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Abstract

The Standard Model of particle physics does not provide a complete description
of nature, there are many questions that remain unsolved. In this work, we study
the theory and phenomenology of different models beyond the Standard Model that
address some of its shortcomings. Motivated by naturalness arguments, we discuss
the idea of classical scale invariance where all the fundamental scales are generated
dynamically via quantum effects. We apply this approach to an extension of the
inert doublet model and present a model that addresses the dark matter, neutrino

masses and the baryon asymmetry of the Universe simultaneously.

We then study a set of simplified models of dark matter to address the effects
of three-point interactions between the dark matter particle, its dark coannihilation
partner, and the Standard Model degree of freedom, which we take to be the tau
lepton. In these models, the contributions from dark matter coannihilation channels
are highly relevant for a determination of the correct relic abundance. Firstly, we
investigate these effects as well as the discovery potential for dark matter coannihi-
lation partners at the LHC by searches for long-lived electrically charged particles.
Secondly, we study the sensitivity that future linear electron-positron colliders will
have to these models for the region in the parameter space where the coannihilation

partner decays promptly.

Lastly, we discuss an observable for the detection of ultralight axions. In the pres-
ence of an ultralight axion, a cloud of these particles will form surrounding a rotating
black hole through the mechanism of superradiance. This inhomogeneous pseudo-
scalar field configuration behaves like an optically active medium. Consequently, as
light passes through the axion cloud it experiences polarisation-dependent bending,
we argue that for some regions in the parameter space of axion-like particles this

effect can be observed by current radio telescope arrays.
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Chapter 1

Introduction

The formulation of the Standard Model (SM) of particle physics has been one of
the greatest triumphs of science in the past century. It represents the best attempt
made by physicists to describe the fundamental laws of nature, and it has been in
remarkable agreement with experimental data. Nevertheless, we know that the SM

cannot comprehensively describe all the phenomena we observe in nature.

In Section [I.I] we present a brief overview of the SM and the great success it
has garnered in making predictions that agree with experimental results. However,
despite its success, there are outstanding problems that the SM fails to address,
these are discussed in Sections [I.2HI.7] The latter provide motivation for the
existence of new physics beyond the SM (BSM) that can address these issues and at
the same time make predictions that can be tested by current or future experiments.

In Section we present the outline of the thesis.

1.1 The Standard Model of Particle Physics

The Standard Model (SM) is constructed upon the theoretical framework of quan-
tum field theory (QFT). After the development of quantum mechanics during the
early decades of the 20th century, the task to make this theory compatible with the
special theory of relativity developed by Einstein in 1905 still remained. The efforts
to achieve this were in part led by Dirac, and resulted in the development of QFT

over the next few decades.
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The first step in the formation of the SM lay in the development of quantum
electrodynamics (QED) in the 1940s as a framework to describe electromagnetic
phenomena. The latter is based on a local Abelian gauge theory. This further
inspired physicists to apply a similar approach to describe the weak interactions;
that are responsible for the radioactive decay observed in certain nuclei. However,
it was not until 1954 that Yang and Mills 5] developed a non-Abelian gauge theory
based on the SU(2) symmetry group. Later on, Glashow [6] showed that the weak
and the electromagnetic interactions could be described within a single framework

by the symmetry group SU(2);, ® U(1)y.

A crucial step came in the late 1960s when Weinberg |7] and Salam [8] imple-
mented the mechanism of spontaneous symmetry breaking (SSB) to the electroweak
unified model by Glashow. However, the question still remained whether theories
with a local non-Abelian symmetry and SSB were renormalisable. This was demon-
strated to be true by t’Hooft and Veltman [9,/10|, and after this, the framework
attracted the attention from many physicists in the field. Its predictions were con-
firmed experimentally soon after this. In 1973 neutral currents were discovered in
the Gargamelle bubble chamber at CERN [11], in 1974 the charm quark was dis-
covered by a group at BNL [12] and one at SLAC [13], and in 1983 the W= [14][15]
and Z° [16},/17] gauge bosons were discovered by the UA1 and UA2 collaborations
at CERN. Since its birth until present, the predictions of the SM have been more

and more successful.

Gauge symmetries play a crucial role in the description of the fundamental in-
teractions between particles. They also provide the guiding principle to construct
the SM Lagrangian as we shall see below. The SM is described by the following
gauge group,

Gsgm = SU(?))C X SU(Q)L & U(l)y, (1.1.1)

the first group corresponds to the strong force, the second one describes weak inter-
actions and the third corresponds to the hypercharge. From experimental evidence
we know that the weak interactions only act at very short distances implying that

the mediators of this force are massive. However, by introducing mass terms for
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the vector bosons in the Lagrangian, gauge invariance is broken, which is crucial
for renormalisability of the theory. Moreover, these terms lead to the violation of
unitarity in W W, scattering, where the subscript L stands for the longitudinal

polarisation.

The solution to this problem came in the mid-1960s, when Higgs [18|, Englert and
Brout [19], and Guralnik, Hagen and Kibble [20] found independently a mechanism
to give masses to the gauge bosons and at the same time preserve gauge invariance
of the underlying theory. By achieving this, two crucial properties of the theory are
kept, unitarity and renormalisability. In this mechanism a scalar charged under the
gauge group is introduced. Its potential is minimized for a non-zero value of the
scalar field and this non-zero vacuum expectation value is responsible for providing
masses to the gauge bosons. This mechanism is referred to as spontaneous symmetry

breaking or Higgs mechanism.

The symmetry breaking pattern in the SM, for which the Higgs mechanism is

responsible, is the following,
SUB3).® SU(2), ® U(l)y — SU(3). ® U(1)gwm, (1.1.2)

this gives rise to the masses for the W= and Z° gauge bosons, thus the latter are
short range. The U(1)gy gauge group describes electromagnetism and its gauge

boson, which remains massless, corresponds to the photon.

The discovery of the Higgs boson at the LHC by the ATLAS [21] and CMS [22]
collaborations in 2012 provided the final missing piece to complete the picture of
the SM. This discovery gives strong experimental support to the Higgs mechanism
responsible for giving mass to the electroweak gauge bosons and all the fermions,
the latter acquire their mass through the Yukawa terms. Nonetheless, some of its
properties still need to be measured to assert whether this scalar particle corresponds

to the Higgs boson predicted in the SM or deviates from it.

We proceed to describe the particle content of the SM. Fermions, that correspond
to spin—% particles, can be divided into leptons and quarks. Leptons consist of the

electron e”, muon i, tau 7~ and the corresponding neutrinos v,, v, and v,. Quarks
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come in three colours each and are the constituents of the proton and the neutron in
atoms. Gauge bosons, which are spin-1 particles, correspond to the force mediators
between particles. Additionally, there is a single spin-0 scalar particle in the SM,

the Higgs boson.

The vector fields belong to the adjoint representation of the corresponding gauge

groups,
SU@B)e: Gy =(8,1,0), SUQ2)L: W,=(1,3,0), U(l)y: B,=(1,1,0),

where the first entry in the parenthesis gives the representation under SU(3),, the
second one gives the representation under SU(2);, and the third one gives the

hypercharge, related to the Abelian group U(1)y.

The SM is a chiral theory, in the sense that left-handed fermions possess quantum
numbers different from their right-handed counterparts. As has been mentioned
previously, there are three families of leptons and quarks. Each family consists of

the following set of fields,

ur,

QL: = (3727%)7 UR = (3717§)7 dR: (3717_%>a
dr
vy, 1

Lp= =(1,2,-3), er=(1,1,-1). (1.1.3)
5

Then, there is the scalar sector which consists of an SU(2),, doublet that contains
the Higgs boson h,
—iGt

H= =(1,2,3),

L (w+h+iGP) 2

where v = 246.22 GeV corresponds to the Higgs vacuum expectation value and, G°
and G are the would-be Goldstone bosons that provide the longitudinal degree of

freedom to the weak bosons.

The SM Lagrangian consists of all renormalisable (operators with dimension less
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than or equal to four) and gauge invariant operators that can be written with the

fields above described, it can be written in simple form as follows,

1 _ -
Lsy = —ZFWFW — Dy —y v HY — DMHTDMH - V(H), (1.1.4)

the first term corresponds to the Yang-Mills action for the vector fields and is given
by,
Fp, = 0, A, — 0, A5 + g [ AL AL, (1.1.5)

where A describes the spin-1 fields, g is the gauge coupling and fab corresponds to
the group structure constant, which vanishes for an Abelian group. The second and
third term in Eq. describe the fermionic fields, they include the covariant
derivative defined as,

D, =0, —igt"Aj, (1.1.6)

this term gives the kinetic term for fermions and their interaction with vector fields.
7% correspond to the group generators. The third term is the Yukawa interaction
that gives rise to the mass of the fermions, once the Higgs field acquires a non-zero
vev. The last two terms describe the Higgs field. The Higgs potential V (H) will be
discussed in Section [1.5]

In Fig. we present a summary of the cross-sections of SM processes that take
place at the LHC. The coloured boxes show the measurements performed by the
CMS collaboration for different centre-of-mass energies and integrated luminosities,
while the theoretical predictions are shown by the bands shaded in gray. It is
remarkable to see the high level of agreement between the two, across many orders

of magnitude.

Despite the high level of success of the SM, there are several pieces of informa-
tion that motivate new fundamental physics beyond the SM. These correspond to:
baryon asymmetry of the Universe, CP violation in QCD, cosmological inflation,
dark energy, dark matter, naturalness of the Higgs mass, neutrino masses and vac-
uum stability of the Higgs potential. In the remainder of the present chapter, we

will discuss each of these points in more detail, including a discussion of the obser-
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Figure 1.1: Summary of the cross-section measurements of Standard Model pro-
cesses performed by the CMS collaboration [23].

vational evidence supporting them, with the exception of inflation and dark energy

that are topics not covered in this thesisﬂ.

1.2 Neutrino Masses

Neutrinos appear in the SM only as part of an SU(2), doublet, see Eq., and
hence a Yukawa term cannot be written for them without violating gauge invariance.
This implies that neutrinos in the SM are predicted to be massless. As we have
discussed earlier, neutrinos in the SM appear in three flavours: v, v, and v,. If
neutrinos were not massless then the mass eigenstates: 14, v5 and vs3, could differ
from the flavour eigenstates and the possibility arises to observe neutrinos oscillating
among each other v, <+ vg. Therefore, if experiments observe neutrino oscillations

this would provide evidence that neutrinos have non-zero masses and that the SM

IThere is also the problem of making the general theory of relativity compatible with quantum
mechanics which is also not discussed in this work.
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must be extended in order to account for them.

The first experiment to observe hints of neutrino oscillations was the Homestake
experiment in the late 1960s by observing a deficit in the flux of neutrinos emitted
from the sun [24,25|, this lead to the solar neutrino problem. Many years later, the
Super-Kamiokande (SK) collaboration presented conclusive evidence for neutrino
oscillations from atmospheric neutrinos in 1998 [26] and the Sudbury Neutrino Ob-
servatory (SNO) found evidence of neutrino flavour transitions from solar neutrinos

in 2002 [27].

Neutrino oscillations were first discussed by Pontecorvo [28] and by Maki, Nak-
agawa and Sakata [29] hence the neutrino mixing matrix is referred to as the

PMNS matrix. The probability of a neutrino oscillation is proportional to the

Amg; = m? —m;. For example, the probability of a v, appearance from a v,
goes as
Am2, L
P(v, — v,)  sin’ (%) : (1.2.7)

where F and L correspond to the energy of the initial neutrino and the distance
travelled respectively. From experimental data one can infer that

|Am2, | =~ |Am32,| = Am?,, ~ 1073 eV?,

Am3, = Am?  ~10"*eV?,
the former comes from data on atmospheric neutrinos, while the latter is obtained
from data on solar neutrinos. Since this data provides information about the squared
mass differences rather than the individual masses, it can be explained even if the

lightest neutrino is massless.

The current experimental central values for the parameters in the PMNS matrix:

the active neutrino masses, m,,, the mixing angles, 6;;, and the Dirac CP-phase, 9,

iJ

are the following [30]

913 - 8.520, (912 - 33.630, 923 = 48.70, 5 == 2280,

Am3, =740 x 107°eV?,  Am3, = 2515 x 107 eV?,
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for a normally ordered mass spectrum. Moreover, there are two Majorana phases

that are currently completely unconstrained.

The mechanism via which neutrinos acquire mass is crucially related to whether
they are Dirac or Majorana fermions. Although there has been impressive progress
in understanding neutrino physics in the last decades, it still remains unknown

whether they are Dirac or Majorana.

If neutrinos are Dirac fermions, then by adding three right-handed singlets to
the SM it becomes possible to write a Dirac mass as it is done for the other fermions
in the SM, see Eq. . However, the measured neutrino masses seem to be too
small to be directly connected to the electroweak scale, requiring very small Yukawa
couplings v, ~ 107!3, this motivates models beyond the SM that can explain the

origin of neutrino masses without requiring such a small parameter.

If neutrinos are Majorana fermions, then there is need for physics beyond the
SM to generate their masses. One of the most economical possibilities to generate
Majorana masses is via the type-I seesaw mechanism [31-34]. The latter consists of
adding three heavy right-handed Majorana neutrinos N; and the following terms to
the SM Lagrangian,

— -~ 1.
L= 'CSM + ZNZaNZ - YNaiLocHNi - —MZNZCNl + h.c. 5 (128)

(]

where a« = e, pu, 7, 1 = 1,2,3, My is the Majorana mass term for the right-handed
neutrinos and Yy is the Yukawa matrix that once the Higgs gets a vev gives rise to
the Dirac mass term. H corresponds to the Higgs SU(2)., doublet, H = ioo H* and
L™ = (vf,17) is the leptonic SU(2), doublet.

The mass matrix has to be diagonalised in order to obtain the Majorana mass
terms. Once this is performed and assuming My > Yyv, then one obtains the
following mass matrix for the active neutrinos,

. Y§U2YN

—_ 1.2.
o (1.29)

my, =

where v = 246.22 GeV is the vacuum expectation value of the Higgs scalar and
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My is the diagonal mass matrix of the heavy neutrinos. In this manner, if we take
My to be large, then the active neutrino masses can be explained without requiring
very small Yukawa couplings. For example, if we assume that Yy ~ O(1) and

My ~ vV AMaim ~ 0.05 eV then this mechanism predicts My ~ 10 GeV.

1.3 Baryon Asymmetry of the Universe

The SM predicts the existence of an antiparticle for each particle we observeﬂ. This
is confirmed at particle colliders where antiparticles are produced in large amounts.
However, the vast majority of the matter we observe around us, from microscopic
to extragalactic scales, consists of particles rather than antiparticles. Therefore,
our description of nature should provide a mechanism that explains this baryon
asymmetry of the Universe (BAU). When studying the cosmological history of the
Universe, the measured matter asymmetry cannot be generated relying only on the

SM and hence this represents evidence for new physics beyond the SM.

The matter asymmetry can be characterised by the baryon-to-photon ratio de-
fined as follows,
_Np— "Ny

=5 B 1.3.10
B n, 5 ( )

where ng, ng and n, are the number densities of baryons, antibaryons and photons
respectively. In view that npg is a ratio of number densities, it remains constant with
the expansion of the Universe. There are two different techniques to measure 7p.
On the first hand, this quantity can be determined using Big-Bang nucleosynthesis
(BBN) measurements. The abundance of light elements in the Universe, such as
D, 3He, *He, 5Li, and "Li provides information about the baryonic matter in the
Universe [35,36]. On the second hand, this quantity can be determined from Cosmic
Microwave Background (CMB) radiation data [37]. These measurements provide the
following values,

nepey = (5.80 — 6.60) x 10717,

NBomp = (6.02 —6.18) x 1071

2Some particles have the property of being their own antiparticle, e.g. the photon.
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Figure 1.2: Different curves giving the primordial abundances of light elements
as a function of the baryon-to-photon ratio 7,. The narrow vertical blue band
corresponds to the CMB measurement, while the wider red band corresponds to
BBN measurements. The yellow boxes correspond to measurement of the abundance
of the light elements. Figure taken from Ref. [36].

at 95% CL, respectively.

In Fig. [1.2] we present a comparison between the CMB measurement and obser-
vations for the abundances of different light elements. As can be seen, the baryon-
to-photon ratio obtained from measurements of D and *He are in agreement with
the one obtained from the CMB spectrum. Although, at present the lithium mea-

surement has preference for a lower baryon-to-photon ratio.

In order to produce a baryon asymmetry in the early Universe, there are three
conditions that must be satisfied. These are also known as Sakharov conditions,

named after the first author to discuss them [38]: baryon number violation, CP
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Figure 1.3: Temperature ranges for which leptogenesis can generate the observed
baryon asymmetry in the Universe. The green (blue) shaded region corresponds
to non-resonant thermal (ARS) leptogenesis. Thermal leptogenesis works at high
temperatures and for very heavy right-handed neutrinos My =T, while the ARS
mechanism works for much lighter masses My ~O(GeV).

violating processes and departure from thermodynamical equilibrium. To satisfy
these conditions and generate the observed baryon number asymmetry it is necessary
to introduce new physics beyond the SM. Most of the proposals that address the

BAU can be divided into two main categories,

e Electroweak baryogenesis: In this approach the baryon asymmetry is pro-
duced during the electroweak phase transition (EWPT). For this mechanism
to be successful it requires a first order phase transition and an extra source of

CP violation to the one present in the SM. For reviews on this topic see [39,/40].

e Leptogenesis: In addition to providing an explanation for small but non-zero
neutrino masses, the type-I seesaw mechanism also provides a solution to the
BAU, due to a new source of CP violation present in the out-of-equilibrium

decays of the heavy Majorana neutrinos in the early Universe [41].

An alternative mechanism to produce a baryon asymmetry, which also involves
the type-I seesaw, is the Akhmedov-Rubakov-Smirnov (ARS) mechanism [42], in this
framework a lepton flavour asymmetry is produced during CP violating oscillations
of the GeV-scale right-handed neutrinos and converted to the baryon asymmetry
by the electroweak sphalerons. In contrast to high-scale thermal leptogenesis, this
mechanism can be probed experimentally [43-45]. Due to the mixing between the

left-handed and right-handed neutrinos, it becomes possible to produce the latter
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at fixed target experiments such as the proposed SHiP facility [46]. In Fig. we
show the temperature ranges required to generate the correct baryon asymmetry
for the two mechanisms of leptogenesis previously discussed. The scale for thermal

leptogenesis can be lowered if one also considers resonant effects [47].

1.4 Dark Matter

The first evidence of dark matter came in 1933 when Zwicky showed that the velocity
dispersion of galaxies in the Coma cluster is much larger than what was expected
from the luminous matter [48]. Later on, in the 1970s Freeman [49] and, inde-
pendently, Rubin and Ford [50]| observed that the velocity of stars in the galactic
spiral arms also seem to point to a large missing component of matter. For a recent

historical account of the dark matter problem see [51-53].

In Fig. we present an example of a rotation curve for the galaxy NGC 6503,
where the circular velocity of different components of the galaxy is shown as a
function of the distance to the galactic centre. As can be seen in the plot, the
circular velocity of gas and stars flattens at large radius, contrary to the expectation
from Newtonian dynamics that far from the galactic centre the circular velocity

should decrease as the distance increases, v.(r) o< 1/4/7.

In addition to the modification of galactic dynamics, dark matter plays a crucial
role in the structure formation of the Universe. DM provides the gravitational
potential wells in the early Universe by means of which baryonic matter starts to
cluster. Measurements of the cosmic microwave background (CMB) allow us to
determine the fraction of baryonic (£2,) and dark matter (Qpyr) in the Universe with
high precision. The Planck satellite mission has measured the DM relic density to
be Qpyh? = 0.1197 4+ 0.0022 [37], which corresponds to Qpy = 0.265 and hence
26.5% of the total energy in the Universe is in the form of DM.

From the general theory of relativity we know that a large and heavy mass
distribution, such as galaxy or galaxy clusters, will act as a gravitational lens. The

dark matter hypothesis is also supported by observations from weak and strong
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Figure 1.4: Rotation curve for the NGC 6503 galaxy. Circular velocity of gas and
stars as a function of the radial distance to the galactic centre. The dashed (dotted)
correspond to the predictions from disk (gas). The dot-dashed line is the contribu-
tion from the dark matter halo. Figure taken from Ref. [54] which at the same time
was adapted from Ref. [55].

gravitational lensing, which show that the ratio of dark matter to luminous matter

in galaxy clusters is much larger than one. For reviews on this topic see Refs. [56,57].

A particularly striking piece of evidence comes from the system 1E0657-56 of
colliding clusters of galaxies [58]. The hot gas in the clusters interacts and it is
slowed down by the collision; a shape in the form of a bow-shaped shock wave can
be seen on the right side in Fig.[1.6] for this reason the system is known as the "bullet
cluster". Using gravitational lensing one can infer that the dominant component in
the system is dark matter, this is showed by green contours in the same figure. Dark
matter passes through without interaction during the collision, and therefore, this
observation provides evidence that a large matter component in the clusters is made

of non-baryonic and almost collisionless matter.

One more piece of evidence comes from Big Bang nucleosynthesis (BBN), the
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Figure 1.5: The power spectrum of the CMB as measured by the Planck satellite
mission |37]. The vertical axis shows the temperature fluctuations in units of pK?
and the horizontal axis shows the multipole moment, [. The red solid line shows the
best fit based in the ACDM model. Figure taken from [37].

epoch of the early Universe during which light nuclei were synthesized. The pri-
mordial abundance of the light elements D, 3He, “He and "Li can be inferred from
observations, and these measurements are in good agreement with the predictions
from BBN in the SME|. These measurements indicate that the baryonic density in
the Universe is , = 0.0487 [35,36], consistent with the value inferred from the
CMB. This number is much smaller than the inferred value for Qpy and hence the

dark matter cannot consist of ordinary baryons.

3Although, at present there is a discrepancy between the measurement and the prediction for
the abundance of lithium.
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Figure 1.6:  Collision of two galaxy clusters. The green contours represent the
matter inferred from gravitational lensing. The colours show the distribution of the
hot baryonic gas from X-ray observations. As can be seen, most of the matter in
the clusters is in the form of dark matter and remains unaffected by the collision.
Figure taken from Ref. [58].

1.4.1 Dark Matter Candidates

From the observations that have been previously discussed, we can deduce the fol-
lowing properties for any good dark matter candidate. We know that the dark
matter does not emit or absorb electromagnetic radiation and hence it is either elec-
trically neutral or its interactions with photons are highly suppressed, such as in the
scenario of milli-charged DM [59-61]. DM needs to be present in the early Universe
for the formation of structure to take place, we also observe it at present time in
the halos that surround galaxies. Therefore, the dark matter particle needs to have

a lifetime larger than the present age of the Universe.

Moreover, due to the observation of small scale structure dark matter cannot
be relativistic at the time of structure formation. This is because hot dark matter
has a large free-streaming length that suppresses the formation of small structures.
Therefore, the DM population needs to be either warm or cold. Finally, there should

be a production mechanism leading to the observed value of the relic density.



1.4. Dark Matter 16

There have been many proposed candidates that satisfy all these properties and
can also account for the observed relic density. We briefly review some of them. The
following list is far from being complete, since there is a plethora of DM candidates

and the list never stops growing.

e ALPs: Axion-like particles. The QCD axion provides a solution to the strong
CP puzzle as discussed in Section [1.6] The QCD axion is very weakly inter-
acting and can have a long lifetime on cosmological scales; hence, it represents
a good dark matter candidate. More generally, one can treat the axion inde-
pendently from the strong CP problem giving rise to ALPs, for reviews on this
topic see [62,063]. We will further discuss these particles in Chapter [5] Dark

matter ALPs are produced non-thermally and are usually light (mpy < eV).

e Asymmetric DM: In this setup the DM population is asymmetric. There-
fore, one needs to produce an initial asymmetry between particle and antipar-
ticle DM in a similar fashion as for baryons. In these scenarios the dark matter

mass is usually a few GeV [64].

e Dark photon: Similar to ALPs, very light spin-1 bosons can also form a
condensate that behaves as cold dark matter. The production is also non-
thermal [|65,/66]. Although, a heavier gauge boson could also be a WIMP and

be produced through the freeze-out mechanism [67].

e FIMP: Feebly interacting massive particle. The production mechanism is via
freeze-in; namely, the interactions with the SM are highly suppressed and they
cannot thermalise the DM candidate [68,69]. Requires very small interactions
g < 1071% with the SM particles. The relic density can be independent of FIMP

mass, allowing for a large range of masses. This is a non-thermal candidate.

e Primordial black holes: These consist of a hidden population of black holes
created in the early stages of the Universe, e.g. they could have been produced
during inflation. The main observational technique to search for primordial
black holes is using gravitational lensing. For a recent review on this topic

see [70].
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e SIDM: Self-interacting dark matter. In these models dark matter has large
self-interactions which impact the small scale structure in the Universe |71].
An example is the strongly interacting massive particle (SIMP). In this sce-
nario the DM relic density is set by 3 — 2 processes, i.e. three DM particles
annihilating into two of them, instead of the usual 2 — 2 where DM pairs
annihilate into SM states. The dark matter candidate is strongly interacting
with mass at the MeV scale [72]. The production mechanism for this candidate

is thermal.

e SuperWIMPs: Super weakly interacting massive particle. The relic abun-
dance is obtained from the late decay of a metastable WIMP [73]. Most
common examples are the gravitino in supersymmetric theories and Kaluza-
Klein gravitons in theories with extra dimensions. These candidates are hard
to detect experimentally. The production mechanism for this candidate is

non-thermal.

e Warm dark matter: This corresponds to a light DM particle, with mass
around the keV scale, and velocity dispersions between that of hot DM and
cold DM. The most common example is the sterile neutrino |74,75]. This
candidate has larger free-streaming length compared with cold DM, which

reduces the formation of small scale structures.

e WIMP: Cold dark matter as a weakly interacting massive particle. This is
a thermal candidate. In the early Universe the WIMP is in thermal equilib-
rium with the SM plasma. The relic abundance is obtained via the freeze-out
mechanism, described in Section [3.1] Typical values for its mass are around
the electroweak scale mpy ~ O(100) GeV. This is one of the most studied
DM candidates, since it leads to detectable predictions at different types of
experiments. The dark matter population in this scenario is symmetric. For

recent reviews see [54,[76).

e WIMPzilla: This corresponds to a superheavy dark matter candidate with

mass mpu ~ 101 GeV or larger values. In some scenarios it can be detected
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Figure 1.7: Schematic diagram of the three main experimental searches for par-
ticle dark matter. For each type of experiment, time goes in the direction of the
corresponding arrow.

through its decays by using indirect detection. The WIMPzilla is a non-
thermal candidate, one of the most studied mechanisms to generate its relic

density is gravitational production at the end of inflation [77].

1.4.2 Experimental Searches for Dark Matter

In many models of dark matter, its production in the early Universe requires cou-
plings to Standard Model states. These interactions can be exploited to experi-
mentally search for the dark matter particle. The three main three avenues for the

detection of DM are the following,

e Direct detection: The aim of this type of experiment is to measure the
energy deposited when dark matter scatters off nuclei in ground-based de-
tectors. This process is depicted in Fig. [I.7] if we follow the vertical arrow
from top to bottom. In order to avoid large backgrounds, e.g. from cosmic
rays, these detectors are placed underground. Examples include CRESST ,
Lux-Zeplin , PandaX , SuperCDMS and XENON 1T .

e Indirect detection: Dark matter particles in the halo surrounding our galaxy
can annihilate into visible states Y x — SMSM, e.g. charged particles or

photons. Satellite or ground-based telescopes can then look for a signal excess
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after removing known astrophysical backgrounds. This process is depicted in
Fig. if we follow the horizontal arrow from left to right. Examples include
AMS [83], CTA [84], Fermi-LAT [85], HAWC [86|, HESS [87], IceCube [8§]
and PAMELA [89].

e Collider searches: Pair-production of the dark matter particle can be studied
at colliders. The DM particle will leave no signature in the detectors, so in
order to tag this process a visible emission needs to be considered, e.g. one
channel that can be studied is the mono-jet plus missing transverse energy. We
will further discuss these searches in Section [3.2] This approach is depicted in
Fig. if we follow the horizontal arrow from right to left. Examples include
the LHC and future collider proposals such as the International Linear Collider
(ILC) [90], the Compact Linear Collider (CLIC) [91] and the Future Circular
Collider (FCC) [92].

For literature reviews covering different dark matter candidates and experimental

search strategies we refer the reader to [54}93,94].

1.5 Vacuum Stability of the Higgs Potential

In the Standard Model, the Higgs potential at tree-level is given by,
V(|H?) = = [H]? + A H|", (1.5.11)

where \ is the Higgs quartic coupling, u?= M?/2 and M, corresponds to the Higgs
mass. In the unitary gauge we can write the Higgs doublet as H = (0, h/v/2)7.
If we take p? > 0 then the potential has a minimum at |H|? = p?/2\ = v2. This

minimum gives the vacuum expectation value to the Higgs field (0|h|0) = v.

Radiative corrections have a twofold impact on the tree-level potential given in
Eq. (1.5.11]). Firstly, there are loop corrections to the potential itself that lead to the
effective potential. The calculation of these corrections will be discussed in detail

in Sec. [2.3] The effective Higgs quartic coupling is defined in terms of higher order
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Figure 1.8: The left (right) panel shows a schematic depiction of a scalar potential
where the minimum is absolutely stable (metastable).

corrections to the Higgs potential and at one-loop is given as follows [95}96|,

1 3 2 g +gs 5 3 g 5

Aot = A = (g2 2 lp2¥~—72 % A lmEE =

g H+16w2{16(9Y+92) (n r 6) 8%2\"4 6

yi 3

— 3y (1n5t—§) + 3y (41nAH—6+31n3)]. (1.5.12)
Secondly, each coupling in the Lagrangian has a renormalisation scale dependence.
In order to compute the latter, one has to solve the RG group equations, a set of
coupled differential equations, also referred to as S-functions. After being included
in the computation of the potential, one refers to the latter as the RG-improved

Higgs effective potential.

Once the inclusion of quantum corrections to the potential has been taken into
account, three different scenarios can arise regarding the stability of the electroweak

(EW) vacuum:

1. Stability: The electroweak vacuum is stable if no other minima appear in the
effective potential or the other minima that appear lie above the current EW

vacuum. See left plot of Fig.

2. Metastability: If the new minimum lies deeper than the electroweak vacuum,

then the Higgs field can tunnel into the new vacuum. If the lifetime of the
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Figure 1.9: Left panel: Different regions characterising the stability of the elec-
troweak vacuum in the top versus Higgs mass plane. Right panel: Zoom in into the
region preferred by experimental measurements of the top and Higgs mass. Figure
taken from [96].

current vacuum is larger than the age of the Universe, then the EW vacuum

is said to be metastable. See right plot of Fig. [I.§

3. Instability: The electroweak vacuum is unstable, if the new minimum is
deeper and the lifetime of the current minimum is smaller than the age of the
Universe. If this happens then there should be regions of our Universe in which
the potential energy associated to the Higgs is much smaller and this would
lead to a very fast expansion eventually modifying the vacuum expectation

value throughout the Universe [97].

A detailed RG study of the Higgs potential in the SM has shown that at high
scales the quartic coupling turns negative and the potential develops a new minimum
[96,97], for earlier related work on this topic see [98,99|]. Taking the central values
for measurements of the Higgs and the top mass, this secondary vacuum is deeper
than the electroweak vacuum and hence, given sufficient time, there is a chance the

Higgs field will tunnel into it.

Requiring the age of the Universe to be larger than the lifetime of the electroweak
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Figure 1.10: RG running of the Higgs scalar quartic. The dashed purple line
corresponds to the tree-level coupling. The solid blue line is the one-loop effective
scalar coupling. The red shaded region corresponds to the region where the lifetime
of the electroweak vacuum is smaller than the age of the Universe.

vacuum implies a lower bound for negative values of Aeg (1) [96]

()] > 20 (1.5.13)

where 7 = 4.35 x 10'7 s is the age of the Universe [37]. Fig.|[1.9/shows the SM phase
diagram that characterises the stability of the EW vacuum as a function of the top
and the Higgs mass. As we can see, the experimental central values of the latter set
the SM to be in the small metastability region very close to the region with absolute

stability.

In Fig. we present our result for the RG running of the effective Higgs
quartic coupling taking the most up to date measurements of the Higgs and the top
quark mass. Namely, M), = 125.09 GeV [36] and M; = 172.5 GeV [100,]101]. We
have solved the two-loop [-functions and worked with the one-loop RG-improved
effective potential. In addition we have taken the next-to-next-to-leading order
initial conditions for the couplings as given in [96]. We find that A.g becomes

negative at fiingt 5.2 x 10t GeV. As we can see, despite the fact that the effective
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Higgs quartic coupling becomes negative it remains above the metastability bound.

Although non-perturbatively it is possible to show the gauge-independence of
tunnelling rates by applying Nielsen identities [102] to the false-vacuum effective
action [103], in perturbative calculations the lifetime of the electroweak vacuum does
show gauge-dependence [104-106|. There has been recent progress in performing a
perturbative calculation of the decay rate that is gauge invariant [107,/108]. In
this work, we use the Landau gauge; however, our conclusions do not change for a

different choice of gauge-fixing.

1.6 CP Violation in Quantum Chromodynamics

Previously, we discussed the structure of the SM Lagrangian which is dictated by
renormalisability and gauge invariance. There exists one more term that satisfies

this criteria and can be added to the Lagrangian,

+ Tr[G,, G*™] C Lsw, (1.6.14)

3272

where 0 is a dimensionless quantity and G, corresponds to the field strength of
quantum chromodynamics (QCD) and éuv = e"*P@G,5/2 is the dual to it. The
term above breaks CP (charge conjugation and parity) and P (parity) symmetries.
From the conservation of CPT, this implies that T (time) symmetry is also broken.
The parameter leading to an observable is the sum of # and the overall phase of the
quark mass matrix,

0 = 0 + arg (det M,), (1.6.15)

which induces an electric dipole moment (edm) for the neutron [109],
d, ~ 3.6 x1071°0 ecm, (1.6.16)

where e is the electron’s electric charge. The current experimental upper limit on

the edm of the neutron is |d,| < 2.9 x 107 ccm [110] which implies the following
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upper bound,
0 <1071, (1.6.17)

explaining such a small quantity requires a fine-tuning, demanding both terms in
Eq. (1.6.15)) to cancel to a high level of accurac. In other words, if # ~ 1 then the
edm of the neutron should be ten orders of magnitude above current experimental

limits.

The most compelling solution to this problem was proposed by Peccei and
Quinn [111]. They argued that by introducing a new global chiral symmetry one
could rotate away the @ term. One possibility to implement this new symmetry
is for the up-quark to be massless. However, the latter is strongly disfavoured by
lattice calculations [112H114], see [36] for a review of these calculations. The second
possibility is for the SM to have a global U(1)pq chiral symmetry, this is the solution
that we will discuss in the remainder of this section. As we shall see, this solution

leads to the axion particle.

Soon after the work by Peccei and Quinn was published, Weinberg [115] and
Wilczek [116] pointed out that since the global U(1)pqg symmetry is spontaneously
broken, a massless Goldstone boson would appear in the spectrum. Due to strong
dynamics in QCD at low energies, non-perturbative effects explicitly break this
symmetry and the particle receives a non-zero mass from this effect, becoming then
a pseudo-Goldstone boson. The latter has been named the axion particle. For a
historical account of the QCD axion see [117] and for recent reviews we refer the

reader to [63,[118].

In brief, the idea is to promote the # parameter to a dynamical field, the QCD
axion a(z), and provide a dynamical explanation for why the term in Eq. ((1.6.14])

vanishes. Due to the shift symmetry of the axion at high energies, the 8 parameter

can be absorbed by setting a — a — 6. Once non-perturbative QCD effects become

1We would like to mention in passing that no new symmetry is recovered in the SM Lagrangian
as we set 6 — 0, this is because we already know that CP symmetry is violated in the quark sector
and possibly also in the neutrino sector.
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active they induce the following potential (at zero temperature),

V(a) ~ myAop [1 — cos (ND;V a)} , (1.6.18)

a

where Npw is the colour anomaly also known as the domain wall number. This
potential is minimized at a = 0 corresponding to the CP conserving value. These
non-perturbative effects also give rise to a non-zero mass to the axion of order

A(QQCD /fa- At leading order the mass of the QCD axion is given by,

VI M fr. (1.6.19)

m =
¢ mu+md fa

where m, is the pion mass and f, is the pion constant.

