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In the desert
I saw a creature, naked, bestial,
Who, squatting upon the ground,
Held his heart in his hands,
And ate of it.
I said, “Is it good, friend?”
“It is bitter—bitter,” he answered;

“But I like it
“Because it is bitter,
“And because it is my heart.”

In the Desert, Stephen Crane

And in twenty years they all came back,
In twenty years or more,

And every one said, ‘How tall they’ve grown!’
For they’ve been to the Lakes, and the Torrible Zone,
And the hills of the Chankly Bore;

And they drank their health, and gave them a feast
Of dumplings made of beautiful yeast;
And everyone said, ‘If we only live,
We too will go to sea in a Sieve,—
To the hills of the Chankly Bore!’
Far and few, far and few,
Are the lands where the Jumblies live;

Their heads are green, and their hands are blue,
And they went to sea in a Sieve.

The Jumblies, Edward Lear
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ABSTRACT

We begin developing a theory of morphisms of moduli spaces of pseudoholomor-

phic curves and discs with Lagrangian boundary conditions as Kuranishi spaces, using

a modification of the procedure of Fukaya-Oh-Ohta-Ono [15]. As an example, we con-

sider the total space of the line bundles O(−n) and O on P1 as toric Kähler manifolds,

and we construct isomorphic Kuranishi structures on the moduli space of holomor-

phic discs in O(−n) on P1 with boundary on a moment map fiber Lagrangian L and

on a moduli space of holomorphic discs subject to appropriate tangency conditions

in O. We then deform this latter Kuranishi space and use this deformation to define

a Lagrangian potential for L in O(−n), and hence a superpotential for O(−n). With

some conjectural assumptions regarding scattering diagrams in P1 × P, this superpo-

tential can then be calculated tropically analogously to a bulk-deformed potential of

a Lagrangian in P1 × P1.
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Chapter 1

Introduction

1.1 Background and motivation

Moduli spaces of stable pseudoholomorphic curves and of stable pseudoholomorphic

discs with Lagrangian boundary conditions are central objects of study in symplectic

geometry, and have been since pioneering work of Gromov in 1985 [26]. They are

crucial to Floer theory and lie at the heart of much of the interplay between theoretical

physics and mathematics in the last forty years, including string theory, the study

of instantons, and mirror symmetry. However, these moduli spaces are in general

extremely difficult to work with, as they are not in general smooth and may not be

of the expected dimension, due to disc and sphere bubbling phenomena.

The original development of Floer theory was largely guided by the following

conjecture of Arnold [2] in 1978:

Conjecture 1.1.1 (Arnold Conjecture). The number of periodic trajectories of period

1 of a Hamiltonian vector field on a symplectic manifold (X,ω) is greater than or equal

to
∑
k

hk(X;Z/2).

See e.g. [3], [51]. Andreas Floer [12], for whom Floer theory is named, proved

the theorem under the assumption that X is monotone, i.e. that the first Chern

class c1(X) is a positive multiple of [ω]. Floer’s proof involved an analogue of Morse

theory using an action functional whose gradient flow trajectories are related to pseu-

doholomorphic curves. Similar results were obtained in the cases where X = T 2n by

Conley-Zehnder [10], where X is a Riemann surface by Floer [13] and by Sikorav [47],
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where X is semi-positive by Hofer-Salamon [31] and by Ono [43], and then for any

compact X by Fukaya-Ono [24].

The primary purpose of the original monotonicity assumption of Floer and later

geometric assumptions was to control sphere bubbling, the phenomenon wherein the

compactification of the moduli space of Floer trajectories includes limiting trajecto-

ries consisting of multiple components, including at least one spherical component.

Fukaya-Ono where able to eliminate these assumptions by understanding the moduli

space of pseudoholomorphic curves in X in greater detail, as will be discussed below.

One of the primary motivators for the specific work of this dissertation is mir-

ror symmetry. Originating in the 1980s within supersymmetric string theory, mirror

symmetry captured the attention of the mathematical community in 1991 after physi-

cists Candelas, de la Ossa, Greene, and Parkes [7] used the theory to make dramatic

predictions of the number of rational curves of a given degree contained in a quintic

threefold. Their result was eventually proven mathematically through the work of

Givental [25] and Lian-Liu-Yau [38].

Mathematically, mirror symmetry for a Calabi-Yau variety amounts to finding

another Calabi-Yau variety, called the mirror, whose complex structure corresponds to

the Kähler structure of the original variety, and vice versa. One approach to realizing

and understanding this symmetry is the Strominger-Yau-Zaslow (SYZ) approach [48]

from 1996, which posits that Calabi-Yau varieties should be equipped with special

Lagrangian torus fibrations, and that the mirror Calabi-Yau is then obtained by

taking the dual torus fibration, at least near the large complex structure limit. This

idea was modified by Kontsevich-Soibelman [36] in 2006 to suggest that, approaching

the large complex structure limit, a Calabi-Yau collapses to an integral affine manifold

with singularities (intuitively, the base of an SYZ fibration), and the information

necessary to construct the mirror Calabi-Yau from this integral affine manifold is
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contained in a scattering diagram within the manifold that encodes information about

holomorphic discs in the original collapsing family of Calabi-Yau manifolds.

Moving beyond Calabi-Yau manifolds, the mirror of a Fano variety is generally

understood to be a Landau-Ginzburg model, which is a holomorphic function W :

M → C for some mirror manifoldM . For example, the Landau-Ginzburg mirror of P2

is the superpotentialW : (C∗)2 → C withW (x, y) = x+y+ q
xy
, where q is a parameter

encoding information about the symplectic form on P2. The superpotential for an

arbitrary toric Fano manifold has been calculated by Cho-Oh [9]. More generally, it

has been proposed by Auroux [4] that the mirror of a pair (X,D) of a compact Kähler

manifold X and a choice of anticanonical cycle will also be a Landau-Ginzburg model

that is constructed by taking an SYZ fibration on the non-compact Calabi-Yau X \D.

In the case of general toric manifolds, a version of this conjecture has been proven

by Fukaya-Oh-Ohta-Ono [18], in which they define a superpotential and show that,

if it is Morse, the Jacobian ring of the superpotential is isomorphic to the quantum

cohomology ring of the toric manifold. In my paper with Man-Wai Mandy Cheung,

Hansol Hong, and Yu-Shen Lin [6], we give a method for calculating superpotentials

for semi-Fano compactifications of log Calabi-Yau surfaces and confirm the Jacobian

ring-quantum cohomology isomorphism for the degree five del Pezzo surface.

The chief difficulty in all of these situations, and the primary reason for all as-

sumptions of monotonicity and positivity, is the irregularity of the relevant moduli

spaces of pseudoholomorphic curves and discs. In symplectic geometry, several ap-

proaches have been developed for understanding and using these moduli spaces, with

many positive results. Many, many people have contributed to the field, and the

following account is far from exhaustive. These techniques include perturbing almost

complex structures, using the polyfold theory of Hofer-Wysocki-Zehnder, and giving

the moduli space a Kuranishi structure and using abstract perturbed multisections
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to define virtual fundamental chains. Perturbation of the almost complex structure

has been in use since the field’s inception, see e.g. McDuff-Salamon [41], while the

polyfold approach was developed in the 2000s. The last approach was pioneered by

Fukaya-Ono and Fukaya-Oh-Ohta-Ono (FOOO) in the late 1990s and the 2000s, see

[24], [15], and has been extremely fruitful, being the basis for Fukaya-Ono’s proof of

the Arnold Conjecture and serving as the technical bedrock for many mirror symme-

try results. This FOOO approach is extremely rich, and there is much to be gained

from further expanding and developing it.

In the last decade, there have also been other versions of the Kuranishi machinery

and virtual chain technique, including the Kuranishi atlases of McDuff-Wehrheim [40],

the implicit atlases of Pardon [44], the axiomatic approach to virtual fundamental

chains of Abouzaid [1], and the categorical work of Joyce [34]. Again, this list is far

from exhaustive.

However, there are import aspects of the theory that need to be developed, and

the central difficulties in working with and understanding these moduli spaces remain

unresolved in general. In this thesis, we adapt the machinery of FOOO to begin to

address two of the most major open issues: developing natural morphisms between

moduli spaces that respect all of their relevant structures, and understanding regular-

izations of the moduli spaces concretely without highly restrictive assumptions on the

geometry of the ambient spaces. To demonstrate the utility of these developments,

we use them to define and explicitly calculate superpotentials for a family of highly

non-Fano Kähler surfaces.

Viewing the total space of the line bundle O(−n) over P1 as an open subset of

the corresponding Hirzebruch surface Fn, we define potentials for moment map fiber

Lagrangians in O(−n) in a way that allows them to be calculated tropically, allow-

ing for direct construction of Landau-Ginzburg mirrors. These potential functions
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essentially involve calculating integrals over regularizations of the moduli spaces of

holomorphic discs with boundary on a given Lagrangian, which in general depend on

the choice of regularization.

The importance of this particular example is that it is among the simplest where

the relevant moduli spaces of discs have excess dimension, and hence where the full

power of the various regularization techniques is necessary. This is the root of a sub-

stantial portion of the difficulties in Floer theory and symplectic topology generally.

As in the case of my past work, restrictive geometric conditions have previously been

necessary to get satisfactory results, allowing people to avoid most moduli spaces

with excess dimension altogether. For instance, the potential functions of moment

fiber Lagrangians in smooth compact toric Fano and semi-Fano surfaces have been

completely classified (FOOO [16], [18], [19], [20], and Chan-Lau [8], respectively) but

there has been little success with other compact toric surfaces. It should be noted

that there are only finitely many such toric surfaces satisfying the Fano or semi-Fano

conditions, while there are infinitely many smooth compact toric surfaces in general.

The only full result for any other compact toric surface is that of Auroux [5] on the

Hirzebruch surface F3 compactifying the bundle O(−3) over P1, and the techniques

used there do not extend to more general settings. Outside the surface case, FOOO

were able to define potential functions for moment fiber Lagrangians in general com-

pact toric manifolds, but the potential functions cannot be calculated without the

Fano/semi-Fano condition.

The overarching procedure we use to define and calculate the desired potential

functions is structured as follows. We need to understand one moduli space of pseu-

doholomorphic discs, so we adapt the Kuranishi structure machinery of FOOO [15],

[17] to construct an isomorphism of Kuranishi spaces between the moduli space of

interest and a moduli space of discs in the simpler manifold O ∼= P1 × C. We then
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realize this second moduli space as the central fiber in a deformation family of Ku-

ranishi spaces, with the general fibers being regular, in the sense that the ∂̄ map is

transversal to 0. The general fibers will be bulk-deformed moduli spaces, which we

understand as being deformations of the original moduli space and which we use to

define the desired potential. Finally, we give a conjectural description of a tropical

method, adapting work of Hong-Lin-Zhao [32], for calculating this potential for all n.

Theorem 1.1.2. The Lagrangian potential function for a moment map fiber La-

grangian L in the non-compact toric surface O(−n) can be defined using bulk-

deformed moduli spaces of holomorphic discs in O ∼= P1 × C.

Conjecture 1.1.3. This potential can be calculated by counting broken lines in a

tropical scattering diagram extending the diagrams of HLZ [32].

For example, the following are the expected superpotentials for O(−1), O(−2),

O(−3), and O(−4), with Novikov variable set equal to 1:

WO(−1) = y + x+
y

x
,

WO(−2) = y + x+ y +
y2

x
,

WO(−3) = y + x+ 2y2 +
y4

x
+
y3

x
,

WO(−4) = y + x+ 3y3 + 3
y6

x
+
y9

x2
+
y4

x
.

The first three of these have been calculated previously, as described above, while

WO(−4) is new.

The isomorphism construction and deformation family of Kuranishi spaces ap-

proach to defining an A∞-structure are novel and represent significant advances in

our understanding of morphisms of moduli spaces and their perturbations.
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1.2 Lagrangian Floer theory preliminaries

We give a brief review of the Lagrangian Floer theory we will use, primarily following

Fukaya-Oh-Ohta-Ono [15], [23] and Fukaya [14].

Let X be a 2n-dimensional symplectic manifold with tame almost complex struc-

ture J and a compact, relatively spin Lagrangian submanifold L. We do not assume

that X is compact, but we will assume that all moduli spaces of discs and curves

we consider are compact. Given a class β ∈ H2(X,L;Z), we let Mk+1,ℓ(X,L, β) be

the moduli space of stable, nodal, pseudo holomorphic discs in class β with k + 1

boundary marked points and ℓ interior marked points. The domain of every element

of Mk+1,ℓ(X,L, β) is a connected, nodal, genus 0, bordered Riemann surface with a

single boundary component. These moduli spaces have natural stratifications based

on the combinatorial type of the source (see 2.1.2). The marked points give the

following evaluation maps

(ev1, . . . , evk, ev
+
1 , . . . , ev

+
ℓ ) : Mk+1,ℓ(X,L; β) → Lk ×Xℓ

ev0 : Mk+1,ℓ(X,L; β) → L.

Note that, if X is compact, then so is Mk+1,ℓ(X,L; β). Hence, this is usually referred

to as the compactified moduli space. Again, we will be assuming that Mk+1,ℓ(X,L, β)

is compact, even if X is not.

Crucially, these moduli spaces are not in general an orbifold with boundary and

corners. In light of this, we will put a smooth Kuranishi structure on Mk+1,ℓ(X,L, β)

with respect to which these evaluation maps will be well behaved. In particular,

the maps will be smooth in a sense that allows us to make sense of pulling back

forms by (ev1, . . . , evk, ev
+
1 , . . . , ev

+
ℓ ), and the map ev0 will be weakly submersive

in a sense that allows us to push forward forms by ev0 (intuitively, by integrating

along fibers of ev0). The virtual dimension of Mk+1,ℓ(X,L; β) as a Kuranishi space



8

is MI(β) + n− 3+ k+1+2ℓ, where MI(β) is the Maslov index of β and n is half of

the (real) dimension of X, i.e. the dimension of L. In the case of X being a complex

surface, this virtual dimension is MI(β) + k + 2ℓ.

We use the following Novikov ring Λ0 over R, along with its maximal ideal Λ+

and fraction field Λ:

Λ0 :=

{
∞∑
i=1

aiT
λi | ai ∈ R, λi ∈ R≥0, lim

i→∞
λi = ∞

}
, (1.2.1)

Λ+ :=

{
∞∑
i=1

aiT
λi | ai ∈ R, λi ∈ R>0, lim

i→∞
λi = ∞

}
, (1.2.2)

Λ :=

{
∞∑
i=1

aiT
λi | ai ∈ R, λi ∈ R, lim

i→∞
λi = ∞

}
. (1.2.3)

We can then define an A∞-algebra structure on Ω∗(L; Λ0), known as the de Rham

model, using the following diagram

Mk+1(X,L, β)
(ev1,...,evk) //

ev0
��

Lk

L

That is, we define mk,β : Ω∗(L; Λ0)
⊗k → Ω∗(L; Λ0) by

mk,β(h1, . . . , hk) := (ev0)! (ev
∗
1h1 ∧ . . . ∧ ev∗khk) .

We then define

mk :=
∑

β∈H2(X,L;Z)

mk,βT
ω(β).

For the definition of the term A∞-algebra structure, see for instance Definition

21.21 of FOOO [23]. It can be thought of as an algebraic codification of the compati-

bility conditions that arise between these operations mk from studying the boundaries
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of the moduli spaces Mk+1(X,L, β). We draw direct attention to the following A∞

relation:

m2(m0(1), x) + (−1)deg x+1m2(x,m0(1)) +m1(m1(x)) = 0.

If m0 = 0, then m2
1 = 0, and we can define the Floer homology of L to be the homology

of Ω∗(L; Λ0) with respect to m1.

Given b ∈ Ωodd(L,Λ+), we can also consider the deformed A∞-algebra structure

mb
k given by

mb
k(x1, . . . , xk) =

∑
ℓ0,...,ℓk

mk+
∑
ℓi(b
⊗ℓ0 , x1, b

⊗ℓ1 , . . . , b⊗ℓk−1 , xk, b
⊗ℓk).

We say that b is a bounding cochain if mb
0 = 0, in which case mb

1 is a boundary

operator. If there exists a bounding cochain b, we say that L is unobstructed.

Rather than working with the de Rham model, we will work with the associated

canonical model, see Fukaya [14] for details. We fix a Riemannian metric on L and

represent H∗(L;R) as the subspace of harmonic forms in Ω∗(L;R). There is an

associated A∞-structure on H
∗(L; Λ0), whose operations we denote by mcan

k , which is

quasi-isomorphic to the de Rham model. The canonical model has the advantage of

being unital, in the sense that the Poincaré dual PD[L] of L satisfies the following

relations:

mk+1(x1, . . . , PD[L], . . . , xk) = 0 for k ≥ 2 or k = 0,

m2(PD[L], x) = (−1)deg xm2(x,m0(1)) = x.

We then define a weak bounding cochain to be an element b ∈ Hodd(L,Λ+) such that

mb
0(1) = W (b)PD[L]
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for some constant W (b) ∈ Λ+. We call the set of all such b the weak Maurer-Cartan

space, which we write M̂C+(L). If M̂C+(L) is non-empty, then we say L is weakly

unobstructed, and we again have that mb
1 is a boundary operator and can be used to

define a Floer homology.

Definition 1.2.1. We call the function

W : M̂C+(L) → Λ+

the Lagrangian potential function.

One is often interested in the moduli space of Maurer-Cartan solutions MC+(L)

which is obtained from M̂C+(L) by modding out by gauge equivalence. The potential

W factors through this equivalence giving a map M̂C+(L) → Λ+ we will also call W .

The final general Floer theoretic topic we will consider before getting into more

specific geometric settings is pseudo-isotopy of A∞-algebras, introduced in Fukaya

[14]. One can also consult Tu [49]. We will avoid describing it in algebraic generality,

focusing instead on giving a sketch of the geometric manifestation we will be using.

Let J0 and J1 be tame almost complex structures on X connected by a path Jt of

tame almost complex structures. For β ∈ H2(X,L), we consider the moduli space

Mk+1(β;J ) =
⊔
t∈[0,1]

{t} ×Mk+1(X,L, β; Jt)

This moduli space can be given an appropriate Kuranishi structure, though we shall

not describe it in detail. See Fukaya [14]. We have the following evaluation maps,

ev = (ev1, . . . , evk) : Mk+1(β;J ) → Lk,

ev0 : Mk+1(β;J ) → L,

evt : Mk+1(β;J ) → [0, 1],

and we will assume ev0 × evt : Mk+1(β;J ) → L × [0, 1] is weakly submersive. On



11

the level of the de Rham model, we take h1, . . . , hk ∈ Ω∗(L,Λ0) and define mt
k,β and

ctk,β by

mt
k,β(h1, . . . , hk) + dt ∧ ctk,β(h1, . . . , hk) = (ev0 × evt)!(ev

∗
1h1 ∧ · · · ∧ ev∗khk).

Here the superscript t indicates that mt
k,β and ctk,β depend on t. We have an associated

A∞-homomorphism

ck =
∑

β∈H2(X,L)

∫
[0,1]t

ctk,βT
ω(β)

between the two A∞-structures on Ω∗(L; Λ0) coming from the almost complex struc-

tures J0 and J1. Using the natural inclusion and projectionH∗(L) ↪→ Ω∗(L) ↠ H∗(L)

coming from the Hodge-Kodaira decomposition, this gives an A∞-homomorphism ccank

on the canonical model. This then induces a map between the two Maurer-Cartan

spaces

F : MC+,J0(L) → MC+,J1(L)

F (b) =
∞∑
k=0

ccank (b⊗k)

associated with the two almost complex structures. This map F is independent of

the choice of path Jt of almost complex structures, a fact we will refer to as Fukaya’s

trick. Furthermore, letting W0 and W1 be the potential functions associated with the

two Maurer-Cartan spaces, we have the following equation:

W1 ◦ F = W0.

This map F will manifest as a wall-crossing map in our geometric situation.

We finish this section with a loose discussion of bulk-deformed superpotentials for

toric Fano surfaces, as developed by Hong-Lin-Zhao [32]. This will be a useful picture
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to have in mind, since it serves as the inspiration for the deformation of Kuranishi

spaces approach to defining superpotentials. However, the underlying technicalities

relating to moduli spaces and A∞-structures will be rather different in our setting

than in the setting of HLZ. We give some conjectural description of these differences

in 3.4.

LetXΣ be a toric Fano surface with fan Σ, and let L be a moment fiber Lagrangian.

We let q1, . . . , qn ∈ (C∗)2 be chosen generically (after fixing L), let ℓ ≤ n, take an

injection f : {1, . . . , ℓ} → {1, . . . , n}, and consider the fiber product

Mk+1,ℓ(XΣ, L, β) ev+
×i{(qf(1), . . . , qf(ℓ))} //

��

{(qf(1), . . . , qf(ℓ))}

i
��

Mk+1,ℓ(XΣ, L, β)
ev+

// Xℓ
Σ

We letMk+1,ℓ(XΣ, L, β;q) be the disjoint union of these fiber products over all choices

of the function f . The virtual dimension of these moduli spaces is k +MI(β) − 2ℓ,

inspiring the definition of the term generalized Maslov index defind as GMI(u) =

MI(β) − 2ℓ, where u is a holomorphic disc in this moduli space. We can use these

moduli spaces to define a bulk-deformed A∞-structure on H∗(L; Λ0). As shown in

HLZ [32] by a dimension argument, we have that H1(L,Λ+) = MCq
+(L) = M̃C

q

+(L),

so our bulk-deformed potential W q can be written as

W q : H1(L; Λ+) → Λ+.

It should be noted that in HLZ they use the coefficient ring C[t1, . . . , tn]/(t21, . . . , t2n),

with each point insertion qi associated with a nilsquared element ti. This kills contri-

butions from discs going through a single point multiple times, which greatly simplifies

a number of arguments and is the reason why they refer to their potential as the “nth

order” bulk-deformed potential. For our present discussion, we will reap the benefits
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of this choice of nilpotent coefficients without grappling with the complications they

introduce.

We now turn our attention to the special Lagrangian torus fibration given by the

moment map µ : XΣ → BΣ ⊆ R2 on the open (C∗)2 orbit. As this is a trivial fibration,

we can identify H1(L;Z) for all fibers L. We let e1, e2 be a basis of H1(L;Z) and

e∗1, e
∗
2 be the corresponding dual basis of H1(L;Z). When writing out W q explicitly,

we will make use of “exponential coordinates” on H1(L;Z), that is the functions

x = ee
∗
1 : H1(L;Z) → C and y = ee

∗
2 : H1(L;Z) → C. For example, with appropriate

choices of e1, e2 and setting the Novikov variable T to 1, the potential for any moment

fiber Lagrangian in P2 without bulk insertions is

WP2 = x+ y +
1

xy
,

which is the superpotential found by Hori-Vafa [33] and Cho-Oh [9].

If we fix these coordinates and include fixed bulk insertions, we find that the

potential is no longer independent of the choice of fiber L. Instead, there are real

codimension 1 regions in BΣ, which we refer to as walls, separating BΣ into open

regions on which W q is independent (up to Novikov scaling) of the choice of fiber L.

We refer to the phenomenon of these potentials changing as we cross the codimension

1 locus in BΣ as “wall crossing,” and we refer to the walls together with the wall-

crossing transformations as a “scattering diagram.”

In more detail, the fibers lying inside the walls are precisely those that bound

generalized Maslov index 0 discs, which lie in some moduli space M0,ℓ(XΣ, L, β;q) of

virtual dimension −1. We study the effect of crossing this wall using a corresponding

pseudo-isotopy. Intuitively, given two special Lagrangian fibers L0, L1 on “opposite

sides” of a wall,1 we take an isotopy ϕ : [0, 1] × XΣ with ϕ1(L0) = L1 and consider

1This intuitive notion of “opposite sides” is not a-priori well-defined, but we will find that these
walls are in fact sufficiently well-behaved for this to make sense.
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the pseudo-isotopy arising from the moduli spaces

⊔
t∈[0,1]

{t} ×Mk+1,ℓ(XΣ, L0, β;q;ϕ
∗
tJ),

where J is the standard complex structure on XΣ. This induces a wall crossing map

Fϕ : H
1(L0; Λ+) → H1(L0; Λ+).

These moduli spaces are isomorphic (even after being given appropriate Kuranishi

structures) to the spaces

⊔
t∈[0,1]

{t} ×Mk+1,ℓ(XΣ, ϕt(L0), β;q; J),

where the complex structure is fixed but the Lagrangian is changing. However, if we

want to get an A∞-homomorphism without varying the symplectic structure ω, we

must use the former moduli spaces with fixed Lagrangian and varying almost complex

structure.

The map Fϕ is independent of the choice of isotopy ϕ, up to homotopy avoiding

the bulk insertion points, by Fukaya’s trick. After adjusting for changes in symplectic

area, Fϕ allows us to find the bulk-deformed potential at L1 from the potential at L0.

1.3 Motivating example: Log Calabi-Yau surfaces and mir-

ror symmetry

We now discuss in some detail my paper with Man-Wai Mandy Cheung, Hansol Hong,

and Yu-Shen Lin [6] as it pertains to the present topic. The geometric setting is that of

a Looijenga pair (Y,D), a smooth projective rational surface Y with an anticanonical

cycle D that is a reduced rational curve with at least one singular point. Letting

ΩY be the meromorphic volume form on Y with simple poles on D, we see that the
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restriction ΩX of ΩY to X = Y \D is a non-vanishing holomorphic volume form on

X. In this sense, X is a log Calabi-Yau surface.

Inspired by the SYZ conjecture, Gross-Hacking-Keel [28] constructed a purely

algebraic mirror family for (Y,D). Their procedure involves constructing an integral

affine manifold B with singularity analogous to the base of an SYZ fibration. They

then study the canonical scattering diagram DGHK in B encoding relative Gromov-

Witten invariants, which correspond to the quantum corrections from holomorphic

discs of Maslov index 0 in X. The scattering diagram essentially describes how to

glue together local charts to form the mirror family for X.

