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In the desert

I saw a creature, naked, bestial,
Who, squatting upon the ground,
Held his heart in his hands,

And ate of it.

I said, “Is it good, friend?”

“It is bitter—ybitter,” he answered;

“But I like it
“Because it is bitter,
“And because it is my heart.”

In the Desert, Stephen Crane

And in twenty years they all came back,
In twenty years or more,
And every one said, ‘How tall they’ve grown!’
For theyve been to the Lakes, and the Torrible Zone,
And the hills of the Chankly Bore;
And they drank their health, and gave them a feast
Of dumplings made of beautiful yeast;
And everyone said, ‘If we only live,
We too will go to sea in a Sieve,—
To the hills of the Chankly Bore!l’
Far and few, far and few,
Are the lands where the Jumblies live;
Their heads are green, and their hands are blue,
And they went to sea in a Sieve.

The Jumblies, Edward Lear
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ABSTRACT

We begin developing a theory of morphisms of moduli spaces of pseudoholomor-
phic curves and discs with Lagrangian boundary conditions as Kuranishi spaces, using
a modification of the procedure of Fukaya-Oh-Ohta-Ono [15]. As an example, we con-
sider the total space of the line bundles &(—n) and & on P! as toric Kéhler manifolds,
and we construct isomorphic Kuranishi structures on the moduli space of holomor-
phic discs in &(—n) on P! with boundary on a moment map fiber Lagrangian L and
on a moduli space of holomorphic discs subject to appropriate tangency conditions
in &. We then deform this latter Kuranishi space and use this deformation to define
a Lagrangian potential for L in &(—n), and hence a superpotential for &(—n). With
some conjectural assumptions regarding scattering diagrams in P! x IP, this superpo-
tential can then be calculated tropically analogously to a bulk-deformed potential of

a Lagrangian in P! x P!,

vi
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Chapter 1

Introduction

1.1 Background and motivation

Moduli spaces of stable pseudoholomorphic curves and of stable pseudoholomorphic
discs with Lagrangian boundary conditions are central objects of study in symplectic
geometry, and have been since pioneering work of Gromov in 1985 [26]. They are
crucial to Floer theory and lie at the heart of much of the interplay between theoretical
physics and mathematics in the last forty years, including string theory, the study
of instantons, and mirror symmetry. However, these moduli spaces are in general
extremely difficult to work with, as they are not in general smooth and may not be
of the expected dimension, due to disc and sphere bubbling phenomena.

The original development of Floer theory was largely guided by the following
conjecture of Arnold [2] in 1978:

Conjecture 1.1.1 (Arnold Conjecture). The number of periodic trajectories of period

1 of a Hamiltonian vector field on a symplectic manifold (X, w) is greater than or equal

to Y hi(X;Z/2).

See e.g. [3], [1]. Andreas Floer [12], for whom Floer theory is named, proved
the theorem under the assumption that X is monotone, i.e. that the first Chern
class ¢;(X) is a positive multiple of [w]. Floer’s proof involved an analogue of Morse
theory using an action functional whose gradient flow trajectories are related to pseu-
doholomorphic curves. Similar results were obtained in the cases where X = 72" by

Conley-Zehnder [10], where X is a Riemann surface by Floer [13] and by Sikorav [47],



where X is semi-positive by Hofer-Salamon [31] and by Ono [43], and then for any
compact X by Fukaya-Ono [24].

The primary purpose of the original monotonicity assumption of Floer and later
geometric assumptions was to control sphere bubbling, the phenomenon wherein the
compactification of the moduli space of Floer trajectories includes limiting trajecto-
ries consisting of multiple components, including at least one spherical component.
Fukaya-Ono where able to eliminate these assumptions by understanding the moduli
space of pseudoholomorphic curves in X in greater detail, as will be discussed below.

One of the primary motivators for the specific work of this dissertation is mir-
ror symmetry. Originating in the 1980s within supersymmetric string theory, mirror
symmetry captured the attention of the mathematical community in 1991 after physi-
cists Candelas, de la Ossa, Greene, and Parkes [7] used the theory to make dramatic
predictions of the number of rational curves of a given degree contained in a quintic
threefold. Their result was eventually proven mathematically through the work of
Givental [25] and Lian-Liu-Yau [38].

Mathematically, mirror symmetry for a Calabi-Yau variety amounts to finding
another Calabi-Yau variety, called the mirror, whose complex structure corresponds to
the Kahler structure of the original variety, and vice versa. One approach to realizing
and understanding this symmetry is the Strominger-Yau-Zaslow (SYZ) approach [48]
from 1996, which posits that Calabi-Yau varieties should be equipped with special
Lagrangian torus fibrations, and that the mirror Calabi-Yau is then obtained by
taking the dual torus fibration, at least near the large complex structure limit. This
idea was modified by Kontsevich-Soibelman [36] in 2006 to suggest that, approaching
the large complex structure limit, a Calabi-Yau collapses to an integral affine manifold
with singularities (intuitively, the base of an SYZ fibration), and the information

necessary to construct the mirror Calabi-Yau from this integral affine manifold is



contained in a scattering diagram within the manifold that encodes information about
holomorphic discs in the original collapsing family of Calabi-Yau manifolds.

Moving beyond Calabi-Yau manifolds, the mirror of a Fano variety is generally
understood to be a Landau-Ginzburg model, which is a holomorphic function W :
M — C for some mirror manifold M. For example, the Landau-Ginzburg mirror of P?
is the superpotential W : (C*)? — C with W (z,y) = x+y—|—%, where ¢ is a parameter
encoding information about the symplectic form on P2. The superpotential for an
arbitrary toric Fano manifold has been calculated by Cho-Oh [9]. More generally, it
has been proposed by Auroux [4] that the mirror of a pair (X, D) of a compact Kéhler
manifold X and a choice of anticanonical cycle will also be a Landau-Ginzburg model
that is constructed by taking an SYZ fibration on the non-compact Calabi-Yau X\ D.
In the case of general toric manifolds, a version of this conjecture has been proven
by Fukaya-Oh-Ohta-Ono [18], in which they define a superpotential and show that,
if it is Morse, the Jacobian ring of the superpotential is isomorphic to the quantum
cohomology ring of the toric manifold. In my paper with Man-Wai Mandy Cheung,
Hansol Hong, and Yu-Shen Lin [6], we give a method for calculating superpotentials
for semi-Fano compactifications of log Calabi-Yau surfaces and confirm the Jacobian
ring-quantum cohomology isomorphism for the degree five del Pezzo surface.

The chief difficulty in all of these situations, and the primary reason for all as-
sumptions of monotonicity and positivity, is the irregularity of the relevant moduli
spaces of pseudoholomorphic curves and discs. In symplectic geometry, several ap-
proaches have been developed for understanding and using these moduli spaces, with
many positive results. Many, many people have contributed to the field, and the
following account is far from exhaustive. These techniques include perturbing almost
complex structures, using the polyfold theory of Hofer-Wysocki-Zehnder, and giving

the moduli space a Kuranishi structure and using abstract perturbed multisections



to define virtual fundamental chains. Perturbation of the almost complex structure
has been in use since the field’s inception, see e.g. McDuff-Salamon [41], while the
polyfold approach was developed in the 2000s. The last approach was pioneered by
Fukaya-Ono and Fukaya-Oh-Ohta-Ono (FOOO) in the late 1990s and the 2000s, see
[24], [15], and has been extremely fruitful, being the basis for Fukaya-Ono’s proof of
the Arnold Conjecture and serving as the technical bedrock for many mirror symme-
try results. This FOOO approach is extremely rich, and there is much to be gained
from further expanding and developing it.

In the last decade, there have also been other versions of the Kuranishi machinery
and virtual chain technique, including the Kuranishi atlases of McDuff-Wehrheim [40],
the implicit atlases of Pardon [44], the axiomatic approach to virtual fundamental
chains of Abouzaid [1], and the categorical work of Joyce [34]. Again, this list is far
from exhaustive.

However, there are import aspects of the theory that need to be developed, and
the central difficulties in working with and understanding these moduli spaces remain
unresolved in general. In this thesis, we adapt the machinery of FOOO to begin to
address two of the most major open issues: developing natural morphisms between
moduli spaces that respect all of their relevant structures, and understanding regular-
izations of the moduli spaces concretely without highly restrictive assumptions on the
geometry of the ambient spaces. To demonstrate the utility of these developments,
we use them to define and explicitly calculate superpotentials for a family of highly
non-Fano Kahler surfaces.

Viewing the total space of the line bundle &(—n) over P! as an open subset of
the corresponding Hirzebruch surface F,,, we define potentials for moment map fiber
Lagrangians in &(—n) in a way that allows them to be calculated tropically, allow-

ing for direct construction of Landau-Ginzburg mirrors. These potential functions



essentially involve calculating integrals over regularizations of the moduli spaces of
holomorphic discs with boundary on a given Lagrangian, which in general depend on
the choice of regularization.

The importance of this particular example is that it is among the simplest where
the relevant moduli spaces of discs have excess dimension, and hence where the full
power of the various regularization techniques is necessary. This is the root of a sub-
stantial portion of the difficulties in Floer theory and symplectic topology generally.
As in the case of my past work, restrictive geometric conditions have previously been
necessary to get satisfactory results, allowing people to avoid most moduli spaces
with excess dimension altogether. For instance, the potential functions of moment
fiber Lagrangians in smooth compact toric Fano and semi-Fano surfaces have been
completely classified (FOOO [16], [18], [19], [20], and Chan-Lau [8], respectively) but
there has been little success with other compact toric surfaces. It should be noted
that there are only finitely many such toric surfaces satisfying the Fano or semi-Fano
conditions, while there are infinitely many smooth compact toric surfaces in general.
The only full result for any other compact toric surface is that of Auroux [5] on the
Hirzebruch surface F3 compactifying the bundle &(—3) over P!, and the techniques
used there do not extend to more general settings. Outside the surface case, FOOO
were able to define potential functions for moment fiber Lagrangians in general com-
pact toric manifolds, but the potential functions cannot be calculated without the
Fano/semi-Fano condition.

The overarching procedure we use to define and calculate the desired potential
functions is structured as follows. We need to understand one moduli space of pseu-
doholomorphic discs, so we adapt the Kuranishi structure machinery of FOOO [15],
[17] to construct an isomorphism of Kuranishi spaces between the moduli space of

interest and a moduli space of discs in the simpler manifold & = P! x C. We then



realize this second moduli space as the central fiber in a deformation family of Ku-
ranishi spaces, with the general fibers being regular, in the sense that the d map is
transversal to 0. The general fibers will be bulk-deformed moduli spaces, which we
understand as being deformations of the original moduli space and which we use to
define the desired potential. Finally, we give a conjectural description of a tropical

method, adapting work of Hong-Lin-Zhao [32], for calculating this potential for all n.

Theorem 1.1.2. The Lagrangian potential function for a moment map fiber La-
grangian L in the non-compact toric surface O(—n) can be defined using bulk-

deformed moduli spaces of holomorphic discs in 0 = P! x C.

Conjecture 1.1.3. This potential can be calculated by counting broken lines in a

tropical scattering diagram extending the diagrams of HLZ [32].

For example, the following are the expected superpotentials for 0(—1), 0(-2),

0 (—3), and 0(—4), with Novikov variable set equal to 1:
_ Y

We—y=y+z+ 2’

%

We(—2) :y+az+y+;,

vty
Worsy =y+o+2y"+—+ =,

6
W (1) :y+x+3y3+33; +y—+%
The first three of these have been calculated previously, as described above, while
Wﬁ(_4) is new.
The isomorphism construction and deformation family of Kuranishi spaces ap-

proach to defining an A..-structure are novel and represent significant advances in

our understanding of morphisms of moduli spaces and their perturbations.



1.2 Lagrangian Floer theory preliminaries

We give a brief review of the Lagrangian Floer theory we will use, primarily following
Fukaya-Oh-Ohta-Ono [15], [23] and Fukaya [14].

Let X be a 2n-dimensional symplectic manifold with tame almost complex struc-
ture J and a compact, relatively spin Lagrangian submanifold L. We do not assume
that X is compact, but we will assume that all moduli spaces of discs and curves
we consider are compact. Given a class € Ho(X, L; Z), we let My10(X, L, 3) be
the moduli space of stable, nodal, pseudo holomorphic discs in class § with k£ + 1
boundary marked points and ¢ interior marked points. The domain of every element
of Myi14(X, L, B) is a connected, nodal, genus 0, bordered Riemann surface with a
single boundary component. These moduli spaces have natural stratifications based
on the combinatorial type of the source (see 2.1.2). The marked points give the

following evaluation maps

(evi,...,evi,evi, ... evy) s Myy1o(X, L; B) — LF x X*

evo : Myy1(X, L; ) — L.

Note that, if X is compact, then so is My1¢(X, L; 5). Hence, this is usually referred
to as the compactified moduli space. Again, we will be assuming that M1 (X, L, 8)
is compact, even if X is not.

Crucially, these moduli spaces are not in general an orbifold with boundary and
corners. In light of this, we will put a smooth Kuranishi structure on My1,(X, L, )
with respect to which these evaluation maps will be well behaved. In particular,
the maps will be smooth in a sense that allows us to make sense of pulling back
forms by (evy,...,evy,evi,...,ev)), and the map evy will be weakly submersive

in a sense that allows us to push forward forms by evy (intuitively, by integrating

along fibers of evy). The virtual dimension of My, (X, L; 5) as a Kuranishi space



is MI(B)+n—3+k+1+2¢ where MI(/3) is the Maslov index of 5 and n is half of
the (real) dimension of X i.e. the dimension of L. In the case of X being a complex
surface, this virtual dimension is MI(8) + k + 2¢.

We use the following Novikov ring Ay over R, along with its maximal ideal A,

and fraction field A:

AO = {Z CLZ'T)\i a; S R; )\7, c R>07 hm )\Z - OO} ) (121>
— =00
Ay = {Z a; T | a; € R, \; € Ry, lim \; = OO} ) (1.2.2)
— 1—00
A= {Z CLZ'T)\i a; € R, )\,L € R, hm )\’L = OO} . (123>
— i—00

We can then define an A.-algebra structure on Q*(L; Ag), known as the de Rham

model, using the following diagram

(evi,...,evg)

M]H-l(Xu L76>

L

That is, we define my, 5 : Q*(L; Ag)®* — Q*(L; Ag) by
mk’g(hl, ce 7hk) = (eV(])! (evihl VARRA eVth) .
We then define

mg ‘= Z mk,BT‘“(B).
BEH2(X,L;Z)

For the definition of the term A.-algebra structure, see for instance Definition
21.21 of FOOO [23]. It can be thought of as an algebraic codification of the compati-

bility conditions that arise between these operations my, from studying the boundaries



of the moduli spaces My1(X, L, ). We draw direct attention to the following A,

relation:
mg(mo(l),x) + (—1)deg“’+1m2(g§,m0(1)) -+ ml(ml(x)) = 0.

If mg = 0, then m? = 0, and we can define the Floer homology of L to be the homology
of Q*(L; Ag) with respect to m;.
Given b € Q°¥(L, A,), we can also consider the deformed A-algebra structure

m? given by
b — E { ®4 ®¢ ®L)— ¢
mk(xl,...,xk) = mk+z@.(b O,ZL‘l,b 1,...,b k 1,xk,b k)

We say that b is a bounding cochain if m} = 0, in which case m% is a boundary
operator. If there exists a bounding cochain b, we say that L is unobstructed.
Rather than working with the de Rham model, we will work with the associated
canonical model, see Fukaya [14] for details. We fix a Riemannian metric on L and
represent H*(L;R) as the subspace of harmonic forms in Q*(L;R). There is an
associated A.-structure on H*(L; Ag), whose operations we denote by m{*", which is
quasi-isomorphic to the de Rham model. The canonical model has the advantage of

being unital, in the sense that the Poincaré dual PDI[L] of L satisfies the following

relations:

Myy1(21,...,PD[L],...,z) =0for k>2or k=0,

my(PDIL], z) = (—1)%%"my(x, mo(1)) = .
We then define a weak bounding cochain to be an element b € H°%(L, A, ) such that

md(1) = W(b)PDI[L]
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for some constant W (b) € A;. We call the set of all such b the weak Maurer-Cartan
space, which we write ./\//I\C+(L). If /\//l\C+(L) is non-empty, then we say L is weakly
unobstructed, and we again have that m} is a boundary operator and can be used to
define a Floer homology.

Definition 1.2.1. We call the function
W MC.(L) = A,
the Lagrangian potential function.

One is often interested in the moduli space of Maurer-Cartan solutions MC (L)
which is obtained from /\//l\C+(L) by modding out by gauge equivalence. The potential
W factors through this equivalence giving a map /\//l\C+(L) — A, we will also call W.

The final general Floer theoretic topic we will consider before getting into more
specific geometric settings is pseudo-isotopy of A..-algebras, introduced in Fukaya
[14]. One can also consult Tu [49]. We will avoid describing it in algebraic generality,
focusing instead on giving a sketch of the geometric manifestation we will be using.
Let Jy and J; be tame almost complex structures on X connected by a path J; of

tame almost complex structures. For 5 € Hy(X, L), we consider the moduli space
M1 (B;T) = |_| {t} x My (X, L, B; J)
te(0,1]

This moduli space can be given an appropriate Kuranishi structure, though we shall

not describe it in detail. See Fukaya [14]. We have the following evaluation maps,

ev = (evh s 7€Vk) : Mk+1(67\7) — Lkv
evo : Mpp1(B;J) — L,
evy t My (8 ) — [0, 1],

and we will assume evg x ev; : My1(8;J) — L x [0,1] is weakly submersive. On
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the level of the de Rham model, we take hq,..., hy € Q*(L, Ag) and define mfcﬁ and

c};ﬁ by
mzﬁ(hl, R hk) + dt A CZ,B(hlv R ,hk) = (GVO X th)!<eVTh1 VANRRIIVAY ethk).

Here the superscript t indicates that m',;’ 5 and c',; 5 depend on t. We have an associated

Aso-homomorphism

a= 3 /cgﬁwﬂ)
BEH>(X, L)y,

between the two A,-structures on Q*(L; Ay) coming from the almost complex struc-
tures Jy and J;. Using the natural inclusion and projection H*(L) < Q*(L) - H*(L)
coming from the Hodge-Kodaira decomposition, this gives an A,-homomorphism ¢;*"
on the canonical model. This then induces a map between the two Maurer-Cartan

spaces

F MC-i—,Jo(L) - MC+,J1 (L)

HOEDRGE

associated with the two almost complex structures. This map F' is independent of
the choice of path J; of almost complex structures, a fact we will refer to as Fukaya’s
trick. Furthermore, letting W, and W; be the potential functions associated with the

two Maurer-Cartan spaces, we have the following equation:
W1 oF = Wo.

This map F' will manifest as a wall-crossing map in our geometric situation.
We finish this section with a loose discussion of bulk-deformed superpotentials for

toric Fano surfaces, as developed by Hong-Lin-Zhao [32]. This will be a useful picture
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to have in mind, since it serves as the inspiration for the deformation of Kuranishi
spaces approach to defining superpotentials. However, the underlying technicalities
relating to moduli spaces and A.-structures will be rather different in our setting
than in the setting of HLZ. We give some conjectural description of these differences
in 3.4.

Let Xy, be a toric Fano surface with fan 3, and let L be a moment fiber Lagrangian.
We let qi,...,¢, € (C*)? be chosen generically (after fixing L), let ¢ < n, take an

injection f:{1,...,¢} — {1,...,n}, and consider the fiber product

Mip1,6(Xs, L, B) oo xi{ (7, - @r0) ———{(@r), - - ar0) }

| |

Mk-i—l,E(XE)L?B) Xé

6V+

We let My.1.0(Xs, L, 5; q) be the disjoint union of these fiber products over all choices
of the function f. The virtual dimension of these moduli spaces is k + MI(3) — 2¢,
inspiring the definition of the term generalized Maslov index defind as GM I (u) =
MI(B) — 2¢, where u is a holomorphic disc in this moduli space. We can use these
moduli spaces to define a bulk-deformed A,-structure on H*(L;Ag). As shown in
HLZ [32] by a dimension argument, we have that H'(L,A,) = MC(L) = Wi([/),

so our bulk-deformed potential W9 can be written as

It should be noted that in HLZ they use the coefficient ring Clty, ..., t,]/(t3,...,t2),
with each point insertion ¢; associated with a nilsquared element ¢;. This kills contri-
butions from discs going through a single point multiple times, which greatly simplifies
a number of arguments and is the reason why they refer to their potential as the “nth

order” bulk-deformed potential. For our present discussion, we will reap the benefits
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of this choice of nilpotent coefficients without grappling with the complications they
introduce.

We now turn our attention to the special Lagrangian torus fibration given by the
moment map 4 : Xy, — By, C R? on the open (C*)? orbit. As this is a trivial fibration,
we can identify Hi(L;Z) for all fibers L. We let e, es be a basis of Hi(L;Z) and
et eb be the corresponding dual basis of H'(L;Z). When writing out W% explicitly,
we will make use of “exponential coordinates” on H'(L;Z), that is the functions
r=¢e: H(L;Z)— Candy=e%: H(L;Z) — C. For example, with appropriate
choices of e1, e5 and setting the Novikov variable T" to 1, the potential for any moment
fiber Lagrangian in P? without bulk insertions is

1
W]P’sz_‘_y—i__a
Ty

which is the superpotential found by Hori-Vafa [33] and Cho-Oh [9].

If we fix these coordinates and include fixed bulk insertions, we find that the
potential is no longer independent of the choice of fiber L. Instead, there are real
codimension 1 regions in By, which we refer to as walls, separating By into open
regions on which W4 is independent (up to Novikov scaling) of the choice of fiber L.
We refer to the phenomenon of these potentials changing as we cross the codimension
1 locus in By as “wall crossing,” and we refer to the walls together with the wall-
crossing transformations as a “scattering diagram.”

