
4.52.7

A Graph-Based Approach for
Modelling Quantum Circuits

Diego Alonso, Pedro Sánchez and Bárbara Álvarez

Special Issue
Latest Research in Quantum Computing

Edited by
Prof. Dr. Hai Jiang

Article

https://doi.org/10.3390/app132111794

https://www.mdpi.com/journal/applsci
https://www.scopus.com/sourceid/21100829268
https://www.mdpi.com/journal/applsci/stats
https://www.mdpi.com/journal/applsci/special_issues/9Y6TNN2N21
https://www.mdpi.com
https://doi.org/10.3390/app132111794

Citation: Alonso, D.; Sánchez, P.;

Álvarez, B. A Graph-Based Approach

for Modelling Quantum Circuits.

Appl. Sci. 2023, 13, 11794. https://

doi.org/10.3390/app132111794

Academic Editor: Nikos Konofaos

Received: 12 September 2023

Revised: 21 October 2023

Accepted: 23 October 2023

Published: 28 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Graph-Based Approach for Modelling Quantum Circuits

Diego Alonso * , Pedro Sánchez and Bárbara Álvarez

Department of Information and Communication Technologies, Universidad Politécnica de Cartagena,
30202 Cartagena, Spain; pedro.sanchez@upct.es (P.S.); balvarez@upct.es (B.Á.)
* Correspondence: diego.alonso@upct.es; Tel.: +34-968-32-5341

Abstract: A crucial task for the systematic application of model-driven engineering techniques in the
development of quantum software is the definition of metamodels, as a first step towards automatic
code generation and integration with other tools. The importance is even greater when considering
recent work where the first extensions to UML for modelling quantum circuits are emerging and
the characterisation of these extensions in terms of their suitability for a model-driven approach
becomes unavoidable. After reviewing the related work, this article proposes a unified metamodel
for modelling quantum circuits, together with five strategies for its use and some examples of its
application. The article also provides a set of constraints for using the identified strategies, a set of
procedures for transforming the models between the strategies, and an analysis of the suitability
of each strategy for performing common tasks in a model-driven quantum software development
environment. All of these resources will enable the quantum software community to speak the same
language and use the same set of abstractions, which are key to furthering the development of tools
to be built as part of future model-driven quantum software development frameworks.

Keywords: modelling language; metamodel; quantum computing; model-driven engineering;
unitary circuit model; quantum software

1. Introduction

In their seminal article, Paul Benioff [1] described an implementation of a Turing
machine by using Quantum Mechanics effects, while Richard Feynman [2] subsequently
suggested that quantum computers could outperform classical (electronic) computers in
performing some types of computation, in particular, the simulation of physical systems.
These two articles launched the new field of Quantum Computing (QC) in Computer
Science, which finally attracted the world’s attention following the publication of an article
by Peter Shor [3], describing a quantum algorithm that could factorize prime numbers (and
thus break RSA encryption) in Θ(log3(N)), and an article by Lov Grover [4], describing a
quantum algorithm for searching in an unordered data set in Θ(

√
N). Since these articles

were published, the development of QC has experienced incredible growth, both in theory
and in practice. Given the new computing power offered by computers that can exploit
quantum mechanical effects to execute the aforementioned (and other) quantum algorithms,
the applications of QC are almost endless [5]: economics, privacy, chemistry, physics,
logistics, energy, artificial intelligence, optimization, machine learning, and medicine,
among others.

Quantum software development has experienced spectacular growth in recent years
thanks to the reality of quantum computers and the improvements in their computing
power. For the first time in the recent history of computing, there are two coexisting
computing models: classical computing and quantum computing, both based on different
physical principles. Each has its own rules and characteristics, its own set of guiding
principles and basic computing units to develop programs that solve real-world problems.
Regardless of the enormous differences that exist in the hardware needed to run a program
and the abstractions that support software development in each computing model, it is

Appl. Sci. 2023, 13, 11794. https://doi.org/10.3390/app132111794 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132111794
https://doi.org/10.3390/app132111794
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4629-3975
https://orcid.org/0000-0002-1903-1291
https://orcid.org/0000-0002-5515-095X
https://doi.org/10.3390/app132111794
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132111794?type=check_update&version=3

Appl. Sci. 2023, 13, 11794 2 of 22

the task of the Software Engineering discipline to support each of them with techniques,
methodologies and tools, based on knowledge acquired since the 1960s [5,6], to ensure
that the software developed meets requirements regarding functionality, quality, time
and budget.

There are several models of quantum computation (see [7] for an in-depth review)
tailored in some cases to specific hardware technologies. But all of them share a common
thread in that they allow the user to develop quantum software that exploits the unique
effects of quantum mechanics, superposition and entanglement, to develop quantum
algorithms that can achieve exponential speedups in solving some problems compared to
the performance of their classical counter-parts (i.e., those running in digital computers). A
quantum system consisting of ‘n’ qubits is described by a 2n-dimensional Hilbert space.
When a qubit is superposed, its state is modelled as a linear combination of the basis states
|0〉 and |1〉, and thus the state of the system is no longer unique, but is rather a combination
of the individual states of the system’s qubits. The second effect, entanglement, implies
that the state of the system can no longer be described as a combination of the individual
states of the qubits, but that only the state of the group of qubits as a whole exists.

Among the available models of QC, this paper focuses on the Unitary Circuit Model [8],
given its wide spread usage in the QC community (it is the one employed by major QC
providers, such as IBM) and its generality (it is also Turing-complete [8]). This quantum
circuit is one of the best-known models for quantum computing in which, like classical
circuits, a computation is modelled as a sequence of quantum gates operating on qubits.

More recently, the Software Engineering community, and particularly within the disci-
pline Software Language Engineering, is taking the first steps towards applying systematic,
disciplined, and quantifiable approaches to the development, use, and maintenance of quan-
tum software languages. The integration of solutions in the nascent field of model-driven
quantum software development together with utilities for model-to-model transformations,
is essential to support the adoption of the new computing paradigm.

The definition of ontologies for QC, the development of cross-platform compilers as
well as reverse engineering facilities to extract models from already implemented solutions
will be the focus of particular attention in the coming years in Software Engineering,
as evidenced by recent work where some researchers are demonstrating that this is the
effective approach to develop quantum software in a systematic and disciplined manner.

The development of a metamodel for quantum circuits and its integration into a Model-
Driven Engineering process offers several significant advantages [9], such as (i) models
can be reused across projects, reducing duplication of effort, (ii) automatic code genera-
tion from models to quantum programming frameworks, such as Qiskit, streamlines the
implementation process, (iii) model-based analysis and validation helps identify errors
and optimizations early on, and (iv) integration with existing tools leverages their capabili-
ties for modelling, analysis, and code generation, improving the efficiency and quality of
quantum circuit designs.

In this context, this paper reflects on modelling abstractions for the unitary circuit
model of QC, given the results available in the literature and the structure and behaviour
of said computational model. We describe a unified metamodel that supports at least
five modelling strategies that cover the practices identified in the related work. We also
provide a deep study of said metamodel by (i) providing OCL constraints that check
whether models are valid, (ii) providing OCL query functions to identify the modelling
strategy employed by a model, (iii) outlining model-to-model transformations between
the strategies, (iv) outlining a model transformation to reduce the number of modelling
elements required to model a quantum circuit, and (v) providing an OCL query function to
identify whether said transformation has been applied to a model.

From the perspective of the usefulness for the creation of new metamodels, the identifi-
cation of the strategies presented in this work, together with their suitability for performing
model manipulations (navigation, transformations, etc.), should serve as a guide for de-
velopers to choose one strategy over others, and to make this decision before starting to

Appl. Sci. 2023, 13, 11794 3 of 22

develop the different tools. Our aim is to contribute with a single metamodel that can
accommodate and make different ways of modelling quantum circuits compatible, so that
the QC community can “speak and understand” the same language, while at the same time
supporting some local variations.

The rest of this paper is organized as follows. Section 2 outlines the related work
of applying model-driven engineering techniques to QC. Section 3 describes the main
characteristics of the unitary circuit model for QC that are needed to understand it and that
justify the metamodel proposed in this paper. Section 4 describes the proposed metamodel,
together with five approaches in which it can be employed to model quantum circuits and
an example problem that shows the feasibility of the proposal. Section 5 describes the
constraints and model transformations mentioned above, which complete the proposal for
a core set of tools to model quantum circuits. Section 6 is devoted to further discussion
of the properties and suitability of each modelling strategy performing usual tasks in a
model-driven development environment, such as editing models and developing model
transformations. There is also a discussion of other aspects related to the work being
presented, such as the role of domain-specific languages, the integration of the proposal
into a hybrid classical–quantum development environment, as well as the applicability of
the proposed approach to other quantum computing models. Lastly, concluding remarks
are given in Section 7.

2. Related Work

The contribution of the Model-Driven Engineering (MDE) approach [10] to software
construction over the last 20 years is undoubted, mainly in terms of productivity improve-
ment both by increasing the value of the software artefact and by increasing the expectation
of use [11]. These models embed simplified versions of the represented reality where some
details are hidden or removed because they are irrelevant from a given perspective or for a
given purpose. These models are therefore independent of the language and programming
paradigm that will subsequently be used to translate them into code.