In [6], we carry out the symplectic counterpart of this procedure, constructing a

special Lagrangian fibration on X and showing that an associated Lagrangian Floer

scattering diagram coincides with a scattering diagram DGPS of Gross-

Pandharipande-Siebert [29], which then recovers the scattering diagram of GHK [28].

Theorem 1.3.1. [6] Given a log Calabi-Yau surface, the associated Lagrangian Floer

scattering diagram DLF recovers the scattering diagram DGPS and the canonical scat-

tering diagram DGHK.

In more detail, we follow the Strominger-Yau-Zaslow (SYZ) [48] approach to mir-

ror symmetry and its refinement by Kontsevich-Soibelman [36], and we construct a

family of special Lagrangian fibrations on X with respect to a family of symplectic

forms ωϵ, where ϵ indicates the symplectic area of some particular exceptional divi-

sors. The bases of these fibrations are integral affine manifolds Bϵ. The scattering

diagram DLF
ϵ then consists of a collection of decorated affine lines and rays in Bϵ en-

coding information about which fibers bound holomorphic discs, or, more precisely,

encoding the open Gromov-Witten invariants of the fibers. We then show that this

coincides with the tropical scattering diagram of Gross-Pandharipande-Siebert on a

large open subset of Bϵ that embeds into R2 as an integral affine manifold. This

can then be used to recover the canonical scattering diagram of Gross-Hacking Keel,
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which is key for constructing the mirror of the log Calabi-Yau surface. Our result

thus provides a direct link between the SYZ framework for mirror symmetry and the

tropical work of Gross-Pandharipande-Siebert [29] and Gross-Hacking-Keel [28] and

their mirror construction.

This result has several applications:

1. We apply the result to get a version of mirror symmetry for rank 2 cluster

varieties.

2. The result shows that, in this geometric context, the symplectic open Gromov-

Witten invariants agree with the corresponding algebro-geometric log Gromov-

Witten invariants, which count A1 curves in a log Calabi-Yau surface.

3. The result provides a method for explicitly calculating Lagrangian potential

functions for certain compactifications of log Calabi-Yau surfaces, which can

then be used to construct the Landau-Ginzburg mirrors of those compactifi-

cations. Furthermore, we use this procedure to verify a conjecture of Sheri-

dan [46], previously confirmed in different ways by Pascaleff-Tonkonog [45] and

Vanugopalan-Woodward [50], that a cubic surface contains a Lagrangian such

that there are 21 holomorphic discs with boundary on the Lagrangian. This is

an open analogue of the classical result that a cubic surface contains 27 lines.

Thinking more broadly, the tropicalization procedure we employ here provides an

important tool for understanding moduli spaces with excess dimension, specifically

those with virtual dimension −1 and actual dimension 0 that arise when studying

wall-crossing. We use a Floer theoretic technique known now as “Fukaya’s Trick,”

introduced in [14], which resolves the issue of excess dimension by essentially re-

placing the standard Kuranishi structure on each moduli space with another of a

higher virtual dimension, matching the actual dimension. We then see that the Floer
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theoretic scattering matches the tropical scattering, which can then be understood

explicitly. Unfortunately, Fukaya’s trick cannot resolve the outstanding issues with

moduli spaces of excess dimension generally, and when we turn to calculating po-

tential functions of the compactifications of log Calabi-Yau surfaces, we have had to

restrict our attention to Fano (and some semi-Fano) compactifications. Running into

this limitation drew my attention to the gaps in the present theory of moduli spaces

of discs, prompting me to pursue the following work in preparation.

1.4 The line bundles O(−n) and O on P1

Fix n > 0. We conclude the introduction by considering the total spaces of the

line bundles O(−n) and O over P1. In particular, we will establish coordinates and

notation to be used throughout.

We obtain the total space of O(−n) by gluing two charts U0 = C × C and U1 =

C × C together by identifying (x0, y0)0 ∈ U0 with (x−10 , xn0y0)1 ∈ U1 (for x0 ∈ C∗).

We similarly obtain the total space of O by gluing U0, U1 by identifying (x0, y0)0 with

(x−10 , y0)1. We let D−n (respectively D0) be the self-intersection −n (resp. 0) divisor

in O(−n) (resp. O) given by y0 = 0 and y1 = 0.

With these shared charts for O(−n) and O, we have a natural map ψ : O(−n) →

O.

ψ
0
(x0, y0)0 = (x0, y0)0

ψ
1
(x1, y1)1 = (x1, x

n
1y1)1.

We have an associated map from functions into O(−n) to functions into O. Let Σ

be a nodal disc, i.e. a genus zero bordered nodal Riemann surface with connected

boundary, let w : Σ → O(−n) be a continuous function, and let Σi := w−1(Ui). In
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coordinates, we write

w0(z) = (u0(z), v0(z))0

w1(z) = (u1(z), v1(z))1

where wi is w|Σi . Here z ∈ Σ, but we are not making any choice of coordinates on Σ.

We get a new continuous function ψ(w) : Σ → O defined by

ψ(w)0(z) = (u0(z), v0(z))0

ψ(w)1(z) = (u1(z), u1(z)
nv1(z))1.

We equip O(−n) and O with the usual toric structures. They are toric open

subsets of the Hirzebruch surfaces of degree n and 0, and we equip them with the

restrictions of the associated symplectic forms. Let L be a standard moment map

fiber Lagrangian in O(−n), given in U0 coordinates by |x0| = rx0 ̸= 0, |y0| = ry0 ̸= 0

constant. We observe that, given w : (Σ, ∂Σ) → (O(−n), L) mapping the boundary

of Σ into L, the map ψ(w) maps the boundary of Σ into a corresponding Lagrangian

ψ(L) in O, given in U0 coordinates by |x0| = rx0 , |y0| = rnx0ry0 . Since our map of

maps ψ is induced directly induced by the underlying continuous (holomorphic) map

ψ, we have that if w is in homology class β ∈ H2(O(−n), L), then ψ(w) is in class

ψ∗(β) := ψ∗β ∈ H2(O, ψ(L)). Furthermore, if w is holomorphic, then so is ψ(w).

Thus, our map ψ restricts to a map

ψ : Mk+1,ℓ(O(−n), L, β) → Mk+1(O, ψ(L), ψ∗(β))

This ψ is stratawise smooth and injective, but far from surjective. Let F0 =

{(x1, y1)1 | x1 = 0} be the fiber of O over (0, 0)1 in U1. The image of ψ consists

precisely of those maps w′ ∈ Mk+1(O, ψ(L), ψ∗(β)) whose image intersects F0 only
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at the point (0, 0)1 and whose order of intersection with D0 is n times its order of

intersection with the fiber F0. Here a transversal intersection has order 1, the disc

given by (z, z2)1 in O intersects F0 with order 1 and intersects D0 with order 2, and

so on. We let Mk+1(O, ψ(L), ψ∗(β); (F0, D0, n)) denote the moduli space of discs in

Mk+1(O(−n), ψ(L), ψ∗(β)) satisfying this condition:

Definition 1.4.1. We let

Mk+1(O, ψ(L), ψ∗(β); (F0, D0, n))

be the subspace of the moduli space Mk+1(O, ψ(L), ψ∗(β)) consisting of all stable

marked discs u : (Σ, ∂Σ) → (O, ψ(L)) with k + 1 marked points, in class ψ∗β ∈
H2(O, ψ(L)), such that for each point z0 ∈ u−1(F0), the order of intersection of u

with D0 at z0 is n times the order of intersection of u with F0 at z0.

Note that in particular every disc in Mk+1(O, ψ(L), ψ∗(β); (F0, D0, n)) passes

through the point (0, 0)1 = F0 ∩D0.

We thus have the map

ψ : Mk+1(O(−n), L, β) → Mk+1(O, ψ(L), ψ∗(β); (F0, D0, n)).

We can define an inverse map as follows. For any (Σ, w) ∈ Mk+1(O, ψ(L), ψ∗(β);n),

we have that w−1(U1) \ w−1(U0) consists of isolated points and trees of constant

spheres. Combining this observation with the condition defining

Mk+1(O, ψ(L), ψ∗(β); (F0, D0, n)), we see that the partial inverse ψ
−1(w|w−1(U0)) given

below extends uniquely to a full holomorphic map ψ−1(w):

ψ−1(w)0(z) = (u0(z), v0(z))0

ψ−1(w)1(z) = (u1(z), u1(z)
−nv1(z))1.

We thus have the following lemma:

Lemma 1.4.2. The map ψ is a homeomorphism between Mk+1(O(−n), L, β) and
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Mk+1(O, ψ(L), ψ∗(β); (F0, D0, n)).

In Section 3.1 we will build Kuranishi structures on both of these spaces so that

an extension of ψ gives an isomorphism of Kuranishi spaces between them.

We note that O(−n) and O are not compact, so the following lemma establishing

compactness of all relevant moduli spaces is crucial.

Lemma 1.4.3. For all n, all toric moment fiber Lagrangians L ⊆ O(−n), and all

effective disc classes β ∈ H2(O(−n), L), the moduli space Mk+1(O(−n), L, β) is com-

pact.

Proof. We consider the inclusion ι : O(−n) ↪→ Fn of the line bundle O(−n) into

the Hirzebruch surface obtained compactifying the fibers, which induces a continuous

injection

ι : Mk+1(O(−n), L, β) → Mk+1(Fn, ι(L), ι∗β).

To show that this map is a homeomorphism, it suffices to show that the image of

every disc in Mk+1(Fn, ι(L), ι∗β) is contained in ι(O(−n)). For disc components, this

follows from the Cho-Oh [9] classification of holomorphic discs with boundary on L.

For n ≥ 1, the only non-constant sphere components have image contained in the

0-section. For n = 0, the only non-constant sphere components have image contained

in a constant section with value at most ry0 . Thus, ι is a homeomorphism.

Since Fn is compact, the desired result follows.

In Section 3.2, we will modify the Kuranishi structures, then use the notion of

deformation of Kuranishi structures to relate the moduli space

Mk+1(O, ψ(L), ψ∗(β); (F0, D0, n))) to the following new moduli space:

Definition 1.4.4. Consider n distinct points (a1, b1), . . . , (an, bn) ∈ U1 ⊆ O. We

have n corresponding fibers Fai = {(x1, y1)1 ∈ U1 | x1 = ai} of O and n sections

Sbi = {([x0, x1], bi) | [x0, x1] ∈ D0} of O. We assume |ai| < r−1x0 and |bi| < ry0 for all

i.

We let

Mk+1(O, ψ(L), ψ∗(β); (Fa1 , Sb1 , 1), . . . , (Fan , Sbn , 1))
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be the subspace of the moduli space Mk+1(O, ψ(L), ψ∗(β)) consisting of all stable

marked discs u : (Σ, ∂Σ) → (O, ψ(L)) with k + 1 marked points, in class ψ∗β ∈
H2(O, ψ(L)), such that for each point zi ∈ u−1(Fai), the order of intersection of u

with Sbi at zi equals the order of intersection of u with Fai at zi.

This moduli space is closely related to, though in general different from, a moduli

space with n (possibly repeated) point insertions at points (a1, b1), . . . , (an, bn).
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Chapter 2

Moduli spaces: Kuranishi structures,

morphisms, deformation families

2.1 Kuranishi structure construction

Unless otherwise specified, throughout this section X is a symplectic manifold with

symplectic form ω and fixed ω-tame almost complex structure J , and L is a compact,

relatively spin Lagrangian in X. Note that we do not require that X be compact, but

we will require that the moduli spaces of discs and curves we consider be compact.

Our primary examples, the total spaces of line bundles O(−n) on P1, are in fact

non-compact, but the moduli spaces we consider are compact, see Lemma 1.4.3.

2.1.1 Kuranishi structure preliminaries

Let X be a compact metrizable space and let p ∈ X . The following definitions are

generalizations of those in FOOO [15], that essentially amount to forgetting the linear

structure of the obstruction fibers.

Definition 2.1.1. A (smooth) Kuranishi neighborhood of p in X consists of the data

(Vp, Ep,Γp, sp, ψp) such that

1. Vp is a finite dimensional smooth manifold with corners1.

2. Ep is a finite dimensional smooth manifold diffeomorphic to an open ball in a

finite dimensional Euclidean space, together with a distinguished point, which

we will call 0 ∈ Ep. We call Ep the obstruction fiber.

1We use the definition of smooth manifold with corners appearing in Joyce [35].
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3. Γp is a finite group acting smoothly and effectively on Vp and smoothly on Ep.

4. sp is a Γp equivariant smooth map Vp → Ep called the Kuranishi map.

5. ψp is a homeomorphism from s−1p (0)/Γp to a neighborhood of p in X . Here 0 is

the distinguished point of Ep.

In FOOO [15], they strictly speaking refer to Up := Vp/Γp as the Kuranishi neigh-

borhood, but we will use the term to refer to either Vp or the whole quintuple.

For a point x ∈ Vp, we let (Γp)x denote the isotropy subgroup at x, i.e. the

subgroup of Γp fixing x.

Definition 2.1.2. Let (Vp, Ep,Γp, sp, ψp) and (Vq, Eq,Γq, sq, ψq) be Kuranishi neigh-

borhoods of points p ∈ X and q ∈ ψp(s
−1
p (0)/Γp) ⊆ X respectively. We say a triple

(ϕpq, ϕ̂pq, hpq) is a coordinate change or transition map if

1. hpq : Γq → Γp is an injective group homomorphism.

2. ϕpq : Vpq → Vp is an hpq equivariant smooth embedding from a Γq invariant open

neighborhood Vpq of oq to Vp, such that the induced map ϕ
pq

: Vpq/Γq → Vp/Γp

is injective.

3. (ϕpq, ϕ̂pq) is an hpq equivariant smooth embedding of (trivial) fiber bundles Vpq×
Eq → Vp × Ep with ϕ̂pq(0) = 0

4. ϕ̂pq ◦ sq = sp ◦ ϕpq

5. ψq = ψp ◦ ϕpq on (s−1q (0) ∩ Vpq)/Γq

6. The map hpq restricts to an isomorphism on isotropy groups (Γq)x → (Γp)ϕpq(x)

for any x ∈ Vpq.

Note that this transition map is asymmetrical in p and q and is in general only

defined in one direction.

Definition 2.1.3. A Kuranishi structure on X assigns a Kuranishi neighborhood

(Vp, Ep,Γp, sp, ψp) for each p ∈ X and a coordinate change (ϕpq, ϕ̂pq, hpq) for each

q ∈ ψp(s
−1
p /Γp) such that the following holds
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1. dimVp− dimEp is independent of p. This is called the virtual dimension of the

Kuranishi structure.

2. ϕ
pq
◦ ϕ

qr
= ϕ

pr
.

We now introduce a preliminary notion of morphism of Kuranishi spaces. It is

likely more restrictive than is naturally necessary, and will be developed further in

future work. This notion is, in some sense, very “hands on,” in contrast with the

more abstract morphisms of Kuranishi spaces of Joyce [34].

Definition 2.1.4. Let X and Y be compact metrizable spaces with Kuranishi struc-

tures given by charts (VX ,p, EX ,p,ΓX ,p, sX ,p, ψX ,p) and (VY,q, EY,q,ΓY,q, sY,q, ψY,q) re-

spectively for each point p ∈ X and q ∈ Y, along with transition maps

(ϕX ,p,p′ , ϕ̂X ,p,p′ , hX ,p,p′) and (ϕY,q,q′ , ϕ̂Y,q,q′ , hY,q,q′) respectively.

A Kuranishi morphism (f, {(fp, (fp)∗)}p∈X ) is a continuous function f : X → Y
along with smooth map fp : VX ,p → VY,f(p) and diffeomorphism onto its image (fp)∗ :

EX ,p → EY,f(p) with (fp)∗(0) = 0, such that the following diagrams commute:

EX ,p
(fp)∗ // EY,f(p)

VX ,p

sX ,p

OO

fp
// VY,f(p)

sY,f(p)

OO
VX ,p

fp // VY,f(p)

VX ,p,p′

ϕX ,p,p′

OO

fp′
// VY,f(p),f(p′)

ϕY,f(p),f(p′)

OO

The morphism f is an isomorphism if f is a homeomorphism, every fp is a dif-

feomorphism, and every (fp)∗ is a diffeomorphism.

We also note here that the specific situation of this dissertation does not require

the detailed treatment of good coordinate systems or the associated construction of

virtual fundamental chains, so we will not discuss them here.

2.1.2 Universal family with coordinate at infinity

For each p = [(Σ, z⃗, z⃗int), u] ∈ Mk+1,ℓ(β), we have an associated graph Gp with some

extra data, called the combinatorial type of p. A vertex v of Gp corresponds to an
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irreducible component Σv of Σ (either a disc or a sphere). We decorate v with the

information of which marked points are contained in Σv, and also with βv = [u|Σv ]

in either H2(X,L;Z) or H2(X;Z). An edge e between v1 and v2 corresponds to a

singular point in the intersection of two components Σv1 ,Σv2 . We also orient the

edges and can assign each a length Te ∈ R>0. If a directed edge e is the ordered pair

(v, v′), we say that e is an “outgoing” edge of v and an “incoming” edge of v′. Since

we are considering only the genus zero case, our graph is always a tree. We choose

one of the disc vertices to be the root of the tree and orient all edges so that they

point toward the root. That is, each non-root vertex will have one outgoing edge,

with all other edges incoming, and following the unique outgoing edge gives a path

to the root vertex.

Definition 2.1.5 (Combinatorial Type, [17] 15.6). A graph G equipped with the data

described above is the combinatorial type of p, and Mk+1,ℓ(β;G) is the set of p with

combinatorial type G.

Let G be a combinatorial type, and consider the following process. Shrink an edge

e of G and identify its vertices v1, v2, to get a new vertex v. We put βv = βv1 + βv2

and the marked points of v1, v2 are assigned to v. For combinatorial types G,G ′, we

say G > G ′ if G ′ is obtained from G in this way.

We let C0(G) denote the set of vertices of G, and we let C0
d(G) and C0

s (G) be the

set of disc vertices and sphere vertices respectively. Similarly, we let C1(G) denote

the set of edges of G, and we let C1
o (G) and C1

c (G) be the set of boundary singular

point edges and interior singular point edges respectively.

We let Γp be the group of automorphisms of p ∈ Mk+1,ℓ(β), where the automor-

phism is required to fix the interior marked points. We let Γ+
p be the (larger) group

of automorphisms of p where the automorphisms may permute the interior marked

points instead of fixing them.

Now, consider a disc x = [Σ, z⃗, z⃗int] ∈ Mk+1,ℓ of combinatorial type G. We have
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that Mk+1,ℓ is an effective orbifold with corners with local model V(x)/Γx.

For each v ∈ C0
d(G), the element x determines a marked disc xv ∈ Mkv+1,ℓv , con-

sisting of a single component. Likewise, for each v ∈ C0
s (G), the element x determines

a marked sphere xv ∈ Mcl
ℓv
, consisting of a single component. Let V(xv)/Γxv be a local

orbifold model of the appropriate moduli space at xv such that every disc/sphere in

the local chart consists of a single component.

We now define a universal family with coordinate at infinity, which we usually

refer to just as a coordinate at infinity.

Definition 2.1.6 (Coordinate at infinity, Def 16.2 [17]). Let π : Mxv → V(xv) be a

fiber bundle, whose fibers are two (real) dimensional manifolds with fiberwise complex

structure. This bundle is a universal family with coordinate at infinity (or simply a

coordinate at infinity) if it satisfies the following conditions:

1. Mxv has a fiberwise biholomorphic Γ+
x action and π is is Γ+

x equivariant.

2. For y ∈ V(xv) the fiber π−1(y) is biholomorphic to Σy minus marked points

corresponding to the singular points of y.

3. As a part of the data we fix a closed subset Kxv ⊆ Mxv such that the restriction

of π to Kxv is proper.

4. We consider the product of V(xv) with the union ⊔
e∈C1

o (G)
e is an outgoing edge of v

(0,∞)× [0, 1]

 ⊔

 ⊔
e∈C1

o (G)
e is an incoming edge of v

(−∞, 0)× [0, 1]



⊔

 ⊔
e∈C1

c (G)
e is an outgoing edge of v

(0,∞)× S1

 ⊔

 ⊔
e∈C1

c (G)
e is an incoming edge of v

(−∞, 0)× S1


(2.1.1)

As a part of the data we fix a diffeomorphism between Mxv \ Kxv and 2.1.1 that

commutes with the projection to V(xv) and is a fiberwise biholomorphic map.
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Moreover, the diffeomorphism sends each end corresponding to a singular point

ze to the end in 2.1.1 corresponding to the edge e

5. The diffeomorphism in (4) extends to a fiber preserving diffeomorphism Mxv
∼=

V(xv)×(Σxv \{singular points}). This diffeomorphism sends each of the interior

or boundary marked points of the fiber of y to the corresponding marked point

of {y}×Σxv . However, this diffeomorphism does not preserve fiberwise complex

structure. We fix this extension of the diffeomorphism as part of the data.

6. The action of an element of Γ+
xv on 2.1.1 is given using the fixed neck biholo-

morphism by exchanging the factors associated to the edges e and by rotation of

the S1 factors.

7. We assume the coordinate at infinity is invariant under the action of Γ+
x (the

whole group) in the sense described below.

We also fix a family of metrics on the fibers of π : Mxv → V(xv) that coincide

with the standard flat metric on the neck regions. See Remark 16.13 in FOOO [17].

In order to define invariance of a coordinate at infinity under the action of Γ+
x (the

whole group, not just the portion for a single component), we need to consider the

following fiber bundle, which is essentially just a combination of the universal family

for each component of x. Take
∏

v∈C0(G) V(xv) and pull back the coordinate at infinity

for each component by the projection map. The fiberwise disjoint union of these fiber

bundles over the product of the bases is then our desired bundle:

⊙
v∈C0(G)

Mxv →
∏

v∈C0(G)

V(xv)

That is, the base of the new bundle is the product
∏

v∈C0(G)V(xv) of the bases of the

individual bundles, and the fiber of this new bundle over a point (xv)v∈C0(G) is the

disjoint union of the original fibers over each xv. In particular, each fiber of this new

bundle still has real dimension 2.

This bundle has a Γ+
xv -action for each v. Furthermore, the group Γ+

x acts on the

sum of the second factors in 2.1.1 by exchanging edge factors and rotating S1 factors.
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We require that this gives a Γ+
x -action on the restricted bundle

⊙
v∈C0(G)

(Mxv \ Kxv) →
∏

v∈C0(G)

V(xv).

Each γ ∈ Γ+
x is biholomorphic as a map between fibers of this bundle.

Remark 2.1.7. We also have an extension of this action to the entire bundle⊙
v∈C0(G) Mxv using the diffeomorphism between fibers fixed by the coordinate at in-

finity. That is, given γ ∈ Γ+
x and y, y′ ∈

∏
v∈C0(G) V(xv) with γy = y′, we have a

diffeomorphism γ : Σy → Σy′ obtained by mapping Σy diffeomorphically to Σx, apply-

ing γ to Σx, then mapping diffeomorphically to Σy′.

We now fix a coordinate at infinity for each xv that is invariant under the Γ+
x

action. We use it to model a neighborhood of x in Mk+1,ℓ.

Let y ∈ V(x;G), let Te ∈ R for each edge e ∈ C1(G) be a large number to be

chosen later, and let T⃗o = (Te; e ∈ C1
o (G)) and (T⃗c, θ⃗) = (Te, θe; e ∈ C1

c (G)) in ∏
e∈C1

o (G)

(Te,0,∞]

×

 ∏
e∈C1

c (G)

((Te,0,∞]× S1)/ ∼

 ,

where the equivalence relation ∼ identifies (T, θ) and (T ′, θ′) if both coordinates are

equal or if T = T ′ = ∞ (essentially, it closes the cylinder at infinity). The T⃗o and

(T⃗c, θ⃗) are gluing parameters, and we are performing a straightforward gluing (not to

be confused with the gluing of maps that appears later) to obtain a new Riemann

surface.

Take a representative Σy of yv and let Kyv = Σyv ∩ Kxv . We call the union⋃
v∈C0(G)Kyv the core of y. Our coordinate at infinity gives a biholomorphic map
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between the complement
⋃
v∈C0(G) Σyv \Kyv of the core and ⋃

e∈C1
o (G)

e an outgoing edge of v

(0,∞)× [0, 1]

 ∪

 ⋃
e∈C1

o (G)
e an incoming edge of v

(−∞, 0)× [0, 1]



∪

 ⋃
e∈C1

c (G)
e an outgoing edge of v

(0,∞)× S1

 ∪

 ⋃
e∈C1

c (G)
e an incoming edge of v

(−∞, 0)× S1

 .

We call the coordinates of each summand above (τ ′e, te), (τ
′′
e , te), (τ

′
e, t
′
e), (τ

′′
e , t
′′
e) respec-

tively (identifying S1 with R/Z).

For each Te ∈ T⃗o or (Te, θe) ∈ (T⃗c, θ⃗) with Te ̸= ∞, we identify portions of each

summand above by equating

τ ′e − 5Te = τ ′′e + 5Te =: τe, (2.1.2)

t′e = t′′e − θe =: te, (2.1.3)
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getting the union

⋃
v∈C0(G)

Kyv ∪

 ⋃
e∈C1

o (G)
Te ̸=∞

[−5Te, 5Te]τe × [0, 1]te

 ∪

 ⋃
e∈C1

c (G)
Te ̸=∞

[−5Te, 5Te]τe × S1
te


(2.1.4)

∪


⋃

e∈C1
o (G)

e an outgoing edge of v
with Te =∞

(0,∞)τ ′e × [0, 1]te

 ∪


⋃

e∈C1
o (G)

e an incoming edge of v
with Te =∞

(−∞, 0)τ ′′e × [0, 1]Te


(2.1.5)

∪


⋃

e∈C1
c (G)

e an outgoing edge of v
with Te =∞

(0,∞)τ ′e × S1
t′e

 ∪


⋃

e∈C1
c (G)

e an incoming edge of v
with Te =∞

(−∞, 0)τ ′′e × S1
t′e

 ,

(2.1.6)

where the subscripts on the various intervals and copies of S1 indicate the coordi-

nate being used. Adding in a finite number of points corresponding to the edges

with infinite length, we obtain a singular stable bordered Riemann surface. We let

Φ(y, T⃗o, (T⃗c, θ⃗)) be the element of Mk+1,ℓ represented by this Riemann surface.