At low energies, after PQ symmetry breaking and QCD non-perturbative effects

become active, we can write the following interaction terms for the axion,

9

alN T 5 g
9, a(N~*~5N
D La( Ny YN )+

2;; dua (é’y“f@)—%gd QNO'MV’)/5NF“V7
(1.6.20)

‘Cint = —% a Fu,jﬁwj‘*’
where o = %[7“,7”], e stands for the electron field, £, stands for the electro-
magnetic field strength and N for a nucleon that can be the proton or the neutron.
All the g; couplings in the above relation are proportional to 1/f,, where f, has

dimensions of energy and is referred to as the axion decay constant.

The axion decay constant is proportional to the symmetry breaking scale of
the U(1)pq symmetry and it is usually large, f, > GeV, thus the axion is very
weakly coupled to SM particles. The specific values of the couplings depend on the
details of the ultraviolet (UV) completion, two of the most studied ones are the
KSVZ [119,]120] and the DFSZ [121}/122] models. At present, values of the decay
constant f, < 4 x 108 GeV in the KSVZ completion of the QCD axion have already
been ruled out by astrophysical observations [123|. This corresponds to the exclusion

of m, 2 0.02 eV.

One more attractive feature of the axion is that it represents a good candidate

for dark matter. Whenever the f, scale is large, the QCD axion is very weakly
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interacting and long-lived on cosmological scales. Cosmologically, once the Hubble
parameter becomes smaller than the axion mass, H <m,, the axion field oscillates

and its energy density scales as p o< a=2 and hence it behaves as matter.

More generic axion-like particles (ALPs) can arise independently of the strong
CP violation problem. For these generic ALPs, the couplings to SM particles are
independent of its mass and a much larger parameter space becomes available. These
particles can be motivated from different perspectives, axions as a mediator between
dark matter and the visible sector [124], axion dark matter [125-127], axions from the
compactifications of extra-dimensions [128] or more generic situations with multiple

axions [129].

Owing to its interactions with SM particles given in Eq. (1.6.20), it is possi-
ble perform experimental searches for the axion particle. There are many ongoing
experimental efforts to search for the QCD axion and ALPs, some of them in-
clude ABRACADABRA [130], ADMX |[131], ALPS [132,(133|, CASPEr [134,/135|,
CAST |1361137], IAXO [138}/139] and MADMAX [140]. Axions can also be searched
for at particles colliders and fixed target experiments [141}]142].

Let us now briefly discuss an example of an astrophysical constraint. Due to
their coupling with photons, axions can be produced at the interior of stars and then
escape, this contributes to the energy loss of the star. The lack of an observation of
anomalous energy loss of Horizontal Branch (HB) stars sets the following constraint

on the axion-to-photon coupling [143],
Gy < 6.6 x 107! GeV ™, (1.6.21)

for axion masses m, < 100 keV.

~

The relation between m,, m, and f, in Eq.(1.6.19) does not apply to generic
axion-like particles and their masses can be treated as a free parameter. Ultralight

axions are commonly defined to lie in the following mass range,

Ultralight axions : 107**eV < m, <107 "2eV, (1.6.22)
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this mass range is difficult to test experimentally. However, there is an astrophys-
ical effect that arises solely from gravitational effects. A cloud of ultralight ax-
ions with an astrophysical size can form surrounding rotating black holes via the
mechanism of superradiance [144,(145|. This axionic cloud can produce observable
signatures, such as gravitational waves [146,/147|. Astrophysical black holes have a
wide range of masses, from a few solar masses to supermassive ones with M ~ 10°
M, and therefore this mechanism can probe a large range of axion masses; namely,

1078 eV < m, <107 '2eV.

1.7 Higgs Mass and Naturalness

The mass of the Higgs boson receives quantum corrections through diagrams like

the ones shown in Fig. [1.11l These diagrams give rise to two types of corrections:

e Cutoff sensitivity: The diagrams are quadratically divergent, and hence the
Higgs mass squared receives a loop contribution proportional to the square of

the cutoff scale of the SM. Namely,

1 1
2 _ 24 3¢"%) — 2| A2 1.7.2
OM;; 3977 6)\+4(9g 39") —y; | A, (1.7.23)

where A represents the cutoff scale up to which the SM remains a valid theory.
However, there are regularisation schemes in which the quadratic sensitivity

to the cutoff scale disappears, e.g. dimensional regularisation.

e Mass thresholds: If there exist heavier states coupled to the Higgs, then
the Higgs mass squared will receive corrections that go quadratically as the
mass of these heavier states. This contribution is not regularisation scheme
dependent. Let us take as an example a new scalar ¢ with mass M, > M,
and portal coupling to the Higgs A\ns| H|*$*. Then, the Higgs mass will receive

the following contribution,

1
2 2
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ST S e

Figure 1.11: Feynman diagrams for the one-loop contributions to the Higgs mass.
From left to right we show fermions, gauge and scalar loops respectively.

if we have that 6M? > M}, a large cancellation needs to take place between
the tree-level mass term and this contribution in order to obtain the observed
value for Mj,. This high level of fine tuning is what we shall refer to as the

Higgs mass naturalness problem or gauge hierarchy problem.

This issue is not present for fermions and gauge bosons, this is because as we
set mp, my — 0 a new symmetry appears in the Lagrangian, chiral symmetry for
fermions and gauge symmetry for gauge bosons. This ensures quantum corrections

to be proportional to the mass itself,

dm¥ < m% In (%) , (1.7.25)
F
dmi o< m3, In (A) (1.7.26)
\%4 14 my ) .

and thus, quantum corrections to the masses cannot be too large.

In the SM the condition §M? < M} is satisfied, and therefore, there is no fine-
tuning of the Higgs mass if we remain purely within the SM. However, the SM cannot
be extrapolated to arbitrarily high energies since the hypercharge coupling develops
a Landau pole at p ~ 10% GeV and gravitational effects might become relevant
above the Planck scale. The issue of large corrections to the Higgs mass appears
only when new heavy states that are directly or indirectly coupled to the Higgs
boson are introduced. For a detailed discussion of the Higgs naturalness problem

and different approaches to solve it we refer the reader to [148,/149].

Stating it briefly, this problem has to do with explaining the lightness of the
Higgs boson. Some of the most studied solutions to this problem include super-

symmetric theories (SUSY), theories with extra spacetime dimensions and theories
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with a composite Higgs boson. Generally, these theories predict many new states
charged under the SM gauge group with masses around the electroweak scale in
order to solve this problem. Nevertheless, the absence of experimental evidence for

these new states is pointing to alternative directions in model building.

An alternative path to explain the origin of the electroweak scale is the approach
of classical scale invariance, in which only dimensionless couplings appear in the La-
grangian. In these models, the EW scale is dynamically generated through quantum
corrections via the Coleman-Weinberg mechanism. In Section [2.3.1] we will discuss
an example where this approach can also explain why the EW scale is much smaller

than the cutoff scale of the theory [150-152|, although this is not the case in general.

Moreover, the approach of CSI does not provide a mechanism to protect the
Higgs mass from large threshold corrections. However, when provided with a UV
completion, this approach can solve this problem. In [152] it was emphasised that
CSI could make the electroweak scale compatible with a high scale of new physics
without requiring a large fine-tuning. This model could then be embedded in a UV

theory where large threshold corrections vanish.

A possible UV completion is to embed the model in an asymptotically safe the-
ory, in which all dimensionless couplings in the Lagrangian reach an ultraviolet fixed
point. In dimensional regularisation the mass terms are multiplicatively renormal-
isable, and therefore, in a model with CSI the mass terms vanish at all scales. A
theory with this properties is fundamental in the Wilsonian sense, since it is well-
defined at arbitrarily high energies, and hence the cutoff scale is absent. Recent

progress has been made in this direction [153H155].

Since the sensitivity to the cutoff scale is regularisation scheme dependent and
also relies on the top Yukawa coupling, rather than the coupling of the new states
to the Higgs boson, one more take on this issue is the approach of finite naturalness
[156,/157]. In the latter, one ensures threshold corrections to be small by requiring
BSM models to satisfy 6 M}? < M?. This means that even if there are new heavy
states, they could be very weakly coupled to the Higgs particle and induce small

quantum corrections without requiring a large cancellation to obtain M;,. Due to
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the common origin of mass scales, in the CSI framework it is difficult to generate
vastly different scales. Therefore, CSI provides a natural setting for models that

satisfy finite naturalness.

1.8 Motivation and Outline of this Thesis

Essentially, every attempt to solve the aforementioned issues, cf. Sections [1.2H1.7]
includes the addition of new particles, new symmetries and (or) new forces to the SM.
Namely, the fact that the SM fails to explain all aspects of the Universe, motivates
theoretical and experimental efforts to go beyond it. In this thesis, we will propose
concrete BSM models that provide solutions to some of these problems and study
their phenomenological implications. In addition, we will discuss a new observable

that can serve to detect ultralight axions beyond the SM.

Chapter [2| is based on Refs. [1,/2]. Motivated by arguments of naturalness, we
discuss an approach to explain the origin of the electroweak scale. We briefly review
the approach of classical scale invariance, in which all the scales in the theory are
dynamically generated via the Coleman-Weinberg mechanism [150]. We perform
an RG study of the inert doublet model [158|/159], a minimal extension of the
SM that introduces a second scalar doublet and can account for dark matter. We
also construct an extension of the IDM that has CSI. In both scenarios we find
the regions in parameter space that satisfy perturbativity, unitarity and absolute
vacuum stability up to the Planck scale. We also discuss a CSI extension of the
SM in which neutrino masses are generated via the type-I seesaw [31-34] with GeV
right-handed neutrinos. We apply the mechanism of ARS leptogenesis [42] in order
to generate the baryon asymmetry of the Universe. The model also contains a good

dark matter candidate and its phenomenology is studied.

Chapter [3|is partially based on Ref. [3]. We begin by presenting a brief overview
of searches for WIMP dark matter at the LHC. We then introduce a new set of sim-
plified models of dark matter to address the effects of 3-point interactions between
the dark matter particle, its dark co-annihilation partner, and the Standard Model

degree of freedom, which we take to be the 7-lepton. Some of these models are
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manifestly gauge invariant and renormalisable. The contributions from dark matter
co-annihilation channels are highly relevant for a determination of the correct relic
abundance. We investigate these effects as well as the discovery potential for dark
matter co-annihilation partners at the LHC and at the future e~e™ linear colliders,
such as the ILC and CLIC. Since the DM candidate is coupled directly only to the
T-lepton in the SM, strong constraints from direct detection experiments can be
avoided. In fact, as we show, the most promising search technique is using particle

colliders.

Chapter (4] is based on Ref. |[4]. We discuss a new observable to detect ultralight
axions, the latter can be motivated by the strong CP problem [111,115/|116], axion
dark matter [125H127] or axion as a mediator between DM and the visible sector
[124]. In the presence of an ultralight scalar, a cloud of these particles will form
around a rotating black hole by the mechanism of superradiance [145147|. This
effect can be seen as the wave analogue of the Penrose process, in which a particle
extracts angular momentum from a rotating black hole [144]. We show that as
light passes through an axion cloud that surrounds a black hole, it may experience
polarization-dependent bending. Consequently, a highly polarised source will be
split into two images once it reaches the observer. We argue that this effect can
be observed at a VLBI array of radio telescopes. The conclusions of this thesis are

presented in Chapter [5]



Chapter 2

Classically Scale Invariant

Extensions of the Standard Model

The discovery of the Higgs boson [21,22], the last undiscovered particle in the SM,
has provided us an insight into how fundamental particles in the SM acquire their
mass. However, the origin of the electroweak scale and why its value is many orders
of magnitude smaller than the Planck scale still remains unexplained. Motivated
by this, in this chapter we explore the idea of classical scale invariance (CSI) which
states that there should be no mass scales in the Lagrangian at the classical level
and hence all the mass scales must be generated by the dynamics of the theory.
Based on Refs. [1}2], we will discuss how this approach can be applied as a guiding
principle for models beyond the SM that aim to explain its shortcomings, such as
the baryon asymmetry of the Universe, the existence of dark matter and neutrino

masses.

2.1 Preamble

The idea of generating a scale radiatively was originally proposed by Coleman and
Weinberg in Ref. [150|, where they calculated the one-loop quantum corrections to
the effective potential in the A|¢|* scalar theory. In that work it was realised that if
the complex scalar ¢ is charged under a local U(1) group with gauge coupling ¢g and

its quartic coupling was small, of order A ~ g% (e.g. due to the RG running), then the

32
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tree-level term and the one-loop contribution to the effective potential have the same
order of magnitude and a cancellation could take place. This leads to a minimum
of the potential away from zero and hence a non-zero vacuum expectation for ¢,
as illustrated in Fig. 2.1} In Section [2.2] we briefly review scale transformations in
QFT, and in Section [2.3] we discuss the Coleman-Weinberg mechanism in further

detail and provide a derivation of the one-loop effective potential in the A¢* theory.

Due to the condition A\ ~ g*, which shall be explained in Section , one expects
the scalar to be much lighter than the gauge bosons in the theory, M, < Mz. In the
SM, the Higgs is actually heavier than the Z and the W* gauge bosons. Moreover,
the RG-improved Higgs effective potential receives a large negative contribution
from the top Yukawa coupling and the effective potential becomes unbounded from

below up to the Planck scale.

Consequently, the Coleman-Weinberg mechanism within the SM cannot repro-
duce the observed value for the Higgs mass. However, it is possible to introduce
a hidden Coleman-Weinberg sector and then transmit the scale to the SM via a
Higgs portal interaction |160]. One of the motivations for the present chapter is to
address whether classical scale invariance implemented through a Higgs portal has
implications for other extensions of the Standard Model. These ideas have attracted

a lot of attention recently [150-152,/160-180].

In Section [2.4] we investigate how the dynamical generation of the electroweak
scale through the Coleman-Weinberg mechanism in the hidden sector can be achieved
in a model with a non-minimal Higgs sector, focusing in particular in a minimal re-
alization of the two Higgs doublet model (2HDM) [181|, which is the inert doublet
model (IDM) [158,/159]. The latter was first introduced in Ref. [158], where the
authors give different possibilities to achieve EWSB in the 2HDM. The IDM has
become particularly attractive because it provides a natural candidate for cosmo-

logically stable dark matter [159,182]; namely, the lightest inert neutral scalar.

In Section [2.5] we study a classically scale invariant extension of the Standard
Model that can explain simultaneously dark matter and the baryon asymmetry in

the Universe. In our set-up we introduce a dark sector, namely a non-Abelian
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Figure 2.1: The one-loop Coleman-Weinberg effective potential for massless scalar
QED, as given in Eq. . Left panel: The gauge and scalar quartic do not
satisfy the CW condition Eq. and the effective potential does not develop
a new minimum. Right panel: The couplings on the right plot satisfy the CW
condition and hence the effective potential develops a new minimum.

SU(2) hidden sector coupled to the SM via the Higgs portal, and a singlet sector
responsible for generating Majorana masses for three right-handed sterile neutrinos.
Due to a remnant SO(3) global symmetry, the gauge bosons of the dark sector are
mass-degenerate and stable, and this makes them suitable as dark matter candi-
dates. This model also accounts for the matter-anti-matter asymmetry. The lepton
flavour asymmetry is produced during CP-violating oscillations of the GeV-scale
right-handed neutrinos, and converted to the baryon asymmetry by the electroweak

sphalerons. In Section [2.6] we present our concluding remarks.

2.2 Scale Transformations

A scale transformation or dilatation acts on the spacetime coordinates z* and op-

erators O as follows,

—E&a

at — e "k, (2.2.1)

O — 20, (2.2.2)
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where ¢ is a scaling parameter and A corresponds to the scaling dimension of the
operator. In four space-time dimensions A = 1 for a scalar field and A = 3/2
for a fermion field. In order to study the implications of scale transformations and

apply the formalism of Noether’s theorem we need to consider the infinitesimal

transformations corresponding to Egs. (2.2.1)) and (2.2.2). The latter are given by,

oxt = —exh, (2.2.3)

So(zh) = (A + 29, d(zh). (2.2.4)

We aim to find which class of theories remain invariant under these transformations.
Noether’s theorem implies that a given continuous transformation is a symmetry if
the Lagrangian changes by a total derivative 0L = 0, F*. Henceforth, we shall refer
to the Noether current associated to scale symmetry as scale or dilatation current

Sk

We proceed to study how scale transformations act on a Lagrangian with a
fermionic field ¢) and a real scalar field ¢. We write down all renormalisable inter-

actions as £ = L1 + Lo,

L= 20,606 + "0 +y 6T — 50" (2:2.5)

— 1 M
Lo = —myhth — §m¢¢2 — §¢3, (2.2.6)

we will see below the reason for writing £, and L, separately. Since all the operators

in £; have dimension four, then it follows that
0Ly = (4 + ©,0") Ly = Ou(a" L), (2.2.7)

this means that the scale transformation is a symmetry of £;. On the other hand,

the operators in L5 have dimension different than four and we find,

_ 1 M
6L2 = —(3+ 2, 0"ymyP — 52+ 2,0)mie” — (34 2,0") 5 8 (2.2.8)

= Ol L)+ my b+ A+ 6 (229
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since we cannot write 0L, as a total divergence, the scale current is not conserved

w 3! ’ o

The important point we would like to stress here is that a theory with classical scale
invariance cannot have a mass term or any scale as input in the Lagrangian, the

latter must only contain dimensionless couplings as in L.

More generally, if we define the symmetric energy-momentum tensor as follows

T — 9 d'zL, 2.2.11
0Guu () ( )

it then becomes possible to write the scale current as
St=T"x,, (2.2.12)

for a detailed discussion on how to arrive to the above relation we refer the reader to
section 19.5 in [183|. This is somewhat expected since we know that transformations
involving spacetime coordinates are related to the energy-momentum tensor E| From

Eq. (2.2.12)) we see that
oS" =T}, (2.2.13)

and hence the scale current is conserved when the energy-momentum tensor is trace-

less. At the classical level, the trace contains the mass terms and interactions terms

with dimensionful couplings in the theory, as can be seen in Eq. (2.2.10)).

As we have seen, if a theory contains only dimensionless couplings the scale
current is conserved at tree-level. However, the scale symmetry can be broken by
quantum corrections. Once quantum effects are taken into account, the RG running

of the couplings breaks scale invariance logarithmically. For a massless non-Abelian

!Take for example spacetime translations z* — x* — a* which lead to the conservation of the
energy-momentum tensor 9,7 = 0.
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gauge theory we have that [184-186]
0,5" = B(g)Tr (G G"), (2.2.14)

where ((g) corresponds to the renormalisation group equation for the coupling g and
G is the field strength. Eq. (2.2.13)) encodes the fact that quantum corrections

can break the scale symmetry and is referred to as scale anomaly.

For a theory to possess exact quantum scale invariance, then quantum effects
should also preserve this symmetry which means that the g-functions must vanish
to all orders in perturbations theory. Theories with a large number of symmetries
can have this property such as N = 4 super Yang-Mills theory. Also, trivial theories
with no interactions such as a free massless scalar field or Abelian gauge theory have
exact quantum scale invariance, while a massless non-Abelian gauge theory does
not. This is due to the fact that non-Abelian gauge bosons have self-interactions
and ((g) # 0. A theory that is described by a scale invariant Lagrangian, but has
quantum corrections that break this symmetry, for example by having 5(g) # 0, is

classically scale invariant (CSI).

We know that our Universe is not scale invariant, if it were, physical processes
would remain the same as we zoom in or zoom out. We know that this is not
true, e.g. the physics is very different as we zoom in from galaxies to the inside
of stars where thermonuclear reactions take place. Therefore, any physical theory
that is based on scale invariance should also provide a mechanism to break such a
symmetry. For example, the SM could be embedded in a UV theory where exact

scale symmetry is restored at very large energies.

2.3 The Coleman-Weinberg Mechanism

In this section, we review the Coleman-Weinberg [150] mechanism, cf. [187], in
which radiative corrections generate a non-zero vacuum expectation value (vev) in
a theory that has no scales to begin with. First, we will consider the case of a single

massless scalar and show that the regime where this mechanism works lies outside
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the perturbative regime. We will then consider a massless complex scalar field
charged under a U(1) gauge symmetry and give the condition for the mechanism to
work. The latter will be the main focus of this chapter. We will follow the original
work [150] and present a derivation based on calculating Feynman diagrams with

vev insertions.

First, we will study a theory with a single massless scalar field. The Lagrangian

of this theory is given by
= —a DO — —¢ + D, " — —5m¢2 — —5 Zot (2.3.15)

where ¢ is a real scalar and the counterterms d4, 6,, and d, absorb the divergences
in the loop contributions to the scalar self-energy, the mass and the four-point scalar

vertex respectively.

The diagrams that contribute to the one-loop effective potential take the form
of a single loop with an arbitrary number of ¢? insertions, the latter correspond to
the vacuum expectation value of ¢. The diagrams are shown in Fig. 2.2 and give

the following contribution

AV = z/ i Z o (m) , (2.3.16)

the factor of i comes from the path integral, the factor 1/2n comes from 1/n rotations
and 1/2 reflections of the loop that do not change the diagram and hence the 1/n!

in Dyson’s formula is not completely cancelled.

Applying a Wick rotation and and making use of the following identity

> 1

n=1

"™ =1In(1 + 2) for |z] <1, (2.3.17)

3IH

we can rewrite the integral in Eq. (2.3.16) as

> ” A\p? " d*kg A\p?
AV =~ / 42 2n ( k:2+25)> _2/(27r) i ( 2%)’ (2:3.18)
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Figure 2.2: Feynman diagrams that contribute to the one-loop effective potential
in the \¢*/4! theory.

although each term in the sum has an IR divergence summing over all diagrams
makes it IR finite. The integral still has a UV divergence and in order to evaluate it
we will apply the cutoff regularisation method. Namely, we will evaluate the integral
up to a cutoff scale kg = A, in Section we will see that the same final result
is obtained in the MS scheme,

A ]{72 +a2 7T2
/0 d'kpln ( Ek% ) = ZA4 [1—2In(A%)]

1,, 1., 1
- A2__A4__ 4—A41 2 A2
e 3 4(@ )In(a® + A*)

1
4 22 [Za4 In(a?) +

the term on the first line just adds a constant term to the potential and can be
ignored. Regarding the term on the second line, we can also ignore the constant
terms, then we expand in powers of a?/A? take the limit A — oo and keep only
the non-vanishing terms. The one-loop contribution to the potential then takes the

form

1 1

AV = —— |- A¢?A* — A2¢ + 16 A¢tIn A (2.3.19)
1672 |4 202 ) | o

To find the value of the counterterms we need to impose renormalisation con-
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ditions, the renormalised mass should vanish at the origin and the renormalised

quartic coupling can be defined at an arbitrary scale g,

4’V (¢) d*V(¢)
—0, ‘ Y 2.3.20
d¢?  le=o do*  lo=u ( )
from these two conditions we find that
AA2 3\2 A2 11
om = 5o R e {m (2/\2) * ?] ‘ (2:321)

After substituting back the value of the counterterms we find the final expression

for the one-loop effective potential

A A2t 2\ 25
Vi(¢) = E¢4 + 256@ [ln (%) - F] : (2.3.22)

requiring a new minimum to appear away from ¢ = 0 gives the following condition

Aln (;’j—z) = —%r? + %)\, (2.3.23)
the first term on the right hand side is quite large. From Eq. we are required
to have \In(¢?/u?) ~ —105 which is far outside the validity of the one-loop approx-
imation, since higher order corrections will introduce higher powers of X In(¢*/u?).
Therefore, for a single massless scalar field it is not possible to generate a non-zero
vev from quantum corrections to the effective potential. This mechanism was gen-
eralised and shown to work for a theory with multiple scalars in Ref. [188], we will

review this approach in Section [2.5.1]

Now we turn to study the case where a complex scalar ® = (¢ + ix)/V/2 is
charged under a local U(1) gauge symmetry. The Lagrangian density is given by

1
L = D'PID,® — \(®Td)? — 7 F ", (2.3.24)
the covariant derivative acts on the scalar field as follows

D,® = (9, —igA,)®, (2.3.25)
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Figure 2.3: Left panel: Class of diagrams with vanishing contribution to the effec-
tive potential. Right panel: One example of a diagram that does not contribute to
effective potential.

and F),, = 0, A, — 0,A, corresponds to the gauge field strength.

In the Landau gauge the gauge field propagator D, (k) at tree-level is given by

—iP,, (k) k. k
D, (k) = "~ P, (k) =n, — -~ 2.3.2
,u() k’2+i87 M() 77# k2+i57 ( 3 6)
and satisfies the following identities
k"D, (k) = k"D, (k) = 0. (2.3.27)

Since the computation of the effective potential involves external scalar legs with
vanishing external momenta, by means of the identity in Eq. all the diagrams
of the type shown in Fig. [2.3] will not contribute to the effective potential. This is
because the momentum of the internal scalar is equal to the one of the gauge boson,
therefore when contracted with the gauge boson propagator it vanishes (the vertex

is proportional to the momentum of the scalar field).

The diagrams that contribute to the effective potential are those shown in Fig. [2.2]
and also those involving gauge bosons in the loop. Following the same procedure as
before, the one-loop potential is given by

A 522 3¢4 2 25
Vi(¢) = 70" + (3%2 + 64“(;2) ¢* {ln (%) — E] : (2.3.28)

when compared to Eq. (2.3.22)) this potential has a new term that goes as g*. If

we take X to be order ¢* this new term competes with the tree-level term and the
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potential could develop a new minimum within perturbative values of the couplings.

Following our previous discussion, by taking A ~ ¢* we can ignore the \? term

in Eq. (2.3.28)) and write the one-loop potential as

A, 3¢t 2\ 25

this potential might develop a new minimum at a non-zero field value ¢ = (¢). We
can set the RG scale at the value of this minimum g = (¢), and then, by imposing the
condition that a new minimum appears V'({¢)) = 0 we find the Coleman-Weinberg

relation between the scalar and the gauge coupling,

11
1672

gt at p={(9). (2.3.30)

On the left panel in Fig. 2.1] we show the one-loop effective potential for arbitrary
values of the couplings that do not satisfy the above relation. On the right panel
the above relation is satisfied and one can see how the potential develops a new

minimum.

This non-zero vacuum expectation value (¢) leads to spontaneous symmetry
breaking breaking of the U(1) gauge symmetry. This implies that the scalar and
the gauge boson acquire the following masses,

_ 3¢

= o ($)?, mi = g*(¢)?, (2.3.31)

mg =V"((¢))

since the g coupling is perturbative, one of the implications of the CW mechanism

is that the scalar is much lighter than the gauge boson, mg < my, .

It is interesting to note that due to the common origin of the scalar and the

gauge boson mass, the ratio of their masses is independent of (@),

2 2
mg 39
— = 2.3.32
mi 82 ( )

In fact, all dimensionless quantities depend only on the gauge coupling g. The

dimensionless coupling A has been replaced by the mass parameter (¢). This is
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the mechanism of dimensional transmutation, in which a dimensionless quantity is

converted into a physical scale (¢) # 0. Quoting the original paper [150|:

The surprising thing is that we have traded a dimensionless parameter,
A, on which physical quantities can depend in a complicated way, for
a dimensional one, (¢), on which physical quantities must depend in a

trivial way, governed by dimensional analysis.

2.3.1 Naturalness

In the Introduction we discussed the issue of naturalness of the Higgs mass. Naively,
the Higgs mass will receive corrections proportional to the energy cutoff of the theory.
More concretely, if there is a new heavier scalar with mass Mg and portal coupling
to the Higgs Ap, then the Higgs mass will receive corrections proportional to that

value 0 M7 oc Ap M?.

It can be shown that the vev generated from the Coleman-Weinberg mechanism
is exponentially smaller than the UV cutoff. As an example let us consider a scalar
charged under a local U(1) gauge symmetry, the latter having coupling g. Due to
the RG running, g develops a Landau pole at some scale Ayy which characterizes
the cutoff scale of the theory. This can be seen by solving the RG equation for the
gauge coupling ¢ [152],

g _ o’

dt 4872’

M
where ¢t =1In (—) : (2.3.33)
Auyy

from this equation we see that the gauge coupling will grow as the RG scale increases,
eventually reaching a Landau pole. After integrating Eq. (2.4.64]) and setting the
RG scale to u = (¢) we find that

() = Ayy exp {—247# <g2(1¢>) - gQ(iUv))} ~ Ayy exp {%} , o (2.3.34)

and hence the generated vev (¢) is exponentially smaller than the cutoff scale of the
theory. This explains the smallness of the scalar mass when compared to the UV

cutoff scale.
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Moreover, from a naturalness perspective the approach of CSI is attractive, since
all scales have a common origin and hence it is difficult to generate vastly different
scales in the theory. However, this mechanism does not provide a full solution to the
hierarchy problem since it is unable to protect the CW scalar from large threshold

corrections, e.g. if there exists a much heavier particle coupled to it.

2.3.2 Asymptotic Freedom and Safety

There has been recent progress in constructing UV-complete models where all the
couplings reach a fixed point in the UV, the fixed points can either be be non-
interacting, where the coupling goes to zero (asymptotic freedom), or interacting,
where the coupling goes to a finite value (asymptotic safety). These fixed points g}
correspond to the zeros of the S-function f5;(¢gF) = 0. Asymptotic safety was recently
shown to exist for gauge-Yukawa theories in a perturbative manner [153| and has
attracted recent attention [189-196|. Theorems for weakly interacting theories with
asymptotic safety have been established in [197,198|. In [154], the authors provide
a prescription for constructing extensions of the SM in which the weak and strong
coupling constants reach perturbative fixed points in the UV, but the hypercharge

still suffers from a Landau pole.

An alternative approach to achieve an interacting UV-fixed point for a gauge
coupling, associated to the gauge group G, is to add a large number (Ng) of
fermions charged under G' and perform a 1/Np expansion in the computation of
the [-functions [1997201"21 Recently, the large-Np resummed contributions to the
RG equations were computed in [203| for generic semi-simple groups. In [204], a
large number of vector-like fermions were added to the SM in order to ensure the
asymptotic safety of the gauge couplings; nevertheless, this calculation was com-
pleted without the inclusion of the large- Nr resummation for the Yukawa and the

Higgs quartic.

The large- N resummation was performed for a Yukawa coupling in [155,205|. In

2For a different proposal to achieve asymptotic safety due to an energy cutoff in the theory
above which there are no quantum fluctuations see [202].
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the latter work, the resummation was also computed for a scalar quartic coupling.
These results were applied in [155] to extensions of the SM by a large number
Np of charged fermions in order to make the strong or the weak gauge coupling
asymptotically safe in the UV. Nonetheless, in that study it was shown that when
one makes the hypercharge coupling safe in the UV, the Higgs quartic is driven
to large non-perturbative values. This is because the location of the pole in the
resummed functions for the Yukawa and the scalar quartic has the same location as

the one in the Abelian case.

This class of theories represent a natural completion to models with CSI where
all mass parameters are set to zero, and remain zero at all scales due to the multi-
plicative renormalisability of the mass parameters in dimensional regularisation. A
theory with classical scale invariance in which all the dimensionless couplings reach
an ultraviolet fixed point is fundamental according to the Wilsonian definition and

hence it is sheltered from any UV cutoff.

2.4 Classical Scale Invariance in the Inert Doublet

Model

The inert doublet model (IDM) is a minimal extension of the SM that can explain
dark matter, it introduces a second complex doublet H, and a discrete Z, symmetry
such that

H, — Hy, Hy, —» —H,,

where H; stands for the Standard Model Higgs doublet and all the fields in the SM
are even under this Z, symmetry, meaning that H, has no tree-level couplings to

the SM fermions. The potential in this model is given by

View = (3|H|? + 3| Hol* + M| Hy|* + Ao|Ho|* + g | Hy|*[ Ha|* + Ny H] H,?

Nl + (HLHL)), (2435)
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expanding the two doublets in their components we have

G+ H*
Hl = ) H2 =
Z(v+h+iG) 75 (H +1iA)
the inert doublet consists of a neutral CP-even scalar H, a neutral CP-odd scalar A

and a pair of charged scalars H*.

Imposing the requirement of an exact Zs symmetry means that the inert Hy does
not acquire a vacuum expectation value (vev), so the lightest particle in the inert
doublet is stable and if it is one of the neutral scalars it can be studied as a dark
matter candidate. For the rest of this work we consider My < My, My+, and hence
we take H to be the dark matter candidate, similar results apply if one takes A to

be the lightest. The vevs for the doublets then read

v
(Hy) = 2 (Hy) =0, (2.4.36)
where v = 246 GeV, and the mass of the SM Higgs boson is given by the usual
relation M? = —2p2 = 2X\v? which we fix to 125 GeV. The masses of the two

neutral scalars, H and A, and the charged, H*, are given by

1

My = 2+ §(A3 + Mg+ X502, (2.4.37)
1

M3 = p3+ 5()\3 + Ay — As)0?, (2.4.38)
1

Mo = pa+ §>\3v2. (2.4.39)

We define the mass splittings AMy = My — My and AMpy+ = My+ — My, where
the mass splitting between A and H is determined by A5 and since we consider

My < My we take A5 to be negative. It is convenient to work with the coupling

Nt At
A=

which determines the interaction between inert scalars and the SM Higgs boson.

This section is structured as follows, in Section we start by showing how
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the CW mechanism can be applied to the inert doublet model with the addition of
a hidden sector and then perform a scan on the free parameters of the theory. In
Section [2.4.1] we measure the impact of introducing this hidden sector on the cal-
culation of the relic density, and in Section [2.4.] we calculate the spin-independent
nucleon cross-section and compare with current and future limits from direct detec-
tion experiments. In Section [2.4.2] we perform the RG analysis on the model and
show that some points satisfy vacuum stability, perturbativity, and unitarity up to

the Planck scale.

2.4.1 Dark Matter Phenomenology

In our approach there are no mass scales in the classical Lagrangian and all masses
need to be generated dynamically via dimensional transmutation. We cannot di-
rectly apply the Coleman-Weinberg mechanism to the Standard Model because the
Higgs mass is larger than the mass of the gauge bosons and also the large negative
contribution from the top quark makes the effective potential unbounded from be-
low. Nevertheless, it has been shown [152,/160| that we can still have classical scale
invariance in the SM if we introduce a hidden sector with a complex scalar ® and a
U(1)cw gauge symmetry in which the symmetry is broken via the CW mechanism

and the vev is communicated to the SM Higgs boson via a portal coupling.

One possibility to account for the dark matter in the Universe in CSI models with
a hidden sector is to extend the U(1)cw to a larger group, e.g. it has been shown
that for SU(2)cw the vector bosons can account for a portion of dark matter and a
scalar gauge singlet can be introduced to account for the rest of dark matter [177].
In this section, we adhere to the minimal case of having a U(1)cw symmetry and a
single complex scalar ® in the hidden sector and in order to account for dark matter

we extend the SM by adding an SU(2), vevless doublet.

Since the second doublet in the IDM does not acquire a vev we will apply a
similar mechanism as in Ref. [152]. In this case we introduce a second portal coupling
between the CW scalar and the inert doublet, Apo, in order to generate the quadratic

term for Hy after the CW scalar acquires a vev. The idea of classical scale invariance
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has been applied before to the IDM [206], but in that case the authors consider the
Coleman-Weinberg mechanism within the IDM, they found this gives a small DM
mass Mpy < My, and large quartic couplings O(1) meaning that this model cannot
remain perturbative at high energies. Recently, the authors of [207] introduced
heavy right-handed neutrinos with a Majorana mass to the IDM in order to generate
the mass scale parameters via radiative corrections, while in order to generate the
Majorana mass they outline a mechanism in which there is some strong dynamics

in a hidden sector with vanishing couplings to the Higgs doublets.

