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By considering radiative corrections of up to 3rd-loop order, Ritus and Narozhny conjectured that the
proper expansion parameter for QED in a strong constant crossed field is ¢ = ay*?, where the dynamical

quantum parameter y = e\/—(Fp)?/m>® combines the particle momentum p with the external field
strength tensor F. Here we present and discuss the first nonperturbative result in this context, the resummed
bubble-type polarization corrections to the electron self-energy in a constant crossed field. Our analysis
confirms the relevance of the scaling parameter g to the enhancement of bubble-type radiative corrections.
This parameter actually represents the characteristic value of the ratio of the 1-loop polarization bubble to
the photon virtuality. After an all-order resummation we identify and discuss two contributions to the self-
energy with different formation regions and asymptotic behavior for g > 1. Whereas the breakdown of
perturbation theory occurs already for g 2 1, the leading-order result remains dominant until the asymptotic
regime g > 1 is reached. However, the latter is specific to processes like elastic scattering or photon

emission and does not have to remain true for general higher-order QED processes.
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I. INTRODUCTION

Strong electromagnetic fields show up in atomic physics
[1] (including heavy ion collisions [2] and passage of
ultrarelativistic particles through crystals [3]), astrophysics
of compact objects [4], at the interaction point of future
lepton colliders [5], and during the interaction of high-power
lasers with matter [6]. A strong field is often well described
by a coherent state that is not significantly altered by the
quantum processes which it facilitates. This justifies the
strong field approximation, which originated in the works of
Furry [7], Sokolov and Ternov [8], and Keldysh [9].
Accordingly, one neglects quantum fluctuations and back-
reactions on the field itself, and treats the field as an external,
i.e., given, classical one. However, its impact on the quantum
processes in question is taken into account exactly.
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A very important case is a constant crossed field (CCF),
for which both field invariants are zero (E-H = 0 and
E = H). This “instantaneous” approximation is robust in
many situations involving ultrarelativistic particles [10].
Already in the very first considerations of the basic QED
processes of photon emission and pair photoproduction it
was observed that asymptotically, for y > 1, the proba-
bilities scale as g = ay?? in a CCF, where' a = ¢2/4x is
the fine structure constant [11]. The so called dynamical

quantum parameter y = (e/m?),/—(F,, p*)* measures the

rest-frame field strength in units of the Schwinger critical
field Fy = m?/e [11]. Later, the same scaling was also
found for the one-loop polarization [12] and mass [13]
radiative corrections, related by the optical theorem to the
probability rates for pair production and photon emission,
respectively.

After the consideration of radiative corrections up to 3rd
loop order, it was conjectured that g might replace a as
an effective expansion parameter for QED in a strong
CCF [10,14-18]. Nowadays, this supposition is known as

'We use units such that # = ¢ = g, = 1, electron mass and
charge are denoted by m and —e, respectively (e > 0), and the
signature of the Minkowski metric is (+,—, —, —).
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TABLE L

Known asymptotic scaling for radiative corrections in a CCF to the polarization operator (left) and the mass operator (right).
For each diagram the row specifies the y > 1 asymptotic behavior together with the corresponding source. The dominant scaling in y is
highlighted in bold for each loop order.

1 loop
(12) @ o’ [12] (10) :fi&: a3 [13]
2 loops
(2a) @ a’y*3logy [16] (2b) :& a’ylogy [14,21]
) RN ey 0
3 loops

the Ritus-Narozhny conjecture [19]. Radiative corrections,
which have been calculated for a CCEF, are shown in Table I.
Note that the 2nd and 3rd loop contributions containing
vertex corrections are missing, as they have not been
calculated yet. However, they were believed to be sublead-
ing [17,18] (the results presented in [20] seem to contradict
this assumption and should therefore be reconsidered).
Even though the leading-order results [see diagrams (la)
and (1b)] already indicate the importance of g for the
overall scaling of radiative corrections, it is not clear from
the outset that this parameter also determines the impor-
tance of higher-order contributions and thus the breakdown
of perturbation theory.

To determine the effective expansion parameter, which
governs the breakdown of perturbation theory, one has to
examine the ratio between the (n + 1)th and the nth loop
order. For the mass operator (right column in Table I)
and n = 2 this ratio is (3g)/(2b) ~ g = ay*>. Narozhny
conjectured that the same scaling will hold at all higher
loop orders n > 2 [18]. The previously considered ratios
(2b)/(1b) ~ ay'/3logy for the mass operator and (3c)/
(2a) ~ ay'Plogy for the polarization operator initially
caused some confusion about the correct expansion param-
eter [14,17]. The current interpretation is that these findings
represent exceptions at the beginning of the expansion.
Note that for the polarization operator these ratios are
upshifted by one loop order with respect to those for the
mass operator, as the polarization operator contains an extra
fermion loop. It is therefore believed that g also represents
the effective expansion parameter of the polarization
operator starting from 4th-loop order, yet to be accurately
calculated. The Ritus-Narozhny conjecture, as formulated

in a final form in the paper2 [18], states that for y > 1:
(i) the radiation probability and radiative corrections are
enhanced by powers of y; (ii) the ratio of the dominant
contributions to the (n+ 1)th and the nth orders of
perturbation theory scales proportional to g—in this sense
g represents the effective expansion parameter for pertur-
bation theory in a strong CCF; (iii) the corrections growing
as the highest power of g at each order of the perturbative
expansion are those accommodating the maximal number
of successive polarization loop insertions (bubbles) as
shown in Fig. 1.

Note that this is in sharp contrast to ordinary (field-free)
QED, where the expansion parameter « is small and the
effect of higher-order vacuum polarization corrections, after
renormalization, is a logarithmic growth of the effective
charge. As a result, polarization effects remain small for all
reasonable energies, i.e., below the electroweak unifica-
tion scale.

A situation which, at first glance, might appear very
similar to a supercritical CCF, but which is actually quali-
tatively different, is the case of an electron/positron
occupying the lowest Landau level (LLL) in a supercritical
magnetic field [23,24]. In this case the applicability of
dimensional reduction facilitates nonperturbative calcula-
tions, which have been carried out in the context of
spontaneous chiral symmetry breaking (see e.g., [25]).
The Ritus-Narozhny conjecture, however, applies to an
ultrarelativistic electron/positron, which has quasiclassical

’In fact, the assertions forming the conjecture are scattered
along the concluding part of the paper [18]; here we combine
them all together.

053005-2



RESUMMATION OF QED RADIATIVE CORRECTIONS IN A ...

PHYS. REV. D 102, 053005 (2020)

o N i SO -~ N

FIG. 1.

Bubble-type polarization corrections to the electron mass operator (double lines denote the dressed electron propagators in a

constant crossed field [22]). The corresponding exact photon propagator, obtained after resummation of the Dyson series with account
for the 1-loop polarization operator, is referred to as the bubble-chain dressed photon propagator throughout the paper.

trajectories [26-28]. Thus, it effectively occupies very
high Landau levels. Nevertheless, the LLL case can be
mapped heuristically to the CCF case. To this end we note
that for the ground Landau energy level e o« \/B/F,
[29], the corresponding value y =~ (B/F) X (ery/m) =
(B/F,)3/? effectively maps into g~ aB/F (c.f. [30]). As
to be expected, the two situations also exhibit qualitative
differences. For example, the one-loop mass operator is
only enhanced in a CCF [13,14], not in a supercritical
magnetic field [31].

Whereas supercritical magnetic fields are encountered in
astrophysics, most researchers regarded a proof of the
Ritus-Narozhny conjecture as an academic exercise with
no practical relevance. This perspective has changed only
recently, after realistic experimental proposals to probe the
regime g 2 1 were suggested. In particular, it was demon-
strated that the value g ~ 1 can be attained by mitigation of
rapid radiation losses in beam-beam collisions at a near-
future lepton collider [32]. Alternatively, electrons could be
collided with strong optical laser pulses at oblique inci-
dence [33] or head-on with strong attosecond pulses
generated by reflection of high-power optical laser pulses
from a solid target [34]. Their passing through solid targets,
which are irradiated from the back with ultraintense laser
pulses, represents another suggested setup [35], as well as
the channeling of multi-TeV electrons/positrons in aligned
crystals [36].