Definition 2.1.8. The above discussion defines a map Φ ∏
v∈C0(G)

V(xv)

×

 ∏
e∈C1

d(G)

(Te,0,∞]

×

 ∏
e∈C1

c (G)

((Te,0,∞]× S1)/ ∼

 Φ→ Mk+1,ℓ.

The map Φ is continuous, open, and stratawise smooth. Furthermore, Φ is Γ+
x

equivariant (lemma 16.9 in [17]), and we have Φ(y, T⃗ o, (T⃗ c, θ⃗)) = Φ(y′, T⃗ o
′
, (T⃗ c

′
, θ⃗′))

if and only if there exists γ ∈ Γx sending (y, T⃗ o, (T⃗ c, θ⃗)) to (y′, T⃗ o
′
, (T⃗ c

′
, θ⃗′)) (see

Remark 9.5 in Fukaya-Ono [24]). Thus, Φ induces a map Φ/Γx, which is an open

homeomorphism onto its image. The map Φ depends on the choice of coordinate at
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infinity, but we have good control over how Φ changes with a change in coordinate

at infinity (see proposition 16.11, 16.15, corollary 16.16, and lemma 16.18 in [17]),

which is important for establishing smoothness of Kuranishi transitions.

2.1.3 Choice of connection, parallel transport, Sobolev spaces,

and Hilbert manifolds

There are several places in the FOOO construction where a choice of connection on X

is used. It is, for example, used to define the linearized ∂̄ operator, it is used to give

local coordinates for gluing, and it is used to extend a choice of obstruction vector

space to an obstruction bundle by parallel transport. FOOO make a single choice of

connection (see [22] Section 2), the Levi-Civita connection of a certain metric, and

then use that for all purposes. However, for our case, it will be essential to extend

our obstruction fibers to obstruction bundles in a more general way. We describe this

process and our other choices related to the connection here.

As in FOOO [22], we take a metric g on X that is Hermitian with respect to

the almost complex structure J such that the Lagrangian L is totally geodesic and

satisfies JTpL ⊥ TpL for all p ∈ L. We then let ∇ be the Levi-Civita connection of

this metric. We use ∇ to define an exponential map Exp : TX → X × X and its

local inverse E : U → TX given by

Exp(x, v) = (x, expx v),

E(x, y) = (x, exp−1x (y)).

Here U = {(x, y) ∈ X ×X | d(x, y) < ιX} where d(x, y) is the Riemannian distance

between x and y and ιX is the injectivity radius of X with our metric. Given a map

u : Σ → X and v a section of u∗TX, we will write Exp(u, v) : Σ → X for the map

z 7→ Exp(u(z), v(z)).

For x, y ∈ X with d(x, y) < ιX , we have a unique geodesic of length d(x, y) between
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x and y, and we use∇ to define a parallel transport map Palyx : TxX → TyX along this

geodesic. We define (Palyx)
J to be the complex linear part of Palyx. Given two maps

u,w : Σ → X, we use (Palyx)
J to get the map (Palyx)

(0,1) : Tu(x)X⊗Λ0,1
x → Tw(x)X⊗Λ0,1

x .

In order to define appropriate notions of parallel transport for maps, we first need

to define the following Hilbert spaces and manifolds. For an introduction to Banach

manifolds, see for instance Lang [37]. For an introduction to viewing spaces of maps

as Banach manifolds see Eliasson [11].

We fix an element x = [Σx, z⃗, z⃗
int] ∈ Mk+1,ℓ of combinatorial type G and we

fix a coordinate at infinity for x. Here Σx is the specific Riemann surface in the

equivalence class x given by the coordinate at infinity. We let y ∈
∏

v∈C0(G) V(xv) and

let Y = Φ(y, T⃗o, (T⃗c, θ⃗)). Our coordinate at infinity and the construction of the Φ

map gives specific Riemann surfaces Σy and ΣY representing y and Y respectively.

We will need the following smooth exponential weight function Σyv → [0,∞) in

order to define appropriate weighted Sobolev norms

ev,δ(τe, te) =



= 1 on Kyv ,

= eδ|τe+5Te| if τe > 1− 5Te, and e is an outgoing edge of v,

∈ [1, 10] if τe < 1− 5Te, and e is an outgoing edge of v,

= eδ|τe−5Te| if τe < 5Te − 1, and e is an incoming edge of v,

∈ [1, 10] if τe > 5Te − 1, and e is an incoming edge of v.

See FOOO [17] (19.15).

We now define our first Hilbert manifold.

Definition 2.1.9. The Hilbert manifold W 2
m+1,δ((Σyv , ∂Σyv);X,L) is the space of

maps wv : (Σyv , ∂Σyv) → (X,L) locally of L2
m+1 class with the following expression
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finite:

m+1∑
k=1

∑
edges e of v

∫
e-th neck

ev,δ|∇kwv|2volΣyv
+

∑
edges e of v

∫
e-th neck

ev,δ|d(wv(z), wv(ze))|2volΣyv
.

The smooth structure is determined by our connection ∇.

As in FOOO [17], we choose m large. In particular, we take m large enough that

every function we consider is continuous.

The tangent space to W 2
m+1,δ((Σyv , ∂Σyv);X,L) at a point uv is the following

Sobolev space.

Definition 2.1.10 (Def 19.6 in [17], Def 3.4 in [22]). The Sobolev space

W 2
m+1,δ((Σyv , ∂Σyv);u

∗
vTX, u

∗
vTL)

is the vector space of pairs (V, v⃗), where v⃗ = (ve)e∈edges of v with ve ∈ Tuv(ze)X for

e ∈ C1
c (G) and ve ∈ Tuv(ze)L for e ∈ C1

o (G), and where V is a section (Σyv , ∂Σyv) →
(u∗vTX, u

∗
vTL) with the following norm finite:

||(V, v⃗)||2L2
m+1,δ

=
m+1∑
k=0

∫
Kv

|∇kV |2volΣyv
+

∑
edges e of v

||ve||2

+
m+1∑
k=0

∑
edges e of v

∫
e-th neck

ev,δ|∇k(V (z)− Pal
uv(z)
uv(ze)

ve)|2volΣyv
.

With this norm, W 2
m+1,δ((Σyv , ∂Σyv);u

∗
vTX, u

∗
vTL) is a separable Hilbert space.

We also need the following Sobolev space, which will be the codomain of the

linearized ∂̄ equation.

Definition 2.1.11. For uv ∈ W 2
m+1,δ((Σyv , ∂Σyv);X,L), the Sobolev space

L2
m,δ(Σyv ;u

∗
vTX ⊗ Λ0,1)
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is the vector space of sections κ of u∗vTX ⊗ Λ0,1 with the following norm finite:

||κ||2L2
m,δ

=
m∑
k=0

∫
Kv

|∇kκ|2volΣyv
+

m∑
k=0

∑
edges e of v

∫
e-th neck

ev,δ|∇kκ|2volΣyv
.

With this norm, L2
m,δ(Σyv ;u

∗
vTX ⊗Λ0,1) is a separable Hilbert space. We have an

associated Hilbert bundle over W 2
m+1,δ((Σyv , ∂Σyv);X,L).

Definition 2.1.12. The Hilbert bundle E2
m,δ((Σyv , ∂Σyv);X,L) is the bundle over

W 2
m+1,δ((Σyv , ∂Σyv);X,L) consisting of pairs (uv, κ) with κ ∈ L2

m,δ(Σyv ;u
∗
vTX⊗Λ0,1).

∂̄ gives a section of this bundle. We will discuss linearization of ∂̄ in Section

2.1.4. The spaces in Defintions 2.1.9, 2.1.10, 2.1.11, and 2.1.12 will be used to define

Fredholm regularity and to reduce from the infinite dimensional setting to the finite

dimensional setting.

Remark 2.1.13. Given any two yv, y
′
v ∈ V(xv), the coordinate at infinity gives a

diffeomorphism between Σyv and Σy′v , in such a way that the Hilbert manifold in

Definition 2.1.9, the Hilbert space in Definition 2.1.10, and the Hilbert bundle in

Definition 2.1.12 are all independent of yv up to diffeomorphism. However, since

the coordinate at infinity does not give a biholomorphism between Σyv and Σy′v , the

diffeomorphisms between Hilbert manifolds, spaces, and bundles do not commute with

∂̄, and we need to treat them as distinct.

It will also be convenient to collect the Hilbert bundles E2
m,δ((Σyv , ∂Σyv);X,L) for

different yv into a single object.

Definition 2.1.14. We let W 2
m+1,δ(V(xv);X,L) be the union⋃

yv∈V(xv)

W 2
m+1,δ((Σyv , ∂Σyv);X,L).

Following the observation in Remark 2.1.13, we give W 2
m+1,δ(V(xv);X,L) the smooth

structure of V(xv)×W 2
m+1,δ((Σxv , ∂Σxv);X,L) using our coordinate at infinity.

We then let E2
m,δ(V(xv);X,L) denote the Hilbert bundle over W 2

m+1,δ(V(xv);X,L)

with fiber over (yv, uv) equal to L
2
m,δ(Σyv ;u

∗
vTX ⊗ Λ0,1).
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We have several more spaces to define, which will be used during the gluing

procedure and for establishing smoothness of our Kuranishi structure. We define the

following Sobolev space, which is closely related to the one in Definition 2.1.10 but is

used instead for gluing. Our source for the sections is no longer a single component,

and we assume that the map along which we pull back TX, TL is smooth component-

wise. We first need another weight function eT⃗ ,δ : ΣY → [1,∞) to define the norm.

eT⃗ ,δ(τe, te) =



= 1 on Kyv ,

= eδ|τe−5Te| if 1 < τe < 5Te − 1,

= eδ|τe+5Te| if −1 > τe > 1− 5Te,

∈ [1, 10] if |τe − 5Te| < 1 or |τe + 5Te| < 1,

∈ [e5Teδ/10, e5Teδ] if |τe| < 1.

See FOOO [17] (19.16).

Definition 2.1.15 (Def 19.9 in [17]). For Y = Φ(y, T⃗o, (T⃗c, θ⃗)), let u : (ΣY, ∂ΣY) →
(X,L) be a smooth map. The Sobolev space

W 2
m+1,δ((ΣY, ∂ΣY);u

∗TX, u∗TL)

is the vector space of pairs (V, v⃗), where v⃗ = (ve)e with Te=∞ with ve ∈ Tu(ze)X for

e ∈ C1
c (G) and ve ∈ TpeL for e ∈ C1

o (G), and where V is a section (ΣY, ∂ΣY) →
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(u∗TX, u∗TL) with the following norm ||(V, v⃗)||2
L2
m+1,δ

finite:

∑
v∈C0(G)

m+1∑
k=0

∫
Kv

|∇kV |2volΣY
+

∑
e with Te =∞

||ve||2

+
∑

v∈C0(G)

m+1∑
k=0

∑
edge e of v with Te =∞

∫
e-th neck (v side)

ev,δ|∇k(V (z)− Pal
u(z)
u(ze)

ve)|2volΣY

+
m+1∑
k=0

∑
edge e of v with Te ̸=∞

∫
e-th neck (v side)

eT⃗ ,δ|∇
k(V (z)− Pal

u(z)
u(ze)

ve)|2volΣY

+
∑

e with Te ̸=∞

∣∣∣∣∣∣∣∣V (0, 12
)
e

∣∣∣∣∣∣∣∣2 ,
where

(
0, 1

2

)
e
is a point in the e-th neck.

This is again a separable Hilbert space with this norm. We also have the following

Sobolev space, which is closely related to that in Definition 2.1.11 and will be used

in gluing.

Definition 2.1.16. For u smooth and Y as above, the Sobolev space

L2
m,δ(ΣY;u

∗TX ⊗ Λ0,1)

is the vector space of sections κ of u∗TX ⊗ Λ0,1 with the following norm finite:

||κ||2L2
m,δ

=
∑

v∈C0(G)

m∑
k=0

∫
Kv

|∇kκ|2volΣY

+
∑

v∈C0(G)

m∑
k=0

∑
edge e of v with Te =∞

∫
e-th neck (v side)

ev,δ|∇kκ|2volΣY

+
∑

e with Te ̸=∞

∫
e-th neck

eT⃗ ,δ|∇
kκ|2volΣY

.

Finally, we need the following Hilbert manifolds, Sobolev spaces, and Hilbert

bundle. Let K ′xv be a compact subset of the core Kxv such that the interior IntK ′xv is

non-empty. We use the diffeomorphism Kyv
∼= Kxv to define K ′yv .
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Definition 2.1.17. The Hilbert manifold W 2
m+1((K

′
yv , K

′
yv ∩ ∂Σyv);X,L) is the space

of maps w : (K ′yv , K
′
yv ∩ ∂Σyv) → (X,L) of L2

m+1 class. The smooth structure is

determined by our connection ∇.

The tangent space at u ∈ W 2
m+1((K

′
yv , K

′
yv ∩ ∂Σ);X,L) is the following separable

Hilbert space.

Definition 2.1.18. The Sobolev space W 2
m+1((K

′
yv , K

′
yv ∩ ∂Σyv);u

∗
vTX, u

∗
vTL) is the

space of sections V : (K ′yv , K
′
yv ∩ ∂Σyv) → (u∗vTX, u

∗
vTL) of L

2
m+1 class.

We also have the following separable Hilbert space.

Definition 2.1.19. The Sobolev space L2
m(K

′
yv ;u

∗
vTX ⊗Λ0,1) is the space of sections

κ : K ′yv → u∗vTX ⊗ Λ0,1 of L2
m class. Explicitly, the norm is

||κ||2L2
m,δ

=
m∑
k=0

∫
K′v

|∇kκ|2volΣyv
.

These Hilbert spaces then fit together to give the following Hilbert bundle.

Definition 2.1.20. The Hilbert bundle E2
m((K

′
yv , K

′
yv∩∂Σyv);X,L) is the bundle over

W 2
m+1((K

′
yv , K

′
yv ∩ ∂Σyv);X,L) consisting of pairs (u, κ) with κ ∈ L2

m(K
′
yv ;u

∗
vTX ⊗

Λ0,1).

We again have a section ∂̄ of this Hilbert bundle.

As in Definition 2.1.14, we collect these Hilbert bundles into a single object.

Definition 2.1.21. We let W 2
Kxv ,m+1(V(xv);X,L) be the union⋃

yv∈V(xv)

W 2
m+1((K

′
yv , K

′
yv ∩ ∂Σyv);X,L).

Following the observation in Remark 2.1.13, we give W 2
Kxv ,m+1(V(xv);X,L) the

smooth structure of V(xv)×W 2
m+1((K

′
xv , K

′
xv ∩ ∂Σxv);X,L).

We then let E2
Kxv ,m

(V(xv);X,L) denote the Hilbert bundle over

W 2
Kxv ,m+1(V(xv), X) with fiber over (yv, uv) equal to L2

m(K
′
yv ;u

∗
vTX ⊗ Λ0,1). Finally,
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we let

W 2
K′x,m+1(V(x);X,L) :=

∏
v∈C0(G)

W 2
K′xv ,m+1(V(xv);X,L),

E2
K′x,m

(V(x);X,L) :=
⊙

v∈C0(G)

E2
K′xv ,m+1(V(xv);X,L).

With our various Hilbert spaces, manifolds, and bundles defined, we can now

return to discussing parallel transport.

Given two maps uv, wv ∈ W 2
m+1,δ((Σyv , ∂Σyv);X,L) such that sup{d(uv(z), wv(z)) |

z ∈ Σv} < ιX (the injectivity radius of X), our pointwise parallel transport maps

give the following maps of sections.

Palwvuv : W 2
m+1,δ((Σyv , ∂Σyv);u

∗
vTX, u

∗
vTL) → W 2

m+1,δ((Σyv , ∂Σyv);w
∗
vTX,w

∗
vTL),

(Palwvuv )
J : W 2

m+1,δ((Σyv , ∂Σyv);u
∗
vTX, u

∗
vTL) → W 2

m+1,δ((Σyv , ∂Σyv);w
∗
vTX,w

∗
vTL),

(Palwvuv )
(0,1) : L2

m,δ(Σyv , u
∗
vTX ⊗ Λ0,1) → L2

m,δ(Σyv , w
∗
vTX ⊗ Λ0,1).

Similarly, given two smooth maps u,w : (ΣY, ∂ΣY) → (X,L), we have the follow-

ing parallel transport maps of sections.

Palwu : W 2
m+1,δ((ΣY, ∂ΣY);u

∗TX, u∗TL) → W 2
m+1,δ((ΣY, ∂ΣY);w

∗TX,w∗TL),

(Palwvuv )
J : W 2

m+1,δ((ΣY, ∂ΣY);u
∗TX, u∗TL) → W 2

m+1,δ((ΣY, ∂ΣY);w
∗TX,w∗TL),

(Palwvuv )
(0,1) : L2

m,δ(ΣY, u
∗TX ⊗ Λ0,1) → L2

m,δ(ΣY, w
∗TX ⊗ Λ0,1).

Finally, given two maps u,w ∈ W 2
m+1((Kyv , Kyv ∩ ∂Σyv);X,L), we have the fol-
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lowing parallel transport maps of sections.

Palwu : W 2
m+1((K

′
yv , K

′
yv ∩ ∂Σyv);u

∗
vTX, u

∗
vTL) →

W 2
m+1((K

′
yv , K

′
yv ∩ ∂Σyv);w

∗
vTX,w

∗
vTL),

(Palwvuv )
J : W 2

m+1((K
′
yv , K

′
yv ∩ ∂Σyv);u

∗
vTX, u

∗
vTL) →

W 2
m+1((Kyv , Kyv ∩ ∂Σyv);w

∗
vTX,w

∗
vTL),

(Palwvuv )
(0,1) : L2

m(K
′
yv , u

∗
vTX ⊗ Λ0,1) → L2

m(K
′
yv , w

∗
vTX ⊗ Λ0,1).

We now depart from FOOO [17], [22]. Let p = (x, u) where u : (Σx, ∂Σx) → (X,L)

is pseudoholomorphic.

Remark 2.1.22. There is an important but subtle point to make here. When we

write an element p = (x, u), we are choosing an equivalence class of disc maps up

to automorphisms of the disc map. That is, x is an isomorphism class of marked

bordered Riemann surfaces, and if we are given a specific representative Σ of x, there

is a uniquely determined map uΣ making (Σ ∪ z⃗ ∪ z⃗int, uΣ) a representative of (x, u).

We will often have multiple different universal families with coordinate at infinity,

and we will need to take great care in these situations. See Lemma 2.1.26 and Section

2.1.5. In particular, in this section (x, u) is always source stable, but this will not

always be the case in later sections.

Let E(x,u),v be a finite dimensional complex submanifold of L2
m(K

′
xv ;u

∗
vTX ⊗Λ0,1)

containing 0 such that every element of E(x,u),v is smooth and supported in IntK ′xv .

Note that we are now only assuming that uv is defined on K ′xv , and not on all of

Σxv . We call this vector space an obstruction fiber. We define an extension of the

obstruction fiber as follows.

Definition 2.1.23. Given an obstruction fiber E(x,u),v, an extension of the obstruction

fiber consists of a choice of the following map, which may be completely unrelated to

∇:

TrivK′xv ,E(x,u),v
: UKxv ,(x,u),v × E(x,u),v → E2

Kxv ,m
(V(xv);X,L), (2.1.7)
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where UK′xv ,(x,u),v is a neighborhood of (xv, uv|K′xv ) in W
2
Kxv ,m+1(V(xv);X,L), such that

the following properties are satisfied:

1. The map TrivK′xv ,E(x,u),v
is a diffeomorphism onto its image.

2. The map TrivK′xv ,E(x,u),v
defines a trivial sub-bundle EKxv ,(x,u),v of

E2
K′xv ,m

(V(xv);X,L) over UK′xv ,(x,u),v. The fiber of this bundle over (xv, uv|K′xv )
must be (E(x,u),v).

Recall that we take m “large.” In particular, we take m large enough that

W 2
m+1((K

′
yv , K

′
yv ∩ ∂Σyv);X,L) ⊆ C10((K ′yv , K

′
yv ∩ ∂Σyv);X,L) (2.1.8)

We thus have that our neighborhood UKxv ,(x,u),v is open if we use the C10 topology

instead of the L2
m+1 topology, which we will use in the proof of Proposition 2.1.33.

Recall from Remark 2.1.7 that we have an action of the group Γ+
x on the fiber

bundle

⊙
v∈C0(G)

Mxv →
∏

v∈C0(G)

V(xv)

as part of our coordinate at infinity data. Here the fiber over y ∈
∏

v∈C0(G) V(xv) is

Σy minus singular points, and the action preserves the cores of the fibers (although it

does not give a biholomorphism between them). That is, given y, y′ ∈
∏

v∈C0(G) V(xv)

and γ ∈ Γ+
x with γy = y′, we have a diffeomorphism γ : Σy → Σy′ that restricts to

a diffeomorphism γ : Ky → Ky′ . This will give us an action of Γ+
(x,u) on all of our

spaces of functions and sections (after taking appropriate products to account for the

domains) by pullback, where Γ+
(x,u) ⊆ Γ+

x is the group of automorphisms γ of Σx fixing

boundary marked points such that we have u ◦ γ = u on K ′x, recalling that our map

u is only assumed to be defined on K ′x in this case.

For instance, assuming the union K ′y =
⋃
v∈C0(G)K

′
yv is Γ+

(x,u)-invariant (in the

sense that the action on Σy restricts to an action on this subspace), we have that
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Γ+
(x,u) acts on the Hilbert manifold W 2

K′x,m+1(V(x);X,L) as follows: an element of

W 2
K′x,m+1(V(x);X,L) is a pair (y, w) with w : (K ′y, K

′
y∩∂Σy) → (X,L), and γ (y, w) =

(γy, w◦γ−1). Similarly, we have that Γ+
(x,u) acts on the Hilbert manifold E2

K′x,m
(V(x);X,L)

by γ(y, w, κ) = (γy, w ◦ γ−1, (γ−1)∗κ). This leads us to the following definition.

Definition 2.1.24. Given obstruction fibers E(x,u),v for all v ∈ C0(G), we say that

the total obstruction fiber E(x,u) =
∏

v∈C0(G)E(x,u),v is invariant with respect to Γ+
(x,u)

and that the extension of the obstruction fibers is equivariant with respect to Γ+
(x,u) if

the sets K ′y, and
∏

v∈C0(G) UK′,(x,u),v, and E(x,u) are invariant under the action of Γ+
(x,u),

and the following map TrivK′,E(x,u)
=
∏

v∈C0(G) TrivK′,E(x,u),v
is equivariant:∏

v∈C0(G)

TrivK′,E(x,u),v
:
∏

v∈C0(G)

(
UK′,(x,u),v × E(x,u),v

)
→

∏
v∈C0(G)

E2
K′,m(V(xv);X,L).

We define extension of the obstruction fiber using our core Hilbert manifolds, but

it induces extensions for our other sources, which we will make more direct use of.

Definition 2.1.25. Consider a given Γ+
(x,u)-equivariant extension TrivK′,E(x,u)

of a

Γ+
(x,u)-invariant obstruction fiber E(x,u) and maps wv : (Σyv , ∂Σyv) → (X,L) and w′ :

(ΣY, ∂ΣY) → (X,L) where Y = Φ(y′, T⃗o, (T⃗c, θ⃗)), such that (yv, wv|K′yv ) ∈ UK′,(x,u),v
and (y′v, w

′|K′
y′v
) ∈ UK′,(x,u),v. We have induced extension maps

(TrivE(x,u),v
)wvuv : E(x,u),v → L2

m,δ(Σyv ;w
∗
vTX ⊗ Λ0,1),

(TrivE(x,u)
)w
′

u : E(x,u) → L2
m,δ(ΣY; (w

′)∗TX ⊗ Λ0,1).

The first map is obtained by sending the section κ ∈ E(x,u),v to TrivE(x,u),v
(yv, wv|K′yv , κ)

∈ L2
m(K

′
yv ; (wv)|

∗
K′yv

TX ⊗ Λ0,1) then extending by 0. The second map is obtained

similarly.

Here we run into a situation where me must be careful to be aware of our choices

of representatives in a given class (y, w′). We assume in the above definition that

Y = Φ(y′, T⃗o, (T⃗c, θ⃗)), giving a representative ΣY, but in generalY will not be uniquely

expressible as Φ(y′, T⃗o, (T⃗c, θ⃗)). This is why we require Γ+
(x,u) equivariance in the above

definition.
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Lemma 2.1.26. Fix a class (Y, w) ∈ Mk+1,ℓ(β) (assumed to be source stable), and

let Y = Φ(y, T⃗o, (T⃗c, θ⃗)) = Φ(y′, T⃗ ′o, (T⃗
′
c, θ⃗
′)). This gives two representatives (ΣY, w)

and (Σ′Y, w
′) of (Y, w). By definition, we have a bilohomorphism α : Σ′Y

∼−→ ΣY over

w, w′.

Given a Γ+
(x,u)-equivariant extension TrivK′,E(x,u)

of a Γ+
(x,u)-invariant obstruction

fiber E(x,u), the following diagram commutes:

E(x,u)

(TrivE(x,u)
)wu

//

(TrivE(x,u)
)w
′

u ++

L2
m,δ(ΣY;w

∗TX ⊗ Λ0,1)

α∗

��
L2
m,δ(Σ

′
Y; (w

′)∗TX ⊗ Λ0,1).