Moreover, thanks to these models, knowledge sharing between technical and non-
technical staff is made easier by facilitating the use of concepts close to the problem domain.
Accuracy, predictability, comprehensibility, among others, are some of the desirable at-
tributes for these models [12]. Each model is built according to a metamodel, satisfying the
concepts, relationships and constraints determined in it. In other words, a metamodel is “a
model that defines the structure of a modelling language” [13].

In the context of MDE, model transformations are a set of rules for deriving output
(another model or free-form text) from an input model. Useful tools for this process
are called ‘transformation engines’ and include both model-to-model and model-to-text
transformations, the latter being an approach to automate the generation of free-form
text (including source code). This is where the great potential of MDE lies: the important
concepts for the application to be developed are designed and manipulated, instead of lines
of code in a programming language. The variety of model transformation approaches is
enormous [14], including model checking to determine the presence of desirable properties
and the absence of those to be avoided [15]. Models and the transformations between them
are the focus of the MDE approach.

Regarding QC, quantum algorithms are defined as operations acting on qubits in
a given order, where both the operations and the state of the qubits are defined in the
complex number plane C. Therefore, the transformation embedded in a quantum algo-
rithm is a mathematical function that operates in a complex vector space. Furthermore,
QC has a probabilistic nature that is intrinsic to the quantum mechanical processes that
underpin it. Although the use of quantum gates and circuits partially abstracts away the
underlying difficulty of designing quantum algorithms, there is still a large conceptual gap
between the way algorithms are conceived in classical and quantum computing. There-
fore, QC is a perfect candidate for applying MDE techniques to exploit its abstraction and
generation capabilities.

Appl. Sci. 2023, 13, 11794 4 of 22

Quantum software development is not being neglected by the Software Engineer-
ing community, quite the opposite. Some works are beginning to take the first steps
towards defining key Software Engineering concepts such as modularity, cohesion and
coupling in the context of quantum computing [16]. In [9], a metamodel for representing
quantum circuits and a model-to-text transformation for generating quantum code is in-
troduced. In particular, a model-driven infrastructure is used to automatically generate
quantum programs from satisfiability problems through model-to-model transformations
and embedding the well-known quantum Grover’s algorithm. The aforementioned work
demonstrates the application of models to the development of quantum software.

Other authors are contributing to the adoption of traditional software modelling
languages such as UML. Another example is [17], which describes a UML profile for
modelling quantum circuits. The immediate benefit of this approach is the ability to
integrate quantum models with classical ones, thus contributing to the development of
hybrid applications that combine both computational models. In this sense, ref. [18] sets
out some of the principles that should be preserved when designing modelling languages
for quantum software by providing a set of extensions to UML to abstractly model arbitrary
circuits. However, no details are provided on the modelling of quantum circuits, only their
integration as part of a hybrid system. In [19], some ideas for deriving new languages
for modelling quantum software are provided. In particular, they consider an approach
in which metamodels are used for modelling quantum programs as extensions of UML.
In [20], MDE4QAI is proposed as an MOF-based metamodelling framework for integrating
quantum computing and Artificial Intelligence.

The paper [21] presents extensions, again as UML profiles, for use case, class, sequence,
activity, and deployment diagrams, to enable the development of hybrid systems (i.e.,
systems that integrate quantum programs with classical software) through the use of up to
20 stereotypes. The quantum UML profile, and the examples of its use with different UML
diagrams, provides a set of design guidelines for the development of classical–quantum
information systems. They also describe a way to define the relationships between classical
and quantum software and how these relationships can be modelled in abstract designs.
Of relevance in the context of the present work are the UML activity diagrams used for
modelling quantum circuits. However, as discussed below, despite fitting such an extension
to the UML profile, the generated models for representing quantum circuits present some
specific problems in terms of navigation and manipulation.

In summary, to date, these are the works that have been identified so far that are taking
the first steps towards integrating quantum software development into a model-driven
approach. Despite the enormous interest in QC, there are still many challenges to overcome
in order to adopt QC in a definitive manner, beyond mere entertainment or curiosity in the
use of quantum technology, as well as other aspects of a socio-economic nature, and of the
comprehensibility of the paradigm [22].

Most programming languages for quantum software development typically provide
an implementation in the Python programming language of the quantum concepts needed
to design quantum programs. This is the case for libraries as well-known and used in the
sector as Qiskit from IBM, Cirq from Google, or PennyLane from Xanadu. These libraries
provide, in the form of classes and objects, implementations of the elements used in
quantum programming, such as Qbit, quantum gates (with all its varieties), measurement,
classical bit, etc. These classes are linked to the programming language used and, therefore,
programs are generally not easily exported to other programming languages. The usual
solution to this interoperability problem is to provide back-ends, exporters, or plug-ins that
generate a new version of the program for different quantum languages or hardware.

Therefore, most quantum programming languages do not follow an approach like the
one proposed in this article, but rather their Python libraries directly provide an imple-
mentation of quantum programming elements. A notable exception to this is the quantum
photonics software library Strawberry Fields [23], which includes a domain-specific lan-
guage for continuous-variable quantum computation, called Blackbird, embedded in the

Appl. Sci. 2023, 13, 11794 5 of 22

Python library that provides its functionality. Continuous variable QC [24] employs phys-
ical quantities with continuous eigenvalue spectrum to perform quantum computation.
In this approach, mathematical tools such as operator theory and the calculus of contin-
uous variables are used to describe and manipulate the quantum states of these systems.
Continuous variable QC expands the possibilities of quantum computing by working with
more complex and information-rich systems due to the continuity of the variables involved.
The approach described in this article shares with Blackbird the definition of a quantum
language independent of the execution platform, but differs in terms of implementation
technology. The proposed metamodel employs the principles and tool-chain of the MDE
approach, which brings the advantages already listed in the introduction in terms of model
reuse, automatic code generation for different platforms, model-based analysis, etc.

3. Background on the Unitary Circuit Model

The unitary circuit model for QC resembles the structure and behaviour of Boolean
circuits. It is composed of qubits, unitary quantum gates that manipulate these qubits
and lines that define the order in which the gates operate over the qubits. The operation
performed by a quantum gate must be unitary, hence the name of this model of computation.
This means that not all operations are allowed but only those that are reversible, given that
no information is lost in the evolution in time of a closed quantum system. It also requires
that gates have the same number of inputs and outputs. Like their Boolean counterparts,
quantum circuits are read from left to right.

Quantum gates (see [25] for a complete and deep discussion) can operate on any
number of qubits. Like normal bits in classical computers, qubits are independent of each
other, and the computations performed in one of them do not affect or depend on other
qubits, unless they participate in the operation defined by a multi-qubit gate. In this case,
an execution dependency is created between otherwise independent qubits. Gates that
operate on multiple qubits are very important in QC since they create, modify or seize
the special properties of entangled states, which are key to unleashing the computational
power of QC.

The graphical notation of quantum circuits is inspired by Penrose graphical nota-
tion [26], which provides a graphical representation for mathematical operations with
tensors and for multilinear functions. As an example, two circuits that perform the same
calculation are shown in Figure 1. As can be seen, only the relative order of gates is im-
portant for single-qubit gates, while gates that act on many qubits require that all qubits
involved in the computation be in the correct state before the gate can start its operation.

However, it should be noted that there is order in the execution of a quantum program,
as happens in classical programming languages. Firstly, the low-level source code defines
a certain order of gate applications. Secondly, quantum transpilers apply many kinds
of optimizations and re-ordering of gates to optimize to the qubit topology in certain
quantum computers.

q[0]

q[1]

q[2]

H

H

Z

q[0]

q[1]

q[2]

H

H

Z

Figure 1. Two equivalent quantum circuits that include the Hadamard, NOT, Z, Control-NOT, and
Toffoli gates. Only the relative placement of quantum gates and the dependencies in the order of
execution created by multi-qubit gates (Control-NOT and Toffoli gates) are important.

Circuit reversibility is a fundamental requirement in QC because reversibility is a
fundamental property of quantum mechanics. Reversibility enables qubits to maintain their
properties of superposition and entanglement, and ensures that operations performed on
them preserve the information. From a more mathematical perspective, quantum circuits
can be seen as functions that take as input a finite string ‘x’ of n-qubits and output a finite

Appl. Sci. 2023, 13, 11794 6 of 22

string ‘y’ of the same length, y = f (x), where f : {0, 1}n → {0, 1}n. Given that quantum
circuits must be reversible, ‘a’ qubits of the string will be considered as real inputs to the
function, while ‘b’ qubits will store the output values, where n = a + b. This differentiation
between qubits depends entirely on the quantum algorithm being executed. From the point
of view of the quantum circuits, there is no difference among qubits.

