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Abstract
Methods are needed to mitigate microplastic (MP) pollution to minimize their harm to the environment and human health. Given the 
ability of polypeptides to adsorb strongly to materials of micro- or nanometer size, plastic-binding peptides (PBPs) could help create 
bio-based tools for detecting, filtering, or degrading MNP pollution. However, the development of such tools is prevented by the lack of 
PBPs. In this work, we discover and evaluate PBPs for several common plastics by combining biophysical modeling, molecular 
dynamics (MD), quantum computing, and reinforcement learning. We frame peptide affinity for a given plastic through a Potts model 
that is a function of the amino acid sequence and then search for the amino acid sequences with the greatest predicted affinity using 
quantum annealing. We also use proximal policy optimization to find PBPs with a broader range of physicochemical properties, such 
as isoelectric point or solubility. Evaluation of the discovered PBPs in MD simulations demonstrates that the peptides have high 
affinity for two of the plastics: polyethylene and polypropylene. We conclude by describing how our computational approach could be 
paired with experimental approaches to create a nexus for designing and optimizing peptide-based tools that aid the detection, 
capture, or biodegradation of MPs. We thus hope that this study will aid in the fight against MP pollution.
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Significance Statement

Microplastics (MPs), defined as plastic particles smaller than 5 mm, are a concerning environmental pollutant. The ability of peptides 
to adsorb micro- and nanoscopic materials suggests that peptides could help remediate MP pollution. Here, we combine biophysical 
modeling, quantum computing, and reinforcement learning to discover peptides that bind strongly to common plastics. Simulations 
revealed that the discovered peptides have high affinity for polyethylene and polypropylene. The peptides found in this work can 
potentially be used in biological tools to remediate MP pollution.

Introduction
It is imperative to develop methods for detecting and capturing 
microplastic (MP) pollution due to its environmental and health 
concerns (1–4) and the regular consumption of MPs by humans 
(5). While a variety of methods have been developed (6–10), a 
promising tool is peptides. Both proteins (11–16) and peptides 
(17–21) adsorb to many materials, including plastics. Peptide ad
sorption can be strong, with adsorption free energies in the range 
of 5 to 15 kcal/mol for various materials (20, 22–25). These findings 
suggest that plastic-binding peptides (PBPs) could be used to help 
detect and/or capture MPs. PBPs may be especially useful for 
remediating nanoplastics since peptides adsorb rapidly and 

strongly to nanomaterials (26–29). Despite the promise of PBPs 

for MP remediation, they have received little attention in the lit

erature except for a few studies (30, 31). We believe this is primar

ily due to the lack of PBPs for most common plastics. If PBPs were 

available, then peptide-based MP remediation strategies could be 

developed more readily.
How can PBPs be discovered? Peptides with affinity for solids, 

including polystyrene (PS) (32–35) and polypropylene (PP), can be 

discovered through library screening, in which a vast number of 

peptides are evaluated via a high-throughput experimental meth

od. Library screening has limitations, though. It samples only a 
small fraction of possible peptide sequences, does not quantify 
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peptide affinity, and provides no insight into why some peptides 
bind more strongly than others. We posit that PBPs can be more 
effectively discovered by introducing biophysical modeling and 
computational optimization alongside experimental methods. 
Modeling can quantify PBP affinity and describe how PBP affinity 
depends on environmental conditions or MP properties; optimiza
tion tools can leverage the data and insights generated by model
ing to discover PBPs tailored to a target set of conditions.

The biophysical model should accurately predict peptide affin
ity while being computationally cheap enough to permit large- 
scale sampling of peptides. A suitable balance is offered by MM/ 
GBSA (36), which is both fast and models peptide–plastic interac
tions at atomic resolution. However, MM/GBSA has notable sim
plifications: it uses an implicit solvent model and does not fully 
account for the configurational entropy of flexible molecules like 
short peptides. It thus is essential to validate PBPs using molecular 
dynamics (MD) simulations, a well-established method for calcu
lating peptide affinity to solids (23, 24, 37–39).