In the inert doublet model with CSI the potential is given by

1
Voss = MU'+ dalHol' + Nal Ha[P| Haf* + M| HUHo [ + DX [(HY Ho)? + (HH))?)

+)‘¢|(D’4_>\P1|(I)‘2|H1|2+)\P2’(I)’2|H2|27 (2.4.40)

where ® = (¢ 4 ix)/V/2, so ¢ is the CW scalar that will induce the breaking of
the symmetries and x is the would-be Goldstone boson of the broken U(1)cw in

the hidden sector. Focusing only on the CW sector and working with the one-loop

4

ows Where eqy denotes the gauge coupling in the

contributions proportional to e

hidden sector, the effective potential for ¢ in the MS scheme reads

4 4 2
Vi) = >\¢(Z)¢ n 36;\2755) 4 (1n (%) _ %) , (2.4.41)

This potential will develop a non-zero vev, (¢) # 0 if the following relation between

the scalar and gauge coupling is satisﬁedﬂ

1,
@ - 167T2€CW‘

(2.4.42)

After symmetry breaking takes place in the hidden sector, we obtain the following

3For more details on the CW symmetry breaking in the hidden sector we refer the reader to
Ref. [177].
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masses

My = \/g%TW@S), (2.4.43)

My = ecw(d), (2.4.44)

the mass of the Coleman-Weinberg scalar is much lower than the mass of the vector
boson Z’, M, < My:. The value of My is usually obtained around the weak scale,
but it can take values from a few MeVs to a few TeVs. Once we take into account

the portal couplings (2.4.40), the CW condition for Ay (2.4.42) and the mass of the
CW scalar (2.4.43|) are modified as follows

1mn v?
)\¢ = mecw—{—)\})lw, (2445)
M2 = 36?‘3W<¢>2+A 2 (2.4.46)

Once the CW scalar ¢ acquires a vev, the mass parameters for the Higgs doublets

will be generated through the portal couplings

2

P aar
2

gy = "‘)\PQ%; (2.4.48)

to trigger electroweak symmetry breaking (EWSB) we need p; < 0. This was our
motivation to choose a negative sign for Ap; in the potential, so that we can work

with A\p; >0. Once EWSB occurs the two vevs in the model are connected via the

(@) =1/ i—:w (2.4.49)

and the portal couplings also obey the relation

relation

A _ 2[”’% _ APIM%
P2 — 7o

<¢>2 N A v? .

(2.4.50)

Since the CW scalar acquires a vev, due to the portal coupling Ap;, ¢ will mix with

the SM Higgs boson. The mass eigenstates hgy, and hqy are linear combinations of
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the fields h and ¢

hsy = hcosf — ¢sinb, (2.4.51)

how = ¢cost + hsind, (2.4.52)

where 0 is the mixing angle and we fix the mass of hgy to My, =125 GeV hereafter.
There have been many studies to constrain this mixing angle [208-210]. For CW
scalar masses in the range 130 GeV to 1 TeV we impose the constraint sin® 4 < 0.15;
for masses My, < Mpg,, /2 we use the bounds from [152]; and in the intermediate

region 62.5 < My, <120 GeV we impose sin § <0.44.

Dark matter relic density

In this work we consider H to be the lightest inert particle, which due to the Z,
symmetry is stable and is a good dark matter candidate. For the calculation of
the relic density and the direct detection cross-section we implement our model in
MicrOMEGAs 4.1.5 [211]. Previous studies of the IDM [212,213| have shown that

there are two mass regions in which H can play the role of DM:

1. 50 < Mg < 80 GeV

In this region the annihilation is mainly into bb and three body final states
WW* and requires small values for Az, otherwise the bb dominates and the
relic density obtained is too small. Once we have My > My, the HH — V'V
channel opens up and we obtain smaller values for the relic density. Due to a
careful cancellation between diagrams that contribute to the annihilation into
gauge bosons [214], this region can be extended to 110 GeV, however, this new
viable region has already been excluded by XENON100 [215]. Constraints
from colliders already exclude My <55 GeV in some cases [216,217] and Run
2 of the LHC could be able to probe the Higgs funnel region My~ My, /2.

2. My > 500 GeV
In this region, the dominant annihilation is into W+W =, ZZ and hh. The val-

ues obtained for the relic density are usually too small. Nonetheless, by taking
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Figure 2.4: Feynman diagrams for two of the new annihilation channels from
adding a U(1)cw hidden sector to the inert doublet model. These contributions
reduce the relic abundance in the classically scale invariant version of the IDM.
Similar diagrams are also taken into account for coannihilations.

small mass splittings and an appropriate value for \;, the correct relic abun-
dance can be obtained. The largest contribution to HH — V'V comes from
longitudinal gauge boson components and when H and A or H* are nearly
mass-degenerate there is a cancellation among the ¢/u channel contributions
and the four-vertex diagram [213| and hence the correct relic abundance can
be obtained. General perturbativity bounds translate into an upper limit
My < 58 TeV |218], while a more conservative bound \; < 2 gives an upper
limit My < 5 TeV |219).

For intermediate masses 130 GeV < My < 500 GeV the annihilation into gauge
bosons is no longer suppressed and generates too small relic abundances. In region
1, annihilation into a final state which contains the CW scalar hey will only have
impact on the relic density if M}, is also small, but for masses M, < Mg, /2
current LHC constraints give a strong bound Ap; < 2 x 107° [152]. In this region
Ap2 &~ App; and hence hqyw will have no impact on DM annihilation, if we want to

study the impact of the CW hidden sector in the dark matter phenomenology and

the RG analysis, then we must focus on the large mass region My > 500 GeV.

The parameter Ay, being the quartic coupling between inert scalars, has no im-
pact on the computation of the relic density at leading order. Nonetheless, this
parameter will have an impact on the RG analysis, so we scan over the whole per-
turbative regime. In the heavy mass region due to the destructive interference of
diagrams, as we decrease the mass splittings of the inert scalars the cross-section
decreases and hence we have an increase in the relic density. Moreover, the mass

splittings cannot be too large due to the perturbativity of the scalar couplings, com-
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bining this with the DM relic abundance it has been shown [213] that they cannot
be larger than ~ 20 GeV. In summary, one can select the value of A\, and AM; in

order to get the correct relic density for different values of Mpy.

We proceed to perform the calculation of the dark matter relic abundance for
region 2, the high mass regime. In Fig. [2.4] we show two of the new annihilations
channels that we need to study in the CSI IDM compared to the ordinary IDM. To
exemplify the impact of adding a CW hidden sector we focus on the case A\p =0,
in this scenario the interactions between the inert particles and the Higgs boson
are highly suppressed, they only occur through mixing of h with ¢ and hence it is

possible to avoid constraints coming from direct detection experiments.

In Fig. we show the effect of adding the new annihilation channels on the
calculation of the relic density for different values of the portal coupling. The values
for the relic density are smaller and the dark matter mass giving the correct relic
density goes up. It is interesting to note that for A\p; =0.005 there is a whole region
for My ~ [900, 1300] GeV in which the correct relic abundance is obtained to 2o. It

is important to remark that due to CSI the parameters of the theory need to satisfy

certain relations, Eqs.([2.4.45|- [2.4.50]), which distinguishes our model from a singlet
extension of the IDM [220].

Annihilation into the hidden gauge boson Z’ (diagram on the right in Fig. [2.4])
is also possible, but since (¢) > v in most cases we get My > My, where this
annihilation channel is closed. Nonetheless, this effect can be visualized in the third
case (brown line) of Fig. [2.5] where the relic density has a sudden drop near the
threshold Mz ~ 1.6 TeV. By introducing annihilation of H into the CW scalar
hew and the hidden gauge boson Z’, we open a small new region in the parameter
space of the IDM that can lead to the correct relic abundance. Nevertheless, later
we will show that the RG analysis enforces the CSI IDM to be more constrained
than the traditional IDM. Also, due to the CSI conditions, Egs.({2.4.45| - [2.4.50)),

our model is more predictive than simply adding a hidden sector with a local U(1)
gauge symmetry to the IDM. Once we fix the mass My and the mass splittings, the
parameter u3 gets fixed; on the other hand the portal coupling Ap; is constrained

from LHC data and hence we can use Eq. (2.4.50)) to also fix the value of Aps.



2.4. Classical Scale Invariance in the Inert Doublet Model 53

0.26

DM
024 F 5. =0.001

0.22 + APt = 0003
s e
2 L

0.16 L
014 L
0.12
01k
0.08 L

006 I I I I I I I
600 800 1000 1200 1400 1600 1800 2000

]\/IH (GGV)

Qh?

Figure 2.5: Impact of adding a CW scalar in the calculation of the relic density,
the introduction of a new annihilation into hqw means that the values for the relic
density will be smaller, the effect becomes more relevant as we go to larger values of
the DM mass Mpy. The parameters we take are A\;, =0, Ay =0.15, ecw =0.9 and mass
splittings AM4 =4 GeV, AMpyz+ =6 GeV. We study three cases Ap; =0.001,0.003
and 0.005, which correspond to M}, = 624,360 and 280 GeV, respectively. The
light blue band corresponds to the measured dark matter relic abundance by the
Planck collaboration to 20 [37].

Constraints from direct detection

One of the most promising ways to look for dark matter is through its scattering
with heavy nuclei on underground detectors, by studying the dark matter-nucleon
scattering cross-section we can make predictions for this kind of experiments. The
inert Higgs H can interact with quarks in the nucleon via exchange of a Z boson if
the mass splitting between A and H is less than a few 100 keV [212], giving cross-
sections orders of magnitude above current experimental limits and for this reason
we impose AM; > 1 MeV in our scan. The other mechanism in which the inert
Higgs H interacts with quarks is through exchange of a Higgs boson. In our model
due to the addition of the CW scalar, H can also interact with quarks through the
exchange of this scalar meaning that the spin-independent cross-section between H

and a nucleon is modified to

. 2
oo = LS My . (AhSMH;I €080, Mo Sm@) , (2.4.53)
7T(MH+MN) MhSM MhCW



2.4. Classical Scale Invariance in the Inert Doublet Model 54

1077 T T T T T 107

107%

1079 ¢

as1 (pb)

10—10 L

500 600 700 800 900 1000 500 600 700 800 900 1000
My (GeV) My (GeV)

Figure 2.6: Spin-independent DM-nucleon cross-section as a function of the DM
candidate mass Mpyg. All points give the correct DM relic abundance from the lat-
est Planck result to 20. Left panel: Results for the ordinary IDM. Colour coding
corresponds to the RG analysis, points in light blue satisfy vacuum stability, pertur-
bativity, and unitarity at the scale y=m;. Right panel: Results for the for the CSI
IDM, points in light blue satisfy all constraints up to the scale p=(¢). In gray we
show the points that do not satisfy condition . In both plots points in dark
blue are those that survive up to the Planck scale. We show current experimental
limits from LUX (red line), future limits from LZ (green line) and the
neutrino coherent scattering limit (black line).

where f~3 is a nuclear form factor, My is the nucleon mass, 6 is the scalar mixing

angle and the scalar couplings for the vertices hgyHH and howHH are given by

Avgyrrr = Apcost — %)\pg sin @, (2.4.54)

Mawrr = Apsinf + gﬂ)\pz cosf. (2.4.55)
v

We now perform a random scan in parameter space and keep those points that
satisfy the latest Planck measurement for DM relic abundance, Qh? = 0.1197 &+
0.0022 . We show the results in Fig. where the colour coding refers to
the RG analysis explained in the following section. In this model it is possible to
have a lighter scalar mediator, and in the region where My, /2 < My < Mpgy,
it is also possible to get large mixing angles |sin#| = 0.2. For this reason we can
get cross-sections that are larger than the ones obtained in the ordinary IDM. This

means that a larger region in parameter space will be tested by future experiments,

such as SuperCDMS [223], XENONIT [224] and LZ [79].
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Since we focus our analysis in the region 500 < My < 1000 GeV for this DM
masses the current strongest constraints come from LUX [221], which we show as a
red line in Fig. 2.15 As we can see from the plot in the right some points in the
CSI case even exceed this limit, we do not consider these points for the rest of our
analysis. The points in gray are not physical due to the RG running of the portal
couplings and also a lesser number of points survive to the Planck scale compared to
the traditional IDM. It has been argued by [225]226| that taking into account loop
corrections can have some impact on the direct detection cross-section in certain
regions of parameter space, these calculations are beyond the scope of the present

work.

2.4.2 Renormalisation Group Analysis

It is well known that in the SM \; develops an instability around the scale ~ 10°
GeV [96-99|. Apart from providing a good DM candidate, the IDM can also make the
SM Higgs potential absolutely stable. In this section, we present the RG equations
for our model and impose absolute vacuum stability, perturbativity and unitarity to

study its validity all the way up to the Planck scale =2.435 x 10! GeV.,

In Ref. [213227] the authors studied the high scale validity of the IDM. In
region 1 where 50 < My < 80 GeV they found only a few points can evade the
direct detection experimental limits (those in the Higgs funnel region survive) and
from these only a smaller fraction satisfy all the imposed constraints up to the Planck
scale. For our model, we have argued that since Apy &~ Ap; in the small mass region
there are no modifications coming from new annihilation channels. Moreover, in this
region the RG analysis has almost no impact, and hence this mass region remains

valid in the CSI IDM. From now on we focus our work on the large mass region
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My > 500 GeV. In our model the running of the scalar couplings is given by

d\ 3
(4m)* dlnlu 2ANE + 205+ 2030 + AT+ AT + 2 (302 + 0" + 2639")
—Mi(995 + 39" — 12y7) — 6y7 + A5y, (2.4.56)
dX 3
(47T)2d1n2u = 24N 202 20N+ A2 N2+ §(3g§ + ¢t +2¢247)
—3X2(305 + ¢7) + Apa, (2.4.57)
dX 3
(47)* dln?’u = 4(A FX)(BAz+ Ag) F 4N+ 203+ 202 + Z(Sg;l + g™ —2¢29")
—3X3(395 + 9" — 247) — 2Ap1 Ao, (2.4.58)
dX
(4W)2dln4u = 44X+ X2+ 203 + Ag) + 8AZ + 3g54"
—3M(3g5 + ¢° — 2y7), (2.4.59)
dX
(4m)? dhfﬂ = AXs(A1 4 g + 23 + 3\1) — 3X5(392 + ¢%) + 6512, (2.4.60)
dX
(47)? dhfu — 2002+ 202, + 203, — 12X4¢%, + el (2.4.61)

For the portal couplings that couple the Coleman-Weinberg scalar with the Higgs

doublets we have

d\p 3 9
(47r)2d1n; = Ap1 (6y§ + 1201 + 8Ny — 4Apy — 6ely, — 59'2 — §g§>
—2Ap2(2A3 + A4), (2.4.62)
d\ 3 9
(47)> dhf’; Ap2 (12/\2 + 8 + 4hpy — 6y, — 59 — 593)
—2Xp1(2)3 + Ay). (2.4.63)
For the gauge couplings
dg’ dg
(47)> i~ 79", (47)> dhfﬂ — —3g3, (2.4.64)
dg de 1
(4m)? dln?’u = —7g3, (4m)? dl;VL =3 - (2.4.65)
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For the top Yukawa coupling

dy 9 17 9
(47r)2m = Y (§y3 - Eg’Q — Zg% — 8g§) . (2.4.66)

All the RG equations have been checked with SARAH [228|. The gauge boson in
the hidden sector will develop a kinetic mixing with hypercharge from radiative
corrections, for this reason it cannot be a good DM candidate; nevertheless, the
impact of this mixing on the RG analysis has been shown to be very small [177].
In our analysis we do not take this effect into account. Due to the introduction
of a second portal coupling, the running of A\p;, Eq. , receives a negative
contribution —2Apy(2A3 + A4) which might be dangerous since in the large mass
region we have Aps > Ap; and hence this contribution can change the sign of Ap;
before reaching the scale p=(¢). Thus, in order to ensure EWSB occurs we need

to check the condition

Ap1 >0 for < (9). (2.4.67)

We ensure the model remains perturbative by requiring all the scalar couplings

to be bounded up to the Planck scale. To do so we impose a conservative constraint
|Ai(p)| < const O(1) =3, (2.4.68)

and also we check that all the unitarity constraints are satisfied [229-231]. To ensure

absolute vacuum stability we impose the following constraints

AL(p); Aa(p), Ap(p) >0,
As() > =2/ M)A (p), (2.4.69)
As(p) + Aa(p) = [As()] > =29/ A () Aa(p),

and for the portal couplings the conditions are given by

Api(p) < 24/ M) As (1), (2.4.70)
Apa(p) > =24/ Aa(p)Ag (W) (2.4.71)
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When studying the potential in the direction of the three fields H;, H; and ¢ we get
two more conditions for absolute stability, these are lengthy expressions that can be
found in [1].

We start the RG running from p= M;, we take My =80.384 GeV, a3 =0.1184
and for the top quark mass we take the combined result of ATLAS, CDF, CMS and

DO, M;=173.34 GeV [232]. We work with the NNLO initial values for the SM gauge
couplings and the top Yukawa from Ref. [96|

M,
—M,) = 0.93558 + 0.00550 —173.1
yt(:u t) + (Gev ) +
az(My) — 0.1184 My, — 80.384
—0.00042 —0.000422Y —222%F 4 9.00050
0.0007 0.014 GeV thy

as(My) — 0.1184
0.0007

gs(p=>M,) = 1.1666 4 0.00314

M,
— 0.00046 —173.1
(Ge\/ ) ’

My — 80.384 GeV
0.014 GeV ’

M,

GeV

g2(p=»M;) = 0.64822 4 0.00004 ( — 173.1) +0.00011

My, — 80.384 GeV
0.014 GeV

M,

GeV

g (u=M,;) = 0.35761 + 0.00011 ( — 173.1) — 0.00021

In the right panel of Fig. we show our results for the RG analysis in the CSI
IDM and to serve as a comparison we show in the left panel the same plot for the
IDM without CSI. In the CSI case there are less points that survive to the Planck
scale. This is mainly because as we increase Ap;, the second portal coupling, Apo,
also increases and hence there is more annihilation into the CW scalar, therefore
the values of A3, \y and A5 that give the correct relic density are smaller compared
to the IDM and not able to provide absolute stability for ;. Also, for large masses
My the coupling Apy can be two orders of magnitude larger than Ap; and condition
(2.4.67) is not satisfied. The gray points are those that do not work below the
scale = (¢), mainly because of this condition and hence they do not correspond
to physical points in the CSI IDM. Therefore, as we can see from comparing both

plots the CSI case is more restrictive.

In Fig. we show on the left the values of Ap; that give the correct relic

abundance as a function of My. The upper bound in this plot comes from the
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Figure 2.7: Left panel: Points in the IDM (high mass regime) that give the correct
DM relic abundance from the latest Planck result to 2o, points in dark blue work
well up to the Planck scale. Right panel: Points in the CSI IDM (high mass regime)
that give the correct DM relic abundance from the latest Planck result to 2o, points
in light blue satisfy all the constraints up to the scale p=(¢) but develop a vacuum
instability or a Landau pole before the Planck scale, points in dark blue satisfy all
the constraints up to the Planck scale. In gray we show the unphysical points that
do not survive up to pu = (¢), mainly due to condition . We show in the
x-axis the mass of the DM candidate H and in the y-axis the quartic coupling A.

experimental constraints on the scalar mixing angle 6 between the SM Higgs and
the CW scalar, which means the region with A\p; &~ 0.01 can be tested at Run 2 of
the LHC. The plot in the right shows the values of Aps that give the correct relic
abundance, since this second portal coupling controls the annihilation into the CW

scalar it has a similar behaviour as A;.

In summary, the main impact of having CSI in the inert doublet model is that in
the large mass region, where Aps > Ap1, due to the negative contribution of Apy to
the running of Ap; condition excludes a large region in parameter space, we
have found that in our model |\, | < 0.13. Moreover, experimental constraints on the
mixing angle in conjunction with obtaining the correct DM relic density constrain
Ap1 € [0,0.012]. If we restrict to the regions in parameter space viable up to the

Planck scale, then we find an upper bound on the DM mass of My < 1.1 TeV.

The IDM is a minimal scenario in which the dark matter candidate possesses
a symmetry of the Standard Model and hence its properties and interactions can
be studied in detail. Apart from explaining dark matter, there are other issues

that should be addressed by models beyond the Standard Model such as neutrino
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Figure 2.8:  Plot of the portal couplings versus the DM mass My for the same
points as in Fig. 2.7, same colour coding. The upper limit on Ap; comes mainly
from the experimental upper limit on the scalar mixing angle.

masses and the baryon asymmetry of the Universe; in order to address these issues
with the present model we envision two possibilities. On the one side, the IDM can
be extended with inert right-handed neutrinos and then SM neutrino masses can
be generated through radiative corrections . A second possibility is to extend
the U(1)cw symmetry to the U(1)p_, and then the results of Ref. could
be applied to generate the baryon asymmetry of the Universe through leptogenesis

while preserving classical scale invariance.

2.5 Dark Matter and Leptogenesis Linked by Clas-
sical Scale Invariance

In this section, we present and study a model that addresses three of the short-
comings of the SM that were discussed in the Introduction of this thesis. The
model has a good dark matter candidate, provides masses for the neutrinos and also
solves the baryon asymmetry in the Universe. All the characteristic scales in the
model: the electroweak, dark matter and the leptogenesis/neutrino mass scales, are
generated radiatively, have a common origin and related to each other via scalar
field couplings in perturbation theory. Our specific approach is motivated by the
earlier work in Refs. [152,[170,[177,[233-236] and [42,[237]. The idea of generating

the electroweak scale and various scales of new physics via quantum corrections,
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by starting from a classically scale-invariant theory, has generated a lot of interest.
For related studies on this subject we refer the reader to recent papers including

Refs. |1,162-169,[171+-174}/178,179,[238-240].

In our set-up we extend the Standard Model by a dark sector, namely a non-
Abelian SU(2)py hidden sector that is coupled to the Standard Model via the Higgs
portal, and a singlet sector that includes a real singlet ¢ and three right-handed
Majorana neutrinos N;. Due to an SO(3) custodial symmetry all three gauge bosons
Z'® have the same mass and are absolutely stable, making them suitable dark matter
candidates [67] (this also applies to larger gauge groups SU(N)py [180,241] and to
scalar fields in higher representations [242|, albeit symmetry breaking patterns get

more complicated).

The tree-level scalar potential of our model is given by

Vo = M| ®* + M| H|* + %04 — Ao H)?|®)? — %@FO—? + %uﬂ?a{ (2.5.72)
where ® denotes the SU(2)py doublet, H is the SM Higgs doublet, and o is a gauge-
singlet introduced in order to generate the Majorana masses for the sterile neutrinos,
and hence the visible neutrinos masses and mixings via the see-saw mechanism. The
portal couplings Ang, A¢e and Ay, will play a role in order to induce non-trivial
vacuum expectation values for all three scalar. As will become clear from Table
we will scan over positive as well as negative values of the portal couplings A, and
Ano- As we are working with multiple scalars we will adopt the Gildener-Weinberg
approach [188], which is a generalisation of the Coleman-Weinberg mechanism to
multiple scalar states and will be briefly reviewed in Section [2.5.1] Later on we
shall see that the most interesting region in parameter space leading to both the
correct dark matter abundance and the correct baryon asymmetry is for (o) > (¢)
and hence one can think of o as a Coleman-Weinberg scalar that once it acquires a
non-zero vev it will be communicated to ¢ and h through the portal couplings A4,

and A\,
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The interactions for the right-handed neutrinos in the Lagrangian are given by

ai

| . _ _ _
Ln=—3 (Y?” NN, + xgj.”TaNiN;) YD N{(eH)lpo — YU (cH)IN, (2.5.73)

where the first two term give rise to the Majorana mass once o acquires a vev, while
the last two terms are responsible for the CP-violating oscillations of ;.

Since we do not wish to break the lepton-number symmetry explicitly, it follows
from that our new singlet scalar field o should have the lepton number
L = —2. We can think of it as the real part of a complex scalar ¥ = (¢ + in)/v/2
where S transforms under a U(1), symmetry associated with the lepton number,
which is broken spontaneously by (o) # 0. If this is a global U(1) symmetry then
there must exist a massless (or very light) (pseudo)-Goldstone boson. Since the Higgs
can pair-produce them and decay, this would severely constrain the portal coupling
of ¥ with the Higgs, Ay < 1075, see e.g. Ref. [152]. If we wish to avoid such
fine-tuning, a much more appealing option would be to gauge the lepton number. A
compelling scenario is the B—L theory with the anomaly free U(1)p_, factor. The
generation of matter-anti-matter asymmetry via a leptogenesis mechanism through
sterile neutrino oscillations in a classically scale invariant U(1)p_z, x SM theory was
considered in Ref. [233|, and their results will also apply to our model. The main
difference with the set-up followed in this work is that here we allow for a separate
non-Abelian Coleman-Weinberg sector (i.e. it remains distinct from the U(1)p_p

gauge sector) and as a result we have a non-Abelian vector DM candidate.

Finally, it should also be possible to restrict the complex singlet > back to the
real singlet o, just as we have in (2.5.72)). In this case the continuous lepton number

U(1) symmetry is reduced to a discrete sub-group:

oc——o, (N,NI) — e™*(N,N°1;), (N,N¢I;) — e ™2(N,N1).
(2.5.74)
In general all three possibilities corresponding to global, local and discrete lepton-

number symmetries can be accommodated and considered simultaneously in the

context of Eqgs. (2.5.72)-(2.5.73]) by either working with the real scalar o or the
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complex one by promoting ¢ — V2% (or V23" in the second term in the brackets
on the r.h.s. of (2.5.73])). In this work we consider ¢ to be a real scalar singlet.

2.5.1 From Coleman-Weinberg to the Gildener-Weinberg Mech-

anism

The scalar field content of our model consists of an SU(2);, doublet H, an SU(2)pm
doublet ® and a real scalar o; the latter giving mass to the sterile neutrinos after
acquiring a vev in similar fashion to Ref. [236]. Working in the unitary gauge of the

SU(2),xSU(2)pm, the two scalar doublets in the theory are reduced to,

1 (0 1 (0
H=— , d=— :
V2 \p V2 \ 4

and the tree-level potential becomes,

A A A A A

4 & 4 o 4 ho¢ 12 ,2 b0 2 2 ho ;2 2

_r - — 7 - 7 . 2.5.
h—|—4q§+40 4h¢ 4¢0+4h0 (2.5.75)

_ M

Yo=1

There are no mass scales appearing in the classical theory, and at the origin in the
field space, all scalar vevs are zero, in agreement with classical scale invariance. We
impose a conservative constraint on all the scalar couplings for the model to be
perturbative |\;| <3, we also impose gpy <3 and in order to ensure vacuum stability

the following set of constraints need to be satisfied,

A >0, Ay > 0, Ao > 0, (2.5.76)
)\hqﬁ /\ha /\¢U
— <1, - <1, ————<1, 2.5.77
2\/AnNy 2V A\ 2/ A A ( )
Ay Aho Ao . (2.5.78)

- +
20/ e 2V e 2ok

For more detail we refer to Table P11
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The Coleman-Weinberg approximation

For simplicity, let us temporarily ignore the singlet o and concentrate on the theory
with two scalars, ¢ and h. We will further refer to the hidden SU(2)py sector with
¢ as the Coleman-Weinberg (CW) sector. In the near-decoupling limit, Ay, < 1,
between the CW and the SM sectors, we can view electroweak symmetry breaking

effectively as a two-step process [152].

First, the CW mechanism [150| generates (¢) in the hidden sector through run-
ning couplings (or more precisely the dimensional transmutation). To make this
work, the scalar self-coupling A\, at the relevant scale 1 = (¢) should be small -
of the order of g}, < 1, as we will see momentarily. This has the following inter-
pretation: in a theory where A\, has a positive slope, we start at a relatively high
scale where )\, is positive and move toward the infrared until approach the value of
the o where A\,(¢) becomes small and is about to cross zero. This is the Coleman-
Weinberg scale where the potential develops a non-trivial minimum and ¢ generates

a non-vanishing vev.

To see this, consider the 1-loop effective potential evaluated at the scale p (cf.

[177)):

RO 9 a0 25\ Anel(n)
Vioh) =2y 0 g o (mE—E) Al (2570

Here we are keeping 1-loop corrections arising from interactions of ¢ with the SU(2)
gauge bosons in the hidden sector, but neglecting the loops of ¢ (since A is close
to zero) and the radiative corrections from the Standard Model sector. The latter

would produce only subleading corrections to the vevs. Minimising at u = (¢) gives:

33 v?
0 = org2omt )‘hd)W at p=(9). (2.5.80)

For small portal coupling A, this is a small deformation of the original CW condi-

tion, As((0)) = ez I ((8)).

The second step of the process is the transmission of the vev (¢) to the Standard

Model via the Higgs portal, generating a negative mass squared parameter for the
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Higgs = —Apg(¢?) which generates the electroweak scale v,

v=(h) = ,/22:05 (@), mp = V2\v. (2.5.81)

The fact that for A,y < 1 the generated electroweak scale is much smaller than (¢),
guarantees that any back reaction on the hidden sector vev (¢) is negligible. Finally,

the mass of the CW scalar is obtained from the 1-loop potential and reads:

9
mg = R g (D) + Mgt . (2.5.82)

As already stated, this approach is valid in the near-decoupling approximation
where all the portal couplings are small. The dynamical generation of all scales is
visualised here as first the generation of the CW scalar vev (¢), which then induces

the vevs of other scalars proportional to the square root of the corresponding portal

couplings < 1, as in ([2.5.81]). This implies the hierarchy of the vevs.

For multiple scalars, ¢, h and o, it is not a priori obvious why the portal couplings
should be small and which of the scalar vevs should be dominant. For example on
one part of the parameter space we can find (¢) > (o) and on a different part one
has () > (¢) (so that o rather than ¢ effectively plays the role of the CW scalar).
To consider all such cases and not be constrained by the near-decoupling limits
we will utilise the Gildener-Weinberg set-up [188|, which is a generalization of the

Coleman-Weinberg method.

The Gildener-Weinberg approach

We now return to the general case with the three scalars in the model are described
by the tree-level massless scalar potential . The Gildener-Weinberg mech-
anism was recently worked out for this case in Ref. [236], which we will follow.
All three vevs can be generated dynamically but neither of the original scalars is
solely responsible for the intrinsic scale generation; this instead is a collective effect

generated by a linear combination of all three scalars .
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Following [188], we change variables and reparametrise the scalar fields via,
h = Ny, ¢ = Nop, o = N3p. (2.5.83)

where each N; is a unit vector in three-dimensions. The Gildener-Weinberg mech-
anism tells us that a non-zero vacuum expectation value will be generated in some

direction in scalar field space N;=mn;, so this direction must satisfy the condition,

MV
= 2.5.84
o, | 0, (2.5.84)

and furthermore the value of the tree-level potential in this vacuum is independent
of ¢,
Vo(nip, nop,n3p) = 0. (2.5.85)

The latter condition is simply the statement that the potential restricted to the single
degree of freedom ¢, is of the form zl;)‘so ©* with the corresponding coupling constant
vanishing A\, = 0. This is nothing but the definition of scale jicw where A, (fcw)
vanishes, and is a reflection of a similar statement in the Coleman-Weinberg case for
the single scalar that its self-coupling was about to cross zero, but was stabilised at

the small positive value by the gauge coupling at the Coleman-Weinberg scale picy,
see Eq. (2.5.80)).

Being a unit vector in three-dimensions, n;’s can be parametrised in terms of

two independent angles, a and v and we will call the ¢ vev, w, so that,

ny = slna, ng=COSQCOS?Yy Ng=cosasinvy, (2.5.86)

(hy = wny, (¢)=wny, (o) = wng. (2.5.87)

The three linearly-independent conditions arising from the Gildener-Weinberg min-
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imisation ([2.5.84]) of the tree-level potential amount to the following set of relations,

2/\hn% = )\hd,ng - /\hgng, (2588)
2)\¢n§ = )\hqﬁn% + )\¢UTL§, (2589)
2Ao15 = ApoTls — Aol (2.5.90)

These conditions hold at the scale pqyw where the scalar fields develop the vev (p) =
w (2.5.87)). Due to the three scalars acquiring non-zero vacuum expectation values,
the three states will mix among each other. The mass matrix M? is diagonalised for

hi, he and hg eigenstates via the rotation matrix O,

h h
diag (M7, M7, M) = OV M? O, 6| =0 h|. (2.5.91)
o hg

and we further identify the state h; with the SM 125 GeV Higgs boson. Following

[236] we parametrise the rotation matrix in terms of three mixing angles «, § and

7>

cos o cos 3 sin v cos asin 8
O =] —cosfBcosvysina +sin Bsiny cosacosy —cosysinasinf — cosBsiny |,

—cosysinff —cosfBsinasiny cosasiny  cos3cosy — sinasin 8 siny
(2.5.92)

and use it to compute the scalar mass eigenstates at tree-level. The resulting
expressions for the scalar masses can be found in Ref. [236]. There is one classically
flat direction in the model — along ¢ — in which the potential develops the vacuum
expectation value. Our choice of parametrisation in and in the second row
of in terms of the same two angles a and 7, selects this direction to be
identified with he. Hence, at tree level, M;, = 0, but it will become non-zero, see

Eq. (2.5.96]) below, when one-loop effects are included.

At the scale pcw the one-loop effective potential along the minimum flat direction
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can be written as [188|,

2

V(gn) = Ag* + By'ln < - ) , (2.5.93)

GW

where the A and B coefficients are computed in the MS [243] scheme and given by,

A = m Z;SM;; (—g—i—ln Aﬁ) + 6 M, (—g +1nJZ—VzV)
+3Mj, <—2 +1In ]\5—5) + 9My, (—g +1In Ai—%) —12M} (—1 +In Aj—f)
_giZi;M;*Vi (—1+1nMw]ZVi) :

B = @ (;Mﬁi + 6ME, 4+ 3Mp +9ME, — 120} — 2§;M;§i> :

where M}, are the tree-level masses of the three scalar eigenstates, hy, hy and hg,
and the rest are the masses of the SM and the hidden sector vector bosons as well
as the top quark and the right-handed Majorana neutrinos. We can now see that
at the RG scale pgw the 1-loop corrected effective potential has a fixed vacuum

expectation value w that satisfies,

In ( ° ) 14 (2.5.94)
Hew

and using this relation we can rewrite the one-loop effective potential as,

2
© 1

V=Bp'(ln— - = 2.5.95

@ ( o 2) : ( )

and we can also evaluate the potential at the minimum to be V(p=w)=—Bw?/2,

which gives the requirement B > 0 for this to be a lower minimum than the one at

the origin. The mass of the pseudo-dilaton hs is then given by,

9 0*V
= o

J— 3
1
l— (M;iﬂ + My, + 6My, + 3My + 9My, — 12M} —2) Mi) .
" =1

(2.5.96)
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Figure 2.9: Dark matter annihilation diagrams into Standard Model gauge bosons
and fermions, we also include annihilation into right-handed neutrinos.

Figure 2.10: Dark matter annihilation diagrams into scalar states.

Figure 2.11: Vector dark matter semi-annihilation diagrams. In contrast to some
other models of dark matter, Z/ is stable due to an remnant global symmetry.
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In summary, at the scale iy the conditions Eqgs. (2.5.88)—(2.5.90) will be satis-

fied and the scalar potential will develop a non-trivial vev w giving rise to non-zero
vacuum expectation values (h), (¢), and (o). For one scalar field, the Coleman-
Weinberg mechanism requires the scalar quartic coupling to take very small values
A ~ gb,, in the Gildener-Weinberg scenario it is a combination of the quartic cou-

plings that needs to vanish, so these couplings can take larger values individually.

The formulae for the mixing angles in terms of the coupling constants and the

vevs follow from the diagonalisation of the tree-level mass matrix,

9 <h>2 4/\¢)\U — )\io
tana = 5 5 = . (2.5.97)
(@)2+ ()% 2(AoAng — AgAno) + Ao (Anp — Ano)

2 (022X e — AnpAne
tan”y = o Z)\Z)\U_};\?wh , (2.5.98)
(h){¢) (o) w (Ano + Ang)

(Ao + Ao + Ago) (0)%(0)? — An(h)?w?

tan 23 (2.5.99)

Experimental searches of a scalar singlet mixing with the SM Higgs provide con-

straints on the mixing angles [208-210|. In our case, these translate as,

cos? o cos? B > 0.85. (2.5.100)

In the region where the decay hy — hohs is allowed we impose the stronger constraint
cos? v cos? 3 > 0.96. Nonetheless, due to the Gildener-Weinberg conditions the
decay hy — hgohs is highly suppressed. In the scan we perform M, is always
greater than Mj,, so there is no need to worry about the SM Higgs decaying into
two hg scalars. At the same time, strong constraints could come when the decays
hy — Z'*Z'* are allowed, we set Mz > My, /2 so that these decays are kinematically

forbidden.

For the study of dark matter the Lagrangian contains ten dimensionless free
parameters, which are reduced to eight after fixing (h) =246 GeV and M, =125
GeV. We perform a random scan on the remaining eight parameters in the ranges

given in Table 2.1]
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Parameter | Scan range
Ao (0, 0.5)
Aho (-0.5, 0.5)
Ao (-0.25, 0.25)
>‘¢> (07 3)
9om (0, 3)
My, (0, 100) GeV

Table 2.1: Ranges for the input parameters in the scan.

The matrix Y'” has no impact on the dark matter phenomenology, but it is crucial
for leptogenesis and it will be parametrised by three complex angles w;; using the
Casas-Ibarra parametrisation [244]. Therefore, once we set all the parameters for
the active neutrinos to their best experimental fit, there are twelve free parameters

in the model.