4. Modelling the Unitary Circuit Model of Quantum Computation

In this section, we reflect on the main and essential features of the unitary circuit
model for QC and those of the modelling languages summarised in Section 2, and abstract
them in order to define a single modelling language, based on an extended version of
graphs. The proposed metamodel can accommodate at least five strategies for modelling
quantum circuits, including those discussed in the state-of-the-art section. This section is
completed with an example, modelled according to the five proposed strategies, which
shows the feasibility of the proposal and a set of OCL constraints to check the validity of
the models, regardless of the modelling strategy they employ. All the assets are provided
as described in “Data availability” at the end of the manuscript.

4.1. A Unified Metamodel for the Unitary Circuit Model

Given the description of the unitary circuit model described in the previous section,
an approach based on the use of direct-acyclic graphs (DAGs) seems the most obvious and
sensible, be it a metamodel that allows modelling DAGs without constraints, or a restricted
version that considers the horizontal or vertical structure inherent to the unitary circuit
model. In the second case, the language would consider either some kind of swim-lane
abstraction to model the flow of execution of quantum gates over a qubit, like the UML
activity diagram used in [17], or some kind of element to model the vertical sections of the
circuit, like the metamodel described in [9].

The metamodel shown in Figure 2 extends the well-known metamodel of graphs
to combine all the approaches into a single modelling language. The purpose of this
metamodel is to be as simple as possible, providing only the core minimum set of elements
that allow users to model quantum circuits. The three meta-classes coloured in yellow
represent the original version of a metamodel for graphs, while the extensions needed to
model quantum circuits are shown in blue (Qubit and Control gate) and in grey (abstract
base meta-class QuantumGate). The control gate allows the creation of multi-qubit gates,
which are needed to entangle qubits.

Circuit

Control

H

QuantumGate

Edge Qubit

Node

X

[1..*] qubits

[0..*] nodes

[0..*] edges

[1..1] qubit

[1..1] controlGate

[1..1] src[1..1] dst

[0..*] gates

[1..*] gates

Figure 2. Metamodel for quantum software following the quantum circuit model that can accom-
modate at least five modelling strategies. The diagram uses the UML class diagram notation, where
the cardinality between meta-classes is given with minimum and maximum values (∗ means ’un-
bounded’). An extended version of this metamodel is shown in Appendix A.

These six meta-classes, together with their relationships, constitute a minimal core for
modelling quantum circuits. Of course, the metamodel should be extended, by inheriting
from the abstract base meta-class (QuantumGate) to add all the gates available in the general

Appl. Sci. 2023, 13, 11794 7 of 22

unitary quantum circuit model. For the sake of simplicity, only two gates, which are needed
to model the example quantum circuit described below, have been added to the metamodel
(coloured in green): H (the Hadamard gate, to create superposition) and X (the NOT gate).
This version is sufficient for the purposes of this paper. The containment relationship
between Qubit and QuantumGate, coloured in red in Figure 2, will be justified in Section 5.3
and can be ignored for now.

It should be clarified that the metamodel allows the modelling of multi-controlled
gates, i.e., gates controlled by more than one qubit. To do this, it is necessary to include as
many Control gates as needed and set their controlGate property to the gate they control.

The metamodel also makes it possible to model more complex structures that appear
in quantum programmes, such as a Quantum Random Access Memory (QRAM) [27].
Following the Bucket Brigade architecture [28] or a more recent circuit design [29], since
QRAMs are implemented by means of quantum gates, they can be modelled with the
proposed metamodel and stored in their own files, independently from the rest of the
quantum circuit. In this way, they could be reused as modules in multiple programs where
QRAMs are needed.

4.2. Supported Modelling Strategies

The Node meta-class is the key to the modelling capabilities offered by the metamodel.
Given its ability to have an internal structure, it can store any number of QuantumGates,
each acting over a Qubit. It is therefore the way to logically group together all the gates
that define a multi-qubit gate where needed. The metamodel allows the use of at least
five modelling strategies, depending on the type of DAG being created (a line or a general
DAG) and the way in which the Node meta-class is used. Graphical representations of these
strategies are shown in the following section. It may help the reader to examine them to
gain a better idea of each of the strategies described below:

• Strategy “swim-lane”: Nodes contain exactly one QuantumGate and the graph is organ-
ised as a set of lines that link the Nodes that contain gates operating over the same
qubit. In the literature, the work [17] fits this strategy, as it defines a profile for the
UML activity diagram.

• Strategy “linear”: similar to the previous one, but the graph is now organised as a line
that preserves the relative order of execution of the gates contained in the Nodes. To
the best of our knowledge, no work in the literature follows this strategy.

• Strategy “slice”: Nodes contain all the QuantumGates involved in a vertical slice of the
quantum circuit (hence the name of the strategy), and the graph is organised as a line.
The work described in [9] fits this strategy.

• Strategy “mixed swim-lane”: Nodes contain only one logical operation, be it a single
QuantumGate operating on one qubit or all the QuantumGates corresponding to a multi-
qubit gate. The graph is organised as a set of lines connecting the Nodes that contain
gates operating over the same qubit. As for this strategy, no work in the literature
conforms to it.

• Strategy “mixed linear”: like the previous one, but now the graph is organised as in
the strategy “linear”. To our knowledge, no work in the literature corresponds to it.

In short, the Node provides the developer with the necessary flexibility to decide
whether she/he wants to model the quantum circuit using only the gates that operate on
a qubit, or to group in a Node all the gates that model a controlled gate, or in the most
extreme case, all the gates that appear in a particular vertical section of the circuit.

4.3. Example Application

In order to demonstrate the modelling capabilities of the proposed metamodel, and
obtain some statistics on the usage of modelling resources that will allow us to compare all
strategies, we will use the quantum circuit that solves the following riddle: “the finalist of
a TV quiz show arrives at the last test, in which the presenter shows him two boxes with
two notes. On box A, the note states ’at least one of the boxes contains a car’. On box B,

Appl. Sci. 2023, 13, 11794 8 of 22

’the other box contains a pair of shoes’. The presenter also adds that either both notes are
true or false. Which box should the contestant open?”.

The riddle can be solved by finding the solution to the following Boolean equation:
(A ∨ B) XNOR (¬A). The quantum circuit that solves the riddle, a satisfiability problem
in disguise, by applying Grover’s algorithm [4] is shown in Figure 3. Qubits q[0] and q[1]
model boxes A and B, respectively, with value |0〉meaning ’do not open this box’.

q[0]

q[1]

a[0]

a[1]

c2

H

H

H H

H

H

H

H

0 1

1 2 3 4 5 6

Figure 3. Quantum circuit that solves the proposed riddle.

The measure of the top two qubits (the bottom ones are ancilla qubits, employed to
perform intermediate calculations) always yields the result |10〉, meaning that the princess
can know for certain that box B contains the kitten. The numbers appearing above the
circuit are used to refer to the gates that appear below them, and are employed in the
graphs depicted below to better identify the part of the quantum circuit they refer to.

Figure 4 shows, as graphs, the models of the quantum circuit that solves the riddle
by employing each of the five strategies described above. For space reasons, and without
loss of generality, the quantum circuit is modelled up until the Control-NOT (CX) gate
that appears in vertical number 6. Dashed lines on the graphs represent the relationship
that exists between a control gate and the gate being controlled. These lines are not
Edges of the metamodel but rather a visual aid added in the figures to better display the
relationships that exist among controlled gates in the graph representation of the quantum
circuit. Ellipses represent Nodes that contain just one gate, while circles with horizontal
lines represent Nodes that contain more than one gate.

Labels inside ellipses follow either the convention “〈vertical〉:〈gate〉(〈qubit〉)”
for single qubit gates, or “〈vertical〉:c(〈qubit〉,〈controlledQubit〉)” for control gates.
The label inside a circle has as many letters as qubits in the circuit, where the symbol ‘−’
indicates that no gate acts on that qubit, according to the order in which the letters are
written. This notation has only an illustrative purpose, to make it easier to identify the
correspondence between the nodes of the graph and the gates of the quantum circuit. It
should be highlighted that the two “linear” graphs in the figure show one of the possible
orderings of such graphs. Specifically, the one in which the quantum circuit is represented
from top to bottom.

Appl. Sci. 2023, 13, 11794 9 of 22

1:H(q0)

1:H(q1)

3:X(a0)

1:X(a1)

2:X(q0) 3:c(q0,a0) 6:c(q0,a1)

6:X(a1)

2:X(q1) 3:c(q1,a0)
4:X(q1) 5:X(q1)

4:X(a0) 5:c(a0,a1) 5:X(a1)

2:H(a1)

(a) Strategy “swim-lane” (per-qubit).

1:H(q0) 1:H(q1) 1:X(a1) 2:X(q0) 2:X(q1) 2:H(a1) 3:c(q0,a0)

3:c(q1,a0) 3:X(a0)

4:X(q1)4:X(a0)5:X(q1)5:c(a0,a1)5:X(a1)6:c(q0,a1)6:X(a1)

(b) Strategy “linear”.

1:HH-X 2:XX-H 3:ccX- 4:-XX- 5:-XcX 6:c--X

(c) Strategy “slice”.

1:H(q0)

3:ccX-

1:H(q1)

1:X(a1)

2:X(q0)

6:c--X
4:X(q1)

4:X(q0)
2:X(q1)

5:X(q1)

5:--cX

2:H(a1)

(d) Strategy “mixed swim-lane”.