Of the many computational optimization tools that can be ap
plied to peptide discovery, we chose quantum annealing (QA) and 
reinforcement learning. Solid-binding peptides have been compu
tationally discovered by applying bioinformatics tools to peptide 
library screening data (40–42). However, the small size or lack of 
datasets on PBPs prevents the use of bioinformatics tools. A se
cond approach is to combine biophysical modeling with classical 
optimization tools like simulated annealing (43, 44) or genetic al
gorithm (45, 46), which search for minima on the energy surface 
defined by the model (47, 48). For example, simulated annealing 
was used by PepBD to discover PBPs (49). However, we suspect 
that QA could be a better choice. QA is designed to find the optima 
of Potts models and may solve large combinatorial problems that 
are difficult for classical computational methods (50). These use
ful attributes motivated past applications of quantum computing 
to peptide discovery and modeling (51, 52). However, both classic
al and quantum optimization methods do not “learn” from their 
sampling. This is a concern since only a tiny fraction of possible 
peptide sequences are sampled in a reasonable computational 
time, which makes intelligent sampling crucial for peptide design. 
Intelligent sampling is offered by generative AI tools (53–56), 
which have shown success in discovering antimicrobial peptides 
(57–60), anticancer peptides (61–64), cell-penetrating peptides 
(50, 65), and self-assembling peptides (51, 52). We specifically 
choose proximal policy optimization (PPO), a reinforcement learn
ing method, because it effectively navigates high-dimensional 
sample spaces, such as amino acid sequences (66–68).

In this work, MM/GBSA modeling, MD simulations, QA, and PPO 
were combined to identify and evaluate PBPs. We first formulated 
a Potts model that expresses peptide affinity for a given plastic as a 
function of the amino acid sequence for a fixed conformation of a 
peptide adsorbed to a plastic surface. PBPs were discovered by us
ing QA to find the amino acid sequence with the best Potts model 
score for many different conformations. This produced PBPs for 
four types of plastics commonly found in MP pollution: polyethyl
ene (PE), PP, PS, and polyethylene terephthalate (PET). Calculation 
of the PBP adsorption free energy in MD simulations showed that 
the discovered PBPs for PE and PP have comparable affinity to re
cently discovered PBPs (49). PBPs for PS and PET had poor affinity, 
which indicates that the biophysical Potts model requires tuning. 
The Potts model was also solved using PPO to find PBPs for PE with 
an even broader range of physicochemical properties. Interesting
ly, PPO sampling also shed light on the sequence-structure rela
tionship by relating the amino acid type that optimizes affinity 
for PE to the location of the side chain with respect to the plastic 

surface and the rest of the peptide. We conclude by describing 
how our computational strategy can be integrated with experi
mental methods to create a nexus that can develop and optimize 
peptide-based strategies to capture, detect, or degrade MPs. Over
all, this work is an important step in developing biological tools for 
remediating MP pollution.

Results
Creating a Potts model that expresses peptide 
affinity for plastic as a function of the amino acid 
sequence
To discover PBPs with high affinity for plastic, we formulated a 
Potts model (69) that expresses peptide affinity for plastic as a 
function of the amino acid sequence (Fig. 1A). A PBP can then be 
found by finding the minimum of the Potts model. A sketch of 
the formulation is provided here, and details can be found in 
Materials and Methods. The Potts model takes the form

Score =
􏽘

i,α
siαEiα + λ

􏽘

i,α

􏽘

j>i,β
siαs jβEiα,jβ (1) 

where siα is a binary variable that equals 1 if amino acid type α is 
at residue i, and 0 otherwise. Thus, i and α iterate over the peptide 
residues and the amino acid options, respectively. All peptides in 
this work have 12 residues and use all natural amino acids except 
proline. The one-body energy, Eiα, is the interaction of amino acid 
type α at residue i with the plastic surface and itself. The two-body 
energy, Eiα,jβ, is the interaction energy between amino acid type α 
at residue i and amino acid type β at residue j. Thus, the first 
term in (1) primarily optimizes peptide affinity for the plastic 
and the second term ensures that the peptide structure is stable 
(70). Finally, λ is a scaling factor that controls the relative import
ance of peptide affinity and peptide stability. By calculating all Eiα 

and Eiα,jβ values, the Score for any amino acid sequence can be cal
culated by summing all precalculated values. PBPs can then be 
discovered by finding the sequence with the lowest Score, where 
a lower Score corresponds to greater predicted affinity. It is im
portant to note that Eiα and Eiα,jβ depend on the system conform
ation (i.e. the peptide backbone and the relative position and 
orientation of the peptide with respect to the plastic surface), 
which means that the lowest scoring sequence depends on 
the conformation. We thus use many initial conformations, with 
the initial conformations obtained from MD simulations. The 
best-scoring PBPs for all system conformations are combined to 
give the final set of putative PBPs for the target plastic.

