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Abstract

Methods are needed to mitigate microplastic (MP) pollution to minimize their harm to the environment and human health. Given the
ability of polypeptides to adsorb strongly to materials of micro- or nanometer size, plastic-binding peptides (PBPs) could help create
bio-based tools for detecting, filtering, or degrading MNP pollution. However, the development of such tools is prevented by the lack of
PBPs. In this work, we discover and evaluate PBPs for several common plastics by combining biophysical modeling, molecular
dynamics (MD), quantum computing, and reinforcement learning. We frame peptide affinity for a given plastic through a Potts model
that is a function of the amino acid sequence and then search for the amino acid sequences with the greatest predicted affinity using
quantum annealing. We also use proximal policy optimization to find PBPs with a broader range of physicochemical properties, such
as isoelectric point or solubility. Evaluation of the discovered PBPs in MD simulations demonstrates that the peptides have high
affinity for two of the plastics: polyethylene and polypropylene. We conclude by describing how our computational approach could be
paired with experimental approaches to create a nexus for designing and optimizing peptide-based tools that aid the detection,
capture, or biodegradation of MPs. We thus hope that this study will aid in the fight against MP pollution.
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Significance Statement

Microplastics (MPs), defined as plastic particles smaller than 5 mm, are a concerning environmental pollutant. The ability of peptides
to adsorb micro- and nanoscopic materials suggests that peptides could help remediate MP pollution. Here, we combine biophysical
modeling, quantum computing, and reinforcement learning to discover peptides that bind strongly to common plastics. Simulations
revealed that the discovered peptides have high affinity for polyethylene and polypropylene. The peptides found in this work can
potentially be used in biological tools to remediate MP pollution.

Introduction

It is imperative to develop methods for detecting and capturing
microplastic (MP) pollution due to its environmental and health
concerns (1-4) and the regular consumption of MPs by humans
(5). While a variety of methods have been developed (6-10), a

strongly to nanomaterials (26-29). Despite the promise of PBPs
for MP remediation, they have received little attention in the lit-
erature except for a few studies (30, 31). We believe this is primar-
ily due to the lack of PBPs for most common plastics. If PBPs were
available, then peptide-based MP remediation strategies could be

promising tool is peptides. Both proteins (11-16) and peptides
(17-21) adsorb to many materials, including plastics. Peptide ad-
sorption can be strong, with adsorption free energies in the range
of 5 to 15 kcal/mol for various materials (20, 22-25). These findings
suggest that plastic-binding peptides (PBPs) could be used to help
detect and/or capture MPs. PBPs may be especially useful for
remediating nanoplastics since peptides adsorb rapidly and

developed more readily.

How can PBPs be discovered? Peptides with affinity for solids,
including polystyrene (PS) (32-35) and polypropylene (PP), can be
discovered through library screening, in which a vast number of
peptides are evaluated via a high-throughput experimental meth-
od. Library screening has limitations, though. It samples only a
small fraction of possible peptide sequences, does not quantify
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peptide affinity, and provides no insight into why some peptides
bind more strongly than others. We posit that PBPs can be more
effectively discovered by introducing biophysical modeling and
computational optimization alongside experimental methods.
Modeling can quantify PBP affinity and describe how PBP affinity
depends on environmental conditions or MP properties; optimiza-
tion tools can leverage the data and insights generated by model-
ing to discover PBPs tailored to a target set of conditions.

The biophysical model should accurately predict peptide affin-
ity while being computationally cheap enough to permit large-
scale sampling of peptides. A suitable balance is offered by MM/
GBSA (36), which is both fast and models peptide-plastic interac-
tions at atomic resolution. However, MM/GBSA has notable sim-
plifications: it uses an implicit solvent model and does not fully
account for the configurational entropy of flexible molecules like
short peptides. It thus is essential to validate PBPs using molecular
dynamics (MD) simulations, a well-established method for calcu-
lating peptide affinity to solids (23, 24, 37-39).