1:H(q0) 1:H(q1) 1:X(a1) 2:X(q0) 2:X(q1) 2:H(a1)

3:ccX-4:X(q0)4:X(q1)5:X(q1)5:--cX6:c--X

(e) Strategy “mixed linear”.

Figure 4. Graph representations that follow the five strategies for modelling the quantum circuit that
solves the example riddle. Dashed lines represent the relationship between a control gate and the
gate being controlled. They are not part of the metamodel but rather a visual aid added to better
understand the graph representations.

4.4. Completing the Metamodel with OCL Constraints

Metamodels are usually completed by adding OCL [30] constraints, which define a
set of rules that every model must satisfy in order to be well-formed. Besides the usual
constraints for DAGs (i.e., no Edge to self is allowed, no Node can remain without at least
one incoming/outgoing Edge, no two Edges can have the same source and destination
Node), we define the following specific constraints, shown in Listing 1, tailored to the
particularities of quantum circuits. It is worth highlighting that the constraints listed below
are independent of the modelling strategy used in the model:

• All QuantumGates contained in a Node should operate on different Qubits. The OCL
constraint GatesOperateOnDifferentQubits checks this.

Appl. Sci. 2023, 13, 11794 10 of 22

• The Qubit on which a Control gate operates must be different from the Qubit on
which the controlled QuantumGate operates. Checked by
OperatesOnADifferentQubitThanControlledGate OCL constraint.

• A Control gate cannot control another Control gate. Multi-controlled gates, such as
the Toffoli gate, can be modelled by having each individual Control gate point to the
gate it controls, instead of pointing to the next Control gate in the chain. The main
drawback of this last modelling choice is that you could create models where Control

gates just control other Control gates, potentially creating loops which will make
it even harder to detect. The OCL constraint CannotControlAnotherControlGate
checks it.

• If a Node contains more than one gate, then all the Control gates within it must control
gates also contained on that node. From the point of view of model well-formedness,
this constraint is not necessary, but has been added to ensure some logical order in
the structure. The OCL constraint AllControlSameNode checks it.

Listing 1. OCL constraints to check model validity.

1 context Node inv GatesOperateOnDifferentQubits :
2 s e l f . ga tes −> f o r A l l (g1 , g2 | g1<>g2 implies g1 . qubit <> g2 . qubit)
3

4 context Control inv OperatesOnADifferentQubitThanControlledGate :
5 s e l f . qubi t <> s e l f . contro lGate . qubit
6

7 context Control inv CannotControlAnotherControlGate :
8 not s e l f . contro lGate . isTypeOf (Control)
9

10 context Node inv AllControlSameNode :
11 i f (s e l f . ga tes . s i z e () > 1) then s e l f . ga tes −>
12 s e l e c t (g | g . isTypeOf (Control)) −>
13 f o r A l l (g | s e l f . ga tes −> inc ludes (g . contro lGate))
14 e ls e true
15 endif
16

17 context C i r c u i t inv Edges_QubitsContainGates :
18 not s e l f . edges . isEmpty () and s e l f . qubi t s −>
19 e x i s t s (q | not q . gates . isEmpty ())
20

21 context C i r c u i t inv NotAllCollectionsEmpty :
22 not s e l f . edges . isEmpty () or not s e l f . nodes . isEmpty () or
23 s e l f . qubits −> e x i s t s (q | not q . gates . isEmpty ())

The following constraints appear due to the addition of the containment reference
mentioned before and shown in red in the metamodel. Their purpose will be clarified in
Section 5.3:

• A model that has Edges and in which at least one Qubit contains gates is not valid.
The OCL constraint Edges_QubitsContainGates checks it.

• At least one of the collections Circuit.edges, Circuit.nodes or Qubit.gates must
contain elements. This means that not all of these collections can be empty. The OCL
constraint NotAllCollectionsEmpty checks it.

At this point, we have provided a common metamodel for modelling quantum circuits,
five strategies to model circuits according to this metamodel, the rules of construction of
quantum circuits, and finally, a set of OCL constraints.

5. Supporting Tools and Model Transformations

This section completes the metamodel described in the previous one by providing OCL
query functions to identify the modelling strategy of a model, to describe model-to-model
transformations between the strategies, and to reduce the number of modelling elements
required to model a quantum circuit.

Appl. Sci. 2023, 13, 11794 11 of 22

5.1. Identification of the Strategy Followed in a Model

It is possible to detect which kind of modelling strategy has been employed in a
model by executing the OCL query operation kindOfStrategy, defined in Listing 2. This
operation is needed to avoid mixing strategies in the same model, as this can confuse the
users of the model and hinder the development of further tools. Also, some tools in the
toolchain may require that the input models follow a particular strategy.

Listing 2. OCL query operation that detects the kind of strategy employed in a model.

1 context Node : : totalEdgesCount () : Integer
2 body : s e l f . incoming . s i z e () + s e l f . outgoing . s i z e ()
3

4 context Node : : hasControl ledGate () : Boolean
5 body : s e l f . ga tes . s i z e () > 1
6

7 context Node : : hasMultipleNonControlGates () : Boolean
8 body : (s e l f . ga tes −> s e l e c t (g | not g . isTypeOf (Control))) . s i z e () > 1
9

10 // −1: e r r o r
11 // 1 : s l i c e , 2 : l i n e a r , 3 : swim−lane , 4 : mixed swimlane , 5 : mixed l i n e a r
12 context C i r c u i t : : kindOfStrategy () : Integer
13 body :
14 i f (s e l f . nodes −> f o r A l l (n | n . totalEdgesCount () <=2)) then
15 i f (s e l f . nodes −> e x i s t s (n | n . hasMultipleNonControlGates ())) then 1
16 e ls e
17 i f (s e l f . nodes −> e x i s t s (n | n . hasControl ledGate ())) then 5
18 e ls e 2
19 endif
20 endif
21 e ls e
22 i f (s e l f . nodes−> e x i s t s (n | n . hasMultipleNonControlGates ())) then −1
23 e ls e
24 i f (s e l f . nodes −> e x i s t s (n | n . hasControl ledGate ())) then 4
25 e ls e 3
26 endif
27 endif
28 endif

This operation relies on identifying the differentiating properties of each strategy. To
do this, we first determine whether the graph is a line, that is, if the maximum value of
the sum of incoming and outgoing Edges to/from a Node is 2. In this case, if at least one
Node contains more than one gate that is not a Control gate, then the model follows the
strategy “slice”. If not, but at least one Node contains more than one gate, then it follows
the strategy “mixed linear”. Otherwise, it follows the strategy “linear”. In the case of the
strategies “swim-lane” and “mixed swim-lane”, Nodes can be the source or destination of
more than one Edge, but at least one Node contains more than one gate in the case of the
“mixed swim-lane” strategy. This is not the case for the strategy “swim-lane”.

5.2. Transformation between the Modelling Strategies

The five modelling strategies described above cover all the modelling proposals
identified in the literature (and add three new ones), while using the same metamodel. This
contribution offers a number of advantages.

The first and most important is that it provides a common set of concepts and mod-
elling elements that can be used to express different ways of thinking about and repre-
senting quantum circuits. In addition, the uniqueness of the metamodel allows for the
simplification of the development, deployment and maintenance of modelling tools. This
will allow the community to “speak and understand” the same language, while at the same
time supporting some local variations.

In addition, the approach allows the development of model-to-model transformations
that change the strategy used in each quantum circuit, opening up the possibility of
using the most appropriate strategy when developing further model-processing tools. For

Appl. Sci. 2023, 13, 11794 12 of 22

instance, code generation is easier in the “slice” strategy, but a per-qubit navigation of a
model following this strategy is not as easy as the “swim-lane” one. Thus, a model could
be transformed from one strategy into another in order to make some tasks easier.

An outline of the model-to-model transformation between the strategies follows:

• The strategies “swim-lane” and “mixed swim-lane” are basically the same, except that
the second one groups together in a single Node all the gates involved in a multi-qubit
operation. Therefore, the transformation between both strategies relies on grouping
and ungrouping the multi-qubit gates and adding or removing Edges connecting
gates operating on the same qubit as needed. The correspondence between the two
strategies is 1-to-1.

• The “slice” strategy can be transformed into/from either the “swim-lane” or “mixed
swim-lane” ones by realising that a given slice (Node) contains gates operating over
different qubits. Thus, it is possible to generate the “swim-lane” version by creating
Nodes containing only one gate and creating Edges connecting the Nodes containing
gates operating over the same Qubit, in the order defined by the input circuit. The
same procedure applies to generating a model that follows the “mixed” strategy but, in
this case, controlled gates must be stored in the same Node. Again, the correspondence
between these strategies is 1-to-1.