In more detail, the fibers lying inside the walls are precisely those that bound
generalized Maslov index 0 discs, which lie in some moduli space Mg (X, L, 5;q) of
virtual dimension —1. We study the effect of crossing this wall using a corresponding
pseudo-isotopy. Intuitively, given two special Lagrangian fibers Ly, L1 on “opposite

sides” of a wall,'! we take an isotopy ¢ : [0,1] x Xy with ¢1(Lg) = L; and consider

! This intuitive notion of “opposite sides” is not a-priori well-defined, but we will find that these
walls are in fact sufficiently well-behaved for this to make sense.
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the pseudo-isotopy arising from the moduli spaces

|_| {t} X Miy1,0(Xs, Lo, 8595 ¢ ),

te(0,1]

where J is the standard complex structure on Xy. This induces a wall crossing map
Fy: H' (Lo; Ay) — H'(Lo; Ay).

These moduli spaces are isomorphic (even after being given appropriate Kuranishi

structures) to the spaces

| ] {8} % Misr (X5, 64(Lo), Brq; J),

t€[0,1]

where the complex structure is fixed but the Lagrangian is changing. However, if we
want to get an A,-homomorphism without varying the symplectic structure w, we
must use the former moduli spaces with fixed Lagrangian and varying almost complex
structure.

The map F}, is independent of the choice of isotopy ¢, up to homotopy avoiding
the bulk insertion points, by Fukaya’s trick. After adjusting for changes in symplectic

area, F, allows us to find the bulk-deformed potential at L; from the potential at L.

1.3 Motivating example: Log Calabi-Yau surfaces and mir-

ror symmetry

We now discuss in some detail my paper with Man-Wai Mandy Cheung, Hansol Hong,
and Yu-Shen Lin [6] as it pertains to the present topic. The geometric setting is that of
a Looijenga pair (Y, D), a smooth projective rational surface Y with an anticanonical
cycle D that is a reduced rational curve with at least one singular point. Letting

)y be the meromorphic volume form on Y with simple poles on D, we see that the
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restriction Qx of Qy to X =Y \ D is a non-vanishing holomorphic volume form on
X. In this sense, X is a log Calabi-Yau surface.

Inspired by the SYZ conjecture, Gross-Hacking-Keel [28] constructed a purely
algebraic mirror family for (Y, D). Their procedure involves constructing an integral
affine manifold B with singularity analogous to the base of an SYZ fibration. They

then study the canonical scattering diagram D“HK

in B encoding relative Gromov-
Witten invariants, which correspond to the quantum corrections from holomorphic
discs of Maslov index 0 in X. The scattering diagram essentially describes how to
glue together local charts to form the mirror family for X.

In [6], we carry out the symplectic counterpart of this procedure, constructing a
special Lagrangian fibration on X and showing that an associated Lagrangian Floer

scattering diagram coincides with a scattering diagram ®%"° of Gross-

Pandharipande-Siebert [29], which then recovers the scattering diagram of GHK [28].

Theorem 1.3.1. [6] Given a log Calabi- Yau surface, the associated Lagrangian Floer

@GPS

scattering diagram D recovers the scattering diagram and the canonical scat-

tering diagram DK,

In more detail, we follow the Strominger-Yau-Zaslow (SYZ) [48] approach to mir-
ror symmetry and its refinement by Kontsevich-Soibelman [36], and we construct a
family of special Lagrangian fibrations on X with respect to a family of symplectic
forms w,, where € indicates the symplectic area of some particular exceptional divi-
sors. The bases of these fibrations are integral affine manifolds B.. The scattering
diagram DL then consists of a collection of decorated affine lines and rays in B, en-
coding information about which fibers bound holomorphic discs, or, more precisely,
encoding the open Gromov-Witten invariants of the fibers. We then show that this
coincides with the tropical scattering diagram of Gross-Pandharipande-Siebert on a
large open subset of B, that embeds into R? as an integral affine manifold. This

can then be used to recover the canonical scattering diagram of Gross-Hacking Keel,
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which is key for constructing the mirror of the log Calabi-Yau surface. Our result
thus provides a direct link between the SYZ framework for mirror symmetry and the
tropical work of Gross-Pandharipande-Siebert [29] and Gross-Hacking-Keel [28] and
their mirror construction.

This result has several applications:

1. We apply the result to get a version of mirror symmetry for rank 2 cluster

varieties.

2. The result shows that, in this geometric context, the symplectic open Gromov-
Witten invariants agree with the corresponding algebro-geometric log Gromov-

Witten invariants, which count Al curves in a log Calabi-Yau surface.

3. The result provides a method for explicitly calculating Lagrangian potential
functions for certain compactifications of log Calabi-Yau surfaces, which can
then be used to construct the Landau-Ginzburg mirrors of those compactifi-
cations. Furthermore, we use this procedure to verify a conjecture of Sheri-
dan [46], previously confirmed in different ways by Pascaleff-Tonkonog [45] and
Vanugopalan-Woodward [50], that a cubic surface contains a Lagrangian such
that there are 21 holomorphic discs with boundary on the Lagrangian. This is

an open analogue of the classical result that a cubic surface contains 27 lines.

Thinking more broadly, the tropicalization procedure we employ here provides an
important tool for understanding moduli spaces with excess dimension, specifically
those with virtual dimension —1 and actual dimension 0 that arise when studying
wall-crossing. We use a Floer theoretic technique known now as “Fukaya’s Trick,”
introduced in [14], which resolves the issue of excess dimension by essentially re-
placing the standard Kuranishi structure on each moduli space with another of a

higher virtual dimension, matching the actual dimension. We then see that the Floer
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theoretic scattering matches the tropical scattering, which can then be understood
explicitly. Unfortunately, Fukaya’s trick cannot resolve the outstanding issues with
moduli spaces of excess dimension generally, and when we turn to calculating po-
tential functions of the compactifications of log Calabi-Yau surfaces, we have had to
restrict our attention to Fano (and some semi-Fano) compactifications. Running into
this limitation drew my attention to the gaps in the present theory of moduli spaces

of discs, prompting me to pursue the following work in preparation.

1.4 The line bundles &(—n) and & on P!

Fix n > 0. We conclude the introduction by considering the total spaces of the
line bundles &(—n) and & over P!. In particular, we will establish coordinates and
notation to be used throughout.

We obtain the total space of &(—n) by gluing two charts Uy = C x C and U; =
C x C together by identifying (xo,y0)o € Uy with (zy', 2ly0)1 € Uy (for xp € C*).
We similarly obtain the total space of & by gluing Uy, U; by identifying (xq, yo)o with
(x5, 10)1. We let D_,, (respectively Dy) be the self-intersection —n (resp. 0) divisor
in 0(—n) (resp. O) given by yo = 0 and y; = 0.

With these shared charts for &(—n) and &, we have a natural map ¢ : &(—n) —
0.

@0(1170,3/0)0 = (w0, Y0)o

ﬂl(il?l,yl)l = (@1, 27y1)1.

We have an associated map from functions into &(—n) to functions into &. Let X
be a nodal disc, i.e. a genus zero bordered nodal Riemann surface with connected

boundary, let w : ¥ — &(—n) be a continuous function, and let 3; := w™'(U;). In



18

coordinates, we write

wo(2) = (uo(2),v0(2))o

wi(2) = (u1(2), v1(2)

where w; is w|y,. Here z € X, but we are not making any choice of coordinates on X.

We get a new continuous function ¢ (w) : 3 — & defined by

Y(w)o(z) = (uo(2),v0(2))o
Y(w)i(z) = (ur(2), ur(2)"v1(2))1-

We equip &(—n) and & with the usual toric structures. They are toric open
subsets of the Hirzebruch surfaces of degree n and 0, and we equip them with the
restrictions of the associated symplectic forms. Let L be a standard moment map
fiber Lagrangian in &(—n), given in Uy coordinates by |zo| = 14, # 0, |yo| = 7y, # 0
constant. We observe that, given w : (X,0%) — (€(—n), L) mapping the boundary
of ¥ into L, the map ¢ (w) maps the boundary of ¥ into a corresponding Lagrangian
P(L) in O, given in Uy coordinates by |wo| = 74, [o| = 75,7y, Since our map of
maps v is induced directly induced by the underlying continuous (holomorphic) map
1, we have that if w is in homology class 8 € Hy(0(—n), L), then (w) is in class
Y (8) = B € Ho(O,¢(L)). Furthermore, if w is holomorphic, then so is 9 (w).

Thus, our map 1 restricts to a map

Y My1,(O(—n), L, B) — Mk+1(@£([/)7ﬂ*(5))

This v is stratawise smooth and injective, but far from surjective. Let Fy =
{(z1,91)1 | 1 = 0} be the fiber of & over (0,0); in U;. The image of ¢ consists

precisely of those maps w' € My.1(0,9(L), (8)) whose image intersects Fy only
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at the point (0,0); and whose order of intersection with Dy is n times its order of
intersection with the fiber F;. Here a transversal intersection has order 1, the disc

given by (z,2?); in @ intersects Fy with order 1 and intersects Dy with order 2, and

so on. We let My.41(0, (L), (8); (Fo, Do,n)) denote the moduli space of discs in

My11(0(—n), ¥ (L), (B)) satisfying this condition:
Definition 1.4.1. We let

M1 (0, 0(L), ¥ (8); (Fo, Do, n))

be the subspace of the moduli space My11(0,vy(L),% (B)) consisting of all stable

—k

marked discs u @ (3,05) — (0,¢(L)) with k + 1 marked points, in class ¢ 8 €
Hy(0,1(L)), such that for each point zy € u='(Fp), the order of intersection of u

with Dy at zy is n times the order of intersection of u with Fy at zy.

Note that in particular every disc in Myy1(0, (L), ¢ (B); (Fo, Do,n)) passes

through the point (0,0); = Fy N Dy.

We thus have the map

¢ : MkJrl(ﬁ(_n)’L?ﬁ) — MkJrl(ﬁ?g(L)af*(ﬁ)v (F(J?DO?n))'

We can define an inverse map as follows. For any (¥, w) € My1(0,¢(L), ¢ (B);n),
we have that w=!(U;) \ w™(Up) consists of isolated points and trees of constant
spheres. Combining this observation with the condition defining

M1 (O, 9(L), ¥ (8); (Fo, Do, n)), we see that the partial inverse ¢~ (w,-1(1)) given

below extends uniquely to a full holomorphic map ! (w):

U (w)o(2) = (uo(2), vo(2))o
U Hw)(2) = (u(2), ur(2) " v1(2))1

We thus have the following lemma:

Lemma 1.4.2. The map v is a homeomorphism between My 1(0(—n), L, ) and
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M1 (O, 0(L), ¥ (8); (Fo, Do, n)).

In Section 3.1 we will build Kuranishi structures on both of these spaces so that
an extension of ¢ gives an isomorphism of Kuranishi spaces between them.
We note that &(—n) and € are not compact, so the following lemma establishing

compactness of all relevant moduli spaces is crucial.

Lemma 1.4.3. For all n, all toric moment fiber Lagrangians L C €(—n), and all
effective disc classes € Ho(O(—n), L), the moduli space My11(0(—n), L, B) is com-
pact.

Proof. We consider the inclusion ¢ : &(—n) — F,, of the line bundle &(—n) into
the Hirzebruch surface obtained compactifying the fibers, which induces a continuous
injection
L My (O(=n), L, B) = Miy1(Fn, o(L), 1,5).

To show that this map is a homeomorphism, it suffices to show that the image of
every disc in My 1(F,,, t(L), ) is contained in t(&'(—n)). For disc components, this
follows from the Cho-Oh [9] classification of holomorphic discs with boundary on L.
For n > 1, the only non-constant sphere components have image contained in the
0-section. For n = 0, the only non-constant sphere components have image contained
in a constant section with value at most r,,. Thus, ¢ is a homeomorphism.

Since F,, is compact, the desired result follows.
]

In Section 3.2, we will modify the Kuranishi structures, then use the notion of

deformation of Kuranishi structures to relate the moduli space

Mi41(0,9(L), ¥ _(B); (Fo, Do, m))) to the following new moduli space:

Definition 1.4.4. Consider n distinct points (ay,b1),. .., (ay,b,) € Uy C 0. We
have n corresponding fibers F,, = {(z1,y1)1 € Uy | 1 = a;} of O and n sections
Sy = {([0, 21], ;) | [0, 21] € Do} of O. We assume |a;| < 13 and |b;| < ry, for all
1.
We let
M1 (O, 0(L), ¥ (B); (Fays Sors 1), -+ (Flas Spos 1))
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be the subspace of the moduli space My11(0,¢(L), v (B)) consisting of all stable
marked discs u : (3,0%) — (0,¢(L)) with k + 1 marked points, in class ¢ 8 €
Hy(0,4(L)), such that for each point z; € u='(Fy,), the order of intersection of u

with Sy, at z; equals the order of intersection of w with Iy, at z;.

This moduli space is closely related to, though in general different from, a moduli

space with n (possibly repeated) point insertions at points (ay, by),. .., (an, by).
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Chapter 2

Moduli spaces: Kuranishi structures,

morphisms, deformation families

2.1 Kuranishi structure construction

Unless otherwise specified, throughout this section X is a symplectic manifold with
symplectic form w and fixed w-tame almost complex structure J, and L is a compact,
relatively spin Lagrangian in X. Note that we do not require that X be compact, but
we will require that the moduli spaces of discs and curves we consider be compact.
Our primary examples, the total spaces of line bundles &(—n) on P!, are in fact

non-compact, but the moduli spaces we consider are compact, see Lemma 1.4.3.

2.1.1 Kuranishi structure preliminaries

Let X be a compact metrizable space and let p € X. The following definitions are
generalizations of those in FOOO [15], that essentially amount to forgetting the linear

structure of the obstruction fibers.

Definition 2.1.1. A (smooth) Kuranishi neighborhood of p in X consists of the data
(Vi, E,, T, 5p, 1) such that

1. V, is a finite dimensional smooth manifold with corners'.

2. E, is a finite dimensional smooth manifold diffeomorphic to an open ball in a
finite dimensional Fuclidean space, together with a distinguished point, which
we will call 0 € E,. We call E, the obstruction fiber.

'We use the definition of smooth manifold with corners appearing in Joyce [35].
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I, is a finite group acting smoothly and effectively on V,, and smoothly on E,.
sp is a I'y equivariant smooth map V, — E,, called the Kuranishi map.

Yy is a homeomorphism from 3;1(0)/Fp to a neighborhood of p in X. Here 0 is
the distinguished point of E,,.

In FOOO [15], they strictly speaking refer to U, := V},/T", as the Kuranishi neigh-

borhood, but we will use the term to refer to either V, or the whole quintuple.

For a point = € V,, we let (I',), denote the isotropy subgroup at x, i.e. the

subgroup of I, fixing =.

Definition 2.1.2. Let (V,, E,, L', sp,1,) and (V,, E,, Ty, sq4,1,) be Kuranishi neigh-
borhoods of points p € X and q € 1y(s,"(0)/T,) C X respectively. We say a triple

(Dpgs gzgpq, hyq) s a coordinate change or transition map if

1.

2.

hpq : Ty — I'y is an injective group homomorphism.

Opq © Vg = V) s an hyy equivariant smooth embedding from a Iy invariant open
neighborhood V,, of o, to V,, such that the induced map @pq :Vig/Tq = Vi /T
18 1njective.

(¢pq, (é;,q) is an hy, equivariant smooth embedding of (trivial) fiber bundles Vi, x
E, — V, x E, with ¢,,(0) =0

- Ppg © g = Sp O Py

g =1po00 g " (Sq_l(o) N ‘/an)/rq

The map hy, restricts to an isomorphism on isotropy groups (I'q)z — (I'p) e, (@)

for any x € V.

Note that this transition map is asymmetrical in p and ¢ and is in general only

defined in one direction.

Definition 2.1.3. A Kuranishi structure on X assigns a Kuranishi neighborhood
(Vi Ep, Ty 5p,00p) for each p € X and a coordinate change ((bpq,(ﬁpq,hpq) for each
q € Yp(s,'/T,) such that the following holds
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1. dimV, —dim E, is independent of p. This is called the virtual dimension of the
Kuranishi structure.

2.6 06, =0 .

Lo

We now introduce a preliminary notion of morphism of Kuranishi spaces. It is
likely more restrictive than is naturally necessary, and will be developed further in
future work. This notion is, in some sense, very “hands on,” in contrast with the

more abstract morphisms of Kuranishi spaces of Joyce [34].

Definition 2.1.4. Let X and ) be compact metrizable spaces with Kuranishi struc-
tures given by charts (Vx p, Ex p, Uy py sxp, Vxp) and (Vy g, By 4, Ty g, Sy.q. Uyq) Te-
spectively for each point p € X and q € Y, along with transition maps
(‘bX,p,pU@g?ﬂp,p’:h?ﬁp,p’) and (?by,q,q’vng,q,qﬁhyﬂ,q’) respectively.

A Kuranishi morphism (f,{(fp, (fp)«)}pex) s a continuous function f: X — Y
along with smooth map f, : Vxp = Vy ) and diffeomorphism onto its image (fp) :
Exp — Ey jp) with (f,)«(0) = 0, such that the following diagrams commute:

(fp)s ,
Exp—"> Ey i) Vap—Vy 1)
SX,p] Tsy,ma) ¢x,p,p'] T‘f’y,f(p),f(p’)
Vap == Vosw) Vapy —= Vo rm).000)
P

The morphism f is an isomorphism if f is a homeomorphism, every f, is a dif-

feomorphism, and every (f,). is a diffeomorphism.

We also note here that the specific situation of this dissertation does not require
the detailed treatment of good coordinate systems or the associated construction of

virtual fundamental chains, so we will not discuss them here.

2.1.2 Universal family with coordinate at infinity

For each p = [(X, Z, Z), u] € My11,4(53), we have an associated graph G, with some

extra data, called the combinatorial type of p. A vertex v of G, corresponds to an
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irreducible component ¥, of ¥ (either a disc or a sphere). We decorate v with the
information of which marked points are contained in ¥,, and also with g, = [u|y,]
in either Ho(X, L;7Z) or Hy(X;7Z). An edge e between v; and vy corresponds to a
singular point in the intersection of two components ¥, ,3,,. We also orient the
edges and can assign each a length T, € R.,. If a directed edge e is the ordered pair
(v,v"), we say that e is an “outgoing” edge of v and an “incoming” edge of v'. Since
we are considering only the genus zero case, our graph is always a tree. We choose
one of the disc vertices to be the root of the tree and orient all edges so that they
point toward the root. That is, each non-root vertex will have one outgoing edge,
with all other edges incoming, and following the unique outgoing edge gives a path

to the root vertex.

Definition 2.1.5 (Combinatorial Type, [17] 15.6). A graph G equipped with the data
described above is the combinatorial type of p, and Myy1,0(8;G) is the set of p with

combinatorial type G.

Let G be a combinatorial type, and consider the following process. Shrink an edge
e of G and identify its vertices vy, vs, to get a new vertex v. We put 5, = By, + B,
and the marked points of vy, v, are assigned to v. For combinatorial types G, G’, we
say G > G’ if G’ is obtained from G in this way.

We let CY(G) denote the set of vertices of G, and we let C9(G) and C?(G) be the
set of disc vertices and sphere vertices respectively. Similarly, we let C'(G) denote
the set of edges of G, and we let C}(G) and C}(G) be the set of boundary singular
point edges and interior singular point edges respectively.

We let I', be the group of automorphisms of p € My (3), where the automor-
phism is required to fix the interior marked points. We let I';" be the (larger) group
of automorphisms of p where the automorphisms may permute the interior marked
points instead of fixing them.

Now, consider a disc ¢ = [%, Z, 2] € My 1, of combinatorial type G. We have
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that M1, is an effective orbifold with corners with local model U(x)/T,.

For each v € C9(G), the element ¢ determines a marked disc ¢, € My, 11,4, con-
sisting of a single component. Likewise, for each v € C?(G), the element ¢ determines
a marked sphere 1, € ./\/lzl) , consisting of a single component. Let U(x,)/I";, be a local
orbifold model of the appropriate moduli space at g, such that every disc/sphere in
the local chart consists of a single component.

We now define a universal family with coordinate at infinity, which we usually
refer to just as a coordinate at infinity.

Definition 2.1.6 (Coordinate at infinity, Def 16.2 [17]). Let m : 9,, — V() be a
fiber bundle, whose fibers are two (real) dimensional manifolds with fiberwise complex

structure. This bundle is a universal family with coordinate at infinity (or simply a

coordinate at infinity) if it satisfies the following conditions:
1. M,, has a fiberwise biholomorphic Fj action and T 1S 18 I‘;“ equivariant.

2. For vy € U(x,) the fiber 7= (y) is biholomorphic to X, minus marked points
corresponding to the singular points of 1.

3. As a part of the data we fiz a closed subset K., C M, such that the restriction
of ™ to R, is proper.

4. We consider the product of U (x,) with the union

| ] (0,00) x [0,1] | L | | (—00,0) x [0,1]

e€Cl(G) e€Cl(G)
e is an outgoing edge of v e is an itncoming edge of v

L | ] (0,00) x S | L | | (—00,0) x S*

e€Cl(G) ecCl(G)

e is an outgoing edge of v e is an incoming edge of v

(2.1.1)

As a part of the data we fix a diffeomorphism between M, \ Ky, and 2.1.1 that

commutes with the projection to U(xr,) and is a fiberwise biholomorphic map.
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Moreover, the diffeomorphism sends each end corresponding to a singular point

Ze to the end in 2.1.1 corresponding to the edge e

5. The diffeomorphism in (4) extends to a fiber preserving diffeomorphism 9, =
B(ry) x (X, \ {singular points}). This diffeomorphism sends each of the interior
or boundary marked points of the fiber of vy to the corresponding marked point
of {9} x ,,. Howewver, this diffeomorphism does not preserve fiberwise complex

structure. We fiz this extension of the diffeomorphism as part of the data.

6. The action of an element of F;Z on 2.1.1 is given using the fized neck biholo-
morphism by exchanging the factors associated to the edges e and by rotation of
the S* factors.

7. We assume the coordinate at infinity is invariant under the action of T'} (the
whole group) in the sense described below.
We also fix a family of metrics on the fibers of 7 : 9, — V(r,) that coincide
with the standard flat metric on the neck regions. See Remark 16.13 in FOOO [17].
In order to define invariance of a coordinate at infinity under the action of I'j" (the
whole group, not just the portion for a single component), we need to consider the
following fiber bundle, which is essentially just a combination of the universal family
for each component of r. Take [[,cco(g) B(ry) and pull back the coordinate at infinity
for each component by the projection map. The fiberwise disjoint union of these fiber

bundles over the product of the bases is then our desired bundle:

O M= ][ V@)

veCo(g) veCO(G)

That is, the base of the new bundle is the product HUECO(Q) U(x,) of the bases of the
individual bundles, and the fiber of this new bundle over a point (x,)cco(g) is the
disjoint union of the original fibers over each r,. In particular, each fiber of this new
bundle still has real dimension 2.