Proof. We recall that Φ(y, T⃗o, (T⃗c, θ⃗)) = Φ(y′, T⃗ ′o, (T⃗
′
c, θ⃗
′)) implies that there exists

γ ∈ Γx with (y, T⃗o, (T⃗c, θ⃗)) = γ(y′, T⃗ ′o, (T⃗
′
c, θ⃗
′)) (see the end of Section 2.1.2). Thus

the bilholomorphism α must be induced by γ. It follows that γ ∈ Γ+
(x,u). The desired

result then follows directly from the definition of a Γ+
(x,u)-equivariant extension of a

Γ+
(x,u)-invariant obstruction fiber.

In the FOOO program, they use the parallel transport maps induced by ∇ to

extend their obstruction vector spaces, which can be phrased in terms of our definition

without difficulty. The Γ+
(x,u) invariance of the obstruction vector spaces and Γ+

(x,u) of

the extensions is covered in Lemmas 17.11 and 17.16 in FOOO [17]. Using this more

general definition changes very little about the FOOO construction, but the added

flexibility will be essential for our construction of compatible Kuranishi structures on

different moduli spaces.

We come now to one of the two main applications of our increased flexibility

in defining the obstruction bundle. Let (Y, ω′, J ′) be another compact symplectic

manifold (of the same dimension as X) with compatible almost complex structure

J ′ and embedded Lagrangian L′. Let DX and DY be closed subsets of X and Y

respectively not intersecting L or L′. Consider a bi-pseudoholomorphic map ψ :

X \ DX → Y \ DY such that ψ(L) = L′. Observe that E2
K′x,m

(V(x);X \ DX , L) is
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an open subset of E2
K′x,m

(V(x);X,L), and likewise E2
K′x,m

(V(x);Y \DY , L
′) is an open

subset of E2
K′x,m

(V(x);Y, L′). We have induced isomorphisms

ψ∗ : L
2
m((K

′
yv , K

′
yv ∩ ∂Σyv);X \DX , L) → L2

m((K
′
yv , K

′
yv ∩ ∂Σyv);Y \DY , L

′),

which gives the diffeomorphism

ψ∗ : E2
K′x,m

(V(x);X \DX , L) → E2
K′x,m

(V(x);Y \DY , L
′)

mapping (yv, wv, κv) 7→ (yv, ψ ◦ wv, dψ(κv)).

We then have the following proposition.

Proposition 2.1.27. Let E(x,u) ⊆
∏

v∈C0(G) L
2
m(K

′
xv ;u

∗
vTX⊗Λ0,1) be a Γ+

(x,u)-invariant

obstruction fiber such that K ′x is disjoint from u−1(DX). Assume further that ψ∗E(x,u)

is Γ+
(x,ψ◦u)-invariant.

Let TrivK′,ψ∗E(x,u)
be a Γ+

(x,ψ◦u)-equivariant extension of the obstruction fiber ψ∗E(x,u)

on Y , and let UY,v be an open neighborhood in UK′,(x,ψ◦u),v ⊆ W 2
K′xv ,m+1(V(xv);Y, L

′)

such that for all (y, w) ∈ UK′,(x,ψ◦u),v we have w(K ′y) ∩ DY = ∅. We then let UX,v
be (ψ∗)

−1(UY,v), that is the open neighborhood of (xv, uv) in W 2
K′xv ,m+1(V(xv);X,L)

consisting of all (yv, wv) with (yv, ψ ◦ wv) ∈ UY,v.
Then there exists a Γ+

(x,u)-equivariant extension of the obstruction fiber E(x,u) on X

(the top row of the following diagram) such that the following diagram commutes.

∏
v∈C0(G)

(
UX,v × E(x,u),v

)
ψ∗
��

TrivK′,(x,u) //
∏

v∈C0(G) E2
K′xv ,m

(V(xv);X \DX , L)

ψ∗

��∏
v∈C0(G)

(
UY,v × ψ∗E(x,u),v

) TrivK′,(x,ψ◦u)//
∏

v∈C0(G) E2
K′xv ,m

(V(xv);Y \DY , L
′)

Proof. Given (yv, wv, κv) ∈ UX,v × E(x,u),v, we define

TrivK′,(x,u),v(yv, wv, κv) = (ψ∗)
−1
(yv ,wv)

(
TrivK′,(x,ψ◦u),v(yv, ψ ◦ wv, (ψ∗)(xv ,uv)κv)

)
.

Each of the three conditions for this map to be an extension of the obstruction fiber

E(x,u) is clear.

To see that TrivK′,(x,u) is Γ
+
(x,u)-equivariant, let γ ∈ Γ+

(x,u) and note that we have a
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natural homomorphism ψ∗ : Γ
+
(x,u) → Γ+

(x,ψ◦u), since γ acts entirely by pre-composition.

Furthermore, ψ∗(γ(y, w, κ)) = (ψ∗γ)ψ∗(y, w, κ) and (ψ∗)
−1
y,w(ψ∗(γ)(y, ψ ◦ w, κ′)) =

γ(ψ∗)
−1
y,w(y, ψ ◦ w, κ′). Given

(y, w, κ) ∈
∏

v∈C0(G)

(
UX,v × E(x,u),v

)
,

we thus have that

TrivK,(x,u) (γ(y, w, κ)) = (ψ∗)
−1
(y,w)

(
TrivK,(x,ψ◦u)

(
ψ∗(γ)(y, ψ ◦ w, (ψ∗)(x,u)κ)

))
= (ψ∗)

−1
(y,w)

(
ψ∗(γ)TrivK,(x,ψ◦u)

(
y, ψ ◦ w, (ψ∗)(x,u)κ

))
= γ

(
(ψ∗)

−1
(y,w)

(
TrivK,(x,ψ◦u)

(
y, ψ ◦ w, (ψ∗)(x,u)κ

)))
= γ

(
TrivK,(x,u) (y, w, κ)

)
.

We close this subsection with the following important technical point, which is

necessary to show that we can still define the Kuranishi map in a manner compatible

with the increased flexibility of our definition of the obstruction fiber.

Lemma 2.1.28. Given an extension∏
v∈C0(G)

TrivK′,E(x,u),v
:
∏

v∈C0(G)

(
UK′,(x,u),v × E(x,u),v

)
→

∏
v∈C0(G)

E2
K′,m(V(xv);X,L).

of the obstruction fiber E(x,u), we have a smooth map

s :
∏

v∈C0(G)

U ′K′,(x,u),v →
∏

v∈C0(G)

L2
m(K

′
xv , u

∗TX ⊗ Λ0,1),

where U ′K′,(x,u),v is an open subset of UK′,(x,u),v, such that

s(y, w) ∈ E(x,u)

if and only if

∂̄w ∈
∏

v∈C0(G)

TrivK′,E(x,u),v

(
(y, w)× E(x,u)

)
.
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Proof. Recall that EK′xv ,(x,u),v is the (trivial) obstruction fiber sub-bundle of

E2
K′xv ,m

(V(xv);X,L) over UK′,(x,u),v. We will construct a tubular neighborhood in

E2
K′xv ,m

(V(xv);X,L) of a neighborhood of ((x, u), 0) in EK′xv ,(x,u),v.
For each point p ∈ Eyv ,wv we have the (finite dimensional) tangent space TpEyv ,wv

⊆ L2
m(K

′
yv , w

∗TX ⊗ Λ0,1), and the corresponding normal space NpEyv ,wv

⊆ L2
m(K

′
yv , w

∗TX ⊗ Λ0,1) induced by the L2 pairing is closed. We thus have a map

(fiberwise an isometric embedding) i(yv),wv) : NEyv ,wv → L2
m(K

′
yv , w

∗TX ⊗ Λ0,1) from

the normal bundle into the ambient space, sending (p, κ) 7→ p+ κ. Combining these

maps over points (yv, wv) in the base UK′,(x,u),v for various extends to a map (again,

fiberwise over EK′xv ,(x,u),v an isometric embedding)

i : NEK′xv ,(x,u),v → E2
K′xv ,m

(V(xv);X,L).

The differential (Di)(xv ,uv),0,0 of i at ((xv, uv), 0, 0) ∈ NEK′xv ,(x,u),v is an isomor-

phism from Txv ,uvUK′,(x,u),v ⊕ T0Exv ,uv ⊕N0Exv ,uv to L2
m(K

′
xv , u

∗
vTX ⊗ Λ0,1). Thus, the

restriction of i to an open neighborhood of ((xv, uv), 0, 0) in NEK′xv ,(x,u),v is a diffeo-

morphism onto its image V ⊆ E2
K′xv ,m

(V(xv);X,L). From this, we get a smooth map

j : V → EK′xv ,(x,u),v. We then get a smooth map

πK′xv ,(x,u),v : V → L2
m(K

′
xv , u

∗
vTX ⊗ Λ0,1)

sending

((yv, wv), κ) 7→ Triv−1K′,E(x,u)
(j((yv, wv), κ)) + (Paluvwv)

(0,1)(κ− j((yv, wv), κ)).

Taking U ′K′,(x,u),v to be an open subset of ∂̄−1(V) ⊆ UK′,(x,u),v, we get that s =

πK′xv ,(x,u),v ◦ ∂̄ is the desired map.

2.1.4 Obstruction bundle data

We now return to FOOO [17]. There are several things we need before defining

obstruction bundle data. We start with the following definition:

Definition 2.1.29 (Def 17.5 in [17]). A symmetric stabilization of an element (x, u)

is a choice of additional interior marked points w⃗ such that

1. w⃗ ∩ z⃗int = ∅.
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2. u is an immersion at each point of w⃗.

3. (Σx, z⃗, w⃗ ∪ z⃗int) is stable.

4. Each element of Γ+
(x,u) permutes the points of w⃗.

Much of our machinery only works when our discs are source stable, which is

why we need to be able to stabilize. Every time we introduce a new stabilization,

we will also introduce a codimension 2 submanifold for each added point, which will

eventually be used to forget the added points.

Let Y = Φ(y, T⃗ o, (T⃗ c, θ⃗)) be an element of Mk+1,ℓ+ℓ′ represented by (ΣY, z⃗Y, z⃗
int
Y ∪

w⃗Y). We use the Levi-Civita connection of our metric g from Section 2.1.3 to define

the linearized ∂̄ operator at (yv, wv):

Dyv ,wv ∂̄ : W 2
m+1,δ((Σyv , ∂Σyv);w

∗
vTX,w

∗
vTL) → L2

m,δ(Σyv ;w
∗
vTX ⊗ Λ0,1)

Dyv ,wv ∂̄(V, v⃗) =
d

dt

∣∣∣∣
t=0

(
((PalExp(wv ,tV )

wv )(0,1))−1∂̄ Exp(wv, tV )
)
.

We also have the following linearized ∂̄ operator at (Y, w′):

DY,w′ ∂̄ : W 2
m+1,δ((ΣY, ∂ΣY); (w

′)∗TX, (w′)∗TL) → L2
m,δ(ΣY; (w

′)∗TX ⊗ Λ0,1)

DY,w′ ∂̄(V, v⃗) =
d

dt

∣∣∣∣
t=0

(
((Pal

Exp(w′,tV )
w′ )(0,1))−1∂̄ Exp(w′, tV )

)
.

For each pair (v, e) consisting of a vertex and adjacent edge of G, we have the

following evaluation maps. If e corresponds to a boundary singular point, that is

e ∈ C1
o (G), we have the map

evv,e : W
2
m+1,δ((Σyv , ∂Σyv);u

∗TX, u∗TL) → Tu(ze)L

mapping (s, v⃗) 7→ ±ve (the e component of v⃗), where the sign is positive if e is an

outgoing edge of v and negative if e is an incoming edge of v. If e corresponds to an
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interior singular point, so e ∈ C1
c (G), we have the map

evv,e : W
2
m+1,δ((Σyv , ∂Σyv);u

∗TX, u∗TL) → Tu(ze)X

mapping (s, v⃗) 7→ ±s(ze), where the sign is again positive if e is an outgoing edge of

v and negative if it is an incoming edge of v. We combine these evaluation maps into

the following total evaluation map:

evG :
⊕

v∈C0(G)

W 2
m+1,δ((Σyv , ∂Σyv);u

∗TX, u∗TL) →
⊕

e∈C1
o (G)

Tu(ze)L⊕
⊕

e∈C1
o (G)

Tu(ze)X

(2.1.9)

Finally, for each boundary marked point zi, we have the following evaluation map

evzi : W
2
m+1,δ((Σyv , ∂Σyv);u

∗TX, u∗TL) → Tu(zi)L

mapping s 7→ s(zi). We also get a corresponding total evaluation map

evz⃗ : W
2
m+1,δ((Σyv , ∂Σyv);u

∗TX, u∗TL) →
⊕
zi∈z⃗

Tu(zi)L.

We can now define obstruction bundle data.

Definition 2.1.30 (See Def 17.7 in [17]). We call the following data obstruction

bundle data Ep centered at p = (x, u) = [(Σ, z⃗, z⃗int), u] ∈ Mk+1,ℓ(β;G):

1. A symmetric stabilization w⃗ of (x, u). We let Gw⃗∪x denote the combinatorial type

of the stabilized map.

2. A neighborhood V(xv ∪ w⃗v) of xv ∪ w⃗v in Mkv+1,ℓv+ℓ′v or Mkv+1,ℓv+ℓ′v . We choose

V(xv ∪ w⃗v) so that every point is an irreducible disc or sphere.

3. A universal family with coordinate at infinity of xv ∪ w⃗v defined on V(xv ∪ w⃗v).
We require this coordinate at infinity to be invariant under the Γ+

(x∪w⃗,u) action

in the sense given following Definition 2.1.6. With this coordinate at infinity

chosen, we now have a particular choice of representative [(Σx, z⃗, z⃗
int ∪ w⃗), u] ∈

Mk+1,ℓ+ℓ′(β;G) and hence [(Σx, z⃗, z⃗
int), u] ∈ Mk+1,ℓ(β;G).
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4. A finite dimensional, Γ+
(x,u)-invariant submanifold

∏
v∈C0(G)E(x,u),v of∏

v∈C0(G) L
2
m(Kxv ;u

∗TX⊗Λ0,1) containing the point 0, such that every section in

E(x,u),v is smooth with compact support in IntK ′xv for some compact K ′xv ⊆ Kxv

with non-empty interior. We called this an obstruction fiber in Section 2.1.3.

5. Extensions TrivK′,E(x,u),v
: UK′,(x,u),v × E(x,u),v → E2

K′xv ,m
(V(xv);X,L) of the ob-

struction fibers E(x,u),v, as in Definition 2.1.23 such that they are equivariant

with respect to the action of Γ+
p in the sense of Definition 2.1.24.

6. We require that (x, u) be Fredholm regular with respect to Ep in the sense that

the sum of the image of Dxv ,uv ∂̄ and T0E(x,u),v is L2
m,δ(Σxv ;u

∗
vTX ⊗ Λ0,1).

7. We require that (x, u) is evaluation map transversal with respect to Ep, in the

sense that the restriction of evG to
⊕

v∈C0(G)(Du,v∂̄)
−1(T0E(x,u),v) is surjective.

8. We require that (x, u) is evaluation map transversal at the 0th boundary marked

point, in the sense that the restriction of evz0 to
⊕

v∈C0(G)(Du,v∂̄)
−1(T0E(x,u),v)

is surjective.

9. For each wi ∈ Σv we take a codimension 2 submanifold Di of X such that

u(wi) ∈ Di and u∗TwiΣv + Tu(wi)Di = TwiX. Moreover, given v ∈ Γ+
p and

v(wi) = wj, then Di = Dj.

This differs slightly from the definition given in FOOO [17] in order to accommo-

date our more general approach to the obstruction bundle, but it is essentially the

same.

Remark 2.1.31. Evaluation map transversality at the 0th boundary marked point

(condition (8) above) is not necessary for constructing a Kuranishi structure following

the FOOO program, but will be necessary for our applications. We could also ask for

a similar transversality at interior marked points, but in our case it will be simpler

not to.

The following definition provides the appropriate notion of one map being “close”

to another, for our purposes.
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Definition 2.1.32 (Def 17.12 in [17]). Let Y = Φ(y, T⃗ o, (T⃗ c, θ⃗)) for y ∈ V(x ∪ w⃗p),

and let w′ : (ΣY, ∂ΣY) → (X,L) be a C10 map2 in homology class β. We say that

(Y, w′) is ϵ-close to p with respect to Ep if the following conditions hold.

1. The map Φ gives an identification between Kyv and a subset of KY. We require

|u− w′|C10(KY) < ϵ.

2. The map w′ is holomorphic on each neck region of ΣY.

3. The diameter of the w′ image of each connected component of the neck region

is smaller than ϵ.

4. Te > ϵ−1 for each e.

Note that, although we use a particular choice of representative ΣY in this defini-

tion, any other choice will differ only by an element of Γp, which does not affect any

of the conditions.

This ϵ-closeness condition only becomes useful after extending the core in the

following sense. Given a choice of coordinate at infinity, we define the extended core

of yv as

K+R⃗
yv = Kyv ∪

⋃
e ∈ C1

o (G) an outgoing edge of v

(0, R(v,e)]× [0, 1]

∪
⋃

e ∈ C1
o (G) an incoming edge of v

[−R(v,e), 0)× [0, 1]

∪
⋃

e ∈ C1
c (G) an outgoing edge of v

(0, R(v,e)]× S1

∪
⋃

e ∈ C1
c (G) an incoming edge of v

[−R(v,e), 0)× S1.

See FOOO [17] Def 17.21. When our coordinate at infinity is given by obstruction

bundle data Ep, we will let Ep
+R⃗ denote the obstruction bundle data together with

the extended core.

2The C10 norm used here is induced by our metric g on X and the metric on the source. Unless
otherwise stated, this will be the case for all norms.



50

Without extending the core, p may not even be ϵ-close to itself. However, allowing

for extension of the core, we have the following proposition.

Proposition 2.1.33 (Modification of Prop 17.22 in [17]). Let p ∈ Mk+1,ℓ(β) and let

Ep be a choice of obstruction bundle data centered at p. Then there exists ϵ > 0 and

R⃗ such that:

1. If (Y, u′) is ϵ-close to p with respect to Ep
+R⃗, then (yv, u

′|Kyv
) ∈ UK,(x,u),v for all

v.

2. If (Y, u′) is ϵ-close to p with respect to Ep
+R⃗, then (Y, u′) is Fredholm regular

with respect to Ep
+R⃗ in the sense that the sum of the image of DY,u′ ∂̄ and

T0(TrivE(x,u)
)u
′
u (E(x,u)) is all of L2

m,δ(ΣY; (w
′)∗TX ⊗ Λ0,1).

3. If (Y, u′) is ϵ-close to p with respect to Ep
+R⃗, then (Y, u′) is evaluation map

transversal with respect to Ep
+R⃗ in the sense that the restriction of evG to

(DY,w′ ∂̄)
−1T0(TrivE(x,u)

)u
′
u (E(x,u))) is surjective.

4. p is ϵ-close to Ep
+R⃗.

Proof. Parts (2), (3), and (4) are proven in exactly the same way as in FOOO [17], us-

ing an exponential decay estimate on the neck regions and a Mayer-Vietoris argument

due originally to Mrowka in his thesis [42]. Part (1) follows from the first condition

in Definition 2.1.32 and the fact that we chose m large, see expression (2.1.8).

2.1.5 Stabilization data

Now, for each p = (x, u) ∈ Mk+1,ℓ(β) we fix obstruction bundle data Ep. Note that

this data includes a choice of coordinate at infinity, a symmetric stabilization with ℓp

marked points w⃗p of p, and a choice of codimension 2 submanifold Dp,i for each point

wp,i such that u(wp,i) ∈ Dp,i and Dp,i is transversal to u. We will take finitely many

points pc and use only the obstruction bundle data at those points. To this end, we

need the following lemma, unchanged from FOOO [17].

Lemma 2.1.34 (Lemma 18.2 in [17]). For each p = (x, u) ∈ Mk+1,ℓ(β) with its fixed

obstruction bundle data Ep, the following holds for sufficiently small ϵp.

Letting q = (Y, u′) ∈ Mk+1,ℓ(β), the set of symmetric stabilizations w⃗′q of Y with

ℓp points such that the following holds is either empty or consists of a single Γp orbit:
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1. Y ∪ w⃗′q = Φ(y, T⃗ o, (T⃗ c, θ⃗)) for some y ∈ V(x ∪ w⃗p) and (T⃗ o, (T⃗ c, θ⃗)).

2. The pair (Y ∪ w⃗′q, u′) is ϵp-close to p.

3. We have that u′(w′q,i) ∈ Dp,i for all i.

Remark 2.1.35. The above Lemma 2.1.34 supplies a number ϵp > 0 which we will

treat as fixed so we can choose our finitely many points pc. However, we will continue

making statements about taking ϵp sufficiently small, even after we have supposedly

fixed ϵp. We are secretly carrying out a kind of induction. We can take a single point

p with its obstruction bundle data Ep and obtain our desired results locally without

having to fix ϵp. We then use the local result to prove the above lemma, actually fix

ϵp, and then go through the entire proof process again.

In FOOO [17], they carry this out more explicitly. However, this makes the nota-

tion substantially bulkier. Since our changes to the FOOO program have no impact

on this point, we will suppress it for the remainder of the paper in the interest of

readibility.

For each p we fix ϵp such that Lemma 2.1.34 and Proposition 2.1.33 both hold. We

let W+(p) be the set of all q ∈ Mk+1,ℓ(β) such that the symmetric stabilization w⃗′q in

Lemma 2.1.34 exists. This set is open in Mk+1,ℓ(β) (this is not obvious, see Definition

18.3 in FOOO [17]). We choose a sequence of sets IntW0
p ⊆ W0

p ⊆ IntWp ⊆ Wp ⊆

W+
p , with p ∈ IntW0

p and both W0
p and Wp compact. We take and fix a finite set

{pc|c ∈ C} ⊆ Mk+1,ℓ(β) such that
⋃
c∈C IntW

0
pc = Mk+1,ℓ(β). Only obstruction

bundle data at pc for c ∈ C is used for the remainder of the construction. For

p ∈ Mk+1,ℓ(β), we define C(p) = {c ∈ C | p ∈ Wpc}. For each c ∈ C(p), we take

additional marked points w⃗p
c for p as given by Lemma 2.1.34.

We have one further requirement to impose on our choices of obstruction bundle

data.

Condition 2.1.36. For each p = (x, u) ∈ Mk+1,ℓ(β), we require that the obstruction

fibers (TrivEpc
)uuc(Epc) are independent. That is, we need the sum space∑

c∈C(p)

(TrivEpc
)uuc(Epc) ⊆ L2

m(Σx;u
∗TX ⊗ Λ0,1)
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to be a smooth manifold of dimension equal to the sum of the dimensions of the

individual spaces (TrivEpc
)uuc(Epc).

We take this condition so that we may identify
⊕

c∈C(p)(TrivEpc
)uuc(Epc) with∑

c∈C(p)(TrivEpc
)uuc(Epc).

In the original FOOO setting, Lemma 18.8 in FOOO [17] shows that we can

impose this condition on our choices of obstruction bundle data. In explicit cases,

such as the one considered in this paper, this condition is easy to arrange.

Definition 2.1.37 (Def 18.9 in FOOO[17]). We call the following “stabilization data”

at p:

1. A symmetric stabilization w⃗p = (wp,1, . . . , wp,ℓp) of p = (x, u). Let ℓp = #w⃗p.

2. For each wp,i (i = 1, . . . , ℓp), we take codimension two submanifolds Dp,i of X

transversal to up at up(wp,i) and with up(wp,i) ∈ Dp,i. We assume these Dp,i are

invariant under the Γp action in the same sense as in Definition 2.1.30.

3. A new coordinate at infinity for p ∪ w⃗p.

4. w⃗p ∩ w⃗p
c = ∅ for any c ∈ C(p).

5. We require that the support of the obstruction bundle of Epc at p be contained

in the core of the new coordinate at infinity, in the sense described below.

The new coordinate at infinity gives a representative Σx∪w⃗p of x∪ w⃗p. The obstruc-

tion bundle data Epc gives a representative Σx∪w⃗p
c
of x ∪ w⃗p

c . We have that Σx∪w⃗p and

Σx∪w⃗p
c
are biholomorphic, as their classes differ only by marked points. The biholo-

morphism preserves all original marked points, but not w⃗p and w⃗′c. It follows that

there is a uniquely determined map uc making (Σx∪w⃗p
c
∪ z⃗ ∪ z⃗int, uc) a representative

of p (see Remark 2.1.22). The biholomorphism is thus an element of Γ(x,u). However,

because our extension of the obstruction fiber is Γ(x,u)-equivariant, we can identify the

support of the obstruction vector space at (Σx∪w⃗p
c
∪ z⃗∪ z⃗int, uc) with a subset of Σx∪w⃗p

in a way independent of the choice of this element of Γ(x,u) by Lemma 2.1.26. It is in
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the sense of this identification that we need the support of the obstruction bundle of

Epc at p be contained in the core of Σx∪w⃗p .

Remark 2.1.38. From here on, we will be simultaneously using multiple choices of

universal family with coordinate at infinity, namely one for each c ∈ C(p) coming from

our choices of obstruction bundle data, and another coming from the stabilization data

at p. Keeping careful track of the different choices will be crucial for following the

remainder of the construction and the proofs of various technical points. To this end,

we will write Φc for the Φ map coming from the corresponding choice of obstruction

bundle data, and we will write Φp for the map coming from the choice of stabilization

data.

2.1.6 Thickened moduli space and Kuranishi chart

Fix T⃗0 = (T⃗ o0 , T⃗
c
0 ) and let ϵ0 > 0. We fix metrics on all the Deligne-Mumford moduli

spaces. We fix a stabilization data at p = (x, u) and let Vϵ0(p ∪ w⃗p) be the ϵ0

neighborhood of p ∪ w⃗p in Mk+1,ℓ+ℓp(G(p∪w⃗p)). We consider the set of all (Y, u′, (w⃗′c))

such that the following holds for some R⃗:

1. There exists y ∈ Vϵ0(p ∪ w⃗p) and (T⃗ o, (T⃗ c, θ⃗)) ∈ (T⃗ o0 ,∞]× ((T⃗ c0 ,∞]× S1) such

that Y = Φp(y, T⃗
o, (T⃗ c, θ⃗)).