It is obvious that a CCF can be only approximately
realized in practice. According to recent discussions (see,
e.g., [37-39] and the references therein) the locally con-
stant field approximation (LCFA) is valid for describing
scattering of ultrarelativistic particles in a strong subcritical
(F < Fy) slowly varying field under the conditions aq > 1
and a, > y'/3, where ay = eFr/m is the classical non-
linearity parameter. Here F and 7 are the typical field
strength and field variation length/time, respectively. These
conditions ensure that the typical formation scale for
strong-field processes like photon emission, pair produc-
tion or elastic scattering is smaller than the scale over which
the field changes significantly. Under these conditions the
results derived for a CCF are applicable [32]. Whereas the
importance of the former condition (ay > 1) was realized
and stated explicitly already in the initial publications on
this topic (see, e.g., [10,11]), the necessity of the latter
condition (ay > y'/3) was not widely known (previous
works commonly implied y < 1), see [40], though. This is
illustrated in Fig. 2, where the domain of validity of the

LCFA is indicated in blue and the location of the non-
perturbative regime is hatched in red. Recent rigorous
considerations of the 1-loop mass and polarization oper-
ators in a strong pulsed field [41,42] explicitly demon-
strated that in the high-energy limit, with field strength and
duration kept fixed (given qag), the scalings observed in
a CCF no longer apply. Instead of a power law enhance-
ment only a logarithmic scaling with y is observed. This
becomes obvious in Fig. 2. For fixed field strength and
duration (given a;) the high energy limit means a motion
rightwards along a horizontal line. This inevitably implies
that the domain of validity of the LCFA will be left. In fact,
the effective charge exhibits a logarithmic dependence on
the field strength parameter y even in a pure CCF [43].
However, as we will show below, this is irrelevant to the
Ritus-Narozhny conjecture, which focuses on the scaling of
the effective masses.

Here we revisit the Ritus-Narozhny conjecture and
present the first all-order resummation of the bubble-type
polarization corrections to the electron self-energy shown
in Fig. 1. According to the Ritus-Narozhny conjecture this
should be the dominating contribution to the cumulative
higher-order radiative corrections for g = 1. Note that a
similar resummation of the 1-loop radiative corrections to
external electron and photon lines in a laser field was
previously discussed in [44,45], see also [46] for more
details. Our consideration not only confirms the importance
of the parameter g for such kind of corrections, but also
provides further insights into its nature and importance.

oA

-
-
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FIG. 2. Overview of the two most important parameters (y, a)
characterizing the interaction of a relativistic particle with a
strong subcritical (F < F) field. The domain of validity of the
locally constant field approximation (LCFA) a, > max{1, y'/3}
is indicated in blue, and the subdomain of the nonperturbative
regime g = ay?/ > 1 is hatched in red.
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The rest of the paper is organized as follows. After
introducing our notation and technical preliminaries in
Sec. II, we discuss how the parameter g emerges in bubble
diagrams in Sec. III A. Next, in Sec. III B, we present an
approximation which facilitates their all-order analytic
resummation and identify two qualitatively different con-
tributions, one associated with photon emission and
another one related to trident pair production. Their explicit
evaluation for y > 1 is finalized in Sec. IV. A detailed
summary and further discussion of our results and their
implications are presented in Sec. V. To keep our presen-
tation succinct, we summarize the main properties of the
1-loop polarization operator in a CCF in the Appendix.

II. BUBBLE-TYPE POLARIZATION
CORRECTIONS TO THE MASS OPERATOR
IN A CONSTANT CROSSED FIELD

In this paper we focus on studying the bubble-type
polarization corrections to the electron self-energy in a
CCF (see Fig. 1), or, more precisely, to the on-shell elastic
electron scattering amplitude 7,(p) = —-M(y)/(2p°),
where the invariant amplitude M (y) = i, ;Mu,, , depends
on the dynamical parameter y. Here M is the mass operator
of an electron and u,, ; is a free Dirac spinor characterizing
the electron spin state.

In the Ritus E 1,—representation [10,13,14] the correction
to the mass operator in a CCF depicted in Fig. 1 reads

—iM(p', p) = /d“xd“x’Fp/(x’)(iey")
x 8¢(x', x)(iey”)E,(x)Dg, (', x)
- d*l d*q P
= | G0

i(4 +m)
q* — m? +i0

Y(=l:q, p)D;,(1). (1)

Here S¢ denotes the tree-level dressed electron propagator
and D¢ is the bubble-chain dressed photon propagator [12]
attached to the electron line in Fig. 1. The 4-momenta of the
virtual photon and electron in the outer loop are denoted by
I* and g*, respectively, 4= y*q,, and E,(x) is a matrix
solution to the Dirac equation in a CCF, which reduces to
the unity matrix if the field is switched off adiabatically
[13]. Furthermore,

D(p.a) = [ eV E, WlierE W) (@)

is called dressed vertex [14,47], where Dirac conjugation of
amatrix E, = y’E}" is denoted by a bar. For the sake of
clarity Eq. (1) is written in two different ways: the right-
hand side of the upper line is written in a coordinate
representation, whereas the lower line expresses the

electron propagator in the E),-representation and the photon
propagator in the momentum representation.

The bubble-chain dressed photon propagator in a CCF
reads [10,12,14]

2
D5,(1) = Do(P.x)gu + > Di(P)e) (e (1), (3)
f

where y; = (e/m?),/—(F,,I)* is the dynamical quantum
parameter of the virtual photon, e,(,l)(l) = eF,I"/(m’y))
and € (1) = eF3,I*/(my,) are the normalized field-
induced transverse 4-vectors, and Fj, = (1/2)e,,,,F* is
the dual field strength tensor. The longitudinal component
in Eq. (3) is given by

—iZ
Do(P%. ) = 710 (4)

and differs from the field-free one only by a finite factor
Z(P, ;) [see Eq. (A7)], whereas the transverse components

iZ711,
(1> +i0)(I> = ZI1, 5)
7/ —iZ
TR0 P-ZI,

Dy, (. x) =

(5)

exhibit additional poles corresponding to two effective
photon masses (one for each transverse photon polarization
state). They are determined by the renormalized eigenval-
ues I1; (12, ;) of the polarization operator [see Eq. (A2)].

Overall, the only effect of the factor Z(?, y,) is to intro-
duce an effective coupling a > au; (%, x,) = Z(P, y))a
(cf. [43]). However, Z remains very close to unity for all
reasonable values of /> and y,. Therefore, we will ignore
this logarithmic correction by setting Z=~ 1 and a.4 ~ a
from now on. Further details are given in the Appendix.

In the following we will simplify the expression obtained
by combining Egs. (1)—(5). The part of the calculation
which closely follows Ref. [14] will only be outlined. Since
E,(x) differs from a plane wave e¢~'”* only by a factor
depending on ¢ = kx (k" is directed along the Poynting
4-vector of the CCF, its normalization is arbitrary), the
dressed vertex [see Eq. (2)] in a CCF can be written in the
following way:

Cip.g) = [ s (p =g - 1=k ). (6)
where vk* is the energy-momentum transferred to the
external field. f”(y; p,q) can be expressed in terms of
the Airy function [48]

1 o0 )
Ai(r) / do =il /3), (7)

:2—7[ .
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Due to the transversality of a CCF the dressed vertex
remains invariant under translations of its arguments p
and g by 4-vectors proportional to k*. The 4-dimensional
o-function, shown explicitly in Eq. (6), expresses energy-
momentum conservation with the external CCF included
[14]. Due to the presence of two such d-functions in Eq. (1)
(one from each dressed vertex) p’ can actually differ from p
only by a 4-vector proportional to k#. Hence we can apply
the replacement T*(—/; p’, q) +— T*(=t/; p. q). Then, one
of the two 4-dimensional d-functions in Eq. (1) removes the
integration over d*g, after which only 6 integrations
remain: over d*l, dv and dv/.