This bundle has a I ;; -action for each v. Furthermore, the group Fj acts on the

sum of the second factors in 2.1.1 by exchanging edge factors and rotating S! factors.
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We require that this gives a I'f-action on the restricted bundle

O M N\&) =[] ).

veC9(g) veC0(G)
Each v € I'} is biholomorphic as a map between fibers of this bundle.

Remark 2.1.7. We also have an extension of this action to the entire bundle
QvECO(Q) M., using the diffeomorphism between fibers fixed by the coordinate at in-
finity. That is, given v € T} and v,y € [Toccog) V(rw) with vy = v', we have a
diffeomorphism ~ : Xy — Xy obtained by mapping ¥, diffeomorphically to ¥, apply-
ing v to X, then mapping diffeomorphically to X, .

We now fix a coordinate at infinity for each r, that is invariant under the I'f
action. We use it to model a neighborhood of ¢ in M1 ,.
Let v € U(x;G), let T, € R for each edge e € C(G) be a large number to be

—

chosen later, and let T, = (T.;e € C1(G)) and (T5,0) = (T.,0.;¢ € CL(G)) in

H (TG,O’OO] X H ((Te,OaOO] X Sl)/N )

ecCl(9) ecCl(9)

where the equivalence relation ~ identifies (7', 6) and (77,6") if both coordinates are
equal or if T'= T" = co (essentially, it closes the cylinder at infinity). The T, and
(T;, 5) are gluing parameters, and we are performing a straightforward gluing (not to
be confused with the gluing of maps that appears later) to obtain a new Riemann
surface.

Take a representative X, of py, and let K, = >, N K. We call the union

UUGCO(Q) K,, the core of y. Our coordinate at infinity gives a biholomorphic map
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between the complement (J,ccog) Xy, \ Ky, of the core and

U (0,00) x [0,1] | U U (—00,0) x [0,1]

ecCl(G) ecCl(G)

e an outgoing edge of v e an incoming edge of v

U U (0,00) x S* [ U U (—00,0) x S

e€C(9) eeC(9)

e an outgoing edge of v e an incoming edge of v

We call the coordinates of each summand above (7, t.), (77, t.), (12,t.), (77, t!) respec-
tively (identifying S with R/Z).

For each T, € T, or (T.,0.) € (TC,Q) with T, # oo, we identify portions of each

summand above by equating

=51, =71/ + 5T, =: 7, (2.1.2)

=t —0, = t., (2.1.3)
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getting the union

U x,u| U [-5T.5T)., x[0,1), |U| |J [-5T%.5T)., x S,

veCO(G) ecCl(G) e€C;(9)
Te # © Te #
(2.1.4)
U U (0,00)7 x [0,1],, | U U (—00,0). x [0,1]7,
e€C5(9) e€C3(9)
e an outgoing edge of v e an incoming edge of v
with T, = co with T, =
(2.1.5)
1 1
U U (0,00),, x S | U U (—00,0) x S} |
e€C;(9) e€Ce(9)
e an outgoing edge of v e an incoming edge of v
with T, = oo with Te = oo
(2.1.6)

where the subscripts on the various intervals and copies of S! indicate the coordi-
nate being used. Adding in a finite number of points corresponding to the edges
with infinite length, we obtain a singular stable bordered Riemann surface. We let

—

B(, T,, (T, 0)) be the element of M1, represented by this Riemann surface.

Definition 2.1.8. The above discussion defines a map ®

IT G | x| [T @ooel | x| T (Tuoroo] x S/ ~ | & My

veCO(G) e€Cl(G) e€C(9)

The map ® is continuous, open, and stratawise smooth. Furthermore, ® is Fj

—

equivariant (lemma 16.9 in [17]), and we have ®(y, T°, (T, 6)) = ®(y/, T, (T¢,0"))
if and only if there exists 7 € I, sending (n,T°, (T, 67)) to (v, T, (’_Z?C',Q_”)) (see
Remark 9.5 in Fukaya-Ono [24]). Thus, ® induces a map ®/T, which is an open

homeomorphism onto its image. The map ® depends on the choice of coordinate at
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infinity, but we have good control over how ® changes with a change in coordinate
at infinity (see proposition 16.11, 16.15, corollary 16.16, and lemma 16.18 in [17]),

which is important for establishing smoothness of Kuranishi transitions.

2.1.3 Choice of connection, parallel transport, Sobolev spaces,
and Hilbert manifolds

There are several places in the FOOO construction where a choice of connection on X
is used. It is, for example, used to define the linearized O operator, it is used to give
local coordinates for gluing, and it is used to extend a choice of obstruction vector
space to an obstruction bundle by parallel transport. FOOO make a single choice of
connection (see [22] Section 2), the Levi-Civita connection of a certain metric, and
then use that for all purposes. However, for our case, it will be essential to extend
our obstruction fibers to obstruction bundles in a more general way. We describe this
process and our other choices related to the connection here.

As in FOOO [22], we take a metric ¢ on X that is Hermitian with respect to
the almost complex structure J such that the Lagrangian L is totally geodesic and
satisfies JT,L 1 T,L for all p € L. We then let V be the Levi-Civita connection of
this metric. We use V to define an exponential map Exp : TX — X x X and its

local inverse £/ : U — T'X given by

Exp(z,v) = (z, exp, v),

E(z,y) = (z,exp, ' (y))-

Here U = {(x,y) € X x X | d(z,y) < tx} where d(z,y) is the Riemannian distance
between x and y and ¢y is the injectivity radius of X with our metric. Given a map
u: Y — X and v a section of u*TX, we will write Exp(u,v) : ¥ — X for the map
z — Exp(u(z),v(2)).

For z,y € X with d(z,y) < tx, we have a unique geodesic of length d(z, y) between
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x and y, and we use V to define a parallel transport map Pal? : T, X — T, X along this
geodesic. We define (Pal?)’ to be the complex linear part of Pal’. Given two maps
u,w: Y — X, we use (Pal?)” to get the map (Pal?)®V) : T, ) X®AM — T,y XA

In order to define appropriate notions of parallel transport for maps, we first need
to define the following Hilbert spaces and manifolds. For an introduction to Banach
manifolds, see for instance Lang [37]. For an introduction to viewing spaces of maps
as Banach manifolds see Eliasson [11].

We fix an element ¢ = [, 7, 2" € My, of combinatorial type G and we
fix a coordinate at infinity for r. Here %, is the specific Riemann surface in the
equivalence class ¢ given by the coordinate at infinity. We let v € [, cco ) U(r,) and
let 9 = ®(y,T,,(T.,0)). Our coordinate at infinity and the construction of the ®
map gives specific Riemann surfaces ¥, and g representing y and 2) respectively.

We will need the following smooth exponential weight function 3,, — [0, 00) in

order to define appropriate weighted Sobolev norms

(

=1 on K, ,

= el t5Telif 7, > 1 — 5T,, and e is an outgoing edge of v,
€o6(Te,le) = 4 € [1,10] if 7. < 1—5T,, and e is an outgoing edge of v,

= Ole=5Telif 1, < 5T, — 1, and e is an incoming edge of v,

€ [1,10] if 7. > 5T, — 1, and e is an incoming edge of v.
\

See FOOO [17] (19.15).

We now define our first Hilbert manifold.

Definition 2.1.9. The Hilbert manifold W7, 5((%,,,0%,,); X, L) is the space of
maps wy, : (2y,,0%,,) — (X, L) locally of L2, ., class with the following expression
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finite:
m+1
Z Z / €v75|vkwv|21}0l2% + Z / 6975|d(wv<z)7wv<ze))|2UOZEnu'
k=1 edges e of Veth neck edges e of Ve_th neck

The smooth structure is determined by our connection V.

As in FOOO [17], we choose m large. In particular, we take m large enough that
every function we consider is continuous.
The tangent space to W7, 5((5,,,0%,,); X, L) at a point wu, is the following

Sobolev space.

Definition 2.1.10 (Def 19.6 in [17], Def 3.4 in [22]). The Sobolev space
Wm+1 5((By,, 0%y, ); uyTX, u, T'L)

is the vector space of pairs (V, ), where U = (Ve)ecedges of v With ve € Ty, :)X for
e € CHG) and v, € Ty, (-, L for e € C(G), and where V is a section (3,,,0%,,) —
(wrTX,uXTL) with the following norm finite:

m+1
IR, = > [19VPuols, + 3 o
k= OKU edges e of v

+y 0y / e0s|VE(V (2) = Pl v.) Pvols,,

k=0 edges e of Veth neck

With this norm, W2, 5((3,,0%,,); usTX,u;TL) is a separable Hilbert space.
We also need the following Sobolev space, which will be the codomain of the

linearized 0 equation.

Definition 2.1.11. For u, € W2, 5((5,,,0%,,); X, L), the Sobolev space

L (S, 0y TX @ A™)



34

is the vector space of sections r of uXTX @ A% with the following norm finite:

||"€||L2 R Z/|Vk/‘ﬁ|20012., +Z Z / evs| V¥ E|*vols, .

k= OKv k=0 edges e of Ve_th neck

With this norm, L2, 5(3,,; u;TX @ A%!) is a separable Hilbert space. We have an
associated Hilbert bundle over W7, 5((%,,,0%,,); X, L).

Definition 2.1.12. The Hilbert bundle &, 5((%,,0%,,); X, L) is the bundle over
W2 1 s((8,,0%,,); X, L) consisting of pairs (u,, k) with & € L7, 5(3y,; usTX @A),

m Uu’ Uy

O gives a section of this bundle. We will discuss linearization of 0 in Section
2.1.4. The spaces in Defintions 2.1.9, 2.1.10, 2.1.11, and 2.1.12 will be used to define
Fredholm regularity and to reduce from the infinite dimensional setting to the finite

dimensional setting.

Remark 2.1.13. Given any two v,,v. € B(x,), the coordinate at infinity gives a
diffeomorphism between ¥, and X, in such a way that the Hilbert manifold in
Definition 2.1.9, the Hilbert space in Definition 2.1.10, and the Hilbert bundle in
Definition 2.1.12 are all independent of v, up to diffeomorphism. However, since
the coordinate at infinity does not give a biholomorphism between ¥, and ¥ , the
diffeomorphisms between Hilbert manifolds, spaces, and bundles do not commute with

0, and we need to treat them as distinct.

It will also be convenient to collect the Hilbert bundles &7, 5((%y,,0%,,); X, L) for

different v, into a single object.

Definition 2.1.14. We let W7 | 5(U(x,); X, L) be the union

U W2,05((8,,.05,): X, L).
9o EV(xv)

Following the observation in Remark 2.1.13, we give W | 5(U(x,); X, L) the smooth
structure of B(xy) X W31 5((Xy,, 0%, ); X, L) using our coordinate at infinity.

We then let £}, 5((x,); X, L) denote the Hilbert bundle over W, .| 5(B(x,); X, L)
with fiber over (9, uy) equal to L7, 5(5y,; usTX @ A%1).

‘)v7 ’v
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We have several more spaces to define, which will be used during the gluing
procedure and for establishing smoothness of our Kuranishi structure. We define the
following Sobolev space, which is closely related to the one in Definition 2.1.10 but is
used instead for gluing. Our source for the sections is no longer a single component,
and we assume that the map along which we pull back T'X, T'L is smooth component-

wise. We first need another weight function ez s : £9 — [1, 00) to define the norm.

(

=1 on K, ,
= dITe—5Te] if 1 <71, <57, —1,
er5(Teste) = q = edlre+5Tel if —1>7 >1-5T,
€ [1,10] if |7, —5T.| < 1or|m+5T.| <1,
€ [e¥19/10, ePT<°] if |7| < 1.

\

See FOOO [17] (19.16).

=

Definition 2.1.15 (Def 19.9 in [17)). For Q) = ®(y, Tp, (Ts, 0)), let u : (Sy, I5y) —
(X, L) be a smooth map. The Sobolev space

Wy 115((3y, 08g);u" T X, u*TL)

m

is the vector space of pairs (V,v), where U = (Ve)e with T.=cc With ve € Ty X for
e € CHG) and v, € T, L for e € CXG), and where V is a section (Xg,05y) —
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(w*TX,u*TL) with the following norm ||(V, U)H%?Ml . finite:

m+1

>3 [Pl Y P
veC0(G) k= OK e with T, = 0o
m+1

- Z Z Z / evs|VH(V(2) — Paﬁgz)ve)\%olg@

0 —
veCY(G) k=0 edge e of v with Te = O _th neck (v side)

m—+1

+ Z Z / 6T~’5|Vk(V(z) - Palzgzz)veﬂ%olg@

k=0 edge e of v with Te # O _th meck (v side)

- 2 e

e with Te # 00

Y

where (O, %)e 1 a point in the e-th neck.

This is again a separable Hilbert space with this norm. We also have the following
Sobolev space, which is closely related to that in Definition 2.1.11 and will be used
in gluing.

Definition 2.1.16. For u smooth and ) as above, the Sobolev space
L2, 5(Sg; u'TX @ A™)

is the vector space of sections k of u*TX @ A% with the following norm finite:

W = 3 [

veC(G) k=0p

+ Z Z Z / emglvkd%olgg)

0 —
veCY(G) k=0 edge e of v with Te = O _th meck (v side)

+ Z / €T"75|Vkli|2’ljol2@.

e with Te # Xe-th neck

Finally, we need the following Hilbert manifolds, Sobolev spaces, and Hilbert
bundle. Let K be a compact subset of the core K, such that the interior Int K7 is

non-empty. We use the diffeomorphism K, = K, to define K| .
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Definition 2.1.17. The Hilbert manifold W}, (K, , K NO%y,); X, L) is the space
of maps w : (K , K] No¥, ) — (X,L) of L}, class. The smooth structure is

determined by our connection V.

The tangent space at u € W2 ((K; , K; N0¥); X, L) is the following separable

Hilbert space.

Definition 2.1.18. The Sobolev space W7, (K] , K] N0y, );usTX, u;TL) is the
space of sections Vi (K] | K] NO%, ) = (u;TX,u;TL) of L, class.

We also have the following separable Hilbert space.

Definition 2.1.19. The Sobolev space L2 (K! ;u:TX @ A%') is the space of sections

Dy ? TV

KKy = uTX® A% of L2 class. Explicitly, the norm is

|6]]Z. = i |V*k[2vol
LG’é Yy

k=07,
These Hilbert spaces then fit together to give the following Hilbert bundle.

Definition 2.1.20. The Hilbert bundle 2, (K} , K] NO%y,); X, L) is the bundle over
W2 (K, K] No%y,); X, L) consisting of pairs (u, k) with x € L7 (K] ;usTX ®
AO,I)‘

We again have a section 0 of this Hilbert bundle.

As in Definition 2.1.14, we collect these Hilbert bundles into a single object.

Definition 2.1.21. We let Wi .. (U(x,); X, L) be the union

U W2k, K, no%,); X, L).
Uve%(lv)

Following the observation in Remark 2.1.13, we give Wi .. (0(x,); X, L) the
smooth structure of V(x,) x W2 (K], K] No%,): X, L).

We then let £, . (B(x,); X, L) denote the Hilbert bundle over
Wf(mmﬂ(?ﬁ(;v),X) with fiber over (9,,u,) equal to L2 (K| ;u'TX @ A™). Finally,

Dot TV
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we let
WI%;,erl(m H WK’ m+1 ( )§X>L)>
veCO(g
512({,771(%;; y L) = @ g?(;v,m+1 (x,); X, L).
veCY(G)

With our various Hilbert spaces, manifolds, and bundles defined, we can now
return to discussing parallel transport.

Given two maps u,, wy, € W2 1 5((3y,,0%,,); X, L) such that sup{d(u,(z), w,(z)) |
z € ¥,} < tx (the injectivity radius of X), our pointwise parallel transport maps

give the following maps of sections.

Paly” : W2 1 5((Sy,, 08y, ) usTX, uyTL) — W2 4 5((5y,,05,); wyTX, w;TL),

(Pa]_’;fv) W2 +1 6((2131/7 @EU’U> *TX U*TL) —> W2 +1 5((2‘7117 82‘)1/) :;TX’ w;TL)7

(Paly) OV L2 5(2y, uiTX @ A% — L2 (8, w;TX @ A™).

Yo ’U

Similarly, given two smooth maps u, w : (g, 03y) — (X, L), we have the follow-

ing parallel transport maps of sections.

Paly : W7 1 5((Sy, 05y); w'TX, " TL) = W7 ;((Sy,05y); w* TX, w*TL),
(Paly”)” - W2 1 5((Sy, 0Sy); w'TX, u*TL) — W7 1 5((Sy, 05y); w* T X, w*TL),

(Paly”) OV L2 §(S9, w'TX @ A®') = L2, 5(Ey, wTX @A)

Finally, given two maps u,w € W2 ,((K,,, K,, N 0%,,); X, L), we have the fol-
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lowing parallel transport maps of sections.

Paly : W2 ((K; Ky N0y, );usTX, uiTL) —

W2 (K Ky NSy, ) wiTX, wiTL),
(Paly”)” - W2 (K, Ky NO%y,);usTX, uiTL) —

Wr?m+1((K‘)m Ky, N 82%); w,TX, w:TL)a

(Paly”) OV L2 (K], uyTX @ A%Y) — L2 (K], wiTX @ A™).

Du? TV

We now depart from FOOO [17], [22]. Let p = (r,u) where u : (¥X;,0%;) — (X, L)

is pseudoholomorphic.

Remark 2.1.22. There is an important but subtle point to make here. When we
write an element p = (r,u), we are choosing an equivalence class of disc maps up
to automorphisms of the disc map. That is, r is an isomorphism class of marked
bordered Riemann surfaces, and if we are given a specific representative 3 of ¢, there
is a uniquely determined map us making (X U ZU 2™ uyx) a representative of (x,u).

We will often have multiple different universal families with coordinate at infinity,
and we will need to take great care in these situations. See Lemma 2.1.26 and Section
2.1.5. In particular, in this section (r,u) is always source stable, but this will not
always be the case in later sections.

Let Eu)» be a finite dimensional complex submanifold of L2, (K] ;ufTX @ A%')

o o
containing 0 such that every element of E(,,), is smooth and supported in Int K| .
Note that we are now only assuming that u, is defined on K; , and not on all of
Yy,- We call this vector space an obstruction fiber. We define an extension of the
obstruction fiber as follows.

Definition 2.1.23. Given an obstruction fiber E .., an extension of the obstruction

fiber consists of a choice of the following map, which may be completely unrelated to

V:

TrivK;v 7E(z:,u),'u : L{KI;,U,(L’LL),’U X E(;,u),v —> g?(;U,m(Q](;'U)7 X7 L)7 (217>
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where Ury, vy 15 @ neighborhood of (ty, wylxy, ) in Wi, 0 (0(x,); X, L), such that

the following properties are satisfied:
1. The map TrivK;wE(m),v 1s a diffeomorphism onto its image.

2. The map TriVKin(M),U defines a trivial sub-bundle Ex,  (u)w Of
Efg m(B(x0); X, L) over Ur, (wuyo- The fiber of this bundle over (ry,uy|ry, )

)

must be (Egu)v)-

Recall that we take m “large.” In particular, we take m large enough that
W2 (K, Ky no%,,); X, L) € C((K;,, Ky No%y,); X, L) (2.1.8)

We thus have that our neighborhood Uk, (u)» is open if we use the C'° topology
instead of the L2, topology, which we will use in the proof of Proposition 2.1.33.
Recall from Remark 2.1.7 that we have an action of the group I'j" on the fiber

bundle

O M= ] B

veC9(G) veCO(G)

as part of our coordinate at infinity data. Here the fiber over vy € HUGCO(g) B(x,) is
¥, minus singular points, and the action preserves the cores of the fibers (although it
does not give a biholomorphism between them). That is, given 9,4’ € [, ccog) V(xv)
and v € Fj with vy = v/, we have a diffeomorphism ~ : ¥, — X,/ that restricts to
a diffeomorphism v : K, — K,/. This will give us an action of Fa’u) on all of our

spaces of functions and sections (after taking appropriate products to account for the

_l’_

domains) by pullback, where LI

C I'f is the group of automorphisms 7 of ¥, fixing
boundary marked points such that we have u oy = u on Kj, recalling that our map
u is only assumed to be defined on K; in this case.

For instance, assuming the union K = {J,ccog) Ky, 18 Tau)-invariant (in the

sense that the action on X, restricts to an action on this subspace), we have that
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F+
(xu)
W2;7m+1(%(x);X, L) is a pair (v, w) with w : (K}, K;N0%,) — (X, L), and v (9, w) =

(79, woy~1). Similarly, we have that ', . acts on the Hilbert manifold £2 tm (U(x); X, L)

acts on the Hilbert manifold W2, (V(r); X, L) as follows: an element of

I,m—&—l

(v,u)
by v(n,w, k) = (79, w oy~ (y1)*k). This leads us to the following definition.

Definition 2.1.24. Given obstruction fibers E.), for all v € C°(G), we say that

the total obstruction fiber E .y = HUECO(Q) Bt w0 18 tnvariant with respect to F(; )

and that the extension of the obstruction fibers is equivariant with respect to F (t0) zf

the sets Kg, and HUGCO Uk (e u)0r and By are invariant under the action ofF (o)’

and the following map TerKI7E = Hveco(g) Trivg k.., 1S equivariant:

(x,u)

H TriVKI’E(LU),v: H (Z/[K/7(;7 )sv X Exu ),v H gK/ X L)

veC0(G) veCO(G) veCO(G)

We define extension of the obstruction fiber using our core Hilbert manifolds, but

it induces extensions for our other sources, which we will make more direct use of.