• The strategies “linear” and “mixed linear” are the most flexible ones in the sense
that the same quantum circuit can be modelled by several such graphs, simply by
changing the relative order of the Nodes in the line, with the only restriction that if two
Nodes contain gates that operate on the same qubit, they cannot be interchanged. As
in the first case, the transformation between both strategies relies on grouping and
ungrouping the multi-qubit gates contained in Nodes, according to the target strategy.
When transforming between strategies “linear” and “swim-lane”, the transformation
only has to reconFigure Edges according to the Qubit the Nodes (the QuantumGate

contained in the Node, to be precise) they link operate over. The transformation
from “mixed linear” to “swim-lane” also requires that the gates contained in Nodes
must be ungrouped or grouped, respectively, and as described above, depending
on the direction of the transformation. For the strategies “slice” and “mixed”, the
transformation must first rearrange the gates in Nodes according to the chosen strategy,
remove the ones that remain empty, and then link the Nodes as described in the
previous sentence. In any case, given the flexibility of these strategies regarding the
order of the Nodes in the graph, the correspondence with the other strategies is n-to-1.

As an example, the GitHub repository referred to in the “Data availability statement”
at the end of the paper stores a model-to-model transformation, written in the Epsilon
transformation language [31], that transforms a model that follows the strategy “mixed
swim-lane” into one that conforms to “swim-lane”. The transformation is straightforward
for all elements except for Nodes and Edges, as outlined above, which must be handled
carefully to properly transform nodes containing only one quantum gate and nodes con-
taining more than one, while considering the edges entering and exiting them. Algorithm 1
provides a more complete yet succinct description of this transformation.

Appl. Sci. 2023, 13, 11794 13 of 22

Algorithm 1 Transformation from strategy “mixed swim-lane” to “swim-lane”.

// =⇒means “transformed into”
//←means “store the element/s generated for the RHS on the LHS”
// The values of the attributes/properties not specified in the transformation
// are just copied from the input model to the output one
f:In!Qubit =⇒ t:Out!Qubit
f:In!H =⇒ t:Out!H
f:In!X =⇒ t:Out!X
f:In!Control =⇒ tn:Out!Node, tc:Out!Control

tn.gates = tc
f:In!Node / f.gates.size()≤1 =⇒ t:Out!Node

t.gates← f.gates
f:In!Node / f.gates.size()>1 =⇒ t:Out!Node

t.gates← (f.gates–> selectOne (g | not g.isTypeOf(In!Control)))
f:In!Edge(not (f.src.gates.size()>1 and f.dst.gates.size()>1))) =⇒ t:Out!Edge

set t.src and t.dst so that the gate contained in each node operates on
the same qubit

f:In!Edge(f.src.gates.size()>1 and f.dst.gates.size()>1)) =⇒ t:Out!Edge*
create as many Out!Edge as needed to link Out!Nodes created from

composite In!Nodes
f:In!Circuit =⇒ t:Out!Circuit

t.qubits← f.qubits
t.nodes← f.nodes
t.nodes← In!Control.allInstances()
t.edges← f.edges

5.3. Transformation to Reduce the Number of Modelling Elements

The modelling resources needed by each strategy in the case of the sample quantum
circuit that solves the riddle described in Section 4.3 are summarised in Table 1. Please note
that the number of Qubits and QuantumGates required are the same in all cases, four qubits
and sixteen gates, since these are the number of quantum elements that appear in (the first
half of) the quantum circuit that solves the riddle. Thus, the total number of ’additional’
elements needed to be able to model the quantum circuit can be seen as the overload that a
particular modelling strategy adds to the model. As shown in the table, the strategy that
models the vertical sections of the circuit, entitled “slice”, is the most efficient in this respect.
It drastically reduces the number of additional modelling elements needed at the cost of
losing expressiveness, since the models will be just a line with Nodes that have a complex
internal structure. The formulas listed in Table 2 can be used to calculate the number of
additional modelling elements required by each strategy.

Table 1. Some statistics on the number of modelling elements required to model (half of) the quantum
circuit for solving the example riddle.

Swim-Lane Mixed Swim-Lane Linear Slice Mixed Linear

Nodes 17 13 17 7 13
Edges 16 16 16 6 12

Total 33 29 33 13 25
Overload 165% 145% 165% 65% 125%

Appl. Sci. 2023, 13, 11794 14 of 22

Table 2. Formulas that determine the number of additional modelling elements required by each strategy.

Strategy Nodes Edges

Swim-lane g + se g− C− 1 + se · q
Mixed swim-lane g− C + se g− C− 1 + se · q

Linear g + se g− C− 1 + se · q
Slice l + se l + se− 1

Mixed linear g− C + se g− C− 1 + se

where
l : longest path of circuit
q : number of qubits
g : number of QuantumGates elements
se : nodes that mark the start or end of the graph, with value {0, 1, 2}
cgx : number of QuantumGates controlled by ‘x’ qubits

C : total number of controlled gates, ∑
x=1

cgx

It is indeed possible to reduce the number of modelling elements needed in order to
model a quantum circuit by realising that there is generally a horizontal flow of control
imposed by qubits and that the order established by the Edges can be also obtained by
using a queue (first-in first-out) as the type of collection employed to store just the Nodes.
Particularly, this is the default collection type employed in EMF for containment relation-
ships. This optimization reduces to almost one half the number of additional modelling
elements required to model a given quantum circuit. This is the purpose of the containment
relationship coloured in red between Qubit and Node in the metamodel shown in Figure 2.

It is worth noting that only the strategy “mixed swim-lane” cannot take advantage of
this optimization given that Nodes can contain any number of QuantumGates that act on any
number of Qubits. This is no surprise since this strategy is the most flexible one. Models
employing it should be transformed into models that employ any of the other strategies,
for instance the strategy “swim-lane” by executing the transformation described at the
end of the previous section, in order to obtain a model that can seize this reduction in the
number of modelling elements. The Epsilon model transformation available at the GitHub
repository, outlined in Algorithm 2, demonstrates this option for the “linear” strategy.

Algorithm 2 Reduction of model elements for the “linear” strategy.

// =⇒means “transformed into”
//←means “store the element/s generated for the RHS on the LHS”
// The values of the attributes/properties not specified in the transformation
// are just copied from the input model to the output one
f:In!Qubit =⇒ t:Out!Qubit
f:In!H =⇒ t:Out!H
f:In!X =⇒ t:Out!X
f:In!Control =⇒ t:Out!Control
f:In!Node =⇒ t:Out!Node

t.gates← f.gates
f:In!Circuit =⇒ t:Out!Circuit

t.qubits← f.qubits
t.nodes← f.nodes in the order specified by Edges, starting from a

Node that has no incoming Edge

Lastly, it is perfectly possible to develop a model transformation that reverses the
reduction just described in this section, returning a model to its original form, where Edges
define the flow of control and where Qubits contain nothing.

Although this option to reduce the number of modelling elements does not seem to be
necessary at first glance, it is proposed here for completeness, since this article seeks to study

Appl. Sci. 2023, 13, 11794 15 of 22

and evaluate all possible modelling options for quantum circuits using the metamodel
described before. In addition, having models with a smaller number of modelling elements
reduces the computational and memory requirements of the programs that will process
these models to generate new representations, either new models or text (e.g., source code).

5.4. Detecting if a Model Has Been Reduced

As motivated in Section 5.1, it is necessary to identify whether the transformation
described in the previous subsection has been applied to a model, and which strategy
follows said model. Independently of the strategy followed in a model, after the application
of the model transformation that reduces the number of modelling elements, the resulting
model contains no Edges. The OCL query operation whichReducedStrategy, shown in
Listing 3, serves this purpose.

Listing 3. OCL query operation that detects if the transformation that reduces the number of
modelling elements has been applied to a model.

1 context Node : : hasControl ledGate () : Boolean
2 body : s e l f . ga tes . s i z e () > 1
3

4 context Node : : hasMultipleNonControlGates () : Boolean
5 body : (s e l f . ga tes −> s e l e c t (g | not g . isTypeOf (Control))) . s i z e () > 1
6

7 // 0 : none , 1 : s l i c e , 2 : l i n e a r , 3 : swim−lane , 5 : mixed l i n e a r
8 context C i r c u i t : : whichReducedStrategy () : Integer
9 body :

10 i f (s e l f . qubi t s −> f o r A l l (q | q . gates . isEmpty ())) then
11 i f (s e l f . nodes −> e x i s t s (n | n . hasMultipleNonControlGates ())) then 1
12 e ls e
13 i f (s e l f . nodes −> e x i s t s (n | n . hasControl ledGate ())) then 5
14 e ls e 2
15 endif
16 endif
17 e ls e 3
18 endif

The strategies “slice”, “linear” and “mixed linear” are both identified by the fact that
Qubits do not contain gates, but rather all the gates are contained in Nodes contained
themselves in the Circuit. In this case, if at least one Node contains more than one gate that
is not a Control gate, then the model follows the strategy “slice”. If not, but at least one
Node contains more than one gate, then it follows the strategy “mixed linear”. Otherwise,
the model follows the strategy “linear”. If Qubits in the model contain gates, then the model
follows the “swim-lane” strategy. Please keep in mind that the reduction transformation
cannot be applied to a model that follows the “mixed swim-lane” strategy. In this case, the
OCL query operation returns 0 (no reduction has been applied).

