0 
the previous equation admits the solution R 

− F dy+f (x)αx = e , (7.130)

where f(x) is a local function depending only on x. Hence, we obtain the following result.
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Proposition 7.16. Every solution to the constraint equations of General Relativity coupled
to a cosmological constant is, at least locally, a solution to the constraint equations of an
εη -Einstein null contact structure with κ = 0.

We study now the εη -Einstein condition on a case by case basis by distinguishing the
signature of g and the causal character of the Reeb vector feld.

7.3.1 Riemannian εη -Einstein contact structures

We briefy review in this section the classifcation εη -Einstein Riemannian contact struc-
tures, with the goal of constructing solutions of Supergravity coupled to a tensor multiplet,
as explained in Sections 7.4 and 7.5. Riemannian contact structures on three-manifolds
have been extensively studied in the literature, see [690, 694, 695] and references therein.
Adapting and refning the results of [690, 694, 695] to our situation and conventions we
obtain the following theorem.

Theorem 7.1. [690, 694, 695] Let (M, g, α) be a three-dimensional complete and simply
εηconnected εη -Einstein Riemannian contact metric manifold, (M, g, α) ∈ PCont (λ2, κ).R 

Then one of the following holds:

• (M, g, α) is Sasakian. If (M, g, α) is in addition a Lie group equipped with a left-
invariant εη -Einstein Sasakian structure, then it is isomorphic1 to a left-invariant
εη -Einstein structure on:

1. SU(2) if λ2 = 1 + κ , κ > −1.

2. H3 if λ2 = 0, κ = −1.

• (M, g, α) is non-Sasakian and isomorphic to a left-invariant εη -Einstein structure on:

1 21. SU(2) if λ2 = −κ = − 1 µ , with 0 < µ < 1 the positive eigenvalue of the2 2 
tensor feld h.e2. E(2) if λ2 = κ = 0.

Proof. If (M, g, α) is Sasakian and not isomorphic to a Lie group equipped with a left-
invariant structure (g, α) then we are done. On the other hand, Reference [694] proves that
a complete and simply connected εη -Einstein non-Sasakian Riemannian contact three-
manifold has a Lie group structure respect to which its εη -Einstein structure is left-
invariant. Therefore, we use the classifcation [660] of three-dimensional Riemannian Lie
algebras to proceed on a case by case basis evaluating the εη -Einstein condition. We
distinguish between the Sasakian and the non-Sasakian cases.

• Sasakian case. First, if (M, g, α) is a Sasakian unimodular Lie group then there
exists an orthonormal left-invariant frame {e1, e2, e3} whose associated Lie brackets
satisfy [660]:

[e2, e3] = µ1e1 , [e3, e1] = µ2e2 , [e1, e2] = µ3e3 , (7.131)

1Two ε -contact structures are isomorphic in the sense given at Defnition 7.2.
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for some real constants µ1, µ2, µ3 ∈ R. This immediately implies that

1 3 2 1 3 2de = −µ1e 2 ∧ e , de = −µ2e 3 ∧ e , de = −µ3e 1 ∧ e , (7.132)

2where {e1, e , e3} is the coframe dual to {e1, e2, e3}. Expressing α = α0e
0 + α1e

1 + 
2α2e , the contact condition (we include the sign s ∈ Z2 in order to take into account

orientation-reversing isometries) reads

? α = sdα , (7.133)

what is equivalent to:

α1 = −sµ1α1 , α2 = −sµ2α2 , α3 = −sµ3α3 . (7.134)

Furthermore, the non-zero components of the Ricci curvature tensor Ricg read

1 2 2 2Ricg(e1, e1) = (µ1 − µ2 − µ3 + 2µ2µ3) , (7.135)
2 
1 2 2 2Ricg(e2, e2) = (−µ1 + µ2 − µ3 + 2µ1µ3) , (7.136)
2 

2 2 2Ricg(e3, e3) = 
1
(−µ1 − µ2 + µ3 + 2µ1µ2) , (7.137)

2 
Ricg(e1, e2) = Ricg(e1, e3) = Ricg(e2, e3) = 0 . (7.138)

We distinguish now the following subcases of the Sasakian unimodular case:

1– Assume α1, α2, α3 6= 0. Then µ1 = µ2 = µ3 = −s and Ricg = g, which follows2 
from λ2 = 1 and κ = 0. Therefore, choosing s = −1 we conclude that (M, g) is
isometric to SU(2) equipped with a left-invariant metric.

– Assume α1, α2 6= 0 and α3 = 0. Again, µ1, µ2 = −s. Since Ricg(e1, e2) = 0,
we obtain κ = 0. Consequently, λ2 = 1 which in turn implies, by equating
Ricg(e1, e1) = Ricg(e2, e2) = Ricg(e3, e3), that µ3 = −s. Taking s = −1, we
recover the previous case and we conclude that (M, g) is isometric to SU(2). A
similar analysis holds when α1, α3 6= 0 and α2 = 0 and when α2, α3 =6 0 and
α1 = 0.

1– Assume α2 = 0 and α2 = 1. Then, ξ = ±e1 and we obtain Ricg(e1, e1) == α3 1 2 
by the Sasaki condition. However, owing to the fact that α1 6= 0 implies that
µ1 = −s, then we have that

1 1 1 
Ricg(e1, e1) = − (µ2 − µ3)2 = . (7.139)

2 2 2 
1Therefore µ2 = µ3 = µ ∈ R. Now, since Ricg(e2, e2) = Ricg(e3, e3) = (2λ2 −1),2 

we get the constraint
λ2 = −sµ . (7.140)

Taking s = −1, we conclude that for µ > 0 (M, g) is isometric to SU(2) and
that for µ = 0 (M, g) is isometric to H3. A completely similar analysis holds
when α2

2 = 1 and α2
3 = 1.
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Secondly, if (M, g, α) is a Sasakian non-unimodular Lie group then there exists an
orthonormal left-invariant frame {e1, e2, e3} whose associated Lie brackets satisfy
[660]:

[e1, e2] = ae2 + be3 , [e1, e3] = ce2 + fe3 , [e2, e3] = 0 , (7.141)

for real numbers a, b, c, f ∈ R satisfying that a + f 6= 0. These Lie brackets immedi-
ately imply:

1 2 3 3 3de = 0 , de = −ae 1 ∧ e 2 − ce 1 ∧ e , de = −be1 ∧ e 2 − fe1 ∧ e . (7.142)

Therefore the contact condition imposes the following constraints:

cα2 + fα3 = sα2 , −aα2 − bα3 = sα3 , α1 = 0 . (7.143)

The components of the Ricci curvature tensor in this orthonormal basis read:
2 b2(b + c)2 c 

Ricg(e1, e1) = −a 2 − f2 − , Ricg(e2, e2) = − a 2 − − fa , (7.144)
2 2 2 

b2 2c 
Ricg(e3, e3) = −f2 + − − af , Ricg(e2, e3) = −ac − bf , (7.145)

2 2 
Ricg(e1, e2) = Ricg(e1, e3) = 0 . (7.146)

In particular, we have:

Ricg(e2, e2) + Ricg(e3, e3) = −a 2 − 2af − f2 = −(a + f)2 . (7.147)

Imposing the εη -Einstein condition, and taking into account that α2
2 + α2 = 1 by the3 

contact condition, we obtain Ricg(e2, e2) + Ricg(e3, e3) = λ2 + κ − κα2
2 − κα2 = λ2 ,3 

which in turn yields λ2 = −(a+f)2 < 0. Hence, non-unimodular Riemannian groups
admit no left-invariant εη -Einstein structures.

• If (M, g, α) is non-Sasakian, then [694] shows that the εη -Einstein condition implies
λ2 = −κ. Furthermore, [690,694] prove that there exists a frame {ξ, X, φ(X)}, where
X is an eigenvector of h with positive eigenvalue, whose Lie brackets satisfy:

[ξ, X] = 
1
(1 + µ)φ(X) , [ξ, φ(X)] = − 

1
(1 − µ)X , [X, φ(X)] = ξ , (7.148)

2 2 

where µ is the positive eigenvalue of h. Comparing the previous Lie brackets to
Milnor’s classifcation [660], we obtain that M must be isometric to SU(2) when
µ < 1 and isometric to eE(2) when µ = 1. Finally, using Proposition 7.4, we fnd the

2relation µ = 1 − 2λ2 .

7.3.2 Lorentzian εη -Einstein structures with timelike Reeb vector feld
εηLet (M, g, α, −1) ∈ PCont (−1, λ2, κ) be an ε -contact metric manifold M with timelikeL 

vector feld. Note that, by Defnition 7.7, (g, α, ε) is εη -Einstein if and only if it satisfes

Ricg = 
1
(−λ2 + κ) χ + κα ⊗ α , (7.149)

2 

where λ ∈ R and κ ≥ 0.
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Remark 7.23. The Lorentzian εη -Einstein condition with timelike Reeb vector feld has
a natural physical interpretation in the context of General Relativity. Indeed, it is an
Einstein-like equation, that is, it can be written as follows:

G(g) = T(g, α) , (7.150)

where G(g) = Ricg − 1 Rgg denotes the Einstein tensor and T(g, α) ∈ Γ(T ∗M T ∗M) is2 
(up to an innocent constant factor) the stress-energy tensor of Einstein’s equations, given
in this case by

1 
T(g, α) = (λ2 + κ) χ + κα ⊗ α . (7.151)

4 

Interestingly enough, T(g, α) corresponds with the stress-energy tensor of a perfect fuid
whose speed is prescribed by ξ and whose pressure p and rest-frame mass density o are
constant and given by:

λ2 + κ 3 κ − λ2 
p = , o = . (7.152)

4 4 
Hence, the εη -Einstein condition in Lorentzian signature with ε = −1 corresponds with the
Einstein’s General Relativity equations for a Lorentzian metric coupled to a perfect fuid
with velocity prescribed by the Reeb vector feld. This interpretation allows to apply the
extensive literature dedicated to the study of perfect-fuid spacetimes, see for instance [696]
and references therein, to the study of Lorentzian εη -Einstein ε -contact structures.

We prove now that a Lorentzian εη -Einstein contact structure (g, α, −1) on a connected
and simply connected complete2 three-dimensional Lorentzian manifold (M, g) is either
Sasakian or isometric to a Lie group equipped with a Lorentzian left-invariant contact
structure (g, α, −1). We proceed analogously to the Riemannian case [690]. We prove frst
the existence of a special type of ε -contact frame, particularly convenient for computations.

εηLemma 7.8. Let (M, g, α, −1) ∈ PCont (−1, λ2, κ) be a simply connected Lorentzian εη -L 
Einstein ε -contact metric three-manifold. Then, there exists a global orthonormal frame
{ξ, X, φ(X)} such that h(X) = µX and h(φ(X)) = −µφ(X), wherep 

µ = 1 − (λ2 + κ) . (7.153)

In particular, λ2 + κ ≤ 1.

Proof. First notice that since M is simply connected and three-dimensional it is paralleliz-
able, whence it admits nowhere vanishing vector felds. If (g, α) is Sasakian then h = 0 
and λ2 + κ = 1, see Remark 7.20, and the statement is trivial. We consider thus the
non-Sasakian case. For every nowhere-vanishing spacelike vector feld Y ∈ X(M) of unit
norm, {ξ, Y, φ(Y )} is a global ε -contact frame. Furthermore,

g(h2(Y ), ξ) = 0 , g(h2(Y ), φ(Y )) = 0 , (7.154)

since g(h2(Y ), φ(Y )) = g(Y, h2(φ(Y ))) = g(Y, φ(h2(Y ))) = −g(h2(Y ), φ(Y )). Therefore,

h2(Y ) = σ2 Y = −σ2φ2(Y ) , (7.155)
2We say that an ε -contact metric three-manifold (M, χ, α, ε = −1) is complete if all elements of any

ε -contact frame are complete on M .
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εηfor some σ ∈ C∞(M). Therefore, Tr(h2) = 2σ2 . Since (M, g, α, −1) ∈ PCont (−1, λ2, κ),p L 
combining Proposition 7.4 and Remark 7.20 we obtain that σ = 1 − (λ2 + κ). Since
(M, g, α, −1) is not Sasakian we have λ2 + κ < 1 whence µ is strictly positive and corre-
sponds with the positive eigenvalue of h.

Working in the special global ε -contact frame introduced in Lemma 7.8 we prove that every
non-Sasakian εη -Einstein connected and simply connected Lorentzian three-dimensional
manifold is a Lie group equipped with a left-invariant εη -Einstein structure.

εηProposition 7.17. Let (M, g, α, −1) ∈ PCont (−1, λ2, κ) be simply connected with λ2 +L 
κ < 1 (that is, (M, g, α) is not Sasakian). Then, the following Lie brackets hold in the
special ε -contact frame {ξ, X, φ(X)} described in Lemma 7.8 : p p1 1 

[ξ, X] = (1 + 1 − 2λ2)φ(X) , [ξ, φ(X)] = (−1 + 1 − 2λ2)X ,
2 2 (7.156)

[X, φ(X)] = −ξ . 

1Furthermore, λ2 = κ and 0 ≤ λ2 = κ < since κ ≥ 0.2 

Proof. Propositions 7.2 and 7.3 imply that

rξξ = 0 , rX ξ = − 
1
(1 + µ)φ(X) , rφ(X)ξ = 

1
(1 − µ)X . (7.157)

2 2 

On the other hand, we have that g(rX X, ξ) = −g(X, rX ξ) = 0 and

g(rφ(X)φ(X), ξ) = −g(φ(X), rφ(X)ξ) = 0 . (7.158)

Therefore, rX X = cφ(X) and rφ(X)φ(X) = eX for some functions c, e ∈ C∞(M).
Similarly, g(rξX, ξ) = g(rξ(φ(X)), ξ) = 0, whence rξX = βφ(X) and rξφ(X) = −βX 
for a function β ∈ C∞(M). Furthermore, we have:

g(rX φ(X), ξ) = −g(φ(X), rX ξ) = 
1
(1 + µ) , (7.159)

2 

g(rφ(X)X, ξ) = −g(X, rφ(X)ξ) = 
1
(µ − 1) , (7.160)

2 
g(rX φ(X), X) = −g(φ(X), rX X) = −c , (7.161)

g(rφ(X)X, φ(X)) = −g(X, rφ(X)φ(X)) = −e . (7.162)

Summarizing,

= −1 1rξξ = 0 , rX ξ (1 + µ)φ(X) , rφ(X)ξ = 2 (1 − µ)X , (7.163)2 

= βφ(X) , = cφ(X) , = 1 (1 − µ)ξ − eφ(X) , (7.164)rξX rX X rφ(X)X 2 

rξφ(X) = −βX , rX φ(X) = −1 (1 + µ)ξ − cX , rφ(X)φ(X) = eX , (7.165)2 

which implies: � � � � 
1 µ 1 µ

[ξ, X] = β + + φ(X) , [ξ, φ(X)] = −β − + X ,
2 2 2 2 (7.166)

[X, φ(X)] = −ξ − cX + eφ(X) , 
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by using the torsion-free property of r. Making use of the previous equations, we compute:� 
2 � 1 µ

Rg(ξ, X)ξ = µβ − + X , Rg(X, φ(X))ξ = eµX − cµφ(X) . (7.167)
4 4 

By comparing with Lemma 7.7, we conclude that µβ = µc = µe = 0. Since µ 6= 0 by
assumption, then β = c = e = 0. Finally, by Ricg(X, X) = Ricg(φ(X), φ(X)) = 0 we get√ 
λ2 = κ. Hence, µ = 1 − 2λ2 and we conclude.

Remark 7.24. From the proof of Proposition 7.17 we extract the following covariant deriva-
tives of the ε -contact frame of special type described in Lemma 7.8:

√ √ 
1rξξ = 0 , rX ξ = −1 (1 + 1 − 2λ2)φ(X) , rφ(X)ξ = (1 − 1 − 2λ2)X , (7.168)2 2 √ 

1rξX = 0 , rX X = 0 , rφ(X)X = (1 − 1 − 2λ2)ξ , (7.169)2 √ 
rξφ(X) = 0 , rX φ(X) = −1 (1 + 1 − 2λ2)ξ , rφ(X)φ(X) = 0 . (7.170)2 

εηProposition 7.18. Let (M, g, α, −1) ∈ PCont (−1, λ2, κ) be a complete and simply con-L 
nected three-dimensional Lorentz εη -Einstein contact manifold. Then, one of the following
holds:

• (M, g, α, −1) is Sasakian.

• (M, g, α, −1) is non-Sasakian and isomorphic to one of the following Lie groups
equipped with a left-invariant εη -Einstein structure (g, α, −1):

1. SL(2f , R) when 1 > λ2 = κ > 0.2 e2. E(1, 1) when λ2 = κ = 0.

Proof. Assume (M, g, α, −1) is non-Sasakian. By Proposition 7.17, there exists a global
orthonormal frame {ξ, X, φ(X)} such thatp p1 1 

[ξ, X] = (1 + 1 − 2λ2)φ(X) , [ξ, φ(X)] = (−1 + 1 − 2λ2)X ,
2 2 (7.171)

[X, φ(X)] = −ξ , 

1such that λ2 = κ and 0 ≤ λ2 = κ < . Using [697, Proposition 1.9], the fact that2 
M admits a global frame (its three vector felds being complete, by assumption) with
constant structure functions implies that (M, g, α) has a Lie group structure (canonical
after fxing an identity point) respect to which {ξ, X, φ(X)} is left-invariant. Using the
classifcation of connected and simply connected three-dimensional Lie groups summarized
in Appendix 7.A we conclude that (M, g) is of type g3 when 1 > λ2 = κ > 0 by identifying2 

ξ = e0 , e1 = X , e2 = φ(X) . (7.172)

In particular, we have: p p1 1 
a = (1 − 1 − 2λ2) , b = (1 + 1 − 2λ2) , c = 1 . (7.173)

2 2 
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where a, b and c are the real parameters appearing in case g3 of Theorem 7.6. Hence,
(M, g) is isometric to fSL(2, R) equipped with a left-invariant metric. On the other hand,
when λ2 = κ = 0, identifying:

e0 = −ξ , e1 = −φ(X) , e2 = −X , (7.174)

we obtain that (M, g) is isometric to eE(1, 1) endowed with a left-invariant metric.