Definition 2.1.25. Consider a given Fz; ) -equivariant extension Trivir g - of a
Fz; w-invariant obstruction fiber E ) and maps wy : (5y,,0%,) — (X, L) and w
(39,0%y9) = (X, L) where Y = @(v',T,, (1c,0)), such that (9,,wulk;, ) € Uk (cu)w
and (9, W' |, ) € Uk (xu),0- We have induced extension maps

Dy

(THVE(; u), v) E(F u),v — L?nﬁ(znv; w;k;TX ® A071)7
(Trivg, ) ¢ Egu) — Lo (S (w')'TX @ A%,

The first map is obtained by sending the section k € E ) to Trivg, (9o, wolky, s K)
€ L2(K] ; (wv)ﬁ({J TX @ A% then extending by 0. The second map is obtained

similarly.

Here we run into a situation where me must be careful to be aware of our choices
of representatives in a given class (y,w’). We assume in the above definition that
2 = d(y/, T, (fc, 5)) giving a representative g, but in general ) will not be uniquely
expressible as ®(1/, T, (Tc, 9)) This is why we require F( equivariance in the above

definition.
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Lemma 2.1.26. Fiz a class (), w) € Myi14(8) (assumed to be source stable), and
let 9 = Dy, T, (15,0)) = By, T, (T",0')). This gives two representatives (Xy,w)
and (Xy,w') of (Y, w). By definition, we have a bilohomorphism a : Xy = ¥y over
w, w'.

_l’_
(x,u)

fiber B, the following diagram commutes:

Given a I'! | -equivariant extension Trivi g, ., of a F?; u)-invarmnt obstruction

(Ter(;,u) i

Eu) L (B w TX @ AM)

(Trivg, j
L2, s(3g; (w')*TX @ A1)

Proof. We recall that ®(y, T, (T.,0)) = ®(y, T, (I",0")) implies that there exists
v e T, with (y,Ty, (T5,0)) = v(y/, T, (T",0")) (see the end of Section 2.1.2). Thus
the bilholomorphism « must be induced by ~. It follows that v € Fg;u). The desired
z;u)-equivariant extension of a

Fa u)—invariant obstruction fiber. O

result then follows directly from the definition of a I"

In the FOOO program, they use the parallel transport maps induced by V to
extend their obstruction vector spaces, which can be phrased in terms of our definition
without difficulty. The I‘au) invariance of the obstruction vector spaces and Fz;u) of
the extensions is covered in Lemmas 17.11 and 17.16 in FOOO [17]. Using this more
general definition changes very little about the FOOO construction, but the added
flexibility will be essential for our construction of compatible Kuranishi structures on
different moduli spaces.

We come now to one of the two main applications of our increased flexibility
in defining the obstruction bundle. Let (Y,w’,J’) be another compact symplectic
manifold (of the same dimension as X) with compatible almost complex structure
J" and embedded Lagrangian L’. Let Dx and Dy be closed subsets of X and Y
respectively not intersecting L or L’. Consider a bi-pseudoholomorphic map v :

X\ Dx = Y \ Dy such that ¢(L) = L'. Observe that 82;7m(%(p);X \ Dx, L) is
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an open subset of Sf%m(%(zc); X, L), and likewise Ef%m(‘l](;); Y \ Dy, L) is an open
subset of £ QLm(%(;); Y, L"). We have induced isomorphisms

Vo L2 (K, Ky NO%y,); X\ Dx, L) — L2 (K, K; N0%,,);Y \ Dy, L),
which gives the diffeomorphism
Vot Exyn(B(); X\ Dx, L) = €3, (B(x); Y\ Dy, L)

mapping (9o, Wy, ko) = (Yo, ¥ © Wy, d(ky)).
We then have the following proposition.

v? v

obstruction fiber such that K is disjoint from u ' (Dx). Assume further that 1, E .,

. + . .
18 F(I’ wou) moariant.

Proposition 2.1.27. Let Eu) C [ ccog) L (K, s us TX @A) be a T ) -invariant

Let Trivg: 4.k, be a Fawou)—equwariant extension of the obstruction fiber 1, E .
on'Y, and let Uy, be an open neighborhood in Uk you),e W]%;U’mﬂ(ﬁ](gv);}/, L)
such that for all (9,w) € Uk’ (ryouyw we have w(K() N Dy = 0. We then let Ux,
be (1) (Uy,o), that is the open neighborhood of (tu,uy) in Wi, . (B(x.); X, L)

consisting of all (9, w,) with (9,1 o w,) € Uy,
+

(vyu)
(the top row of the following diagram) such that the following diagram commutes.

;m—+1

Then there exists a I \-equivariant extension of the obstruction fiber Eq ) on X

TV s ()

[Tocooig) Uxo X Egguyo) [Loecog) €y, mn(B(x0); X\ Dx, L)

w*j jw*

U E K o) £2, (V(x,):Y \ Dy, I/
HUeCO(g) ( Yoo X s (m),v) HUGCO(g) K, ,m( (r); Y\ Dy, L')
Proof. Given (9, Wy, ky) € Uxy X Eg )0, we define

TriVK’,(p,u),v(U'ua Wy, /iv) == (w*)(:)i’wv) (TriVK’,(;,wou),v(Uva 1/} O Wy, (w*)(h,uv)ﬁv)) .

Each of the three conditions for this map to be an extension of the obstruction fiber

E(; ) is clear.

To see that Trivg: ) is FE; u)—equivau"iamt7 let v € Fz; ) and note that we have a
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natural homomorphism v, : W Fa pou)> since 7y acts entirely by pre-composition.

?3
Furthermore, ¥.(y(n,w,k)) = (Vuy)hu(n,w,5) and (), (0 (7) (9,9 0 w, &) =
Y(u) g (0,9 0w, K). Given

(U7w7 /{) € H (UX,U X E(;,u),v) 3
veC?(G)

we thus have that

Teiv e, e (7(9, W, 1) w* oy (TEVE o) (1 (7) (9,90 0w, <¢*><xu>m)))

V) i) (Ce (D TIVE e ouy (9,9 0 W, (1) 1))
7(( Vo) (DY oy (9, 0w, (8) ) ))
= 5 (Triv ) (v, w, %)) -

]

We close this subsection with the following important technical point, which is
necessary to show that we can still define the Kuranishi map in a manner compatible

with the increased flexibility of our definition of the obstruction fiber.

Lemma 2.1.28. Given an extension

H TriVK/’E(Lu)w: H (uKlﬂ(I,u X EIU H SK’ X L)

veC?(g) veC?(G) veC?(G)

of the obstruction fiber E( ), we have a smooth map

] Uk = J] LR, w'TX @ A%,
veCY(G) veC9(G)

where Uy, 15 an open subset of Urr (g )0, such that

sV

5(07 ’LU) € E(zc,u)

if and only if

ow € H Trive g, ., ., ((an) X E(w)) :
veCY(G)
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Proof. Recall that £k u), is the (trivial) obstruction fiber sub-bundle of
52£U7m(%(1cv);X , L) over Uk (zu)o- We will construct a tubular neighborhood in
512% m(B(r,); X, L) of a neighborhood of ((r,u),0) in Exy, (ru).0-

For each point p € E, ., we have the (finite dimensional) tangent space T),E}, .,
C L2 (K, ,w*TX ® A%!), and the corresponding normal space N,Ey, w,
C L2(K;, ,wTX ® A%') induced by the L? pairing is closed. We thus have a map
(fiberwise an isometric embedding) i(y,)w,) : N Ey,w, = L3, (K; ,w*TX @ A*') from
the normal bundle into the ambient space, sending (p, k) — p + k. Combining these
maps over points (9,,w,) in the base Uk (xu)0 for various extends to a map (again,

fiberwise over €k (xu)» an isometric embedding)
v Ngng,(;,u),v — 52 ;U,m(m(xv); Xa L)

The differential (D7), u,)00 Of @ at ((tv;%),0,0) € NEKs (w0 is an isomor-
phism from T, . Ux' (cu),0 ® ToEyyuy ® NoEy, i, to L2 (K. ,uiTX ® A”'). Thus, the

y? TV
restriction of 7 to an open neighborhood of ((t,,u,),0,0) in NEx; (cuww is a diffeo-

v, Uy

morphism onto its image V C 52£ (U(x); X, L). From this, we get a smooth map
7:V = Engv(Lu),v. We then get a smooth map

T, (tu)0 - Y — Li(K’ wWTX ® AO,l)

Iv? v

sending

(9o, o), &) = Trivig - (((00,w00), %)) + (Paliy ) OV (5 = (90, w,), K))-

ru
Taking Uy, (., to be an open subset of 07'(V) C Uk (ruw, We get that 5 =

TR, (tu)w © 0 is the desired map. O

2.1.4 Obstruction bundle data
We now return to FOOO [17]. There are several things we need before defining
obstruction bundle data. We start with the following definition:

Definition 2.1.29 (Def 17.5 in [17]). A symmetric stabilization of an element (¢, u)

1s a choice of additional interior marked points W such that

1. wnNzmt =,
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2. w is an immersion at each point of .
3. (3, 2, WU 2" s stable.

4. Fach element of PZ; W) bermutes the points of 0.

Much of our machinery only works when our discs are source stable, which is
why we need to be able to stabilize. Every time we introduce a new stabilization,
we will also introduce a codimension 2 submanifold for each added point, which will
eventually be used to forget the added points.

Let 9) = ®(v, Te, (fc, 5)) be an element of M1 ¢4 represented by (X, 7y, 2 "tU
wy). We use the Levi-Civita connection of our metric g from Section 2.1.3 to define

the linearized 0 operator at (9,,w,):

Dy, 0,0 : Wy ma1,5((By,, 05, ); w T X, wiTL) — L?n,&(z‘)v;w;TX ® A™)

(((PalEXp(w” tV))(0.))- 18Exp(wv,tV)>

t=0

We also have the following linearized 0 operator at (2),w'):

Dy - W 5((Sn, 05y); (0 TX, (W) TL) — L2, 55y (w)'TX @ A
d

t=0

(((Palifp‘w"”)) O.0)=19 Exp(w, tV))

For each pair (v,e) consisting of a vertex and adjacent edge of G, we have the
following evaluation maps. If e corresponds to a boundary singular point, that is

e € C1(G), we have the map
eVye VVmJrl s((Xy,, 05, );u T X, u"TL) = Ty, L

mapping (s, ¥) — +wv, (the e component of ¥), where the sign is positive if e is an

outgoing edge of v and negative if e is an incoming edge of v. If e corresponds to an



47

interior singular point, so e € C}(G), we have the map

Ve : Wiy s((Sy,, 05,); ' TX, "' TL) = Ty X

m

mapping (s,7) — £s(z.), where the sign is again positive if e is an outgoing edge of
v and negative if it is an incoming edge of v. We combine these evaluation maps into

the following total evaluation map:

L P W8, 08,,); wTX, uTL) — @T%L@ P TunX

veCO(G) ecCl(G eeCL(G)

(2.1.9)

Finally, for each boundary marked point z;, we have the following evaluation map
ev,, Wm+1 5((By,,05,,);w'TX, w'TL) = Ty, L
mapping s — s(z;). We also get a corresponding total evaluation map

evy: W2

m

15((By,,08y,); 0 TX, u*TL) = @ Tugz L.

Z;€Z
We can now define obstruction bundle data.

Definition 2.1.30 (See Def 17.7 in [17]). We call the following data obstruction
bundle data €, centered at p = (r,u) = [(X, Z, ™), u] € My414(8;G):

1. A symmetric stabilization @ of (r,u). We let Gz, denote the combinatorial type

of the stabilized map.

2. A neighborhood UV (x, Uw,) of t, U, in Mg, 41,6,+e, 07 My, 110,40, We choose

U(r, Uw,) so that every point is an irreducible disc or sphere.

3. A universal family with coordinate at infinity of r, U, defined on U (x, U w,).
We require this coordinate at infinity to be invariant under the F?;uw W) action
in the sense given following Definition 2.1.6. With this coordinate at infinity

—

chosen, we now have a particular choice of representative (3, Z, 2™ U W), u] €

Misre1e(B;G) and hence (5, Z, Z™),u] € Myi1,4(8;G).
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4. A finite dimensional, Fa ) -tnvariant submanifold HUGCO(Q) By of
[Locoorg) L (K, s w* TX @A) containing the point 0, such that every section in
Eeu)w s smooth with compact support in Int K for some compact K C K,

with non-empty interior. We called this an obstruction fiber in Section 2.1.3.

5. Extensions Trivir g, 1 U' (cupw X Bguye — 52; (D(ry); X, L) of the ob-
struction fibers E( )., as in Definition 2.1.23 such that they are equivariant
with respect to the action of F;f in the sense of Definition 2.1.24.

6. We require that (x,u) be Fredholm regular with respect to €, in the sense that
the sum of the image of Dy, .,0 and ToE(u, is L2, 5(Se; usTX @ A%,

7. We require that (r,u) is evaluation map transversal with respect to €, in the

sense that the restriction of evg to @veco(g)(Dwé)—l(TOE(M),U) is surjective.

8. We require that (¢, ) is evaluation map transversal at the 0th boundary marked
point, in the sense that the restriction of ev,, to @veco(g)(Dwé)’l(TOE(M),U)

18 surjective.

9. For each w; € X, we take a codimension 2 submanifold D; of X such that
u(w;) € D; and w1, 3y + Tyw)Di = Tw,X. Moreover, given v € F;f and
v(w;) = w;, then D; = D;.

This differs slightly from the definition given in FOOO [17] in order to accommo-

date our more general approach to the obstruction bundle, but it is essentially the

salne.

Remark 2.1.31. Evaluation map transversality at the 0th boundary marked point
(condition (8) above) is not necessary for constructing a Kuranishi structure following
the FOOO program, but will be necessary for our applications. We could also ask for
a similar transversality at interior marked points, but in our case it will be simpler

not to.

The following definition provides the appropriate notion of one map being “close”

to another, for our purposes.
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Definition 2.1.32 (Def 17.12 in [17]). Let Q) = ®(y, T°, (T¢,0)) for y € V(x U W),
and let w' : (Sy,089) — (X, L) be a C™ map* in homology class 3. We say that
(D, w') is e-close to p with respect to €, if the following conditions hold.

1. The map ® gives an identification between K, and a subset of Ky. We require

|u — U}/|010(Kﬂj) < €.
2. The map w' is holomorphic on each neck region of L.

3. The diameter of the w' image of each connected component of the neck region

1s smaller than e.

4. T. > et for each e.

Note that, although we use a particular choice of representative Yy in this defini-
tion, any other choice will differ only by an element of I'y, which does not affect any
of the conditions.

This e-closeness condition only becomes useful after extending the core in the
following sense. Given a choice of coordinate at infinity, we define the extended core

of vy, as

+R __
Ky" = K,, U

-

(07 R(U,e)] X [07 ]-]
e € C(G) an outgoing edge of v

U [—R(%e), 0) X [0, 1]

-

e € C1(G) an incoming edge of v

U (0, R(ue)] X Sl

-

e € C1(G) an outgoing edge of v

U U [—R(ue), 0) x St

e € C}(G) an incoming edge of v
See FOOO [17] Def 17.21. When our coordinate at infinity is given by obstruction
bundle data €,, we will let Gfﬁ denote the obstruction bundle data together with

the extended core.

2The C1Y norm used here is induced by our metric g on X and the metric on the source. Unless
otherwise stated, this will be the case for all norms.
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Without extending the core, p may not even be e-close to itself. However, allowing

for extension of the core, we have the following proposition.

Proposition 2.1.33 (Modification of Prop 17.22 in [17]). Let p € My1.4(8) and let
&, be a choice of obstruction bundle data centered at p. Then there exists € > 0 and
R such that:

1. If (D, ') is e-close to p with respect to foﬁ”, then (9,,v'|k,,) € Uk e u)0 for all

V.

2. If (D, ') is e-close to p with respect to pr“%, then (Y, ') is Fredholm regular
with respect to QS;FR in the sense that the sum of the image of D@,ulé and
TO(TriVE(M))Z/(E(M)) is all of L2, s(Sy; (w')*TX @ A%').

3. If (P, ) is e-close to p with respect to (’EPH%, then (), u') is evaluation map
transversal with respect to €p+R in the sense that the restriction of evg to
(ng’w/é)*lTo(TrivE(M))Z’(E(w))) is surjective.

4. p 1is e-close to €p+ﬁ.

Proof. Parts (2), (3), and (4) are proven in exactly the same way as in FOOO [17], us-
ing an exponential decay estimate on the neck regions and a Mayer-Vietoris argument
due originally to Mrowka in his thesis [42]. Part (1) follows from the first condition
in Definition 2.1.32 and the fact that we chose m large, see expression (2.1.8). [

2.1.5 Stabilization data

Now, for each p = (r,u) € My41(8) we fix obstruction bundle data &,. Note that
this data includes a choice of coordinate at infinity, a symmetric stabilization with ¢,
marked points w, of p, and a choice of codimension 2 submanifold D, ; for each point
wy; such that u(w,;) € D,,; and D, ; is transversal to u. We will take finitely many
points p. and use only the obstruction bundle data at those points. To this end, we
need the following lemma, unchanged from FOOO [17].

Lemma 2.1.34 (Lemma 18.2 in [17]). For each p = (r,u) € Myi1,0(B) with its fived
obstruction bundle data €,, the following holds for sufficiently small e,,.

Letting q = (9, u') € Myy14(B), the set of symmetric stabilizations Wy of 2 with
¢, points such that the following holds is either empty or consists of a single I'y orbit:
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1. YU, = B(v, T°,(T*,8)) for some v € V(x U w,) and (T°,(T¢,0)).
2. The pair (Y Uy, u') is €,-close to p.
3. We have that u'(wyg ;) € Dy, for all i.

Remark 2.1.35. The above Lemma 2.1.34 supplies a number ¢, > 0 which we will
treat as fized so we can choose our finitely many points p.. However, we will continue
making statements about taking e, sufficiently small, even after we have supposedly
fized €,. We are secretly carrying out a kind of induction. We can take a single point
p with its obstruction bundle data €, and obtain our desired results locally without
having to fix €,. We then use the local result to prove the above lemma, actually fix
€p, and then go through the entire proof process again.

In FOOO [17], they carry this out more explicitly. However, this makes the nota-
tion substantially bulkier. Since our changes to the FOOO program have no impact
on this point, we will suppress it for the remainder of the paper in the interest of

readibility.

For each p we fix ¢, such that Lemma 2.1.34 and Proposition 2.1.33 both hold. We

let 20% (p) be the set of all q € My1,(83) such that the symmetric stabilization wj; in

Lemma 2.1.34 exists. This set is open in My ¢(3) (this is not obvious, see Definition
18.3 in FOOO [17]). We choose a sequence of sets Int ﬁUg C QUg C Int20, C 20, C
W,
{pclc € €} C Myy10(B) such that e It W) = Myq1e(3). Only obstruction

with p € Int20) and both 20, and 20, compact. We take and fix a finite set

bundle data at p. for ¢ € € is used for the remainder of the construction. For
p € Mii14(5), we define €(p) = {c € € | p € W,.}. For each ¢ € (p), we take
additional marked points w¥ for p as given by Lemma 2.1.34.

We have one further requirement to impose on our choices of obstruction bundle
data.

Condition 2.1.36. For each p = (r,u) € Myy10(8), we require that the obstruction

fibers (Trivg, )i (Ey.) are independent. That is, we need the sum space

> (Trivg, )4 (Bp,) € L2, (5w’ TX @ A™)
ce€(p)
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to be a smooth manifold of dimension equal to the sum of the dimensions of the
individual spaces (Trivg, )i (Ep,).

We take this condition so that we may identify @ ¢ (Trive,, )y, (Ep.) with
Zcé@(p) (TriVEpc )ZLC (Epc ) :

In the original FOOO setting, Lemma 18.8 in FOOO [17] shows that we can
impose this condition on our choices of obstruction bundle data. In explicit cases,

such as the one considered in this paper, this condition is easy to arrange.

Definition 2.1.37 (Def 18.9 in FOOO[17]). We call the following “stabilization data”
at p:

1. A symmetric stabilization Wy, = (Wy1, ..., Wyye) of p = (x,u). Let £, = #j,.

2. For each wy; (i = 1,...,4,), we take codimension two submanifolds Dy ; of X
transversal to w, at uy(wy;) and with uy(wy;) € Dy,;. We assume these Dy ; are

invariant under the I'y action in the same sense as in Definition 2.1.50.
3. A new coordinate at infinity for p U w,.
4. Wy NW? =0 for any c € €(p).

5. We require that the support of the obstruction bundle of €, at p be contained

in the core of the new coordinate at infinity, in the sense described below.

The new coordinate at infinity gives a representative Y g, of rUw,. The obstruc-

tion bundle data €, gives a representative ¥z of r Uwk. We have that ¥z, and

U,
Y.uge are biholomorphic, as their classes differ only by marked points. The biholo-

morphism preserves all original marked points, but not w, and .. It follows that

» U ZUZ" ) a representative

there is a uniquely determined map u, making (3,

of p (see Remark 2.1.22). The biholomorphism is thus an element of I, ;). However,
because our extension of the obstruction fiber is I'( ,,-equivariant, we can identify the

support of the obstruction vector space at (X, - UZUZ" u,) with a subset of YU,

Jwe

in a way independent of the choice of this element of I'¢,y by Lemma 2.1.26. It is in
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the sense of this identification that we need the support of the obstruction bundle of

€,. at p be contained in the core of ¥, .

c

Remark 2.1.38. From here on, we will be simultaneously using multiple choices of
universal family with coordinate at infinity, namely one for each ¢ € €(p) coming from
our choices of obstruction bundle data, and another coming from the stabilization data
at p. Keeping careful track of the different choices will be crucial for following the
remainder of the construction and the proofs of various technical points. To this end,
we will write ®, for the ® map coming from the corresponding choice of obstruction
bundle data, and we will write 6,, for the map coming from the choice of stabilization
data.

2.1.6 Thickened moduli space and Kuranishi chart

Fix Ty = (T¢,7¢) and let ¢ > 0. We fix metrics on all the Deligne-Mumford moduli
spaces. We fix a stabilization data at p = (r,u) and let U, (p U w,) be the ¢
neighborhood of p U, in Myy1,¢14,(Gpua,)). We consider the set of all (), /, (@,))

C

such that the following holds for some R:
1. There exists y € Y., (p U @) and (T°, (T¢, ) € (T2, 0] x ((T€, 00] x S') such

—

that Q) = ®,(y, T°, (T¢,9)).

2. (Y, ') is eg-close to u with respect to the R extended core coming from the

coordinate at infinity given by the stabilization data.