2. (Y, u′) is ϵ0-close to u with respect to the R⃗ extended core coming from the

coordinate at infinity given by the stabilization data.

3. We let ΣY be the (unmarked) representative of Y given by Φp(y, T⃗
o, (T⃗ c, θ⃗)),

and we let z⃗ ∪ z⃗int be marked points such that ΣY ∪ z⃗ ∪ z⃗int ∪ w⃗p is in Y. We

require that the pair (ΣY ∪ z⃗ ∪ z⃗int ∪ w⃗p
c , u
′) is ϵ0-close to u with respect to the

extended core obstruction bundle data E+R⃗
pc for all c ∈ C(p).

We say that (Y(1), u(1), (w⃗
(1)
c )) is equivalent to (Y(2), u(2)), (w⃗

(2)
c ) if there exists a

biholomorphic map v : ΣY(1) → ΣY(2) such that u(1) = u(2) ◦ v and such that v fixes

all marked points. That is, v maps every marked point on ΣY(1) to the corresponding
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marked point on ΣY(2) , for the marked points coming from p, the additional marked

points coming from the stabilization data we fixed, and the additional marked points

coming from the obstruction bundle data Epc for all c ∈ C(p) (in the sense v(w
(1)
c,i ) =

w
(2)
c,i ).

Definition 2.1.39 (Def 18.10 in [17]). We let Uk+1,(ℓ;ℓp,(ℓc))(β, p)ϵ0,T⃗0 be the set of

equivalence classes (Y, u′, (w⃗′c)) satisfying (1)-(3) above.

Taking ϵ0 and ϵpc sufficiently small, we can then define:

Definition 2.1.40. Let q+ = (Y, u′, (w⃗′c)) ∈ Uk+1,(ℓ;ℓp,(ℓc))(β, p)ϵ0,T⃗0 . We define

Ec(q
+) = (TrivE(xc,uc)

)u
′
uc(Epc) ⊆ L2

m(ΣY; (u
′)∗TX ⊗ Λ0,1). We also define E(q+) =∑

c∈C(p)Ec(q
+).

This is our extension of the obstruction vector space given by Epc to the repre-

sentative (ΣY ∪ z⃗ ∪ z⃗int ∪ w⃗′c, u′) of (Y, u′, (w⃗′c)), see Definition 2.1.25. Note that this

involves taking an expression Y = Φc(yc, T⃗
o′, (T⃗ c′, θ⃗′)). Such an expression exists

by our requirement (3) above, and the space Ec(q
+) is independent of all choices of

representative because our obstruction bundle data is taken to be Γ+
pc equivariant.

Note also that Ec(q
+,ΣY) does not depend on ϵ0, T⃗0, or the stabilization data we

fixed, and that for appropriate choices of R⃗c, we can extend the cores given by each

Epc so that they all agree, and we then have that the support of E(q+) is contained

in the extended core with respect to all of the different Epc .

Definition 2.1.41 (Def 18.15 in [17]). The thickened moduli space

Mk+1,(ℓ;ℓp,(ℓc))(β; p)ϵ0,T⃗0

is the subset of Uk+1,(ℓ;ℓp,(ℓc))(β, p)ϵ0,T⃗0 consisting of equivalence classes of elements

q+ = (Y, u′, (w⃗′c)) such that ∂̄u′ ∈ E(q+).

Again, by the equivariance of our obstruction bundle data, the statement ∂̄u′ ∈

E(q+,ΣY) does not depend on any choices of representatives.

Proposition 2.1.33 then gives the following lemma.
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Lemma 2.1.42 (Lemma 18.16 in [17]). By taking ϵ0 and ϵpc sufficiently small and

T⃗0 sufficiently large, we get the following statements.

1. If q+ = (Y, u′, (w⃗′c)) is in Uk+1,(ℓ;ℓp,(ℓc))(β, p)ϵ0,T⃗0, then the condition ∂̄u′ ∈ E(q+)
is Fredholm regular, in the sense of Proposition 2.1.33.

2. If q+ = (Y, u′, (w⃗′c)) is in Uk+1,(ℓ;ℓp,(ℓc))(β, p)ϵ0,T⃗0, then q+ is evaluation map

transversal in the sense of Proposition 2.1.33.

3. p ∪ (w⃗p
c) = (x, u, (w⃗p

c)) ∈ Uk+1,(ℓ;ℓp,(ℓc))(β, p)ϵ0,T⃗0.

Let Mk+1,(ℓ;ℓp,(ℓc))(β; p;Gp)ϵ0,T⃗0 denote the stratum of Mk+1,(ℓ;ℓp,(ℓc))(β; p)ϵ0,T⃗0 con-

sisting of all elements with combinatorial type Gp. These are all elements of the Hilbert

manifold
∏

v∈C0(G)W
2
m+1,δ(V(xv);X,L). By Condition 2.1.36, we have an open neigh-

borhood Up of p in
∏

v∈C0(Gp)W
2
m+1,δ(V(xv);X,L) on which we can combine the maps

TrivK′,Epc
to get a smooth trivialization

Up ×

∑
c∈C(p)

(TrivK′c,Epc
)uucEpc

→
∏

v∈C0(Gp)

E2
m,δ(V(xv);X,L). (2.1.10)

Combined with Lemma 2.1.42 and Lemma 2.1.28, we can use the implicit function

theorem to get the following result.

Lemma 2.1.43 (Lemma 19.1 in [17]). For ϵ0 and ϵpc sufficiently small and T⃗0 suf-

ficiently large, the stratum Mk+1,(ℓ;ℓp,(ℓc))(β; p;Gp)ϵ0,T⃗0 has the structure of a smooth

manifold.

Definition 2.1.44 (Def 20.6 in FOOO[17]). An element (Y, u′, (w⃗′c)) of

Mk+1,(ℓ,ℓp,(ℓc))(β; p)ϵ0,T⃗0 satisfies the transversal constraint at all additional marked

points if for all marked points w⃗p of Y from the stabilization data at p we have

that wpi ∈ Dp,i, and for all marked points w⃗′c we have that w′c,i ∈ Dc,i. We let

Mk+1,(ℓ,ℓp,(ℓc))(β; p)
trans
ϵ0,T⃗0

be the set of all such elements.

Then, using the gluing techniques of FOOO [17], [22], which will be covered in

detail in the Appendix, we have the following result.
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Proposition 2.1.45 (FOOO [17]). Mk+1,(ℓ,ℓp,(ℓc))(β; p)
trans
ϵ0,T⃗0

has the structure of a

smooth (C∞) manifold with corners.

We have a natural Kuranishi section

s : Mk+1,(ℓ,ℓp,(ℓc))(β; p)
trans
ϵ0,T⃗0

→
∏

v∈C0(Gp)

E2
m,δ(V(x);X,L)

obtained by composing the ∂̄ operator with the trivialization of the obstruction bundle

in expression (2.1.10). We can then define a homeomorphism

forget :
(
Mk+1,(ℓ,ℓp,(ℓc))(β; p;A;B)trans

ϵ0,T⃗0
∩ s−1(0)

)
/Γp → Mk+1,ℓ(β). (2.1.11)

See Appendix Section A.2

Our Kuranishi chart is then

Proposition 2.1.46 (Prop 21.14 in [17]). Let p ∈ Mk+1,ℓ(β). Then the smooth

manifold with corners Mk+1,(ℓ,ℓp,(ℓc))(β; p)
trans
ϵ0,T⃗0

, together with the group Γp, the smooth

Kuranishi section s, and the homeomorphism in Proposition A.2.4, gives a Kuranishi

neighborhood of Mk+1,ℓ(β) at p.

We have that the evaluation maps at marked points

ev : Mk+1,(ℓ,ℓp,(ℓc))(β; p)
trans
ϵ0,T⃗0

→ Lk+1 ×Xℓ

are smooth, see Lemma 21.25 in FOOO [17].

After further shrinking the charts, this choice of charts admits appropriate tran-

sition maps to give a Kuranishi structure on the whole moduli space Mk+1,ℓ(β).

2.1.7 Subspace Kuranishi structures

Having gone through the process for constructing a Kuranishi structure for

Mk+1,ℓ(X,L, β), we note that we will actually need a slightly more general treatment
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of Kuranishi structures on moduli spaces. Namely, we need to be able to talk about

subspaces of these moduli spaces.

Definition 2.1.47. Let Y ⊆ X be compact metrizable spaces with Kuranishi struc-

tures and Kuranishi morphism (f ; {(fp, (fp)∗)p}) from Y to X such that f is the

inclusion map, the maps fp, are all injective, and the maps (fp)∗ are all diffeomor-

phisms. We call this morphism (f ; {(fp, (fp)∗)p}) a Kuranishi inclusion, and we call

Y a Kuranishi subspace of X .

Example 2.1.48 (Fibers of Weak Submersion). Let M be a smooth manifold and

let f : Mk+1,ℓ(X,L, β) → M be a weak submersion (with respect to our constructed

Kuranishi structure on Mk+1,ℓ(X,L, β). For each point y ∈ M the fiber f−1(y)

naturally has the structure of a Kuranishi space, obtained by taking the Kuranishi

charts (V ′, E) induced by the charts (V,E):

V ′ = f−1(y) ∩ V s //

��

E

V

s
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This is a special case of the material of Chapter 4 in FOOO [23], which handles

fiber products in detail. In our terminology, each fiber is a Kuranishi subspace of

Mk+1,ℓ(X,L, β).

Example 2.1.49. Fix a point p ∈ X \ L and say we have a Kuranishi structure

on Mk+1,1(X,L, β) such that the interior point evaluation map ev+ is weakly sub-

mersive. Then by the above discussion the moduli space of pseudoholomorphic maps

in Mk+1,1(X,L, β) whose image contains the point p can be naturally viewed as the

subspace (ev+)−1(p) ⊆ Mk+1,1(X,L, β) with corresponding Kuranishi structure.

2.2 Morphisms of moduli spaces induced by maps of ambient

spaces

Now that we have reviewed the FOOO construction of a Kuranishi structure for a

moduli space of pseudoholomorphic discs, we apply Proposition 2.1.27 to get some

preliminary results on morphisms of moduli spaces of pseudoholomorphic discs in-

duced by maps of ambient spaces.
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Let X and Y be birational smooth Kähler varieties with relatively spin La-

grangians LX and LY respectively, together with a birational holomorphic map ψ :

X → Y that maps LX diffeomorphically onto LY . Let DX ⊆ X and DY ⊆ Y be the

minimal Zariski closed sets such that ψ|X\DX : X \DX → Y \DY is biholomorphic,

and assume that LX ∩DX = ∅ and LY ∩DY = ∅. Finally, let β ∈ H2(X,LX) be an

effective disc class such that for all nodal discs u ∈ β every non-constant component

of the map u intersects DX transversally. That is, we assume that no element of β

has a non-constant component contained in DX .

We do not assume X or Y are compact, but we do assume that the usual “com-

pactifications” of the moduli spaces of smooth holomorphic discs by stable nodal discs

are genuinely compact. This would be guaranteed by X and Y being compact, but

that condition is not necessary, as in our primary example in this dissertation.

Theorem 2.2.1. In the above situation, we can construct compatible Kuranishi struc-

tures on Mk+1,ℓ(X,LX , β) and Mk+1,ℓ(Y, LY , ψ∗β) such that we have an induced mor-

phism of Kuranishi spaces

Mk+1,ℓ(X,LX , β)
ψ→ Mk+1,ℓ(Y, LY , ψ∗β).

Furthermore, the Kuranishi structure on Mk+1,ℓ(Y, LY , ψ∗β) induces a Kuranishi

structure on the image moduli space ψ(Mk+1,ℓ(X,LX , β)) with respect to which the

morphism

Mk+1,ℓ(X,LX , β)
ψ→ ψ (Mk+1,ℓ(X,LX , β)) ,

is an isomorphism.

The moduli space ψ(Mk+1,ℓ(X,LX , β)) consists exactly of those stable nodal holo-

morphic discs in Y with boundary on LY in class ψ∗β that lift to stable nodal holo-

morphic discs in X with boundary on LX in class β.

Example 2.2.2. The situation outlined in Section 1.4 is consistent with this setup for

any class β ∈ H2(O(−n), L). We go through the proof of Theorem 2.2.1 in this par-
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ticular case in Section 3.1. As alluded to above, neither O(−n) nor O is compact, but

the moduli spaces of stable nodal discs Mk+1(O(−n), L, β) and Mk+1(O, ψ(L), ψ∗β)

are compact.

Proof. We begin by choosing obstruction bundle data for every (holomorphic) point

p ∈ Mk+1,ℓ(X,LX , β) and every (holomorphic) point p′ ∈ Mk+1,ℓ(Y, LY , ψ∗β). For

our obstruction bundle data, we need to choose a symmetric stabilization w⃗ and corre-

sponding codimension 2 submanifolds Di (items (1) and (9)), a universal family with

coordinate at infinity (items (2) and (3)), a Γ+
ψ(p∪w⃗)-invariant obstruction fiber Eψ(p)

(item (4)) such that items (6)-(8) are satisfied, and a Γ+
ψ(p∪w⃗)-equivariant extension

TrivK′,Eψ(p∪w⃗)
.

Note that we do not require any non-trivial obstruction bundle data for constant

components of maps, so we do not take any and do not need to worry about the pos-

sibility of compatibility issues arising from such components. They are already source

stable and Fredholm regular, and all evaluation map transversality requirements can

be achieved without non-trivial obstruction bundle data on the constant components.

This latter point relies on the fact that our nodal discs are bordered nodal Riemann

surfaces of genus 0. If we were considering higher genus Riemann surfaces, we would

need to consider the contribution from constant components more carefully.

By the transversality assumptions of our setup, we can choose a symmetric sta-

bilization w⃗ of each ψ(p) so that ψ(u(wi)) ̸∈ DY for all wi, and we can choose the

corresponding codimension 2 submanifolds Di to be transversal to F0. This then

induces a compatible stabilization for p ∈ Mk+1(O(−n), L, β). We then take a uni-

versal family with coordinate at infinity for each component together with its extra

marked points xv ∪ w⃗v.
We will need the following lemma, the proof of which is postponed until the end

of Section 2.3.

Lemma 2.2.3. Given any p = [x, u] ∈ Mk+1,ℓ(X,LX , β), and choices of items

1, 2, and 3 of Definition 2.1.30, we can take an obstruction fiber (item 4) Ep ⊆
L2
m(Kx;u∗TX⊗Λ0,1) at p such that every element of Ep is supported away from u−1(DX)

and such that, for any choice of extension of the obstruction fiber satisfying item 5 in

Definition 2.1.30, items 6, 7, and 8 of the definition are satisfied as well.

Note that this Lemma relies completely on the condition that DX does not contain

any non-constant components of u. An identical statement is true for a point ψ(p) ∈
Mk+1,ℓ(Y, LY , ψ∗β) and the closed set DY .
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We choose an obstruction fiber Ep at each point p ∈ Mk+1,ℓ(X,LX , β) as given

by Lemma 2.2.3. We then push this obstruction fiber forward to get

ψ∗Ep ⊆ L2
m(Kx;(ψ(u))∗TX⊗Λ0,1). Adding to this fiber using Lemma 2.2.3 if necessary

(i.e. taking a higher dimensional obstruction fiber containing ψ∗Ep), we get an ob-

struction fiber Eψ(p) that we can extend to a choice of obstruction bundle data at

ψ(p). Taking obstruction fiber E ′p = (ψ∗)
−1(Eψ(p)), we then apply Proposition 2.1.27

to get obstruction bundle data at p. We restrict the domains of all of our obstruction

bundle data so that the support of any element of an obstruction fiber is always kept

away from the preimage of DX or DY .

Finally, for every point p′ ∈ Mk+1,ℓ(Y, LY , ψ∗β) outside of the image of ψ, we take

any choice of obstruction bundle data.

Having taken all necessary obstruction data, we next need to take stabilization

data at each point p ∈ Mk+1,ℓ(X,LX , β) and every point p′ ∈ Mk+1,ℓ(Y, LY , ψ∗β).

For each image point ψ(p) ∈ Mk+1,ℓ(Y, LY , ψ∗β), we take ϵψ(p) as in Section

2.1.5, and for each p′ ∈ Mk+1,ℓ(Y, LY , ψ∗β) \ ψ (Mk+1,ℓ(X,LX , β)) we take ϵp′ suf-

ficiently small for the neighborhood W+(p′) in Mk+1,ℓ(Y, LY , ψ∗β) to not intersect

ψ (Mk+1,ℓ(X,LX , β)). For each ψ(p) ∈ ψ (Mk+1,ℓ(X,LX , β)), we choose the sub-

sets IntW0
ψ(p) ⊆ W0

ψ(p) ⊆ IntWψ(p) ⊆ Wψ(p) of W+
ψ(p) ⊆ Mk+1,ℓ(Y, LY , ψ∗β) as in

Section 2.1.5, and we take W0
p = ψ−1(W0

ψ(p)) and Wp = ψ−1(Wψ(p)). For p′ ∈
Mk+1,ℓ(Y, LY , ψ∗β) \ ψ (Mk+1,ℓ(X,LX , β)) we also choose subsets W0

p′ ,Wp′ of W
+
p′ ,

with the important point being that these sets again do not intersect

ψ (Mk+1,ℓ(X,LX , β)).

We take a finite set {p′c | c ∈ C′} ⊆ Mk+1,ℓ(Y, LY , ψ∗β) such that
⋃
c∈C′ IntW

0
p′c
=

Mk+1,ℓ(Y, LY , ψ∗β). Because of our choices of W0
p′ , this gives finite sets C ⊆ C′

and {pc | c ∈ C} ⊆ Mk+1,ℓ(X,LX , β) such that
⋃
c∈C IntW

0
p = Mk+1,ℓ(X,LX , β)

and
⋃
c∈C IntW

0
ψ(p) ⊇ ψ (Mk+1,ℓ(X,LX , β)), and such that for each ψ(p) the set

C′(ψ(p)) ⊆ C.

We now take stabilization data (Definition 2.1.37) at each p ∈ Mk+1,ℓ(X,LX , β)

in a similar way to how we chose obstruction bundle data. That is, we choose a

symmetric stabilization w⃗p of p so that u(wp,i) ̸∈ DX for all wp,i, and we choose the

corresponding codimension 2 submanifolds Dp,i of X to be transversal to DX . We

then take a universal family with coordinate at infinity for each component together

with its extra marked points xv ∪ w⃗p. By taking the same coordinate at infinity and

symmetric stabilization, and taking the codimension 2 submanifolds ψ(Dp,i) ofDY , we

get a corresponding choice of stabilization data at ψ(p). We also choose stabilization
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data at p′ for each p′ ∈ Mk+1,ℓ(Y, LY , ψ∗β) \ ψ (Mk+1,ℓ(X,LX , β)).

We now take ϵ0 and ϵ
′
0 small and consider the sets Uk+1,(ℓ;ℓp,(ℓc))(X,LX , β; p)ϵ0,T⃗0 and

Uk+1,(ℓ;ℓp,(ℓc))(Y, LY , ψ∗β;ψ(p))ϵ′0,T⃗0
(see Definition 2.1.39). By taking ϵ0 sufficiently

small relative to ϵ′0, we get for all (Y, u
′, (w⃗′c)) ∈ Uk+1,(ℓ;ℓp,(ℓc))(X,LX , β; p)ϵ0,T⃗0 that we

have that (Y, ψ◦u′, (w⃗′c)) ∈ Uk+1,(ℓ;ℓp,(ℓc))(Y, LY , ψ∗β;ψ(p))ϵ′0,T⃗0
. We also have ψ∗∂̄u

′ =

∂̄(ψ ◦u′), so, by the choices of our obstruction bundle data, ∂̄u′ ∈ E((Y, u′, (w⃗′c)),ΣY)

if and only if ∂̄ψ ◦ u′ ∈ E((Y, ψ ◦ u′, (w⃗′c)),ΣY). That is, we have the following map

of thickened moduli spaces (see Definition 2.1.41):

ψ : Mk+1,(ℓ;ℓp,(ℓc))(X,LX , β; p)ϵ0,T⃗0 → Mk+1,(ℓ;ℓp,(ℓc))(Y, LY , ψ∗β;ψ(p))ϵ′0,T⃗0
.

From our various choices of codimension 2 submanifolds D and ψ(D), this then gives

a map

ψ : Mk+1,(ℓ;ℓp,(ℓc))(X,LX , β; p)
trans
ϵ0,T⃗0

→ Mk+1,(ℓ;ℓp,(ℓc))(Y, LY , ψ∗β;ψ(p))
trans
ϵ′0,T⃗0

which is a smooth embedding. We take an open neighborhood Vψ(p) of ψ(p) in

Mk+1,(ℓ;ℓp,(ℓc))(Y, LY , ψ∗β;ψ(p))ϵ′0,T⃗0
so that Vψ(p) ∩ ψ(Mk+1,(ℓ;ℓp,(ℓc))(X,LX , β; p)

trans
ϵ0,T⃗0

)

is closed in Vψ(p). We then take Vp = ψ−1(Vψ(p)).

Each (Vψ(p), E(p),Γp,Triv ◦ ∂̄) is a Kuranishi neighborhood of ψ(p) in

Mk+1,ℓ(Y, LY , ψ∗β) and (Vp, E(p),Γp,Triv ◦ ∂̄) is a Kuranishi neighborhood of p in

Mk+1,ℓ(X,LX , β). The natural transition maps used in FOOO [17] for the Kuranishi

structures on Mk+1,ℓ(X,LX , β) and Mk+1,ℓ(Y, LY , ψ∗β) are compatible in the sense

of Definition 2.1.4. Thus, we have constructed the first morphism of Kuranishi spaces

in the theorem statement:

Mk+1,ℓ(X,LX , β)
ψ→ Mk+1,ℓ(Y, LY , ψ∗β).

We can now take Kuranishi neighborhood (ψ(Vp), E(p),Γp,Triv ◦ ∂̄) of the point

ψ(p) in the moduli space ψ(Mk+1,ℓ(X,LX , β). With this Kuranishi structure, we

have the Kuranishi isomorphism from the theorem statement:

Mk+1,ℓ(X,LX , β)
ψ→ ψ (Mk+1,ℓ(X,LX , β)) .

Note that the Kuranishi structure on the space ψ(Mk+1,ℓ(X,LX , β)) is induced from

the Kuranishi structure on Mk+1,ℓ(Y, LY , ψ∗β) in the sense of Section 2.1.7. Each
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chart of ψ(Mk+1,ℓ(X,LX , β)) is the fiber of a submersion on the corresponding chart of

Mk+1,ℓ(Y, LY , ψ∗β), and these can be glued together to give a global weak submersion

some fiber of which gives ψ(Mk+1,ℓ(X,LX , β)).

2.3 Deformation family regularization of moduli spaces

We now introduce the concept of deformation family regularization of Kuranishi

spaces. The most natural definition of a deformation family of Kuranishi spaces

is in fact simply a weakly submersive map π : M → B, as each fiber is then a

Kuranishi space.

Definition 2.3.1. Let M be a Kuranishi space, let B be a smooth manifold, and let

π : M → B be weakly submersive. For each t ∈ B, the fiber Mt is a Kuranishi space.

We call π : M → B a deformation family of Kuranishi spaces.

Consider the following simple example

Example 2.3.2. Fix L a moment fiber Lagrangian in P1 × P1 and β1 + β2 = β ∈
H2(P1 × P1, L) an effective Maslov index 4 disc class containing no multiply cov-

ered discs. The moduli space Mk+1,1(P1 × P1, L, β) is regular, in the sense that

we can take trivial obstruction bundle everywhere and still have a valid Kuranishi

structure. The interior IntMk+1,1(P1 × P1, L, β) of the moduli space is a (non-

compact) manifold without boundary, and the restriction of ev+, the evaluation map

at the interior marked point, to IntMk+1,1(P1 × P1, L, β) is a submersion. Letting

γ : (−1, 1) → P1 × P1 be a path whose image is contained in the image of ev+, the

pullback IntMk+1,1(P1 × P1, L, β)
ev+

×γ(−1, 1) is a deformation family of Kuranishi

spaces over (−1, 1).

For our purposes, we will be interested in deformation families of Kuranishi spaces

where the generic fibers are regular. We can then think of the regular fibers as being

deformations of the irregular fibers.

Definition 2.3.3. Let π : M → B be a deformation family of Kuranishi spaces.

For each t ∈ B, the fiber Mt is a Kuranishi space. Fix a privileged element t0 ∈ B.

Assume further that, for all t ̸= t0, the Kuranishi section of Mt is transversal to
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the 0-section without any perturbation. We refer to this deformation family as a

deformation family regularization of Mt0.

This provides an alternative approach to perturbing a moduli space that can be

more explicitly calculable in practice. In our primary example studying O(−n), we

will construct a deformation family over an open interval that allows us to deform

our moduli spaces of interest to ones that are regular without perturbation. We can

then use these regular moduli spaces to define our A∞ structure on H•(L; Λ).

More precisely, in order to define our A∞ structure, we need to deform our moduli

spaces in families so that the deformations respect the stratification structure of the

moduli spaces, since it is this relationship that gives rise to the A∞-structure. This is

a stronger condition than that appearing in Definition 2.3.3. In light of this, we take

the following definition of a stratified deformation family regularization of a moduli

space.

Definition 2.3.4 (Stratified deformation family). Let M be a moduli space of pseu-

doholomorphic discs with natural stratification induced by the stratification of the

Deligne-Mumford space Mk+1,ℓ of stable marked genus 0 Riemann surfaces with at

most one boundary component. Let B be a smooth manifold with privileged element

t0 ∈ B, and let π : M → B be a deformation family of Kuranishi spaces. Assume

further that, for each Kuranishi chart Vα of M, the restriction of the submersion

πα : Vα → B to any stratum of Vα is also a submersion. We then call π : M → B a

stratified deformation family of Mt0.