2.5.2 Dark Matter Phenomenology

Evidence from astrophysics suggests that most of the matter in the Universe is made
out of cosmologically stable dark matter that interacts very weakly with ordinary
matter. Being able to identify what constitutes this dark matter is one of the
deepest mysteries in both particle physics and astrophysics. In this work we consider
the possibility of dark matter being a spin-1 particle from a hidden sector with
non-Abelian SU(2)py gauged symmetry. The idea of vector dark matter was first
introduced in Ref. [67] and later studied in Refs. [170,[177,241,245|. Note that if the
hidden sector had been U(1), the kinetic mixing among the hidden sector and the
hypercharge will have made our dark matter candidate unstable.

After radiative symmetry breaking breaking of SU(2)py by ®, which is in the
fundamental representation of the group, there is a remnant SO(3) symmetry that
ensures the three gauge bosons Z’* acquire the same mass My = % gom (), and are
stable. In contrast to models where the DM is odd under a Z, discrete symmetry,
in the present scenario we can have dark matter semi-annihilation processes where
a DM particle is also present in the final state. The DM annihilation diagrams are

shown in Figs. and [2.10, while the semi-annihilation ones are shown in Fig. [2.11]

Also, due to the radiative generation of (¢) in most region of parameter space the
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Figure 2.12: Left panel shows scatter plot of the dark matter mass Mpy = My
versus the scalar mass Mj,. Right panel gives scatter plot of the dark matter mass
versus the mass of the heavier scalar hs. Different colours indicate whether the vector
gauge triplet accounts for more or less than 100%, 10% and 1% of the observed dark
matter abundance.
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Figure 2.13: Left panel: Scatter plot of the vev (@) versus the vev of the scalar
singlet (o). Due to the small mixing angles, we can see that the dark matter relic
density is almost independent of (). Right panel: Scatter plot of the dark matter
mass My versus the gauge coupling gpy. Different colours indicate whether the
vector gauge triplet accounts for more or less than 100%, 10% and 1% of the observed
dark matter abundance.
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Figure 2.14:  Left panel: Scatter plot of sin~y against the quartic coupling A,.
Larger values of sin~y are preferred. Right panel: Scatter plot of sina versus the
scalar mass Mp,. Due to (o) > (h) we get small values for the mixing angle a.
Different colours indicate whether the vector gauge triplet accounts for more or less
than 100%, 10% and 1% of the observed dark matter abundance.

scalar mass will be smaller than the gauge boson mass, M, < M. This means that
semi-annihilation processes Z'*Z'® — Z'®h; will be dominant over annihilation ones
in most of the parameter space. To leading order the non-relativistic cross-section

from the semi-annihilation diagrams is given by (cf. [177]),

-2 3/2
(Capet) = fggﬁ% (1 - SMT’%Z> (1 . 19%5 + gj\ﬁ;/) / . (25.101)

In order to take into account all annihilation channels into SM particles and
properly take into account thresholds and resonances we have implemented the
model in MicrOMEGAs 4.1.5 [211]. We fix the dark matter relic abundance from the
latest Planck satellite measurement Qh% = 0.1197 4 0.0022 |37]. Figure shows
the dark matter fraction as a function of My and the scalar mass Mj,; the isolated

strip of points on the left side of the plots corresponds to the resonance My, ~ 2M .

On the left plot in Fig. there is a large red coloured region on the left side
(producing too much dark matter), in this region M}, has a close value to Mz (note

that this region does not exist in the Coleman-Weinberg limit). This region exists
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Figure 2.15: Spin-independent DM-nucleon cross-section as a function of the DM
candidate mass Mz . We show current experimental limits from LUX [221] (red
line), future limits from LZ [79] (green line) and the neutrino coherent scattering
limit |246] (black line).

thanks to very large values of M, and (¢) > My. In the left panel of Fig.
we show the dark matter fraction as a function of both vevs, (¢) and (o), from this
plot we see there is an upper bound on (¢) in order not to overproduce dark matter,
(¢) < 17 TeV. Later on we shall see that there is a lower bound on (o) coming from
leptogenesis, (o) > 2.5 TeV, we have already imposed this bound on all the scatter

plots we show.

In the right panel of Fig. we show the dark matter fraction as a function of
My and the gauge coupling gpy. In this plot it becomes clear that as we increase
the gauge coupling, the relic density decreases. The left panel of Fig. shows the
same analysis for the mixing angle sin~ and the quartic coupling \,. Here we can
already notice a preference for the region siny ~1, where A, takes on small values
and (o) > (¢). Due to the lower bound on (o) the mixing angle o takes on very
small values, this is shown in the right panel of Fig. 2.14]

The spin-independent cross-section between Z’® and a nucleon is given by,

2
. f]%[ m}l\, M%/ 2 OQiOli
Os1 = T <h>2 <¢>2 ZZI M}i ) (25102)

where my is the nucleon mass, fy = 0.303 [180] is the nucleon form-factor, and
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Figure 2.16: Spin-independent DM-nucleon cross-section as a function of the vector
DM candidate mass M/, for benchmark point BP 1. We show current experimental
limits from LUX [221] (red line), future limits from LZ [79] (green line) and the
neutrino coherent scattering limit [246| (black line). To generate this plot we fix
all the scalar couplings and vary only gpy, which means that Mz and M, are also
varied while all other parameters remain fixed.

O;; are the elements of the rotation matrix Eq. that relates the scalar mass
eigenstates states to the ones in the Lagrangian. This orthogonal matrix O is the
one that diagonalises the mass matrix. Due to the form of this matrix, the direct
detection diagrams have a destructive interference when the scalar state with a
large ¢ component has a mass very close to Mp,, this has been previously noted
in [1704247); while the scalar state with a large 0 component has no direct couplings
either to dark matter or to Standard Model particles and hence gives only a small
contribution to og. Figure [2.15] shows that except for resonances, the region with
Mz <250 GeV has been already excluded by the existing experiments, while a large
region of parameter space will be tested by future underground experiments such as
LZ [79] and XENONIT [82]. In Fig. we show the direct-detection cross-section
as a function of the dark matter mass for benchmark point BP 1, we fix all the

scalar couplings and vary only gpy, the dip corresponds to Mj, ~ My, .

The hidden vector DM we have considered is stable due to the accidental non-
Abelian global symmetry SO(3). This accidental symmetry could be broken by non-
renormalisable operators leading to the decay of Z'%, for example D, ®T® D+ HTH /A*
leads to the decay Z'* — ¢¢*, requiring the lifetime to be longer than the age of the
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Universe implies that A > 10'3 GeV for a dark matter mass of My ~ 1 TeV [67]. The
decay of the DM particle via higher-dimensional operators can produce an intense

gamma-ray line that could be detected in future experiments [248§]

2.5.3 Leptogenesis via Oscillations of Right-handed Neutri-

nos

Leptogenesis is an attractive and minimal mechanism to solve the baryon asymmetry

of the Universe (BAU). This means being able to produce the observed value of

Doone _ (8,75 +0.23) x 1071, (2.5.103)
S

In the type-I seesaw mechanism, leptogenesis can take place through CP-violating
out-of-equilibrium decays of the heavy Majorana neutrinos in the early Universe
with My > 10° GeV [249)]. In this scenario, the violation of lepton number goes as
M; M;
LNV oc ———, 2.5.104
ANV (25.104)
and hence it is possible to achieve large lepton asymmetries for smaller values of
My than the previously quoted lower bound, if one fine-tunes the mass splittings

AM;; to be very small, this corresponds to resonant leptogenesis [47].

An alternative mechanism is the Akhmedov-Rubakov-Smirnov [42] in which a
lepton flavour asymmetry is produced during oscillations of the right-handed Ma-
jorana neutrinos N; with masses around the electroweak scale or below, which
makes this approach compatible with classical scale invariance[] This mechanism
works thanks to an enhancement of the flavour asymmetries at high temperatures
T>> My [42,237],

2

T
LEV o . 2.5.1
Vo xap (2.5.105)

From Big Bang nucleosynthesis one obtains the lower bound My >200 MeV, in

“4In the sense that no additional very large scales are required to be introduced in the model to
make this type of leptogenesis work.
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order not to spoil primordial nucleosynthesis. For our calculations we make use of

the Casas-Ibarra parametrisation [244] for the matrix Y7,

YPT = U, -\/m,-R- /My x % (2.5.106)

where m, and My are diagonal mass matrices of active and Majorana neutrinos
respectively. The active-neutrino-mixing matrix U, is the PMNS matrix which con-
tains six real parameters, including three measured mixing angles and three CP-
phases. The matrix R is parametrised by three complex angles w;;. Using this
framework with three right-handed neutrinos one can generate the correct baryon
asymmetry without requiring tuning the N; mass splittings, but rather enhancing
the entries in the Dirac Yukawa matrix through the imaginary parts of the complex

angles w;; [250].

The sterile neutrinos do not participate in Standard Model gauge interactions and
for masses in the GeV regime the Majorana Yukawa couplings are small Y ~ 1075,

Consequently, the initial abundances for the N; are zerd’|

The characteristic temperature at which oscillations start to occur, and the lepton
asymmetry is generated, is usually much larger than the mass of the right-handed
neutrinos, Tis. > My,. Consequently, lepton number violation is highly suppressed

and the total lepton number is approximately conserved,
LTOT = Le—I—LM—f-LT—f-Nl +N2+N3, ALTOT ~ 0. (25108)

Eventually, the sterile neutrinos will start to be produced due to their small
Dirac Yukawa couplings at order O(|Yp|?), this production mechanism conserves
CP, meaning that the same number of particles and anti-particles is produced. In

the limit T'//M > 1, one can define particle and anti-particle states for Majorana

®Also one has to assume there is no direct coupling of N; to the inflaton.



2.5. Dark Matter and Leptogenesis Linked by CSI 78

states in terms of their helicity. Once the V;’s start to be produced, the CP-violating
oscillations among them will produce an asymmetry AN; #0, ANy #0 and AN3#0,
and due to the Dirac Yukawa couplings these asymmetries will be communicated to

the active leptons.

In order to generate a baryon asymmetry we require that one of the flavours
(N; in our case) does not get into thermal equilibrium before the electroweak phase
transitionﬁ. Ny and N3 equilibrate with the SM thermal plasma and their asymmetry
is communicated to the leptons. But the asymmetry in N; will not be communicated

to the active leptons and hence N; will act as a reservoir for the asymmetry,
AL(Tew) = —=AN; (Tew), (2.5.109)

where AL stands for the sum of the three SM flavours asymmetries AL = AL, +
AL,+AL;. The SM lepton asymmetry is stored in the least interacting right-handed
neutrino and it will be transferred to the baryons via sphaleron processes. Once
all three right-handed neutrinos reach thermal equilibrium all the lepton flavour
asymmetries are washed out, this is why the condition that N; does not get into
thermal equilibrium before the electroweak phase transition is a crucial requirement

for this mechanism to work.

Applying the naive see-saw relation one finds for the active-sterile mixing angle
|Uai| ~ m;/My;,, for GeV sterile neutrinos this mixing is highly suppressed; never-
theless, it can be enhanced with large imaginary parts of w;;. For the case of two

sterile neutrinos we have the following relation

U? = QZMmi [exp(Imw)? + exp(Imw) 2] . (2.5.110)
N

Therefore, taking large imaginary parts of w;; one can achieve detectable signal
in experiments like SHiP [46], this also leads to large cancellations in the matrix

YpMy'Y] in order to obtain the small masses for the active neutrinos which can

61n reality, the requirement is that at least one NN; does not get into thermal equilibrium, it may
also be the case that two sterile neutrinos do not equilibrate before the EWPT.
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be considered fine-tuning.

The ability to perform experimental searches for the O(GeV) sterile neutrinos is
an attractive feature of this mechanism. Allowing for large fine-tuning in the mass
splittings opens the region My, € [10—100] GeV. In Ref. [45] it was shown that near
future experiments can probe My, = 0.1 —10 GeV for normal ordering and between
My, = 0.1 —22 GeV for inverted ordering in the ARS mechanism. However, having

experimental access to the heavy mass region is a difficult task.

Due to the non-trivial topological structure of the vacuum in SU(2), there exist
electroweak sphaleron processes which violate B + L quantum number, and these
will transfer the lepton flavour asymmetry nr. into a baryon asymmetry n;, with

the conversion factor given by,

ny, 3 Nre
— ~ ——x0.35 ) 2.5.111
S 14 x x S ( )

As has been discussed previously, a critical condition for the mechanism of [42] to
work is that two of three neutrino flavours, Ny and N3, should come into ther-
mal equilibrium with their Standard Model counterparts before the Universe cools
down to Ty (when electroweak sphaleron processes freeze out), while the remain-
ing flavour does not. In other words, the present mechanism consists of different
time scales Thse > Togy ~ Tog, > Tew > Toq,, where T, represents the temperature
at which N; equilibrates with the thermal plasma and T, is the temperature at
which the oscillations start to occur. In terms of the decay rates for the three sterile

neutrino flavours this implies,

To(Tow) > H(Tpw) , Ts(Tow) > H(Tww) . Th(Tow) < H(Tew), (2.5.112)

where H is the Hubble constant,

1?2 Mp
H(T) = —, M= ——  ~ 10¥GeV, 2.5.113
(1) M P NN ( )
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and My is the reduced Planck mass. Therefore, we require,

ZYDTYD%v ww < H(Tow) . (2.5.114)

Here the dimensionless quantities v,, &~ 3 x 1072 are derived from the decay rates
of the right-handed neutrino N, of the ‘electron flavour’ tabulated in Ref. [251].
These right-handed neutrino decay (or equivalently production) rates were com-
puted in [251] using 1 <> 2 and 2 > 2 processey| involving the neutrino vertices

Y2 (eH)IN; and Y,P N;(¢H)l;, with the Dirac Yukawas.

The lepton flavour asymmetry is proportional to the Dirac Yukawa couplings,
namely (Yp)?. Nevertheless, too large Dirac Yukawa couplings also lead to a washout
of all the lepton asymmetry before the electroweak phase transition, if the criterion
Eq. is not satisfied any more. This also gives an upper bound on the masses
My, which turns out to be around 100 GeV. Thanks to an inefficient washout,
Eq. an asymmetry is created in the individual flavours L,. For example
there might be a larger number of electrons than positrons but this is compensated
by a larger number of anti-muons than muons and larger number of anti-taus than

taus.

One can also ask if the new interactions present in our model, those involving

the Majorana Yukawas, %Y;é‘/[ UECN]' and 5 Y;;VITUN N¥, could affect the dynamics.
These interactions always contain a pair of right-handed neutrinos and do not change
the right-handed neutrino number (the singlet o carries the N-number —2 but above
the electroweak phase transition temperature, the vev of ¢ vanishes). Hence these
processes could contribute to the N production or decay into the Standard Model
particles only in combination with other interactions. As the Majorana Yukawa
couplings are small Y™ ~ 107° on the part of the parameter space relevant for

s (see Table and the cross-section being proportional to (Y*)? means that

these interactions will give subleading effects to all the processes considered in [251].

Therefore, we can follow [237] and make the assumption that the number density

"These processes are shown in Figs. 1 and 2 in Ref. [251] and contain a single external N leg —
as relevant for the N-production or decay processes of interest.
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Figure 2.17: The region in dark green can explain the baryon asymmetry through
leptogenesis; we have fixed the mass splittings to be AMy, > My, /10. This plot
shows that there is a lower bound (o) > 2.5 TeV in order to produce the correct
amount of baryon asymmetry. The region in light green cannot produce enough

baryon symmetry and/or does not satisfy the wash-out criterion Eq. (2.5.114)).

of sterile neutrinos is very small compared to their equilibrium density at high
temperatures, Tos. ~ 10¢ GeV, around which the main contributions to the lepton-

flavour asymmetry are generated.

It was already shown in |233| that flavoured leptogenesis can work in a classically
scale invariant framework. In their set-up three right-handed neutrinos are coupled
to a scalar field that acquires a vev, as in the present model. The main difference
being that in the present scenario we have not gauged the B— L quantum number.
We quote the final result for the lepton flavour asymmetry (of ath flavour) obtained
in [233] from extending the results of Ref. [237] to the classically scale invariant

case,

Nia 2 —4 . Dty Dy Dty D Dty D*y Dty D x

= ey XT3 10 Z;zmi VOV Wil =YY YY) < Ty
c 1F£)

(2.5.115)

where the quantity Z;; is given by,

16 M, 1 4 1
Li; = Mty M MM - (1 _lo) + —tan™! (—<0>> — —tan~! (4)> ’
(2.5.116)

for (o) < Tus. For the case (o) > Ty and further details on the derivation of
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Eq. (2.5.115)) we refer the reader to Ref. [233|. It follows from ([2.5.116]) that the

amount of the lepton flavour asymmetry is proportional to (o) Mp/ AM?\Q- Hence if
we want to avoid any excessive fine-tuning of the mass splittings between different
flavours of Majorana neutrinos, the relatively large values of (o) > 10* GeV are
preferred. From Fig. we can see that there is a lower bound on (o) if we
impose some restriction on the mass splittings of the right-handed neutrinos. In
view that we would like to stay far away from the fine-tuning region, we impose
AMy, > My, /10 which gives the limit (o) > 2.5 TeV in order for leptogenesis to
explain the baryon asymmetry. Imposing this condition removes the points with

very small mixing angle v, as can be seen in the left panel of Fig. [2.14]

As we can see from Fig. [2.17 there is also an upper bound on My, for each value
of (o), this bound is mainly due to the wash-out criterion Eq. not being
satisfied any more. This upper bound becomes weaker once we reach () > 10*
GeV. This sits well with our approach based on the common dynamical origin of
all vevs: once an explanation for dark matter is included, (o) cannot be too large

compared to (¢).

The procedure to obtain the plot in Fig. [2.17|is as follows. We fix the complex
phases wyy and wis to the benchmark values given in [237] (w2 = 1 4 2.6¢ and
wiz = 0.9 4+ 2.74), and for each point we scan over wos, if we find at least one point
that works well then we label it as a good point (dark green) otherwise it is a bad
point (light green). In further scans we have found that varying wis and w3 has a

negligible impact on the final results.

The generated total lepton asymmetry is proportional to (o), (cf. (2.5.115)),

(.5.110))

pya (o) Mp m_12/
ny ~ (Y7) —AM]%Q (o) Mp il (2.5.117)

where we used the see-saw mechanism for the masses m,, of visible neutrinos, and v
is the SM Higgs vev. Hence n, vanishes as (o) approaches zero. This also explains

why in Fig. 2.17] there is a stronger dependence on (o) than on the masses My;.

We carried out a scan over all free parameters in our model to determine the

region of the parameter space where the leptogenesis mechanism outlined above can
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generate the observed baryon asymmetry. At the same time we require that the
model provides a viable candidate for cosmological dark matter. We would like to
mention in passing that all the present results on leptogenesis also hold when a
generic scalar generates a mass for the sterile neutrinos (i.e with no reference to

classical scale invariance).

The results of the scan and the connection between the leptogenesis and dark
matter scales are reviewed in the following section. Furthermore, in Tables and
[2.3] we present four benchmark points to illustrate the viable model parameters. In
the remainder of this section we would like to comment on the choice of parameters
for the leptogenesis part of the story.

We first note that our leptogenesis realisation does not require any sizeable fine-
tuning of the mass splittings AMy,. For example our first benchmark point BP 1

has (cf. Table 2.3),
My = (0.225, 0.25, 0.275) GeV. (2.5.118)

At the same time, the masses of active neutrinos are set to agree with the observed

mass splittings; for BP 1 we have,
m, = (0, 8.7, 49.0) meV. (2.5.119)

The lepton asymmetry also depends on the matrix of Dirac Yukawa cou-
plings Y?. We compute Y? in the Casas-Ibarra parametrisation Eq. us-
ing and along with the PMNS matrix and the R matrix. We have
carried out a general scan on the complex angles w;; of the R matrix and found that
having non-vanishing Im|w;;] is important in order to obtain the required amount of
lepton asymmetryﬁ At the same time this does not lead to any excessive fine-tuning.

We have checked this for the numerical values of R matrix elements in our scan.

8Note that positive values of Im[w;;] enhance the elements of the Dirac Yukawa matrix Y 7.



2.5. Dark Matter and Leptogenesis Linked by CSI 84

For example, for BP 1 we have (using the w;; values in Table [2.3)),

—36.52 — 33.80i 34.11 —36.97i  5.854 + 4.604i
R = 84.43 +100.0i —101.0+85.98; —16.63 — 14.20i |, (2.5.120)
—105.4 +91.817 —93.42 — 106.4i 14.94 — 17.61i

and the resulting matrix of Dirac Yukawa couplings,

17.87 —2.127  —73.37 —125.6i —210.9 — 127.3i
YP =1 22168 —19.115 —134.4+77.79i —136.9+224.6i | x 1075, (2.5.121)
—3.395 — 0.2434i  9.677 + 24.56i  34.69 + 28.93i

These matrices do not exhibit a high degree of tuning, and we have checked that

this is also the case for generic points of our scan.

2.5.4 Connection among the Scales

After having performed a scan over all free parameters in our model, we find that:
(1)  (¢) < 17 TeV in order for dark matter not to overclose the Universe, and
(2) (o) > 2.5 TeV in order in order for leptogenesis to explain the baryon asym-

metry.

From the left plot of Fig. we can see that the interesting region in parameter
space has large values of sin vy, and with this in mind we can separate the interesting

regime into two regions:

1. (o) =~ (p) ~ TeV
In this region] we have siny = cosvy (y & m/4) so there is a strong mixing
between the scalar states ¢ and o, and due to the Gildener-Weinberg conditions
Ay = Ay. To avoid overproducing DM, both (o) and (¢) have to be less than 10
TeV. Due to the not so large values of (o), a large part of this region requires

some amount of fine-tuning of the right-handed neutrino mass splittings in

9Recall that tan?~y = (0)?/(¢)%.
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BP 1 BP 2 BP 3 BP 4
Qh? 0.122 0.12 0.12 0.118
o (cm?) | 1.90 x 10716 | 3.32 x 10716 | 1.06 x 10716 | 3.11 x 10717
(h) (GeV) 246 246 246 246
(p) (GeV) 2260 1260 1020 4590
(o) (GeV) 3080 5930 2830 11790
Aho 0.035 0.406 -0.335 0.017
Ao 0.164 0.122 0.40 0.141
Ao 0.0185 0.018 -0.045 0.003
An 0.131 0.159 0.147 0.130
Ao 0.044 0.003 0.027 0.011
Ao 0.152 1.352 1.527 0.464
Ioum 0.61 1.39 0.96 241
My, (GeV) 125 125 125 125
My, (GeV) 81.6 94.1 137.3 839.1
My, (GeV) 1544 2124 1900 4745
Mz (GeV) 690 880 490 5527
sin v 0.06 0.04 0.08 0.02
sin (3 0.01 0.03 -0.025 0.001
siny 0.80 0.98 0.94 0.93
pew (GeV) 829 1149 1110 4550

Table 2.2: Four benchmark points for the model presented in this work. All four

points give the correct dark matter abundance within 2o.

order for leptogenesis to work. The use of the Gildener-Weinberg mechanism

is crucial in this region.

2. (o) > (¢) ~ TeV

In this region we have siny & 1, so it can be seen as the Coleman-Weinberg

limit of the more general Gildener-Weinberg mechanism. The scalar o overlaps

maximally with hs and can be thought of as the Coleman-Weinberg scalar. In

this region the radiative symmetry breaking is induced by A\, < 1 and we get

M}, < Mp,. This region also corresponds to the majority of good (blue) points
in Figs. 2.14] Most points have Mpy > Mj,. This is the region of most

interest since the large values of (o) require almost no fine-tuning in AMy; in

order for leptogenesis to work.

In Table we give a set of benchmark points that satisfy all experimental con-

straints and give the correct dark matter abundance within 2. The benchmark

points BP1, BP2 and BP3 are within reach of future direct detection dark matter
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BP 1 BP 2 BP 3 BP 4
(o) (GeV) 3080 5930 2830 11790
My, (GeV) 0.225 0.30 0.20 0.9
My, (GeV) 0.25 0.33 0.22 1.0
My, (GeV) 0.275 0.36 0.24 1.1
my (meV) 0.0 0.0 0.0 0.0
mo (meV) 8.7 8.7 8.7 8.7
ms (meV) 49.0 49.0 49.0 49.0
sin 0, 0.55 0.55 0.55 0.55
sin fo3 0.67 0.67 0.67 0.67
sin 013 0.15 0.15 0.15 0.15
—m/4 —0.6 —m/4 T
v 0 0.3 0 -
Qs —m/2 -1.1 —m/2 s
Wiz 1.54+26i | 1.5+26i 1.0+2.6i | 1.5+ 2.6
w13 0.9+2.7 | 0.9+ 2.7 09427 | 0.9+2.7i
Wo3 0.03 —1.8i | —0.30 — 1.4i | 0.05 — 1.85i —1.4i
nre/(s x 2.5 x 10710) -4.71 -5.75 -5.36 -6.43
nru/(s x 2.5 x 10719) -1.66 -44.18 19.03 -75.82
ni-/(s x 2.5 x 1071) 6.37 49.93 -13.67 82.25
U./H(Tew) 0.90 0.82 0.91 0.98
U,/ H(Tyw) 58.43 42.29 56.61 315.5
[./H(Tsw) 167.63 99.03 163.07 115.56
Tose (GeV) 4.43 x 106 | 1.90 x 105 | 3.71 x 10° | 4.84 x 10°
yM 73x107° | 51x107° | 71x107° | 7.6 x 107°
yM 81x107° | 56x10™° | 7.8x107° | 8.5x107°
yM 89x107° | 6.1x10™° | 85x107° | 9.4x107°
(YD) 126x10° | 145 x10°° | 1.18 x 107% [ 25 x 10°°

Table 2.3: Parameters for leptogenesis, same benchmark points as in Table [2.2]

experiments. For these same points we provide in Table numerical values that
generate the correct amount of baryon asymmetry via leptogenesis. We work with
the current experimental central values for the neutrino sector taken from [252|, we
assume normal ordering for the active neutrino masses. The values for (Y'?) are
computed as the average of v/2Mym, /{h). This estimate corresponds to the naive
see-saw relation and it is smaller than the actual entries in the matrix Y due to
the enhancement by the imaginary parts of w;; in the R matrix. Nevertheless, for

our benchmark points these enhancement factors are always less than 1.5 x 102

Finding a connection between the scale (¢), responsible for dark matter, and the

scale (o), responsible for leptogenesis, would be of high interest. From Eq. (2.5.115))
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and applying the conversion factor (2.5.111)), we can approximate the baryon relic

abundance as,
A(Yp) (o)

Oh? ~ 2.045 Mp
A(MF)

(2.5.122)

Regarding the dark matter relic density, in a large portion of our parameter scan
semi-annihilations are dominant over annihilations, and hence we can approximate

by,
1.07 x 10° x4

TV Mp 2{0a0) /3

where x =My /Ty, Ty is the freeze-out temperature for dark matter, and g, is the

Qpaih? x GeV™!, (2.5.123)

effective number of relativistic degrees of freedom. A good approximation for the

mixing angles is to take a = f~0 and siny = 0.9, substituting these values into

Eq. (2.5.101)) leads to,

, 776 % 101 (¢)?

Qpmh
o MP g]%M

x GeV~h. (2.5.124)

Using Eqgs. (2.5.122)) and (2.5.124)) we can find the ratio

Qouh? _ 3.79 x 10" A(M) (¢)2

~ e 2.5.12
e~ ARgLAYD) (o) <Y =5 (2:5.125)

where the last equality comes from the observed relic densities [37]. After imposing

this relation we find a connection among the scales in the model,
(o) ~ e{p)? x GeV ™!, (2.5.126)

where the parameter ¢ is defined as,

7.59 x 100 A(M3)

2.5.12
MZ g2 AY) (2:5.120)

The parameter My has a dependence on (o), but from a physical perspective it is
more relevant to fix the mass splittings rather than the Majorana Yukawa couplings.
The parameter ¢ gives the connection between both scales, typical values for this
parameter are around 107*. Figure illustrates this connection between the

scales keeping the parameter ¢ fixed to different values.
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Figure 2.18: Relation among the two vacuum expectation values, (¢) and (o),
that yields the observed value of Qpyh?/h* = 5. Different colours correspond to
different values of the parameter ¢ defined in Eq. (2.5.127)).

2.6 Summary

In this chapter we discussed the concept of classical scale invariance as theoretical
guide for models beyond the SM. In Section [2.2] we discussed the role of scale
invariance in QFT, and in Section [2.3] we derived the one-loop Coleman-Weinberg

effective potential.

In Section [2.4] we constructed a classically scale invariant version of the inert
doublet model that provides the correct dark matter relic abundance and can satisfy
vacuum stability, perturbativity, and unitarity constraints all the way up to the
Planck scale. We found that after imposing classical scale invariance the small mass
region 50 < My <80 GeV remains unchanged, meaning that some points survive to
the Planck scale for My ~70 GeV [213227]. In the high mass region My > 500 GeV,
CSI can have some relevant impact on the calculation of the relic density and one
has to be careful to consider the interactions with the hidden sector to compute the
correct value for the relic density. CSI also has an impact on the direct detection
cross-section, the latter being enhanced by a light CW scalar and a large scalar
mixing angle, giving in some cases cross-sections above current experimental limits.
Regarding the RG analysis, we found that the regions in parameter space viable up

to the Planck scale are significantly smaller in the CSI scenario.
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Moreover, we showed that due to the dynamical origin of the scales, our model
differs from an IDM plus a scalar singlet. The introduction of new annihilation
channels for the H opens a small new region in parameter space where the correct
relic density can be achieved. Nevertheless, after performing the RG analysis we

showed that the parameter space in our model is more restrictive than in the ordinary

IDM.

Similar extensions of the IDM to the one we constructed include [253] where a
complex singlet was added to the IDM with complex quartic couplings mainly to
trigger baryogenesis and in [254] the authors considered an extra U(1) symmetry
in the IDM and study the production of dark matter from decaying cosmic strings.
The authors in [255] promoted the Zy symmetry to a local U(1) symmetry and add
two complex scalars charged under this U(1), this is different from our setup where
the inert doublet has no charge under U(1)cw and the CW mechanism generates
all the vevs. In [256] the authors studied dark matter candidates in the U(1)p_p
classically scale invariant theory, but they focused on a gauge singlet and a complex

scalar which has a B— L charge as dark matter.

As the inert scalars in Hy couple to the electroweak gauge bosons and the SM
Higgs, these particles may be searched for using leptons or jets plus missing energy
at the LHC and future colliders [216,[257-260]. Nevertheless, the search for inert
Higgses above 300 GeV seems difficult at the LHC. In our scenario, future searches
for a new scalar that mix with the SM Higgs could provide some tighter bounds on
the portal coupling Ap; which then would have an impact on the parameters in the

model presented herein.

In Section we presented a model that simultaneously explains the dark
matter and the baryon asymmetry of the Universe, where all the scales in the theory
are dynamically generated and therefore have a common origin. In order to ensure
the stability of the dark matter candidate, one usually needs to introduce a discrete
symmetry by hand. One of the attractive features of the present model is that it
leads to a stable DM candidate without the need of introducing an extra discrete
symmetry. We already know that in the Standard Model lepton number and baryon

number are accidental symmetries, the latter being responsible for the stability of
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the proton. In our framework, the hidden vector DM is stable due to the accidental
non-Abelian global symmetry SO(3). This accidental symmetry could be broken by
non-renormalisable operators leading to the decay of Z’® and producing an intense

gamma-ray line that could be detected in future experiments [248].

This model also predicts two extra scalar states that have a Higgs-like behaviour
and masses around the electroweak scale. From the relation for tan? «, Eq. ,
the interesting region (o) > (h) already requires a small mixing angle o with the SM
Higgs boson, due to the small mixing angles we obtain values of cos? acos? 3 > 0.95,
so their detection would only be feasible at future colliders. Nevertheless, the LHC

at high luminosity will improve the current constraints on the mixing angles v and
B.

From dark matter considerations the value of (¢) is required to be around the TeV
scale and due to the common origin of all the vevs, (¢) cannot be too large, compared
to (¢). This implies that sterile neutrinos should have small masses of order O(1)
GeV in order for leptogenesis to work without severe tuning of the mass splittings
AMy;,. Under some mild assumptions, we found a connection among the scales (¢)
(responsible for dark matter) and (o) (responsible for leptogenesis) Eq. (2.5.126)),
in order to match the observed ratio Qpyh%/h? = 5. Assuming classical scale
invariance as an underlying symmetry, we constructed a minimal extension of the
SM that addresses dark matter, the baryon asymmetry of the Universe and the

origin of the electroweak scale.

The issue of naturalness has been at the core of theories beyond the Standard
Model. However, the so far negative results for searches of supersymmetric particles
and other popular solutions to the naturalness problem are pointing to a different
approach to explain the origin of the electroweak scale. In the models presented in
this section, the electroweak scale and the dark matter scale have a common origin
from the breaking of classical scale invariance. We hope that upcoming direct and
indirect detection experiments along with the second run of the LHC will provide

an insight into our understanding of the nature of dark matter.



Chapter 3

Dark Matter Searches at Particle
Colliders

The nature of roughly 80% of the matter in the Universe remains a mystery. This
missing matter is referred to as dark matter (DM). The evidence for its existence,
that we have discussed in the Introduction, cf. Section [1.4] presents strong moti-
vation for new physics beyond the SM. In the present chapter, we will focus on the

weakly interacting massive particle (WIMP) as a dark matter candidate.

In Section [3.1], we discuss thermal freeze-out as a production mechanism for the
DM relic density. In Section[3.2] we provide a short review of dark matter searches at
the Large Hadron Collider (LHC). In Section [3.3] based on [3], we present and study
simplified models of DM where the DM candidate and the coannihilation partner are
added to the SM, we study current and future constraints. In Section [3.4] we study
the sensitivity that future e*e™ linear colliders, such as the Compact Linear Collider
(CLIC) and the International Linear Collider (ILC), will have to these models. We
present our conclusions in Section [3.5]

3.1 WIMP Dark Matter

In this section, we discuss the thermal freeze-out mechanism to generate the DM
relic abundance for WIMPs. Assuming that the dark matter particle is its own anti-

particle, the time evolution of the number density of this particle species is governed
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by the Boltzmann equation

dn
E = —3Hn — <Uv>ann (TL2 - ngq) ) (311)

where (0v)any, is the thermally averaged annihilation cross-section and n (neq) is the
DM number density (at thermal equilibrium). H = a/a is the Hubble expansion
rate and a represents the scale factor. Writing the interaction rate as I' = n(ov) ann,
the freeze-out temperature, Tr, is the temperature at which the interaction cross-
section is at the same order as the Hubble expansion rate I'(T%) ~ H(Tr). Important
features can be captured by the factor I'/H. When I" > H the interactions between
dark matter and the SM particles keep DM in thermal equilibrium. Later on, when
I' < H, dark matter particles have become diluted and the interactions are not
enough to keep thermal equilibrium. The annihilations freeze out and the DM

population goes out of thermal equilibrium.

The number density decreases as the Universe expands. Consequently, in or-
der to work with a quantity that factors out the expansion of the Universe we
use the yield or comoving number density Y = n/s, where s is the total en-
tropy density of the Universe and the product sa® remains constant. The quan-
tity Y represents the actual number of dark matter particles per comoving vol-
ume. Defining the paramater x = m/T, for the radiation dominated epoch we

have H(T) = \/g:\/4m3/45T*/M} = x~2H(m), where g, is the effective number of
relativistic degrees of freedom. We can then write Eq. (3.1.1)) as

dY  —x(00)anns

dr = Hm) (Y*-Y2). (3.1.2)

It is convenient to define the dimensionless quantity €2, = p,/p. where p, is the
critical density of the Universe (for which the spatial geometry of the Universe is
flat) and the x subscript denotes quantities associated to the dark matter,

_ 3Hg

Pe=g 0= SHZM?E, (3.1.3)

the subscript 0 denotes the present values for the parameters. The DM relic density
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is then given by,

Q, = 2 = o mxYo o (3.1.4)
Pe Pc Pe

where the current entropy density of the Universe is sy = 2889.2cm™3. At the time
of freeze-out, the dark matter velocity is already small (v?) ~ 0.3 and therefore
we can perform a non-relativistic expansion in powers of v? for the annihilation
cross-section,

(0V)ann = a + b(v?) + O((v*)) = a + 6b/x, (3.1.5)

where a and b are constant terms. This allows us to arrive to the solution of

Eq. (3:1.2), cf. [261],
45 Tp

Yo=4/— , 3.1.6
0 g Mpmy(a+3b/zp) ( )
and the DM relic density can be expressed as follows,
1.07 x 10° GeV 1
O h? e — e or , (3.1.7)
MP \/g*<a+3b/xp‘)

where we have written in terms of the Hubble parameter h = (Hy/100) km s~ Mpc™!.