It is convenient to apply the following changes of vari-
ables: I > {I*,u,p.p} and v > p, where u = y;/x,. 1, is
the dynamical quantum parameter of the electron in the

outer loop, p p”e ( )/m, p= p”e,l ( )/m. Note that
i = q*> —m? and > have the meaning of the electron and
photon virtualities in the loop, respectively. After these
substitutions the integrals over p and ¢/ are trivial, and the
remaining 4-dimensional §-function provides the diagonality
of the mass operator in the E ,-representation, M (p'.p) =

(27)*6¥) (p’ — p)M(p). This diagonality is expected due to
the translational symmetry of the CCF, as M (p’, p) is gauge
invariant. Even though we sum only a subclass of diagrams,
M(p', p) is indeed gauge invariant, as the bubble-chain
dressed photon propagator is transverse. Finally, the variable
p can be integrated out by employing the formula

MO () =

. u-+2u+2

X[A““)*ﬁ

2/3 l+ulP 1+uup

= (- 1 — -, 12

(X) <+ u* m? u m2> (12)
uy

= , 13

Xl 1+u ( )

corresponds to the 1-loop contribution (i.e., it contains no
vacuum polarization insertions, see the first diagram in
Fig. 1). This leading-order result has already been calcu-
lated and discussed by Ritus [14]. The (not necessarily
small) modifications induced by vacuum polarization are
denoted as 5M(y). Here y, = eF},p*s”/2m® and s* =
u My”ysu p.2/2m is the electron spin 4-vector [29,46].
Note that the mass operator needs to be renormalized
before physically meaningful quantities can be inferred.
According to the standard procedure, this is done succes-
sively by proceeding from inner to outer loops. However, if
one employs the renormalized polarization operator from
the beginning, only the outer (photon) loop remains to be
renormalized. This is achieved by adding and subtracting

o 1
/ dpAR(a + ) = 3 Aiy(27a). (8)

where

—i [~ do

Ail (t) = / Al(x)dx = % me_
t —00

is the Aspnes function, see Sec. 3.5.2 and Eq. (3.105) in [48].
Note that the dimensionless integration variable ¢ in Eq. (9),
arising after application of Eq. (8), is proportional to the
phase formation interval of the outer loop. After these
simplifications, the final expression contains three integra-
tions: over u and the virtualities /> and . In addition, several
integrations are “hidden” in the definition of the Airy
functions and in the final form of the bubble-chain dressed
photon propagator [see Egs. (3), (5), and (A2)].

After substituting the mass operator into the invariant
amplitude /\/l(;() = L‘tp M (p)u,,, where Up.i is the free
Dirac spinor, p> = m?, and A indicates a spin state, and
evaluating the resultmg spinor matrix elements, it is natural
to split M into two terms,

i(to+0°/3) (9)

My) = MO )+ 5M(y). (10)

where

02”:: /oo 1+ u)? / /wﬁDo )

|
the field-free amplitude M (F = 0), which is renormalized
in the standard way and vanishes on-shell [14]. In case of

M) (y) this implies that we have to replace the function
Ai,(¢) in Eq. (11) with

AL (1) —27[ / do e~ (=3~ 1), (14)

© O

In the following we assume this replacement in M©) (y) by
default without explicitly changing our notation. After

renormalization, M(®) exhibits the following asymptotic
scaling for y > 1 [see Eq. (72) in Ref. [14] and Table I,
diagram (1b)]:

(0)()( > 1) e—im/32 Y2 28\/_ <3) a)(2/3 2

20.843(1 - i\/§)a;(2/3m2, (15)

where I'({) is the Euler I'-function.
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The nontrivial contribution M (y) = 6M,(y) + 6M,(y) in Eq. (10) is given by

5M1,2(Z> =

(sz 0 du 0 . dﬂ
- dlz —D 12,
(277 /_oo (T +u)y /_m /_WH,.O 2(P.2)

Pu?+2u+2 u> +2u+2 7\3 1 u\2/3
1+ ————")Ai —— 41 (%) A 2 +1)(=) Ai
XK w2 > 1'(t)+( I+u )(M) "= y*<1+u ><X> l(t)}’

where ¢t and y; are defined in Egs. (12) and (13),
respectively. Unlike M), these terms vanish as the field
is turned off; hence they remain unaffected by renormal-
ization. Apart from the spin-dependent terms, which we
write here explicitly, our expression in Eq. (16) is equiv-
alent to Eq. (42) in [18], where the factor Z was also set to
unity.

So far we have mainly followed [14]. From now on,
however, we will proceed differently than in the existing
literature [14-18], which now applied a perturbative
expansion

I, , (1 ,){1
P H12 ,)(1

SR o

r=1

in Eq. (5), where the r-th term corresponds to a diagram
with 7 + 1 loops, including r vacuum polarization bubbles
(see Fig. 1). Here, after reviewing and generalizing this
approach, we carry out a nonperturbative calculation and
derive the large-y asymptotic scaling of the whole ampli-
tude given in Eq. (16). In order to achieve these goals, we
process the outer integrals in a different order than in
Refs. [14,18].

II1. ANALYSIS AND ALL-ORDER RESUMMATION
OF THE BUBBLE-TYPE RADIATIVE
CORRECTIONS

A. All-order perturbative analysis

Previous derivations [14,18] of the elastic scattering
amplitude were based on a perturbative truncation of the
expansion in Eq. (17) for r < 2. This approach provides
some qualitative insights into the scaling of each order of
perturbation theory at 1 < y < a=/2.

The rth term of the D;, expansion given in Eq. (17)
corresponds to r polarization loop insertions. In order to
identify the leading-order scaling for such contributions to
Eq. (16), we estimate the order of magnitude of each term.
The expression under the integral over u rapidly falls off for

3According to our investigation the extra overall factor 1/|y]|
present in [18] is a typo. As we discuss in the next section, the
extra terms proportional to y inside the coefficients of the Airy
and Aspnes functions in Eq. (42) of [18] actually vanish after
integration.

(16)

|
u 2 1 (i.e., if y; of the photon exceeds y,, of the electron in
the outer loop); hence for the sake of an order-of-magnitude
estimate we can restrict integration to # < 1 and drop u in
the integrand where possible. As we will see shortly, the
effective values of u can be small. Therefore, we retain the
dependence on u in all factors blowing up at u — 0. This,
together with Eq. (7), allows us to approximate (up to a
complex numerical coefficient) the term containing Ai’(7)
in Eq. (16) as

A1 ~am /du/daa( > e—iolu/x)P=ic*/3
< / dPe™" (P, ) /dﬂe""” (18)
P+i0 | 2+i0 u+i0’

where y; ~ uy [see Eq. (13)], TI(%, ;) is either I1; or I,
[see Eq. (A2)]. Furthermore,

s = s(o,u) :%()ﬁ)m(l Y (9

u

— :%G)z/m *u) == ()

u

have dimension of inverse mass squared and are propor-
tional to the proper times of the electron and photon in the
outer loop, respectively. The meaning of Egs. (19) and (20)
is that both s and 7 are proportional to the phase formation
interval o of the outer loop. Note that even though Eq. (11)
differs from (16), in our approximation the structure of its
term containing Ai’(¢) is the same as in Eq. (18) with r = 0,
hence we consider » > 0 in what follows.

By applying a dimension-based argument [namely, by
assuming p, du ~ po and 12, dI> ~ (I?) ] the integrals
over the virtualities y and /> are estimated by [ due™*5/
(u+i0) ~ 1 and

/ 126121'0 [r;z(i%)] enife [W] Lo

where the effective scales of the virtualities are

established by
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TABLE II.