Of the many computational optimization tools that can be ap-
plied to peptide discovery, we chose quantum annealing (QA) and
reinforcement learning. Solid-binding peptides have been compu-
tationally discovered by applying bioinformatics tools to peptide
library screening data (40-42). However, the small size or lack of
datasets on PBPs prevents the use of bioinformatics tools. A se-
cond approach is to combine biophysical modeling with classical
optimization tools like simulated annealing (43, 44) or genetic al-
gorithm (45, 46), which search for minima on the energy surface
defined by the model (47, 48). For example, simulated annealing
was used by PepBD to discover PBPs (49). However, we suspect
that QA could be a better choice. QA is designed to find the optima
of Potts models and may solve large combinatorial problems that
are difficult for classical computational methods (50). These use-
ful attributes motivated past applications of quantum computing
to peptide discovery and modeling (51, 52). However, both classic-
al and quantum optimization methods do not “learn” from their
sampling. This is a concern since only a tiny fraction of possible
peptide sequences are sampled in a reasonable computational
time, which makes intelligent sampling crucial for peptide design.
Intelligent sampling is offered by generative Al tools (53-56),
which have shown success in discovering antimicrobial peptides
(57-60), anticancer peptides (61-64), cell-penetrating peptides
(50, 65), and self-assembling peptides (51, 52). We specifically
choose proximal policy optimization (PPO), a reinforcement learn-
ing method, because it effectively navigates high-dimensional
sample spaces, such as amino acid sequences (66-68).

In this work, MM/GBSA modeling, MD simulations, QA, and PPO
were combined to identify and evaluate PBPs. We first formulated
a Potts model that expresses peptide affinity for a given plasticas a
function of the amino acid sequence for a fixed conformation of a
peptide adsorbed to a plastic surface. PBPs were discovered by us-
ing QA to find the amino acid sequence with the best Potts model
score for many different conformations. This produced PBPs for
four types of plastics commonly found in MP pollution: polyethyl-
ene (PE), PP, PS, and polyethylene terephthalate (PET). Calculation
of the PBP adsorption free energy in MD simulations showed that
the discovered PBPs for PE and PP have comparable affinity to re-
cently discovered PBPs (49). PBPs for PS and PET had poor affinity,
which indicates that the biophysical Potts model requires tuning.
The Potts model was also solved using PPO to find PBPs for PE with
an even broader range of physicochemical properties. Interesting-
ly, PPO sampling also shed light on the sequence-structure rela-
tionship by relating the amino acid type that optimizes affinity
for PE to the location of the side chain with respect to the plastic

surface and the rest of the peptide. We conclude by describing
how our computational strategy can be integrated with experi-
mental methods to create a nexus that can develop and optimize
peptide-based strategies to capture, detect, or degrade MPs. Over-
all, this work is an important step in developing biological tools for
remediating MP pollution.

Results

Creating a Potts model that expresses peptide
affinity for plastic as a function of the amino acid
sequence

To discover PBPs with high affinity for plastic, we formulated a
Potts model (69) that expresses peptide affinity for plastic as a
function of the amino acid sequence (Fig. 1A). A PBP can then be
found by finding the minimum of the Potts model. A sketch of
the formulation is provided here, and details can be found in
Materials and Methods. The Potts model takes the form

Score = Y s, +4)_ Y SiuSisEiugs e
ia

Lo j>ip

where s;, is a binary variable that equals 1if amino acid type a.is
atresidue i, and 0 otherwise. Thus, i and « iterate over the peptide
residues and the amino acid options, respectively. All peptides in
this work have 12 residues and use all natural amino acids except
proline. The one-body energy, E;,, is the interaction of amino acid
type a at residue i with the plastic surface and itself. The two-body
energy, Ei,js, is the interaction energy between amino acid type a
at residue i and amino acid type g at residue j. Thus, the first
term in (1) primarily optimizes peptide affinity for the plastic
and the second term ensures that the peptide structure is stable
(70). Finally, 4 1is a scaling factor that controls the relative import-
ance of peptide affinity and peptide stability. By calculating all E;,,
and E;, j; values, the Score for any amino acid sequence can be cal-
culated by summing all precalculated values. PBPs can then be
discovered by finding the sequence with the lowest Score, where
a lower Score corresponds to greater predicted affinity. It is im-
portant to note that E;, and E;, j; depend on the system conform-
ation (i.e. the peptide backbone and the relative position and
orientation of the peptide with respect to the plastic surface),
which means that the lowest scoring sequence depends on
the conformation. We thus use many initial conformations, with
the initial conformations obtained from MD simulations. The
best-scoring PBPs for all system conformations are combined to
give the final set of putative PBPs for the target plastic.