For Sasakian structures, we obtain the following result.
εηLemma 7.9. Let (G, g, α, −1) ∈ PCont (−1, λ2 , 1 − λ2) be a left-invariant Sasakian Lo-L 

rentzian εη -Einstein contact structure on a simply connected Lie group G. Then, according
to the classifcation of connected and simply connected 3-dimensional Lie groups given in
Theorem 7.6, one of the following holds:

• G is of type g3. In particular, we have that (G, g, α, −1) is isomorphic to a left-
invariant εη -Einstein structure on:

1. f > 0.SL(2, R) if 1 ≥ λ2 

2. H3 if λ2 = 0.

• G is of type g6 and 1 ≥ λ2 > 0.

Proof. Let {ξ, X, φ(X)} be a left-invariant ε -contact frame on (G, ξ, α). The proof of
Proposition 7.17 shows that the following holds:

1rξξ = 0 , rX ξ = −1 φ(X) , rφ(X)ξ = X , (7.175)2 2 
1rξX = βφ(X) , rX X = cφ(X) , rφ(X)X = ξ − eφ(X) , (7.176)2 

rξφ(X) = −βX , rX φ(X) = −1 ξ − cX , rφ(X)φ(X) = eX , (7.177)� � 2 � � 
1 1 

[ξ, X] = β + φ(X) , [ξ, φ(X)] = − β + X 
2 2 (7.178)
[X, φ(X)] = −ξ − cX + eφ(X) , 

where β, c, e ∈ R. Imposing the Jacobi identity, we obtain the constraint� � � � 
e β +

1 
X + c β +

1 
φ(X) = 0 . (7.179)

2 2 

Hence, either c = e = 0 or β = −1 . We consider these cases separately.2 

εη• Assume c = e = 0. Imposing that (G, g, α) ∈ PCont (−1, λ2 , 1 − λ2), we obtain theL 
1condition Ricg(X, X) = Ricg(φ(X), φ(X)) = − λ2 , which is equivalent to2 

β = λ2 − 
1 
. (7.180)

2 

Hence, the Lie brackets of {ξ, X, φ(X)} reduce to

[ξ, X] = λ2φ(X) , [ξ, φ(X)] = −λ2X , [X, φ(X)] = −ξ . (7.181)

369



Chapter 7. Contact structures in six-dimensional Supergravity

For λ2 > 0, if {e0, e1, e2} denotes the orthonormal basis used at Theorem 7.6, identi-
fying e0 = ξ, e1 = X and e2 = φ(X), we conclude that (G, g) is isometric to f RSL(2 ), 
endowed with a left-invariant metric. Similarly, for λ2 = 0, setting e0 = −ξ, e1 = X,
e2 = φ(X) we conclude that (G, g) is isometric to H3 equipped with a left-invariant
metric.

• If β = −1 , the only non-trivial constraint from the εη -Einstein condition is given by2 
1Ricg(X, X) = Ricg(φ(X), φ(X)) = − λ2 , which is equivalent to2 

2 2 c + e = λ2 . (7.182)

Consequently, we obtain:

[ξ, X] = 0 , [ξ, φ(X)] = 0 , [X, φ(X)] = −ξ − cφ(X) + eX , (7.183)

2 2 λ2with c + e = . We assume λ2 6= 0, since otherwise we return to the previous
bullet point. Parametrizing e = −|λ| cos θ and c = |λ| sin θ for some angle θ ∈ R, we
consider the following orthogonal change of basis:

[ξ, X̄, φ(X̄)]T = 

⎡⎣ 1 0 0 
0 cos θ sin θ 

⎤⎦ [ξ, X, φ(X)]T , (7.184)
0 − sin θ cos θ 

fnding:
¯ [ ¯[ξ, X] = 0 , [ξ, φ(X̄)] = 0 , X,φ(X̄)] = −ξ − |λ|X̄ . (7.185)

¯Defning e0 = ξ, e1 = φ(X̄) and e2 = X we conclude, via Theorem 7.6, that the
previous Lie brackets correspond to those of a Lie algebra type g6.

We may summarize the information provided in Proposition 7.18 and Lemma 7.9 in the
following theorem.

Theorem 7.2. A three-dimensional connected and simply connected Lie group G admits
a left- invariant εη -Einstein contact structure (g, α) with timelike Reeb vector feld if and
only if (G, g, α) is isomorphic, through a possibly orientation-reversing isometry, to one
of the items listed in the following table in terms of the orthonormal frame {e0, e1, e2}
appearing in Theorem 7.6:

g Structure constants α η -Einstein constants G Sasakian
1 > a = 1−b > 0 , c = 12 

0α = e λ2 = κ = 2b(1 − b) fSL(2, R) No

g3 
a = c = 1 , b = 0 0α = −e λ2 = κ = 0 eE(1, 1) No

1 ≥ a = b > 0 , c = 1 0α = e λ2 = 1 − κ = a fSL(2, R) Yes

a = b = 0 , c = −1 0α = −e λ2 = 0 , κ = 1 H3 Yes

g6 
b = 1 , c = d = 0 , 

21 ≥ a > 0 
0α = e λ2 2= 1 − κ = a G6 Yes
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εηFurthermore, if (M, g, α, −1) ∈ PCont (−1, λ2, κ) is complete and not Sasakian then itL 
is a Lie group equipped with a left-invariant Lorentzian contact structure and isomorphic
to a left-invariant εη -Einstein structure on either f > λ2 κ > 0 or onSL(2, R) when 1

2 = eE(1, 1) when λ2 = κ = 0.

Proof. Follows from Proposition 7.18 and Lemma 7.9 upon use of Theorem 7.6.

7.3.3 Lorentzian case with spacelike Reeb vector feld

In this subsection we classify all left-invariant εη -Einstein para-contact structures on three-
εηdimensional simply connected Lie groups. Let (M, g, α, ε = 1) ∈ PCont (ε = 1, λ, κ) beL 

an oriented and time-oriented Lorentzian ε -contact metric manifold. By Defnition 7.7,
(g, α, ε = 1) is εη -Einstein if and only if it satisfes:

Ricg = − 
1
(λ2 + κ) g + κα ⊗ α , (7.186)

2 

for real constants λ ∈ R and κ ≥ 0.

Remark 7.25. Note that, in contrast to the case σgε = 1, the endomorphism h associated
to a para-contact metric structure may not be diagonalizable, whence the techniques usted
to classify εη -Einstein ε -contact metric three manifolds with σgε = 1 are a priori not
applicable here.

Theorem 7.3. A three-dimensional connected and simply connected Lie group G admits a
left- invariant εη -Einstein para-contact structure (g, α) if and only if (G, g, α) is isomorphic,
through a possibly orientation-reversing isometry, to one of the items listed in the following
table in terms of the orthonormal frame {e0, e1, e2} appearing in Theorem 7.6:

g Structure constants
(s, µ ∈ Z2) 

α η -Einstein
constants

G Sasakian

g3 

a = s , b = c , sc ≥ 1 1α = ±e λ2 = sc , κ = sc−1 fSL(2, R) Yes

b = s , a = c , sc ≥ 1 2α = ±e λ2 = sc , κ = sc−1 fSL(2, R) Yes

b = 0 , a = c = s −α2 
0 + α2 = 11 λ2 = 0 , κ = 0 eE(1, 1) No

c = 0 , a = b = s α2 
1 + α2 = 12 λ2 = 0 , κ = 0 eE(2) No

a = b = c = s −α2 
0 +α

2 
1 +α

2 = 12 λ2 = 1 , κ = 0 fSL(2, R) Yes

g6 

a = b = 0 , 

d2 ≥ 1 , c = −s 
α2 = 12 λ2 = d2 , κ = d2 − 1 

G6 

Yes

b = −µa 6= 0 , 

d = −µc = µs − a , 

aα2 = (µa − s)α0 

α2 = 1 + α2 
2 0 

λ2 = 1 , κ = 0 Yes

Proof. We proceed on a case by case basis by checking which of the items appearing in
Theorem 7.6 admits an εη -Einstein para-contact metric structure (g, α). For this, we will
exploit the formulae presented in Appendix 7.B.
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• Case g1. In the orthonormal frame given in Appendix 7.A, Equation ?α = −s dα is
equivalent to

2(−aα1 − bα2) e 0 ∧ e 1 + (aα0 + bα1 + aα2) e 0 ∧ e 2 + (bα0 − aα1) e 1 ∧ e 
(7.187)

2 = s (α0 e 1 ∧ e + α1 e 0 ∧ e 2 − α2 e 0 ∧ e 1) , 

Non-trivial solutions for α exist only if b = s, which implies α1 = 0, since a =6 0. This
implies in turn α0 + α2 = 0, which is incompatible with the constraint −α2

0 + α2 = 1.2 
Hence g1 does not admit para-contact metric structures.

• Case g2. In the orthonormal frame given in Appendix 7.A, Equation ?α = −s dα is
equivalent to

2aα1e 0 ∧ e 2 + (cα0 − bα2) e 0 ∧ e 1 + (cα2 + bα0) e 1 ∧ e 
(7.188)

2 = s (α0 e 1 ∧ e + α1 e 0 ∧ e 2 − α2 e 0 ∧ e 1) . 

This system of equations implies c2 + (b − s)2 = 0, which is equivalent to c = 0 and
b = s. Since the value c = 0 is forbidden for g2 Lie algebras, we conclude that there
are no para-contact metric structures on this type of Lie algebras.

• Case g3. In the orthonormal frame given in Appendix 7.A, Equation ?α = −s dα is
equivalent to

2 1 2cα0 e 1 ∧ e + aα1 e 0 ∧ e 2 − bα2 e 0 ∧ e = s (α0 e 1 ∧ e + α1e 0 ∧ e 2 − α2e 0 ∧ e 1) . (7.189)

If α0, α1, α2 6= 0, then we have a = b = c = s and −α0
2 + α2

1 + α2 = 1. If α0 = 0 and2 
α1, α2 =6 0, then α2

1 + α2 = 1, a = b = s and c is unconstrained. If α1 = 0, α0, α2 6= 02 
(resp. α2 = 0, α0, α1 6= 0) we have −α0

2 + α2 = 1, b = c = s and a unconstrained2 
(resp. −α0

2 + α2 = 1, a = c = s and b unconstrained). If α0 = α1 = 0 (resp.1 
α0 = α2 = 0), then α2 = 1, b = s and a, c are unconstrained (resp. α2 = 1, a = s2 1 
and b, c unconstrained). Finally, we remark that a = b = 0 is never allowed, since it
implies α1 = α2 = 0, whence α2 = −1.0 

We compute now the Ricci curvature. We obtain:

2 b2 2c a 
Ricg(e0, e0) = + ba − − , Ricg(e0, e1) = 0 , (7.190)

2 2 2 
b2 2 2c a 

Ricg(e1, e1) = + − − cb , Ricg(e0, e2) = 0 , (7.191)
2 2 2 
2 2 b2a c 

Ricg(e2, e2) = − ac + − , Ricg(e1, e2) = 0 . (7.192)
2 2 2 

We proceed now on a case by case basis:

1. If α0, α1, α2 6= 0, and hence a = b = c = s, the εη -Einstein condition reduces to

λ2 = 1 , κ = 0 . (7.193)

which follows by direct computation from (7.190).
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2. If α0 = 0 and α1, α2 6= 0, we have a = b = s and c unconstrained. Then
Ricg(e1, e2) = 0 implies κ = 0, which solves all o˙-diagonal εη -Einstein equa-
tions. The diagonal components of the εη -Einstein equations are equivalent
to

2 2λ2 = c c = sc . (7.194)

Hence, either c 6= 0, which implies c = s and we are back to point (1), or c = 0,
in which case λ = 0. The cases α1 = 0 (α2 = 0) and α0, α2 6= 0 (α0, α1 =6 0)
follow analogously.

3. We consider now α0 = α1 = 0 and α2 = 1, so that b = s and a, c unconstrained.2 
In this case, using the formulae of Appendix 7.B the εη -Einstein condition can
be found to imply:

(c − a)(s − (c + a)) = 0 , (7.195)

whence either c = a or a + c = s. If a = c then the εη -Einstein equations are
equivalent to a = s(1+ κ) = c and λ2 = 1+κ. Therefore, λ2 = sc. On the other
hand, if a + c = s then the εη -Einstein condition implies κ = −λ2 . However,
κ ≥ 0 by the defnition of εη -Einstein structure, whence λ = κ = 0 and the
εη -Einstein condition reduces to a(a − s) = 0. Since a = 0 is not allowed if
b = s by the type of algebra g3, we conclude that a = s. The case α0 = α2 = 0 
and α2 = 1 follows now along similar lines.1 

• Case g4. In the orthonormal frame given in Appendix 7.A, Equation ?α = −s dα is
equivalent to

1aα1 e 0 ∧ e 2 + (−(2µ − b)α0 + α2) e 1 ∧ e 2 + (α0 − bα2) e 0 ∧ e 
(7.196)

2 = s (α0 e 1 ∧ e + α1 e 0 ∧ e 2 − α2 e 0 ∧ e 1) . 

We distinguish the cases α2 = 0 and α2 =6 0. If α2 = 0 then we must have α0 = 0 
and α2 = 1 and a = s is the unique solution. If α2 6= 0 and b = s then α0 = 0 and1 
α2 = 0, a contradiction. Assume then that α2 6= 0 and b 6= s. It follows that α0 =6 0 
and

b2 − 2b(s + µ) + 2(sµ + 1) = 0 . (7.197)

The previous equation has the unique solution b = µ+s, which indeed satisfes b 6= s.
Then, the solutions in this case are given by:

α2 = 1 , a = s , α0 = µα2 . (7.198)1 

To classify which para-contact structures are also εη -Einstein, we proceed as in the
previous cases by direct computation. We obtain (imposing a = s):

(2µ−b)2 
− (b−s)2 

Ricg(e0, e0) = , Ricg(e0, e1) = 0 , (7.199)2 2 

Ricg(e1, e1) = −1
2 , Ricg(e0, e2) = s + 2(µ − b) , (7.200)

(2µ−b)2 1Ricg(e2, e2) = + + s(2µ − b) − b2 
, Ricg(e1, e2) = 0 . (7.201)2 2 2 

We distinguish again between the cases α2 = 0 and α2 6= 0 with b 6= s.
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1. If α2 = 0 then α0 = 0 and a = s. The only non-trivial o˙-diagonal component
of the εη -Einstein condition is b = µ+ s . Imposing this condition in the timelike2 
diagonal component we obtain

1 
Ricg(e0, e0) = 0 = (λ2 + κ) , (7.202)

2 

whence κ = −λ2 . Since κ ≥ 0 we conclude that λ = κ = 0. However, this is
incompatible with Ricg(e1, e1) = −1 .2 

2. If α2 6= 0 and b = µ + s then Ricg(e1, e2) = 0 implies κ = 0 since α1 =6 0 and
α2 6= 0. However, then we would need Ricg(e0, e2) = −s to vanish, which is not
possible.

• Case g5. In the orthonormal frame given in Appendix 7.A, Equation ?α = −s dα is
equivalent to

2 2(aα1 +bα2) e 0 ∧e 1 +(cα1 +dα2) e 0 ∧e = s (α0 e 1 ∧e +α1 e 0 ∧e 2 −α2 e 0 ∧e 1) , (7.203)

which immediately implies α0 = 0. The conditions for a para-contact structure to
exist are α2

1 + α2 = 1 and ad = (b + s)(c − s), together with the conditions on the2 
coeÿcients required by the algebra type g5, which are ac + bd = 0 and a + d 6= 0.

We verify now which para-contact structures on g5 are εη -Einstein. Using Appendix
7.B we obtain the following components for the Ricci tensor:

− c2 
Ricg(e0, e0) = −a2 − d2 − cb − b2 

, Ricg(e0, e1) = 0 , (7.204)2 2 
2Ricg(e1, e1) = a + ad − c2 

+ b2 
, Ricg(e0, e2) = 0 , (7.205)2 2 

2 − b2 
Ricg(e2, e2) = d2 + da + c , Ricg(e1, e2) = ac + bd . (7.206)2 2 

We have, Ricg(e1, e2) = 0 automatically by the defnition of algebra of type g5.
Hence, the εη -Einstein condition evaluated in e1 and e2 implies:

α1α2κ = 0 . (7.207)

On the other hand, since α2
1 + α2 = 1, the εη -Einstein equation implies:2 

Ricg(e1, e1) + Ricg(e2, e2) = (a + d)2 = −λ2 . (7.208)

Since a + d 6= 0 by the coeÿcient conditions of the algebra of type g5, the previous
equation admits no solutions and therefore an algebra of type g5 does not admit
εη -Einstein para-contact structures.