Summary of the scales for the perturbative and resummed bubble-type mass corrections.

Perturbative (1 < y < a=/?)

Resummed (ay?> > 1)

MO MO M(rz2) SMD SMM SM 1)

Scaling [m?] a3 oylogy @ Lyt o2 B/223 a2y log(a?)

1 1 1 0) 1 r) r) . A .
Dominant contribution ngi’ ME\RI ME\Y - Mg )
c 1 y23 1 1 1 (a){2/3)—l
u 1 4! 4! 1 o2 P
xi~uy’ X 1 1 x a3/2;( 1
T~ o‘/(m2){2/3 u4/3)b [m—2] ){—2/3 1 ){2/3 )(—2/3 a—2X_2/3 ol
. /T‘i}f) 1 1 73 1 a’! a!
P~z [m?] 423 1 P 423 a2yl a
s = ut® [m=2] PlE P P PlE a V2203 aly!
st [m?] 23 ¥ 413 Je VT ay
(2, ,)/ 12 ~ ao/u?/ a a ar*? a 1 !

*See Eq. (13).
°See Eq. (20).
“See Eq. (19).
See Eq. (24).

1 m2)(2/3 ul/3
Heff = — = ) (22)
s c
1 m2;(2/3 U3
(lz)eff = T = o (23)

As explained above, the integration range over u is
effectively restricted from above by u < 1. Similarly, the ¢*
term in the exponential can be effectively replaced with
imposing the restriction ¢ < 1. With this, the remaining
term in the exponential ~o(u/y)*? = O(y~*3) < 1 and
can be neglected. The restrictions of the remaining inte-
gration variables u and ¢ from below follow from the fall-
off of Ty 5(12, ;) for y; ~ uy S 1 and for 12 = m%y}"? (see
Figs. 7 and 8 in the Appendix, respectively). Note that
I, 5 (1%, x;), as a function of /2, decays exponentially to the
left of the origin and exhibits a power law decay at the same
scale as it oscillates to the right. Therefore we effectively
have u > 1/y and, in virtue of Eq. (23), 6 = u?/3. Inside this
range, we can estimate T1(12, 7;) ~ amy?"* [see Eq. (A10)
in the Appendix], and hence [see Eq. (23)]

() etro21) 90
() etr w3’

By substituting Eq. (24) into Eq. (21) and the latter into
(18), we obtain

") o203 [1du ! 1
MAi’ o m)(//); W do o .

-1y u2/3

(24)

(25)

Here, for any r > 0, the integral over ¢ is ~1, being formed
at o ~ o, = 1. However, the integral over u behaves
differently for r =0 and r > 1.

For r = 0 (no bubbles) the value of the integral over u in
Eq. (25)isformed atu ~ u.; = 1. Thus, assuming du ~ ugy,
we obtain M@ ~m?g and a loop formation scale
Mo ~ 1/(my?/3), which are in agreement with Eq. (15)
and [32].

In contrast, for » > 1, u shows up in the denominator of
the integrand in Eq. (25) in the power 2(1 + r)/3 > 1. This
means that the integrand rapidly falls off on this scale and
the integral in u is actually formed around the lower limit
u~1/y < 1. Therefore, we obtain®

r+1
MZY < Ziﬁ, g=ay?3. (26)
This clarifies that for » > 1 the effective value of the photon
virtuality is small, (I?)./m> ~1/4*3 < 1, and the loop
formation scale is different, mz.g ~ y*/> /m.

So far we have only considered the terms oc Ai’(¢). Let us
now discuss the other contributions in Egs. (11) and (16).
Obviously, in both of them the terms containing Ai;(7) are
estimated the same way as above by Eq. (18), with the
only replacement o(y/u)*? + 1/ in the preexponential
factor of the integrand for Eq. (11) and o(y/u)*? —
P/ (m*u?6) ~ (y/u)*3/c* for Eq. (16). Then it is easy
to see that in the case r = 0, for which as before o, u ~ 1,

no enhancement by powers of y occurs, hence ./\/lfi)] can be

neglected against Mfiz for y > 1. For r > 1 we obtain,
instead of Eq. (25),

4Though our reasoning is almost similar to the one given in
Ref. [18], we emphasize several important aspects which are
missing there, in particular regarding the composition of the
parameter g and the origin of the overall suppression of higher
orders in elastic scattering.
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(r>1) 3 (1 du ! _
MAil Nar+1m2)(2/'% /XIW/ do o' 2. (27)

W23

For r > 2 the estimates follow the same derivation as in
Eq. (25) and the scaling agrees with Eq. (26). However, for
r = 1, the integral over ¢ is formed at small ¢ ~ y~2/3,
which results in an additional factor logy [cf. (2b) in
Table I].

In fact, the calculation to this order was accurately
considered in Ref. [14]. For y > 1 the result is given by
Eq. (76) therein, which, in our notation and up to the
accuracy we adopt, can be represented as

13¢m?> [z . X 142
WDy |2 In*=-C—-—)|, (28
M 187/3y'/3 {2 " l( n2\/§ 39 (28)

where C is the Euler constant.

Finally, the terms containing Ai(7) in Eq. (11) and (16)
can be estimated by replacing in the integrand of Eq. (18)
o(y/u)?® v+ y,(u/y)*3. Then it turns out that ¢ ~ 1 for all
r>0,but u~1for r=0, 1, 2 and u~y~' for r>3.

Furthermore, by estimating y, ~y, we obtain, ./\/lXi) ~

aH'm?y'3 for r <2 and MEQ ~m?g ' /y? for r>3.
This proves that the spin-dependent contributions also get
enhanced at higher orders. However, as implied in [14,18],
they still remain subleading at all orders for y > 1.

To summarize, we have reproduced the asymptotic
scalings of the diagrams (1b), (2b) and (3g) in Table I.
Moreover, the above analysis extends these results to all
orders, thereby establishing this aspect of the Ritus-
Narozhny conjecture. The findings of this section for the
scales of the leading-order perturbative contributions are
collected in the first three columns of Table II. In the
following we will compare them to the scaling naturally
arising after the all-order resummation.

Before proceeding, however, we would like to point out a
few important insights. The scalings of the corrections at all
orders (apart from the log y-factor occurring solely for r =
1 as discussed above) are consistent with a direct estimate
M) ~ qs™!(TI1/1?)" based on Fig. 1, where the factors IT
and a come from each bubble and the two remaining
vertices, s~ and /=2 correspond to the electron and photon
propagators, respectively (with the specific appropriate
choice of all the scales for given » > 0). Hence it is clear
that for r > 2 the scaling parameter g naturally originates as
the ratio of the polarization operator eigenvalues to the
characteristic value of the photon virtuality in Eq. (24).
However, in the special lowest-order cases r = 0 and r = 1
this ratio acquires the standard field-free QED value a.
This, however, is accompanied with a variation of the loop
formation scales for r < 2, which become uniform only for
r > 2. The latter includes a modification of either the
characteristic values of u (equivalently, y;) or o, or even an
alteration of the dominant contribution, and explains the

anomalous ratio ~ay'/3 log y of the two-loop and the one-
loop mass corrections mentioned in the introduction. In
effect, however, the latter ratio becomes uniform already for
r > 1, as, disregarding the log y-factor, the corrections at
these orders are all estimated by Eq. (26). As compared to
M) the resulting scaling contains an extra factor y~!/3.

Due to the presence of this extra factor in higher-loop
diagrams one has to distinguish between the critical value
g ~ 1, for which all higher-order terms become of the same
order and the perturbative expansion breaks down, and the
regime g > 1, where higher-order terms become compa-
rable to the 1-loop contribution M () and thus substantially
modify the total amplitude. This was nicely rephrased in
[49], by observing that for y = a2 (ie., g=1), the
bubble-type corrections (2b) and (3g) in Table I are both
suppressed with respect to (Ib) by the same factor \/a,
whereas for larger values of y, e.g., for y ~ a2, they are
growing with r and hence may compete with (1b). As we
have shown here, the same happens for the higher-order
(r > 3) corrections as well.