Pairing QA with the Potts model to discover
PE-binding peptides

PBPs for PE were discovered by using QA to find the sequence with
the lowest binding energy for a given Potts model. We first focus
on PE to test our strategy, and search for PBPs for other plastics lat-
er. As a reference point for our designs, we also searched for PBPs
using PepBD, a method recently used to find PBPs that also uses
MM/GBSA to calculate peptide affinity for plastic (49). Since the
system conformation must be fixed and the Potts model is only
valid for a static peptide structure, PepBD conformation moves
(71) were disabled in this comparison. We term this variant of
PepBD as “PepBD-Static.” Comparison of the best scores between
QA and PepBD-Static over fifty unique starting conformations
shows that QA consistently found better-scoring sequences
(Fig. 1B). The score difference between QA and PepBD-Static in-
creases as the score of QA sequences decreases, a significant
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Fig. 1. Outline of PBP discovery process and results for PE-binding PBPs. A) Schematic of pairing a Potts model and QA to discover PBP. Figure created using
Biorender. B) Comparison of the best scores from QA and PepBD-Static for 50 system conformations. Each point corresponds to one system conformation,
where the QA score is the x value and the PepBD-Static score is the y value. Points lie on the y = x dashed line if QA and PepBD-Static performed equally
well; points lie above the line if QA found a better score than PepBD. C) Comparison of PBP scores from PepBD and QA. PepBD data were taken from
previous work (49) and contain 100 sequences. D) Amino acid frequencies of QA and PepBD-Static PBPs for the 50 system conformations in B).

feature since the sequences with the lowest scores are the most
promising PBPs. However, PepBD outperformed QA for six confor-
mations, and QA yielded positive scores for three of these confor-
mations. The poor performance may be due to suboptimal
hyperparameters (see Materials and Methods for discussion) but
is not critical for PBP discovery: the PepBD-Static scores for these
six conformations are poor relative to the other system conforma-
tions, so these system conformations do not give rise to promising
PBPs that should be further evaluated. As a second evaluation of
our design strategy, the scores of the discovered PBPs were com-
pared to the best PBPs previously obtained using PepBD where
conformation changes were allowed (49) (Fig. 1C). While PepBD
peptides have less variability in their score, the best QA peptides
have better scores. Thus, our approach for discovering PBPs for

PE appears successful. It is notable that QA and PepBD peptides
have very similar amino acid compositions even though QA con-
sistently performs better (Fig. 1D). The similar composition im-
plies that QA outperforms PepBD-Static not by altering the
amino acid composition, but by finding more optimal arrange-
ments of the same amino acids.

MD simulations show that the best PBPs found by QA for PE
have equal affinity as PBPs previously found by PepBD (49). Since
the peptides found by QA have scores that span a large range
(Fig. 1B), the PBPs were split into two groups: “Good QA PBPs”
with scores <—50 and “Poor QA PBPs” with scores >-50. The affin-
ity of the PBPs was evaluated by comparing to the 20 best PBPs pre-
viously obtained with PepBD (49) and 20 peptides with randomly
generated amino acid sequences. PepBD peptides were chosen
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rather than PepBD-Static peptides since the former have greater
predicted affinity and thus are a more stringent comparison.
Good QA PBPs had equal or slightly greater affinity for PE than
the best PepBD peptides and much greater affinity than random
peptides (Fig. 2). In contrast, poor QA PBPs have roughly equal af-
finity to the random peptides and lower affinity than the PepBD
PBPs. These results illustrate two key points: (i) PBPs with high af-
finity for PE were discovered by combining the Potts model and QA
and (ii) many system conformations are needed to effectively find
PBPs because not all system conformations lead to high-affinity
peptides.

Discovering PBPs for multiple plastics
by combining QA with the Potts model

Motivated by our success in finding PBPs for PE, we next searched
for PBPs for other major components of MP waste: PP, PS, and PET.
We found that the scores vary significantly between plastics
(Fig. 3A). Designs for PET have the most negative scores (i.e. great-
est predicted affinity), possibly because the oxygens in PET give
rise to stronger electrostatic interactions with the peptide. The
peptides for the other three plastics have roughly equivalent aver-
age scores, but the range of scores is much larger for PE than for PP
or PS. While this could be attributable to the larger number of
structures used for PE (53) than for the other plastics (24), the large
range of scores for PET indicates that the plastic type also influen-
ces variability in the score magnitude. The peptides with the low-
est scores for each plastic were evaluated in MD simulations and
compared to previous PepBD peptides (49) along with randomly
generated amino acid sequences (Fig. 3B). Twelve peptides were
selected for each method:plastic combination so that a relatively
large sample size could be evaluated at a reasonable computa-
tional cost. PBPs found by QA for PP had slightly lower affinity
than previous PepBD peptides, but the best QA peptides have
equal affinity to the best PepBD designs. In contrast, QA designs
for PS and PET have lower affinity than both PepBD and random
peptides. We suspect that this stems from deficiencies in the
Potts model. The total two-body energy could dominate the one-
body energy for some structures, largely due to the generalized
Born (GB) solvation energy. This overemphasizes peptide stability
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Fig. 2. PBPs for PE found by QA shown to have high affinity in MD
simulations. Binding free energy (AG) distributions for randomly
generated sequences (12 peptides), “QA Poor PBPs” with a score >-50