If this deformation family also gives rise to a regularization of Mt0 , we call it a

stratified deformation regularization:

Definition 2.3.5 (Stratified deformation regularization). Let π : M → B be a strat-

ified deformation family of moduli spaces of pseudoholomorphic discs. If this family

is also a deformation family regularization of Mt0 for some t0 ∈ B, we call this a

stratified deformation regularization of Mt0.

Remark 2.3.6. In their recent book, FOOO [23] introduce the notion of a “system of

K-spaces,” which axiomatizes a number of the important features of the moduli spaces
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we study, including the boundary compatibility property mentioned above, but we will

not work directly with this notion here.

We now describe a method for constructing stratified deformation regulariza-

tions. Assume we have already constructed Kuranishi structures on the moduli spaces

Mk+1,ℓ(X,L, β) for all β following FOOO, as outlined in this chapter. We will build

a Kuranishi structure on the space Mk+1,ℓ(X,L, β) × (−ϵ, ϵ) that will give rise to a

deformation family over (−ϵ, ϵ).

Let U ⊆ X be an open set such that every element of the obstruction fiber Ep

is supported away from u−1(U) for all p. Let η : (−ϵ, ϵ) × (−ϵ′, ϵ′) → Diff(U) be a

family of difeomorphisms of U . Assume ηs,0 = idX and that the composition relation

ηs+t,t′ ◦ ηs,t = ηs,t+t′

holds for all s ∈ (−ϵ, ϵ) and t, t′ ∈ (−ϵ′, ϵ′) such that s+t ∈ (−ϵ, ϵ) and t+t′ ∈ (−ϵ′, ϵ′).3

Furthermore, assume, for all (s, t) ∈ (−ϵ, ϵ) × (−ϵ′, ϵ′), that ηs,t is the identity on a

neighborhood of L and is pseudoholomorphic on an open neighborhood of U ∩X \ U .

For each pseudoholomorphic p = (x, u) ∈ Mk+1,ℓ(X,L, β) we have a Kuranishi chart

Vp
s→ Ep; assume finally that the derivative

d

dt

∣∣
t=0
∂̄ηs,t(u) ∈ L2

m,δ(Σx;u
∗TX ⊗ Λ0,1) (2.3.1)

does not lie in T0(Ep) for any p and s.

We have chosen ηs,t so that it gives smooth maps (ηs,t)∗ from each Hilbert manifold

of core maps

W 2
m+1((K

′
x, K

′
x ∩ Σx);X,L)

to itself.

3This condition may seem somewhat strange at first, but it arises naturally in our primary
example.



65

Lemma 2.3.7. In the above situation, we can construct a Kuranishi structure on

Mk+1,ℓ(X,L, β)× (−ϵ, ϵ) with the following properties:

1. We have one Kuranishi chart V ′p for each p ∈ Mk+1,ℓ(X,L, β) such that V ′p
covers Vp × (−ϵ, ϵ).

2. The projections V ′p → (−ϵ, ϵ) make a Mk+1,ℓ(X,L, β)× (−ϵ, ϵ) stratified defor-

mation family of Mk+1,ℓ(X,L, β)× {0} over (−ϵ, ϵ).

3. If, for every map (Y, w) ∈ Vp,s in the fiber of V ′p over s ∈ (−ϵ, ϵ), we have that

(ηs,t)∗ ◦ res ◦ w ∈ W 2
m+1((Kx, Kx ∩ ∂Σx);X,L)

extends to a map

(ηs,t)!(w) ∈ W 2
m+1,δ((ΣY, ∂ΣY);X,L),

then the map (ηs,t)! in the diagram below exists, is unique, and is a diffeomor-

phism between the Kuranishi neighborhood Vp,s of the point (p, s) = ((x, u), s) in

the fiber over s and the Kuranishi neighborhood Vp,s+t of the point (p, s) in the

fiber over s+ t.

Vp,s
(ηs,t)! //

res

��

Vp,s+t

res

��
W 2
m+1((K

′
x, K

′
x ∩ ∂Σx);X,L)

(ηs,t)∗
//W 2

m+1((K
′
x, K

′
x ∩ ∂Σx);X,L)

(2.3.2)

Proof. We let J be the ω-tame almost-complex structure we have been implicitly

using for X, and we let Js,t := η∗s,tJ be the pullback almost-complex structure. Each

Js,t is well-defined on all of X, and agrees with J on X \ U , by the assumptions on

η. For each J-holomorphic p = (x, u) ∈ Mk+1,ℓ(X,L, β), we have a Kuranishi chart

Vp
s→ Ep,

where s = π ◦ ∂̄J is given by Lemma 2.1.28. We then consider the map

s : W 2
m+1((K

′
x, K

′
x ∩ Σx);X,L)× (−ϵ, ϵ)× (−ϵ′, ϵ′) → L2

m(K
′
x;u
∗TX ⊗ Λ0,1)

sending ((Y, w), s, t) 7→ π ◦ ∂̄Js,t(w). As before, K ′x is a compact subset of the interior
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of the core Kx. Here we are using the coordinate at infinity given by the stabilization

data at p. We define the Kuranishi neighborhood V 0
p analogously to Section 2.1.6

using the condition ∂̄Js,tw ∈ Ep((Y, w)) = π−1(Ep). We get immediately that V 0
p is

stratawise smooth, and it is in fact a smooth manifold with corners, since the gluing

argument is naturally carried out without changing the coordinates s, t. Furthermore,

the projection to the s coordinate V 0
p → (−ϵ, ϵ) is a submersion, and for each fixed

value of s ∈ (−ϵ, ϵ) the fiber V 0
p,s over s is a smooth manifold with corners.

The space V 0
p,s consists entirely of the pairs ((Y, w)), t) where ∂̄Js,t(w) ∈ Ep(Y, w),

which is equivalent to the condition that ∂̄J(ηs,t ◦ w|K′′) ∈ Ep(Y, w), where K
′′ is a

compact subset of the interior of the core K such that K ′ is a compact subset of the

interior of K ′′. This condition is equivalent to the condition

∂̄Jw|K′ ∈ Ep(Y, w)− ∂̄J(ηs,t ◦ w|K′) + ∂̄Jw|K′ ,

and the condition that ((Y, w), t) ∈ V 0
p,s for some choice of t ∈ (−ϵ′, ϵ′) is equivalent

to the condition

∂̄Jw|K′ ∈ E ′p((Y, w), s) = Ep(Y, w) + ∂̄Jw|K′ −
⋃

t∈(−ϵ′,ϵ′)

∂̄J(ηs,t ◦ w|K′).

By the condition in Equation 2.3.1, the spaces E ′p((Y, w), s) give a trivialization of an

obstruction fiber E ′p(p, s). Thus, we can take E ′p(Y, w) =
⋃
s∈(−ϵ,ϵ)

(
E ′p((Y, w), s), s

)
,

and, by forgetting the t coordinate of V 0
p , we get Kuranishi charts V ′p → E ′p(Y, w)

for Mk+1,ℓ(X,L, β) × (−ϵ, ϵ) such that the projection to (−ϵ, ϵ) gives a stratified

deformation family of Mk+1,ℓ(X,L, β) × {0}. All coordinate changes are naturally

induced from those of the original Kuranishi structure on Mk+1,ℓ(X,L, β). Since

ηs,0 = id for all s, we have that E ′p(Y, w) ⊇ Ep(Y, w), so V
′
p ⊇ Vp × (−ϵ, ϵ). We have

thus shown items 1 and 2 of the lemma.

Now, as in item 3 of the lemma, assume that every map

(ηs,t)∗ ◦ res ◦ w ∈ W 2
m+1((K

′
x, K

′
x ∩ ∂Σx);X,L)

extends to a map

(ηs,t)!(w) ∈ W 2
m+1,δ((ΣY, ∂ΣY);X,L).

The restriction maps in Diagram 2.3.2 are injective, since every map (Y, w) ∈ Vp,s is

Js,t-holomorphic on K ′′ \K ′ for some (unique) t. The map (ηs,t)∗ gives a diffeomor-
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phism from res(Vp,s) onto its image, so, since ηs+t,−t = η−1s,t , it suffices to show that

this image is contained in res(Vp,s+t).

Since (ηs,t)∗ ◦ res ◦ w extends to (ηs,t)!(w), we have that ∂̄J(res((ηs,t)!(w))) ∈
E ′p((Y, w), s+ t), which implies (ηs,t)!(w) ∈ Vp,s+t, as desired.

Remark 2.3.8. The reason the above proof is more roundabout than just declaring

Ep,s = Ep −
⋃
t∈(−ϵ′,ϵ′) ∂̄(ηs,t ◦ u) is that these forms do not vanish on all neck re-

gions, so we cannot just plug this choice of obstruction fiber into our usual process

for constructing a Kuranishi structure. Note that the condition that the forms of the

obstruction fiber vanish on the neck regions is necessary both for the extension of

the obstruction fiber over the Hilbert manifold W 2
m+1(K

′
x, K

′
x ∩ ∂Σ;X,L) and for con-

ducting the necessary gluing argument to show that our Kuranishi charts are smooth

manifolds with corners.

The proof of Theorem 2.2.1 can be adapted to show the following lemma:

Lemma 2.3.9. Given diffeomorphisms ηs,t as in Lemma 2.3.7, and given a Kuranishi

inclusion

Mk+1,ℓ(Y, LY , β)
ψ→ Mk+1,ℓ(X,LX , ψ∗β)

induced by a map

ψ : Y → X

as in Theorem 2.2.1, we can construct a Kuranishi structure on Mk+1,ℓ(Y, LY , ψ∗β)×
(−ϵ, ϵ) and a Kuranishi structure on Mk+1,ℓ(Y, LY , β) such that such that we have a

Kuranishi inclusion

Mk+1,ℓ(Y, LY , β)
ψ→ Mk+1,ℓ(X,LX , ψ∗β)× {0}. (2.3.3)

We now combine Lemmas 2.3.7 and 2.3.9 to arrive at our procedure for construct-

ing well-behaved stratified deformation families. Assume that the condition in item

3 of Lemma 2.3.7 holds for η0,t for all t. We take the image (η0,t)! of each chart Vψ(p)

of image Kuranishi space ψ(Mk+1,ℓ(Y, LY , β)) of the map ψ in 2.3.3. This is a closed

subset (η0,t)!(Vψ(p)) of the Kuranishi chart V ′ψ(p),t of the fiber over t of the stratified

deformation family Mk+1,ℓ(X,LX , ψ∗β)× (−ϵ, ϵ).
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Under the final assumption that the union for fixed t of the images of these

(η0,t)!(Vψ(p)) in the compact metrizable space underlying the Kuranishi space

Mk+1,ℓ(X,LX , ψ∗β)×(−ϵ, ϵ) form a compact subspace, this then gives a stratified de-

formation family of ψ(Mk+1,ℓ(Y, LY , β)) with the property that the Kuranishi charts

of the fiber over a given t are obtained from the Kuranishi charts of the central fiber

ψ(Mk+1,ℓ(Y, LY , β)) by applying (η0,t)!.
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Chapter 3

Application to O(−n)

3.1 Kuranishi structures and correspondence map between

O(−n) and O

We carry out the process behind Theorem 2.2.1 in our specific situation of interest.

We need to build compatible Kuranishi structures for the moduli spaces

Mk+1(O(−n), L, β), and Mk+1(O, ψ(L), ψ∗(β); (F0, D0, n)). That is, recalling that

the two moduli spaces are homeomorphic under the map ψ, we will build isomorphic

Kuranishi structures on them. For readibility, we will actually construct two different

pairs of isomorphic Kuranishi structures. The first, constructed in this section, is

simpler. Notably, all obstruction fibers for these Kuranishi structures will be vector

spaces, as in the original FOOO construction. The second, constructed in the follow-

ing subsection 3.2, is similar to the first but with larger obstruction fibers, which will

not naturally be vector spaces.

Remark 3.1.1. Strictly speaking, we could use ψ as an identification between the

two spaces, take any Kuranishi structure on one of the moduli spaces, and thus have

isomorphic Kuranishi structures on both spaces.1 However, as much as having the

Kuranishi structures themselves, we are interested in embedding the Kuranishi charts

into appropriate Hilbert manifolds of maps into O(−n) and O, and this requires

greater subtlety.

We first consider Mk+1(O, ψ(L), ψ∗β) and begin constructing a Kuranishi struc-

1Even if we were to take this approach, we would need to give more thought to the stratawise
smooth structure on Mk+1,ℓ(O, ψ(L), ψ∗(β); (F0, D0, n)).
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ture, following FOOO [15], [17] as outlined in the previous section. We recall that

ψ(L) ⊆ U1 ⊆ O is given by |x1| = r−1x0 and |y1| = ry0 for fixed constants rx0 and ry0 .

We choose a Riemannian metric on P × P such that it coincides with the Euclidean

metric on the open subset U ′1 = {(x1, y1) ∈ U1 | |x1| < 2r−1x0 , |y1| < 2ry0} of U1.

We next need to take obstruction bundle data (Definition 2.1.30) and stabiliza-

tion data (Definition 2.1.37) at each p′ ∈ Mk+1(O, ψ(L), ψ∗β). We will only take

specific care in choosing obstruction bundle data and stabilization data at points

ψ(p) = (x, ψ(u)) ∈ Mk+1(O, ψ(L), ψ∗β). For our obstruction bundle data, we need

to choose a symmetric stabilization w⃗ and corresponding codimension 2 submanifolds

Di (items (1) and (9)), a universal family with coordinate at infinity (items (2) and

(3)), a Γ+
ψ(p∪w⃗)-invariant obstruction fiber Eψ(p) (item (4)) such that items (6)-(8) are

satisfied, and a Γ+
ψ(p∪w⃗)-equivariant extension TrivK′,Eψ(p∪w⃗)

.

Recall that, since ψ(p) is holomorphic and β ∈ H2(O, ψ(L)), we have that non-

constant components of ψ(p) intersect the fibers F0 = {(x1, y1)1 | x1 = 0} at a finite

number of isolated points. We can thus choose a symmetric stabilization w⃗ of ψ(p)

so that ψ(u(wi)) ̸∈ F0 for all wi, and we choose the corresponding codimension 2

submanifolds Di to be transversal to F0. This then induces a compatible stabilization

for p ∈ Mk+1(O(−n), L, β). We then take a universal family with coordinate at

infinity for each component together with its extra marked points xv ∪ w⃗v.

Next, we choose an obstruction fiber Eψ(p∪w⃗),v ⊆ L2
m,δ(Kxv∪w⃗;ψ(u)

∗
vTO ⊗ Λ0,1).

With this fiber, we need ψ(p) to be Fredholm regular, evaluation map transversal

(at singular points), and evaluation map transversal at the 0th boundary marked

point. We also need the total obstruction fiber Eψ(p∪w⃗) to be invariant with respect

to Γ+
ψ(p∪w⃗). We want to satisfy all of these conditions and keep the support of the

obstruction bundle away from ψ(u)−1(F0), so that we can then build a compatible

structure on Mk+1(O(−n), L, β). Actually, we have the following stronger fact.
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Lemma 3.1.2. Taking trivial obstruction fiber

Eψ(p∪w⃗),v = {0} ⊆ L2
m,δ(Kxv∪w⃗;ψ(u)

∗
vTO ⊗ Λ0,1)

at ψ(p) = (x, ψ(u)), we have that ψ(p) is Fredholm regular, evaluation map transversal

at singular points, and evaluation map transversal at the 0th boundary marked point.

This trivial bundle is of course invariant with respect to Γ+
ψ(p∪w⃗). Note that the

Fredholm regularity condition is as an element of Mk+1(O, ψ(L), ψ∗β).

Proof. By Cho-Oh [9], all disc components are Fredholm regular without any ob-

struction bundle. It is straightforward to check that all sphere components are also

Fredholm regular without any obstruction bundle.

The statements about evaluation map transversality rely crucially on the fact

that our discs are genus zero, so the components form a tree. Each sphere component

has a unique “outgoing” singular point (corresponding to an outgoing edge in its

combinatorial type graph), so the restriction of the corresponding single component

evaluation map

evv,e : W
2
m+1,δ((Σyv , ∅);ψ(u)∗TX,ψ(u)∗TL) → Tψ(u)(ze)X

to (Dψ(u),v∂̄)
−1(0) is surjective. Note that this would not necessarily hold if our

ambient space (in this case O) contained negative self intersection rational curves.

Similarly, each disc component not containing the 0th marked point has a unique

outgoing singular point, and the restriction of the corresponding single component

evaluation map

evv,e : W
2
m+1,δ((Σyv , ∂Σyv);ψ(u)

∗TX,ψ(u)∗TL) → Tψ(u)(ze)L

to (Dψ(u),v∂̄)
−1(0) is surjective. This can be seen by applying the T 2-action to the

disc.

The evaluation map transversality at the 0th marked point follows similarly.

However, to allow us to construct a compatible Kuranishi structure on

Mk+1(O(−n), L, β), we will add non trivial obstruction bundle. The only additional

obstruction bundle we will need for this purpose will be to accommodate sphere
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components in multiples of the class [D−n], which are crucially not Fredholm regular

without some obstruction bundle (this being the whole substance of the problem at

hand). To this end, we make the following observation.

Lemma 3.1.3. Let p = (x, u) ∈ Mk+1(O(−n), L, β) with symmetric stabilization

induced by that for ψ(p). For each component pv not in some class a[D−n] with

a > 0, take trivial obstruction fiber Ep∪w⃗,v = {0} ⊆ L2
m,δ(Kxv∪w⃗;u

∗
vTO(−n)⊗ Λ0,1).

For each component pv in some class a[D−n] with a > 0, we can take an obstruction

vector space Ep∪w⃗,v = {0} ⊆ L2
m,δ(Kxv∪w⃗;u

∗
vTO(−n)⊗ Λ0,1) such that:

1. Ep∪w⃗,v is invariant with respect to Γ+
p∪w⃗

2. Each element of Ep∪w⃗,v is supported away from u−1(F0).

3. p is Fredholm regular, evaluation map transversal at singular points, and eval-

uation map transversal at the 0th boundary marked point.

Proof. Most of the work of this proof is contained in the following two lemmas.

Lemma 3.1.4. Let u : P1 → O(−n) be a holomorphic map belonging to homology

class a[D−n] for some positive integer a. The pullback bundle u∗TO(−n) splits as

(TP1)⊗a ⊕ O(−an).

Proof. First consider the map f : P1 → O(−n) sending [z0 : z1] 7→ (0, z0
z1
) ∈ U0 for

z1 ̸= 0 and sending [z0 : z1] 7→ (0, z1
z0
) ∈ U1 for z0 ̸= 0. We have an exact sequence

0 → O(−n) i→ f ∗TO(−n) dπ−→ TP1 → 0

where the map i sends a section v : P1 → O(−n) to the vector field limt→0
tv
t
.

Considering the inclusion TP1 df−→ f ∗TO(−n), we see that this sequence splits.

Now, u factors as f ◦u′ where u′ : P1 → P1 is a degree a map, so u∗TO(−n) splits
as (u′)∗TP1 ⊕ (u′)∗O(−n) ∼= (TP1)⊗a ⊕ O(−an).

This then leads us to the following lemma.

Lemma 3.1.5. Let u : P1 → O(−n) be a holomorphic map belong to homology class

a[D−n] for some positive integer a. The cokernel of the linearized ∂̄ map

Du∂̄ : W 2
m+1,δ((P1, ∅);u∗TO(−n), u∗TL) → L2

m,δ(P1;u∗TO(−n)⊗ Λ0,1)
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is isomorphic to H0,1(P1,O(−an)).
Furthermore, we can choose representatives e1, . . . , ean−1 of a basis of

H0,1(P1, (u′)∗O(−n)) ∼= H0,1(P1,O(−an)) so that each ei is supported away from

a neighborhood of u−1(F0), and so that u is Fredholm regular with respect to the

obstruction vector space spanned by (0, ei) ∈ L2
m,δ(P1;u∗TO(−n)⊗ Λ0,1).

Proof. As in the proof of Lemma 3.1.4 we factor u as u = f ◦ u′. The linearized

∂̄ operator respects the splitting given by Lemma 3.1.4, and hence we have Du∂̄ =

Du′ ∂̄ ⊕D0∂̄ where

Du′ ∂̄ :W 2
m+1,δ(P1; (u′)∗TP1) → L2

m,δ(P1; (u′)∗TP1 ⊗ Λ0,1),

D0∂̄ :W 2
m+1,δ(P1;O(−an)) → L2

m,δ(P1;O(−an)⊗ Λ0,1).

Du′ ∂̄ is surjective. The map

∂̄ : W 2
m+1,δ(P1;O(−an)) → L2

m,δ(P1;O(−an)⊗ Λ0,1)

is linear. Thus, the cokernel of Du∂̄ is isomorphic to the cokernel of ∂̄ on O(−an).
Since P1 has complex dimension 1, this cokernel is exactly H0,1(P1,O(−an)).

Assume WLOG that u′([0 : 1]) = [0 : 1] and that u′([1 : 0]) = [1 : 0]. Let

ϕ : P1 → [0, 1] be a smooth function equal to 0 on an open neighborhood of [0 : 1] and

equal to 1 on an open neighborhood of [1 : 0]. Let c1, . . . , ca ∈ C = {[z0 : z1] | z0 ̸= 0}
be the points of (u′)−1([1 : 0]) taken with appropriate multiplicity (so the ci are

repeated if u′ has higher multiplicity at ci). Here (u′)∗O(−n) is given by charts

V0 = ({[z0 : z1] | z1 ̸= 0} \ (u′)−1([1 : 0]))× C

V1 = ({[z0 : z1] | z0 ̸= 0} \ (u′)−1([0 : 1]))× C,

each of which is a copy of C with finitely many points removed crossed with a C fiber.

These charts are glued as follows for u′([z0 : z1]) ̸= [0 : 1], [1 : 0]:

(
z0
z1
, y

)
0

∼

(
z1
z0
,

a∏
j=1

(
z1
z0

− cj

)−n
y

)
1

.

For each positive integer i ∈ [n(k − 1) + 1, nk] we define hi(z) =
∏k−1

j=1(z − cj)
n ·

(z − ck)
i−n(k−1). We then define sections g0,i and g1,i of V0 and V1 respectively as
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follows:

g0,i

(
z0
z1

)
=

(
z0
z1
, ϕ(u′([z0, z1]))h

(
z1
z0

))
0

g1,i

(
z1
z0

)
=

(
z1
z0
, (ϕ(u′([z0, z1]))− 1)h

(
z1
z0

) a∏
j=1

(
z1
z0

− cj

)−n)
1

.

Note that on the intersection of V0 ∩ V1 the difference between these two sections is

a holomorphic (local) section.

We then define the section ei of (u
′)∗O(−n)⊗ Λ0,1 as follows:

ei([z0 : z1]) =

∂̄g0,i for u′([z0 : z1]) ̸= [1 : 0]

∂̄g1,i for u′([z0 : z1]) ̸= [0 : 1].

Each section ei vanishes where ϕ ◦u′ is constant, and the classes [e1], . . . , [ean−1] form

a C basis of H0,1(P1, (u′)∗O(−n)), so the desired result follows.

By an argument similar to that in Lemma 3.1.2, this obstruction vector space is

enough to guarantee the necessary evaluation map transversalities.

Finally, as in Lemma 17.11 in FOOO [17], we can take an average over the action

of Γ+
p∪w⃗ to make Ep∪w⃗ Γ+

p∪w⃗-invariant. This does not interfere with our conditions on

the support of Ep∪w⃗. This concludes the proof of Lemma 3.1.3.

For each point p ∈ Mk+1(O(−n), L, β) we take the obstruction fiber Ep∪w⃗ ⊆

L2
m,δ(Kx∪w⃗;u

∗TO(−n) ⊗ Λ0,1) appearing in Lemma 3.1.3, and for each point ψ(p) ∈

Mk+1(O, ψ(L), ψ∗β; (F0, D0, n)) we choose obstruction fiber Eψ(p∪w⃗) = ψ∗Ep∪w⃗ ⊆

L2
m,δ(Kx∪w⃗;ψ(u)

∗TO ⊗ Λ0,1). For each point

p′ ∈ Mk+1(O, ψ(L), ψ∗β) \Mk+1(O, ψ(L), ψ∗β; (F0, D0, n))

we take trivial obstruction fiber.

The only part of Definition 2.1.30 that we still need are a Γ+
p∪w⃗-equivariant exten-

sion TrivK′,Ep∪w⃗ of Ep∪w⃗ and a Γ+
ψ(p∪w⃗)-equivariant extension TrivK′,Eψ(p∪w⃗)

of Eψ(p∪w⃗).
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For TrivK′,Eψ(p∪w⃗)
, we use parallel transport along geodesics with respect to our cho-

sen metric on O, as is standard. For TrivK′,Ep∪w⃗ , we employ Proposition 2.1.27 to

pull back the extension TrivK′,Eψ(p∪w⃗)
along ψ. We have thus chosen all necessary

obstruction bundle data.

For each ψ(p) ∈ Mk+1(O, ψ(L), ψ∗β; (F0, D0, n)) we take ϵψ(p) as in Section 2.1.5,

and for each p′ ∈ Mk+1(O, ψ(L), ψ∗β) \Mk+1(O, ψ(L), ψ∗β; (F0, D0, n)) we take ϵp′

sufficiently small for the neighborhoodW+(p′) inMk+1(O, ψ(L), ψ∗β) to not intersect

Mk+1(O, ψ(L), ψ∗β; (F0, D0, n)).

For each ψ(p) ∈ Mk+1(O, ψ(L);ψ∗β; (F0, D0, n)), we choose the subsets

IntW0
ψ(p) ⊆ W0

ψ(p) ⊆ IntWψ(p) ⊆ Wψ(p)

of W+
ψ(p) ⊆ Mk+1(O, ψ(L), ψ∗β) as in Section 2.1.5, and we take W0

p = ψ−1(W0
ψ(p))

and Wp = ψ−1(Wψ(p)). For

p′ ∈ Mk+1(O, ψ(L), ψ∗β) \Mk+1(O, ψ(L);ψ∗β; (F0, D0, n))

we also choose subsets W0
p′ ,Wp′ of W

+
p′ , with the important point being that these

sets again do not intersect Mk+1(O, ψ(L);ψ∗β; (F0, D0, n)).