B. All-order resummation at ay?3 2 1

After the qualitative discussion of the perturbative
scaling in the previous section we now present a quanti-
tative analysis in the nonperturbative regime ay*> > 1. In
principle, this could be done by an all-order resummation
of the perturbative bubble-type contributions M (). Such
a procedure, however, is hardly implementable, as the
numerical coefficient of M (") is defined by nested integrals
and their overall number grows substantially at higher
orders. Therefore, it is more practical to evaluate Eq. (16)
directly. In essence, our calculation is fully equivalent to a
Borel summation [50] of the all-order bubble-type dia-
grams in Fig. 1.

We proceed by employing the integral representations
for the Airy (7) and the Aspnes function (9), and changing
the order of integration by considering first the integrals
over the virtualities x4 and /2. Then the integral over u
reduces to the textbook form

0 e iHs
/_oo dﬂy 10 27i0(Res), (29)
where @ is the Heaviside step function. Here we treat the
parameter s complex-valued if u is negative. Note that any
contribution to the coefficients of the Airy and Aspnes
functions in Eq. (16), which is linear in y (cf. Ref. [18]),
vanishes at this point. To show this we note that

0 ,ue""”
d = 27o(s). 30
[ aute = 2ot (30)

[Se]

Hence such terms do not contribute after the integration
over o is carried out (more details are given below).
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Next we consider the integral over [?, which is more
involved, but can be suitably approximated. After sub-
stituting Eq. (5) into Eq. (16) we obtain two kinds of
integrals

; P
I (e 30) = / dlz{— 1}

« I(1, e
(P +i0)[I* = T;(2, )]
where IT; (1%, y;) is either IT; or I, [see Eq. (A2)]. Note that

the components of the polarization operator admit a one-
sided Fourier integral representation

(31)

(2. 1) = / de T (.)€, (32)

where 1, ,(7,y;,) are given in Eq. (A12). We combine
Eq. (32) with the complete perturbative expansion given in

Eq. (17) and rewrite Jgi) as

)
(S ofe-$te)

Here and below, unless stated otherwise, we consider

implying that Jg)(r,)(l) is

J(1i) (T’)(z)

(33)

explicitly only J (ll) (7, x1)s
handled in the same way.

In the following we mainly focus on the asymptotic
region y > a>/? (¢g= 1) and derive an approximation
which is valid in this regime. As we will see further, the
effective value of y;, that corresponds to the dressed photon,
does not necessarily obey the same condition, yet y; = 1.
For y;, Z 1 the value of the integrals over 7, are effectively
accumulated at 7, S 7'} = 1/(m%2?).

Next, we use an ad hoc approx1mati0n, which we will
substantiate below: we neglect 7, compared to 7 in the
second line of Eq. (33). Then we obtain

00 .

O(Rer) Z P

n=0

I0,(0,7,) = A dealT, (0. 20).

J@@wﬂw H”'Om),

(34)

This implies that we can further resum the series to an
exponential. For y; 2 1 this simplification is formalized
by the observation that for y > 1 the values of z that effec-
tively contribute in all higher (r > 2) order perturbative

contributions are much larger than ng , see Table IL

*Note that the subscripts 1,2 correspond to the two different
values given in curly brackets.

The same is true also after resummation, as in this case
the contribution to the outer integrals is dominated by [see
Eq. (A8)]

T~ 1 = 710, ;) ~ Tgf)/a > Té}f) (35)

However, we have to be careful and should in addition

ensure that J Y)(T, x1) vanish at T — 0, which can be seen
from Eq. (33). This property is important, otherwise we
would introduce an artificial divergence in the integral over
o in the term containing Ai, (7). Motivated by this reasoning
we come to the following approximation:

; IT;(0
Ji )(2.4)) ~ —27i0(Ret — Téff)) 4 Xl) e~Mi0x)T  (36)
m?
Furthermore, we write
T (2. 30) & —2mi0(Rer — 7)) [~ MO — 1], (37)

where, unlike for J gi), the insertion of the O-function is no

more mandatory. For the sake of uniformity, however, we
include it also for J&”, as the modification doesn’t change
the asymptotic limit y — oo.

The approximations given in Egs. (36) and (37) are
crucial for the analytical derivation of the nonperturbative
asymptotic expansion. Therefore, we have verified their
validity numerically by comparing Eq. (36) with an exact

evaluation of J(11>(T, x1) based on the definition [see

— =100 — =102
—_—— =100 —-— =10
x10~2 o
2
AN~
=
-~
=
£
=
100 107 102 10°
2.,2/3
TM*X;
FIG. 3. A test of the approximation given in Eq. (36) for

J gl)(r, 1) (dashed lines) against its direct numerical evaluation
(solid lines) shown in a double-logarithmic scale for y; = 10, 10,
10° and 10* (the inset shows the same in a linear scale for
;= 10%). The dashed vertical line corresponds to the value

(1)
T = Tegr-
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Eq. (31)]. The result is shown in Fig. 3, where we scaled
the axes such that the graph converges in the limit
x; — oo0. The numerical calculation clearly demonstrates
that the approximation given in Eq. (36) is in excellent
quantitative agreement with the exact expression for
> Tgf) Moreover, it ensures, due to the insertion of

the Heaviside step function, that J(ll)(r, 1) vanishes at

7 — 0. Finally, we would like to point out that the graph

in Fig. 3 has a log-log scale. Therefore, the region 7 < rgg
where the approximation is poor, doesn’t contribute sig-
nificantly to a well-behaved integral over the full range of 7.

After evaluating the integrals over du and dI’> one
encounters the following product of Heaviside step
|

2
M _am® [~ du /
1) - _
MLZ()() 2”/(; <1+M)2 oolt) P

functions [see Egs. (29), (36), and (37)], which can be
transformed into

O(Res)0(Rer — 7\1)) = 0(u)0(c — 64 (u)).

oo(u) = [1?/(1 +u)]'3. (38)

Finally, after applying the derived approximations to
Eq. (16), we obtain the resummed amplitude 5 M valid at
x> 1. It is convenient to split it into three parts:

M) =M (1) + MM () + oM™ (). (39)
where i = 1, 2 and
do . 5, . 23 s
20 o /3—io(u/y) [e igogo(u) _ 1]’ (40)

2 fe 2/3 /42 0
5_/\/[%112) (;() _ am / du <)(> / <M + 1) / do ce—ic/3=io(u/x)*? [e—igmﬂl_z(u) - 1], (41)
» 2 0 (1 oo(u)

+u)? \u

m? [ 2342 1 2u+2
(m) ag du P u u
5 - A
M2 () 47 A (1+u)? <u) 1+u

where M1 and 6 MM originate in the term initially con-
taining Ai;(¢) and SM in the term containing Ai'(t).
Here we introduced the abbreviations ¢;(u) = (1 + u) x
7))/ Gru)*? and 7;(y;) = (1> = 0, ;) / (am®). Nota-
bly, at this stage the on-shell eigenvalues of the polarization
operator in a CCF I1,,(1*> = 0, ;) are exponentiated. As
we show below, this results in a modification of the
formation scales and asymptotic behavior of the contribu-
tions S M (though not of M (1) in the nonperturbative
regime ay?/? > 1.

IV. ASYMPTOTIC BEHAVIOR
OF 6 M FOR ay?3 > 1

Next we determine the high-y asymptotic behavior of
each contribution to 6 M given in Egs. (40), (41) and (42).
It turns out that they exhibit different formation regions,
which implies that each contribution also has a different
physical interpretation.

A. Contribution 6 MV

In Eq. (40) it is convenient to change the order of
integration in the following way:

© © © ug (o)
/ du/ do... —/ da/ du...,
0 o 0 0
3 6
uo(a):%+\/%+63.