A good estimate for the freeze-out temperature is zr = m/Tr =~ 25 and at this
temperature we have g, ~ 80. Then, by taking (ov) ., ~ a?/m% where a = g*/(47)

is the coupling between DM and the SM sector, we can write

=27 103 2

Dl ~ > 1(21)}&:;11 & ~ 01 <0£1> (20(;7136\/)2' (3.18)
Therefore, in order to reproduce the correct relic abundance Q,h* ~ 0.12 the dark
matter mass should be close to the electroweak scale m, ~ O(100) GeV and the
coupling between the DM and the visible sector should be close to the weak coupling
in the SM g ~ 0.4. In the literature, this numerical coincidence is sometimes referred
to as the WIMP miracle; however, as we have discussed in Section there
are many alternative proposals to the WIMP that can also naturally explain the

observed relic density.

When examining the cosmological history of the Universe, it is not hard for a

BSM particle to reach thermal equilibrium with the SM plasma in the early epochs,
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even a small coupling g ~ 107% to the visible sector will bring this new state into
thermal equilibrium. WIMP candidates are also present in many models beyond
the Standard Model. Moreover, due to its mass around the electroweak scale and a
coupling similar to the weak coupling in the SM, this is an ideal DM candidate to be
probed at particle colliders which is going to be the focus of the present chapter. All
these reasons combined make the WIMP a very attractive DM candidate to study.

3.2 Dark Matter Searches at the LHC

An alternative and complementary search to direct and indirect detection is being
able to produce the dark matter particle itself. This could be achieved at particle
colliders by studying the pair production of dark matter recoiling against any visible

particle X. At the LHC one can study the process,

pp (pp) — xx + X, (3.2.9)

where x corresponds to the DM candidate. The visible object needs to be hard,
i.e. it must possess large transverse momentum pr, for example the CMS mono-
jet search requires a transverse momentum of at least 110 GeV [262]. The largest
background for this process is when a Z boson decays into neutrinos in associated

production of jets.

Ideally, one would like to find experimental constraints that are as model-independent
as possible, rather than studying them model-by-model. Using effective field the-
ory (EFT), where one integrates out all the new degrees of freedom except for the
dark matter particle, is a powerful and model-independent approach [263H276|. For

example, one could set out to study the following dimension six operator,

(xx)(99)
where y stands for the DM fermion candidate, ¢ for a SM quark and A is a parameter
with dimensions of energy. An EFT is non-renormalisable and it will break down at a

scale connected to the masses of the heavier particles that have been integrated out,
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A ~ Myeq. Therefore, this is a valid approach only when the mediator masses are

much larger that the typical energy scale of the process being studied [262,277,278|.

More concretely, the EFT is reliable as long as Q¢ < Meq, where M,oq is the
mass of the mediator and @, is the momentum transfer in the process. At the

1/2 is always

LHC with centre of mass energy of 8 TeV, the momentum transfer (Q%)
larger than 500 GeV. Therefore, M,.q should be TeV scale in order for the EFT to
be valid [262]. In the context of models of dark matter there is no reason to expect
the mediator to be much heavier than the DM candidate, i.e. Mg > mpwm, and
thus the community has proposed the study of simplified models of dark matter

where the mediator particle is explicitly written in the model.

In the approach of simplified models one introduces to the SM the dark matter
candidate and the mediator particle that couples to DM and quarks. The following

simplified models of dark matter have been studied in the literature

Lyector D ggV'" Z Vg + gomVEXYLX (3.2.11)
q
I — 5 .= 5
Eaxialfvector D) ng Z M) + gDMV XVTu7 X (3212)
q
Yq _ _
£scalar D Yq ¢ Z \/_% qq + gDM¢XX; (3213)
q
Yq _ _
£pseudosca1ar D) gq @ Z 7(% qﬁ)/Sq + gDMCLX")/SX, (3214)
q

where the sum is over all quarks and y stands for the DM particle which can be
either a Majorana or a Dirac fermion. The first two models correspond to spin-1
mediators, where the coupling can be either vector or axial-vector. The last two lines
correspond to spin-0 mediators, where the possibilities are scalar or pseudoscalar
mediator. These couplings are taken proportional to the SM Yukawas y, since they
usually arise from Higgs mixing with a new scalar; in addition, flavour-changing

neutral current are naturally suppressed in this manner.

The simplified models described above consist of four free parameters: the cou-
pling of the mediator to DM gp, the coupling of the mediator to the SM quarks gy,

the dark matter mass mpy, the mediator mass M,,.q and the width of the mediator
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Figure 3.1: Comparison between the current limits from LUX and SuperCDMS
and the mono-jet searches at the LHC. Left panel: Exclusion limits on the spin-
independent DM-nucleon interaction cross-section. Right panel: Exclusion limits in
the mpym versus M.q plane. Both plots correspond to the simplified model with
a vector mediator and different values for the interaction couplings. Figures taken

from Ref. |279].

['eqa- The reason for coupling the mediator only to quarks in the SM is twofold. On
the one hand, the initial states at the LHC consist of quarks and hence it is natural
to include a coupling to them. On the other hand, this allows us to avoid di-lepton
searches which already lead to strong constraints on new particles that couple to

leptons.

In order to illustrate the complementarity between direct detection and LHC
searches we present in Fig. the exclusion limits for the simplified model with a
vector mediator, as in Eq. . In the right panel we show the exclusion limits
in the mpy versus Myeq plane. As can be seen, direct detection experiments give
stronger constraints except when mpy is below a few GeV, where these experiments
lose sensitivity since the nucleon recoil energy is below the threshold needed for
a detectable signal. In the left panel we show the exclusion limit on the spin-
independent cross-section from LHC, in this plot it becomes evident that collider

constraints are relevant for dark matter masses below a few GeV.

These simplified models do not come free of problems. The Lagrangian densities
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presented in Egs. (3.2.12)-(3.2.14) contain terms that break gauge invariancd'| [280].

Firstly, we shall examine the axial-vector case. The new U(1)" gauge symmetry
under which the SM quarks are charged is anomalous. The cancellation of these
anomalies requires either a coupling to leptons or the addition of new fermions,
some of which may not be singlets under the SM and will therefore lead to strong
constraints from the LHC [281]. The mass term for the spin-1 mediator also breaks
gauge invariance. Consequently, a dark Higgs boson providing the mass to V; via
spontaneous symmetry breaking must be introduced. Experimental constraints on

these new states will further constrain the parameter space of the model.

Secondly, the scalar and pseudoscalar mediators are coupled to the terms gg and
q7°q respectively, neither of these terms is gauge invariant in the SM. One possible
solution to this problem is to include portal interactions between the scalar mediator
and the Higgs boson such that scalar mixing arises. For the pseudoscalar mediator
this can also be done in the context of 2HDM plus a pseudoscalar singlet [282-284].
For these reasons there has been recent interest in moving towards more complete
models that have a richer phenomenology [280,285|. For a recent review on DM

searches at the LHC we refer the reader to [286].

3.3 Tau-philic Dark Matter Coannihilation at the
LHC

The non-observation of DM is starting to put some pressure on the so-called WIMP
Miracle paradigm, which posits that the observed relic abundance can be explained
by DM candidates which are weakly interacting massive particles (WIMPs) with
masses in the 10s of GeV to a few TeV range (assuming simple 2 — 2 DM annihilation
to SM particles and the standard thermal freeze-out mechanism). A growing number
of such WIMP models of DM are being strongly constrained by, or at least show

tension with the experimental limits, including supersymmetric DM realisations

n the case of vector interactions, the Stueckelberg mechanism can be responsible for giving
mass to the spin-1 mediator
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discussed in [287-298] as well as other models considered in e.g. [299,300].

Our ignorance of the dark sector structure and the negative experimental re-
sults for DM searches have motivated more model-independent studies which fall
into two categories. The first is based on exploiting effective operators describing
the low energy interactions between the DM and the SM particles [263-276|. This
EFT approach manifestly does not depend on the UV structure of the (unknown)
microscopic dark sector theory and works well when applied to the low energy exper-
iments, such as the direct detection. However, the EFT approximation often breaks
down when studying collider signatures since the cut-off of the effective field theory
may not be larger than the LHC’s energy scale or the dark sector often requires a
new mediator particle other than the DM which may dramatically alter the collider

signature itself [262,277,278§].

The alternative framework is the simplified model approach, in which sets of phe-
nomenological models are constructed with a minimal particle content to describe
various experimental signatures. This approach turns out to be very useful and
searches for dark matter at colliders are now commonly described in terms of simpli-
fied models with scalar, pseudo-scalar, vector and axial-vector mediators [301:304].
These simplified models have become the main vehicle for interpreting DM searches
at the LHC [305,1306] and for projecting the DM reach of future hadron collid-
ers [307-309|.

These simplified models can be viewed as arising from integrating out the irrel-
evant particles and taking a certain limit of the more detailed microscopic theories.
The dependence on specific details of any particular UV embedding in this case is by
definition beyond the scope of the simplified models settings. An interesting question
to ask is of course whether and which types of UV completions of specific simplified
models are possible and if the additional degrees of freedom would affect the simpli-
fied model predictions at particular collider scales. For recent examples and studies

of such ‘next-to-simplified models’ we refer the reader to Refs. [280,283.284/310-313)].

The simplified models used by the LHC experiments and aggregated by the
ATLAS-CMS DM Forum and the LHC DM Working Group [305,[306] are conven-
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tionally classified based on the type of mediator particles that connect the DM to
the SM particles. However, this classification may miss an effect of coannihilation
that can be important to determine the DM relic density [314]. In the scenario
where the coannihilation is operative, a charged (or coloured) particle is introduced
in addition to the DM, which we call the coannihilation partner. Since the interac-
tion between the coannihilation partner and the SM particles is unsuppressed, they
annihilate efficiently into the SM particles in the early Universe. Due to the thermal
transition between the DM and the coannihilation partner, the DM density is also
reduced. This scenario does not require conventional interactions between the DM
and the ordinary particles through a mediator, and otherwise severe experimental
constraints, can easily be avoided. Simplified model studies addressing DM coan-
nihilation and collider signatures so far have mostly focused on the coloured coan-
nihilation partners [285,[314-319|, with only few exceptions as in [320] (or in |177]
including semi-annihilation effects between two different components of dark matter,

e.g. Vector Vector — Vector Scalar).

The collider signature is also different in the coannihilation scenario from the
usual DM simplified models. Since the coannihilation partner couples to the SM
sector with an unsuppressed coupling, the production rate is much higher for the
coannihilation partners than for DM particles. Moreover, the coannihilation partner
can be long-lived at colliders because its mass difference from the DM mass is small
and the decay rate incurs a significant phase space suppression. This may be the
case in particular when the coannihilation partner has a contact interaction with
the DM particle and a 7-lepton, since if the mass difference is smaller than m., the
coannihilation partner decays into multi-body final states via an off-shell 7, leading
to a strong phase space suppression. This situation is familiar in supersymmetric

(SUSY) theories with the stau coannihilation [321-327].

In this section, we introduce a class of simplified models that enables us to study
the phenomenology of the dark sector containing a coannihilation partner. Inspired
in part by the neutralino—stau coannihilation mechanism in SUSY theories, we want
to recreate it in more general settings using a new class of simplified model. In

Section [3.4.2| we will define four types of simplified models with different parti-
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cle spins and coupling structures and assume the existence of a contact interaction
involving the DM particle, its coannihilation partner and the SM 7-lepton. Our
simplified model choices include a fermionic DM with a scalar coannihilation part-
ner, a scalar DM with a fermionic coannihilation partner and a vector DM with a
fermionic coannihilation partner. Some of these models are manifestly gauge invari-
ant and renormalisable, others are supposed to descend from a more detailed UV
complete theory with or without supersymmetry, some may be realised as a certain

limit of composite models, or descent from models with large extra dimensions.

The expressions for our Simplified Model Lagrangians and the definitions of the

free parameters characterising the models can be found in Eqgs. (3.3.19), (3.3.24) and
(3.3.25)). In Section (3.3.2] we explain the coannihilation mechanism for computing

the DM relic density in the context of our simplified models. This is followed by
a general overview of experimental signatures for direct and indirect detection and
collider searches in Section [3.3.3] Our main results are presented and discussed in
Sections [3.3.4] - [3.3.7] In addition, we present in Section the exclusion limits

in the mass versus lifetime plane for the different models we have considered.

3.3.1 Simplified Models of Tau-philic Dark Matter

To implement the Dark Matter coannihilation mechanism we consider dark sectors
which include two distinct degrees of freedom: the DM particle, x, and the charged
coannihilation partner (CAP), n®). We assume that both of these dark sector
particles have odd parity under a Z; symmetry to ensure the stability of the dark
matter y. Our simplified models are defined by the three-point interactions between

X, n and the 7-lepton of the Standard Model sector,

LD gy, xnT+ he . (3.3.15)

Here g,,,, denotes the dark sector coupling constant which we take to be real and
we also note that n has a non-vanishing 7-lepton number. In view that the DM
candidate has tree-level interactions solely with the 7-lepton in the SM, we refer to

this class of models as tau-philic dark matter. Restricting the particle content of our
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Model-1a
Component | Field | Charge | Interaction (3.3.19)
DM Majorana fermion (y) | Y =0 .
CAP Complex scalar (¢) | Y =—1 ¢"(x7r) + hoc.
Model-1b
Component | Field | Charge | Interaction (3.3.22)-(B.3.23)
DM Majorana fermion (y) | @ =0 . .
CAP Complex scalar (¢) | Q = —1 0" (x7r) + ¢*(x71) + boc.
Model-2
Component | Field | Charge | Interaction (3.3.24)
DM Real scalar (5) Y =0 =
CAP Dirac fermion (V) |Y =—1 S(VPpT) + hc.
Model-3
Component | Field | Charge | Interaction (3.3.25)
DM Vector (V) Y=0 T
CAP Dirac fermion (V) | Y = —1 V(WY Prr) + hoc.

Table 3.1: Simplified Models of DM with a colourless coannihilation partner (CAP)

simplified models to spins not higher than 1, we consider three possible spin assign-
ments [*| for the (x, n) pair: (3, 0), (0, 3) and (1, 3). The corresponding simplified
DM-coannihilation models we wish to consider are summarised in Table [3.11

A note on notation: we use x to denote the DM particle and 1 (or n*) for the

coannihilation particle in general. For the simplified models in Table [3.1] we have

x =1{x, S, V,} and n = {¢, ¥} depending on the choice of the model.

For the (%, 0) spin assignment we consider the case where the dark matter is a
Majorana fermion, y, and the coannihilation partner is a complex scalar field, ¢,
bearing in mind the similarity of this case with the neutralino—stau coannihilation
picture in SUSY models, where y plays the role of the lightest neutralino, and the
scalar ¢ is the stau. In the simplest realisation of this simplified model, which we

refer to as the Model-1a in Table , the Yukawa interactions (3.4.27)) between the
dark sector particles y, ¢ and the SM involve only the right-handed component of

2 An additional potential assignment (%, 1) leads to 1 being an electrically charged vector boson
which prevent us from finding an SU(2)y, x U(1)y invariant operator for Eq. (3.4.27)). We therefore
will not consider this option further.
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the 7-lepton, 7, hence the coannihilation scalar ¢ is an SU(2).-singlet. At the
same time, the second realisation — the Model-1b — involves interactions with both
left- and right-handed 7-leptons, and hence the stau-like scalar dark partner ¢ is
charged under the SU(2).. The Simplified Model-1a is a UV-consistent theory as it
stands; on the other hand, the Model-1b should ultimately be embedded into a more
fundamental microscopic theory in the UV to be consistent with the gauge invariance
under SU(2).. One such embedding can for example be a supersymmetric model
with an operational neutralino—stau coannihilation mechanism.

We refer to the model corresponding to the (0, %) spin assignment as Model-2,
in which we introduce a real scalar S as the dark matter and a Dirac fermion, ¥,
as the coannihilation partner, assuming they couple together with 7z. Model-3 is
constructed for the (1, %) spin assignment that introduces a real vector, V,,, for the
dark matter and a Dirac fermion, ¥, for the coannihilation partner, assuming again
the interaction with 7. These two simplified models can be realised in models of
extra dimensions and/or composite models as we will outline in Sections and

B.3.7.

The simplified models 1la, 2 and 3 constructed above have the following free
parameters: the dark matter mass, mpy = m,, the mass splitting, AM = M,—m,,

and the dark sector coupling, In Model-1b we fix the dark sector coupling to

Iom-
be the U(1)y gauge coupling (g,,, = ¢’). Instead, we introduce the L-R mixing
angle, ¢, which controls the relative strength of the coupling to 77, and 7, as we will
discuss later in more detail. The simplified model Lagrangians and the parameter

definitions are given in Eq. (3.3.19)) for Model 1a, Egs. (3.3.22)-(3.3.23]) for Model 1b,
Eq. (3.3.24)) for Model 2 and in (3.3.25)) for Model 3.

3.3.2 Coannihilation

The effect of coannihilation can be understood qualitatively in the space of simplified
model parameters. First of all, it is worth noting that y couples to the SM sector
only through the operator Eq. (3.4.27)), whereas n* interacts with the SM particles

also via the electromagnetic and weak gauge interactions. In our simplified models,
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there is a unique channel for the DM pair annihilation: y x — 7777, as shown in the
left diagram in Fig.[3.2] For small g, the DM pair annihilation is highly suppressed
because the rate of this process is proportional to géM. For our simplified models 1a,b
and 2 where the dark matter is a Majorana fermion or a real scalar (x = {x, S}),
there is another suppression factor. The initial state in both these cases forms a spin-
0 state (due to the Pauli blocking in the Majorana case). To conserve the angular
momentum, the 777~ pair in the final state must have the opposite chiralities in
the s-wave contribution, hence meaning that this contribution is suppressed by m?
(chiral suppression). The dominant contribution then comes from the p-wave for a
Majorana DM and d-wave for a scalar DM, which are suppressed by the factor v?
and v*, respectively, where v is the average of the relative velocity of the annihilating

DM particles.

Unlike the DM pair annihilation, the annihilation of the CAP particles, nn — SM
particles, proceeds via the electromagnetic or weak gauge interactions, as indicated
in the second diagram of Fig. As such, the nn annihilation can have much larger
rates than the first process in Fig. at small g,,,. For a small but non-vanishing
values of g,,,,, there are transition processes between 7 and x: n+ SM < x + SM.
These processes are in general much more efficient than annihilation processes, since
the number density of light SM particles is not Boltzmann suppressed at the time
of freeze-out. As long as the mass splitting, AM, is small, the transition process
effectively equalises the number densities of y and 7, and the DM density (in the
unit of the entropy density) freezes out when the annihilation of 1 is decoupled. We
therefore find that in the region of small g,,,, the DM relic density is not sensitive

to ¢p,, and determined mainly by AM and o(nn — SM particles) x v.

As g,,, approaches the U(1)y gauge coupling, ¢’, the coannihilation process
xn — SMparticles becomes important (see, for example, the right diagram in
Fig. 3.2). The rate of this process is proportional to g2 . As in the previous
process, this process is only effective when AM is small as we will see below more

explicitly.

For even higher values of g,,,, the dark matter pair annihilation, y x — 7777,

can become important, since the annihilation rate is proportional to géM. However,
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Figure 3.2: Feynman diagrams for the annihilation and coannihilation processes.

as we have discussed above, for x = {x, S}, this process can never become very
large because it is velocity suppressed. However it can be dominant for the vector
DM case x = V,. Unlike the other channels, the contribution of this process is
independent of AM.

As it is well known, the DM relic abundance scales as
Qpmh? o {oegv)™ !, (3.3.16)

where (oo v) is the thermal average of the effective annihilation cross-section that

is given by [328|

1

2 + -
etV = 5 | & o(Xx 2 TTT)
(g, +8,)° L X
gx&, - o(xn — SM particles) +
g?, -o(nn — SM particles) ] v, (3.3.17)
with

g M) e (3.3.18)
g=g<—> eXP<— ) 3.

i ul mx T

where g, and g, denote the degrees of freedom of the fields x and 7, respectively,
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and should not be confused with the dark sector coupling g,,,,. Their explicit values
are given as (g, g,, 8,, &, g.,) = (1, 2,2, 3,4). Each line of Eq. corre-
sponds to the different contribution discussed above and depicted in Fig. [3.2l The
dependence of these contributions on AM can be found through g,. Since the freeze-
out occurs around 7' ~ mpy /25, AM < mpym/25 is required in order not to have
large suppressions for the processes yn — SM particles and nn — SM particles.
In this study we are interested in the regime where the coannihilation is opera-
tive, and we demand AM to be small. In our numerical study we compute Qpyih?
using MicrOMEGAs 4.1.5 [211]| implementing the simplified models with help of
FeynRules 2.0 [329| and LanHEP 3.2 [330].

3.3.3 Experimental Signatures

Direct detection

Since the DM couples to the SM sector only through the interaction term Eq. ,
the strength of experimental signatures is rather weak in general for the simplified
models introduced in Section[3.4.2] Direct detection experiments measure the nuclei
recoil resulting from their interaction with dark matter, but such interactions involv-
ing DM with quarks and gluons are absent at tree-level in our simplified models. At
one-loop level, the relevant operators may be generated. The Higgs mediating con-
tributions are too small because the amplitude is suppressed by the product of the
tau Yukawa coupling and the Yukawa coupling in the hadron sector. The relevant
operators describing the interactions between the DM and the neutral gauge bosons
are generated at dimension 6 at the lowest and suppressed by 1 /Mg For example,
for the Majorana DM case, such an operator is given by the anapole moment oper-
ator A Xv,75X0" F. For mpy ~ 500 GeV and AM/m, < 1, the anapole moment
is roughly given by A/g? ~ 81077 [uy-fm] [331], which is more than one order of
magnitude smaller than the current limit obtained by LUX [221] and also smaller

than the projected sensitivity of LZ [79], even for ggM = 1E| Although a dedicated

3The limits mentioned here assume the observed energy density of the DM. On the other hand,
for mpm =~ 500 GeV and g,,,, =~ 1, all of our simplified models underproduce the x particles. The
actual constraints would therefore be even milder if this effect is taken into account.
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study may shed some light on the future direct detection prospects for our simplified

models, we shall postpone such a study to a future work.

Indirect detection

Indirect detection experiments are looking for high energy cosmic rays or neutrinos
originated from the DM pair annihilation (or decay) in the present Universe. For the
2 — 2 topology, the only relevant process is x x — 717~ shown by the right diagram
of Fig. As mentioned in the previous section, for y = {x, S} this process suffers
from the chiral suppression, and the signal rate for the indirect detection goes below
the experimental sensitivity. The chiral suppression is absent for x = V,, (Model-
3). In Section we compare the annihilation rate of V,,V,, — 777~ with the
current limit obtained by Fermi-LAT [332], taking into account the rescaling of the
flux factor by the predicted relic abundance. We find that the annihilation rate
in Model-3 is two orders of magnitude smaller than the current limit across the

parameter region.

The 2 — 3 scattering, x Y — 77777, may be more interesting in a small AM
region. In this regime, the reaction rate of this process is enhanced in the following
way. One of the DM particles can be converted into a slightly off-shell n radiat-
ing off a soft tau, Y — nTrT. This n* can then co-annihilate with the other y
particle via xyn* — 77 (see, for example, the third diagram in Fig. [3.2)). Since
the converted n* is only slightly off-shell, the propagator of n* is enhanced, and
the energy distribution of the produced v has a peak around mpy/2, which can
be seen as a bump in a smoothly falling background. Although this signature is in
principle promising, it has been shown that for AM < mpy the annihilation rate
is nevertheless below the experimental sensitivities [331},333-335]. For example, for
the Majorana (scalar) DM with mpy = 500 GeV and AM /m., < 1, the annihilation
rate is roughly given by (vo(xx = 77777))/g2,, ~ 5-107%° (5-1072*) [cm?® /5|, which
is smaller than the current limits obtained by Fermi-LAT [332] and HESS [87|, and
also below the future sensitivity of CTA [336,:337] even for g,,, = 1 and assuming
Q12 = Qpyh? ~ 0.1197. As in the direct detection case, we reserve the dedicated

study on the prospects of the indirect detection sensitivity to our simplified models
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Figure 3.3: Coannihilation partner (CAP) pair-production process.

for a future work.

Collider searches

In general, DM particles can be produced in proton-proton collisions at the LHC
and the experimental collaborations are looking for signatures of such DM produc-
tion, usually involving mono- and multi-jets plus missing energy, or alternatively
constraining a direct mediator production which could decay back into SM. In our
simplified models of DM with colourless coannihilation partners, however, no direct

DM production processes are possible at tree level since the DM couples to the SM
sector only via the interactions (3.4.27)).

Unlike the DM particle, the coannihilation 7 particle couples to the SM sector via
electro-weak gauge interactions, and n can be pair-produced by exchanging off-shell
neutral gauge bosons ¢ — (v/Z)* — nn as depicted in Fig. 3.3 The production
rate is independent of g,,, and is well-defined once the mass and quantum numbers
of n are specified. For our simplified models of DM with coannihilation partners 7,
the latter are either a complex scalar or Dirac fermions. The 1 production cross-
sections pp — nn at the 8 TeV and 13 TeV LHC computed at leading order by
MadGraph 5 [338| for our range of simplified models are plotted in Fig. as the
function of the coannihilation partner mass. It can be seen that the production
cross-section in the fermion case is one order of magnitude higher than in the scalar
case. This is because the scalar production suffers from velocity suppression near

the threshold; we will further comment on this effect in Section 5.3.

In the region where the coannihilation is operative, AM is small and the decay
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Figure 3.4: Collider cross-section o™°(pp — n+t5™) for the simplified models defined in
Table B.11

products of n will be too soft to be reconstructedﬁ The standard strategy to trigger
such events is to demand additional hard jet originated from the initial state QCD
radiation. This leads to a distinct mono-jet plus large missing energy signature
and the signal can (in favourable settings) be separated from the background. It
is known that the mono-jet channel is powerful if 1 has a colour charge, but for
our colour-neutral n this prospect is, as one would expect, quite pessimistic. For
example, the study presented in [340| did not find any limit on the stau mass in the
stau coannihilation region in SUSY models using a mono-jet channel even for a 100
TeV pp collider with a 3 ab™! integrated luminosity. In this work we focus on the

sensitivity at the LHC and aim to look for an alternative search channel.

As we have seen in Section [3.3.2] the effective coannihilation mechanism in the
dark sector imposes an upper bound on the mass splitting between the DM and the
CAP particles, AM < mpy/25. Furthermore, if AM becomes smaller than the 7-
lepton mass, m, = 1.777 GeV, the on-shell 2-body decay, n* — x7, is kinematically
forbidden and the 3- and 4-body decay modes, n* — y v, 7% and 0= — y v, (T 1y
(¢ = e, ) shown in Fig. , become dominant. Since these 3- and 4-body decays

4The LHC phenomenology of a similar model in the opposite limit (AM ~ mpy) have been
studied in [339].
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X

Figure 3.5: The 3-body and 4-body n-decays via an off-shell 7 (and W).

are suppressed by the off-shell intermediate propagators and the multi-body phase

space, the n decay rate becomes minuscule.

We show in Fig. the lifetimes of n* computed with CalcHEP [341] as func-
tions of AM for our simplified models of DM with a coannihilation partner. As
can be seen, the lifetimes quickly increase once AM crosses m, from above and
reach ~ lus around AM ~ 1 GeV, for all simplified models. If the lifetime is of
the order of us, n can reach the tracker and may leave anomalously highly ionizing
tracks or slowly moving charged particle signature. Such exotic charged track sig-
natures are intensively looked for by ATLAS [342,343] and CMS [344,345| and also
can be investigated by the MoEDAL experiment [346]. We calculate the projected
limits obtained from anomalous charged track searches for various simplified mod-
els and discuss an interplay with the dark matter relic abundance obtained by the

coannihilation mechanism in the next section.

3.3.4 Model 1a: Majorana Fermion Dark Matter

The first simplified model we consider has a Majorana fermion singlet dark matter,

x = x', and a complex scalar coannihilation partner, (n*,n7) = (¢*, ¢) = (¢+,¢7).



3.3. Tau-philic Dark Matter Coannihilation at the LHC 110

Lifetime comparison

1010 e . —  Model la: M;=300 GeV gp\=0.5 ||
: —  Model 1b: M, =300 GeV 0 =7/4
107 o IR ] — Model 2: My =300 GeV gpy, 0.5 ]
104 F e Model 3: My =300 GeV gpy, =0.5 |1

Lifetime [s]

10° 10

Figure 3.6:  The lifetime of the coannihilation partner n* as a function of the mass
splitting AM = M,, — m,. Model la (blue): My = 300 GeV, gpm = 0.5, Model 1b (red):
My =300GeV, 6 = m/4, Model 2 (purple): My = 300GeV, gpm = 0.5, Model 3 (green):
My = 300GeV, gpm = 0.5.

We extend the SM Lagrangian as:

L = Lsu + Lom + Leap + Ling,

1 .
Lpn = 5)((“% — MpM)X
Loap = |Dugl* — M3 [0]*,
Lint = o @ XTrR + hec., (3.3.19)

where My = mpy + AM and the covariant derivative D, contains the U(1)y gauge
field. This simplified model has a particular interest since it can be realised in SUSY
models by identifying x as the Bino and ¢ as the right-handed stau. We, however,
stress that the model is also interesting on its own right because it is gauge invariant
and renormalisable. The searches at LEP have already excluded charged particles
with mass below ~ 100 GeV [347-349|, and we focus on the region with M, 2 100
GeV.

We show our numerical results for the Simplified Model 1a in Fig. The three
plots correspond to different values of the dark matter coupling: ¢, = 0.1, 0.5

and 1.0 from left to right. The dark-blue region satisfies the correct dark matter
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Figure 3.7: The DM coannihilation strip and collider searches for a long-lived charged
scalar in the Simplified Model 1la. The dark-blue region satisfies the correct dark matter
relic abundance within 30, the light-blue region overproduces the dark matter energy
density. The horizontal black line indicates the mass of the 7 lepton. The region coloured
in red corresponds to current HSCP limits at the LHC for centre-of-mass energy of 8 TeV
and 18.8 fb~!. The three dashed lines (purple, green and magenta) correspond to our

projections for centre-of-mass energy of 13 TeV and 30, 300 and 3000 fb~! of integrated
luminosity respectively.

relic abundance within 30, and the light-blue area to the right of it gives a relic
abundance which exceeds the observed value and overcloses the Universe. The red
region corresponds to the current 95% CL excluded region obtained by the heavy
stable charged particle (HSCP) searches at the LHC using 8 TeV data with 18.8
fb=! integrated luminosity . The contours bounded by the purple, green and
magenta dashed lines (from left to right) are projected limits assuming 13 TeV LHC
with 30, 300 and 3000 fb~! integrated luminosities, respectively. These projections
are obtained by starting with the analysis conducted by CMS of the 8 TeV

data, and interpolating it to higher energies and luminosities following the Collider
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Reach method [350|.E] We validated our computational approach by reproducing the
8 TeV limit on the long-lived stau calculated in [352]. The limit can also be presented
as a function of the lifetime and mass of ¢. Such limits are given in Section [3.3.8]

In Fig. 3.7 the horizontal line represents AM = m,. One can see, as expected,
that the limit from the HSCP searches is absent if AM > m, since ¢* decays
before reaching the tracker. Once AM gets smaller than m,, the propagation path
of the ¢ charged scalar c7, reaches and then exceeds the detector scale, O(100)
cm, although the exact AM needed for exclusion depends also on g,,, since the
lifetime is inversely proportional to ggM. For g,,, = 0.1, the HSCP searches can
have strong sensitivities as far as AM < m,, whilst AM < 1.5 GeV is required
for g,,, = 0.5 and 1. The model can be constrained at the LHC only when there
is a large production cross-section for pp — ¢T¢~. The sensitivity of the HSCP
search therefore has a strong dependence on My. If AM < 1.3 GeV, My < 240
GeV is already ruled out by the current data, and the 95% CL projected limits are
estimated as M, < 330, 580 and 870 GeV for 13 TeV LHC with 30, 300 and 3000

fb~! integrated luminosities, respectively. These limits are almost independent of

and AM as long as AM < 1.3 GeV.

gDM

We have also shown the constraints from the DM relic density in the same plots.
The dark-blue strip in Fig. represents the region where the DM relic density,
computed by MicrOMEGAs 4.1.5 [211], is consistent with the latest Planck satellite
measurement Qpyh? = 0.1197 +0.0022 [37] within the 3-0 level. Note that the DM
is overproduced on the right of the dark-blue strip, where this region is shaded with
light-blue. Conversely, the DM is underproduced on the left of the dark-blue strip.
This region may not be excluded phenomenologically since there may be another
component for the DM, whose relic density makes up the remaining part of the
Qpuh?. We can therefore identify the white region as the currently allowed region

by the LHC and the DM relic density constraints.

As we have discussed in Section [3.3.2| the relic density depends on AM through

SA fast recasting method for a HSCP search has been proposed in [351]. We opt for the
Collider Reach method, since our main focus is to extrapolate the existing limit to higher energies
and luminosities.
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Figure 3.8: Model la: Plot of the coupling g,,,versus the dark matter mass mpy =m,.
We scan over AM < 1 GeV, where AM = My —m,, this is the mass region where the
HSCP limits are independent of the coupling g,,,,. The dark blue band satisfies the correct
DM relic abundance within 3o, the region in light blue overproduces the amount of DM.
The colour-coding for the exclusion regions is the same as in the previous Figure.

the coannihilation mechanism, which can be seen clearly in Fig. 3.7 The mass and
the dark sector coupling also affect the value of the relic density. To investigate this
behaviour in more detail, in Fig. We present a scan of the (g,,,, mpm) plane in our
Simplified Model 1a over the mass splittings in the region 0 < AM < 1 GeV. The
dark-blue strip gives the correct relic density within 3o. As previously discussed, the
dependence on g,,, is weak if g,,, < 1, since the (o.gv) is almost entirely determined
by the ¢t ¢~ — SM particles, which is independent of g_,,. Once g,,, gets as large
as the U(1)y gauge coupling, the second process, ¢*x — SM particles, becomes
important, and the dependence on g,,, enters into Qpyh®. For very large g,.,,, the
process ¢t T — 77T (and its conjugate), exchanging x in the t-channel, becomes
dominant since it does not incur the chiral suppression and the cross-section is
proportional to géM. Because the DM relic density is inversely proportional to (oegv),
the constraint of the DM overproduction excludes small g,,, regions depending on
mpwm. From this plot we conclude that the high luminosity LHC at 3000 fb~! can
explore almost the entire region with g,,, < 1 except for a small segment around

9pou 7 09, mpwm ™~ 1 TeV.
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3.3.5 Model 1b: Effect of L-R Mixing

In SUSY models we often encounter the situation where the DM and the lighter
stau, 77 (coannihilation partner), interact with both left and right-handed 7-leptons
via the L-R mixing in the stau sector. To study this case, we extend the previous
simplified model such that the coannihilation partner ¢ can couple to both 7, and
Tr. We will now construct our simplified model by starting with the SU(2), x
U(1)y invariant formulation involving a minimal particle content required for the
DM fermion, the coannihilation scalar(s), and the SM leptons. We thus introduce a
scalar SU(2);, doublet ®% = (¢,, ¢;) and a singlet ¢ with the same hyper-charges
as those of the SM doublet II' = (v, 7) and the singlet Tx, respectively. We then

write down their Yukawa interactions with the DM Majorana fermion y as follows,
V24 Y00 xls + V24 Y. ¢ xR + hec., (3.3.20)

where ¢’ ~ 0.36 is the U(1)y gauge coupling and Y; = —% and Y, = 1 are the corre-
sponding hyper-charges. These terms are analogous to the bino—stau—tau interaction

in SUSY models.

After the electroweak symmetry breaking, the scalars ¢y and ¢ will generically

mix with each other forming two mass eigenstates, the lighter of which,
¢ = cost ¢r, + sinf ¢p, (3.3.21)

we identify as the coannihilation particle of our simplified model. The mixing angle
6 will be a free parameter in the simplified model. After integrating out the heavier
scalar eigenstate, the interaction terms in Eq. (3.3.20]) reduce to the simplified model

Interaction

Lint = 91 ¢" X7 + gr* xR + h.c., (3.3.22)

with the two couplings given by

1, .
= —¢' cos¥, = —V2¢'sin 6. 3.3.23
g1 =759 9r g ( )
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Figure 3.9: Model 1b: ¢ — x coannihilation strip and collider searches. The dark-blue
region satisfies the correct dark matter relic abundance within 3o, the light-blue region
overproduces the dark matter energy density. The horizontal black line corresponds to the
mass of the 7 lepton. The region coloured in red corresponds to current HSCP limits for
centre-of-mass energy of 8 TeV and 18.8 fb~!. The three dashed lines (purple, green and
magenta) correspond to our projections for centre-of-mass energy of 13 TeV and 30, 300
and 3000 fb~! of integrated luminosity respectively.