Pairing QA with the Potts model to discover 
PE-binding peptides
PBPs for PE were discovered by using QA to find the sequence with 
the lowest binding energy for a given Potts model. We first focus 
on PE to test our strategy, and search for PBPs for other plastics lat
er. As a reference point for our designs, we also searched for PBPs 
using PepBD, a method recently used to find PBPs that also uses 
MM/GBSA to calculate peptide affinity for plastic (49). Since the 
system conformation must be fixed and the Potts model is only 
valid for a static peptide structure, PepBD conformation moves 
(71) were disabled in this comparison. We term this variant of 
PepBD as “PepBD-Static.” Comparison of the best scores between 
QA and PepBD-Static over fifty unique starting conformations 
shows that QA consistently found better-scoring sequences 
(Fig. 1B). The score difference between QA and PepBD-Static in
creases as the score of QA sequences decreases, a significant 
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feature since the sequences with the lowest scores are the most 
promising PBPs. However, PepBD outperformed QA for six confor
mations, and QA yielded positive scores for three of these confor
mations. The poor performance may be due to suboptimal 
hyperparameters (see Materials and Methods for discussion) but 
is not critical for PBP discovery: the PepBD-Static scores for these 
six conformations are poor relative to the other system conforma
tions, so these system conformations do not give rise to promising 
PBPs that should be further evaluated. As a second evaluation of 
our design strategy, the scores of the discovered PBPs were com
pared to the best PBPs previously obtained using PepBD where 
conformation changes were allowed (49) (Fig. 1C). While PepBD 
peptides have less variability in their score, the best QA peptides 
have better scores. Thus, our approach for discovering PBPs for 

PE appears successful. It is notable that QA and PepBD peptides 
have very similar amino acid compositions even though QA con
sistently performs better (Fig. 1D). The similar composition im
plies that QA outperforms PepBD-Static not by altering the 
amino acid composition, but by finding more optimal arrange
ments of the same amino acids.

MD simulations show that the best PBPs found by QA for PE 
have equal affinity as PBPs previously found by PepBD (49). Since 
the peptides found by QA have scores that span a large range 
(Fig. 1B), the PBPs were split into two groups: “Good QA PBPs” 
with scores <−50 and “Poor QA PBPs” with scores >−50. The affin
ity of the PBPs was evaluated by comparing to the 20 best PBPs pre
viously obtained with PepBD (49) and 20 peptides with randomly 
generated amino acid sequences. PepBD peptides were chosen 

Fig. 1. Outline of PBP discovery process and results for PE-binding PBPs. A) Schematic of pairing a Potts model and QA to discover PBP. Figure created using 
Biorender. B) Comparison of the best scores from QA and PepBD-Static for 50 system conformations. Each point corresponds to one system conformation, 
where the QA score is the x value and the PepBD-Static score is the y value. Points lie on the y = x dashed line if QA and PepBD-Static performed equally 
well; points lie above the line if QA found a better score than PepBD. C) Comparison of PBP scores from PepBD and QA. PepBD data were taken from 
previous work (49) and contain 100 sequences. D) Amino acid frequencies of QA and PepBD-Static PBPs for the 50 system conformations in B).
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rather than PepBD-Static peptides since the former have greater 
predicted affinity and thus are a more stringent comparison. 
Good QA PBPs had equal or slightly greater affinity for PE than 
the best PepBD peptides and much greater affinity than random 
peptides (Fig. 2). In contrast, poor QA PBPs have roughly equal af
finity to the random peptides and lower affinity than the PepBD 
PBPs. These results illustrate two key points: (i) PBPs with high af
finity for PE were discovered by combining the Potts model and QA 
and (ii) many system conformations are needed to effectively find 
PBPs because not all system conformations lead to high-affinity 
peptides.

Discovering PBPs for multiple plastics 
by combining QA with the Potts model
Motivated by our success in finding PBPs for PE, we next searched 
for PBPs for other major components of MP waste: PP, PS, and PET. 
We found that the scores vary significantly between plastics 
(Fig. 3A). Designs for PET have the most negative scores (i.e. great
est predicted affinity), possibly because the oxygens in PET give 
rise to stronger electrostatic interactions with the peptide. The 
peptides for the other three plastics have roughly equivalent aver
age scores, but the range of scores is much larger for PE than for PP 
or PS. While this could be attributable to the larger number of 
structures used for PE (53) than for the other plastics (24), the large 
range of scores for PET indicates that the plastic type also influen
ces variability in the score magnitude. The peptides with the low
est scores for each plastic were evaluated in MD simulations and 
compared to previous PepBD peptides (49) along with randomly 
generated amino acid sequences (Fig. 3B). Twelve peptides were 
selected for each method:plastic combination so that a relatively 
large sample size could be evaluated at a reasonable computa
tional cost. PBPs found by QA for PP had slightly lower affinity 
than previous PepBD peptides, but the best QA peptides have 
equal affinity to the best PepBD designs. In contrast, QA designs 
for PS and PET have lower affinity than both PepBD and random 
peptides. We suspect that this stems from deficiencies in the 
Potts model. The total two-body energy could dominate the one- 
body energy for some structures, largely due to the generalized 
Born (GB) solvation energy. This overemphasizes peptide stability 