(43)

14+u

(pl,Z(”) /oo @e—i0'3/3—i6(u/;()2/3e—igzr(p].z(u)’
O

o(u) o

(42)

|
Effectively, the integrals are formed around ¢ ~ o4 = 1
and u ~ u = 1 (to be justified a posteriori). This implies
that y; ~ uy ~ y > 1 [see Eq. (13)] and thus 7;(y;) zK,»;(lm,
where K; are numerical coefficients defined in the
Appendix [see Eq. (A9)].

In virtue of the above we can neglect o(u/y)
O(y~?3) and retain only the first nonvanishing term of
the expansion in the small argument gog; (1) ~ aK; < 1 of
the exponential. Thus, we obtain

2/3 _

MY () = —COK2m?, =12,  (44)
where the coefficient
| [oo . up(0) du
ch — i d —103/3/ o0ner.oenw
27 Jo o¢ 0 w3 (1 4 u)’3
~0.256 + 0.325i (45)

is easily evaluated numerically. Note that the formation
regions assumed above become transparent in Eq. (45),
The resulting contribution SM® =32 sMY =
O(a?) contains no enhancement for y > 1. Notably, the
expansion of the exponential in go,(u), which we showed
can be truncated in this case, coincides with a perturbative
expansion, and the final contribution to § M is subleading.
This is also confirmed by an inspection of the scales of
SMW (see Table 1), which coincide with the scales of the
leading-order perturbative contribution 5M(©).
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As we will discuss below, there are good reasons in favor
of only two physically different nonperturbative contribu-
tions. From this perspective 5 M (1) should be combined and

considered jointly with M This is confirmed by the
fact that, unlike SM, SM®D cannot be estimated as
a/s. It is also worth pointing out that g 2 1/(m2y"?)
implies that the approximations in Egs. (36), (37) are
actually not sufficient for an accurate calculation of SM W
However, as we have shown, SM® is subdominant;
therefore we do not investigate it any further.

B. Contribution 6 M (1D

Next we consider Eq. (41). It is again convenient to
interchange the order of integration using Eq. (43). This
time, the resulting integral is formed around ¢ ~ o = 1,
but in contrast to MY, around the smaller value u ~
Uer = /> < 1 (cf. the discussion in Sec. IIl A). Assuming
g = ay*? > 1, this still implies y; ~ uy ~ g*/* > > l [see
Eq. (13)] and thus, as for SMW, 7;(y,) ~ K)(Z . The
approximations given in Eqgs. (36), (37) are valid, since

1
s (46)

Teff = T(aeff’

where 7(o, u) is defined in Eq. (20). As for MW, it is
possible to neglect the term o(u/y)*? = O(ay~>/3) in the
exponential.

Furthermore, we neglect u due to u.; << 1 wherever
possible and replace the upper limit of the du-integral by
infinity,

24+ Day*’m? [e .
sy @£ Do m” / do o™i/
’ 2 0
© du iK 2/3
x [ S (emiKiaao/wl _ ), 47
A u2/3( ) ( )

To simplify this expression even further we note that

/00 du (e
—= (e
0 u2/3

(o) . S 5
A dG 63/2e—10'3/3 — 3_1%3_%F <6> ) (49)

where { = K ,ac. Finally, we obtain

2
D _ ZéMz('H)
i=1

i/ _

1) = 3e'%\/nL, (48)

39/6
2662\/_<)3 /_+ /_3/22/32
~ (=0.995 + 1.72i)a*>*Pm (50)

g

10° 10! 102 10°
] 101
s Uy
=~ b __d-zz=z=
5 1071 ————— 3 2
E — [Red M) azys
103 vk

— |Im5./\/l D ===1.72

o™
S
= 10! -
§ - — |Res M1 0.10 o’y
© — |Im M| === L18a?y
103 104 10° 100 107 108
X

FIG. 4. Dependence of the resummed bubble-type mass cor-
rection on y (the corresponding value for g is given on the upper
axis): asymptotic expressions (50), (55) for y > 1 (dashed lines)
vs direct numerical evaluation of Egs. (41), (42) (solid lines).

The integrals in Egs. (48) and (49) are obviously formed at
the scales u ~ (32 ~ a2 and 6 ~ 1.

A numerical comparison between the exact [see
Eq. (41)] and the asymptotic [see Eq. (50)] expression is
shown in the upper panel of Fig. 4. One can see that the
asymptotics [see Eq. (50)] is indeed eventually achieved,
though for extremely high values y > 10° corresponding to
g ~ 100. Notably, Eq. (50) overestimates the exact result for
smaller y. The error is particularly large for the real part,
which changes sign at y ~ 8 x 10°.

The obtained scales characterizing the correction 5M M
are listed in Table II. One can notice that they have the same
dependence on y as the scales for M(©), but incorporate the
coupling «a differently. We will further comment on this
difference in Sec. V.

C. Contribution § M 1D

Finally, we consider the last contribution in Eq. (42).
Here it is convenient to keep the integration order but
change the integration variables from u to y; = uy /(1 + u)
and from ¢ to 6 = 6/0y(u). Assuming u ~ u.; < 1 (to be
confirmed a posteriori) we neglect u where possible, in
particular the term o(u/y)*3. Thus, we obtain

2.2
d
s NM/ “aln)
2 0 Zl
X/ d~ —l()(l/)()z 3/3— taoﬂ,(ll)/)(l . (51)
1 c

K i;(?/ 3. the integrals are effec-
(X[)eﬂ: - 1 and o~ a_l

In virtue of z;(y; > 1) ~
tively truncated from above at y; ~
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for ay?/3 > 1. This implies that u.; = ¥~ < 1 [as initially
assumed, cf. the prerequisites to Eq. (26)] and o4 =
(ay**)~! <« 1. Therefore, our approximations given in
Egs. (36), (37) are justified as

1 1
Teff 2 T(Oeff > Uefy) o) > Tift?‘ (52)

Moreover, it is also possible to neglect the first term
O(g™?) in the exponential in Eq. (51). As a result, we
find that

SM EIH) ~ i aym?, (53)

i

(11

where the numerical factors C;" are given by

o dy . 2/3
12 = 5 —2[711,2()(1)E1(laﬂ1.2()(l)/)(1/ )
TJo X

{ —0.0395 — 0.472i,

R~ . (54)
—0.0634 — 0.703i.

Here E,({) = [°dte "/t is the exponential integral.

Correspondingly,

2
SM — 25/\/(1(,111) = —(0.103 + 1.18i)a?ym?.  (55)
i=1

A numerical comparison between the asymptotic result
in Eq. (55) and the exact expression in Eq. (42) is shown in
the lower panel of Fig. 4. Similar as for SMW, the
asymptotic result becomes reliable for y ~ 10° (g ~ 100).
However, unlike for M it represents a good order-of-
magnitude estimate even for smaller y.

The scales for the correction MV are collected in the
last column of Table II and depend on y mostly in the same
way as M, but incorporate the coupling « differently. We
observed the same in the previous section by comparing
SMIW to MO Here, however, the difference in the
scalings given in Eqgs. (55) and (28) is less obvious and
deserves a more detailed discussion. Both are proportional
to a’y, but the coefficient in Eq. (28) contains logy,
whereas the coefficient in Eq. (55) rather contains a =
g3 in a quite complicated form, see Eq. (54). In
particular, at the point y ~ a=3/2, we have

MW (g=1)~—(0.208 + 0.255i)a’ym?,  (56)

which should be compared with Eq. (55). Furthermore, by
approximating E;({) ~# —In{ — C and evaluating the inte-
gral over y; in Eq. (54), with accounting for Egs. (A2) and
(AS5), we obtain

SMID) _ Aq(D) 13m*¢*(Ing — C™) ’
12701/3y'/3

where we introduced the constant C") &~ 4.65 + 0.530.
This difference demonstrates the effect of resumming the
perturbative higher order corrections with r > 2 for g > 1.
We reflected this symbolically in the top right cell of
Table II.