• Case g6. In the orthonormal frame given in Appendix 7.A, Equation ?α = −s dα is
equivalent to

2 2(dα0+cα2) e 0∧e 1+(−bα0−aα2) e 1∧e = s (α0 e 1∧e +α1 e 0∧e 2−α2 e 0∧e 1) , (7.209)

which immediately implies α1 = 0. From the previous (linear) equations we obtain
that the conditions to have a non-trivial para-contact structures are −α0

2 + α2 = 12 

374



Chapter 7. Contact structures in six-dimensional Supergravity

and ad = (b + s)(c + s), together with the conditions ac − bd = 0 and a + d 6= 0 
required by the algebra type g6. The components of the Ricci tensor read:

Ricg(e0, e0) = d2 + ad + b2 − c2 
, Ricg(e0, e1) = 0 , (7.210)2 2 

Ricg(e1, e1) = −a2 − d2 − bc + c2 
+ b2 

, Ricg(e0, e2) = −ac + bd = 0 , (7.211)2 2 

Ricg(e2, e2) = −a2 − da − c2 
+ b2 

, Ricg(e1, e2) = 0 . (7.212)2 2 

We have Ricg(e0, e2) = 0 identically by the conditions on the coeÿcients of an algebra
of type g6. Evaluating the εη -Einstein condition on e0 and e2 we obtain

κα0α2 = 0 . (7.213)

Hence, either α0 = 0 or κ = 0 since α2 = 0 is not allowed by the para-contact
condition. If α0 = 0 then α2 = 1, which implies a = 0 and c = −s. Taking into2 
account that ac − bd = 0 and a + d 6= 0, we further obtain that b = 0, which in turn
implies that

λ2 = d2 = κ + 1 , (7.214)

whence d2 ≥ 1 since we must have κ ≥ 0. Altogether these conditions solve the
εη -Einstein equations of a para-contact structure on g6. On other hand, if κ = 0, a
combination of the εη -Einstein equations implies:

2ad = (b + s)(c+s) , ac −bd = 0 , a 2 −d2 = b2 − c , (a− d)2 = (b − c)2 . (7.215)

The last equation above reduces to

(c − b) = µ(a − d) (7.216)

where µ ∈ Z2. We distinguish now two cases:

1. If a = d 6= 0 (using that a + d =6 0) we obtain c = b and the εη -Einstein
equations are equivalent to

λ2 
2 a = . (7.217)

4 

Likewise, the conditions on the coeÿcients required by the algebra of type g6 
are

2 a = (b + s)2 , (7.218)

implying a = σ(b + s) for a sign σ ∈ Z2. Note that b =6 s since a + d = 2a =6 0.
Plugging a = σ(b + s) in Equation (7.209) we obtain:

α2 = α2
2 , (7.219)0 

which is incompatible with the para-contact condition −α2
0 + α2 = 1.2 
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2. If a 6= d, equation a2 − d2 = b2 − c2 is equivalent to

a + d = −µ(b + c) . (7.220)

Combining this equation with (c−b) = µ(a−d) we obtain a = −µb and d = −µc.
The constraints on the coeÿcients required by the algebra of type g6 reduce to

1 + s(b + c) = 0 , (7.221)

whereas the εη -Einstein equations are tantamount to

λ2 = (b + c)2 . (7.222)

Therefore, using that 1 + s(b + c) = 0 we obtain λ2 = 1. Equation (7.209) is
solved by:

b = −µa , c = −s+µa , d = µs − a , (7.223)

(−s + µa)α0 = aα2 , α2 = 1 + α0
2 . (7.224)2 

• Case g7. In the orthonormal frame given in Appendix 7.A, Equation ?α = −s dα is
equivalent to

2(bα0 + aα1 + bα2) e 0 ∧ e 1 + (dα0 + cα1 + dα2) e 0 ∧ e 
(7.225)

2 2+ (bα0 + aα1 + bα2) e 1 ∧ e = s (α0e 1 ∧ e + α1e 0 ∧ e 2 − α2e 0 ∧ e 1) . 

which immediately implies α0 + α2 = 0, whence α2 = 1. Write α1 = σ, with σ ∈ Z2.1 
With these assumptions, the previous equations boil down to

α2 2α0 = sσa , c = s , = a , (7.226)2 

where µ ∈ Z2. Since c 6= 0, then a = 0 from the condition ac = 0 required by the
algebra of type g7. Hence α0 = α2 = 0. With these provisos in mind, the Ricci
curvature reads:

Ricg(e0, e0) = −bs − 12 , Ricg(e0, e1) = 0 , (7.227)

Ricg(e1, e1) = −1
2 , Ricg(e0, e2) = sb , (7.228)

1Ricg(e2, e2) = − sb , Ricg(e1, e2) = 0 . (7.229)2 

However, since α = σ e1 , we obtain b = 0, which implies κ = −1, a value that is not
permitted by Defnition 7.7.

Finally, to verify which of the εη -Einstein para-contact structures are Sasakian we apply
frst Proposition 7.4, which states that εη -Einstein para-contact structures on eE(1, 1) oreE(2) can never be Sasakian. Also, a direct computation shows that h vanishes for every
εη -Einstein para-contact structure on fSL(2, R) and g6.
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7.3.4 Lorentzian case with null Reeb vector feld

When ε = 0 the εη -Einstein condition for an ε -contact metric structure (g, α) reduces to

λ2 
Ricg = − g + κα ⊗ α , (7.230)

2 

with κ ≥ 0.

Remark 7.26. To the best of our knowledge, this equation has not been considered in the
literature. In particular, the methods and techniques used in [690, 694] to classify (κ, µ) 
and εη -Einstein contact three manifolds do not seem to apply in this case, due to the fact
that φ2 is not an isomorphism when restricted to the kernel of α and that h cannot have
non-zero eigenvalues, see Remarks 7.8 and 7.14.

The goal of this subsection is to classify all left-invariant εη -Einstein null contact structures
on a simply connected three-dimensional Lie group G. In order to do this, we will make
use of the following lemma.

Lemma 7.10. Let (g, α) be a null contact metric structure and let {ξ, u, φ(u)} be a light-
cone frame. Then (ξ, α) is εη -Einstein if and only if

Ricg(ξ, ξ) = Ricg(ξ, φ(u)) = Ricg(u, φ(u)) = 0 , (7.231)

Ricg(ξ, u) = Ricg(φ(u), φ(u)) = −λ2 
, Ricg(u, u) = κ . (7.232)2 

Proof. Follows by direct computation.

Theorem 7.4. A three-dimensional connected and simply connected Lie group G admits a
left-invariant εη -Einstein null contact structure (g, α) if and only if (G, g, α) is isomorphic,
through a possibly orientation-reversing isometry, to one of the items listed in the following
table in terms of the orthonormal frame {e0, e1, e2} appearing in Theorem 7.6:

g Structure constants
(s ∈ Z2) 

α η -Einstein constants G Sasakian

a = b = c = s α2 = α2 
1 + α2 

0 2 λ2 = 1 , κ = 0 fSL(2, R) Yes

g3 
a = c = s , b = 0 

α2 = 0 , 

α2 = α2 
0 1 

λ2 = 0 , κ = 0 eE(1, 1) No

g4 
b = 0 , a = s α1 = 0 , 

α0 = µα2 

λ2 = 1 , α2 
0κ = 1 fSL(2, R) Yes

b = 0 , a = 0 , λ2 = 0 , α2 
0κ = 2 eE(1, 1) No

g6 
a = d 6= 0 , b = c 

a = µ(b + s) , µ ∈ Z2 

α1 = 0 , 

α0 = −µα2 

λ2 2= 4a , 

κ = 0 
G6 

µsIf a = 2 

Proof. Proposition 7.8 classifes all simply connected Lorentzian Lie groups admitting left-
invariant null contact structures. Hence, we will proceed by verifying which of the cases
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appearing in Proposition 7.8 satisfy the εη -Einstein equation. For this, we will use the
formulae presented in Appendix 7.B, where the Ricci tensor is computed on a global or-
thonormal frame.

• Case g1. The Reeb vector is given by ξ = −α0(e0 + e2). A direct computation
using Appendix 7.B shows that Ricg(u, φ(u)) = −α

sa 
0 
. Since a =6 0 by the defnition

of algebra of type g1, Lemma 7.10 implies that g1 does not admit null εη -Einstein
structures.

• Case g3. We distinguish between the cases α1 = 0, α2 = 0 and α1, α2 6= 0. If α1 = 0,
1a light-cone frame is given by ξ = α0(−e0 + µe2), u = 2α0 
(e0 + µe2) and φ(u) = µe1.

We obtain:

Ricg(ξ, ξ) = Ricg(ξ, φ(u)) = Ricg(u, φ(u)) = 0 (7.233)

Ricg(ξ, u) = −a + a2 
, Ricg(φ(u), φ(u)) = −a2 

, Ricg(u, u) = 0 . (7.234)2 2 

Hence, the εη -Einstein implies a = 0 or a = s. Since a = 0 is not allowed, we
conclude a = s, which in turn implies λ2 = 1 and κ = 0.

If α2 = 0, a similar analysis follows. In this case, a light-cone frame is given by
1ξ = α0(−e0 + µe1), u = 2α0 
(e0 + µe1) and φ(u) = −µe2. We obtain:

Ricg(ξ, ξ) = Ricg(ξ, φ(u)) = Ricg(u, φ(u)) = 0 (7.235)
b2 

Ricg(ξ, u) = −bs + , Ricg(φ(u), φ(u)) = − b2 
, Ricg(u, u) = 0 , (7.236)2 2 

which implies either b = s or b = 0. For b = s, λ2 = 1 and κ = 0, and for b = 0,
λ2 = κ = 0.

Finally, if α1, α2 6= 0, we directly obtain Ricg = −1 g and every null contact structure2 
of this type is εη -Einstein (with λ2 = 1 and κ = 0).

• Case g4. We choose a light-cone frame {ξ, u, φ(u)} with ξ = α0(−e0 + µe2), u = 
1 

2α0 
(e0 + µe2) and φ(u) = µe1. We compute:

aRicg(ξ, ξ) = Ricg(ξ, φ(u)) = Ricg(u, φ(u)) = 0 , Ricg(ξ, u) = 2 − as , (7.237)2 
µRicg(φ(u), φ(u)) = −a 

2 
2 
, Ricg(u, u) = 

α2 (a − 2s) . (7.238)
0 

These conditions are satisfed if and only if a = 0 or a = s. For a = s, we have that
− sµ −2 sµλ2 = 1 and κ = , and for a = 0, we fnd that λ2 = 0 and κ = . Since κ

α2 α2 
0 0 

must be non-negative by defnition, we must require that sµ = −1, which implies
that b = 0.

• Case g6. We can choose the light-cone frame {ξ, u, φ(u)} with ξ = −α0(e0 +µe2), u = 
1 

2α0 
(e0 − µe2) and φ(u) = −µe1. Imposing the constraints found in Proposition 7.8

for null contact structures on g6, we get the following components for the Ricci
curvature:

Ricg(ξ, φ(u)) = Ricg(u, φ(u)) = 0 , Ricg(ξ, ξ) = 0 , (7.239)
2 2Ricg(ξ, u) = −2a , Ricg(φ(u), φ(u)) = −2a , Ricg(u, u) = 0 . (7.240)

2These equations yield an εη -Einstein structure with λ2 = 4a =6 0 and κ = 0.
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Finally, in order to determine when the di˙erent εη -Einstein structures obtained are
Sasakian, we just have to make use of Proposition 7.10.

7.4 Six-dimensional Supergravity and ε -contact structures

In the following, let M be an oriented and spin six-dimensional manifold.

Defnition 7.9. The bosonic confguration space of six-dimensional minimal Supergravity
coupled to a tensor multiplet with constant dilaton on M is defned as the following set:

def. � 
Conf(M) = (g, H) ∈ Lor(M) × Ω3(M) , (7.241)

where Lor(M) denotes the set of Lorentzian metrics on M .

HGiven (g, H) ∈ Conf(M) we defne r to be the unique metric-compatible connection on
(M, g) with totally skew-symmetric torsion given by H ∈ Ω3(M). In more explicit terms
we have

1H r = r + g −1H , (7.242)
2 

where r denotes the Levi-Civita connection associated to g.

Defnition 7.10. A pair (g, H) ∈ Conf(M) is a bosonic solution of six-dimensional minimal
Supergravity coupled to a tensor multiplet with constant dilaton on M if:

Ric(r H ) = 0 , dH = 0 , d ?g H = 0 , |H|2 = 0 , (7.243)g 

Hwhere Ric(rH ) ∈ Γ(Sym2(T ∗M)) is the Ricci curvature tensor of r and ?g : Ω
3(M) → 

Ω3(M) denotes the Hodge dual associated to g. We denote by Sol(M) ⊂ Conf(M) the set
of solutions on M .

Remark 7.27. In six Lorentzian dimensions the Hodge dual ?g on three-forms squares to
the identity. Hence, we obtain the splitting

Λ3(M) = Λ3 (M) ⊕ Λ3 
−(M) , (7.244)+ 

in terms of self dual Λ3 (M) and antiself dual Λ3 
−(M) three-forms. Using this decomposi-+ 

tion, a particular class of solutions of Equations (7.243) is obtained by requiring H to be
self-dual, that is:

Ric(r H ) = 0 , dH = 0 , ?gH = H , (7.245)

This set of equations defne the bosonic equations of six-dimensional minimal Supergravity.
Equations (7.243) are more general and allow, for instance, H to be a section of a fxed
lagrangian distribution of Λ3(M). The possibility of generalizing minimal Supergravity to
this situation was proposed in [698] and it remains, to the best of our knowledge, up for
debate.

Theorem 7.5. Let:
εη(N, χ, αN , εN ) ∈ PCont (εN , λ

2, κN = l2) ,L (7.246)
εη(X, h, αX ) ∈ PCont (λ2, κX = |αN |2 l2) .R 
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Then, the oriented Cartesian product manifold

M = N × X (7.247)

carries a family of solutions (g, Hλ,l) ∈ Sol(M) of six-dimensional minimal Supergravity
coupled to a tensor multiplet with constant dilaton given by:

g = χ ⊕ h , Hλ,l = λ νχ + 
l 
(?χαN ) ∧ αX + 

l
αN ∧ (?hαX ) + λ νh (7.248)

3 3 

and parametrized by (λ, l) ∈ R2, where νχ and νh are the corresponding pseudo-Riemannian
volume forms. Equivalently, the oriented Cartesian Lorentzian product of (N, χ, αN , εN ) ∈ 

εη εηPCont (εN , λ, l) and (X, h, αX ) ∈ PCont (λ, κ = εN , l) carries a bi-parametric family ofL R 
metric-compatible, Ricci fat, connections with totally skew-symmetric, isotropic, closed
and co-closed torsion prescribed by Hλ,l.

Proof. We frst compute that Hλ,l, as prescribed in the statement of the theorem, is closed:

l l l l 
dHλ,l = d(?χαN ) ∧ αX + (?χαN ) ∧ dαX + dαN ∧ (?hαX ) − αN ∧ d(?hαX ) (7.249)

3 3 3 3 
l l l l 

= (?χαN ) ∧ dαX + dαN ∧ (?hαX ) = ?χ αN ∧ ?hαX − ?χ αN ∧ ?hαX = 0 ,
3 3 3 3 

where we have used that dαN = − ?χ αN and dαX = ?hαX by the ε -contact condition. In
addition, Hλ,l is co-closed:

l l 
d ? Hλ,l = λ d ? νχ + d ? (?χαN ∧ αX ) + d ? (αN ∧ ?hαX ) + λ d ? νh

3 3 (7.250)
l l 

= −λ dνh + d(αN ∧ ?hαX ) + d(?χαN ∧ αX ) − λ dνχ = 0 ,
3 3 

where we have used again the ε -contact condition and the fact that, for ρ ∈ Ωq(N) and
σ ∈ Ωr(X), we have ?g(ρ ∧ σ) = (−1)r(3−q) ?χ ρ ∧ ?hσ. We verify now the norm of Hλ,l 
indeed vanishes:

l2 
|Hλ,l|2 = λ2 g(νχ, νχ) + g((?χαN ) ∧ αX , (?χαN ) ∧ αX )g 9 

l2 
+ g(αN ∧ (?hαX ), αN ∧ (?hαX )) + λ2 g(νh, νh) = λ2χ(νχ, νχ)

9 
l2 l2 

+ χ(?χαN , ?χαN )h(αX , αX ) + χ(αN , αN )h(?hαX , ?hαX ) + λ2h(νh, νh)
3 3 

2l2 2l2 
= −6λ2 − χ(αN , αN )h(αX , αX ) + χ(αN , αN )h(αX , αX ) + 6λ2 = 0 . (7.251)

3 3 

We check next that the Einstein equations are satisfed for the specifc choices of constants
specifed in the statement. We have that

l2 
Hλ,l ◦ Hλ,l|TN⊗TN = λ2νN ◦ νN + (?χαN ∧ αX ) ◦ (?χαN ∧ αX )|TN⊗TN 

l2 
9 (7.252)

+ (αN ∧ ?hαX ) ◦ (αN ∧ ?hαX )|TN⊗TN . 
9 
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We compute also the following:

λ2νN ◦ νN = −2 λ2χ , (αN ∧ ?hαX ) ◦ (αN ∧ ?hαX )|TN⊗TN = 18 αN ⊗ αN ,(7.253)

(?χαN ∧ αX ) ◦ (?χαN ∧ αX )|TN⊗TN = 18(αN ⊗ αN − |αN |χ 
2 χ) . (7.254)

This implies that

1 λ2 l2 
Hλ,l ◦ Hλ,l|TN⊗TN = − χ − |αN |2 

χ χ + l2αN ⊗ αN . (7.255)
4 2 2 

Likewise we have

l2 
Hλ,l ◦ Hλ,l|TX⊗TX = λ2νX ◦ νX + (?χαN ∧ αX ) ◦ (?χαN ∧ αX )|TX⊗TX 9 

l2 
+ (αN ∧ ?hαX ) ◦ (αN ∧ ?hαX )|TX⊗TX , (7.256)9 

which in turn implies

1 λ2 l2 
Hλ,l ◦ Hλ,l|TX⊗TX = h + |αN |2 

χ h − l2|αN |χ 
2 αX ⊗ αX . (7.257)

4 2 2 

Finally, it can be checked the mixed components vanish identically,

Hλ,l ◦ Hλ,l|TN⊗TX = Hλ,l ◦ Hλ,l|TX⊗TN = 0 . (7.258)

εηFrom Defnition 7.7, we obtain that (N, χ, αN , εN ) ∈ PCont (εN , λ
2, κN = l2) andL 

εη(M, h, αX ) ∈ PCont (λ2, κX = |αN |2 l2) satisfy, respectively:R 

1
(λ2 1

(λ2Ricχ = − + l2ε) χ + l2αN ⊗ αN , Rich = + l2 ε) h − l2 ε αX ⊗ αX . (7.259)
2 2 

Since by defnition ε = |αN |χ 
2 , the right hand sides of the equations appearing in (7.259)

coincide with the right hand sides of equations (7.255) and (7.257), respectively. Hence,
the tuple (g, Hλ,l) as defned in the statement of the theorem satisfes:

Ric(r Hλ,l ) = 0 , dHλ,l = 0 , d ?g Hλ,l = 0 , |Hλ,l|g 
2 = 0 , (7.260)

whence it is a solution of six-dimensional Supergravity coupled to a tensor multiplet with
constant dilaton.