relative to peptide–plastic interactions and leads to a high fre
quency of arginine (R) (Fig. 3C), whose long and flexible side chain 
forms strong intramolecular interactions with other peptide resi
dues. Future work can explore striking a better balance of one- 
and two-body energies through tuning the value of λ for different 
plastics. Despite the difference in peptide affinity between plas
tics, the amino acid compositions are generally constant across 
all plastics (Fig. 3C). Notable exceptions are the slightly lower fre
quency of arginine (R) and the higher frequency of glycine (G) for 
PE and small variability in leucine (L) between the plastics. 
Statistical analysis using a two-tailed t test with unequal variance 
shows that these differences in amino acid frequencies are statis
tically significant at the P = 0.05 threshold (Table S1).

Diversifying PBP physicochemical properties 
through PPO
Having found PBPs with high predicted affinity for PE, we next 
aimed to find PBPs with a broader range of physicochemical prop
erties using PPO. Diversity in physicochemical properties can be 
useful for MP remediation. The heterogeneity in both MP proper
ties (e.g. surface charge) and environmental conditions (e.g. pH) 
(72) likely means that PBPs will not have high affinity for plastic 
in all settings. It thus could be helpful to have PBPs with diverse 
physicochemical properties so that a PBP can be selected for dif
ferent settings as necessary. We selected PPO to search for alter
nate PBPs because it is effective at exploring high-dimensional 
spaces like amino acid sequences. In our PPO implementation 
(Fig. 4A), we trained PPO on the Potts model to learn a policy for 
exploring peptide sequences for a given system conformation. 
The trained PPO model searched for alternate solutions to the 
Potts model, starting with the sequence found by QA. A sampled 
sequence was deemed an alternate solution only if its score was 
within five units of the best score found by QA, thereby ensuring 
that the peptide was still predicted to have affinity for PE. PPO 
searched for alternate solutions over 23 system conformations, 
finding between 1 and 70 alternate amino acid sequences per sys
tem conformation (Fig. 4B). The number of alternate sequences 
found did not strongly correlate with the best score found by 
QA, i.e. the depth of the minima found by QA (Fig. S1). We next 
compared physicochemical properties of the QA and PPO pepti
des, namely the distribution of net charge, the predicted aqueous 
solubility (using the CamSol method (69)), the isoelectric point (pI) 
(using the ExPasy server(73)), and the peptide masses. While the 
two classes of peptides sample approximately the same range of 
these physiochemical properties, different combinations of the 
properties are sampled in PPO peptides sample than in QA pepti
des (Fig. S2). A particularly notable case is the combination of pep
tide solubility and pI (Fig. 4C). While nearly all QA peptides have a 
pI >10, a large fraction of PPO peptides have a pI below 7. As the MP 
surface charge can be either negative or positive (32), peptides 
with different net charges at neutral pH could aid MP remediation 
efforts. Overall, we conclude that PPO not only diversified peptide 
properties, but did so in a way that could have relevance to MP re
mediation (74).

PPO sampling provided insight into the relationship between 
the side-chain environment and the most optimal amino acid. 
The side-chain environment was characterized by three proper
ties: (i) the distance between the beta carbon and the PE surface, 
(ii) the angle between the vector connecting the alpha and beta 
carbons and the normal vector of the plastic surface, and (iii) 
the solvent-accessible surface area (SASA) of the side-chain beta 
carbon when all other atoms in the corresponding side chain 

Fig. 2. PBPs for PE found by QA shown to have high affinity in MD 
simulations. Binding free energy (ΔG) distributions for randomly 
generated sequences (12 peptides), “QA Poor PBPs” with a score >−50 
(16 peptides), “QA Good PBPs” with a score <−50 (16 peptides), and the best 
PepBD PBPs obtained in previous work (49) (20 peptides).
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were removed. By calculating the side-chain environment of every 
residue in all PBPs found by PPO, the most frequent amino acid 
type was determined for each combination of geometric proper
ties (Fig. 4D). An amino acid is shown only if a general preference 
was shown for that geometric environment, which we define as 
the amino acid occurring in more than one-third of all residues 
in that environment. Inspection of these plots reveals the most 
common amino acid for a given side-chain environment. 
Arginine (R) appears optimal when the side chain has a small 
SASA and is near the surface, or is distant from the surface and 
directed toward the solvent. Other hydrophilic residues like as
paragine (N) and glutamine (Q) are also preferred when the resi
due is far from the plastic surface and exposed to the solvent. 
Meanwhile, bulky, hydrophobic residues like tryptophan (W), 
phenylalanine (F), methionine (M), and tyrosine (Y) are ideal 
when the side chain is near the surface and has a large SASA. 
This analysis could be helpful for peptide sequence optimization. 
While the 3D structure of the system predetermines the optimal 
amino acid sequence, it is not obvious what the optimal sequence 
is. The analysis in Fig. 4D simplifies this complicated design prob
lem: the optimal amino acid sequence can be predicted by 