We take a finite set {p′c | c ∈ C′} ⊆ Mk+1(O, ψ(L), ψ∗β) such that
⋃
c∈C′ IntW

0
p′c
=

Mk+1(O, ψ(L), ψ∗β). Because of our choices of W0
p′ , this gives a finite sets C ⊆ C′

and {pc | c ∈ C} ⊆ Mk+1(O(−n), L, β) such that
⋃
c∈C IntW

0
p = Mk+1(O(−n), L, β)

and
⋃
c∈C IntW

0
ψ(p) ⊇ Mk+1(O, ψ(L);ψ∗β; (F0, D0, n)), and such that for each ψ(p)

the set C′(ψ(p)) ⊆ C.

We now take stabilization data (see Definition 2.1.37) at each

p ∈ Mk+1(O(−n), L; β) in a similar way to how we chose obstruction bundle data.

That is, we choose a symmetric stabilization w⃗p of p so that u(wp,i) ̸∈ F1 for all

wp,i, and we choose the corresponding codimension 2 submanifolds Dp,i of O(−n) to
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be transversal to F1. We then take a universal family with coordinate at infinity

for each component together with its extra marked points xv ∪ w⃗p. By taking the

same coordinate at infinity and symmetric stabilization, and taking the codimension

2 submanifolds ψ(Dp,i) of O, we get a corresponding choice of stabilization data at

ψ(p). We also choose stabilization data at p′ for each p′ ∈ Mk+1(O, ψ(L), ψ∗β) \

Mk+1(O, ψ(L), ψ∗β; (F1, D0, n)).

We now take ϵ0 and ϵ
′
0 small and consider the sets Uk+1,(0;ℓp,(ℓc))(O(−n), L, β; p)ϵ0,T⃗0

and Uk+1,(0;ℓp,(ℓc))(O, ψ(L), ψ∗β;ψ(p))ϵ′0,T⃗0
(see Definition 2.1.39). By taking ϵ0 suffi-

ciently small relative to ϵ′0, we get that for all

(Y, u′, (w⃗′c)) ∈ Uk+1,(0;ℓp,(ℓc))(O(−n), L; β; p)ϵ0,T⃗0

we have that (Y, ψ◦u′, (w⃗′c)) ∈ Uk+1,(0;ℓp,(ℓc))(O, L
′; β′;ψ(p))ϵ′0,T⃗0

. We also have ψ∗∂̄u
′ =

∂̄(ψ ◦ u′), so, by the choices of our obstruction bundle data,

∂̄u′ ∈ E((Y, u′, (w⃗′c)),ΣY) if and only if ∂̄ψ ◦ u′ ∈ E((Y, ψ ◦ u′, (w⃗′c)),ΣY). That is, we

have the following map of thickened moduli spaces (see Definition 2.1.41):

ψ : Mk+1,(0;ℓp,(ℓc))(O(−n), L; β; p)ϵ0,T⃗0 → Mk+1,(0;ℓp,(ℓc))(O, ψ(L), ψ∗β;ψ(p))ϵ′0,T⃗0
.

From our various choices of codimension 2 submanifolds D and ψ(D), this then gives

a map

ψ : Mk+1,(0;ℓp,(ℓc))(O(−n), L; β; p)trans
ϵ0,T⃗0

→ Mk+1,(0;ℓp,(ℓc))(O, L
′; β′;ψ(p))trans

ϵ′0,T⃗0

which is a smooth embedding. We take an open neighborhood Vψ(p) of ψ(p) in

Mk+1,(0;ℓp,(ℓc))(O, ψ(L), ψ∗β;ψ(p))ϵ′0,T⃗0
such that the set

Vψ(p) ∩ ψ(Mk+1,(0;ℓp,(ℓc))(O(−n), L; β; p)trans
ϵ0,T⃗0

)
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is closed in Vψ(p). We then take Vp = ψ−1(Vψ(p)).

Each (Vψ(p), E(p),Γp,Triv ◦ ∂̄) is a Kuranishi neighborhood of ψ(p) in

Mk+1(O, ψ(L), ψ∗β) and (Vp, E(p),Γp,Triv ◦ ∂̄) is a Kuranishi neighborhood of p

in Mk+1(O(−n), L, β). The natural transition maps used in FOOO [17] for the

Kuranishi structures on Mk+1(O(−n), L, β) and Mk+1(O, ψ(L), ψ∗β) are compatible

in the sense of Definition 2.1.4. Thus, we have constructed our first example of a

Kuranishi morphism of moduli spaces:

Theorem 3.1.6. With the Kuranishi structures constructed above, the map ψ :

O(−n) → O defined in Section 1.4 induces a Kuranishi morphism

ψ : Mk+1(O(−n), L, β) → Mk+1(O, ψ(L), ψ∗β)

in the sense of Definition 2.1.4.

Note that the virtual dimension of the target moduli space will be higher than that

of the target if β includes any copies of the class D−n. In particular, ψ is a smooth

embedding on each Kuranishi neighborhood Vp with image a closed submanifold of

Vψ(p). We can now take Kuranishi neighborhood (ψ(Vp), E(p),Γp,Triv ◦ ∂̄) of the

point ψ(p) in the moduli space Mk+1(O, ψ(L), ψ∗β; (F0, D0, n)). With this Kuranishi

structure, we have the following result:

Theorem 3.1.7. With the Kuranishi structures constructed above, the map ψ :

O(−n) → O defined in Section 1.4 induces a Kuranishi isomorphism

ψ : Mk+1(O(−n), L, β) → Mk+1(O, ψ(L), ψ∗β; (F0, D0, n))

in the sense of Definition 2.1.4.

This is a specific case of Theorem 2.2.1.
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3.2 Deformation of moduli space

We now apply the process described in Section 2.3 in our specific case. We will

construct a stratified deformation family M → (−ϵ, ϵ) such that the fiber over 0

is the moduli space M(O, ψ(L), ψ∗β; (F0, D0, n)) (with a new Kuranishi structure

built by modifying the structure from Section 3.1) and such that a general fiber has

Kuranishi section transversal to the 0 section, so that the underlying moduli space

is smooth. In the following section, we will use these generic fibers to construct the

desired A∞-structure on H•(ψ(L),Λ).

Fix generic points a1, . . . , an ∈ C. Let Uc = {|x1| > c} × C ⊆ O, the complement

in U1 of a closed neighborhood of the fiber F0. We choose c so that L ⊆ U3c. Let

ϕ1, ϕ2 : P1 → [0, 1] be two bump functions on the zero section of O both equal to

1 on O \ U2c and equal to 0 on U3c. We fix functions f, g : {1, . . . , n} → Z>0 with

f(j) < g(j) < f(j + 1) for all j and we fix pt(z) =
n−1∏
j=1

z − tg(j)

1− tg(j)z
. We define our

diffeomorphisms ηs,t : Uc → Uc to be

ηs,t(x1, y1) =

(x1, e
ϕ1(x1) log(

∏n
j=1((x1−sf(j)aj)

−1(x1−(s+t)f(j)aj)))(y1 − sϕ2(x1)ps(x1)) + (s+ t)ϕ2(x1)ps+t(x1))).

We choose s, t sufficiently small relative to c that the argument of log has positive

real part for all x1 ≥ c, so we may choose a specific branch of log without any

ambiguity arising from multiplying log by non-integer values. The choices of f, g,

and pt are made to be compatible with tropicalization, as will be discussed in Section

3.4.

These satisfy the composition rule ηs+t,t′ ◦ ηs,t = ηs,t+t′ prescribed in Section 2.3,

and also have ηs,0 is the identity. By choosing ϕ1, ϕ2 generically, we also have the

derivative condition given in statement 2.3.1. Furthermore, given any nodal disc map

w in class ψ∗β ∈ H2(O, L) (pseudoholomorphic or otherwise) with k + 1 boundary
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points such that it order of intersection with D0 at each point is at least n times its

order of intersection with F0 at that point, we have that (η0,t)!(w) is well-defined,

satisfying the tangency condition that the order of intersection with Ftaj is at least

equal to its order of intersection with the section Stn+1anj
taking value tn+1anj .

It follows that the procedure given in Section 2.3 gives us Kuranishi structures

on Mk+1(O(−n), L, β) and Mk+1(O, ψ(L), ψ∗β) so that we have a Kuranishi inclu-

sion Mk+1(O(−n), L, β) → Mk+1(O, ψ(L), ψ∗β) and a stratified deformation family

M → (−ϵ, ϵ) of ψ(Mk+1(O(−n), L, β)) where the fiber over t is the moduli space

Mk+1(O, ψ(L), β; (Fa1 , Sb1 , 1), . . . , (Fan , Sbn , 1))

with an appropriate Kuranishi structure.

3.3 Superpotential for O(−n)

We now arrive at the business of defining our potential function for the Lagrangian

L in O(−n). We will require the following three regularity results, which we present

without proof:

Lemma 3.3.1. For n generic points qj = (aj, bj) ∈ (C∗)2 ⊆ U1 ⊆ O and an effective

disc class β ∈ H2(O, ψ(L)) of Maslov index less than or equal to (β · F0)n, we have

that the bulk-deformed moduli space

Mk+1,(β·F0)n(O, ψ(L), β; q1, . . . , q1︸ ︷︷ ︸
β·F0 times

, . . . , qn, . . . , qn︸ ︷︷ ︸
β·F0 times

)

is empty. For generic points qj, it then follows that the following space is also empty:

Mk+1(O, ψ(L), β; (Fa1 , Sb1 , 1), . . . , (Fan , Sbn , 1)).

Lemma 3.3.2. For n generic points qj = (aj, bj) ∈ (C∗)2 ⊆ U1 ⊆ O and effective disc

class β ∈ H2(O, ψ(L)) of Maslov index 2 + (β · F0)n, we have that the bulk-deformed
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moduli space

M1,(β·F0)n(O, ψ(L), β; q1, . . . , q1︸ ︷︷ ︸
β·F0 times

, . . . , qn, . . . , qn︸ ︷︷ ︸
β·F0 times

)

is a smooth dimension 0 manifold and is a ((β · F0)! · n)-fold unramified covering of

M1(O, ψ(L), β; (Fa1 , Sb1 , 1), . . . , (Fan , Sbn , 1)),

which is thus also a smooth dimension 0 manifold.

Lemma 3.3.3. For n generic points qj = (aj, bj) ∈ (C∗)2 ⊆ U1 ⊆ O and effective

disc class β ∈ H2(O, ψ(L)) of Maslov index strictly greater than 2+(β ·F0)n, we have

that the bulk-deformed moduli space

Mk+1,(β·F0)n(O, ψ(L), β; q1, . . . , q1︸ ︷︷ ︸
β·F0 times

, . . . , qn, . . . , qn︸ ︷︷ ︸
β·F0 times

)

is a smooth manifold with boundary and corners and is a ((β ·F0)! ·n)-fold unramified

covering of

Mk+1(O, ψ(L), β; (Fa1 , Sb1 , 1), . . . , (Fan , Sbn , 1)),

which is thus also a smooth manifold with boundary and corners.

There are no sphere bubbles, so its boundary and corners are all isomorphic to

fiber products of the form

Mk1+1(β1) evk1+1
×ev0Mk2+1(β1)

where k1 + k2 = k, and β1 + β2 = β, and

Mk′+1(βj) = Mk′+1(O, ψ(L), βj; (Fa1 , Sb1 , 1), . . . , (Fan , Sbn , 1)).

With these regularity results in hand, the stratified deformation families con-

structed in Section 3.2 are in fact stratified deformation regularizations, in the sense

that all fibers except the central fiber have transversal Kuranishi section without

perturbation. The following proposition is then a straightforward consequence of

standard Floer theoretic arguments.
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Proposition 3.3.4. We fix n generic points qj = (aj, bj) ∈ (C∗)2 ⊆ U1 ⊆ O. The

moduli spaces

Mk+1(O, ψ(L), ψ∗β; (Fa1 , Sb1 , 1), . . . , (Fan , Sbn , 1))

for β ∈ H2(O(−n), L), taken with trivial Kuranishi structure (as they are all al-

ready manifolds with boundary and corner) define an A∞-structure on H∗(L; Λ0) as

in Section 1.2.

We again have that H1(L; Λ+) is the weak Maurer-Cartan space, so our A∞-

structure defines our Lagrangian potential function

W : H1(L; Λ+) → Λ+

for L ⊆ O(−n).

3.4 Conjectural calculation

The remainder of this chapter is devoted to discussing the calculation of these su-

perpotentials, which will be worked out rigorously in upcoming work. Essentially,

we can realize the terms of our superpotential as terms of a related bulk-deformed

superpotential, which we expect to be calculable using tropical scattering diagrams.

3.4.1 Scattering diagram and wall crossing

We now turn to the problem of explicitly calculating this potential function. This

will require the introduction of a new A∞-structure on H
∗(ψ(L); Λ0). This is because

the moduli spaces used to define the A∞-structure on H∗(L; Λ0) in Proposition 3.3.4

do not behave appropriately under wall crossing. Intuitively, this is because the A∞-

structure in Proposition 3.3.4 really only knows the information contained in L as a

Lagrangian in O(−n), and only one chamber of the scattering diagram in O that we

will end up studying corresponds to this O(−n) information.
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The A∞-structure we consider will be the bulk-deformed A∞-structure deformed

by the point insertions qj. The regularity results of the previous section then imply

that the terms of our superpotential for O(−n) will all be terms of the associated

bulk-deformed superpotential. There is a natural Floer theoretic scattering diagram

associated with this bulk-deformation. This scattering diagram was studied for toric

Fano surfaces by Hong-Lin-Zhao [32], using nilsquared coefficients to avoid contribu-

tions from repeated point insertions. Their scattering diagram can then be under-

stood tropically and used to calculate the associated superpotential, which they call

the n-th order bulk-deformed superpotential, for n the number of point insertions.

We expect that a similar procedure is possible for the full bulk-deformed scattering

diagram and superpotential, which we intend to prove in future work.

3.4.2 Tropical geometry

Recall that the modified SYZ conjecture of Kontsevich-Soibelman [36] predicts that,

near the large complex structure limit, Calabi-Yau manifolds should collapse to inte-

gral affine manifolds with singularities. It is also expected that holomorphic curves

in a Calabi-Yau manifold should collapse to affine 1-skeletons in the integral affine

manifold. This brings us to the world of tropical geometry. Specifically, we will be

considering tropical geometry as it appears in the Gross-Siebert program [30], in-

spired by work of Mikhalkin [39], which can be thought of as an algebraic analogue

of the SYZ approach to mirror symmetry, as well as as a powerful combinatorial

calculational tool, which is the primary way in which we will be using it.

Let N ∼= Z2 be a lattice with dual latticeM := HomZ(N,Z), and let NR := N⊗ZR

and MR := M ⊗Z R. Let Σ ⊆ MR be the toric fan of a toric surface Y . We let Σ[1]

denote the set of 1-cones of Σ.

Definition 3.4.1. A parametrized tropical disc of Y with stop at p in MR is a triple

(T,w, h) where
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1. T is a rooted tree with root vertex x and non-compact edges (i.e. edges with only

one adjacent vertex). The root x (which is univalent) is the only vertex that is

not trivalent. In particular, x is the only leaf of the tree.

2. w is an assignment of a positive integer weight to each edge. We assume that

each unbounded edge is assigned the weight 1.

3. h : T → MR is a proper map with h(x) = p that is also an affine embedding

on each edge. For each non-compact edge e, the affine ray h(e) is of the form

m′+R≥0m for some m′ ∈MR and m ∈M a primitive generator of a 1-cone of

Σ. At each trivalent vertex, the following balancing condition must hold:

w(e1)v(e1) + w(e2)v(e2) + w(e3)v(e3) = 0.

Here v(ei) is the primitive vector tangent to h(ei) pointing away from the vertex.

We will often refer to the triple (T,w, h) simply as h.

We refer to the image of a parametrized tropical disc as a tropical disc.

We next define the degree of a tropical disc.

Definition 3.4.2. The degree of a tropical disc (T,w, h) of Y is an element of ZΣ[1]

≥0 ,

where the value of the ρ coordinate for each ρ ∈ Σ[1] is the number of unbounded edges

of (T,w, h) in the ρ direction.

This degree is analogous to the intersection numbers of a holomorphic disc in Y

with the components of the toric boundary. Fixing a moment fiber L, the homology

class in H2(Y, L) of the holomorphic disc is uniquely determined by these intersection

numbers. Likewise, for a fixed stop p, the degree of a tropical disc with stop at p

functions like a homology class of the disc.

Definition 3.4.3. We define the Maslov index MI(h) of a parametrized tropical disc

(T,w, h) to be twice the sum of the weights of its unbounded edges.

After establishing more directly the relationship between tropical discs and holo-

morphic discs in Y with boundary on a moment fiber Lagrangian, this definition of
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the Maslov index of a tropical disc will correspond to Lemma 3.1 in Auroux [4] or

Theorem 5.1 in Cho-Oh [9]. Note that the Maslov index is determined by the degree

of h, so if ∆ is the degree of h we can define MI(∆) to be MI(h). This is consistent

with the fact that the Maslov index of a disc with boundary on a fixed Lagrangian L

depends only on its homology class. Furthermore, the moduli space of tropical discs

of degree ∆ with stop at a point p has real dimension MI(∆)− 2, which equals the

virtual dimension of the fiber of ev0 : M1(Y, L, β) → L for MI(β) =MI(∆).

We will later need to study tropical discs subject to point constraints, so we define

the generalized Maslov index of a tropical disc.

Definition 3.4.4. Given ℓ generic fixed point constraints q1, . . . , qℓ ∈ MR and a

tropical disc h with every qi contained in the image of h, we define the generalized

Maslov index GMI(h) :=MI(h)− 2ℓ.

This aligns with the generalized Maslov index of a holomorphic disc as defined in

Hong-Lin-Zhao [32]. The moduli space of tropical discs of degree ∆ subject to the

generic point constraints q1, . . . , qℓ has dimension GMI(∆)−2 if it is non-empty. We

will thus be interested in counting generalized Maslov index 2 tropical discs, as these

belong to a discrete moduli space. We will need to count them with an appropriate

weight, defined as follows:

Definition 3.4.5. For each trivalent vertex v with adjacent edges e1, e2, e3 of a tropical

disc (T,w, h), the Mikhalkin weight at v is

Multv := w(e1)w(e2)|v(e1) ∧ v(e2)| ∈ Z≥0.

Because of the balancing condition of tropical discs, this value is independent of the

labeling of the three edges.

The Mikhalkin weight Mult(h) of the disc is the product of the Mikhalkin weights

of its trivalent vertices.

Example 3.4.6. Let Y = P1 × P1 with complete toric fan Σ determined by the

1-cones generated by (1, 0), (0, 1), (−1, 0), (0,−1) ∈ M . We fix three generic points
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q1, q2, q3 ∈ MR. Three tropical discs with stop at p all of generalized Maslov index 2

are depicted in Figure 3·1. All edges have weight 1, and all three tropical discs have

Mikhalkin weight 1.

Figure 3·1: Three tropical discs of generalized Maslov index 2 with stop at p.

We turn now to tropical scattering diagrams, as defined by Gross-Pandharipande-

Siebert [29]. As one might expect based on the name, these will be closely related to

the Lagrangian Floer scattering diagrmams of Section 1.2. Let R be a complete local

C-algebra and let mR be the unique maximal ideal of R. Our primary example will

be R = C[[t1, . . . , tℓ]].

Definition 3.4.7. A tropical scattering diagram D is a collection of walls {(d, fd)}
where

• d ⊆ MR is either a ray of the form d = m′d + R≥0md or a line of the form

d = m′d + Rmd, for some m′d ∈ MR and md ∈ M \ {0}. The set d is called the

support of the line or ray.

• fd ∈ C[[zm0 ]]⊗̂CR ⊆ C[M ]⊗̂CR, called wall functions, satisfy

fd ≡ 1 mod zmdmR.
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such that for every power k > 0, there are only a finite number of (d, fd) with fd ̸≡ 1

mod mk
R.

Given a wall d and a path ϕ crossing this wall (once, transversally), there is an

associated automorphism

θϕ,d(z
m) = zmf

⟨n0,m⟩
d ,

where n0 ∈ N is primitive normal to d, and ⟨n0, ϕ
′(t0)⟩ > 0, where t0 is the moment

ϕ crosses the wall d.

Given a scattering diagram D, we write

Sing(D) =
⋃
d∈D

{m′d} ∪
⋃

d1,d2 dim d1∩d2=0

d1 ∩ d2,

and we consider a smooth immersion ϕ : [0, 1] → MR \ Sing(D) such that endpoints

lie outside of the support of the scattering diagram D and such that ϕ is transversal

to the support of the scattering diagram.

Now, for each power k > 0, ϕ will cross only a finite number sk of walls with fd ̸≡ 1

mod mk
R. We label them by dj, where j = 1, . . . sk with respect to the order of the

path intersecting the walls. The automorphism θkϕ,D := θdsk ◦ · · · ◦ θd1 is well-defined,

so we can define the total wall-crossing automorphism as

θϕ,D = lim
k→∞

θkϕ,D.

We then have the following theorem, due in various forms to Kontsevich-Soibelman

[36] and Gross-Siebert [30].

Theorem 3.4.8. Let D′ be a scattering diagram. Then there exists a scattering

diagram D containing D′ such that D\D′ consists only of rays, and such that θϕ,D = Id

for any closed loop ϕ for which θϕ,D is defined. After combining (d, fd), (d
′, fd′) into

(d, fdfd′) if d = d′, the resulting D is unique.

A scattering diagram with this property of having θϕ,D depend only on the homo-
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topy class of ϕ is called a consistent scattering diagram.

The scattering diagrams we will be interested in are variants of the following

diagrams due to Hong-Lin-Zhao [32]. Let u ∈ R2 be a point of the discrete Legen-

dre transform of the moment polytope of Y and let Lu be the corresponding mo-

ment fiber Lagrangian. We will again be using nilsquared coefficients in the ring

C[t1, . . . , tℓ]/(t21, . . . , t2ℓ).

Definition 3.4.9 (HLZ [32] Definition 3.10). Given generic q1, . . . , qℓ, u ∈ R2, the

bulk-deformed tropical superpotential W trop
ℓ (u) is defined as

W trop
ℓ (u) =

∑
h

Mult(h)z∂[h]th

where th =
∏

qj∈h tj and the summation is over all (rigid) generalized Maslov index

two tropical discs ending at u.

We then define our scattering diagram inductively by considering the bulk-deformed

tropical superpotential W trop
ℓ−1 (qj) at each point with respect to the remaining ℓ − 1

points qi and taking initial walls qj + (−∂[h])R≥0 with function (1 + Mult(h)z∂[h]th)

for each term of W trop
ℓ−1 (qj). We then take the completion D of this scattering diagram

as above to one such that the function θϕ,D is the identity for any contractible loop

in R2 \ {q1, . . . , qℓ}.

Our holomorphic discs and Lagrangian Floer scattering diagram are related to the

corresponding tropical objects via tropicalization. For our purposes, this is accom-

plished using the map

Logt−1 : (C∗)2 → R2

(x, y) 7→ (logt−1 |x|, logt−1 |y|).

Taking the limit t → 0, the image of any holomorphic curve or disc converges to a

tropical curve or disc. This leads to the following result:
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Theorem 3.4.10 (HLZ [32] Theorem 5.10). Let Y be a toric Fano surface and let

pt1, . . . , p
t
ℓ ∈ (C∗)2 ⊆ X be points with Logt−1(ptj) = qj. Then Wℓ(u) = W trop

ℓ (u) if

u ∈ Ut and t << 1.

That is, sending the bulk-insertions in Y to the boundary as t → 0, the tropical

scattering diagram and superpotential recover their holomorphic counterparts.

We now recall the notion of the broken line, which are used for calculating tropical

superpotentials.

Definition 3.4.11. Let D be a consistent scattering diagram on MR. A broken line

with stop at u ∈MR is a continuous map

b : (−∞, 0] →MR

such that b(0) = u and with the below properties: there exist

−∞ = t0 < t1 < · · · < tn = 0

such that b(ti) ∈ Supp(D)\Sing(D), and such that b|[ti−1,ti] is affine with rational

direction β′(t) positively proportional to some primitive mi ∈ M . For each i =

1, · · · , n, we have a decoration ciz
dimi, with di ∈ Z>0, such that

1. c1 = 1, and d1 = 1, and m1 is a generator of a 1-cone of Σ.

2. If b(ti) ∈
⋂
j dj for some collection of walls dj, then ci+1z

di+1mi+1 is a term in

(∏
i

(θb,dj)
ϵj
)
(ciz

dimi), (3.4.1)

where ϵj = sgn⟨mi, γdj⟩.

The following proposition of Gross [27] gives the connection between broken lines

and generalized Maslov index 2 tropical discs.

Proposition 3.4.12 (Proposition 5.32 Gross [27]). For generic u lying outside the

support of our scattering diagram, there is a one-to-one correspondence between bro-

ken lines with endpoint u and generalized Maslov index two tropical discs ending at u.
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Furthermore, if the monomial associated with the last segment of a broken line corre-

sponding to a disc h is czm, then this is the term of the superpotential corresponding

to h.

3.4.3 Superpotential for O(−n)

To calculate the desired potentials, we must extend the work of Hong-Lin-Zhao [32]

to allow for contributions from repeated point insertions. In this section we give

a conjectural description of the appropriate extension, to be treated completely in

future work.

One natural idea is to simply relax the condition that t2j = 0, that is to use the ring

C[t1, . . . , tℓ] instead of C[t1, . . . , tℓ]/(t21, . . . , t2ℓ), and construct a scattering diagram as

in HLZ. However, the resulting tropical superpotential is not in general constant on

chambers of the scattering diagram.