(57)

V. SUMMARY AND DISCUSSION

After a detailed analysis of radiative corrections in a CCF
of up to 3rd-loop order [12-18], Ritus and Narozhny
conjectured that in the strong-field regime y > 1 the
expansion parameter of QED perturbation theory in a
CCF is g = ay?/?. Recent suggestions [32-36] how this
regime could be reached experimentally renewed the
interest in this old but so far unsolved problem of quantum
field theory.

The parameter g appears already in the leading-order
1-loop calculation of the correction to the electron mass
MO = O(g) [14], and its importance was substantiated
further in Ref. [18] by comparing the leading contributions
in 2nd and 3rd loop order [see diagrams (2b) and (3g) in
Table I]. This analysis suggested that g might be the
relevant expansion parameter, i.e., that an all-order non-
perturbative resummation becomes necessary in the regime
g 2 1. In order to elucidate the Ritus-Narozhny conjecture,
we have considered here the high-y asymptotic behavior of
a certain class of radiative corrections to the electron mass
beyond 3 loops, namely the bubble-type corrections to the
mass operator shown in Fig. 1.

The calculation of polarization corrections in a CCF
naturally introduces an effective charge a.(I%,y;) =
Z(P,y;)a. 1t depends both on the photon virtuality
and the effective field strength y; (which also scales with
the energy of the participating photon). Its dependence on
; turns out to be logarithmic, as one might expect based on
the logarithmic effective charge obtained in field-free QED
[43]. However, a strong difference with respect to field-free
QED is observed, for example, in the scaling of the mass
correction M (y) itself.

Our findings are summarized in Table II. The formation
scales of the leading (r + 1)-loop mass correction M (")
with 7 > 1 bubble insertions differ from the scales for » = 0
(no bubbles) and perturbatively are defined by the con-
dition that the polarization operator eigenvalues are not
suppressed. In particular, for y > 1, the photon virtuality at
higher loop orders, which contains polarization insertions,
is much smaller and the associated spatiotemporal exten-
sion is much larger than for a loop without such insertions
at all.

According to our analysis, the leading (r + 1)-loop mass
correction scales as M) = O(y~'/3¢"+!) in a CCF. This
is precisely what is asserted in the Ritus-Narozhny
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FIG. 5.
additional dressing due to electron mass corrections.

conjecture, hence proves it for higher orders r > 3 not
considered previously. Notably, the parameter g = ay?/?
originates for r > 2 from the ratio of the field-induced
polarization operator eigenvalue to the photon virtuality /2,
evaluated at their typical scales [see Eq. (24)]. The two
lowest-order cases r = 0 (no bubbles) and r =1 (single
bubble) are special, in particular with respect to their scales.
In effect, however, as compared to the above scaling,
MO = O(g) doesn’t acquire the factor y~'/3, whereas
M) acquires just an extra factor logy. The additional
factor y~'/3, arising at higher orders r > 1 due to a
modification of the loop formation scale, explains the
puzzling anomalous ratio of the 2nd to the 1st loop result
[see (1b), (2b) in Table I and Sec. III A]. It is worth
stressing that all higher-order bubble-type contributions
become of the same order for g ~ 1. This unambiguously
manifests a breakdown of perturbation theory, even if the
higher-order contributions remain smaller than the leading-
order 1-loop prediction. Therefore, one has to carry out an
all-order resummation of such bubble-type contributions
for g = 1.

Here, we study the mass correction M (y) in the regime
g2 1 (see Sec. II for the exact definition). The following
decomposition is convenient:

M(y) =
M =MD (3) + MW () + SMMW (),  (59)

O (y) + oM, (58)

where M) (y) [see Eq. (11)] is the leading-order pertur-
bative result and 5M [see Egs. (10), (16), and (39)] has
been determined by resumming all polarization corrections
with » > 1 bubbles, see Fig. 1 and Eq. (3). Its splitting [as in
Eq. (59)] is stipulated by the composition of the integrand
in Eq. (16), namely the terms SM " and 5 MM correspond
to the first term in the integrand, whereas M corre-
sponds to the second one. It is convenient to evaluate them
separately.

Notably, the integrand of our nonperturbative result
given in Eq. (39) includes the polarization operator eigen-
values in the exponentials. It turns out that M can be
neglected (see Sec. [IVA) and that the dominant contribu-
tions originate from MM (see Sec. IV B) and M) (see
Sec. IV C). For them, unlike for SMW, the effective
formation scales arising during integration, are modified
with respect to the perturbative case by involving the

L B S Yo A W S

The cuts of the bubble diagram for corrections to photon emission (left) and to trident pair production (center). Right:

coupling a. This manifests another aspect of the non-
perturbativity of our results. In particular, the effective
value of the photon virtuality here corresponds to the
bubble-chain dressed photon mass shell, see the last row of
Table II. More generally, the scales of SM ™ depend on y
in the same way as the scales of M. However, the
spatiotemporal scales are amplified by inverse powers of «
and the energy-momentum scales are reduced accordingly.
This is consistent with the modification of the perturbative
scales at higher orders r > 2, which has been mentioned
above. The same correspondence is observed by comparing
the scales of SM ) with the scales of M (!

The importance of our analysis of the formation scales is
confirmed by the fact that the asymptotic scalings of SM 1)
and SMM at g> 1 [see Egs. (50) and (55)] can be both
understood in a uniform way, as 6 M ~ a/s with the appro-
priate choices of s (see Table II). They can be alternatively
represented in terms of other pairs of the three parameters g,

a and y, related by our definition g = ay?/?,
M = O(/ag) = OGP,
sMmIn — 0(\/‘ 3/2) O(Z 1/3 2) (60)

This result confirms that the parameter g = ay?*/? deter-
mines the scaling of radiative corrections even in the regime
g 2 1, where perturbation theory is no longer valid. It is
worth noting that a nonanalytic dependence on the coupling
[e.g., a half-integer power in case of M or involving a
logarithm in case of SMM — MM, as implied in
Eq. (57)], shows that our result is nonperturbative, as it
cannot be represented by a power series in the coupling.

As the formation regions differ for 6 M ) [see Eq. (50)]
and SMU [see Eq. (55)], their physical interpretation
should differ as well. According to the optical theorem
radiative corrections are closely related to the total prob-
abilities of associated branching processes [29]. The
imaginary part of the mass operator determines the electron
lifetime inside a background field [13—-16,44]. The electron
state can either decay by emitting a photon or by directly
producing an electron-positron pair (trident process). Both
processes are qualitatively different, in particular with
respect to their associated observables, and are obtained
by two types of cuts shown in Fig. 5.

Based on their scaling with y we have to associate SM (1)

with photon emission and SM  with trident pair
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FIG. 6. Dependence of the resummed bubble-type mass cor-
rection on y (the corresponding value for g is given on the upper
axis): the cumulative mass corrections for ay?? > 1 (inset: the
same dependence on y magnified in the range near ay?/? ~ 1).

production, which exhibit the same scaling as the contri-
butions (1b) and (2b) in Table I. This identification is
supported by the abnormal and normal signs of the
imaginary parts of the corrections SMMW and sAMID,
respectively. The fact that the probability of being in a one-
particle state must decay and cannot increase with time
determines the allowed total sign of the imaginary part.
Therefore, 5M™ must be a correction to the leading-order
result M@, which clearly describes photon emission. The
contribution SMV, however, has the right sign and
describes a decay process which requires at least two
interactions, i.e., trident pair production. To leading order
the latter process is described® by MW [14,21,51] and the
nonperturbative correction to it is asymptotically given
by Eq. (57).

The real and imaginary parts of the on-shell mass
operator are shown in Fig. 6. The solid yellow line
MO () + MWD (y) and the dash-dot blue line M©(y)
demonstrate the impact of polarization effects on photon
emission. In the asymptotic region (g > 1) nonperturbative
effects are responsible for a \/a ~ 10% reduction of both
the real and the imaginary part of the invariant amplitude.