calculating the side-chain geometries, then selecting the best resi
due for that environment.

Discussion
We developed a computational pipeline for discovering PBPs that 
could help remediate MP pollution. We created a biophysics- 
based Potts model that expresses peptide affinity for plastic as a 
function of the amino acid sequence for a given adsorbed con
formation. The sequence with the highest predicted affinity was 
then found by QA for many different adsorbed conformations, giv
ing a set of potential PBPs for multiple types of plastics commonly 
found in MP pollution. MD simulations showed that PBPs found by 
QA have high affinity for PE and PP. Application of PPO to the Potts 
model also increased diversity of the PBP physicochemical proper
ties and shed light on the relationship between the local geometry 
of an amino acid side chain and the amino acid type predicted to 
be optimal.

The modeling and optimization approaches possess several 
desirable features. The outputs are explainable due to the 
biophysical foundation. Sequence optimization takes minutes, 

Fig. 3. Properties of PBPs found by QA for four common plastics: PE, PS, PP, and PS. A) Range of scores for the best PBPs found by QA for PE, PP, PS, and PET. 
B) Distribution of adsorption free energies for PBPs to the four plastics in MD simulations. The PBPs were found either by QA, previously by PepBD, or by 
generating a random amino acid sequence. At least 12 PBPs were tested for each discovery method for each plastic. C) Amino acid frequency in the best 
PBPs found by QA for the four plastics. Data in (A) and (C) collected over 50 system conformations for PE and 24 system conformations for PP, PS, and PET.
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so large numbers of peptide conformations can be evaluated in 
the search for PBPs. As sampling of sequences and conformations 
are separate, the sequence optimization described in this work 
can be paired with a conformation sampling method to simultan
eously search both spaces. This improves upon the current meth
od of selecting conformations from MD simulations, which gives 
somewhat arbitrary conformations. Although QA was used to 
search for the optimal amino acid sequence, we recognize that 
not all researchers may have access to these resources. In such in
stances, QA could be replaced with classical optimization meth
ods. Evaluation of PBPs via our MD protocol is high throughput: 
the results for nearly 150 peptides are shown in Fig. 3B. While 
the MD results are not high accuracy, it can serve as a useful first 
screen before more rigorous evaluations with methods like 

umbrella sampling (75, 76) or metadynamics (23, 24, 77). 
Computational modeling removes the need for experimental 
data that are required by many other AI-based optimization 
methods. This is useful given the lack of experimental data on 
PBPs. Lastly, the Potts model and MD simulations can quantita
tively predict how peptide affinity is altered by changes in envir
onmental conditions and MP properties. We thus can identify 
the conditions in which a PBP will most effectively remediate MP 
pollution, a direction that will be explored in future work.

The limitations of the modeling and optimization domains 
should also be noted. A primary limitation of the Potts model is 
the use of an implicit solvent model. While an implicit solvent 
model is necessary for peptide design to be tractable, the solvent 
plays an important role in peptide adsorption. A possible future 

Fig. 4. PPO diversifies PBP properties and provides insight into properties of optimal PBPs. A) Schematic of using PPO to identify additional PBPs. Details 
are provided in Materials and Methods. Figure created using Biorender. B) Number of alternate PBPs found by PPO for 23 PE system conformations. C) Net 
charge and solubility score found by QA or PPO. Each point corresponds to one peptide. D) The most frequently observed amino acids and counts of these 
amino acids in PBPs found for PE for a given geometric environment. Each cell contains the most frequently found amino acid and the number of times 
that that amino acid was observed. Results are only shown if an amino acid occurred in at least one-third of the sequences found by PPO. See text for 
definitions of the system conformations. Results taken from designs for 23 system conformations.
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option for including solvent effects would be to incorporate ad
sorption free energies of single amino acids taken from explicit 
solvent simulations (20) into the Potts model. As QA is a 
heuristics-based method, it may not find the global optimum. 
This issue is compounded by the proprietary D-Wave solvers, 
which may not be flexible enough to yield good solutions for all 
system conformations using the same parameters. Lastly, PPO 
has a large computational cost, may require tuning to the specific 
peptide design problem, and may require a good initial sequence 
to achieve optimal solutions. As PPO was used to tune the finding 
of peptides with unique properties, a possible solution for the is
sues with PPO is to instead perform QA design with modified ver
sions of the Potts model that explicitly include terms for the 
property of interest.