3. We let Sy be the (unmarked) representative of 9) given by ®,(y, Te, (fc, 5)),
and we let Z’U 2 be marked points such that Yo U ZU 2™ U 0, is in Y. We
require that the pair (X9 U ZU Z™ U, u') is ep-close to u with respect to the

extended core obstruction bundle data & E for all ¢ € C(p).

We say that (9, u), (u_)’gl))) is equivalent to (9@, u?), (u_)'((;g)) if there exists a
biholomorphic map v : Xga) — g such that u® = 4@ oy and such that v fixes

all marked points. That is, v maps every marked point on Yga) to the corresponding
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marked point on g, for the marked points coming from p, the additional marked

points coming from the stabilization data we fixed, and the additional marked points

coming from the obstruction bundle data &, for all ¢ € &(p) (in the sense v(wgi)) =
2)

wc,z' )

Definition 2.1.39 (Def 18.10 in [17]). We let Ly 1. ‘eep’(ec»(ﬂ7p>eo,fo be the set of
equivalence classes (), v/, (W) satisfying (1)-(3) above.

C

Taking €y and ¢,, sufficiently small, we can then define:

Definition 2.1.40. Let q* = (9,u, (0,)) € YUrt1,6:65.()) (B, P)e, 7, We define
Eo(q™) = (Trivg, , )i (Ep) C LE(Sy; (W) TX @ A®). We also define E(q™) =

Zcé@(p) Ec(q*).

This is our extension of the obstruction vector space given by &, to the repre-
sentative (Xg U ZU 2™ U, u') of (,u/, (w.)), see Definition 2.1.25. Note that this
involves taking an expression 2) = ®,(y., 7%, (T,0')). Such an expression exists
by our requirement (3) above, and the space E.(q") is independent of all choices of
representative because our obstruction bundle data is taken to be F;c equivariant.

Note also that E.(q%, Xy) does not depend on ¢, fo, or the stabilization data we
fixed, and that for appropriate choices of I3LC, we can extend the cores given by each
€,. so that they all agree, and we then have that the support of £(q") is contained

in the extended core with respect to all of the different €, .

Definition 2.1.41 (Def 18.15 in [17]). The thickened moduli space

Mis,@t,,6)) (B3 P) oy 1

1s the subset of uk+17(g;gp7(gc))(67p)€o 7, consisting of equivalence classes of elements

gt = (Y, v, (W) such that Ou' € £(q.).

C

Again, by the equivariance of our obstruction bundle data, the statement Ju’ €
E(q4,Xy) does not depend on any choices of representatives.

Proposition 2.1.33 then gives the following lemma.
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Lemma 2.1.42 (Lemma 18.16 in [17]). By taking €y and €,, sufficiently small and
Ty sufficiently large, we get the following statements.

1 Ifqt = (Y, (W) is in Yy e, 0.)) (B p)eo 7, then the condition ou' € E(q4)

C

is Fredholm regular, in the sense of Proposition 2.1.33.

2. If g7 = (Y, (W) is in ukJrl’(g;gp,(gC))(ﬁ,p)m’fb, then q* is evaluation map
transversal in the sense of Proposition 2.1.33.

3. puU(ah) = (x,u, (W) € g, (656,000 (B, P )Eofo-

Let Mii1,(6ty.(60)) (B85 95 Gp), 7, denote the stratum of My (e, (2.9 (83 9),, 7, cOD-
sisting of all elements with combinatorial type G,. These are all elements of the Hilbert
manifold [, ccog) Wi 115(B(x,); X, L). By Condition 2.1.36, we have an open neigh-
borhood U, of p in T, cco( G) W2 1 5(U(x,); X, L) on which we can combine the maps

Trivg g, to get a smooth trivialization

Uy x | Y (Trivi )i B | = [ € ): X, L). (2.1.10)
cee(p) Ve (Gy)

Combined with Lemma 2.1.42 and Lemma 2.1.28, we can use the implicit function

theorem to get the following result.

Lemma 2.1.43 (Lemma 19.1 in [17]). For €y and €, sufficiently small and Ty suf-
ficiently large, the stratum Mkﬂ,(%,(gc))(ﬁ;p;gp)eo 7, has the structure of a smooth

manifold.

Definition 2.1.44 (Def 20.6 in FOOO[17]). An element (Y, v, (@) of
Mk+1,(f,€p,(€c))(55p>eo,f0 satisfies the transversal constraint at all additional marked
points if for all marked points w, of Y from the stabilization data at p we have
that wy,, € Dy,, and for all marked points W, we have that w,; € D.;. We let
Mt 0.)) (B ]J)'”(;‘m‘9 be the set of all such elements.

Then, using the gluing techniques of FOOO [17], [22], which will be covered in

detail in the Appendix, we have the following result.
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Proposition 2.1.45 (FOOO [17]). M1, 06,00 (B;5 9 )t”‘”S has the structure of a

smooth (C*) manifold with corners.

We have a natural Kuranishi section

50 M1, (B 9) 7% — H r); X, L)

eo To
UECO gp

obtained by composing the 0 operator with the trivialization of the obstruction bundle

in expression (2.1.10). We can then define a homeomorphism

forget : (Mk+1 (tptee) (5132 B) T2 015740 )) JTy = Mio(8).  (2.1.11)

See Appendix Section A.2

Our Kuranishi chart is then

Proposition 2.1.46 (Prop 21.14 in [17]). Let p € Myi14(5). Then the smooth

trans
0,70’
Kuranishi section s, and the homeomorph@sm in Proposition A.2.4, gives a Kuranishi

neighborhood of My.1.0(8) at p.

manifold with corners Myy1,(0.4,,0.)) (5 9) together with the group I'y, the smooth

We have that the evaluation maps at marked points

k1 v
ev 1 My (0.0 (B5 P )i;“;f = LM x X

are smooth, see Lemma 21.25 in FOOO [17].
After further shrinking the charts, this choice of charts admits appropriate tran-

sition maps to give a Kuranishi structure on the whole moduli space My 1 0(3).

2.1.7 Subspace Kuranishi structures

Having gone through the process for constructing a Kuranishi structure for

Mii10(X, L, 5), we note that we will actually need a slightly more general treatment
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of Kuranishi structures on moduli spaces. Namely, we need to be able to talk about
subspaces of these moduli spaces.

Definition 2.1.47. Let Y C X be compact metrizable spaces with Kuranishi struc-
tures and Kuranishi morphism (f;{(fp, (fo)«)p}) from Y to X such that [ is the
inclusion map, the maps f,, are all injective, and the maps (f,). are all diffeomor-
phisms. We call this morphism (f;{(fp, (fp)«)p}) @ Kuranishi inclusion, and we call
Y a Kuranishi subspace of X .

Example 2.1.48 (Fibers of Weak Submersion). Let M be a smooth manifold and
let f: My10(X, L, B) = M be a weak submersion (with respect to our constructed
Kuranishi structure on My14(X, L, ). For each point y € M the fiber f~'(y)
naturally has the structure of a Kuranishi space, obtained by taking the Kuranishi

charts (V', E) induced by the charts (V, E):

This is a special case of the material of Chapter 4 in FOOO [23], which handles
fiber products in detail. In our terminology, each fiber is a Kuranishi subspace of

Mk—i—l,Z(Xv L7 B)

Example 2.1.49. Fiz a point p € X \ L and say we have a Kuranishi structure
on Myy11(X, L, B) such that the interior point evaluation map ev' is weakly sub-
mersive. Then by the above discussion the moduli space of pseudoholomorphic maps
in Myi11(X, L, B) whose image contains the point p can be naturally viewed as the

subspace (ev™) ™ (p) C Myy11(X, L, B) with corresponding Kuranishi structure.

2.2 Morphisms of moduli spaces induced by maps of ambient

spaces

Now that we have reviewed the FOOO construction of a Kuranishi structure for a
moduli space of pseudoholomorphic discs, we apply Proposition 2.1.27 to get some
preliminary results on morphisms of moduli spaces of pseudoholomorphic discs in-

duced by maps of ambient spaces.
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Let X and Y be birational smooth Kahler varieties with relatively spin La-
grangians Ly and Ly respectively, together with a birational holomorphic map ¢ :
X — Y that maps Ly diffeomorphically onto Ly. Let Dx C X and Dy C Y be the
minimal Zariski closed sets such that ¢|x\p, : X \ Dx — Y \ Dy is biholomorphic,
and assume that Ly N Dx = 0 and Ly N Dy = (). Finally, let 8 € Hy(X, Lx) be an
effective disc class such that for all nodal discs u € [ every non-constant component
of the map u intersects Dy transversally. That is, we assume that no element of g
has a non-constant component contained in Dyx.

We do not assume X or Y are compact, but we do assume that the usual “com-
pactifications” of the moduli spaces of smooth holomorphic discs by stable nodal discs
are genuinely compact. This would be guaranteed by X and Y being compact, but

that condition is not necessary, as in our primary example in this dissertation.

Theorem 2.2.1. In the above situation, we can construct compatible Kuranishi struc-
tures on Myi1.0(X, Lx, B) and Myq10(Y, Ly,%*ﬁ) such that we have an induced mor-

phism of Kuranishi spaces

Mis16(X, L, 8) % Mysro(Y, Ly, B).

Furthermore, the Kuranishi structure on M1 (Y, Ly,y*ﬁ) induces a Kuranishi
structure on the image moduli space (Myi14(X, Lx, 5)) with respect to which the

morphism

Mig1,0(X, Lx, B) it VY (Mpg1,6(X, Lx, 8)),

18 an isomorphism.

The moduli space ¥ (Mj41.0(X, Lx, 5)) consists exactly of those stable nodal holo-
morphic discs in Y with boundary on Ly in class ¢ § that lift to stable nodal holo-

morphic discs in X with boundary on Ly in class (.

Example 2.2.2. The situation outlined in Section 1.4 is consistent with this setup for
any class f € Ho(O(—n), L). We go through the proof of Theorem 2.2.1 in this par-
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ticular case in Section 3.1. As alluded to above, neither €(—n) nor O is compact, but
the moduli spaces of stable nodal discs My41(O(—n), L, B) and My11(0,¢ (L), B)

are compact.

Proof. We begin by choosing obstruction bundle data for every (holomorphic) point
p € Myy1(X, Lx,B) and every (holomorphic) point p" € My (Y, Ly, B). For
our obstruction bundle data, we need to choose a symmetric stabilization w and corre-
sponding codimension 2 submanifolds D; (items (1) and (9)), a universal family with
coordinate at infinity (items (2) and (3)), a Fg(puﬁ)—invariant obstruction fiber Ey )
(item (4)) such that items (6)-(8) are satisfied, and a F:Z(puw)—equivariant extension
TrivKng(puw) .

Note that we do not require any non-trivial obstruction bundle data for constant
components of maps, so we do not take any and do not need to worry about the pos-
sibility of compatibility issues arising from such components. They are already source
stable and Fredholm regular, and all evaluation map transversality requirements can
be achieved without non-trivial obstruction bundle data on the constant components.
This latter point relies on the fact that our nodal discs are bordered nodal Riemann
surfaces of genus 0. If we were considering higher genus Riemann surfaces, we would
need to consider the contribution from constant components more carefully.

By the transversality assumptions of our setup, we can choose a symmetric sta-
bilization  of each ¥ (p) so that ¥ (u(w;)) ¢ Dy for all w;, and we can choose the
corresponding codimension 2 submanifolds D; to be transversal to Fy. This then
induces a compatible stabilization for p € M;41(0(—n), L, 3). We then take a uni-
versal family with coordinate at infinity for each component together with its extra
marked points g, U ,.

We will need the following lemma, the proof of which is postponed until the end
of Section 2.3.

Lemma 2.2.3. Given any p = [r,u] € Mypy10(X,Lx, ), and choices of items
1, 2, and 3 of Definition 2.1.30, we can take an obstruction fiber (item 4) E, C
L2 (Kyysrxonot) at p such that every element of E, is supported away from v (Dy)
and such that, for any choice of extension of the obstruction fiber satisfying item 5 in
Definition 2.1.30, items 6, 7, and 8 of the definition are satisfied as well.

Note that this Lemma relies completely on the condition that Dx does not contain
any non-constant components of u. An identical statement is true for a point 1 (p) €
Mii10(Y, Ly,y*ﬁ) and the closed set Dy .



60

We choose an obstruction fiber E, at each point p € My4q,(X, Lx, ) as given
by Lemma 2.2.3. We then push this obstruction fiber forward to get
Y E, C L2, (K (p))Txenot). Adding to this fiber using Lemma 2.2.3 if necessary
(i.e. taking a higher dimensional obstruction fiber containing Q*Ep), we get an ob-
struction fiber Ey ) that we can extend to a choice of obstruction bundle data at
¥ (p). Taking obstruction fiber E} = (¢.) "' (Ey(y)), we then apply Proposition 2.1.27
to get obstruction bundle data at p. We restrict the domains of all of our obstruction
bundle data so that the support of any element of an obstruction fiber is always kept
away from the preimage of Dx or Dy.

Finally, for every point p’ € Myy1,6(Y, Ly, 1 _B) outside of the image of ¢, we take
any choice of obstruction bundle data.

Having taken all necessary obstruction data, we next need to take stabilization
data at each point p € My (X, Ly, 5) and every point p’ € M1 (Y, Ly,g*ﬁ).

For each image point ¢(p) € Myy1(Y, Ly, ¢ B), we take ey as in Section
2.1.5, and for each p’ € Myy1(Y, Ly, ¥ B) \ ¥ (Myi1,0(X, Lx, B)) we take e, suf-
ficiently small for the neighborhood 2% (p") in My11(Y, Ly, % B) to not intersect
) (Myg140(X, Lx, ). For each ¢¥(p) € ¥ (Myp1(X, Lx,5)), we choose the sub-
sets Int Qﬂ?b(p) C Qﬁ?p(p) C Int Wy € Wy of an—;(p) C Myg10(Y, Ly, B) as in
Section 2.1.5, and we take 2, = ¢~ () 1) and W, = ' (Wyy)). For p’ €
Mi10(Y, Ly, 1 B) \ ¢ (Mys16(X, Lx, 3)) we also choose subsets 20y, 20, of 20,
with the important point being that these sets again do not intersect
Y (Mpg1,(X, Lx, B)).

We take a finite set {p;, | c € €'} C Myy10(Y, Ly, ¢ f) such that | .o Int 2, =
Mii1,0(Y, Ly, ¢ B). Because of our choices of QUg,, this gives finite sets € C ¢
and {p. | ¢ € €} € M1 (X, Lx,3) such that (J o Int W) = Mp14(X, Lx, )
and Uceglntﬁﬂ?b(p) O Y (Mp14(X, Ly, )), and such that for each ¢(p) the set
¢ ((p)) C €.

We now take stabilization data (Definition 2.1.37) at each p € My14(X, Lx, )
in a similar way to how we chose obstruction bundle data. That is, we choose a
symmetric stabilization ), of p so that u(wy;) ¢ Dx for all w,;, and we choose the
corresponding codimension 2 submanifolds D, ; of X to be transversal to Dx. We
then take a universal family with coordinate at infinity for each component together
with its extra marked points r, U w,. By taking the same coordinate at infinity and
symmetric stabilization, and taking the codimension 2 submanifolds (D, ;) of Dy, we

get a corresponding choice of stabilization data at 1(p). We also choose stabilization
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data at p’ for each p’ € My y16(Y, Ly, ¥ B) \ ¥ (Mpy1,0(X, Lx, B)).

We now take €y and €, small and consider the sets 1 (z¢,,(¢.)) (X, Lx, 3; p)eo,fo and
i1, 038,000 (Y, Ly,y*ﬁ;l/z(p))%’fo (see Definition 2.1.39). By taking e, sufficiently
small relative to €, we get for all (), ', (@) € Upt1,e0,,00) (X, Lx, B39, 7, that we
have that (), You/, (@) € Upt1 bt 00) (Y Ly, ¥ 5 w(p))egfo' We also have 1, 0u’ =
d(ypou'), so, by the choices of our obstruction bundle data, ou’ € £((D, v/, ())), Xy)
if and only if 9y o' € E((Y, v oo, (1)), Xg)). That is, we have the following map
of thickened moduli spaces (see Definition 2.1.41):

(S Mk_i_l,(g;gp’(gc))(X, Lx,(; p)eo% — Mk.f_l,(z;ep,(ec))(ya Ly, %*ﬂv @Z)(p))e&fo'

From our various choices of codimension 2 submanifolds D and (D), this then gives
a map

U Mgy 6) (X, L, B3 9)T98 = Mt ety 00y (Y Ly, ¥ B ¢<P>>i2f‘%f

€0,1o

which is a smooth embedding. We take an open neighborhood Vi) of #(p) in
Micir, .6 (Vs Ly &, B;90(9) g 1, 50 that Vi) N (M se, 00) (X Lx, B0) )
is closed in Vj,). We then take V, = ¢~ (Vyp).
Each (Vy(), €(p), Iy, Triv 0 ) is a Kuranishi neighborhood of ¢ (p) in

Mii1,6(Y, Ly, ¢ B) and (V,,E(p), Ty, Triv 0 9) is a Kuranishi neighborhood of p in
Mi10(X, Lx, ). The natural transition maps used in FOOO [17] for the Kuranishi
structures on My10(X, Lx, ) and Myi14(Y, Ly,y*ﬁ) are compatible in the sense
of Definition 2.1.4. Thus, we have constructed the first morphism of Kuranishi spaces

in the theorem statement:

Miare(X, Ly, B) 5 My oY Ly, v B).

We can now take Kuranishi neighborhood (v/(V}), E(p), T, Triv o 9) of the point
Y (p) in the moduli space (Myi10(X, Lx, ). With this Kuranishi structure, we
have the Kuranishi isomorphism from the theorem statement:

Mk+1,Z(X7 LX7 B) i} 2/1 (Mk+17£(X7 LX7 5)) :

Note that the Kuranishi structure on the space ) (My10(X, Lx, 3)) is induced from
the Kuranishi structure on My, 1,(Y, Ly, B) in the sense of Section 2.1.7. Each
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chart of ¢»(My41.4(X, Lx, B)) is the fiber of a submersion on the corresponding chart of
Mii14(Y, Ly, b, B), and these can be glued together to give a global weak submersion
some fiber of which gives ¥)(Myi14(X, Lx, 5)). O

2.3 Deformation family regularization of moduli spaces

We now introduce the concept of deformation family regularization of Kuranishi
spaces. The most natural definition of a deformation family of Kuranishi spaces
is in fact simply a weakly submersive map © : M — B, as each fiber is then a

Kuranishi space.

Definition 2.3.1. Let M be a Kuranishi space, let B be a smooth manifold, and let
7 : M — B be weakly submersive. For eacht € B, the fiber M, is a Kuranishi space.
We call m : M — B a deformation family of Kuranishi spaces.

Consider the following simple example

Example 2.3.2. Fiz L a moment fiber Lagrangian in P! x P! and B, + B2 = B €
Hy(P! x PY L) an effective Maslov index 4 disc class containing no multiply cov-
ered discs. The moduli space Myi11(Pt x P L, B) is regular, in the sense that
we can take trivial obstruction bundle everywhere and still have a valid Kuranishi
structure.  The interior Int My 11 (Pt x P L, 3) of the moduli space is a (non-
compact) manifold without boundary, and the restriction of ev’™, the evaluation map
at the interior marked point, to Int M1 1(P* x P L, B) is a submersion. Letting
v (=1,1) — P! x P! be a path whose image is contained in the image of ev't, the
pullback Int M1 1 (Pt x P L, B) x4 (—1,1) is a deformation family of Kuranishi

spaces over (—1,1).

For our purposes, we will be interested in deformation families of Kuranishi spaces
where the generic fibers are regular. We can then think of the regular fibers as being
deformations of the irregular fibers.

Definition 2.3.3. Let 1 : M — B be a deformation family of Kuranishi spaces.
For each t € B, the fiber M, is a Kuranishi space. Fix a privileged element ty € B.

Assume further that, for all t # to, the Kuranishi section of M, is transversal to
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the 0-section without any perturbation. We refer to this deformation family as a
deformation family reqularization of My, .

This provides an alternative approach to perturbing a moduli space that can be
more explicitly calculable in practice. In our primary example studying &'(—n), we
will construct a deformation family over an open interval that allows us to deform
our moduli spaces of interest to ones that are regular without perturbation. We can
then use these regular moduli spaces to define our A, structure on H*(L; A).

More precisely, in order to define our A, structure, we need to deform our moduli
spaces in families so that the deformations respect the stratification structure of the
moduli spaces, since it is this relationship that gives rise to the A-structure. This is
a stronger condition than that appearing in Definition 2.3.3. In light of this, we take
the following definition of a stratified deformation family regularization of a moduli

space.

Definition 2.3.4 (Stratified deformation family). Let M be a moduli space of pseu-
doholomorphic discs with natural stratification induced by the stratification of the
Deligne-Mumford space My.1, of stable marked genus 0 Riemann surfaces with at
most one boundary component. Let B be a smooth manifold with privileged element
to € B, and let 71 : M — B be a deformation family of Kuranishi spaces. Assume
further that, for each Kuranishi chart V., of M, the restriction of the submersion
To : Vo — B to any stratum of V,, is also a submersion. We then callm: M — B a
stratified deformation family of My,.

If this deformation family also gives rise to a regularization of M;,, we call it a

stratified deformation regularization:

Definition 2.3.5 (Stratified deformation regularization). Let 7 : M — B be a strat-
ified deformation family of moduli spaces of pseudoholomorphic discs. If this family
15 also a deformation family regularization of My, for some ty € B, we call this a

stratified deformation reqularization of My,.

Remark 2.3.6. In their recent book, FOOO [23] introduce the notion of a “system of

K-spaces,” which aziomatizes a number of the important features of the moduli spaces
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we study, including the boundary compatibility property mentioned above, but we will

not work directly with this notion here.

We now describe a method for constructing stratified deformation regulariza-
tions. Assume we have already constructed Kuranishi structures on the moduli spaces
Mii10(X, L, ) for all § following FOOO, as outlined in this chapter. We will build
a Kuranishi structure on the space My14(X, L, ) X (—¢,€) that will give rise to a
deformation family over (—e, €).