In the same way, the interaction of ¢ with v, Z and W can be obtained by extracting
¢ from the kinetic terms |D,®1|* + |D,¢r|*. This defines our Simplified Model 1b,

which is determined in terms of three free parameters: 6, M, and AM = M, —m,,.

We show in Fig. the constraints in the (Mg, AM) plane for the Simplified
Model 1b for the following parameter choices: 8 = 0 for ¢ = ¢, (left plot), § = w/4
for ¢ = (¢ + ér)/v2 (central plot) and 6 = 7/2 for ¢ = ¢ (plot on the right). We
note that # = /2 corresponds to Model-1a with |g,,| = v/2¢' ~ 0.5. Therefore, the
right plot of Fig. [3.9 resembles the second plot of Fig. One can see that turning
on g, makes the LHC constraint tighter. The current HSCP LHC-8 TeV limit on



3.3. Tau-philic Dark Matter Coannihilation at the LHC 116

10™ - : - 0.12
— AM =12 GeV
— AM=1.4GeV
— AM=1.6 GeV
10.11
2
qE) 10.10
]
= 10.09
<
10.08
8 - - - .07
107 /4 /2 3r/4 0

Figure 3.10: The lifetime of ¢* (dashed) and the DM relic density Qh? (solid) as functions
of the L-R mixing parameter §. The DM mass is fixed at 300 GeV and AM is varied as
1.2 (blue), 1.4 (red) and 1.6 (green) GeV.

the coannihilation partner mass increases from 220 GeV to 300 GeV as 6 changes
from 7/2 to 0. This is because the interaction strength of the ¢§ — (v/Z)* — ¢T ¢~

process increases due to inclusion of the SU(2), coupling found in |D,®y[*.

The dependences of the DM relic density and the lifetime of the coannihilation
partner on # are more complicated, and shown in Fig. [3.10l Here we plot Qpyih?
(solid lines) and 7, (dashed lines) as functions of 6 by fixing m, = 300 GeV and
varying AM = 1.2, 1.4 and 1.6 GeV. We see that Qpyh? is globally minimized at
0 =0 and 7 (¢ = ¢r) due to the relatively large SU(2), coupling. Another local
minimum is found at § = 7/2 (¢ = ¢g). The relic density has two local maxima
implying that there is a cancellation in (o.gv) among g, and gg terms in Eq. .
The interference between gy, and ggr terms can also be observed in the lifetime of ¢.

Tn

Unlike Qpmh?, 74 is minimized (maximized) at 6 ~ 3T (IF).

3.3.6 Model 2: Scalar Dark Matter

In this section, we consider Simplified Model 2 where the DM particle is a real
singlet scalar, y = S, and the coannihilation partner is a Dirac fermion, (n*,n7) =

(U, ¥) = (¥, U~). We take ¥ to have the same quantum numbers as 7 except for
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the Z, (dark sector) charge. The Lagrangian is given as:

L = Lsu + Lpm + Leap + Ling,
1 1
5((%5)2 — §m2DMS2,
Loap = V(i) — My)V,

LDM —

Lii = GouSVYPrT + hec., (3.3.24)

where My = mpy + AM and Pr = H% is the right-handed projection operator
for Dirac spinors. This simplified model can be realised for example in models with
extra dimensions by regarding ¥ as the first excited Kaluza-Klein (KK) mode of
the 7 and S as a heavy and stable singlet, such as the first KK-mode of the Higgs
boson [353,[354] or a scalar photon in D > 6 theories [354,355]. In such models,
the approximate mass-degeneracy, or a compressed spectrum between m, and My,
resulting in AM < mpy, which is assumed in this work, is justified because the
mass of each of the KK modes for different particles is dominated by an universal
contribution that is inversely proportional to the size of the extra dimension(s). As
in the case of Simplified Model 1a, this model is manifestly gauge invariant and

renormalisable.

We note that a term |H|?S? is also allowed by the symmetry. After the elec-
troweak symmetry breaking, this term induces a 3-point interaction hASS that gives
the contribution to the direct detection as well as Qpyh2. A phenomenological im-
plication of this term has been well studied in the literature [177,[356-360]. Since
the aim of this work is to primarily study the effect of coannihilation, we simply
assume that the coefficient of this term is small or otherwise exclude it from our

simplified model.

Fig. shows our numerical results of this simplified model for g,,, = 0.1,
0.5 and 1.0 from left to right. Comparing it with Fig. [3.7, one can see that the
LHC limits are tightened but also the preferred coannihilation partner mass by the
relic density gets shifted to higher values. This is because the number of degrees
freedom for ¥ is doubled compared to ¢. Also, the production cross-section of the

coannihilation partners is enhanced compared to Model-1a because qg — UHW¥~
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Figure 3.11:  Model 2: The DM coannihilation strip and collider searches for a long-
lived charged Dirac fermion ¥. The dark-blue region satisfies the correct dark matter relic
abundance within 3o, the light-blue region overproduces the dark matter energy density.
The horizontal black line corresponds to the mass of the 7 lepton. The region coloured
in red corresponds to current HSCP limits for centre-of-mass energy of 8 TeV and 18.8
fb=!. The three dashed lines (purple, green and magenta) correspond to our projections
for centre-of-mass energy of 13 TeV and 30, 300 and 3000 fb~! of integrated luminosity
respectively.

does not incur velocity suppression near the threshold. The current bound from the
HSCP search excludes Mg < 410 GeV and the projected sensitivity reaches 600, 950
and 1350 GeV for the 13 TeV LHC with 30, 300 and 3000 fb~! integrated luminosity,
respectively. These current and projected limits are independent of g,,, and AM as

long as AM < 1.5 GeV.

The preferred coannihilation partner mass required by the relic density (the
dark-blue strip) is found around My ~500—600 GeV for g,,, = 0.1 and 0.5, and
My ~950—1050 GeV for g,,, = 1.0. The impact of g,,, and mpy on Qpyh? can be
seen more clearly in Fig. , where limits from the LHC and Qpyh? are plotted in
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Figure 3.12: Model 2: Plot of the coupling g,,,, versus the dark matter mass mpy = mg.
We scan over AM € [0,1.2GeV], where AM =My —mg. The dark blue band satisfies the
correct DM relic abundance within 30, the region in light blue overproduces the amount
of DM. The colour-coding for the exclusion regions is the same as in the previous Figure.

the (mpm, gp,,) plane scanning AM in the [0,1.2] GeV range. In this plot, one can
see the DM relic density is not sensitive to g,,, until g,,, < 0.5. This is because the
(oegv) is determined by the process W~ — SM particles, which is independent
of g, For g,,, > 0.5, the dependence enters through, i.e., ¥£x — SM particles
((oeiv) ox g2 ,) and UFP= — 757% exchanging S in the t-channel ((oegv) o g2 ).
Considering the limit of the DM overproduction and the HSCP searches, one can

see that the entire parameter region with ¢,,, < 1.0 will be explored by the LHC
Run-2 with 3000 fb~! of integrated luminosity.

3.3.7 Model 3: Vector Dark Matter

We now study the case in which the coannihilation partner is a Dirac fermion,
(n*,n7) = (¥, ¥) = (U, ¥7), as in Model-2 but the dark matter is a neutral
vector boson, x = V,,. We modify the Lagrangian Eq. (3.3.24]) with

1 1
Lo = Z(ayvy -9,V + ém%MVHV“,

Lint = gDMV‘uE’}/uPRT + h.c.. (3325)

Similarly to Model-2, this simplified model can be realised in models with extra

dimensions by identifying V), as the KK photon and ¥ as the KK 7. It may also be
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Figure 3.13:  Model 3: The coannihilation strip and collider searches for vector DM
and a long-lived charged Dirac fermion W. The dark-blue region satisfies the correct dark
matter relic abundance within 3o, the light-blue region overproduces the dark matter
energy density. The horizontal black line corresponds to the mass of the 7 lepton. The
region coloured in red corresponds to current HSCP limits for centre-of-mass energy of 8
TeV and 18.8 fb~!1. The three dashed lines (purple, green and magenta) correspond to our

projections for centre-of-mass energy of 13 TeV and 30, 300 and 3000 fb~! of integrated
luminosity respectively.

possible to interpret V,, as a p meson and ¥ as a baryon in a new strong sector in

composite models.

We show our numerical results of this model in Fig. [3.13, where g, = 0.1,
0.5 and 0.7 are examined from left to right. One can see that the current and
projected LHC limits are almost identical to those found in Model-2, since those
models have the same coannihilation partner ¥, and the relevant production process
qq — (v/Z)* — UV is independent of the spin of the DM. On the other hand, the

relic density constraint is quite different from the corresponding constraint in Model-
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Figure 3.14: Model 3: Plot of the coupling g,,,,versus the dark matter mass mpy =my .
We scan over AM € [0,1.2GeV], where AM = My —my, this is the mass region where
the HSCP limits are independent of the coupling g,,,,. The dark blue band satisfies the
correct DM relic abundance within 3o, the region in light blue overproduces the amount
of DM. The colour-coding for the exclusion regions is the same as in the previous Figure.

2. Interestingly, this model has larger Qpyh? for g,,, = 0.1 compared to Model-2.
In the limit g,,, < 1, Eq. (3.3.17)) implies

<Jeﬁv>|Mode12 ~ (gvu+g\p)2 _ 4_9 (3326)
(OeiV) IModels (85 T 84)? 25° o

On the other hand, for larger g,,, the DM relic rapidly decreases, as can be seen in
Fig.|3.14] This is because the contribution of V,,V,, — 777~ process is not chiral or
velocity suppressed in this model and it has a strong dependency on g, ,,: (¢(V,,V,, =
7)) géM. One can see from Fig. [3.14] that a large region of the parameter
space can be explored by the LHC and relic density constraints. Nevertheless, the
region with mpy 2 1.4 TeV and g,,,, 2 0.7 may be left unconstrained even after the
high luminosity LHC with 3000 fb~!, although such large values of g_,, might bring
sensitivities for direct detection experiments, which, however, is beyond the scope

of this work.

Indirect detection

Unlike Model-1 and Model-2, Model-3 postulates a spin-1 dark matter particle, V.

The dark matter pair annihilation V,,V,, — 777~ in the present Universe is therefore
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Figure 3.15:  The rate of the dark matter annihilation V,V, — 717~ as a function
of the dark matter mass. The red line corresponds to the current limit obtained by the
gamma-ray observation of Milky Way dwarf spheroidal galaxies (dSphs) at the Fermi-
LAT satellite . The yellow dashed line corresponds to the thermal relic cross-section
assuming the pure V,V,, — 7777 process. The coloured regions correspond to different
values of the coupling g,,, and AM is scanned over the [0, 3] GeV range.

not chiral suppressed and may be sensitive to indirect detection experiments. We
compare the annihilation cross-section computed by MicrOMEGAs 4.1.5 with the
upper limit derived from the gamma-ray observations of Milky Way dwarf spheroidal

galaxies (dSphs) at the Fermi-LAT satellite [85].

We show our results in Fig. where AM = My — mpym Is scanned over
the [0,3] GeV range and the coloured regions correspond to different values of the
coupling g,,,, as explained in the figure. In order to confront these with the exper-
imental limit assuming the nominal DM flux, these predictions are rescaled by the
square ratio of the calculated relic abundance and the observed one, (v, /Qpwy)?
with Qpyh? = 0.1197. We do not consider points that overproduce the relic abun-
dance, i.e. all the points satisfy QVJL2 < 0.1197.

As can be seen, by increasing the dark sector coupling g,,, from 0.5 to 1.0, the
annihilation rate decreases. This is because in this region, the abundance of V,
is mainly determined by the same annihilation process V,V,, — 777~ in the early
Universe and (Qy, /Qpu)? decreases more rapidly than the increase of the present

time annihilation cross-section. The situation is different for smaller values of g,
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Figure 3.16: The 8 TeV (solid) and projected 13 TeV (dashed) limits from HSCP searches
at the LHC for pair-production of the scalar coannihilation partner, ¢*. The projected
limits correspond to the 13 TeV LHC with 30, 300 and 3000 fb~! integrated luminosities.
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Figure 3.17: The 8 TeV (solid) and projected 13 TeV (dashed) limits from HSCP searches
at the LHC for pair-production of the fermionic coannihilation partner, ¥*. The projected
limits correspond to the 13 TeV LHC with 30, 300 and 3000 fb~! integrated luminosities.

where QVMh2 is determined by the coannihilation mechanism and the annihilation
rate of W~ — SM particles, which does not depend on g, ,,, as discussed in Sec-
tion [3.3.2] One can therefore see that going from ¢,,, = 0.1 to 0.5, the annihilation

rate increases.
The red line in Fig. shows the Fermi-LAT limit assuming dark matter an-

nihilation into the 777~ final state. As can be seen, the predicted rate is more than

two order of magnitude smaller than the current limit across the parameter region.
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3.3.8 Limits in the Mass vs Lifetime Plane

The current and projected limits obtained from the heavy stable charged particle
searches shown in the previous sections can also be presented in a more model-
independent fashion by plotting on the mass vs lifetime plane. The plots in Fig.
shows the 8 TeV (solid) and projected (dashed) limits for the pair-production of long-
lived complex scalar field, ¢, as a function of the mass, My, and the lifetime times
the speed of light, c7. The left plot assumes ¢ has the same quantum number as the
right-handed 7 corresponding to Simplified Model 1a. In the right plot, on the other
hand, the interaction of ¢ is obtained by the procedure explained in Section [3.3.5|
(Simplified Model 1b) and taking @ = 0. The coannihilation partner ¢ in this case
corresponds to the purely left-handed stau in SUSY theories. Fig. shows the
same limits for the fermionic coannihilation partner, ¥. These limits are applicable

for both Simplified Model 2 and 3 discussed in this work.

3.4 Tau-philic Dark Matter Coannihilation at CLIC

In this section, we study the sensitivity at future e™e~ linear colliders for the sim-
plified models of dark matter presented in Section [3.3] There are current plans to
construct the Compact Linear Collider (CLIC) at the CERN site located across the
border between France and Switzerland. The first stage is planned to have centre-of-
mass energy /s = 380 GeV, while future stages with higher centre-of-mass energies
are planned to go up to 3 TeV [91]. Moreover, there are plans for the construction
of the International Linear Collider (ILC) in Japan, its first stage is planned to have
centre-of-mass energy /s = 250 GeV [90]. Considering that CLIC is planned to

reach higher centre-of-mass energies, we will focus our study on the latter.

3.4.1 Motivation

The simplified models of dark matter with a mediator particle can be classified by
its spin and quantum numbers, and they offer a rich phenomenology. However, not
all features that may be present in more complete models are implemented within

this framework. The primary example is the coannihilation mechanism, in which
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the DM (x) comes with an almost mass degenerate coannihilation partner (CAP,
n) and the DM relic abundance is determined not by the x-x scattering but mainly
by the n-n and n-x scattering. This mechanism appears in various extensions of the
SM, such as supersymmetric and extra dimensional models, and does not require a
mediator particle. In particular, the stau-coannihilation (n = 7) is often found in
phenomenological scans of the MSSM parameter space [293,361|, since the lightest
stau tends to be the next-to-the-lightest SUSY particle after the neutralino DM.

Phenomenology of the coannihilation mechanism is quite different from that
in models with mediators. In the latter, the interaction dictating thermal freeze-
out connects the DM and SM particles and severe constraints are placed from di-
rect /indirect detection experiments. On the other hand, if the coannihilation mech-
anism is operative, the thermal freeze-out is controlled by the interaction between
the CAP and SM particles, and the direct/indirect detection constraints can easily
be avoided. LHC phenomenology is also very different. Unlike mediator particles,
the coannihilation partner decays into the DM and SM particles very softly, and the
signal is easily swamped by the overwhelming background. Therefore, the LHC can
do very little on the coannihilation DM models in general. The only exception is the
extreme case where the mass splitting between the CAP and DM is smaller than the
tau-lepton mass, 1.777 GeV. In such a case, the coannihilation partner may have a
detector-scale lifetime and its production can be constrained at the LHC by looking
for highly ionizing and/or slowly moving anomalous tracks. We have studied this

possibility in Section

In this section, we discuss DM simplified models with tau-philic coannihilation
partners and study them in light of the future Compact Linear Collider (CLIC).
We demonstrate that, unlike the LHC, CLIC and other future lepton colliders can
resolve soft tau-lepton signature and offer the ideal opportunity to explore this class
of models. Even though CLIC proves clean final states for signal, the soft tau back-
ground produced by bremsstrahlung photon collisions, vy — 7777, is significant.
We take this effect into account and show how well CLIC can constrain the bulk of

the model parameter space at each stage of the experiment.
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Model-1
Component \ Field \ Charge \ Interaction
DM Majorana fermion (y) | Y =0 .
CAP Complex scalar (¢) | Y =—1 ¢"(x7r) + hoc.
Model-2
Component \ Field \ Charge \ Interaction
DM Real scalar (5) Y =0 =
CAP Dirac fermion (V) |Y =—1 S(¥Prr) +hec.
Model-3
Component \ Field \ Charge \ Interaction
DM Vector (V,,) Y =0 T
CAP Dirac fermion (V) |Y =—-1 Viu(¥y" Ppr) + hc.

Table 3.2: Simplified Models of DM with a colourless coannihilation partner (CAP)

3.4.2 Simplified Models for Tau-philic Dark Matter

Our simplified models consist of two new degrees of freedom: the gauge singlet DM
particle, x, and the charged coannihilation partner (CAP), n*). We assign these
particles the odd Z, charge to ensure the stability of the DM. The interaction term
is given by

LD gy XNTr + hec. | (3.4.27)

where g, is the dark sector coupling which we take to be real. The gauge invariance
forces 1 to be singlet under SU(3). and SU(2),, and have the hypercharge —1 as for
the right-handed tau. Restricting the particles not to have spins higher than 1, we
consider three possible spin assignments for the (y, n) pair: (%, 0), (0, %) and (1,
%) We refer to them as Model-1, 2 and 3, respectively. Those models together with

our notation are summarised in Table 3.2

The DM annihilation channel in our simplified models is unique, Yy — 7777. In
Model-1 (-2) where the DM is a Majorana fermion x (a real scalar S), this channel
is suppressed. The initial state in both cases forms a spin-0 state (due to the Pauli
blocking in the Majorana case). To conserve the angular momentum, the 747~ pair

in the final state must have the opposite chiralities in s-wave, rendering the contri-
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bution to be proportional to m? (chiral suppression). The dominant contribution
then comes from the p-wave for a Majorana DM and d-wave for a scalar DM, which
are suppressed by the factor v? and v*, respectively, where v is the average velocity

of the annihilating DM particles.

3.4.3 Expected Sensitivity at CLIC

At particle colliders the possibility arises to study pair production of the charged
coannihilation partners via an off-shell neutral gauge boson (v/Z) exchange. The
produced CAPs subsequently decay into the DM particle and a tau lepton. In the
bulk of the viable parameter region, the mass splitting is small (AM ~ 20 GeV)
and the decay products of the CAP become very soft. In this region the LHC is

hopeless to distinguish the signal from the overwhelming background.

The ete™ collider can create pairs of coannihilation partners (1) via a neutral
gauge boson exchange. The produced CAPs then decay into the DM particle y and

a tau lepton:

efe” = ntn = 1T xx. (3.4.28)
We focus our study on the signal coming from prompt decays of n* and hence we
study the region of parameter space with AM > m.. The opposite case (AM < m.)
may be probed at the LHC by looking for anomalous charged track signatures since

n can be long-lived in this region, cf. Section [3.3]

The production cross-sections for scalar (¢) and fermionic (V) CAPs with Y =—1

are given by [362/-364]

olefe” = ¢T¢p7) = a’ns-A- éﬂg, (3.4.29)

olete” - UTU7) = a’rs-A-f <1 - éﬁz) ) (3.4.30)

with
2 2(gr+9r)9r | (92 +9R)9R
A o _2 + - 2 + 2\2 ?
s s (s—m3) (s —m3)

(3.4.31)
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Figure 3.18:  The cross-sections for pair production of coannihilation partners.
The scenario with Dirac fermion (complex scalar) as the coannihilation partner
correspond to red (blue) curves.
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(3.4.32)

where « stands for the fine-structure constant, g;, and gr correspond to the couplings

between the Z boson and the electron, and ( is the velocity of the outgoing ns

e
B=/1— —2 (3.4.33)
S

These simple formulae neglect the subleading effects of the Z boson width and the

energy loss of incoming electrons due to bremsstrahlung photons.

In Fig. [3.18| we present the cross-sections of scalar (¢) and fermionic (V) CAPs at
the 500 GeV CLIC. In the formulae we can see that the cross-section is proportional
to 3 for fermions, while it is proportional to 32 for scalars as 3 — 0; therefore, the
scalar production is significantly reduced as the mass gets closer to half of the ete™
centre-of-mass energy. This feature is clearly seen in Fig. [3.18 Moreover, we note

that the production rate is independent of g ,,.

We also comment on the vector boson (v/Z) fusion (VBF) channel, efe™ —

n*n~ete | Unlike the Drell-Yan process, the production rate of this channel is

6In our simplified models the W-boson fusion channel, ete™ — ntn~vi, is absent, since the
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not proportional to 1/s and could potentially be important for large s. We have
estimated the LO cross-section of this process with MadGraph [338| requiring that
out-going electrons have pr > 0.01 GeV and |n| < 7 to avoid the t-channel singularity
in the forward region. For m, = 300 GeV we find the cross-section of this process
to be UZBF = 0.17 fb and O’ZBF = 0.9 b, both of which are order of magnitude
smaller than the Drell-Yan processes of the corresponding models. We therefore do

not include this process in our study.

In the region where the coannihilation mechanism is effective, the final state taus
are very soft due to a small mass splitting between the CAP and DM. This region
suffers from a large soft tau background produced by collisions of forward photons
emitted by the incoming electrons: vy — 777, This background can be suppressed
by demanding a high energy ISR photon in the event. If such a photon is produced,
one of the beam-remnant electrons will be deflected and detected, and the event
can be safely rejected [365]. The efficiency of the analysis based on this technique
in the case of hadronic tau final state is studied in detail in Ref. [366|. The latter
work provides the 95 % CL exclusion limit in the (M, m,) plane assuming 500 GeV
ete™ collider with 500 fb~!. We recast their result into our simplified models in the
following way: along the exclusion contour, we calculate the required signal events,
Nmax(AM), (before event selection) needed for exclusion for each value of AM. For
different collider energies /s, integrated luminosities £ and spins ¢/¥, we demand

the signal events before event selection not to exceed the corresponding upper limit:

0¢\>//§\II(M¢/\1;) L S Nmax(AM) . (3434)
This recasting method has been commonly used in the literature [3,[293,350] and
proved to work well empirically. The assumption behind this method is that in the
future analysis, the signal efficiency over the square root of the background efficiency
(¢5/V€B) may be improved compared to the current value (e5/+/€5), since more

events are available due to the increase of the energy or luminosity, in such a way

that € /vVeB ~ (\/B/By)(e5 /\/€f), where B and By are the number of future and

coannihilation partner is SU(2), singlet and does not couple to the W-bosons.
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Figure 3.19: The DM coannihilation strip and the projected exclusion limits at
CLIC for the three models presented in Table [3.2] Different colours correspond
to different centre-of-mass energies /s as shown in the plot. Solid, dashed, dot-
dashed and dotted lines correspond to 500 fb™*, 1 ab™", 1.5 ab™" and 3 ab™! for the
integrated luminosities respectively. The region coloured in magenta corresponds
to projected limits for long-lived charged particles searches at the high luminosity
stage of the LHC; namely, centre-of-mass energy of 13 TeV and 3 ab™' [3]. The
horizontal grey line indicates the mass of the 7 lepton. The blue regions satisfy the
correct dark matter relic abundance within 30 for different values of the coupling

gDM'

present background events, respectively. We present our results in Fig. where
the projected sensitivity of 95 % CL are shown for various assumptions on the collider
energy and luminosity. The blue bands show the region corresponding to the DM
relic density observed by the Planck satellite mission |37, within 30, for several
values of g,,,. The region above the blue band is excluded due to overproduction of
DM, unless the thermal history of the Universe is modified. These plots illustrate the
complementarity between the projected limits for CLIC and the ones corresponding

to searches for long-lived charged particles at the LHC, the latter correspond to the
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region coloured in magenta.

The upper panel shows the projected sensitivity for Model-1 in which DM is a
Majorana fermion. In this scenario, the coannihilation partner is a complex scalar
(¢) and the production cross-section Eq. gets suppressed by /3% at the vicinity
of the kinematic threshold. Therefore, the exclusion limits on this scenario are
weaker than those in the scenarios with a fermionic CAP (V) (Model-2 and -3).
Furthermore, the production rate gets smaller for larger /s as can be seen in the
expression of A in Eq. (3.4.31)). Consequently, increasing the collider energy does
not help to explore smaller AM region. In order to probe the coannihilation strip for
Gpy = 0.5, increasing the luminosity from 1 to 3 ab™! represents a better improvement

than increasing the centre-of-mass energy from 1.5 to 3 TeV.

The lower panel shows the exclusion limits on Model-2 and -3 corresponding to a
scalar and a vector DM, respectively. The coannihilation partner is a charged Dirac
fermion (¥) in both scenarios. For /s = 380 GeV with 500 fb~! the projected
limits on these models are very close to the kinematic threshold (Mg = 190 GeV).
In Model-2, the DM overproduction constraint requires My to be smaller than 1 TeV
for g,,, < 1. This region can be explored by 3 TeV CLIC apart from a compressed
mass region AM < 2.5 GeV. Unlike Model-1 and -2, the DM density in Model-2
can easily be brought down to the allowed value, without resorting to small AM,
due to the absence of chiral suppression in the yxy — 777~ mode. Thus, My can

2 0.7, which exceeds the kinematical threshold

~Y

go higher than as 1.5 TeV for g,
of 3 TeV CLIC. On the other hand, almost the entire region with g,,, < 0.7 can be
explored by CLIC, as can be seen in the lower right panel of Fig. [3.19|

3.4.4 Summary

We have studied the sensitivity of the future Compact Linear Collider to the tau-
philic DM simplified models with a coannhilation partner. Three distinctive scenar-
ios have been examined: (i) Majorana DM, (ii) Real scalar DM and (iii) Vector
DM, where the CAP is a complex scalar in the first model, while it is a Dirac fermion

in the latter two. We have found that CLIC has the excellent sensitivity to these
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models. In particular, if the CAP is a Dirac fermion, almost entire region allowed
by the DM relic constraint can be explored by 3 TeV CLIC. If it is a complex scalar,
the region with small mass splitting AM < 10 GeV may not be probed depending
on the mass of the scalar. We found that larger luminosity helps greatly in exploring

the small AM region even for low energy options (1/s = 380 GeV and 1.5 TeV).

The models presented in this report are difficult to be probed by direct and
indirect DM detection experiments as well as by the LHC. Therefore, lepton colliders
such as CLIC, provide an almost unique opportunity to explore them. Consequently,
a possible discovery of a new heavy electrically charged particle decaying into a 7-
lepton plus missing energy can provide information about one of the most pressing
questions in high-energy physics; the nature of dark matter. In addition, this would
present motivation to develop new techniques to explore models with compressed

mass spectra at CLIC.

3.5 Summary

The nature of dark matter remains one of nature’s best kept secrets. For this reason,
there is a considerable ongoing experimental and theoretical effort dedicated to the
discovery of the dark matter particle. There has been a rapid development in the
number and scope of direct and indirect detection experiments, and in LHC and
future collider searches of DM. A standard signature to search for dark matter at
colliders is the mono-X (or multi-jets) plus missing energy. These searches are being
exploited and interpreted in terms of simplified dark matter models with mediators.
A growing number of the analyses are also dedicated to the direct search of the

mediator which can decay back to the SM degrees of freedom.

In this chapter we considered an alternative DM scenario characterised by sim-
plified models without mediators. Instead, they include a coannihilation partner
particle in the dark sector. In the scenarios with a relatively compressed mass
spectrum between the DM and its charged coannihilation partner, the latter plays
an important role in lowering the dark matter relic density. The signal we study

at particle colliders is the pair-production of the coannihilation partners that then
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ultimately decay into cosmologically stable dark matter.

Concerning searches at the LHC, we have focused on the case when the dark
matter candidate and the coannihilation partner are nearly mass-degenerate, which
makes the latter long-lived. Compared to other models of dark matter that rely on
signals with missing energy at colliders, in these models the crucial collider signature
to look for are tracks of long-lived electrically charged particles. For the region
of parameter space with larger mass splitting, where the coannihilation partner
promptly decays into dark matter (missing energy) and a 7-lepton, we studied the

sensitivity at future linear e™e™ colliders such as CLIC and ILC.

We considered three different scenarios for cosmological DM: a Majorana fermion,
a real scalar and vector dark matter. The model with Majorana DM can be moti-
vated by theories with supersymmetry, such as the bino—stau coannihilation strip in
the MSSM. The model with vector DM can be motivated by Kaluza-Klein theories
of extra dimensions, where the KK photon plays the role of dark matter, or by a new
strong sector in composite models. Nevertheless, in this work we have advocated
for a simple (and arguably more inclusive) purely phenomenological approach and

we have considered the couplings and the masses as free parameters.

In the search for the dark matter particle, particle accelerators represent a com-
plementary approach to direct and indirect detection experiments. Due to the large
interaction energy, an effective field theory approach might not be the best frame-
work to study dark matter pair production at particle colliders. In this chapter, we
have presented a set of simplified models which are complementary to the standard
mediator-based simplified DM models set. We have characterised these models in
terms of three to four classes of simplified models with as little as three free param-
eters. We have demonstrated that a large region in the parameters space of these

models will be probed at the LHC and future linear colliders to probe these models.



Chapter 4

New Observable for the Detection of
Ultralight Axions

In this chapter we propose an observable that could serve for the detection of ultra-
light axions. A cloud of ultralight axions forms surrounding a Kerr black hole via
the mechanism of superradiance. Due to its coupling to photons, an inhomogeneous
pseudo-scalar (axion) field configuration behaves like an optically active medium.
Consequently, if a light ray passes through the axion cloud, it may experience a
polarisation-dependent bending. We explore the size and relevance of such effect

considering both the QCD axion and a generic axion-like particle.

In Section [4.1] we present a brief overview of the mechanism of black hole super-
radiance and the motivation for our work. In Section 4.2} we discuss general aspects
of black hole superradiance with a particular emphasis on the conditions that allow
for an analytical approach. In Section [4.3] we compute the polarisation-dependent
bending that a ray of light experiences by travelling through an axion cloud. In
Section (4.4} we discuss the phenomenological relevance of our result, and in Sec-
tion we provide further details of the calculations done in this work. Finally,

we present a summary in Section [4.6]

134
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4.1 Motivation

Superradiance is a radiation enhancement process which occurs in the presence of
a dissipative system. We refer the interested reader to [367| for an excellent and
comprehensive review about the role of superradiance in astrophysics and particle
physics. In the following, we highlight the main aspects that are relevant for our

analysis.

In General Relativity, rotating black holes, also referred to as Kerr black holes,
have an associated event horizon and ergoregion [145,368-372|. It is the presence
of these two regions that allows for the mechanism of superradiance to take place.
The former is, for all intents and purposes, a one-way viscous membrane from which
nothing, at least at the classical level, can escape. In other words, the presence of an
event horizon makes black holes perfect absorbers. The latter is a region surrounding
the event horizon where everything — literally, including light — is forced to co-rotate
with the black hole. The presence of both the event horizon and the ergoregion
creates the ideal conditions to make the Penrose process — that is the extraction of
energy from a rotating black hole — possible [144]. Black hole superradiance can be

thought of as the wave analogue of the Penrose process.

Superradiance has remarkable consequences in the presence of a confining mech-
anism, for instance provided by the presence of a perfectly reflecting mirror sur-
rounding the black hole. In this case the amplified pulse bounces back and forth,
exponentially increasing its amplitude, and eventually leading to an instability. This
situation is naturally realized when the Kerr black hole is coupled to a massive bo-
son since low-frequency radiation is confined due to a Yukawa-like suppression. In
Fig. we illustrate schematically the axion cloud that forms around a rotating
black hole.

We now discuss these points in a more quantitative manner following the same
line of reasoning presented in [367,[372]. We consider a massive wave-packet in
the gravitational field of a black hole. The situation is remarkably similar to that
of an electron in the Coulomb potential of an hydrogen atom, and the problem

— after introducing the tortoise coordinate r*, with r* — —oo as r approaches the
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black hole horizon r, — reduces to the solution of a Schrodinger-like one-dimensional
equation d*¥/dr*? + Veg(r)¥ = 0 describing the radial motion under the influence
of an effective potential. For a Schwarzschild black hole of mass M the effective

potential takes the form

()t - (1 T [P 02D

— + | (4.1.1)

r 73 r

where Gy = (1/Mp)? is the Newton’s constant (with Mp; ~ 1.22 x 101 GeV the
Planck mass), w is the frequency of the wave-packet, p the scalar field mass, and [
the azimuthal quantum number. The structure of Eq. remarks the analogy
with the hydrogen atom mentioned before with a gravitational potential — instead
of the usual Coulomb contribution — besides the centrifugal term. Asymptotically,
considering both the horizon at r — r, (equivalently, r* — —o0) and spatially
infinity at » — oo, the most general solution has the form

Te ke 1 Qe+ sy,
U~ (4.1.2)

Rethor" 4 Temhor"  p 5 00,

with k2 = Vig(r — ry), k2 = Veg(r — 00), and generic transmitted (7), reflected
(R), incident (Z), and outgoing (O) flux. In the following simplified discussion
we assume the potential to be real even if this is not true in general because w
is a complex number. Since under this assumption the Schrodinger equation is
real, the complex conjugate of any solution is also a solution. We can, therefore,
e, = WV, U7) with W(U, ¥*) =
U(U*) — U*(¥), and we find the unitarity condition [367]

impose the Wronskian equality W(¥, U*)|

r—o0’

k
RI? = 2/ = = (IT1* = |OF) . (4.1.3)

Notice that for a black hole at the horizon the outgoing flux at the horizon is zero,
O = 0, at least at the classical level. The wave is superradiantly amplified, i.e.
IR|> > |Z|?, if ky/ko < 0. For the Schwarzschild black hole in Eq. one
immediately finds that &y /keo|gy, = w/\/w? — p12, and the superradiant condition
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axionic cloud

accretion disk

Figure 4.1:  Schematic depiction of BH superradiance. The diagram shows the
top view of the system. The blue shadow depicts the axion cloud surrounding the
rotating black hole. The latter is shown in black at the centre of the image. The
region coloured in grey represents the accretion disk.

never happens. On the contrary, since O = 0, we find |R|* < |Z|? that is the typical
case of an absorber material. Let us now move to the case of a Kerr black hole

with mass M and angular momentum J = aM. The effective potential is more

complicated (see Egs. (4.2.11}4.2.12)) below) but it is straightforward to find

ky

Foo licors (W 2GNMT+> [V =it (4.1.4)

[e.9]

The superradiant condition is satisfied if w < am/2GyMr,, where —l < m < [ is

the magnetic quantum number, and the reflected wave is superradiantly amplified.

This simple example makes clear the general features of black hole superradiance
outlined at the beginning of the section. First of all, the importance of the horizon.
In the absence of an horizon — consider for instance a generic star — it is necessary to
impose a regularity condition at the centre. As a consequence of dV¥/dr|,_,o = 0, the
Wronskian at the centre vanishes. The Wronskian at infinity gives W(¥, ¥*)| , =
—2iko(JR|* — |Z|?) = 0, and there superradiance does not take place since |R|* =
|Z|?>. More generally, this is the typical condition that occurs in the absence of a
dissipative mechanism because in this case conservation of energy implies that the

outgoing flux equals the transmitted one, |7 |* = |O[?, and the condition |R|* = |Z?
follows from Eq. 4.1.3E] Second, we see that the black hole spin a # 0 is crucial

'Tn the absence of an horizon, superradiance is possible only in the presence of an alternative
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to fulfil the superradiant condition, and rotational energy powers the growth of
the reflected wave in Eq. . The extraction is made possible because the
rotational energy of a Kerr black hole is not located inside the event horizon but in
the ergoregion. This is the crucial difference compared to the Schwarzschild case, in
which there is no energy available outside the event horizon. Finally, the presence
of a mass term p naturally provides a confining mechanism for the low-frequency
reflected waves since if w < p from e**=" and ko, = \/w2fp2 one gets a Yukawa-like

suppression.