Remark 7.28. For ease of reference, we will refer to the solutions (g, H) constructed in
Theorem 7.5 as ε -contact Supergravity solutions of type (εN , λ, l), where εN ∈ {−1, 0, 1}
is the norm of the Reeb vector feld of the Lorentzian ε -contact structure occurring in the
given solution.

The holonomy of the Levi-Civita connection r of an ε -contact Supergravity solution (g, H) 
is clearly reducible, since the sub-bundles TN ⊂ TM and TX ⊂ TM are preserved by r 
by construction. In particular, r is a product connection on TM = TN × TX. However,

Hthe connection with torsion r is in general not a product connection. In particular
Hneither TN ⊂ TM nor TX ⊂ TM are preserved by r if l 6= 0. Therefore Supergravity

ε -contact solutions are in general not the direct product of a pair of three-dimensional
pseudo-Riemannian manifolds with torsion.

381



Chapter 7. Contact structures in six-dimensional Supergravity

Theorem 7.5 allows to construct large classes of explicit solutions of six-dimensional
Supergravity coupled to a tensor multiplet with constant dilaton by exploiting the ex-
tensive literature on εη -Einstein Riemannian and Lorentzian (para-)contact metric three-
manifolds, as discussed in Section 7.3, and by employing the new null contact metric
structures, as discussed in Sections 7.2 and 7.3. In particular, the previous theorem
implies that the construction of examples and development of classifcation results on
Riemannian and Lorentzian εη -Einstein (para-)contact metric three-manifolds (and εη -
Einstein null contact structures) can automatically be used to construct new Lorentzian
six-manifolds equipped with a Ricci fat metric-compatible connection with totally skew-
symmetric, isotropic, closed and co-closed torsion.

7.5 Ricci fat Lorentzian six-manifolds with closed self-dual
torsion

In this section we apply the results of the previous sections to the construction of new
six-dimensional Lorentzian manifolds equipped with a Ricci fat and metric-compatible
connection with totally skew-symmetric, isotropic, closed and co-closed torsion, which
in turn yields new solutions of minimal Supergravity coupled to a tensor multiplet with
constant dilaton in six dimensions. Excluding the Ricci fat case, the simplest scenario
where Theorem 7.5 applies is obtained by taking l = 0 and λ 6= 0. In this situation, the
corresponding six-dimensional ε -contact solution is given by:

g = χ ⊕ h , Hλ,l = λ (νχ + νh) , λ 6= 0 , (7.261)

on M = N × X, where χ and h are Einstein with negative and positive Einstein constant,
respectively. Assuming that both (N, χ) and (X, h) are connected, simply connected and
geodesically complete we conclude that (X, h) is isometric to the round sphere and (N, χ) 
is isometric to fSL(2, R) equipped with its Einstein metric. In particular:

(M, g) = (f (7.262)SL(2, R) × S3, χ ⊕ h) , 

is a solution of six-dimensional minimal Supergravity, which corresponds with the well-
known AdS3 × S3 maximally supersymmetric solution of the theory [193]. For l 6= 0,
ε -contact Supergravity solutions are not isomorphic to the previous solution3. Hence,
intuitively speaking we can think of ε -contact Supergravity solutions with l 6= 0 as be-
ing generically non-supersymmetric geometric and topological deformations of the super-
symmetric AdS3 × S3 solution, with deformations parametrized by l ∈ R, αN ∈ Ω1(N) 
and αX ∈ Ω1(X). In the following we consider ε -contact Supergravity solutions of type
εN = −1, εN = 0 and εN = 1 separately. We emphasize that in general the values of
λ2 and κ do not uniquely determine the di˙eomorphism type of N or X and that the
same di˙eomorphism type may admite several non-isometric ε -contact Supergravity so-
lutions. In this direction, it is a priori possible that there exist, at least when εN 6= 1 
or in the Sasakian case for εN = 1, ε -contact Supergravity solutions for which M is not
di˙eomorphic to a Lie group.

3Another solution ftting the case l = 0 is the non-supersymmetric embedding of the Reissner-Nordström
black hole presented in [125].
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7.5.1 Timelike case: εN = −1.

Let
εη(N, χ, αN , −1) ∈ PCont (λ2, l2 , −1) ,L 

εη(X, g, αX ) ∈ PCont (λ2 , −l2) .R (7.263)

Then, the product of the following pairs of three-manifolds carry ε -contact Supergravity
solutions as prescribed in Theorem 7.5 for the specifed parameters:

Lorentzian factor Riemannian factor

N Sasakian X Sasakian (λ2, l2) fSL(2, R) Yes SU(2) Yes λ2 = 1 − l2 , 1 > l2 ≥ 0 

G6 Yes SU(2) Yes λ2 = 1 − l2 , 1 > l2 ≥ 0 

H3 Yes H3 Yes λ2 = 0 , l2 = 1 fSL(2, R) No SU(2) No λ2 1= l2 , > l2 > 02 eE(1, 1) No eE(2) No λ2 = 0 , l2 = 0 

7.5.2 Spacelike case: εN = 1.

Let
εη(N, χ, αN , 1) ∈ PCont (λ2, l2 , 1) ,L 

εη(X, g, αX ) ∈ PCont (λ2, l2) .R (7.264)

The following direct products of three-manifolds can be endowed with ε -contact Super-
gravity solutions as indicated in Theorem 7.5 for the values of the parameters specifed
below:

Lorentzian factor Riemannian factor

N Sasakian X Sasakian (λ2, l2) fSL(2, R) Yes SU(2) Yes λ2 = 1 + l2 , l2 ≥ 0 

G6 Yes SU(2) Yes λ2 = 1 + l2 , l2 ≥ 0 eE(1, 1) No eE(2) No λ2 = 0 , l2 = 0 eE(2) No eE(2) No λ2 = 0 , l2 = 0 

7.5.3 Null case: εN = 0.

Let
εη εη(N, χ, αN , 0) ∈ PCont (λ2, l2 , 0) , (X, g, αX ) ∈ PCont (λ2 , 0) . (7.265)L R 

The product of the following Lorentzian and Riemannian three-manifolds carry ε -contact
Supergravity solutions as described in Theorem 7.5 for the values of the parameters indi-
cated below:
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Lorentzian factor Riemannian factor

N Sasakian X Sasakian (λ2, l2) fSL(2, R) Yes SU(2) Yes λ2 = 1 , l2 ≥ 0 

G6 Yes SU(2) Yes λ2 = 1 , l2 = 0 

G6 No SU(2) Yes λ2 = 1 , l2 = 0 eE(1, 1) No eE(2) No λ2 = 0 , l2 ≥ 0 

Remark 7.29. Note that both Sasakian and non-Sasakian εη -Einstein null-contact struc-
tures on G6 can be combined with Riemannian Sasakian structures on SU(2) to yield
ε -contact Supergravity solutions. This is possible due to the fact that the εη -Einstein
condition imposes in this case a quadratic constraint on the structure constants. Solu-
tions to this quadratic constraint produce either a Sasakian or a non-Sasakian null contact
structure, depending on the particular solution chosen.

7.6 Discussion

In this last chapter of the thesis we have proved that the appropriate combination of
εη -Einstein contact structures provides solutions of six-dimensional minimal Supergravity
coupled to a tensor multiplet with constant dilaton. Since the confguration space of this
Supergravity is given by a Lorentzian metric g and a three-form H, this naturally poses
the question about the possibility of fnding analogous solutions in the context of ten-
dimensional Type IIB Supergravity. In fact, the latter can be consistently truncated to
obtain a theory whose confguration space consists solely of a ten-dimensional Lorentzian
metric and a (self-dual) fve-form [106, 699], which motivates the generalization of the
results of this chapter to the realm of ten-dimensional Type IIB Supergravity.

A key role was played by ε -contact structures, which encompass the usual notions of
three-dimensional contact Riemannian, contact Lorentzian and para-contact metric struc-
tures, but which also admit the possibility of a null Reeb vector feld. This last case was
very intriguing. Indeed, while our formalism canonically suggested the defnition of null
contact structures as those ε -contact structures with ε = 0, they are very special, since
strictly speaking they are not contact structures (because α ∧ dα = 0). We encountered
infnite instances of such structures and defned the corresponding notions of Sasakian and
K-contact null contact structures, noting a striking fact: they are not equivalent condi-
tions, being Sasakianity weaker than K-contactness. It would be very interesting to explore
the notion of null contact structures in higher-dimensions or, more generally, in arbitrary
dimensions. Which would be the most suitable defnition of null contact structures in any
dimension, which reduces to the one provided in this chapter for three-dimensions? In
particular, it might be interesting to start this investigation in the context of the afore-
mentioned study of ten-dimensional Type IIB Supergravity.

Within the class of ε -contact structures, we were interested in the so-called εη -
Einstein contact structures, which for non-null Reeb vector felds correspond to particular
cases of the notions of (three-dimensional) η -Einstein Riemannian, Lorentzian and para-
contact metric structures. In particular, the εη -Einstein condition can be seen to be
equivalent to imposing an Einstein-like equation with the stress-energy tensor of a perfect
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fuid. This is specially intriguing in the case of null contact structures, which deserves
further exploration.

We also classifed all left-invariant εη -Einstein contact metric structures on three-
dimensional simply connected Lie groups, indicating when they were additionally Sasakian.
This permitted us to obtain a plethora of solutions of minimal six-dimensional Supergravity
coupled to a tensor multiplet, but still it would be interesting to investigate the possibility
of fnding di˙erent kinds of solutions, perhaps through the study of the Cauchy initial value
problem of εη -Einstein contact structures, which we formulated. Another future direction
to examine is that of extending the notion of ε -contact structures (and εη -Einstein contact
structures) to the realm of Generalized Geometry4 [702]. It would be appealing to elaborate
on the potential notion of left-invariant generalized ε -contact structures on Lie groups, in
the spirit of the recently developed theory of left-invariant generalized pseudo-Riemannian
metrics on Lie groups [703].

Then we presented the main result of our work, which depicts the exact procedure by
which to construct solutions of six-dimensional minimal Supergravity coupled to a tensor
multiplet with constant dilaton through the combination of εη -Einstein contact structures.
As explained, this allowed us to produce Lorentzian six-manifolds (M, g) with a metric-
compatible Ricci fat connection with isotropic, totally antisymmetric, closed and co-closed
torsion. Finally, using the classifcation of left-invariant εη -Einstein contact structures, we
obtained infnite families of solutions of six-dimensional minimal Supergravity which we
interpreted as (generically non-supersymmetric) geometric and topological deformations
of the supersymmetric AdS3 × S3 solution. In particular, it would be interesting to have
a better physical understanding of such solutions, as well as knowing explicitly which of
them are supersymmetric or not.

4Note that the concept of generalized contact structures has already been introduced, see [700, 701].
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Appendix 7.A Simply connected three-dimensional Lorentz-
ian Lie groups

For the beneft of the reader, we summarize in the following the classifcation of all three-
dimensional Lorentzian simply connected Lie groups. The table below is extracted from
[679, Theorem 4.1]. In the table below fSL(2, R) denotes the universal cover of the special
linear group SL(2, R), SU(2) stands for the special unitary group in two dimensions, eE(2) 
is the universal cover of the group of rigid motions of the Euclidean plane, whereas eE(1, 1) 
denotes the universal cover of the group of rigid motions of the Minkowski plane and H3 
stands for the three-dimensional Heisenberg group.

Theorem 7.6. [679, 680, 683] Let (G, g) be a three-dimensional connected, simply con-
nected, Lorentzian Lie group G with left-invariant metric g. Then, precisely, one of the
following cases occurs:

• G is unimodular and there exists an orthonormal frame {e0, e1, e2}, with e0 time-like,
such that the Lie algebra of G is one of the following:

1. g1:

[e1, e2] = a e1−b e0 , [e1, e0] = −a e1 − b e2 , 
(7.266)

[e2, e0] = b e1 + a e2 + a e0 , a =6 0 . 

fIn this case G ' SL(2, R) if b = 0, while G ' e6 E(1, 1) if b = 0.
2. g2:

[e1, e2] = −c e2 − b e0 , [e1, e0] = −b e2 + c e0 , 
(7.267)

[e2, e0] = a e1 , c =6 0 . 

fIn this case G ' SL(2, R) if a = 0, while G ' e6 E(1, 1) if a = 0.
3. g3:

[e1, e2] = −c e0 , [e1, e0] = −b e2 , [e2, e0] = a e1 , (7.268)

In this case the isomorphism type of G is listed in the following table.

Simply connected unimodular groups with Lie algebra g3 

Lie group G a b c fSL(2, R) fSL(2, R) 
SU(2) eE(2) eE(2) eE(1, 1) eE(1, 1) 
H3 

H3 

R ⊕ R ⊕ R 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
0 
0 

+ 
− 
+ 
+ 
0 
− 
0 
0 
0 
0 

+ 
− 
− 
0 
− 
0 
+ 
0 
− 
0 
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4. g4:

[e1, e2] = −e2 + (2µ − b)e0 , [e1, e0] = −b e2 + e0 , 
(7.269)

[e2, e0] = a e1 , µ ∈ Z2 . 

In this case the isomorphism type of G is listed in the following tables.

Simply connected unimodular groups with Lie algebra g4 and µ = 1 
Lie group G a b fSL(2, R) eE(1, 1) eE(1, 1) eE(2) 

H3 

6= 0 
0 
< 0 
> 0 
0 

6= 1 
6= 1 
1 
1 
1 

Simply connected unimodular groups with Lie algebra g4 and µ = −1 
Lie group G a b fSL(2, R) eE(1, 1) eE(1, 1) eE(2) 

H3 

6= 0 
0 
> 0 
< 0 
0 

6= −1 
6= −1 
−1 
−1 
−1 

• G is non-unimodular and there exists an orthonormal frame {e0, e1, e2}, with e0 
time-like, such that the Lie algebra of G is one of the following:

1. g5:

[e1, e2] = 0 , [e1, e0] = a e1 + b e2 , [e2, e0] = c e1 + d e2 , 
(7.270)

a + d 6= 0 , a c + b d = 0 . 

We denote the unique connected and simply connected Lie group with Lie al-
gebra g5 as G5.

2. g6:

[e1, e2] = a e2 + b e0 , [e1, e0] = c e2 + d e0 , [e2, e0] = 0 , 
(7.271)

a + d 6= 0 , a c − b d = 0 . 

We denote the unique connected and simply connected Lie group with Lie al-
gebra g6 as G6.

3. g7:

[e1, e2] = −a e1 − b e2 − b e0 , [e1, e0] = a e1 + b e2 + b e0 , 
(7.272)

[e2, e0] = c e1 + d e2 + d e0 ,a + d 6= 0 , ac = 0 . 
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We denote the unique connected and simply connected Lie group with Lie al-
gebra g7 as G7.

Non-unimodular Lie algebras can be interpreted as deformations of the unimodular ones,
with deformation parameter given by:

def.
β = a + d . (7.273)

This is due to the fact that in the limit β → 0 all the previous non-unimodular Lie algebras
reduce to unimodular Lie algebras [660]. Consider as an example the Lie algebra g6 in the
limit β → 0. In such limit the Lie brackets of g6 reduce to:

[e1, e2] = a e2 + b e0 , [e1, e0] = c e2 − a e0 , [e2, e0] = 0 , a (c + b) = 0 . (7.274)

The specifc unimodular algebras occurring in the limit β → 0 of g6 can be easily identifed
in some particular cases:

• If a = 0, we obtain:

[e1, e2] = b e0 , [e1, e0] = c e2 , [e2, e0] = 0 . (7.275)

Comparing with the classifcation of unimodular Lie algebras, we conclude that the
case cb > 0 corresponds to the Lie algebra of eE(1, 1), the case cb < 0 corresponds to
the Lie algebra of E(2)e , the case c =6 0 , b = 0 or c = 0 , b =6 0 corresponds to the Lie
algebra of H3 and the case c = b = 0 corresponds to R3 .

• If a =6 0 then we must have c = −b. If in addition we set c = 0, the brackets take
the form:

[e1, e2] = a e2 , [e1, e0] = −a e0 , [e2, e0] = 0 . (7.276)

Comparing with the classifcation of unimodular Lie algebras, we conclude that this
algebra is isomorphic to eE(1, 1).

• Also, if a = b = 1 and c = −b = −1 the brackets read:

[e1, e2] = e0 + e2 , [e1, e0] = −e0 − e2 , [e2, e0] = 0 . (7.277)

which defnes a Lie algebra isomorphic to H3.