(16 peptides), “QA Good PBPs” with a score <—50 (16 peptides), and the best
PepBD PBPs obtained in previous work (49) (20 peptides).

relative to peptide-plastic interactions and leads to a high fre-
quency of arginine (R) (Fig. 3C), whose long and flexible side chain
forms strong intramolecular interactions with other peptide resi-
dues. Future work can explore striking a better balance of one-
and two-body energies through tuning the value of 1 for different
plastics. Despite the difference in peptide affinity between plas-
tics, the amino acid compositions are generally constant across
all plastics (Fig. 3C). Notable exceptions are the slightly lower fre-
quency of arginine (R) and the higher frequency of glycine (G) for
PE and small variability in leucine (L) between the plastics.
Statistical analysis using a two-tailed t test with unequal variance
shows that these differences in amino acid frequencies are statis-
tically significant at the P=0.05 threshold (Table S1).

Diversifying PBP physicochemical properties
through PPO

Having found PBPs with high predicted affinity for PE, we next
aimed to find PBPs with a broader range of physicochemical prop-
erties using PPO. Diversity in physicochemical properties can be
useful for MP remediation. The heterogeneity in both MP proper-
ties (e.g. surface charge) and environmental conditions (e.g. pH)
(72) likely means that PBPs will not have high affinity for plastic
in all settings. It thus could be helpful to have PBPs with diverse
physicochemical properties so that a PBP can be selected for dif-
ferent settings as necessary. We selected PPO to search for alter-
nate PBPs because it is effective at exploring high-dimensional
spaces like amino acid sequences. In our PPO implementation
(Fig. 4A), we trained PPO on the Potts model to learn a policy for
exploring peptide sequences for a given system conformation.
The trained PPO model searched for alternate solutions to the
Potts model, starting with the sequence found by QA. A sampled
sequence was deemed an alternate solution only if its score was
within five units of the best score found by QA, thereby ensuring
that the peptide was still predicted to have affinity for PE. PPO
searched for alternate solutions over 23 system conformations,
finding between 1 and 70 alternate amino acid sequences per sys-
tem conformation (Fig. 4B). The number of alternate sequences
found did not strongly correlate with the best score found by
QA, i.e. the depth of the minima found by QA (Fig. S1). We next
compared physicochemical properties of the QA and PPO pepti-
des, namely the distribution of net charge, the predicted aqueous
solubility (using the CamSol method (69)), the isoelectric point (pI)
(using the ExPasy server(73)), and the peptide masses. While the
two classes of peptides sample approximately the same range of
these physiochemical properties, different combinations of the
properties are sampled in PPO peptides sample than in QA pepti-
des (Fig. S2). A particularly notable case is the combination of pep-
tide solubility and pI (Fig. 4C). While nearly all QA peptides have a
pI>10, alarge fraction of PPO peptides have a pI below 7. As the MP
surface charge can be either negative or positive (32), peptides
with different net charges at neutral pH could aid MP remediation
efforts. Overall, we conclude that PPO not only diversified peptide
properties, but did so in a way that could have relevance to MP re-
mediation (74).