It seems that the appropriate solution will be to modify the notion of generalized

Maslov index for tropical discs to accommodate discs sending a vertex to a point

insertion. However, it will require more detailed Floer theoretic calculations to de-

termine what precisely the appropriate modification will be. For instance, the most

straightforward modification would be to treat a vertex mapping to a point insertion

as reducing the generalized Maslov index by 4. This would then lead to a form of “in-

ternal scattering,” wherein the associated scattering diagram would have initial walls

of the form qj + (−
∑

m ∂[hm])R≥0 with function (1 + (
∏

mMult(hm)) z
∑
m ∂[hm]th),

where hm ranges over any finite list of terms from W trop
ℓ−1 (qj). This has the disadvan-

tage that, even when ℓ = 1, the scattering diagram has infinitely many initial walls,

the support of which is dense in MR. However, for each fixed degree k, modding out

by (tk1, . . . , t
k
ℓ ) produces a finite scattering diagram where the potential is constant on

each chamber. This construction gives, in some sense, a maximal extension of the

HLZ tropical bulk-deformed potential, which is tropically very natural but unlikely to
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correspond to a relevant Floer theoretic scattering diagram. We conjecture that the

correct extension of the tropical bulk-deformed potential will be a weaker extension,

in the sense of adding strictly fewer initial walls.

Furthermore, inspired by the generic regularity lemmas of Section 3.3, we conjec-

ture that only tropical discs not mapping a vertex to a point insertion will contribute

to the count matching our superpotential for O(−n). Combining these conjectures

with our choice of deformation regularization and associated tropicalization of the

bulk insertions, we are able to carry out some expected calculations, to be made

rigorous in later work.

3.4.4 Examples of conjectured calculations

For each O(−n), we let β1 ∈ H2(O(−n), L) be the class of the unique Maslov index

2 holomorphic disc with boundary on L intersecting the fiber defined by x0 = 0 in

U0, we let β2 ∈ H2(O(−n), L) be the class of the unique Maslov index 2 holomorphic

disc with boundary on L intersecting D−n, and we let β3 ∈ H2(O(−n), L) be the

class of the unique Maslov index 2 holomorphic disc with boundary on L intersecting

the fiber F0 defined by x1 = 0 in U1. To compare the superpotentials we find to

known superpotentials for Hirzebruch surfaces, we let β4 ∈ H2(Fn, L) be the class

of the unique Maslov index 2 holomorphic disc with boundary on L intersecting the

∞-section of O(−n).

Superpotential of O(−1)

The simplest non-trivial example of our procedure is the case where n = 1 and

we are attempting to define and calculate a superpotential for O(−1). Since the

compactification F1 is Fano, this superpotential can be defined without any sort of

perturbation, so we should hope that our procedure produces a modification of this

standard superpotential, as given by Hori-Vafa [33] and Cho-Oh [9]. Specifically, the
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superpotential for F1 is

WF1 = T ω(β1)x+ T ω(β2)y + T ω(β3)
y

x
+ T ω(β4)

1

y
.

We consider the scattering diagram defined in Section 3.4.3, which in this in-

stance is determined by a single point. We expect this to correspond appropriately

to the Floer theoretic scattering diagram without the addition of any further walls.

This scattering diagram is pictured on the left in Figure 3·2. To calculate the su-

perpotential, we consider the broken lines with stop in the top left chamber of the

scattering diagram, pictured on the right in Figure 3·2. The choice of chamber is

determined by our deformation regularization. Only the red broken lines contribute.

The superpotential is thus

WO(−1) = T ω(β1)x+ T ω(β2)y + T ω(β3)
y

x
.

This is precisely WF1 minus the term T ω(β4) 1
y
corresponding to the disc class β4, as

we would hope.

Figure 3·2: On the left is the scattering diagram associated with a single point
insertion in P1 × P1. On the right are the broken lines with stop in the chamber of
interest (top left). Those in red contribute to the superpotential for O(−1).



92

Superpotential of O(−2)

The next simplest case is O(−2). The compactification F2 is semi-Fano, and its

superpotential has been calculated in a number of ways, see Chan-Lau [8], Auroux

[5], and FOOO [21], all arriving at consistent answers. In our coordinates, their

superpotential is

WF2 = T ω(β1)x+
(
T ω(β2) + T ω(β2+D−2)

)
y + T ω(β3)

y2

x
+ T ω(β4)

1

y
.

To calculate WO(−2), we consider the scattering diagram defined in Section 3.4.3,

determined by two points. Again, we expect this to correspond appropriately to the

Floer theoretic scattering diagram without the addition of any further walls. This

scattering diagram (with a particular choice of locations of the points) is pictured

in Figure 3·3. We consider the broken lines with stop in the top left chamber of

the scattering diagram, see Figure 3·4. Again, the choice of chamber is determined

by our deformation regularization, and only the red broken lines contribute. The

superpotential is thus

WO(−2) = T ω(β1)x+
(
T ω(β2) + T ω(β2+D−2)

)
y + T ω(β3)

y2

x
,

which is WF2 without the T ω(β4) 1
y
term, as expected.

Superpotential of O(−3)

We next consider O(−3). To the best of my knowledge, its compactification F3 is the

only surface that is neither Fano nor semi-Fano for which a superpotential has been

explicitly calculated in the literature. This was found by Auroux [5] by deforming

the complex structure of F3 to that of F1, while simultaneously deforming the special

Lagrangian fibration and volume form. The problem then becomes one of explicit

wall-crossing calculation in F1, which is Fano. The superpotential he found is, in our



93

Figure 3·3: A scattering diagram associated with two points in P1 × P1.

coordinates,

WF3 = T ω(β1)x+ 2T ω(2β2+D−3)y2 + T ω(β2+β3+D−3)
y4

x
+ T ω(β3)

y3

x
+ T ω(β4)

1

y
.

As Auroux points out, this superpotential is asymmetrical in β1, β3 on account of

the coefficient T ω(β2+β3+D−3). This asymmetry comes directly from the same asym-

metry in the deformation procedure, and a different choice of deformation yields the

superpotential

WF3 = T ω(β1)x+ 2T ω(2β2+D−3)y2 + T ω(β2+β1+D−3)
y4

x
+ T ω(β3)

y3

x
+ T ω(β4)

1

y
.

This superpotential only differs from the first by a change of toric fan exchanging the

directions corresponding to β1 and β3.
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Figure 3·4: The broken lines with stop in the chamber of interest (top left). Those
in red contribute to the superpotential for O(−2).

We consider the scattering diagram defined in Section 3.4.3, determined by three

points, as is pictured in Figure 3·5(with a particular choice of locations of the points).

We expect that this scattering diagram is “missing” initial walls, but that the super-

potential we find is still correct. We consider the broken lines with stop in the top

left chamber of the scattering diagram, arbitrarily close to the wall with direction

(−1, 2). This position is again given by our choice of deformation regularization. We

only picture those broken lines expected to contribute to the superpotential, which is

thus

WO(−3) = T ω(β1)x+ 2T ω(2β2+D−3)y2 + T ω(β2+β3+D−3)
y4

x
+ T ω(β3)

y3

x
.
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This is again what we would expect given the known superpotential WF3 . The same

asymmetry between β1 and β3 is present, resulting from the asymmetry between U0

and U1 in our construction. Exchanging their roles, we can arrive at the superpotential

WO(−3) = T ω(β1)x+ 2T ω(2β2+D−3)y2 + T ω(β2+β3+D−3)
y4

x
+ T ω(β3)

y3

x
.

Superpotential of O(−4)

We consider the scattering diagram defined in Section 3.4.3, determined by four

points, as is pictured in Figure 3·6 (with a particular choice of locations of the points).

We expect that this scattering diagram is “missing” initial walls, but that the super-

potential we find is still correct. We consider the broken lines with stop in the top

left chamber of the scattering diagram, arbitrarily close to the wall with direction

(−1, 3). This position is again given by our choice of deformation regularization. We

only picture those broken lines expected to contribute to the superpotential, which is

thus

WO(−4) = Tω(β1)x+ 3Tω(3β2+D−4)y3 + 3Tω(2β2+2β3+D−4)
y6

x
+ Tω(β2+3β3+D−4)

y9

x2
+ Tω(β3)

y4

x
.
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Figure 3·5: A scattering diagram associated with three points in P1 × P1. Wall
functions are no longer labeled. The broken lines in red are expected to be those
contributing to O(−3).
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Figure 3·6: A scattering diagram associated with four points in P1×P1. Wall func-
tions are not labeled. The broken lines in red are expected to be those contributing
to O(−4).
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Chapter 4

Discussion

4.1 Summary of results

We present here a summary of the main results from this dissertation.

Let X and Y be birational smooth Kähler varieties with relatively spin La-

grangians LX and LY respectively, together with a birational holomorphic map ψ :

X → Y that maps LX diffeomorphically onto LY . Let β ∈ H2(X,LX) be an effective

disc class such that for all nodal discs u ∈ β, every non-constant component of the

map u yields a non-constant component of ψ ◦ u =: ψ(u). Assume that the mod-

uli spaces Mk+1,ℓ(X,LX , β) and Mk+1,ℓ(Y, LY , ψ∗β) of nodal holomorphic discs are

compact.

Theorem 4.1.1 (Theorem 2.2.1). In the above situation, we can construct compatible

Kuranishi structures on Mk+1,ℓ(X,LX , β) and Mk+1,ℓ(Y, LY , ψ∗β) such that we have

an induced morphism of Kuranishi spaces

Mk+1,ℓ(X,LX , β)
ψ→ Mk+1,ℓ(Y, LY , ψ∗β).

Furthermore, the Kuranishi structure on Mk+1,ℓ(Y, LY , ψ∗β) induces a Kuranishi

structure on the image moduli space ψ(Mk+1,ℓ(X,LX , β)) with respect to which the

morphism

Mk+1,ℓ(X,LX , β)
ψ→ ψ (Mk+1,ℓ(X,LX , β)) ,

is an isomorphism.

In the case of our primary example, this theorem yields the following corollary.
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Corollary 4.1.2 (Theorem 3.1.7). For appropriate choices of Kuranishi structures,

the map ψ : O(−n) → O defined in Section 1.4 induces a Kuranishi isomorphism

ψ : Mk+1(O(−n), L, β) → Mk+1(O, ψ(L), ψ∗β; (F0, D0, n))

for all classes β ∈ H2(O(−n), L).

There are in fact many examples of a birational map ψ : X → Y where the

assumptions of Theorem 2.2.1 are satisfied for some class β ∈ H2(X,LX), but it is

more unusual for them to be satisfied for all classes β, and it is this latter situation

where we can hope to understand the Floer theory of LX by understanding the Floer

theory of LY .

These results provide a concrete example of an important principle for moduli

spaces of pseudoholomorphic discs and curves, which is that they do not “know” the

difference between failures of transversality arising directly from the almost-complex

geometry of the ambient space and failures of transversality arising from the imposi-

tion of extra constraints, such as bulk-insertions or tangency conditions. This prin-

ciple then lends itself to an alternative method for regularizing moduli spaces based

in deforming these extra constraints, as opposed to deforming the almost-complex

structure or ∂̄ map more directly:

Proposition 4.1.3 (Proposition 3.3.4). We can deform the moduli spaces

Mk+1(O, ψ(L), ψ∗β; (F0, D0, n))

to regular moduli spaces, which can then be used to define an A∞-structure on

H1(L; Λ+).

4.2 Conjectures and future work

Following immediately from the work on our primary example, we have some natural

conjectures.
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Conjecture 4.2.1. For all n ≥ 1, there exists a deformation regularization giving
the following superpotential for O(−n):

WO(−n) = Tω(β1)x+ Tω(β2)y + Tω(β3)
yn

x
+ Tω(nβ2−β3+D−n)x

((
1 + Tω(β3−β2)

yn−1

x

)n

− 1

)
.

This is consistent with our tentative calculations and would hold if the definition

of WO(−n) can be reduced to the tropical calculation in which only one wall, with

function
(
1 + t1 · · · tn y

n−1

x

)
, is relevant.

Given that much of the work on calculating superpotentials is motivated by mirror

symmetry, we make the following conjecture.

Conjecture 4.2.2. The superpotentials we have defined give Landau-Ginzburg B-

side mirrors of the symplectic A-side manifolds O(−n), in the sense that the quantum

cohomology of O(−n) is isomorphic to the Jacobian ring of the superpotential.

It is also natural to ask how these superpotentials for O(−n) are related to the

Hirzbruch surfaces, which have been more prominent objects of study in this context.

Conjecture 4.2.3. For all n ≥ 1, the superpotential for Fn can be defined so that

WFn = WO(−n) + T ω(β4)
1

y
.

If the definition can be reduced to a similar tropical calculation of a bulk-deformed

superpotential in P1 × P1 instead of in O, then this will hold. Adapting the specific

construction herein will likely be infeasible. However, near term future work will

involve studying the relationship between point blowup and superpotentials for toric

surfaces, which should be able to either confirm or deny this conjecture.

More broadly, future work will involve applying the ideas of this thesis to un-

derstand the role that maps between ambient spaces play in Floer theory, as well

as to develop further tools for answering direct questions about moduli spaces of

pseudoholomorphic discs.
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Appendix A

Kuranishi construction further details

We provide some further details of the Kuranishi structure construction regarding

gluing and cutting by transversals. This appendix essentially rephrases content from

Fukaya-Oh-Ohta-Ono [17] using our notation.

A.1 Gluing details

The following discussion of gluing assumes that the obstruction bundles are vector

bundles, as in FOOO. The necessary generalization to accommodate our obstruction

bundles without linear structure is straightforward.

Proposition A.1.1 (FOOO [17] Theorem 19.3). For each sufficiently small ϵ3 and

sufficiently large T⃗ , there exist ϵ2, ϵ4 and a Γ+
p equivariant map

Glu(T⃗ ,θ⃗) : Mk+1,(ℓ,ℓp,(ℓc))(β; p;Gp)ϵ4 → Mk+1,(ℓ,ℓp,(ℓc))(β; p; (T⃗ , θ⃗))ϵ2

which is a diffeomorphism onto its image. The image of Glu(T⃗ ,θ⃗) contains the space

Mk+1,(ℓ,ℓp,(ℓc))(β; p; (T⃗ , θ⃗))ϵ3.

We start with an element (y, uy, (w⃗c)) ∈ Mk+1,(ℓ,ℓp,(ℓc))(β; p;Gp)ϵ4 and construct the

map GluT⃗ ,θ⃗(u
y) : (ΣY, ∂ΣY) → (X,L), where Y = Φp(y, T⃗ , θ⃗). We let α : Ky → KY

be the identification used to give the complex structure of ΣY on KY. We will need

to construct sequences û(i) and u(i) of functions on Σy and ΣY respectively, and it will

be helpful to refer to the identification α explicitly.

We will also need the following (monotone, smooth) bump functions on
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[−5Te, 5Te]τe × [0, 1]te and [−5Te, 5Te]τe × S1
te :

χ←e,r(τe, te) =


1 τe < r − 1

0 τe > r + 1

χ→e,r = 1− χ←e,r

We proceed now to the gluing process. We first walk through the process without

giving bounds on any of the quantities involved, and then present the necessary

bounds in describing how this process yields the desired gluing map.

Pregluing, or Step 0:

Step 0-2:

We define an approximate solution u(0) : (ΣY, ∂ΣY) → (X,L), where Y =

Φp(y, T⃗ , θ⃗) using the coordinate at infinity associated with our choice of stabiliza-

tion data at p. For e ∈ C1(Gp) we denote by v←(e) and v→(e) its two vertices. Here

e is an outgoing edge of v←(e) and is an incoming edge of v→(e). We put:

u(0) =


χ←e,Te(u

y
v←(e) − pye) + χ→e,−Te(u

y
v→(e) − pye) + pye on the eth neck

uyv ◦ α−1 on KYv .

Step 0-3: Since (y, uy, (w⃗c)) ∈ Mk+1,(ℓ,ℓp,(ℓc))(β; p;Gp)ϵ4 , we have that ∂̄uy ∈

E(y, uy). However, in general ∂̄u(0) ̸∈ E(Y, u(0)), since α∗E(Y, u(0)) ̸= E(y, uy). We are

interested in understanding the relationship between ∂̄u(0) and E(Y, u(0)), or equiva-

lently between ∂̄uy and α∗E(Y, u(0)) so we consider the projection

Πα∗E(Y,u(0)) : L
2
m,δ(Σy; (u

y)∗TX ⊗ Λ0,1) → α∗E(Y, u(0))

We define se(0) = Πα∗E(Y,u(0))
(
∂̄uy
)
.
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Step 0-4:

We next define

Err(0) =


χ←e,0∂̄u(0) on the eth neck if e is outgoing

χ→e,0∂̄u(0) on the eth neck if e is incoming

∂̄u(0) − se(0) on Kyv .

Step j:

Step j-1:

We define û(j) : (Σyv , ∂Σyv) → (X,L) as follows:

û(j)(z) =



χ←e,2Te(τe, te)u(j−1)(τe, te) + χ→e,2Te(τe, te)p
y
e if z = (τe, te) is on the

eth neck that is outgoing

χ←e,−2Te(τe, te)u(j−1)(τe, te) + χ→e,−2Te(τe, te)p
y
e if z = (τe, te) is on the

eth neck that is incoming

u(j−1)(α(z)) if z ∈ Ky.

Step j-2:

We define the following vector space:

Ê(û(j)) := α∗E(Y, u(j−1)) ⊆ L2
m,δ(Σy; (u(j−1))

∗TX ⊗ Λ0,1).

That is, we take the obstruction vector space at u(j−1) given by our choices of obstruc-

tion bundle data and then use the identification (biholomorphism) α : Kyv → KYv

to “move” it to û(j). Note in particular that Ê(û(j)) does not equal the obstruction

vector space E(y, û(j)) at û(j) obtained directly from the obstruction bundle data.
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Consider the L2
m,δ projection

ΠÊ(û(j)) : L
2
m,δ(Σy; û

∗
(j)TX ⊗ Λ0,1) → Ê(û(j)).

Given an element A ∈ L2
m,δ(Σy; û

∗
(j)TX ⊗Λ0,1), we define the derivative of

∏
Ê(û(j)) at

Av with respect to V ∈ L2
m,δ((Σy, ∂Σy); û

∗
(j)TX, û

∗
(j)TL) by

DΠÊ(û(j))(A, •) : L
2
m,δ((Σyv , ∂Σy); û

∗
(j)TX, û

∗
(j)TL) → L2

m,δ(Σy; û
∗
(j)TX ⊗ Λ0,1)

V 7→ d

dt

∣∣∣∣
t=0

(
((Pal

Exp(û(j),tV )

û(j)
)(0,1))−1ΠÊ(Exp(û(j),tV )) Exp(û(j), tV )

)
We recall our linearized ∂̄ operator at (y, û(j)):

Dy,û(j) ∂̄ : W 2
m+1,δ((Σy, ∂Σy); û

∗
(j)TX, û

∗
(j)TL) → L2

m,δ(Σy; û
∗
(j)TX ⊗ Λ0,1)

Dy,û(j) ∂̄(V ) =
d

dt

∣∣∣∣
t=0

(
((Pal

Exp(û(j),tV )

û(j)
)(0,1))−1∂̄ Exp(û(j), tV )

)
.

We then consider the operator D(j) sending

(V,∆p) 7→ Dy,û(j) ∂̄V −DΠÊ(û(j))(se(j−1), V ).

We have the following lemma.

Lemma A.1.2 (Lemma 19.15 in FOOO [17]). The sum of the image of D(j−1) and

the subspace Ê(û(j−1)) is L2
m,δ(Σy, û

∗
(j−1)TX ⊗ Λ0,1) if T⃗ is sufficiently large. We also

have that the restriction of evG to D−1(j−1)(Ê(û(j−1))) is surjective for sufficiently large

T⃗ .

It follows that the sum D(j−1)(ker evG)+ Ê(û(j−1)) equals L2
m,δ(Σy, û

∗
(j−1)TX⊗Λ0,1)

if T⃗ is sufficiently large.

The map evG is defined in (2.1.9).

Proof. The first two statements follow from Lemma 2.1.42. To see the last statement,
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let κ ∈ L2
m,δ(Σy, û

∗
(j−1)TX ⊗ Λ0,1) and write κ = D(j)(V,∆p) + γ, with

(V,∆p) ∈
⊕

v∈C0(G)

W 2
m+1,δ(Σyv ; û

∗
(j),vTX, û

∗
(j),vTL)

and with γ ∈ Ê(û(j)). Since the restriction of evG to D−1(j)(Ê(û(j))) is surjective, we

can find (V ′,∆p′) ∈ D−1(j)(Ê(û(j))) with evG(V
′,∆p′) = evG(V,∆p). We thus have that

κ = D(j)(V,∆p)−D(j)(V
′,∆p′) +D(j)(V

′,∆p′) + γ

= D(j)(V − V ′,∆p−∆p′) +D(j)(V
′,∆p′) + γ

and ev(G)(V − V ′,∆p−∆p′) = 0.

We consider ker evG ∩D−1(j)(Ê(û(j))) and let H(j) be its orthogonal complement in

ker evG. We then define V(j),v and ∆p(j),e so that (V(j),v,∆p(j),e) ∈ H(j) is the unique

element such that

D(j)(V(j)) + Err(j−1),v ∈ Ê(û(j))

and limτe→±∞ V(j),v(τe, te) = ∆p(j),e where ±∞ = +∞ if e is outgoing and −∞ if e is

incoming. This is definition 19.17 in FOOO [17].

We next define an approximate solution u(j) : (ΣY, ∂ΣY) → (X,L). We put:

u(j) =


u(j−1) + χ←e,Te(V(j),v←(e) −∆p(j),e)

+χ←e,−Te(V(j),v→(e) −∆p(j),e) + ∆p(j),e on the eth neck

Exp(u(j−1), V(j) ◦ α−1) on KYv .

Step j-3:

Define se(j) = α∗ΠE(Y,u(j))(∂̄u(j)) and e(j) = se(j) − se(j−1).

Step j-4:
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Define

Err(j) =


χ←e,0∂̄u(j) on the eth neck if e is outgoing

χ→e,0∂̄u(j) on the eth neck if e is incoming

α∗∂̄u(j) − se(j) on Kyv .

All of the control we need over this process is captured in the following proposition.

Lemma A.1.3 (Prop 19.20 in FOOO [17]). There exist constants Tm, C1, C2, C3, ϵ5 >

0 and 0 < µ < 1 such that the following inequalities hold if Te > Tm for all e. We let

Tmin = min{Te | e ∈ C1(Gp)}.∣∣∣∣(V(j),v,∆p(j),e)∣∣∣∣L2
m+1,δ(Σyv )

< C1µ
j−1e−δTmin , (A.1.1)∣∣∣∣∆p(j),e∣∣∣∣ < C1µ
j−1e−δTmin , (A.1.2)∣∣∣∣u(j) − u(0)

∣∣∣∣
L2
m+1,δ(Kyv )

< C2e
−δTmin , (A.1.3)∣∣∣∣e(j)∣∣∣∣L2

m+1,δ(Kyv )
< C3µ

j−1e−δTmin , (A.1.4)∣∣∣∣Err(j),v∣∣∣∣L2
m+1,δ(Σyv )

< ϵ5C3µ
je−δTmin , (A.1.5)

where we assume j ≥ 1 for the second to last inequality A.1.4.

Inequalities A.1.1 and A.1.2 imply that the sequence u(j) converges, so we can

define GluT⃗ ,θ⃗(y, u) = limj→∞ u(j). Inequalities A.1.4 and A.1.5 imply ∂̄GluT⃗ ,θ⃗(y, u) =∑∞
j=0 e(j) ∈ E(Y,GluT⃗ ,θ⃗(y, u)). Thus, GluT⃗ ,θ⃗(y, u)) ∈ Mk+1,(ℓ,ℓp,(ℓc))(β; p; (T⃗ , θ⃗))ϵ2 .

A.2 Cutting by transversals

Recall that every time we chose an additional marked point as part of obstruction

bundle data or stabilization data, we also chose a corresponding real codimension 2

submanifold of X. We describe below how we use these submanifolds to forget the

additional marked points.

Definition A.2.1 (Def 20.6 in FOOO [17]). An element (Y, u′, (w⃗′c)) of

Mk+1,(ℓ,ℓp,(ℓc))(β; p)ϵ0,T⃗0 satisfies the transversal constraint at all additional marked
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points if for all marked points w⃗p of Y from the stabilization data at p we have that

wpi ∈ Dp,i, and for all marked points w⃗′c we have that w′c,i ∈ Dc,i.

We have the following lemma.

Lemma A.2.2 (Lemma 20.7 in FOOO [17]). The set Mk+1,(ℓ,ℓp,(ℓc))(β; p)
trans
ϵ0,T⃗0

is a

closed subset of Mk+1,(ℓ,ℓp,(ℓc))(β; p)ϵ0,T⃗0 and is a stratawise smooth submanifold of

codimension ℓp + 2
∑

c∈B ℓc.

We then consider the subset ofMk+1,(ℓ,ℓp,(ℓc))(β; p)
trans
ϵ0,T⃗0

consisting of pseudo-holomorphic

maps.

Definition A.2.3 (Def 20.9 in FOOO [17]). We denote by Mk+1,(ℓ,ℓp,(ℓc))(β; p)
trans
ϵ0,T⃗0

∩
s−1(0) the set of all (Y, u′, (w⃗c)) ∈ Mk+1,(ℓ,ℓp,(ℓc))(β; p)

trans
ϵ0,T⃗0

such that u′ is pseudo-

holomorphic.

Forgetting all additional marked points gives a map

forget : Mk+1,(ℓ,ℓp,(ℓc))(β; p)
trans
ϵ0,T⃗0

∩ s−1(0) → Mk+1,ℓ(β).

Modding out by the action of Γp gives the induced map

forget :
(
Mk+1,(ℓ,ℓp,(ℓc))(β; p)

trans
ϵ0,T⃗0

∩ s−1(0)
)
/Γp → Mk+1,ℓ(β). (A.2.1)

Proposition A.2.4 (Prop 20.11 in FOOO [17]). The map A.2.1 is a homeomorphism

onto an open neighborhood of p.
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