This study sets the stage to develop peptide-based tools for re
mediating MP pollution, which we envision as the nexus shown 
in Fig. 5. To apply PBPs to MP pollution remediation, our compu
tational methods must be paired with experimental work. A first 
essential step is to evaluate the computational predictions, 
namely the affinity of the peptides to plastic. Possible methods 
for performing this evaluation include quartz crystal microbal
ance (78) or atomic force microscopy (24). Since these methods 
can be time-consuming, a useful preliminary step would be to 
perform more rigorous computational evaluations using MD 

methods like metadynamics (79) or steered MD (80). The experi
mental and simulation results can provide feedback to the pep
tide design process, or even guide the search for higher affinity 
peptides by using methods like Gaussian processes or active 
learning. The second essential step is to incorporate PBPs into 
tools for MP remediation. Examples include creating biosensors 
for MP detection (30), using the peptides in wastewater treatment 
processes like bioflocculation to help capture MPs, and express
ing the PBPs in plastic-degrading microorganisms (81) to aid cel
lular adhesion to plastic and accelerate plastic degradation. As 
these tools are developed, more information will be gained on 
peptide affinity to actual MPs in different environmental set
tings, thereby providing additional feedback to improve the com
putational peptide discovery method. The introduction of the 
computational and modeling domains in this work is a major 
step toward establishing a nexus for developing biological tools 
to remediate MP pollution.

Materials and methods
Expressing peptide sequence optimization 
as a Potts model
Because quantum annealers (QA) architecture are constrained 
to solving only discrete optimization problems, the peptide 

Fig. 5. A nexus for developing peptide-based tools for MP remediation founded on biophysical modeling, computational optimization, and development 
of peptide-based MP remediation tools. See text for description of role of each domain, and how each domain interacts with the others. Figure created 
using Biorender.
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must be represented using discrete variables to enable the use 
of QA. Due to limited storage on QA machines, simultaneous re
presentation of the peptide sequence and conformation (i.e. the 
backbone dihedrals and relative position and orientation of the 
peptide with respect to the plastic) is not possible. Thus, the aim 
is to optimize the peptide’s amino acid sequence for a fixed 
conformation. The quantity being optimized is the PepBD score, 
given by

Score = ΔGMMGBSA + λEpep (2) 

where ΔGMMGBSA is the binding free energy calculated using the 
MM/GBSA method (36), Epep is the peptide internal energy that 

measures the stability of the peptide in the adsorbed state, 
and λ is a scalar that controls the relative importance of Epep 

to ΔGMMGBSA. To translate the PepBD score into the Potts model 
(69) format shown in Eq. (1), each peptide residue is assigned a 
state based on the type of amino acid present. All natural 
20 amino acids are allowed except for proline. One-body ener
gies are then the interactions of a given residue with the recep
tor and itself, while two-body energies are interactions between 
two residues. Just like in PepBD, intramolecular peptide interac
tions are scaled by a factor λ set to 0.01. For both one-body and 
two-body energies, the interaction energies consist of electro
static, Lennard Jones, and GB energies between pairs of atoms. 
Evaluating the one- and two-body energies for all single amino 
acid and pairs of amino acids at all residues in the peptide, the 
net score for any amino acid sequence can be quickly deter
mined by looking up the tabulated one- and two-body energies.

Two points in the Potts model merit discussion. The first point 
regards calculating Born radii (82) used in calculating the GB en
ergy. PepBD uses the GB model of Onufriev (83), where the Born 
radii depend on the positions of all atoms in the system. This 
many-body calculation does not fit the Potts model. We resolved 
this issue by coarse graining all of the side chains that are not 
considered in the one- or two-body energy calculation. Coarse 
graining consisted of replacing the side chain with a sphere of ra
dius 3 Ā placed at the beta carbon. The second point regards the 
side-chain orientations, or rotamers. While discretization of 
side-chain conformations using rotamer libraries (84) naturally 
fits a Potts model, the limited storage of QA machines prevents 
representation of both the amino acid sequence and rotamers. 
Thus, the side-chain degrees of freedom were removed. This 
was done by evaluating the one-body energy for all rotamers in 
a library (84) including a side-chain energy minimization step 
(85) and then only retaining the rotamer with the lowest one- 
body energy. We note that the retained rotamer could differ 
from residue to residue and that the two-body energy calcula
tions used the single retained rotamer.