Therefore, the non-unimodular Lie group G6 can be understood as a deformation of various
unimodular groups such as e E(2) or H3. Similar remarks hold for G5 and G7.E(1, 1), e 
Appendix 7.B Curvature of left-invariant metrics on Lorentz-

ian Lie groups

Let (G, g) be a three-dimensional Lorentzian Lie group with Lie algebra g. Fix a global
left-invariant frame {e0, e1, e2} on G. We have:

[e0, e1] = ae0 + be1 + ce2 , [e1, e2] = de0 + fe1 + he2 [e0, e2] = ge0 + je1 + ke2 , (7.278)
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where a, b, c, d, f, h, g, j, k ∈ R such that the Jacobi identity is satisfed. In this case,
imposing [[e0, e1], e2] + [[e2, e0], e1] + [[e1, e2], e0] = 0 yields the constraints

bd + kd − fa − hg = 0 , ja − gb + kf − hj = 0 , ak + hb − gc − fc = 0 . (7.279)

Using Koszul formula, we compute the following covariant derivatives:

c − j + d j − c − d re0 e0 = ae1 + ge2 , re0 e1 = ae0 + e2 , re0 e2 = ge0 + e1 , (7.280)
2 2 

d − c − j d − c − j re1 e0 = −be1 + e2 , re1 e1 = −be0 − fe2 , re1 e2 = e0 + fe1 , (7.281)
2 2 

j + d + c j + d + c re2 e0 = − e1 − ke2 , re2 e1 = − e0 − he2 , re2 e2 = −ke0 + he1 . (7.282)
2 2 

Using the previous covariant derivatives we compute the Riemann curvature tensor (with
the convention Rg(u, v)w = rurvw −rvruw −r[u,v]w):

Rg(e0, e1)e0 

Rg(e0, e1)e1 

Rg(e0, e1)e2 

Rg(e1, e2)e0 

Rg(e1, e2)e1 

Rg(e1, e2)e2 

Rg(e0, e2)e0 

Rg(e0, e2)e1 

Rg(e0, e2)e2 

� � 
2 = − a + b2 − gf + 

1
(−c + d − j)(j − c − d) + 

c 
(j + d + c) e1

4 2 

+ [−bd + af − ag + ck + bj]e2 , � � 
2 = − a + b2 − gf + 

1
(−c + d − j)(j − c − d) + 

c 
(j + d + c) e0

4 2 

+ [−bg + bf − ad + hc + aj]e2 , 

= [fa − ag + bj − bd + ck]e0 + [ad − aj + gb − bf − ch]e1 , 

= [−kf + fb − da + hc + hj]e1 + [−bh + hk − dg + fj + fc]e2 , 

= [hc + hj − fk − da + fb]e0 � � 
+ − bk + f2 + h2 − 

d 
(c − j + d) − 

1
(d + j + c)(−c + d − j) e2 ,

2 4 

= [−bh + fj + fc − dg + hk]e0 � � 
+ bk − f2 − h2 + 

d 
(c − j + d) + 

1
(d + j + c)(−c + d − j) e1 ,

2 4 

= [kc + kd − gh − ga + jb]e1 � � 
2 j 1 

+ ah − g + k2 − (−c + d − j) − (j + d + c)(c − j + d) e2 ,
2 4 

= [−hg − ga + jb + kc + kd]e0 + [ak + jf + kh − gc − gd]e2 , � � 
1 j2 + k2 = (j − c − d)(d + j + c) − g + (−d + c + j) + ah e0
4 2 

+ [−ka + gd + gc − fj − kh]e1 , 

(7.283)

(7.284)

(7.285)

(7.286)

(7.287)

(7.288)

(7.289)

(7.290)

(7.291)

From here, we obtain the Ricci curvature tensor Ricg, which we remind it is defned as
Ricg(u, v) = Tr (w → Rg(w, u)v) (following the conventions of the Second Part of the
thesis):

2d2 j2c 
Ricg(e0, e0) = a 2 − b2 + gf + g 2 − k2 − ah + − cj − − , (7.292)

2 2 2 
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Ricg(e0, e1) = bh − fj − fc + dg − hk , (7.293)

Ricg(e0, e2) = hc + hj − fk − da + fb , (7.294)

j2 d22c2Ricg(e1, e1) = −a + b2 − f2 − h2 − fg + bk − + dc + + , (7.295)
2 2 2 

Ricg(e1, e2) = fa − ag + bj − bd + ck , (7.296)

j2 d2 2c2Ricg(e2, e2) = −g + k2 + ah + kb − f2 − h2 + − jd + − . (7.297)
2 2 2 

Finally, the scalar curvature Scalg reads

Scalg = −2a 2 + 2b2 − 2gf − 2g 2 + 2k2 + 2ah+ 

d2 2 j2 (7.298)c 
+ cj + + − 2f2 − 2h2 + 2bk + dc − jd . 

2 2 2 
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Conclusions and Future Directions 

Conclusions and Executive Summary

In this thesis we have investigated the physics and geometry of gravity at high energies.
Firstly, we have explored its physical behavior in this regime through the study of higher-
order gravities, with a special emphasis in those with non-minimal couplings to electro-
magnetism. Secondly, we have probed geometric aspects of gravity at high energies via the
examination of mathematical structures of interest arising in the context of Supergravity
and String Theory (ST).

Higher-order gravities

In the First Part of the thesis, we carried out a detailed analysis of a special class of
higher-order gravities. In particular, we studied both purely gravitational higher-curvature
theories and higher-order gravities with a non-minimally coupled U(1) gauge vector feld of
the (Generalized) Quasitopological type, defned as those admitting static and spherically
symmetric (SSS) solutions characterized by a single function f(r) = −gtt = 1/grr with (at
most) second-order equation of motion.

We began with the study of Generalized Quasitopological Gravities (GQGs), which
are purely gravitational theories. We reviewed other intriguing properties of these theo-
ries, such as having second-order linearized equations around maximally symmetric back-
grounds, possessing a continuous and well-defned Einstein limit or allowing for the exact
computation of the thermodynamic properties of the subsequent (SSS) black holes. Given
these interesting features, together the (recently proven) fact that GQGs exist at every or-
der and spacetime dimension, we embarked on a highly non-trivial mission: showing that
GQGs span all higher-curvature gravities once feld redefnitions of the metric are consid-
ered. This would provide GQGs a fundamental importance within the set of higher-order
gravities and justify once and for all their relevance.
Interestingly enough, we succeeded in this assignment, being able to prove rigorously that
all higher-curvature gravities composed of terms which either contain no covariant deriva-
tives of the curvature or, otherwise, possess two and only two covariant derivatives or
belong to the eight-derivative level at most can be mapped via perturbative feld redefni-
tions to a GQG. Claiming the latter to hold for any higher-order theory of gravity remains
as a conjecture. In any case, this suggests that the physics of black holes in generic higher-
curvature gravities is captured by their GQG counterparts, dramatically easier to deal
with. We illustrate this fact with the gravity sector of Type IIB ST in AdS5 × S5 at
order O(α03), building the explicit (perturbative) map into a GQG and showing that the
thermodynamic properties of black holes in both frames match.

Next we were interested in extrapolating, somehow, the notion of GQGs into the
realm of higher-order gravities with a non-minimally coupled vector feld. Indeed, higher-
derivative e˙ective actions including gravity and electromagnetism are expected to incor-
porate all types of couplings between the curvature and the gauge feld strength and,
furthermore, non-minimal couplings could trigger new e˙ects and phenomena, so they are
worth exploring. We showed that such generalization is possible, calling the subsequent
theories Electromagnetic (Generalized) Quasitopological Gravities (E(G)QGs).
They can be divided into two subclasses: those with algebraic equation of motion for f(r) 
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(EQGs) and those which have a second-order equation (EGQGs). Working in four di-
mensions, we were able to identify two infnite families of EQGs of arbitrary order in the
curvature and the gauge feld strength. We studied magnetically-charged black hole solu-
tions whose thermodynamics we accessed analytically. We observed that, quite generally,
the singularity at the core of the black hole is regularized by the higher-derivative correc-
tions, producing in turn a globally regular geometry. On the other hand, we managed to
fnd an infnite family of proper EGQGs as well. Although not deriving the explicit charged
black hole solutions, we could explore their thermodynamic properties analytically. In both
cases, we focused on extremal black holes and studied, among other physical aspects, the
corrections to the extremal charge-to-mass ratio at a non-perturbative level.
Afterwards, through the dualization of EQGs possessing magnetic solutions with globally
regular geometry, we were able to discover a non-minimal higher-derivative extension of
Einstein-Maxwell theory in which electrically-charged black holes and point charges have
completely regular gravitational and electromagnetic felds. In particular, we obtained an
exact SSS solution of this theory reducing to the Reissner-Nordström one at weak coupling,
but regularizing the singularity at r = 0 for arbitrary mass and non-vanishing charge.
To the best of our knowledge, this was the frst explicit example of a theory that fully
regularizes both gravitational and electromagnetic felds, thus showing that higher-order
corrections are capable of resolving GR singularities.

Later we concentrated on the study of higher-order theories of gravity and elec-
tromagnetism which are invariant under electromagnetic duality rotations, admitting the
presence of non-minimal couplings. Indeed, symmetries conform perhaps the most funda-
mental guiding principle in theoretical physics, providing the natural felds and variables
to consider within the study of a physical system as well as constraining the type of terms
that may appear in the (e˙ective) action. Therefore, since Einstein-Maxwell theory is al-
ready invariant under SO(2) duality rotations, it is reasonable to seek for higher-derivative
extensions which respect this invariance.
In this context, frst we worked in a derivative expansion of the action and classifed all
Lagrangians coming from the truncation of an exactly duality-invariant theory up to the
eight-derivative level. Then we investigated the e˙ect of feld redefnitions and showed that,
to six derivatives, the most general duality-invariant theory can be mapped to Maxwell
theory minimally coupled to a purely gravitational higher-order gravity, what motivated
us to conjecture that this occurs at all orders. We also studied charged black hole solutions
in this special six-derivative theory and explored additional constraints on the couplings
imposed by the Weak Gravity Conjecture (WGC).
In an attempt to derive exact results, we decided to restrict ourselves to the study of
higher-order gravities with quadratic dependence on a non-minimally coupled Maxwell feld
strength. Remarkably enough, we managed to obtain a closed form for the action of all
such theories which are duality-invariant, observing a highly degree of (formal) resemblance
with Born-Infeld Lagrangians. We examined the SSS black hole solutions of the simplest of
these exactly duality-invariant theories and, focusing on extremal black holes, determined
analytically both the near-horizon geometry and the entropy, which is given by the Einstein-
Maxwell value plus a constant correction. We theorized this very simple expression for the
entropy was due to duality invariance.

The First Part of the thesis concluded with the study of holographic aspects of
any-dimensional EQGs, fnding infnite examples of these theories to every order in the
curvature and the feld strength. Their very special structure allowed us to obtain analytic
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and fully non-perturbative results, thus paving the way to access di˙erent universality
classes of dual Conformal Field Theories (CFTs).
For the sake of concreteness, we restricted ourselves to the more generic four-derivative
EQG (in arbitrary dimension). We computed the coeÿcients of the correlators hJJi and
hTJJi, which are given in terms of the couplings of EQG densities. Similarly, we investi-
gated the constraints coming from CFT unitarity and positivity of energy (which we found
to be equivalent to those arising from demanding causality in the bulk) and from the WGC.
Later we focused on charged Rényi entropies (RE), which are appropriate generalizations
of the standard RE in the presence of global symmetries, and observed that the usual
properties of RE are preserved if the aforementioned physical constraints are fulflled.
As in the uncharged case, charged RE contain naturally a notion of charged entanglement
entropy. We explored this magnitude further in more generality and discovered that for
a general d(≥ 3)-dimensional CFT, the frst correction with respect to the uncharged
entanglement entropy across a spherical entangling surface appears at quadratic order in
the chemical potential and is positive defnite and universally controlled by the coeÿcients
determining the correlators hJJi and hTJJi of the theory. This result was motivated by
analytic holographic calculations for any-dimensional and any-derivative EQGs and for free
felds in d = 4.

The key concepts to remember from the First Part of the thesis are shown below.

• GQGs provide a spanning set of the space of all higher-curvature grav-
ities L(gµν , Rµνρσ).

• E(G)QGs have been discovered and the frst examples identifed.

• The frst theory regularizing the Reissner-Nordström singularities has
been found.

• Duality-invariant theories, up to six-derivatives, are equivalent to a
gravitational theory with a minimally coupled U(1) vector feld.

• All exactly duality-invariant higher-order theories quadratic in the
Maxwell feld strength have been classifed.

• Holographic aspects of any-dimensional EQGs have been derived in a
fully non-perturbative fashion.

• A universal relation regarding the (charged) entanglement entropy in
general d(≥ 3)-dimensional CFTs has been discovered.

Executive Summary of the First Part

Geometric aspects of Supergravity and String Theory

In the Second Part of the thesis, we presented a study of the geometry of Supergravity
and ST. Evidently, geometric structures are ubiquitous in realm of high-energy gravity,
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so it is an unrealizable task that of trying to cover all their appearances in a single work.
Instead, we considered more intriguing to focus on various aspects of the interplay between
gravity and geometry at high energies which could help us acquire a global picture of
this connection. With this in mind, we started with the investigation of parallel spinors
on globally hyperbolic four-manifolds, then we obtained classifcation results of self-dual
Einstein four-manifolds which admit an isometric and principal action of the Heisenberg
group and fnally we showed how special classes of contact structures can be used for the
construction of (novel) Supergravity solutions.

We studied frst real parallel spinors on globally hyperbolic four-manifolds, motivated
by several reasons. Firstly, one could argue a purely mathematical interest. Secondly,
they are GR solutions, either in vacuum or, more generally, in presence of a pressureless
null dust. And thirdly, they provide supersymmetric solutions of pure N = 1, D = 4 
Supergravity, allowing us to explore the global geometric properties of supersymmetric
spacetimes.
We began by exposing the general theory of real parallel spinors on globally hyperbolic
four-manifolds and next we reformulated the associated initial value problem in terms of a
frst-order system of partial di˙erential equations for a family of functions and coframes on
an appropriate (three-dimensional) Cauchy surface, defning the so-called parallel spinor
fow. This is extremely useful since it allowed us to show that the parallel spinor fow
preserves the vacuum momentum and Hamiltonian constraints, meaning that the parallel
spinor and the Einstein fows coincide on common initial data. In turn, this provided an
initial data characterization of real parallel spinors on Ricci fat Lorentzian four-manifolds.
Afterwards we investigated the subsequent constraint equations of the parallel spinor fow,
which defne the parallel Cauchy di˙erential system. More concretely, we studied the
topology and geometry of the Cauchy surfaces admitting solutions to this system and
characterized all left-invariant solutions on three-dimensional simply connected Lie groups.
We used this result to classify all left-invariant parallel spinor fows on simply connected
Cauchy surfaces allowing for a Lie group structure and fnally we examined a special class
of parallel spinor fows in which the family of functions is just a constant.

Secondly, we moved to the investigation of self-dual Einstein four-manifolds with
an isometric and principal action of the three-dimensional Heisenberg group H. This was
motivated by the discovery that the isometry group of the one-loop deformed universal
hypermultiplet, arising in the context of scalar manifolds of four-dimensional Supergravity
(or in compactifcations of Type II strings), is given by O(2) n H. However, if one reduces
the isometry group down to H, the problem becomes too general to obtain explicit results,
so we decided to add the requirement of self-duality of the Weyl tensor and focus on the
classifcation of all such (pseudo-)Riemannian manifolds.
We started with the case of non-vanishing Einstein constant, which corresponds to quat-
ernionic (para)Kähler manifolds. We carried out the complete classifcation of all of them
and, apart from fnding the one-loop deformed universal hypermultiplet metrics (as well
as neutral-signature versions of it), we encountered positively-curved (resp. negatively-
curved) Riemannian (resp. neutral-signature) counterparts. Additionally, we established
when the subsequent metrics were geodesically (in)complete.
Then we analyzed the case of Ricci fat metrics, which we identifed with (para)hyperKähler
geometries. We classifed all such manifolds and proved that they are all incomplete except
in the case in which the Heisenberg center is lightlike, which is isometric to fat space.
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Finally, we concluded with a study of particular classes of contact structures and of
their utility for the construction of solutions of Supergravity. This work should be contex-
tualized within the program of classifying Supergravity solutions and the corresponding
moduli spaces of solutions in a given spacetime dimension, which stands as an open prob-
lem in the (mathematical) theory of Supergravity. We opted to consider the specifc case of
minimal six-dimensional Supergravity coupled to a tensor multiplet with constant dilaton.
Moreover, as a frst approach to the general classifcation problem, which currently seems
inaccessible, we restricted ourselves to the special class of solutions corresponding to the
direct product of three-dimensional Lorentzian and Riemannian manifolds.
With this in mind, we frst defned the concept of ε -contact structures, which encompasses
the usual three-dimensional contact Riemannian, contact Lorentzian and para-contact met-
ric structures, but which also includes the possibility of a null Reeb vector feld. We called
this latter case null contact structure and introduced the notions of Sasakian and K-contact
null contact structures, showing that the associated K-contact condition is stronger than
Sasakianity.
Later we defned the εη -Einstein contact structures, which include particular cases of the
standard (three-dimensional) η -Einstein Riemannian, Lorentzian and para-contact struc-
tures, as well as a subclass of null contact structures. We provided a complete classifcation
of all of them in three dimensional simply connected Lie groups. Next we explicitly showed
the procedure by which the appropriate combination of εη -Einstein contact structures
produces solutions of minimal six-dimensional Supergravity coupled to a tensor multiplet
with constant dilaton, which can be equivalently understood as six-dimensional Lorentz-
ian manifolds with a Ricci fat metric-compatible connection with isotropic, totally skew-
symmetric, closed and co-closed torsion. We concluded by illustrating particular instances
of solutions, which we interpreted as (generically non-supersymmetric) deformations of the
usual supersymmetric solution on AdS3 × S3 .

In a nutshell, the essential contents of the Second Part of the thesis are the following.

• The Cauchy problem for a real parallel spinor on a globally hyperbolic
four-manifold can be reformulated as a system of di˙erential equations
for a family of functions and coframes on a Cauchy surface.

• At least in four spacetime dimensions, the parallel spinor and the
(vacuum) Einstein fows coincide on common initial data.

• All self-dual Einstein four-manifolds invariant under a principal and
isometric action of the three-dimensional Heisenberg group with non-
degenerate orbits have been classifed.

• Null contact structures have been identifed, defning the associated
notions of Sasakianity and K-contactness.

• Appropriate combinations of εη -Einstein contact structures produce
solutions of six-dimensional minimal Supergravity.