PPO sampling provided insight into the relationship between
the side-chain environment and the most optimal amino acid.
The side-chain environment was characterized by three proper-
ties: (i) the distance between the beta carbon and the PE surface,
(i) the angle between the vector connecting the alpha and beta
carbons and the normal vector of the plastic surface, and (iii)
the solvent-accessible surface area (SASA) of the side-chain beta
carbon when all other atoms in the corresponding side chain
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Fig. 3. Properties of PBPs found by QA for four common plastics: PE, PS, PP, and PS. A) Range of scores for the best PBPs found by QA for PE, PP, PS, and PET.
B) Distribution of adsorption free energies for PBPs to the four plastics in MD simulations. The PBPs were found either by QA, previously by PepBD, or by
generating a random amino acid sequence. At least 12 PBPs were tested for each discovery method for each plastic. C) Amino acid frequency in the best
PBPs found by QA for the four plastics. Data in (A) and (C) collected over 50 system conformations for PE and 24 system conformations for PP, PS, and PET.

were removed. By calculating the side-chain environment of every
residue in all PBPs found by PPO, the most frequent amino acid
type was determined for each combination of geometric proper-
ties (Fig. 4D). An amino acid is shown only if a general preference
was shown for that geometric environment, which we define as
the amino acid occurring in more than one-third of all residues
in that environment. Inspection of these plots reveals the most
common amino acid for a given side-chain environment.
Arginine (R) appears optimal when the side chain has a small
SASA and is near the surface, or is distant from the surface and
directed toward the solvent. Other hydrophilic residues like as-
paragine (N) and glutamine (Q) are also preferred when the resi-
due is far from the plastic surface and exposed to the solvent.
Meanwhile, bulky, hydrophobic residues like tryptophan (W),
phenylalanine (F), methionine (M), and tyrosine (Y) are ideal
when the side chain is near the surface and has a large SASA.
This analysis could be helpful for peptide sequence optimization.
While the 3D structure of the system predetermines the optimal
amino acid sequence, it is not obvious what the optimal sequence
is. The analysis in Fig. 4D simplifies this complicated design prob-
lem: the optimal amino acid sequence can be predicted by

calculating the side-chain geometries, then selecting the best resi-
due for that environment.

Discussion

We developed a computational pipeline for discovering PBPs that
could help remediate MP pollution. We created a biophysics-
based Potts model that expresses peptide affinity for plastic as a
function of the amino acid sequence for a given adsorbed con-
formation. The sequence with the highest predicted affinity was
then found by QA for many different adsorbed conformations, giv-
ing a set of potential PBPs for multiple types of plastics commonly
found in MP pollution. MD simulations showed that PBPs found by
QA have high affinity for PE and PP. Application of PPO to the Potts
model alsoincreased diversity of the PBP physicochemical proper-
ties and shed light on the relationship between the local geometry
of an amino acid side chain and the amino acid type predicted to
be optimal.

The modeling and optimization approaches possess several
desirable features. The outputs are explainable due to the
biophysical foundation. Sequence optimization takes minutes,
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definitions of the system conformations. Results taken from designs for 23 system conformations.

so large numbers of peptide conformations can be evaluated in
the search for PBPs. As sampling of sequences and conformations
are separate, the sequence optimization described in this work
can be paired with a conformation sampling method to simultan-
eously search both spaces. This improves upon the current meth-
od of selecting conformations from MD simulations, which gives
somewhat arbitrary conformations. Although QA was used to
search for the optimal amino acid sequence, we recognize that
not all researchers may have access to these resources. In such in-
stances, QA could be replaced with classical optimization meth-
ods. Evaluation of PBPs via our MD protocol is high throughput:
the results for nearly 150 peptides are shown in Fig. 3B. While
the MD results are not high accuracy, it can serve as a useful first
screen before more rigorous evaluations with methods like

umbrella sampling (75, 76) or metadynamics (23, 24, 77).
Computational modeling removes the need for experimental
data that are required by many other Al-based optimization
methods. This is useful given the lack of experimental data on
PBPs. Lastly, the Potts model and MD simulations can quantita-
tively predict how peptide affinity is altered by changes in envir-
onmental conditions and MP properties. We thus can identify
the conditions in which a PBP will most effectively remediate MP
pollution, a direction that will be explored in future work.

The limitations of the modeling and optimization domains
should also be noted. A primary limitation of the Potts model is
the use of an implicit solvent model. While an implicit solvent
model is necessary for peptide design to be tractable, the solvent
plays an important role in peptide adsorption. A possible future
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option for including solvent effects would be to incorporate ad-
sorption free energies of single amino acids taken from explicit
solvent simulations (20) into the Potts model. As QA is a
heuristics-based method, it may not find the global optimum.
This issue is compounded by the proprietary D-Wave solvers,
which may not be flexible enough to yield good solutions for all
system conformations using the same parameters. Lastly, PPO
has a large computational cost, may require tuning to the specific
peptide design problem, and may require a good initial sequence
to achieve optimal solutions. As PPO was used to tune the finding
of peptides with unique properties, a possible solution for the is-
sues with PPO is to instead perform QA design with modified ver-
sions of the Potts model that explicitly include terms for the
property of interest.