®More precisely, according to [21] ImM) contains two
contributions. The first one corresponds to the trident process
at tree level, and the second one to the interference between the
tree level photon emission and 1-bubble correction to it. How-
ever, the former dominates at y > 1.

In general, however, the contribution SM ™ (y) (solid
green curve) totally dominates and results in a rather
substantial suppression of the real part and an enhancement
of the magnitude of the imaginary part. The region
g=ay*?~1, which could be accessed experimentally
in the midterm future [32-36], is shown separately in the
insets. The curves have been obtained by a direct numerical
evaluation of the integrals in Eqgs. (41) and (42). In this
regime higher-order corrections to photon emission are at
the level of ~0.1% for the real and ~1% for the imaginary
part, respectively.

We emphasize that the relative smallness of SM W and/
or SMM with respect to M© for g~ 1 does not imply
that the breakdown of perturbation theory is somehow
shifted to higher values of g. As discussed above, it occurs
when all higher-order corrections become of the same
order, which happens for g ~ 1. The observed suppression
is specific to processes like elastic scattering or photon
emission. On the other hand, corrections to the trident
process included into SM W, are obviously of the same
order as the process itself at the point of breakdown
gz 1 [see Eq. (57) or cf. Egs. (56) and (55)]. We expect
the same to be true for general higher-order QED pro-
cesses. Therefore, our calculations could be tested exper-
imentally, as the regime ¢ 2 1 is accessible in the midterm
future [32-36].

Finally, we would like to point out that we only con-
sidered one particular subset of diagrams. Hence, further
studies are necessary before final conclusions can be drawn.
In particular, it should be shown directly that the bubble-type
corrections considered here represent indeed the dominant
contribution in the asymptotic regime. This dominance is
related to an expected suppression of the vertex correction.
Whereas this suppression has been proven rigorously in the
case of a supercritical magnetic field [52], the late work of
the Ritus group on this subject actually questioned this
assumption for a CCF [20]. Therefore, the calculation
presented in [20] should be revisited. Naturally, also the
electron mass corrections should be resummed, see right
panel in Fig. 5. Their relative suppression at 3-loop [see
diagram (3e) in Table I] could be peculiar to this order. The
observed dominance of SM M over SM) may indicate
that other corrections (e.g., rainbow diagrams) with higher
multiplicity in the virtual channel are equally or even more
important. Furthermore, the direct evaluation of polarization
corrections to photon emission and trident pair production
would be instructive. Whereas the calculation presented here
reveals how the total probabilities scale, modifications to the
spectra of branching processes are most easily accessible
experimentally.
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Note added.—While revising this manuscript, we have
noticed a new paper [53], which generalizes the results of
Ref. [20] to the plane-wave case. In particular, it confirms
the scaling O(g) of the one-loop vertex correction in a CCF
with an on-shell electron and commensurable values of the
electron and photon y-parameters. This, however, is still
insufficient for proving or disproving the dominance of the
bubble chains, because, as we have seen above, in higher
orders the y-parameters can be effectively distributed
nonuniformly. Further investigations of the diagrams con-
taining vertex corrections are required to ultimately clarify
this aspect of the Ritus-Narozhny conjecture.

APPENDIX: ONE-LOOP POLARIZATION
OPERATOR IN A CONSTANT CROSSED FIELD

For completeness, we provide the explicit expressions
for the renormalized one-loop polarization operator in a
CCF [10,12,13]

2
M, (1) = PAR. ) g + > T2 )l (el (1),

i1

(A1)
where the vectors e,(,l)(l) = eF,I'/(m’y;) and e;(tz)(l) =
eF3, 1Y/ (m?y,) are the same as in Eq. (3). Its three nontrivial
renormalized eigenvalues read

4ay*Pm? [ dv v+05F 1.5
2 _ [ /
HI,Z(Z v)(l) - 37 ‘/4 1}13/6 \/m f(C),
(A2)
and
N 4a [ dv
PR, y) = P2 |
( )(l) z Jy 1}5/2 /—U —4

<@ -me(1-15)] )

Here
v\2/3 2
=) (1) Ay
is the argument of the Ritus functions
o) =i / Y do e-ilto+a’/3)
0
© 1
ni = [ a3, (A3)

which are defined as in [10], and f’({) is the derivative of
the former.

When the external field is switched off, I1; , vanish and
11 is reduced to the well-known expression for the one-
loop polarization operator in field-free QED [54].
We assume the standard renormalization condition that
the expressions in Egs. (A2), (A3) vanish at /> = 0 in the
absence of the external field (for y; = 0) [14].

By carrying out a resummation of the Dyson series one
obtains the following expression for the bubble-chain
photon propagator [14]:

_ig/w
2 - P11

Dy(1) =

With the notation

1

Z(Py) = —s—5—
SR TP

(A7)

the propagator Dy, (I) takes the form given in Eq. (3). In
any diagram the propagator always connects two vertices.
Therefore, the factor Z appears only in combination with a.
Together they compose the effective coupling g (12, ;) =
Z(I%, y;)a. We adopt the terminology of Ref. [43], where
the value a.;(0, y;) is called the field-dependent effective
charge.

Note that for y; > 1 and for the bare on-shell condition
I> = 0 we have

@
3
I1,(0. ;) = am?m;(y;).

7)) = K,

2/3

f[(O,;(,)z log y;’”,

(A8)

where
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FIG.7. Dependence on y; (the corresponding value for g is given on the upper axis) of the real (left) and imaginary (center) parts of the
polarization operator eigenvalues I1; ,, evaluated on the bare mass shell /* = 0, along with the corresponding asymptotics (A8) (insets:
the same dependence on y; magnified in the range near y; ~ 1). Right: the same dependence for the magnitude of the real and imaginary
parts of [T=1—27"1.

The off-shell dependence of I, (12, y;) on I?/m?%y, 213§
shown in Fig. 8. One can see that it decays exponentlally t0
the left of the origin and exhibits a power law decay at the
same scale as it oscillates to the right. The optimal values

are acquired near the bare mass shell (for |2] < m%y}’),
where one can expand Eq. (A2) into powers of the
virtuality 72,

2 l2 2
23 1 2
(2. ) = mPay)” | K, + KS ) 5 /3 +K( )< 5 2/3) }

m )( my,
(A10)
5 0 ; 10 15 20  Where
2/3
12/m2 / L _13F3
, Lo 18x
FIG. 8. Dependence on [ of the real and imaginary parts of the 41 T4
polarization operator eigenvalue TI; (1, y, = 10*): asymptotic K? _ pin/3 ¥ (4/3) All
! 23 /z(17/6
expression given in Eq. (A10) (dashed lines) vs direct numerical 4-6 \/771' ( / )

evaluation of Eq. (A2) (solid lines). The axes are scaled such that

. . . 2 .
the curves are stable under changing of ;. Note that the off-shell correction linear in /- is real. One can

see from Fig. 8 that the asymptotics given in Eq. (AS8)
remain a good order-of-magnitude estimate even for |I?|<

o up SFLTC/3) noy A
Kip= 63 T (13/6) (A9) Finally, in virtue of Eqs. (A2), (A4) and (A5), IT; can be
represented by a one-sided Fourier integral [see Eq. (32)],

where

The dependence of the on-shell expressions given in

Egs. (A2) and (A3) on y, is shown in Fig. 7. One can = ) da , / ©dvv+05F15

see that the asymptotics given in Eq. (A8) are achieved for 2 \Juv—4

21 > 10° and that IT = O(1072) for all reasonable values of % g-im(etmtyie [3) (A12)
21 Since asymptotically I1(12, ;) = O(a) has only a weak ’
logarithmic dependence on y; and 2, it is possible to and the characteristic values of the variables around
neglect small modifications of the effective charge by  which the integral is formed are obviously v~ 1 and 7~
setting Z(1%, y;) ~ 1 and a. ~ a throughout the paper. min {m=2, m™%y, 2/ 3}
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