Let U € X be an open set such that every element of the obstruction fiber E,
is supported away from u='(U) for all p. Let n : (—¢,€) x (—€¢,€') — Diff(U) be a

family of difeomorphisms of U. Assume 7,9 = idx and that the composition relation

Ns+t,¢r © Nst = Ns,t4+t/

holds for all s € (—¢,¢) and ¢,¢' € (—€,¢) such that s+t € (—¢,¢) and t+t' € (=€, ¢').3
Furthermore, assume, for all (s,t) € (—¢,€) x (—€,€), that n,, is the identity on a
neighborhood of L and is pseudoholomorphic on an open neighborhood of U ﬂX—\U.
For each pseudoholomorphic p = (r,u) € My1(X, L, 8) we have a Kuranishi chart

Ve 5 Ey; assume finally that the derivative

d

T licoOnss(w) € Ly 5(Z 0 TX @ A™) (2.3.1)

does not lie in Ty(E,) for any p and s.
We have chosen 7 so that it gives smooth maps (7). from each Hilbert manifold

of core maps

W2 (K, KN ) X, L)

to itself.

3This condition may seem somewhat strange at first, but it arises naturally in our primary
example.
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Lemma 2.3.7. In the above situation, we can construct a Kuranishi structure on
Mi10(X, L, B) x (—€,€) with the following properties:

1. We have one Kuranishi chart V; for each p € My114(X, L, 3) such that V

covers V, x (—e€,€).

2. The projections V, — (—¢,€) make a My110(X, L, B) X (—¢,€) stratified defor-
mation family of Myi1.0(X, L, B) x {0} over (—e¢,€).

3. 1f, for every map (2, w) € V, 5 in the fiber of V| over s € (—¢,€), we have that
(os)s o reso w € W2y (K, K N 95,); X, L)
extends to a map
(s )i (w) € Wiy 5((B, 059): X, L),

then the map (ns.)1 in the diagram below exists, is unique, and is a diffeomor-
phism between the Kuranishi neighborhood V, s of the point (p,s) = ((x,u), s) in
the fiber over s and the Kuranishi neighborhood Vi, sy of the point (p,s) in the
fiber over s +t.

‘/p’S (ns,t)! ‘/;)75_;'_15 (232)

resl l/ res

W2 (K] K[ No%,); X, L) W21 (KL, KN d%): X, L)

ns,t)*

Proof. We let J be the w-tame almost-complex structure we have been implicitly
using for X, and we let Js; := n;,J be the pullback almost-complex structure. Each
Jst is well-defined on all of X, and agrees with J on X \ U, by the assumptions on
n. For each J-holomorphic p = (r,u) € My414(X, L, 3), we have a Kuranishi chart

Vo = By,
where s = 7 0 ; is given by Lemma 2.1.28. We then consider the map
§: W2 (KL KIN%): X, L) x (—e.€) x (—€¢,¢) = L2 (Kj;w'TX @ A™)

sending ((9),w), s,t) — w0d,, ,(w). As before, K] is a compact subset of the interior
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of the core K,. Here we are using the coordinate at infinity given by the stabilization
data at p. We define the Kuranishi neighborhood VpO analogously to Section 2.1.6
using the condition d;, ,w € Ey((Y,w)) = 7~ (E,). We get immediately that V? is
stratawise smooth, and it is in fact a smooth manifold with corners, since the gluing
argument is naturally carried out without changing the coordinates s, ¢. Furthermore,
the projection to the s coordinate VpO — (—¢,€) is a submersion, and for each fixed
value of s € (—¢, €) the fiber V), over s is a smooth manifold with corners.

The space V), consists entirely of the pairs ((9),w)),t) where 9;, ,(w) € Ey (), w),
which is equivalent to the condition that 0;(ns: o w|k») € Ey(Y,w), where K” is a
compact subset of the interior of the core K such that K’ is a compact subset of the

interior of K”. This condition is equivalent to the condition
5Jw|K’ S Ep(@= w) — SJ(ns,t ow|gr) + aﬂU\K';

and the condition that ((),w),t) € V;, for some choice of t € (=€, ¢') is equivalent

to the condition

5Jw|K' € E{J((Q.j7w)78) - EP(@aUJ) + ng|K’ - U 5J(ns,t Ow|K’)-

te(—€e)

By the condition in Equation 2.3.1, the spaces E,((2), w), s) give a trivialization of an
obstruction fiber Ey(p,s). Thus, we can take E}(2),w) = Use(fﬁe) (Eé((ﬂj,w), s), s),
and, by forgetting the ¢ coordinate of V;JO, we get Kuranishi charts V| — E;(Qj,w)
for Myi10(X, L, B) x (—€,€) such that the projection to (—e¢,¢€) gives a stratified
deformation family of My .(X, L, ) x {0}. All coordinate changes are naturally
induced from those of the original Kuranishi structure on My (X, L, 3). Since
ns0 = id for all s, we have that E}(2),w) 2 E,(,w), so V] 2V, x (—¢,¢). We have
thus shown items 1 and 2 of the lemma.

Now, as in item 3 of the lemma, assume that every map
(Mse)wotesow € Wi, (K}, K] N 0%,); X, L)

extends to a map

(ns.)1(w) € Wi 11 5((By, 08y ); X, L).

The restriction maps in Diagram 2.3.2 are injective, since every map (), w) € V5 is

Js+-holomorphic on K"\ K’ for some (unique) ¢. The map (7). gives a diffeomor-
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phism from res(V, ;) onto its image, so, since 7544y = 77;,51, it suffices to show that
this image is contained in res(V} s4+¢).
Since (7s:)« o Tes o w extends to (ns.)i(w), we have that 9;(res((n.)i1(w))) €
Ey((Y,w), s +t), which implies (n:)1(w) € V} 54+, as desired.
[

Remark 2.3.8. The reason the above proof is more roundabout than just declaring
E,s = E, — Ute(%,,e,) O(nss o u) is that these forms do not vanish on all neck re-
gions, so we cannot just plug this choice of obstruction fiber into our usual process
for constructing a Kuranishi structure. Note that the condition that the forms of the
obstruction fiber vanish on the neck regions is necessary both for the extension of
the obstruction fiber over the Hilbert manifold W%H(K;, K;N0%; X, L) and for con-
ducting the necessary gluing arqgument to show that our Kuranishi charts are smooth

manifolds with corners.

The proof of Theorem 2.2.1 can be adapted to show the following lemma:

Lemma 2.3.9. Given diffeomorphisms ns, as in Lemma 2.3.7, and given a Kuranishi
inclusion

Mk—‘rl,Z(Y’ LY7 5) i} Mk—i—l,Z(X’ LX7 y*ﬁ)
mduced by a map

VY = X

as in Theorem 2.2.1, we can construct a Kuranishi structure on My (Y, Ly, y*ﬁ) X
(—€,€) and a Kuranishi structure on My10(Y, Ly, B) such that such that we have a

Kuranishi inclusion

Miiro(Y, Ly, 8) & Mygro(X, Ly, b B) x {0}. (2.3.3)

We now combine Lemmas 2.3.7 and 2.3.9 to arrive at our procedure for construct-
ing well-behaved stratified deformation families. Assume that the condition in item
3 of Lemma 2.3.7 holds for 1y, for all £. We take the image (19¢): of each chart Vi,
of image Kuranishi space ¢)(Myi14(Y, Ly, 5)) of the map # in 2.3.3. This is a closed
subset (10,:)1(Vy()) of the Kuranishi chart V), of the fiber over ¢ of the stratified
deformation family My i1,0(X, Lx, ¢ B) x (—€,¢).
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Under the final assumption that the union for fixed ¢ of the images of these
(M0,4)1(Vig(py) in the compact metrizable space underlying the Kuranishi space
Mii1,6(X, Lx, ¥ B) X (—¢, €) form a compact subspace, this then gives a stratified de-
formation family of ¢)(Myi1,(Y, Ly, 5)) with the property that the Kuranishi charts

of the fiber over a given ¢ are obtained from the Kuranishi charts of the central fiber

Y(Miy1,(Y, Ly, B)) by applying (no,):-
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Chapter 3
Application to &(—n)

3.1 Kuranishi structures and correspondence map between
O(—n) and O

We carry out the process behind Theorem 2.2.1 in our specific situation of interest.

We need to build compatible Kuranishi structures for the moduli spaces

MkJrl(ﬁ(_n)?L?B)a and Mk+1(ﬁay([’)>w (5)7 (F07D07n))' That iS, recalling that

the two moduli spaces are homeomorphic under the map 1, we will build isomorphic
Kuranishi structures on them. For readibility, we will actually construct two different
pairs of isomorphic Kuranishi structures. The first, constructed in this section, is
simpler. Notably, all obstruction fibers for these Kuranishi structures will be vector
spaces, as in the original FOOO construction. The second, constructed in the follow-
ing subsection 3.2, is similar to the first but with larger obstruction fibers, which will
not naturally be vector spaces.

Remark 3.1.1. Strictly speaking, we could use 1 as an identification between the

two spaces, take any Kuranishi structure on one of the moduli spaces, and thus have

L' However, as much as having the

1somorphic Kuranishi structures on both spaces.
Kuranishi structures themselves, we are interested in embedding the Kuranishi charts
into appropriate Hilbert manifolds of maps into O(—n) and O, and this requires

greater subtlety.

We first consider My11(0, ¢ (L), ) and begin constructing a Kuranishi struc-

'Even if we were to take this approach, we would need to give more thought to the stratawise
smooth structure on /\/lk_s_l}g(ﬁ’,g(lj),g* (8); (Fo, Do, n)).
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ture, following FOOO [15], [17] as outlined in the previous section. We recall that
(L) C Uy C O is given by |z1| = r;! and [y1] = ry, for fixed constants ry, and r,.

We choose a Riemannian metric on P x P such that it coincides with the Euclidean

metric on the open subset U] = {(z1,y1) € Uy | |z1| < 2r;}

o ?

ly1] < 21y, } of Uy.

We next need to take obstruction bundle data (Definition 2.1.30) and stabiliza-
tion data (Definition 2.1.37) at each p’ € My1(0,¢(L), ¢ B). We will only take
specific care in choosing obstruction bundle data and stabilization data at points
Y(p) = (,¢(w) € My (0,9(L),¢ B). For our obstruction bundle data, we need
to choose a symmetric stabilization @ and corresponding codimension 2 submanifolds
D; (items (1) and (9)), a universal family with coordinate at infinity (items (2) and

(3)), a FJ -invariant obstruction fiber Ey ) (item (4)) such that items (6)-(8) are

(puUw)

satisfied, and a F:Z(puw)—equivariant extension Trive g, o

Recall that, since ¢(p) is holomorphic and 3 € Hy(&, (L)), we have that non-
constant components of ¥ (p) intersect the fibers Fy = {(z1,y1)1 | x1 = 0} at a finite
number of isolated points. We can thus choose a symmetric stabilization @ of ¢ (p)
so that ¥(u(w;)) & Fp for all w;, and we choose the corresponding codimension 2
submanifolds D; to be transversal to Fy. This then induces a compatible stabilization
for p € My,1(0(—n),L,3). We then take a universal family with coordinate at
infinity for each component together with its extra marked points g, U w0,.

Next, we choose an obstruction fiber Eypua) C L7, 5(Kyua; 0(u);T0 @ A1)
With this fiber, we need ¢(p) to be Fredholm regular, evaluation map transversal
(at singular points), and evaluation map transversal at the Oth boundary marked
point. We also need the total obstruction fiber Eypug) to be invariant with respect
to I jz;(puw)' We want to satisfy all of these conditions and keep the support of the

obstruction bundle away from v (u)~'(F}), so that we can then build a compatible

structure on My1(0(—n), L, 5). Actually, we have the following stronger fact.
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Lemma 3.1.2. Taking trivial obstruction fiber
Eypua) = {0} C ng,d(Kxuuw; Y(u)sTO @ A™)

at (p) = (r, ¥ (u)), we have that 1(p) is Fredholm regular, evaluation map transversal

at singular points, and evaluation map transversal at the Oth boundary marked point.

This trivial bundle is of course invariant with respect to Fg( Note that the

puUw)

Fredholm regularity condition is as an element of My 1(0,¢(L), ¢ f3).

Proof. By Cho-Oh [9], all disc components are Fredholm regular without any ob-
struction bundle. It is straightforward to check that all sphere components are also
Fredholm regular without any obstruction bundle.

The statements about evaluation map transversality rely crucially on the fact
that our discs are genus zero, so the components form a tree. Each sphere component
has a unique “outgoing” singular point (corresponding to an outgoing edge in its
combinatorial type graph), so the restriction of the corresponding single component

evaluation map

Vet W21 5((8y,,0); 0(u) TX, p(u) TL) = TywynX

t0 (Dyp(u),00) '(0) is surjective. Note that this would not necessarily hold if our
ambient space (in this case @) contained negative self intersection rational curves.

Similarly, each disc component not containing the Oth marked point has a unique
outgoing singular point, and the restriction of the corresponding single component
evaluation map

eVye W,%L

11608y, 0%y,); ¥(u) TX, (u) TL) = Tyu)(z) L

to (Dy(w,»0)~'(0) is surjective. This can be seen by applying the T2-action to the
disc.

The evaluation map transversality at the Oth marked point follows similarly. [

However, to allow us to construct a compatible Kuranishi structure on
My 1(0(—n), L, B), we will add non trivial obstruction bundle. The only additional

obstruction bundle we will need for this purpose will be to accommodate sphere



72

components in multiples of the class [D_,], which are crucially not Fredholm regular
without some obstruction bundle (this being the whole substance of the problem at

hand). To this end, we make the following observation.

Lemma 3.1.3. Let p = (r,u) € M1 (O(=n), L, ) with symmetric stabilization
induced by that for ¥ (p). For each component p, not in some class a[D_,] with
a > 0, take trivial obstruction fiber Eyugo = {0} C L2, 5(Ke,ua; upTO(—n) @ A™).

v

For each component p,, in some class a[D_,] with a > 0, we can take an obstruction
vector space By, = {0} C L2, s(Ky,uw; uyTO(—n) @ A%') such that:

v

+

1. By, 95 invariant with respect to T‘pu“7

2. Each element of Eyz. is supported away from u™ ' (Fp).

3. p is Fredholm regular, evaluation map transversal at singular points, and eval-

uation map transversal at the O0th boundary marked point.

Proof. Most of the work of this proof is contained in the following two lemmas.

Lemma 3.1.4. Let u : P! — &(—n) be a holomorphic map belonging to homology

class a[D_,| for some positive integer a. The pullback bundle w*TO(—n) splits as
(TPHY®* @& O(—an).

Proof. First consider the map f : P! — &(—n) sending [z : z1] = (0,%) € Uy for
21 # 0 and sending [zg : z1] — (0, j—(l)) € U for zg # 0. We have an exact sequence

0 O(—n) 5 FFTO(—n) L TP — 0

where the map i sends a section v : P! — &(—n) to the vector field lim; %“
Considering the inclusion TP! LR f*TO(—n), we see that this sequence splits.
Now, u factors as fou' where v’ : P! — P! is a degree a map, so u*T'¢(—n) splits
as (W)*TP' & (v')*O(—n) = (TPHY** @ O(—an). O
This then leads us to the following lemma.

Lemma 3.1.5. Let u : P! — &(—n) be a holomorphic map belong to homology class

a[D_,] for some positive integer a. The cokernel of the linearized 0 map

Dud s W2,y (PL,0); " T O (—n), w TL) — L, (P u T6(—n) @ A™)
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is isomorphic to H* (P, 0 (—an)).

Furthermore, we can choose representatives ey, . .., €q,_1 0of a basis of
HYY P (W) O (—n)) =2 H (P!, O(—an)) so that each e; is supported away from
a neighborhood of u='(F,), and so that u is Fredholm regular with respect to the
obstruction vector space spanned by (0,e;) € L2, s(P';u*TO(—n) @ A%*).

Proof. As in the proof of Lemma 3.1.4 we factor u as v = f o u’. The linearized
0 operator respects the splitting given by Lemma 3.1.4, and hence we have D,0 =
D0 @® DyO where

Do W2, 4B () TPY) = L2, (B (o) TP @ A1),
Do0 W2 1 (P O(—an)) — L2, 5(P'; O(—an) @ A™Y).

D0 is surjective. The map
0 : W,iH’é(IP’l; O(—an)) — L,%M;(}P’l; O(—an) ® Ao’l)

is linear. Thus, the cokernel of D,d is isomorphic to the cokernel of 9 on &(—an).
Since P! has complex dimension 1, this cokernel is exactly H%*(P', &(—an)).
Assume WLOG that «/([0 : 1]) = [0 : 1] and that «/([1 : 0]) = [1 : 0]. Let
¢ : P — [0, 1] be a smooth function equal to 0 on an open neighborhood of [0 : 1] and
equal to 1 on an open neighborhood of [1: 0]. Let ¢y, ...,c, € C={[z0: z1] | 20 # 0}
be the points of (v/)~'([1 : 0]) taken with appropriate multiplicity (so the ¢; are
repeated if v/ has higher multiplicity at ¢;). Here (u/)*@(—n) is given by charts

Vo=({lzo: 2] [ 21 # 0} \ (u) 7' ([1: 0])) x C
Vi=({lzo: 2] [ 20 # 0} \ () 7'([0: 1])) x C,

each of which is a copy of C with finitely many points removed crossed with a C fiber.
These charts are glued as follows for «'([2zo : 21]) # [0 : 1], [1 : 0]:

20 2 1 (= o
— Y ~ R — — G4 )
(21 )0 (20 H (zo ]> )1

=1

For each positive integer ¢ € [n(k — 1) + 1, nk] we define h;(z) = Hf;ll(z —c)"-

)i—n(k—l).

(z — ¢ We then define sections g¢o; and ¢y, of Vi and V; respectively as
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follows:

i (2) = (200G zDn (—))

Note that on the intersection of Vy N V; the difference between these two sections is
a holomorphic (local) section.
We then define the section e; of (v/)*@(—n) @ A%! as follows:

dgo; for u/([zo : z1]) # [1: 0]

€i([20 : Zl]) = _ ,
Ogr;  for u/([z0 : z1]) # [0 : 1].
Each section e; vanishes where ¢ o’ is constant, and the classes [eq],. .., [ean_1] form
a C basis of H"! (P!, («/)*@(—n)), so the desired result follows. O

By an argument similar to that in Lemma 3.1.2, this obstruction vector space is
enough to guarantee the necessary evaluation map transversalities.

Finally, as in Lemma 17.11 in FOOO [17], we can take an average over the action
of F:uw to make Ep,gz F;Uw—invariant. This does not interfere with our conditions on
the support of E,. This concludes the proof of Lemma 3.1.3.

m

For each point p € My 1(0(—n),L,) we take the obstruction fiber Eyyz

N

L}, s(Kww; w*TO(—n) @ A®') appearing in Lemma 3.1.3, and for each point ¢(p) €

N

Mk+1<ﬁ>ﬂ<L)a£ﬁ; (Foy, Do,m)) we choose obstruction fiber Eypury = VsLpuam
L2, 5(Kwa; ¥(u)*TO @ A%'). For each point

p/ € Mk+1(ﬁ7%([’>7g*ﬁ) \ MkJrl(ﬁv%(L)ay*B; (F07 DOan))

we take trivial obstruction fiber.
The only part of Definition 2.1.30 that we still need are a I‘Lw—equivariant exten-

. . . + . . . . ~
sion Triver g, 5 of Eyug and a T’ w(puw)-equwarlant extension Trivyg: g, (ou) of Ey(pu)-
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For Triv g we use parallel transport along geodesics with respect to our cho-

Lyppua)
sen metric on @, as is standard. For Trivgs g, ., we employ Proposition 2.1.27 to

pull back the extension Triv g along . We have thus chosen all necessary

By (pum)
obstruction bundle data.

For each ¥(p) € My1 (0, (L), % B; (Fo, Do, n)) we take ey as in Section 2.1.5,
and for each p’ € M1 (0, ¥(L), ¥ B) \ M1 (O, 9(L), ¢ B; (Fo, Do,n)) we take €y
sufficiently small for the neighborhood 20 (p') in My,41(&, (L), ¥ _B) to not intersect
My1(O, (L), _B; (Fo, Do, n)).

For each v(p) € My11(0,¢(L); ¢ B; (Fo, Do,n)), we choose the subsets

+
of )

and QU,, = ¢_1(w¢(p)). For

C My11(0,¢(L), ¢, B) as in Section 2.1.5, and we take Qﬁg = wil(ﬂﬂ?p(p))

p' e Mk+1(ﬁa%([¥>7ﬂ*ﬁ) \ Mkﬂ(@ﬁ@)%ﬂﬁ? (Fo, Do, n))

we also choose subsets Qﬂg,,‘lﬁp/ of SZIT;,, with the important point being that these
sets again do not intersect My 1(0,¥(L); ¥ B; (Fo, Do, n)).

We take a finite set {p,, | ¢ € €'} € My1(0,9(L), 9 ) such that | J .o Int W), =

ce’ pLo
M1 (O, 9(L), ¢ B). Because of our choices of 20y, this gives a finite sets € C ¢
and {p. | c € €} € My 41(0(—n), L, §) such that |J e Int W) = My 1 (0(—n), L, B)
and | J . Int Qﬁ?p(p) D M1 (O, (L) ¢ B; (Fo, Do, n)), and such that for each ¢ (p)

the set €'(¢(p)) C €.

cel

We now take stabilization data (see Definition 2.1.37) at each
p € Mp1(O(—n), L; §) in a similar way to how we chose obstruction bundle data.
That is, we choose a symmetric stabilization @, of p so that u(w,;) ¢ Fi for all

wy;, and we choose the corresponding codimension 2 submanifolds D, ; of &(—n) to
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be transversal to F;. We then take a universal family with coordinate at infinity
for each component together with its extra marked points r, U w,. By taking the
same coordinate at infinity and symmetric stabilization, and taking the codimension
2 submanifolds ¢ (D, ;) of &, we get a corresponding choice of stabilization data at
¥(p). We also choose stabilization data at p’ for each p’ € My y1(0, (L), ¢ B) \
Mi1(0,¢(L), ¥ B; (F1, Do, n)).