This study sets the stage to develop peptide-based tools for re-
mediating MP pollution, which we envision as the nexus shown
in Fig. 5. To apply PBPs to MP pollution remediation, our compu-
tational methods must be paired with experimental work. A first
essential step is to evaluate the computational predictions,
namely the affinity of the peptides to plastic. Possible methods
for performing this evaluation include quartz crystal microbal-
ance (78) or atomic force microscopy (24). Since these methods
can be time-consuming, a useful preliminary step would be to
perform more rigorous computational evaluations using MD

methods like metadynamics (79) or steered MD (80). The experi-
mental and simulation results can provide feedback to the pep-
tide design process, or even guide the search for higher affinity
peptides by using methods like Gaussian processes or active
learning. The second essential step is to incorporate PBPs into
tools for MP remediation. Examples include creating biosensors
for MP detection (30), using the peptides in wastewater treatment
processes like bioflocculation to help capture MPs, and express-
ing the PBPs in plastic-degrading microorganisms (81) to aid cel-
lular adhesion to plastic and accelerate plastic degradation. As
these tools are developed, more information will be gained on
peptide affinity to actual MPs in different environmental set-
tings, thereby providing additional feedback to improve the com-
putational peptide discovery method. The introduction of the
computational and modeling domains in this work is a major
step toward establishing a nexus for developing biological tools
to remediate MP pollution.

Materials and methods
Expressing peptide sequence optimization
as a Potts model

Because quantum annealers (QA) architecture are constrained
to solving only discrete optimization problems, the peptide
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must be represented using discrete variables to enable the use
of QA. Due to limited storage on QA machines, simultaneous re-
presentation of the peptide sequence and conformation (i.e. the
backbone dihedrals and relative position and orientation of the
peptide with respect to the plastic) is not possible. Thus, the aim
is to optimize the peptide’s amino acid sequence for a fixed
conformation. The quantity being optimized is the PepBD score,
given by

Score = AGncasa + AEpep 2

where AGyvcasa 1s the binding free energy calculated using the
MM/GBSA method (36), Epep is the peptide internal energy that
measures the stability of the peptide in the adsorbed state,
and 4 is a scalar that controls the relative importance of Epep
to AGpucasa. To translate the PepBD score into the Potts model
(69) format shown in Eq. (1), each peptide residue is assigned a
state based on the type of amino acid present. All natural
20 amino acids are allowed except for proline. One-body ener-
gles are then the interactions of a given residue with the recep-
tor and itself, while two-body energies are interactions between
two residues. Just like in PepBD, intramolecular peptide interac-
tions are scaled by a factor 1 set to 0.01. For both one-body and
two-body energies, the interaction energies consist of electro-
static, Lennard Jones, and GB energies between pairs of atoms.
Evaluating the one- and two-body energies for all single amino
acid and pairs of amino acids at all residues in the peptide, the
net score for any amino acid sequence can be quickly deter-
mined by looking up the tabulated one- and two-body energies.

Two points in the Potts model merit discussion. The first point
regards calculating Born radii (82) used in calculating the GB en-
ergy. PepBD uses the GB model of Onufriev (83), where the Born
radii depend on the positions of all atoms in the system. This
many-body calculation does not fit the Potts model. We resolved
this issue by coarse graining all of the side chains that are not
considered in the one- or two-body energy calculation. Coarse
graining consisted of replacing the side chain with a sphere of ra-
dius 3 A placed at the beta carbon. The second point regards the
side-chain orientations, or rotamers. While discretization of
side-chain conformations using rotamer libraries (84) naturally
fits a Potts model, the limited storage of QA machines prevents
representation of both the amino acid sequence and rotamers.
Thus, the side-chain degrees of freedom were removed. This
was done by evaluating the one-body energy for all rotamers in
a library (84) including a side-chain energy minimization step
(85) and then only retaining the rotamer with the lowest one-
body energy. We note that the retained rotamer could differ
from residue to residue and that the two-body energy calcula-
tions used the single retained rotamer.