Executive Summary of the Second Part
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Future directions

It is a well-known paradoxical phenomenon in physics (and science in general) that the more
we think we know, the more we realize we do not know. This thesis has not circumvented
this (fortunate1) problem, leaving behind a plethora of open questions. Some of them
have been already mentioned along the text, but we have found convenient to (re)write
explicitly the most intriguing future directions we may think of as of this moment:

1. Prove (or disprove) Conjectures 1.1 and 1.2.

2. Characterize more accurately the set of all GQGs at every order and dimension,
in the light of [251]. In particular, could we fnd the explicit covariant form of all
inequivalent algebraic GQGs at every order and dimension?

3. Study explicit black hole solutions of proper GQGs.

4. Would it be possible to show the existence of GQGs (or other purely gravitational
theories) admitting simple enough rotating black hole solutions whose expression
we may determine analytically (or through a certain di˙erential equation which is
numerically manageable)?

5. Find purely gravitational higher-order theories with fully regular SSS solutions (i.e.,
regularizing the Schwarzschild singularity).

6. Examine the possibility of defning duality rotations for purely gravitational theories
(perhaps as suggested in the recent work [704]) and study which theories might be
(exactly) invariant under this duality.

7. Determine the most general structure of E(G)QG Lagrangians.

8. Explore the applicability of E(G)QGs to the cosmological setting or the existence of
E(G)QGs with Taub-NUT solutions.

9. Investigate the e˙ects of feld redefnitions in E(G)QGs. Could any higher-order
gravity and electromagnetism be mapped, through appropriate feld redefnitions, to
an E(G)QG, in analogy with the situation for purely gravitational theories?

10. Find the necessary and suÿcient conditions for any higher-order theory of gravity
and electromagnetism to be (perturbatively) duality-invariant (that is, extend the
result obtained in Chapter 3 at the eight-derivative level).

11. Prove (or disprove) Conjecture 3.1.

12. Obtain higher-order theories not necessarily quadratic in the Maxwell feld strength
which are exactly invariant under (electromagnetic) duality rotations.

13. Even restricting ourselves to exactly duality-invariant theories which are quadratic
in the Maxwell feld strength, study the subsequent (extremal) black holes and their
entropy.

14. Why had the entropy (3.209) such a simple expression? We suspected it was due to
duality invariance, but it would be gratifying to prove this fact from frst principles.

1Otherwise, no more PhD theses would be written.
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15. Find exact SSS solutions of exactly duality-invariant theories. Could we encounter
instances of these theories with regular SSS solutions?

16. Following the previous question, is it possible to identify E(G)QGs which are fur-
thermore (exactly) duality-invariant?

17. Study the holographic aspects of the any-dimensional and any-order EQGs con-
structed in (4.255) and (4.256).

18. Identify examples of proper EGQGs in arbitrary dimensions and analyze their holo-
graphic properties. Could this be done analytically, as for the EQGs given by (4.30)?

19. Explore in more detail the relation between causality constraints in the bulk and
unitarity constraints in the boundary CFT (in particular, for more general theories
than (4.30)).

20. Understand better the WGC in AdS space, especially the implications of this con-
jecture for the dual CFT.

21. Regarding the universal formula (4.252), it would be interesting to rederive it using
the formalism developed in [620] or fnd additional two-dimensional counterexamples
to (4.252) through the investigation of three-dimensional EQGs [619].

22. Extend the results of Chapter 5 for the case of a real Killing spinor or more generic
ones.

23. Using the connection between parallel spinors and pp-waves, interpret physical and
geometric aspects of the associated pp-waves in terms of the parallel spinor fow
formalism.

24. Investigate further the possibility of using frst-order hyperbolic spinorial fows to
construct special solutions of GR.

25. In connection with the previous point, examine in more detail the precise type of
three-dimensional curvature fows one obtains on the Cauchy surface.

26. Construct generic non left-invariant parallel spinor fows, perhaps focusing on the
subclass of comoving parallel spinor fows.

27. Is it possible to provide a (partial) classifcation result for all Einstein four-manifolds
admitting an isometric and principal action of the three-dimensional Heisenberg
group with non-degenerate orbits (that is, removing the self-duality condition)? And
if we impose further the (para)Kähler condition?

28. Derive explicit Lorentzian examples of (Einstein) Heisenberg four-manifolds.

29. Can we give an interpretation of all self-dual Einstein Heisenberg four-manifolds
within ST and Supergravity?

30. In the framework of Chapter 6, consider other principal and isometric actions pro-
vided by di˙erent Lie groups. Would they have any ST and Supergravity embedding?
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31. Again, within the context of Chapter 6, analyze the possibility of orbits with induced
degenerate metrics or classify (para)quaternionic Kähler and (para)hyperKähler man-
ifolds with Heisenberg symmetry in dimensions D = 4n with n > 1.

32. Study the possibility of generalizing the results of Chapter 7 to ten-dimensional Type
IIB Supergravity, when truncating all felds but the metric and the (self-dual) fve-
form.

33. Determine explicitly if the solutions of minimal six-dimensional Supergravity we
obtained, interpreted as geometric and topological deformations of the canonical
AdS3 × S3 supersymmetric solution, are indeed supersymmetric or not.

34. Continue the investigation of null contact structures and generalize this notion for
arbitrary (odd) dimension.

35. Go ahead with the classifcation of all εη -Einstein contact structures, not restricting
ourselves to left-invariant ones. In particular, this could be intriguing in the case of
null contact structures, because of the very peculiar form of the subsequent stress-
energy tensor.

36. In the context of (minimal) six-dimensional Supergravity, explore di˙erent ansätze of
solutions, like admitting warped products or, modifying more drastically the starting
point, considering direct products of Lorentzian four-dimensional manifolds and (two-
dimensional) Riemannian surfaces.

The previous proposals are just some natural future directions arising from the re-
search carried out in this thesis, but there are of course many other open questions2 which
could be interesting as well. We hope to address at least some of them in the near future.

2Perhaps not even identifed by the author as of the moment of writing this document.
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Conclusiones y Direcciones Futuras 

Conclusiones y Compendio de Resultados

En esta tesis doctoral se ha realizado un estudio de la física y geometría de la gravedad a al-
tas energías. Primero, hemos explorado su comportamiento físico en este régimen mediante
las gravedades de orden superior, con especial énfasis en aquellas con acoplamientos no mí-
nimos a electromagnetismo. En segundo lugar, hemos inspeccionado aspectos geométricos
de la gravedad a altas energías mediante el análisis de estructuras matemáticas de interés
que surgen en el contexto de Supergravedad y Teoría de Cuerdas (TC).

Gravedades de orden superior

En la Primera Parte de la tesis, realizamos un detallado estudio de una clase particular de
gravedades de orden superior. En concreto, investigamos tanto teorías de orden superior
puramente gravitacionales como gravedades de orden superior con un vector gauge U(1) no
mínimamente acoplado que pertenecen a la tipología Cuasitopológica (Generalizada). Se
caracterizan por admitir soluciones estáticas esféricamente simétricas (EES) determinadas
por una única función f(r) = −gtt = 1/grr con ecuación de movimiento de segundo orden
(como máximo).

Comenzamos con el estudio de las correspondientes Gravedades Cuasitopológicas
Generalizadas (GCGs). Revisamos varias propiedades atractivas que estas teorías poseen
por defnición, tales como ecuaciones linealizadas de segundo orden en fondos máxima-
mente simétricos, un límite a Relatividad General continuo y bien defnido o permitir el
cálculo exacto de la termodinámica de los subsiguientes agujeros negros (EES). Dadas es-
tas propiedades sumamente interesantes, junto con el hecho (recientemente probado) de
que existen GCGs a todo orden y en todas dimensiones, decidimos embarcarnos en una
difícil misión: demostrar que las GCGs generan todas las gravedades de orden superior si
se tienen en cuenta redefniciones de la métrica. Tal peculiaridad otorgaría a las GCGs
una importancia fundamental y justifcaría de una vez por todas su relevancia.
Logramos llevar a cabo dicha empresa y fuimos capaces de mostrar que todas las gravedades
de orden superior compuestas de términos que o bien no contienen derivadas covariantes
de la curvatura o, en caso contrario, poseen dos y solo dos derivadas covariantes o tienen
ocho derivadas como máximo se pueden reescribir mediante redefniciones de campo per-
turbativas como GCGs. La extensión de dicha aseveración para cualquier teoría de orden
superior gravitatoria permanece a día de hoy en el ámbito conjetural. De todas formas, la
anterior observación sugiere que la física de agujeros negros en teorías genéricas de orden
superior viene capturada por las GCGs asociadas, mucho más manejables. Ilustramos esta
propiedad con el sector gravitacional de la TC Tipo IIB en AdS5 ×S5 a orden O(α03), cons-
truyendo asimismo el mecanismo explícito para reformularlo como una GCG y mostrando
la equivalencia de la termodinámica de agujeros negros en ambos contextos.
A continuación, nos interesamos en extrapolar, de algún modo, la noción de GCGs al
ámbito de las teorías de orden superior dotadas de un vector acoplado no mínimamente. En
efecto, se espera que las acciones efectivas con derivadas superiores que incluyen gravedad y
electromagnetismo incorporen todos los tipos posibles de acoplamientos entre la curvatura y
el campo gauge, que podrían generar nuevos efectos y fenómenos interesantes. Por lo tanto,
queda patente la necesidad de explorar esta dirección. Afortunadamente, demostramos que
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tal generalización es posible, hallando así los primeros ejemplos no triviales de Gravedades
Electromagnéticas Cuasitopológicas (Generalizadas) (GEC(G)s).
Se pueden dividir en dos grupos: aquellas con ecuación de movimiento algebraica para f(r) 
(GECs) y aquellas con ecuación de segundo orden (GECGs). Trabajando en cuatro dimen-
siones, identifcamos dos familias infnitas de GECs a orden arbitrario en la curvatura y en
el campo gauge. Estudiamos agujeros negros con carga magnética y obtuvimos soluciones
analíticas cuyas propiedades termodinámicas pudimos calcular de forma exacta. Asimismo,
observamos que, en bastante generalidad, las correcciones de orden superior regularizan la
singularidad en el centro del agujero negro, dando lugar a una geometría completamente
regular. Por otra parte, también encontramos una familia infnita de GECGs propias.
Aunque no derivamos los soluciones de tipo agujero negro con carga magnética explíci-
tamente, fuimos capaces de explorar sus propiedades termodinámicas analíticamente. En
ambos casos, nos centramos en agujeros negros extremos y exploramos, entre otros aspec-
tos, las correcciones a la relación carga/masa extrema a nivel no perturbativo.
A continuación, mediante la dualización de GECs que poseen soluciones magnéticas con
geometría completamente regular, descubrimos una extensión con derivadas superiores
y acoplamientos no mínimos de la teoría de Einstein-Maxwell en la que tanto agujeros
negros con carga eléctrica como cargas puntuales tienen campos electromagnéticos y gravi-
tacionales completamente regulares. En particular, obtuvimos una solución EES de esta
teoría que se reduce a la de Reissner-Nordström para acoplamiento débil, pero que además
regulariza la singularidad en r = 0 para toda masa y carga no nula. Creemos que se trata
del primer ejemplo explícito de teoría que regulariza totalmente el campo gravitacional
y electromagnético, probando así que las correcciones de orden superior son capaces de
regularizar singularidades de la Relatividad General (RG).

Después nos concentramos en el estudio de teorías de orden superior de gravedad y
electromagnetismo con acoplamientos no mínimos que son invariantes bajo rotaciones de
dualidad electromagnética. En efecto, las simetrías conforman quizá uno de los principios
básicos más fundamentales de la Física Teórica, proporcionando las variables y campos
naturales a considerar en el estudio de un sistema físico y restringiendo el tipo de tér-
minos que pueden aparecer en la acción (efectiva). Por lo tanto, puesto que la teoría de
Einstein-Maxwell ya es invariante bajo rotaciones de dualidad SO(2), es razonable buscar
extensiones con derivadas superiores que respeten dicha invariancia.
En este contexto, primero escribimos un desarrollo en derivadas superiores de la acción y
clasifcamos todos los Lagrangianos que provienen de la truncación hasta ocho derivadas
de una teoría exactamente invariante bajo dualidad. Luego, investigamos el efecto de
las redefniciones de campo y mostramos que, hasta seis derivadas, la teoría más general
invariante bajo dualidad se puede reformular como la teoría de Maxwell mínimamente
acoplada a una teoría de orden superior de gravedad pura, lo que nos llevó a conjeturar
que este fenómeno tiene lugar a todos los órdenes. También estudiamos soluciones cargadas
de tipo agujero negro en esta teoría especial de seis derivadas y exploramos condiciones
adicionales impuestas por la Conjetura de Gravedad Débil (CGD).
En un intento por obtener resultados exactos, optamos por restringirnos al estudio de
gravedades de orden superior con dependencia cuadrática en el campo de Maxwell. Notable-
mente, logramos deducir una forma cerrada para la acción de todas tales teorías invariantes
bajo dualidad, observando un alto grado de similitud (formal) con los Lagrangianos de
Born-Infeld. Examinamos las soluciones EES de tipo agujero negro de la más simple de
estas teorías con acoplamientos no mínimos y, centrándonos en agujeros negros extremos,
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determinamos analíticamente tanto la geometría próxima al horizonte como la entropía,
que viene dada por el valor de Einstein-Maxwell más una corrección constante. Teorizamos
que dicha expresión tan simple para la entropía se debía a invariancia bajo dualidad.

Concluimos la Primera Parte de la tesis con el estudio de aspectos holográfcos de
GECs en cualquier dimensión, las cuales pudimos identifcar a todo orden en la curvatura
y en el campo de Maxwell. La estructura especial de dichas teorías nos permitió obtener
resultados analíticos y completamente no perturbativos, lo que nos facilitó el acceso a clases
de universalidad diferentes de Teorías Conformes de Campos (TCCs).
Para fjar ideas, nos restringimos a la GEC más general con términos de cuatro derivadas
(pero en dimensión arbitraria). Logramos calcular los coefcientes de los correladores hJJi 
y hTJJi en términos de los acoplamientos de las densidades GEC. Asimismo, investigamos
las ligaduras provenientes de unitariedad de la TCC y de la positividad de la energía (que
mostramos que son equivalentes a imponer causalidad en el espaciotiempo) y de la CGD.
Luego nos centramos en la entropías de Rényi (ER) cargadas, que son generalizaciones
de las ER estándar en presencia de simetrías globales. Observamos que se respetan las
propiedades usuales de las ER si se satisfacen las ligaduras mencionadas.
Como en el caso sin carga, las ER cargadas incluyen una noción de entropía de entrelaza-
miento cargada. Indagamos acerca de esta magnitud en mayor generalidad y descubrimos
que, para cualquier TCC en dimensión d ≥ 3, la primera corrección con respecto a la en-
tropía de entrelazamiento sin carga a través de una superfcie de entrelazamiento esférica
surge a segundo orden en el potencial químico, es defnido positivo y está controlado de
forma universal por los coefcientes que determinan los correladores hJJi y hTJJi. Este
resultado fue motivado por cálculos analíticos holográfcos en GECs a todo orden y para
toda dimensión y en teorías de campos libres en d = 4.

Las ideas fundamentales de la Primera Parte de la tesis se muestran a continuación.

• Las GCGs forman un conjunto generador del espacio de todas las
gravedades de orden superior L(gµν , Rµνρσ).

• Se han descubierto las GEC(G)s e identifcado los primeros ejemplos.

• Se ha hallado la primera teoría que regulariza las singularidades de
Reissner-Nordström.

• Hasta sexto orden, las teorías invariantes bajo dualidad son equivalen-
tes a una teoría de gravedad con un vector U(1) mínimamente acoplado.

• Se han clasifcado todas las teorías de orden superior exactamente
invariantes bajo dualidad y cuadráticas en el campo de Maxwell.

• Se han estudiado aspectos holográfcos de GECs en dimensión arbi-
traria y de forma completamente no perturbativa.

• Se ha descubierto una relación universal que concierne la entropía de
entrelazamiento cargada y válida para toda TCC en dimensión d ≥ 3.

Ideas clave de la Primera Parte
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Aspectos geométricos de la Supergravedad y la Teoría de Cuerdas

En la Segunda Parte de la tesis, presentamos un estudio de la geometría de Supergravedad
y TC. Evidentemente, las estructuras geométricas en el ámbito de la gravedad a altas
energías son omnipresentes, por lo que se trata de una tarea prácticamente irrealizable el
intentar cubrir todas ellas en un solo trabajo. En cambio, consideramos más interesante
centrarse en aspectos concretos de la relación entre geometría y gravedad a altas energías,
con el objetivo de construir una imagen global de esta conexión. Por ello, comenzamos
investigando espinores paralelos en variedades globalmente hiperbólicas, luego obtuvimos
resultados de clasifcación de cuatro-variedades Einstein autoduales que admiten una acción
isométrica y principal del grupo de Heisenberg y fnalmente mostramos cómo se pueden
construir (nuevas) soluciones de Supergravedad seis-dimensional mediante clases especiales
de estructuras de contacto.

Primero, estudiamos la existencia de espinores reales paralelos en variedades global-
mente hiperbólicas por varios motivos. En primer lugar, se puede argüir un interés pura-
mente matemático. En segundo lugar, resultan ser soluciones de RG en el vacío o, en mayor
generalidad, en presencia de polvo de tipo luz sin presión. Y, en tercer lugar, proporcionan
soluciones supersimétricas de Supergravedad pura N = 1 en D = 4, lo que nos permite
explorar las propiedades geométricas globales de espaciotiempos supersimétricos.
Empezamos con una exposición de la teoría general de espinores reales paralelos en cuatro-
variedades globalmente hiperbólicas y, a continuación, reescribimos el problema asociado
de valores iniciales en términos de un sistema de ecuaciones en derivadas parciales de primer
orden para una familia de funciones y bases ortonormales del espacio cotangente en una
superfcie de Cauchy (tres-dimensional) apropiada. Dicha reformulación resulta muy útil,
ya que nos permite demostrar que el fujo de espinor paralelo preserva tanto la ligadura
Hamiltoniana como la de momento en el vacío, lo que implica que el fujo de Einstein y
el de espinor paralelo coinciden en datos iniciales comunes. En consecuencia, obtuvimos
una caracterización de datos iniciales de espinores reales paralelos en cuatro-variedades
lorentzianas Ricci planas.
Después, investigamos las ecuaciones de ligadura correspondientes al fujo de espinor para-
lelo, que defnen el sistema diferencial paralelo de Cauchy. En concreto, estudiamos la
topología y geometría de superfcies de Cauchy que admiten soluciones a este sistema
y caracterizamos todas las soluciones invariantes por la izquierda en grupos de Lie tres-
dimensionales simplemente conexos. Más tarde, usamos este resultado para clasifcar todos
los fujos de espinor paralelo invariantes por la izquierda en superfcies de Cauchy con
estructura de grupo de Lie y fnalmente examinamos una clase especial de fujos de espinor
paralelo en la que la familia de funciones viene dada por una constante.