We now take €y and ¢ small and consider the sets L, 11,(0:4,,(0.)) (O (—n), L, §; p)eo’fo

and ilkJrL(o;gp,(gc))(ﬁ,g(L),%*B;w(p))%’Tﬂo (see Definition 2.1.39). By taking €y suffi-

ciently small relative to €, we get that for all

(D, (@) € Ukr1, 0.0 (O(=7), L; B p),, 7,

we have that (), You’, () € Ypy1, 05,00 (T, L' B'; ¢(p))66,f0' We also have ¢, 0u’ =
d(¢p o '), so, by the choices of our obstruction bundle data,
ou' € E((Y, ', (@), Xy) if and only if dpou’ € E((Y, Y o, (1)), Xg)). That is, we

have the following map of thickened moduli spaces (see Definition 2.1.41):

s Mg, 08,6 (O(=10), Li B59) o iy = M1, 0,000 (05 0(L), 10 550 (9)) o 7

From our various choices of codimension 2 submanifolds D and (D), this then gives

a map

Y r Myt 08,060 (O(—n), L; B3 p) 7% — Myt 0,00y (O, L' B ¢(P))i€%s

0,10

which is a smooth embedding. We take an open neighborhood Vi) of #(p) in
MHL(O;&,(@C))(ﬁ,y(L),g*ﬂ; @/}(p))eé’fb such that the set

Vi) N (Misr o, ) (0(=n), L B )1 F)

0,10
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is closed in Vj ). We then take V, = ¢~ (Vyp).

Each (Vy(), €(p), Iy, Triv 0 ) is a Kuranishi neighborhood of ¢ (p) in
M1 (O, 0(L), ¢ B) and (V,,E(p), Ty, Triv o 9) is a Kuranishi neighborhood of p
in My41(0(—n),L,). The natural transition maps used in FOOO [17] for the
Kuranishi structures on My1(0(—n), L, ) and My1(0, ¥ (L), B) are compatible
in the sense of Definition 2.1.4. Thus, we have constructed our first example of a

Kuranishi morphism of moduli spaces:

Theorem 3.1.6. With the Kuranishi structures constructed above, the map v :

O(—n) — O defined in Section 1.4 induces a Kuranishi morphism

,lvb : Mk’-i—l(ﬁ(_n)) L)ﬁ) — Mk-‘rl(ﬁay(L)?%*ﬁ)
in the sense of Definition 2.1.4.

Note that the virtual dimension of the target moduli space will be higher than that
of the target if 8 includes any copies of the class D_,,. In particular, v is a smooth
embedding on each Kuranishi neighborhood V, with image a closed submanifold of
V- We can now take Kuranishi neighborhood (¢(V;),E(p), Ty, Triv 0 9) of the

point ¥ (p) in the moduli space Mk+1(ﬁ,g([1),g*ﬁ; (Fo, Dg,m)). With this Kuranishi

structure, we have the following result:

Theorem 3.1.7. With the Kuranishi structures constructed above, the map ¢ :

O(—n) — O defined in Section 1.4 induces a Kuranishi isomorphism
w : Mk+1(ﬁ<_n>7 L7 ﬁ) - Mk+1(ﬁ7£([’)7%*57 (F07 D07 n))
in the sense of Definition 2.1.4.

This is a specific case of Theorem 2.2.1.
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3.2 Deformation of moduli space

We now apply the process described in Section 2.3 in our specific case. We will
construct a stratified deformation family M — (—e¢, €) such that the fiber over 0
is the moduli space M(&, (L), B; (Fo, Do,n)) (with a new Kuranishi structure
built by modifying the structure from Section 3.1) and such that a general fiber has
Kuranishi section transversal to the 0 section, so that the underlying moduli space
is smooth. In the following section, we will use these generic fibers to construct the
desired A.-structure on H*(y(L), A).

Fix generic points ay,...,a, € C. Let U. = {|z1| > ¢} x C C &, the complement
in U; of a closed neighborhood of the fiber F. We choose ¢ so that L C Us.. Let
¢1,¢9 : P1 — [0,1] be two bump functions on the zero section of & both equal to
1 on 0\ Us. and equal to 0 on Us.. We fix functions f,g : {1,...,n} — Z-o with

nolo 490)

f(J) < g(j) < f(j+1) for all j and we fix p,(z) = Hm We define our

7j=1
diffeomorphisms 7, : U, = U, to be

Ns,t(T1,91) =
2 log(TT™ - (21 —s @ a: )" (zq —(s+2) @D a,;
(I176¢1( 1) log(TT7—; ((z1 Dag) (w1 —(s+t)T0 _7)))(y1 — s¢o(21)ps (1)) + (5 + )2 (21)psge (1))

We choose s, t sufficiently small relative to ¢ that the argument of log has positive
real part for all x;1 > ¢, so we may choose a specific branch of log without any
ambiguity arising from multiplying log by non-integer values. The choices of f,g,
and p; are made to be compatible with tropicalization, as will be discussed in Section
3.4.

These satisfy the composition rule 1. © 15 = 14+ prescribed in Section 2.3,
and also have 7, is the identity. By choosing ¢i, ¢2 generically, we also have the
derivative condition given in statement 2.3.1. Furthermore, given any nodal disc map

w in class ¢ 8 € Hy(0, L) (pseudoholomorphic or otherwise) with £ + 1 boundary
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points such that it order of intersection with Dy at each point is at least n times its
order of intersection with Fy at that point, we have that (ng.)(w) is well-defined,
satisfying the tangency condition that the order of intersection with Fi,, is at least
equal to its order of intersection with the section Stn+1a;_1 taking value t"“a?.

It follows that the procedure given in Section 2.3 gives us Kuranishi structures
on My1(0(—n), L, B) and My11(0,¢(L),v B) so that we have a Kuranishi inclu-
sion My41(0(—n), L, B) = My41(0,¢(L),¢ B) and a stratified deformation family
M = (—¢,¢€) of V(My41(0(—n), L, 3)) where the fiber over ¢ is the moduli space

Mk+1(ﬁ7£([/)vﬁ; (Fau Sbu 1)7 BRI (Fam Sbn7 1))

with an appropriate Kuranishi structure.

3.3 Superpotential for 0(—n)

We now arrive at the business of defining our potential function for the Lagrangian
L in 0(—n). We will require the following three regularity results, which we present
without proof:

Lemma 3.3.1. For n generic points ¢; = (a;,b;) € (C*)> CU; C O and an effective

disc class B € Hy(O,¢(L)) of Maslov index less than or equal to (B - Fo)n, we have
that the bulk-deformed moduli space

Mk—i—l,(ﬁFo)n(ﬁay(L% /37 qis - q1y -5 An, - - - )Q’n>
N— N—
B-Fy times B-Fy times

is empty. For generic points q;, it then follows that the following space is also empty:

Mk+1(ﬁ7g<[’)vﬁ; (Fausbw 1)7 SR (Fan75bn7 1))

Lemma 3.3.2. Forn generic points ¢; = (a;,b;) € (C*)*> C Uy C O and effective disc
class 8 € Hy(O,9(L)) of Maslov index 2+ (B - Fo)n, we have that the bulk-deformed
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moduli space
ML(ﬁFO)n(ﬁay(L%ﬁu qiy---5q15-- -5 qn, - - - 7Qn)
—— N——

B-Fy times B-Fy times

is a smooth dimension 0 manifold and is a ((8 - Fy)! - n)-fold unramified covering of

M(O (L), B (Fyyy Sy, 1), ..oy (Fa,y Shys 1)),

which is thus also a smooth dimension 0 manifold.

Lemma 3.3.3. For n generic points ¢; = (a;,b;) € (C*)? C Uy C O and effective
disc class 8 € Ho(O, (L)) of Maslov index strictly greater than 2+ (- Fy)n, we have
that the bulk-deformed moduli space

Mk—i—l,(ﬁ'Fo)n(ﬁay(L% /87 qis - q1y -5 An, - - - )Q’n>
N— N—
B-Fy times B-Fy times

is a smooth manifold with boundary and corners and is a ((B- Fy)!-n)-fold unramified

covering of

Mk—‘rl(ﬁay(l/%ﬂ; (Fa17Sb17 1)7 R (Flln7Sbn7 1))’

which is thus also a smooth manifold with boundary and corners.
There are no sphere bubbles, so its boundary and corners are all isomorphic to
fiber products of the form

Mkl'f‘l(Bl) eVi 41 ><eVo-/\/t]Q-&-l (51)

where ki1 + ko = k, and p1 + B2 = 3, and

Mk’—i—l(ﬁj) - Mk’—l—l(ﬁag([/)aﬂj; (Fap Sbn 1)7 R (Fan7sbn7 1))

With these regularity results in hand, the stratified deformation families con-
structed in Section 3.2 are in fact stratified deformation regularizations, in the sense
that all fibers except the central fiber have transversal Kuranishi section without
perturbation. The following proposition is then a straightforward consequence of

standard Floer theoretic arguments.



81

Proposition 3.3.4. We fiz n generic points q; = (aj,b;) € (C*)> CU; C 0. The

moduli spaces

MkJrl(ﬁay(L);E*ﬁu (Fa17 Sb17 1)7 CI) (FanJ Sbn? 1))

for € Hy(O(—n), L), taken with trivial Kuranishi structure (as they are all al-
ready manifolds with boundary and corner) define an A.-structure on H*(L;N\y) as

in Section 1.2.

We again have that H'(L;A,) is the weak Maurer-Cartan space, so our A.-

structure defines our Lagrangian potential function
W HYL;Ay) — Ay
for L C O(—n).

3.4 Conjectural calculation

The remainder of this chapter is devoted to discussing the calculation of these su-
perpotentials, which will be worked out rigorously in upcoming work. Essentially,
we can realize the terms of our superpotential as terms of a related bulk-deformed

superpotential, which we expect to be calculable using tropical scattering diagrams.

3.4.1 Scattering diagram and wall crossing

We now turn to the problem of explicitly calculating this potential function. This
will require the introduction of a new A..-structure on H*()(L); Ag). This is because
the moduli spaces used to define the A, -structure on H*(L;Ay) in Proposition 3.3.4
do not behave appropriately under wall crossing. Intuitively, this is because the A..-
structure in Proposition 3.3.4 really only knows the information contained in L as a

Lagrangian in &(—n), and only one chamber of the scattering diagram in & that we

will end up studying corresponds to this &'(—n) information.



82

The A..-structure we consider will be the bulk-deformed A -structure deformed
by the point insertions g;. The regularity results of the previous section then imply
that the terms of our superpotential for &(—n) will all be terms of the associated
bulk-deformed superpotential. There is a natural Floer theoretic scattering diagram
associated with this bulk-deformation. This scattering diagram was studied for toric
Fano surfaces by Hong-Lin-Zhao [32], using nilsquared coefficients to avoid contribu-
tions from repeated point insertions. Their scattering diagram can then be under-
stood tropically and used to calculate the associated superpotential, which they call
the n-th order bulk-deformed superpotential, for n the number of point insertions.
We expect that a similar procedure is possible for the full bulk-deformed scattering

diagram and superpotential, which we intend to prove in future work.

3.4.2 Tropical geometry

Recall that the modified SYZ conjecture of Kontsevich-Soibelman [36] predicts that,
near the large complex structure limit, Calabi-Yau manifolds should collapse to inte-
gral affine manifolds with singularities. It is also expected that holomorphic curves
in a Calabi-Yau manifold should collapse to affine 1-skeletons in the integral affine
manifold. This brings us to the world of tropical geometry. Specifically, we will be
considering tropical geometry as it appears in the Gross-Siebert program [30], in-
spired by work of Mikhalkin [39], which can be thought of as an algebraic analogue
of the SYZ approach to mirror symmetry, as well as as a powerful combinatorial
calculational tool, which is the primary way in which we will be using it.

Let N = Z? be a lattice with dual lattice M := Homgz(N,Z), and let Ng := N®zR
and Mg := M @7z R. Let ¥ C Mg be the toric fan of a toric surface Y. We let XU

denote the set of 1-cones of Y.

Definition 3.4.1. A parametrized tropical disc of Y with stop at p in Mg is a triple
(T, w, h) where
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1. T is a rooted tree with root vertex x and non-compact edges (i.e. edges with only
one adjacent vertex). The root x (which is univalent) is the only vertex that is

not trivalent. In particular, x is the only leaf of the tree.

2. w is an assignment of a positive integer weight to each edge. We assume that

each unbounded edge is assigned the weight 1.

3. h:T — Mg is a proper map with h(x) = p that is also an affine embedding
on each edge. For each non-compact edge e, the affine ray h(e) is of the form
m’ +Rsom for some m' € Mg and m € M a primitive generator of a 1-cone of

Y. At each trivalent vertex, the following balancing condition must hold:
w(er)veer) + w(ex)ves) + wles)ves) = 0.

Here v(e;) is the primitive vector tangent to h(e;) pointing away from the vertex.

We will often refer to the triple (T, w, h) simply as h.

We refer to the image of a parametrized tropical disc as a tropical disc.
We next define the degree of a tropical disc.
Definition 3.4.2. The degree of a tropical disc (T,w,h) of Y is an element of Zg[ol],

where the value of the p coordinate for each p € XMV is the number of unbounded edges
of (T,w,h) in the p direction.

This degree is analogous to the intersection numbers of a holomorphic disc in Y
with the components of the toric boundary. Fixing a moment fiber L, the homology
class in Hy(Y, L) of the holomorphic disc is uniquely determined by these intersection
numbers. Likewise, for a fixed stop p, the degree of a tropical disc with stop at p

functions like a homology class of the disc.

Definition 3.4.3. We define the Maslov index M I(h) of a parametrized tropical disc
(T, w, h) to be twice the sum of the weights of its unbounded edges.

After establishing more directly the relationship between tropical discs and holo-

morphic discs in Y with boundary on a moment fiber Lagrangian, this definition of
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the Maslov index of a tropical disc will correspond to Lemma 3.1 in Auroux [4] or
Theorem 5.1 in Cho-Oh [9]. Note that the Maslov index is determined by the degree
of h, so if A is the degree of h we can define MI(A) to be MI(h). This is consistent
with the fact that the Maslov index of a disc with boundary on a fixed Lagrangian L
depends only on its homology class. Furthermore, the moduli space of tropical discs
of degree A with stop at a point p has real dimension MI(A) — 2, which equals the
virtual dimension of the fiber of evy : My (Y, L, ) — L for MI(B) = MI(A).

We will later need to study tropical discs subject to point constraints, so we define

the generalized Maslov index of a tropical disc.

Definition 3.4.4. Given { generic fixed point constraints qi,...,q € Mg and a

tropical disc h with every q; contained in the image of h, we define the generalized

Maslov index GMI(h) == MI(h) — 2¢.

This aligns with the generalized Maslov index of a holomorphic disc as defined in
Hong-Lin-Zhao [32]. The moduli space of tropical discs of degree A subject to the
generic point constraints ¢i, . . ., ¢, has dimension GM I(A) — 2 if it is non-empty. We
will thus be interested in counting generalized Maslov index 2 tropical discs, as these
belong to a discrete moduli space. We will need to count them with an appropriate

weight, defined as follows:

Definition 3.4.5. For each trivalent vertex v with adjacent edges ey, es, es of a tropical
disc (T, w, h), the Mikhalkin weight at v is

Mult, := w(ey)w(ez)|v(er) Av(ez)| € Zso.

Because of the balancing condition of tropical discs, this value is independent of the
labeling of the three edges.
The Mikhalkin weight Mult(h) of the disc is the product of the Mikhalkin weights

of its trivalent vertices.

Example 3.4.6. Let Y = P! x P! with complete toric fan ¥ determined by the
1-cones generated by (1,0),(0,1),(—1,0),(0,—1) € M. We fix three generic points
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q1,q2,q3 € Mgr. Three tropical discs with stop at p all of generalized Maslov index 2
are depicted in Figure 3-1. All edges have weight 1, and all three tropical discs have
Maikhalkin weight 1.

p

® (2

s>
q3

-« 2
vy

Figure 3-1: Three tropical discs of generalized Maslov index 2 with stop at p.

We turn now to tropical scattering diagrams, as defined by Gross-Pandharipande-
Siebert [29]. As one might expect based on the name, these will be closely related to
the Lagrangian Floer scattering diagrmams of Section 1.2. Let R be a complete local
C-algebra and let mg be the unique maximal ideal of R. Our primary example will
be R = C[[ty, ..., 1]

Definition 3.4.7. A tropical scattering diagram D is a collection of walls {(, f>)}

where
e 0 C My is either a ray of the form ® = mj + Rsomy or a line of the form
0 = mj + Rmy, for some mj € Mg and my € M \ {0}. The set 0 is called the

support of the line or ray.

e f, € C[[z™]]&cR C C[M]&cR, called wall functions, satisfy
fo =1 mod 2" mg.
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such that for every power k > 0, there are only a finite number of (0, fy) with fy # 1

k
mod mf.

Given a wall 9 and a path ¢ crossing this wall (once, transversally), there is an

associated automorphism

eqm(zm) _ meén(),m>’

where ng € N is primitive normal to 9, and (ng, ¢'(ty)) > 0, where ¢, is the moment
¢ crosses the wall D.

Given a scattering diagram ©, we write

Sing(®) = U{mg} U U 01 N0,

€D 01,02 dim01M02=0

and we consider a smooth immersion ¢ : [0,1] — Mg \ Sing(®) such that endpoints
lie outside of the support of the scattering diagram % and such that ¢ is transversal
to the support of the scattering diagram.

Now, for each power k > 0, ¢ will cross only a finite number s;, of walls with f, #Z 1
mod m¥. We label them by ;, where j = 1,...s; with respect to the order of the
path intersecting the walls. The automorphism 9(’;79 1= 0y, 000, is well-defined,

so we can define the total wall-crossing automorphism as
Opp = lim 05 5.
o = Jim )
We then have the following theorem, due in various forms to Kontsevich-Soibelman

[36] and Gross-Siebert [30].

Theorem 3.4.8. Let ©' be a scattering diagram. Then there exists a scattering
diagram ® containing ®" such that O\D' consists only of rays, and such that 055 = 1d
for any closed loop ¢ for which 0,9 is defined. After combining (9, f5), (', for) into
(0, fofy) if 0 =0, the resulting D is unique.

A scattering diagram with this property of having 64 depend only on the homo-
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topy class of ¢ is called a consistent scattering diagram.

The scattering diagrams we will be interested in are variants of the following
diagrams due to Hong-Lin-Zhao [32]. Let u € R? be a point of the discrete Legen-
dre transform of the moment polytope of Y and let L, be the corresponding mo-

ment fiber Lagrangian. We will again be using nilsquared coefficients in the ring
Clty, ..., t/(t3,...,12).

Definition 3.4.9 (HLZ [32] Definition 3.10). Given generic qi,...,q,u € R?, the

bulk-deformed tropical superpotential W, (u) is defined as

W, (u) = Z Mult(h) 22,
h

where t), = queh t; and the summation is over all (rigid) generalized Maslov index

two tropical discs ending at .

We then define our scattering diagram inductively by considering the bulk-deformed
tropical superpotential W;iolp (g;) at each point with respect to the remaining ¢ — 1
points ¢ and taking initial walls ¢; + (—0[h])Rso with function (1 + Mult(h)z"lt,)
for each term of W, %(g;). We then take the completion © of this scattering diagram
as above to one such that the function 64 is the identity for any contractible loop
in R2\ {q1,...,q}

Our holomorphic discs and Lagrangian Floer scattering diagram are related to the

corresponding tropical objects via tropicalization. For our purposes, this is accom-

plished using the map
Log,—1 : (C*)? — R?
(z,y) = (log,—1 |2[, log, |y]).

Taking the limit ¢ — 0, the image of any holomorphic curve or disc converges to a

tropical curve or disc. This leads to the following result:
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Theorem 3.4.10 (HLZ [32] Theorem 5.10). Let Y be a toric Fano surface and let
Pl pp € (C)? € X be points with Log,—(p}) = q;. Then Wy(u) = W/ (u) if
uweU andt << 1.

That is, sending the bulk-insertions in Y to the boundary as t — 0, the tropical
scattering diagram and superpotential recover their holomorphic counterparts.

We now recall the notion of the broken line, which are used for calculating tropical

superpotentials.

Definition 3.4.11. Let ® be a consistent scattering diagram on Mg. A broken line

with stop at uw € Mg is a continuous map
b:(—00,0] = Mg
such that b(0) = u and with the below properties: there exist
—o=t<t1 <---<t,=0

such that b(t;) € Supp(D)\Sing(D), and such that b|y,_, 1 is affine with rational
direction ('(t) positively proportional to some primitive m; € M. For each i =

1,---,n, we have a decoration c;z%™, with d; € Zg, such that
1. ¢y =1, and dy = 1, and my is a generator of a 1-cone of X.

2. If b(t;) € ;0; for some collection of walls d;, then Cip1 25N s q term in

([1000)) (2™, (3.4.1)

1

where €; = sgn(ms, ;).

The following proposition of Gross [27] gives the connection between broken lines
and generalized Maslov index 2 tropical discs.
Proposition 3.4.12 (Proposition 5.32 Gross [27]). For generic u lying outside the

support of our scattering diagram, there is a one-to-one correspondence between bro-

ken lines with endpoint u and generalized Maslov index two tropical discs ending at u.
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Furthermore, if the monomial associated with the last segment of a broken line corre-
sponding to a disc h is cz™, then this is the term of the superpotential corresponding
to h.

3.4.3 Superpotential for &(—n)

To calculate the desired potentials, we must extend the work of Hong-Lin-Zhao [32]
to allow for contributions from repeated point insertions. In this section we give
a conjectural description of the appropriate extension, to be treated completely in
future work.

One natural idea is to simply relax the condition that t? = 0, that is to use the ring
Clts, ..., ts instead of Clty, ..., ts|/(t3,...,t2), and construct a scattering diagram as
in HLZ. However, the resulting tropical superpotential is not in general constant on
chambers of the scattering diagram.