6. Evaluation of the Proposal

This section provides an evaluation of the strategies described in the previous sec-
tions. There are few references available in the literature on the evaluation of metamodel
quality. Some papers focus on quality measures [32], while others propose general quality
evaluation models [33] or with metrics inspired by object-oriented design concepts [34].

Without the aim of being exhaustive, the following three attributes will be analysed
in this section: ease of modification of existing models (adding, deleting and moving
elements), ease of implementation of model-to-model and model-to-text transformations.
Our interest is focused on analysing the suitability of each strategy according to each of
the these attributes and on defining an order of preference of some strategies over others
according to these attributes. Please note that the implementation of model transformations
implicitly considers the ease of navigation through the metamodel elements since this is
mandatory to perform any model transformation. To help the reader better understand the

Appl. Sci. 2023, 13, 11794 16 of 22

content of the following three sections, it is recommended that the graph examples of each
strategy shown in Figure 4 accompany the reading of the section.

6.1. Ease of Model Manipulation

We will focus on the discussion of modifiability on those models that are manipulated
by the user. We will keep the discussion simple and abstract, and we will not compare the
strategies according to the availability of supporting graphical or textual model editors
available for each one, or the difficulty of developing such tools. If we only consider the
number of modelling elements that make up a model, and with which the user has to
interact (create, modify, move or delete), according to the statistics and equations described
in Section 5.3, the “slice” strategy is the best, as it requires the least number of additional
modelling elements, and then the “mixed” ones followed by the other two strategies.

We now extend this reflection to consider the ease of adding and deleting elements
according to the quantum circuit, rather than these operations themselves (which are easily
performed in any editor). That is, from the point of view of how easy it is to insert a new
QuantumGate or Qubit in its correct place and how easy it is to restore the model to a valid
and correct state after deleting such an element.

The main criterion for ranking the strategies by level of preference is the difficulty of
identifying the point in the graph where a quantum gate needs to be inserted or removed.
In addition, the edges connections have to be redone to bring the graph back into a
coherent state.

The strategies that use composite Nodes are the preferred ones because in them it is
easy to establish a correspondence between the quantum circuit and the elements of the
model, and therefore it is easy to identify where to add the new element or how to restore
the model to a valid state. Among them, “mixed swim-lane” is preferred over the other
two because the circuit structure is better represented than in the “mixed linear” strategy
and because changes only require updating Edges, whereas in the “slice” strategy the user
may have to move gates to different Nodes to rearrange the model to represent the quantum
circuit. Then come the “swim-lane” and “linear” strategies, because there is no horizontal
structure in “linear” that can help the user to perform the operations.

In summary, from best to worst, the preferred strategies in terms of model modifiability
are: “mixed swim-lane”, “mixed linear”, “slice”, “swim-lane”, “linear”.

This order is not affected by the transformation that reduces the number of modelling
elements described in Section 5.3, but from our point of view it hinders this task because
Edges give the user freedom to place Nodes in any order. Nevertheless, with the appropriate
support from editors, it can be useful and even easier for the user to manipulate models in
this reduced form.

6.2. Ease of Implementation of Model-to-Model Transformations

For model-to-model transformations, we focus on the ease of identification of the
elements that have the highest semantic complexity in the quantum circuit model: the
horizontal order defined by the qubits and the presence of multi-qubit gates. According to
this criterion, “mixed swim-lane” is again the preferred one, since both features are easily
identifiable, and “linear” is again the last one since neither of them is.

Regarding the other three strategies, qubits are easily identifiable in “swim-lane”
while multi-qubit gates are evident in strategies “slice” and “mixed linear”. Of the latter
two, “slice” is preferable because it preserves the vertical order, which can help the user
when programming model transformations. The decision between “swim-lane” and “slice”
depends on which element is more important for the design of model transformations:
qubits or gates. Another aspect to consider is that there are many degrees of freedom when
interpreting a model that follows the “linear” or “mixed linear” strategies, because they
represent only one of the possible execution paths of the circuit.

In summary, from best to worst, the preferred strategies for specifying model-to-model
transformations are: “mixed swim-lane”, “swim-lane”, “slice”, “mixed linear”, “linear”.

Appl. Sci. 2023, 13, 11794 17 of 22

As before, this order is not affected by the transformation that reduces the number of
modelling elements, but from our point of view it hinders this task because Edges may still
be useful for other transformations down the toolchain. It is also possible that there are
transformations that require the presence of Edges in order to be properly defined.

6.3. Ease of Implementation of Model-to-Text Transformations

When defining model-to-text transformations, the order of preference may change
depending on the structure of the text to be generated, code in this case. It is impossible to
consider all cases of text generation to provide some guidance but we will basically classify
them according to two attributes: whether they need to respect the overall structure of the
quantum circuit (horizontal, vertical, unimportant) and whether multi-qubit gates play
some special role or need to be considered separately.

The “slice” strategy reflects the vertical order of the circuit, while the “swim-lane”
strategy reflects the horizontal order. The “mixed swim-lane” strategy is in the middle
of both (but favours the horizontal structure), and strategies “mixed linear” and “linear”
reflect neither. If multi-qubit gates play a special role or need to be considered separately,
the strategies “mixed swim-lane”, “mixed linear” and “slice” are better than “swim-lane”
and “linear”, because multi-qubit gates are easy to identify in the former (although you can
always look for Control gates in the model to find them).

Specifically, when considering code generation, it all depends on the target quantum
language chosen. For languages that follow the imperative and structured paradigm, such
as IBM’s Qiskit [35], developed as a Python library, we think that the best strategies are
“slice”, “mixed linear” and “linear”, because for this task the vertical structure is more
important than the horizontal one. Then come the other two strategies, since in them
the transformation needs to identify and consider the dependencies between nodes in a
multi-qubit gate.

In summary, from best to worst, the preferred strategies for specifying model-to-code
transformations are: “slice”, “mixed linear”, “linear”, “mixed swim-lane”, “swim-lane”.

Again, this order is not affected by the transformation that reduces the number of mod-
elling elements, but rather it makes code generation easier. This is because it eliminates the
need to navigate Edges, which are no longer needed because model-to-text transformations
are usually the last to be performed in a model-driven development framework.

Table 3 presents a summary of the three characteristics analysed in this section. The
classification is by no means an absolute one. Each user must choose the most appropriate
strategy for their use case. There is no single best strategy for all scenarios.

Table 3. Summary of suitability of the strategies for performing operations related to modelling
activities using a [−2,2] Likert scale. CM stands for ‘changes in models’, M2M for ‘model-to-model
transformation’ and M2T for ‘model-to-text transformation’.

Strategy CM M2M M2T

Slice +1 +1 +2
Mixed swim-lane +2 +2 −1

Swim-lane −1 +1 −2
Linear −2 −2 +1

Mixed linear +2 −1 +2

This classification reinforces the idea presented in Section 5.2 of having a set of model
transformations between the different strategies that have been presented in this article. In
this way, each phase of an MDE development process could be addressed using the most
appropriate strategy for the task at hand.

It should also be possible to generate code-to-model transformations that extract the
quantum circuit implementation from the input source code. In this case, the “linear”
strategy is the most appropriate one because it assumes that there is no horizontal or

Appl. Sci. 2023, 13, 11794 18 of 22

vertical ordering, and therefore the order in which the code is written will suffice for this
task. Although we are still in the infancy of QC, it is possible that in the short term there
will be modernisation needs that will be answered by the application of holistic approaches
such as KDM [36].

6.4. On the Role of Domain-Specific Languages

One of the hardest tasks in QC is the design of the quantum algorithms themselves,
which requires seizing the unintuitive principles of quantum mechanics and applying
them in order to solve a problem. In QC, the developer has to manipulate qubits with
algebraic operators in a Hilbert space, while keeping in mind at the same time that QC
is also probabilistic in nature, and thus the results output by a quantum computer will
lie in a probabilistic space. This is where the quantum conceptual gap lies and this is
where domain-specific languages (DSLs) and patterns may be needed to ensure a smooth
transition from the problem domain, where the user will specify the problem using a
DSL, to the quantum circuit that solves it, which will embed some or a set of quantum
algorithms [37] that are suitable for this task.

Thus, we envisage that DSLs, and more importantly, the transformations that generate
a quantum circuit, will play a crucial role in the short term, given the conceptual gap
mentioned above. The metamodel and supporting tools described in this paper can then
provide the necessary infrastructure to continue the model-driven quantum software
development toolchain up to quantum software generation.

6.5. Integration in a Hybrid Classical–Quantum Development Environment

In order to develop a true quantum software engineering discipline [5], it is necessary
to define integration mechanisms between classical and quantum software development
tools. In this way, the output of the execution of the quantum software can be fed back into
the execution flow of the classical software. This would make it possible to take decisions
and modify the models of the quantum circuit under development according to the results
obtained in the previous executions, in order to generate and execute new versions of them.