The striking conclusion that follows from this discussion is that, under the specific
conditions that trigger a superradiant instability, in the presence of a massive scalar
field it should not be possible to observe fast-spinning black holes simply because the
black hole must spin down as a consequence of energy extractionE] Black hole spin-
measurements [377,378| are therefore a valid experimental observable to constrain
or discover new massive scalar particles [147]. As a rule of thumb, superradiance is
relevant if the Compton wavelength of the massive particle Acompton = 1/ is of the

same order compared with the black hole radius R ~ 2GyM

1012 6V
M ~6.7 (Te) M, . (4.1.5)

Supermassive black hole with M ~ 10° M, corresponds to ultralight scalar with

p ~ 10718 eV while stellar-mass black holes are relevant if y ~ 10712 V|

From a particle physics perspective, such light scalars are natural if protected
by some underlying symmetry that makes the presence of a tiny mass term techni-
cally natural, and the most convincing case is that of a pseudo-Nambu-Goldstone
boson, a light scalar field arising from the spontaneous breaking of a global sym-
metry. The QCD axion and, more generally, axion-like particles (ALPs) are typical
examples. The former is theoretically motivated by the solution of the strong CP

problem, the latter are ubiquitous in the low-energy limit of string constructions

dissipation mechanism. See |373| for an interesting recent example in the context of conducting
rotating stars.
2Superradiance is also possible for a massive spin-1 [374,375| and spin-2 field [376].
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Parity ] R
transformation Rotation around &,

Figure 4.2: Parity transformation for a triad of vectors under a parity transforma-
tion (central panel). A further rotation by 7 around the é; axis (right panel), made
possible by isotropy of space, brings the vectors to the final configuration.

(the “axiverse” [146|). Black hole superradiance is, therefore, an extremely interest-

ing discovery tool for this class of new physics particles.

However, the story told so far only relies on gravitational interactions. In other
words, any boson with mass pu, irrespective of its particle physics origin, will display

the same physics as far as the aforementioned picture of superradiance is concerned.

The goal of the present chapter is to present and discuss an observable con-
sequence of black hole superradiance that is intimately connected to the axionic
nature of the scalar cloud. To this end, we shall exploit the axion effective coupling

to photons which is defined by the Lagrangian density

‘Ca’w = gc?%(DFMVFWV = _ga’y’yq)ﬁ : é . (416)

In the case of the QCD axion this coupling — inherited from the mixing with light
mesons (mo, 1, 1/, et cetera) as well as by the triangle anomaly of the Peccei-Quinn
fermions — is in general non vanishing and it motivates a rich search strategy based

on axion-photon conversion in external magnetic fields [379].

Our idea is very simple, and can be illustrated as follows. Consider an electro-
magnetic wave in the vacuum, defined by the wave vector k = E/ |l§| determining
the direction of propagation, the angular frequency w, and two basis polarisation
vectors €;—1 2, both being perpendicular to k. Under parity, we have the transfor-
mation property (/Af, é1,62) 5 (/%, €1, —€s). The situation is illustrated in two steps

in Fig. 4.2l The wave vector i flips sign as a consequence of the Fourier space
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identification V — ik. The two polarisation vectors also flip sign. This is evident
in the Coulomb gauge, in which E = iwA. The vector potential A inherits the
parity transformation property of the electric field, E 5 —FE. The Coulomb gauge
is very useful because it exhibits the physical degrees of freedom: the 3 components
of A satisfy the constraint VA= 0, leaving behind the 2 degrees of freedom that
can be identified with the polarisation states of the photon. This means that one
can write (for some numbers a;—; » left unspecified) A= > i1 @i, and the parity
transformation of é;— 5 follows from AL A Finally, because of isotropy of space,
only the relative orientation between vectors really matters. We can therefore ap-
ply a 7 rotation around the é, axis in order to get the final parity transformation
quoted above, (l%,él,ég) R (/%, €1, —€s). This specific choice suggests to use left-
and right-handed circular polarisation vectors defined by é, g = (é; Fiés)/ V2 since
under parity ér,r R érr- In the absence of parity violation, there should be no
difference in the physical properties of a right- and a left-handed circularly polarised
electromagnetic wave. This discussion is of course a trivial consequence of parity

invariance of electromagnetism.

The photon coupling in Eq. (4.1.6) does not respect parity, since EL —F and

B 4 B. This implies that the left and right components of an electromagnetic
wave travelling through an axion background should experience different physical
effects. This is precisely what we shall explore in this work considering the axion

cloud surrounding a Kerr black hole as an optically active medium.

4.2 Axion Clouds around Rotating Black Holes

The massive Klein-Gordon equation

0® = 12® (4.2.7)
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in a Kerr background

oM 5 draM
I —— (1 . ’“) dt? + Zdr? — T2 2aedt + $.d6?
2 A
2r Ma?
+ {(rQ +a®)s; + e 53} de* (4.2.8)

where ¥ = r* +a?c2, A = (r—ry)(r—r_), ro. = M(1++v1—-a?), a = J/M,
a = a/M, admits the existence of quasi-bound states, as we shall briefly review in

the following.

We use the short-hand notation sy = sinf, ¢y = cos, and (¢,r, 0, ¢) are the usual
Boyer-Lindquist coordinates. We work in natural units in which Planck’s constant
h, the speed of light ¢, and Newton’s constant Gy are set to one. Occasionally, we

will reintroduce Gy to make some equations more transparent.

The massive Klein-Gordon equation in the Kerr background allows separation

of variableg| with the following simple ansatz for the scalar field [372)

O(t,r,0,¢) = Y _ €Sy (0)e " Ru(r) . (4.2.9)

Ilm

The angular equation defines the spheroidal harmonics Sy, (#) [383]. The angular

eigenvalues )\;,, are approximated by

2 m? —1(1+1)+1/2]
(20 — 1)(21 + 3) ’

Aim > (1 +1) + (4.2.10)

where the so-called degree of spheroidicity ¢? is defined by ¢® = a?(w? — p?). The
radial part, on the contrary, reduces to a Schrodinger-like problem. Defining the
Regge-Wheeler tortoise coordinate dr* = [(r* + a*)/Aldr, and rescaling the radial
function according to . (r*) = (r? + a®)/2R,(r), the radial equation reads

= V(W) u=0 (4.2.11)
dr - -

3This property follows from the fact that the Kerr metric admits — among its mysterious “mir-
acles” [380] — the existence of a Killing-Yano tensor [381382].
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where the potential is given by

Ap?  AMramw — a*m?® + A [N, + (w? — p?)a?]

V =
r? + a? (r2 + a2)?
A(3r? — 4AMr + a?) 3r2 A2
(a2 +T2)3 - (,’,.2 +a2)4 . (4212)

The relation between the tortoise coordinate r* and the ordinary radial coordinate

T*ZT+W_”1H(L_1)_(2L1H(L_1) . (4.2.13)

(ry —r-) Ty re—1r_) r_

T is

The radial equation must be solved with the following boundary conditions

o 1. .
R A - PR Co o b A (4.2.14)

r*:foo r*—oo T

with k, = w — mQy, being Qy = a/2Mr, the angular velocity of the Kerr black
hole. Notice that we have purely ingoing waves at the horizon (r* = —o0 in tortoise
coordinate); towards spatial infinity, on the contrary, the solution tends to zero since

we are interested in bound states.

The manipulations above reduced the problem to the motion of a particle subject
to the one-dimensional effective potential in Eq. . We show the effective
potential in the left panel of Fig. [£.3] The presence of the mass term in the Klein-
Gordon equation generates a potential well in region III, allowing for the formation of
bound states. Notice that in the massless limit, the potential well cannot be formed
(dot-dashed red line in the left panel of Fig. [4.3). Gravitational and centrifugal
effects create a potential barrier in region II, and the particle bounded in region III
can tunnel in the black hole ergoregion, region 1. If the phase velocity of the purely
ingoing wave at the horizon is negative — that is if wg < m{y from the boundary
condition in Eq. (4.2.14), with wgr = Re(w) — the transmitted wave will carry
negative energy into the black hole, and the reflected wave will return to infinity with
greater amplitude and energy than the incident wave: The superradiance mechanism

is triggered.

The growth of superradiant instability depends on the dimensionless product
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Figure 4.3: Left panel. Effective potential in Eq. (4.2.12)) as a function of the

tortoise coordinate r*. Right panel. Evolution of the black hole angular momentum
due to accretion starting from the Schwarzschild limit. Vertical lines mark two

critical conditions in Eq. (4.2.22)) for m = 1 and different values of M u. The solid
red line becomes dashed where the inclusion of radiation is important.

M. This product represents the ratio between the horizon size of the black hole

and the Compton wavelength Acompton 0Of the scalar field

o GNMIU

Mp = e

. 4.2.15
he )\Compton ( )

Two limits are commonly used, Mpu < 1 and My > 1. The crucial difference is
the growth rate of bound states. Parametrically, we have the following order-of-

magnitude estimates [147,[371}372|

M

N 107> M A
Y (Mp)? ‘

(4.2.16)

T &~
Mp>1
In the limit My < 1 the growth of superradiant instability can be as short as 102 s

for stellar black holes
M

0.2\
~ 102
10 () ()

while in the opposite limit the presence of the e-folding makes the instability in-

(4.2.17)

significant for astrophysical black holes.
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In the following we assume the small My limit, with

M W
_ -2
My =75x%10"2 x (1OM@> x (10_12 eV> . (4.2.18)

The small My limit allows for a simple analytical understanding of superradiance.

In the small My limit, the eigenvalue problem for the radial equation admits an

hydrogenic-like solution w = wg + iwy [372]

2
p Mp
~g o MR 4.2.19
on=n-4 (7o) (4:2.19)
(M) ram l am 2
Wi Sy ( _2“”>£[1 L=7 +<M_2W+> !
(4.2.20)

with
24H2(20 + 1 + n)!

l! 2
Fo = (I+n+1)2+4p) [(21)!(2l+1)!} ' (42.21)

The eigenfrequencies are, in general, complex, and the superradiance condition reads

2ury M
e

(4.2.22)

Aerit ™~

When a > auit, the imaginary part of w becomes positive: The corresponding modes
increase in time, signaling an instability of the Kerr black hole in the presence of

the massive scalar field.

In the small My limit, the radial eigenfunction reads [372,384] (see also Sec-
tion (4.5.1)

21 M pi?

Rn :An ~ r/2L2l+1 ~
() = Augl) . gl7) =PIV, i

(4.2.23)

with L2*1(7) the Laguerre polynomials. In analogy with the hydrogen atom, the

combination ¥ = [ + n + 1 defines the principal quantum number.
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It is important to notice that the size of the cloud can be estimated as [147]

l 1)2M MY [01)?
(+(Tfl\4+u)2) ~(l+n+1)*x15x10° <M—®> (M_u> km . (4.2.24)

It implies that the cloud extends way beyond the horizon, where rotation effects can

T'cloud ™~

be neglected. In this limit the spheroidal harmonics S, (#) reduce to the flat space

spherical harmonics.

As clear from the previous discussion, superradiance is a dynamical process. It
is therefore crucial to specify what are the assumption underlying our analysis. The

physical setup we have in mind is the following.

1. Let us start considering a rotating black hole. In order to trigger the su-
perradiant instability, the black hole must spin above the critical value in
Eq. . We can not take this condition for granted, given in particu-
lar the lack of unambiguous experimental informations about black hole spins
at birth. However, it is not difficult to imagine physical processes by means
of which a black hole, even starting from a slowly-rotating configuration, in-
creases its mass and spin, eventually fulfilling the superradiant condition. The
simplest possibility is provided by accretion. Astrophysical black holes are
generally surrounded by an accretion disk of matter in the form of gas and
plasma, and the inner edge of this disk is located in the equatorial plane at
the position of the innermost stable circular orbit, rigco. From rigco, because
of the pull of gravitational attraction, particles are sucked into the black hole
increasing its mass and angular momentum. We can, therefore, ask the fol-
lowing crude question. What is the typical time scale needed to increase, via
accretion, the spin of a non-rotating Schwarzschild black hole with initial mass
M;, to maximally-rotating values? The accretion of a certain amount of rest
mass AM, results into a change of the black hole mass M and spin J given

by AJ = I(z, M)AMy and AM = e(z)AM, [385[386] [ where z = risco/M,

4In our simplified discussion we do not include the contribution from radiation, i.e. the torque
produced by photons emitted from the surface of the accretion disk. As shown in [386], radiation
limits the maximum spin to @ < 0.998. The inclusion of radiation is, therefore, important to
prevent violation of the cosmic censorship hypothesis but it is not crucial for our argument.
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e(z) is the energy per unit rest mass and [(z, M) is the angular momentum
per unit rest mass for a particle in the vicinity of the black hole. The explicit
expressions can be found in [387]. A simple algebraic manipulation leads to
a first-order differential equation that can be solved with the Schwarzschild

initial condition z, = 6. All in all, we find [387|

aon = (2) e ba (Y ] L ey

To fix ideas, Eq. (4.2.25)) implies, for instance, that a = 0.6 when M /M;, ~

1.25. Having set the relation between mass and spin, we now need an ex-
pression for the mass accretion rate. Following [388|, we assume the mass
accretion rate to be proportional to the Eddington rate M = fEddMEdd =
fraa(AnGnMmy,/nor), where n is the efficiency, m, the proton mass and
or ~ 1.7 x 103> GeV~2 the Thomson cross-section. We take n = 0.1. The
reader should keep in mind that this is a very conservative estimate. It is
indeed possible to imagine values of M much greater than the ones inferred
by using the Eddington formula by making the accretion disk physically thick,
and with low density. By integrating the mass accretion formula we find the

following expression for the accretion time tacc

M 47Gxm
| = T P ¢ 4.2.26
n V7 fEda ( s ) ACC ( )

where in the left-hand side the ratio M/M;, can be obtained by inverting
Eq. . In the right panel of Fig. we show the product fraatacc
in years (yr) as a function of the black hole spin. As mentioned above, the
computation of tpcc is subject to some astrophysical uncertainty, and the only
intent of our plot is to show that, even starting from the borderline case of a
Schwarzschild black hole, it is possible to reach critical values of spin in a finite
amount of time. We refer the reader to [388| for a more detailed numerical
study about the interplay between accretion and superradiance, and for the

rest of the chapter we will assume that the scalar cloud is not directly coupled



4.2. Axion Clouds around Rotating Black Holes 147

to the disk.

2. When the condition a > ay is satisfied, the black hole rapidly loses its spin
favouring the growth of the axion cloud. The cloud sprouts up from an initial
seed that can be simply provided by a quantum fluctuation of the vacuum,
as suggested in [389]. En route, we also note that Kerr black hole itself may
naturally provide a source term for the axion field. This is because the Kerr
metric in Eq. has non-vanishing Hirzebruch signature density RR [390].

By explicit computation, we find

afpv 288 aM? cos 6

~ €
RR = ———RasR, =
2\/__9 praBLlyy 7”7

€QBHVR9>\O¢5RHV0>\ = + O(CNLQ) .

(4.2.27)

N | —
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2

RR is proportional to the spin, and vanishes for a Schwarzschild black hole. If
the electromagnetic field is quantized in a gravitational background with such
property, the pseudo-scalar combination F WF H¥ acquires a non-vanishing ex-
pectation value F,,, F" = RR/487? [391] which, in turn, acts like a background
source term for the axion field via the usual electromagnetic coupling. After
this digression, let us now go back to the growth of the axion cloud. In the
left panel of Fig. H we show the superradiance rates in Eq. — in units
of M~! — for different levels. In the small My limit the fastest superradiant
level is the 2p level with n = 0 and [ = m = 1. The black hole loses its spin
by populating the 2p shell while all the remaining ones can be neglected. As
already noticed in Eq. , this process can be as short as 10% s for stellar
black holes.

3. The spin-down of the black hole continues until it reaches the threshold value
given by Eq. with m = 1. The imaginary part in Eq. vanishes,
and the spin-down process terminates. The black hole remains in this state
for a period of time that can be very long. Indeed, the next 3d level of the
axion cloud does not start being populated until a large enough number of
axions dissipate from the 2p level. In this respect, annihilation into gravitons
and annihilation into unbounded axions due to self-interactions are the most

efficient processes [147]. As soon as the cloud mass drops below a critical value,
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superradiance becomes operative again, and the black hole rapidly travels to
the next level. As discussed in [147], the time required for an axion cloud in
the 2p level to dissipate such that the next superradiant level can start being
populated can be extremely long — specially in the small My limit. To give a
concrete idea, the annihilation time — considering the 2p — 3d transition — can
be computed as follows. We start writing in full generality the time evolution
of the axion population in the 2p level due to axion annihilation into gravitons

as dN/dt = =Ty N%. The annihilation rate Ty, is given by

1 dpP
Fann = W/dQE s (4228)

where N is the number of axions and [ dQdP/dQ = dEgw/dt is the energy
per unit of time emitted into gravitational radiation. When the superradiance
condition is satisfied the imaginary part of w vanishes, and in the small M pu
limit we have wg ~ p. The computation of dEgw/dt cannot be performed
in flat space because the leading term in the small My expansion acciden-
tally cancels. We therefore use the corresponding expression derived in the

Schwarzschild background metric [388|

dEqw 4844 9m° (%g) (M) (4.2.20)

dt 23040 M?

where Mg is the mass of the axion cloud. Furthermore, since axions are non-
relativistic, we can write Mg = Npu. Eq. is in good agreement with the
computation recently performed in [392,393| using the Teukolsky formalism
in the fully relativistic regime. We can now integrate dN/dt = —T',,, N2, and

find
N(0) 1

®) 14+ TanN(0)t  Tapnt

(4.2.30)

In order to proceed further, we use the condition according to which the 3d

level starts being populated when the number of axions in the 2p level drops

below the value |147]
oy |12

Fls

2 2
_ 167f2M

RSN GYIE

(4.2.31)
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The presence in Eq. of the damping rate related to the level 1s is
due to the effect of axion non-linearities. These interactions are responsible
for level mixing, and introduce a superposition of the 2p level with the non-
superradiant 1s mode. In our example — remember that we are considering a
black hole spin such that the superradiant condition in Eq. vanishes
for the 2p level — the frequency of the 1s mode has a negative imaginary part,
and the level is damped. In the small My limit we compute the rate I'; using

the imaginary frequencies in Eq. (4.2.20]). The condition derived in Eq. (4.2.31])
defines, plugged into Eq. (4.2.29)), the critical time scale

Fls 1/2

Tsa

(4.2.32)

(20 M
T \484 + 972 ) wf2(Mu)t2

In Fig. 4.4 we show the time in years to depopulate the level 2p for two
representative value of black hole mass, M = 50 M and M = 10° M, as a
function of the axion coupling f, and the parameter M pu. From this estimate
it is clear that in the small My limit the axion cloud can remain stuck for a
very long time in the 2p level. It is therefore reasonable to focus on the values
[ =m =1, n=0. Motivated by these arguments, we adopt this assumption

in the rest of the chapter.

There are two scales in the problem, the oscillation time 7¢ = 1/wg and the

instability growth time scale 7 = 1/wy. In the small My limit we have

Wr = p— g (#)2 ST (4.2.33)
Wi = 48LM (% . 2,ur+) (Mp)° ~ (]\f\j)g . (4.2.34)

As a consequence
:—Sz®>>1 N (4.2.35)

We can therefore assume a stationary cloud, and write

(I)(t, T, 8, ¢) = Aog(f) COs (Qb - th) sin 6 , A(] = AOI . (4236)
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Figure 4.4: Left panel. Superradiant rates w; as a function of the dimensionless
parameter My for different levels. Right panel. Time required for an axion cloud
in the 2p level around a Kerr black hole with mass M = 50 M, (red solid lines) and
M = 10° M, (blue dashed lines) to trigger a superradiant regime in the next 3d level
as a function of the axion decay constant f, and for different values of the parameter
M. For each Mpu, we compute the critical spin in Eq. and the rates I'yg
and I'sq using the frequencies in Eq. . The time scale of the transition is
given by Eq. . For each of the two analysed black hole masses, the value of
the parameter My fixes the axion mass p. In the case of the QCD axion, the latter
is related to a specific value of the axion decay constant f, (see Eq. below).
For a stellar black hole with mass M = 50 M, this correspondence is indicated in
the plot with the green dots.

Notice that we focused on a real scalar cloud, since we have in mind the axions. The
amplitude Ay can be expressed in terms of the mass Mg of the scalar cloud [38§].

In full generality, we write
Mg = / pridrsin0didg (4.2.37)

with p = —Tg. The energy density p can be directly computed from the definition

of the stress-energy tensor
po
TH () = (DFD)(DV®) — g [%(D,@)(ng) + V(D) | (4.2.38)

where V(®) = p2®?/2. Assuming flat space — see comment below Eq. (4.2.24) — we
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find

A2
p = 2—02 {p*M*r? ¢ (F)? sin® 6 cos*(¢ — wpt)
r

+ g(7)? [cos®(¢ — wrt) (cos® @ + p?r?sin® 0) + sin®(¢p — wgt) (1 4+ wkr’sin®6)]} .

The integral in Eq. (4.2.37)) can be straightforwardly computed, and we find

27TA(2) 2I2 - n 2 OO n 2
MS:3M—L02{210+15+MT/~021 : In:/o drx"g(x)”, I;L:/O drx"g'(x)* .
(4.2.39)
In the small My limit we have
3 Mg
Al = — ) (Mp)* ith 7, =24. 4.2.4
0 471'1—2 (M) ( M) ) Wlt 2 ( O)
The scalar cloud in Eq. (4.2.36]) becomes
o = = (ﬁ) (Mp)=g(7) cos(¢p — wrt) sin b . (4.2.41)

Considering for definiteness the value of the cloud at rgo.q in Eq. (4.2.24]), we have

4M N -
Tcloud ™~ W ,  Tcloud ™ 4 — g(rdoud) ~0.5. (4.2.42)

Furthermore, notice that the function ¢(7) has a maximum (for [ = 1) at Tpax = 2.

Before proceeding, let us comment about possible limiting factors for the size
of the cloud, in particular the so-called “bosenova” collapse [147]. The physics of
the bosenova collapse can be summarized as follows. In the first stage, the energy
of the cloud grows by superradiant instability. As the ratio Mg/M increases, the
field amplitude in Eq. becomes larger — eventually saturating the condition
®/f, ~ 1. At this point, the nonlinear self-interaction of the axion field becomes
important, and causes a rapid collapse of the cloud. The analysis in [147] (see
also [394] for a numerical analysis) implies the condition

My

. 4.2.43
M S (M), (4.2.43)
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In the situation where My is small and f, is large, the right-hand side of Eq.
becomes large. In this case, the axion cloud spins down the black hole to reach
the marginal superradiant condition, p = ma/2r,, well before the nonlinear self-
interaction becomes important. In this case, therefore, the main limiting factor is

the initial rotation energy of the black hole.

Finally, we note that the typical axionic hair configurations generated by quan-

tum effects [395-399| are usually suppressed, if compared with Eq. (4.2.41), by the

(%)2 - % ' (4.2.44)

factor

However, these quantum effects may act as a seed for the axion cloud (see discussion

related to Eq. (4.2.27)).

4.3 Polarisation-dependent Bending of Light

The Maxwell field equations in the presence of a background axion field are

V-E = —g,,V®-B, (4.3.45)
. . 0B
VxE+—- =0, (4.3.46)
. - OE I LOD
VxB—a— = Gayy (—ExV(I)—Ba—) : (4.3.47)
t ot
V-B =0, (4.3.48)

where g4 is the effective coupling defined by the Lagrangian density
Lo = gj%@FWFW - _g“% (0,D) A, F* | (4.3.49)

with F = ¢tvpo F! vo/2. The effective coupling g, can be related to the axion decay

constant f, [400]

Qlem E 2 4md+mu Qem E
S e (il L AT | ——192) , 4.3.50
Y = on {N 3 (mﬁmuﬂ 2 fo <N ) (1350
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where E//N is the model-dependent ratio of the electromagnetic and color anomaly
while the second term is a model-independent contribution coming from the minimal
coupling to QCD at the non-perturbative level. The typical axion window is defined
by the interval 0.07 < |E/N —1.92| < 7 [36]. Of particular interest are the reference
values E/N = 8/3 (as in DFSZ models [121},122] or KSVZ [119}/120] models with
heavy fermions in complete SU(5) representations) and E/N = 0 (as in KSVZ
models with electrically neutral heavy fermions). Recently [401], the aforementioned
axion window was redefined in light of precise phenomenological requirements — such
as the absence of Landau poles up to the Planck scale or the need to avoid overclosure
of the Universe — related to the representations of the new heavy quarks that are
needed in KSVZ-type models to induce the anomalous coupling of the axion with
ordinary quarks. As a result, the window 0.25 < |E/N — 1.92] < 12.25 was singled
out in the case of one single pair of new heavy fermions. Furthermore, with the
inclusion of additional pairs of new heavy quarks values as large as E/N = 170/3
become accessible. Note that it is also possible to construct models with multiple
scalars in which the value of g,,, in Eq. can be made arbitrarily large. We
shall further explore this possibility in Section |4.3.2

For the QCD axion, the axion mass and decay constant are related by [400]

10" GeV u

f.  57x10710eV (4.3.51)

Only space-time gradients of the axion field configuration alter the Maxwell equa-
tions, since for a constant axion field CIDFWF " becomes a perfect derivative and
does not affect the equation of motion. We assume that the length scale over which
® changes appreciably is much larger than the wavelength A of the electromag-
netic wave. Within this approximation we can neglect in Eqgs. (4.3.4514.3.48)) terms
containing second derivative (or first derivative squared) of ® [402|. Let us briefly
discuss the validity of this assumption. Considering the radial direction, the charac-

teristic length scale of the cloud can be estimated using Eq. (4.2.24). The condition
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on the wavelength A\ reads

10 M. 10726V ?
A < Teloud ™~ 2.6 x 106 ( ®) ( © > m . (4352)
M It

From Eq. (4.2.41)), the characteristic length scale of time variation is 79 = 1/wg;
since we are interested in the small My limit in which wg ~ p, we have the following

condition on the wavelength A

10712eV
A < Acompton ~ 2 X 10° (—e> m . (4.3.53)
ol

Clearly, the conditions A < 7cioud; Acompton are verified for wavelength A of astro-

physical interest. The field equations take the form [402]

0 (E - g“%@é) - —g“%qmé , (4.3.54)
0 (§+ %@E) - g“%qmﬁ , (4.3.55)

and reduce to the usual electromagnetic wave equations in the limit g,,, — 0.

Photon propagation is described by the following dispersion relation [403]
K+ g2, (0,9)(0" )k = g2 [k (0" D)]* (4.3.56)

where k¢ = (E,, E) is the four-momentum of the propagating photon. We give a

derivation of Eq. (4.3.56]) in Section [4.5.2, At the first order, we have

. 9 . -
E? — |k = tgayy {Eva — k- vq>] , (4.3.57)

where the sign £ corresponds to right- and left-handed circularly polarised waves.
In Eq. (4.3.57) we used a flat background metric. The gradient of the scalar field,

in spherical coordinates, is

S0 (8(13 100 1 6@) o=r/2 <8<I> 16@) 7 (4.3.58)

Ve=\ 5790 rsmd 90 FIErY

where in the last passage we restrict the analysis to the equatorial plane. Eq. (4.3.57))
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reads

dr\’ L? o dr\ 0® L od
— ) =F2_ = E——||—)—+—=—— 4.3.
(i) =5 v B - (&) 5 rigely - 4o
where ¢ is the affine parameter while £, and L are, respectively, the conserved

energy and angular momentum of the photon, with k" = dr/d¢, k¥ = df/d¢é = 0,
k¢ =dg¢/dé = L/r?. From Eq. (4.2.41)), we have

%_‘f =/ 73’12 (%) (M1)2g(F)on sin(6é — wat) | (4.3.60)
o = (50 g O costo - wnt) . (4301
0P M

%a_gzﬁ = /s 75’22 (WS) (Mp1)?g(7) sin(é — wrt) - (4.3.62)

Notice that natural units can be recovered with the formal substitution M — Gy M.

Considering the radial distance at 7,.,, we have

0® 109 0P Mu<c1 0P 0P 100
or 'r oo N(M'LL)E — E>>E7;8_¢ : (4.3.63)

This relation simplifies the equation for the photon orbit in the presence of the axion
background field. The differential equation for the photon orbit (see Section |4.5.3))

18

d 1 E y Ly - E ) rnax;E . [ (I)
% __ :Fa( 0 0) ~ alby 7 3/22>, with a(E,,, )Egﬂa—
(4.3.64)

with dimensionless variable x = r/M (which of course corresponds to z = r/GyM
in natural units), and must be integrated between xp = 0o and Tyax = 2/(Mp)?.
The choice zy = oo practically means that we are considering a source and an
observer at distance much larger than the impact parameter (see Section for

a detailed discussion).

The outcome of this computation is the angular separation |A¢p, —A¢_| between

left- and right-handed circularly polarised waves that a ray of light experiences by
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travelling through the axion cloud.

In the following we shall solve this equation for the QCD axion and for a generic
ALP. In Section we shall explain in more detail what is the phenomenological

relevance of our computation.

4.3.1 The QCD Axion

Stellar black hole superradiance in the presence of an ultralight scalar field may
produce in the next few years spectacular signatures — both direct and indirect —
in gravitational wave detectors such as Advanced LIGO. Indirect signatures refer
to the observation of gaps in the spin-mass distribution of final state black holes
produced by binary black hole mergers. Direct signatures refer to monochromatic
gravitational wave signals produced during the dissipation of the scalar condensate
after the superradiant condition is saturated. In [389] it was shown that spin and
mass measurements of stellar-size black holes exclude the QCD axion mass window
6 x 10713 < p[eV] < 2 x 1071, corresponding to 3 x 1017 < f, [GeV] < 10Y. Tt is
worth emphasizing that this bound is most likely only indicative since it is based on
black hole spin measurements that are extracted indirectly from X-ray observations
of accretion disks in X-ray binaries. We only have very few of such measurements at

our disposal, and it is difficult to extract a bound with robust statistical confidence.

As far as direct signatures are concerned, a careful assess of the detection prospects
in Advanced LIGO and LISA was recently proposed in [392,[393|. The outcome of
the analysis is that, considering optimistic astrophysical models for black hole pop-
ulations, the gravitational wave signal produced by superradiant clouds of scalar

bosons with mass in the range
2x 1072 <pleV] <1072, (4.3.65)

is observable — i.e. it is characterized by a signal-to-noise ratio larger than the
experimental threshold — by Advanced LIGO. For the QCD axion the mass range
in Eq. corresponds to 5.7 x 10'® < £, [GeV] < 2.8 x 10'. In the following,
we shall adopt the mass interval in Eq. as benchmark for our analysis in
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the case of the QCD axion. However, before proceeding, an important comment is
in order. For large values of f, non-perturbative gravitational instantons become
important, as discussed in [404]. If computed in the context of General Relativity,
these effects generate a gravitational correction to the axion mass that increases

with f, and, if f, = 10'® GeV, overcomes the QCD term in Eq. . This
effectively produces a lower limit on the QCD axion mass, p 2 4.8 x 1071% eV [404].
From this perspective, the mass range in Eq. is theoretically disfavoured.
As discussed in [404] (see also |405] for the original formulation of the argument),
the computation of non-perturbative gravitational effects — and as a consequence
the validity of the lower limit on g — can be invalidated if the UV completion of
General Relativity is weakly coupled since in this case we expect new degrees of
freedom to become dynamical even below Mp). For this reason, it is important to

keep investigating Planckian values of f, since they may open an indirect window

on quantum gravity effects.

The QCD axion with mass in the range given by Eq. (4.3.65) falls into the so-
called “anthropic” window. The Peccei-Quinn symmetry is broken before the end
of inflation, and the possibility to reproduce the observed dark matter relic density

Qpah? ~ 0.1 relies on a fine-tuned choice of the initial misalignment angle 6;,. We

find 1.19 < 65, x 10° [rad] < 3.98 for the mass interval in Eq. (4.3.65)).

We show our result in Fig. We imagine a ray of light with energy E, travelling
through the axion cloud, and in the left panel we plot (at fixed ) the angular splitting
|A¢gy—A¢p_| as a function of E, and the axion mass u. We fix My = Mg/M = 1071,
and we consider different values for the parameter E/N in Eq. . Since M p
is fixed, at each value of p corresponds a black hole mass M (respectively, left and
right y axis). As expected, the QCD axion is relevant in connection with stellar-
mass black holes. For typical values 0 < E/N < 8/3, we obtain an angular splitting
between left and right polarisation of the order 1077 < |A¢, — A¢_|[arcsec] < 1077.
As we shall discuss in Section [4.4] these values are probably too small for a detection
since, even taking an optimistic view, it is not possible at present to reach angular
resolutions below 66 &~ 107¢ arcsec. For the QCD axion |A¢, — A¢_| ~ 107 arcsec

can be obtained in the analysed parameter space for £/N = 170/3 (dot-dashed
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’ The QCD axion
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Figure 4.5: Left panel. Contours of constant angular splitting |[A¢, — A¢_| (for

fixed time ¢) as a function of the radio wave energy E, and the QCD axion mass
. We fix My = Mg/M = 107!, and we explore different possibilities for the
electromagnetic-to-color anomaly ratio /N in Eq. . Right panel. Time-
dependence of the angular splitting |A¢, — A¢_| for fixed QCD axion mass and
radio wave energy. The period of the signal is set by the inverse of wg ~ u, and we
have 1/p =~ 0.66 x 1073 (1072 eV /p) s.

black lines in Fig. .

In the right panel of Fig. we show the time-dependence of [A¢p, — A¢_| due
to the rotation of the cloud. We choose ;1 =5 x 1072 €V and fixed energy E, = 1
GHz. The signal displays the expected periodicity set by T' = 27 /wr ~ 27/ pu.

As far as the QCD axion is concerned, the relevance of the polarisation-dependent
bending seems to be quite modest. The reason is that Eq. and Eq.
imply a very strong relation between the mass of the QCD axion and its coupling
to photons, and the range explored in Eq. corresponds to a coupling gg-~
that is too weak. However, this is not a lapidary conclusion. The way-out is that
the relation between the axion mass and the axion-photon coupling can not be
considered a solid prediction of QCD, in clear contrast with the relation between
axion mass and axion decay constant. The latter is dictated by the minimization
of the effective potential generated by the explicit breaking of the continuous global
shift symmetry of the axion due to QCD instanton effects, and thus tightly linked to
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the solution of the strong CP problem. The former has a degree of model-dependence
— a fact already clear from the discussion about the possible values of E/N below
Eq. — that can be exploited. It is possible, therefore, to construct simple
models in which the axion-photon coupling can be arbitrarily large without altering
Eq. . In the next section, we shall illustrate one explicit realization of this

idea.

4.3.2 The Photo-philic QCD Axion

The photo-philic (7o hereafter) QCD axion [406] is a specific realization of the clock-
work mechanism proposed in [407,/408|. In its original incarnation, the clockwork is
a renormalisable theory that consists in a chain of '+ 1 complex scalar fields with a
U(1)V*! global symmetry spontaneously broken at the scale f. The U(1)V*! global
symmetry is also explicitly broken in such a way to preserve a single U(1) symmetry
whose Nambu—Goldstone boson — eventually identified with the QCD axion in [406]
— lives in a compact field space with a dimension that is set by the effective decay
constant f, = 3V f > f. The key idea of [406] is the following. New vector-like
fermions which are responsible for the generation of the color anomaly are coupled
to the last site NV of the scalar chain. This guarantees the usual solution of the
strong CP problem with the important difference that the scale f, = 3V f entering
in Eq. can be parametrically much larger than the fundamental symmetry
breaking scale f. This feature has very important phenomenological consequences
because the model predicts the presence of additional pseudo-scalar particles which
can be light and accessible at the LHC while keeping f, above the astrophysical
bounds (roughly f, = 10° GeV). In the usual realization of the QCD axion pre-
sented in Section [4.3.1], the same vector-like fermions mediating the QCD anomaly
also contribute to the axion-photon coupling. In the vo QCD axion, on the con-
trary, there are additional electromagnetically charged vector-like fermions coupled
to the site M < N of the scalar chain. These fermions are responsible for the
axion-photon coupling that is, by all accounts, disentangled from the solution of
the strong CP problem. In the simplest realization proposed in [406|, the yo QCD

model requires the existence of a single pair of vector-like coloured fermions in the
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Axion-like particles (left) and vo QCD axion (right)
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Figure 4.6: Left (right) panel. Contours of constant angular splitting for a generic
ALP (the 7o QCD axion) as a function of the axion mass p and the axion-photon
coupling gq~. In the case of the o QCD axion we show the projected sensitivities of
ABRACADABRA [130] and CASPEr-wind [409] together with the mass range that
will be explored by the Advanced LIGO gravitational wave interferometer [392,393|.
For a generic ALP, we show a projected limit for the PIXIE/PRISM experiment [410]
(see text for details).

fundamental representation of SU(3)c and a single pair of color neutral vector-like
fermions with unit hypercharge and singlet under SU(2);. Under these conditions

the axion-photon coupling turns out to be [406]

2 Qem
Gary = (3/‘4——/\/) onf, (4.3.66)

and the free parameter N, that is a fundamental parameter of the model, can be

changed to make g, as promised, arbitrarily large.