Generating system configurations to formulate 
the Potts model
System conformations (i.e. peptide backbone dihedrals and the lo
cation and orientation of the peptide with respect to the plastic) 
were obtained in MD simulations. For PE, 20 system conforma
tions were obtained using the method previously described (49) 
by running a metadynamics simulation with a bias potential ap
plied to the distance between the peptide’s center of mass and 
the top of the surface. An additional 30 system conformations 
were obtained by randomly selecting 30 adsorbed conformations 
during evaluation of PepBD PBPs using the MD simulation proced
ure described below. The latter method was also used to obtain 24 
system conformations for PP, PS, and PET.

Discovering peptides by using QA to solve 
the Potts model
Quantum annealing was used to find the lowest scoring amino 
acid sequence for a given Potts model (see Fig. 1A). We used a 
D-Wave 2000Q QA with an annealing time of 120 μs and a chain 
strength of 8. Hyperparameters were optimized using a grid 
search approach to ensure efficient convergence.

The score function in Eq. 1 is slightly modified to include a con
stant penalty, p, to help QA escape local minima. The score func
tion is given by

Score =
􏽘

i

Eisi + λ
􏽘

i

􏽘

j>i

Eijsisj + p (3) 

A variety of λ and p values are used for each system conformation 
to obtain multiple solutions for each Potts model. The Potts model 
was solved with the Kerberos D-Wave hybrid solver (86), which 
combines quantum and classical algorithms to balance the ability 
of quantum computing to find local minima with the scalability of 
classical computing. Namely, the D-Wave hybrid solver Kerberos 
decomposes the Potts model into subproblems that are solved 
with the QA, while the classical algorithm refines and integrates 
QA solutions to the subproblems.

Evaluation of peptides via MD simulations
PBPs affinities to plastic were evaluated in MD simulations. Our 
need for evaluating dozens of peptides required a high- 
throughput, computationally cheap method. This rules out accur
ate but expensive methods like metadynamics (23) or umbrella 
sampling (87). We instead run equilibrium MD simulations to 
search for the most stable adsorbed conformation, measuring af
finities using MM/GBSA. As peptide conformations change slowly 
when adsorbed to a plastic at 300 K, we first simulated the peptide 
for 10-ns simulation at 550 K. The elevated temperature allowed 
the peptide to rapidly sample different adsorbed conformations. 
The Upper Wall utility in PLUMED (88) was used to prevent the 
peptide from desorbing completely from the plastic surface, 
specifically by applying a force to push the peptide back toward 
the plastic if its center of mass was more than 10 Å away from 
the plastic. Sixteen representative adsorbed conformations for 
each peptide were then obtained by first performing k-means 
clustering with CPPTRAJ (89) based on the backbone alpha car
bons and then randomly selecting a member of each cluster. 
Each conformation was simulated for 1 ns equilibrated at 300 K 
before calculating the MM/GBSA adsorption free energy with 
Amber (90) to identify the most stable conformations. The eight 
conformations with the lowest adsorption free energy were simu
lated an additional 4 ns before repeating the adsorption free en
ergy calculation. The lowest adsorption free energy was selected 
as representative of the peptide’s binding affinity.

Technical details of MD simulations are the following. 
Simulations used TIP3P water (91) and the ff14SB force field (92) 
for peptides. Plastics were modeled using GAFF (93) parameters 
and previously calculated partial charges (49). Atomistic models 
of plastic surfaces were taken from the same work (49). tLEaP 
(94) generated a linear peptide with the desired amino acid se
quence, which was manually translated above the plastic surface 
using VMD (95) so that its long dimension was parallel to the sur
face and the peptide center of mass 4 Å was above the surface. 
tLEaP added TIP3P water 15 Å above the peptide and 10 Å below 
the bottom of the plastic surface, giving simulation box sizes of 
about 50 Å in the direction normal to the plastic surface. The di
mensions of the periodic box parallel to the plastic surface were 
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set to be equal to the dimensions of the plastic surface. The Amber 
coordinate and parameter files were converted to Gromacs format 
using Parmed (94) before running simulations with Gromacs ver
sion 2019.6 (96). Position restraints were applied to nonhydrogens 
in the plastic using a force constant of 5,000 kJ/mol/nm2. All bonds 
to hydrogen were restrained using the LINCS algorithm (97). Prior 
to running a high-temperature 550-K simulation, the system was 
energy-minimized for up to 1,000 steps using steepest descent, 
equilibrated at 300 K in the NVT ensemble for 100 ps, and 
equilibrated in the NPT ensemble system at 1 bar and 300 K for 
200 ps. The system was then equilibrated at 550 K for 200 ps in 
the NVT ensemble before running the 10-ns high-temperature 
simulation. After extracting clusters, the system was cooled to 
300 K in the NVT ensemble for 100 ps before running the 1- and 
4-ns simulations of each cluster. Long-range electrostatic interac
tions were treated using particle mesh Ewald. The simulation time 
step size was 2 fs. The velocity rescaling algorithm (98) controlled 
the system temperature in NVT and NPT. The time constant was 
0.1 ps, and separate thermostats were applied to water and non
water atoms (i.e. the peptide, the plastic, and any counterions). 
The semi-isotropic Berendsen barostat (99) controlled the pres
sure in NPT simulations. The x and y dimensions were allowed 
to change independently from the z dimension, the isothermal 
compressibility was set to 4.5 × 10−4 for all directions, and the 
time constant was set to 5 ps.