Generating system configurations to formulate
the Potts model

System conformations (i.e. peptide backbone dihedrals and the lo-
cation and orientation of the peptide with respect to the plastic)
were obtained in MD simulations. For PE, 20 system conforma-
tions were obtained using the method previously described (49)
by running a metadynamics simulation with a bias potential ap-
plied to the distance between the peptide’s center of mass and
the top of the surface. An additional 30 system conformations
were obtained by randomly selecting 30 adsorbed conformations
during evaluation of PepBD PBPs using the MD simulation proced-
ure described below. The latter method was also used to obtain 24
system conformations for PP, PS, and PET.

Discovering peptides by using QA to solve
the Potts model

Quantum annealing was used to find the lowest scoring amino
acid sequence for a given Potts model (see Fig. 1A). We used a
D-Wave 2000Q QA with an annealing time of 120 ps and a chain
strength of 8. Hyperparameters were optimized using a grid
search approach to ensure efficient convergence.

The score function in Eq. 11is slightly modified to include a con-
stant penalty, p, to help QA escape local minima. The score func-
tion is given by

Score = ZE1-51-+AZZEUSISJ- +p (3)
: -

o>l

Avariety of 2 and p values are used for each system conformation
to obtain multiple solutions for each Potts model. The Potts model
was solved with the Kerberos D-Wave hybrid solver (86), which
combines quantum and classical algorithms to balance the ability
of quantum computing to find local minima with the scalability of
classical computing. Namely, the D-Wave hybrid solver Kerberos
decomposes the Potts model into subproblems that are solved
with the QA, while the classical algorithm refines and integrates
QA solutions to the subproblems.

Evaluation of peptides via MD simulations

PBPs affinities to plastic were evaluated in MD simulations. Our
need for evaluating dozens of peptides required a high-
throughput, computationally cheap method. This rules out accur-
ate but expensive methods like metadynamics (23) or umbrella
sampling (87). We instead run equilibrium MD simulations to
search for the most stable adsorbed conformation, measuring af-
finities using MM/GBSA. As peptide conformations change slowly
when adsorbed to a plastic at 300 K, we first simulated the peptide
for 10-ns simulation at 550 K. The elevated temperature allowed
the peptide to rapidly sample different adsorbed conformations.
The Upper Wall utility in PLUMED (88) was used to prevent the
peptide from desorbing completely from the plastic surface,
specifically by applying a force to push the peptide back toward
the plastic if its center of mass was more than 10 A away from
the plastic. Sixteen representative adsorbed conformations for
each peptide were then obtained by first performing k-means
clustering with CPPTRAJ (89) based on the backbone alpha car-
bons and then randomly selecting a member of each cluster.
Each conformation was simulated for 1 ns equilibrated at 300 K
before calculating the MM/GBSA adsorption free energy with
Amber (90) to identify the most stable conformations. The eight
conformations with the lowest adsorption free energy were simu-
lated an additional 4 ns before repeating the adsorption free en-
ergy calculation. The lowest adsorption free energy was selected
as representative of the peptide’s binding affinity.

Technical details of MD simulations are the following.
Simulations used TIP3P water (91) and the ff14SB force field (92)
for peptides. Plastics were modeled using GAFF (93) parameters
and previously calculated partial charges (49). Atomistic models
of plastic surfaces were taken from the same work (49). tLEaP
(94) generated a linear peptide with the desired amino acid se-
quence, which was manually translated above the plastic surface
using VMD (95) so that its long dimension was parallel to the sur-
face and the peptide center of mass 4 A was above the surface.
tLEaP added TIP3P water 15 A above the peptide and 10 A below
the bottom of the plastic surface, giving simulation box sizes of
about 50 A in the direction normal to the plastic surface. The di-
mensions of the periodic box parallel to the plastic surface were
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set to be equal to the dimensions of the plastic surface. The Amber
coordinate and parameter files were converted to Gromacs format
using Parmed (94) before running simulations with Gromacs ver-
sion 2019.6 (96). Position restraints were applied to nonhydrogens
in the plastic using a force constant of 5,000 kJ/mol/nm?. All bonds
to hydrogen were restrained using the LINCS algorithm (97). Prior
to running a high-temperature 550-K simulation, the system was
energy-minimized for up to 1,000 steps using steepest descent,
equilibrated at 300K in the NVT ensemble for 100 ps, and
equilibrated in the NPT ensemble system at 1 bar and 300K for
200 ps. The system was then equilibrated at 550 K for 200 ps in
the NVT ensemble before running the 10-ns high-temperature
simulation. After extracting clusters, the system was cooled to
300K in the NVT ensemble for 100 ps before running the 1- and
4-ns simulations of each cluster. Long-range electrostatic interac-
tions were treated using particle mesh Ewald. The simulation time
step size was 2 fs. The velocity rescaling algorithm (98) controlled
the system temperature in NVT and NPT. The time constant was
0.1 ps, and separate thermostats were applied to water and non-
water atoms (i.e. the peptide, the plastic, and any counterions).
The semi-isotropic Berendsen barostat (99) controlled the pres-
sure in NPT simulations. The x and y dimensions were allowed
to change independently from the z dimension, the isothermal
compressibility was set to 4.5x 107* for all directions, and the
time constant was set to 5 ps.