In the right panel of Fig. we show the result of our analysis for the y¢ QCD
axion. We explore the parameter space (i, goy), and we fix My = 1071 We
enlarge the axion mass range to the interval 1071 < p [eV] < 1072, and we bracket
between two vertical dot-dashed orange lines the mass range covered by Advanced
LIGO in Eq. . The above mass range corresponds to the axion decay constant
5.7 x 10" < f, [GeV] < 5.7 x 10%°, and in order to reproduce the observed value of
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the dark matter relic abundance we need to tune the initial misalignment angle to the
values 0.12 < 6;, x 10° [rad] < 3.98. We consider the axion-photon coupling in the
range 1072 < g, [GeV '] < 10719 and the thin diagonal solid gray lines indicate
—in steps of 4, from N'— M = 4 to N'— M = 20 — the values of g, as a function of
the axion mass for different choices of N'— M in Eq. . Contours of constant
angle |A¢p. — A¢_| are shown with dot-dashed diagonal black lines, and the shaded
area in magenta corresponds to 107* < Mg/M < 107!, We fix E, = 1 GHz, and
to give an idea about the relevance of the effect — we quote the angular resolution of
the Spektr-R radio telescope [411-413], 595;;32%2 ~ 2 x 107* arcsec. We postpone
to Section a more detailed discussion about experimental prospects. The gray
area is excluded by SN1987A gamma-ray limit on ultralight axion-like particles, and
we use the results of the updated analysis presented in [414]. The plot shows that
|Ap—Ap_| > 595;;:;_}% in a wide range of the explored parameter space. We argue
that the polarisation-dependent lensing computed in Section can be relevant for
the 7o QCD axion. It is also important to keep in mind that the same region of
parameter space is well within the sensitivity range of well-motivated proposals for
future experiments. In the right panel of Fig. we show the projected sensitivities
of ABRACADABRA [130] (considering both the resonant and broadband approach)
and CASPEr-wind [409]. ABRACADABRA exploits the fact that when axion dark
matter encounters a static magnetic field, it sources an effective electric current
that follows the magnetic field lines and oscillates at the axion Compton frequency.
CASPEr-wind considers couplings of the background classical axion field which give
rise to observable effects like nuclear electric dipole moment, and axial nucleon and

electron moments.

4.3.3 Axion-like Particles

We now turn to discuss the more general case of ALPs. The crucial difference is that
there is no a priori relationship between the ALP mass p and the coupling ¢,+~ while
in the QCD axion case they are linearly related, and we can therefore treat them
as independent parameters. As a result, ultralight values of p below those explored

in Section and are possible. We show our result in the left panel of
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Fig. [£.6] In order to provide complementary information with respect to the case
of the 7o QCD axion, we consider the mass range 107! < p [eV] < 107 Since
My = 1071, this range covers from intermediate-mass to supermassive black holes.
As far as the computation of |[A¢, — A¢_| is concerned, the color code follows
what already discussed in Section [4.3.2] We delimit with a vertical dot-dashed
blue line the mass range that will be explored by LISA according to the analysis
proposed in [392,1393]. We find that |[A¢p, — A¢p_| > MsEgeitlﬁiz in a wide range of
the explored parameter space, and we argue that the polarisation-dependent effect
computed in Section can be relevant also for a generic ALP. We also show
a possible complementarity with future CMB tests of dark matter. The idea is
that resonant conversions between CMB photons and light ALPs could result in
observable CMB distortions. These resonant conversions depend on the strength
of primordial magnetic fields B, and it was shown in [410| that the PIXIE/PRISM
experiment [415], according to the expected sensitivity, has the capabilities to set
the limit go,,B < 1071 GeV ™! nG for axion mass u < 107 eV (see also [416] for a
recent analysis using galaxy clusters). Assuming a strength of primordial magnetic

fields close to the current upper limit B ~ O(1) nG [417], we show in cyan the

expected limit on gq, in Fig. [£.6]

4.4 Discussion and Outlook

The setup we have in mind is sketched in Fig. [£.7 We envisage the presence of a
black hole surrounded by a scalar cloud in between an astrophysical source emitting
linearly polarised light and a ground- or space-based radio telescope. An statistical
analysis to quantify how likely is for this configuration to exist and the number of
expected events is left for future work. Moreover, the angular splitting depends on
the state of the cloud. For our study we assumed the axion cloud to be in the 2p
level, this is because in the small My limit the cloud remains in that state for a long

period of time.

A linearly polarised ray of light is a superposition of right- and left-handed
circularly polarised waves (RCP and LCP in Fig. f.7). By travelling trough the
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scalar cloud, the two components experience a polarisation-dependent bending as
discussed in the previous sections. In that event, a polarisation-dependent lensing
effect would appear in the image captured by the radio telescope. Is this situation
ever possible? In this section, we shall explore in more detail some of the necessary

conditions needed to realize this idea.

4.4.1 General Remarks: Dual-polarisation Receiver and VLBI

Consider an electromagnetic wave travelling in the 2 direction. In general, light is

elliptically polarised and can be described by means of the electric field
Epp = EO cos(kz — wt)z + E;O) cos(kz —wt+0)y = E,2+ £,y . (4.4.67)

The case 6 = 0 corresponds to linear polarisation whereas the conditions § = /2,
E;ﬁ;o) = Elgo) describe, respectively, a right and left circularly polarised wave. The
relevant observable in astrophysics is the light intensity rather than field amplitude.

For this reason it is useful to introduce the four Stokes parameters [418|

J=(E2)+(E), @=(E})—(E)), @=2(E,E,cos6), V¥ =2FE,FE,sinf),

(4.4.68)
where (- --) denotes a time average over times much larger than 27 /w. The parame-
ter J measures the intensity of the wave, @ and @ fully describe linear polarisation,
and ¥ corresponds to circularly polarised intensity. In particular, a net right (left)
polarisation has a positive (negative) ¥.

The radio emission from most bright radio sources arises from synchrotron radia-
tion, and it is linearly polarised. Qualitatively speaking, the reason is the following.
The radiation from a single relativistic electron gyrating around a magnetic field is
elliptically polarised. For an ensemble of electrons with a smooth distribution of
pitch angles the opposite senses of elliptical polarisation will cancel out, resulting
in linearly polarised radiation. This is in particular true in the case of synchrotron
emission from Active Galactic Nuclei (AGN) observed at radio frequencies. This

is, therefore, the class of astrophysical sources that might be well-suited for our
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purposes.

Next, we need a radio telescope able to distinguish between left and right polar-
isations with sufficiently high angular resolution. Polarisation-dependent measure-
ments are possible if the instrument is a dual-polarisation receiver. In a nutshell,
such telescope can be thought of as a cross of two dipoles aligned along orthog-
onal directions. Each of the two dipoles measures the corresponding polarisation
component and converts it into an electric signal. The signals are auto-correlated
and cross-correlated, thus allowing for a reconstruction of the Stokes parameters.
We would like to stress that all four Stokes parameters are actual intensities. This
means that they can be used at the level of image analysis in order to reconstruct
and visualize the polarisation of the observed source. This makes the detection of
our effect, at least in principle, possible. Furthermore, we remind that the time av-
erage implied in the measurement of the Stokes parameters refers to a time interval
At much larger than the typical wavelength A\ of the observed light. If the condition
A < At < Acompton 18 satisfied, it could even be possible to detect the time variation
of the signal.

Let us now comment on the angular resolution. The angular resolution 46 of a
telescope can be calculated from the wavelength of observed radio waves A and the

diameter D of the telescope
5 A
00 ~ 2.5 x 10 T arcsec. (4.4.69)

To fix ideas, a radio telescope with D = 65 m observing radio wavelengths at £, = 1
GHz (A ~ 0.3 m) has an angular resolution df ~ 10® arcsec. The angular resolu-
tion of a typical radio telescope is, therefore, by far too low to detect the effect
computed in Section [4.3] However, it is possible to use multiple radio telescopes at
the same time, a technique that is called interferometry. The angular resolution is
greatly improved because — by synchronizing and combining observations from all
the telescopes of the array, each one equipped by its own atomic clock — one effec-
tively creates a single telescope as large as the distance between the two farthest

telescopes. This simple principle lies at the heart of the very-long-baseline interfer-
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Figure 4.7: Sketch of the typical configuration needed to detect the polarisation-
dependent bending discussed in Section[4.3] Linearly polarised light is emitted from
an astrophysical source, e.g. an active galactic nuclei. Travelling through the axion
scalar cloud surrounding a Kerr black hole, the left and right circular components
(LCP and RCP) experience different deflection angles thus creating a polarisation-
dependent lensing that could be observed by an array of radio telescopes using the
VLBI technique.

ometry (VLBI) technique, in which a signal from an astronomical radio source is
collected from multiple radio telescopes on Earth. VLBI gives angular resolutions
of the order of 60 ~ 1073 arcsec or better, thus making our speculations about a

possible detection more realistic.

A further improvement can be obtained by combining a VLBI array with an
additional antenna placed on board of a satellite orbiting the Earth. As a benchmark
reference, let us consider the case of the Russian project Spektr-R [411-413|. Spektr-
R (formerly RadioAstron) is a dual-polarisation receiver space-based 10 meter radio
telescope in a highly apogee orbit around the Earth, launched on July 2011. Spektr-
R works in conjunction with some of the largest ground-based radio telescopes, and
the system forms an interferometric baseline extending up to 3 x 10° km [411}-413].
This configuration is able to reach an astonishing angular resolution up to a few
millionths of an arcsecond. As a reference, in Fig. we quote the typical angular
resolution of Spektr-R at E, = 1 GHz, that is about 00 ~ 2 x 10~ arcsec.

In conclusion, we argue that radio astronomy techniques have the capabilities
to detect the polarisation-dependent bending discussed in Section 4.3} if realized in
nature. Of course, for the aim of the present work our discussion is purely quali-
tative, and our intent is that of stimulating the interplay with the radio astronomy

community to fully understand the validity of our conclusions.
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4.4.2 Comparison with “Background” Effects

Scintillation is an optical effect arising when light rays emitted by a compact source
pass through a turbulent ionized medium. As far as radio frequencies are concerned,
scintillation theory can be applied to the turbulent interstellar medium (ISM) of
the Galaxy through angular and pulse broadening of pulsars [419-421], and to the
turbulent intergalactic medium (IGM) through quasar observations [422-424).

Interstellar scattering of an extragalactic source of radio waves results in angular
broadening. It is, therefore, important to keep in mind the typical size of this effect
since it acts as a sort of “background” for the polarisation-dependent effect discussed
in Section If the angular broadening proves to be much larger than the angular
splitting |A¢, — A¢_|, we expect the latter to be clouded by the former.

The size of the broadening of an extragalactic source at redshift zg due to the
IGM — modelled as a thin-screen at redshift z; with homogeneous Kolmogorov

turbulence — is [425]

—2.2

3/5 Dis E’y -1.2 103

Oscat ~ 19.75 SM D TOH (14 2z7)" 107" arcsec , (4.4.70)
S Z

where Dis (Ds) is the angular diameter distance between the scattering region and
the source (between the observer and the source). The angular diameter distance

at redshift z is given by the integral

D(z) = cHy (1+2)™" / [+ (1 =1 +2)+ Q1 +2)°+Q.(1+ z')ﬂ_l/2 dz",
0

(4.4.71)
where Hj is the Hubble constant, 2 = Q+€,,+82,., and 4, 2,,, €2, are, respectively,
the ratios of the dark energy density, matter density and radiation density to the
critical density of the Universe. We assume Standard Cosmology, with 2 = 1,
Qpn = 0.7, and Q, = 0. In Eq. we introduced the short-hand notation
D(z;) = D;. We use Hy = 67.8 £0.9 (km/s)/Mpc [37]. Notice that — defining the
angular diameter distance between the observer and the scattering region as Dy, —
we have in general Dig # Ds — Dy. In Eq. ([£.4.70), the scattering measure SM
encodes the level of turbulence of the IGM, and can be defined as the line-of-sight
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Figure 4.8: Angular broadening in the IGM at E, = 1 GHz for a screen at redshift
Zr,-

integral of the spectral coefficient characterizing the power spectrum of electron
density fluctuations. Following [425], we have SM = Cgy; F'n?(z) Ds. The constant
Csy takes the value Cgy = 1.8 m™2%3 em®, n,(z) is the electron density at redshift
z, and the fluctuation parameter is F = (Ce?/n)(lo/1pc)~2/3 |419] where [ is the
outer scale of the turbulence, n is the filling factor of the turbulent medium, ¢ is
the variance of the electron density fluctuations within a single cloud, and ( is a
measure of fluctuations in the mean density between clouds. We assume in our
estimate € ~ ( ~ n ~ 1 for all redshifts. This choice implies that the turbulence
is fully developed at all redshifts of interest. The outer scale length of turbulence
lo defines an upper cut off in the size of turbulent structures, and we consider the
two benchmark values lo = 1 kpc, [p = 1 Mpc. The mean free electron density as a
function of the redshift is given by n.(z) = dg x.(2) n(0) (14 2)7, where x.(2) is the
ionization fraction, and n.(0) = 2.1 x 1077 cm ™2 is the mean free electron density
at z = 0. We assume a significant ionized fraction, z.(z) ~ 1, for all redshifts of
interest. The parameter dy controls possible electron overdensity while v ~ 3 for
IGM components with constant comoving densities. For simplicity, we take g = 1.
The presence of possible electron overdensity results in a rescaling of Eq.
according to the factor 58/ °. In Fig. we show the angular broadening predicted
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by Eq. at F, = 1 GHz for a screen of ionized medium at redshift z;. We
consider four different source locations, at zg = 1,2, 3,4, and two possible choices
for the outer scale of the turbulence [y (see caption for details). The scattering
angle ranges between 1072 < .. < 1077 arcsec for 1kpe < g < 1 Mpe. We notice
that the scattering broadening in the medium hosted by the background source (i.e.
considering scattering screens located at zy, ~ zg) drops to negligible values. Finally,
changing the spectral index ~ results in a different z; dependence of the scattering

angle, but it does not alter the order of magnitude estimate of the broadening effect.

Given the model-dependence and the astrophysical uncertainties entering in the
computation of the angular broadening, no firm conclusion can be established. Nev-
ertheless, the order-of-magnitude estimate proposed in this section keeps alive the
hope of detecting the polarisation-dependent bending due to a superradiant axion

cloud.

4.4.3 Faraday Rotation

Finally, let us close this section with a short discussion about another important
effect that is usually relevant in the presence of an optically active medium: Faraday

rotation.

Consider a beam of light linearly polarised along the z axes
Erp = Eycos(kz — wt)i with k=27/\, w=27v. (4.4.72)

A linearly-polarised wave can be decomposed into a sum of left- and right-circularly

polarised waves at the same frequency

. E E ,
ELP = M s with ERCP,LCP = Eg [COS(,I{ZZ — wt)i + Sin(k;z — wt)g)] .

2
(4.4.73)
Imagine this beam enters a region characterized by the presence of a medium which
has slightly different propagation velocities for light with opposite circular polarisa-

tions. Upon exiting this region, the left- and right-circular polarisation modes have
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picked up a net phase difference
ERCP,LCP = EO [COS(I{ZZ —wt + 5R7L)Z)A3 + sin(kz — wt + 5R,L)g] (4474)

which causes their sum to still be linearly-polarised, but along a different axis.

Indeed the sum ELP = (ERCP + ELCP)/Q

ELP = FEy {cos (6R;5L) T + sin (5R;5L) 3}] cos (kz—wt+ 6R;—5L) ,

(4.4.75)

describes a plane polarised wave with the polarisation direction twisted by an angle

A = (dg — I1)/2 from the z-axis towards the y-axis. This is the Faraday rotation.

The parity violating interaction in Eq. may induce Faraday rotation for
a beam of light travelling through the axion cloud. We can estimate the size of
such effect by considering a wave travelling a distance L ~ 7.4 in the equatorial
plane at radial distance r ~ r,... The change in phase of a circularly polarised
mode travelling a distance L is § = L\l;\ From Eq. , and considering the
approximation discussed in Eq. , at the linear order in g,,, we have \E\ R
By F (Gayy/2)0®/0t. We therefore find the estimate A = L(gqy,/2) 0/0t],_,
where for simplicity we assumed a constant cloud (with value fixed at r = 7p.x)
along the distance L. We also neglected the trigonometric factor that is responsible

for the rotation of the cloud. This estimate should be therefore considered as an

order-of magnitude upper limit for the effect. For the QCD axion and for a generic

ALP we find

(E [ Mg/MN\'? [ Mpu
Ao = 2x 1075 (2 —1.92 ( ) il
Qcp A0 (N 9) 102 eV ( 0.1 ) o)

1/2
_ Garyy Ms/M @
Aprp = 10(10—166}6\/_1)( o ) rad. (4.4.76)

Our Galaxy is full of ionized hot gas, and is simultaneously permeated by a large-
scale magnetic field. The Faraday effect due to this plasma is observed in the
polarised signal from radio pulsars within our Galaxy, and on all extragalactic radio

sources. The subtlety is that we do not know the original plane of polarisation.
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As a consequence, the effect is almost always studied as a function of frequency.
In this case the Faraday rotation has the simple form A = RM \?, where \ is the
wavelength of the observed light and RM is the rotation measure which in general
depends on the interstellar magnetic field and the number density of electrons along
the propagation path. In the idealized case, one can determine the RM by measuring
A at different wavelengths, and then performing a linear fit. From the value of RM,

one can in turn try to decrypt the physical conditions along the lines of sight.

The effect proposed in Egs. does not feature any energy dependence.
Without knowing the original direction of polarisation, therefore, a possible detec-
tion of this effect seems hopeless. One possibility is to exploit the time-dependence
of the signal, similar to the one discussed in the right panel of Fig. [4.5] that should

give rise to a time-dependent oscillating effect with period set by 1/ .

Another interesting aspect is to consider as a source of light the accretion disk
surrounding the black hole (instead of a distant source as done in Section [4.4).
Gravitational and frictional forces compress and raise the temperature of the mate-
rial in the disk, thus causing the emission of electromagnetic radiation that should

travel through the axion cloud before escaping.

We do not explore further such possibilities, and we postpone a more detailed

investigation to future work.

4.5 Details of the Calculation

4.5.1 Radial Eigenfunctions and Rotating Axion Cloud

The radial Eq. (4.2.11]) admits two well-defined limits in the near- and far-horizon
region. In the far-horizon region, defined by the condition 7 > M, A ~ r*(1 —
2M /r), the radial equation reduces to

d2(7zRfar) 1 . l+n+1 _ l(l + 1)

d? 4 7 72

PR =0 (4.5.77)
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with Rg,, function of 7 defined accordingly to Eq. . This is the same equation
describing an electron in the hydrogen atom, thus enforcing the analogy with Quan-
tum Mechanics. Eq. can be solved in terms of confluent hypergeometric
function

Rew(F) = e 2 R (1 4+ 1 — vy 20+ 25 7) (4.5.78)

with v = [ + n + 1 the principal quantum number. The confluent hypergeometric

function is given in terms of the Laguerre polynomial by
(m+n)!

L"(z) = Wlﬂ(—n; m+1; ), (4.5.79)

and Eq. (4.5.78]) reproduces the radial function used in Eq. (4.2.23)) that is, therefore,

strictly valid only in the far-horizon limit. In the near-horizon region, defined by

0<r—r, < (I/Mp)>*M, the radial equation is solved by [147]

—iP
- —r_ — mf)
Riyear(1) = <T r+> oI (—l; I+1;1+2iP; i ) , P=2ry (&) ,

Ty —T_ Ty —T-

(4.5.80)

where the angular velocity of the black hole horizon is Qg = a/2r,.

The eigenvalue problem for the radial equation can be solved by means of the
continued fraction method championed in [426] (see also [427], and [42§| for a peda-
gogical review about modern black hole perturbation theory). In a nutshell, we look

for a radial solution of the form

R(r) = (r —ry) ™ (5 — o)Xt gmrV/it—e? i an (T - ”)n . (4.5.81)

n=0

with

oM M(2w? — 12
o mQy) oy = M2 ) (4.5.82)
Ty —T- Iu2—w2

g =

Note that this ansatz correctly describes the characteristic asymptotic behaviour of
bound states. Using this expression for R(r), the radial equation returns a three-
term recurrence relation for the coefficients a,, that can be solved only for particular
values of w = wpr + iwy. These are the eigenfrequencies describing bound states.

We implement numerically the continued fraction method, and we show in Fig. 4.9
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Figure 4.9: Real and imaginary part (left and right panel, respectively) of the
bound state frequencies for a scalar field in a Kerr background, as a function of the
dimensionless parameter M p. We fix the spin parameter a/M = 0.99, and we focus
on the eigenmode with [ = m = 1. We solved numerically Eq. , and we used
the Leaver’s method to obtain the bound state frequencies when My ~ 1 [427].

the values of wg (left panel) and w; (right panel) obtained by solving the eigenvalue
problem for the radial equation. In the small My limit, the agreement with the
approximation used in Egs. , is evident. Having computed the bound
state frequencies, the full radial eigenfunction can be obtained from Eq. . We
show our numerical solution in Fig. .10} and we comment about the comparison

with the far-horizon approximation (see caption for details).

Finally, it is possible to reconstruct the full solution of the Klein-Gordon equation
in Eq. (4.2.9)) by including the angular- and time-dependent part. For completeness,

we show the full solution in the equatorial plane in Fig. 4.11| (see caption for details).

4.5.2 Modified Dispersion Relation

In this section we derive the dispersion relation in Eq. (4.3.56)). From the Lagrangian

density

1 . -
L= = Fu " - % (9,0) A, F™ | (4.5.83)
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Figure 4.10: Left panel. Real (red, solid line) and imaginary (blue, dashed line)
part of the radial eigenfunction R with [ = m = 1 as a function of the tortoise
coordinate r* obtained numerically using the Leaver’s method [427]. For comparison,
the vertical gray dot-dashed line indicates at r*/M ~ 15.2 indicates the position of
Tmax = 2 in terms of the tortoise coordinate. Right panel. Density plot of the
absolute value |R| (arbitrarily normalized to 1 at the maximum) in the equatorial
plane # = /2. The black dot-dashed circle indicates the location of 7. = 2
obtained using the analytical approximation in Eq. .

we extract the Euler-Lagrange equations of motion
(98 = Gary € (0a®)5] Ay(x) = 0, (4.5.84)
which, in Fourier space, give
(9" K + igan €7 (0a®)ks] Ay (k) = K™ A, (k) =0 . (4.5.85)

In Eq. (4.5.85)) we neglected the second derivative term proportional to
Gary(0,0,P) A €”7" | in analogy with the discussion in Section We introduce
the short-hand notation 7, = g4y,(04®). In order to solve Eq. (4.5.85) we define

the operator S#, = eMPn, kge avpel)’k?. The Levi-Civita contraction property

M1 M1
oL o

sl Tk i — (—1) k! Gk dn

. . : Bl e flp —
€il ikt 15 ULyt with 51,1 =

s Up
sr . gk

(4.5.86)
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Figure 4.11:  Density plot of the axion cloud Re [®] = Re [¢"™?S),,,(8)e™" Ry (r)]
with n = 0, [ = m = 1 in the equatorial plane. We consider the explicit case with
a/M = 0.99, Mpu = 0.4, and we take for reference t = 0. As time passes by, the
axion cloud rotates anti-clockwise in the direction of the black arrows. The period

is T'= 27 Jwg.

gives the explicit expression
S =g [(n-k)? = °K?*] — - K (k" 0 B) + BPtn n?ReR
with the following properties

I

Sk, =S50, =0, S=5%=2[0-k?F Pk, S, = gsg .

We can define the two projectors

SW:F { .
S V28

piv = urap

nakﬂ-
This is a good definition, since we have the following properties

PPy =Pl PPy, =0.

(4.5.87)

(4.5.88)

(4.5.89)

(4.5.90)
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Furthermore, Pk, = P¥n, = 0, ¢, P = 1, and P + PY = 25 /S. The
operator in Eq. (4.5.85)) becomes

KM — guuk2 + \/§<'Pﬁl’ _ 7)1’/) . (4591)

We now have all the ingredients to derive a dispersion relation from Eq. (4.5.85)). We
start from a space-like unit vector, for example € = (0,4,1,0)/v/2. We then define

the two projections & = P/ e,. From the properties of the projectors it follows

S
2 p—
x5

Therefore, A# = gl is a solution of Eq. (4.5.85) if and only if k? = 4+./5/2, or

that

KMe,, = S (4.5.92)

K4 n?k? = (n-k)* (4.5.93)

that is the modified dispersion relation presented in Eq. . Since the limit
Jayy — 0 should recover the standard parity-invariant propagation in which there
is no difference in the physical properties of a right- and a left-handed circularly
polarised electromagnetic wave, it is natural to identify the two distinct solutions

arising in the case g.,, # 0 as the two different circular polarisations.

4.5.3 Equation for the Photon Orbit

Let us start from Eq. (4.3.59) in Schwarzschild background

ar\? _, I? 2M o
(d_g) = Ew,y - — (1 — T) F ga'Y'YE’YE . (4594)

r2
The equation for the photon orbit is given by

o _dode _ | ! , (4.5.95)

dr — dédr B
TR e fE(ree)-aa-w

where the minus (plus) sign corresponds to incoming (outgoing) light rays.
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Figure 4.12: Deflection of a ray of light in the gravitational field of a black hole
with mass M. The dashed arc of circumference represents the points at distance
r = ro from the black hole centre.

The angle ¢ is defined to be ¢ = 0 for incoming light at infinite distance from the
black hole. Light travelling in straight line will have ¢ = 7 in the opposite outgoing
limit. In order to compute the deflection angle we consider the setup illustrated
in Fig. £.12] We follow the standard computation of gravitational lensing. The

distance of closest approach ry of the light ray is defined by means of the condition

dr/d¢ = 0. From Eq. (4.5.94]) we find

E? 1—2M
1= /o , with  a(E,,r,¢) =
L g i g (B, =5%)|

| . (4.5.96)
E, ot

The distance of closest approach defines the angles A¢, as one can see from Fig. [4.12]
Note that £2/L? = 1/b* defines the impact parameter b. If we fix 7y to be the same
for both left- and right-handed circularly polarised waves we have two different
values for the impact parameter, as illustrated in Fig. [4.12] Alternatively, one can
fix the impact parameter but in this case the distance of closest approach will differ

between the two polarisations. We can now use the condition in Eq. (4.5.96) into



4.5. Details of the Calculation 177

Eq. (4.5.95)). For incoming light rays, we find

i _ _ L | (4.5.97)

dr 5 [1_ [Fa(Bynd) < B w) _ 1 (1_z2M
r \/% [H:G(E%TO’%)] 1 0o r2 (1 r )

This equation must be integrated between r = oo and r = ry in order to obtain
the deflection angle for incoming light rays. The final deflection angle, 7 + A¢., is
obtained by adding the corresponding integration — in the interval between r = ry

and r = oo — for outgoing light rays, as illustrated in Fig. [£.12]

We can use the following approximation in Eq. (4.5.97)). In our computation we
take the distance of closest approach to be rg = rp.x. Furthermore, we introduce

the dimensionless variable x = /M, and we find

d 1
¢ =— ) (4.5.98)
dx 2 1 [1Fa(Ey,2,9)] <1 2 ) 1 ( . g)
xﬁjax [1$Q(Ey,$max,%)j| Tmax z? x
The flat space limit is
d 1
@ _ _ . (4.5.99)
dx 22 1 [1Fa(E,,z,8)] 1
T3 ax |:1$G,(Efy,$ma)u%):| z?
Let us now expand the right-hand side for small a. We find
d 1 a(En, x, —aE,xmax,%
@ _ _ - UBy T 9) — alBy - )| (4.5.100)
dx x2 x?iax -1 922242 <x21 _ :712)

The first term reproduces the trivial flat space limit, and the integration between
x =00 and T = T,y gives the angle ¢ = 7/2 corresponding to outgoing light with
no deflection, as illustrated in Fig. [4.12| Since by definition A¢y ~ O(g4y+), at the

first order in the coupling g,,, we can write

E - E max>E
dp 1 :Fa( T 9) —a(Ey,x 2)’ (4.5.101)

dx 2 1 1 3/2
_ 1 1 1
L7/ 22 22 22272 ( S — —)

max max \ z2
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that is the equation for the photon orbit that we solved in Section [4.3]

4.6 Summary

Black holes were long considered a mathematical curiosity rather than a true pre-
diction of General Relativity realized in nature. After the first direct detection of
gravitational waves and the first observation of a binary black hole merger [429],
the possibility to turn black holes from theoretical laboratories to real “particle de-
tectors” has never been nearer than today. However paradoxical this may seem,
black holes could help us in finding one of the most theoretically motivated, but
experimentally elusive, particle: The axion. This is because a rotating black hole
can host an axion cloud — fed by superradiant instability at the expense of the black
hole rotational energy — surrounding it. Until present, the properties of such system
were studied only considering gravitational interactions. This is a limitation since
any boson with the same mass, irrespective of its particle physics origin, displays

the same superradiant physics as long as gravitational interactions are concerned.

In this chapter we investigated the possible consequences of the parity-violating
coupling of the axion with an electromagnetic field in the context of black hole
superradiance. The key idea is that the axion cloud surrounding a Kerr black hole
behaves like an optically active medium, and a ray of light experiences a polarisation-
dependent bending travelling through it. Motivated by this picture, we computed
the polarisation-dependent lensing caused by this phenomenon considering the QCD

axion, the photo-philic QCD axion, and a generic ALP.

We discussed the experimental setup that is needed to detect such effect, fo-
cusing on the radio observation of a linearly polarised astrophysical source like an
AGN. We argued that a VLBI array of radio telescopes has the capability to detect
the polarisation-dependent bending effect caused by the axion cloud surrounding a
Kerr black hole, and we delimited the parameter space in which this is relevant in
conjunction with other experimental axion searches. Although, to properly assess
the number of expected events of this observable, we would need to quantify the

probability of having the required system configuration, e.g. an AGN and the black
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hole being aligned to the line-of-sight of the telescope. We leave that study for future

work.



Chapter 5

Conclusions

The Standard Model of particle physics has been one of the most successful theories
in physics. However, there are observations that require new physics beyond the
SM to find an explanation. In this thesis we discussed different directions in the
construction of models beyond the SM that address some of its problems and studied

their phenomenological implications at different types of experiments.

Lacking experimental evidence for new fundamental physics to support the most
studied solutions to the naturalness problem of the Higgs mass, such as super-
symmetry, composite Higgs scenarios and extra-dimensions, it is timely to discuss
alternative theoretical guiding principles for models beyond the SM. In Chapter [2]
we discussed the concept of classical scale invariance, in this approach all energy

scales in the theory are generated through quantum corrections.

We applied this approach to the inert doublet model, a minimal extension of
the SM where a second SU(2), doublet is added and its lightest neutral compo-
nent (scalar or pseudoscalar) is a good dark matter candidate. Even though new
parameters (and particles) are introduced to the inert doublet model, the Coleman-
Weinberg relation imposes a constraint among them. We found that, when compared
to the inert doublet model, the classically scale invariant extension has a reduced
parameter space compatible with low-scale physics and dark matter experimental
constraints. In addition, we characterised the regions in the parameter space of the

model that can be extrapolated up to the Planck scale.
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In addition, we discussed a minimal classically scale invariant extension of the
SM which explains dark matter, neutrino masses and the baryon asymmetry of the
Universe. In order to achieve this, the following states are added to the SM, a
dark non-Abelian sector SU(2), a scalar doublet charged under the latter, three
right-handed neutrinos and a singlet scalar. Active neutrinos acquire their masses
via the type-I seesaw mechanism. The gauge bosons in the dark sector are mass-
degenerate and stable due to a remnant global SO(3) symmetry, and therefore,
represent good candidates for dark matter. The baryon asymmetry is generated in

the early Universe via CP-violating oscillations of the GeV right-handed neutrinos.

From dark matter considerations, the scale connected to dark matter is required
to be around the TeV, and due to the common origin of all the vacuum expectation
values in the model, the one giving mass to the right-handed neutrinos cannot be
too large. We showed that the right-handed neutrinos should have masses around
the GeV scale in order for leptogenesis to work without severe tuning of their mass
splittings. Under some mild assumptions, we also found a connection among the

two scales in order to explain the observed ration Qpyh?/Qh?=5.

We studied the dark matter phenomenology in both models previously discussed.
We computed the relic abundance and presented cross-sections for direct detection
experiments, demonstrating that a large region of parameter space will be probed in
the near future. Moreover, both of these models contain a Coleman-Weinberg scalar
that mixes with the SM Higgs and its phenomenology at the LHC has been discussed.
The framework of classical scale invariance also provides relations between originally
free parameters in a theory and if embedded in a theory with exact scale invariance

in the UV could potentially solve the Higgs mass naturalness problem.

In Chapter [3], we discussed a set of simplified models of dark matter in which
a dark matter candidate and a coannihilation partner are introduced to the SM.
At tree-level the DM particle interacts with the SM only via the heaviest lepton;
namely, the 7-lepton. Some of these models are gauge-invariant and renormalisable,
others would ultimately require a UV completion. In the region of parameter space
where the mass splitting between the dark matter particle and the coannihilation

partner is smaller or equal to the mass of the tau, AM < m,, two-body decays
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of the coannhilation partner are forbidden, and therefore, its lifetime is larger than
1078 seconds leading to highly ionised charged tracks. We demonstrated how ongoing

searches for long-lived charged particles at ATLAS and CMS can probe these models.

In the scenario where the mass splitting is larger than the mass of the 7-lepton,
AM > m,, the coannihilation partner decays promptly into a tau and the dark
matter candidate, the latter as missing energy in the detector. In view that the
reconstruction of soft 7-leptons is a hard task at the LHC and the overwhelming
background, the prospects to detect this decay at the LHC are hopeless. However,
there exist current plans for the construction of a electron-positron linear collider,
where owing to the clean environment the soft decay products can be detected.
We studied the expected sensitivity to the pair-production of the coannihilation
partner for different centre-of-mass energies and integrated luminosities. We found
the prospects to be very promising, leaving only a small window around AM =
m, untested, once the sensitivity of the LHC and electron-positron colliders are
combined. The models discussed are difficult to probe by direct and indirect DM
detection experiments. Therefore, the LHC and future lepton colliders provide an

almost unique opportunity to explore them.

In the Introduction, we discussed the motivation for the QCD axion. A very
light pseudoscalar particle that solves the strong CP problem and due to its very
weak interactions and its long lifetime, it also represents a good candidate for dark
matter. Moreover, observational evidence for the existence of dark matter and string
theory constructions motivate axion like particles independently of the strong CP
problem. In the presence of an ultralight axion, a cloud of these particles forms
surrounding a Kerr black hole through superradiance, this effect relies solely on
the gravitational interaction. In Chapter [4, we discussed the effect of polarisation-
dependent bending as light passes through the axionic cloud, the latter arises due

to the effective coupling between axions and photons.

In view that right- and left-handed circularly polarised waves propagate differ-
ently in the presence of an inhomogeneous scalar background, the deflection angle
for right-handed circular polarisation differs from the one with left-handed circular

polarisation. Therefore, the image of a source that emits light with linear polarisa-
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tion, such as an AGN, will be split into two as its light reaches the telescope. We
calculated the angular splitting of the images as a function of the coupling ¢,,, and

showed that a VLBI array of radio telescopes has the potential to detect this effect.

A possible astrophysical mechanism that could affect the signal is angular broad-
ening. If the angular broadening proves to be much larger than the angular splitting,
we expect the latter to be clouded by the former. Angular broadening can arise as
radio waves scatter with the intergalactic medium. We computed this effect and find
it to be subleading to the one coming from the axionic cloud in a large region of the
parameter space. Therefore, there is hope of detecting the polarisation-dependent

bending due to a superradiant axion cloud.

In this thesis, we have discussed different models beyond the SM that address
some of its shortcomings and studied their phenomenological implications. The SM

cannot be a complete theory and the quest for new physics continues.
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