Expanding the biophysical properties of PBPs 
with PPO
Proximal policy optimization, a prominent reinforcement learning 
algorithm, can stably and efficiently navigate complex environ
ments. Classic PPO methods employs a clipping function within 
its objective that prevents unstable policy updates, thereby ensur
ing that updated policies remain close to their predecessors. An ex
ample of a learning curve for PPO is shown in Fig. S3. We note that 
QA still plays a key role in PBP discovery: using the QA sequence as 
the starting point for PPO exploration greatly accelerates discovery 
of alternate solutions with good scores (Fig. S4). This process main
tains equilibrium between exploring updated strategies and ex
ploiting known, effective behaviors. PPO’s strategy, including 
actions guided by current policies and evaluated via a reward sys
tem, alongside controlled policy modifications through KL diver
gence, underscores its robustness in complex optimization tasks.

Our PPO neural network comprises an embedding layer and a 
gated recurrent unit (GRU) that processes sequential amino acid 
data (Fig. S5). The embedding layer translates the discrete amino 
acid inputs into a continuous vector space, enhancing the net
work’s ability to discern patterns in peptide sequences. The GRU 
can capture how the individual amino acids interact to give the 
score of the full amino acid sequence. The output layer, which is 
connected to the GRU, employs a softmax function to generate a 
probability distribution over potential actions (e.g. changing an 
amino acid). This setup allows the policy network to probabilistic
ally determine the next amino acid in a sequence, facilitating ex
ploration of the vast peptide sequence space with the aim of 
optimizing the peptide score. Details of the method follow below.

Embedding layer
This layer maps discrete amino acid inputs into a continuous vec
tor space. Mathematically, each amino acid AAi is transformed 
into an embedded vector vi through an embedding function 
E: AAi → vi. This transformation enhances the network’s ability 
to identify intricate patterns in peptide sequences.

GRU layer
The GRU is adept at processing sequential data and capturing 
temporal dependencies. For a given state st (defined below), the 
GRU updates its hidden state ht at each time step t per 
ht = GRU(st, ht−1). This mechanism allows the network to maintain 
a memory of previous amino acids in the sequence, which is cru
cial for predicting subsequent amino acids.

Output layer with softmax activation
Connected to the GRU, the output layer utilizes a softmax func
tion to generate a probability distribution of possible actions (ami
no acid selections):

P(at|st; θ) = softmax(Woutht + bout) (4) 

where Wout and bout are the weights and biases of the output layer, 
respectively. This probabilistic approach enables the policy net
work to determine the next amino acid in the sequence, thus sys
tematically exploring the peptide sequence space.

The definition of states, actions, and rewards is intricately tied 
to the task of optimizing peptide sequences. The state is the cur
rent sequence of amino acids, the action is a change in the amino 
acid at a specific position in the peptide, and the reward is the 
change in the score after modifying the amino acid sequence. 
PPO aims to learn a policy that goes toward lower scores, which 
corresponds to peptides with higher predicted affinity to the plas
tic. We define these components as follows:

States (S): The state st is the current amino acid sequence:

st = {AA1, . . . , AAn} (5) 

where AAi denotes the amino acid at position i in the peptide chain 
and n is the length of the peptide sequence.

Actions (A): An action is the selection and insertion of an amino 
acid at a specific position within the peptide sequence.

at:st → st+1 (6) 

where st+1 is the updated state after the action is applied.
Rewards (R): The reward R(st, at) is defined to be the change in 

the score for the peptide sequence from before to after the action at:

R(st, at) = QUBO(st+1) − QUBO(st) (7) 

This reward encourages the policy to sample peptide sequences 
with high predicted affinity.
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