Expanding the biophysical properties of PBPs
with PPO

Proximal policy optimization, a prominent reinforcement learning
algorithm, can stably and efficiently navigate complex environ-
ments. Classic PPO methods employs a clipping function within
its objective that prevents unstable policy updates, thereby ensur-
ing that updated policies remain close to their predecessors. An ex-
ample of a learning curve for PPO is shown in Fig. S3. We note that
QA still plays a key role in PBP discovery: using the QA sequence as
the starting point for PPO exploration greatly accelerates discovery
of alternate solutions with good scores (Fig. S4). This process main-
tains equilibrium between exploring updated strategies and ex-
ploiting known, effective behaviors. PPO’s strategy, including
actions guided by current policies and evaluated via a reward sys-
tem, alongside controlled policy modifications through KL diver-
gence, underscores its robustness in complex optimization tasks.
Our PPO neural network comprises an embedding layer and a
gated recurrent unit (GRU) that processes sequential amino acid
data (Fig. S5). The embedding layer translates the discrete amino
acid inputs into a continuous vector space, enhancing the net-
work’s ability to discern patterns in peptide sequences. The GRU
can capture how the individual amino acids interact to give the
score of the full amino acid sequence. The output layer, which is
connected to the GRU, employs a softmax function to generate a
probability distribution over potential actions (e.g. changing an
amino acid). This setup allows the policy network to probabilistic-
ally determine the next amino acid in a sequence, facilitating ex-
ploration of the vast peptide sequence space with the aim of
optimizing the peptide score. Details of the method follow below.

Embedding layer

This layer maps discrete amino acid inputs into a continuous vec-
tor space. Mathematically, each amino acid AA; is transformed
into an embedded vector v; through an embedding function
E: AA; — v;. This transformation enhances the network’s ability
to identify intricate patterns in peptide sequences.

GRU layer

The GRU is adept at processing sequential data and capturing
temporal dependencies. For a given state s; (defined below), the
GRU updates its hidden state h; at each time step t per
h: = GRU(st, hi—1). This mechanism allows the network to maintain
a memory of previous amino acids in the sequence, which is cru-
cial for predicting subsequent amino acids.

Output layer with softmax activation

Connected to the GRU, the output layer utilizes a softmax func-
tion to generate a probability distribution of possible actions (ami-
no acid selections):

P(at|st; 6) = softmax(Woucht + bout) (4)

where Wy, and boy: are the weights and biases of the outputlayer,
respectively. This probabilistic approach enables the policy net-
work to determine the next amino acid in the sequence, thus sys-
tematically exploring the peptide sequence space.

The definition of states, actions, and rewards is intricately tied
to the task of optimizing peptide sequences. The state is the cur-
rent sequence of amino acids, the action is a change in the amino
acid at a specific position in the peptide, and the reward is the
change in the score after modifying the amino acid sequence.
PPO aims to learn a policy that goes toward lower scores, which
corresponds to peptides with higher predicted affinity to the plas-
tic. We define these components as follows:

States (S): The state s; is the current amino acid sequence:

St={AA1, u-,AAn} (5)

where AA; denotes the amino acid at position iin the peptide chain
and n is the length of the peptide sequence.

Actions (A): An action is the selection and insertion of an amino
acid at a specific position within the peptide sequence.

At:St —> St4+1 (6)

where si,1 is the updated state after the action is applied.
Rewards (R): The reward R(st, a;) is defined to be the change in
the score for the peptide sequence from before to after the action a;:

R(St, at) = QUBO(SH.l) - QUBO(St) (7)

This reward encourages the policy to sample peptide sequences
with high predicted affinity.
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