En segundo lugar, investigamos cuatro-variedades Einstein autoduales con una acción
isométrica y principal del grupo de Heisenberg tres-dimensional H. Dicha indagación está
motivada por el descubrimiento de que el grupo de isometría del hipermultiplete universal
a un bucle, que surge en el contexto de variedades escalares de Supergravedad en cuatro
dimensiones (o en compactifcaciones de cuerdas de Tipo II), viene dado por O(2) n H. En
consecuencia, es relevante explorar qué tipo de variedades (pseudo-)riemannianas encon-
tramos si reducimos el grupo de isometría a tan solo H. No obstante, el problema resulta
demasiado general, por lo que estimamos conveniente añadir la condición de autodualidad
del tensor de Weyl y centrarnos en la clasifcación de todas tales variedades.
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Comenzamos con el caso de constante de Einstein no nula, que se corresponde con varie-
dades cuaterniónicas (para)Kähler. Llevamos a cabo una clasifcación completa de todas
ellas y, además de encontrar las métricas del hipermultiplete universal a un bucle (así como
versiones de signatura neutra), hallamos homólogas riemannianas (resp. de signatura neu-
tra) con curvatura positiva (resp. negativa). Además, establecimos cuándo las métricas
asociadas eran geodésicamente (in)completas.
Posteriormente analizamos el caso de métricas Ricci planas, que de forma natural iden-
tifcamos con geometrías (para)hiperKähler. Clasifcamos todas tales variedades y de-
mostramos que todas ellas son incompletas salvo en el caso en que el centro de Heisenberg
es de tipo luz, que resulta ser isométrico al espacio plano.

Finalmente, concluimos con un estudio de clases particulares de estructuras de con-
tacto y de su utilidad para la construcción de soluciones de Supergravedad. Este trabajo se
debe entender dentro del programa de clasifcación de soluciones de Supergravedad y sus
espacios de módulos asociados para una dimensión espaciotemporal dada, que continúa
siendo un problema abierto en la teoría (matemática) de la Supergravedad. Decidimos
considerar el caso específco de Supergravedad mínima en seis dimensiones acoplada a un
multiplete tensorial con dilatón constante. Además, como primer acercamiento al pro-
blema de clasifcación general, cuya resolución todavía parece a día de hoy inaccesible,
nos restringimos a la clase especial de soluciones correspondiente al producto directo de
tres-variedades lorentzianas y riemannianas.
Con estas ideas en mente, primero defnimos las estructuras de ε -contacto, que engloban
las habituales estructuras de contacto riemannianas, lorentzianas y estructuras métricas
de para-contacto, pero que también admiten la opción de un vector de Reeb de tipo luz.
Denominamos este último caso estructura de contacto nula e introdujimos las nociones de
estructuras de contacto nulas Sasakianas y de K-contacto, demostrando que la condición
de Sasaki asociada es más débil que la de K-contacto.
Después, defnimos las estructuras de contacto εη -Einstein, que incluyen casos particulares
de estructuras riemannianas, lorentzianas y de para-contacto η -Einstein tres-dimensionales
así como un subconjunto de estructuras de contacto nulas, y dimos una clasifcación com-
pleta de todas ellas en grupos de Lie tres-dimensionales simplemente conexos. Luego,
demostramos explícitamente el proceso por el que ciertas combinaciones apropiadas de
estructuras de contacto εη -Einstein producen soluciones de Supergravedad mínima en seis
dimensiones acoplada a un multiplete tensorial con dilatón constante, que se pueden in-
terpretar equivalentemente como seis-variedades lorentzianas con una conexión métrica
Ricci plana con torsión isótropa, totalmente antisimétrica, cerrada y co-cerrada. Fina-
lizamos ilustrando ejemplos particulares de soluciones, que concebimos como deformaciones
(genéricamente no supersimétricas) de la solución supersimétrica estándar en AdS3 × S3 .

En resumen, los contenidos esenciales de la Segunda Parte de la tesis son los si-
guientes.
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• El problema de Cauchy para un espinor real paralelo en una cuatro-
variedad globalmente hiperbólica se puede reformular como un sis-
tema de ecuaciones diferenciales para una familia de funciones y bases
ortonormales del espacio cotangente en una superfcie de Cauchy.

• Al menos en cuatro dimensiones, el fujo de espinor paralelo y el de
Einstein (en el vacío) coinciden para datos iniciales comunes.

• Se han clasifcado todas las cuatro-variedades Einstein autoduales in-
variantes bajo una acción principal e isométrica del grupo de Heisen-
berg con órbitas no degeneradas.

• Se han defnido las estructuras nulas de contacto, introduciendo las
nociones correspondientes de Sasakianidad y K-contacto.

• Ciertas combinaciones de estructuras de contacto εη -Einstein pro-
ducen soluciones de Supergravedad mínima seis-dimensional.

Ideas clave de la Segunda Parte

Direcciones futuras

Es una paradoja bien conocida en física (y en la ciencia en general) que cuanto más creemos
saber, más nos percatamos que desconocemos. Esta tesis no ha supuesto una excepción a
dicho (afortunado3) fenómeno, dejando a su paso miríadas de problemas abiertos. Varios
de ellos han sido ya mencionados en el texto, pero hemos visto conveniente (re)escribir
explícitamente algunas de las direcciones futuras más interesantes que hemos concebido
hasta el momento:

1. Demostrar (o refutar) las Conjeturas 1.1 y 1.2.

2. Caracterizar de forma más precisa el conjunto de todas las GCGs a todo orden y
dimensión, a la luz de [251]. En particular, ¿podríamos encontrar explícitamente
la forma covariante de todas las GCGs algebraicas inequivalentes a todo orden y
dimensión?

3. Estudiar soluciones explícitas de tipo agujero negro de GCGs propias.

4. ¿Podríamos demostrar la existencia de GCGs (o de otras gravedades de orden supe-
rior) que admitan soluciones de tipo agujero negro en rotación que sean lo sufcien-
temente simples como para determinar su expresión analíticamente (o mediante una
ecuación diferencial tratable numéricamente?

5. Hallar teorías de orden superior de gravedad pura con soluciones EES completamente
regulares (es decir, regularizando la singularidad de Schwarzschild).

3En caso contrario, no se escribirían más tesis doctorales.
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6. Examinar la posibilidad de defnir rotaciones de dualidad en teorías de gravedad
puras (quizá como se ha sugerido en el reciente trabajo [704]) y estudiar qué teorías
de orden superior podrían ser (exactamente) invariantes bajo esta dualidad.

7. Determinar la estructura más general de los Lagrangianos de tipo GEC(G).

8. Indagar sobre la aplicabilidad de las GEC(G)s en el contexto cosmológico o explorar
si existen GEC(G)s con soluciones Taub-NUT.

9. Investigar los efectos de redefniciones de campo en GEC(G)s. ¿Podría reescribirse
cualquier teoría (de orden superior) de gravedad y electromagnetismo, a través de
ciertas redefniciones de campo, como una GEC(G), en analogía con la situación para
las teorías de gravedad pura?

10. Hallar las condiciones necesarias y sufcientes para que cualquier teoría de orden
superior de gravedad y electromagnetismo sea (perturbativamente) invariante bajo
dualidad (es decir, extender los resultados obtenidos en el Capítulo 4 para ocho
derivadas).

11. Demostrar (o refutar) la Conjetura 3.1.

12. Obtener teorías de orden superior exactamente invariantes bajo dualidad (electro-
magnética) no necesariamente cuadráticas en el campo de Maxwell.

13. Incluso restringiéndonos a teorías exactamente invariantes bajo dualidad que son
cuadráticas en el campo de Maxwell, estudiar los agujeros negros (extremos) corres-
pondientes y su entropía.

14. ¿Por qué la entropía (3.209) tiene una expresión tan simple? Sospechamos que se
debía a invariancia bajo dualidad, pero sería gratifcante probar este hecho desde
primeros principios.

15. Construir soluciones EES exactas de teorías exactamente invariantes bajo dualidad.
¿Podríamos hallar ejemplos de tales teorías con soluciones EES regulares?

16. En relación con la pregunta anterior, ¿es posible identifcar GEC(G)s que sean además
(exactamente) invariantes bajo dualidad?

17. Estudiar los aspectos holográfcos de las GECs a todo orden y dimensión arbitraria
construidas en (4.255) y (4.256).

18. Encontrar ejemplos de GECGs propias en dimensión arbitraria y analizar sus propie-
dades holográfcas. ¿Sería posible estudiar estas propiedades de forma analítica, como
ocurre para las GECs (4.30)?

19. Explorar en más detalle la relación entre imponer causalidad en el espaciotiempo
y unitariedad en la TCC fronteriza (en particular, para teorías más generales que
(4.30)).

20. Entender mejor la CGD en AdS, especialmente las consecuencias de esta conjetura
para la TCC dual.
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21. En referencia a la fórmula universal (4.252), sería interesante reobtenerla usando el
formalismo desarrollado en [620] o hallar contraejemplos adicionales en dos dimen-
siones a (4.252) mediante la investigación de GECs tres-dimensionales [619].

22. Extender los resultados del Capítulo 5 para el caso de un espinor real de Killing u
otros más genéricos.

23. Usando la conexión entre espinores paralelos y ondas pp, interpretar los aspectos
físicos y geométricos de las ondas pp asociadas en términos del formalismo del fujo
de espinor paralelo.

24. Investigar la posibilidad de usar fujos espinoriales hiperbólicos de primer orden para
construir soluciones especiales de RG.

25. En línea con lo anterior, examinar en mayor profundidad el tipo preciso de fujos de
curvatura tres-dimensionales que se obtienen en la superfcie de Cauchy.

26. Construir fujos de espinor paralelo no invariantes por la izquierda, quizá centrán-
donos en la clase particular de fujos de espinor paralelo comóviles.

27. ¿Es posible hallar resultados (parciales) de clasifcación de cuatro-variedades Ein-
stein que admiten una acción isométrica y principal del grupo de Heisenberg tres-
dimensional con órbitas no degeneradas (es decir, quitando la condición de auto-
dualidad)? ¿Y si imponemos la condición (para)Kähler?

28. Encontrar ejemplos lorentzianos explícitos de cuatro-variedades Heisenberg (Ein-
stein).

29. ¿Podríamos interpretar todas las cuatro-variedades Heisenberg Einstein autoduales
en el contexto de TC y Supergravedad?

30. En el ámbito del Capítulo 6, considerar otras acciones isométricas y principales de
grupos de Lie diferentes. ¿Tendrían alguna posibilidad de surgir en el estudio de TC
y Supergravedad?

31. De nuevo, en el contexto del Capítulo 6, analizar la posibilidad de órbitas con
métricas inducidas degeneradas o clasifcar variedades (para)cuaterniónicas Kähler o
(para)hiperKähler con simetría Heisenberg en dimensiones D = 4n con n > 1.

32. Estudiar la posibilidad de generalizar los resultados del Capítulo 7 en el caso de Su-
pergravedad diez-dimensional Tipo IIB, cuando se truncan todos los campos excepto
la métrica y la cinco-forma (autodual).

33. Determinar explícitamente si las soluciones de Supergravedad mínima en seis dimen-
siones que obtuvimos, interpretadas como deformaciones topológicas y geométricas
de la solución canónica supersimétrica AdS3 × S3 , son realmente supersimétricas o
no.

34. Proseguir con la investigación de estructuras nulas de contacto y generalizar esta
noción para dimensión (impar) arbitraria.

408



35. Avanzar con la clasifcación de todas las estructuras de contacto εη -Einstein, sin
restringirse a las invariantes por la izquierda. Podría ser realmente relevante en el caso
de estructuras de contacto nulas, ya que el tensor energía-momento correspondiente
adquiere una estructura muy interesante.

36. En el contexto de Supergravedad (mínima) seis-dimensional, explorar diferentes tipos
de soluciones, como productos deformados o, modifcando de forma más drástica el
punto de partida, productos directos de cuatro-variedades lorentzianas y superfcies
de Riemann (dos-dimensionales).

Las propuestas anteriores son algunas direcciones futuras naturales que surgen de
la investigación realizada en esta tesis, pero hay muchísimos más problemas abiertos4 que
podrían resultar de gran interés. Anhelamos afrontar algunos de ellos en el futuro próximo.

4Quizá todavía no identifcados por el autor en el momento de escribir este documento.
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[631] Y. V. Bazăıkin, Globally hyperbolic lorentzian spaces with special holonomy groups,
Siberian Mathematical Journal 50 (2009) 567–579.

442

http://dx.doi.org/10.1063/1.530850
http://dx.doi.org/10.1016/j.physletb.2010.09.054
http://dx.doi.org/10.1016/j.physletb.2010.09.054
https://arxiv.org/abs/1007.1813
https://arxiv.org/abs/1009.3854
http://dx.doi.org/10.1007/JHEP03(2015)075
https://arxiv.org/abs/1407.7816
http://dx.doi.org/10.1006/aphy.1996.0068
http://dx.doi.org/10.1006/aphy.1996.0068
https://arxiv.org/abs/hep-th/9410093
http://dx.doi.org/10.1088/1751-8113/42/50/504005
http://dx.doi.org/10.1088/1751-8113/42/50/504005
https://arxiv.org/abs/0905.4013
https://arxiv.org/abs/2202.11111
http://dx.doi.org/10.1103/PhysRevD.104.L021501
https://arxiv.org/abs/2104.10172
http://dx.doi.org/10.1007/JHEP12(2014)179
https://arxiv.org/abs/1403.3733
http://dx.doi.org/10.1007/JHEP12(2021)100
http://dx.doi.org/10.1007/JHEP12(2021)100
https://arxiv.org/abs/2111.02418
http://dx.doi.org/10.1007/JHEP02(2020)014
https://arxiv.org/abs/1905.10487
http://dx.doi.org/10.1006/aphy.1998.5893
https://arxiv.org/abs/hep-th/9808041
http://dx.doi.org/10.1016/j.nuclphysb.2005.10.003
http://dx.doi.org/10.1016/j.nuclphysb.2005.10.003
https://arxiv.org/abs/hep-th/0507137
http://dx.doi.org/10.1088/1126-6708/2008/09/109
https://arxiv.org/abs/0804.1957


[632] A. M. Candela, J. L. Flores and M. Sánchez, On general plane fronted waves:
Geodesics, Gen. Rel. Grav. 35 (2003) 631–649, [gr-qc/0211017].

[633] W. Globke and T. Leistner, Locally homogeneous pp-waves, Journal of Geometry
and Physics 108 (2016) 83–101.

[634] D. Schliebner, On lorentzian manifolds with highest frst betti number, in Annales
de l’Institut Fourier, vol. 65, pp. 1423–1436, 2015.

[635] C. I. Lazaroiu and C. S. Shahbazi, Complex Lipschitz structures and bundles of
complex Cli˙ord modules, Di˙er. Geom. Appl. 61 (2018) 147–169, [1711.07765].

[636] D. V. Alekseevsky, V. Cortés, C. Devchand and A. Van Proeyen, Polyvector
superPoincare algebras, Commun. Math. Phys. 253 (2004) 385–422,
[hep-th/0311107].

[637] D. V. Alekseevsky and V. Cortés, Classifcation of n-(super)-extended poincaré
algebras and bilinear invariants of the spinor representation of spin (p, q),
Commun. Math. Phys. 183 (1997) 477–510.

[638] H. W. Brinkmann, Einstein spapces which are mapped conformally on each other,
Math. Ann. 94 (1925) 119–145.

[639] I. P. Costa e Silva and J. L. Flores, On the Splitting Problem for Lorentzian
Manifolds with an R -Action with Causal Orbits, Annales Henri Poincare 18 (2017)
1635–1670.

[640] M. Mars, On local characterization results in geometry and gravitation, in From
Riemann to Di˙erential Geometry and Relativity, pp. 541–570. Springer, 2017.

[641] J. Ehlers and W. Kundt, Exact solutions of the gravitational feld equations, .
[642] B. Araneda, Parallel spinors, pp-waves, and gravitational perturbations,

2204.13673.
[643] M. Sánchez, Globally hyperbolic spacetimes: slicings, boundaries and

counterexamples, 2110.13672.
[644] C. Bär, P. Gauduchon and A. Moroianu, Generalized cylinders in semi-riemannian

and spin geometry, Mathematische Zeitschrift 249 (2005) 545–580.
[645] V. Gorbatsevich, O. AL and V. EB, Lie groups and Lie algebras III: Structure of

Lie groups and Lie algebras, vol. 41. Springer Science & Business Media, 1994.
[646] V. Cortés, K. Kröncke and J. Louis, Geometric Flows and the Geometry of

Space-time. Springer, 2018.
[647] M. P. Do Carmo and J. Flaherty Francis, Riemannian geometry, vol. 6. Springer,

1992.
[648] D. Schliebner, Contributions to the geometry of Lorentzian manifolds with special

holonomy. PhD thesis, Humboldt-Universität zu Berlin,
Mathematisch-Naturwissenschaftliche Fakultät, 2015.