It seems that the appropriate solution will be to modify the notion of generalized
Maslov index for tropical discs to accommodate discs sending a vertex to a point
insertion. However, it will require more detailed Floer theoretic calculations to de-
termine what precisely the appropriate modification will be. For instance, the most
straightforward modification would be to treat a vertex mapping to a point insertion
as reducing the generalized Maslov index by 4. This would then lead to a form of “in-
ternal scattering,” wherein the associated scattering diagram would have initial walls
of the form ¢; + (=, Olhm])Rso with function (1 + (T, Mult(h,,)) z2m Pmlt,),
where h,, ranges over any finite list of terms from W,"?(¢;). This has the disadvan-
tage that, even when ¢ = 1, the scattering diagram has infinitely many initial walls,
the support of which is dense in Mk. However, for each fixed degree k, modding out
by (t¥,...,t¥) produces a finite scattering diagram where the potential is constant on
each chamber. This construction gives, in some sense, a maximal extension of the

HLZ tropical bulk-deformed potential, which is tropically very natural but unlikely to
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correspond to a relevant Floer theoretic scattering diagram. We conjecture that the
correct extension of the tropical bulk-deformed potential will be a weaker extension,
in the sense of adding strictly fewer initial walls.

Furthermore, inspired by the generic regularity lemmas of Section 3.3, we conjec-
ture that only tropical discs not mapping a vertex to a point insertion will contribute
to the count matching our superpotential for &(—n). Combining these conjectures
with our choice of deformation regularization and associated tropicalization of the
bulk insertions, we are able to carry out some expected calculations, to be made

rigorous in later work.

3.4.4 Examples of conjectured calculations

For each &(—n), we let 51 € Ho(O(—n), L) be the class of the unique Maslov index
2 holomorphic disc with boundary on L intersecting the fiber defined by 2y = 0 in
Uy, we let By € Ho(O(—n), L) be the class of the unique Maslov index 2 holomorphic
disc with boundary on L intersecting D_,, and we let 83 € Hy(0(—n), L) be the
class of the unique Maslov index 2 holomorphic disc with boundary on L intersecting
the fiber Fy defined by x1 = 0 in U;. To compare the superpotentials we find to
known superpotentials for Hirzebruch surfaces, we let g, € Hy(F,, L) be the class
of the unique Maslov index 2 holomorphic disc with boundary on L intersecting the

oo-section of &(—n).
Superpotential of (—1)

The simplest non-trivial example of our procedure is the case where n = 1 and
we are attempting to define and calculate a superpotential for &(—1). Since the
compactification [F; is Fano, this superpotential can be defined without any sort of
perturbation, so we should hope that our procedure produces a modification of this

standard superpotential, as given by Hori-Vafa [33] and Cho-Oh [9]. Specifically, the
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superpotential for F; is

1
Wi, = Tz 4 7By | Tw(ﬁs)% i Tw(m);

We consider the scattering diagram defined in Section 3.4.3, which in this in-
stance is determined by a single point. We expect this to correspond appropriately
to the Floer theoretic scattering diagram without the addition of any further walls.
This scattering diagram is pictured on the left in Figure 3-2. To calculate the su-
perpotential, we consider the broken lines with stop in the top left chamber of the
scattering diagram, pictured on the right in Figure 3-2. The choice of chamber is
determined by our deformation regularization. Only the red broken lines contribute.

The superpotential is thus
Wo1y = TPy + 7By Tw(b’s)%

This is precisely Wy, minus the term 7" w(ﬁ‘*)i corresponding to the disc class (4, as

we would hope.

1+t

1+ xty

1+.’I?_1t1 . * .

14 -y_ltl

Figure 3-2: On the left is the scattering diagram associated with a single point
insertion in P! x P!. On the right are the broken lines with stop in the chamber of
interest (top left). Those in red contribute to the superpotential for &'(—1).
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Superpotential of 0(—2)

The next simplest case is @(—2). The compactification [y is semi-Fano, and its
superpotential has been calculated in a number of ways, see Chan-Lau [8], Auroux
[5], and FOOO [21], all arriving at consistent answers. In our coordinates, their
superpotential is

2
We, = T9G0g 4 (T962) 4 ToE+D-2)) y 4 @l | L
x y

To calculate Wi (_2), we consider the scattering diagram defined in Section 3.4.3,
determined by two points. Again, we expect this to correspond appropriately to the
Floer theoretic scattering diagram without the addition of any further walls. This
scattering diagram (with a particular choice of locations of the points) is pictured
in Figure 3-3. We consider the broken lines with stop in the top left chamber of
the scattering diagram, see Figure 3-4. Again, the choice of chamber is determined
by our deformation regularization, and only the red broken lines contribute. The

superpotential is thus
2
Wi(igy = TOg 4 (T L T@tD2)) g 4 o) L
x

which is Wg, without the T “’(ﬂ‘*)%} term, as expected.

Superpotential of 0(—3)

We next consider &'(—3). To the best of my knowledge, its compactification Fj is the
only surface that is neither Fano nor semi-Fano for which a superpotential has been
explicitly calculated in the literature. This was found by Auroux [5] by deforming
the complex structure of F3 to that of Iy, while simultaneously deforming the special
Lagrangian fibration and volume form. The problem then becomes one of explicit

wall-crossing calculation in Iy, which is Fano. The superpotential he found is, in our
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1+ yto 14yt
1 —I-Q?y_]t]tg

l—I—:l:_ly_ltltz

1+{L'_1t2 14+ xts

1 +£C_1t1 1+ xt

14+ aytits 1+y 'ta 14y 't 1+ ‘ytits

Figure 3-3: A scattering diagram associated with two points in P! x P!
coordinates,

4 3
Wi, = T g + 2<2+D=3)y2 | Tw(ﬁﬁﬁﬁ&@% + Tw(ﬁs)y; + Tw(@l)é

As Auroux points out, this superpotential is asymmetrical in [, 83 on account of
the coefficient T(2*+8s+D-3)  This asymmetry comes directly from the same asym-
metry in the deformation procedure, and a different choice of deformation yields the
superpotential

4 3
W]F3 — Tw(b1) 4 + QTW(2,32+D—3)y2 + Tw(,32+51+D—3)y; + TW(BLS)% + Tw(ﬁzl)i.

This superpotential only differs from the first by a change of toric fan exchanging the

directions corresponding to £, and [s.
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vy

\/

Figure 3-4: The broken lines with stop in the chamber of interest (top left). Those
in red contribute to the superpotential for &'(—2).

We consider the scattering diagram defined in Section 3.4.3, determined by three
points, as is pictured in Figure 3-5(with a particular choice of locations of the points).
We expect that this scattering diagram is “missing” initial walls, but that the super-
potential we find is still correct. We consider the broken lines with stop in the top
left chamber of the scattering diagram, arbitrarily close to the wall with direction
(—1,2). This position is again given by our choice of deformation regularization. We
only picture those broken lines expected to contribute to the superpotential, which is
thus

4 3
Weo—s) = T 0 4 QTw(262+D73)y2 + Tw(/32+ﬁ3+D73)y_ + Tw(ﬁ:%)y__
xr x
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This is again what we would expect given the known superpotential Wg,. The same
asymmetry between [ and (33 is present, resulting from the asymmetry between U
and U; in our construction. Exchanging their roles, we can arrive at the superpotential
4 3

Wo(—3) = TP 2T“’(252+D*3)y2 + Tw(ﬁz+,33+D73)y; + TUJ(/%)%_

Superpotential of 0(—4)

We consider the scattering diagram defined in Section 3.4.3, determined by four
points, as is pictured in Figure 3-6 (with a particular choice of locations of the points).
We expect that this scattering diagram is “missing” initial walls, but that the super-
potential we find is still correct. We consider the broken lines with stop in the top
left chamber of the scattering diagram, arbitrarily close to the wall with direction
(—1,3). This position is again given by our choice of deformation regularization. We
only picture those broken lines expected to contribute to the superpotential, which is

thus

6 9 4
Wﬁ(_4) _ T‘*’(Bl)x 4 3Tw(3ﬁ2+D74)y3 + 3Tw(252+253+D74)y7 + Tw(ﬁ2+3ﬁ3+D,4)y72 + T“’(BS)yi'
x X X
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74

/ /L
AN

7
//v/v /

Figure 3-5: A scattering diagram associated with three points in P! x P!. Wall
functions are no longer labeled. The broken lines in red are expected to be those
contributing to &(—3).

A
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//%:ﬁ
~

L

il

NN A L

A

Figure 3-6: A scattering diagram associated with four points in P! x P!. Wall func-
tions are not labeled. The broken lines in red are expected to be those contributing
to O(—4).

«
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Chapter 4

Discussion

4.1 Summary of results

We present here a summary of the main results from this dissertation.

Let X and Y be birational smooth Kahler varieties with relatively spin La-
grangians Ly and Ly respectively, together with a birational holomorphic map ¥ :
X — Y that maps Lx diffeomorphically onto Ly. Let § € Hy(X, Lx) be an effective
disc class such that for all nodal discs u € 3, every non-constant component of the
map u yields a non-constant component of ¢ o u =: 1(u). Assume that the mod-
uli spaces Myy10(X, Lx, 8) and Myy1,(Y, Ly, ¢ B) of nodal holomorphic discs are

compact.

Theorem 4.1.1 (Theorem 2.2.1). In the above situation, we can construct compatible
Kuranishi structures on My11,4(X, Lx, 5) and My41,(Y, Ly,g*ﬁ) such that we have

an induced morphism of Kuranishi spaces

Migro(X, L, ) % Migra(Y, Ly, ¢ B).

Furthermore, the Kuranishi structure on Myq14(Y, Ly, g*ﬁ) mduces a Kuranishi
structure on the image moduli space (Myi14(X, Lx, 5)) with respect to which the

morphism

Mip12(X, Ly, B) 5 b (My14(X, Lx, B))

18 an isomorphism.

In the case of our primary example, this theorem yields the following corollary.
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Corollary 4.1.2 (Theorem 3.1.7). For appropriate choices of Kuranishi structures,

the map ¥ : O(—n) — O defined in Section 1.4 induces a Kuranishi isomorphism

Y My (O(=n), L, B) = My (O, 9(L), ¥ B; (Fo, Do, n))
for all classes € Hy(O(—n), L).

There are in fact many examples of a birational map ¢ : X — Y where the
assumptions of Theorem 2.2.1 are satisfied for some class f € Hy(X, Ly), but it is
more unusual for them to be satisfied for all classes 5, and it is this latter situation
where we can hope to understand the Floer theory of Lx by understanding the Floer
theory of Ly.

These results provide a concrete example of an important principle for moduli
spaces of pseudoholomorphic discs and curves, which is that they do not “know” the
difference between failures of transversality arising directly from the almost-complex
geometry of the ambient space and failures of transversality arising from the imposi-
tion of extra constraints, such as bulk-insertions or tangency conditions. This prin-
ciple then lends itself to an alternative method for regularizing moduli spaces based
in deforming these extra constraints, as opposed to deforming the almost-complex

structure or @ map more directly:

Proposition 4.1.3 (Proposition 3.3.4). We can deform the moduli spaces

M1 (O, 9(L), 9 _B; (Fo, Do, 1))

to reqular moduli spaces, which can then be used to define an A -structure on

Hl(L, A+)

4.2 Conjectures and future work

Following immediately from the work on our primary example, we have some natural

conjectures.
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Conjecture 4.2.1. For all n > 1, there exists a deformation reqularization giving
the following superpotential for O(—n):

n n—1\"
Wo(n = Tz 4+ T2y 47w Y | pe(nBa—BstDon), ((1 4 Tw(Bs—p2) Y ) _ 1) )
T x

This is consistent with our tentative calculations and would hold if the definition
of Wg(—n) can be reduced to the tropical calculation in which only one wall, with
function <1 + 1ty -tn%;l>, is relevant.

Given that much of the work on calculating superpotentials is motivated by mirror

symmetry, we make the following conjecture.

Conjecture 4.2.2. The superpotentials we have defined give Landau-Ginzburg B-
side mirrors of the symplectic A-side manifolds O'(—n), in the sense that the quantum

cohomology of €(—n) is isomorphic to the Jacobian ring of the superpotential.

It is also natural to ask how these superpotentials for &(—n) are related to the

Hirzbruch surfaces, which have been more prominent objects of study in this context.

Conjecture 4.2.3. For alln > 1, the superpotential for F,, can be defined so that

1
Wk, = W/f(—n) 4 Tw(Ba) —
Y

If the definition can be reduced to a similar tropical calculation of a bulk-deformed
superpotential in P! x P! instead of in &, then this will hold. Adapting the specific
construction herein will likely be infeasible. However, near term future work will
involve studying the relationship between point blowup and superpotentials for toric
surfaces, which should be able to either confirm or deny this conjecture.

More broadly, future work will involve applying the ideas of this thesis to un-
derstand the role that maps between ambient spaces play in Floer theory, as well
as to develop further tools for answering direct questions about moduli spaces of

pseudoholomorphic discs.
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Appendix A

Kuranishi construction further details

We provide some further details of the Kuranishi structure construction regarding
gluing and cutting by transversals. This appendix essentially rephrases content from

Fukaya-Oh-Ohta-Ono [17] using our notation.

A.1 Gluing details

The following discussion of gluing assumes that the obstruction bundles are vector
bundles, as in FOOO. The necessary generalization to accommodate our obstruction

bundles without linear structure is straightforward.

Proposition A.1.1 (FOOO [17] Theorem 19.3). For each sufficiently small €3 and

sufficiently large f, there exist €9, €4 and a I‘; equivariant map

—

Glueg gy : M, (0.6,,00) (893 Gp)es = M1, (B3 95 (T',.0)) e

which is a diffeomorphism onto its image. The image of Glu(i(;) contains the space

M1, 00)) (B3 95 (ﬁ 5))53-

We start with an element (9, u”, (@.)) € Miy1,00,,0.))(B; 9; Gp)e, and construct the
map Gluz g(u’) : (Xg,0%y) — (X, L), where ) = 5p(t),f, 6). We let o K, — Ky
be the identification used to give the complex structure of ¥y on Ky. We will need
to construct sequences (;y and u;) of functions on 3, and Xy respectively, and it will
be helpful to refer to the identification o explicitly.

We will also need the following (monotone, smooth) bump functions on
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[—5T,,5T,].. x[0,1];, and [-5T,5T.],, x Si:

1 7o<r—1
X<e_,r<7—€7t€> =
0 7.>r+1

X:'r =1 _X;_,r

We proceed now to the gluing process. We first walk through the process without
giving bounds on any of the quantities involved, and then present the necessary
bounds in describing how this process yields the desired gluing map.

Pregluing, or Step 0:

Step 0-2:

We define an approximate solution wgy : (3g,0%y) — (X, L), where 9 =
6p(n,f, 5) using the coordinate at infinity associated with our choice of stabiliza-
tion data at p. For e € C*(G,) we denote by v, (e) and v_,(e) its two vertices. Here

e is an outgoing edge of v, (e) and is an incoming edge of v_,(e). We put:

Xer, (Uy (o = PL) + Xoq, (Uy_ () — P2) +pl  on the eth neck

(o) =

u) o™ on Ky),.

Step 0-3: Since (,u”, (W) € Myi1,0,6,00))(B5P;Gp)es, We have that oy €
E(y,u"). However, in general du() € £(2), u()), since a*E(Y, u()) # E(y,u?). We are
interested in understanding the relationship between 5u(0) and £(2), u(), or equiva-

lently between du” and a*E(2), u(0)) S0 we consider the projection
Ha*g(%u(o)) : L?n,é(zy; (W) TX ® AOJ) —a*&(Y, U(O))

We define se() = Ha*g(@7u<0)) (éu").
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Step 0-4:
We next define

(
X:;Oéu(o) on the eth neck if e is outgoing

Errg) = X:,ogu(o) on the eth neck if e is incoming

\8U(0) — 5¢(0) on Knv‘

Step j:
Step j-1:
We define ;) : (2,,,0%,,) = (X, L) as follows:

p

Xeor, (Tes te)u(i—1)(Te, te) + Xoar, (Te, te) Pl if z = (7, t.) is on the
eth neck that is outgoing
g (2) = Xe_or, (Tes te)ugi—1)(Te, te) + Xoor, (Te, te)p? if 2 = (7¢,tc) is on the

eth neck that is incoming

uj—1)(a(z)) if z € K.

\
Step j-2:

We define the following vector space:

E(t)) == a"E(Q, ug-1)) S Ly, 5(B; (ug—1)) TX @ A™).

That is, we take the obstruction vector space at u¢;_;y given by our choices of obstruc-
tion bundle data and then use the identification (biholomorphism) o : K,, — Ky,
to “move” it to ;. Note in particular that é’(ﬂ(j)) does not equal the obstruction

vector space £(v,U(;)) at ;) obtained directly from the obstruction bundle data.
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Consider the Lfn’(s projection

Given an element A € L7, 5(3,; u;TX ® A%!), we define the derivative of [z, at
A, with respect to V € L2, 5((5,,0%y); 4, TX, 4 TL) by

DIl (A, @) : Lfn’é((z%,az ); iy TX, u{TL) = L2, 5(Sy; 4 TX @ A™)

EXp(ﬁ(j) tV)

t=0

d
Vr—>%

We recall our linearized 0 operator at (1, Ugjy):

Dy, 0 Wiy s((Sy, 05y); 4y TX, 4 TL) — L2, 5(Sy; 4 TX @ A%

= d
Dya, 0(V) = —

dt <((Pall?xp(ﬁ”)’tv))(0’1))’15 Exp (i), tV)) '

U (5
=0 (©)]

We then consider the operator D(;) sending
(Vv, Ap) — Dm(j)év — DHg(ﬁ(j))<5€(j_1), V)

We have the following lemma.

Lemma A.1.2 (Lemma 19.15 in FOOO [17]). The sum of the image of D(;_1) and
the subspace c‘:’(ﬂ(j_l)) is Lfn’é(EU,fL’(“j_l)TX @ AOY) if T is sufficiently large. We also
h_;ave that the restriction of evg to D(_jl_l)(é’(ﬁ(j_l))) is surjective for sufficiently large
T.

It follows that the sum Dj_yy(ker evg) +& (ti(j—1)) equals L2, 4(Sy, @ U TX @A)

ifT 1s sufficiently large.

The map evg is defined in (2.1.9).

Proof. The first two statements follow from Lemma 2.1.42. To see the last statement,
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let K € L2, 5(3y, uf; ) TX ® A%1) and write k = D(;)(V, Ap) + v, with
(V,Ap) € @ Wgﬂrl,é(E‘)v; @Ekj),vTXa @?j),vTL)
veCY(G)

-1

and with v € é(ﬁ(j)). Since the restriction of evg to D (é(ﬁ(j))) is surjective, we

can find (V', Ap’) € D(’ji(ﬁ(ﬁ(j))) with evg(V', Ap') = evg(V, Ap). We thus have that

k= D (V,Ap) — D (V', Ap') + Dy (V', Ap') +~
=D (V =V, Ap — Ap') + D (V' Ap') + v

and ev(G)(V = V', Ap — Ap') = 0. O

A

(E(a;)) and let $;) be its orthogonal complement in

We consider ker evg N D(j)
ker evg. We then define V(;), and Apg . so that (Vij)v, Apgy.e) € H() is the unique

element such that
D) (Viyy) + Erro1),0 € E(Gg))

and lim., 400 Vij)0(7e, te) = Apgj),e Where 00 = +o0 if e is outgoing and —oo if e is
incoming. This is definition 19.17 in FOOO [17].

We next define an approximate solution w; : (Xy,0%y) — (X, L). We put:

;

ug-1) + Xem, (Vi ) — APg).e)

U) = X (Vijwse) — APG)e) + Apg)e  on the eth neck

| Exp(ugj-1), Vj o a™t) on Ky, .

Step j-3:
Define se(;) = o Ie(.u ) (Qug) and ey = se(j) — se(-1).-

Step j-4:
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Define

(
Xgoéu(j) on the eth neck if e is outgoing

Errg) = 4 XeoOu(j) on the eth neck if e is incoming

a*Ougy — se)  on Ky .

\

All of the control we need over this process is captured in the following proposition.

Lemma A.1.3 (Prop 19.20 in FOOO [17]). There exist constants T,,, Cy, Cs, Cs, €5 >
0 and 0 < p < 1 such that the following inequalities hold if T, > T,, for all e. We let
Tin = min{T. | e € C'(G,)}.

(Vi Apare)ll e s,y < Cow? e, (A.1.1)
|[Apge|| < Crpe?~temoTmin, (A.1.2)

ey —vollza ) < Coe™ (A.13)
lellie Ly < Car~leTmm, (A.1.4)

[|Errgyof] 2 s < esCapl e Tmin, (A.1.5)

where we assume j > 1 for the second to last inequality A.1.4.

Inequalities A.1.1 and A.1.2 imply that the sequence u(;) converges, so we can
define Glugz 5(, u) = lim; o u;). Inequalities A.1.4 and A.1.5 imply 5Glui§(t), u) =
> om0l € (D, Glugg(, u)). Thus, Glugz(n, ) € My e, ) (B 9; (T,0))e-

A.2 Cutting by transversals

Recall that every time we chose an additional marked point as part of obstruction
bundle data or stabilization data, we also chose a corresponding real codimension 2
submanifold of X. We describe below how we use these submanifolds to forget the
additional marked points.

Definition A.2.1 (Def 20.6 in FOOO [17]). An element (), v, (1)) of

Mici1,0y,(0)) (B3 ) .11, Satisfies the transversal constraint at all additional marked
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points if for all marked points w, of Q) from the stabilization data at p we have that

wy, € Dy, and for all marked points W, we have that wy,; € D,;.

We have the following lemma.

Lemma A.2.2 (Lemma 20.7 in FOOO [17]). The set Mkﬂ,(é,ép,(éc))(ﬁ;p)zga%f is a
closed subset of MHL(&%,@C))(B;p)eo% and is a stratawise smooth submanifold of

codimension ly +23 " g le.

We then consider the subset of My 1,04, () (83; p)za}jj consisting of pseudo-holomorphic

maps.

Definition A.2.3 (Def 20.9 in FOOO [17]). We denote by M1 00,,0.)(B; )72 N

€0,10

s71(0) the set of all (D, u, (W) € M,y (B3 P)F° such that u' is pseudo-

holomorphic.

Forgetting all additional marked points gives a map

forget : Myt 00,00 (8 9) 7% N sH(0) = Myt1,0(B).

€0,10

Modding out by the action of I', gives the induced map

forget : (Mmlwp,wc))(ﬁ; p)res 05—1(0)) /Ty = Mii1,0(B). (A.2.1)

€0,10

Proposition A.2.4 (Prop 20.11 in FOOO [17]). The map A.2.1 is a homeomorphism

onto an open neighborhood of p.
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