The integration of this proposal in such a hybrid development environment requires
the intercommunication of modelling tools with the tools used to develop quantum software
(usually, Python frameworks). In this work, the modelling environment provided by the
Eclipse project, developed entirely in Java, and the Qiskit quantum software programming
and simulation environment, developed in Python, have been used. This allowed the two
development environments to be integrated, with one language calling the other and using
its output in further computations. Solutions such as Py4J, for calling Java methods from
Python code, and Jython, for calling Python code from Java, could achieve such integration.

6.6. Application to Other Quantum Computing Models

As described in this paper, the proposed metamodel for representing quantum circuits
provides a standardized way of describing the structure and behaviour of quantum programs.
According to [38], there are five models in which the principles of quantum mechanics, includ-
ing superposition and entanglement, can be leveraged to perform computation: Quantum
Gate Array, One-Way Quantum Computer, Zidan’s Model, Topological Quantum Computer,
and Adiabatic Quantum Computer. In this context, for each of the above-mentioned models,
the possibilities of adopting the proposed metamodel are outlined.

Quantum Gate Array (Unitary Circuit Model). This model is based on the use of quantum
gates to manipulate qubits, and is the model of computation considered in this paper.

One-Way Quantum Computer [39]. This model of computation is based on the
concept of measurement-based quantum computation, where the program is represented
as a graph of entangled qubits and measurement operations. The proposed metamodel
could capture the graph structure, the entanglement relationships, and the measurement
outcomes, providing a comprehensive representation of the program’s dependencies and
measurement results.

Appl. Sci. 2023, 13, 11794 19 of 22

Zidan’s Model [40]. This is a novel approach to quantum computing that aims to
utilize the degree of entanglement between qubits to perform quantum computations. This
model offers a different perspective on quantum computing. The proposed metamodel
provides the quantum gates employed by Zidan’s model and can capture the graph struc-
ture of the program and the entanglement relationships between qubits, allowing for the
representation of the whole system entanglement.

Topological Quantum Computer [41]. This model of quantum computing is based
on the concept of topological qubits, which are robust against noise and decoherence.
Topological quantum computers have the potential to be highly fault-tolerant and scalable.
Here, the representation and structure of quantum programmes are not based on graphs
of quantum circuits, but on topological concepts and manipulations of anyons on a two-
dimensional topological surface. Therefore, this model of QC is not compatible with the
proposed approach.

Adiabatic Quantum Computer [42]: Adiabatic quantum computing is based on the
adiabatic theorem of quantum mechanics. Adiabatic quantum computers are particularly
suited for solving optimization problems. Since programs in this model are represented
as the continuous evolution of a Hamiltonian system, the proposed metamodel can not
capture the time-dependent changes in the system’s state, so the representation of the
program’s dynamics could not be possible.

7. Conclusions

The first steps in the adoption of Software Engineering for quantum software devel-
opment are taking place around metamodels. As a result, it is possible to start building
a path on which to progress in the development of techniques, tools and methodologies
adapted to the uniqueness of quantum software. Having an abstract scheme that unifies, as
a common framework, the different metamodels that are beginning to emerge following
the unitary circuit model of QC, will allow us to lay the foundations that will guide the
development process of new tools. These tools can facilitate the development of quantum
software and, in some way, mitigate the inherent difficulty of the significant conceptual
gap between classical and quantum software development.

In this work, the authors identified different ways of conceptualizing quantum circuits
through models and proposed a unified metamodel. The proposal has been enriched and
completed in three dimensions. Firstly, by providing a set of OCL constraints that determine
whether a model is valid and OCL query functions to determine some properties of the
model. Secondly, by providing a set of model transformations between the five modelling
strategies supported by the metamodel and for reducing the number of modeling elements
required by a model. Lastly, by discussing the suitability of each strategy for performing
common tasks in an MDE development process.

This work aims to provide a solid foundation upon which other modelling tools,
especially those for code generation, can rely on. Now is the ideal time, based on the initial
contributions from the software engineering community, to take decisive steps to make the
circuit-based quantum computing model available to software developers.

Author Contributions: Conceptualization, D.A. and P.S.; methodology, D.A. and B.Á.; software,
D.A. and P.S.; validation, D.A., P.S. and B.Á.; investigation, P.S. and B.Á.; writing—original draft
preparation, D.A. and B.Á.; writing—review and editing, P.S. and B.Á. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The assets described in the paper are freely available at the GitHub
repository https://github.com/DiegoAlonso/qcore (accessed on 22 October 2023).

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/DiegoAlonso/qcore

Appl. Sci. 2023, 13, 11794 20 of 22

Abbreviations
The following abbreviations are used in this manuscript:

QC Quantum Computing
OCL Object Constraint Language
UML Unified Modelling Language
MDE Model-Driven Engineering
MOF Meta-Object Facility
DAG Direct Acyclic Graph
DSL Domain Specific Language
KDM Knowledge Discovery Metamodel

Appendix A

This appendix presents a possible extension of the metamodel presented in Figure A1,
showing how to include a more complete set of quantum gates. The new classes are
shown in blue and include Y, Z gates, rotations in X,Y,Z, phase P, Swap, generic U gate and
Measurement. For the latter, the class Cbit has been included, which represents a classical
bit to store the measurement result of a qubit. All new quantum gates have been added as
extensions of the abstract base class QuantumGate. The inheritance relationship is shown in
red. The same procedure would be used to add additional gates.

Circuit

comment : EString

Control

QuantumGate

Edge

Cbit

name : EString

Qubit

name : EString

isAncilla : EBoolean

Node

name : EString

H

X

Y Z

swap

Rx

rad : EDouble

Ry

rad : EDouble

Rz

rad : EDouble

P

rad : EDouble

Measurement

U

theta : EDouble

phi : EDouble

lam : EDouble

[1..*] qubits

[0..*] nodes

[0..*] edges

[1..*] cbits

[1..1] qubit

[0..*] gates

[1..*] gates

[1..1] dst

[1..1] src
[1..1] controlGate

[1..1] swap

[1..1] cbit

Figure A1. Extension to the metamodel shown in Figure 2 to better represent quantum circuits. The
new classes added are shown in blue. The red lines represent the inheritance relationship.

References
1. Benioff, P. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as

represented by Turing machines. J. Stat. Phys. 1980, 22, 563–591. [CrossRef]
2. Feynman, R.P. Simulating physics with computers. Int. J. Theor. Phys. 1982, 21, 467–488. [CrossRef]
3. Shor, P.W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer (revised

version of the original paper, published in 1994). SIAM Rev. 1999, 41, 303–332. [CrossRef]
4. Grover, L.K. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth Annual ACM

Symposium on Theory of Computing, STOC ’96, New York, NY, USA, 22–24 May 1996; pp. 212–219. [CrossRef]

http://doi.org/10.1007/BF01011339
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1145/237814.237866

Appl. Sci. 2023, 13, 11794 21 of 22

5. Piattini, M.; Serrano, M.; Perez-Castillo, R.; Petersen, G.; Hevia, J.L. Toward a Quantum Software Engineering. IT Prof. 2021,
23, 62–66. [CrossRef]

6. Piattini, M.; Peterssen, G.; Pérez-Castillo, R. Quantum Computing: A New Software Engineering Golden Age. SIGSOFT Softw.

Eng. Notes 2020, 45, 12–14. [CrossRef]
7. Nimbe, P.; Weyori, B.A.; Adekoya, A.F. Models in quantum computing: A systematic review. Quantum Inf. Process. 2021, 20, 80.

[CrossRef]
8. Chi-Chih Yao, A. Quantum circuit complexity. In Proceedings of the 1993 IEEE 34th Annual Foundations of Computer Science,

Palo Alto, CA, USA, 3–5 November 1993; pp. 352–361. [CrossRef]
9. Alonso, D.; Sánchez, P.; Sánchez-Rubio, F. Engineering the Development of Quantum Programs: Application to the Boolean

Satisfiability Problem. Adv. Eng. Softw. 2022, 173, 103216. [CrossRef]
10. Bézivin, J. On the unification power of models. Softw. Syst. Model. 2005, 4, 171–188. [CrossRef]
11. Atkinson, C.; Kühne, T. Model-driven development: A metamodeling foundation. IEEE Softw. 2003, 20, 36–41. [CrossRef]
12. Selic, B. The pragmatics of model-driven development. IEEE Softw. 2003, 20, 19–25. [CrossRef]
13. Rodrigues Da Silva, A. Model-driven engineering: A survey supported by the unified conceptual model. Comput. Lang. Syst.

Struct. 2015, 43, 139–155. [CrossRef]
14. Kahani, N.; Bagherzadeh, M.; Cordy, J.R.; Dingel, J.; Varró, D. Survey and classification of model transformation tools. Softw. Syst.