[649] L. Conlon, Di˙erentiable manifolds, vol. 2. Springer, 2001.
[650] P. Tondeur, Geometry of foliations. No. 90. Springer Science & Business Media,

1997.
[651] J. Milnor, Morse Theory.(AM-51), Volume 51. Princeton University Press, 2016.
[652] L. Conlon, Transversally parallelizable foliations of codimension two, Trans.

American Math. Soc. 194 (1974) 79–102.

443

http://dx.doi.org/10.1023/A:1022962017685
https://arxiv.org/abs/gr-qc/0211017
http://dx.doi.org/10.1016/j.difgeo.2018.08.006
https://arxiv.org/abs/1711.07765
http://dx.doi.org/10.1007/s00220-004-1155-y
https://arxiv.org/abs/hep-th/0311107
http://dx.doi.org/10.1007/BF01208647
http://dx.doi.org/10.1007/s00023-017-0551-8
http://dx.doi.org/10.1007/s00023-017-0551-8
https://arxiv.org/abs/2204.13673
https://arxiv.org/abs/2110.13672


[653] R. W. Sharpe, Di˙erential geometry: Cartan’s generalization of Klein’s Erlangen
program, vol. 166. Springer Science & Business Media, 2000.

[654] J. L. Arraut and M. Craizer, Foliations of M3 defned by R2-actions, in Annales de
l’institut Fourier, vol. 45, pp. 1091–1118, 1995.

[655] G. Chatelet, H. Rosenberg and D. Weil, A classifcation of the topological types of
R2-actions on closed orientable 3-manifolds, Publications Mathématiques de l’IHÉS
43 (1974) 261–272.

[656] H. Rosenberg, Foliations by planes, Topology 7 (1968) 131–138.
[657] H. Rosenberg, R. Roussarie and D. Weil, A classifcation of closed orientable

3-manifolds of rank two, Annals of Mathematics (1970) 449–464.
[658] M. R. Herman, The godbillon-vey invariant of foliations by planes of t3 , in

Geometry and Topology, pp. 294–307. Springer, 1977.
[659] G. Hector, Feuilletages en cylindres, in Geometry and topology, pp. 252–270.

Springer, 1977.
[660] J. Milnor, Curvatures of left invariant metrics on lie groups, Advances in

mathematics 21 (1976) 293–329.
[661] M. Freibert, Cocalibrated g2-structures on products of four-and three-dimensional lie

groups, Di˙. Geom. Appl. 31 (2013) 349–373.
[662] E. A. Coddington and N. Levinson, Theory of ordinary di˙erential equations. Tata

McGraw-Hill Education, 1955.
[663] B. Cappelletti-Montano, A. De Nicola and I. Yudin, A survey on cosymplectic

geometry, Reviews in Mathematical Physics 25 (2013) 1343002.
[664] Z. Olszak, On almost cosymplectic manifolds, Kodai Mathematical Journal 4 (1981)

239–250.
[665] R. Schimming, Riemannsche räume mit ebenfrontiger und mit ebener symmetrie,

Math. Nachr. 59 (1974) 129–162.
[666] R. Penrose, Any space-time has a plane wave as a limit, in Di˙erential geometry

and relativity, pp. 271–275. Springer, 1976.
[667] G. F. Ellis and M. A. MacCallum, A class of homogeneous cosmological models,

Commun. Math. Phys. 12 (1969) 108–141.
[668] A. Derdzi«ski, Self-dual kähler manifolds and einstein manifolds of dimension four,

Compositio Math. 49 (1983) 405–433.
[669] V. Apostolov and P. Gauduchon, Selfdual einstein hermitian four-manifolds, Annali

della Scuola Normale Superiore di Pisa-Classe di Scienze 1 (2002) 203–243.
[670] J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric

spaces, J. Math. Mech. 14 (1965) 1033–1047.
[671] D. V. Alekseevsky and V. Cortés, Classifcation of pseudo-riemannian symmetric

spaces of quaternionic kähler type, Lie groups and invariant theory 213 (2005)
33–62.

[672] M. Krahe, Para-pluriharmonic maps and twistor spaces, Handbook of
pseudo-Riemannian geometry and supersymmetry 16 (2010) 497–557.

[673] M. Dyckmanns and O. Vaughan, The para-hk/qk correspondence, J. Geom. Phys.
116 (2017) 244–257.

444



[674] M. Dunajski and M. Hoegner, SU(2) solutions to self-duality equations in eight
dimensions, J. Geom. Phys. 62 (2012) 1747–1759, [1109.4537].

[675] D. V. Alekseevsky, V. Cortés, M. Dyckmanns and T. Mohaupt, Quaternionic
Kähler metrics associated with special Kähler manifolds, J. Geom. Phys. 92 (2015)
271–287, [1305.3549].

[676] G. Calvaruso, Homogeneous paracontact metric three-manifolds, Illinois Journal of
Mathematics 55 (2011) 697–718.

[677] G. Calvaruso, Geometry of h-paracontact metric manifolds, Publicationes
Mathematicae 86 (3-4) (2013) .

[678] S. Zamkovoy and A. Bojilov, A Classifcation of 3-dimensional paracontact metric
manifolds with Qϕ = ϕQ, 1910.04593.

[679] G. Calvaruso, Homogeneous structures on three-dimensional lorentzian manifolds,
J. Geom. Phys. 57 (2007) 1279–1291.

[680] S. Rahmani, Métriques de lorentz sur les groupes de lie unimodulaires, de
dimension trois, Journal of Geometry and Physics 9 (1992) 295–302.

[681] S. Dumitrescu and A. Zeghib, Géométries lorentziennes de dimension 3:
classifcation et complétude, Geometriae Dedicata 149 (2010) 243–273.

[682] C. Frances, Lorentz dynamics on closed 3-manifolds, Annales Henri Lebesgue 3
(2020) 407–471.

[683] L. A. Cordero and P. E. Parker, Left-invariant lorentzian metrics on 3-dimensional
lie groups, Rend. Mat. Appl.(7) 17 (1997) 129–155.

[684] E. T. Kobayashi, A remark on the nijenhuis tensor., Pacifc J. Math. 12 (1962)
963–977.

[685] J. Lehmann-Lejeune, Intégrabilité des g-structures défnies par une 1-forme
0-déformable à valeurs dans le fbré tangent, in Ann Inst. Fourier, vol. 16,
pp. 329–387, 1966.

[686] F. Turiel, Intégrabilité d’un tenseur de type (1, 1) et structure symplectique du fbré
cotangent, CR Acad. Sci., Paris, Sér. I 301 (1985) 923–925.

[687] G. Thompson, The integrability of a feld of endomorphisms, Mathematica
Bohemica 127 (2002) 605–611.

[688] C. Boubel, An integrability condition for felds of nilpotent endomorphisms,
1003.0979. 

[689] A. V. Bolsinov, A. Y. Konyaev and V. S. Matveev, Nijenhuis geometry, Advances
in Mathematics 394 (2022) 108001.

[690] D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds
satisfying a nullity condition, Israel Journal of Mathematics 91 (1995) 189–214.

[691] V. Moncrief, Reduction of the Einstein equations in (2+1)-dimensions to a
Hamiltonian system over Teichmuller space, J. Math. Phys. 30 (1989) 2907–2914.

[692] L. Andersson, V. Moncrief and A. J. Tromba, On the global evolution problem in
(2+1) gravity, J. Geom. Phys. 23 (1997) 191, [gr-qc/9610013].

[693] Y. Choquet-Bruhat, The cauchy problem in extended supergravity, n = 1, d = 11,
Communications in mathematical physics 97 (1985) 541–552.

445

http://dx.doi.org/10.1016/j.geomphys.2012.03.013
https://arxiv.org/abs/1109.4537
http://dx.doi.org/10.1016/j.geomphys.2014.12.012
http://dx.doi.org/10.1016/j.geomphys.2014.12.012
https://arxiv.org/abs/1305.3549
https://arxiv.org/abs/1910.04593
https://arxiv.org/abs/1003.0979.
http://dx.doi.org/10.1063/1.528475
http://dx.doi.org/10.1016/S0393-0440(97)87804-7
https://arxiv.org/abs/gr-qc/9610013


[694] T. Koufogiorgos, On a class of contact riemannian 3-manifolds, Results in
Mathematics 27 (1995) 51–62.

[695] H. Geiges, Normal contact structures on 3-manifolds, Tohoku Mathematical
Journal, Second Series 49 (1997) 415–422.

[696] A. A. García-Díaz, Exact solutions in three-dimensional gravity. Cambridge
University Press, 2017.

[697] F. Tricerri, G. Tricerri and L. Vanhecke, Homogeneous structures on Riemannian
manifolds, vol. 83. Cambridge University Press, 1983.

[698] M. García-Fernández and C. S. Shahbazi, Self-dual generalized metrics for pure
N = 1 six-dimensional Supergravity, 1505.03088.

[699] M. J. D. Hamilton, The feld and Killing spinor equations of M-theory and type
IIA/IIB supergravity in coordinate-free notation, 1607.00327.

[700] I. Vaisman, From generalized Kähler to generalized Sasakian structures, Journal of
Geometry and Symmetry in Physics 18 (2010) 63–86.

[701] Y. S. Poon and A. Wade, Generalized contact structures, Journal of the London
Mathematical Society 83 (2011) 333–352.

[702] M. Gualtieri, Generalized complex geometry. PhD thesis, Oxford University, 2003.
0401221.

[703] V. Cortés and D. Krusche, Classifcation of generalized Einstein metrics on
3-dimensional Lie groups, 2206.01157.

[704] U. Kol, Duality in Einstein’s Gravity, 2205.05752.

446

https://arxiv.org/abs/1505.03088
https://arxiv.org/abs/1607.00327
https://arxiv.org/abs/0401221
https://arxiv.org/abs/2206.01157
https://arxiv.org/abs/2205.05752

	Agradecimientos
	Abstract
	Resumen
	I Introduction
	Introduction
	I.1 Introduction to higher-order theories of gravity
	I.1.1 Equations of motion and conserved charges
	I.2 String Theory
	I.2.1 Higher-derivative corrections from String Theory
	I.2.2 Geometric aspects of moduli spaces: the Supergravity c-map
	I.2.3 Contact structures and Supergravity

	I.3 Examples of higher-order gravities
	I.3.1 f(R) theories
	I.3.2 Lanczos-Lovelock gravities
	I.3.3 Generalized Quasitopological Gravities

	I.4 Duality rotations in higher-order gravities with electromagnetism
	I.5 Initial value problem in General Relativity
	I.6 Black holes
	I.6.1 Definition of a black hole. Event horizon
	I.6.2 Black hole thermodynamics
	I.6.3 Singularity theorems
	I.6.4 The Schwarzschild black hole
	I.6.5 The Reissner-Nordström black hole

	I.7 Higher-order gravities and holography
	I.7.1 CFT correlators from the bulk
	I.7.2 Holographic entanglement entropy

	I.8 Spinors
	I.8.1 Clifford algebras
	I.8.2 Spinor bundles and spinors

	I.9 Summary of main results



	First Part: Higher-order gravities
	1 All higher-order gravities as Generalized Quasitopological Gravities
	1.1 Generalized Quasitopological Gravities (GQGs)
	1.2 Field redefinitions in higher-curvature gravities
	1.2.1 On-shell action invariance
	1.2.2 Ricci curvatures and reducible densities

	1.3 All quadratic and cubic gravities as GQGs 
	1.4 All L(gab,Rabcd) gravities as GQGs
	1.5 Terms involving covariant derivatives of the Riemann tensor
	1.6 Type IIB effective action at O(3) as a GQG
	1.6.1 Black hole solutions in the original frame
	1.6.2 Black hole solutions in the GQG frame

	1.7 Discussion
	Appendix 1.A Redefining the metric
	Appendix 1.B Wn WW terms on SSS backgrounds

	2 Electromagnetic Quasitopological Gravities
	2.1 Aspects of L(R, F) theories
	2.1.1 Equations of motion
	2.1.2 Dualization
	2.1.3 Mass, charges and thermodynamics

	2.2 Static and spherically symmetric solutions
	2.2.1 The reduced Lagrangian
	2.2.2 The condition gttgrr=-1: Generalized Quasitopological theories

	2.3 Electromagnetic Quasitopological Gravities
	2.3.1 Explicit non-singular solutions in quadratic-curvature theories
	2.3.2 Black hole thermodynamics
	2.3.3 Extremal black holes

	2.4 Electromagnetic Generalized Quasitopological Gravities
	2.4.1 Black hole thermodynamics
	2.4.2 Extremal and near-extremal black holes

	2.5 Resolution of Reissner-Nordström singularities: electric black holes
	2.5.1 Dualization of theories of quadratic order in F
	2.5.2 A higher-order theory with fully regular electric solutions

	2.6 Discussion
	Appendix 2.A All E(G)QGs of the form RF2 and R2F2
	Appendix 2.B Solving the equations of motion of the theory (2.162)

	3 Duality-invariant extensions of Einstein-Maxwell theory
	3.1 Duality-invariant actions
	3.1.1 Invariance of the constitutive relation
	3.1.2 Invariance of Einstein's equations

	3.2 All duality-invariant theories up to eight derivatives
	3.3 Field redefinitions
	3.4 Black holes
	3.4.1 Black hole thermodynamics
	3.4.2 Constraints from the Weak Gravity Conjecture

	3.5 Quadratic theories. Exact duality invariance with non-minimal couplings
	3.5.1 All exactly duality-invariant quadratic theories 
	3.5.2 Static and spherically symmetric configurations
	3.5.3 Extremal black holes and near-horizon geometries

	3.6 Discussion
	Appendix 3 Invariance of Einstein equation in theories with covariant derivatives

	4 Higher-derivative holography with a chemical potential
	4.1 Electromagnetic Quasitopological Gravities in arbitrary dimension
	4.1.1 Gravity, (d-2)-forms and their electromagnetic dual
	4.1.2 Electromagnetic Quasitopological Gravities: general definition
	4.1.3 Four-derivative EQGs

	4.2 AdS vacua and black hole solutions
	4.3 Holographic dictionary
	4.3.1 Stress tensor 2- and 3-point functions
	4.3.2 Current 2-point function
	4.3.3 Energy fluxes
	4.3.4 Three-point function TJJ 

	4.4 Causality, unitarity and constraints from the Weak Gravity Conjecture
	4.4.1 Unitarity in the boundary
	4.4.2 Causality in the bulk
	4.4.3 WGC and positivity of entropy corrections

	4.5 Charged Rényi entropies and generalized twist operators
	4.5.1 Rényi entropies
	4.5.2 Generalized twist operators

	4.6 A universal feature of charged entanglement entropy
	4.6.1 Charged entanglement entropy in EQGs in any dimension d 3
	4.6.2 Free field calculations
	4.6.3 Proof of the universal relation for charged entanglement entropies for general CFTs

	4.7 Discussion


	Second Part: Geometry in Supergravity and String Theory
	5 Spinor flows on three-dimensional Cauchy hypersurfaces
	5.1 Parallel real spinors on Lorentzian four-manifolds
	5.1.1 General theory
	5.1.2 Standard Brinkmann spacetimes

	5.2 Globally hyperbolic case
	5.2.1 The constraint equations
	5.2.2 Initial data characterization

	5.3 The topology and geometry of Cauchy pairs
	5.3.1 General considerations
	5.3.2 Complete Cauchy pairs on the universal Riemannian cover
	5.3.3 Parallel Cauchy pairs on compact three-manifolds

	5.4 Left-invariant parallel Cauchy pairs on Lie groups
	5.5 Left-invariant parallel spinor flows
	5.5.1 Reformulation 
	5.5.2 Classification of left-invariant spinor flows

	5.6 Comoving parallel spinor flows
	5.6.1 Globally hyperbolic comoving spacetimes
	5.6.2 A diagonal example on R3.
	5.6.3 An example in Schimming coordinates.

	5.7 Discussion

	6 Heisenberg-invariant self-dual Einstein four-manifolds
	6.1 The Heisenberg group and Heisenberg four-manifolds
	6.1.1 Heisenberg group
	6.1.2 Heisenberg four-manifolds
	6.1.3 Choice of adapted frames for Einstein Heisenberg four-manifolds

	6.2 Quaternionic (para)Kähler Heisenberg four-manifolds
	6.2.1 Quaternionic Kähler and timelike quaternionic paraKähler Heisenberg four-manifolds
	6.2.2 Spacelike quaternionic paraKähler Heisenberg four-manifolds
	6.2.3 Lightlike quaternionic paraKähler Heisenberg four-manifolds

	6.3 (Para)HyperKähler Heisenberg four-manifolds
	6.3.1 (Timelike) (para)HyperKähler Heisenberg four-manifolds
	6.3.2 Spacelike parahyperKähler Heisenberg four-manifolds
	6.3.3 Lightlike parahyperKähler Heisenberg four-manifolds

	6.4 Discussion

	7 Contact structures in six-dimensional Supergravity
	7.1 -contact metric three-manifolds
	7.1.1 Globally hyperbolic -contact metric three-manifolds

	7.2 Null contact metric structures
	7.2.1 Sasakian null contact structures
	7.2.2 Null K-contact structures

	7.3 -Einstein -contact metric manifolds
	7.3.1 Riemannian -Einstein contact structures
	7.3.2 Lorentzian -Einstein structures with timelike Reeb vector field
	7.3.3 Lorentzian case with spacelike Reeb vector field
	7.3.4 Lorentzian case with null Reeb vector field

	7.4 Six-dimensional Supergravity and -contact structures
	7.5 Ricci flat Lorentzian six-manifolds with closed self-dual torsion
	7.5.1 Timelike case: N = -1.
	7.5.2 Spacelike case: N = 1.
	7.5.3 Null case: N = 0.

	7.6 Discussion
	Appendix 7.A Simply connected three-dimensional Lorentzian Lie groups
	Appendix 7.B Curvature of left-invariant metrics on Lorentzian Lie groups


	Conclusions/Conclusiones
	Conclusions and Future Directions
	Conclusions and Executive Summary
	Future directions

	Conclusiones y Direcciones Futuras
	Conclusiones y Compendio de Resultados
	Direcciones futuras

	Bibliography