Model. 2019, 18, 2361–2397. [CrossRef]
15. Sendall, S.; Kozaczynski, W. Model transformation: The heart and soul of model-driven software development. IEEE Softw. 2003,

20, 42–45. [CrossRef]
16. Sánchez, P.; Alonso, D. On the Definition of Quantum Programming Modules. Appl. Sci. 2021, 11, 5843. [CrossRef]
17. Perez-Castillo, R.; Jimenez-Navajas, L.; Piattini, M. Modelling Quantum Circuits with UML. In Proceedings of the 2021

IEEE/ACM 2nd International Workshop on Quantum Software Engineering (Q-SE), IEEE Computer Society, Madrid, Spain,
1–2 June 2021; pp. 7–12. [CrossRef]

18. Pérez-Delgado, C.A.; Perez-Gonzalez, H.G. Towards a Quantum Software Modeling Language. In Proceedings of the IEEE/ACM
42nd International Conference on Software Engineering Workshops, New York, NY, USA, 27 June 2020; pp. 442–444. [CrossRef]

19. Ali, S.; Yue, T. Modeling Quantum Programs: Challenges, Initial Results, and Research Directions. In Proceedings of the 1st ACM
SIGSOFT International Workshop on Architectures and Paradigms for Engineering Quantum Software, New York, NY, USA,
13 November 2020; pp. 14–21. [CrossRef]

20. Moin, A.; Challenger, M.; Badii, A.; Günnemann, S. Towards Model-Driven Engineering for Quantum AI. In INFORMATIK 2022;
Gesellschaft für Informatik: Bonn, Germany, 2022; pp. 1121–1131. [CrossRef]

21. Pérez-Castillo, R.; Piattini, M. Design of classical-quantum systems with UML. Computing 2022, 104, 2375–2403. [CrossRef]
22. De Stefano, M.; Pecorelli, F.; Di Nucci, D.; Palomba, F.; De Lucia, A. Software engineering for quantum programming: How far

are we? J. Syst. Softw. 2022, 190, 111326. [CrossRef]
23. Killoran, N.; Izaac, J.; Quesada, N.; Bergholm, V.; Amy, M.; Weedbrook, C. Strawberry Fields: A Software Platform for Photonic

Quantum Computing. Quantum 2019, 3, 129. [CrossRef]
24. Pfister, O. Continuous-variable quantum computing in the quantum optical frequency comb. J. Phys. B At. Mol. Opt. Phys. 2019,

53, 012001. [CrossRef]
25. Barenco, A.; Bennett, C.H.; Cleve, R.; DiVincenzo, D.P.; Margolus, N.; Shor, P.; Sleator, T.; Smolin, J.A.; Weinfurter, H. Elementary

gates for quantum computation. Phys. Rev. A 1995, 52, 3457–3467. [CrossRef] [PubMed]
26. Penrose, R. Applications of negative dimensional tensors. In Proceedings of the Conference on Combinatorial Mathematics and

its Applications, Oxford, UK, 7–10 July 1971.
27. Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum Random Access Memory. Phys. Rev. Lett. 2008, 100, 160501. [CrossRef]
28. Arunachalam, S.; Gheorghiu, V.; Jochym-O’Connor, T.; Mosca, M.; Srinivasan, P.V. On the robustness of bucket brigade quantum

RAM. New J. Phys. 2015, 17, 123010. [CrossRef]
29. Zidan, M.; Abdel-Aty, A.H.; Khalil, A.; Abdel-Aty, M.; Eleuch, H. A Novel Efficient Quantum Random Access Memory. IEEE

Access 2021, 9, 151775–151780. [CrossRef]
30. Object Management Group, Inc. Object Constraint Language (OCL) v. 2.4; Object Management Group Headquarters: Needham,

MA, USA, 2014. Available online: https://www.omg.org/spec/OCL (accessed on 22 October 2023).
31. Kolovos, D.; Paige, R.; Polack, F. The Epsilon Transformation Language. In Proceedings of the Theory and Practice of Model

Transformations Conference, ICMT 2008, Zürich, Switzerland, 1–2 July 2008; Lecture Notes in Computer Science; Springer: Berlin,
Germany, 2008; Volume 5063, pp. 46–60. [CrossRef]

32. Ma, H.; Shao, W.; Zhang, L.; Ma, Z.; Jiang, Y. Applying OO Metrics to Assess UML Meta-models. In Proceedings of the UML
2004—The Unified Modeling Language. Modeling Languages and Applications, Lisbon, Portugal, 11–15 October 2004; Springer:
Berlin/Heidelberg, Germany, 2004; pp. 12–26.

33. Strahonja, V. The Evaluation Criteria of Workflow Metamodels. In Proceedings of the 2007 29th International Conference on
Information Technology Interfaces, Dubrovnik, Croatia, 25–28 June 2007; pp. 553–558. [CrossRef]

34. Zhiyi, M.; Xiao, H.; Chao, L. Assessing the quality of metamodels. Fron. Comp. Sci. 2013, 7, 558. [CrossRef]
35. Treinish, M. Qiskit: An Open-Source Framework for Quantum Computing; Zenodo: Geneva, Switzerland, 2021. [CrossRef]

http://dx.doi.org/10.1109/MITP.2020.3019522
http://dx.doi.org/10.1145/3402127.3402131
http://dx.doi.org/10.1007/s11128-021-03021-3
http://dx.doi.org/10.1109/SFCS.1993.366852
http://dx.doi.org/10.1016/j.advengsoft.2022.103216
http://dx.doi.org/10.1007/s10270-005-0079-0
http://dx.doi.org/10.1109/MS.2003.1231149
http://dx.doi.org/10.1109/MS.2003.1231146
http://dx.doi.org/10.1016/j.cl.2015.06.001
http://dx.doi.org/10.1007/s10270-018-0665-6
http://dx.doi.org/10.1109/MS.2003.1231150
http://dx.doi.org/10.3390/app11135843
http://dx.doi.org/10.1109/Q-SE52541.2021.00009
http://dx.doi.org/10.1145/3387940.3392183
http://dx.doi.org/10.1145/3412451.3428499
http://dx.doi.org/10.18420/inf2022_95
http://dx.doi.org/10.1007/s00607-022-01091-4
http://dx.doi.org/10.1016/j.jss.2022.111326
http://dx.doi.org/10.22331/q-2019-03-11-129
http://dx.doi.org/10.1088/1361-6455/ab526f
http://dx.doi.org/10.1103/PhysRevA.52.3457
http://www.ncbi.nlm.nih.gov/pubmed/9912645
http://dx.doi.org/10.1103/PhysRevLett.100.160501
http://dx.doi.org/10.1088/1367-2630/17/12/123010
http://dx.doi.org/10.1109/ACCESS.2021.3119588
https://www.omg.org/spec/OCL
http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://dx.doi.org/10.1109/ITI.2007.4283831
http://dx.doi.org/10.1007/s11704-013-1151-5
http://dx.doi.org/10.5281/zenodo.2573505

Appl. Sci. 2023, 13, 11794 22 of 22

36. Object Management Group, Inc. Knowledge Discovery Metamodel (KDM) v. 1.4; Object Management Group Headquarters:
Needham, MA, USA, 2016. Available online: https://www.omg.org/spec/KDM (accessed on 22 October 2023).

37. Abhijith J.; Adedoyin, A.; Ambrosiano, J.; Anisimov, P.; Casper, W.; Chennupati, G.; Coffrin, C.; Djidjev, H.; Gunter, D.; Karra, S.;
et al. Quantum Algorithm Implementations for Beginners. ACM Trans. Quantum Comput. 2022, 3, 1–92. [CrossRef]

38. Yetiş, H.; Karaköse, M. An improved and cost reduced quantum circuit generator approach for image encoding applications.
Quantum Inf. Process. 2022, 21, 203. [CrossRef]

39. McCaskey, A.; Dumitrescu, E.; Liakh, D.; Chen, M.; Feng, W.; Humble, T. A language and hardware independent approach to
quantum–classical computing. SoftwareX 2018, 7, 245–254. [CrossRef]

40. Zidan, M. A novel quantum computing model based on entanglement degree. Mod. Phys. Lett. B 2020, 34, 2050401. [CrossRef]
41. Kitaev, A. Fault-tolerant quantum computation by anyons. Ann. Phys. 2003, 303, 2–30. [CrossRef]
42. Santoro, G.E.; Tosatti, E. Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. J. Phys. A

Math. Gen. 2006, 39, R393. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.omg.org/spec/KDM
http://dx.doi.org/10.1145/3517340
http://dx.doi.org/10.1007/s11128-022-03546-1
http://dx.doi.org/10.1016/j.softx.2018.07.007
http://dx.doi.org/10.1142/S0217984920504011
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1088/0305-4470/39/36/R01

	Introduction
	Related Work
	Background on the Unitary Circuit Model
	Modelling the Unitary Circuit Model of Quantum Computation
	A Unified Metamodel for the Unitary Circuit Model
	Supported Modelling Strategies
	Example Application
	Completing the Metamodel with OCL Constraints

	Supporting Tools and Model Transformations
	Identification of the Strategy Followed in a Model
	Transformation between the Modelling Strategies
	Transformation to Reduce the Number of Modelling Elements
	Detecting if a Model Has Been Reduced

	Evaluation of the Proposal
	Ease of Model Manipulation
	Ease of Implementation of Model-to-Model Transformations
	Ease of Implementation of Model-to-Text Transformations
	On the Role of Domain-Specific Languages
	Integration in a Hybrid Classical–Quantum Development Environment
	Application to Other Quantum Computing Models

	Conclusions
	Appendix A
	References

